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Preface 
 
 
 
 

Condensed matter systems, ranging from simple fluids and solids to complex multi-
component materials and even biological matter, are governed by well understood laws of 
physics, within the formal theoretical framework of quantum theory and statistical mechanics. 
On the relevant scales of length and time, the appropriate ‘first-principles’ description needs 
only the Schroedinger equation together with Gibbs averaging over the relevant statistical 
ensemble. However, this program cannot be carried out straightforwardly—dealing with 
electron correlations is still a challenge for the methods of quantum chemistry. Similarly, 
standard statistical mechanics makes precise explicit statements only on the properties of 
systems for which the many-body problem can be effectively reduced to one of independent 
particles or quasi-particles.  

As the interactions among so many degrees of freedom introduce nontrivial correlations 
between them, only computer simulation provides us with a methodic route to make accurate 
explicit predictions for the static and dynamic properties of many-body physical systems 
starting from first principles. The molecular dynamics simulation method (MD) was introduced 
in the 1950s, shortly after the ‘companion’ Monte Carlo method. Since then, the scope of both 
has been rapidly expanding. Despite the fact that suitable computing facilities were scarce, 
very slow, and with very small storage capacities compared to present-day facilities, 
immediately important and, at the time, rather surprising discoveries were made—notably 
that hard spheres crystallize at a density long before close packing has been achieved and 
that dynamic correlations in fluids exhibit long time tails. These have been the starting point 
of a great variety of methodological developments, with many exciting technical extensions 
still under development, providing broad applications and opportunities for important 
discoveries. 

Nowadays, with pervasive high-speed networking and powerful massively-parallel 
computers at the hands of every scientist, advances in simulation methods are progressing at a 
breathtaking speed. Molecular dynamics computer simulation offers the advantage that 
connections can be established between the models of condensed matter on different scales 
and the hierarchy, from the sub-Angstrom scale—where one deals with effects due to the 
electrons, up to the mesoscopic and macroscopic scales relevant for living matter. 
Applications cut across extremely diverse fields, from fundamental problems in solid state 
physics to the rich world of phenomena exhibited by complex fluids and biological 
systems—elucidating the electronic properties of materials as well as the major non-
equilibrium processes that take place in the living cell. The goal is to develop a simulation 
approach for complex materials and biological matter that successfully bridges the gap from 
the small scales of electronic structure calculations to the mesoscopic scales of pattern 
formation in soft matter (where one uses coarse-grained techniques such as dissipative 
particle dynamics and multiscale collision dynamics). This is a goal that will remain an 
exciting challenge for many years to come. 

The contributions collected in this book move from the quantum-statistical description to 
the validity of classical modeling; they present some perspectives in the algorithmic and in 
the enhanced sampling approaches, tackling some longstanding challenges to simulation in 
the area of non-equilibrium, rare events, mesoscale and quantum-classical simulation. 
Initially, the book deals with the validity of molecular dynamics modeling, starting from the 
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adiabatic hypothesis for the electronic ground state; the first contribution explores different 
descriptions of the potential energy surfaces one can use in a molecular dynamics simulation; 
the second analyzes in detail the Born-Oppenheimer schemes for ab initio MD within Kohn–
Sham density functional theory, while the third one tackles the problem from the alternative 
perspective of a quantum Monte Carlo approach. The next contribution dwells on how to 
improve the statistical ensemble properties of time integrators for Langevin dynamics by 
including an acceptance–rejection scheme. The subject of free energy calculations by 
molecular dynamics is illustrated in the next two contributions, first with a presentation of 
alternative dynamical approaches for performing enhanced sampling by force biasing and 
temperature acceleration, then using non-equilibrium path sampling within the framework of 
Jarzynski identity and Crooks fluctuation theorem. The general ideas behind non-equilibrium 
molecular dynamics are the focus of the next two contributions, regarding calculation of 
dynamical responses and the application of Malliavin weight sampling to dynamical 
trajectories. Many of the same ideas are at the core of the study of rare, reactive, events by 
molecular dynamics as discussed in the next two contributions, more in general in the first 
and then with specific reference to the Markov state models approach. The last four invited 
contributions are dedicated to the problem of dealing with well separated space and time 
scales. First, the general philosophy of multiscale approaches and the related computational 
strategies within molecular dynamics are discussed in a concept paper, while the other three 
deals with specific non-adiabatic dynamical approaches for systems with a mixed quantum-
classical description, based upon alternative approaches borrowing either from the Wigner 
transform representation or from the Bohmian formulation of quantum dynamics. The book is 
completed by the contributed papers to the molecular dynamics special issue.  

The reader will find answers to a number of questions, a few of which we can briefly 
recall here: 
� How to generate averages in statistical mechanics ensembles, other than the 

microcanonical one, or, in other words, how to couple the system to temperature, pressure 
or particle baths.  

� How to deal with the simultaneous occurrence of slow and fast degrees of freedom that 
makes straightforward implementations of MD very inefficient, with a great waste of 
computer resources. 

� How to evolve in time a quantum subsystem immersed in a classical environment, using 
a consistent description based on the Wigner formulation of quantum statistical 
mechanics, allowing the study of transport phenomena in such mixed quantum-classical 
systems.  

� How to combine ab initio MD with classical MD using hybrid approaches in the 
environment of the reactive groups, by suitable “quantum mechanical/molecular 
mechanical (QM/MM)” partitioning. 

� How to extend the standard quantum Monte Carlo approach to obtain a description of 
electronic structure that provides an interesting alternative to the density functional based 
methods.  

� How to efficiently sample rare events, e.g., a nucleation process where a huge free 
energy barrier needs to be crossed to form a critical nucleus of the new stable phase on 
the background of a metastable phase, and develop sampling schemes for computing 
the relevant properties and studying the mechanisms of transitions between 
metastable states. 

� How to eliminate or treat in a simplified way, by coarse-graining, some small-scale 
degrees of freedom, which are considered less relevant to the considered questions. 
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This is what you will find in the present book but many more questions, some certainly yet to 
be posed, will certainly find their answers in the forthcoming developments of molecular 
dynamics simulation. 

We wish to acknowledge the collaboration of the many people who have made possible 
this special issue. First of all, the authors, whose rigor, good work and speed have, of course, 
been instrumental. Also, we are very grateful to the many anonymous referees for the 
invaluable work of guaranteeing the quality and soundness of the contributions. Thanks, 
finally, to Jely He: She and the entire MDPI staff of the Editorial Office of Entropy have 
generously given invaluable help and good professional skill to bring this adventure to a 
successful conclusion.  
 
Giovanni Ciccotti, Mauro Ferrario and Christof Schuette 
Guest Editors 
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Abstract: Explicit or implicit expressions of potential energy surfaces (PES) represent

the basis of our ability to simulate condensed matter systems, possibly understanding

and sometimes predicting their properties by purely computational methods. The paper

provides an outline of the major approaches currently used to approximate and represent

PESs and contains a brief discussion of what still needs to be achieved. The paper also

analyses the relative role of empirical and ab initio methods, which represents a crucial

issue affecting the future of modeling in chemical physics and materials science.

Keywords: atomistic modeling; bond-order potentials; ab initio methods

1. Introduction

Most, if not all, of computer simulations using particles require the specification of the system

potential energy as a function of particles’ coordinates [1]. The most ab initio methods, such as

those discussed in [2], represent systems as made of electrons and atomic nuclei, and Coulomb’s

law is sufficient to account for every interaction. In all other cases, particles represent composite

objects, such as atoms or atomic nuclei, dressed by core electrons, possibly embedded into a sea of

valence electrons described at some approximate level of a many-body theory. Then, all the relevant

interactions need to be worked out on a case by case basis, and the effort required to determine

inter-particle forces may represent a sizeable fraction of the work to be done to investigate condensed

matter systems [3].

The sections that follow contain an overview of modeling approaches and a discussion of their

relative merits and limitations. Needless to say, the variety of systems and methods, together with
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the shear size of the knowledge accumulated over decades, impose strict limits to the scope of this

presentation. First of all, the focus is on atomistic models, i.e., models in which the number and

geometry of interaction centers follows the distribution of atoms closely. A second major branch of

modeling, concerning coarse graining approaches, is the subject of a separate contribution (see [4]).

Moreover, again, for limitations of space, the discussion that follows mainly concerns the most

restrictive picture of interatomic interactions, based on the assumption that the potential energy

of a system of N atoms can be expressed as a single-valued function of their 3N coordinates

{Ri, i = 1, ..., N}, which represents the so-called potential energy surface (PES) of the system.

This assumption relies, first of all, on the so-called Born-Oppenheimer approximation [5], whose

validity is loosely attributed to the ∼ 3–4 orders of magnitude difference in the mass of electrons

and atomic nuclei, giving rise to a clear separation of the characteristic energy and time scales for

the motion of electrons and atomic nuclei. Then, for any given instantaneous configuration of the

atomic cores, electrons will be able to reach their electronic ground state, justifying the single-value

assumption for the system potential energy. Experience shows that this “adiabatic assumption” is

fairly well justified for a wide variety of systems and thermodynamic conditions. To be precise, it

turns out that some cases are left out of this picture and often represent systems and phenomena of

great interest. Methods suitable to deal with these cases are discussed in [6].

Computational science and simulation, in particular, always have a practical and an algorithmic

aspect to them, and a central theme of research is the development of efficient ways to approximate

and represent PESs. The availability of simple and computationally-convenient models of

inter-particle interactions, for instance, has been instrumental in the dawning of computer simulation.

Since then, the two complementary stages of determining the relevant interactions and of working

out their structural, thermodynamic and dynamical consequences have cross fertilized each other, so

much that the terms, modeling and simulation, often appear together in the title of books, papers,

conferences, workshops and funding proposals.

Nowadays, the general perception of atomistic modeling is that of an overwhelmingly important

and successful field, steadily expanding its reach towards more complex systems, which in this

context means systems combining a wider variety of chemical bonds. In this respect, it is clear

that much remains to be done, for instance, to bring under the cover of simulation heterogeneous

systems and interfaces at which organic, semiconducting and metal phases meet each other or to

model systems in which chemical transformations take place.

During the last few decades, ab initio simulation methods have progressively come to play the

role of the elephant in the (modeling) room. Methods, such as density functional theory [7,8] and

ab initio molecular dynamics [9], could, in principle, replace all other approaches, reducing the

variety of modeling problems to just one, concerning the effective and accurate representation of the

energy of valence electrons in the field of atomic nuclei or ionic cores.

Up to now, this replacement has not been pervasive, mainly because of the size and time

limitations of ab initio methods running on present day computers and partly because the

approximations that make ab initio computations feasible still somewhat limit their accuracy on the

energy scale of thermal motion, especially for molecular systems whose properties are determined
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by weak interactions among closed shell molecules. Ab initio modeling, however, is progressing and

extending its reach. For what concerns atomistic simulation, therefore, empirical and semi-empirical

models might eventually be squeezed out by the combination of ab initio methods and coarse-grained

approaches. Simple models of atom-atom interactions, however, are likely to retain their appeal,

because of their unique ability to represent and rationalize the microscopic forces underlying the

properties and behaviors of condensed matter systems.

2. The Potential Energy Surface (PES) of a Many-Atom System

From a physicist point of view, ordinary matter consists of an assembly of electrons and atomic

nuclei, evolving according to the laws of quantum mechanics. The non-relativistic limit is adequate

for many of the systems and properties of interest for the present discussion, and unless differently

specified, we shall restrict ourselves to this case.

Let us therefore consider a system made of N electrons and K nuclei, and let {ri, i = 1, ..., N}
and {Rα, α = 1, ..., K} be the coordinates of electrons and nuclei, respectively. The corresponding

linear momenta are denoted by {pi} and {Pα}. In the absence of external fields, the system

Hamiltonian is:

Ĥ0 =
K∑

α=1

P2
α

2Mα

+
N∑
i=1

p2
i

2m
+

1

2

∑
α �=β

ZαZβe
2

|Rα −Rβ|
−

∑
i,α

Zαe
2

|ri −Rα|
+

1

2

∑
i �=j

e2

|ri − rj|
(1)

that, for the sake of simplicity, we re-write as:

Ĥ0 = Tion + Tele + Vion−ion + Vion−ele + Vele−ele (2)

with an obvious correspondence between Equations (1) and (2). The Hamiltonian does not depend

on the spin of electrons and nuclei, since we restrict ourselves to the non-relativistic limit, and we

do not include any spin-orbit interaction into our Hamiltonian. Unless differently specified, Hartree

atomic units (� = e2 = m = 1) are used in this section.

Let us assume that the system is described by a many-body wave function,

Ψ(r1, ..., rN;R1, ...,Rk; t), whose time evolution is determined by the time-dependent

Schrodinger equation:

i�
∂Ψ({ri}; {Rα}; t)

∂t
= Ĥ0Ψ({ri}; {Rα}; t) (3)

with appropriate boundary conditions in space and in time. Since the Hamiltonian is time

independent, let us turn to the equivalent version of this same problem, concerned with the stationary

states, Ψk({ri}; {Rα}) of Ĥ0.

The first important step towards the definition of a potential energy surface for the atomic nuclei

is provided by the Born-Oppenheimer approximation (BO), which, under suitable and often verified

conditions, opens the way to a separate description of the time evolution of electrons and nuclei [5].

The intuitive justification of BO is the observation that the motion of electrons and nuclei takes

place over different time scales, since Mα/m is at least Mn/m ∼1, 800, and usually approaches

2ZαMn/m, where Mn is the mass of a nucleon (proton or neutron). Moreover, the ratio of vibrational
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and rotational excitations is again ∼
√

Mα/m. Experimental data confirm that, indeed, typical

electronic excitations are of the order of a few eV; vibrational energies reach up to a few hundred

meV, and even for small molecules, the separation of rotational levels is of the order of 1 meV. The

conclusion is that the excitation of electrons, because of vibrational or rotational motion, is very

unlikely. We can therefore represent the motion of electrons as taking place in the slowly varying

field of the nuclei. Consistently with these qualitative arguments, the BO approximation breaks down

whenever the energy of relevant electronic excitations becomes comparable to typical vibrational

energies (or, much less likely, comparable to rotational energies). In those cases, vibrational and

electronic excitations need to be considered on the same footing.

The core of the so-called adiabatic approximation can be given a semi-rigorous mathematical

formulation in the following way [5]. Let us re-write Ĥ0 as:

Ĥ0 = T̂ion + Ĥele (4)

where Ĥele = T̂ele + Vion−ion + Vion−ele + Vele−ele. The energy term, Vion−ion, commutes with all

other terms in Ĥele, and its inclusion in the electronic part is just a matter of convenience.

For every choice of the nuclear coordinates, {Rα, α = 1, ..., K}, the eigenvalue problem:

Ĥeleψj({ri} | {Rα}) = Ej({Rα})ψj({ri} | {Rα}) (5)

is well defined and provides a sequence of eigenvalues, Ej({Rα}), and eigenfunctions ψj({ri} |
{Rα}). At this stage, nuclei are “clamped”, i.e., they are no longer treated as particles embodied

with a mass and a momentum, but only as sources of the potential acting on the electrons. The

notation, (ri | Rα), means that ψj is an explicit function of ri and depends parametrically on the

nuclear coordinates, {Rα}.

The functions, ψj , are a basis for the Hilbert space spanned by the electron coordinates, and we

can represent Ψk as follows:

Ψk({ri}, {Rα}) =
∑
j

ψj({ri} | {Rα})χ(k)
j (Rα) (6)

where, at this stage, χ
(k)
j (Rα) is simply the coefficient expressing the projection of Ψk on ψj:

χ
(k)
j ({Rα}) =

∫
ψ∗
j ({ri} | {Rα})Ψk({ri}, {Rα})ΠN

i=1dri (7)

The equation for Ψk becomes:

Ĥ0Ψk({ri}, {Rα}) = (T̂ion + Ĥele)Ψk({ri}, {Rα}) (8)

=
∑
j

χ
(k)
j ({Rα})Ej(Rα)ψj({ri} | {Rα}) + ψj({ri} | {Rα})T̂ionχ

(k)
j ({Rα})

+χ
(k)
j ({Rα})T̂ionψj({ri} | {Rα}) = EkΨk({ri}, {Rα})
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Let us now multiply on the left by ψ∗
m({ri} | {Rα}) and integrate over the electron coordinates. One

obtains in this way a set of coupled partial differential equations for the χ
(k)
m ({Rα}) functions:

Em({Rα})χ(k)
m ({Rα}) + T̂ionχ

(k)
m ({Rα}) +

∑
j

χ
(k)
j ({Rα})〈ψm | T̂ion | ψj〉 = Ekχ(k)

m ({Rα}) (9)

where Ek is the eigenvalue of the full, i.e., electrons and ions Hamiltonian Ĥ0, and the relation,

〈ψm | ψj〉 = δmj , has been used. The coupling among the equations is due to the non-diagonal part

of 〈ψm | T̂ion | ψj〉:

〈ψm | T̂ion | ψj〉 =
∑
α

1

Mα

∫ [
−i

∂ψm({ri} | {Rα})
∂Rα

]∗ [
−i

∂ψj({ri} | {Rα})
∂Rα

]
ΠN

i=1dri (10)

whose computation requires the parametric dependence of χm(Rα) on the {Rα} coordinates to be

continuous and differentiable.

Neglecting these non-diagonal terms, the equations for the electronic and ionic coordinates are

decoupled, and the picture emerging from this manipulation of Equation (6) is that of nuclei evolving

on the potential energy surfaces Uj[{Rα}] = Ej({Rα}) + 〈ψj | T̂ion | ψj〉. This last expression,

corresponding to the so-called Born-Huang approximation [10], represents, in fact, an upper bound

for the system’s potential energy. A lower bound, instead, is given by the original BO approximation,

i.e., Uj[{Rα}] = Ej({Rα}).
The nuclear motion in general is quantum mechanical, and, depending on initial conditions, it

might occur on any of the Uj potential energy surfaces (PESs). More precisely, since the equations

for different j’s are separated, it will take place on a single surface of index j, provided the starting

point is consistent with this choice. This condition, that we identify with adiabatic motion, underlies

most of the simulations that are routinely carried out in computational-condensed matter physics.

Moreover, again, in most cases, but with noticeable exceptions, the relevant PES corresponds to the

electronic ground state, and the scale of times and energies of interest allows the usage of classical

dynamics instead of quantum mechanics [6].

The following sections are devoted to the discussion of the general properties of PESs, and of

computationally tractable approaches to approximate them. Before doing that, it might be interesting

to consider briefly when the BO approximation and the conditions for adiabatic motion are no

longer valid.

An estimate of the 〈ψm | T̂ion | ψj〉 terms can be obtained by perturbation theory, showing that

the strength of the non-diagonal coupling is proportional to:

〈ψm | T̂ion | ψj〉 ∝
1

Em − Ej

〈ψm | [Pα, Ĥele] | ψj〉 (11)

Moreover, the matrix element of the commutator can be shown to depend primarily on the properties

of individual atoms and to be only moderately dependent on the {Rα} coordinates. Then, the

major factor determining the coupling strength among different adiabatic surfaces is the energy gap

separating different PESs. Whenever (Em − Ej) becomes comparable to the typical energies of the

atomic motion, the BO decoupling is no longer valid, the electronic and ionic motion are intimately
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intertwined and both need to be treated quantum mechanically. The range of quantum mechanical

features that become relevant in the non-BO case go beyond delocalization and diffraction, but

includes the appearance of geometric (Berry-Pancharatnam) phases [11].

Far from being the exception, violations of the BO approximation are pervasive. They occur

often, but not exclusively, at the so-called conical intersections [11], playing a major role in chemical

reactions and, for instance, challenging our ability to model catalysis [12]. Apparent non-BO effects

are routinely highlighted by clever experiments [13,14].

Metals, whose occupied states are immediately contiguous in energy to the empty states, may

appear as the most obvious candidates for large deviations from the BO picture. In the vicinity

of the Fermi surface, however, single particle excitations are the only relevant excitations, but the

coupling of each of these excitations to the nuclear motion (through Equation (11)) is vanishingly

small. Collective electron excitations, such as plasmons, couple to the atomic motion, but their

energies are of the order of several eV and, thus, are comparable to, if not higher than, those of closed

shell atoms and molecules. As a result, vibrational properties of metals are generally well described

by adiabatic dynamics. Exceptions are represented by Kohn anomalies, resulting from the nesting

of reciprocal lattice vectors with the Fermi surface. Metals also provide the setting for a type of BO

violation qualitatively different from those considered until now, represented by superconductors, in

which the coupling of the electron and nuclear motion changes the symmetry of the ground state.

The isolated system picture underlying the BO decoupling has been generalized in [15–17] to

the case of electrons and nuclei evolving in an external time-dependent potential. It was shown,

in particular, that the full wave function can be factorized exactly into an electronic and a nuclear

wave function, again opening the way to the definition of a time-dependent PES. The picture is less

simple than in the static case, since it involves the introduction of a Berry vector potential and of

Berry-Pancharatnam geometric phases [18,19] into the problem. This approach has already provided

the basis for the real-time simulation of molecular systems in strong (laser) external fields. For

completeness, I mention that some details of the formal framework might still need to be worked out

for a fully rigorous treatment [20].

3. Properties of Potential Energy Surfaces

Basic features of the PES can be anticipated even without an explicit solution of the standard

electronic problem in Equation (5). A surprisingly realistic intuition of what a PES looks like was

outlined in elegant Latin prose long before quantum mechanics [21], based on an atomistic hypothesis

and on the assumption that the still undiscovered atoms felt each other mainly at short distances.

The modern interpretation confirms this picture and adds a wealth of microscopic detail. The

direct Coulomb repulsion among nuclei, unscreened by electrons at short distances, prevents the

close contact of atoms and their eventual collapse. The kinetic energy of the electrons tightly bound

to the nuclei will provide an additional repulsive contribution, resulting from the need to preserve the

Pauli principle. On the other hand, the formation of chemical bonds gives rise to attractive potentials,

binding atoms together. Even in the case of inert species, subtle quantum mechanical effects give rise

to dispersion forces, which provide a weak, but pervasive, attraction.
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Arguably, the simplest and most intuitive picture of atomic interactions is provided by pair

potential models, in which the system energy is written as:

U [{Rα}] =
1

2

∑
α,β

φαβ(| Rα −Rβ |) (12)

where the α, β label on φα,β indicates that the interaction depends on the chemical identity of particles

α and β. A spherically symmetric potential has been assumed for the sake of simplicity.

Computations and comparison with experiments have shown that an expression of this kind is

suitable for rare gases [22] and for simple ionic compounds [23]. Systems and models of this

kind have been instrumental in establishing computer simulation as a quantitative research tool in

condensed matter and in chemical physics.

Needless to say, the scope of pair potentials is very narrow, and limitations of this model

were already apparent well before the dawn of computer simulation, based on the results of lattice

dynamics models in metals and semiconductors.

One could think of the pair potential expression as being only the lowest order approximation of

the PES into an n-body expansion of the form:

U [{Rα}] =
1

2!

∑
α,β

V2(Rα,Rβ) +
1

3!

∑
α,βγ

V3(Rα,Rβ,Rγ) + ... (13)

For a system made of a finite and constant number of particles, such an expression can always be

written down. For instance, one could define V2 as the interaction energy of two isolated atoms, V3

as the corresponding energy of trimers, minus the symmetrized combination of V2 contributions, etc.

Such an expansion, however, is useful only if it converges within a few terms, at least because the cost

of evaluating successive n body terms grows rapidly with increasing n. Moreover, it contributes to

the physical understanding of the system behavior only when its convergence is absolute, i.e., it does

not require the cancellation of contributions of alternating sign, whose amplitude is constant or even

increasing with increasing order. Model computations based on a tight binding Hamiltonian [24],

however, show that even for simple systems, the expansion in Equation (13) is not well behaved and,

thus, is seldom useful for practical computations.

More fruitful than the systematic expansion of Equation (13) has been the introduction of the

cluster potential idea [25,26], loosely and sometimes more closely based on the bond-order concept

introduced by Pauling [27]. In this approach, a fixed and low number of terms is retained; the

expression looses its character of a systematic series to become an asymptotic expansion. Each of

the few terms that are retained describe low-order potentials whose strength depends on the local

environment. Approaches of this kind have given origin to the most popular family of potentials used

to simulate metals and metallic alloys and also to some important approaches to approximate the PES

of semi-conductors, which are discussed in the following sections.

4. Many-Body Interactions: Metals and Metal Alloys

Metals and their alloys posed an early challenge to the pair or few-body potential picture, since

their basic properties manifest essential many-body interactions [28].
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The successful and physically-motivated incorporation of these effects into tractable models in the

early eighties of the last century has spawned a vast simulation activity, aiming, at first, at reproducing

phase diagrams, then at analyzing in detail surfaces and interfaces and further progressing towards the

prediction of mechanical properties through multi-scale approaches. Physical metallurgy is currently

one of the most active and productive subfields of atomistic simulation [29,30].

Many-body interactions in metals were first identified by the analysis of their elastic properties.

For instance, the elastic constants of cubic materials consisting of atoms interacting via spherically

symmetric pair potentials have to satisfy the so-called Cauchy relations, stating, for instance, that

C12 = C44. The violation of this relation, known in the solid state literature as a Cauchy anomaly,

is the rule more than the exception in metals, unambiguously pointing to a deviation from the pair

potential picture.

These features were first rationalized by considering the basic representation of a metal, as made

of ions embedded into a sea of valence electrons. Since the major ingredient, i.e., the homogeneous

electron gas could be solved analytically, and, at least for sp metals, the electron-ion interaction is

weak, the full problem could be attacked by perturbation theory [28,31]. Carried up to the second

order, this approach provides an expression for the system total energy that consists of a large volume

(or, equivalently, density) term and a pair potential contribution. The volume term is able to account

for the Cauchy anomaly. In simple metals, such as the alkalis, the pair potential is relatively soft

at short distances and oscillates at large distances, reflecting Friedel oscillations. These features

explain the bccstructure of these systems at normal conditions and provide a clue to understand more

complex structures adopted by the lighter alkali metals at very low temperature or found in slightly

more complex systems, such as alloys, or heavier sp metals, such as gallium, indium or tin.

Approaches of this kind are now mainly of historical interest, since most of the cases relevant for

applications involve transition metals, and in those systems, the valence electron-ion interaction is

by no means weak; the perturbation expansion cannot be limited to the second order and becomes

rapidly untreatable beyond that point [32]. Besides these fundamental problems, other practical

difficulties concern the definition and the zero-order solution of an electron gas problem suitable

for inhomogeneous systems and for alloys. Electron gas perturbative approaches, therefore, could

not solve problems, such as the inward relaxation of crystal surfaces, the quantitative description of

stacking faults or the overestimation by pair potentials of the vacancy formation energy in metals.

To overcome these problems, new models have been proposed in [33–35], conforming to the

cluster-potential idea [26], and representing low-order approximations to a bond-order potential. The

embedded atom model (EAM) of [33,34], loosely based on density functional theory, has the broadest

appeal, and for this reason, it is used here as a representative of a wider class of models.

According to EAM, each metal ion, i, at position Ri gains an energy, E[ρe(Ri)], upon being

immersed into the valence electron distribution at density ρe(Ri) and interacts with neighboring ions

by a short range repulsive pair potential, V2(R). The energy of N metal atoms, therefore, is:

U [{Ri}] =
1

2

N∑
i �=j

V2(| Ri −Rj |) +
N∑
i=1

E[ρe(Ri)] (14)
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The picture is completed by a prescription to compute the electron density, ρe, at the position,

Ri, of each atomic core. EAM represents such a density as the sum of contributions from every

other atom:

ρe(Ri) =
∑
j �=i

tj(| Ri −Rj |) (15)

where the tj(R) are again relatively short-range functions, mimicking the tail of the electron

distribution around an isolated atom. Since it introduces a local embedding density, this prescription

overcomes most of the limitations of the free electron models, which instead rely on a global

definition of the valence electron density.

Parameters and auxiliary functions, such as t(R), E[ρe] and V2(R), could be computed from first

principles [36], but this approach has been only moderately successful. Far more effective has been

the strategy of adopting the EAM potential energy expression as a general framework, relying on

fitting experimental quantities to tune a few parameters distributed into the functional form.

The success of EAM has been due to its ability to overcome the limitations of simpler models,

easily accounting for the Cauchy anomaly, the reduced value of the vacancy formation energy, the

inward relaxation of compact metal surfaces and the reconstruction of more open ones. Its broad

acceptance relies also on the many and physically appealing properties of the model, discussed in a

number of publications, such as the ease of extending EAM to alloys or the close relation with pair

potentials in the case of homogeneous systems at constant volume.

From the computational point of view, the efficiency of EAM is due to the pair potential form of

both the repulsive contribution, V2, and the embedding density expression in Equation (15). The time

required to carry out a simulation based on EAM is expected to be twice that of a pair potential model,

since a pass on all atom pairs is required to compute the repulsive potentials and the embedding

density, while a second pass is needed to compute forces on atoms arising from the embedding

energy. With suitable lists of neighbors, and depending on the range of V2(R) and of t(R), EAM

can be used to carry out MDsimulations for systems of 104 atoms over several nanoseconds using

laptops or inexpensive PCs. Supercomputers extend these ranges to several million atoms, and μs

time scales.

Needless to say, an empirical and approximate approach, such as EAM, cannot provide the final

answer to the problem of modeling metals, and transition metals, in particular. A comprehensive

discussion of inaccuracies and limitations identified during thirty years of applications is beyond

the scope of this short review, and only two examples are briefly mentioned here. Phonons in

transition metal crystals, a property routinely measured by inelastic neutron scattering, are not well

reproduced by EAM. The elastic constants usually enter the fitting of the potential, and thus, the

low-frequency acoustic phonons close to the Γ-point of the first Brillouin zone are usually well

reproduced. Higher frequency modes at the zone boundary, however, turn out to be too soft with

respect to the experimental data (see Figure 1). Transition metal clusters from a few to several

thousand atoms are important for catalysis and represent a basic ingredient of nanotechnology. EAM

neglects the details of the electronic structure of the atoms, leaving out quantum mechanical effects,

such as Jahn-Teller. Thus, EAM is unable to quantitatively reproduce the structure and cohesive
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properties of the very small aggregates as provided by density functional computations. Beyond

∼ 100 atoms, cluster properties are expected to evolve more continuously with size, approaching

those of bulk phases beyond 104 atoms. EAM has been used extensively to investigate clusters across

this range, but a quantitative validation of the model is still lacking and difficult to achieve, since

more ab initio computations become too expensive to carry out, and experiments find it difficult to

probe this range of cluster sizes.

A step beyond EAM, needed to quantitatively model the fine details of the structure,

thermodynamics and dynamics of transition metal systems, requires the introduction of explicit

angular terms into the potential energy expression. This can be achieved through a conceptually

simple extension of EAM, known as modified EAM (MEAM) [34], or resorting to a chemically

accurate bond-order potential model, including the directionality of d and f electron orbitals, as well

as the distinction of σ, π, δ, ..., bonding, anti-bonding and non-bonding orbitals [37].

The MEAM is somewhat more complex to use than EAM, and probably for this reason, it has

been less extensively applied. Moreover, its ability to quantitatively overcome the limitations of the

simpler model is not always so apparent. The other approaches, more closely based on the bond order

approach, appear to be cumbersome to use in simulations, and the number of applications based on

these models has been limited.

Figure 1. Phonon frequencies of fccpalladium from experiments (symbols, see [38]) and

from the embedded atom model (EAM) model of [33].
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Because of the inclusion of angularly dependent forces, the scope of MEAM could, in principle,

cover semiconductors. Successful applications have been published [34], but more specific models,

described in the following section, have received broader attention in this subfield.

5. Semiconductors and Insulators

Semiconductor materials, exemplified by silicon, germanium, gallium arsenite, etc., are

characterized by fairly open and complex structures of relatively low coordination, stabilized by

sizeable angular forces, arising from the directionality of covalent bonds. Apart from elemental

systems, most inorganic semiconductors are characterized, in fact, by a combination of covalent
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and ionic bonding. Several of these systems, most notably silicon and germanium, turn into metals

upon melting.

Despite the difficulty of reproducing these properties by few-body potentials, the urgency of

investigating the elements and compounds that fueled the electronic revolution stimulated the first

bold attempts. The two- and three-body potential for silicon proposed by Stillinger and Weber [39]

arguably has been the most representative example of this first generation of models.

Despite their interest, approaches of this kind have been only moderately successful, and once

again, the bond-order concept [27] proved more fruitful. Its application to semiconductors was first

discussed by Abell [25] before being used in a more empirical setting by Tersoff [40,41] and extended

by Brenner [42] to a wider class of systems and problems.

According to these models, the potential energy of an assembly of N atoms of coordinates {Ri}
is written as:

EN =
∑
i �=j

[A exp (−λ1Rij)− Bij exp (−λ2Rij)] (16)

where Rij =| Ri −Rj |. The first term, representing the short-range repulsion, is a genuine pair

potential. The second term contains many-body contributions via the dependence of Bij on the local

environment around the interacting pair, ij.

This form has obvious analogies with the EAM case. The difference is that Bij not only

counts neighbors, as the embedding density does, but takes into account also the angular correlation

among their mutual positions. This addition is required to enforce the dominance of tetrahedral sp3

coordination, but also to carve a secondary role for other structures, from the sp2 bonding of graphite,

to the octahedral coordination of liquid silicon and germanium [40,41].

Parallel to the EAM case for metals, potentials of this type replaced previous models and

established a new standard in modeling semiconducting systems. Success, however, has been

somewhat less pervasive than in the case of EAM, for reasons that are relatively easy to identify.

First of all, interactions in semiconductors are more complex and propagate at a longer range, since

screening is not as effective as in metals. Moreover, semiconducting alloys and compounds give

rise to partially Coulombic interactions, whose combination with covalent bonding has seldom been

modeled, even by bond-order potentials.

Furthermore, in this case, the systematic improvement beyond the semi-empirical Tersoff and

Brenner potentials has to rely on the analytical development of chemically accurate bond-order

models [43]. Work along these lines is underway and has shown promising developments, but current

models still appear fairly difficult to implement in molecular dynamics or Monte Carlo packages.

An important development of Brenner’s scheme has been the introduction of reactive force fields,

able to describe chemical transformations in the system under consideration. The majority of the

parameterizations and applications published until now concern organic systems, but potentials of

this kind are mentioned here for their similarity with models first introduced for semiconductor

systems. Prototypical examples of a reactive force field are the so-called ReaxFF [44] and the

REBOpotential [45]. Both models require a massive parametrization effort, and for this reason,

they appear to be fairly ad hoc and system specific.
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A different line of attack to modeling semiconducting systems is suggested by the observation

that in many cases, force fields of the form currently used to model organic systems and consisting

on stretching, bending and torsion might indeed provide a good representation of structural and

dynamical properties of semiconductors and of network insulators, such as silica. Models of this kind,

in fact, were developed well before the age of computer simulation, and extensively used in lattice

dynamics studies of semiconductors and insulators [46]. The problem of these models is that, mainly

because of the established tradition, the topology of bonds is kept fixed, bonds are harmonic and can

neither form nor break. These models, therefore, describe only low amplitude oscillations around

a pre-assigned minimum of the potential energy surface. Removing these inessential constraints

by introducing rules to break, form and interchange bonds results in a far more realistic picture.

It was shown, for instance, that such a reactive force field model of silica undergoes melting at

approximately the right conditions [47] (see Figure 2), and the same model has been used to provide

an intriguing view of the amorphous silica surface at length and time scales unachievable by other

methods [48].

Figure 2. Average potential energy per atom 〈U(T )〉/KB of SiO2 computed by the force

field of [47]. kB is the Boltzmann constant, introduced to express energies in temperature

units (K). Solid dots: heating a β-cristobalite sample. Solid line: cooling the same sample

from high temperature. The potential energy contribution, Cp, to the constant pressure

specific heat computed on heating the full model is shown in the inset. The peak in Cp

and the anomaly in 〈U(T )〉 are around the same temperature point to a melting transition

at TM ∼2150 K.
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Progressively increasing the electronegativity difference in compound semiconductors enhances

the charge transfer among atoms, widening the band gap and turning the system into an ionic

insulator. In the limit of strongly ionic materials, of course, pair potentials are adequate, but only

a few compounds belong to this class, such as, for instance, alkali-halides or the oxides and chlorides

of Group IIA and Group IIB metals. In between ionic insulators and polar semiconductors, there is a

vast number of systems, including technologically relevant compounds, such as ceramics, transition

metal oxides, ferroelectric and ferroid materials, minerals and bio-minerals, in particular, for which

no current model is fully satisfactory. One of the major issues for these systems is the inclusion

of polarizability into ionic and polar models [49]. Unfortunately, simulation approaches using

polarizable models require either the minimization at every step of a polarization energy functional

or the inclusion into the model of charged shells [50]. These last represent electronic degrees of

freedom and react to electric fields on a time scale much faster than that of ionic vibrations [51]. Both

methods are significantly at a disadvantage with respect to cases in which the potential energy is an

explicit function of the atomic coordinates, and the simulation of systems bound by a combination

of covalent and ionic forces appears to be split between oversimplified pair potential models and

ab initio approaches.

6. Force Fields for Molecular Systems

Although every material ultimately consists of atoms, many systems are more easily understood

as being made of molecules.

Modeling the PES of small and relatively unreactive species, such as N2, O2, CO, CO2, but, also,

PF6, BF4, BH4, etc., requires only a slight extension of the pair-potential picture. Each molecule is

represented by a small number of interaction centers, which may or may not coincide with atoms in

number and position. The intra-molecular configuration is enforced by constraints representing rigid

bonds or, less often, by harmonic springs, while centers on different molecules interact pair-wise.

Because of their simplicity, models for small inorganic molecules have been used since the early

days of computer simulation. Perhaps the most remarkable observation concerning these systems

is that the quantitative details of their PES are still under investigations and require surprisingly

sophisticated models to be reproduced [52,53].

Conspicuously absent in the list of small unreactive and supposedly simple molecules is water,

whose peculiar properties and special role have motivated an extraordinary modeling effort, which is

discussed separately in Section 7.

A specialized subfield of modeling simple species concerns systems in which a weakly bound

molecular fluid is physisorbed on an inert solid surface, such as MgO, mica, graphite and flat or

stepped transition metal surfaces. In this case, the effect of the solid substrate on the molecular fluid

often is represented as an external field. In the case of crystal surfaces, the in-plane dependence of

the field strength can be expanded in plane waves, whose wave vectors reflect the periodicity and

symmetry of the surface lattice [54].
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6.1. Organic Molecular Systems

In many respects, organic molecular systems are not so different from any other molecular

systems, but the range and impact of their applications together with the explosive expansion of

simulation in bio-physics and bio-chemistry amply justify a separate discussion. Systems of interest

in this context include polymers, hydrocarbons, sugars, cellulose, etc., but also the endless variety

of biological molecules, from phospholipids to proteins and nucleic acids. Other molecular organic

systems of biological interest include drugs, simple nutrients, signal molecules, such as hormones,

metabolic species, such as ATP, GTP, NADP, coenzymes, including vitamins, and prosthetic groups.

The modeling and simulation of systems of this kind arguably is the computational condensed

matter activity with the largest economic relevance, both directly via the commercialization of

packages and force fields and indirectly through the impact it has on applied research.

Despite the complexity of the structures they form, the PESs of organic systems turns out to

be approximated fairly well by simple analytic expressions. First of all, the organic and biological

species of interest are made primarily of light elements, forming strong covalent bonds through their

s and p orbitals, giving origin to closed shell molecules. Systems of this kind, therefore, can be

thought of as consisting of atoms connected by a fixed topology of bonds, with inter-molecular, i.e.,
non-bonded, interactions consisting of pair-wise Coulomb and dispersion forces. Because of their

sp character, intra-molecular angular forces are relatively simple. Whenever d electron metals are

involved, as in metal centers and in prosthetic groups, modeling becomes far more challenging.

In the standard cases, the PES of organic and biological systems is written as the sum of

contributions from bonded (Ub) and non-bonded (Unb) interactions:

U = Ub + Unb (17)

The bonded energy, in turn, is given by the sum of two-, three- and four-body terms from atoms

joined by one ({ij}), two ({ijk}) and three ({ijkl}) consecutive covalent bonds:

Ub =
1

2

∑
{ij}

Ks
ij[Rij− R̄ij]

2+
1

2

∑
{ijk}

Kb
ijb[θijk− θ̄ijk]

2+
1

2

∑
{ijkl}

Kτ
ijkl

[
1 + cos (nφijkl − φ̄ijkl)

]
(18)

Ks
ij , K

b
ijk and Kτ

ijkl are suitable force constants; R̄ij , θ̄ijk, φ̄ijkl and n reflect the length, bending and

dihedral angles of unstrained bonds. The sub-indices, ij, etc., indicate that each of these parameters

depends on the chemical identity of the atoms involved. The form for the dihedral contribution in

Equation (18) is just one of a few different expressions used in popular force fields, while the choice

for stretching and bending terms is more uniform.

Non-bonded interactions are written as.

Unb =
1

4πε0

∑
i �=j

′ qiqj
Rij

+
∑
i �=j

′
4εij

[(
σij

Rij

)12

−
(
σij

Rij

)6
]

(19)

where the {qi} are atomic charges, Coulomb forces are assumed to be acting in vacuum and σij and

εij are suitable coefficients for the dispersion interaction. The prime on each sum indicates that pairs
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of atoms separated by one and two consecutive bonds are excluded, and the contribution from pairs

separated by three consecutive bonds might be reduced.

The remarkable and, to same extent, unique property of the PES of organic and biological systems

is that the bonds, whose properties are described in Equation (18), are fairly transferable, meaning

that the equilibrium length, stiffness, etc., of a given organic bond is nearly the same in a large

number of homologous compounds. Highlighting these similarities and exploiting them to endow

the model with broad transferability is the most challenging and most rewarding part of modeling

organic molecular systems.

The parametrization and, especially, validation of these potentials may require sizeable

computations and are the playground of large collaborations, since it requires the convergence

of several types of complementary expertise. Any single system might be analyzed by ab initio
computations to derive intra-molecular force constants and atomic charges. These need to be

complemented by suitable coefficients for the dispersion part, which are usually obtained by fitting

measured properties, such as the equilibrium density and enthalpy per molecule or the molecular

diffusion constant.

Generic potentials covering large classes of compounds and widely used by the community

include Amber [55], CHARMM [56], OPLS [57] and Gromos [58]. More specialized

parameterizations, tuned on the properties of specific families of compounds, are too many to

be listed.

In many respects, the most uncertain part of the parametrization is the choice of coefficients for

the non-bonded interactions. The definition of atomic charges is not unique, and different methods

provide fairly different results. The most popular approach [59] attributes charges by fitting the

electrostatic potential outside gas-phase molecules, as provided by ab initio computations. The

method is physically sound, but the fit becomes ill conditioned whenever the molecular size exceeds

∼ 15–20 atoms or when the geometry is compact, thus reducing the number of multipolar momenta

whose modulus is significantly different from zero. Constraints and minimum conditions on the

size of individual charges do improve the fit [60], but the choice of these parameters remains fairly

uncertain. For each individual system, the error introduced by the choice of the charge may be

compensated for by the selection of the dispersion coefficients. In fact, it has been observed many

times that it was possible to accurately reproduce the target properties of condensed phases such

as the density or the molecular diffusion even starting from the fairly different charges provided by

different methods. Unfortunately, this cancellation of errors limits the transferability of the potential,

since an equivalent compensation might not occur when a given organic molecule is transferred into

a different environment.

Especially for large biological systems, computational cost considerations have motivated

approximations and shortcuts that might reduce the size of the simulated system. One obvious

saving is obtained by representing CH2 and CH3 groups in aliphatic chains by a single particle.

This united-atoms approximation is fairly well justified, since these groups are small and and the

non-bonded potential arising from them is fairly spherical. Moreover, the motion of hydrogen in

each of these groups is frozen by quantum effects up to fairly high temperature.
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A second more drastic approximation concerns systems in solution. Since, especially in

biochemistry, one is interested in the properties of the solute, implicit solvent models [61] have

been developed to replace the effect of the solvent by suitable modifications of the solute force field.

In many respects, implicit solvent models are a special case of coarse graining and, as such, are left

out of our discussion.

In summary, the force field modeling of organic and biological systems is a largely successful

enterprise, validated by a vast number of applications and supporting the research of a large portion of

the simulation community. Furthermore, in this case, and almost needless to say, the vast simulation

activity has highlighted many cases of inaccuracies or outright failures. The general feeling, however,

is that the scale of most of these simulations is too large to allow, at present, the usage of significantly

more sophisticated and more expensive approaches. Polarizability is likely to be the single most

relevant missing ingredient, but the available methods to include it into simulations are still fairly

expensive, and for this reason, explicitly polarizable models have been used only for a limited number

of large-scale studies.

At present, a very active research field is the development of force fields for organo-metallic

complexes, which represent prosthetic groups in proteins or active groups in a variety of organic

opto-electronic devices and are important also for homogeneous catalysis. Peculiar difficulties are

represented by the variety of coordination numbers, sometimes corresponding to different spin states,

thus pointing to multiple PESs fairly close in energy. Moreover, the structure of organo-metallic

complexes is characterized by the importance of quantum mechanical effects, such as Jahn-Teller,

or by the so-called trans influence, defined as the “tendency of a ligand to selectively weaken

the bond trans to itself” [62]. Models to include these effects in empirical PES models might

turn out to be too complex to be used in practice. A more promising alternative is provided by

QM/MMapproaches, using classical force fields for most of the system and resorting to ab initio
methods for the challenging portion around the metal center.

An intriguing subset of mainly, but not exclusively, organic compounds is represented by the

so-called room temperature ionic liquids [63], defined as molecular ionic systems whose melting

temperature is below 100◦. Prototypical systems are made by an alkane substituted imidazolium

cation, joined to an organic or inorganic anion. Systems of this kind are relevant here, not only

because of the intense simulation activity that concerns them, but mainly because they provide a

bridge between different classes of bonding and, thus, pose special modeling problems.

The bulk of the extensive simulation work carried out at present relies on Amber-like force

fields, with specialized parameterizations (see, for instance, [64,65]). Models of this kind are fairly

successful, but issues concerning polarizability and the attribution of partial charges to atoms become

particularly important for these systems. Despite these difficulties, a number of simulations have

successfully addressed the properties of very complex systems, consisting of room temperature

ionic liquids in combination with a variety of solvents and neutral organic compounds, including

bio-molecular species (see Figure 3).

A few carbon systems, such as fullerenes, carbon nanotubes and graphene, lie at the boundary

between inorganic and organic species and even blur the distinction between covalent and metal
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character. Not surprisingly, systems of this kind have been represented by a variety of models, from

Tersoff-Brenner to a molecular force field, such as those described in this section.

Figure 3. Snapshot from a molecular dynamics simulation of a room temperature

ionic liquid/water solution at 0.5 M concentration in contact with a POPCphospholipid

bilayer [66]. Green balls: [Cl]−; gray-silver molecules: [bmim]+. wireframe molecules:

POPC. Water has been removed to highlight the incorporation of [bmim]+ cations into

the phospholipid bilayer.

7. Water

Because of its fundamental role in life and of its widespread and generally benign presence in

nature, water has always been the object of interest and fascination. In this respect, computational

physicists and chemists are no exception, although the reasons for their interest are somewhat

different from those of the rest of humankind. A number of measurements have highlighted a wide

variety of peculiarities, if not anomalies, in the properties of water [67]. These include the surprising
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expansion of water upon freezing, the density anomaly observed at 4 ◦C at ambient pressure, and,

more in general, the non-monotonic variation of several physics-chemical properties in the vicinity

of this remarkable density maximum. Other peculiar features consist in the wide temperature range

of super-cooling, the high liquid-vapor critical temperature and the large value of the latent heat of

the liquid water-ice transition.

To a large extent, these anomalous behaviors are embodied into the PES of water systems and

arise from the strength and directionality of the hydrogen bond network that provides the bulk of

water cohesion. In part, however, they are due to the light mass of the water molecule, causing

non-negligible quantum effects that influence the properties of hydrogen bonds. Heavy water, for

instance, is already somewhat different from ordinary water, so much that D2O is known to have

peculiar and generally adverse biological effects. This duality of potential energy versus quantum

mechanical effects poses apparent and significant problems to modeling [68]. Potentials tuned on the

exact PES of water do not reproduce its properties when used in a classical simulation. On the other

hand, potentials tuned on experimental properties of water do not necessarily reflect the details of the

exact PES.

Work to provide a quantitative and comprehensive description of water properties is still in

progress [69,70]. In the meantime, a vast number of simulations in which water is the unique

or an essential component are being carried out with a variety of simple potentials, reflecting the

basic atomistic and electronic structure of the water molecule. Two major families are in use:

TIPnP [71–73], with n = 3, 4 and 5, and SPC [74–77], both based on fixed charges (rigid ions)

and centers of short range interactions, joined by rigid or harmonic bonds.

Models of this kind allow the routine simulation by MD of systems of 50× 103 water molecules

solvating whole proteins, covering times well in excess of 100 ns. Results are generally good, and

a large number of successful applications clearly validate these models, at least up to the accuracy

needed for these large-scale applications. However, it is fair to say that no single model of the rigid

ion type is able to provide a uniformly satisfactory account of water properties over a wide range

of regimes and thermodynamic conditions. Several of these models, in particular, do not display

the experimental density maximum of water or place it at (P, T)conditions far from the experimental

ones [69,70]. The liquid-vapor coexistence curve is also poorly predicted by rigid ion models, unless

the potential parameters are explicitly adjusted for this purpose. In such a case, however, the accurate

description of some other quantity might need to be sacrificed. The description of critical properties,

that are accurately known from measurements, are only moderately well reproduced [78].

Water clusters and droplets are another, distinct subfield of water research. Thermodynamic and

spectroscopic data are available from experiments, but are not sufficiently detailed to provide a full

description of structural and dynamical properties. In this case, state-of-the-art quantum chemistry

computations supplement the experimental information [79]. Once again, it turns out that rigid ion

models are only moderately successful in predicting their properties and usually fail to reproduce the

reduced binding of very small clusters. The oxygen-oxygen equilibrium distance in the water dimer,

for instance, is greatly underestimated by popular models, and its cohesive energy is correspondingly

overestimated. These discrepancies decrease in importance with increasing cluster size, but the
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convergence to the bulk cohesive properties, reliably described by current DFTmodels of water, is

fairly slow (See Table 1). In these small systems, the rigid-ion assumption, or, in other terms, the

lack of polarizability, again seems to be the major problem. The molecular dipole moment of water,

for instance, changes from μ = 1.855 D in the gas phase molecule, to nearly μ = 3 D in ice and in

liquid water, but rigid ion models cannot reproduce this change. Moreover, within rigid-ion models,

hydrogen bonds have only a Coulombic origin, contradicting the results of experiments and quantum

chemistry computations showing that both Coulomb and covalent contributions are important [80]

and change in slightly different ways upon changing the aggregation state of water.

Table 1. Cohesive energy (kJ/mol per water molecule) of (H2O)2, of cyclic water clusters

(H2O)n, n = 3, 4, 5, 6, and of the cubic D2d form of (H2O)8 computed by an SPC, rigid

ion model (SPC/Fw, [77]). Deviations from dispersion-corrected [81] DFT [82] results

are given in parentheses. Data are from [83].

n 2 3 4 5 6 8

PBE+vdW 12.06 25.95 34.48 36.09 36.82 45.28

SPC/Fw 14.35 26.66 33.44 35.10 35.67 40.69

[18.99%] [2.7%] [−3.0%] [−2.7%] [−3.1%] [−10.1%]

Somewhat surprisingly, the inclusion of polarizability into simple models has not resulted yet

into the systematic improvement of the description of the properties for extended water systems [84],

while it has been more successful for clusters.

All these difficulties have stimulated a large number of new attempts. It might be worth

mentioning the representation of electron polarizability via classical [85] and quantum [86] Drude

oscillators, the application to water [87] of the empirical valence band (EVB) theory [88] and the

usage of polarizable Thole models [89].

Ab initio modeling, discussed in more detailed below, will eventually provide the method

of choice to study water [90]. Until now, however, approaches of this kind using standard

approximations for the exchange-correlation energy (see next section) have given rather mixed

results [91].

8. The Ab initio Route

Over the last twenty years, the art of representing PES as a function of atomic coordinates has

seen its role increasingly challenged by the explosive growth of ab initio simulation methods.

As discussed in Section 2, the exact PES of a system made by N electrons evolving in the

field of K nuclei can be determined point by point by computing the energy eigenvalues of the

Ĥele Hamiltonian:

Ek({Rα}) =
Ĥeleψk({ri} | {Rα})
ψk({ri} | {Rα})

(20)
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For any single choice of the {Rα} coordinates, a fairly extended array of quantum chemistry ab initio
methods, such as configuration interaction, Møller-Plesset perturbation theory or coupled clusters,

are available to find all or a few of the lowest energy eigenvalues and eigenvectors of this so-called

standard problem in electronic structure computations.

For what concerns the direct application of ab initio methods to simulation, however, progress

came primarily through the advent of density functional theory, whose recognized theoretical and

practical foundation is provided by the Hohenberg-Kohn (HK) theorem [92] and by the seminal

paper by Kohn and Sham (KS) [93]. In a very schematic way, density functional theory in the

popular Kohn-Sham formulation represents the ground state electron density, ρ(r), in terms of

an auxiliary set of non-interacting electron orbitals {φi(r), i = 1, ..., K}, generally known as the

Kohn-Sham orbitals:

ρ(r) =
K∑
i=1

| φi(r) |2 (21)

To reproduce the exact density, the (unspecified) potential acting on the non-interacting electrons has

to be different from the one acting on their interacting counterpart. The properties of such a potential

and, in particular, its local, i.e., multiplicative nature are a corollary of the HKtheorem.

Then, according to KS, the system ground state energy is the minimum of the unique and

universal functional:

EKS[ρ | {Rα}] = −1

2

K∑
i=1

〈φi | ∇2 | φi〉+
1

2

∫
ρ(r)ρ(r′)
| r− r′ | drdr

′ −
K∑

α=1

Zα

∫
ρ(r)dr

| r−Rα | + UXC [ρ]

(22)

where UXC [ρ] is the so-called exchange correlation energy, a functional of the electron density, ρ(r),

which also contains a small fraction of the kinetic energy of the interacting electrons. Minimization

of Equation (22) under the constraint of ortho-normality for the Kohn-Sham orbitals results in a set

of coupled partial differential equations for {φi}.

Methods to solve this problem have been developed and discussed in a vast numbers of

papers and textbooks [7,8]. The accuracy of the solution depends on the functional used to

approximate UXC [ρ], and on the choice of the basis used to represent the orbitals. Popular choices

for the exchange-correlation energy are generalized gradient corrections, such as PBE [82], or

hybrid functionals, such as B3LYP [94]. Basis sets range from atomic orbitals to wavelets, but

plane waves [95,96] and Gaussian functions [97] are probably the most widely used choice for

implementations tuned on molecular dynamics applications.

The solution of the standard problem in Equation (5) obtained through Equation (22) is restricted

to the ground state PES. Even within this limited scope, the PES itself can only be determined point

by point. Nevertheless, the KS energy expression can be used to evolve the atomic positions in time,

thus opening the way to MD, provided one can: (i) minimize Equation (22) fast enough; and (ii)

evaluate forces on the atoms through:

Fβ = −∇Rβ
EKS[ρ | {Rα}] (23)

Towards this goal, the work of Car and Parrinello [9] has truly represented the single most

important breakthrough, whose major innovation consisted of the introduction of direct minimization
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approaches for Equation (22), exploiting the close similarity of the electronic configuration at two

successive steps of MD. Evaluation of forces, moreover, was greatly eased by the choice of plane

waves as the basis set to represent KS orbitals, whose unbiased coverage of the entire space allows

the application of the Hellmann-Feynman theorem in its simplest form to compute gradients of the

ground state energy [95,98].

Atoms evolve on the adiabatic PES implicitly defined by Equation (22) classically or quantum

mechanically. The validity of a classical time evolution for the atoms according to Newton’s

equations relies on conditions discussed in detail in Chapter [6]. Outside these conditions, one could

resort to a path integral approach, as done, for instance, in [99].

The method can be extended to simulate the atomic dynamics on the single PES of an

electronically excited state [100], provided the different symmetry of the ground and excited state

allows a meaningful definition of both PESs by density functional methods. As apparent from

the discussion of the Born-Oppenheimer approximation, multiple PESs close in energy make

it impossible to disentangle the ionic and electron dynamics, and in these cases, resorting to

semiclassical or to more accurate quantum mechanical approaches [6] is mandatory.

Somewhat simplified versions of the density-functional-based MD, resorting to localized bases

and relying on a self-consistent tight-binding approach have been developed [101,102] and provide

a cheaper and popular alternative to unrestricted DFT methods. The price to be paid is a slight

limitation in the quality of the solution, as well as occasional failures of the method.

The amazing success of density-functional-based simulation methods is due to the fact that they

represent the only method endowed with truly predictive power, which can be used for systems of

several hundred atoms, with up to a few thousand valence electrons. ab initio simulation, therefore, is

the method of choice whenever we cannot guess a suitable representation of the PES or when we need

an accuracy that cannot be provided by the empirical models that are available. Ab initio simulation is

also strictly required for systems whose structure is affected by electronic effects, such as Jahn-Teller,

and also enjoys a clear advantage in describing spin-polarization effects or systems undergoing

chemical transformations and non-stoichiometric compounds exhibiting different valence states.

Well known drawbacks are represented by the computational cost that limits the size and

especially the time scale of ab initio simulations, even though the reach of the method is constantly

expanding. At present, large computations running on state-of-the-art facilities may involve ∼1, 000
atoms and ∼4, 000–5, 000 valence electrons. Early problems with metals have been progressively

eased by approaches relying on the accurate step-by-step minimization of the KS energy functional.

Problems, however, remain with transition and, especially, rare-earth metals, for which standard

exchange-correlation approximations give unsatisfactory results, and quantum chemistry hybrid

methods fail fairly spectacularly [103]. Progress is being achieved with methods incorporating strong

correlation at some approximate level, such as LSD+U [104].

Difficulties remain also in the limit of weakly interacting molecular systems. Furthermore, in

this case, early methods lacked essential components, such as the dispersion interaction, which in

molecular systems provide a good portion of cohesion. Dispersion interactions are now increasingly

included in ab initio simulations [81], especially for molecular systems and for water, in particular.
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Results are encouraging, although not yet in full quantitative agreement with experiments. However,

the accuracy, reliability and computational efficiency of these methods are improving rapidly.

The major problem in current MD applications of ab initio methods arguably is that achieving

accurate results for difficult systems, such as transition metals and oxides or molecular systems,

still require an extensive preliminary calibration stage and system-specific exchange correlation

approximations [105], effectively spoiling the ab initio character of these methods. Perhaps more

importantly, these adjustments of the model decrease their reliability for systems exhibiting different

bonding types, since the improvement on one type might worsen the description of the other type.

Most of the cost of KS-DFT computations is due to the representation of the density in terms

of KS orbitals. Approaches relying on genuine density functional formalism, such as a refined

Thomas-Fermi method, could enjoy a huge computational advantage, but no successful scheme has

emerged during the years, and only very idealized Gordon-Kim approaches [106] have been used

with some success.

9. Conclusions

Explicit or implicit expressions of the PES of condensed matter systems represent the basis of

our ability to simulate them, possibly understanding and sometimes predicting their properties by

purely computational methods. For this reason, the development of approximations and efficient

representations of PES is the focus of an intense research effort, involving a sizable portion of the

computational community.

Such a modeling activity is an art as much as a science. It is a science in the systematic derivation

of interatomic forces from more fundamental interactions. It is an art in the invention of effective

ways to incorporate new ideas in physically transparent and computationally efficient mathematical

expressions. Like many other forms of art, it relies on a big deal of craftsmanship, required

in the stage of parameterizing force fields, validating them and incorporating them into widely

used computer packages, using sophisticated programming techniques, tuned on state-of-the-art

computational hardware.

It should be apparent from the discussion of the previous sections that the last thirty years have

seen an amazing enhancement of our ability to model a wide variety of systems at the atomistic

level, fueling the explosive growth of simulation studies, while, at the same time, being driven by it.

Equally amazing, however, is the extent of what we are still unable to model satisfactorily. Interfaces

between different materials, for instance, are intrinsically difficult to describe by simple approaches.

Excluding ab initio, no reliable, general and widely accepted model is available to simulate water and

electrolyte solutions in contact with neutral or charged electrodes, organic and biological molecules

on solid surfaces or the junction of metal and semiconducting phases. Even homogeneous phases,

such as non-stoichiometric oxides, still represent a formidable challenge for models suitable for

simulating 104 atoms over 100 ns or more. Systems undergoing chemical transformations are another

sore point, even though methods, such as ReaxFF and REBO, are achieving progress in this direction.

At this stage, strategic decisions on the directions and aims of the modeling effort have to take

into account the rapid growth of ab initio methods, which easily account for the intermixing of



23

different bonding categories, cover electrostatic polarizability, provide information on excited state

PES and may include magnetic interactions and spin effects through their approximate description

of exchange.

The rapid progress of methods and computational equipment implies that the foreseeable future

spans at most ten to fifteen years from now. Over this time, empirical models of PES will continue to

play an important and useful role in the atomistic simulation of large systems (N � 104 atoms) over

times in excess of 100 ns. Most biochemistry and biophysics simulations fall into this class.

On the longer run, however, the general picture of modeling might indeed change. First of

all, the domain proper to atomistic modeling concerns the investigation of the microscopic details

underlying larger-scale phenomena. In this context, the scales of interest rarely exceed ∼104 atoms

and correspondingly short times of less than ∼10 ns. Beyond this range, simulation may become the

exclusive domain of coarse graining and multi-scale approaches, provided refined versions of these

methods are developed over the next few years.

Ab initio methods already represent the method of choice for systems for which we do not

have reliable approximations of their PES, for phenomena that can be represented by 100 to 1, 000

atoms and that take place within a 50–100 ps time span. Mixed QM/MM approaches extend this

reach and represent the most appealing method to treat systems, such as protein reaction centers,

organometallic catalysts, etc., in which a small portion of a large system needs to be represented in

full chemical detail.

The parallel development of ab initio and of refined coarse graining and multi-scale methods,

therefore, could greatly shrink the role of empirical PES approximations in atomistic simulation.

Even these likely developments, however, might not mark the end of atomistic potential models,

since simple and transparent representations of PES will continue to provide the conceptual basis to

rationalize the properties of condensed matter systems in terms of atoms, of molecules and of their

microscopic interactions.
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1. Introduction

Ab initio molecular dynamics (AIMD) [1–6] has been greatly developed in the past few

decades, so that nowadays, it is able to quantitatively predict the equilibrium and non-equilibrium

properties for a vast range of systems. AIMD has become widely used in chemistry, biology,

materials science, etc. A coherent and comprehensive presentation of AIMD with both the basic

theory and advanced methods can be found in [7]. Most AIMD methods treat the nuclei as

classical particles following Newtonian dynamics (known as the time-dependent Born-Oppenheimer

approximation), and the interactive force among nuclei is provided directly from electronic structure

theory, such as the Kohn-Sham density functional theory [8,9] (KSDFT), without the need of using

empirical atomic potentials. KSDFT consists of a set of nonlinear equations that are solved at

each molecular dynamics time step self-consistently via the self-consistent field (SCF) iteration. In

Born-Oppenheimer molecular dynamics (BOMD), KSDFT is solved until full self-consistency for

each atomic configuration per time step. Since many iterations are usually needed to reach full

self-consistency and each iteration takes a considerable amount of time, until recently, this procedure

was still found to be prohibitively expensive for producing meaningful dynamical information. On

the other hand, if the self-consistent iterations are truncated before convergence is reached, it is often

the case that the energy of the system is no longer conservative, even for an NVE system. The error

in SCF iteration acts as a sink or source, gradually draining or adding energy to the atomic system

within a short period of molecular dynamics simulation [10]. This is one of the main challenges for

accelerating Born-Oppenheimer molecular dynamics.

AIMD was made practical by the ground-breaking work of Car-Parrinello molecular dynamics

(CPMD) [11]. CPMD introduces an extended Lagrangian, including the degrees of freedom of both

nuclei and electrons without the necessity of a convergent SCF iteration. The dynamics of electronic

orbitals can be loosely viewed as a special way for performing the SCF iteration at each molecular

dynamics (MD) step. Thanks to the Hamiltonian structure, numerical simulation for CPMD is stable,

and the energy is conservative over a much longer time period compared to that for BOMD with

non-convergent SCF iteration. When the system has a spectral gap, the accuracy of CPMD is

controlled by a single parameter, the fictitious electron mass, μ. The result of CPMD approaches

that of BOMD as μ goes to zero [12,13]. However, it has also been shown that CPMD does not work

as well for systems with a vanishing gap, for example, for metallic systems [12].

To reduce the cost of BOMD, in particular, the number of SCF iterations needed per MD time

step, a new type of AIMD method, the time reversible Born-Oppenheimer molecular dynamics

(TRBOMD) method has been recently proposed by Niklasson, Tymczak and Challacombe in [14].

The method has been further developed in [15–18]. The idea of TRBOMD can be summarized as

follows: TRBOMD assumes that the SCF iteration is a deterministic procedure, with the outcome

determined only by the initial guess of the variable to be determined self-consistently. For instance,

this variable can be the electron density, and the SCF iteration procedure can be simple mixing

with a fixed number of iteration steps without reaching full self-consistency. Then, a fictitious

dynamics governed by a second order ordinary differential equation (ODE) is introduced on this
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initial guess variable. The resulting coupled dynamics is then time-reversible and supposed to

be more stable, since it has been found that time-reversible numerical schemes are more stable

for long time simulation [19,20]. Besides TRBOMD, alternative ideas based on time-reversible

predictor-corrector methods [21] and Langevin dynamics [22,23] can also relax the requirement on

the accuracy of the force for AIMD simulation. For these methods, we refer the readers to a recent

review paper [24] for more information.

Although TRBOMD has been found to be effective and significantly reduces the number of SCF

iterations needed in practice, to the extent of our knowledge, there has been so far no detailed analysis

of TRBOMD, other than the numerical stability condition of the Verlet or generalized Verlet scheme

for time discretization [17]. Accuracy, stability, as well as the applicability range of TRBOMD

remain unclear. In particular, it is not known how the choice of SCF iteration scheme affects

TRBOMD. These are crucial issues for guiding the practical use of TRBOMD. The full TRBOMD

method for general systems is highly nonlinear and is difficult to analyze. In this work, we first focus

on the linear response regime, i.e., we assume that each atom oscillates around their equilibrium

position and the electron density stays around the “true” electron density. Under such assumptions,

we analyze the accuracy and stability of TRBOMD. We then extend the results to the regime where

the atom position is not near equilibrium using the averaging principle.

The rest of the paper is organized as follows. We illustrate the idea of TRBOMD and its analysis

in the linear response regime using a simple model in Section 2 and introduce TRBOMD for AIMD

in Section 3. We analyze TRBOMD in the linear response regime and compare TRBOMD with

CPMD in Section 4. The numerical results for TRBOMD in the linear response regime are given

in Section 5. We present the analysis of TRBOMD beyond the linear response regime, such as the

non-equilibrium dynamics in Section 6, and conclude with a few remarks in Section 7.

2. An Illustrative Model

To start, let us illustrate the main idea for a simple model problem, which provides the essence of

TRBOMD in a much simplified setting. Consider the following nonlinear ODE:

ẍ(t) = f(x(t)) (1)

where we assume that the right-hand side f(x) is difficult to compute, and it can be approximated

by an iterative procedure. Starting from an initial guess, s ≈ f(x), the final approximation via the

iterative procedure is denoted by g(x, s). We assume the approximation, g(x, s), is consistent, i.e.,:

g(x, f(x)) = f(x) (2)

To numerically solve the ODE Equation (1), we discretize it by some numerical scheme; then, it

remains to decide the initial guess, s, at each time step. A natural choice of s would be g(x, s) from

the previous step, as x does not change much in successive steps. For instance, if the Verlet algorithm

is used and tk = kΔt with Δt being the time step, the discretized ODE becomes:

xk+1 = 2xk − xk−1 + (Δt)2g(xk, sk)

sk+1 = g(xk, sk)
(3)
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We immediately observe that the discretization scheme Equation (3) breaks the time reversibility of

the original ODE Equation (1). In other words, for the original ODE Equation (1), we propagate

the system forward in time from (x(t0), ẋ(t0)) to (x(t1), ẋ(t1)). Then, if we use (x(t1), ẋ(t1)) as the

initial data at t = t1 and propagate the system backward in time to time t = t0, we will be at the

state, (x(t0), ẋ(t0)). The loss of the time reversible structure can introduce large error in long time

numerical simulation [20]. This is the main reason why BOMD with non-convergent SCF iteration

fails for long time simulations [14]. To overcome this obstacle, the idea of TRBOMD is to introduce

a fictitious dynamics for the initial guess, s. Namely, we consider the time reversible coupled system:

ẍ(t) = g(x(t), s(t))

s̈(t) = ω2(g(x(t), s(t))− s(t))
(4)

where ω is an artificial frequency. We analyze, now, the accuracy and stability of Equation (4) in

the linear response regime by assuming that the trajectory, x(t), oscillates around an equilibrium

position, x∗. We denote by x̃(t) = x(t) − x∗ the deviation from the equilibrium position and

s̃(t) = s(t)− f(x(t)), the deviation of the initial guess from the exact force term. Consequently,

the equation of motion (4) can be rewritten as (for simplicity we suppress the t-dependence in the

notation for the rest of the section):

¨̃x = g(x, s)

¨̃s = ω2(g(x, s)− s)− f ′′(x)(ẋ)2 − f ′(x)ẍ
(5)

where the term, −f ′′(x)(ẋ)2 − f ′(x)ẍ, comes from the term, f(x) in s̃, by the chain rule.

In the linear response regime, we assume the linear approximation of force for x around x∗:

f(x) ≈ −Ω2(x− x∗) = −Ω2x̃ (6)

where Ω is the oscillation frequency of x in the linear response regime. We also linearize g with

respect to s̃ and x̃ and dropping all higher order terms as:

g(x, s) = g(x, f(x) + s̃)

≈ g(x, f(x)) + gs(x, f(x))s̃

≈ −Ω2x̃+ gs(x
∗, f(x∗))s̃

(7)

where gs denotes the partial derivative of g with respect to s, and the consistency condition (2) is

applied. We then have:

g(x, s)− s = (g(x, f(x) + s̃)− f(x))− (s− f(x))

≈ (gs(x, f(x))− 1)s̃

≈ (gs(x
∗, f(x∗))− 1)s̃

(8)

In accord with notations used in later discussions, let us denote:

L = gs(x
∗, f(x∗)), K = 1− gs(x

∗, f(x∗)) (9)
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with which the linearized system of Equation (5) becomes:

d2

dt2

(
x̃

s̃

)
=

(
−Ω2 L

f ′(x∗)Ω2 −f ′(x∗)L − ω2K

)(
x̃

s̃

)
:= A

(
x̃

s̃

)
(10)

Note that when the force is computed accurately, i.e.,

g(x, s) = f(x), ∀s (11)

we have:

L = 0, K = 1 (12)

meaning that the motion of x̃ is decoupled from that of s̃, and x̃ follows the exact harmonic motion in

the linear response regime with the accurate frequency, Ω. When the force is computed inaccurately,

x̃ is coupled with s̃ in Equation (10). Actually, we can solve (10) analytically, and the eigenvalues of

A are:(
λΩ̃

λω̃

)
=

⎛⎝ 1
2

(√
(Lf ′(x∗) +Kω2 + Ω2)2 − 4Kω2Ω2 − Lf ′(x∗)−Kω2 − Ω2

)
1
2

(
−
√

(Lf ′(x∗) +Kω2 + Ω2)2 − 4Kω2Ω2 − Lf ′(x∗)−Kω2 − Ω2
)⎞⎠ (13)

Then, the frequencies of the normal modes of the ODE are Ω̃ =
√

−λΩ̃ and ω̃ =
√
−λω̃, respectively.

Assume ω2 
 Ω2 and expand the solution to the order of O(1/ω2); we have:

Ω̃ = Ω

(
1− f ′(x∗)

2ω2
LK−1

)
+O(1/ω4) (14)

Similarly, the frequency for the other normal mode, which is dominated by the motion of s̃, is:

ω̃ =
√
Kω

(
1 +

f ′(x∗)
2ω2

LK−1

)
+O(1/ω3) (15)

It is found that one of the normal modes of Equation (10) has frequency Ω̃ ≈ Ω. We can therefore

measure the accuracy of Equation (4) using the relative error between Ω̃ and Ω. Furthermore, if the

dynamics (4) is stable in the linear response regime, it is necessary to have K > 0.

From Equation (14), we conclude that if the time reversible numerical scheme (4) is used for

simulating the ODE Equation (1) and if we neglect the error due to the Verlet scheme, the error

introduced in computing the frequency, Ω, is proportional to ω−2. This seems to indicate that very

large ω (i.e., very small time step Δt) might be needed to obtain accurate results. Fortunately, the

ω−2 term in Equation (14) has the prefactor, f ′(x∗)LK−1. Equation (6) shows that f ′(x∗) ≈ −Ω2,

which is small compared to ω2. If gs(x
∗, f(x∗)) is small, then K ≈ 1, and the accuracy of Ω̃ is

determined by L or gs(x
∗, f(x∗)), which indicates the sensitivity of the computed force with respect

to the initial guess, or the accuracy of the iterative procedure for computing the force. If a “good”

iterative procedure is used, gs(x
∗, f(x∗)) will be small. Therefore, the presence of the term, L,

allows one to obtain relatively accurate approximation to the frequency, Ω, without using a large ω.

The same behavior can be observed when using TRBOMD to approximate BOMD (vide post).
Finally, we remark that even though Equation (1) is a much simplified system, it will be seen

below that for BOMD with M atoms and N interacting electrons, the analysis in the linear response

regime follows the same line, and the result for the frequency is similar to Equation (14).
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3. Time Reversible Born-Oppenheimer Molecular Dynamics

Consider a system with M atoms and N electrons. The position of the atoms at time t is denoted

by R(t) = (R1(t), . . . , RM(t))T . In BOMD, the motion of atoms follows Newton’s law:

mR̈I(t) = fI(R(t)) = −∂E(R(t))

∂RI

(16)

where E(R(t)) is the total energy of the system at the atomic configuration, R(t). In KSDFT, the

total energy is expressed as a functional of a set of Kohn-Sham orbitals, {ψi(x)}Ni=1. To illustrate

the idea with minimal technicality, let us consider for the moment a system of N electrons at zero

temperature. The energy functional in KSDFT takes the form:

E({ψi(x)}Ni=1;R) =
1

2

N∑
i=1

∫
|∇ψi(x)|2 dx+

∫
ρ(x)Vion(x;R) dx+ Ehxc[ρ]

ρ(x) =
N∑
i=1

|ψi(x)|2
(17)

The first term in the energy functional is the kinetic energy of the electrons. The second term

contains the electron-ion interaction energy. The ion-ion interaction energy usually takes the form∑
I<J

ZIZJ

|RI−RJ | , where ZI is the charge for the nucleus, I . The ion-ion interaction energy does not

depend on the electron density, ρ. To simplify the notation, we include the ion-ion interaction

energy in the Vion term as a constant shift that is independent of the x variable. The third term

does not explicitly depend on the atomic configuration, R, and is a nonlinear functional of the

electron density, ρ. It represents the Hartree part of electron-electron interaction energy (h) and the

exchange-correlation energy (xc) characterizing many body effects. The energy, E(R), as a function

of atomic positions is given by the following minimization problem:

E(R) = min
{ψi(x)}Ni=1

E({ψi(x)}Ni=1;R)

s.t.

∫
ψ†
i (x)ψj(x) dx = δij, i, j = 1, . . . , N

(18)

We denote by {ψi(x;R)}Ni=1 the (local) minimizer and ρ∗(x;R) =
∑N

i=1 |ψi(x;R)|2, the converged

electron density corresponding to the minimizer (here, we assume that the minimizing electron

density is unique). Then, the force acting on the atom I is:

fI(R; ρ∗(x;R)) = −∂E(R)

∂RI

= −
∫

ρ∗(x;R)
∂Vion(x;R)

∂RI

dx (19)

In the physics literature, the force formula in Equation (19) is referred to as the Hellmann-Feynman

force. The validity of the Hellmann-Feynman formula relies on the electron density, ρ∗(x;R),

corresponding to the minimizers of the Kohn-Sham energy functional. Since Ehxc[ρ] is a nonlinear

functional of ρ, the electron density, ρ, is usually determined through the self-consistent field (SCF)

iteration as follows.
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Starting from an inaccurate input electron density, ρin, one first computes the output electron

density by solving the lowest N eigenfunctions of the problem:(
−1

2
Δx + V(x;R, ρin)

)
ψi = εiψi (20)

with:

V(x;R, ρ) = Vion(x;R) +
δEhxc[ρ]

δρ
(x) (21)

and the output electron density, ρout, is defined by:

ρout(x) := F [ρin](x) =
N∑
i=1

|ψi(x)|2 (22)

Here, the operator, F , is called the Kohn-Sham map. ρout can be used directly as the input electron

density, ρin, in the next iteration. This is called the fixed point iteration. Unfortunately, in most

electronic structure calculations, the fixed point iteration does not converge, even when ρin is very

close to the true electron density, ρ∗. The fixed point iteration can be improved by the simple mixing

method, which takes the linear combination of the electron density:

αρout + (1− α)ρin (23)

as the input density for the next iteration with 0 < α ≤ 1. Simple mixing can

greatly improve the convergence properties of the SCF iteration over the fixed point iteration,

but the convergence rate can still be slow in practice. There are more complicated SCF

iteration schemes, such as the Anderson mixing scheme [25], the Pulay mixing scheme [26]

and the Broyden mixing scheme [27]. Furthermore, preconditioners can be applied to the

SCF iteration to enhance convergence properties, such as the Kerker preconditioner [28].

More detailed discussion on the convergence properties of these SCF schemes can be found

in [29]. In the following discussions, we denote by ρSCF(x;R, ρ) the final electron density

after the SCF iteration starting from an initial guess, ρ. We assume that ρSCF satisfies the

consistency condition:

ρSCF(x;R, ρ∗(·;R)) = ρ∗(x;R) (24)

If a non-convergent SCF iteration procedure is used, ρSCF(x;R, ρ) might deviate from ρ∗(x;R).

Such deviation introduces error in the force, and the error can accumulate in the long time molecular

dynamics simulation and lead to inaccurate results in computing the statistical and dynamical

properties of the systems.

The map, ρSCF, is usually highly nonlinear, which makes it difficult to correct the error in the

force. The TRBOMD scheme avoids the direct correction for the inaccurate ρSCF, but allows the

initial guess to dynamically evolve together with the motion of the atoms. We denote by ρ(x, t)

the initial guess for the SCF iteration at time t. When ρ(·, t) is used as an argument, we also

write ρSCF(x;R(t), ρ(t)) := ρSCF(x;R(t), ρ(·, t)). The Hellmann-Feynman formula (19) is used
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to compute the force at the electron density, ρSCF(x;R(t), ρ(t)), even though ρ∗(x;R(t)) is not

available. Thus, the equation of motion in TRBOMD reads:

mR̈I(t) = fI(R(t); ρSCF(x;R(t), ρ(t))) = −
∫

ρSCF(x;R(t), ρ(t))
∂Vion(x;R(t))

∂RI

dx

ρ̈(x, t) = ω2(ρSCF(x;R(t), ρ(t))− ρ(x, t))

(25)

It is clear that TRBOMD is time reversible. The discretized TRBOMD is still time reversible if

the numerical scheme is time reversible. For instance, if the Verlet scheme is used, the discretized

equation of motion becomes:

RI(tk+1) = 2RI(tk)−RI(tk−1)−
Δt2

m
fI(R(tk); ρSCF(x;R(tk), ρ(tk))

ρ(x, tk+1) = 2ρ(x, tk)− ρ(x, tk−1) + Δt2ω2(ρSCF(x;R(tk), ρ(tk))− ρ(x, tk))

(26)

which is evidently time reversible. The artificial frequency, ω, controls the frequency of the fictitious

dynamics of ρ(x, t) and is generally chosen to be larger than the frequency of the motion of the atoms.

The numerical stability of the Verlet algorithm requires that the dimensionless quantity, κ := (ωΔt)2,

be small [30]. When κ is fixed, ω controls the stiffness or, equivalently, the time step Δt =
√
κ
ω

for

the equation of motion (26).

Let us mention that TRBOMD is closely related to CPMD. In CPMD, the equation of motion is

given by:

mR̈I(t) = fI(R(t), ρ(t)) = −
∫

ρ(t)
∂Vion(x;R(t))

∂RI

dx

μψ̈i(t) = −δE(R(t), {ψi(t)})
δψ†

i

+
∑
j

ψj(t)Λji(t)
(27)

where μ is the fictitious electron mass for the fake electron dynamics in CPMD and Λ’s are the

Lagrange multipliers determined so that {ψi(t)} is an orthonormal set of functions for any time. The

CPMD scheme (27) can be viewed as the equation of motion with an extended Lagrangian:

LCP

(
R, Ṙ, {ψi}, {ψ̇i}

)
=

∑
I

m

2
|ṘI |2 +

∑
i

μ

2

∫
|ψ̇i|2 − E(R, {ψi}) (28)

which contains both ionic and electronic degrees of freedom. Therefore, CPMD is a Hamiltonian

dynamics and, thus, time reversible.

Note that the frequency of the evolution equation for {ψi} in CPMD is adjusted by the fictitious

mass parameter, μ. Comparing with TRBOMD, the parameter, μ, plays a similar role as ω−2, which

controls the frequency of the fictitious dynamics of the initial density guess in SCF iteration. This

connection will be made more explicit in the sequel.

We remark that the papers, [16,17], took a further step in viewing TRBOMD by an extended

Lagrangian approach in a vanishing mass limit. This was also interpreted differently in [24] by

starting from a Lagrangian and, then, using inaccurate forces in the equation of motions. However,

unless a very specific and restrictive form of the error due to non-convergent SCF iterations is
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assumed, the equation of motion in TRBOMD does not have an associated Lagrangian in general.

The connection to Lagrangian dynamics remains formal, and hence, we will not further explore

it here.

4. Analysis of TRBOMD in the Linear Response Regime

In this section, we consider Equation (25) in the linear response regime, in which each atom, I ,

oscillates around its equilibrium position, R∗
I . The displacement of the atomic configuration, R, from

the equilibrium position is denoted by R̃(t) := R(t)−R∗, and the deviation of the electron density

from the converged density is denoted by ρ̃(x, t) := ρ(x, t)− ρ∗(x;R(t)). Both R̃(t) and ρ̃(x, t) are

small quantities in the linear response regime and contain the same information as R(t) and ρ(x, t).

Using R̃(t) and ρ̃(x, t) as the new variables and noting the chain rule due to the R-dependence in

ρ∗(x;R(t)), the equation of motion in TRBOMD becomes:

m
¨̃
RI(t) = −

∫
ρSCF(x;R(t), ρ(t))

∂Vion(x;R(t))

∂RI

dx

¨̃ρ(x, t) = ω2(ρSCF(x;R(t), ρ(t))− ρ(x, t))−
M∑
I=1

∂ρ∗(x;R(t))

∂RI

¨̃
RI(t)

−
M∑

I,J=1

˙̃
RI(t)

˙̃
RJ(t)

∂2ρ∗(x;R(t))

∂RI∂RJ

(29)

To simplify notation, from now on, we suppress the t-dependence in all variables, and

Equation (29) becomes:

m
¨̃
RI = −

∫
ρSCF(x;R, ρ)

∂Vion(x;R)

∂RI

dx (30a)

¨̃ρ(x) = ω2(ρSCF(x;R, ρ)− ρ(x))−
M∑
I=1

∂ρ∗

∂RI

(x;R)
¨̃
RI −

M∑
I,J=1

˙̃
RI

˙̃
RJ

∂2ρ∗

∂RI∂RJ

(x;R) (30b)

In the linear response regime, we expand Equation (30) and only keep terms that are linear with

respect to R̃ and ρ̃. All the higher order terms, including all the cross products of R̃I ,
˙̃
RI and ρ̃, will

be dropped. First, we linearize the force on atom I with respect to ρ̃ as:

fI(R; ρSCF(x;R, ρ))

=−
∫

ρSCF(x;R, ρ)
∂Vion(x;R)

∂RI

dx

=−
∫

ρ∗(x;R)
∂Vion(x;R)

∂RI

dx−
∫

(ρSCF(x;R, ρ∗(R) + ρ̃)− ρ∗(x;R))
∂Vion(x;R)

∂RI

dx

≈−
∫

ρ∗(x;R)
∂Vion(x;R)

∂RI

dx−
∫

δρSCF

δρ
(x, y;R)ρ̃(y)

∂Vion(x;R)

∂RI

dx dy

(31)

Next, we linearize with respect to R̃; we have:∫
ρ∗(x;R)

∂Vion(x;R)

∂RI

dx ≈ −m

M∑
I,J=1

DIJR̃J (32)
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Here, the matrix, {DIJ}, is the dynamical matrix for the atoms. For the last term in Equation (31),

we have: ∫
δρSCF

δρ
(x, y;R)ρ̃(y)

∂Vion(x;R)

∂RI

dx dy

≈
∫

δρSCF

δρ
(x, y;R∗)ρ̃(y)

∂Vion(x;R
∗)

∂RI

dx dy

:=−mLI [ρ̃]

(33)

The last equation in Equation (33) defines a linear functional, LI , with δρSCF

δρ
(x, y;R∗) and

∂Vion(x;R
∗)

∂RI

evaluated at the fixed equilibrium point, R∗.

In the linear response regime, the operator, δρSCF

δρ
(x, y;R∗), carries all the information of the

SCF iteration scheme. Let us now derive the explicit form of δρSCF

δρ
(x, y;R∗) for the k-step simple

mixing scheme with mixing parameter (step length) α (0 < α ≤ 1). If k = 1, the simple mixing

scheme reads:

ρSCF(x;R, ρ∗(R) + ρ̃) = αF [ρ∗(R) + ρ̃] + (1− α)(ρ∗(R) + ρ̃) (34)

so:
δρSCF

δρ
(x, y;R∗) = δ(x− y)− α

(
δ(x− y)− δF

δρ
(x, y)

)
(35)

Here, δ(x) is the Dirac δ-function, and the operator,
(
δ(x− y)− δF

δρ
(x, y)

)
:= ε(x, y), is usually

refereed to as the dielectric operator [31,32]. To simplify the notation, we would not distinguish

the kernel of an integral operator from the integral operator itself. For example, ε(x, y) is

denoted by ε. Neither will we distinguish integral operators defined on continuous space from

the corresponding finite dimensional matrices obtained from certain numerical discretization. This

slight abuse of notation allows us to simply denote f(x) =
∫
A(x, y)g(y) dy by f = Ag

as a matrix-vector multiplication and to denote the composition of kernels of integral operators

C(x, y) =
∫
dzA(x, z)B(z, y) by C = AB as a matrix-matrix multiplication. Using such notations,

Equation (35) can be written in a more compact form:

δρSCF

δρ
= I − αε (36)

Similarly, for the k-step simple mixing method, we have:

δρSCF

δρ
= (1− αε)k (37)

In general, the dielectric operator is diagonalizable, and all eigenvalues of ε are real. Therefore, the

linear response operator, δρSCF

δρ
, for the k-th step simple mixing method is also diagonalizable with

real eigenvalues.
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From Equation (30b), we have:

ρSCF(x;R, ρ)− ρ(x)

= (ρSCF(x;R, ρ̃+ ρ∗(R))− ρ∗(x;R))− (ρ(x)− ρ∗(x;R))

≈
∫

δρSCF

δρ
(x, y;R)ρ̃(y) dy − ρ̃(x)

≈
∫

δρSCF

δρ
(x, y;R∗)ρ̃(y) dy − ρ̃(x)

:=−
∫

K(x, y)ρ̃(y) dy

(38)

Here, we have used consistency condition (24). The last line of Equation (38) defines a kernel:

K(x, y) = δ(x− y)− δρSCF

δρ
(x, y;R∗) (39)

which is an important quantity for the stability of TRBOMD, as will be seen later. Using

Equations (33) and (38), the equation of motion, (30), can be written in the linear response regime as:

¨̃
RI = −

M∑
J=1

DIJR̃J + LI [ρ̃]

¨̃ρ(x) = −ω2

∫
K(x, y)ρ̃(y) dy −

M∑
I=1

∂ρ∗

∂RI

(x;R∗)

(
−

M∑
J=1

DIJR̃J + LI [ρ̃]

) (40)

Define:

L = (L1, · · · ,LM)T (41)

then Equation (40) can be rewritten in a more compact form as:

¨̃
R = −DR̃+ L[ρ̃], (42a)

¨̃ρ(x) = −ω2

∫
K(x, y)ρ̃(y) dy −

(
∂ρ∗

∂R
(x;R∗)

)T (
−DR̃+ L[ρ̃]

)
(42b)

Now, if the self-consistent iteration is performed accurately regardless of the initial guess, i.e.,

ρSCF(x;R, ρ) = ρ∗(x;R), ∀ρ (43)

which implies:
δρSCF

δρ
(x, y;R∗) = 0, L = 0, K(x, y) = δ(x− y) (44)

The linearized equation of motion (42) becomes:

¨̃
R = −DR̃, (45a)

¨̃ρ(x) = −ω2ρ̃(x) +

(
∂ρ∗

∂R
(x;R∗)

)T

DR̃ (45b)

Therefore, in the case of accurate SCF iteration, according to Equation (45a), the equation of

the motion of atoms follows the accurate linearized equation and is decoupled from the fictitious
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dynamics of ρ̃. The normal modes of the equation of motion of atoms can be obtained by

diagonalizing the dynamical matrix, D, as:

Dvl = Ω2
l vl, l = 1, . . . ,M (46)

The frequencies, {Ωl} (Ωl > 0), are known as phonon frequencies. When the SCF iterations are

performed inaccurately, it is meaningless to assess the accuracy of the approximate dynamics (42)

by direct investigation of the trajectories, R̃(t), since small difference in the phonon frequency can

cause large error in the phase of the periodic motion, R̃(t), over a long time. However, it is possible

to compute the approximate phonon frequencies, {Ω̃l}, from Equation (42) and measure the accuracy

of TRBOMD in the linearized regime from the relative error:

errl =
Ω̃l − Ωl

Ωl

(47)

The operator, K(x, y), in Equation (39) is directly related to the stability of the dynamics.

Equation (42b) also suggests that in the linear response regime, the spectrum of K(x, y) must be on

the real line, which requires that the matrix, δρSCF

δρ
(x, y;R∗), be diagonalizable with real eigenvalues.

This has been shown for the simple mixing scheme. However, we remark that the condition that all

eigenvalues of K(x, y) are real may not hold for general preconditioners or for more complicated SCF

iterations (for instance, Anderson mixing). This is one important restriction of the linear response

analysis. Of course, this may not be a restriction for practical TRBOMD simulation for real systems.

We will leave further understanding of this to future works.

Let us now assume that all eigenvalues of K are real. The lower bound of the spectrum of K,

denoted by λmin(K), should satisfy:

λmin(K) > 0 (48)

Equation (48) is a necessary condition for TRBOMD to be stable, which will be referred to as the

stability condition in the following. Furthermore, ω should be chosen large enough in order to avoid

resonance between the motion of R̃ and ρ̃. Therefore, the adiabatic condition:

ω2 
 λmax(D)

λmin(K)
=

maxl Ω
2
l

λmin(K)
(49)

should also be satisfied. Due to Equation (49), we may assume ε = 1/ω2 is a small number and

expand Ωl in the perturbation series of ε to quantify the error in the linear response regime. Following

the derivation in the appendix, we have:

Ω̃l = Ωl

(
1− 1

2ω2
vT
l L

[
K−1

[(
∂ρ∗

∂R

)T

vl

]])
+O(1/ω4) (50)

where K−1 is the inverse operator of K (K is invertible, due to the stability condition). Since

ω =
√
κ/Δt, Equation (50) suggests that the accuracy of TRBOMD in the linear response regime is

(Δt)2, with the pre-constant mainly determined by L, i.e., the accuracy of the SCF iteration.

Let us compare TRBOMD with CPMD. It is well known that CPMD accurately approximates

the results of BOMD, provided that the electronic and ionic degrees of freedom remain adiabatically
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separated, as well as the electrons stay close to the Born-Oppenheimer surface [12,13]. More

specifically, the fictitious electron mass should be chosen, so that the lowest electronic frequency

is well above ionic frequencies:

μ � Egap

maxl Ω2
l

(51)

where Egap is the spectral gap (between the highest occupied and the lowest unoccupied states) of

the system, and recall that Ωl is the vibration frequency of the lattice phonon. For CPMD, a similar

analysis in the linear response regime as above (we omit the derivation here) shows that:

Ω̃l = Ωl(1 +O(μ)) (52)

under assumption (51). The adiabaticity (51), as well as the role of the fictitious electron mass

on physical quantities have been investigated extensively in [33–35]. The linear relationship (52)

between the fictitious electron mass and the dynamical frequencies of CPMD was also presented

in [34].

Note that condition (51) implies that CPMD no longer works if the system has a small gap or

is even metallic. The usual work-around for this is to add a heat bath for the electronic degrees

of freedom in CPMD [33], so that it maintains a fictitious temperature for the electronic degree of

freedom. Nonetheless, the adiabaticity is lost for metallic systems, and CPMD is no longer accurate

over long time simulation. In contrast, as we have discussed previously, TRBOMD may work for

both insulating and metallic systems without any modification, provided that the SCF iteration is

accurate and no resonance occurs. This is an important advantage of TRBOMD, which we will

illustrate using numerical examples in the next section.

When the system has a gap, we can take μ sufficiently small to satisfy the adiabatic separation

condition (51). Compare Equation (52) with Equation (50); we see that μ in CPMD plays a similar

role as ω−2 in TRBOMD. The accuracy (in the linear regime) for CPMD and TRBOMD is the first

order in μ and ω−2, respectively. At the same time, as taking a small μ or large ω increases the

stiffness of the equation, the computational cost is proportional to μ−1 and ω2, respectively.

Let us remark that the above analysis is done in the linear response regime. As shown in [12,13],

the accuracy of CPMD, in general, is only O(μ1/2) instead of O(μ) for the linear regime. Due to the

close connection between these two parameters, we do not expect O(ω−2) accuracy for TRBOMD

in general, either. Actually, as will be discussed in Section 6, if the deviation of atom positions from

equilibrium is not so small that we cannot linearize the nuclei motion, the error of TRBOMD in

general will be O(ω−1).

5. Numerical Results in the Linear Response Regime

In this section, we present numerical results for TRBOMD in the linear response regime using

a one-dimensional (1D) model for KSDFT without the exchange correlation functional. The model

problem can be tuned to exhibit both metallic and insulating features. Such a model was used before

in mathematical analysis of ionization conjecture [36].
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The total energy functional in our 1D density functional theory (DFT) model is given by:

E({ψi(x)}Ni=1;R)=
1

2

N∑
i=1

∫ ∣∣∣∣ ddxψi(x)

∣∣∣∣2 dx+
1

2

∫
K(x, y)(ρ(x)+m(x;R))(ρ(y)+m(y;R)) dx dy

(53)

with ρ(x) =
∑N

i=1 |ψi(x)|2. The associated Hamiltonian is given by:

H(R) = −1

2

d2

dx2
+

∫
K(x, y)(ρ(y) +m(y;R)) dy (54)

Here, m(x;R) =
∑M

I=1 mI(x − RI), with the position of the I-th nucleus denoted by RI . Each

function, mI(x), takes the form:

mI(x) = − ZI√
2πσ2

I

e
− x2

2σ2
I (55)

where ZI is an integer representing the charge of the i-th nucleus. This can be understood as a local

pseudopotential approximation to represent the electron-ion interaction. The second term on the

right-hand side of Equation (53) represents the electron-ion, electron-electron and ion-ion interaction

energy. The parameter, σI , represents the width of the nuclei in the pseudopotential theory. Clearly,

as σI → 0, mI(x) → −ZIδ(x), which is the charge density for an ideal nucleus. In our numerical

simulation, we set σI to a finite value. The corresponding mI(x) is called a pseudo charge density
for the I-th nucleus. We refer to the function, m(x), as the total pseudo-charge density of the nuclei.

The system satisfies the charge neutrality condition, i.e.,∫
ρ(x) +m(x;R) dx = 0 (56)

Since
∫
mI(x) dx = −ZI , the charge neutrality condition (56) implies:∫

ρ(x) dx =
M∑
I=1

ZI = N (57)

where N is the total number of electrons in the system. To simplify discussion, we omit the spin

degeneracy here. The Hellmann-Feynman force is given by:

fI = −
∫

K(x, y)(ρ(y) +m(y;R))
∂m(x;R)

∂RI

dx dy (58)

Instead of using a bare Coulomb interaction, which diverges in 1D, we adopt a Yukawa kernel:

K(x, y) =
2πe−κ|x−y|

κε0
(59)

which satisfies the equation:

− d2

dx2
K(x, y) + κ2K(x, y) =

4π

ε0
δ(x− y) (60)

As κ → 0, the Yukawa kernel approaches the bare Coulomb interaction given by the Poisson

equation. The parameter, ε0, is used to make the magnitude of the electron static contribution

comparable to that of the kinetic energy.
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The parameters used in the 1D DFT model are chosen as follows. Atomic units are used

throughout the discussion unless otherwise mentioned. The Yukawa parameter, κ = 0.01, is small

enough so that the range of the electrostatic interaction is sufficiently long, and ε0 is set to 10.00.

The nuclear charge, ZI , is set to one for all atoms. Since spin is neglected, ZI = 1 implies that each

atom contributes to one occupied state. The Hamiltonian operator is represented in a planewave basis

set. All the examples presented in this section consists of 32 atoms. Initially, the atoms are at their

equilibrium positions, and the distance between each atom and its nearest neighbor is set to 10 au.

Starting from the equilibrium position, each ion is given a finite velocity, so that the velocity on the

centroid of mass is zero. In the numerical experiments below, the system contains only one single

phonon, which is obtained by assigning an initial velocity, v0 ∝ (1,−1, 1,−1, · · · ), to the atoms.

We denote by ΩRef the corresponding phonon frequency. We choose v0, so that 1
2
mv20 = kBTion,

where kB is the Boltzmann constant and Tion is 10 K, to make sure that the system is in the linear

response regime. In the atomic unit, the mass of the electron is one, and the mass of each nuclei is set

to 42, 000. By adjusting the parameters, {σI}, the 1D DFT model model can be tuned to resemble

an insulating (with σI = 2.0) or a metallic system (with σI = 6.0) throughout the MD simulation.

Figure 1 shows the spectrum of the insulating and the metallic system after running 1, 000 BOMD

steps with converged SCF iteration.

Figure 1. Spectrum for the insulator and metal with 32 atoms after 1, 000

Born-Oppenheimer molecular dynamics (BOMD) steps with converged self-consistent

field (SCF) iteration. (a) Insulator; (b) metal.
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In the linear response regime, we measure the error of the phonon frequency calculated from

TRBOMD. This can be done in two ways. The first is given by Equation (50), namely, all quantities in

the big parentheses in Equation (50) can be directly obtained by using the finite difference method at

the equilibrium position, R∗. The second is to explore the fact that in the linear response regime, there

is a linear relation between the force and the atomic position, as in Equation (32), i.e., Hooke’s law:

fI(tl) ≈ −m
∑
J

DIJR̃J(tl) (61)
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holds approximately at each time step. Here, {fI(tl)} and {R̃I(tl)} are obtained from the trajectory of

the TRBOMD simulation directly. To numerically compute DIJ , we solve the least square problem:

min
D

∑
l,I

∥∥∥fI(tl) +m
∑
J

DIJR̃J(tl)
∥∥∥2

(62)

which yields:

D = − 1

m
SfR

(
SRR

)−1
(63)

where:

SfR
IJ =

∑
l

fI(tl)R̃J(tl), SRR
IJ =

∑
l

R̃I(tl)R̃J(tl) (64)

The frequencies, {Ω̃l}, can be obtained by diagonalizing the matrix, D. Similarly, one can perform

the calculation for the accurate BOMD simulation and obtain the exact value of the frequencies, {Ωl}.

In order to compare the performance among BOMD, TRBOMD and CPMD, we define the

following relative errors:

errHooke
Ω =

Ω̃Hooke − ΩRef

ΩRef
(65)

errLR
Ω =

Ω̃LR − ΩRef

ΩRef
(66)

errE =
E − E

Ref

E
Ref

(67)

errL
2

R =
‖R1(t)−RRef

1 (t)‖L2

‖RRef
1 (t)‖L2

(68)

errL
∞

R =
‖R1(t)−RRef

1 (t)‖L∞

‖RRef
1 (t)‖L∞

(69)

where the results from BOMD with convergent SCF iteration are taken to be corresponding reference

values, E is the average total energy over time, the frequencies, Ω̃Hooke and ΩRef, are obtained via

solving the least square problem (62), the frequency, Ω̃LR, is measured by Equation (50) with finite

difference methods and R1(t) is the trajectory of the left-most atom.

5.1. Numerical Comparison between BOMD and TRBOMD

The first run is to validate the performance of TRBOMD. We set the time step Δt = 250, the

artificial frequency ω = 1
Δt

= 4.00E-03, the final time T = 2.50E+06 and employ the simple mixing

with step length α = 0.3 and the Kerker preconditioner in SCF cycles. Figure 2 plots the energy drift

for BOMD with the converged SCF iteration (denoted by BOMD(c)) where the tolerance is 1.00E-08;

BOMD with five SCF iterations per time step (denoted by BOMD(5)) and TRBOMD with five SCF

iterations per time step (denoted by TRBOMD(5)). We see clearly there that BOMD(5) produces

large drift for both insulator and metal, but TRBOMD(5) does not. Actually, from Table 1, the relative

error in the average total energy over time between TRBOMD(5) and BOMD(c) is under 1.30E-05,

but BOMD(c) needs about an average of 45 SCF iterations per time step to reach the tolerance
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1.00E-08. Figure 3 plots corresponding trajectory of the left-most atom during about the first 25

periods and shows that the trajectory from TRBOMD (five) almost coincides with that from BOMD

(c), which is also confirmed by the data of errL
2

R and errL
∞

R in Table 1. However, for BOMD(5), the

atom will cease oscillation after a while. A similar phenomena occurs for other atoms. In Table 1, we

present more results for TRBOMD(n) with n = 3, 5, 7. We observe there that TRBOMD(n) gives

more accurate results with larger n, and errHooke
Ω has a similar behavior as n increases to errLR

Ω , which

is in accord with our previous linear response analysis in Section 4.

Figure 2. The energy fluctuations around the starting energy, E(t = 0), as a function

of time. The time step is Δt = 250. The final time is 2.50E+06 and ω = 1/Δt =

4.00E-03. The simple mixing with the Kerker preconditioner is applied in SCF cycles.

BOMD (c) denotes the BOMD simulation with converged SCF iteration, and BOMD

(n) (resp.TRBOMD(n)) represents the BOMD (resp. TRBOMD) simulation with n SCF

iterations per time step. It shows clearly that BOMD (five) produces large drift for both

the insulator (a) and the metal (b), but TRBOMD (five) does not.
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Table 1. The errors for time reversible Born-Oppenheimer molecular dynamics

(TRBOMD) (n). The settings are the same as those in Figure 2, except for the number of

SCF iterations.

Insulator: ΩRef = 2.51E-04, E
Ref

= 8.66E-01

n errLR
Ω errHooke

Ω errE errL
2

R errL
∞

R

3 −6.53E-03 −1.63E-02 −7.63E-05 2.26E-02 4.25E-02

5 −1.08E-03 −2.38E-03 −1.30E-05 1.27E-02 2.92E-02

7 −2.76E-04 −5.41E-04 −3.32E-06 3.02E-03 7.22E-03

Metal: ΩRef = 1.06E-04, E
Ref

= 5.28E-01

3 −2.65E-04 −6.92E-04 −4.36E-06 3.86E-03 8.95E-03

5 −3.65E-05 −7.31E-05 −4.44E-07 4.14E-04 9.60E-04

7 −5.24E-06 2.93E-06 −1.10E-07 1.63E-05 3.78E-05
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Figure 3. The position of the left-most atom as a function of time. The settings are

the same as those in Figure 2. It shows clearly that the trajectory from TRBOMD (five)

almost coincides with that from BOMD (c). However, for BOMD (five), the atom will

cease oscillation after a while. (a) Insulator; (b) metal.
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Figure 4. The absolute value of the error for TRBOMD (three) as a function of 1/ω2

in logarithmic scales. The time step is Δt = 20, and the final time is 6.00E+05. For

the readers’ reference, within each plot, the red straight line denotes corresponding

linear dependence, while the red solid point on the x axis represents the critical value

of λmin(K)/λmax(D). (a) Insulator; (b) metal.
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According to Equation (50), we have that errLR
Ω is proportional to 1/ω2 for large ω. We verify

this behavior using TRBOMD(3) as an example. In this example, a smaller time step, Δt = 20,

is set to allow bigger artificial frequency ω. The final time is T = 6.00E+05, and the simple

mixing with α = 0.3 and the Kerker preconditioner is applied in SCF iterations. For TRBOMD

(three) under these settings, we have λmin(K) � 8.81E-03 for the insulator and λmin(K) � 5.92E-01
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for the metal, and thus, the critical values of (ΩRef)2/λmin(K) in Equation (49) are about 7.12E-06

and 1.90E-08, respectively. We choose ω2 = 2.50E-03, 2.50E-04, 2.50E-05, 2.50E-06, 2.50E-07,

2.50E-08, 2.50E-09, and plot in Figure 4 the absolute values of errHooke
Ω , errE , errL

2

R for TRBOMD

(three) as a function of 1/ω2 in logarithmic scales. When 1/ω2 � λmin(K)/(ΩRef)2, Figure 4 shows

clearly that all of |errHooke
Ω |, |errE|, |errL

2

R | depend linearly on 1/ω2. The error, errL
∞

R , has a similar

behavior to errL
2

R and is skipped here for saving space.

The last example illustrates the possible unstable behavior of TRBOMD when the stability

condition λmin(K) > 0 in Equation (48) is violated. Here, we take the insulator as an example and set

the time step Δt = 250, the final time to 2.50E+05 and the artificial frequency ω = 1
Δt

= 4.00E-03.

The simple mixing with α = 0.3 is now applied in SCF iterations. Under these setting, we have

λmin(K) < 0, e.g., λmin(K) = −2.42E+03 for TRBOMD (three). Figure 5a plots the energy drift

for TRBOMD (n) with n = 3, 5, 7, 45. We see clearly there that TRBOMD is unstable even using

45 SCF iterations per time step (recall that BOMD (c) in the first run needs about average 45 SCF

iterations per time step). Figure 5b plots the corresponding trajectory of the left-most atom and shows

that the atom is driven wildly by the non-convergent SCF iteration.

Figure 5. The unstable behavior of TRBOMD with the simple mixing for the insulator.

The time step is Δt = 250. The final time is 2.50E+05 and ω = 1/Δt = 4.00E-03. (a)

The energy drift; (b) the trajectory of the left-most atom.
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5.2. Numerical Comparison between TRBOMD and CPMD

We now present some numerical examples for CPMD illustrating the difference between CPMD

and TRBOMD. As we have discussed, TRBOMD is applicable to both metallic and insulting systems,

while CPMD becomes inaccurate when the gap vanishes. To make this statement more concrete, we

apply CPMD to the same atom chain system. We implement CPMD using a standard velocity Verlet

scheme combined with RATTLEfor the orthonormality constraints [37–39].

We present in Figure 6 the error of CPMD simulation for different choices of fictitious electron

mass μ. We study the relative error of the phonon frequency, errHooke
Ω , the relative error of the position
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of the left-most atom measured in L2 norm, i.e., errL
2

R . We observe in Figure 6a linear convergence

of CPMD to the BOMD result as the parameter, μ, decreases. This is consistent with our analysis.

Recall that in CPMD, μ plays a similar role as ω−2 in TRBOMD. For the metallic example, the

behavior is quite different; actually, Figure 6b shows a systematic error as μ decreases. For metallic

system, as the spectral gap vanishes, the adiabatic separation between ionic and electronic degrees

of freedom cannot be achieved no matter how small μ is. The adiabatic separation for TRBOMD,

on the other hand, relies on the choice of an effective ρSCF, and hence, TRBOMD also works for a

metallic system, as Figure 4 indicates.

Figure 6. The absolute value of the error for Car-Parrinello molecular dynamics (CPMD)

as a function of μ in logarithmic scales. The time step is Δt = 20, and the final time is

6.00E+05. (a) Insulator; (b) metal.
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Figure 7. The trajectory of the position of the left-most atom. The dashed line is the

result from BOMD with converged SCF iteration. Colored solid lines are the results from

CPMD with fictitious electron mass μ = 2, 500, 5, 000, 10, 000 and 20, 000. The time

step is Δt = 20; the trajectory plotted is within the time interval, [2.00E+05, 4.00E+05].

(a) Insulator; (b) metal.
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The different behavior of CPMD for insulating and metallic systems is further illustrated by

Figure 7, which shows the trajectory of the position of the left-most atom during the simulation. The

phase error is apparent from the two subfigures. While the phase error decreases so that the trajectory

approaches that of BOMD for the insulator in Figure 7a, the result in Figure 7b shows a systematic

error for a metallic system.

6. Beyond the Linear Response Regime: Non-Equilibrium Dynamics

The discussion so far has been limited to the linear response regime so that we can make linear

approximations for the degrees of freedom of both nuclei and electrons. In this case, as the system

becomes linear, explicit error analysis has been given. For practical applications, we will be also

interested in non-equilibrium nuclei dynamics, so that the deviation of atom positions is no longer

small. In this section, we will investigate the non-equilibrium case using the averaging principle (see

e.g., [40,41] for a general introduction on the averaging principle).

Figure 8. Comparison of the trajectories of the first three atoms from the left for a

non-equilibrium system. Different atoms are distinguished by color (blue for the initially

left-most atom; green for the initially second left-most atom; red for the initially third

left-most atom). Solid lines are the results from BOMD (c); circled lines are the results

from TRBOMD (seven); dashed lines are the results from BOMD (seven). It is evident

that while the results from BOMD with a non-convergent SCF iteration have a huge

deviation, the results from TRBOMD are hardly distinguishable from the “true” results

from BOMD.
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Let us first show numerically a non-equilibrium situation for the atom chain example discussed

before. Initially, the 32 atoms stay at their equilibrium position. We set the initial velocity so that

the left-most atom has a large velocity towards the right and other atoms have equal velocity towards

the left. The mean velocity is equal to zero; so, the center of mass does not move. Figure 8 shows

the trajectory of the positions of the first three atoms from the left. We observe that the results from
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TRBOMD agree very well with the BOMD results with convergent SCF iterations. Let us note that

in the simulation, the left-most atom crosses over the second left-most atom. This happens since, in

our model, we have taken a 1D analog of Coulomb interaction, the nuclei background charges are

smeared out and, hence, the interaction is “soft” without hard-core repulsion. In Figure 9, we plot

the difference between ρSCF and the converged electron density of the SCF iteration (denoted by ρKS)

along the TRBOMD simulation. We see that the electron density used in TRBOMD stays close to

the ground state electron density corresponding to the atom configuration.

To understand the performance of TRBOMD, recall that the equations of motion are given by:

mR̈I(t) = −
∫

ρSCF(x;R(t), ρ(t))
∂Vion(x;R(t))

∂RI

dx

ρ̈(x, t) = ω2(ρSCF(x;R(t), ρ(t))− ρ(x, t))

To satisfy the adiabatic condition (49) from the linear analysis, ω here is a large parameter. As

a result, the time scales of the motions of the nuclei and of the electrons are quite different: The

electronic degrees of freedom move much faster than the nuclear degrees of freedom.

Let us consider the limit, ω → ∞. In this case, we may freeze the R degree of freedom in the

equation of motion for ρ, as ρ changes on a much faster time scale. To capture the two time scale

behavior, we introduce a heuristic two-scale asymptotic expansion with faster time variable given by

τ = ωt (with some abuse of notation):

R(t) = R(t) and ρ(x, t) = ρ(x, t, τ) (70)

and hence:

ρ̈(x, t) = ω2∂2
τρ(x, t, τ) + 2ω∂τ∂tρ(x, t, τ) + ∂2

t ρ(x, t, τ) (71)

Therefore, to the leading order, after neglecting the terms of O(ω−1), we obtain:

mR̈I(t) = −
∫

ρSCF(x;R(t), ρ(t, τ))
∂Vion(x;R(t))

∂RI

dx (72)

∂2
τρ(x, t, τ) = ρSCF(x;R(t), ρ(t, τ))− ρ(x, t, τ) (73)

For the equation of motion for ρ, note that as R only depends on t, the nuclear positions are fixed

parameters in Equation (73).

To proceed, we consider the scenario that ρ(t, τ) is close to the ground state electron density

corresponding to the current atom configuration, ρ∗(R(t)). We have seen from numerical examples

(Figure 9) that this is indeed the case for a good choice of SCF iteration, while we do not have a

proof of this in the general case. Hence, we linearize the map: ρSCF.

ρSCF(x;R, ρ) = ρ∗(x;R) +

∫
δρSCF

δρ
(x, y;R, ρ∗(R))(ρ(y)− ρ∗(y;R)) dy (74)

and Equation (73) becomes:

∂2
τρ(x, t, τ) = −K(R)(ρ(x, t, τ)− ρ∗(x;R(t))) (75)
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where K(R) is the same as in Equation (39), except it is now defined for each atom configuration,

R. Let us emphasize that here we have only taken the linear approximation for the electronic degrees

of freedom, while keeping the possibly nonlinear dynamics of R. This is different from the linear

response regime considered before, where the nuclei motion is also linearized.

Figure 9. The difference of ρSCF with the converged electron density of SCF

iteration (denoted by ρKS) measured in L1 norm along the TRBOMD simulation for a

non-equilibrium system.
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Under the stability condition (48), it is easy to see that for ρ(t, τ) satisfying Equation (75), the

limit of the time average:

ρ(x;R(t)) = lim
T→∞

1

T

∫ T

0

ρSCF(x;R(t), ρ(t, τ)) dτ

≈ ρ∗(x;R(t)) +

∫
δρSCF

δρ
(x, y;R, ρ∗(R))

(
lim
T→∞

1

T

∫ T

0

ρ(y; t, τ)− ρ∗(y;R(t)) dτ

)
dy

= ρ∗(x;R(t))
(76)

Take the average of Equation (72) in τ , we have:

mR̈I(t) = −
∫

ρ(x;R(t))
∂Vion(x;R(t))

∂RI

dx (77)

Because of Equation (76), the above dynamics is given by:

mR̈I(t) = −
∫

ρ∗(x;R(t))
∂Vion(x;R(t))

∂RI

dx (78)

which agrees with the equation of the motion of atoms in BOMD. As we have neglected O(ω−1)

terms in the averaging, the difference in the trajectory of BOMD and TRBOMD is on the order of

O(ω−1) for finite ω.
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Remark. If we do not make the linear approximation for the electronic degree of freedom, as the map,

ρSCF, is quite nonlinear and complicated, the analysis of the long time (in τ ) behavior of Equation (73)

is not as straightforward. In particular, it is not clear to us whether the limit:

ρ(x;R(t)) = lim
T→∞

1

T

∫ T

0

ρSCF(x;R(t), ρ(t, τ)) dτ (79)

exists or how close the limit is to ρ∗(x;R(t)) in a fully nonlinear regime. One particular difficulty lies

in the fact that unlike BOMD or CPMD, we do not have a conserved Lagrangian for the TRBOMD.

Actually, it is easy to construct a much simplified analog of Equation (73), the average of which is

different from ρ∗. For example, if we consider the following analog, which only has one degree of

freedom, ξ:

ξ̈ = (ξ/2 + aξ2)− ξ (80)

where (ξ/2 + aξ2) is the analog of ρSCF, here, and a > 0 is a small parameter, which characterizes

the nonlinearity of the map. Note that:

ξ̈ = −ξ/2 + aξ2 = −∂ξ(ξ
2/4− aξ3/3) (81)

The motion of ξ is equivalent to the motion of a particle in an anharmonic potential. It is clear that

if, initially, ξ(0) �= 0, the long time average of ξ will not be zero. Furthermore, if, initially, ξ(0) is

too large, the orbit is not closed (ξ escapes the well around ξ = 0). If phenomena similar to this

occur for a general ρSCF, then even in the limit, ω → ∞, there will be a systematic uncontrolled bias

between BOMD and TRBOMD. This is in contrast with Car-Parrinello molecular dynamics, which

agrees with BOMD in the limit fictitious mass going to zero (μ → 0) if the adiabatic condition holds.

As a result of this discussion, in practice, when we apply TRBOMD to a particular system,

we need to be cautious whether the electronic degree of freedom remains around the converged

Kohn-Sham electron density, which is not necessarily guaranteed (in contrast to CPMD for systems

with gaps).

7. Conclusions

The recently developed time reversible Born-Oppenheimer molecular dynamics (TRBOMD)

scheme provides a promising way for reducing the number of self-consistent field (SCF) iterations

in molecular dynamics simulation. By introducing auxiliary dynamics to the initial guess of the SCF

iteration, TRBOMD preserves the time-reversibility of the NVE dynamics, both at the continuous and

at the discrete level, and exhibits improved long time stability over the Born-Oppenheimer molecular

dynamics with the same accuracy. In this paper we analyze, for the first time, the accuracy and the

stability of the TRBOMD scheme, and our analysis is verified through numerical experiments using

a one-dimensional density functional theory (DFT) model without exchange correlation potential.

The validity of the stability condition in TRBOMD is directly associated with the quality of the SCF

iteration procedure. In particular, we demonstrate in the case in which the SCF iteration procedure is

not very accurate, the stability condition can be violated, and TRBOMD becomes unstable. We also
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compare TRBOMD with the Car-Parrinello molecular dynamics (CPMD) scheme. CPMD relies

on the adiabatic evolution of the occupied electron states, and therefore, CPMD works better for

insulators than for metals. However, TRBOMD may be effective for both insulating and metallic

systems. The present study is restricted to the NVE system and to simplified DFT models. Moreover,

the analysis in the present work is mainly focused on the accuracy of trajectories and harmonic

frequencies in the perturbation regime. However, in practice, the more important question is how

the introduced artificial dynamics influence static properties, like distribution functions, and the most

critical capability is to reproduce the correct distribution functions. The performance of TRBOMD

for the NVT system and for realistic DFT systems with emphasis on the accuracy of static properties

will be our future work.
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Appendix

Here, we derive the perturbation analysis result in Equation (50). When deriving the perturbation

analysis below, we use linear algebra notation and do not distinguish matrices from operators. We use

the linear algebra notation, replace all the integrals by matrix-vector multiplication and drop all the

dependencies of the electron degrees of freedom, x and y. For instance, Kρ̃ should be understood as∫
K(x, y)ρ̃(y) dy. We also denote ∂ρ∗

∂R
(x;R∗) simply by ∂ρ∗

∂R
; then, Equation (42) can be rewritten as:(

¨̃
R
¨̃ρ

)
= A

(
R̃

ρ̃

)
=

(
A0 +

1

ε
A1

)(
R̃

ρ̃

)
(82)

Here:

A1 =

(
0 0

0 −K

)
(83)
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is a block diagonal matrix, and:

A0 =

(
−D L(

∂ρ∗
∂R

)T D −
(
∂ρ∗
∂R

)T L

)
=

(
I

−
(
∂ρ∗
∂R

)T
)(

−D L
)

(84)

is a rank-M matrix. I is a M ×M identity matrix. Now, assume the eigenvalues and eigenvectors

of A follow the expansion:

λ = λ0 + ελ1 + · · · , v = v0 + εv1 + · · · (85)

Match the equation up to O(ε), and:

A1v0 = 0 (86a)

A0v0 + A1v1 = λ0v0 (86b)

A0v1 + A1v2 = λ0v1 + λ1v0 (86c)

Equation (86a) implies that v0 ∈ KerA1. Apply the projection operator, PKerA1 , to both sides of

Equation (86b), and use v0 = PKerA1v0; we have:

PKerA1A0PKerA1v0 = λ0PKerA1v0 (87)

or: (
−D 0

0 0

)
v0 = λ0v0 (88)

From the eigen-decomposition of D in Equation (46), we have λ0 = −Ω2
l for some l = 1, . . . ,M .

For a fixed l, the corresponding eigenvector to the 0-th order is:

v0 = (vl,0)
T (89)

From Equation (86b), we also have:

A1v1 = λ0v0 − A0v0 =

(
0

−Ω2
l

(
∂ρ∗
∂R

)T
vl

)
(90)

and therefore:

v1 = Ω2
l

(
0,K−1

[(
∂ρ∗

∂R

)T

vl

])T

(91)

Finally, we apply v0 to both sides of Equation (86c); we have:

λ1 = (v0, A0v1)− (v0, λ0v1) = Ω2
l v

T
l L

[
K−1

[(
∂ρ∗

∂R

)T

vl

]]
(92)

Therefore:

λ = −Ω2
l + εΩ2

l v
T
l L

[
K−1

[(
∂ρ∗

∂R

)T

vl

]]
+O(ε2) (93)
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In other words, the phonon frequency, Ω̃l =
√
−λ, up to the leading order is:

Ω̃l = Ωl

(
1− 1

2ω2
vT
l L

[
K−1

[(
∂ρ∗

∂R

)T

vl

]])
+O(1/ω4) (94)

which is Equation (50).
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Abstract: Quantum Monte Carlo methods are among the most accurate algorithms for

predicting properties of general quantum systems. We briefly introduce ground state,

path integral at finite temperature and coupled electron-ion Monte Carlo methods, their

merits and limitations. We then discuss recent calculations using these methods for dense

liquid hydrogen as it undergoes a molecular/atomic (metal/insulator) transition. We then

discuss a procedure that can be used to assess electronic density functionals, which in

turn can be used on a larger scale for first principles calculations and apply this technique

to dense hydrogen and liquid water.
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1. Introduction

With the increasing computational power and the greater access to large clusters seen during the

last decade, simulation methods have become an increasingly useful tool for many fields of science,

including chemistry, materials science, condensed matter physics, and biophysics. In this article we

explore some of the future impact of Quantum Monte Carlo in the field of first principles simulation

(FPS). By this we mean reliable simulation methods that can be performed on condensed matter

systems in the absence of detailed experimental information on those systems. Starting with the

general Hamiltonian in Equation (1), and taking as input only the chemical compositions, masses,

density, temperature etc, currently there is a hierarchy of methods that are used to perform such a

simulation. In this introduction we focus on three classes of methods: the use of semi-empirical

interatomic potentials together with Monte Carlo (MC) or molecular dynamics (MD) simulations,

Density Functional Theory-based simulation methods, and Quantum Monte Carlo simulations.

The first member of the hierarchy uses semi-empirical interatomic potentials among effective

atoms considered as point particles, the best known of which is the Lennard-Jones potential. Such

potentials are routinely used in the vast majority of simulations (soft condensed matter, biophysics,

materials science) and are reviewed in a different contribution to this issue [1]. The first question

is how do we construct such a potential? The typical approach is to use available experimental

data. However, it is well known that those potentials are not very accurate in the vast majority of

systems, even if they match experimental data. Hence, though they can be used to say something

about generic properties of systems, quantitative predictions for defect energies, energy barriers,

melting temperatures, cannot be trusted. (If the potential has been adjusted to reproduce experimental

measurements, then the method is no longer first principles, and the question becomes whether the

potential is transferrable, i.e., reliable for properties that are not fitted for.) Another fundamental

limitation of this approach is that it becomes difficult to construct reliable interatomic potentials for

complex systems containing several types of atoms, for example a solvent with various solutes, or

systems under extreme conditions, since it becomes difficult to get enough reliable experimental data

to constrain all of the parameters. For these reasons, it is highly desirable to have methods that can

provide reliable predictions without input from experimental measurements.

Density Functional Theory (DFT) in the Kohn-Sham formulation maps the problem of many

interacting electrons in the external field of the nuclei onto a system of non-interacting electrons in

external field, a one body problem, and adds electronic correlation through an exchange-correlation

functional. A breakthrough in the usefulness and popularity of simulations occurred with the

development of the first-principle molecular dynamics (FPMD) approach by Car and Parrinello [2],

where they combined molecular dynamics and DFT to perform simulations of complex chemical

systems. Due to its favorable ratio between accuracy and computational cost, DFT has become the

workhorse as electronic solver in the field of first-principles simulations. In fact, the recent explosion

in the popularity of first-principles methods is, to a large part, due to the success of DFT in providing

a fairly accurate description of the electronic structure of materials at a reasonable computational

cost. DFT also gives access to a large range of observables. While DFT has been very successful
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in the description of many types of materials, e.g., metals and weakly correlated systems, many of

the currently available exchange-correlation functionals in DFT possess well-known limitations [3],

including the failure to properly describe strongly correlated materials, self-interaction errors, etc. It

is recognized that even for such a fundamental system as water, the FPMD procedure is not accurate

enough, giving large errors in many basic properties including the melting temperature, the diffusion

constant, the compressibility, among others [4].

In the past decade there has been an explosion of new DFT exchange-correlation functionals

with various characteristics. The reason is the difficulty of making systematic improvements to

the functional or judging the accuracy of a functional. If the DFT functional is considered as

“variable” then how does the user, in the absence of experimental data, decide on the functional?

In the case of finite molecular systems, the availability of high-level quantum chemistry methods,

like Coupled-Cluster theory offers a possible path towards the improvement of approximated

functionals in DFT, for example by minimizing errors in a training set between DFT and Coupled

Cluster theory results at various level of accuracy (with Single, Double or Triple excitations). In

fact, many exchange-correlation functionals contain optimizable parameters that are obtained from

calculations on finite molecular systems (exceptions to this include LDA, PBE, among others),

where results of quantum chemistry methods are routinely used as a references. In solids, accurate

calculations using many-body methods are computationally expensive, which has limited their use

in the development of density functionals. While there has also been considerable developments in

other correlated approaches for bulk systems, such as the many-body Green’s function methods (GW

approximation and Bethe-Salpeter equation), and Dynamical Mean Field Theory (DMFT), they are

more expensive and still leave questions of accuracy. For reasons of space, we do not discuss these

approaches further.

The third approach in our hierarchy is the use of Quantum Monte Carlo (QMC) methods,

which are generalizations of the classical Monte Carlo techniques to quantum statistical physics and

fundamentally based on imaginary-time path integrals. For a class of systems (bosons and systems

in one dimension) such techniques provide an exact computational method. For general problems,

though not exact, they are highly accurate and systematically improvable. Although there are a

variety of QMC methods (ground state, variational, path integral, auxiliary field...) fundamentally

they are closely related. QMC are the most accurate general methods but are less developed and

require much more computational facilities than DFT methods (although the scaling of computer

time versus system size is similar) limiting the systems on which such simulations can and have been

performed. The largest impact to date of QMC has been in the development and improvement of

DFT methods; specifically we mention the correlation energy of the electron gas [5], a fundamental

component in almost all exchange-correlation functionals used in DFT. Recent calculations [6] give

the corresponding correlation energies at finite electronic temperature.

Later in this paper we give an example of work in progress in this direction where QMC is used

to directly rank various DFT functionals. We suggest that this benchmark quality data could be used

to improve directly the best functionals. One can then envision using the highest ranked functional

to develop intermolecular potentials that would then be of higher quality. Ercolessi et al. [7] have
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developed the force-matching procedure to find the optimal effective potential reproducing the forces

appearing in an FPMD simulation. Such an approach is now feasible using QMC calculated forces

and energies.

First principles simulation methods entirely based on QMC have also been developed in the

last decade. These are the Coupled Electron-Ion Monte Carlo method [8] and the QMC-Molecular

Dynamics [9], and have been recently reviewed in [10]. However their application to condensed

phases has been limited so far to high pressure hydrogen, and hydrogen-helium mixtures because

of their considerable computation cost. In this paper we will illustrate their use to investigate the

dissociation of liquid molecular hydrogen under pressure, a problem which is still unsolved by

DFT methods.

The article is organized as follows. We first describe in Section 2 the various QMC methods.

Section 3 is devoted to few applications of QMC. In Section 3.1 we present a QMC study of high

pressure phases of hydrogen. This is followed in Section 3.2 by a description of the use of these

methods to provide quantitative information on the accuracy of various DFT functionals. Finally we

close with a discussion in Section 4.

2. Computational Methods

In this section, we review some of the Quantum Monte Carlo methods used in the first principles

modeling of condensed matter systems. Under normal conditions of temperature and pressure, such

systems are described to a high degree of accuracy by the non-relativistic Hamiltonian for a collection

of electrons and ions. We will use atomic units throughout the paper, where Planck’s constant

h̄ = me = kB = e = 4πε0 = 1 with kB being Boltzmann’s constant, and the energy is measured in

Hartrees Eh = 315, 775 K = 27.2114 eV. Note that, in these units, the energy of a hydrogen atom is

0.5Eh, the binding energy of a hydrogen molecule is 0.17Eh, the unit of length is the Bohr Radius

a0 = 0.0529 nm, and the molecular equilibrium bond length is 1.4a0. The Hamiltonian of the

systems reads

Ĥ = T̂n + Ĥel = T̂n + T̂e + V̂ , (1)

T̂n = −
Nn∑
I=1

λI�̂
2

I , T̂e = −λe

Ne∑
i=1

�̂2

i , (2)

V̂ =
∑
I<J

zIzJ

|�RI − �RJ |
+
∑
i<j

1

|�ri − �rj|
−
∑
i,I

zI

|�ri − �RI |
, (3)

where Nn and Ne are the number of ions and electrons, respectively, in atomic units λe = 1/2,

λI = 1/(2MI), and MI and zI are the mass and charge (in units of the electron mass me and

charge e) of the nucleus I . The system occupies a volume Ω. Note that �r with lower case indexes

(i, j, ...) is used to denote the position of electrons and �R with upper case indexes (I , J , ...) is

used for the nuclei. When no indices are used, �r and �R represent the full 3Ne and 3Nn dimensional

vectors, respectively. The electronic Hamiltonian Ĥel corresponds to the solution of the problem in

the clamped-nuclei approximation, where the ions produce a fixed external potential for the electrons.

Another quantity that will be of interest is the electron number-density given by ρ = Ne/Ω, and
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parameterized with rs = a/a0, where 4πa3/3 = ρ−1. Given Equation (1), we only need to add

the temperature, particle statistics and boundary conditions to completely specify the physical and

numerical problem to be solved.

Finding the eigenvalues and eigenfunctions of the Hamiltonian in Equation (1) is a formidable

task, impossible to do analytically except for a few simple systems such as the single hydrogen atom.

In practice, numerical or approximate theoretical methods must be used. Two of the most widely

applicable methods are based either on imaginary-time path integrals or density functional theory

(DFT), as discussed in the following subsections.

2.1. Ground State Methods

The following ground state methods seek to evaluate expectation values of physical observables

taken over the ground state wavefunction φ0(R):

〈Ô〉 =
∫
dRφ∗

0(R)Ôφ0(R)∫
dR |φ0(R)|2 (4)

Two problems are evident from this formula. The first is that we almost never know φ0(R) exactly.

The second is that even if we did, Equation (4) is a high dimensional integral. The following methods

address both these problems. For sake of notation simplicity, throughout the Sections 2.1–2.3 we

will indicate by R the set of all coordinates of the quantum degrees of freedom without distinction

between electrons and nuclei.

2.1.1. Variational Monte Carlo

Variational Monte Carlo (VMC) is conceptually the simplest of the ground-state QMC methods.

It works by approximating the true ground-state wavefunction φ0(R) with some trial wavefunction

ΨT (R). Integrals like Equation (4) are then performed using Metropolis Monte Carlo sampling,

with ΨT (R) in place of φ0(R) [11]. The accuracy of this method depends strongly on how closely

ΨT (R) approximates φ0(R). Fortunately, the variational principle of quantum mechanics gives us a

metric by which to improve the quality of trial wavefunctions. Consider the expectation value of the

Hamiltonian and its variance:

E[ΨT ] =

∫
dRΨ∗

T (R)ĤΨT (R)∫
|ΨT (R)|2dR =

∫
dR |ΨT (R)|2EL(R)∫

dR |ΨT (R)|2 (5)

σ2
E[ΨT ] =

∫
dRΨ∗

T (R)(Ĥ − E[ΨT ])
2ΨT (R)∫

dR |ΨT (R)|2 (6)

(7)

where EL(R) = [ĤΨT (R)]/ΨT (R) in Equation (5) is called local energy. The variational theorem

states that:

E[ΨT ] ≥ E[φ0] (8)

σ2
E[ΨT ] ≥ σ2

E[φ0] = 0 (9)
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Based on this, improvements to the wavefunction can be quickly gauged by whether they lower the

energy and variance.

A popular approach for fermionic problems is to assume a Slater-Jastrow wavefunction. This

type of wavefunction possesses the correct fermionic antisymmetry, and symbolically is given by

ΨT (R) = det(M(R))eJ(R). Here, M(R)ij = φj(ri) is a Slater determinant of single-particle

orbitals. The single-particle orbitals φj(r) are typically taken from other quantum-chemistry methods

(Hartree-Fock, DFT, etc.). J(R) is called a “Jastrow" factor, and is constructed to be symmetric under

particle exchange [12,13]. The Jastrow factor is typically chosen to be a sum of species dependent

one-body, two-body, and sometimes three-body functions, which are designed to capture bosonic

correlations. The form of these functions can vary from analytically derived forms with few to

no free parameters, like the RPA jastrow [14,15], to functions with a large number of variational

parameters, like b-splines. The interested reader is encouraged to look at the references for more

information on Slater-Jastrow wavefunctions [12,16]. One can also go beyond the Slater-Jastrow

form; other possible choices include multi-Slater determinant expansions [17], geminals [18], etc.

VMC can be improved if we consider classes of trial wavefunctions ΨT (R,α) parameterized

by α = (α1, ..., αm) free parameters. We then minimize the energy and/or variance with respect

to these parameters. Recent improvements to optimization algorithms allow the optimization

of thousands of variational parameters [19,20]. Traditionally, only the Jastrow functions have

been parameterized, although work has been done using parameterized single particle orbitals and

multi-Slater determinantal expansions.

VMC has some advantages that keep it in use. First, it is usually computationally cheaper than

more accurate QMC methods (to be discussed later). VMC can also include several different types

of electron correlations (various forms of electronic wave functions). Lastly, it doesn’t suffer from a

sign problem. However, it is at heart an approximate method, and does depend on the choice of trial

wavefunction.

2.1.2. Projector Methods

2.1.2.1. Formalism

Projector methods attempt to stochastically project out the exact many-body ground state,

allowing us to sample this distribution for Monte Carlo integration. The “projector", or

imaginary-time Green’s function G(R′, R, β′ − β), is the operator solution to the imaginary-time

Schrödinger equation:
∂Ψ

∂β
= −ĤΨ(R, β) (10)

subject to the boundary condition that limβ′→β G(R′, R, β′−β) = δ(R′−R). One can verify that the

formal solution is Ĝ = exp(−βĤ). Now consider an arbitrary wavefunction Ψ(R, β = 0) that is not

orthogonal to the ground state φ0(R) (in general this is an optimized trial function ΨT ). Expanding
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this function in terms of the eigenfunctions of the Hamiltonian, and applying the projector to this,

we find:

Ψ(R, β) =
∑
i

aiφi(R)e−βεi

∝ a0φ0(R) +
∑
i

aiφi(R)e−β(εi−ε0) (11)

This implies that as β → ∞, we are left with just the ground state wavefunction.

For efficiency reasons, it is better to use the “importance-sampled" Schrödinger’s

equation [12,21,22]. We obtain this by writing the original equation in terms of f(R, β) =

ΨT (R)Ψ(R, β). After some algebra [12], we find that

∂f(R, β)

∂β
= L̂f(R, β) (12)

= λ∇ · [∇− F (R)] f(R, β) + [ET − EL(R)] f(R, β)

F (R) is the quantum force defined by F (R) = ∇ ln |ΨT (R)|2 and EL(R) is the local energy defined

above. ET , the trial energy, is an arbitrary energy shift, unessential for the physics, but important

for the numerical algorithm. If f(R, β) ≥ 0 everywhere, then we can interpret f as a probability

distribution. This amounts to demanding a bosonic many-body ground state (fermions will be

covered in a later section). Equation (12) can then be interpreted as a generalized Smoluchowski

equation for a drift-diffusion process with sources and sinks. The first term represents a drift-diffusion

process, whereas the second term represents an exponential growth/decay process. When we get

around to simulating this equation, we will use the mapping between a Smoluchowski equation

governing probability distributions, and Langevin-like equations, governing the diffusion and growth

of particles.

The solution of Equation (12) satisfy the following integral equation

f(R, β) =

∫
dR′G̃(R,R′, β)f(R′, β) (13)

where the Green’s function for this equation is formally G̃(R′, R, β) = 〈R′| exp(βL̂)|R〉, and it

is easy to show that this is related to the original projector by the transformation G̃(R′, R, β) =

ΨT (R
′)G(R′, R, β)ΨT (R)−1. In the short-time approximation (τλ << 1), we can decouple

the drift-diffusion and growth operators by the Trotter formula. The result (for the symmetric

decomposition) is:

G̃(R′, R, τ) 
 GDD(R
′, R, τ)GB(R

′, R, τ) (14)

GDD = exp

(
−(R′ −R− 2λτF (R))2

4λτ

)
(15)

GB(R
′, R, τ) = exp(−τ

2
[EL(R

′) + EL(R)− 2ET ]) (16)

where λ indicates either λe or λI as defined after Equation(1). The short-time approximation allows

us to deal with the full propagator as a product of short-time propagators, Ĝ(β) = (Ĝ(τ = β/M))M .

The cost is that we have now incurred in a time-step error that we must take into account.
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2.1.2.2. Diffusion Monte Carlo

In diffusion Monte Carlo (DMC) [22–24], we represent the distribution function f(R, β) as

an ensemble of 3N-dimensional samples {R1, ..., RM}, which are known as “walkers". The

average density of walkers at position R in configurational space is proportional to the distribution

function f(R).

As in classical diffusion, we would then simulate Equations (13) and (14) by a Langevin-like

process acting on the walkers. Assuming that the time step τ = β/M is sufficiently small, we advance

from f(R, β) → f(R, β + τ) by first proposing to move each walker Ri to R′
i by a drift-diffusion

step, prescribed by Equation (15). Then we accumulate a weight associated with walker i, given by

wi(β+τ) = wi(β)GB(R
′
i, Ri, τ). To calculate the expectation value of an operator Ô over f(R, β) =

ΨT (R)Ψ(R, β), we average over the ensemble of walkers, including the appropriate weights:

〈Ô〉 =
∑M

i=1 wi(β)O(Ri)∑M
i=1 wi(β)

(17)

If we stopped here, this would be the basis of pure-diffusion Monte Carlo [25]. Because these weights

are exponential factors, the variance associated with Equation (17) will increase exponentially as the

simulation progresses: the weights of a few walkers will exponentially grow, whereas the rest will

exponentially tend to zero.

Branching diffusion Monte Carlo [23], by far the most used form of DMC, fixes this problem by

using the weights to either replicate or kill off walkers. After each drift-diffusion step, the number

of walkers associated with the single walker Ri to advance to the next time-step, M i
next is chosen

to be M i
next = INT(wi(β + τ) + ξ), where ξ is a random number between [0, 1]. The weights of

the replicated walkers are all adjusted to conserve the total weight of walker i as much as possible.

Modern methods are typically hybrids, where the weights of walkers are carried until they exceed

certain established bounds, at which point they are branched [26].

The simulation is run by initializing the starting ensemble according to f(R, 0) = |ΨT (R)|2.
Assuming β is the projection time required to reach the ground-state, the simulation is incremented

M = β/τ steps, at which point our ensemble is distributed according to f0(R) = ΨT (R)φ0(R).

Samples can then be accumulated, and the simulation is run for a long enough time to achieve the

desired statistical error bars.

It is important to note that since we are sampling f0(R), this corresponds to the following type of

expectation value, known as a “mixed-estimate":

〈Ô〉DMC =
〈ΨT |Ô|φ0〉
〈ΨT |φ0〉

(18)

For observables that commute with the Hamiltonian, this gives us exact, unbiased estimates over

the true many-body ground state wavefunction. For those that don’t, the estimators will be biased

by the quality of the trial wavefunction. This bias is less than that encountered by VMC, but

still present. This can be alleviated somewhat by the use of “extrapolated estimators", and by the

“forward-walking” method [27].
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2.1.2.3. Reptation Monte Carlo

Reptation Monte Carlo (RMC) is based on the path-integral representation of the projector.

Assuming that β is large enough to guarantee sufficient convergence to the ground state, we begin by

partitioning the full projector into M segments of time-interval τ = β/M , called “time slices".

Inserting a resolution of the identity between each short-time projector, we find the following

path-integral expression for the mixed distribution 〈ΨT |φ0〉:

〈ΨT |φ0〉 =
∫

dR0 . . . dRMΨT (R0)G(R0, R1, τ) . . . G(RM−1, RM , τ)ΨT (RM) (19)

Using the short-time approximate Green’s function at the beginning of this section, we can recast

this expectation value in a more traditional path-integral form:

〈ΨT |φ0〉 = Z =

∫
DXeS[X] (20)

S[X] = lnΨT (R0) + lnΨT (RM)−
M−1∑
i=0

Ls(Ri, Ri+1) (21)

Ls(R
′, R) =

(R′ −R)2

4λτ
+

1

2
(R′ −R) · (F ′ − F ) (22)

+
τ

2

[
EL(R

′) + EL(R) + λ(F 2(R′) + F 2(R))
]

(23)

Here, X is shorthand for the directed path X = R0, . . . , RM . Equation (20) plays the role of a

partition function in statistical mechanics, where the Π[X] = eS[X]/Z is the probability of a given

path X , −S[X] is the path action, which includes the trial wavefunctions at the ends of the path, as

well as a sum over “link-actions" Ls(R
′, R), (see Equations (22) and (23)). The form we used for

the link-action comes from imposing symmetry of the normal Green’s function under the exchange

of two end-points, and writing it in terms of the importance-sampled Green’s functions [28].

The versatility of reptation Monte Carlo comes from how Π[X] is sampled. In the original

method [29], one takes a given path X and chooses a growth direction at random. One then proposes a

new path X∗ by adding δ time slices to the “head" and removing δ slices from the “tail". Acceptance

or rejection of this move is based on the usual Metropolis acceptance step. This type of move is

called “reptation", reminiscent of a “reptile", from which the method derives its name. The proposed

head move is done by a sequence of drift-diffusion moves, as in DMC, and rigorously preserves

detailed balance.

Most practical implementations use what’s known as the “bounce algorithm" [28]. Rather than

choosing the growth direction randomly, it is set at the beginning of the simulation and is changed

only after a rejection step, hence the name “bounce". This method does not satisfy detailed balance,

but does satisfy the more general stationarity condition required for Markov chain Monte Carlo. This

dramatically decreases the autocorrelation time of the method, and also tames ergodicity problems

that have been observed to crop up in the method.

RMC is appealing for two reasons. It gives us the same level of accuracy for the energy as DMC

but correlated sampling between different configurations can be done without approximation. This
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is particularly useful in methods like the Coupled Electron-Ion Monte Carlo. RMC also gives us the

ability to sample expectation values over the pure distribution, as seen below:

〈Ô〉pure =
〈ΨT |e−

β
2
ĤÔe−

β
2
Ĥ |ΨT 〉

〈ΨT |e−βĤ |ΨT 〉
(24)

=
1

Z

∫
DXe−S[X]O(Rβ/2) (25)

This shows that the center time slice of the reptile is distributed according to |φ0(R)|2, whereas

the ends are distributed according to the mixed distribution f(R). This easy access to the pure

distribution makes RMC ideal for calculations of unbiased observables and correlation functions,

doing so in a more efficient manner than “forward-walking" in DMC. Estimation of observables

over the pure distribution works whenever we can write a meaningful estimator in terms of position

space coordinates. Diagonal position space observables, like the average potential energy and

pair-correlation function, can be measured directly from the sampled pure distribution. Observables

that aren’t diagonal in position space, like off-diagonal density matrix elements and the momentum

distribution, can be measured from the pure distribution with suitable additions to the basic algorithm.

This procedure does not work for all estimators however; one can show that evaluating the local

kinetic energy over the pure distribution does not yield a correct estimate of the average ground-state

kinetic energy.

2.1.2.4. The Fixed-Node Approximation

The previous projector methods we mentioned are in principle exact for bosonic systems,

since the mapping to a diffusion process is valid when φ0(R) ≥ 0 everywhere. However,

since the wavefunction for a fermion systems must be antisymmetric under exchange, the ground

state wavefunction will have as many negative configurations as positive ones (in many cases the

wavefunction can be made real). We can restore the probabilistic interpretation of the wavefunction

Ψ(R, β) if we factor its sign into the weight of the walker, or into the observable itself. It turns out that

in doing so, we will have large and almost equal contributions to the expectation value of opposite

signs. This leads to an exponentially decaying signal to noise ratio, implying that the computational

effort required to treat the fermion problem directly scales exponentially. This is the well known

“fermion sign problem".

By far, the most common means of alleviating the sign-problem in both DMC and RMC is

applying the “fixed-node" approximation [23,24]. We assume that the nodes of φ0(R) are the same

as the nodes for ΨT (R). We then propagate our ensemble of walkers or our reptile strictly within

restricted space where ΨT (R) doesn’t change sign. This can be implemented by rejecting moves

that carry walkers across a node, or bouncing a reptile whenever a head move is proposed across a

nodal surface. Though this is an uncontrolled approximation, it turns out to be an extremely good one

in most cases. Fixed-node energies are proved to be upper bounds of the exact energy [16], which

allows us to optimize the nodal surfaces and to compare fixed-node DMC and fixed-node RMC

energies with other methods. It turns out that both of these methods are among the most accurate

computational methods known for electronic systems.
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2.2. Scaling of QMC Methods

Like DFT, fermionic QMC typically has scaling between O(N3) and O(N4) depending on

the property computed and the trial function. Here N is the number of particles. In contrast,

popular quantum chemistry methods like Moller-Plesset Perturbation Theory, coupled-cluster, or

configuration interaction, scale at least like O(N7). This makes QMC one of the few accurate

many-body theories that is able to treat bulk systems.

Unlike DFT, whose scaling prefactor is governed by the solution of a generalized eigenvalue

problem, Monte Carlo methods, in general, have statistical error bars which reduce as the inverse of

the square root of the sampled configurations as a consequence of the central limit theorem. This

makes quantum Monte Carlo significantly more expensive than DFT to reach chemical accuracy,

though it has a smaller uncontrolled bias. The necessity for a much smaller time step in projector

monte carlo than in VMC can make projector monte carlo about an order of magnitude more

expensive for the same statistical uncertainty.

The cost of a single N-particle monte carlo step in VMC and projector monte carlo methods

are determined by the evaluation of the trial wavefunction. For bosonic trial wavefunctions with

pair-wise correlations, these calculations scale like O(N2) per N-particle step. If these correlations

are short-ranged, linear scaling can be achieved.

For fermionic trial wavefunctions, the computational cost is determined by the evaluation of

single-particle orbitals and by the evaluation of a Slater determinant. The scaling of orbital

evaluations depends on whether the electrons are localized since evaluating localized orbitals can

be done in constant time. For plane waves basis sets, the cost scales like O(N). If we seek to include

the effects of backflow, this can increase the computational cost by an additional factor of N . The

remaining bottleneck is then the evaluation of the Slater determinant, which scales like O(N3) per

N-particle step. In theory, the cost of the determinant evaluation could be brought down by almost a

factor of N if the Slater determinant is sparse, however, the crossover point is prohibitive (greater than

3000 particles for a model system) [30]. This causes VMC and projector monte carlo to realistically

scale like O(N3−4) depending on whether one uses backflow or not.

2.3. Finite-Temperature Methods

Next, we summarize path integral methods. These methods are similar to DMC but can treat

systems at non-zero temperature: a many-body density matrix replaces the trial wave function.

Concerning first principles simulations the path integral method can be used either to simulate the

properties of thermal electrons or to simulate the zero point effects of light nuclei or both. For

electronic simulations there are two major problems. First, the energy scale of electrons is 1 Hartree

or above, thus to reach ambient temperature requires very long paths. Second, since electrons

are fermions, antisymmetrization and hence the sign problem is inevitable. For a more complete

overview of the method and its application to fermion systems, see [31,32] respectively.
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2.3.1. Path Integrals

To begin, we define the many particle density matrix for a system in equilibrium with an external

reservoir at inverse temperature β = 1/kBT (canonical ensemble)

ρ(R,R′; β) = 〈R | e−βĤ | R′〉 (26)

where R ≡ (r(1), . . . , r(N)) with r(i) specifying the spacial coordinates of the ith of N particles. The

partition function is defined as the trace of the density matrix,

Z(β) = Tr(ρ) =

∫
dR〈R | e−βĤ | R〉 =

∫
dRρ(R,R; β) (27)

The expectation value of any observable may be computed from this definition as

〈Ô〉 = Tr(Ôρ)/Z = Tr(Ôρ)/Tr(ρ) (28)

Using the product property of the density matrix M times, such that β = Mτ , we write the partition

function (or the diagonal density matrix) as an integral over a discrete path:

Z(β) =

∫ [M−1∏
i=0

dRi

]
ρ(R0, R1; τ)ρ(R1, R2; τ) . . . ρ(RM−1, R0; τ) (29)

We have reduced the problem of sampling a low temperature density matrix to one of finding a high

temperature density matrix and integrating over the path. The action, defined as

S(Ri, Rj; τ) ≡ −ln[ρ(Ri, Rj; τ)] (30)

can be broken into kinetic and potential parts, using Trotter’s formula. The integration over all of

the path variables is done using a specialized form of either Metropolis Monte Carlo or Molecular

Dynamics, generating the Path Integral Monte Carlo (PIMC) or Path Integral Molecular Dynamics

(PIMD) methods.

Finally, in order to account for the particle statistics of the simulated system, we must sum over

permutations P , giving

Z(β) =
1

N !

∑
P
(±1)P

∫
R→PR

dRte
−S[Rt] (31)

where Rt represents the generic path starting at R and ending at PR while t varies from 0 to β.

2.3.2. Restricted Paths

For fermions, negative terms enter in this sum, leading to a sign problem. As was done in the

previous discussion of DMC, one way to circumvent this issue is to impose a nodal constraint [33].

We define the nodal surface ΥR�β for a given point R� and inverse temperature β to be

ΥR�β = {R | ρ(R,R�; β) = 0} (32)
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which is a (dN − 1)-dimensional manifold in dN -dimensional configuration space (d is the space

dimensionality). Here, R� is dubbed the reference point, as it is needed to define the nodal surfaces.

Inside a nodal cell, by definition the sign of the density matrix is uniform. Using Dirichlet boundary

conditions, we may solve the Bloch equation within each nodal cell. We define the reach Γβ(R�) as

the set of all continuous paths Rt, for which ρ(Rt, R�, β) �= 0 for all intermediate t (0 < t ≤ β),

i.e., node-avoiding paths

Γβ(R�) = {γ : R� → Rt | ρ(R�, Rt; β) �= 0} (33)

Since paths are continuous Brownian objects, all paths contributing to the Bloch equation solution

must belong to this reach. For all diagonal contributions, odd permutations must cross a node an odd

number of times and thus are not allowed by this constraint and are exactly cancelled by all paths of

node-crossing even permutations. This leaves us with the following expression for the density matrix,

ρ(R,R; β) =
1

N !

∑
P,even

∫ γ∈Γβ(R)

γ:R→PR

DRte
−S[Rt]/h̄ (34)

We have thus turned the sign-full expression for the density matrix into one which includes only

terms of a single sign, allowing efficient computation. However, because ρ appears on both sides of

Equation (34) (in the r.h.s. it appears into the definition of the reach), this requires a priori knowledge

of the density matrix nodal structure, which is generally unknown. To escape this self-consistency

issue, an ansatz density matrix that approximates the actual nodal structure, is introduced. This will

give an exact sampling of the Fermi density matrix if its nodes are correct. This method is called

restricted PIMC (RPIMC). The density matrix for non-interacting fermions is a Slater determinant

of single-particle distinguishable density matrices, ρ(R,R�; β) =
1
N !

det ρij� where

ρij� = (4πλβ)−d/2 exp(−(ri − rj�)
2

4λβ
) (35)

It is a good approximation to use the free particle density matrix at high temperatures (say for

temperatures greater than the Fermi energy) and when correlation effects are weak. Furthermore,

due to the constraint of translational invariance, free particle nodes are quite reasonable for

homogeneous systems.

The nodal error, arising from using an approximate restriction is problematic since it is

uncontrollable. The finite temperature variational principle is through the free energy, as opposed

to the internal energy in the ground state. Thus one possible solution is to parameterize the

nodal ansatz, and then minimize the free energy by varying the parameters. This will require a

thermodynamic integration, in general. Systems analyzed to date suggest that the nodal error arising

from the free-particle ansatz is small since the correlation from the interacting potential is fully taken

into account.

2.3.3. Path Integrals for Nuclei

Even when quantum particles can be considered distinguishable, as for instance light nuclei in

condensed phases, there could be substantial physical effects arising from their quantum behavior,
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i.e., resulting from the T̂n in Equation (1). For example in bulk hydrogen and in water, the zero point

motion of the protons must be taken into account for an accurate description. Furthermore, in the

crystalline phase the frequently used harmonic approximation is often inadequate since non-harmonic

effects can be as significant as harmonic effects. In contrast to the situation with electrons, our ability

to simulate the nuclei with current algorithms and hardware is well controlled; because the nuclei

are thousands of time heavier, they are much closer to the classical limit, so that fewer path steps

are needed. For hydrogen-containing compounds at room temperature, one can often get away with

about few tens of imaginary time slices. A second consequence is that particle statistics (either

Fermi or Bose) can typically be ignored; a notable exception is the difference between para- and

ortho-hydrogen, important for modeling the low-temperature low-pressure crystals of molecular

hydrogen and deuterium.

A frequent use of path integrals for nuclei occurs when DFT is used to integrate out the electronic

degrees of freedom. However, one wants to use the DFT energy surface for the properties of the

quantum nuclei in equilibrium, using the path integral method. To perform the path integration,

it is advantageous to use molecular dynamics instead of Monte Carlo since that will allow the

electronic wave functions to evolve smoothly in time, and thus reduce the time to convergence in

solving the DFT self-consistency conditions. M. Ceriotti, et al. [34] have devised an ingenious noise

filtering scheme to reduce the number of needed path integral steps. Assuming the density functional

description of the electrons is accurate, thermodynamic (static) properties of the simulated system

will be accurate. Conversely the dynamical properties are not to be trusted. In general a reliable

method for quantum time correlation functions or, even worse, quantum dynamics is still missing.

2.4. Coupled Electron-Ion Monte Carlo

The QMC methods described so far, when applied to an ion-electron system, treat all

particles on the same footing, either both in the ground state [35–37] or both at the same finite

temperature [38–40]. However the large nucleon-electron mass ratio implies a wide separation of

time and energy scales and it is a common practice to adopt the adiabatic, or Born-Oppenheimer

(BO), approximation. Ignoring such an approximation in QMC causes difficulties. The imaginary

time step of the path integral representation (both in DMC/RMC and PIMC) is imposed by

the light electron mass. In DMC this means that nuclear “dynamics” (the speed of sampling

configuration space) is much slower than electron “dynamics” requiring very long (and time

consuming) trajectories. In PIMC the separation of time scales presents itself as a separation in the

regions where thermal effects are relevant: in high pressure hydrogen for instance nuclear quantum

effects becomes relevant below ∼2000 K where electrons are, to a very good approximation, in their

ground state. Performing PIMC in this region of temperatures requires very long electronic paths

causing a slowing down of the exploration of configuration space and effectively limiting the ability

of PIMC to perform accurate calculations at low temperatures.

The Coupled Electron-Ion Monte Carlo method (CEIMC) is a QMC method based on the

BO approximation [8]. In CEIMC a Monte Carlo calculation for finite temperature nuclei (either

classical or quantum represented by path integrals) is performed using the Metropolis method with
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the BO energy obtained by a separate QMC calculation for ground state electrons. CEIMC has been

extensively reviewed in [8,10]. Here, we only briefly report the main features of the method.

2.4.1. Penalty Method

In CEIMC the difference of BO energies of two nearby nuclear configurations in a MC attempted

step, as obtained by an electronic QMC run, is affected by statistical noise which, if ignored, results

in a biased nuclear sampling. To cope with this situation either the statistical noise needs to be

reduced to a negligible value by long electronic calculations (very inefficient), or the Metropolis

acceptance/rejection scheme needs modifications to cope with noisy energy differences. The latter

strategy is implemented in the Penalty Method [41] which enforces detailed balance to hold on

average over the noise distribution. The presence of statistical noise causes an extra rejection for a

single nuclear move with respect to the noiseless situation. An extra “penalty” defined as the variance

of the energy difference over the square of the physical temperature is added to the energy differences.

Therefore running at lower temperatures requires a reduced variance to keep an acceptable efficiency

of the nuclear sampling. Small variances can be obtained if correlated sampling is used to compute

the energy of the two competing nuclear configurations. In an attempted nuclear MC step, a single

ground state electronic run is performed with a trial wave function which is a linear combination

of the wave functions of the two nuclear configurations considered. The BO energy of the two

nuclear configurations is obtained by a reweighting procedure which provides energy differences

with a much reduced variance with respect to performing two independent electronic runs if the

“distance” between the two nuclear configurations is limited (i.e., the overlap between the trial wave

functions of the two configurations is large) [42]. This strategy allows an efficient sampling of nuclear

configuration space for high pressure hydrogen and helium down to temperature as low as ∼200 K.

2.4.2. Nuclear PIMC

When nuclear quantum effects are included using a path integral representation (see §2.3), the

relevant inverse temperature in the penalty method is the imaginary time discretization step τ , so

that no loss of efficiency is experienced when lowering the temperature (i.e., taking longer paths).

For quantum protons in high pressure hydrogen, CEIMC can be used to efficiently study systems at

temperatures as low as ∼200 K. In the present implementation of nuclear quantum effects in CEIMC,

we introduce an effective pair potential between nuclei and use the pair density matrix corresponding

to the effective potential to factorize the imaginary time propagator. The residual difference between

the energy of the effective system and the BO energy of the original system is considered at the

primitive approximation level of the Trotter break-up of the proton propagator [8]. In high pressure

hydrogen (rs = 1.40) it is found that with this strategy, an inverse time step of τ−1 
 4800 K is

enough to reach convergence of the thermodynamics properties, which allows to study systems at

low temperature with a limited number of time slices (≤50).

In CEIMC many-body nuclear moves are preferred to single-body moves. The reason is that

even if only few nuclei are moved the entire electronic calculation must be repeated, by far the most
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expensive part of the method. For this reason we sample nuclear configuration by a smart Monte

Carlo method [43] in the normal mode space of the path [44] with forces from the effective two body

potential. This strategy allows us to simulate systems of ∼100 protons (for hydrogen) at temperature

as low as 200 K with an acceptable efficiency.

2.4.3. VMC vs. RMC

The main ingredient of CEIMC is the electronic QMC engine used to compute the BO energy.

As mentioned a very important aspect for the efficiency of CEIMC is the noise level which is related

to the variance of the local energy. In ground state QMC (see §2.1) the “zero variance principle”

applies: if the trial wave function is an eigenfunction of the Hamiltonian, the local energy is no longer

a function of the electronic coordinates and a single calculation provides the exact corresponding

eigenvalues. Therefore by improving the trial wave function and approaching the exact ground state,

the variance of the local energy decreases to zero. In connection with CEIMC, this is important not

only for the accuracy of the BO energy but also for the efficiency of the nuclear sampling since the

extra rejection due to the noise is reduced for a more accurate trial wave function.

To go beyond VMC accuracy in CEIMC we have implemented Reptation QMC method

(RMC) [8,29]. RMC is superior to DMC in the CEIMC context since it uses an explicit representation

of the statistical weight of each path and therefore the reweighting procedure needed for estimating

energy differences is easily applied. Going from VMC to RMC accuracy in CEIMC requires at

least one order of magnitude more computer time. This is because it is in general more difficult to

properly sample the configuration space of a 3N-dimensional path than of a 3N-dimensional point.

It is analogous to the difficulty of sampling the configuration space of a long polymers with respect

to point particles. For any proposed nuclear move one has to relax the electronic path to the new

equilibrium state and perform long enough sampling of the electronic configuration space to compute

the energy difference with the required noise level.

In order to improve the efficiency of CEIMC while keeping the RMC accuracy, we have recently

developed a method, based on a peculiar thermodynamic integration, to estimate the free energy of

the system with RMC based BO energy from the knowledge of the free energy of the system with

VMC based BO energy [45]. This allows to extensively use VMC rather than RMC, performing

RMC on selected thermodynamic states only.

2.4.4. Hydrogen Trial Wave Function

For high pressure hydrogen we have developed a quite accurate trial function of the

Slater-Jastrow, single determinant, form. The Jastrow part has an electron-proton and

electron-electron Random Phase Approximation (RPA) term plus two-body and three-body empirical

terms depending on few variational parameters. The Slater determinants (one for each spin state) are

built with single electron orbitals obtained by a self-consistent DFT solution. We have recently

integrated the PWSCF-DFT solver [46] into our CEIMC code to ensure a faster and uniform

convergence of the single electron orbitals in different physical conditions. Further, the argument
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of the orbitals are not the bare electron positions but rather the quasiparticle positions defined

by the backflow transformation [47,48]. We combined both the RPA analytical form and the

Gaussian-like empirical terms depending on variational parameters. Our trial wave function has a

total of 13 variational parameters to be optimized [42,48].

Figure 1. Variational energy of four different crystalline molecular structures versus

rs: C2/c upper-left panel, Cmca-12 upper-right panel, P63m lower-left panel and Pbcn

lower-right panel. Energies from wave functions with different orbitals relatives to the

energy with LDA orbitals: PBE orbitals (red triangles), HSE orbitals (green closed

circles) and vdW-DF2 orbitals (blue closed squares).
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In view of the large variability of DFT results from different exchange-correlation approximations

in the dissociation region of high pressure hydrogen (see next section), one interesting question is

about the sensitivity of the trial wave function to the particular form of the adopted Kohn-Sham

orbitals in the Slater determinant. This is particularly relevant since the form of the orbitals determine

the nodal surface of the trial wave function, the ultimate limit in the accuracy of fermionic QMC. On

the one hand one could hope to further improve the quality of the trial wave function by varying

the type of orbitals, on the other hand a large sensitivity to the form of the Kohn-Sham orbitals will

signal a too constrained form of the wave function, probably with a large room for improvements. The

recent technical advance of the CEIMC code, namely the integration of PWSCF, allowed us to test

several different types of orbitals: standard local (LDA) and semilocal (GGA-PBE) approximation,
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a non-local functional devised to reduce the self-interaction error and improve the description of the

electronic correlation in DFT (HSE [49]) and a functional devised to improve the description of the

dispersion interactions which are absent in a self-consistent mean-field theory (vdW-DF2 [50–52]).

In the range of coupling parameter 1.22 ≤ rs ≤ 1.44 which corresponds approximatively to the range

of pressure between 200 GPa and 550 GPa according to DFT, we have considered four recently

proposed candidate structures for the molecular crystal [53], namely C2/c, Cmca-12, Pbcn and P63m.

For each structure we have performed parameter optimizations for the four mentioned forms of the

orbitals and at eight different densities. Supercells of 96 atoms were considered for C2/c, Cmca-12

and Pbcn structures, while a supercell of 128 atoms was studied for the P63m structure. Moreover

for a single structure, Pbcn, at a single value of rs = 1.35 we have performed a complete RMC study.

In Figure 1 we report for all densities investigated the variational energies from the different orbitals

relative to the energy of the trial function with LDA orbitals.

Figure 2. Pbcn structure of molecular hydrogen at rs = 1.35. Left panel: energy per

atom versus projection time in RMC from different kind of orbitals: LDA (closed red

squares), PBE (green closed circles), HSE (upward blue triangles), vdW-DF2 (downward

purple triangles). Also results from the old LDA implementation (cyan open circles)

are reported. Right panel: Energy per atom versus variance in RMC from different

kind of orbitals.
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We note that for all structures and at all densities LDA, PBE and HSE orbitals provides trial

functions of the same quality (differences are of the order of 0.2 mH/atoms = 90K). Instead the trial

function with orbitals from vdW-DF2 functional provides higher energies, by roughly 0.4 mH/at

with values up to 1.4 mH/atom (
630 K). This first result is quite indicative that our trial function

is flexible and general enough to be very little sensitive to the form of the orbitals. In order to check

whether the observed differences from vdW-DF2 orbitals could be due to optimization problems

only, we performed a complete RMC study for a single case, namely the Pbcn structure at rs = 1.35.

A time step of τ = 0.005 h−1 was used, which is fairly typical in this sort of calculation. No further

time step error extrapolation study has been performed. In Figure 2 the energy versus projection

time is reported for all kind of orbitals. We also added results from our old DFT solver with LDA
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orbitals plagued by the truncation error. For all kinds of trial function we observe a very similar

relaxation with projection time meaning that the quality of the trial function is similar in all cases.

The differences observed at the variational level among different trial functions essentially remain

along the projection and therefore in the extrapolated value for the total energy. A quantitative way

to estimate the extrapolated (β → ∞) value of the total energy is to plot energy versus its variance

(pure estimate) and use a linear extrapolation at small values of σ2. This plot for all studied cases

is shown in the right panel of Figure 2. We see that the three kinds of orbitals, LDA, PBE and HSE

all provides extrapolated energies within error bars (E0 = −0.5350(2)), while the vdW-DF2 orbitals

provides a higher value (E0 = −0.5342(2)). The fact that the RMC projection is not able to remove

the difference observed at the VMC level means that the nodes from the vdW-DF2 are less accurate

than for the other kind of orbitals, which instead, despite their differences, provide essentially the

same nodal structure. Finally we note that our old implementation of LDA orbitals provides a less

accurate determination of the energy with correspondingly larger variance.

3. Applications

3.1. High-Pressure Hydrogen

Hydrogen is the simplest element of the periodic table and also the most abundant element in the

Universe. Because of its simple electronic structure, it has been instrumental in the development

of quantum mechanics and remains important for developing ideas and theoretical methods. In

the next section we explore its use in developing DFT functionals. Its phase diagram at high

pressure has received considerable attention from the first-principles simulation community due to its

critical importance in many fields like planetary science, high pressure physics, astrophysics, inertial

confinement fusion, among many others [10,54,55]. The phase diagram of hydrogen at high pressure

contains many interesting features including: a maximum in the melting line with a subsequent

negative slope [56,57], a predicted liquid-liquid transition between an insulating molecular and

a conducting atomic phase [58,59], exotic molecular phases at low temperature, and a predicted

metal-insulator transition in the solid phase [10,55].

The ground state structure of crystalline hydrogen across the pressure-induced molecular

dissociation has been studied by DMC [35–37] which predicted molecular dissociation at density

corresponding to rs 
 1.3. RPIMC has been applied to investigate the Warm Dense Matter

regime, namely the regime of high pressure and density where thermal and pressure molecular

dissociation and ionization occur simultaneously [38,39,60]. Particularly relevant for our current

understanding of the phase diagram and the Equation of State (EOS) of compressed hydrogen

has been the determination of the primary and secondary Hugoniots lines of deuterium which

could be directly compared with experimental data [40,61]. RPIMC predictions for the principal

Hugoniot of deuterium were first in disagreement with pulsed laser-produced shock compression

experiments [62–64], but were later confirmed by magnetically generated shock compression

experiments at the Z-pinch machine [65–70] and by converging explosive-driven shock waves

techniques [71,72]. Also relevant for the development and fine tuning of simulation methods for
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Warm Dense Matter has been the comparison with the less demanding, but also less fundamental

methods based on Density Functional Theory (either Kohn-Sham or Orbital-Free flavours). A

general agreement between RPIMC and FPMD predictions for the Hugoniot lines was observed [10]

except at the lowest temperatures that could be reached by RPIMC (∼10,000 K). More recently

the synergetic use of Born-Oppenheimer molecular dynamics (BOMD) and RPIMC has allowed to

produce first-principle based EOS’s in a wide range of physical conditions for hydrogen, helium and

hydrogen-helium mixtures [73,74] instrumental in planetary modeling and crucial ingredients for the

hydrodynamic codes used in the large facilities for extreme conditions experiments.

Temperatures lower than ∼10,000 K cannot be easily reached by RPIMC without reducing the

level of accuracy. However, most of the interesting phenomena in high pressure hydrogen, like

molecular dissociation under pressure, metallization, solid-fluid transition, a possible liquid-liquid

phase transition and its interplay with melting, the various crystalline phases and the transition to the

atomic phases [10], occur at lower temperature out of the reach of RPIMC. Investigating this regime

by QMC methods has been the main motivation in developing CEIMC. The other motivation, as

mentioned above, is the benchmark of the much more developed (and less demanding) alternative

theoretical method, namely FPMD based on DFT. Indeed the numerical implementation of DFT is

based on approximations (the exchange-correlation functional) the accuracy of which can only be

established against experiments or, better, against more accurate theories. As mentioned earlier,

QMC energy is an upper bound and therefore has an internal measure of accuracy.

CEIMC has been applied to investigate the WDM regime of hydrogen and helium and benchmark

FPMD [48,75,76]. In [76] an investigation of the fully ionized state of hydrogen in a region of

pressure and temperature relevant for Jovian planets found that FPMD based on the GGA-PBE

exchange-correlation functional and CEIMC are in very good agreement but both deviates from a

widely accepted phenomenological EOS. The agreement between the simulation methods becomes

less good when approaching the molecular dissociation regime at slightly lower temperature and

pressure. Both CEIMC and FPMD with different approximated functionals has been applied to

investigate the Liquid-Liquid phase transition (LLPT) region in hydrogen [45,59,77]. The emerging

picture is that a weak first-order phase transition occurs in hydrogen between a molecular-insulating

fluid and a metallic-mostly monoatomic fluid. At higher temperature, molecular dissociation and

metallization occur continuously. However the precise location of the transition line and the

critical point are still matter of debate since several levels of the theory provide different locations.

Within FPMD-DFT the location of the transition line depends strongly on the exchange-correlation

functional employed and on whether classical or quantum protons are considered [77]. Transition

lines from the PBE and vdW-DF2 approximations differ by roughly 200–250 GPa, the PBE one

being located at lower pressure. The PBE melting line with quantum protons is not in agreement

with experiments, which highlights the failure of the PBE approximation when employed together

with the quantum description of the nuclei. On the other hand, optical properties for the vdW-DF2

approximation are in agreement with experiments supporting the use of this functional for hydrogen

in the WDM regime. The LLPT line from CEIMC lies in between the lines from PBE and vdW-DF2

functionals [45,59]. However, those results were plagued by a truncation error in the calculations
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of the single electron orbitals which showed up only around the metallization and which resulted

in biased estimates. We have now changed the DFT solver in our CEIMC code and checked the

convergence. We find a roughly uniform shift of the transition line of ∼50 GPa to higher pressure

and we are performing new calculations with quantum nuclei. Preliminary results, based on VMC

electronic energies, suggests that, similarly to the DFT scenario, nuclear quantum effects favor

molecular dissociation and become increasingly important at lower temperatures. We estimate that

the transition pressure is decreased, because of nuclear quantum effects, by ∼60 GPa at 600 K and by

∼150 GPa at 300 K (from ∼430 GPa for classical nuclei to ∼290 GPa for quantum nuclei). RQMC

corrections to the transition lines was previously found to be small and we expect an even smaller

effect with the new CEIMC implementation since the VMC variance is roughly half of what it was

in the previous code [45].

The last estimate however is for a metastable liquid state obtained by an instantaneous quenching

of the fluid at higher temperature, while it is expected that the equilibrium state at 300 K and ∼290

GPa be crystalline (of unknown structure) [10]. Those results are preliminary since the calculation

is performed for a small system of 54 protons (we employ Twist Averaged boundary conditions to

reduce size effects on the single-electron properties with a 4 × 4 × 4 twist angle grid) and we are

presently estimating size effects, both by direct size extrapolation and by the analytic treatment of

size effects [78,79]. In Figure 3 we report CEIMC proton-proton g(r) at various densities along

the T = 600 K isotherm to illustrate the relevance of nuclear quantum effects on the pressure

dissociation. The preliminary CEIMC results suggest that, despite the good performance observed on

band gap calculations in the crystalline phases [80], the vdW-DF2 exchange-correlation functional

has a tendency to over-stabilize molecules.

Although our results demonstrate the power of CEIMC in predicting the physical properties of

hydrogen, its use is still quite demanding in terms of computer time, a fact that limits its applicability.

This is particularly true when a much larger exploration of external conditions is needed to clarify

the physics. For example, to study the crystalline state of the molecular system and clarify the

molecular-atomic transition mechanism in the solid state, it is necessary to consider a large number

of candidate structures, some of which have very large unit cells (the recently proposed Pc structure

for phase IV of molecular hydrogen [81] contains 192 proton, more than three times larger than

the system considered in the LLPT). Moreover, in studying those structure at finite temperature it is

important to apply a constant stress algorithm allowing the simulation box to deform and release the

excess internal stress that otherwise would produce metastable states. While larger systems (>250

particles) and constant pressure algorithms are routinely applied in FP methods based on DFT, their

use in conjunction with CEIMC is still problematic. Therefore, it is important to apply CEIMC and

other QMC methods to validate DFT predictions and determine the most accurate functional for a

given system. The same considerations apply to systems more complex than hydrogen. In the next

section we will describe our effort to benchmark functionals for high pressure hydrogen and for water

in condensed phase.
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Figure 3. Proton-proton radial distribution function at various densities along the

isotherm T = 600 K. Comparison between classical nuclei (red continuous line) and

quantum nuclei (blue dashed line) for hydrogen nuclear mass. It is evident the molecular

dissociation with increasing density.
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3.2. QMC Benchmarks of DFT

Within the Born-Oppenheimer approximation at low temperatures, the only interaction between

ions and electrons comes through the potential energy surface E0(R), defined as the solution of

the electronic Hamiltonian for a fixed set of ionic coordinates. E0(R) is typically approximated

by EDFT (R) in first-principles calculations, and obtained from a density functional theory (DFT)

calculation. Over the last several years, many-body methods for solids have been developed to

the point that the prospect of developing density functionals from accurate reference calculations

is now a possibility. In this section, we show how quantum Monte Carlo calculations can be used

to benchmark the accuracy of DFT in the description of the potential energy surface. The quality

of EDFT (R) defines the predictive capabilities of the resulting first-principles simulation. We use

large sets of representative configuration from PIMD simulations, and compare the mean absolute

error between accurate QMC calculations and various DFT functionals. We present preliminary

calculations on high pressure hydrogen and liquid water at ambient conditions, two materials that

are particularly challenging to DFT due to the subtle competition between dispersion interactions,

nuclear quantum effects, hydrogen bonding, and anisotropic interactions.
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3.2.1. Hydrogen

The phase diagram of hydrogen at high pressure has been extensively explored using

first-principles simulations with DFT [58,59,82–85]. In spite of the large number of studies,

most of the work so far has employed either the local density (LDA) [86] approximation to the

exchange-correlation potential or the Perdew-Burke-Ehrzenhof (PBE) [87] generalized gradient

approximation. These are two of the simplest functionals currently available in DFT. In fact, both

of them suffer from self-interaction errors and lack a proper treatment of dispersion interactions,

making their application in the regime of molecular dissociation questionable. Recently, the use of

DFT functionals with an improved description of dispersion interactions has been employed in the

study of the liquid and solid molecular phases in the neighborhood of molecular dissociation. It

was found that the dissociation density changed when compared to calculations using PBE [77,80].

Since these functionals were not designed for materials at high density, and because dispersion

interactions are clearly important in dense molecular hydrogen, there is a crucial need for accurate

calculations that can be used to benchmark the different exchange-correlation functionals employed

in first-principles simulations.

Since sufficient experimental data is not available to validate the quality of functionals in the

high-pressure high-temperature regime of the phase diagram, we used fixed-node diffusion Monte

Carlo (DMC) to benchmark the accuracy of several DFT functionals over a range of densities near the

liquid-liquid phase transition at a temperature of T = 1000 K. Henceforth, we will refer to densities

using the parameter rs. First, we ran PIMD simulations with the PBE functional for N = 54 hydrogen

atoms at three densities: rs = 1.30, 1.45, 1.60. In this range of densities, the liquid goes from an

insulating molecular state at rs = 1.60 to a conducting atomic liquid at rs = 1.30. The density

rs = 1.45 is intermediate and close to the LLPT for this functional. After equilibration, we sampled

100 ionic configurations from uncorrelated PIMD time slices for each density. For each configuration

at each density, we calculated the DMC energy, and then computed EDFT (R) for the following

functionals: LDA, PBE, vdW-DF [50], vdW-DF2 [51,52,88], and HSE [49].

All QMC calculations were performed with the QMCPACK [89–91] software package. We

used a Slater-Jastrow trial wavefunction with twist-averaged boundary conditions [92], employing a

3 × 3 × 3 grid of boundary conditions. For the Jastrow functions, we used real space b-splines with

optimizable knots. We included spin-independent one-body proton-electron terms; a short-ranged

term with the appropriate cusp condition, and a long-ranged term. We also included two long-ranged

spin-dependent electron-electron functions with appropriate cusp conditions. For each configuration,

linear optimization with VMC was performed for all Jastrow parameters at a single twist-angle, these

parameters were subsequently used for all twists in the DMC calculations. For the DMC run, a

timestep of τ = 0.05 Ha−1 and 6000 walkers were used. The orbitals were obtained from DFT

using the Quantum Espresso software package [46], using the PBE functional. We used a plane

wave cutoff of 210 Ry. DFT calculations were performed with a Troullier-Martins norm conserving

pseudo-potential [93] with a cutoff radius of rc = 0.5a0, DMC calculations were performed with

the Coulomb potential. Based on the scale of the energy differences, we found a statistical error of
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0.02 mHa/particle to be sufficient for present purposes. Since we were interested in measuring the

spread of energy errors in this presentation, constant energy offsets were removed from our error

assessments. This means that we did not have to include energetic finite size effects, although more

detailed assessments will certainly call for this.

An example of the comparison between QMC and DFT is given in Figure 4. Shown is a histogram

of the energy difference between the results of DMC and the PBE functional at the three densities:

ΔEDFT = EDFT − EDMC . Given that rs = 1.30 corresponds to the atomic liquid, and rs = 1.60 to

the molecular liquid, we immediately see that the errors incurred by using the PBE functional are not

consistent across the LLPT. As expected, PBE offers a much better description of the atomic liquid

compared to the molecular phase, where self-interaction errors are larger and dispersion interactions

are important. This is a well-known failure of most semi-local density functionals, which tend to

favor delocalized states.

Figure 4. Histograms of ΔEDFT for the PBE functional for dense hydrogen at densities

rs = 1.30, 1.45, 1.60 at T = 1, 000K. ΔEDFT refers to the absolute energy difference

per hydrogen atom between the DFT and QMC for a given configuration. There were

54 atoms per configuration.

To better quantify and compare the quality of functionals, we have computed the mean absolute

error (MAE) from data similar to that shown in Figure 4. This quantity is defined as MAEfunc =

〈|ΔEDFT − 〈ΔEDFT 〉|〉, where the average is taken over all configurations at a particular density.

Notice that we subtract the average energy difference in the definition of the MAE, since the zero

of energy of each functional is modified by the use of pseudopotentials. Fluctuations of the energy

differences are more significant since the structure of the liquid is only sensitive to differences. The

MAE gives us one measure of the quality, or predictive capability, of a given functional as defined by

the reference method, in this case DMC. We have tabulated our results in Figure 5.

There are several interesting features in Figure 5 directly related to the expected performance

of these functionals in the description of hydrogen near molecular dissociation in the liquid. First,

the two semi-local functionals in the comparison, LDA and PBE, have considerably different errors

in the molecular and atomic regimes. As described above, the atomic regime is more accurately
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described in comparison to the molecular phase, leading to a potentially strong underestimation of

dissociation transition pressures in both solid and liquid phases. This is consistent with recently

reported simulations [77]. On the other hand, both the hybrid HSE and the functionals with improved

dispersion vdW-DF and vdW-DF2 offer a more consistent level of description between the two

regimes. The mean absolute errors of the HSE and vdW-DF functionals are approximately half

that of the PBE functional for all densities, which indicates that these functionals more accurately

capture energy differences between various liquid configurations.

Figure 5. Mean absolute error of energy/atom vs. functional for dense liquid hydrogen

at 1000 K. For each functional, we computed the mean absolute error for three different

densities, denoted by the different colored bars.

3.2.2. Liquid Water

Water plays a central role in many scientific fields [94]. It is a critical component to almost all

chemical, biological, and geophysical processes. As a result, it is one of the most studied substances

in science, both from an experimental and a theoretical point of view. Despite such broad importance,

water’s most basic property, its local structure at ambient conditions, characterized by the geometry

of its underlying hydrogen-bond (H-bond) network, has remained a matter of debate for over a

century [95–97]. Challenges arise because water is only ≈25 K (at room temperature) from the

melting temperature of ice, where a variety of subtle and complex effects become important. While

the structure is dominated by H bond between neighboring molecules, both van der Waals (vdW)

interactions (which, in this context, refers to dispersion forces resulting from dynamical nonlocal

electron correlations) and nuclear quantum effects (NQEs) influence the topology of the H-bond

network. In fact, it is precisely these seemingly subtle effects (compared to H bonding) that are key

to accurately describing ambient water, but have been (until recently) difficult or impossible to model.

Atomistic simulations have the potential to resolve these issues, particularly using first-principles

methods. Providing an accurate theoretical description has been a central topic and open challenge

in physical chemistry for many decades. Despite considerable focus over the last decade, to date

DFT has proven insufficient for the accurate description of liquid water [4,98]. Nonetheless,

much progress has occurred during the last several years. The main advances include the use of
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functionals that properly describe dispersion interactions in the liquid [50,52,99,100], the use of

hybrid functionals [101], and the direct treatment of nuclear quantum effects [102]. The combination

of all of these advances in first-principles simulations of liquid water could lead to an accurate

description of its interesting properties, including its local structure. At the same time, the choice

of exchange-correlation functional in DFT is still a source of complication, mainly due to the large

number of possibilities and the inability to test their predictive capabilities without resorting to full

first-principles calculations of a large set of observables. As in the case of hydrogen, an accurate

first-principles description almost certainly requires the use of path integral methods in order to

directly treat nuclear quantum effects, which makes the calculations quite computationally intensive.

What is needed is a way to assess the quality of a given functional without having to resort to

first-principles calculations of the liquid at the PIMD level, and if possible, a way to systematically

improve them using high quality reference calculations from accurate many-body methods.

In this section, we present QMC calculations of configurations of molecules extracted from

PIMD simulations of liquid water. QMC has been shown to be a reliable benchmark in the study

of small water clusters [103–105], and should provide an accurate reference method to measure

the quality of typical density functionals used in simulations of water. All DMC calculations were

performed with the QMCPack software package [89–91]. A Troullier-Martins norm-conserving

pseudo-potential [93] was used to represent both hydrogen and oxygen. In particular, we used the

pseudo-potentials from the CASINO database [106,107], which were recently shown to produce

accurate results in the study of small water clusters. A Slater-Jastrow trial wave-function was

used. The orbitals in the Slater determinant were obtained from DFT calculations employing

the PBE exchange-correlation functional. We do not expect a strong dependence of the resulting

comparison on the functional used to generate the orbitals. The Jastrow term contains electron-ion,

electron-electron and electron-electron-ion terms, the variational parameters were optimized at the

VMC level using a variant of the linear method of Umrigar, et al. [108]. A time-step of 0.01 Ha−1

was found to be sufficiently small to produce accurate total energies and approximately 4800 walkers

were used in the DMC calculations. Casula’s T-moves [109] were used to reduce locality errors,

while the Model Coulomb Potential [110] and Chiesa’s [78] correction scheme were used to estimate

finite-size corrections to the potential and kinetic energies respectively.

DFT calculations were performed with both Quantum Espresso (QE) [46] and VASP [111–113]

simulation packages. In the case of QE calculations we employed norm-conserving Troullier-Martins

pseudo-potentials, while in the case of VASP calculations we employed the Projector Augmented

Wave method (PAW) [114,115]. A single pseudo-potential (constructed with PBE) was chosen in

order to make a homogeneous comparison of all DFT functionals, since some of the functionals

employed in this work do not yet allow for the production of pseudo-potentials. All simulations

were performed at the Γ point of the supercell in order to be consistent with the corresponding DMC

calculations; errors due to the lack of k-point integration were small enough to be safely discarded.

We carefully tested the convergence with the plane-wave cutoff in all DFT calculations.

We present calculations for 3 different configuration sets. The first two sets, which we called

TIP5P-PI-0C-ICE and TIP5P-PI-0C-LIQ, were generated with PIMD calculations on simulation
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cells using the semi-empirical TIP5P water model and 32 molecules [116]. As the name suggests,

the PIMD calculations used to generate the configuration set were performed at T = 0 C, from stable

solid and liquid phases. The third configuration set was obtained from PIMD calculations of 64 water

molecules, at room temperature and density of 1 g/cm3, with the vdW-DF2 functional, which has

been recently shown to provide an accurate description of the structure of water when combined

with a path integral representation [117]. The number of configurations in each set is 20, 47, 50,

respectively. The three configuration sets sample different aspects of the potential energy surface of

liquid water. While TIP5P is a rigid molecule model, the first-principles simulations with vdW-DF2

are fully flexible, which allows us to emphasize different ranges of the molecular interactions in the

liquid. On the other hand, the simulations with TIP5P in both liquid and solid phases at T = 0 C

sample the configurations that either strongly favor hydrogen bonding in the solid, with those where

the hydrogen-bond network has been destabilized in the liquid.

Figure 6. Mean absolute error in the total energy between DMC and DFT with various

exchange correlation functionals for a supercell containing water molecules. Results

presented correspond to calculations using the PAW formulation with VASP. X-D, where

X represents a given density functional, designates results using the empirical dispersion

corrections of Grimme et al., [118], in particular the DFT-D2 correction scheme as

implemented in VASP. Statistical errors on the presented results are on the order of

0.003 mHa and 0.005 mHa for rigid and flexible molecule configurations respectively.

They are not shown on the figure for clarity.

Figure 6 shows the mean absolute difference in the total energy between DMC and DFT

calculations, results are separated by configuration sets in order to allow for a more clear comparison

between them. Several functionals are considered including the semi-local functionals: PBE [87];

the hybrid functionals: PBE0 [49], B3LYP [119,120]; the non-local van der Waals functionals:

optB88 [121], optPBE [121], optB86b [122], vdW-DF [50] and vdW-DF2 [52]; and finally

functionals with the empirical van der Waals correction of Grimme, et al., (DFT-D2) [118]. While

there are many interesting results in this comparison, the most noticeable feature is the large

difference in the scale of the MAE between rigid and flexible molecule configurations. This
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is not unexpected since the larger energy fluctuations in the system are found coupled to the

intramolecular degrees of freedom of the molecule. In the case of flexible molecule configurations,

hybrid functionals offer a much better agreement with DMC results, producing errors typically a

factor of 2 smaller than non-hybrid functionals. This result shows the fact that hybrid functionals

do a much better job at describing the intramolecular potential energy surface. This is consistent

with the recent calculations of Alfe, et al. [104] and with the recent calculations of the absorption

spectra of bulk water at ambient conditions of Zhang, et al. [101]. On the other hand, the functionals

that include an appropriate description of dispersion interactions offer a clearly better comparison

with QMC in the rigid-molecule configuration sets. In this case, the intermolecular interactions are

the dominant energy contribution and the lack of appropriate dispersion leads to a larger error. In

this case, we can also see a small but finite improvement with the inclusion of empirically corrected

vdW functionals (PBE-D, B3LYP-D), but the gain is small and can not compete with non-local vdW

functionals. Notice also that the performance of hybrids in the rigid-molecule sets is comparable to

the performance of semi-local functionals, due to the fact that neither of these type of functionals

can properly describe dispersion interactions. Finally, the configuration set with the smallest overall

MAE is the one obtained from the calculations in the solid phase close to melting, showing the fact

that most of these functionals can describe hydrogen bonded configurations fairly well.

4. Discussion

Direct first-principles simulations with QMC accuracy of condensed phases systems are

nowadays possible but restricted so far to the simplest first few elements of the periodic table, namely

hydrogen, helium and their mixtures. Even for those simple systems, challenges are present and

the computational demand is large. Nonetheless, CEIMC predictions for the liquid-liquid phase

transition in hydrogen remains today the target for less accurate but faster DFT-based FP methods.

While much work remains to be done in developing QMC-based FP methods, the calculations

presented here show one possible use of accurate many-body calculations: using QMC to benchmark

the accuracy of DFT functionals. Not only does this allow us to make a judgment of the quality of a

functional before its use in first-principles simulations, but it also shows us a path for the systematic

improvement of the functionals by adjusting free parameters to minimize the errors. DFT users will

often point to experimental data to validate the quality of a chosen functional. What we have shown

is that we can use highly-accurate QMC methods to benchmark functionals around the liquid-liquid

transition of hydrogen from first-principles. In addition, this set of reference energies for the bulk

system can be used to optimize the free parameters in the DFT functional to minimize the errors,

and in the limit of a large data set, reproduce the quality of the more accurate many-body method in

first-principles calculations using DFT. This approach will be increasingly necessary as we continue

to explore matter under extreme pressures, since experimental data is often insufficient or nonexistent

at geophysical/planetary scales. It will also be necessary for other situations where DFT functionals

have difficulties, such as near metal-insulator transitions.

Let us consider a more general point. We suggest that, in general, it is superior to use total

energies to find an interatomic potential (force field). The traditional approach is to fit experimental
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data, for example, the melting temperature of ice, the density of water versus temperature, etc.

Clearly this procedure was necessary in the past since experimental data was all that was available.

However, using this approach requires very extensive calculations including free energy or equivalent

computations and ultimately only gives a few constraints. We can invoke “The Allegory of the Cave"

from Plato’s The Republic. We should not look to fit the atomic potentials using the projections of the

energy surface onto thermodynamic properties, but, instead to fit directly the energy surface. Thus we

will obtain an interatomic potential suitable for all properties. The situation has changed since QMC

methods have matured and much more computational power is available. We note that scanning

potential energy surface is a task very well suited to massively parallel computers. Including total

energy QMC benchmarks into the fitting procedure in addition to experimental data, can allow for

much more systematic improvements. QMC thus can provide a unique role in giving total energies

and is applicable to large enough systems to approximate condensed matter.

Water and hydrogen show an additional complication of using experimental data: namely because

of the importance of quantum zero-point effects of the protons, fitting of the experimental data

becomes particularly problematic. A common approach is to do a simulation of the classical system

and assume that the effective classical system includes the effects of zero-point energy; clearly this

then becomes quite approximate since the zero-point effects are not small. A complication is that

the interatomic potential that results can become temperature and density dependent with all known

pathologies related to the use of state dependent potentials [123]. One may need to do full PIMD

simulations of the system in order to determine the best empirical potential, thus increasing the,

already large, computational requirements considerably.

One aspect in determining good force fields is to find an appropriate basis set to parameterize

the force field. Traditionally, these have contained few functions with very few parameters, e.g.,

the Lennard Jones potential with only two parameters: ε and σ. It is feasible today to calculate

the energy and forces for millions of independent arrangements of ions. Using QMC techniques,

each would come with an error estimate. Hence, we can envision fitting this data set to a force

field with potentially tens of thousands of independent parameters. This will allow us to determine a

completely general pair potential (say with a spline basis), a three-body potential, four-body potential,

etc. However, the investigation into effective basis sets to describe these potentials becomes very

important. We can imagine an integrated set of tools: QMC simulations of systems with thousands

of electrons to produce data sets of energies and forces. These can be used either to tailor a DFT to

a particular system, or to determine a force field. The DFT simulations and the effective force field

simulations can then be used to model much larger systems. Thus simulations can thereby become

much more predictive, and produce not just universal properties, but details important to applications

and experiment.
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Abstract: This paper invites the reader to learn more about time integrators for

Molecular Dynamics simulation through a simple MATLAB implementation. An

overview of methods is provided from an algorithmic viewpoint that emphasizes

long-time stability and finite-time dynamic accuracy. The given software simulates

Langevin dynamics using an explicit, second-order (weakly) accurate integrator that

exactly reproduces the Boltzmann-Gibbs density. This latter feature comes from adding

a Metropolis acceptance-rejection step to the integrator. The paper discusses in detail the

properties of the integrator. Since these properties do not rely on a specific form of a heat

or pressure bath model, the given algorithm can be used to simulate other bath models

including, e.g., the widely used v-rescale thermostat.

Keywords: explicit integrators; Metropolis algorithm; ergodicity; weak accuracy
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1. Introduction

Molecular Dynamics (MD) simulation refers to the time integration of Hamilton’s equations often

coupled to a heat or pressure bath [1–5]. From its early use in computing equilibrium dynamics

of homogeneous molecular systems [6–13] and pico- to nano-scale protein dynamics [14–23], the

method has evolved into a general purpose tool for simulating statistical properties of heterogeneous

molecular systems [24]. Accessible time horizons have increased remarkably: the time line in

Figure 1 attempts to capture this nearly billion-fold improvement in capability over the last forty
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or so years. To put this speedup in perspective, though, computing power has increased by about

eight powers of ten over this time period as predicted by Moore’s law.

To be clear, the selection of applications and methods shown in Figure 1 is not comprehensive

and heavily biased towards the specific ideas and methods that inform this paper. The applications

highlighted are simulations of liquid argon [6], water [11], protein dynamics without solvent [14,15]

and biopolymer dynamics with solvent [25–31]. The methods include the following “upgrades”

to MD simulation: Verlet integrator and neighbor lists [7], cell linked list [32], the SHAKE

integrator for constraints [33], stochastic heat baths via Langevin dynamics [34,35], a library of

empirical potentials [36], a deterministic heat bath via Nosé-Hoover dynamics [37,38], the fast

multipole method [39], multiple time steps [40], splitting methods for Langevin dynamics [41–43],

quasi-symplectic integrators [44,45], (fast) combined neighbor and cell lists [46], the v-rescale

thermostat [47] and the stochastic Nosé-Hoover Langevin thermostat [48–50].

Near future applications of MD simulation include micro- to milli-scale simulations of

biomolecular processes, like protein folding, ligand binding, membrane transport and biopolymer

conformational changes [51–53]. In addition, atomistic MD simulations are used more sparingly in

multiscale models [54–58] and rare event simulation, such as the finite temperature string method and

milestoning [59–62]. Given this continuous development and generalization of MD, it is not a stretch

to suppose that MD will play a transformative role in medicine, technology and education in the

twenty-first century.

Figure 1. A time line of selected developments in MD simulation.
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In its standard form, the method inputs a random initial condition, physical and numerical

parameters and outputs a long discrete path of the molecular system. Statistical quantities,

like velocity correlation or mean radius of gyration, are usually computed online, i.e., as

points along this trajectory are produced. MD simulation is built atop a cheap forward

Euler-like integrator that requires only a single interactomic force field evaluation per step. Even

though MD seems straightforward, software implementations of MD are typically optimized for
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performance [36,63,64], and as a side effect, make it cumbersome for non-experts to learn

and modify.

Also, besides this issue, due to the interplay between stochastic Brownian and molecular forces,

infinitely long trajectories of existing MD integrators do not have the right distribution. What happens

is that the Brownian force can cause the integrator to enter regions where its approximation to

the molecular force is inaccurate and possibly destabilizing. In the latter case, the approximation

spends a disproportionate amount of time at higher energies, and thus, the invariant measure of the

approximation, if it even exists, is not correct. This phenomenon is a well-known shortcoming of

explicit integrators for nonlinear diffusions [65–69].

Recently, a probabilistic approach was proposed to solve this problem, which questions the

notion that Monte Carlo methods and MD have different aims: the former strictly samples

probability distributions, and the latter estimates dynamics. The basic idea is to combine a

standard MD integrator with a Metropolis-Hastings algorithm targeted to the Boltzmann-Gibbs

distribution [70–72]. Because the scheme is a Monte Carlo method, it exactly preserves the desired

distribution [71,72]. This property implies numerical stability over long-time simulations. However,

the price to be paid for this stability is a loss of accuracy whenever a move is rejected and some

overhead in evaluating the Metropolis acceptance-rejection step. Still, a Metropolized integrator is

dynamically accurate on finite-time intervals [72,73], and so, even though a Metropolized integrator

involves a Monte Carlo step, its aim and philosophy are very different from Monte Carlo methods,

whose only goal is to sample a target distribution with no concern for the dynamics [71,74–82]. In

principle, this approach offers a simple alternative to costly implicit integrators, but are Metropolized

integrators ready for daily use in MD simulation? The answer to this question is unclear, since this

approach is new and has not been tested on enough examples.

Motivated by these issues, this paper builds a software system for MD simulation with a

Metropolis step built in and applies it to a homogeneous molecular system. The algorithm and

its properties are introduced in a step-by-step fashion. In particular, we show that the integrator

is second-order weakly accurate on finite-time intervals and converges to the Boltzmann-Gibbs

distribution in the long-time limit. The software version of the algorithm is written in the latest

version of MATLAB with plenty of comments, variables that are descriptively named and operations

that can be easily translated into mathematical expressions [83]. Since MATLAB is widely

available, this design ensures that the software will be easy-to-use and cross-platform. The following

MATLAB-specific file formats will be used.

(F1) MATLAB script and function files are written in the MATLAB language and can be run from

the MATLAB command line without ever compiling them.

(F2) MATLAB executable (MEX) files are written in the “C” language and compiled using the

MATLAB mex function. The resulting executable is comparable in efficiency to a “C” code

and can be called directly from the MATLAB command line. We will use MEX-files for

performance-critical routines [84].

(F3) MATLAB binary (MAT) files will be used to store simulation data.
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The paper is organized as follows. We begin with an overview of integrators that have been

proposed in MD simulation in Section 2. We explain how to Metropolize each of these schemes to

make them long-time stable in Section 3, and as an application, we use a Metropolized scheme to

generate a long trajectory of a Lennard-Jones fluid in Section 4. Generalizations of corrected MD

integrators to other molecular models are discussed in Section 5. The paper closes by discussing

some potential pitfalls in high dimension and tricks to get the integrator to scale well in Section 6.

2. Algorithmic Introduction to Time Integrators for MD Simulation

For pedagogical reasons, we will start with Langevin dynamics of a system of N molecules.

Then, we show in Section 5 how to simulate more general models of molecular systems. Denote by

mj > 0 and qj the mass and position of the j-th molecule, respectively. The governing Langevin

equation is given by:⎧⎨⎩
dqj

dt
(t) = m−1

j pj(t) ,

dpj(t) = − ∂U
∂qj

(q(t))dt− γpj(t)dt+
√

2kTγmjdwj ,
j = 1, · · · , N (1)

where q = (q1, · · · , qN) and p = (p1, · · · ,pN) denote the positions and momenta of the particles,

kT is the temperature factor, and {wj}Nj=1 are N -independent Brownian motions. The last two

terms in the second equation in (1) represent the effect of a heat bath with parameter γ. In Langevin

dynamics, positions are differentiable, and due to the irregularity of the Brownian force, momenta are

just continuous, but not differentiable. This difference in regularity explains why the first equation

in (1) is written as an ordinary differential equation (ODE) and the second equation is written as a

stochastic differential equation (SDE).

The bath-free dynamics is a Hamiltonian system with the following Hamiltonian energy function:

H(q,p) =
N∑
j=1

1

2mj

|pj|2 + U(q) (2)

Since the masses are constant, this Hamiltonian nicely separates into a kinetic and potential energy

that are purely functions of p and q, respectively. The stationary probability density of the solution

to Equation (1) is the Boltzmann-Gibbs density given by:

ν(q,p) = Z−1 exp

(
− 1

kT
H(q,p)

)
, Z =

∫
exp

(
− 1

kT
H(q,p)

)
dqdp (3)

Let h be a given time step size and m = diag(m1, · · · ,mN). Let (Q0,P 0) denote the position

and momentum of the molecular system at time t > 0. The simplest approximation to Equation (1)

is a forward Euler discretization or Euler-Maruyama scheme [85] that computes an updated position

and momentum (Q1,P 1) at t+ h using:

Q1 = Q0 + hm−1P 0

P 1 = P 0 − h∇U(Q0)− hγP 0 +
√
h
√
2kTγm1/2ξ

(forward Euler)
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Here, ξ ∈ R
n denotes a Gaussian random vector with mean zero and covariance E(ξiξj) = δij .

The problem with this approximation is that the forward Euler method is known to diverge in

finite-time when the derivatives of the potential are unbounded, which is the norm in MD simulation.

The precise statement and proof of divergence in a general setting can be found in [86]. By far the

most computationally intensive part of the time-stepping algorithm is the evaluation of the potential

force. Thus, we will restrict our discussion to schemes that, like Euler, only require a single force

field evaluation per step.

An improvement to the forward Euler method is the following two-step scheme:

Q2 = (1 + e−γh)Q1 − e−γhQ0 +
1− e−γh

γ
m−1

(
−h∇U(Q1) +

√
h
√
2kTγm1/2ξ

)
(BBK)

In the limit, γ → 0, this scheme reduces to the well-known Verlet integrator for MD simulation [7].

Just like Verlet, this integrator defines a map on pairs of molecular system configurations.

Substituting the approximation, e−γh ≈ (1 − γh/2)/(1 + γh/2), into the above yields the

Brünger-Brooks-Karplus (BBK) scheme, as appearing in [35]. Like the forward Euler method, this

method is explicit and only requires one new force evaluation per step.

Second-order accurate schemes that generalize the Velocity Verlet integrator to Langevin

dynamics were proposed in a sequence of papers [42–44,87,88]. Here, we mention two of these

schemes that are both Strang splittings of Equation (1). The first was proposed by Ricci and

Ciccotti [42] and consists of the following sub-steps:(
q̇(t) = m−1p(t)

dp(t) = 0

)
︸ ︷︷ ︸
exactly evolve by 1/2 a step

◦
(

q̇(t) = 0

dp(t) = −∇U(q(t))dt− γp(t)dt+
√
2kTγm1/2dW

)
︸ ︷︷ ︸

exactly evolve by a step

◦
(
q̇(t) = m−1p(t)

dp(t) = 0

)
︸ ︷︷ ︸
exactly evolve by 1/2 a step

Each step in this decomposition can be exactly solved. Clearly, the half-steps are easy to solve, since

momentum is constant over each of these half-steps. The SDE appearing in the inner step can also be

exactly solved, since it is linear in momentum (see Chapter 5 in [89]). This splitting is quite natural,

since it treats the heat bath forces in the same way as the potential forces.

A related, but different, splitting method was proposed by Bussi and Parinello in [43] and is

given by:(
q̇(t) = 0

dp(t) = −γp(t)dt+
√
2kTγm1/2dW

)
︸ ︷︷ ︸

exactly evolve by 1/2 a step

◦
(

q̇(t) = m−1p(t)

ṗ(t) = −∇U(q(t))

)
︸ ︷︷ ︸
approximately evolve

using a step of Verlet

◦
(

q̇(t) = 0

dp(t) = −γp(t)dt+
√
2kTγm1/2dW

)
︸ ︷︷ ︸

exactly evolve by 1/2 a step

Notice that this decomposition splits the Langevin dynamics into its Hamiltonian and heat bath parts,

which makes it easy to analyze the structural properties of the scheme. A Velocity Verlet integrator

is used to approximate the Hamiltonian dynamics. This approximation exactly preserves phase space

volume and preserves energy to third-order accuracy per step. Moreover, the solution to the SDE

appearing in the half-steps exactly preserves the Boltzmann-Gibbs density.

Since the Velocity Verlet integrator does not exactly preserve energy, the composition above

does not exactly preserve the stationary distribution with density in Equation (3). In [90], it was
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shown that if the derivatives of the potential are all bounded, the Bussi and Parinello integrator

possesses an invariant measure that is O(h2) close to the Boltzmann-Gibbs distribution. In this same

context, the leading order error term in the integrator’s approximation to the invariant measure was

explicitly determined [91]. Technically speaking, however, these results do not directly apply to

MD simulation, since real MD simulation involves potentials whose derivatives are unbounded, e.g.,

Lennard-Jones forces. As a consequence of this irregularity in the force fields and discretization error,

explicit schemes, like this one, may either not detect features of the potential energy properly, which

leads to unnoticed, but large errors in dynamic quantities such as the mean first passage time, or

may mishandle soft- or hard-core potentials, which leads to numerical instabilities; see the numerical

examples in [92]. These numerical artifacts motivate adding a Metropolis accept/refusal sub-step to

the integrator. In the next section, we show how to Metropolize all of the MD integrators presented in

this section. In Section 5, we explain how to generalize the Metropolis-corrected Bussi and Parinello

algorithm to a larger class of diffusion processes.

3. Metropolis-Corrected MD Integrators

Here, we show how to add a Metropolis acceptance-rejection step to a BBK-type scheme and the

Bussi and Parinello splitting scheme and then precisely state the properties of these integrators. We

start with a detailed description of each algorithm. Both algorithms require evaluating the acceptance

probability given by the usual Metropolis ratio:

α(q,p,Q,P ) = min

(
1, exp

(
− 1

kT
(H(Q,P )−H(q,p))

))
(4)

The procedure to Metropolize the Ricci and Ciccotti scheme can be found in Section 2 of [70].

Algorithm 3.1 (First-order BBK-type integrator). Given the current state (Q0,P 0) at time t, the

algorithm proposes a new state (Q

1,P



1) at time t+ h for some time step h > 0 via:(

Q

1

P 

1

)
=

(
Q0 +m−1

(
hP 0 − h2

2
∇U(Q0)

)
P 0 − h

2
(∇U(Q0) +∇U(Q


1))

)
(Step 1)

This “proposal move” (Q

1,P



1) is then accepted or rejected:(
Q̃1

P̃ 1

)
= x

(
Q


1

P 

1

)
+ (1− x)

(
Q0

−P 0

)
(Step 2)

where x is a Bernoulli random variable with parameter α(Q0,P 0,Q


1,P



1) given by Equation (4).

The actual update of the system is taken to be:(
Q1

P 1

)
=

(
Q̃1

exp(−γh)P̃ 1 +
√
kT

√
1− exp(−2γh)m1/2ξ

)
(Step 3)

Here, ξ ∈ R
n denotes a Gaussian random vector with mean zero and covariance E(ξiξj) = kTδij .
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The momenta of the molecules gets reversed if a move is rejected in Step 2 of Algorithm 3.1.

This momentum flip is necessary for the algorithm to preserve the correct stationary

distribution [70,71], but results in an O(1) error in dynamics. High acceptance rates are therefore

needed to ensure that the time lag between successive rejections is frequently long enough for the

approximation to capture the desired dynamics. Since the acceptance rate in Equation (4) is related

to how well the Verlet integrator in (Step 1) preserves energy after a single step, this rejection rate is

O(h3). Thus, in practice, we find that the time step required to obtain a sufficiently high acceptance

rate is often automatically fulfilled by a time step that sufficiently resolves the desired dynamics.

Each step of this algorithm requires: evaluating the atomic force field once in the third equation of

(Step 1), generating a Bernoulli random variable with parameter α in (Step 2) and generating an

n-dimensional Gaussian vector in (Step 3). We stress that (Step 2) in Algorithm 3.1 is all that is

needed to get MD integrators to exactly preserve the Boltzmann-Gibbs density in Equation (3).

Next, we show how to Metropolize the Bussi and Parinello splitting integrator.

Algorithm 3.2 (Second-order Bussi and Parinello integrator). Let ξ,η ∈ R
n be two independent

Gaussian random vectors with mean zero and covariance E(ξiξj) = E(ηiηj) = δij . Given a

time step size h and the current state (Q0,P 0) at time t, the algorithm takes a half-step of the heat

bath dynamics: (
Q̃0

P̃ 0

)
=

(
Q0

exp(−γh/2)P̃ 0 +
√
kT

√
1− exp(−γh)m1/2ξ

)
(Step 1)

Followed by a full step of Verlet to compute a proposal move (Q̃



1, P̃



1):(
Q̃




1

P̃



1

)
=

⎛⎝Q̃0 +m−1
(
hP̃ 0 − h2

2
∇U(Q̃0)

)
P 0 − h

2

(
∇U(Q̃0) +∇U(Q̃




1)
) ⎞⎠ (Step 2)

This proposal move (Q̃



1, P̃



1) is then accepted or rejected:(
Q̃1

P̃ 1

)
= x

(
Q̃




1

P̃



1

)
+ (1− x)

(
Q̃0

−P̃ 0

)
(Step 3)

where x is a Bernoulli random variable with parameter α(Q̃0, P̃ 0, Q̃



1, P̃



1) given by Equation (4).

The actual update of the system at time t+ h is taken to be:(
Q1

P 1

)
=

(
Q̃1

exp(−γh/2)P̃ 1 +
√
kT

√
1− exp(−γh)m1/2η

)
(Step 4)
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This algorithm requires generating two independent n-dimensional Gaussian vectors per step.

Thus, it is more costly than Algorithm 3.1. However, the advantage of doing this is that the resulting

Metropolis corrected algorithm is second-order weakly accurate, as the following Proposition states.

Proposition 3.3. Let (Qn,P n) represent the numerical approximation produced by Algorithm 3.2 at
time nh with the same initial condition as the true solution: (Q0,P 0) = (q(0),p(0)). For every time
interval T > 0 and for suitable observables f(q,p), there exists a C(T ) > 0, such that:

|Ef(q(�t/h�h),p(�t/h�h))− Ef(Q	t/h
,P 	t/h
)| ≤ C(T )h2 (5)

for all t < T .

This accuracy concept is sufficient for computing means and correlation functions at finite-time

and equilibrium correlations. Figure 2 verifies this Proposition by checking the weak accuracy of

Algorithms 3.1 and 3.2 on a harmonic oscillator test problem.

Figure 2. Langevin dynamics of a harmonic oscillator.
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To be specific, Figure 2 plots the weak accuracy of the Metropolis-corrected MD integrators

with respect to the true solution of the Langevin dynamics of a harmonic oscillator: q̇(t) = p(t),

dp(t) = −q(t)− p(t)+
√
2dw(t), with initial condition q(0) = 1.0 , p(0) = 0. The time steps tested

are h = 2−n, where n is given on the x-axis. The quantity monitored for the error is the estimate of

E(q(1)2 + p(1)2) = 1.699445410 computed analytically. The dashed and solid curves are the graphs

of 2−n(= h) and 2−2n(= h2) versus n, respectively.

Proof. The desired single-step error estimate can be obtained from an application of the

triangle inequality:

|Ef(q(h),p(h))−Ef(Q1,P 1)| ≤ |Ef(q(h),p(h))−Ef(Q̂1, P̂ 1)|+ |Ef(Q̂1, P̂ 1)−Ef(Q1,P 1)|
(6)
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where (Q̂1, P̂ 1) denotes one step of the uncorrected Bussi and Parinello scheme with (Q̂0, P̂ 0) =

(q(0),p(0)). The first term in the upper bound in Equation (6) is O(h3), since the unadjusted scheme

is a Strang splitting of Equation (1). To bound the second term in Equation (6), note that:

Ef(Q1,P 1)− Ef(Q̂1, P̂ 1) = E

{(
f̄(Q̃




1, P̃



1)− f̄(Q̃0,−P̃ 0)
)(

α(Q̃0, P̃ 0, Q̃



1, P̃



1)− 1
)}

where we have introduced the auxilary function:

f̄(q,p) = Ef(q, exp(−γh/2)p+
√
kT

√
1− exp(−γh)m1/2η)

Since the rejection rate is O(h3), it follows from the above expression that the second term in the

upper bound of Equation (6) is also O(h3). Standard results in numerical analysis for SDEs then

imply that the algorithm converges weakly on finite-time intervals with global order two; see, for

instance, [93] (Chapter 2.2).

For completeness sake, we also provide a statement that both algorithms are ergodic.

Proposition 3.4. Let (Qn,P n) be the numerical approximation produced by Algorithms 3.1 or 3.2
at time nh. Then, for suitable observables f(q,p):

lim
T→∞

1

T

∫ T

0

f(Q	t/h
,P 	t/h
)dt →
∫
R2n

f(q,p)ν(q,p)dqdp (7)

Here, ν(q,p) denotes the Boltzmann-Gibbs density defined in Equation (3).

A proof of this Proposition can be found in [72].

4. Application to Lennard-Jones Fluid

Listing 1 translates Algorithm 3.2 into the MATLAB language. Intrinsically defined MATLAB

functions appear in boldface. The algorithm uses MATLAB’s built in random number generators

to carry out Step 1, Step 3 and Step 4. In particular, the Bernoulli random variable, x, in Step 3 is

generated in Line 20, and the Gaussian vectors in Step 1 and Step 4 are generated on Line 9 and

Line 29, respectively. In addition to updating the positions and momenta of the system, the program

also stores the previous value of the potential energy and force, so that the force and potential energy

is evaluated in Line 15 just once per simulation step. This evaluation calls a MEX function, which

inputs the current position of the molecular system and outputs the force field and potential energy at

that position. We use a MEX function, because the atomistic force field evaluation cannot be easily

vectorized and is, by far, the most computationally demanding step in MD. The PreProcessing

script file called in Line 2 defines the physical and numerical parameters, sets the initial condition

and allocates space for storing simulation data. Sample averages are updated as new points on the

trajectory are produced in the UpdateSampleAverages script file invoked in Line 35. Finally,

the outputs produced by the algorithm are handled by the PostProcessing script file in Line 39.

Let us consider a concrete example: a Lennard-Jones fluid that consists of N identical

atoms [1–3]. The configuration space of this system is a fixed cubic box with periodic boundary
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conditions. The distance between the i-th and j-th particle is defined according to the minimum

image convention, which states that the distance between qi and qj in a cubic box of length � is:

dMD(qi, qj)
def
= |(qi − qj)− ��(qi − qj)/��| (8)

where �·� is the nearest integer function. In terms of this distance, the total potential energy is a sum

over all pairs:

U(q) =
n−1∑
i=1

n∑
j=i+1

ULJ(dMD(qi, qj)) (9)

where ULJ(r) is the following truncated Lennard-Jones potential function:

ULJ(r) =

⎧⎨⎩f(r)− f(rc), r < rc

0, otherwise
(10)

Listing 1. Metropolized MD Integrator: MDintegrator.m

1

2 PreProcessing;

3

4 for i = 1:Ns

5

6 %--- Step 1 --- Heat Bath Step

7

8 tQ0=Q0;

9 tP0=f1*P0+f2*randn(3*Nm,1);

10

11 %--- Step 2 --- Velocity Verlet Proposal

12

13 Ppt5=tP0+0.5*h*F0;

14 tQ1star=tQ0+h*Ppt5;

15 [tF1star,tU1star]=ForceFieldmex(tQ1star,Nm,rcut2,ell);

16 tP1star=Ppt5+0.5*h*tF1star;

17

18 %--- Step 3 --- Accept or Refuse Step

19

20 x=(rand<exp(-(0.5*tP1star’*tP1star-0.5*tP0’*tP0+tU1star-U0)/kT));

21

22 tP1=x*P1star-(1-x)*P0;

23 tQ1=x*Q1star+(1-x)*Q0;

24 F1=x*tF1star+(1-x)*F0; U1=x*tU1star+(1-x)*U0;

25

26 %--- Step 4 --- Heat Bath Step
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27

28 Q1=tQ1;

29 P1=f1*tP1+f2*randn(3*Nm,1);

30

31 %--- iterate

32

33 Q0=Q1; P0=P1; F0=F1; U0=U1;

34

35 UpdateSampleAverages;

36

37 end

38

39 PostProcessing;

Listing 2. Metropolized MD Integrator: PreProcessing.m

1 %--- seed random # generator

2

3 rng(123);

4

5 %--- physical parameters

6

7 rho=0.6; % density

8 kT=0.5; % temperature factor

9 gama=0.1; % heat bath parameter

10 Nm=500; % # of molecules

11 T=2.0; % time span for velocity correlation

12 ell=(Nm/rho)^(1/3); % length of cubic box

13

14 %--- simulation parameters

15

16 h=0.005; % time-step size

17 Ns=1e3; % # of steps

18 rcut = 2.0^(1/6); % cutoff radius

19 rcut2 = rcut*rcut;

20

21 f1=exp(-0.5*gama*h); f2=sqrt((1.0-exp(-gama*h))*kT);

22

23 %--- initial condition

24

25 A=fcclattice(Nm,ell);
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26 Q0=reshape(A, [3*Nm 1]); % atoms on an fcc lattice

27 P0=zeros(3*Nm,1); % atoms at rest

28

29 %--- initialize statistics

30

31 NA=ceil(T/h)+1; % preallocate space for

32 acf=zeros(NA,1); % online correlation computation

33 varacf=zeros(NA,1);

34 pivot=zeros(NA,3*Nm);

35 nacf=zeros(NA,1);

36

37 AP=zeros(Ns,1); % vector of acceptance probabilities

38

39 [F0,U0]=ForceFieldmex(Q0,Nm,rcut2,ell); % initial force & energy

Here, f(r) = 4(1/r12 − 1/r6) and rc is the cutoff radius, which is bounded above by the size

of the simulation box; and we have used dimensionless units to describe this system, where energy

is rescaled by the depth of the Lennard-Jones potential energy and length by the point where the

potential energy is zero. The error introduced by the truncation in Equation (10) is proportional to

the density of the molecular system and can be made arbitrarily small by selecting the cutoff distance

to be sufficiently large. A direct evaluation of the potential force, ∇U(q), scales like O(N2), and

typically dominates the total computational cost. In practice, neighbor/cell lists, also called Verlet

lists, are used in order to obtain a force evaluation that scales linearly with system size. Since the

system we consider will have just a few hundred atoms, there is, however, little advantage to using

these data structures, or using a fast force field evaluation, and thus, ForceFieldmex evaluates

the force and energy using a sum over all particle pairs.

Table 1. Simulation parameters.

Parameter Description Value

Physical

Parameters

ρ density {0.6, 0.7, 0.8, 0.9, 1.0, 1.1}
kT temperature factor 0.5

γ heat bath parameter 0.01

Nm # of molecules 512

T time-span for autocorrelation 2

Numerical

Parameters

h time step 0.005

Ns # of simulation steps 105

rc Lennard-Jones force cutoff radius 21/6

Listing 2 shows the PreProcessing script, which sets the parameters provided in Table 1

and constructs the initial condition, where the N atoms are assumed to be at rest and on the sites
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of a face-centered cubic lattice. The command, rng(123), on Line 3 sets the seed of the random

number generator functions, RAND and RANDN. The acceptance rates at every step and the velocity

autocorrelation are updated in the UpdateSampleAverages script shown in Listing 3. The mean

acceptance rate, which is outputted in the PostProcessing script shown in Listing 4, must be

high enough to ensure that the dynamics is accurately represented. To compute the autocorrelation

of an observable over a time interval of length T , the value of that observable along the entire

trajectory is not needed. In fact, it suffices to use the values of this observable along a piece of

trajectory over a moving time-window [ti, ti+T ], where ti = i×h. This storage space is allocated in

PreProcessing and is updated in UpdateSampleAverages. More precisely, the molecular

velocities are stored in the pivot array from i−Na to i, where i is the index of the current position

and Na = �T/h�+ 1. Notice that velocity autocorrelations are not computed until after the index, i,

exceeds 104. This equilibration time removes some of the statistical bias that may arise from using a

non-random initial condition. Short-time trajectories of this molecular system are plotted in Figure 3

from an initial condition where atoms are placed on the sites of a face-centered cubic lattice and at

rest. The trajectory is computed using the numerical and physical parameters indicated in Table 1,

with the exception of the number of steps, which is set equal to Ns = 1000. Notice that at lower

densities particle trajectories are more diffusive and less localized. Using the parameters provided

in Table 1, we compute velocity autocorrelations for a range of density values in Figure 4. Since

the heat bath parameter is set to a small value, these figures are in qualitative agreement with those

obtained by simulating the molecular system with no heat bath as shown in Figure 5.2 of [3].

Listing 3. Metropolized MD Integrator: UpdateSampleAverages.m

1 %--- store acceptance probability

2

3 AP(i)=x;

4

5 %--- update correlation function

6

7 if (i>1e4)

8

9 pp=mod(i-1,NA)+1;

10 pivot(pp,:)=P0;

11

12 for j=1:min(i,NA)

13 nacf(j)=nacf(j)+1;

14 mui=acf(j);

15 vari=varacf(j);

16 n_samples=nacf(j);

17 xip1=pivot(mod(pp-j,NA)+1,:)*pivot(pp,:)’/(3.0*Nm);

18 acf(j)=mui+(xip1-mui)/n_samples;

19 varacf(j)=((n_samples-1)*vari+...
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20 (xip1-mui)*(xip1-acf(j)))/n_samples;

21 end

22

23 end

Listing 4. Metropolized MD Integrator: PostProcessing.m

1 %--- output results

2

3 disp([’h=’ num2str(h) ’,<AP>=’ num2str(mean(AP))]);

4

5 figure(2); clf; hold on; tt=0:h:T;

6 errorbar(tt,acf,1.96*sqrt(varacf)./sqrt(nacf));

7

8 save(’VelocityAutocorrelation.mat’, ’tt’, ’acf’, ’varacf’);

Figure 3. Atomic trajectories in a simulation box.

(a) ρ = 0.6 (b) ρ = 0.7 (c) ρ = 0.8 (d) ρ = 0.9 (e) ρ = 1.0 (f) ρ = 1.1

Figure 4. Soft-sphere velocity autocorrelation functions. A reproduction of Figure 5.2

of [3] using Langevin dynamics with heat bath parameter γ = 0.01. The remaining

parameters are set equal to those provided in Table 1. The negative correlations at higher

densities are consistent with what has been found in the literature [6,8].
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5. General Case

Here, we show how the preceding ideas extend to other molecular systems that obey stochastic

differential equations. In the process, we generalize the Metropolized Bussi and Parinello integrator

(Algorithm 3.2) to a big class of diffusion processes, including the v-rescale thermostat. We begin

with the underlying Hamiltonian dynamics of a molecular system.

5.1. Bath-Free Dynamics

MD is based on Hamilton’s equations for a Hamiltonian H : R2d → R:

ż(t) = J∇H(z(t)) , z(0) ∈ R
2d (11)

where z(t) = (q(t),p(t)) is a vector of molecular positions q(t) ∈ R
d and momenta p(t) ∈ R

d and

J is the 2d× 2d skew-symmetric matrix defined as:

J =

(
0d×d Id×d

−Id×d 0d×d

)
(12)

The Hamiltonian, H(z), represents the total energy of the molecular system and is typically

“separable”, meaning that it can be written as:

H(z) = K(p) + U(q) , z = (q,p) (13)

where K(p) and U(q) are the kinetic and potential energy functions, respectively [94]. In MD,

the kinetic energy function is a positive definite quadratic form, and the potential energy function

involves “fudge factors” determined from experimental or quantum mechanical studies of pieces

of the molecular system of interest [36]. The accuracy of the resulting energy function must be

systematically verified by comparing MD simulation data to experimental data [95]. The flow that

Equation (11) determines has the following structure:

(S1) volume-preserving (since the vector-field in Equation (11) is divergenceless); and

(S2) energy-preserving (since J is skew-symmetric and constant).

Explicit symplectic integrators, like the Verlet scheme, exploit these properties to obtain long-time

stable schemes for Hamilton’s equations [96,97].

5.2. Governing Stochastic Dynamics

In order to mimic experimental conditions, Equation (11) is often coupled to a bath that puts the

system at constant temperature and/or pressure. The standard way to do this is to assume that the

system with a bath is governed by a stochastic ordinary differential equation (SDE) of the type:

dY (t) = A(Y (t))dt︸ ︷︷ ︸
deterministic drift

+ (divD)(Y (t))dt+
√
2kTB(Y (t))dW (t)︸ ︷︷ ︸

heat bath

(14)

Here, we have introduced the following notation.
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Y (t) ∈ R
n state of the (extended) system

A(x) ∈ R
n deterministic drift vector field

B(x) ∈ R
n×n noise-coefficient matrix

D(x) ∈ R
n×n diffusion matrix

W (t) ∈ R
n n-dimensional Brownian motion

kT temperature factor

The n× n diffusion matrix, D(x), is defined in terms of the noise coefficient matrix, B(x), as:

D(x)
def
= kTB(x)B(x)T , for all x ∈ R

n (15)

where B(x)T denotes the transpose of the real matrix, B(x). The diffusion matrix is symmetric

and nonnegative definite. Depending on the particular bath that is used, the dimension, n, of Y (t) in

Equation (14) is related to the dimension, 2d, of z(t) in Equation (11) by the inequality: n ≥ 2d.

For example, in Nosé-Hoover Langevin dynamics, a single bath degree of freedom is added to

Equation (11), so that n = 2d+ 1, while in Langevin dynamics, the effect of the bath is modeled by

added friction and Brownian forces that keep n = 2d. The Langevin Equation (1) can be put in the

form of Equation (14) by letting x = (q,p),

A(x) =

(
m−1p

−∇U(q)− γp

)
, B =

√
γ

(
0 0

0 m1/2

)
, and W = (w1, · · · ,wN) (16)

where m = diag(m1, · · · ,mN).

Equation (14) generates a stochastic process, Y (t), that is a Markov diffusion process. We

assume that this diffusion process admits a stationary distribution μ(dx), i.e., a probability

distribution preserved by the dynamics [98,99]. We denote by ν(x) the density of this distribution.

Even though the diffusion matrix in Equation (15) is not necessarily positive definite, one can use the

Hörmander’s condition to prove that the process, Y (t), is an ergodic process with a unique stationary

distribution [100,101]. By the ergodic theorem, it then follows that:

1

T

∫ T

0

f(Y (t))dt →
∫
Rn

f(x)ν(x)dx , as T → ∞, a.s. (17)

where f(x) is a suitable test function.

The evolution of the probability density of the law of Y (t) at time t, ρ(t,x), satisfies the

Fokker-Planck equation:

− ∂ρ

∂t
+ Lρ = 0 (18)

where ρ(0, ·) is the density of the initial distribution, Y (0) ∼ ρ(0, ·), and L is defined as the following

second-order partial differential operator:

(Lf)(x)
def
= div (div(D(x)f(x))−A(x)f(x)) (19)

Since μ(dx) = ν(x)dx is a stationary distribution of Y (t), the probability density, ν(x), is a

steady-state solution of Equation (18), i.e., it satisfies:

(Lν)(x) = 0 (20)
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Define the probability current as the vector field:

j(x)
def
= div(D(x)ν(x))−A(x)ν(x) (21)

The stationarity condition in Equation (20) implies that j(x) is divergenceless. In the zero-current

case, the diffusion process, Y (t), is reversible, and the stationary density ν(x) is called the

equilibrium probability density of the diffusion [102].

In this case, the operator, L, is self-adjoint, in the sense that:

〈Lf, g〉ν = 〈f, Lg〉ν for all suitable test functions f, g (22)

where 〈·, ·〉ν denotes an L2 inner product weighted by the density, ν(x). This property implies that

the diffusion is ν-symmetric [103]:

ν(x)pt(x,y) = ν(y)pt(y,x) for all t > 0 (23)

where pt(x,y) denotes the transition probability density of Y (t). Indeed, Equation (22) is simply

an infinitesimal version of Equation (23), which is referred to as the detailed balance condition.

In the self-adjoint case, the drift is uniquely determined by the diffusion matrix and the stationary

density ν(x):

j(x) = 0 =⇒ A(x) =
1

ν(x)
div(D(x)ν(x)) (24)

Long-time stable explicit schemes adapted to this structure have been recently developed [92].

5.3. Splitting Approach to MD Simulation

We are now in a position to explain our general approach for deriving a long-time stable scheme

for Equation (14). Crucial to our approach is that in MD simulation, we usually have a formula for a

function proportional to the stationary density ν(x). Following [90], we can split Equation (14) into:

dY = −D(Y )∇Hν(Y )dt+ divD(Y )dt+
√
2kTB(Y )dW (25)

Ẏ = A(Y ) +D(Y )∇Hν(Y ) (26)

where we have introduced Hν(x) = −(log ν)(x). An exact splitting method preserves μ(dx). It is

formed by taking the exact solution (in law) of Equation (25) in composition with the exact flow

of Equation (26). The process produced by Equation (25) is self-adjoint with respect to ν(x).

Moreover, the stationarity of ν(x) implies that the flow of the ODE (26) preserves it. Since each

step is preservative, their composition is, too.

In place of the exact splitting, a Metropolized explicit integrator can be used for

Equation (25) [92], and a measure-preserving scheme can be designed to solve the ODE [72,104].

In [92], explicit schemes are introduced for Equation (25) that: (i) sample the exact equilibrium

probability density of the SDE when this density exists (i.e., whenever ν(x) is normalizable);

(ii) generates a weakly accurate approximation to the solution of Equation (14) at constant kT ;
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(iii) acquire higher order accuracy in the small noise limit, kT → 0; and (iv) avoid computing the

divergence of the diffusion matrix D(x). Compared to the methods in [72], the main novelty of these

schemes stems from (iii) and (iv). The resulting explicit splitting method is accurate, since it is an

additive splitting of Equation (14); and typically ergodic when the continuous process is ergodic [72].

This type of splitting of Equation (14) is quite natural and has been used before in

MD [43,87], dissipative particle dynamics [105,106] and the simulation of inertial particles [107].

Other closely related schemes for Equation (14) include Brünger-Brooks-Karplus (BBK) [35],

van Gunsteren and Berendsen (vGB) [108] and the Langevin-Impulse (LI) methods [41] and

quasi-symplectic integrators [44]. However, for general MD force fields, none of these explicit

integrators are long-time stable. Our framework to stabilize explicit MD integrators is the

Metropolis-Hastings algorithm.

5.4. Metropolis-Hastings Algorithm

A Metropolis-Hastings method is a Monte Carlo method for producing samples from a probability

distribution, given a formula for a function proportional to its density [74,75]. The algorithm consists

of two sub-steps: firstly, a proposal move is generated according to a transition density, g(x,y); and

secondly, this proposal move is accepted or rejected with a probability:

α(x,y) = 1 ∧ g(y,x)ν(y)

g(x,y)ν(x)
(27)

Standard results on Metropolis-Hastings methods can be used to classify this algorithm as

ergodic [100,109,110].

6. Conclusions

This paper provided an algorithmic introduction to time integrators for MD simulation. A quick

overview of existing algorithms was given. When the derivatives of the potential are bounded, it is

well known that these integrators work just fine: they are convergent on finite-time intervals and

possess an invariant measure that is nearby the Boltzmann-Gibbs density. However, in realistic

MD simulation, the derivatives of the potential are unbounded. This lack of regularity can cause

numerical instabilities or artifacts in explicit integrators. The paper demonstrated how a Metropolis

acceptance-rejection step can be added to explicit MD integrators to mitigate some of these

problems and, in principle, obtain long-time stable and finite-time accurate schemes. A MATLAB

implementation of Metropolis-corrected MD integrators was provided and used to compute the

velocity autocorrelation of a sea of Lennard-Jones particles at various densities between the solid and

liquid phases. The paper did not provide an in-depth review of the theory of Metropolis integrators,

which can be found elsewhere [72,73].

Calculating the force field at every step dominates the overall computational cost of MD

simulation. These force fields involve: bonded interactions and non-bonded Lennard-Jones and

electrostatic interactions. The calculation of bonded interactions is straightforward to vectorize and

scales like O(N). In addition, Lennard-Jones forces rapidly decay with interatomic distance. To a
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good approximation, every atom interacts only with neighbors within a sufficiently large ball. By

using data structures, like neighbor lists and cell linked lists, these interactions can be calculated

in O(N) steps, and therefore, the Lennard-Jones interactions can be calculated in O(N) steps [46].

On the other hand, the electrostatic energy between particles decays, like 1/r, where r denotes an

interatomic distance, which leads to long-range interactions between atoms. Unlike Lennard-Jones

interaction, this interaction cannot be cutoff without introducing large errors. In this case, one can

use sophisticated techniques, like the fast multipole method, to rigorously handle such interactions

in O(N) steps [39,58].

However, the effect of these ‘mathematical tricks’ for fast calculation of the force field can

become muted if the time step requirement for stability or accuracy becomes more severe in high

dimension. This can happen in the Metropolis integrator, if the acceptance probability in Step 2

of Algorithm 3.1 or Step 3 of Algorithm 3.2 deteriorates in high dimension. The scaling of

Metropolis algorithms has been quantified for the random walk Metropolis, hybrid Monte Carlo and

Metropolis-adjusted Langevin algorithm (MALA) [111–115]. Since the acceptance probability is

a function of an extensive quantity, the acceptance rate can artificially deteriorate with increasing

system size, unless the time step is reduced. Because high acceptance rates are required to

maintain dynamic accuracy, the dependence of the time step on system size limits the application

of Metropolized schemes to large-scale systems. Fortunately, this scalability issue can often be

resolved by using local, rather than global proposal moves, because the change in energy induced by

a local move is typically an intensive quantity. For molecular dynamics calculations, this approach

was pursued in [73]. Using dynamically consistent local moves (a so-called J-splitting [116]), it was

shown that in certain situations, a scalable Metropolis integrator can be designed; however, the extent

to which this strategy remedies the issue of high rejection rate in high dimension is not clear at this

point and should be tested in applications.
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Abstract: We review a selection of methods for performing enhanced sampling in

molecular dynamics simulations. We consider methods based on collective variable

biasing and on tempering, and offer both historical and contemporary perspectives. In

collective-variable biasing, we first discuss methods stemming from thermodynamic

integration that use mean force biasing, including the adaptive biasing force algorithm

and temperature acceleration. We then turn to methods that use bias potentials,

including umbrella sampling and metadynamics. We next consider parallel tempering

and replica-exchange methods. We conclude with a brief presentation of some

combination methods.

Keywords: collective variables; free energy; blue-moon sampling; adaptive-biasing

force algorithm; temperature-acceleration; umbrella sampling; metadynamics

1. Introduction

The purpose of molecular dynamics (MD) is to compute the positions and velocities of a set of

interacting atoms at the present time instant given these quantities one time increment in the past.
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Uniform sampling from the discrete trajectories one can generate using MD has long been seen as

synonymous with sampling from a statistical-mechanical ensemble; this just expresses our collective

wish that the ergodic hypothesis holds at finite times. Unfortunately, most MD trajectories are not

ergodic and leave many relevant regions of configuration space unexplored. This stems from the

separation of high-probability “metastable” regions by low-probability “transition” regions and the

inherent difficulty of sampling a 3N -dimensional space by embedding into it a one-dimensional

dynamical trajectory.

This review concerns a selection of methods to use MD simulation to enhance the sampling of

configuration space. A central concern with any enhanced sampling method is guaranteeing that

the statistical weights of the samples generated are known and correct (or at least correctable) while

simultaneously ensuring that as much of the relevant regions of configuration space are sampled.

Because of the tight relationship between probability and free energy, many of these methods are

known as “free-energy” methods. To be sure, there are a large number of excellent reviews of

free-energy methods in the literature (e.g., [1–5]). The present review is in no way intended to

be as comprehensive. As the title indicates, we will mostly focus on enhanced sampling methods of

three flavors: tempering, metadynamics, and temperature-acceleration. Along the way, we will point

out important related methods, but in the interest of brevity we will not spend much time explaining

these. The methods we have chosen to focus on reflect our own preferences to some extent, but

they also represent popular and growing classes of methods that find ever more use in biomolecular

simulations and beyond.

We divide our review into three main sections. In the first, we discuss enhanced sampling

approaches that rely on collective variable biasing. These include the historically important

methods of thermodynamic integration and umbrella sampling, and we pay particular attention

to the more recent approaches of the adaptive-biasing force algorithm, temperature-acceleration,

and metadynamics. In the second section, we discuss approaches based on tempering, which is

dominated by a discussion of the parallel tempering/replica exchange approaches. In the third

section, we briefly present some relatively new methods derived from either collective-variable-based

or tempering-based approaches, or their combinations.

2. Approaches Based on Collective-Variable Biasing

2.1. Background: Collective Variables and Free Energy

For our purposes, the term “collective variable” or CV refers to any multidimensional

function θ of 3N -dimensional atomic configuration x ≡ (xi|i = 1 . . . 3N). The functions θ1(x),

θ2(x),. . . ,θM(x) map configuration x onto an M -dimensional CV space z ≡ (zj|j = 1 . . .M),

where usually M � 3N . At equilibrium, the probability of observing the system at CV-point z is

the weight of all configurations x which map to z:

P (z) = 〈δ[θ(x)− z]〉 (1)
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The Dirac delta function picks out only those configurations for which the CV θ(x) is z, and 〈·〉
denotes averaging its argument over the equilibrium probability distribution of x. The probability

can be expressed as a free energy:

F (z) = −kBT ln 〈δ[θ(x)− z]〉 (2)

Here, kB is Boltzmann’s constant and T is temperature.

Local minima in F are metastable equilibrium states. F also measures the energetic cost of

a maximally efficient (i.e., reversible) transition from one region of CV space to another. If, for

example, we choose a CV space such that two well-separated regions define two important allosteric

states of a given protein, we could perform a free-energy calculation to estimate the change in

free energy required to realize the conformational transition. Indeed, the promise of being able

to observe with atomic detail the transition states along some pathway connecting two distinct states

of a biomacromolecule is strong motivation for exploring these transitions with CVs.

Given the limitations of standard MD, how does one “discover” such states in a proposed CV

space? A perfectly ergodic (infinitely long) MD trajectory would visit these minima much more

frequently than it would the intervening spaces, allowing one to tally how often each point in CV

space is visited; normalizing this histogram into a probability P (z) would be the most straightforward

way to compute F via Equation (2). In all too many actual cases, MD trajectories remain close to only

one minimum (the one closest to the initial state of the simulation) and only very rarely, if ever, visit

others. In the CV sense, we therefore speak of standard MD simulations failing to overcome barriers
in free energy. “Enhanced sampling” in this context refers then to methods by which free-energy

barriers in a chosen CV space are surmounted to allow as broad as possible an extent of CV space to

be explored and statistically characterized with limited computational resources.

In this section, we focus on methods of enhanced sampling of CVs based on MD simulations that

are directly biased on those CVs; that is, we focus on methods in which an investigator must identify

the CVs of interest as an input to the calculation. We have chosen to limit discussion to two broad

classes of biasing: those whose objective is direct computation of the gradient of the free energy

(∂F/∂z) at local points throughout CV space, and those in which non-Boltzmann sampling with bias

potentials is used to force exploration of otherwise hard-to-visit regions of CV space. The canonical

methods in these two classes are thermodynamic integration and umbrella sampling, respectively, and

a discussion of these two methods sets the stage for discussion of three relatively modern variants:

the Adaptive-Biasing Force Algorithm [6], Temperature-Accelerated MD [7] and Metadynamics [8].

2.2. Gradient Methods: Blue-Moon Sampling, Adaptive-Biasing Force Algorithm, and
Temperature-Accelerated Molecular Dynamics

2.2.1. Overview: Thermodynamic Integration

Naively, one way to have an MD system visit a hard-to-reach point z in CV space is simply to

create a realization of the configuration x at that point (i.e., such that θ(x) = z). This is an inverse

problem, since the number of degrees of freedom in x is usually much larger than in z. One way
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to perform this inversion is by introducing external forces that guide the configuration to the desired

point from some easy-to-create initial state; both targeted MD [9] and steered MD [10] are ways to

do this. Of course, one would like MD to explore CV space in the vicinity of z, so after creating

the configuration x, one would just let it run. Unfortunately, this would likely result in the system

drifting away from z rather quickly, and there would be no way from such calculations to estimate

the likelihood of observing an unbiased long MD simulation visit z. However, there is information

in the fact that the system drifts away; if one knows on average which direction and how strongly the

system would like to move if initialized at z, this would be a measure of negative gradient of the free

energy, −(∂F/∂z), or the “mean force”. We have then a glimpse of a three-step method to compute

F (i.e., the statistics of CVs) over a meaningfully broad extent of CV space:

(1) visit a select number of local points in that space, and at each one,

(2) compute the mean force, then

(3) use numerical integration to reconstruct F from these local mean forces; formally expressed as

F (z)− F (z0) =

∫ z

z0

(
∂F

∂z

)
dz (3)

Inspired by Kirkwood’s original suggestion involving switching parameters [11], such an approach is

generally referred to as “thermodynamic integration” or TI. TI allows us to reconstruct the statistical

weights of any point in CV space by accumulating information on the gradients of free energy at

selected points.

2.2.2. Blue-Moon Sampling

The discussion so far leaves open the correct way to compute the local free-energy gradients.

A gradient is a local quantity, so a natural choice is to compute it from an MD simulation localized

at a point in CV space by a constraint. Consider a long MD simulation with a holonomic constraint

fixing the system at the point z. Uniform samples from this constrained trajectory x(t) then represent

an ensemble at fixed z over which the averaging needed to convert gradients in potential energy

to gradients in free energy could be done. However, this constrained ensemble has the undesired

property that the velocities θ̇(x) are zero. This is a bit problematic because virtually none of the

samples plucked from a long unconstrained MD simulation (as is implied by Equation (1)), would

have θ̇ = 0, and θ̇ = 0 acts as a set of M unphysical constraints on the system velocities ẋ, since

θ̇j =
∑

i(∂θj/∂xi)ẋi. Probably the best-known example of a method to correct for this bias is the

so-called “blue-moon” sampling method [12–15] or the constrained ensemble method [16,17]. The

essence of the method is a decomposition of free energy gradients into components along the CV

gradients and thermal components orthogonal to them:

∂F

∂zj
= 〈bj(x) · ∇V (x)− kBT∇ · bj(x)〉θ(x)=z (4)

where 〈·〉θ(x)=z denotes averaging across samples drawn uniformly from the MD simulation

constrained at θ(x) = z, and the bj(x) is the vector field orthogonal to the gradients of every

component k of θ for k �= j:
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bj(x) · ∇θk(x) = δjk (5)

where δjk is the Kroenecker delta. (For brevity, we have omitted the consideration of holonomic

constraints other than that on the CV; the reader is referred to the paper by Ciccotti et al. for

details [15].) The vector fields bj for each θj can be constructed by orthogonalization. The first

term in the angle brackets in Equation (4) implements the chain rule one needs to account for how

energy V changes with z through all the ways z can change with x. The second term corrects for

the thermal bias imposed by the constraint.

Although nowhere near exhaustive, below is a listing of common types of problems to which

blue-moon sampling has been applied with some representative examples:

(1) sampling conformations of small flexible molecules and peptides [18–20];

(2) environmental effects on covalent bond formation/breaking (usually in combination with

ab initio MD) [21–27];

(3) solvation and non-covalent binding of small molecules in solvent [28–32];

(4) protein dimerization [33,34].

2.2.3. The Adaptive Biasing Force Algorithm

The blue-moon approach requires multiple independent constrained MD simulations to cover

the region of CV space in which one wants internal statistics. The care taken in choosing these

quadrature points can often dictate the accuracy of the resulting free energy reconstruction. It is

therefore sometimes advantageous to consider ways to avoid having to choose such points ahead of

time, and adaptive methods attempt to address this problem. One example is the adaptive-biasing

force (ABF) algorithm of Darve et al. [6,35] The essence of ABF is two-fold: (1) recognition that

external bias forces of the form ∇xθj (∂F/∂zj) for j = 1, . . . ,M exactly oppose mean forces and

should lead to more uniform sampling of CV space; and (2) that these bias forces can be converged

upon adaptively during a single unconstrained MD simulation.

The first of those two ideas is motivated by the fact that “forces” that keep normal MD simulations

effectively confined to free energy minima are mean forces on the collective variables projected onto

the atomic coordinates, and balancing those forces against their exact opposite should allow for

thermal motion to take the system out of those minima. The second idea is a bit more subtle; after

all, in a running MD simulation with no CV constraints, the constrained ensemble expression for

the mean force (Equation (4)) does not directly apply, because a constrained ensemble is not what

is being sampled. However, Darve et al. showed how to relate these ensembles so that the samples

generated in the MD simulation could be used to build mean forces [35]. Further, they showed using

a clever choice of the fields of Equation (4) an equivalence between (i) the spatial gradients needed

to computed forces, and (ii) time-derivatives of the CVs [6]:

∂F

∂zi
= −kBT

〈
d

dt

(
Mθ

dθi
dt

)〉
θ=z

(6)
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where Mθ is the transformed mass matrix given by

M−1
θ = JθM

−1Jθ (7)

where Jθ is the M × 3N matrix with elements ∂θi/∂xj (i = 1 . . .M , j = 1 . . . 3N ), and M is the

diagonal matrix of atomic masses. Equation (7) is the result of a particular choice for the fields bj(x).

This reformulation of the instantaneous mean forces computed on-the-fly makes ABF exceptionally

easy to implement in most modern MD packages. Darve et al. present a clear demonstration of the

ABF algorithm in a pseudocode [6] that attests to this fact.

ABF has found rather wide application in CV-based free energy calculations in recent years.

Below is a representative sample of some types of problems subjected to ABF calculations in the

recent literature:

(1) Peptide backbone angle sampling [36,37];

(2) Nucleoside [38], protein [39] and fullerene [40,41] insertion into a lipid bilayer;

(3) Interactions of small molecules with polymers in water [42,43];

(4) Molecule/ion transport through protein complexes [44–47] and DNA superstructures [48];

(5) Calculation of octanol-water partition coefficients [49,50];

(6) Large-scale protein conformational changes [51];

(7) Protein-nanotube [52] and nanotube-nanotube [53] association.

2.2.4. Temperature-Accelerated Molecular Dynamics

Both blue-moon sampling and ABF are based on statistics in the constrained ensemble. However,

estimation of mean forces need not only use this ensemble. One can instead relax the constraint and

work with a “mollified” version of the free energy:

Fκ(z) = −kBT ln 〈δκ [θ(x)− z]〉 (8)

where δκ refers to the Gaussian (or “mollified delta function”):

δκ =

√
βκ

2π
exp

[
−1

2
βκ |θ(x)− z|2

]
(9)

where β is just shorthand for 1/kBT . Since limβκ→∞ δκ = δ, we know that limβκ→∞ Fκ = F . One

way to view this Gaussian is that it “smoothes out” the true free energy to a tunable degree; the factor

1/
√
βκ is a length-scale in CV space below which details are smeared.

Because the Gaussian has continuous gradients, it can be used directly in an MD simulation.

Suppose we have a CV space θ(x), and we extend our MD system to include variables z such that

the combined set (x, z) obeys the following extended potential:

U(x, z) = V (x) +
M∑
j=1

1

2
κ |θj(x)− zj|2 (10)

where V (x) is the interatomic potential, and κ is a constant. Clearly, if we fix z, then the resulting

free energy is to within an additive constant the mollified free energy of Equation (8). (The additive
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constant is related to the prefactor of the mollified delta function and has nothing to do with the

number of CVs.) Further, we can directly express the gradient of this mollified free energy with

respect to z: [54]

∇zFκ = −〈κ [θ(x)− z]〉 (11)

This suggests that, instead of using constrained ensemble MD to accumulate mean forces, we

could work in the restrained ensemble and get very good approximations to the mean force. By

“restrained”, we refer to the fact that the term giving rise to the mollified delta function in the

configurational integral is essentially a harmonic restraining potential with a “spring constant” κ.

In this restrained-ensemble approach, no velocities are held fixed, and the larger we choose κ the

more closely we can approximate the true free energy. Notice however that large values of κ could

lead to numerical instabilities in integrating equations of motion, and a balance should be found. (In

practice, we have found that for CVs with dimensions of length, values of κ less than about 1,000

kcal/mol/Å2 can be stably handled, and values of around 100 kcal/mol/Å2 are typically adequate.)

Temperature-accelerated MD (TAMD) [7] takes advantage of the restrained-ensemble approach

to directly evolve the variables z in such a way to accelerate the sampling of CV space. First, consider

how the atomic variables x evolve under the extended potential (assuming Langevin dynamics):

miẍi = −∂V (x)

∂xi

− κ
m∑
j=1

[θj(x)− zj]
∂θj(x)

∂xi

− γmiẋi + ηi(t; β) (12)

Here, mi is the mass of xi, γ is the friction coefficient for the Langevin thermostat, and η is the

thermostat white noise satisfying the fluctuation-dissipation theorem at physical temperature β−1:

〈ηi(t; β)ηj(t′; β)〉 = β−1γmiδijδ(t− t′) (13)

Key to TAMD is that the z are treated as slow variables that evolve according to their own equations

of motion, which here we take as diffusive (though other choices are possible [7]):

γ̄m̄j żj = κ [θj(x)− zj] + ξj(t; β̄) (14)

Here, γ̄ is a fictitious friction, m̄j is a mass, and the first term on the right-hand side represents

the instantaneous force on variable zj , and the second term represents thermal noise at the fictitious

thermal energy β̄−1 �= β−1.

The advantage of TAMD is that if (1) γ̄ is chosen sufficiently large so as to guarantee that the

slow variables indeed evolve slowly relative to the fundamental variables; and (2) κ is sufficiently

large such that θ(x(t)) ≈ z(t) at any given time, then the force acting on z is approximately equal

to minus the gradient of the free energy (Equation (11)) [7]. This is because the MD integration

repeatedly samples κ [θ(x)− z] for an essentially fixed (but actually very slowly moving) z, so z

evolution effectively feels these samples as a mean force. In other words, the dynamics of z(t)

is effectively

γ̄m̄j żj = −∂F (z)

∂zj
+ ξj(t; β̄) (15)
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This shows that the z-dynamics describes an equilibrium constant-temperature ensemble at fictitious
temperature β̄−1 acted on by the “potential” F (z), which is the free energy evaluated at the physical
temperature β−1. That is, under TAMD, z conforms to a probability distribution of the form

exp
[
−β̄F (z; β)

]
, whereas under normal MD it would conform to exp [−βF (z; β)]. The all-atom

MD simulation (at β) simply serves to approximate the local gradients of F (z). Sampling is

enhanced by taking β̄−1 > β−1, which has the effect of attenuating the ruggedness of F . TAMD

therefore can accelerate a trajectory z(t) through CV space by increasing the likelihood of visiting

points with relatively low physical Boltzmann factors. This borrows directly from the main idea

of adiabatic free-energy dynamics [55] (AFED), in that one deliberately makes some variables hot

(to overcome barriers) but slow (to keep them adiabatically separated from all other variables). In

TAMD, however, the use of the mollified free energy means no cumbersome variable transformations

are required. (The authors of AFED refer to TAMD as “driven”-AFED, or d-AFED [56].) It

is also worth mentioning in this review that TAMD borrows heavily from an early version of

metadynamics [57], which was formulated as a way to evolve the auxiliary variables z on a mollified

free energy. However, unlike metadynamics (which we discuss below in Section 2.3.3), there is no

history-dependent bias in TAMD.

Unlike TI, ABF, and the methods of umbrella sampling and metadynamics discussed in the next

section, TAMD is not a method for direct calculation of the free energy. Rather, it is a way to

overcome free energy barriers in a chosen CV space quickly without visiting irrelevant regions of

CV space. (However, we discuss briefly a method in Section 4.2.2in which TAMD gradients are used

in a spirit similar to ABF to reconstruct a free energy.) That is, we consider TAMD a way to efficiently

explore relevant regions CV space that are practically inaccessible to standard MD simulation. It is

also worth pointing out that, unlike ABF, TAMD does not operate by opposing the natural gradients

in free energy, but rather by using them to guide accelerated sampling. ABF can only use forces in

locations in CV space the trajectory has visited, which means nothing opposes the trajectory going

to regions of very high free energy. However, under TAMD, an acceleration of β̄−1= 6 kcal/mol on

the CVs will greatly accelerate transitions over barriers of 6-12 kcal/mol, but will still not (in theory)

accelerate excursions to regions requiring climbs of hundreds of kcal/mol. TAMD and ABF have in

common the ability to handle rather high-dimensional CVs.

Although it was presented theoretically in 2006 [7], TAMD was not applied directly to large-scale

MD until much later [58]. Since then, there has been growing interest in using TAMD in a variety of

applications requiring enhanced sampling:

(1) TAMD-enhanced flexible fitting of all-atom protein and RNA models into low-resolution

electron microscopy density maps [59,60];

(2) Large-scale (interdomain) protein conformational sampling [58,61,62];

(3) Loop conformational sampling in proteins [63];

(4) Mapping of diffusion pathways for small molecules in globular proteins [64,65];

(5) Vacancy diffusion [66];

(6) Conformational sampling and packing in dense polymer systems [67].
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Finally, we mention briefly that TAMD can be used as a quick way to generate trajectories

from which samples can be drawn for subsequent mean-force estimation for later reconstruction

of a multidimensional free energy; this is the essence of the single-sweep method [68], which

is an efficient means of computing multidimensional free energies. Rather than using straight

numerical TI, single sweep posits the free energy as a basis function expansion and uses standard

optimization methods to find the expansion coefficients that best reproduce the measured mean

forces. Single-sweep has been used to map diffusion pathways of CO and H2O in myoglobin [64,65].

2.3. Bias Potential Methods: Umbrella Sampling and Metadynamics

2.3.1. Overview: Non-Boltzmann Sampling

In the previous section, we considered methods that achieve enhanced sampling by using mean

forces: in TI, these are integrated to reconstruct a free energy; in ABF, these are built on-the-fly to

drive uniform CV sampling; and in TAMD, these are used on-the-fly to guide accelerated evolution

of CVs. In this section, we consider methods that achieve enhanced sampling by means of controlled

bias potentials. As a class, we refer to these as non-Boltzmann sampling methods.

Non-Boltzmann sampling is generally a way to derive statistics on a system whose energetics

differ from the energetics used to perform the sampling. Imagine we have an MD system with bare

interatomic potential V (x), and we add a bias ΔV (x) to arrive at a biased total potential:

Vb(x) = V (x) + ΔV (x) (16)

The statistics of the CVs on this biased potential are then given as

Pb(z) =

∫
dx e−βV0(x)e−βΔV (x)δ [θ(x)− z]∫

dx e−βV0(x)e−βΔV (x)

=

∫
dx e−βV0(x)e−βΔV δ [θ(x)− z]∫

dx e−βV0(x)

∫
dx e−βV0(x)∫

dx e−βV0(x)e−βΔV (x)

=

〈
e−βΔV (x)δ [θ(x)− z]

〉
〈e−βΔV (x)〉 (17)

where 〈·〉 denotes ensemble averaging on the unbiased potential V (x). Further, if we take the bias

potential ΔV to be explicitly a function only of the CVs θ, then it becomes invariant in the averaging

of the numerator thanks to the delta function, and we have

Pb(x) =
e−βΔV (z) 〈δ [θ(x)− z]〉

〈e−βΔV [θ(x)]〉 (18)

Finally, since the unbiased statistics are P (z) = 〈δ [θ(x)− z]〉, we arrive at

P (z) = Pb(z)e
βΔV (z)

〈
e−βΔV [θ(x)]

〉
(19)
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Taking samples from an ergodic MD simulation on the biased potential Vb, Equation (19) provides

the recipe for reconstructing the statistics the CVs would present were they generated using the

unbiased potential V . However, the probability P (z) is implicit in this equation, because〈
e−βΔV

〉
=

∫
dzP (z)e−βΔV [θ(x)] (20)

This is not really a problem, since we can treat
〈
e−βΔV

〉
as a constant we can get from

normalizing Pb(z)e
βΔV (z).

How does one choose ΔV so as to enhance the sampling of CV space? Evidently, from the

standpoint of non-Boltzmann sampling, the closer the bias potential is to the negative free energy

−F (z), the more uniform the sampling of CV space will be. To wit: if ΔV [θ(x)] = −F [θ(x)],

then eβΔV (z) = e−βF (z) = P (z), and Equation (19) can be inverted for Pb to yield

Pb(z) =
1

〈eβF (z)〉 =
1∫

dzP (z)eβF (z)

=
1∫

dze−βF eβF
=

1∫
dz

(21)

So we see that taking the bias potential to be the negative free energy makes all states z in CV space

equiprobable. This is indeed the limit to which ABF strives by applying negative mean forces, for

example [6].

We usually do not know the free energy ahead of time; if we did, we would already know the

statistics of CV space and no enhanced sampling would be necessary. Moreover, perfectly uniform

sampling of the entire CV space is usually far from necessary, since most CV spaces have many

irrelevant regions that should be ignored. And in reference to the mean-force methods of the last

section, uniform sampling is likely not necessary to achieve accurate mean force values; how good

an estimate of ∇F is at some point z0 should not depend on how well we sampled at some other

point z1. Yet achieving uniform sampling is an idealization since, if we do, this means we know the

free energy. We now consider two other biasing methods that aim for this ideal, either in relatively

small regions of CV space using fixed biases, or over broader extents using adaptive biases.

2.3.2. Umbrella Sampling

Umbrella sampling is the standard way of using non-Boltzmann sampling to overcome free

energy barriers. In its debut [69], umbrella sampling used a function w(x) that weights

hard-to-sample configurations, equivalent to adding a bias potential of the form

ΔV (x) = −kBT lnw(x) (22)

w is found by trial-and-error such that configurations that are easy to sample on the unbiased

potential are still easy to sample; that is, w acts like an “umbrella” covering both the easy- and

hard-to-sample regions of configuration space. Nearly always, w is an explicit function of the CVs,

w(x) = W [θ(x)].

Coming up with the umbrella potential that would enable exploration of CV space with a single

umbrella sampling simulation that takes the system far from its initial point is not straightforward.
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Akin to TI, it is therefore advantageous to combine results from several independent trajectories,

each with its own umbrella potential that localizes it to a small volume of CV space that overlaps

with nearby volumes. The most popular way to combine the statistics of such a set of independent

umbrella sampling runs is the weighted-histogram analysis method (WHAM) [70].

To compute statistics of CV space using WHAM, one first chooses the points in CV space that

define the little local neighborhoods, or “windows” to be sampled and chooses the bias potential used

to localize the sampling. Not knowing how the free energy changes in CV space makes the first task

somewhat challenging, since more densely packed windows are preferred in regions where the free

energy changes rapidly; however, since the calculations are independent, more can be added later

if needed. A convenient choice for the bias potential is a simple harmonic spring that tethers the

trajectory to a reference point zi in CV space:

ΔVi(x) =
1

2
κ |θ(x)− zi|2 (23)

which means the dynamics of the atomic variables x are identical to Equation (12) at fixed z = zi.

The points {zi} and the value of κ (which may be point-dependent) must be chosen such that θ [x(t)]

from any one window’s trajectory makes excursions into the window of each of its nearest neighbors

in CV space.

Each window-restrained trajectory is directly histogrammed to yield apparent (i.e., biased)

statistics on θ; let us call the biased probability in the ith window Pb,i(z). Equation (19) again

gives the recipe to reconstruct the unbiased statistics Pi(z) for z in the window of zi:

Pi(z) = Pb,i(z)e
1
2
βκ|z−zi|2

〈
e−β 1

2
κ|θ(x)−zi|2

〉
(24)

We could use Equation (24) directly assuming the biased MD trajectory is ergodic, but we know that

regions far from the reference point will be explored very rarely and thus their free energy would

be estimated with large uncertainty. This means that, although we can use sampling to compute Pb,i

knowing it effectively vanishes outside the neighborhood of zi, we cannot use sampling to compute〈
e−β 1

2
κ|θ(x)−zi|2

〉
.

WHAM solves this problem by renormalizing the probabilities in each window into a single

composite probability. Where there is overlap among windows, WHAM renormalizes such that the

statistical variance of the probability is minimal. That is, it treats the factor
〈
e−β 1

2
κ|θ(x)−zi|2

〉
as an

undetermined constant Ci for each window, and solves for specific values such that the composite

unbiased probability P (z) is continuous across all overlap regions with minimal statistical error. An

alternative to WHAM, termed “umbrella integration”, solves the problem of renormalization across

windows by constructing the composite mean force [71,72].

The literature on umbrella sampling is vast (by simulation standards), so we present here a very

condensed listing of some of its more recent application areas with representative citations:

(1) Small molecule conformational sampling [73–76];

(2) Protein-folding [77–79] and large-scale protein conformational sampling [80–83];

(3) Protein-protein/peptide-peptide interactions [84–92];
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(4) DNA conformational changes [93] and DNA-DNA interactions [94–96];

(5) Binding and association free-energies [97–107];

(6) Adsorption on and permeation through lipid bilayers [108–117];

(7) Adsorption onto inorganic surfaces/interfaces [118,119];

(8) Water ionization [120,121];

(9) Phase transitions [122,123];

(10) Enzymatic mechanisms [124–132];

(11) Molecule/ion transport through protein complexes [133–140] and other

macromolecules [141,142].

2.3.3. Metadynamics

As already mentioned, one of the difficulties of the umbrella sampling method is the choice

and construction of the bias potential. As we already saw with the relationship among TI, ABF,

and TAMD, an adaptive method for building a bias potential in a running MD simulation may be

advantageous. Metadynamics [8,143] represents just such a method.

Metadynamics is rooted in the original idea of “local elevation” [144], in which a supplemental

bias potential is progressively grown in the dihedral space of a molecule to prevent it from remaining

in one region of configuration space. However, at variance with metadynamics, local elevation does

not provide any means to reconstruct the unbiased free-energy landscape and as such it is mostly

aimed at fast generation of plausible conformers.

In metadynamics, configurational variables x evolve in response to a biased total potential:

V (x) = V0(x) + ΔV (x, t) (25)

where V0 is the bare interatomic potential and ΔV (x, t) is a time-dependent bias potential. The key

element of metadynamics is that the bias is built as a sum of Gaussian functions centered on the

points in CV space already visited:

ΔV [θ(x), t] = w
∑

t′ = τG, 2τG, . . .

t′ < t

exp

(
−|θ [x(t)]− θ [x(t′)]|2

2δθ2

)
(26)

Here, w is the height of each Gaussian, τG is the size of the time interval between successive

Gaussian depositions, and δθ is the Gaussian width. It has been first empirically [145] then

analytically [146] demonstrated that in the limit in which the CVs evolve according to a Langevin

dynamics, the bias indeed converges to the negative of the free energy, thus providing an optimal bias

to enhance transition events. Multiple simulations can also be used to allow for a quicker filling of

the free-energy landscape [147].

The difference between the metadynamics estimate of the free energy and the true free energy can

be shown to be related to the diffusion coefficient of the collective variables and to the rate at which

the bias is grown. A possible way to decrease this error as a simulation progresses is to decrease the
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growth rate of the bias. Well-tempered metadynamics [148] used an optimized schedule to decrease

the deposition rate of bias by modulating the Gaussian height:

w = ω0τGe
−ΔV (θ,t)

kBΔT (27)

Here, ω0 is the initial “deposition rate”, measured Gaussian height per unit time, and ΔT is a

parameter that controls the degree to which the biased trajectory makes excursions away from

free-energy minima. It is possible to show that using well-tempered metadynamics the bias does

not converge to the negative of the free-energy but to a fraction of it, thus resulting in sampling

the CVs at an effectively higher temperature T + ΔT , where normal metadynamics is recovered

for ΔT → ∞. We notice that other deposition schedules can be used aimed, e.g., at maximizing

the number of round-trips in the CV space [149]. Importantly, it is possible to recover equilibrium

Boltzmann statistics of unbiased collective variables from samples drawn throughout a well-tempered

metadynamics trajectory [150]; it does not seem clear that one can do this from an ABF trajectory.

Finally, it is possible to tune the shape of the Gaussians on the fly using schemes based on the

geometric compression of the phase space or on the variance of the CVs [151].

In the well-tempered ensemble, the parameter ΔT can be used to tune the size of the explored

region, in a fashion similar to the fictitious temperature in TAMD. So both TAMD and well-tempered

metadynamics can be used to explore relevant regions of CV space while surmounting relevant free

energy barriers. However, there are important distictions between the two methods. First, the main

source of error in TAMD rests with how well mean-forces are approximated, and adiabatic separation,

realizable only when the auxiliary variables z never move, is the only way to guarantee they are

perfectly accurate. In practical application, TAMD never achieves perfect adiabatic separation. In

contrast, because the deposition rate of decreases as a well-tempered trajectory progresses, errors

related to poor adiabatic separation are progressively damped. Second, as already mentioned,

TAMD alone cannot report the free energy, but it also is therefore not practically limited by the

dimensionality of CV space; multicomponent gradients are just as accurately calculated in TAMD

as are single-component gradients. Metadynamics, as a histogram-filling method, must exhaustively

sample a finite region around any point to know the free energy and its gradients are correct, which

can sometimes limit its utility.

Metadynamics is a powerful method whose popularity continues to grow. In either its original

formulation or in more recent variants, metadynamics has been employed successfully in several

fields, some of which we point out below with some representative examples:

(1) Chemical reactions [57,152];

(2) Peptide backbone angle sampling [153–155];

(3) Protein folding [156–159];

(4) Protein aggregation [160];

(5) Molecular docking [161–163] ;

(6) Conformational rearrangement of proteins [164];

(7) Crystal structure prediction [165];

(8) Nucleation and crystal growth [166,167];



135

(9) and proton diffusion [168].

2.4. Some Comments on Collective Variables

2.4.1. The Physical Fidelity of CV-Spaces

Given a potential V (x), any multidimensional CV θ(x) has a mathematically determined free

energy F (z), and in principle the free-energy methods we describe here (and others) can use and/or

compute it. However, this does not guarantee that F is meaningful, and a poor choice for θ(x) can

render the results of even the most sophisticated free-energy methods useless for understanding the

nature of actual metastable states and the transitions among them. This puts two major requirements

on any CV space:

(1) Metastable states and transition states must be unambiguously identified as energetically
separate regions in CV space.

(2) The CV space must not contain hidden barriers.

The first of these may seem obvious: CVs are chosen to provide a low-dimensional description of

some important process, say a conformational change or a chemical reaction or a binding event, and

one can not describe a process without being able to discriminate states. However, it is not always

easy to find CVs that do this. Even given representative configurations of two distinct metastable

states, standard MD from these two different initial configurations may sample partially overlapping

regions of CV space, making ambiguous the assignation of an arbitrary configuration to a state. It

may be in this case that the two representative configurations actually belong to the same state, or

that if there are two states, that no matter what CV space is overlaid, the barrier separating them

is so small that, on MD timescales, they can be considered rapidly exchanging substates of some

larger state.

However, a third possibility exists: the two MD simulations mentioned above may in fact

represent very different states. The overlap might just be an artifact of neglecting to include one

or more CVs that are truly necessary to distinguish those states. If there is a significant free energy

barrier along this neglected variable, an MD simulation will not cross it, yet may still sample regions

in CV space also sampled by an MD simulation launched from the other side of this hidden barrier.

And it is even worse: if TI or umbrella sampling is used along a pathway in CV space that neglects

an important variable, the free-energy barriers along that pathway might be totally meaningless.

Hidden barriers can be a significant problem in CV-based free-energy calculations. Generally

speaking, one only learns of a hidden barrier after postulating its existence and testing it with a

new calculation. Detecting them is not straightforward and often involves a good deal of CV space

exploration. Methods such as TAMD and well-tempered metadynamics offer this capability, but

much more work could be done in the automated detection of hidden barriers and the “right” CVs

(e.g., [169–171]).

An obvious way of reducing the likelihood of hidden barriers is to use increase the dimensionality

of CV space. TAMD is well-suited to this because it is a gradient method, but standard metadynamics,
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because it is a histogram-filling method, is not. A recent variant of metadynamics termed

“reconnaissance metadynamics” [172] does have the capability of handling high-dimensional CV

spaces. In reconnaissance metadynamics, bias potential kernels are deposited at the CV space points

identified as centers of clusters detected and measured by an on-the-fly clusterization scheme. These

kernels are hyperspherically symmetric but grow as cluster sizes grow and are able to push a system

out of a CV space basin to discover other basins. As such, reconnaissance metadynamics is an

automated way of identifying free-energy minima in high-dimensional CV spaces. It has been

applied the identification of configurations of small clusters of molecules [173] and identification

of protein-ligand binding poses [162].

2.4.2. Some Common and Emerging Types of CVs

There are very few “best practices” codified for choosing CVs for any given system. Most CVs

are developed ad hoc based on the processes that investigators would like to study, for instance,

center-of-mass distance between two molecules for studying binding/unbinding, or torsion angles

for studying conformational changes, or number of contacts for studying order-disorder transitions.

Cartesian coordinates of centers of mass of groups of atoms are also often used as CVs, as they are

functions of these coordinates.

The potential energy V (x) is also an example of a 1-D CV, and there have been several

examples of using it in CV-based enhanced sampling methods, such as umbrella sampling [174],

metadynamics [175] well-tempered metadynamics [176]. In a recent work based on steered MD, it

has been shown that also relevant reductions of the potential energy (e.g., the electrostatic interaction

free-energy) can be used as effective CVs [177]. The basic rationale for enhanced sampling of V is

that states with higher potential energy often correspond to transition states, and one need make no

assumptions about precise physical mechanisms. Key to its successful use as a CV, as it is for any

CV, is a proper accounting for its entropy; i.e., the classical density-of-states.

Coarse-graining of particle positions onto Eulerian fields was used early on in enhanced

sampling [178]; here, the value of the field at any Cartesian point is a CV, and the entire field

represents a very high-dimensional CV. This idea has been put to use recently in the “indirect

umbrella sampling” method of Patel et al. [179] for computing free energies of solvation, and string

method (Section 4.2.1) calculations of lipid bilayer fusion [180]. In a similar vein, there have been

recent attempts at variables designed to count the recurrency of groups of atoms positioned according

to given templates, such as α-helices paired β-strands in proteins [181].

We finally mention the possibility of building collective variables based on set of frames which

might be available from experimental data or generated by means of previous MD simulations. Some

of these variables are based on the idea of computing the distances between the present configuration

and a set of precomputed snapshots. These distances, here indicated with di, where i is the index of

the snapshot, are then combined to obtain a coarse representation of the present configuration, which

is then used as a CV. As an example, one might combine the distances as

s =

∑
i e

−λdii∑
i e

−λdi
(28)
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If the parameter λ is properly chosen, this function returns a continuous interpolation between the

indexes of the snapshots which are closer to the present conformation. If the snapshots are disposed

along a putative path connecting two experimental structures, this CV can be used as a path CV

to monitor and bias the progression along the path [182]. A nice feature of path CVs is that it is

straighforward to also monitor the distance from the putative path. The standard way to do it is by

looking at the distance from the closest reference snapshot, which can be approximately computed

with the following continuous function:

z = −λ−1 log
∑
i

e−λdi (29)

This approach, modified to use internal coordinates, was used recently by Zinovjev et al. to study

the aqueous phase reaction of pyruvate to salycilate, and in the CO bond-breaking/proton transfer in

PchB [183].

A generalization to multidimensional paths (i.e., sheets) can be obtained by assigning a generic

vector vi to each of the precomputed snapshots and computing its average [184]:

s =

∑
i e

−λdivi∑
i e

−λdi
(30)

3. Tempering Approaches

“Tempering” refers to a class of methods based on increasing the temperature of an MD system

to overcome barriers. Tempering relies on the fact that according to the Arrhenius law the rate at

which activated (barrier-crossing) events happen is strongly dependent on the temperature. Thus, an

annealing procedure where the system is first heated and then cooled allows one to produce quickly

samples which are largely uncorrelated. The root of all these ideas indeed lies in the simulated

annealing procedure [185], a well-known method successfully used in many optimization problems.

3.1. Simulated Tempering

Simulated annealing is a form of Markov-chain Monte Carlo sampling where the temperature is

artificially modified during the simulation. In particular, sampling is initially done at a temperature

high enough that the simulation can easily overcome high free-energy barriers. Then, the temperature

is decreased as the simulation proceeds, thus smoothly bringing the simulation to a local energy

minimum. In simulated annealing, a critical parameter is the cooling speed. Indeed, the probability

to reach the global minimum grows as this speed is decreased.

The search for the global minimum can be interpreted in the same way as sampling an

energy landscape at zero temperature. One could thus imagine to use simulated annealing to

generate conformations at, e.g., room temperature by slowly cooling conformations starting at high

temperature. However, the resulting ensemble will strongly depend on the cooling speed, thus

possibly providing a biased result. A better approach consists of the the so-called simulated

tempering methods [186]. Here, a discrete list of temperatures Ti, with i ∈ 1 . . . N are chosen a
priori, typically spanning a range going from the physical temperature of interest to a temperature
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which is high enough to overcome all relevant free energy barriers. (Note that we do not have

to stipulate a CV-space in which those barriers live.) Then, the index i, which indicates at which

temperature the system should be simulated, is evolved with time. Two kind of moves are possible:

(a) normal evolution of the system at fixed temperature, which can be done with a usual Markov

Chain Monte Carlo or molecular dynamics and (b) change of the index i at fixed atomic coordinates.

It is easy to show that the latter can be performed as a Monte Carlo step with acceptance equal to

α = min

(
1,

Zj

Zi

e
− U(x)

kBTj
+

U(x)
kBTi

)
(31)

where i and j are the indexes corresponding to the present temperature and the new one. The weights

Zi should be choosen so as to sample equivalently all the value of i. It must be noticed that also

within molecular dynamics simulations only the potential energy usually appears in the acceptance.

This is due to the fact that the velocities are typically scaled by a factor
√

Tj

Ti
upon acceptance. This

scaling leads to a cancellation of the contribution to the acceptance coming from the kinetic energy.

Ultimately, this is related to the fact that the ensemble of velocities is analytically known a priori,
such that it is possible to adapt the velocities to the new temperature instantaneously.

Estimating these weights Zi is nontrivial and typically requires a preliminary step. Moreover, if

this estimate is poor the system could spend no time at the physical temperature, thus spoiling the

result. Iterative algorithms for adjusting these weights have been proposed (see e.g., [187]). We also

observe that since the temperature sets the typical value of the potential energy, an effect much similar

to that of simulated tempering with adaptive weights can be obtained by performing a metadynamics

simulation using the potential energy as a CV (Section 2.4.2).

3.2. Parallel Tempering

A smart way to alleviate the issue of finding the correct weights is that of simulating several

replicas at the same time [188,189]. Rather that changing the temperature of a single system, the

defining move proposal in parallel tempering consists of a coordinate swap between two T -replicas

with acceptance probability

α = min

(
1, e

(
1

kBTj
− 1

kBTi

)
[U(xj)−U(xi)]

)
(32)

This method is the root of a class of techniques collectively known as “replica exchange” methods,

and the latter name is often used as a synonimous of parallel tempering. Notably, within this

framework it is not necessary to precompute a set of weights. Indeed, the equal time spent by

each replica at each temperature is enforced by the constraint that only pairwise swaps are allowed.

Moreover, parallel tempering has an additional advantage: since the replicas are weakly coupled and

only interact when exchanges are attempted, they can be simulated on different computers without

the need of a very fast interconnection (provided, of course, that a single replica is small enough to

run on a single node).

The calculation of the acceptance is very cheap as it is based on the potential energy which is

often computed alongside force evaluation. Thus, one could in theory exploit also a large number
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of virtual, rejected exchanges so as to enhance statistical sampling [190,191]. Since efficiency

of parallel tempering simulation can deteriorate if the stride between subsequent exchanges is

too large [192,193], a typical recipe is to choose this stride as small as possible, with the only

limitation of avoiding extra costs due to replica synchronization. One can push this idea further

and implement asynchronous versions of parallel tempering, where overhead related to exchanges is

minimized [193,194]. One should be however aware that, especially at high exchange rate, artifacts

coming from e.g., the use of wrong thermostating schemes could spoil the results [195,196].

Parallel tempering is popular in simulations of protein conformational sampling [197,198],

protein folding [189,199–203] and aggregation [204,205], due at least in part to the fact that one

need not choose CVs to use it, and CVs for describing these processes are not always straightforward

to determine.

3.3. Generalized Replica Exchange

The difference between the replicas is not restricted to be a change in temperature. Any control

parameter can be changed, and even the expression of the Hamiltonian can be modified [206]. In

the most general case every replica is simulated at a different temperature (and or pressure) and a

different Hamiltonian, and the acceptance reads

α = min

⎛⎜⎝1,
e
−
(

Ui(xj)

kBTi
+

Uj(xi)

kBTj

)

e
−
(

Ui(xi)

kBTi
+

Uj(xj)

kBTj

)
⎞⎟⎠ (33)

Several recipes for choosing the modified Hamiltonian have been proposed in the

literature [207–219]. Among these, a notable idea is that of solute tempering [208,217] which is used

for the simulation of solvated biomolecules. Here, only the Hamiltonian of the solute is modified.

More precisely, one could notice that a scaling of the Hamiltonian by a factor λ is completely

equivalent to a scaling of the temperature by a factor λ−1. Hamiltonian scaling however can take

advantage of the fact that the total energy of the system is an extensive property. Thus, one can

limit the scaling to the portion of the system which is considered to be interesting and which has the

relevant bottlenecks. With solute tempering, the solute energy is scaled whereas the solvent energy is

left unchanged. This is equivalent to keeping the solute at a high effective temperature and the solvent

at the physical temperature. Since in the simulation of solvated molecules most of the atoms belong

to the solvent, this turns in a much smaller modification to the explored ensemble when compared

with parallel tempering. In spite of this, the effect on the solute resemble much that of increasing the

physical temperature.

A sometimes-overlooked subtlety in solute tempering is the choice for the treatment of

solvent-solute interactions. Indeed, whereas solute-solute interactions are scaled with a factor λ < 1

and solvent-solvent interactions are not scaled, any intermediate choice (scaling factor between λ

and 1) could intuitively make sense for solvent-solute coupling. In the original formulation, the

authors used a factor (1 + λ)/2 for the solute-solvent interaction. This choice however was later

shown to be suboptimal [217,220], and refined to be
√
λ. This latter choice appears to be more
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physically sound, since it allows one to just simulate the biased replicas with a modified force-field.

Indeed, if one scales the charges of the solute by a factor
√
λ, electrostatic interactions are changed

by a factor λ for solute-solute coupling and
√
λ for solute-solvent coupling. The same is true for

Lennard-Jones terms, albeit in this case it depends on the specific combination rules used. Notably,

the same rules for scaling were used in a previous work [209]. As a final remark, we point out that

solute tempering can be also used in a serial manner a là simulated tempering, in a simulated solute

tempering scheme [221].

3.4. General Comments

In general, the advantage of these tempering methods over straighforward sampling can be

rationalized as follows. A simulation is evolved so as to sample a modified ensemble by e.g.,

raising temperature or artificially modifying the Hamiltonian. The change in the ensemble could

be drastic, so that trying to extract canonical averages by reweighting from such a simulation would

be pointless. For this reason, a ladder of intermediate ensembles is built, interpolating between the

physical one (i.e., room temperature, physical Hamiltonian) and the modified one. Then, transitions

between consecutive steps in this ladder (or, in parallel schemes, coordinate swaps) are performed

using a Monte Carlo scheme. Assuming that the dynamics of the most modified ensemble is ergodic,

independent samples will be generated every time a new simulation reaches the highest step of the

ladder. Thus, efficiency of these methods is often based on the evaluation of the round trip time

required for a replica to traverse the entire ladder.

Tempering methods are thus relying on the ergodicity of the most modified ensemble. This

assumption is not always correct. A very simple example is parallel tempering used to accelerate the

sampling over an entropic barrier. Since the height of an entropic barrier grows with the temperature,

in this conditions the barrier in the most modified ensembles are unaffected [222]. Moreover, since a

lot of time is spent in sampling states in non-physical situations (e.g., high temperature), the overall

computational efficiency could even be lower than that of straightforward sampling. Real applications

are often in an intermediate situation, and usefulness of parallel tempering should be evaluated case

by case.

The number of intermediate steps in the ladder can be shown to grow with the square root of the

specific heat of the system in the case of parallel tempering simulations. No general relationship can

be drawn in the case of Hamiltonian replica exchange, but one can expect approximately that the

number of replicas should be proportional to the square root of the number of degrees of freedom

affected by the modification of the Hamiltonian. Thus, Hamiltonian replica exchange methods could

be much more effective than simple parallel tempering as they allow the effort to be focused and the

number of replicas to be minimized.

Parallel tempering has the advantage that all the replicas can be analyzed to obtain meaningful

results, e.g., to predict the melting curve of a molecule. This procedure should be used with caution,

especially with empirically parametrized potentials, which are often tuned to be realistic only at room

temperature. On the other hand, Hamiltonian replica exchange often relies on unphysically modified

ensembles which have no interest but for the fact that they increase ergodicity.
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As a final note, we observe that data obtained at different temperature (or with modified

Hamiltonians) could be combined to enhance statistics at the physical temperature [223]. However,

the effectiveness of this data recycling is limited by the fact that high temperature replicas visit

very rarely low energy conformations, thus decreasing the amount of additional information that can

be extracted.

4. Combinations and Advanced Approaches

4.1. Combination of Tempering Methods and Biased Sampling

The algorithms presented in Section 3 and based on tempering are typically considered to be

simpler to apply when compared with those discussed in Section 2 and based on biasing the sampling

of selected collective variables. Indeed, by avoiding the problem of choosing collective variables

which properly describe the reaction path, most of the burden of setting up a simulation is removed.

However, this comes at a price: considering the computational cost, tempering methods are extremely

expensive. This cost is related to the fact that they are able to accelerate all degrees of freedom to the

same extent, without an a priori knowledge of the sampling bottlenecks. In this sense, Hamiltonian

replica exchange methods are in an intermediate situation, since they are typically less expensive than

parallel tempering but allow to embed part of the knowledge of the system in the simulation set up.

Because of the conceptual difference between tempering methods and CV-based methods, these

approaches can be easily and efficiently combined. As an example, the combination of metadynamics

and parallel tempering can be used to take advantage of the known bottlenecks with biased collective

variables at the same time accelerating the overall sampling with parallel tempering [156]. In that

work, the free energy landscape for the folding of a small hairpin was computed by biasing a small

number of selected CVs (gyration radius and the number of hydrogen bonds). These CVs alone are

not enough to describe folding, as can be easily shown by performing a metadynamics simulation

using these CVs. However, the combination with parallel tempering allowed acceleration of all

the degrees of freedom blindly and reversible folding of the hairpin. This combined approach also

improves the results when compared with parallel tempering alone, since it accelerates exploration

of phase-space. Moreover, since parallel tempering samples the unbiased canonical distribution,

it is very difficult to use it to compute free-energy differences which are larger than a few kBT .

The metadynamics bias can be used to disfavor, e.g., the folded state so as to better estimate the

free-energy difference between the folded and unfolded states.

It is also possible to combine metadynamics with the solute tempering method so as to decrease

the number of required replicas and the computational cost [224]. As an alternative to solute

tempering, metadynamics in the well-tempered ensemble can be effectively used to enhance the

acceptance in parallel tempering simulations and to decrease the number of necessary replicas [176].

This combination of parallel tempering with well-tempered ensemble can be pushed further and

combined with metadynamics on a few selected degrees of freedom [225]. As a final note, bias

exchange metadynamics [226] combines metadynamics and replica echange in a completely different

spirit: every replica is run using a different CV, thus allowing many CVs to be tried at the same time.
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This technique has been succesfully applied to several problems. For a recent review, we refer the

reader to [227].

4.2. Some Methods Based on TAMD

4.2.1. String Method in Collective Variables

The string method is generally an approach to find pathways of minimal energy connecting two

points in phase space [228]. When working in CVs, the string method is used to find minimal

free-energy paths (MFEP’s) [229]. String method calculations involve multiple replicas, each

representing a point zs in CV space at position s along a discretized string connecting two points

of interest (reactant and product states, say). The forces on each replica’s zs are computed and their

zs’s updated, as in TAMD, with the addition of forces that act to keep the z’s equidistant along the

string (so-called reparameterization forces):

γ̄żj(s, t) =
∑
k

[
M̃jk(x(s, t))κ[θk(x(s, t))− zk(s, t)]

]
+ ηz(t) + λ(s, t)

∂zj
∂s

(34)

Here, M̃jk is the metric tensor mapping distances on the manifold of atomic coordinates to the

manifold of CV space, η is thermal noise and λ(s, t)
∂zj
∂s

represents the reparameterization force

tangent to the string that is sufficient to maintain equidistant images along the string. String method

has been used to study activation of the insulin-receptor kinase [63], docking of insulin to its

receptor [230], and myosin [231]. In these examples, the update of the string coordinates is done

at a lower frequency than the atomic variables in each image.

In contrast, in the on-the-fly variant of string method in CVs, the friction on the zs’s is set high

enough to make the effective averaging of the forces approach the true mean forces, and the z updates

occur in lockstep with the x updates of the MD system [232]. Just as in TAMD, the atomic variables

obey an equation of motion like Equation (12) tethering them to the zs. Stober and Abrams recently

demonstrated an implementation of on-the-fly string method to study the thermodynamics of the

normal-to-amyloidogenic transition of β2-microglobulin [233]. Unique in this approach was the

construction of a single composite MD system containing 27 individual β2 molecules restrained to

points on 3 × 3 × 3 grid inside a single large solvent box. Zinovjev et al. used a combination

of the on-the-fly string method and of path-collective variables (see Equations (28) and (29)) in a

quantum-mechanics/molecular-mechanics approach to study a methyltransferase reaction [234].

4.2.2. On-the-Fly Free Energy Parameterization

Because TAMD provides mean-force estimates as it is exploring CV space, it stands to reason

that those mean forces could be used to compute a free energy. In contrast, in the single-sweep

method [68], the TAMD forces are only used in the CV space exploration phase, not the free-energy

calculation itself. Recently, Abrams and Vanden-Eijnden proposed a method for using TAMD
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directly to parameterize a free energy; that is, to determine the best set of some parameters λ on

which a free energy of known functional form depends [235]:

F (z) = F (z;λ∗) (35)

The approach, termed “on-the-fly free energy parameterization”, uses forces from a running TAMD

simulation to progressively optimize λ using a time-averaged gradient error:

E(λ) =
1

2t

∫ t

0

|∇zF [z(s),λ(t)] + κ [θ(x(s))− z(s)]|2 ds (36)

If constructed so that F is linear in λ = (λ1, λ2, . . . , λM), minimization of E can be expressed as a

simple linear algebra problem ∑
j

Aijλj = bi, i = 1, . . . ,M (37)

and the running TAMD simulation provides progressively better estimates of A and b until the λ

converge. In the cited work, it was shown that this method is an efficient way to derive potentials of

mean force between particles in coarse-grained molecular simulations as basis-function expansions.

It is currently being investigated as a means to parameterize free energies associated with

conformational changes of proteins.

Chen, Cuendet, and Tuckermann developed a very similar approach that in addition to

parameterizing a free energy using d-AFED-computed gradients uses a metadynamics-like bias on

the potential [236]. These authors demonstrated efficient reconstruction of the four-dimensional

free-energy of vacuum alanine dipeptide with this approach.

5. Conclusions

In this review, we have summarized some of the current and emerging enhanced sampling

methods that sit atop MD simulation. These have been broadly classified as methods that use

collective variable biasing and methods that use tempering. CV biasing is a much more prevalent

approach than tempering, due partially to the fact that it is perceived to be cheaper, since tempering

simulations are really only useful for enhanced sampling of configuration space when run in parallel.

CV-biasing also reflects the desire to rein in the complexity of all-atom simulations by projecting

configurations into a much lower dimensional space. (Parallel tempering can be thought of as

increasing the dimensionality of the system by a factor equal to the number of simulated replicas.)

But the drawback of all CV-biasing approaches is the risk that the chosen CV space does not

provide the most faithful representation of the true spectrum of metastable subensembles and the

barriers that separate them. Guaranteeing that sampling of CV space is not stymied by hidden

barriers must be of paramount concern in the continued evolution of such methods. For this reason,

methods that specifically allow broad exploration of CV space, like TAMD (which can handle large

numbers of CVs) and well-tempered metadynamics will continue to be valuable. So too will parallel

tempering because its broad sampling of configuration space can be used to inform the choice of
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better CVs. Accelerating development of combined CV-tempering methods bodes well for enhanced

sampling generally.

Although some of these methods involve time-varying forces (ABF, TAMD, and metadynamics),

all methods we’ve discussed have the underlying rationale of the equilibrium ensemble. TI uses the

constrained ensemble, ABF and metadynamics ideally converge to an ensemble in which a bias erases

free-energy variations, and TAMD samples an attenuated/mollified equilibrium ensemble. There is

an entirely separate class of methods that inherently rely on non-equilibrium thermodynamics. We

have not discussed at all the several free-energy methods based on non-equilibrium MD simulations;

we refer interested readers to the article by Christoph Dellago and Gerhard Hummer in this issue.

Finally, we have also not really touched on any of the practical issues of implementing and using

these methods in conjunction with modern MD packages (e.g., NAMD [237], LAMMPS [238],

Gromacs [239], Amber [240], and CHARMM [241], to name a few). At least two packages (NAMD

and CHARMM) have native support for collective variable biasing, and NAMD in particular offers

both native ABF and a TcL-based interface which has been used to implement TAMD [58]. The

native collective variable module for NAMD has been recently ported to LAMMPS [242]. Gromacs

offers native support for parallel tempering. Generally speaking, however, modifying MD codes

to handle CV-biasing and multiple replicas is not straightforward, since one would like access to

the data structures that store coordinates and forces. A major help in this regard is the PLUMED

package [243,244], which patches a variety of MD codes to enable users to use many of the

techniques discussed here.
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Abstract: As shown by Jarzynski, free energy differences between equilibrium states

can be expressed in terms of the statistics of work carried out on a system during

non-equilibrium transformations. This exact result, as well as the related Crooks

fluctuation theorem, provide the basis for the computation of free energy differences

from fast switching molecular dynamics simulations, in which an external parameter is

changed at a finite rate, driving the system away from equilibrium. In this article, we

first briefly review the Jarzynski identity and the Crooks fluctuation theorem and then

survey various algorithms building on these relations. We pay particular attention to

the statistical efficiency of these methods and discuss practical issues arising in their

implementation and the analysis of the results.

Keywords: fast switching simulations; non-equilibrium work theorem; fluctuation

theorem; non-equilibrium molecular dynamics

1. Introduction

The calculation of free energies from atomistic simulations is of great importance in many

applications, ranging from the prediction of the phase behavior of a certain substance to the

calculation of ligand affinities in drug design. Since the computation of free energies (or, more

precisely, of free energy differences) involves the determination of entropic contributions and,
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hence, the estimation of phase space volumes [1], free energy calculations are computationally

very demanding in most cases. Therefore, a significant effort has been devoted to the development

of more efficient free energy calculation algorithms. This endeavor has received new momentum

with Jarzynski’s discovery of a very general relation between equilibrium free energies and

non-equilibrium work [2,3], which has inspired several molecular dynamics-based algorithms for

free energy computations. In this article, we will give an overview of these methods.

According to the maximum work theorem, a consequence of the second law of thermodynamics,

the amount of work W performed on a system during a non-equilibrium transformation is larger

than the free energy difference ΔF between the equilibrium states corresponding to the transition

end points:

〈W 〉 ≥ ΔF (1)

Equivalently, the amount of work that can be extracted from a system is bounded from above by

the free energy difference. In the above equation, the equal sign holds only if the transformation

is carried out reversibly, maintaining equilibrium at all times. The angular brackets on the left-hand

side of the maximum work theorem indicate an average over many realizations of the non-equilibrium

process. If one considers a macroscopic system, for instance, a piston compressing a gas enclosed

in a cylinder, the average is not necessary, because every realization of the process yields, for all

practical purposes, the same amount of work W , if the transformation is carried out following

the same protocol. This is essentially a consequence of the central limit theorem for thermal

fluctuations. In the case of a microscopic system, however, fluctuations become important, and

different realizations of the transformation typically produce different work values, leading to a

statistical distribution of W . For instance, stretching a biomolecule with atomic force microscopes

or optical tweezers will cost a different amount work for each repetition of the experiment. In some

cases, the work expended on the system might even be smaller than the free energy difference,

seemingly violating the maximum work theorem and, hence, the second law of thermodynamics.

As shown by Jarzynski in 1997 [2,3], the work fluctuations resulting for microscopic systems can

be accounted for in an exact way, transforming the maximum work theorem into an equality:〈
e−βW

〉
= e−βΔF (2)

Here, β = 1/kBT is the reciprocal temperature of the equilibrium state from which the transformation

is started, and kB is the Boltzmann constant. Remarkably, this result, now commonly referred to as

Jarzynski equation or Jarzynski non-equilibrium work theorem, relates the statistics of irreversible

work carried out on the system, while it is driven away from equilibrium, to an equilibrium free

energy difference. A closely connected result is the Crooks fluctuation theorem [4–6], which relates

the equilibrium free energy difference to the work distributions of the forward and reversed process.

In general, processes during which work is performed on or by the system drive the system

away from equilibrium, such that the phase space distribution obtained at the end of the process

may differ strongly from the equilibrium distribution to which the system relaxes after the external

perturbation has been stopped. For instance, a piston pushed quickly into a gas-filled cylinder

generates non-equilibrium states with strong flows markedly different from the static equilibrium
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state to which the gas eventually relaxes after the piston has reached its final state. At first sight, it is

therefore surprising that equilibrium properties, such as free energy differences, can be extracted from

non-equilibrium trajectories. As discussed in the following sections of this paper, a closer analysis

reveals that averaging over the work exponential is equivalent to removing the bias introduced during

the driving process. It is this unbiasing that ultimately permits the extraction of equilibrium properties

(as we will discuss in Section 5, in principle, one can determine the entire equilibrium distribution

and not only the free energy) from non-equilibrium trajectories. Thus, the non-equilibrium work

theorem can be viewed as a prescription of how to compensate for the effects of manipulations that

drive the system into non-equilibrium rather than a tool that illuminates the nature of non-equilibrium

processes. Nevertheless, it is remarkable that the bias has a very simple exponential form and can be

expressed in terms of the work only.

The Jarzynski non-equilibrium work theorem, as well as the Crooks fluctuation theorem

provide the framework for the interpretation of single-molecule pulling experiments [7–9], in which

non-equilibrium effects can never be fully avoided. These exact results can also be exploited to

devise computer simulation algorithms for the calculation of free energies. In this article, we

review several computational approaches based on the collection of work statistics in a fast-switching

non-equilibrium setting, paying particular attention to the accuracy and efficient implementation of

these methods compared to conventional free energy computation methods (see [10–12]). In the

remainder of this article, we will first state the Jarzynski and Crooks theorems more explicitly and

discuss the conditions under which they apply. After that, we will survey several fast switching

algorithms in which free energies are determined from sets of molecular dynamics trajectories

obtained while changing a control parameter, thereby exerting work on the system. We conclude

with a brief summary and outlook to future possibilities and applications.

2. Jarzynski Identity and Crooks Fluctuation Theorem

To set the notation, consider a classical system with energy H(x, λ) depending on the microscopic

state x of the system, as well as on a parameter λ. The microscopic state x is specified by the positions

of all particles in the system and, if necessary, also by all momenta. The parameter λ is a control

parameter that can be changed externally, for instance, the volume of the cylinder containing the

particles or an external field. According to the basic laws of statistical mechanics, the free energy

difference between the two equilibrium states A and B corresponding to the values λA and λB,

respectively, of the order parameter is given by:

ΔF = FB − FA = −kBT ln
ZB

ZA

(3)

where ZA =
∫
dx exp{−βH(x, λA)} and ZB =

∫
dx exp{−βH(x, λB)} are the canonical

partition functions of the two equilibrium states (up to a combinatorial prefactor irrelevant for our

considerations). The free energy difference ΔF is the work required to change the external parameter

from λA to λB in a reversible process. Such a reversible transformation could be realized, for

instance, by changing the parameter λ infinitely slowly, while keeping the system in contact with

a heat bath. In this case, the free energy difference is equal to the work of the system.
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Instead of changing the control parameter λ very slowly, one could change it at a finite rate over a

time interval τ , following a certain protocol λ(t), where λ(0) = λA and λ(τ) = λB. In general, such

a fast switching of the control parameter drives the system away from equilibrium in an irreversible
way, such that the work required to do the change exceeds the free energy difference, as posited by

the maximum work theorem of Equation (1). To be more specific, the work performed on the system

along a particular trajectory x(t) is the energy change caused by changes of the control parameter

accumulated along the trajectory:

W [x(t), λ(t)] =

∫ τ

0

∂H(x(t), λ)

∂λ

∣∣∣∣
λ=λ(t)

λ̇(t) dt (4)

where λ̇(t) is the time derivative of λ(t). Note that this work depends both on the protocol λ(t) as well

as on the particular trajectory x(t) followed by the system. The average appearing on the left-hand

side of Equation (1) is over many repetitions of the switching process starting from initial conditions

distributed according to the equilibrium distribution ρ(x) ∝ exp(−βH(x, λA)) for control parameter

λA. In a computer simulation, one could realize such a process by sampling initial conditions from

a canonical distribution and then integrating the underlying equations of motion, while at the same

time changing the control parameter λ according to the protocol λ(t).

Jarzynski has shown [2,3] that averaging over the exponential of the work exp(−βW (τ)) rather

than the work, turns the maximum work theorem into an equality, 〈exp{−βW [x(t), λ(t)]}〉 =

exp{−βΔF}. It is important to realize that the average over the work exponential involves two

averages, one over the distribution of initial conditions and another one over the set of trajectories

that originate from a particle initial condition. For deterministic dynamics, the initial condition

determines the entire trajectory, x(t), but for stochastic dynamics, the system evolves in different

ways, even if one repeatedly starts from the same initial condition. Hence, for stochastic dynamics,

the average appearing in the Jarzynski equation also requires an average over noise histories.

The Jarzynski equation is an exact result that holds under very general conditions. The

requirements are that initially, the system must be in equilibrium and that for a fixed control

parameter, the dynamics conserves the equilibrium distribution corresponding to that value of the

control parameter. The latter condition is satisfied by most types of dynamics usually used in

computer simulations, including Newtonian, thermostated, Langevin and Monte Carlo dynamics.

It is worth pointing out that it is not necessary that the system be in an equilibrium state at the end

of the transformation process or relax towards equilibrium after the control parameter switching is

completed. Furthermore, it is interesting that the Jarzynski equation holds, even if the switching

is carried out according to different (though prescribed) protocols provided that λ(0) = λA and

λ(τ) = λB, i.e., all protocols start at λA at time 0 and finish at λB at time τ . After Jarzynski’s

seminal work [2], in which the Jarzynski equality was derived for systems evolving deterministically

with and without coupling to a heat bath, several other proofs were provided, for instance, based

on a master equation [3], for Markovian dynamics satisfying detailed balance [5,13], for dynamical

systems conserving the canonical distribution [14] or from the Feynman–Kac theorem [7].

In the limiting cases of infinitely fast switching and infinitely slow switching, the Jarzynski

equality reduced to two well-known results. For instantaneous switching, τ → 0, the initial and
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final point of a trajectory are identical, as the system has no time to evolve. In this case, the work

carried out on the system at a particular microscopic state x equals the difference in energy evaluated

for the two values of the control parameter:

W (x) = H(x, λB)−H(x, λA) (5)

The Jarzynski equation then becomes:

e−βΔF =
〈
e−β[H(x,λB)−H(x,λA)]

〉
λA

(6)

where the subscript next to the angular bracket indicates that the average has to be carried out with

respect to the equilibrium distribution at λA. The above equation is the central result of free energy

perturbation theory [15] and is often used to compute free energy differences. In the opposite limit

of infinitely slow switching, τ → ∞, the system has time to equilibrate for every intermediate value

of the control parameter, such that the Jarzynski equation together with Equation (4) implies:

ΔF =

∫ λB

λA

〈
∂H(x, λ)

∂λ

〉
λ

dλ (7)

This expression provides the basis for the thermodynamic integration method [16], in which

equilibrium simulations are carried out for different, but fixed values of the control parameter λ

to compute the average energy derivatives 〈∂H/∂λ〉λ. The free energy difference is then obtained

by numerical integration, for instance, by using the Simpson rule or more sophisticated integration

schemes. The maximum work theorem of Equation (1) also immediately follows from the Jarzynski

equation by virtue of Jensen’s inequality, 〈exp(−x)〉 ≥ exp(−〈x〉).
As mentioned in the introduction, the Jarzynski equation can be viewed as a way to remove the

bias introduced by the switching process into the phase space distribution obtained at the end of the

process. Following similar considerations as those used to derive the Jarzynski equality, one can

prove that for any phase space function A(x) the following equation holds [4,7,17]:

〈A(x)〉eq,λB
= 〈A(x(τ))e−β[W (τ)−ΔF ]〉non-eq (8)

Here, the angular brackets on the left-hand side indicate an equilibrium average for the control

parameter fixed at λB, and the average on the right-hand side is an average over non-equilibrium

pathways generated with protocol λ(t) just as in the Jarzynski equations. To make this difference even

more explicit, we have added the subscripts eq and non-eq to the equilibrium and non-equilibrium

average, respectively. In the above equation, x(τ) refers to the endpoints of the non-equilibrium

trajectories. The Jarzynski equation is simply obtained by setting A(x) = 1. Equation (8) implies that

equilibrium averages can be computed by reweighting the non-equilibrium distribution obtained as a

result of the switching procedure by exp(−βW + βΔF ). In particular, the equilibrium distribution

for λB is obtained by setting A(x) = δ(x− x(τ)), where δ(x) is the Dirac delta function:

ρeq(x, λB) = 〈δ(x− x(τ))e−β[W (τ)−ΔF ]〉non-eq (9)
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Hence, in principle, all equilibrium properties for λB (and with appropriate modifications, also for

all intermediate values λ(t) of the control parameter) can be extracted from a set of non-equilibrium

trajectories obtained from simulation or experiment.

If the dynamics of the system not only conserves the equilibrium distribution for a fixed control

parameter, but is also microscopically reversible, i.e., if it satisfies detailed balance, the work

distribution for the forward process is simply related to that of the process carried out with the

time reversed protocol. More specifically, the distribution P (W ) of work W observed in repeated

realizations of the switching process is given by:

P (W ) = 〈δ(W −W [x(t), λ(t)])〉A (10)

where the average is over initial conditions of the equilibrium ensemble A and over pathways starting

from these initial conditions under the action of the protocol λ(t). Now, consider the time inverted

protocol λR(t) = λ(τ − t). The distribution PR(W ), observed for the reverse process, in which the

control parameter is changed from λB back to λA, can be written as:

PR(W ) = 〈δ(W −W [x(t), λR(t)])〉B (11)

where, now, the average is over initial conditions from the equilibrium ensemble B with trajectories

evolving, while the control parameter follows the inverted protocol λR(t). Crooks has shown that

for dynamics that is microscopically reversible, the work distributions P (W ) and PR(W ) for the

forward and reverse process, respectively, are related by [5,6]:

P (W ) = PR(−W )eβ(W−ΔF ) (12)

This exact result, known as the Crooks fluctuation theorem, also serves as a basis for various free

energy calculation methods, as explained in detail in subsequent sections.

3. Implementing Fast Switching Simulations

Jarzynski’s non-equilibrium work theorem and the Crooks fluctuation theorem suggest interesting

algorithms for the calculation of free energy differences. The power of these algorithms derives

from the fact that all quantities appearing in these relations can be easily determined. The simplest

of these algorithms consists in the following steps. First, one needs to prepare initial conditions

distributed according to the Boltzmann–Gibbs distribution. This can be achieved using a variety

of methods, for instance, canonical Monte Carlo simulation, possibly combined with enhanced

sampling methods, such as parallel replica sampling, or with thermostated molecular dynamics. To

improve the efficiency of the free energy calculation, it is important to make sure that these initial

conditions are sufficiently decorrelated.

From these initial conditions, one then starts trajectories of the desired length that are integrated,

while, at the same time, changing the control parameter according to the protocol λ(t). Both the

choice of the parameter λ used to drive the transformation, as well as the shape of the protocol

influence the efficiency of the calculation, as described in detail below. One can compute the
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dynamics of the system based on stochastic equations of motion, such as the Langevin equation,

or deterministic equations of motion, such as Newton’s equations with or without thermostat. Along

the computed trajectories, one then has to compute the work W carried out on the system by changing

the control parameter. This is most easily done by dividing the basic molecular dynamics steps into

two sub-steps. In the first sub-step, the state x(t +Δt) of the system at time t +Δt is computed by

carrying out an integration step with the control parameter fixed at value λ(t). In the second sub-step,

one then changes the control parameter from λ(t) to λ(t + Δt), while keeping the state x(t + Δt)

of the system unchanged. Only in this second sup-step is work carried out on the system. In this

two-step procedure, the work carried out on the system along a particular trajectory up to time t+Δt

is given by:

W (t+Δt) = W (t) +H(xt+Δt, λt+Δt)−H(xt+Δt, λt) (13)

where xt ≡ x(t) and λt ≡ λ(t) are the state of the system and the value of the control parameter at

time t, respectively. From the work values collected in this way for the forward process, and possibly

also for the backward process, one can then determine the free energy difference by applying the

types of analyses discussed in the next section.

An important choice one has to make in the context of fast switching free energy computations

is how to allocate computing time. In particular, one has to decide whether to generate many short

trajectories with a large switching rate or fewer and longer trajectories along which the system is

driven more gently. Without enhanced sampling schemes, as those discussed in subsequent sections,

one generally expects the slow switching regime to give more accurate free energy estimates for

a given amount of computing time [18]. As a rule of thumb, one should carry out the switching

slowly enough, such that the standard deviation of the work values does not exceed kBT . In this slow

switching regime, the statistical error obtained with a given amount of computing time grows slowly

with the switching rate. It is nevertheless more advantageous to compute several trajectories at a

moderate switching rate than one single long trajectory, because then, an error estimate for the free

energy can be obtained in a straightforward manner. Furthermore, multiple trajectories can be run

in parallel to exploit the capabilities of parallel processing machines. Another important choice to

make in fast switching simulations concerns the direction in which the transformation is carried out.

Interestingly, it can be shown that the direction in which more work is dissipated is computationally

beneficial [19]. This formal result is consistent with experience in free energy calculations using

perturbation theory. In the calculation of chemical potentials, for instance, test particle insertion

typically produces a larger variation in the energy change compared to particle removal and leads to

more accurate estimates of the chemical potential [1].

As discussed above, the statistical error of a free energy computed via fast switching strongly

depends on the rate at which the system is driven out of equilibrium. However, while the switching

rate is certainly the most important parameter, also the particular shape of the protocol λ(t) for a

given total switching time τ plays an important role in determining the accuracy of the free energy

estimate. Since the Jarzynski equality and the Crooks fluctuation theorem hold for arbitrary protocols,

one can exploit this freedom to design protocols that optimize the free energy computation. Recently,

Schmiedl and Seifert have addressed a related question, asking how the protocol should be designed
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to minimize the average work expended during the non-equilibrium transformation for a given total

of τ [20]. Their analysis, carried out for a particle dragged through a fluid and for a particle

in a harmonic trap with changing strength, indicates that, surprisingly, the optimum protocol has

discontinuous jumps, both at the beginning and at the end of the process. This result is in contrast

to an earlier linear-response analysis [21], which implied that the optimum protocol is smooth and

free of jumps. In the cases studied by Schmiedl and Seifert, the optimum protocol with jumps led

to a reduction of the dissipated work by up to 12% compared to the case with a continuous protocol

changing linearly in time. A subsequent numerical study of a non-linear system carried out by Then

and Engel [22] showed that the optimum protocol can have one, two or even more jumps. Steps

occur also in the optimum protocol for underdamped Langevin dynamics, for which also delta-like

singularities appear at the start and the end of the switching process, effectively kicking the system

discontinuously [23].

While, in general, protocols in which the dissipated work is small are expected to yield a more

accurate free energy estimate, there is no simple relation between the average work and the statistical

error in the free energy. Hence, a protocol optimized with respect to the work does not necessarily

minimize the statistical error. However, numerical protocol optimizations conducted for various

models indicate that control parameter steps at the start and the end of the protocol (but never in

between) are beneficial also for free energy computations [24]. These steps are most pronounced in

the fast switching regime and disappear for slow switching. For small switching rates, the minimum

work protocol and the minimum error protocol are identical, but for large switching rates, that may

differ. In some cases the minimum error protocol even yields an average work that is larger than that

of a linear protocol without steps. While appropriate steps in the protocol can lead to a considerable

reduction of the computational cost of fast switching free energy calculations, such large savings

typically occur only in switching regimes where the straightforward application of the Jarzynski

equality is impractical. Whether work biased sampling schemes (discussed in Section 6) may serve

to leverage the potential power of discontinuous protocols is currently an open question.

4. Analysis of Non-Equilibrium Free Energy Calculations

The simplest, but also most error-prone, method to obtain free energies from one-sided

non-equilibrium simulations is a direct evaluation of the exponential estimator:

ΔF = −kBT ln
〈
e−βW

〉
≈ −kBT ln

n∑
i=1

e−βWi/n (14)

where Wi are the work values obtained in n independent non-equilibrium runs. If the work

distribution is broad, with a variance var(W ) 
 (kBT )
2, then the estimate will tend to be

dominated by only a few trajectories [19]. All others have negligible weight, resulting not only

in sampling inefficiency, but also a systematic bias of the free energy estimate (i.e., the average of

ΔF , obtained in repeated sampling with a fixed number n of trajectories, deviates from the exact

value [25]). The resulting systematic errors can be estimated and at least partly corrected [17,26–28].

Alternatively, the width of the work distribution can be reduced by breaking the transformation up
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into segments [18,29,30]. However, the computational cost of re-equilibration at intermediate stages

can be significant. The bias can also be eliminated by using cumulant estimators [2,18], in particular,

the second-order approximation:

ΔF ≈ 〈W 〉 − β var(W )/2 (15)

However, while eliminating the bias of the exponential estimator, the cumulant approximation is only

approximate and, thus, has a systematic error if the work distribution deviates from a Gaussian. Other

approaches using the tail statistics of work values have also been proposed [31,32]. In closing the

discussion of the direct estimator, we note that the width of the work distribution is closely related to

the amount of energy dissipated in the non-equilibrium transformation:

〈W 〉 −ΔF ≈ β var(W )/2 (16)

Large variance, and, thus, large dissipation, arises from hysteresis effects and can be minimized by

optimising the transformation protocol with respect to its time dependence [20] and the choice of

control parameter.

More accurate and asymptotically unbiased free energy estimates can be obtained from

two-sided simulations by using the Crooks relation. By exploiting the analogy between equilibrium

perturbation theory and non-equilibrium simulations, one can adapt Bennett’s acceptance ratio as the

estimator [33,34]. It requires solving an implicit relation:

nf∑
i=1

1

1 +
nf

nb
eβ(Wi−ΔF )

=

nb∑
i=1

1

1 + nb

nf
eβ(W i+ΔF )

(17)

where Wi and W i are the work values obtained on the nf and nb forward and reverse transformations,

respectively. This equation can be solved numerically, e.g., by using the Newton–Raphson method.

Note that the work values, W i, on the reversed path have the opposite sign.

The analogy to the equilibrium method also allows us to adapt two-sided cumulant estimators [35]

to non-equilibrium work distributions [18] or to use Bennett’s overlapping histogram method [33].

While less efficient as a free energy estimator than the acceptance ratio method, the histogram method

provides us with a test of consistency between forward and reverse transformations. According to

Equation (12), a plot of the logarithm of P (W )/PR(−W ) should be a straight line as a function of

W with slope β. Deviations point to sampling issues or other problems. Another approach [36] for

the calculation of free energies from non-equilibrium switching simulations relies on the ideas of

waste-recycling Monte Carlo [37].

5. Calculating Potentials of Mean Force

Potentials of mean force (PMF) G(q) along a chosen coordinate q = q(x) are defined as:

G(q) = −kBT ln

∫
dxe−βH(x)δ[q − q(x)] (18)

up to an arbitrary constant. The coordinate q depends on the phase space coordinate x and, thus,

fluctuates along a trajectory. To apply the Jarzynski equality, one would need to make q a control
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parameter equivalent to λ. However, in molecular simulations, one may not be able to (or want to)

control q explicitly, e.g., by applying a holonomic constraint. Instead, it may be easier to restrain

q, for instance, by imposing harmonic biasing potentials, as in umbrella sampling. Even if such

bias potentials are explicit functions of time, e.g., by moving the center of the harmonic bias, one

can obtain equilibrium PMFs from an extension of the Jarzynski equality [7]. The central relation

is Equation (9), which allows us to obtain an estimate of the equilibrium phase space density by

reweighting trajectory data. If the time-dependent biasing potential is of the form V = V [q(x), t],

then the equilibrium PMF in the absence of the bias V , up to a time-dependent constant, can be

recovered by weighting trajectory points q[x(t)] with the Boltzmann factor of the work minus the

energy stored in the pulling spring:

G(q) = −kBT ln
〈
δ[q − q[x(t)]]e−β[W (t)−V [q[x(t)],t]

〉
(19)

In principle, this relation applies at every time, t. In practice, q values at time t will be concentrated

in a narrow region, whose location depends on the bias, V , and its history. Therefore, to obtain a

complete PMF over a range of q values, one should combine results at different times t. In the original

derivation, the histogram-reweighting procedure of Ferrenberg and Swendsen [38] was adapted for

non-equilibrium PMF calculations [7,17]:

G(q) = −kBT ln

∑
t
〈δ[q−q(t)] exp[−βW (t)]〉

〈exp[−βq(t)]〉∑
t

exp[−βV (q,t)]
〈exp[−βW (t)]〉

(20)

where the sums extend over different time points t. This is not the only possible way to combine

histograms obtained at different times, and other procedures have been suggested [39–41].

In many practical applications, the biasing potentials V are harmonic. In such “steered molecular

dynamics” simulations and similar approaches [42–45], one can obtain estimates of the PMF

using approximate formalisms that involve the system’s free energy difference ΔF (t) and its time

dependence. In the limit of very stiff pulling springs V (q, t) = k[q − z(t)]2/2, constraining q to a

prescribed path z(t) with large k, one can use the “stiff-spring approximation” of Park et al. [46].

In this limit, q is almost a control parameter, which results in an approximate relation between the

system free energy difference ΔF (t) and the PMF G(q):

G[q = q(t)] ≈ ΔF (t)− 1

2kv2

(
ΔF̈ (t)

β
−ΔḞ (t)2

)
(21)

where we assumed, for simplicity, that the spring moves at a constant velocity v, i.e., z(t) = vt, and

ΔḞ = dF (t)/dt. More accurate approaches using the same information, ΔF (t) and its first two

time derivatives, have been derived on the basis of the Weierstrass transform [17,47]:

G

(
q = vt− ΔḞ (t)

kv

)
≈ ΔF (t)− ΔḞ (t)2

2kv2

+
1

2β
ln

(
1− ΔF̈ (z)

kv2

)
(22)
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Note that the PMF is calculated at a shifted position and that the argument of the logarithm is positive

by definition, being proportional to a variance [47]. In practical applications of Equation (21) or

(22), ΔF (t) can be obtained from either unidirectional simulations using the Jarzynski equality or

from bidirectional sampling using, e.g., the method of Minh and Adib [48], building on the Crooks

fluctuation theorem. Minh and Adib [48] have also developed histogram-based PMF reconstructions

that combine information from simulations starting at different transition endpoints, i.e., with initial

biases V (q, 0) and V (q, τ) and evolving as V (q, t) and V (q, τ − t).

6. Importance Sampling of Fast-Switching Trajectories

Fast switching simulations carried out at large switching rates typically generate work

distributions that lead to large statistical uncertainties in the free energy estimate. As discussed

earlier, the reason is that trajectories with typical work values contribute little to the exponential

average of the Jarzynski equation, while trajectories with work values dominating the average are

very rare. As a consequence, the convergence of the computed free energy is impractically slow for

overly fast switching. A solution to this problem consists in favoring the generation of trajectories

with important work values. In this section, we discuss how path sampling techniques can be used

for this purpose.

To introduce computational methods for realizing this idea, we rewrite the exponential work

average as an explicit sum over pathways:

e−βΔF =

∫
Dx(t)P [x(t), λ(t)]e−βW [x(t),λ(t)] (23)

where the notation
∫
Dx(t) implies an integral over all pathways x(t) and P [x(t), λ(t)] is the

probability to observe the trajectory x(t) for given protocol λ(t). Note that the path probability

P [x(t), λ(t)] also includes the probability of the initial condition x0. As suggested by Ytreberg and

Zuckerman [49] and by Athènes [50], one way to enhance the sampling of important trajectories

consists in introducing an explicit bias function π[x(t)] (assumed to be integrable and positive

everywhere) in the average:

e−βΔF =

∫
Dx(t)P [x(t)]π[x(t)]e−βW [x(t)]/π[x(t)]∫

Dx(t)P [x(t)]π[x(t)]/π[x(t)]
(24)

where we have dropped the explicit dependence on the protocol λ(t) in the arguments of P [x(t)] and

W [x(t)] to simplify the notation. The right-hand side of this equation, obtained by simply dividing

and multiplying by the (so far unspecified) bias function π[x(t)] can be viewed as the ratio of two

averages taken in a biased ensemble, leading to:

e−βΔF =
〈e−βW [x(t)]/π[x(t)]〉π

〈1/π[x(t)]〉π
(25)

Here, the angular brackets 〈· · · 〉π denote an average over pathways distributed according to the

biased ensemble Pπ[x(t)] ∝ P [x(t)]π[x(t)]. Since, in general, the bias function π[x(t)] depends

on the entire pathway x(t), the biased ensemble cannot be sampled by preparing initial conditions
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according to a certain distribution and running fast switching trajectories from them. Instead, one

can use trajectory sampling algorithms (such as the shooting algorithm) adapted from transition path

sampling, a methodology originally developed for the simulation of rare events occurring in complex

systems [51–53]. In this approach, the bias function appears in the acceptance probability of the path

sampling scheme, steering the simulation towards the desired regions of trajectory space.

Since the bias function should enhance the sampling of important, but rare, work values, a bias

function depending on the path x(t) only through the work W [x(t)] suffices, π[x(t)] = π[W [x(t)]].

The accuracy of a free energy calculation carried out with biased path sampling now crucially

depends on the particular choice of this bias function. It is evident that to obtain an accurate

estimate of ΔF , the bias function should be selected, such that the statistical error is small both

in the numerator and in the denominator of the fraction on the right-hand side of Equation (25).

This implies that the work distribution in the biased ensemble should have a large overlap

with the work distribution P (W ) in the unbiased ensemble, as well as with the integrand

P (W ) exp(−βW ) appearing in the Jarzynski equality. It has been shown [49,50] that large

efficiency increases can be obtained using the bias function π(W ) = exp(−βW/2), which

produces a work distribution in between the two distributions P (W ) and P (W ) exp(−βW ) [54].

A more systematic investigation [55] of the statistical error in the free energy estimate obtained by

biased path sampling yields the optimum bias π(W ) = | exp(−β(W−ΔF ))−1|. This result implies

that the expected statistical error in the free energy is smallest if typical and dominant work values

are sampled with high frequency. Interestingly, sampling work values W ≈ ΔF near the free energy

difference is not important. Unfortunately, the practical usefulness of this optimum bias function is

limited, because its application requires prior knowledge of the free energy difference, i.e., the very

quantity one wants to compute. However, iterative schemes, in which the bias function is adapted as

the simulation goes on, might make productive use of the functional form of the optimum bias. A

recently suggested approach [36] based on the waste-recycling estimator [37] effectively introduces

a bias that covers both peaks of the optimum bias, π(W ).

Another way of realizing work biased path sampling of fast-switching trajectories for the compu-

tation of free energies was suggested by Sun [56,57]. In this approach, which can be viewed as a

thermodynamic integration procedure in path space, a parameter α is introduced into the

exponential average:

e−βΔF̃ (α) =

∫
Dx(t)P [x(t)]e−βαW [x(τ)] (26)

The right-hand side defines, in effect, the generating function of the work distribution at the end of

the transformation. The free energy difference ΔF̃ (α) defined by the above equation depends on

this parameter α. While for α = 0 one obtains ΔF̃ (0) = 0 due to the normalization of the path

distribution, for α = 1 one recovers the original free energy difference ΔF̃ (α) = ΔF . One can thus

compute ΔF by taking the derivative of ΔF̃ (α) with respect to α and then integrate over α from

zero to one [18,56,57]:

ΔF =

∫ 1

0

dα
dΔF̃ (α)

dα
(27)
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The advantage of writing the free energy difference in this way is that the derivative of ΔF̃ (α) with

respect to α yields a simple average over the work:

dΔF̃ (α)

dα
= 〈W 〉α (28)

where the notation 〈· · · 〉α indicates a path average over the work weighted path ensemble:

Pα[x(t)] ∝ P [x(t)]e−βαW [x(t)] (29)

The work average 〈W 〉α is not affected by the type of statistical errors that make the computation

of the exponential work average difficult, and it can be evaluated efficiently in a path sampling

simulation. By repeating such a calculation for different values of α and integrating the work average

numerically, one finally obtains the desired free energy difference. Furthermore, in this method, the

statistical errors are kept low by making sure that pathways with both dominant and typical work

values are sampled with sufficient frequency. This can be seen explicitly by noting that in the

work biased ensemble corresponding to a particular value of the bias parameter, α, the work, W ,

is distributed according to Pα(W ) ∝ P (W ) exp(−βαW ). Thus, by gradually changing α from

zero to one, one switches the work distribution from P (W ) to P (W ) exp(−βW ), sweeping over all

important work values in the course of the thermodynamic integration procedure.

One can show that in the limit of infinitely short trajectories, Sun’s method reduces to

conventional thermodynamic integration. This result raises the question of which trajectory length

leads to the most efficient free energy calculations and, in particular, if work biased path sampling

algorithms perform better then conventional methods, such as thermodynamic integration or umbrella

sampling. Extensive calculations carried out for various models indicate [58,59] that work biased fast

switching path algorithms are generally less efficient than standard methods, such as thermodynamic

integration, thermodynamic perturbation or umbrella sampling. There are however cases, such as an

ideal gas compressed by a piston moving in a cylinder, where fast switching is advantageous [59].

In this particular case, the work distribution does not converge to a limiting form for increasing

switching speed, and the typical work values keep growing. As a consequence, the optimum

switching rate is finite in this case, even if an optimum work bias is applied [59].

7. Fast Switching with Large Time Steps

Molecular dynamics simulations are usually carried out with time steps that are a compromise

between accuracy (often assessed in terms of energy conservation) and computing speed. Small time

steps yield accurate trajectories with good energy conservation, but require a larger computational

effort, because the cost of a trajectory of a given length is proportional to the number of steps and,

hence, inversely proportional to the size of the time step. Larger time steps reduce the computing

time, but corrupt the accuracy, resulting in poor energy conservation. In general, using such

low-accuracy trajectories for free energy computations introduces a systematic error into the free

energy estimate. It is, however, possible to devise exact expressions akin to the Jarzynski equation

to compute free energy differences from crude trajectories calculated with large time steps [13,60].
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Using this approach, which is based on a generalization of the Jarzynski equation for phase space

mappings [61], can help to considerably increase the efficiency of fast switching simulations, due to

the reduced computational cost of the large time step trajectories.

As mentioned earlier, in the limit of instantaneous switching, the Jarzynski equation reduces to

the perturbation identity of Equation (6). Free energy computation methods relying on this equation

perform well if there is a large overlap between the ensembles A and B, corresponding to the control

parameters λA and λB, respectively. If, however, these ensembles strongly differ, the free energy

calculation converges poorly, because important contributions to the average are rarely sampled. To

remedy this situation, Jarzynski has devised the targeted free energy perturbation method [61] based

on a generalization of the Jarzynski equality. The basic ideas underlying this approach is to improve

the efficiency of the perturbative calculation by applying a mapping that transforms the equilibrium

ensemble A into an ensemble A′ that overlaps more strongly with ensemble B. The mapping φ(x)

considered in this approach is required to be invertible and differentiable, but is arbitrary otherwise.

By starting from the definition of the free energy difference (Equation (3)) and carrying out a variable

transformation from x to x′ = φ(x), one can then show that:

e−βΔF =
〈
e−βWφ(x)

〉
(30)

where the “work” function is defined as:

Wφ(x) = H(φ(x), λB)−H(x, λA)− kBT ln

∣∣∣∣∂φ∂x
∣∣∣∣ (31)

The last term in the work function results from the Jacobian of the transformation and vanishes for

phase space volume preserving maps. If the mapping is chosen to be the propagator of Newtonian

dynamics, Equation (30) reduces to the Jarzynski equation for isolated systems evolving at constant

energy. By using the inverse map, φ−1, with the corresponding work definition, one can also use this

mapping approach together with the Crooks fluctuation theorem.

Equation (30) suggests the following algorithm for free energy computation. One first samples

phase space points x from the equilibrium ensemble A. Then, to each of these points, one applies

the mapping and computes Wφ. Finally, the average of exp(−βWφ(x)) carried out over all points x

yields the free energy difference. Now, the efficiency of this method crucially depends on the ability

to devise appropriate mapping φ(x). The closer the ensemble resulting from the transformation

resembles B, the higher is the efficiency. No general methods exists to derive φ(x), but a well-chosen

mapping can substantially reduce the cost of a free energy computation.

One possible strategy to exploit Equation (30) consists in choosing a sequence of molecular

dynamics steps as phase space mapping. Each of these steps, designed to approximate the time

evolution of the system over a small interval Δt maps a phase point xi into the next phase point xi+1

along the molecular dynamics trajectory. Hence, a sequence of n molecular dynamics steps may

also be considered as a phase space mapping that takes the initial point x0 into the final point xn.

The expression for the work Wφ is particularly simple for integrators, such as the Verlet algorithm,

that conserve phase space volume. Then, the Jacobian of the mapping is unity, and Equation (30)

turns into:

e−βΔF =
〈
e−β[H(xn,λB)−H(x0,λA)]

〉
(32)
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Interestingly, this relation holds exactly independently of the size of the time step Δt used in the

integration algorithm. Hence, fast switching simulations can be carried out with large time steps,

producing only approximate trajectories. Nevertheless, the free energies obtained in this way are

in principle exact. Since trajectories computed with a large time step require a smaller number of

integration steps, such fast switching simulation holds the promise to improve the efficiency of the

free energy calculation. Whether this is indeed the case, depends on how the work distribution

changes due to the large time step. Calculations carried out for several model systems indicate

that while the molecular dynamics trajectories generated with large time steps are approximate,

they still reproduce the essential physics of the process, such that the work distributions are not

affected adversely. As a consequence, for optimum efficiency, time steps of fast switching free

energy computations can be increased up to the stability limit of the simulation. Note that this large

time step approach can be used also using integrators that do not conserve phase space volume [60],

but this unnecessarily complicate the simulations, because one has to keep track of the Jacobian while

computing the molecular dynamics trajectories.

The large time step formalism can also be used for the calculation of potentials of mean force [62].

In such a simulation, the work based reweighing of Equation (30) is applied at each stage of the time

evolution with a work function that accumulates along the trajectory. Fast switching simulations were

carried out for the force induced unfolding of a decalanine molecule [62]. The free energy profile

obtained for a time step of 3.2 fs, i.e., close to the stability limit, agrees well with that calculated

using a conservative time step of 0.5 fs. An efficiency analysis reveals that the optimum time step

for the unfolding simulations lies in the range 1–3 fs. It is interesting to note that the fast-switching

trajectories may show unphysical features, such as a redistribution from potential to kinetic energy,

due to the conserved shadow Hamiltonian belonging to the integrator used in the simulation [62].

Nevertheless, the obtained free energy profile is exact up to statistical errors.

8. Applications

Arguably the most important practical application of non-equilibrium work theorems has been

to experiments. Almost immediately after the connection between non-equilibrium single-molecule

pulling experiments and Jarzynski’s identity was rigorously established [7], experimental studies of

the folding and unfolding of nucleic acids using optical tweezers followed [8,63]. It is often difficult,

if not impossible, to conduct pulling experiments sufficiently slowly to maintain near-equilibrium

conditions. Nonetheless, the use of non-equilibrium free energy reconstruction has made it possible

to extract thermodynamic information.

Applications to pulling have been mirrored on the simulation side. Simulated pulling

methods mimicking experiments have been developed, initially to probe mechanical perturbations

on biomolecules [42–44]. Non-equilibrium pulling methods have been applied not only to

protein unfolding, but also to many other complex molecular processes, including ligand

dissociation [64–66] and channel translocation [67,68]. To analyze such “steered molecular

dynamics” simulations and extract PMFs, the stiff-spring approximation is widely used [46],

though Equation (22) offers a more accurate method using the same information [47] that produce
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results comparable to full histogram reweighting. In molecular simulations, non-equilibrium

methods tend to be less efficient than optimized equilibrium methods as a tool to calculate free

energies [18,58]. However, as discussed above, the optimization of non-equilibrium sampling

methods is an area of active research, in particular, using importance sampling methods involving

path reweighting [49,50,55–59] and nonlinear maps [69,70]. Moreover, non-equilibrium methods

can provide valuable insight into the mechanism underlying a process. By forcing the system through

a transition and monitoring the resulting bottlenecks [71], one may be able to devise improved

control variables that result in a smoother transition and improved sampling efficiency, both in

non-equilibrium and equilibrium simulations.

9. Conclusions and Outlook

The Jarzynski non-equilibrium work theorem and the Crooks fluctuation theorem are fundamental

exact relations that link the irreversible work carried out on a system during a non-equilibrium

transformation to the system’s equilibrium statistics. To date, the most significant application of these

relations lies in the interpretation of single-molecule pulling experiments, in which forces exerted by

atomic force microscopes or optical tweezers are used to probe the properties of individual molecules.

Due to technological limitations, such experiments are necessarily carried out at a finite pulling rate,

leading to non-equilibrium effects that cannot be neglected. The theorems of Jarzynski and Crooks

provide a practical tool for the interpretation of such single-molecule pulling experiments and permit

one to extract equilibrium information, such as potentials of mean force, from data obtained under

inherently non-equilibrium conditions [7–9,72].

From a computational point of view, the Jarzynski and Crooks theorems have provided a new

and powerful framework for the calculation of free energies using computer simulations. Apart

from putting earlier slow-growth free energy simulations on a firm theoretical footing, these results

have spawned the development of several new free energy algorithms based on non-equilibrium,

fast-switching trajectories.

Depending on the rate at which the system is driven away from equilibrium, fast switching free

energy computations can be plagued by large statistical errors. For strong driving, i.e., for large

switching rates, work distributions are broad, with typical work values by far exceeding the free

energy difference. As a consequence, the exponential work average of the Jarzynski equation is

dominated by a few rare contributions, leading to large statistical uncertainties and a bias in the

free energy estimate. Such errors can outweigh the computational advantage of running inexpensive

short trajectories rather than one single long trajectory [18,29,58]. In fact, it has been shown that

in the slow switching regime, one obtains more accurate results from few slow simulations than

from many faster ones [18]. Numerical simulations carried out for various model systems [58,59]

indicate that conventional free energy computation methods, such as thermodynamic integration or

free energy perturbation theory, are more efficient than fast switching simulations, even if work

biasing techniques are employed. Fast switching methods may, however, be advantageous for

systems in which the states of interest are connected by several distinct pathways. In such a case,

conventional methods may fail to sample all important transition routes while multiple fast switching
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trajectories have the chance to probe all important pathways. Such a situation was indeed observed

for transitions between low-energy configurations of Lennard-Jones clusters [41], which could be

sampled successfully only with non-equilibrium path sampling, but not with other approaches.

Compared to standard methods, fast switching algorithms appeared on the scene only recently,

such that substantial improvements and new developments are to be expected [13,21,57,73–78].

It is worth noting that fast switching ideas have not only been applied to the calculation of free

energies, but have also been combined with existing sampling methods to enhance the efficiency of

the simulation. For instance, non-equilibrium switches have been used to improve the acceptance

probability of replica exchange simulations [79,80] and to generate trial configurations for Monte

Carlo simulations [81,82]. Conversely, waste-recycling Monte Carlo [37] can be adapted for the

calculation of free energies from non-equilibrium switching simulations [36].

One aspect of fast switching simulations that has not been fully exploited is the freedom in

choosing the transformation protocol. While the optimization of the time dependence of the driving

parameter has been the subject of previous numerical and analytical studies [23,24], the extension

of such optimizations to multiple control parameters is unexplored to date. The control parameter at

the start and the end of the transformation are given, but in between, additional parameters can be

subjected to a change as well, without affecting the validity of the relations that provide the basis for

fast switching simulation. As an early example, an external pressure has been heuristically adjusted

to maintain reasonable box sizes and prevent phase separation in a transformation between liquid

and ideal gas states [54]. Defining parameter spaces of higher dimension and determining optimum

parameter pathways in these spaces may offer efficient ways to control the work distribution and,

hence, reduce the computational cost of fast switching simulations.
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Abstract: In this review, we discuss the Dynamical approach to Non-Equilibrium

Molecular Dynamics (D-NEMD), which extends stationary NEMD to time-dependent

situations, be they responses or relaxations. Based on the original Onsager regression

hypothesis, implemented in the nineteen-seventies by Ciccotti, Jacucci and MacDonald,

the approach permits one to separate the problem of dynamical evolution from the

problem of sampling the initial condition. D-NEMD provides the theoretical framework

to compute time-dependent macroscopic dynamical behaviors by averaging on a large

sample of non-equilibrium trajectories starting from an ensemble of initial conditions

generated from a suitable (equilibrium or non-equilibrium) distribution at time zero. We

also discuss how to generate a large class of initial distributions. The same approach

applies also to the calculation of the rate constants of activated processes. The range of

problems treatable by this method is illustrated by discussing applications to a few key

hydrodynamic processes (the “classical” flow under shear, the formation of convective

cells and the relaxation of an interface between two immiscible liquids).
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1. Introduction

The most widespread use of Molecular Dynamics (MD) [1,2], in the same spirit of Monte

Carlo (MC) [3,4], is to compute the thermodynamic or statistical behavior of molecular systems at

equilibrium. This means that, starting from the assumption of the validity of the ergodic hypothesis,

dynamical (MD) or fictitious-time (MC) trajectories are used to sample the equilibrium distribution in

phase space (MD) or in configurational space (MC). “Time” averages over the generated trajectories

will thereafter provide the statistical properties of the system.

At variance with Monte Carlo, the dynamical approach of Molecular Dynamics can be directly

extended to sample distributions corresponding to stationary non-equilibrium conditions, where there

exists a stationary distribution but, at variance with equilibrium, its expression is not explicitly

known. However, the statistical problem of sampling a time-dependent ensemble cannot be solved

by generating states along a single dynamical non-equilibrium trajectory, as long as time cannot be

taken as homogeneous and averages over time make no sense.

Generally, to compute macroscopic dynamical behaviors, as, e.g., in hydrodynamics, the

assumption of time-scale separation is made and rigorous ensemble averages are substituted with

short-time averages equivalent to local smoothing. This may not be the case, sometimes. Moreover,

the statistical error implied by this procedure cannot be made as small as desirable and possible.

These difficulties can be faced and solved.

In the nineteen-thirties, Lars Onsager [5] observed that an induced (non-equilibrium) relaxation

towards equilibrium could be obtained by studying the regression of the corresponding spontaneous

fluctuations at equilibrium. Later, in the nineteen-fifties, Kubo [6] provided a mathematical

formulation of Onsager’s ideas by showing how the (linear) response of a system, initially at

equilibrium, to a time-dependent (external) physical perturbation could be obtained by convoluting

it with an appropriate equilibrium time-correlation function [7–9]. Kubo also derived the formal

expression for the complete (linear and nonlinear) response.

In the case of Kubo’s procedure one does not need to make reference to an initial equilibrium
state, but can, rather, refer to an arbitrary initial distribution at time t0 = 0 of the system. This result

has an important consequence for Molecular Dynamics simulations, since it allows one to separate

the problem of dynamical evolution from the problem of sampling the initial condition.

Starting from the mid-nineteen-seventies, the direct numerical simulation of the response

was used in conjunction with a sample of initial conditions extracted from an equilibrium

trajectory [10,11]. In this context, the problem of achieving a reasonable signal-to-noise ratio,

even for weak perturbations, was solved for short times by introducing the so-called subtraction
technique [12], which permitted one to verify, with surprising results [13], the range of the validity

of linearity.

Some time later on, it was realized that the same approach could be used to calculate dynamical

properties for rare events (e.g., transmission coefficients) by averaging the dynamical response over

time-dependent trajectories started from initial conditions sampled from a constrained/conditional

equilibrium ensemble [14–18].
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Quite recently, finally, the idea of creating a large sample of non-equilibrium trajectories starting

from a given initial distribution has been extended to cover whatever distribution that can be sampled

starting from an equilibrium or a non-equilibrium, but stationary, dynamics. In particular stationary

non-equilibrium ensembles can be generated by suitably restraining standard MD simulations.

In particular, we will illustrate the approach by reporting the results of a study of the

time evolution of classical fields, including the onset of convective cells and the relaxation of

hydrodynamic interfaces in simple liquids. In this context, we will also briefly address a conceptual

difficulty of the approach, due to the possible existence of more than one macroscopic state associated

with specific perturbations. In particular cases the problem can be circumvented.

The structure of the paper is as follows. In Section 2 we derive the general framework and specify

the possible forms for the initial ensemble. In Section 3 we present a few successful applications of

the method. Finally, in Section 4 we try to assess the situation and sketch an outlook.

2. Dynamical Approach to Non-Equilibrium: Theoretical Background

2.1. General Formulation

We start considering, in a very general way, a (classical) dynamical system with n degrees of

freedom, whose time evolution is described by a set of first order differential equations in a phase

space of dimension 2n. We will refer to the phase space variables in a collective way with the

vector formalism �Γ = {q1, p1, q2, p2, . . . , qn, pn}, where the q’s and the p’s reduce to the usual

coordinate-momentum pairs for Hamiltonian dynamics. The equations of motion can be written

in the compact form

Γ̇j = Γ̇j(�Γ; t) = Γ̇j (q1, p1, q2, p2, . . . , qn, pn; t) , j = 1, 2, . . . , 2n (1)

The above equations could be the usual Hamiltonian equations of motion for an isolated system of

N particles [19], contain a number of holonomic constraints [20] or represent the more general case

of an “extended” system, possibly non-Hamiltonian [21,22], including couplings of the system to a

thermal and/or pressure bath by means of a few extra degrees of freedom, so that, in general, n > 3N

(see, also, [23]). We will only assume that the dynamics described by Equation (1) are ergodic,

i.e., if we wait long enough, all regions of the phase space available to the system, in accord with

the imposed conditions, will be explored by the dynamic evolution. With this in mind, the statistical

mechanics description of the system requires the introduction of the invariant measure dμ(�Γ, d2nΓ) in

phase space [23]. We start by introducing the generator of time translations in terms of the Liouville

operator, L̂

ıL̂(�Γ; t) =
2n∑
j=1

Γ̇j(�Γ; t) ·
∂

∂Γj

=
n∑

j=1

q̇j(�Γ; t) ·
∂

∂qj
+

n∑
j=1

ṗj(�Γ; t) ·
∂

∂pj
(2)

so that the equations of motion can be rephrased in the operator form and formally solved. As

the Liouville operator depends explicitly on time, integrating Equation (2) from some initial time
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t0 to time t, one obtains an implicit integral equation that can be solved by iteration for each

j = 1, 2, . . . , 2n

Γj(t) = Γj(t0) +

∫ t

t0

ds
(
ıL̂(s)

)
Γj(t0) +

∫ t

t0

ds1

∫ s1

t0

ds2

(
ıL̂(s1)

)(
ıL̂(s2)

)
Γj(t0) + · · · . (3)

The results can be expressed in closed “operatorial” form

Γ̇j(t) = ıL̂(t)Γj(t) −→ Γj(t) = Ŝ(t, t0)Γj(t0) , j = 1, 2, . . . , 2n (4)

with the introduction of the evolution operator

Ŝ(t, t0) = T̂ exp

[∫ t

t0

ıL̂(s) ds
]

(5)

where T̂ is the time-ordering operator.

Time evolution in phase space can be alternatively expressed in term of the Jacobian

J
(
�Γ(t), �Γ(t0)

)
of the time transformation from �Γ(t0) to �Γ(t). The phase space element d2nΓ(t0)

at time t0 transforms into the volume element d2nΓ(t) = J
(
�Γ(t), �Γ(t0)

)
d2nΓ(t0) at time t, where

J = detJ obeys the differential equation [23]

dJ
(
�Γ(t), �Γ(t0)

)
dt

= κ̂(�Γ(t); t) J
(
�Γ(t), �Γ(t0)

)
(6)

and the phase space compressibility κ̂ is defined by

κ̂(�Γ; t) =
2n∑
j=1

∂

∂Γj

· Γ̇j(�Γ; t) (7)

For a Hamiltonian system the compressibility κ̂ vanishes, J
(
�Γ(t), �Γ(t0)

)
= 1 and the dynamics

preserves volume in phase space (Liouville Theorem). More generally, when κ̂ does not vanish, d2nΓ

is no longer a dynamical invariant and one needs to introduce a metric factor to define the invariant

measure of the phase space under the dynamical evolution. Starting from the general expression for

the Jacobian determinant, one gets

J
(
�Γ(t), �Γ(t0)

)
= exp

[∫ t

t0

κ̂(�Γ(s); s)ds

]
= ew(�Γ(t);t)−w(�Γ(t0);t0) =

Z(�Γ(t0); t0)

Z(�Γ(t); t)
(8)

where w is the indefinite time integral of κ̂ and Z(�Γ(t); t) = exp
[
−w(�Γ(t); t)

]
. The dynamically

invariant volume element in phase space can be defined as

dμ
(
�Γ(t), d2nΓ

)
= Z(�Γ(t); t)d2nΓ(t) = Z(�Γ(t); t)J

(
�Γ(t); �Γ(t0)

)
d2nΓ(t0)

= Z(�Γ(t0); t0)d
2nΓ(t0) = dμ

(
�Γ(t0), d

2nΓ(t0)
)

(9)



186

Consider, now, an ensemble of systems whose dynamical evolution is defined by Equation (1).

The statistical mechanics is described by the time-dependent probability distribution function in

phase space f(�Γ; t) which must obey the global conservation law for probabilities∫
dμ(�Γ, d2nΓ)f(�Γ; t) = 1

The corresponding local, differential, conservation law can be derived by transforming the integral

back to the phase space element d2nΓ, by using

f(�Γ; t)dμ
(
�Γ, d2nΓ

)
= f(�Γ; t)Z(�Γ; t)d2nΓ = ρ(�Γ; t)d2nΓ (10)

and introducing the phase space density ρ(�Γ; t) = Z(�Γ; t)f(�Γ; t). The continuity equation to be

satisfied is

∂ρ(�Γ; t)

∂t
+

2n∑
j=1

∂

∂Γj

·
(
Γ̇j(�Γ)ρ(�Γ; t)

)
= 0 (11)

which when expressed in terms of the Liouville operator L̂ and the phase space compressibility κ̂

becomes the “generalized” Liouville equation

∂ρ(�Γ; t)

∂t
+

[
ıL̂(�Γ; t) + κ̂(�Γ; t)

]
ρ(�Γ; t) = 0 (12)

and reduces to the more “familiar” equation for the probability density f(�Γ; t)

∂f(�Γ; t)

∂t
+ ıL̂f(�Γ; t) = 0 (13)

However, we must point out that this last equation may lead to confusion if one does not keep in

mind that, while the Liouville operator L̂ defines the dynamical evolution of the time-dependent

probability density in phase space f , the not-vanishing compressibility κ̂, hidden in the phase space

invariant volume, defines the time evolution of the phase space volume d2nΓ.

The solution of Equation (12) can be retrieved along the same lines followed for Equation (2) and

the results can be formally written in closed “operatorial” form

ρ(�Γ; t) = Ŝ†(t, t0)ρ(�Γ; t0) , Ŝ†(t, t0) = T̂ exp

[∫ t

t0

−
(
ıL̂(s) + κ̂(s)

)
ds

]
(14)

where we have introduced the adjoint Ŝ†(t, t0) of the previously defined time evolution operator

Ŝ(t, t0) acting on the phase space variables �Γ and the phase density ρ0 = ρ(�Γ; t0) at the initial

time t0.

The average over the (non-)equilibrium ensemble of a physical observable O(t) = 〈Ô(�Γ)〉t or,

more generally, of a macroscopic field O(�x, t) = 〈Ô(�x, �Γ)〉t =
〈∑

j Ô(�Γ)δ(�x− �Rj)
〉
t

(the sum is

over the particles) can be defined as

O(t) =

∫
Ô(�Γ) f(�Γ; t) dμ(�Γ, d2nΓ) =

∫
Ô(�Γ) ρ(�Γ; t) d2nΓ (15)

O(�x, t) =

∫
Ô(�x, �Γ) f(�Γ; t) dμ(�Γ, d2nΓ) =

∫
Ô(�x, �Γ) ρ(�Γ; t) d2nΓ (16)
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We can make the time evolution explicit by means of the adjoint time evolution operator

ρ(�Γ; t) = Ŝ†(t, t0)ρ(�Γ; t0) and then, by taking advantage of the fact that Ŝ† is the adjoint of the

dynamics, we can transfer the effect of time evolution to the physical observables

O(t) =

∫
Ô(�Γ) Ŝ†(t, t0)ρ(�Γ; t0)d2nΓ =

∫ (
Ŝ(t, t0)Ô(�Γ)

)
ρ(�Γ; t0)d

2nΓ

=

∫
Ô(�Γ; t) ρ(�Γ; t0)d

2nΓ ⇒ O(t) = 〈 Ô(�Γ; t) 〉ρ0 (17)

O(�x, t) =

∫
Ô(�x, �Γ) Ŝ†(t, t0)ρ(�Γ; t0)d2nΓ =

∫ (
Ŝ(t, t0)Ô(�x, �Γ)

)
ρ(�Γ; t0)d

2nΓ

=

∫
Ô(�x, �Γ; t) ρ(�Γ; t0)d

2nΓ ⇒ O(�x, t) = 〈 Ô(�x, �Γ; t) 〉ρ0 (18)

where Ô(�Γ; t) = Ŝ(t, t0) Ô(�Γ), i.e., the time evolution along the dynamical trajectory of the system

starting from the initial condition �Γ(t0) at time t0. We have introduced the shorthand notation,

〈· · · 〉ρ0 , for the averages over the ensemble described by the space density ρ0 at the initial time t0.

Despite the apparent complexity of the time evolution operator Ŝ(t, t0) in Equation (5), its action

is a task that can be simply accomplished by MD, i.e., by the numerical integration of the evolution

defined by Equation (1). Note that all this is possible thanks to the fact that the Liouville equation

can be integrated by the method of characteristics.

In the following, we will deal with fluid systems where the relevant macroscopic fields are [24]

the density field �(�x, t), the velocity field �v(�x, t) and the temperature field T(�x, t):

�(�x, t) =

∫ N∑
j=1

mjδ
(
�x− �Rj

)
Ŝ†(t, t0)ρ(�Γ; t0) d2nΓ

⇒
〈

N∑
j=1

mjδ
(
�x− �Rj(t)

)〉
ρ0

(19)

�v(�x, t) =
1

�(�x, t)

∫ N∑
j=1

�Pjδ
(
�x− �Rj

)
Ŝ†(t, t0)ρ(�Γ; t0) d2nΓ

⇒ 1

�(�x, t)

〈
N∑
j=1

�Pj(t)δ
(
�x− �Rj(t)

)〉
ρ0

(20)

(
f

N

)
kBT(�x, t) =

1

�(�x, t)

∫ N∑
j=1

[
�Pj −mj�v(�x, t)

]2
δ
(
�x− �Rj

)
Ŝ†(t, t0)ρ(�Γ; t0) d2nΓ

⇒ 1

�(�x, t)

〈
N∑
j=1

[
�Pj(t)−mj�v(�x, t)

]2
δ
(
�x− �Rj(t)

)〉
ρ0

(21)

where N is the number of particles and the factor f , usually equal to 3N , counts the number of

degrees of freedom in the presence of constraints.
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2.2. Ensembles at t0

Equations (17) and (18) express what we like to call the Onsager–Kubo relations and state that we

can obtain the time evolution of a macroscopic observable or of a macroscopic field as the average of

the time evolved corresponding microscopic expression over the initial-time-ensemble described by

the phase space density ρ0 = ρ(�Γ; t0).

If the ensemble at the initial time t0 can be simulated by a dynamical system in stationary

conditions, then such a probability density function can be sampled by MD, generating a set of

(possibly independent) phase space points distributed according to ρ0. From each of these points,

one can then start an independent dynamical trajectory along which the observables Ô(�Γ; t) and

Ô(�x, �Γ; t) can be computed. Finally, by averaging over all the trajectories, the values of the involved

observables at time t, one can obtain the macroscopic time-dependent behavior of the system as

visualized in Figure 1.

In order to use MD to sample the appropriate initial ensemble at time t0, one needs to define, for

any specific problem, the dynamical evolution, Equation (1), and the auxiliary conditions to which

the systems is subjected. Sometimes, but not always, this will be possible within the Hamiltonian

formulation of the dynamics.

Figure 1. Phase space representation of the ensemble of dynamical side-trajectories pro-

viding the non-equilibrium statistical averages: in blue, the Molecular Dynamics (MD)

trajectory sampling the ensemble at time t0; in black, the individual non-equilibrium

trajectories sampling the Non-Equilibrium Molecular Dynamics (D-NEMD) ensemble,

over which one can average the time behavior of the observable Ô, as a function of the

time t.

ρ(�Γ, t0)

ρ(�Γ, t0)

3. D-NEMD Selected Applications

We will now list a number of cases, which will later be illustrated with the corresponding

application. Transport properties, like viscosity, thermal conductivity, etc., have been computed and

their linearity range investigated by non-equilibrium MD since the 1970s [10–12,25–34]. These

results were obtained by measuring on a computer the mechanical response when switching on

the external (at the beginning Hamiltonian and later on, more generally, also non-Hamiltonian)

perturbation applied to a model system initially at equilibrium. In other words, we identify in the

present case the ensemble at time t0 with the statistical mechanics equilibrium ensemble, while the

dynamical trajectories are carried out under the influence of an external (time-dependent) force field.
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More generally, we can generate (and sample) initial ensembles by less trivial procedures, e.g.,

in the case of the formation of convective cells, gravity is considered as the external perturbation

to be applied on a system initially in a steady state under the effect of a thermal gradient. The

ensemble at time t0 no longer corresponds to the equilibrium one, but it is set up by introducing a

stationary boundary perturbation which, in the specific case, is just an ad hoc boundary condition,

which models a thermal wall stochastically. Moreover, a confining wall, present in the form of an

external field acting at the boundary on each particle, confines the system in the simulation box. This

boundary condition is perfectly compatible with the presence of a gravity field.

Another possible case we will consider is the relaxation to equilibrium of an interface between

two immiscible liquids, starting from an imposed, non-equilibrium, condition in which the curvature

of the interface is maintained by a macroscopic restraint fixing the shape of the initial interface. The

ensemble at time t0 is described by a conditional probability density in which an ad hoc restraint

is imposed on a field-like observable. The sample is generated by using an advanced MD sampling

technique, where the dynamical trajectory evolves under the effect of a suitable restraining potential,

from which we can extract an unbiased sample of the conditional probability density function.

Time-dependent averages are then taken over dynamical trajectories generated according to the

un-restrained dynamics of the systems. The different situations described are summarized in Figure 2.

Figure 2. We distinguish three different classes for the sampling of the initial

distribution: equilibrium, direct stationary non-equilibrium simulations and advanced

conditional sampling. They are shown to be associated with the corresponding sampling

techniques and test-case applications.
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3.1. Transport and Linear Response

Linear Response Theory is a nice result of the nineteen-fifties in the theory of irreversible

processes [6], where well-defined microscopic expressions for all transport coefficients have been

derived in terms of a properly chosen perturbation [7,8,35,36]. In the Dynamical approach to
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Non-Equilibrium Molecular Dynamics (D-NEMD) framework it has been possible to investigate the

linear and, more generally, the non-linear response by making reference to the canonical ensemble

for sampling the initial conditions at time t0.

3.1.1. Hamiltonian Perturbations

For a system of particles in three dimensions described by the usual set of Cartesian coordinates

and momenta, {�Rj, �Pj, j = 1, 2, . . . }, the perturbation can be put in Hamiltonian form by choosing

a physical property Â(�x|�Γ) = ∑
j Aj(�Γ)δ(�x − �Rj) that describes the coupling of the system to the

applied external local field ψ(�x, t) = ϕ(�x)χ(t), whose time-dependent intensity χ(t) can be constant

or periodic or even arbitrary, generating corresponding flux conditions. Especially important are the

cases in which the perturbation is either a step function θ(t − t0) (θ(t > t0) = 1 , θ(t < t0) = 0) or

a Dirac delta impulse δ(t − t0), at t = t0, after which the system is left free to relax. In the linear

regime, the general response can be computed as the superposition of these impulsive responses.

One then derives the equations of motion using the standard Hamiltonian route, where we start by

separating in the Hamiltonian H(�Γ, t) = H0(�Γ) +Hp(�Γ, t) the time-dependent perturbation term

Hp(t) = −
∫

d�xÂ(�x|�Γ)ψ(�x, t) = −
(∑

j

Ajϕ(�Rj)

)
χ(t) = −hpχ(t) (22)

where the Hamiltonian H0 is the equilibrium Hamiltonian to which one can possibly add the coupling

to a thermostat or a barostat, something that can be done in a variety of ways that we do not need to

specify here. Indicating generically the possible presence of such couplings to different baths with

ellipses, the equations of motion for particle j can be written

�̇Rj = +
∂H0

∂ �Pj

+
∂Hp

∂ �Pj

=

(
�Pj

mj

+ · · ·
)

− ∂hp

∂ �Pj

χ(t)

�̇Pj = −∂H0

∂ �Rj

− ∂Hp

∂ �Rj

=
(
�Fj + · · ·

)
+

∂hp

∂ �Rj

χ(t) (23)

The structure of the equations of motion can be broken into the two terms of the Liouville operator

defined in Equation (2), ıL̂(�Γ; t) = ıL̂0(�Γ)+ıL̂p(�Γ; t), with the partial Liouville operator ıL̂0 defining

the dynamical evolution in phase space for the sampling of the ensemble at time t0. Accordingly, the

corresponding evolution operator for the stationary dynamics will be called Ŝ0(t). The dynamics

of the time-dependent trajectories will be generated by the t0-(time dependent) evolution operator

Ŝ(t, t0), obeying the (usual) Dyson equation

Ŝ(t, t0) = Ŝ0(t) +

∫ t

t0

Ŝ0(t− s)ıL̂p(s)Ŝ(s, t0) ds (24)

which (if of interest) can be taken as the basis to develop the perturbative approach, whose first

term leads to the Linear Response Theory approach. However, in many cases of interest, for

example for constrained systems with a Hamiltonian or non-Hamiltonian structure, it becomes very

difficult, if not impossible, to carry out the standard manipulations leading to the correlation function
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expressions for the linear response [17,18]. Nevertheless, a linear (or non-linear) response can always

be computationally investigated using the procedure defined by Equations (17) and (18), as outlined

in Figure 1.

3.1.2. Non-Hamiltonian Perturbations

A more general scheme has also been used for bulk perturbations, where the new equations of

motion, which cannot be derived from a time-dependent Hamiltonian in a way that remains consistent

with applied (periodic) boundary conditions, are obtained from Equation (23) by substituting the

terms derived from the Hamiltonian perturbation hp, with two sets of “ad hoc” phase space functions

{�Cj(�Γ), �Dj(�Γ), j = 1, 2, . . .}:

�̇Rj =

(
�Pj

mj

+ · · ·
)

+ �Cj(�Γ) · χ(t)

�̇Pj =
(
�Fj + · · ·

)
+ �Dj(�Γ) · χ(t) (25)

A specific, notable, example is the one known under the name of “SLLOD tensor” dynamics [37],

where �Cj χ(t) = −(�Rj · κ)χ(t) and �Dj χ(t) = (�Pj · κ)χ(t) are coupled with specific, synchronized,

Lees–Edwards periodic boundary conditions [38] (see Figure 3), which are needed to establish the

tensor κ expressing the desired velocity gradient in the non-equilibrium simulation of viscous flows

by molecular dynamics [39–42].

Figure 3. The Lees–Edwards periodic boundary conditions (Panel A) used to establish

a stationary Couette flow (Panel B). In the case of a step function perturbation, periodic

images above and below the reference MD cell are translated by an amount ±vδt at

each time step, starting from time t0. Periodic boundary conditions can be effectively

imposed using the equivalent non-orthogonal reference cell, highlighted in red (the actual

inclination increases uniformly with time).
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In the typical setup for a planar Couette flow, one establishes a gradient of the x-component of

the velocity along the y-axis of the simulation and measures the response using as an observable the

xy component of the pressure tensor σxy, which can be written, for a system where the potential U is

given by a sum of pair interactions, as

σx,y =
1

V

[∑
j

�P
(x)
j

�P
(y)
j

mj

+
∑
i<j

(
�R
(x)
ij

) ∂U

∂ �R
(y)
ij

]
(26)

where �Rij = (�Ri − �Rj). In the D-NEMD approach, if the external field term is switched on with

a step function perturbation in time at t = t0 = 0, one can measure the viscous time-dependent

response η(t) = −〈σxy(t)〉ρ0/γ, where γ is the applied shear rate and the asymptotic value η at long

times of η(t) gives the viscosity of the fluid.

For the purpose of illustrating the method in the original applications, when the ensemble at

the initial time t0 is an equilibrium ensemble, we will restrict ourselves to the simple case of shear

(Couette) flow. We would like to mention, however, that also elongational flows [41,43–46] and,

later on, mixed shear-elongational flows [47–49] have been simulated both in atomic and molecular

fluids. In these cases, it becomes technically much more difficult to maintain for an indefinite length

of time the periodic boundary conditions and, for that, we refer the interested reader to [50,51].

Figure 4. Panel (A). Comparison of shear viscosity values as a function of the shear rate

for the planar Couette flow: (a) D-NEMD asymptotic values from Reference [52]; (b) and

(c) average values from stationary non-equilibrium calculations from Reference [54] and

Reference [55] respectively. The solid line is the Lorentzian best-fit to the data and the

dashed line is the Ree-Eyring-Eu prediction [56]; Panel (B). The running-time integral

(solid line) of the D-NEMD viscous dynamical response to a δ(t− t0) perturbation with

γ = 10−4, averaged over 4000 trajectories versus the running-time integral (dashed line)

of the stress autocorrelation function shows the agreement of D-NEMD results with the

Green-Kubo linear reponse theory [52]. The error bars, extrapolated using the mean

square fluctuations over the 4000 trajectories, increase with time restricting the time

range over which the response can be computed. (nb: the same kind of time dependent

behavior for η(t) is observed directly when using a step function perturbation).
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In Panel (A) of Figure 4, we show the results of a calculation [52] with a step function perturbation

on a Lennard–Jones (LJ) fluid at the triple point, � = 0.8442 and kBTp = 0.725 in reduced LJ

units, i.e., ε for energy, σ for distances and the particle mass m for masses. The temperature of

a system of 2,048 particles was controlled using a Nosé–Hoover thermostat [22], both on the long

equilibrium trajectory, which samples the (independent) initial conditions from a canonical ensemble

at temperature Tp and on the non-equilibrium trajectories to handle the heat produced, especially

at high shear rates. The behavior of the time-dependent viscous response for the case of a t0 = 0

impulsive perturbation with a δ(t − t0) term was used to investigate the range of validity of the

Linear Response Theory for very small shear rates by comparison with the running time integral of

the corresponding stress autocorrelation at equilibrium [53].

3.2. Non-Equilibrium (Steady State) Initial Conditions at Time t0

The D-NEMD approach can be used also to follow the transient evolution of a system, which,

starting from an out-of-equilibrium state under the effect of a stationary thermodynamic field, reaches

a final (different) non-equilibrium state in response to an additional external perturbation. Below, we

illustrate the approach with a case worked out in [57]. This is the case of the build up of a convective

roll in a two-dimensional (2D) model fluid kept in an out-of-equilibrium condition by the presence

of a thermal gradient when an external gravity field is (instantaneously) switched on.

The 2D system is composed of N = 5, 401 identical particles in a square box of size L in the xz

plane with periodic boundary conditions along the x direction and a pair of confining walls along z

obtained by means of an external field ψ(z), acting at the top and the bottom of the simulation box

to avoid the drifting away of the particles, which interact with each other via a purely repulsive (2D)

Weeks–Chandler–Andersen (WCA) [58] pair potential obtained by truncating the Lennard–Jones

potential at its minimum rm = 21/6σ and shifting its value by ε in such a way that both the force and

potential are continuous and equal to zero for r � rm.

VWCA = 4ε

[
1

4
+

(σ
r

)12

−
(σ
r

)6
]
, r � rm ; VWCA = 0 , r � rm (27)

The size of the MD box is L = 84.9 in reduced LJ units, which leads to a density �f = 0.75, on

average. The confining potential Vwall is constructed as the result of a (2D) LJ fluid with continuous

constant density �w filling the two half planes above and below the periodically replicated MD boxes

and has a 10-4 power dependence with parameters defined in [57]:

Vwall(z) = U(z)− U(zm) , z � zm ; U(z) =
(
ρwσ

2
)
4ε

[
V10

(σ
z

)10

− V4

(σ
z

)4
]

Vwall(z) = 0 , z � zm ;

where z is the distance from the box edge, zm is the value at which U(z) has its minimum and

Vn = 2πn!/ (2n+1 (n/2)! n), obtaining, in analogy with WCA, a purely repulsive wall. The

thermal gradient along the x-direction is obtained by means of two stochastic reservoirs, which are

implemented in the two stripe regions at the x-extremities of the MD box (see Panel (A) of Figure 5).
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The velocities of each particle located in these two stripes are sampled from a 2D Maxwellian

distribution f(�v) = e−m�v2/(2kBTi)/(2πmkBTi) at the temperature Ti of the stripe, with i = 1, 2

labeling the two reservoirs. Periodic boundary conditions along the x-direction mean that a particle

can actually travel from the first (cold) to the second (hot) reservoir. To avoid that a non-thermalized

particle in the inner region interacts with both reservoirs, a stripe thickness ΔxT = 1.68 > rm

was chosen. For the system in stationary conditions, each reservoir contains an average of around

100 particles. The reservoir temperatures were chosen to be T1 = 1.5 and T2 = 9.9, corresponding

to a thermal gradient ∇T = 0.1. Using these conditions, in the absence of gravity, a long stationary

trajectory was generated and, from it, a set of 1,000 initial conditions at time t0 was sampled.

Time-dependent trajectories have been generated and then suitable properties averaged at times

0 � s � t, switching on a gravity field with acceleration g = 0.1 in LJ reduced units (while huge

compared with Earth gravity, this is a very small value when compared to the accelerations coming

from the interatomic interactions). The behavior of the system was analyzed by coarse graining

the MD box into a 15 × 15 mesh of square cells of sides � = 5.66 that was used to compute local

macroscopic fields. Coarse graining is applied by approximating δ(�x− �Ri) = δ(x−Xi)δ(z−Zi) with

the value 1/�2 for particles inside the cell labeled by (j, k) and centered on the mesh point (xj, zk)

and zero otherwise. The velocity field is calculated as an average over the D-NEMD trajectories

�v(xj, zk; t) =
〈 �p(xj, zk; t) 〉ρ0
�m(xj, zk; t)

(28)

where �m, the mass density, is given in terms of the average of the number of particles njk(t) inside

the cell (j, k) at time t

�m(xj, zk; t) = m〈 njk(t) 〉ρ0 (29)

Figure 5. The simulation setup (Panel A) for sampling the initial distribution showing

the regions where the confining field ψ(z) and the two temperature reservoirs act on the

particles. In Panel (B) the average evolution of the circulation of the velocity field is

shown after averaging over 200 independent initial conditions (in the inset, we show the

path along which the circulation was calculated).
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The collective behavior of the velocity field can be monitored by calculating its circulation

C(t) =
∮
P
�v(x(s), z(s); t)ds on a closed path P , as a function of time. Its evolution is shown in

Panel (B) of Figure 5 as a function of the time t after the ignition of the gravity field along a path

located in the bulk region, but far enough from the center of the box. The circulation starts from zero

at t0 = 0; its value grows with time and, after a small overshooting, reaches its plateau, stationary,

value at t ≈ 200. This is the time at which also both temperature and density fields become stationary.

The transient is characterized by correlated oscillations of temperature and density with a very similar

period τ = 18 in all cells, but with opposite phases for the cells at the bottom of the box with respect

to the ones at the top. The velocity field, shown in Figure 6, is initially null, in Panel (A), acquires

first at t ≈ 4.5, in Panel (B), an almost uniform downward component in the direction of the force as

a consequence of the ignition of gravity, then it is almost null again at t ≈ 9.0; it shows a maximum

reaction to compression at t ≈ 13.5, in Panel (C), and almost vanishes again at t ≈ 18. The cycle

restarts and at t ≈ 22.5, in Panel (D), the field is again predominantly in the downward direction,

although one can start to see the building up of a convective flow, which is shown in its stationary

condition at t ≈ 205, in Panel (E).

We have seen how D-NEMD can be used to illustrate the build up of a convective roll when

a gravity field is instantaneously switched on in a system where a stationary (non-equilibrium)

thermal gradient was already present. This is not the only case in which a convective roll can be

observed. Indeed, keeping the same geometry for the system, i.e., with the gravity field orthogonal

to the thermal gradient (Panel A of Figure 5), one could alternatively start from initial conditions in

which the system is at equilibrium in the presence of the gravity field and, then, follow the dynamics

when the thermal gradient is instantaneously switched on or even start from a homogeneous fluid at

equilibrium and instantaneously switch on both the gravity field and the thermal gradient [57]. In all

these cases, although following different paths, the system eventually reaches the same (macroscopic)

final steady state with the formation of a clockwise rotating convective roll, centered at the center of

the box.

Figure 6. The build up of the convective flow is shown by visualizing the local

velocity field averaged over 1,000 independent initial configurations as a function of

time: (A) t = 0; (B) t ≈ 4.5; (C) t ≈ 13.5; (D) t ≈ 22.5; (E) t ≈ 205.

Complications arise if the system is setup with a different geometry, e.g., in the case of

Rayleigh–Bénard convection when the direction of the thermal gradient is parallel to the direction of

the gravity field. The system has a higher symmetry and rolls rotating both in the counterclockwise
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and clockwise directions are possible. This implies that the D-NEMD averages cannot be carried

out directly, as in the case we have described so far. In fact, now, in the ensemble of individual

trajectories, one samples with equal probability the initial conditions leading to clockwise or to

counterclockwise rolls. Performing ensemble averages without paying attention to the direction

of rotation would give a wrong result. One needs either to enforce a mechanism that breaks this

symmetry or to weight trajectories differently, according to the direction of rotation of the convective

roll. The latter was the choice applied in [57], where it was simply impossible to fix a priori, by

tweaking the initial conditions, the final rotation direction of each trajectory. Instead, the direction of

the convective roll rotation was analyzed in the steady-state part of each trajectory by time averaging

the velocity field over the last 10,000 steps. The ensemble averages were consistently computed,

afterwards, by taking the specular image of the fields when the roll rotation was opposite to the one

(arbitrarily) chosen as the reference.

3.3. Sampling from Conditional Distributions at Time t0

Probably the most interesting application of the D-NEMD procedure is when the non-equilibrium

dynamical trajectories start from states corresponding to a very unlikely fluctuation and we want to

follow dynamically the way in which the system relaxes back to equilibrium. An efficient sampling

of the points in phase space representing the initial condition cannot be achieved just by waiting

long enough for the desired event to occur during a standard MD trajectory, but more advanced

methods are required to enhance the sampling. Whenever the conditions can be described using an

“order parameter”, i.e., an appropriate phase space function or field, one can define a macroscopic

constraint that applied to the system will allow one to explore the interesting, but unlikely, region

of phase space. A viable method in many cases is the well-known Blue Moon approach [15,59],

where the conditional probability density is constructed by augmenting the dynamical system with

a set of holonomic constraints that force the system to explore states on the specific hypersurface

of interest in phase space. The points sampled on a dynamical trajectory subject to constraints,

however, cannot be directly used to start the time-dependent non-equilibrium trajectories, because of

the unphysical additional conditions enforced on velocities to keep the dynamics on the constrained

hypersurface. In the Blue Moon approach, such caveats are overcome, the correct procedure is

outlined in [15], requiring, first, an apt resampling of the velocities and, then, an appropriate

reweighting when computing the time-dependent averages. The Blue Moon approach was initially

devised and successfully applied to the calculation of rate constants for activated processes. In

particular, the rate constants are defined in terms of the product of two terms: a transition state theory

term and a “transmission coefficient” (i.e., the plateau value, in the intermediate time scale, reached

following the transient behavior of the time-dependent values of the reaction coordinate(s) [14,60]).

The calculation of the transmission coefficient is a task that can be accomplished exactly along the

same lines of the proposed D-NEMD approach.

As a more advanced illustration of D-NEMD when sampling from a conditional probability

density, we describe the case of the hydrodynamic relaxation to equilibrium of the interface between

two immiscible liquids [61]. The relaxation can be described by following the time evolution of
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the difference of the density fields of the two species A and B, Δ�(�x; t) = �A(�x; t) − �B(�x; t) ,

and the associated velocity field �v(�x; t). The distribution at time t0 corresponds to the stationary

conditions of the system subject to a macroscopic restraint that forces a non-equilibrium geometry

for the interface. This requires the implementation of a method, like the Blue Moon one, that allows

one to sample the conditional probability density associated with the constraint. However, using

the Blue Moon approach for vector or field-like constraints can become considerably cumbersome

and rather inconvenient in practice, especially for molecular systems where constraints are already

used in the force field to impose molecular geometries. A much more practical alternative is to use

restrained MD, where one substitutes the constraint with an equivalent restraining potential in terms

of an additional coupling parameter, asymptotically reproducing unbiased constrained conditions.

Let us summarize the restraint MD approach for the case in which the constraint is imposed on a

field-like observable, as for the density difference Δ�(�x, t). Constraining the shape of the interface

S corresponds to specifying the set of spatial points {�xS} where Δ�(�xS, t) = 0.

According to Irving and Kirkwood [24], we associate with this macroscopic field a

microscopic observable

Δ�̂(�x, �Γ) =

NA∑
j=1

mA
j δ(�x− �RA

j )−
NB∑
j=1

mB
j δ(�x− �RB

j ) (30)

on which we need to impose the condition Δ�(�x, t0) = Δ�̃(�x) = 0 on all points {�x} in the domain

corresponding to the desired geometrical surface at the time t0. However, in the numerical approach,

one cannot deal directly with a continuous (vector) variable �x, therefore, the volume available to the

system needs to be discretized over a mesh. With the choice of subdividing the volume in elementary

cubic cells, one introduces the space discretization {�xα, α=1, 2, . . .}, where the reference point �xα

coincides with the center of the α − th cell and the microscopic observable field at this point �xα is

defined as the average F̂ of Δ�̂ over the volume Ωα of the α− th cell:

F̂ (�xα, �Γ) =
1

Ωα

∫
Ωα

d3x

[
NA∑
j=1

mA
j δ(�x− �RA

j )−
NB∑
j=1

mB
j δ(�x− �RB

j )

]
, α = 1, 2, . . . (31)

on which we now need to impose the condition F̂ (�xα, �Γ) = F̃ (�xα) = 0 at each of the m points

{�xα, α = 1, 2, . . . ,m}, which correspond to the subset of cells that make up the discretized

representation of the chosen interface between the two immiscible liquids.

Consider, now, a system described by the Hamiltonian

Hk(�Γ) = H(�Γ) +
k

2

m∑
α=1

[
F̂ (�xα, �Γ)− F̃ (�xα)

]2
(32)

where H(�Γ) is the Hamiltonian of the unconstrained system and k is a tunable parameter that defines

the strength of the (harmonic) restraining potential, i.e., the last term on the right-hand side of

Equation (32). This Hamiltonian can be used to drive either an MC simulation or an MD simulation
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at a fixed temperature T generating trajectories, stochastic or dynamic, which sample the phase space

of the system according to the canonical probability density ρ
(k)
0 (�Γ) at time t0

ρ
(k)
0 (�Γ) =

e−βHk(�Γ)

Z(k)
0

=
e−βH(�Γ)

∏m
α=1 e

−βk
2 [F̂ (�xα,�Γ)−F̃ (�xα)]

2

Z
1

P (k)(F̃ )
≡ P (k)(�Γ, F̃ )

P (k)(F̃ )
= P (k)(�Γ|F̃ ) (33)

where Z(k)
0 =

∫
d2nΓe−βHk(�Γ) and Z =

∫
d2nΓe−βH(�Γ) are the canonical partition functions and

P (k)(F̃ (�x1), F̃ (�x2), . . . F̃ (�xm)) =
1

Z

∫
d2nΓ

{
e−βH(�Γ)

m∏
α=1

e−
βk
2 [F̂ (�xα,�Γ)−F̃ (�xα)]

2

}
(34)

We see, then, more explicitly, that, thanks to the restraint potential, at a given value k of the tunable

coupling parameter, we are sampling the conditional probability density of �Γ given F̃ , whose limit

for k → ∞ is just the ensemble associated with that given fluctuation.

The idea of using a biasing potential to sample unlikely points in configuration space was

pioneered by Torrie and Valleau for MC simulation [62], then presented in this form in [63]. However,

while in their case of umbrella/window sampling, the bias is tuned in such a way to sample, in

a statistically significant manner, a wider portion of the configuration space, in the restraint MD

approach, one considers high enough values of the tunable parameter k with the aim of sampling

the conditional probability associated with the portion of phase space representing a rare region of

interest. Indeed, using that lim
a→∞

exp
{
−a

2
(y − ỹ)2

}
−→

√
2π

a
δ(y − ỹ), one recovers, in the limit

βk → ∞, the joint probability density

lim
βk→∞

ρ
(k)
0 (�Γ) = ρ0(�Γ|{F̃}) = e−βH(�Γ)

Z

m∏
α=1

δ
(
F̂ (�xα, �Γ)− F̃ (�xα)

)
/P({F̃}) (35)

where, in the normalizing factor, the probability density of the “condition” {F̃} is given by

P({F̃}) = P
(
F (�x1) = F̃ (�x1), F (�x2) = F̃ (�x2), . . . , F (�xm) = F̃ (�xm)

)
(36)

=
1

Z

∫
d2nΓ

{
e−βH(�Γ)

m∏
α=1

δ
(
F̂ (�xα, �Γ)− F̃ (�xα)

)}
(37)

The choice of a restraining potential, which depends only on the coordinates of the particles, as

in this case, does not influence the probability density in the momentum space, which remains the

Maxwellian (equilibrium) distribution and, at variance with the Blue Moon approach, independent

points along the stationary restrained MD trajectory can be directly taken as initial configurations

representative of the probability density at time t0. Moreover, if needed, the restrained MD approach

can be further generalized to enforce a more general macroscopic constraint affecting also the

momenta of the particles, for example, coupling it with the ad hoc boundary conditions and the

localized velocity sampling described in Section 3.2 to impose a non-uniform macroscopic velocity

field or a temperature gradient in the system.

The definition of the microscopic field in Equation (31) has still one important drawback, which

can prompt major issues in particular conditions. In fact, because of the presence of δ-functions in
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the definition, as a particle crosses the border between one cell and the neighboring one, the integrals

that define the macroscopic field at the two corresponding points in space change by, plus or minus,

respectively, a finite value introducing discontinuities in the restraining potential in Equation (32).

This results in the (highly undesirable) appearance of impulsive terms in the forces on the atoms.

Consider the δ(�x− �Rj) function contribution to the integral in Equation (31) for a specific particle j.

This is given by the products of three terms, corresponding to the orthogonal directions in space,

where each of them is the difference of the values of the cumulative distribution at the edges of

the α − th cell. The cumulative distribution for the delta function δ(ξ) is the step function θ(ξ),

{θ(ξ < 0) = 0 , θ(ξ > 0) = 1}, so that each of the above three terms can only be either zero or

one. In order to smooth the restraining potential, we need to replace the step function with a

smoother function, like a sigmoid, resulting in a continuous variation, between zero and one, of

each term in the product. This is equivalent to giving a finite extension to the particle size, resulting

in the possibility that a particle contributes, fractionally, to the density field of more than one cell

at the same time. In this way, the restraining potential changes smoothly with the motion of the

particles in time, without discontinuities when particles cross the cell borders. One possible choice

for such function is given by the error function, which corresponds to replacing the delta function

by the equivalent Gaussian, e−
ξ2

2a/
√
2πa −→ δ(ξ), in the limit a −→ 0, where the parameter a

gives the order of magnitude for the (1D) size of the particle. Within such an approximation,

Equation (31) becomes

F̂ (�xα, �Γ) =
1

Ωα

[
NA∑
j=1

mA
j Θ(a, �xα, �R

A
j )−

NB∑
j=1

mB
j Θ(a, �xα, �R

B
j )

]
, α = 1, 2, . . . (38)

where the function Θ(a, �xα, �Rj) is the product of three terms corresponding to the integrals along the

three spatial components (x1 ≡ x, x2 ≡ y and x3 ≡ z) each involving the evaluation of two values

of the error function relative to the border of the cubic cell of length �:

Θ(a, �xα, �Rj) =
3∏

ν=1

[
erf

(
xν
α + �/2−Rν

j√
a

)
− erf

(
xν
α − �/2−Rν

j√
a

)]
(39)

The two fluids, A and B, are modeled using identical Lennard–Jones particles with mass m and

(unique) parameters σ = σAA = σBB = σAB and ε = εAA = εBB = εAB for the LJ potential.

The immiscibility is obtained by removing the attractive term for the pair interactions between

a particle of type A and a particle of type B, keeping only the purely repulsive part, i.e., taking

u(r = |�RA − �RB|) = 4ε [σ/r]12. The simulation was performed at a fixed temperature kBT = 1.5ε

on a system totaling 171,500 particles, of which 88,889 for Fluid A and 82,611 for Fluid B, in a

rectangular parallelepiped box with the same width and height w = h ≈ 44 and double length

d ≈ 88, corresponding to an average particle density n = 1.024, where all figures are in reduced LJ

units. The density and temperature are in the fluid region of the phase space of a pure LJ fluid. In

order to follow the behavior of the density and velocity fields, the space was discretized using 5,488

cubic cells arranged on a 14 × 14 × 28 grid. In this way, local field values are obtained averaging

out on roughly 30 particles in each cell. For the ensemble at time t0, the initial configuration for
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the interface between Fluid A and Fluid B is defined by selecting the m cells (centered on the mesh

points, �xα, α = 1, 2, . . . ,m), which are cut across by the ideal cylindrical surface, S̃,

S̃ =

{
�x : z = A sin

(πx
w

)
+

h−A
2

, 0 � x � w , 0 � y � h

}
(40)

where A = 50 is the amplitude that determines the curvature of the surface, which is approximatively

placed halfway along the z-direction in the simulation box. The restraint potential is completely

defined by the choice of the coupling parameter k = 0.004 in LJ units and the imposed values

F̃ (�xα) = 0, α = 1, 2, . . . ,m. The initial configuration was first prepared with the equilibration of a

pure Type A fluid at the target temperature and density and then identifying, within the simulation

box, as particles of Type A all the particles that are on the red side of the surface S̃, as particles of

Type B all the particles that are on the blue side (see the left panel in Figure 7), taking care of having

exactly half of the particles of Type A and half of Type B in the m cells that make up the discretized

interface at time t0. Periodic boundary conditions are applied in all directions, so that a second flat

interface (the condition that minimizes the surface tension) is created at the same time at the sides

of the box along the z-direction. Then, the system was equilibrated running restrained MD with a

time step δt = 4.56 · 10−4 in LJ units. Such a rather small value for δt was used to ensure a proper

numerical integration of the “stiff" restraining forces. A typical snapshot of the isosurface Δ�(�x) = 0

is shown in the left panel of Figure 7.

A long, 106 MD restrained trajectory was then carried out, with that same time step, taking

out, at regular intervals of 25,000 steps, the configuration of the system in phase space. A set of 40

independent initial conditions was collected in this way, and from each of them was started, now with

a regular time step δt = 4.56·10−3, a 25,000-steps unrestrained MD trajectory at constant energy, i.e.,
using the equations of motion derived only from the Hamiltonian H(�Γ), given in Equation (32). The

D-NEMD averaging procedure was used with those 40 trajectories to compute the time-dependent

behavior of the macroscopic density and velocity fields, discretized on the previously mentioned

cubic mesh.

In the right panel of Figure 7, the dynamical behavior of the interface is shown by plotting the

isosurfaces Δ�(�x) = 0 for four successive times.

One can see that the interface curvature diminishes progressively towards the flat, equilibrium

condition, while maintaining (approximatively) both the initial uniformity along the direction of the

y-axis and the initial mirror symmetry with respect to the middle yz-plane. Small deviations are

present, as expected, considering that this macroscopic field results from averaging over a relatively

small sample of 40 independent trajectories. They are compatible with the expected amplitudes of

the equilibrium fluctuations of the interface. Relaxation of the initially curved surface reaches the flat

equilibrium condition fully in a time lapse of approximatively 20,000 steps, i.e., something just short

of 100 LJ time units. One can use this information to estimate the order of the relaxation time and,

from it, a maximum value vmax ≈ 0.5 in LJ units for the average velocity field at the mid-point along

x of the interface, i.e., in the region corresponding to the maximum displacement at time t0 of the

interface. If one takes the LJ parameters of argon (for which σ = 3.405 ·10−10 m and the unit of time
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corresponds to τ = 2.156 · 10−12 s), this value translates to an experimentally convincing velocity of

≈ 80 m · s−1.

Figure 7. (Left panel) A sampled initial condition for the S isosurface Δ�(�x) = 0

separating the two liquids, A and B (the second planar interface at the long edge of the

simulation box is not shown). (Right panel) The evolution in time of the initially curved

interface (purple) towards the relaxed planar condition (green). The snapshots are the

D-NEMD results averaged over a sample of 40 initial conditions.

The second interface on the sides of the MD box remains flat, with even smaller deviations,

all along the 25,000 time steps. There seem to be no significant effects on it as a result of the

relaxation process, which takes place in the middle of the box. The reason for this will become

evident after looking at the time-dependent behavior of the velocity field. We have shown, in fact,

how the D-NEMD approach provides very detailed information on the hydrodynamic behavior of the

system and unravels the underlying physical mechanisms.

Starting from Equation (20), the discretized velocity field is calculated accordingly to:

�v(�x, t) =

〈∑NA

j=1
�PA
j (t)Θ(a, �xα, �R

A
j (t)) +

∑NB

j=1
�PB
j (t)Θ(a, �xα, �R

B
j (t))

〉
ρ0〈∑NA

j=1 mΘ(a, �xα, �RA
j (t)) +

∑NB

j=1 mΘ(a, �xα, �RB
j (t))

〉
ρ0

(41)

where we made explicit use of the fact that the particles have identical masses m, regardless of

whether they are of Type A or B, and the D-NEMD average is taken over the 40 trajectories with

initial conditions sampled from the ρ0 probability density along the restrained MD trajectory. The

results of the calculation are shown in the left panels of Figure 8. The direction of the projections of

the velocity field in each cell on the xz-plane (after averaging along the translational symmetry axis

y) is represented by a small arrow whose length is proportional to its modulus.
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Figure 8. The behavior of the velocity field in the two liquid regions as a function of

time: comparison of the results obtained using the D-NEMD approach averaging over

40 initial conditions (Panels A–C) and the local time averaging procedure (Panels D–F).

The results emphasize how the latter approach returns a much flatter picture of the

velocity field, exposing features of the relaxation mechanism that are in marked contrast

with the underlying symmetries of the process. (reproduced from [61] with permission

from the Physical Chemistry Chemical Physics Owner Societies.)

Snapshots at three successive times are shown. In the snapshot taken 500 time steps after t0, one

can notice the build up of some coherence in the velocity field, which becomes structured in a region

that is, along the z-direction, about twice the size of the width of the curved interface, the projection

of which is represented by the contour line at the value Δ� = 0. For the sake of clarity, the symmetry

yz plane is as well highlighted by a dashed straight line. One can distinguish a quasi-symmetric

two-tail profile, where the push towards the edges of the interface appears to be more pronounced

than the one, in the opposite direction, in the region near the center of the interface (Panel A). This

behavior marks the initial build up of a more stable two-roll velocity profile, of roughly the same

width across the interface region in the A and B fluids, which becomes very evident after 3,750 steps
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(Panel B) and is still neatly visible and qualitatively unchanged, even after 7,500 steps from t0, when

the curvature of the interface is significantly reduced (Panel C).

One can notice that the size and the intensity of the field has decreased, but the profile remains

highly symmetrical along the mirror symmetry plane. All along, one can notice also that the field

in the extreme sides of the simulation box remains essentially unperturbed, which explains why the

second flat interface at the boundary is not affected in any significant way and remains stable during

the whole relaxation process of the curved interface. It is very interesting to compare these insights

on the hydrodynamic processes underlying the interface relaxation, as given by the time-dependent

behavior of the dynamical response calculated using the D-NEMD procedure, with the standard

approach used on single trajectory simulations of hydrodynamic processes. Starting from the local

equilibrium hypothesis of hydrodynamic theory, based on the assumption of a time scale separation

between the fast microscopic motion of the particles and the slower hydrodynamic processes, the

macroscopic fields are computed as local time averages on the short time scale τ of the atomistic

processes [64].

By applying this approach to the time evolution from a single initial condition, one obtains the

results shown in the right panels of Figure 8. At first glance, the velocity field appears to be much

smoother than the D-NEMD result, which is relatively noisy due to the limited size (40) of the

sample of initial conditions used. However, the picture that is returned is quite different, with the

physical mechanism exposed by the D-NEMD procedure effectively washed out by the local time

averaging, which also presents a velocity field that does seem to violate the mirror plane symmetry

initially imposed on the system at time t0, contrary to the more convincing evidence, given from the

D-NEMD results, of a relaxation mechanism satisfying, on average, such symmetry at all times along

the dynamical trajectory.

4. Conclusions and Perspectives

In this paper, we have presented a dynamical approach to non-equilibrium MD, which makes

it possible to compute, numerically, but, otherwise, rigorously, time-dependent non-equilibrium

responses, i.e., to observe directly transient responses in non-stationary regimes. We have shown

that using a proper simulation setup, it is possible to go beyond the usual situation of initial

equilibrium conditions to treat interesting cases in which the initial condition is either a stationary

non-equilibrium or a constrained equilibrium condition dictated by means of a macroscopic

constraint, which can be expressed, in a general way, either as a scalar or field-like observable,

outlining also the connections of the D-NEMD approach to the Blue Moon method [15] to compute

the transmission coefficient contribution to the rate constants of activated processes.

We illustrated a few applications of the method starting from the early, historical, approach to the

calculation of transport properties in the lines of Linear Response Theory and beyond, to a couple

of recent atomistic simulations of hydrodynamic processes: the establishing of a convective cell,

when gravity is switched on in the presence of a stationary thermal gradient, and the relaxation of an

initially curved interface between two immiscible liquids. We have shown that the method generates

rigorous time-dependent non-equilibrium averages, providing valuable insights on the mechanisms of
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hydrodynamic processes that can be missed using a method like the local time average, which cannot

have a rigorous justification, presents a statistical error that cannot be reduced at will and, finally, as

we have seen above, can bias the statistical response. A word of caution is needed, though. The

time-dependent ensemble averages are meaningful only if the thermodynamical response is

unique [65]. Whenever this is not the case, the meaning of the statistical averages becomes

questionable. To our knowledge, in these cases a systematic answer does not exist for the

non-equilibrium thermodynamic response and problems have to be treated on a one-by-one basis.

In summary, with the outlined exceptions, D-NEMD is a method ready for challenging

applications, by which it is possible to study complex time-dependent phenomena using only the

fundamental laws of Statistical Mechanics, i.e., without using empirical approaches as, for example,

in the case of continuum hydrodynamic theories. Work is in progress in this direction.
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Abstract: Malliavin weight sampling (MWS) is a stochastic calculus technique for

computing the derivatives of averaged system properties with respect to parameters in

stochastic simulations, without perturbing the system’s dynamics. It applies to systems

in or out of equilibrium, in steady state or time-dependent situations, and has applications

in the calculation of response coefficients, parameter sensitivities and Jacobian matrices

for gradient-based parameter optimisation algorithms. The implementation of MWS has

been described in the specific contexts of kinetic Monte Carlo and Brownian dynamics

simulation algorithms. Here, we present a general theoretical framework for deriving the

appropriate MWS update rule for any stochastic simulation algorithm. We also provide

pedagogical information on its practical implementation.

Keywords: stochastic calculus; Brownian dynamics

1. Introduction

Malliavin weight sampling (MWS) is a method for computing derivatives of averaged system

properties with respect to parameters in stochastic simulations [1,2]. The method has been used in

quantitative financial modelling to obtain the “Greeks” (price sensitivities) [3], and as the Girsanov

transform, in kinetic Monte Carlo simulations for systems biology [4]. Similar ideas have been

used to study fluctuation-dissipation relations in supercooled liquids [5]. However, MWS appears
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to be relatively unknown in the fields of soft matter, chemical and biological physics, perhaps

because the theory is relatively impenetrable for non-specialists, being couched in the language of

abstract mathematics (e.g., martingales, Girsanov transform, Malliavin calculus, etc.); an exception

in financial modelling is [6].

MWS works by introducing an auxiliary stochastic quantity, the Malliavin weight, for each

parameter of interest. The Malliavin weights are updated alongside the system’s usual (unperturbed)

dynamics, according to a set of rules. The derivative of any system function, A, with respect to a

parameter of interest is then given by the average of the product of A with the relevant Malliavin

weight; or in other words, by a weighted average of A, in which the weight function is given by the

Malliavin weight. Importantly, MWS works for non-equilibrium situations, such as time-dependent

processes or driven steady states. It thus complements existing methods based on equilibrium

statistical mechanics, which are widely used in soft matter and chemical physics.

MWS has so far been discussed only in the context of specific simulation algorithms. In this

paper, we present a pedagogical and generic approach to the construction of Malliavin weights, which

can be applied to any stochastic simulation scheme. We further describe its practical implementation

in some detail using as our example one dimensional Brownian motion in a force field.

2. The Construction of Malliavin Weights

The rules for the propagation of Malliavin weights have been derived for the kinetic Monte-Carlo

algorithm [4,7], for the Metropolis Monte-Carlo scheme [5] and for both underdamped and

overdamped Brownian dynamics [8]. Here we present a generic theoretical framework, which

encompasses these algorithms and also allows extension to other stochastic simulation schemes.

We suppose that our system evolves in some state space, and a point in this state space is denoted

as S. Here, we assume that the state space is continuous, but our approach can easily be translated to

discrete or mixed discrete-continuous state spaces. Since the system is stochastic, its state at time t is

described by a probability distribution, P (S). In each simulation step, the state of the system changes

according to a propagator, W (S → S ′), which gives the probability that the system moves from point

S to point S ′ during an application of the update algorithm. The propagator has the property that

P ′(S ′) =
∫
S

dS W (S → S ′)P (S) (1)

where P ′(S) is the probability distribution after the update step has been applied and the integral is

over the whole state space. We shall write this in a shorthand notation as

P ′ =
∫

WP . (2)

Integrating Equation (1) over S ′, we see that the propagator must obey
∫
S′ W (S → S ′) = 1. It is

important to note, however, that we do not assume the detailed balance condition Peq(S)W (S →
S ′) = Peq(S

′)W (S ′ → S) (for some equilibrium Peq(S)). Thus, our results apply to systems
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whose dynamical rules do not obey detailed balance (such as chemical models of gene regulatory

networks [9]), as well as to systems out of steady state. We observe that the (finite) product

W(S1, . . . , Sn) = W (S1 → S2)× · · · ×W (Sn−1 → Sn) (3)

is proportional to the probability of occurrence of a trajectory of states, {S1, . . . , Sn}, and can be

interpreted as a trajectory weight.
Let us now consider the average of some quantity A(S) over the state space, in shorthand

〈A〉 =
∫

AP . (4)

The quantity A might well be a complicated function of the state of the system: for example the extent

of crystalline order in a particle-based simulation, or a combination of the concentrations of various

chemical species in a simulation of a biochemical network. We suppose that we are interested in

the sensitivity of 〈A〉 to variations in some parameter of the simulation, which we denote as λ. This

might be one of the force field parameters (or the temperature) in a particle-based simulation or a

rate constant in a kinetic Monte Carlo simulation. We are interested in computing ∂〈A〉/∂λ. This

quantity can be written as
∂〈A〉
∂λ

=

∫
AP Qλ , (5)

where

Qλ =
∂ lnP

∂λ
(6)

(using the fact that ∂ lnP/∂λ = (1/P )∂P/∂λ).

Let us now suppose that we track in our simulation not only the physical state of the system,

but also an auxiliary stochastic variable, which we term qλ. At each simulation step qλ is updated

according to a rule that depends on the system state; this does not perturb the system’s dynamics, but

merely acts as a “readout”. By tracking qλ, we extend the state space, so that S becomes {S, qλ}. We

can then define the average 〈qλ〉S , which is an average of the value of qλ in the extended state space,

with the constraint that the original (physical) state space point is fixed at S (see further below).

Our aim is to define a set of rules for updating qλ, such that 〈qλ〉S = Qλ, i.e., such that the average

of the auxiliary variable, for a particular state space point, measures the derivative of the probability

distribution with respect to the parameter of interest, λ. If this is the case then, from Equation (5)

∂〈A〉
∂λ

= 〈Aqλ〉 . (7)

The auxiliary variable qλ is the Malliavin weight corresponding to the parameter λ.

How do we go about finding the correct updating rule? If the Malliavin weight exists, we should

be able to derive its updating rule from the system’s underlying stochastic equations of motion. We

obtain an important clue from differentiating Equation (1) with respect to λ. Extending the shorthand

notation, one finds

P ′Q′
λ =

∫
WP

(
Qλ +

∂ lnW

∂λ

)
. (8)
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This strongly suggests that the rule for updating the Malliavin weight should be

q′λ = qλ +
∂ lnW

∂λ
. (9)

In fact, this is correct. The proof is not difficult and, for the case of Brownian dynamics, can be

found in the supplementary material for [8]. It involves averaging Equation (9) in the extended state

space {S, qλ}.

From a practical point of view, for each time step, we implement the following procedure:

• propagate the system from its current state S to a new state S ′ using the algorithm that

implements the stochastic equations of motion (Brownian, kinetic Monte-Carlo, etc.);
• with knowledge of S and S ′, and the propagator W (S → S ′), calculate the change in the

Malliavin weight Δqλ = ∂ lnW (S → S ′)/∂λ;

• update the Malliavin weight according to qλ → q′λ = qλ +Δqλ.

At the start of the simulation, the Malliavin weight is usually initialised to qλ = 0.

Let us first suppose that our system is not in steady state. However rather the quantity 〈A〉 in

which we are interested is changing in time and likewise ∂〈A(t)〉/∂λ is a time-dependent quantity.

To compute ∂〈A(t)〉/∂λ we run N independent simulations, in each one tracking as a function of

time A(t), qλ(t) and the product A(t) qλ(t). The quantities 〈A(t)〉 and ∂〈A(t)〉/∂λ are then given by

〈A(t)〉 ≈ 1

N

N∑
i=1

Ai(t),
∂〈A(t)〉

∂λ
≈ 1

N

N∑
i=1

Ai(t) qλ,i(t) , (10)

where Ai(t) is the value of A(t) recorded in the ith simulation run (and likewise for qλ,i(t)). Error

estimates can be obtained from the variance among the replicate simulations.

If, instead, our system is in steady state, the procedure needs to be modified slightly. This is

because the variance in the values of qλ(t) across replicate simulations increases linearly in time

(this point is discussed further below). For long times, computation of ∂〈A〉/∂λ using Equation (10)

therefore incurs a large statistical error. Fortunately, this problem can easily be solved by computing

the correlation function

C(t, t′) = 〈A(t) [qλ(t)− qλ(t
′)]〉 . (11)

In steady state, C(t, t′) = C(t − t′), with the property that C(Δt) → ∂A/∂λ as Δt → ∞. In a

single simulation run, we simply measure qλ(t) and A(t) at time intervals separated by Δt (which is

typically multiple simulation steps). At each measurement, we compute A(t) [qλ(t) − qλ(t − Δt)].

We then average this latter quantity over the whole simulation run to obtain an estimate of ∂〈A〉/∂λ.

For this estimate to be accurate, we require that Δt is long enough that C(Δt) has reached its plateau

value; this typically means that Δt should be longer than the typical relaxation time of the system’s

dynamics. The correlation function approach is discussed in more detail in [7,8].

Returning to a more theoretical perspective, it is interesting to note that the rule for updating the

Malliavin weight, Equation (9), depends deterministically on S and S ′. This implies that the value of
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the Malliavin weight at time t is completely determined by the trajectory of system states during the

time interval 0 → t. In fact, it is easy to show that

qλ =
∂ lnW

∂λ
(12)

where W is the trajectory weight defined in Equation (3). Similar expressions are given in [5,7].

Thus, the Malliavin weight qλ is not fixed by the state point S but by the entire trajectory of states

that have led to state point S. Since many different trajectories can lead to S, many values of qλ

are possible for the same state point S. The average 〈qλ(t)〉S is actually the expectation value of

the Malliavin weight, averaged over all trajectories that reach state point S at time t. This can be

used to obtain an alternative proof that 〈qλ〉S = ∂ lnP/∂λ. Suppose we sample N trajectories, of

which NS end up at state point S (or a suitably defined vicinity thereof, in a continuous state space).

We have P (S) = 〈NS〉/N . Then, the Malliavin property implies ∂P/∂λ = 〈NS qλ〉/N , and hence

∂ lnP/∂λ = 〈NS qλ〉/〈NS〉 = 〈qλ〉S .

3. Multiple Variables, Second Derivatives and the Algebra of Malliavin Weights

Up to now, we have assumed that the quantity A does not depend explicitly on the parameter

λ. There may be cases, however, when A does have an explicit λ-dependence. In these cases,

Equation (7) should be replaced by

∂〈A〉
∂λ

=
〈∂A
∂λ

〉
+ 〈Aqλ〉 . (13)

If we set A to be a constant in this, we immediately obtain the general result that 〈qλ〉 = 0.

Equation (13) reveals a kind of ‘algebra’ for Malliavin weights: we see that the operations of taking

an expectation value and taking a derivative can be commuted, provided the Malliavin weight is

introduced as the commutator.

We can also extend our analysis further to allow us to compute higher derivatives with respect

to the parameters. These may be useful, for example, for increasing the efficiency of gradient-based

parameter optimisation algorithms. Taking the derivative of Equation (13) with respect to a second

parameter μ gives

∂2〈A〉
∂λ∂μ

=
∂

∂μ

〈∂A
∂λ

〉
+

∂〈Aqλ〉
∂μ

=
〈 ∂2A

∂λ∂μ

〉
+

〈∂A
∂λ

qμ

〉
+

〈
A

∂qλ
∂μ

〉
+

〈∂A
∂μ

qλ

〉
+ 〈Aqλ qμ〉

= 〈A (qλμ + qλqμ)〉+
〈∂A
∂λ

qμ

〉
+

〈∂A
∂μ

qλ

〉
+

〈 ∂2A

∂λ∂μ

〉
, (14)

where in the second line we iterate the commutation relation, and in the third line we collect like

terms and introduce

qλμ =
∂qλ
∂μ

. (15)
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In the case where A is independent of the parameters, this result simplifies to

∂2〈A〉
∂λ∂μ

= 〈A (qλμ + qλqμ)〉 . (16)

The quantity qλμ here is a new, second order, Malliavin weight which from Equations (12)

and (15) satisfies

qλμ =
∂2 lnW

∂λ∂μ
. (17)

To compute second derivatives with respect to the parameters, we should therefore track these second

order Malliavin weights in our simulation, updating them alongside the existing Malliavin weights

by the rule

q′λμ = qλμ +
∂2 lnW (S → S ′)

∂λ∂μ
. (18)

Setting A as a constant in Equation (16), we also obtain the interesting result that 〈qλμ〉 = −〈qλqμ〉.
Steady state problems can be approached by extending the correlation function method to second

order weights. Define, cf. Equation (11),

C(t, t′) = 〈A(t) {[qλμ(t) + qλ(t)qμ(t)]− [qλμ(t
′) + qλ(t

′)qμ(t′)]}〉 . (19)

As in the first order case, in steady state we expect C(t, t′) = C(t − t′) with the property that

C(Δt) → ∂2〈A〉/∂λ∂μ as Δt → ∞.

4. One-Dimensional Brownian Motion in a Force Field

We now demonstrate this machinery by way of a practical but very simple example, namely

one-dimensional (overdamped) Brownian motion in a force field. In this case, the state space is

specified simply by the particle position x which evolves according to the Langevin equation

dx

dt
= f(x) + η (20)

where f(x) is the force field and η is Gaussian white noise of amplitude 2T , where T is temperature.

Without loss of generality, we have chosen units so that there is no prefactor multiplying the force

field. We discretise the Langevin equation to the following updating rule:

x′ = x+ f(x) δt+ ξ , (21)

where δt is the time step and ξ is a Gaussian random variate with zero mean and variance 2T δt.

Corresponding to this updating rule is an explicit expression for the propagator,

W (x → x′) =
1√

4πT δt
exp

(
−(x′ − x− f(x) δt)2

4T δt

)
. (22)

This follows from the statistical distribution of ξ. Let us suppose that the parameter of interest

λ enters into the force field (the temperature T could also be chosen as a parameter). Making

this assumption
∂ lnW (x → x′)

∂λ
=

(x′ − x− f δt)

2T

∂f

∂λ
. (23)
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We can simplify this result by noting that from Equation (21), x′ − x− f δt = ξ. Making use of this,

the final updating rule for the Malliavin weight is

q′λ = qλ +
ξ

2T

∂f

∂λ
(24)

where ξ is the exact same value that was used for updating the position in Equation (21). Because

the value of ξ is the same for the updates of position and of qλ, the change in qλ is completely

determined by the end points, x and x′. The derivative ∂f/∂λ should be evaluated at x since that is

the position at which the force is computed in Equation (21). Since ξ in Equation (21) is a random

variate uncorrelated with x, averaging Equation (24) shows that 〈q′λ〉 = 〈qλ〉. As the initial condition

is qλ = 0, this means that 〈qλ〉 = 0, as predicted in the previous section. Equation (24) is essentially

the same as that derived in [8].

If we differentiate Equation (23) with respect to a second parameter μ we get

∂2 lnW (x → x′)
∂λ∂μ

=
(x′ − x− f δt)

2T

∂2f

∂λ∂μ
− δt

2T

∂f

∂λ

∂f

∂μ
. (25)

Hence, the updating rule for the second order Malliavin weight can be written as

q′λμ = qλμ +
ξ

2T

∂2f

∂λ∂μ
− δt

2T

∂f

∂λ

∂f

∂μ
, (26)

where again ξ is the exact same value as that used for updating the position in Equation (21).

If we average Equation (26) over replicate simulation runs, we find 〈q′λμ〉 = 〈qλμ〉 −
(δt/2T )(∂f/∂λ)(∂f/∂μ). Hence the mean value 〈qλμ〉 drifts in time, unlike 〈qλ〉 or 〈qμ〉. However,

one can show that the mean value of the sum 〈(qλμ + qλqμ)〉 is constant in time and equal to zero as

long as initially qλ = qμ = 0.

Now let us consider the simplest case of a particle in a linear force field f = −κx + h (also

discussed in [8]). This corresponds to a harmonic trap with the potential U = 1
2
κx2 − hx. We let the

particle start from x0 at t = 0 and track its time-dependent relaxation to the steady state. We shall

set T = 1 for simplicity. The Langevin equation can be solved exactly for this case, and the mean

position evolves according to

〈x(t)〉 = x0e
−κt +

h

κ
(1− e−κt) . (27)

We suppose that we are interested in derivatives with respect to both h and κ, for a “baseline”

parameter set in which κ is finite but h = 0. Taking derivatives of Equation (27) and setting h = 0,

we find

∂〈x(t)〉
∂h

=
1− e−κt

κ
,

∂〈x〉(t)
∂κ

= −x0te
−κt ,

∂2〈x(t)〉
∂h∂κ

=
te−κt

κ
− 1− e−κt

κ2
. (28)

We now show how to compute these derivatives using Malliavin weight sampling. Applying the

definitions in Equations (24) and (26), the Malliavin weight increments are

q′h = qh +
ξ

2
, q′κ = qκ −

x ξ

2
, q′hκ = qhκ +

x δt

2
, (29)
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and the position update itself is

x′ = x− κx δt+ ξ . (30)

We track these Malliavin weights in our simulation and use them to calculate derivatives according to

∂〈x(t)〉
∂h

= 〈x(t)qh(t)〉 ,
∂〈x(t)〉
∂κ

= 〈x(t)qκ(t)〉 ,
∂2〈x(t)〉
∂h∂κ

= 〈x(t)(qhκ(t) + qh(t)qκ(t))〉 . (31)

Equations (29)–(31) have been coded up as a MATLAB script, described in Section 5. A typical

result generated by running this script is shown in Figure 1. Equations (29) and (30) are iterated with

δt = 0.01 up to t = 5, for a trap strength κ = 2 and initial position x0 = 1. The weighted averages

in Equation (31) are evaluated as a function of time for N = 105 samples as in Equation (10).

These results are shown as the solid lines in Figure 1. The dashed lines are theoretical predictions

for the time dependent derivatives from Equation (28). As can be seen, the agreement between the

time-dependent derivatives and the Malliavin weight averages is very good.

Figure 1. Time-dependent derivatives, ∂〈x〉/∂h (top curve, blue), ∂〈x〉/∂κ (middle

curve, green), and ∂2〈x〉/∂h∂κ (bottom curve, red). Solid lines (slightly noisy) are the

Malliavin weight averages as indicated in the Figure, generated by running the MATLAB

script described in Section 5. Dashed lines are theoretical predictions from Equation (28).
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As discussed briefly above, in this procedure the sampling error in the computation of ∂〈A(t)〉/∂λ
is expected to grow with time. Figure 2 shows the mean square Malliavin weight as a function of

time for the same problem. For the first order weights qh and qκ the growth rate is typically linear in

time. Indeed, from Equation (29), one can prove that in the limit δt → 0 (see Section 5)

d〈q2h〉
dt

=
1

2
,

d〈q2κ〉
dt

=
〈x2〉
2

. (32)

Thus qh behaves exactly as a random walk, as should be obvious from the updating rule. The

other weight qκ also ultimately behaves as a random walk since 〈x2〉 = 1/κ in steady state (from

equipartition). Figure 2 also shows that the second order weight qhκ grows superdiffusively; one

can show that eventually 〈(qhκ + qhqκ)
2〉 ∼ t2, although the transient behaviour is complicated.

Full expressions are given in Section 5. This suggests that computation of second order derivatives
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is likely to suffer more severely from statistical sampling problems than the computation of first

order derivatives.

Figure 2. Growth of mean square Malliavin weights with time. The solid lines are from

simulations and the dashed lines are from Equation (35) in the Appendix. Parameters are

as for Figure 1.
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5. Conclusions

In this paper, we have provided an outline of the generic use of Malliavin weights for sampling

derivatives in stochastic simulations, with an emphasis on practical aspects. The usefulness of

MWS for a particular simulation scheme hinges on the simplicity or otherwise of constructing

the propagator W (S → S ′) which fixes the updating rule for the Malliavin weights according to

Equation (9). The propagator is determined by the algorithm used to implement the stochastic

equations of motion; MWS may be easier to implement for some algorithms than for others. We

note however that there is often some freedom of choice about the algorithm, such as the choice of a

stochastic thermostat in molecular dynamics, or the order in which update steps are implemented. In

these cases, a suitable choice may simplify the construction of the propagator and facilitate the use

of Malliavin weights.
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Appendix

MATLAB Script

The MATLAB script in Listing 1 was used to generate the results shown in Figure 1. It

implements Equations (29)–(31) above, making extensive use of the compact MATLAB syntax for

array operations, for instance invoking ‘.*’ for element-by-element multiplication of arrays.

Listing 1. MATLAB script used to generate Figure 1.

1 c l e a r a l l
2 randn ( ' s eed ' , 1 2 3 4 5 ) ;

3 kappa = 2 ; x0 = 1 ; t e n d = 5 ; d t = 0 . 0 1 ; nsamp = 10 ^5 ;

4 n p t = round ( t e n d / d t ) + 1 ;

5 t = ( 0 : npt −1) ' * d t ;

6 x = z e r o s ( npt , 1 ) ; x i = z e r o s ( npt , 1 ) ;

7 qh = z e r o s ( npt , 1 ) ; qk = z e r o s ( npt , 1 ) ; qhk = z e r o s ( npt , 1 ) ;

8 x_av = z e r o s ( npt , 1 ) ; xqh_av = z e r o s ( npt , 1 ) ;

9 xqk_av = z e r o s ( npt , 1 ) ; xqhk_av = z e r o s ( npt , 1 ) ;

10 f o r samp = 1 : nsamp

11 x ( 1 ) = x0 ; qh ( 1 ) = 0 ; qk ( 1 ) = 0 ; qhk ( 1 ) = 0 ;

12 x i = randn ( npt , 1 ) * s q r t (2* d t ) ;

13 f o r i = 1 : npt−1

14 x ( i +1) = x ( i ) − kappa *x ( i )* d t + x i ( i ) ;

15 qh ( i +1) = qh ( i ) + 0 . 5 * x i ( i ) ;

16 qk ( i +1) = qk ( i ) − 0 . 5 * x ( i )* x i ( i ) ;

17 qhk ( i +1) = qhk ( i ) + 0 . 5 * x ( i )* d t ;

18 end
19 x_av = x_av + x ;

20 xqh_av = xqh_av + x . * qh ;

21 xqk_av = xqk_av + x . * qk ;

22 xqhk_av = xqhk_av + x . * ( qhk + qh . * qk ) ;

23 end
24 x_av = x_av / nsamp ; xqh_av = xqh_av / nsamp ;

25 xqk_av = xqk_av / nsamp ; xqhk_av = xqhk_av / nsamp ;

26 hold on

27 p l o t ( t , x_av , ' k ' ) ; p l o t ( t , xqh_av , ' b ' ) ;

28 p l o t ( t , xqk_av , ' g ' ) ; p l o t ( t , xqhk_av , ' r ' ) ;

29 p l o t ( t , x0* exp(−kappa * t ) , ' k−− ' )

30 p l o t ( t , (1−exp(−kappa * t ) ) / kappa , ' b−− ' )

31 p l o t ( t , −x0* t . * exp(−kappa * t ) , ' g−− ' )

32 p l o t ( t , t . * exp(−kappa * t ) / kappa−(1−exp(−kappa * t ) ) / ( kappa ^ 2 ) , ' r−− ' )

33 r e s u l t = [ t x_av xqh_av xqk_av xqhk_av ] ;

34 save ( ' r e s u l t . d a t ' , '− a s c i i ' , ' r e s u l t ' ) ;
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Here is a brief explanation of the script. Lines 1–3 initialise the problem and the parameter values.

Lines 4 and 5 calculate the number of points in a trajectory and initialise a vector containing the time

coordinate of each point. Lines 6–9 set aside storage for the actual trajectory, Malliavin weights

and cumulative statistics. Lines 10–23 implement a pair of nested loops, which are the kernel of

the simulation. Within the outer (trajectory sampling) loop, Line 11 initialises the particle position

and Malliavin weights, Line 12 precomputes a vector of random displacements (Gaussian random

variates), and Lines 13–18 generate the actual trajectory. Within the inner (trajectory generating

loop), Lines 14–17 are a direct implementation of Equations (29) and (30). After each individual

trajectory has been generated, the cumulative sampling step implied by Equation (31) is done in

Lines 19–22; after all the trajectories have been generated, these quantities are normalised in Lines 24
and 25. Finally, Lines 26–32 generate a plot similar to Figure 1 (albeit with the addition of 〈x〉),
and Lines 33 and 34 show how the data can be exported in tabular format for replotting using an

external package.

Listing 1 is complete and self-contained. It will run in either MATLAB or Octave. One minor

comment is perhaps in order. The choice was made to precompute a vector of Gaussian random

variates, which are used as random displacements to generate the trajectory and update the Malliavin

weights. One could equally well generate random displacements on-the-fly, in the inner loop. For

this one-dimensional problem storage is not an issue and it seems more elegant and efficient to

exploit the vectorisation capabilities of MATLAB. For a more realistic three-dimensional problem,

with many particles (and a different programming language), it is obviously preferable to use an

on-the-fly approach.

Selected Analytic Results

Here, we present analytic results for the growth in time of the mean square Malliavin weights.

We can express the rate of growth of the mean of a generic function f(x, qh, qκ, qhκ) as

d〈f〉
dt

= lim
δt→0

〈f(x′, q′h, q
′
κ, q

′
hκ)− f(x, qh, qκ, qhκ)〉

δt
, (33)

where on the right-hand side (RHS) the values of x′, q′h, q′κ and qhκ are substituted from the updating

rules in Equations (29) and (30). In calculating the RHS average, we note that the distribution of ξ

is a Gaussian independent of the position and Malliavin weights and thus one can substitute 〈ξ〉 = 0,

〈ξ2〉 = 2 δt, 〈ξ3〉 = 0, 〈ξ4〉 = 12 δt2, etc. Proceeding in this way, with judicious choices for f , one

can obtain the following set of coupled ordinary differential equations (ODEs):

d〈q2h〉
dt

=
1

2
,

d〈q2κ〉
dt

=
〈x2〉
2

,
d〈x2〉
dt

+ 2κ〈x2〉 = 2 ,
d〈xqh〉
dt

+ κ〈xqh〉 = 1 ,

d〈x2q2h〉
dt

+ 2κ〈x2q2h〉 = 2〈q2h〉+ 4〈xqh〉+
〈x2〉
2

,
d〈xqhqκ〉

dt
+ κ〈xqhqκ〉 = −〈xqh〉 −

〈x2〉
2

,

d〈(qhκ + qhqκ)
2〉

dt
=

〈q2κ〉
2

− 〈xqhqκ〉+
〈x2q2h〉

2

(
=

〈(qκ − xqh)
2〉

2

)
. (34)



221

Some of these have already been encountered in the main text. The last one is for the desired mean

square second order weight. The ODEs can be solved with the initial conditions that at t = 0 all

averages involving Malliavin weights vanish but 〈x2〉 = x2
0. The results include inter alia

〈q2h〉 =
t

2
, 〈q2κ〉 =

t

2κ
+

(κx2
0 − 1)(1− e−2κt)

4κ2
,

〈(qhκ + qhqκ)
2〉 = 2κ2t2 + (19 + κx2

0)κt+ 2κx2
0 − 34

8κ3
+

2κt+ 10− κx2
0

2κ3
e−κt

+
(1− κx2

0)κt+ 2κx2
0 − 6

8κ3
e−2κt . (35)

These are shown as the dashed lines in Figure 2. The leading behaviour of the last as t → ∞ is

〈(qhκ + qhqκ)
2〉 = t2

4κ
+ subdominant terms , (36)

however the approach to the pure asymptotic limit is slow.
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Abstract: A good deal of molecular dynamics simulations aims at predicting and

quantifying rare events, such as the folding of a protein or a phase transition.

Simulating rare events is often prohibitive, especially if the equations of motion are

high-dimensional, as is the case in molecular dynamics. Various algorithms have been

proposed for efficiently computing mean first passage times, transition rates or reaction

pathways. This article surveys and discusses recent developments in the field of rare

event simulation and outlines a new approach that combines ideas from optimal control

and statistical mechanics. The optimal control approach described in detail resembles the

use of Jarzynski’s equality for free energy calculations, but with an optimized protocol

that speeds up the sampling, while (theoretically) giving variance-free estimators of the

rare events statistics. We illustrate the new approach with two numerical examples and

discuss its relation to existing methods.

Keywords: rare events; molecular dynamics; optimal pathways; stochastic control;

dynamic programming; change of measure; cumulant generating function
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1. Introduction

Rare but important transition events between long-lived states are a key feature of many systems

arising in physics, chemistry, biology, etc. Molecular dynamics (MD) simulations allow for analysis

and understanding of the dynamical behavior of molecular systems. However, realistic simulations

for interesting (large) molecular systems in solution on timescales beyond microseconds are still

infeasible even on the most powerful general purpose computers. This significantly limits the

MD-based analysis of many biological equilibrium processes, because they often are associated with

rare events. These rare events require prohibitively long simulations because the average waiting time

between the events is orders of magnitude longer than the timescale of the transition characterizing

the event itself. Therefore, the straightforward approach to such a problem via direct numerical

simulation of the system until a reasonable number of events has been observed is impractically

excessive for most interesting systems. As a consequence, rare event simulation and estimation are

among the most challenging topics in molecular dynamics.

In this article, we consider typical rare events in molecular dynamics for which conformation

changes or protein folding may serve as examples. They can be described in the following abstract

way: The molecular system under consideration has the ability to go from a reactant state given by

a set A in its state space (e.g., an initial conformation) to a product state described by another set B

(e.g., the target conformation). Dynamical transitions from A to B are rare. The general situation we

will address is as follows:

• The system is (meta)stable, with the sets A and B being two of its metastable sets in the sense

that if the system is put there, it will remain there for a long time; transitions between A and B

are rare events.

• The sets A and B are separated by an unknown and, in general, rough or diffusive energy

landscape (that will be denoted by V ).

In addition, we will assume that the system under consideration is in equilibrium with respect to the

stationary Gibbs-Boltzmann density

μ(x) =
1

Z
exp(−βV (x)) . (1)

We are interested in characterizing the transitions leading from A into B, that is, we are interested

in the statistical properties of the ensemble of reactive trajectories that go directly from A to B

(i.e., start in A without returning to A before going to B). In other words, we are interested in all

trajectories comprising the actual transition. We would like to:

• know which parts of state space such reactive trajectories visit most likely, i.e., where in

state space do we find transition pathways or transition channels through which most of the

probability current generated by reactive trajectories flows and

• characterize the rare event statistically, i.e., compute the transition rate, the free energy barrier,

the mean first passage time or even more elaborated statistical quantities.
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The molecular dynamics literature on rare event simulations is rich. Since the 1930s, transition

state theory (TST) [1,2] and extensions thereof based on the reactive flux formalism have provided

the main theoretical framework for the description of transition events. TST can, however, at best

deliver rates and does not allow one to characterize transition channels. It is based on partitioning the

state space into two sets with a dividing surface in between, leaving set A on one side and the target

set B on the other, and the theory only tells how this surface is crossed during the reaction. Often, it

is difficult to choose a suitable dividing surface, and a bad choice will lead to a very poor estimate of

the rate. The TST estimate is then extremely difficult to correct, especially if the rare event is of the

diffusive type, where many different reaction channels co-exist. Therefore, many techniques have

been proposed that try to go beyond TST.

These different strategies approach the problem by sampling the ensemble of reactive trajectories

or by directly searching for the transition channels of the system. Most notable among these

techniques are (1) Transition Path Sampling (TPS) [3]; (2) the so-called String Methods [4], or

optimal path approaches [5–7] and variants thereof; (3) techniques that follow the progress of the

transition through interfaces, like Forward-Flux Simulation (FFS) [8], Transition Interface Sampling

(TIS) [9] or the Milestoning techniques [10,11]; and (4) methods that drive the molecular system

by external forces with the aim of making the required transition more frequent while still allowing

one to compute the exact rare event statistics for the unforced system, e.g., based on Jarzynski’s and

Crook’s identity [12,13]. All of these methods consider the problem in continuous state space, i.e.,
through reactive trajectories or transition channels in the original state space of the molecular system.

They all face substantial problems, e.g., if the ensemble of reactive trajectories and/or transition

channels of the system under consideration are too complicated (multi-modal, irregular, essentially

high dimensional) or they suffer from too large variance of the underlying statistical estimators. We

should moreover stress that each of these methods has its specific scope of application; some methods

are mainly useful for computing transition rates, whereas others can be used to compute transition

pathways or free energy differences.

Our aim is (A) to review some of these methods based on a joint theoretical basis and (B) to

outline a new approach to the estimation of rare event statistics based on a combination of ideas

from optimal control and statistical mechanics. In principle, this approach allows for a variance-free
estimation of rare event statistics in combination with much reduced simulation time. The rest of

the article is organized as follows: We start with a precise characterization of reactive trajectories,

transition channels and related quantities in the framework of Transition Path Theory (TPT) in

Section 2. Then, in Sections 3 and 4, we discuss the methods from classes (1)–(3) and characterize

their potential problems in more detail. In Section 5, we consider methods of type (4) as an

introduction to the presentation of the new optimal control approach that is outlined in detail in

Sections 6 and 7, including some numerical experiments.

Alternative, inherently discrete methods, like Markov State Modeling, that discretize the state

space appropriately and try to compute transition channels and rates a posteriori based on the

resulting discrete model of the dynamics will not be discussed herein and are considered in the

article [14] in a way related to the presentation at hand. We should further mention that not all rare
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event problems in molecular dynamics are related to sampling the underlying Gibbs–Boltzmann

statistics, e.g., nucleation events under shear [15] or genuine nonequilibrium systems without a

stationary probability distribution [16].

2. Reactive Trajectories, Transition Rates and Transition Channels

Since our results are rather general, it is useful to set the stage somewhat abstractly. To this end,

we borrow some notation from [17] and consider a system whose state space is Rn and denote by Xt

the current state of the system at time t. For example, Xt may be the set of instantaneous positions

and momenta of the atoms of a molecular system. We assume that the system is ergodic with respect

to a probability (equilibrium) distribution μ and that we can generate an infinitely long equilibrium

trajectory {Xt}t∈R where, for technical reasons, we let the trajectory start at time t = −∞. The

trajectory will go infinitely many times from A to B and each time the reaction happens. This

reaction involves reactive trajectories that can be defined as follows: Given the trajectory {X(t)}t∈R,

we say that its reactive pieces are the segments during which Xt is neither in A or B, came out of A

last and will go to B next. To formalize things, let

t+AB(t) = smallest s ≥ t such that X(s) ∈ A ∪B,

t−AB(t) = largest s ≤ t such that X(s) ∈ A ∪B .

Then, the trajectory {X(t)}t≥0 is reactive for all t ∈ R where R ⊂ [0,∞) is defined by

the requirements

Xt �∈ A ∪B, Xt+AB(t) ∈ B and Xt−AB(t) ∈ A

and the ensemble of reactive trajectories is given by the set

R = {Xt : t ∈ R}

where each specific continuous piece of trajectory going directly from A to B in the ensemble belongs

to a specific interval [t1, t2] ⊂ R.

Given the ensemble of reactive trajectories, we want to characterize it statistically by answering

the following questions:

(Q1) What is the probability of observing a trajectory at x �∈ (A∪B) at time t, conditional on t ∈ R?

(Q2) What is the probability current of reactive trajectories? This probability current is the vector

field jAB(x) with the property that given any separating surface S between A and B (i.e., the

boundary of a region that contains A but not B), the surface integral of jAB over S gives the

probability flux of reactive trajectories between A and B across S.

(Q3) What is the transition rate of the reaction, i.e., what is the mean frequency kAB of transitions

from A to B?

(Q4) Where are the main transition channels used by most of the reactive trajectories?

Question (Q1) can be answered easily, at least theoretically: The probability density to observe

any trajectory (reactive or not) at point x is μ(x). Let q(x) be the so-called committor function, that
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is the probability that the trajectory starting from x reaches first B rather than A. If the dynamics are

reversible, then the probability that a trajectory we observe at state x is reactive is q(x)(1 − q(x)),

where the first factor appears since the trajectory must go to B rather than A next, and the second

factor appears since it needs to come from A rather than B last. Now, the Markov property of the

dynamics implies that the probability density to observe a reactive trajectory at point x is

μAB(x) ∝ q(x)(1− q(x))μ(x) ,

which is the probability of observing any trajectory in x times the probability that it will be reactive

(the proportionality symbol ∝ is used to indicate identity up to normalization).

2.1. Transition Path Theory (TPT)

In order to give answers to the other questions, we will exploit the framework of transition
path theory (TPT), which has been developed in [17–20] in the context of diffusions and has been

generalized to discrete state spaces in [21,22]. In order to review the key results of TPT, let us

consider diffusive molecular dynamics in an energy landscape V : Rn → R:

dXt = −∇V (Xt)dt+
√
2ε dBt , X0 = x . (2)

Here, Bt denotes standard n-dimensional Brownian motion, and ε > 0 is the temperature of the

system. Under mild conditions on the energy landscape function V , we have ergodicity with respect

to the stationary distribution μ(x) = Z−1 exp(−βV (x)) with β = 1/ε. The dynamics are reversible

with respect to this distribution, i.e., the detailed balance condition holds. We assume throughout that

the temperature is small relative to the largest energy barriers, i.e., ε � ΔVmax. As a consequence, the

relaxation of the dynamics towards equilibrium is dominated by the rare transitions over the largest

energy barriers.

For these kind of dynamics, Questions (Q2) and (Q3) have surprisingly simple answers: The

reactive probability current is given by

jAB(x) = εμ(x)∇q(x)

where ∇q denotes the gradient of the committor function q. Based on this, the transition rate can be

computed by the total reactive current across an arbitrary separating surface S:

kAB =

∫
S

nS(x)jAB(x)dσS(x)

where nS denotes the unit normal vector on S pointing towards B and σS the associated surface

element. The rate can also be expressed by

kAB = ε

∫
(A∪B)c

(∇q(x))2μ(x)dx

where (A ∪ B)c denotes the entire state space excluding A and B. Given the reactive current, we

can even answer Question (Q4): The transition channels of the reaction A → B are the regions of

(A ∪B)c in which the streamlines of the reactive current, i.e., the solutions of
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d

dt
xAB(t) = jAB

(
xAB(t)

)
, xAB(0) ∈ A

are exceptionally dense.

Figure 1. (Top left panel) Three-well energy landscape V as described in the text.

(Top right panel) Typical reactive trajectory in the three-well landscape. (Middle left
panel) Committor functions qAB for diffusion molecular dynamics with relatively high

temperature ε = 0.6 for the sets A (main well, right-hand side) and B (main well,

left-hand side). (Middle right panel) Committor qAB for the low temperature case

ε = 0.15. (Bottom left panel) Transition channels for ε = 0.6. (Bottom right panel)
Transition channels for ε = 0.15. For details of the computations underlying the pictures,

see [22].

Figure 1 illustrates these quantities for the case of a 2D three well potential with two main wells

(the bottoms of which we take as A and B in the following) and a less significant third well. The

three main saddle points separating the wells are such that the two saddle points between the main

wells and the third well are lower in energy than the saddle point between the main wells, such that
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in the zero temperature limit, we expect that almost all reactive trajectories take the route through the

third well across the two lower saddle points. We observe that the committor functions for low and

higher temperatures exhibit smooth isocommittor lines separating the sets A and B, as expected. The

transition channels computed from the associated reactive current also show what one should expect:

For a lower temperature, the channel through the third well and across the two lower saddle points is

dominant, while for a higher temperature, the direct transition from A to B across the higher saddle

point is preferred.

These considerations can be generalized to a wide range of different kinds of dynamics in

continuous state spaces, including, e.g., full Langevin dynamics, see [17–20].

This example illustrates that TPT in principle allows us to quantify all aspects of the transition

behavior underlying a rare event. We can compute transition rates exactly and even characterize

the transition mechanisms if we can compute the committor function. Deeper insight using the

Feynman–Kac formula yields that the committor function can be computed as the solution of a linear

boundary value problem, which for diffusive molecular dynamics reads

LqAB = 0 in (A ∪B)c, qAB = 0 in A, qAB = 1 in B

where the generator L has the following form

L = εΔ−∇V (x) · ∇ (3)

where Δ =
∑

i ∂
2/∂x2

i denotes the Laplace operator. This equation allows the computation of qAB

in relatively low-dimensional spaces, where the discretization of L is possible based on finite element

methods or comparable techniques. In realistic biomolecular state spaces, this is infeasible because of

the curse of dimensionality. Therefore, TPT gives a complete theoretical background for rare event

simulation, but its application in high dimensional situations is still problematic. As a remedy, a

discrete version of TPT has been developed [21,22], which can be used in combination with Markov

State Modeling; see [23].

2.2. Transition Path Sampling (TPS)

TPS has been developed in order to sample from the probability distribution of reactive

trajectories in so-called “path space”, which means nothing else than the space of all discrete

or continuous paths starting in A and ending up in B equipped with the probability distribution

generated by the dynamics through the ensemble of associated reactive trajectories. Let PT denote

the path measure on the space of discrete or continuous trajectories {Xt}0≤t≤T of length T . The path
measure of reactive trajectories then is

PAB
T ({Xt}0≤t≤T ) =

1

ZAB

1A(X0)PT ({Xt}0≤t≤T )1B(XT ) (4)

where 1A denotes the indicator function of set A (that is, 1A(x) = 0 if x �∈ A and = 1 otherwise).

TPS is a Metropolis Monte-Carlo (MC) method for sampling PAB
T ({Xt}0≤t≤T )) that uses

explicit information regarding the path measure PT , such as Equation (5), with MC moves that
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are based on a perturbation of a precomputed reactive trajectory [3,24]. It delivers an ensemble

of reactive trajectories of length T that (under the assumption of convergence of the MC scheme)

is representative for PAB
T and thus allows one to compute respective expectation values, like the

probability to observe a reactive trajectory or the reactive current. However, its potential drawbacks

are obvious: (1) A typical reactive trajectory is very long and rather uninformative (cf. Figure 1),

i.e., the computational effort of generating an entire ensemble of long reactive trajectories can be

prohibitive; (2) convergence of the MC scheme in the infinite dimensional path space can be very

poor; and (3) the limitation to a pre-defined trajectory length T can lead to biased statistics of the

TPS ensemble. Advanced TPS schemes try to remedy these drawbacks by combining the original

TPS idea with interface methods [9]. Even though TPS can be used no matter whether the underlying

dynamics is deterministic or stochastic, the algorithm is usually used in connection with deterministic

Hamiltonian dynamics [3].

3. Finding Transition Channels

Whenever a transition channel exists, one can try to approximate the center curve of the transition

channel instead of sampling the ensemble of reactive trajectories. If the center curve (also: principal
curve) is a rather smooth object, then such a method would not suffer from the extensive length

of reactive trajectories. Several such methods have been introduced; they differ with respect to the

definition of the transition channel and the corresponding center or principal curve.

3.1. Action-Based Methods

Rather than sampling the probability distribution of reactive pathways, such as Equation (4), one

can try to obtain a representative or dominant pathway, e.g., by computing the pathway that has

maximum probability under PT . For the case of diffusive molecular dynamics, the path measure PT

has a probability density relative to a (fictitious) uniform measure on the space of all continuous paths

in R
n of length T that are generated by Brownian motion; the relative density reads

�(ϕ) = exp

(
− 1

2ε
Iε(ϕ)

)
where Iε is the Onsager–Machlup action

Iε(ϕ) =

∫ T

0

{
1

2
|ϕ̇(s)|2 + 1

2
|∇V (ϕ(s))|2 − εΔV (ϕ(s))

}
dt . (5)

More precisely, �(ϕ) is the limiting ratio between the probability that the solution of Equation (2)

remains in a small tubular neighborhood of a smooth path ϕ(·) and the probability that
√
2εBt remains

in a small neighborhood of the initial value x = ϕ(0), as the size of the neighborhoods go to zero [25].

The fact that the Euler discretization of the path density �, with Iε interpreted in the sense of Itô

integrals, corresponds to the probability density of the Euler-discretized reaction path with respect

to Lebesgue measure has led to the idea that by minimizing the Onsager–Machlup action over all

continuous paths ϕ : [0, T ] → R
n going from A to B, one can find the dominant reactive path
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ϕ∗ = argminϕ I
ε(ϕ) in the sense of a maximum likelihood estimator. The hope is that this path,

often also called the optimal path or most probable path, on the one hand, contains information on the

transition mechanism and, on the other hand, is much smoother and easier to interpret than a typical

reactive trajectory. Note, however, that the actual probability that the solution of Equation (2) remains

in a small neighborhood of a given path ϕ(·) is exponentially small in the size of the neighborhood.

In [7], a comparison between the Onsager–Machlup action and its zero temperature limit has

been given using gradient descent methods, raising issues regarding the correct interpretation of the

minimizers of Iε (that need not exist) as most probable paths. In [5], the dominant reaction pathway
method has been outlined, which uses a simplified version of the Onsager–Machlup functional that

leads to a computationally simpler optimization problem and is applicable to large-scale problems,

e.g., protein folding [6]. However, even if the globally dominant pathways can be computed, such

that the optimization does not get stuck in local minima, and even if we ignore the issues regarding

the correct interpretation of minimizers, the resulting pathways in general do not allow one to gain

statistical information on the transition (like rates, currents, mean first passage times).

Another action-based method that has been introduced in [26] is the MaxFlux method, which

seeks the path that carries the highest reactive flux among all reactive trajectories of a certain length.

The idea is to compute the path of least resistance by minimizing the functional

L(ϕ) =

∫ T

0

exp
(
ε−1V (ϕ(s))

)
ds .

Several algorithmic approaches for the minimization of the resistance functional L have been

proposed, e.g., a path-based method [27], discretization of the corresponding Euler–Lagrange

equation based on a mean-field approximation of it [28] or a Hamilton–Jacobi-based approach using

the method of characteristics [29]. Minimizing L for different values of T then yields a collection of

paths, each of which carries a certain percentage of the total reactive flux. The method is useful if

the temperature is small, so that the reactive flux concentrates around a sufficiently small number of

reactive pathways.

3.2. String Method and Variants

There are several other methods that entirely avoid the computation of reactive trajectories, but

try to reconstruct the less complex transition channels or pathways instead, analyzing the energy

landscape of the system. One group of such techniques, like the Zero Temperature String method [4],

the Geometric Minimum Action method [30] or the Nudged Elastic Band method [31], concentrate

on the computation of the minimal energy path (MEP), i.e., the path of lowest potential energy

between (a point in) A and (a point in) B. Under diffusive molecular dynamics and for vanishing

temperature, the MEP is the path that transitions take with probability one [32]. It turns out that the

MEP in this case is the minimizer of the Onsager–Machlup action (5) in the limit ε → 0. For non-zero

temperature and a rugged energy landscape, the MEP will in general be not very informative and must

be replaced by a finite-temperature transition channel. This is done by the finite-temperature string

(FTS) method [33] based on the following considerations: Firstly, the isocommittor surfaces Γα,
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α ∈ [0, 1], of the committor q are taken as natural interfaces that separate A from B. Secondly, each

Γα is weighted with the stationary distribution μ to find reactive trajectories crossing it at a certain

point x ∈ Γα,

ρα(x) =
1

Zα

q(x)(1− q(x))μ(x), Zα =

∫
Γα

q(x)(1− q(x))μ(x)dσα(x)

The idea of the FTS method is that the ensemble of reactive trajectories can be characterized by

this distribution on the isocommittor surfaces. Third, one assumes that for each α, the probability

density ρα is peaked in just one point ϕ(α) and that the curve ϕ = ϕ(α), α ∈ [0, 1] defined by

the sequence of these points forms the center of the (single) transition channel. More precisely, one

defines ϕ(α) = 〈x〉Γα where the average is taken according to ρα along the respective isocommittor

surface Γα. Fourth, it is assumed that the covariance Cα = 〈(x − ϕ(α)) ⊗ (x − ϕ(α))〉Γα , which

defines the width of the transition channel, is small, which implies that the isocommittor surfaces can

be locally approximated by hyperplanes Pα. The computation of the FTS string ϕ then is done by

approximating it via ϕ(α) = 〈x〉Pα , where the average is computed by running constrained dynamics

on Pα while iteratively refining the hyperplanes Pα; see [34] for details. Later extensions [35] remove

the restrictions resulting from the hyperplanes by using Voronoi tessellations instead.

The FTS method allows one to compute single transition channels in rugged energy landscapes

as long as these are not too extended and rugged. Compared to methods that sample the ensemble of

reactive trajectories, it has the significant advantage that the string, that is, the principal curve inside

the transition channel, is rather smooth and short, as compared to the typical reactive trajectories.

The FTS further allows one to compute the free energy profile F = F (α) along the string,

F (α) = −β−1 log

∫
Pα

μ(x)dσα(x)

that characterizes the transition rates associated with the transition channel (at least in the limits of

the approximations invoked by the FTS).

4. Computing Transition Rates

The computation of transition rates can be performed without computing the dominant transition

channels or similar objects. There is a list of rather general techniques, with Forward Flux

Sampling (FFS) [8], Transition Interface Sampling (TIS) [9] and Milestoning [10] as examples, that

approximate transition rates by exploring how the transition progresses from one to the next interface

that separates A from B.

4.1. Forward Flux Sampling (FFS)

The first step of FFS is the choice of a finite sequence of interfaces Ik, k = 1, . . . , N , in state

space between A and B = IN . The transition rate kAB comes as the product of two factors: (1) the

probability current JA of all trajectories leaving A and hitting I1; and (2) the probability

P(B|I1) =
N−1∏
j=1

P(Ik+1|Ik)
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that a trajectory that leaves I1 makes it to B before it returns to A; here, P(Ik+1|Ik) denotes the

probability that a trajectory starting in Ik makes it to Ik+1 before it returns to A. FFS first performs

a brute-force simulation starting in A, which yields an ensemble of points at the first interface I1,

yielding an estimate for the flux JA (the number of trajectories hitting I1 per unit of time). Second, a

point from this ensemble on I1 is selected at random and used to start a trajectory, which is followed

until it either hits the next interface I2 or returns to A; this gives P(I2|I1). This procedure then is

iterated from interface to interface. Finally, the rate kAB = JA · P(B|I1) is computed. Variants of

this algorithm are described in [36,37], for example.

FFS has been demonstrated to be quite general in approximating the flux of reactive trajectories

through a given set of interfaces; it can be applied to equilibrium, as well as nonequilibrium systems,

and its implementation is easy (see [16,38]). The interfaces used in FFS are, in principle, arbitrary.

However, the efficiency of the sampling of the reactive hitting probabilities P(Ik+1|Ik) crucially

depends on the choice of the interfaces. In practice, the efficiency of FFS will drop dramatically

if one does not use appropriate surfaces, and totally misleading rates may result from this. Ideally,

one would like to choose these surfaces, so that the computational gain offered by FFS in optimized,

but in practice, this is not a trivial task; see [39]. The same is true for TIS that couples TPS with

progressing from interface to interface.

4.2. Milestoning

Milestoning [10] is similar to FFS in so far as it also uses a set of interfaces Ik, k = 1, . . . , N

that separate A and B = IN . In contrast to FFS and TIS, the fundamental quantities in Milestoning

are the hitting time distributions K±
i (τ), i = 1, . . . , N − 1, where K±

i (τ) is the probability that a

trajectory starting at t = 0 at interface Ii hits Ii±1 before time τ . Trajectories that make it to milestone

Ii must come from milestones Ii±1 and vice versa. In the original algorithm, these distributions are

approximated as follows [10]: For each milestone Ii, one first samples the distribution μ constrained

to Ii. Based on the resulting sample, we start a trajectory from each point, which is terminated when

it reaches one of its two neighboring milestones Ii±1. The hitting times are recorded and collected

into two distributions K±
i (τ).

These local kinetics are then compiled into the global kinetics of the process: For each i, one

defines Pi(t) as the probability that the process is found between Ii−1 and Ii+1 at time t and that

the last milestone hit was Ii. Milestoning is based on a (non-Markovian) construction of Pi(t)

from the K±
i (τ). Its efficiency comes from two sources: (1) It does not require the computation

of long reactive trajectories but only short ones between milestones (which therefore should be

‘close enough’); (2) It is easily parallelizable. Its disadvantage is the dependence on the milestones

that have to be chosen in advance: It can be shown that Milestoning with perfect sampling allows

one to compute exact transition rates or mean first passage times if the interfaces are given by the

isocommittor surfaces (which in general are not known in advance) [40]; if the interfaces are chosen

inappropriately, the results can be rather misleading.
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5. Nonequilibrium Forcing and Jarzynski’s Identity

The computation of reliable rare event statistics suffers from the enormous lengths of reactive

trajectories. One obvious way to overcome this obstacle is to force the system to exhibit the transition

of interest on shorter timescales. Therefore, can we drive the molecular system to make the required

transition more frequently but still compute the exact rare event statistics for the unforced system?

As was shown by Jarzynski and others, nonequilibrium forcing can in fact be used to obtain

equilibrium rare event statistics. The advantage seems to be that the external force can speed up

the sampling of the rare events by biasing the equilibrium distribution towards a distribution under

which the rare event is no longer rare. We will shortly review Jarzynski’s identity before discussing

the matter in more detail.

5.1. Jarzynski’s Identity

Jarzynski’s and Crook’s formulae [12,13] relate the equilibrium Helmholtz free energy to the

nonequilibrium work exerted under external forcing: Given a system with energy landscape V (x),

the total Helmholtz free energy can be defined as

F = −β−1 logZ with Z =

∫
exp(−βV (x))dx .

Jarzynski’s equality [12] then relates the free energy difference ΔF = −β−1 log(Z1/Z0) between

two equilibrium states of a system given by an unperturbed energy V0 and its perturbation V1 with

the work W applied to the system under the perturbation: Suppose we set Vξ = (1 − ξ)V0 + ξV1

with ξ ∈ [0, 1], and assume we set a protocol that describes how the system evolves from ξ = 0 to

ξ = 1. If, initially, the system is distributed according to exp(−βV0), then, by the second law of

thermodynamics, it follows that E(W ) ≥ ΔF where W is the total work applied to the system and

E denotes the average overall possible realizations of the transition from ξ = 0 to ξ = 1; equality

is attained if the transition is infinitely slow (i.e., adiabatic). Jarzynski’s identity now asserts that the

free energy is always equal to the exponential average of the nonequilibrium work,

ΔF = −β−1 logE
[
exp(−βW )

]
arbitrarily far away from the adiabatic regime. Many generalizations exist: In [13], a generalized

version of this fluctuation theorem, the so-called Crook’s formula, for stochastic, microscopically

reversible dynamics, is derived. In [41,42], it is shown how one can compute conditional free

energy profiles along a reaction coordinate for the unperturbed system, rather than total free energy

differences between a perturbed and unperturbed system.

Algorithmic application prohibitive.Despite the fact that Jarzynski’s and Crook’s formulae are

used in molecular dynamics applications [43], their algorithmic usability is limited by the fact that

the likelihood ratio between equilibrium and nonequilibrium trajectories is highly degenerate, and

the overwhelming majority of nonequilibrium forcings generate trajectories that have almost zero

weight with respect to the equilibrium distribution that is relevant for the rare event. This leads



234

to the fact that most rare event sampling algorithms based on Jarzynski’s identity have prohibitively
large variance. Recent developments have reduced this problem by sampling just the reversible work

processes based on Crook’s formula, but could not fully remove the problem of large variance [44];

see also [45]. Because of this, we will approach the problem of variance reduction subsequently.

5.2. Cumulant Generating Functions

In order to demonstrate how to improve approaches based on the idea of driving molecular

systems to make rare events frequent, we first have to introduce some concepts and notation from

statistical mechanics: Let W be a random variable that depends on the sample paths of (Xt)t≥0, i.e.,
on molecular dynamics trajectories of the system under investigation. Further, let P be the underlying

probability measure on the space of continuous trajectories as introduced in Section 2.2 (but without

the restriction to a given length T ). We define the cumulant generating function (CGF) of W by

γ(σ) = −σ−1 logE[exp(−σW )] (6)

where σ is a non-zero scalar parameter and E[f ] =
∫
f dP denotes the expectation value with respect

to P . Note that the CGF is basically the free energy at inverse temperature β as in Jarzynski’s formula,

but here, it is considered as a function of the independent parameter σ. (Definition (6) differs from

the standard CGF only by the prefactor σ−1 in front.) Taylor expanding the CGF about σ = 0, we

observe that γ(σ) ≈ E[W ] − σ
2
E[(W − E[W ])2]; hence, for sufficiently small σ, the variance is

decoupled from the mean. Moreover, it follows by Jensen’s inequality that

γ(σ) ≤ E[W ]

where equality is achieved if and only if W is almost surely constant, in accordance with the second

law of thermodynamics. (This is the case, e.g., when W is the work associated with an adiabatic

transition between thermodynamic equilibrium states.)

Optimal reweighting.

The CGF admits a variational characterization in terms of relative entropies. To this end, let Q be

another probability measure, so that P is absolutely continuous with respect to Q, i.e., the likelihood

ratio dP/dQ exists and is Q-integrable. Then, using Jensen’s inequality again,

−σ−1 log

∫
e−σW dP = −σ−1 log

∫
e−σW+log( dP

dQ
) dQ

≤
∫ {

W + σ−1 log

(
dQ

dP

)}
dQ ,

which, noting that the logarithmic term is the relative entropy (or Kullback–Leibler divergence)

between Q and P , can be recast as

γ(σ) ≤
∫

W dQ+H(Q‖P ) (7)

where

H(Q‖P ) = σ−1

∫
log

(
dQ

dP

)
dQ , (8)
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and we declare that H(Q‖P ) = ∞ if Q does not have a density with respect to P . Again, it follows

from the strict convexity of the exponential function that equality is achieved if and only if the new

random variable

Z = W + σ−1 log

(
dQ

dP

)
is Q-almost surely constant. This gives us the following variational characterization of the cumulant

generating function that is due to [46]: Variational formula for the cumulant generating function.
Let W be bounded from above, with E[exp(−σW )] < ∞. Then

γ(σ) = inf
Q�P

{∫
W dQ+H(Q‖P )

}
(9)

where the infimum runs over all probability measures Q that have a density with respect to P .

Moreover, the minimizer Q∗ exists and is given by

dQ∗ = eγ(σ)−σW dP .

6. Optimal Driving from Control Theory

When Xt denotes stochastic dynamics, such as Equation (2), the above variational formula admits

a nice interpretation in terms of an optimal control problem with a quadratic cost. To reveal it, we

first need some technical assumptions.

(A1) We define Q = [0, T ) × O where T ∈ [0,∞] and O ⊂ R
n is a bounded open set with smooth

boundary ∂O. Further, let τ < ∞ be the stopping time

τ = inf{t > t0 : (t,Xt) /∈ Q} ,

i.e., τ is the stopping time that either t = T or Xt leaves the set O, whichever comes first.

(A2) The random variable W is of the form

W =
1

ε

∫ τ

0

f(Xt) dt+
1

ε
g(Xτ )

for some continuous and nonnegative functions f, g : Rn → R, which are bounded from above

and at most polynomially growing in x (compare Jarzynski’s formula).

(A3) The potential V : Rn → R in Equation (2) is smooth, bounded below and satisfies the usual

local Lipschitz and growth conditions.

We consider the conditioned version of the moment generating function (which is just the exponential

of the cumulant generating function):

ψσ(x, t) = E[exp(−σW )|Xt = x] . (10)

By the Feynman–Kac theorem, ψσ solves the linear boundary value problem(
A− σ

ε
f
)
ψσ = 0

ψσ|E+ = exp
(
−σ

ε
g
) (11)
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where E+ is the terminal set of the augmented process (t,Xt), precisely E+ = ([0, T )× ∂O) ∪
({T} ×O), and

A =
∂

∂t
+ L

is the backward evolution operator associated with Xt, with the shorthand

L = εΔ−∇V · ∇

introduced in Equation (3). Assumptions (A1)–(A3) guarantee that Equation (11) has a unique

smooth solution ψσ for all σ > 0. Moreover, the stopping time τ is almost surely finite, which

implies that

0 < c ≤ ψσ ≤ 1

for some constant c ∈ (0, 1).

Log transformation of the cumulant generating function.
In order to arrive at the optimal control version of the variational formula (9), we introduce the

logarithmic transformation of ψσ as

vσ(x, t) = − ε

σ
logψσ(x, t) ,

which is analogous to the CGF γ, except for the leading factor ε and the dependence on the initial

condition x. As we will show below, vσ is related to an optimal control problem. To see this,

remember that ψσ is bounded away from zero and note that

− ε

σ
ψ−1
σ Aψσ = Avσ − σ|∇vσ|2 ,

which implies that Equation (11) is equivalent to

Avσ − σ|∇vσ|2 + f = 0

vσ|E+ = g .

Equivalently,

min
α∈Rn

{Avσ + α · ∇vσ +
1

4σ
|α|2 + f} = 0

vσ|E+ = g
(12)

where we have used that

−σ|y|2 = min
α∈Rn

{
α · y + 1

4σ
|α|2

}
.

(For the general framework of change-of-measure techniques and Girsanov transformations and their

relation to logarithmic transformations, we refer to ([47] (Section VI.3)).)

Optimal control problem. Equation (12) is a Hamilton–Jacobi–Bellman (HJB) equation

and is recognized as the dynamic programming equation of the following optimal control

problem: minimize

J(u) = E

[∫ τ

0

{
f(Xt) +

1

4σ
|ut|2

}
dt+ g(Xτ )

]
(13)
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over a suitable space of admissible control functions u : [0,∞) → R
n and subject to the dynamics

dXt = (ut −∇V (Xt)) dt+
√
2εdWt . (14)

Form of optimal control. In more detail, one can show (e.g., see ([47] (Section IV.2)))

that assumptions (A1)–(A3) above imply that Equation (12) has a classical solution (i.e., twice

differentiable in x, differentiable in t and continuous at the boundaries). Moreover, vσ satisfies

vσ(x, t) = E

[∫ τ

t

{
f(Xs) +

1

4σ
|u∗

s|2
}

ds+ g(Xτ )

∣∣∣∣Xt = x

]
(15)

where u∗ is the unique minimizer of J(u) that is given by the Markovian feedback law

u∗
t = α∗(Xt, t) ,

with

α∗ = argmin
α∈Rn

{
α · ∇vσ +

1

4σ
|α|2

}
.

The function vσ is called the value function or optimal-cost-to-go for the optimal control problems

(13) and (14). Specifically, vσ(x, t) measures the minimum cost needed to drive the system to the

terminal state when started at x at time t. We briefly mention the two most relevant special cases of

(13) and (14).

6.1. Case I: The Exit Problem

We want to consider the limit T → ∞. To this end, call τO = inf{t > 0: Xt /∈ O} the first exit

time of the set O ⊂ R
n. The stopping time τ = min{T, τO} then converges to τO, i.e.,

min{T, τO} → τO .

As a consequence (using monotone convergence), vσ converges to the value function of an optimal

control problem with cost functional

J∞(u) = E

[∫ τO

0

{
f(Xt) +

1

4σ
|ut|2

}
dt+ g(XτO)

]
. (16)

It can be shown that the value function

vσ(x, t) = E

[∫ τO

t

{
f(Xs) +

1

4σ
|u∗

s|2
}

ds+ g(Xτ )

∣∣∣∣Xt = x

]
with u∗ = argmin J∞(u) is independent of the initial time t; hence, we can drop the dependence on

t and redefine vσ(x) := vσ(x, t). The value function now solves the boundary value HJB equation

min
α∈Rn

{Lvσ + α · ∇vσ +
1

4σ
|α|2 + f} = 0

vσ|∂O = g .
(17)
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6.2. Case II: Finite Time Horizon Optimal Control

If we keep T < ∞ fixed while letting O grow, such that diam(O) → ∞, where diam(O) =

sup{r > 0: Br(x) ⊂ O, x ∈ O} is understood as the maximum radius r > 0 that an open ball Br(·)
contained in O can have, it follows that

min{T, τO} → T .

In this case, vσ converges to the value function with a finite time horizon and cost functional

JT (u) = E

[∫ T

0

{
f(Xt) +

1

4σ
|ut|2

}
dt+ g(XT )

]
. (18)

Now, vσ is again a function on R
n × [0, T ] and given by

vσ(x, t) = E

[∫ T

t

{
f(Xs) +

1

4σ
|u∗

s|2
}

ds+ g(Xτ )

∣∣∣∣Xt = x

]
,

with u∗ being the minimizer of JT (u). The value function solves the backward evolution

HJB equation

min
α∈Rn

{Avσ + α · ∇vσ +
1

4σ
|α|2 + f} = 0

vσ(x, T ) = g(x) ,
(19)

with a terminal condition at time t = T .

6.3. Optimal Control Potential and Optimally Controlled Dynamics

The optimal control u∗ that minimizes the functional in Equation (13) is again of gradient form

and given by

u∗
t = −2σ∇vσ(Xt, t)

as can be readily checked by minimizing the corresponding expression in Equation (12) over α.

Given vσ, the optimally controlled dynamics reads

dXt = −∇U(Xt, t)dt+
√
2εdWt , (20)

with the optimal control potential

U(x, t) = V (x) + 2σvσ(x, t) . (21)

In the case when T → ∞ (Case I, above), the biasing potential is independent of t.

Remarks. Some remarks are in order.

(a) Monte-Carlo estimators of the conditional CGF

γ(σ; x) = −σ−1 logE[exp(−σW )|X0 = x]
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that are based on the optimally controlled dynamics have zero variance. This is so because

the optimal control minimizes the variational expression in Equation (9), but at the minimum,

the random variable inside the expectation must be almost surely constant (as a consequence

of Jensen’s inequality and the strict convexity of the exponential function). Hence, we have a

zero-variance estimator of the conditional CGF.

(b) The reader may now wonder as to whether it is possible to extract single moments from

the CGF (e.g., mean first passage times). In general, this question is not straightforward

to answer. One of the difficulties is that extracting moments from the CGF requires one to

take derivatives at σ = 0, but small values of σ imply strong penalization, which renders the

control inactive and, thus, makes the approach inefficient. Another difficulty is that reweighting

the controlled trajectories back to the original (equilibrium) path measure can increase the

variance of a rare event estimator, as compared to the corresponding estimator based on the

uncontrolled dynamics. As yet, the efficient calculation of moments from the CGF by either

extrapolation methods or reweighing is an open question and currently a field of active research

(see, e.g., [48,49]).

(c) Jarzynski’s identity relates equilibrium free energies to averages that are taken over an

ensemble of trajectories generated by controlled dynamics, and the reader may wonder whether

the above zero-variance property can be used in connection with free energy computations

à la Jarzynski (cf. [45]). Indeed, we can interpret the CGF as the free energy of the

nonequilibrium work

Wξ =

∫ T

0

f(Xt, ξt) dt

where f is the nonequilibrium force exerted on the system under driving it with some prescribed

protocol ξ : [0, T ] → R; in this case, the dynamics Xt depend on ξt, as well, and writing down

the HJB equation according to Equation (19) is straightforward. However, even if we can solve

Equation (19), we do not get zero-variance estimators for the free energy

F (ξT )− F (ξ0) = −β−1 logE[exp(−βWξ)] .

The reason for this is simple: Jarzynski’s formula requires that the initial conditions are

chosen from an equilibrium distribution, say, π0 the equilibrium distribution corresponding

to the initial value ξ0 of the protocol, but optimal controls are defined point-wise for each state

(t,Xt) and

−β−1 log

∫
Rn

E[exp(−βWξ)|X0 = x] dπ0(x)

�= −β−1

∫
Rn

logE[exp(−βWξ)|X0 = x] dπ0(x) .

In other words:

F (ξT )− F (ξ0) �=
∫
Rn

vβ(x, 0) dπ0(x) .

(d) A similar argument as the one underlying the derivation of the HJB equation from the linear

boundary value problem yields that Jarzynski’s formula can be interpreted as a two-player

zero-sum differential game (cf. [50]).
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7. Characterize Rare Events by Optimally Controlled MD

Now, we illustrate how to use the results of the last section in practice. We will mainly consider

the case discussed in Section 6.1 regarding the statistical characterization of hitting a certain set.

7.1. First Passage Times

Roughly speaking, the CGF encodes information about the moments of any random variable W

that is a functional of the trajectories (Xt)t≥0. For example, for f = ε and T → ∞, we obtain the

CGF of the first exit time from O, i.e.,

−σ−1 logEx[exp(−στO)] = min
u

Eu
x

[
τO +

1

4σ

∫ τO

0

|ut|2 dt
]

where we have introduced the shorthand Ex[·] = E[·|X0 = x] to denote the conditional expectation

when starting at X0 = x and the superscript “u” to indicate that the expectation is understood with

respect to the controlled dynamics

dXt = (ut −∇V (Xt)) dt+
√
2εdWt

where E = E0 denotes expectation with respect to the unperturbed dynamics.

7.2. Committor Probabilities Revisited

It is not only possible to use the moment generating function to collect statistics about rare events

in terms of the cumulant generating function, but also to express the committor function directly in

terms of an optimal control problem (see Section 2.1 for the definition of the committor qAB between

to sets A and B). To this end, let σ = 1, and suppose we divide ∂O into two sets B ⊂ ∂O and

A = ∂O \B (i.e., τO is the stopping time that is defined by hitting either A or B). Setting

f = 0 and g(x) = −ε log 1B(x)

reduces the moment generating function (10) to

ψ1(x) = Ex[1B(XτO)]

or, in more familiar terms,

ψ1(x) = P[XτO ∈ B ∧ XτO /∈ A|X0 = x] = qAB(x) .

According to Equation (16) the corresponding optimal control problem has the cost functional

J(u) = E

[
1

4

∫ τO

0

|us|2 ds− ε log 1B(XτO)

]
,

which amounts to a control problem with zero terminal cost when ending up in B and an infinite

terminal cost for hitting A. Therefore, the HJB equation for v = v1 has a singular boundary value at

A; it reads

min
α∈Rn

{Lv + α · ∇v +
1

4
|α|2} = 0

v|A = ∞ , v|B = 0 .
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Setting v(x) = −ε log qAB(x) yields the equality

− log qAB(x) = min
u

Eu
x

[
1

4ε

∫ τO

0

|us|2ds− log 1B(XτO)

]
.

In this case, the optimally controlled dynamics (20) is of the form

dXt = −∇UAB(Xt)dt+
√
2εdWt ,

with optimal control potential

UAB(x) = V (x)− 2ε log qAB(x) .

Remarks. Some remarks on the committor equation follow:

(a) The logarithmic singularity of the value function at “reactant state” A has the effect that the

control will try to avoid running back into A, for there is an infinite penalty on hitting A.

In other words, by controlling the system, we condition it on hitting the “product state” B

at time t = τO. Conditioning a diffusion (or general Markov) process on an exit state has

a strong connection with Doob’s h-transform, which can be considered a change-of-measure

transformation of the underlying path measure that forces the diffusion to hit the exit state with

probability one [51].

(b) The optimally controlled dynamics has a stationary distribution with a density proportional to

exp(−βUAB(x)) = q2AB(x) exp(−βV (x))

where we used β = 1/ε.

7.3. Algorithmic Realization

For the exit problem (“Case I”, above), one can find an efficient algorithm for computing the

conditional CGF γ(σ; x) or, equivalently, the value function vσ(x) in [52]. The idea of the algorithm

is to exploit that, according to Equations (20) and (21), the optimal control is of gradient form. The

latter implies that the value function can be represented as a minimization of the cost functional over

time-homogeneous candidate functions C for the optimal bias potential, in other words,

vσ(x) = min
C

Ex

[∫ τO

0

{
f(Xt) +

1

4σ
|∇Ct|2

}
dt+ g(XτO)

]
(22)

where the expectation E is understood with respect to the path measure generated by

dXt = − (∇C(Xt) +∇V (Xt)) dt+
√
2εdWt .

Once the optimal C has been computed, both value function and CGF can be recovered by setting

vσ(x) = −C(x)

2σ
and γ(σ; x) = −C(x)

2εσ
.
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The algorithm that finds the optimal C works by iteratively minimizing the cost functional for

potentials C from a finite-dimensional ansatz space, i.e.,

C(x) =
M∑
j=1

ajϕj(x) ,

with appropriately chosen ansatz functions ϕj . The iterative minimization is then carried out on the

M -dimensional coefficient space of the a1, . . . , aM . With this algorithm, we are able to compute the

optimal control potential for the exit problem in the two interesting cases: first passage times and

committor probabilities (as outlined in Sections 7.1 and 7.2).

Remarks. Let us briefly comment on some aspects of the gradient descent algorithm.

(a) The minimization algorithm for the value function belongs to the class of

expectation-maximization algorithms (although, here, we carry out a minimization rather than

a maximization), in that each minimization step is followed by a function evaluation that

involves computing an expectation. In connection with rare events sampling and molecular

dynamics problems, a close relative is the adaptive biasing force (ABF) method for computing

free energy profiles, the latter being intimately linked with cumulant generating functions or

value functions (cf. Section 5). In ABF methods (or its variants, such as metadynamics or

Wang–Landau dynamics), the gradient of the free energy is estimated on the fly, running a

molecular dynamics simulation, and then added as a biasing force to accelerate the sampling

in the direction of the relevant coordinates [53,54]. The biasing force eventually converges to

the derivative of the free energy, which is the optimal bias for passing over the relevant energy

barriers that are responsible for the rare events [55].

(b) The number of basis functions needed depends mainly on the roughness of the value function,

but is independent of the system dimension. For systems with clear time scale separation, it has

been moreover shown [56] that the optimal control is independent of the fast variables; hence,

we expect that the algorithm can be efficient, even for large-scale systems, provided that some

information about the relevant collective variables and a reasonable initial guess are available.

Yet, the question remains: How many basis functions are needed to approximate the optimal

control up to a given accuracy? Controlling the error in the value function and the resulting

optimal control is particularly important, as a wrong (e.g., suboptimal) bias potential may lead

to Monte-Carlo estimators that may have a larger variance than the vanilla rare event estimator,

as has been pointed out in [57,58]. The first results in this direction have been obtained in [59],

in which error bounds for the CGF for suboptimal controls have been derived, and [60], which

discusses the approximation error of the Galerkin approximation of the corresponding HJB

equations; see also [61]for a related discussion regarding so-called log-efficient estimators for

rare events.
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7.4. Numerical Examples

In our first example, we consider diffusive molecular dynamics as in Equation (2) with ε = 0.1

and V being the five-well potential shown in Figure 2. We first compute the CGF of the first passage

time as discussed in Section 7.1, using the gradient descent algorithm described in Section 7.3 with

10 Gaussian ansatz functions that are centered around the critical points of the potential energy

function. The resulting optimal control potential (21) after roughly 20 iterations of the gradient

descent is displayed in Figure 2 for different values of σ. As the set O, we take the whole state space,

except a small neighborhood of its global minimum of V , so that its complement Oc is identical to

the vicinity of the global minimum and the exit time τO is the first passage time to Oc. Figure 2

shows that the optimal control potential alters the original potential V significantly in the sense that

for σ > 0, the set Oc is the bottom of the only well of the potential, so that all trajectories starting

somewhere else will quickly enter Oc.

Figure 2. Five-well potential (left) and associated optimal control potential for the first

passage time to the target set Oc given by a small interval around the main minimum

x1 (right) for different values of σ (right). ε = 0.1; the gradient descent solution fully

agrees with the reference finite element solution (that is not shown) in the “eye-norm”.

This case is instructive: For the unperturbed original dynamics, the mean first passage time

Ex(τO) takes values of around 104 for x > −2. For the optimally controlled dynamics, the mean first

passage times into Oc are less than five for σ = 0.1, 0.5, 1.0, so that the estimation of Ex(τO) resulting

from the optimal control approach requires trajectories that are a factor of at least 103 shorter than

the ones we would have to use by direct numerical simulation of the unperturbed dynamics.

Figure 3 shows the optimal control potentials for computation of the committor qAB, as described

in Section 7.2. We observe that the optimal control potential exhibits a singularity at the boundary

of the basin of attraction of the set A. That is, it prevents the optimally controlled dynamics

from entering the basin of attraction of A and, thus, avoids the waste of computational effort by

unproductive returns to A.

In our second example, we consider two-dimensional diffusive molecular dynamics as in

Equation (2) with the energy landscape V being the three-well potential shown in Figure 1. In Figure

4, the optimal control potential for computing the committors qAB between the two main wells for

two different temperatures ε = 0.15 and ε = 0.6 are displayed. The numerical solution is based
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on a Galerkin approximation of the log-transformed HJB equation, using precomputed committor

functions as the basis set; see [60] for details.

Figure 3. Optimally-corrected potential for the case of J being the committor qAB for

B being the ±0.1-interval around the main minimum x1 of the potential. (Left panel)
A =]x3− 0.1, x3+0.1[ the ±0.1 interval around the highest minimum x3. (Right panel)
A =]x2 − 0.1, x2 + 0.1[ the ±0.1 interval around the second lowest minimum x2.

As in our former experiment, we observe that the optimal control potential prevents the dynamics

from returning to A; in addition, it flattens the third well significantly, such that the optimally

controlled dynamics in any case quickly goes into B. For ε = 0.15, a TPS sampling of reactive

trajectories between the two main wells, precisely from A to B with A and B, as indicated in Figure 4,

results in an average length of 367 for reactive trajectories based on the original dynamics. For the

optimally controlled dynamics, we found an average length of 1.3.

Figure 4. Optimally-corrected potential for the three-well potential shown in Figure 1 for

the committor qAB for the medium temperature ε = 0.6 case (left), the low temperature

ε = 0.15 case (right) and for the sets A (ellipse in main well, right-hand side) and B

(ellipse in main well, left-hand side). Note that the committor basis is not smooth at the

boundaries of the initial and target sets (see Figure 1 for comparison), which explains the

roughness of the control potential in the neighborhood of the sets A and B.
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8. Conclusions

We have surveyed various techniques for the characterization and computation of rare events

occurring in molecular dynamics. Roughly, the approaches fall into two categories: (a)

methods that approach the problem by characterizing the ensemble of reactive trajectories between

metastable states or (b) path-based methods that target dominant transition channels or pathways by

minimization of suitable action functionals. Methods of the first type, e.g., Transition Path Theory,

Transition Path Sampling, Milestoning or variants thereof, are predominantly Monte-Carlo-type

methods for generating one very long or many short trajectories, from which the rare event statistics

can then be estimated. Methods that belong to the second category, e.g., MaxFlux, Nudged-Elastic

Band or the String Method, are basically optimization methods (sometimes combined with a

Monte-Carlo scheme); here, the objectives are few (single or multiple) smooth pathways that

describe, e.g., a transition event. It is clear that this classification is not completely unambiguous,

in that action-based methods for computing most probable pathways can be also used to sample an

ensemble of reactive trajectories. Another possible classification (with its own drawbacks) is along

the lines of the biased-unbiased dichotomy that distinguishes between methods that characterize rare

events based on the original dynamics and methods that bias the underlying equilibrium distribution

towards a new probability distribution under which the rare events are no longer rare. Typical

representatives of the second class range from biasing force methods, such as ABF or metadynamics,

up to genuine nonequilibrium approaches based on Jarzynski’s identity for computing free energy

profiles. The problem often is that rare event estimators based on an ensemble of nonequilibrium

trajectories suffer from large variances, unless the bias is cleverly chosen.

We have described a strategy to find such a cleverly chosen perturbation, based on ideas from

optimal control. The idea rests on the fact that the cumulant generating function of a certain

observable, e.g., the first exit time from a metastable set, can be expressed as the solution to

an optimal control problem, which yields a zero variance estimator for the cumulant generating

function. The control acting on the system has essentially two effects: (1) Under the controlled

dynamics, the rare events are no longer rare, as a consequence of which the simulations become

much shorter; (2) The variance of the statistical estimators is small (or even zero if the optimal

control is known exactly). We should stress that, depending on the type of observable, the approach

only appears to be a nonequilibrium method, for the optimal control is an exact gradient of a biasing

potential; hence, the optimally perturbed system satisfies a detailed balance, which is one criterion for

thermodynamic equilibrium. Future research should address the question as to whether the approach

is competitive for realistic molecular systems, how to efficiently and robustly extract information

about specific moments rather than cumulant generating functions and how to extend it to the more

general observables or the calculation of free energy profiles.
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Abstract: Rare, but important, transition events between long-lived states are a key

feature of many molecular systems. In many cases, the computation of rare event

statistics by direct molecular dynamics (MD) simulations is infeasible, even on the

most powerful computers, because of the immensely long simulation timescales needed.

Recently, a technique for spatial discretization of the molecular state space designed to

help overcome such problems, so-called Markov State Models (MSMs), has attracted

a lot of attention. We review the theoretical background and algorithmic realization of

MSMs and illustrate their use by some numerical examples. Furthermore, we introduce

a novel approach to using MSMs for the efficient solution of optimal control problems

that appear in applications where one desires to optimize molecular properties by means

of external controls.

Keywords: rare events; Markov State Models; long timescales; optimal control

1. Introduction

Stochastic processes are widely used to model physical, chemical or biological systems. The

goal is to approximately compute interesting properties of the system by analyzing the stochastic

model. As soon as randomness is involved, there are mainly two options for performing this

analysis: (1) Direct sampling and (2) the construction of a discrete coarse-grained model of the
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system. In a direct sampling approach, one tries to generate a statistically significant amount of

events that characterize the property of the system one in which is interested. For this purpose,

computer simulations of the model are a powerful tool. For example, an event could refer to the

transition between two well-defined macroscopic states of the system. In chemical applications,

such transitions can often be interpreted as reactions or, in the context of a molecular system, as

conformational changes. Interesting properties are, e.g., average waiting times for such reactions

or conformational changes and along which pathways the transitions typically occur. The problem

with a direct sampling approach is that many interesting events are so-called rare events. Therefore,

the computational effort for generating sufficient statistics for reliable estimates is very high, and

particularly if the state space is continuous and high dimensional, estimation by direct numerical

simulation is infeasible.

Available techniques for rare event simulations in continuous state space are discussed in [1]. In

this article, we will discuss approach (2) to the estimation of rare event statistics via discretization of

the state space of the system under consideration. That is, instead of dealing with the computation

of rare events for the original, continuous process, we will approximate them by a so-called Markov

State Model (MSM) with discrete finite state space. The reason is that for such a discrete model,

one can numerically compute many interesting properties without simulation, mostly by solving

linear systems of equations as in discrete transition path theory (TPT) [2]. We will see that this

approach, called Markov State Modeling, avoids the combinatorial explosion of the number of

discretization elements with the increasing size of the molecular system in contrast to other methods

for spatial discretization.

The actual construction of an MSM requires one to sample certain transition probabilities of

the underlying dynamics between sets. The idea is: (1) to choose the sets such that the sampling

effort is much lower than the direct estimation of the rare events under consideration; and (2) to

compute all interesting quantities for the MSM from its transition matrix, cf. [2,3]. There are many

examples for the successful application of this strategy. In [4], for example, it was used to compute

dominant folding pathways for the PinWW domain in explicit solvent. However, we have to make

sure that the Markov State Model approximates the original dynamics well enough. For example, the

MSM should correctly reproduce the timescales of the processes of interest. These approximation

issues have been discussed since more than a decade now [5,6]; in this article, we will review the

present state of research on this topic. In the algorithmic realization of Markov State Modeling for

realistic molecular systems, the transition probabilities and the respective statistical uncertainties are

estimated from short molecular dynamics (MD) trajectories only, cf. [7]. This makes Markov State

Modeling applicable to many different molecular systems and processes, cf. [8–13].

In the first part of this article, we will discuss the approximation quality of two different types of

Markov State Models that are defined with respect to a full partition of state space or with respect to

so-called core sets. We will also discuss the algorithmic realization of MSMs and provide references

to the manifold of realistic applications to molecular systems in equilibrium that are available in the

literature today.
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The second part will show how to use MSMs for optimizing particular molecular properties. In

this type of application, one wants to steer the molecular system at hand by external controls in a

way such that a pre-selected molecular property is optimized (minimized or maximized). That is,

one wants to compute a specific external control from a family of admissible controls that optimizes

the property of interest under certain side conditions. The property to be optimized can be quite

diverse: For example, it can be (1) the population of a certain conformation that one wants to

maximize under a side condition that limits the total work done by the external control or (2) the

mean first passage time to a certain conformation that one wants to minimize (in order to speed up

a rare event), but under the condition that one can still safely estimate the mean first passage time

of the uncontrolled system. The theoretical background of case (1) has been considered in [14], for

example, and of case (2) in [1,15]. There, one finds the mathematical problem that has to be solved

in order to compute the optimal control. Here, we will demonstrate that one can use MSMs for

the efficient solution of such a mathematical problem (for both cases). We will see that the spatial

discretization underlying an MSM turns the high-dimensional continuous optimal control problem

into a rather low-dimensional discrete optimal control problem of the same form that can be solved

efficiently. Based on these insights, MSM discretization yields an efficient algorithm for solving the

optimal control problem, whose performance we will outline in some numerical examples, including

an application to alanine dipeptide.

2. MSM Construction

Let (Xt)t≥0 be a time-continuous Markov process on a continuous state space, E, e.g., E ⊂ Rd.

That is, Xt is the state of the molecular system at time t resulting from any usually used form of

molecular dynamics simulation, be it based on Newtonian dynamics with thermostats or resulting

from Langevin dynamics or other diffusion molecular dynamics models. The idea of Markov

State Modeling is to derive a Markov chain, (X̂k)k∈N, on a finite and preferably small state space

Ê = {1, ..., n} that models characteristic dynamics of the continuous process, (Xt). For example,

in molecular dynamics applications, such characteristic dynamics could refer to protein folding

processes [16,17], conformational rearrangements between native protein substates [18,19], or ligand

binding processes [20]. Since the approximating Markov chain, (Xk)k∈N, lives on a finite state space,

the construction of an MSM boils down to the computation of its transition matrix, P :

Pij = P[X̂k+1 = j|X̂k = i] (1)

The main benefit is that for a finite Markov chain, one can compute many interesting

dynamical properties directly from its transition matrix, e.g., timescales and the metastability in

the system [5,21,22], a hierarchy of important transition pathways [2] or mean first passage times

between selected states. With respect to an MSM, these computations should be used afterwards

to answer related questions for the original continuous process. To do this, we must be able to

link the states of the Markov chain back to the spatial information of the original process, and the

approximation of the process (Xt) by the MSM must be valid in some sense.
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Having this in mind, the first natural idea is to let the states of an MSM correspond to sets

A1, ..., An ⊂ E in continuous state space that form a full partition, i.e.,:

Ai ∩ Aj = ∅ for i �= j,

n⋃
i=1

Ai = E (2)

Typical choices for such sets are box discretizations or Voronoi tessellations [23]. For such a full

partition, it is trivial to also define a corresponding discretized process by the original switching

dynamics between the sets. For a given lag time, τ > 0, we can define the index process:

X̃k = i ⇔ Xkτ ∈ Ai (3)

It is well known that this process is not Markovian, mainly due to the so-called recrossing

problem. This refers to the fact that the original process typically crosses the boundary between

two sets, Ai and Aj , several times when transitions take place, as illustrated in Figure 1. This results

in cumulative transitions between indices i and j for the index process, that is, a not memoryless

transition behavior.

Figure 1. Cumulative transitions between two sets along boundaries are typical.

A1

A2

The non-Markovianity of the index process is often seen as a problem in Markov State Modeling,

because many arguments assume that X̃k is a Markov process. In this article, we will not make this

assumption. We interpret the process (X̃k) as a tool to construct the following transition matrix, P τ :

P τ
ij = P[X̃k+1 = j|X̃k = i] = P[X(k+1)τ ∈ Aj|Xkτ ∈ Ai] (4)

and, hence, the MSM as the Markov chain, (X̂k)k∈N, associated with this transition matrix. From

above, it is clear that, in general, we have X̂k �= X̃k, and in [24] it was analyzed how these

two processes relate in terms of density propagation. In the following, we will show under

which assumptions and in which sense the MSM (X̂k) will be a good approximation of the

original dynamics given by (Xt). For convenience, we will usually write P τ ≡ P and leave the

τ -dependence implicit.

3. Analytical Results

In order to compare the MSM to the continuous process, we introduce one of the key objects for

our analysis, the transfer operator of a Markov process. We assume that the Markov process (Xt)
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has a unique, positive invariant probability measure, μ, and that it is time-reversible. Then, for any

time-step, t ≥ 0, we define the transfer operator, Tt, via the property:∫
A

Ttv(y)μ(dy) =

∫
E

v(x)p(t, x, A)μ(dx) for all measurable A (5)

as an operator Tt : L
2(μ) → L2(μ). Here, p(t, x, A) = P[Xt ∈ A|X0 = x] defines the transition

probability measure and L2(μ) denotes the Hilbert space of functions v with:∫
E

v(y)2μ(dy) ≤ ∞ (6)

and the scalar product:

〈v, w〉 =
∫
E

v(y)w(x)μ(dy) (7)

Note that Tt is nothing else other than the propagator of densities under the dynamics, but the

densities are understood as densities with respect to the measure, μ. That is, if the Markov process is

initially distributed according to:

P[X0 ∈ A] =

∫
A

v0(x)μ(dx) (8)

its probability distribution at time t is given by:

P[Xt ∈ B] =

∫
B

vt(x)μ(dx), vt = Ttv0 (9)

The benefit of working with μ-weighted densities is that the transfer operator, Tt, becomes

essentially self-adjoint on L2(μ) for all cases of molecular dynamics satisfying some form of detailed

balance condition. Hence, it has real eigenvalues and orthogonal eigenvectors with respect to

Equation (7) (or, at least, the dominant spectral elements are real-valued). Moreover, the construction

of an MSM can be seen as a projection of the transfer operator [25]. Assume Q is an orthogonal

projection in L2(μ) onto an n-dimensional subspace, D ⊂ L2(μ), with 1 ∈ D, and χ1, ..., χn

is a basis of D. Then, the so-called projected transfer operator, QTτQ : D → D, has the

matrix representation:

PQ = PM−1 (10)

with the non-negative, invertible mass matrix, M ∈ R
n,n, with entries:

Mij =
〈χi, χj〉
〈χi,1〉

(11)

The matrix, P ∈ R
n,n, is also non-negative and has entries:

Pij =
〈χi, Tτχj〉
〈χi,1〉

(12)
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Full Partition MSM. If we choose χi = 1Ai
to be the characteristic function of set

Ai for i = 1, ..., n, one can easily check that we get M = I to be the identity matrix and:

Pij = Pμ[Xτ ∈ Aj|X0 ∈ Ai] (13)

as in Equation (4). The subscript, μ, shall indicate that X0 ∼ μ. Therefore, the transition probabilities

are evaluated along equilibrium paths.

The previously constructed transition matrix of the MSM based on a full partition can be

interpreted as a projection onto a space of densities that are constant on the partitioning sets. This

interpretation of an MSM is useful, since it allows one to analyze its approximation quality. For

example, in [25,26], it is proven that we can reproduce an eigenvalue, λ, of a self-adjoint transfer

operator, Tt, by the MSM by choosing the subspace appropriately. That is, if u is a corresponding

normalized eigenvector, Q the orthogonal projection to a subspace, D, with 1 ∈ D, then there exists

an eigenvalue, λ̂, of the projected transfer operator, QTtQ, with:

|λ− λ̂| ≤ λ1δ(1− δ2)−
1
2

where λ1 < 1 is the largest non-trivial eigenvalue of Tt and δ = ‖u−Qu‖.

In particular, for δ ≤ 3
4
, one can simplify the equation to:

|λ− λ̂| ≤ 2λ1δ (14)

An eigenvalue, λi, of the transfer operator directly relates to an implied timescale, Ti, of the

system via:

Ti = − τ

log(λi)
(15)

Therefore, the transition matrix Equation (4) that we construct from transitions between the sets,

A1, ..., An, will generate a Markov chain that will reproduce the original timescales well if the

partitioning sets are chosen such that the corresponding eigenvectors are almost constant on these

sets. In this case, δ = ‖u − Qu‖; that is, the approximation error of the eigenvector by a piecewise

constant function on the sets will be small.

The projection error, δ, depends on our choice of the discretizing sets. As an example, let us

consider a diffusion in the potential that is illustrated in Figure 2, that is, the reversible Markov

process given by the stochastic differential equation:

dXt = −∇V (Xt)dt+
√
2εdBt (16)

where V is the potential, Bt denotes a Brownian motion and ε > 0.

The figure also shows a choice of three sets that form a full partition of state space. The

computation of the transition matrix Equation (4) for σ = 0.7 and a lag time τ = 1 yields:

PQ = P =

⎛⎜⎝0.9877 0.0123 0.0000

0.0420 0.9160 0.0419

0.0000 0.0123 0.9877

⎞⎟⎠
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that has three eigenvalues λ0 = 1, λ1 = 0.9877, λ2 = 0.9037. Table 1 shows the two resulting

implied timescales Equation (15) in comparison to the timescales of the original system.

Figure 2. A potential with three wells and a choice of three sets, A1, A2, A3.
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Table 1. Comparison of implied timescales

T1 T2

Original 103.7608 11.9566

Full partition 3 sets 80.6548 9.8784

As one can see, the timescales are strongly underestimated. This is a typical phenomenon. From a

statistical point of view, the recrossing problem will lead to cumulatively appearing transition counts

when one computes the transition probabilities, Pμ[Xτ ∈ Aj|X0 ∈ Ai], from a trajectory (Xt), as

discussed above. Therefore, on average, transitions between sets seem to become too likely, and

hence, the processes in the coarse-grained system get accelerated. We have seen in Equation (14)

that this cannot happen if the associated eigenvectors can be approximated well by the subspace

that corresponds to the MSM. Figure 3 shows the first non-trivial eigenvector, u1, belonging to the

timescale T1 = 103.7608 and its best-approximation by a step function.

Figure 3. The first non-trivial eigenvector, u1 (solid blue), and its projection, Qu1

(dashed red), onto step functions that are constant on A1, A2, A3.
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The eigenvector is indeed almost constant in the vicinity of the wells, but within the transition

region between the wells, the eigenvector is varying and the approximation by a step function is not

accurate. Therefore, we have two explanations of why the main error is introduced in the region

close to shared boundaries of neighboring sets: (1) because of recrossing issues; and (2) because

of the main projection error of the associated eigenvector. Of course, one solution would be an

adaptive refinement of the discretization, that is, one could choose a larger number of smaller sets,

such that the eigenvector is better approximated by a step function on these sets. In the following

section, we will present an alternative solution for overcoming the recrossing problem and reducing

the projection error without refining the discretization.

4. The Core Set Approach

From Equation (10), we know how to compute a matrix representation for a projected transfer

operator for an arbitrary subspace, D ⊂ L2(μ). For a given basis, χ1, ..., χn, we have to compute

Equations (11) and (12), so:

Mij =
〈χi, χj〉
〈χi,1〉

, Pij =
〈χi, Tτχj〉
〈χi,1〉

(17)

In general, the evaluation of these scalar products for arbitrary basis functions is a non-trivial task.

On the other hand, we have seen that for characteristic functions χi = 1Ai
on a full partition, we

do not have to compute the scalar products numerically, since the matrix entries have a stochastic

interpretation in terms of transition probabilities between set Equation (13). This means they can

be directly estimated from a trajectory of the process, which is a strong computational advantage,

particularly in high-dimensional state spaces.

Now, the question is if there is another basis other than characteristic functions that: (a) is more

adapted to the eigenvectors of the transfer operator; and (b) still leads to a probabilistic interpretation

of the matrix entries Equation (17), such that scalar products never have to be computed. The basic

idea is to stick to a set-oriented definition of the basis, but to relax the full partition constraint. We

will define our basis with respect to so-called core sets, C1, ..., Cn ⊂ E, that are still disjoint, so

Ci ∩ Cj = ∅, but they do not have to form a full partition. Figure 4 suggests that this could lead to a

reduction of the recrossing phenomenon, since the sets do not share boundaries anymore.

Figure 4. Core sets do not have to share boundaries anymore. This can reduce the

recrossing effect.

C1

C2
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Now, we use the core sets to define our basis functions, χ1, ..., χn. Assume Tτ is, again, a

self-adjoint transfer operator and consider n core sets C1, ..., Cn. For every i, take the committor

function, χi, of the process with respect to core set Ci; that is, χi(x) denotes the probability to hit

the core set, Ci, next, rather than the other core sets, when starting the process in x. If we now study

the projection, Q, onto the space spanned by these committor functions, the two following properties

hold [25,27].

(P1) The matrices, M and P , in Equation (10) can be written as:

Mij = Pμ[X̃
+
k = j|X̃−

k = i], Pij = Pμ[X̃
+
k+1 = j|X̃−

k = i] (18)

where (X̃+
k ) and (X̃−

k ) are forward and backward milestoning processes [25,28]; that is,

X̃−
k = i if the process came at time t = kτ , last from core set Ci and X̃+

k = j if the process

went next to core set Cj after time t = kτ .

(P2) Let ui be an eigenvector of Tτ that is almost constant on the core sets. Let the region C =

E \ ⋃
i Ci that is not assigned to a core set be left quickly enough, so Ex[τ(C

c)] � Ti for

all x ∈ C, where Ti is the timescale associated with ui and Ex[τ(C
c)] is the expected hitting

time of Cc =
⋃

i Ci when starting in x ∈ C. Then, ‖ui − Qui‖ is small; so, the committor

approximation to the eigenvector is accurate.

The message behind (P1) is that it is possible to relax the full partition constraint and use a

core set discretization that does not cover the whole state space. We can still define a basis for a

projection of the transfer operator that leads to a matrix representation that can be interpreted in

terms of transition probabilities.

Important Remark: The construction of the projection onto the committors is only necessary for

theoretical purposes. In practice, neither the committor functions nor scalar products between the

committors have to be computed numerically, since the matrix entries of M and P can be estimated

from trajectories again.

Property (P2) yields that the relaxation of the full partition constraint should also lead to an

improvement of the MSM if the region, C, between the core sets is typically left on a faster timescale

than the processes of interest taking place. Let us get back to the example from above. We will see

that we can achieve a strong improvement of the approximation by simply excluding a small part of

state space from our discretization. In Figure 5, we have turned our initial full partition into a core

set discretization by removing parts of the transition region between the wells.

The matrix PQ = PM−1 that represents the projection, QTτQ, of the transfer operator onto the

committor space associated with the core sets is given by:

PQ =

⎛⎜⎝0.9897 0.0103 0.0000

0.0352 0.9298 0.0351

0.0000 0.0103 0.9897

⎞⎟⎠
Comparing to the MSM for the full partition one can see that transitions between indices i and j,

i �= j are less likely. Table 2 shows this leads to a far more accurate reproduction of the timescales

in the system.
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From the discussion above, this has to be expected, because the eigenvectors are almost constant

in the vicinity of the wells, and we removed a part of state space from the discretization that is

typically left quickly compared to the timescales, T1 and T2. Therefore, the committor functions

should deliver a good approximation of the first two eigenvectors. Figure 6 underlines this

theoretical result.

Figure 5. Excluding a small region of state space from the sets, A1, A2, A3, as in

Figure 2, to form core sets C1, C2, C3 that do not share boundaries anymore.
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Figure 6. (Upper panel) The first non-trivial eigenvector, u1 (solid blue), and its

projection, Qfu1 (finely dashed red), onto step functions (full partition) and its projection,

Qcu1 (dashed green), onto committors (core sets). (Lower panel) The same plot for the

second non-trivial eigenvector, u2.
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Table 2. More accurate approximation if implied timescales.

T1 T2

Original 103.7608 11.9566

3 core sets 100.8066 11.9145

Full partition 3 sets 80.6548 9.8784

5. Practical Considerations and MD Applications

In the previous sections, we have interpreted the construction of an MSM as a projection of the

dynamics onto some finite dimensional ansatz space. We have discussed two types of spaces that both

have been defined on the basis of a set discretization. First, we chose a full partition of state space

and the associated space of step functions, and second, we analyzed a discretization by core sets and

the associated space spanned by committor functions. These two methods have the advantage that

the resulting projections lead to transition matrices for the MSM with entries that are given in terms

of transition probabilities between the sets. That is, one can compute estimates for the transition

matrices from simulation data. This is an important property for practical applications, because it

means that we never need to compute committor functions or scalar products between committors or

step functions. We rather generate trajectories x0, x1, ...xN of the process (Xt), let us say, for a time

step h > 0, so xi = Xhi. For example, we can then define for a full partition, A1, ..., Am, and a lag

time τ = nh the discrete trajectory sk = i ⇔ xk ∈ Ai and compute the matrix, P̂ :

P̂ij =
Cij∑
j

Cij

, Cij =
N−n∑
k=0

1{sk=i}1{sk+n=j} (19)

It is well known [7] that P̂ is a maximum likelihood estimator for the full partition MSM transition

matrix Equation (4). Similarly one can also compute estimates for a core set MSM by using the

definition of milestoning processes [27,28]. That is, if we have core sets C1, ..., Cm, a lag time

τ = nh as before, and we define discrete milestoning trajectories by:

s−k = i ⇔ xk ∈ Ai or came last from Ai before time k

s+k = i ⇔ xk ∈ Ai or went next to Ai after time k

we can compute an estimator P̂Q = P̂ M̂−1 of the core set MSM matrix Equation (10) by

counting transitions:

P̂ij =
Cij∑
j

Cij

, Cij =
N−n∑
k=0

1{s−k =i}1{s+k+n=j} (20)

M̂ij =
Nij∑
j

Nij

, Nij =
N∑
k=0

1{s−k =i}1{s+k =j} (21)
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Since, in practice, we will only have a finite amount of data available, we will have statistical

errors when constructing an MSM. This is an additional error to the projection error related to the

discretization that we have discussed above. On the other hand, one should note that these errors

are not independent of each other. For example, it is clear that if we take a full partition of state

space, and we let the partition become arbitrarily fine by letting the number of sets go to infinity,

the discretization error will vanish. At the same time, for a fixed amount of statistics, the statistical

error will become arbitrarily large, because we will need to compute more and more estimators for

transition events between the increasing number of sets. For more information on statistical errors,

we refer to the literature [7,29].

Besides the choice of discretization and the available statistics, the estimates above also depend

on a lag time, τ . This dependence can be used to validate an MSM by a Chapman–Kolmogorov

test [7]. This is based on the fact that the MSM matrices approximately form a semi-group for

all large enough lag times τ > τ ∗; although, for small lag times, this is typically not true, due to

memory effects. These facts also motivate one to look at something, like an infinitesimal generator,

that approximately generates these MSM transition matrices for large enough lag times. In [27], two

types of generator constructions have been compared for a core set setting. The first generator, K, is

simply constructed from the transition rates between the core sets in the milestoning sense, that is:

Kij = lim
T→∞

NT
ij

RT
i

, i �= j Kii = −
∑
j �=i

Kij (22)

where NT
ij is the amount of time in [0, T ] the process has spent on its way from core set Ci to Cj and

RT
i is the total time in [0, T ] the process came last from Ci. On the other hand, one can see [27,30]

that K∗ = KM−1 with the mass matrix, M , from above Equation (18), can be interpreted as a

projection of the original generator of the process and, also, as a derivative of the core set MSM from

above, i.e.,:

K∗ = lim
τ→0

PM−1 − I

τ
(23)

where P depends on τ Equation (17).

Let us now analyze how the choice of core sets, particularly the size of the core sets, influences the

resulting approximation. Therefore, we consider an MD example that was discussed in [27], namely

one molecule of alanine dipeptide monitored via its φ and ψ backbone dihedral angles. Two core sets

are defined as balls with radius r around the two points with angular coordinates xα = (−80,−60)

and xβ = (−80, 170). The stationary distribution of the process and the two centers of the core sets,

xα, xβ , in the angular space are shown in Figure 7.

For computing a reference timescale, several MSMs based on three different full partitions using

10, 15 and 250 sets have been constructed for increasing lag times. In [27], it is shown that in each

setting, the estimate for the longest implied timescale of the process converged to ≈19 ps for large

enough τ . Now, the implied timescales for the two different generators, K Equation (22) and K∗

Equation (23), are computed. In Figure 8, the resulting timescales are plotted against the reference

timescale ≈ 19 ps for varying size of the core sets.
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Figure 7. The stationary distribution of alanine dipeptide and the two centers of the core

sets, xα, xβ , in the angular space as white dots.

Figure 8. Estimate of the implied timescales from K Equation (22), the projected

generator K∗ Equation (23) and the reference computed from several full partition

Markov State Models (MSMs).
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One can see that the estimate by the milestoning generator, K, is rather sensitive to the size of

core sets. It overestimates the timescales for small core sizes and underestimates it for larger core

sizes. On the other hand, the projected generator, K∗, can never overestimate the timescale, due to

its interpretation as projection. It is also rather robust against the choice of size of the core sets until

the core sets become too large, e.g., r > 15. Then, the discretization becomes close to a full partition

discretization using only two sets. In this case, the timescales have to be underestimated heavily,

because of recrossing phenomena. On the other hand, the underestimation for very small core sets



263

has to be explained by a lack of statistics. When the core sets are chosen as arbitrarily small, it is

clearly more difficult for the process to hit the sets, and therefore, transition events become rare. Note

that for the straightforward milestoning generator, K, the processes seem to become very slow, but

for the projected generator K∗ = KM−1, this effect is theoretically corrected by the mass matrix,

M . Nevertheless, in both cases, the generation of enough statistics will be problematic for too small

core sets.

6. Further Applications in MD

Markov State Modeling has been show to apply successfully to many different molecular

systems, like peptides, including time-resolved spectroscopic experiments [10–12], proteins and

protein folding [4,9,13], DNA [31] and ligand-receptor interaction [32]. In most of the respective

publications, full partition MSMs are used, and the underlying discretization is based on cluster

finding methods (see [7] for a review), while the sampling issues are tackled by means of ideas

from enhanced sampling [33] and based on ensembles of rather short trajectories instead of one long

one, cf. [4]. Core set-based approaches have been used just recently [10,27]; related algorithms

are less well developed. However, recent work has shown that and how every full partition MSM

can be easily transformed into a core set-based MSM with significantly improved approximation

quality [34], making core set MSMs the most promising next generation MSM tools.

Very Rare Transitions between Discretization Sets. When constructing a full partition or a core

set MSM, we have to estimate transition probabilities between sets in state space, and it can happen

that we cannot avoid that some of these transitions are very rare. That is, the transition probabilities

for a lag time, τ , between some sets can be non-zero, but small even, if compared to the remaining

transition probabilities that are small already. This is why it is important to note that neglecting these

very rare transitions during the construction of an MSM does not harm its approximation quality. For

example, we can define for a transition matrix, P , another transition matrix, P̃ , by:

P̃ij =

⎧⎨⎩Pij, i �= j, (i, j) /∈ R

0, i �= j, (i, j) ∈ R
(24)

where R denotes the set of pairs of indices for which the transition are very rare and for which we

set the transition probability to zero. If the Markov chain is reversible and (i, j) ∈ R ⇔ (j, i) ∈ R,

one can show that for all ordered eigenvalues, λk(P ) and λk(P̃ ), it holds that:

|λk(P )− λk(P̃ )| ≤ max
i

∑
j �=i,(i,j)∈R

Pij (25)

That is, if we cannot estimate a very small transition probability, Pij , for a very rare transition

event between two sets, Ai and Aj , and even totally neglect this probability by setting it to zero,

the timescales of the MSM remain almost unaffected. Thus, if we compute the set of the “first

order” transition probability of a system correctly enough and ignore all “higher order” ones, then our

accuracy will not be spoiled. This nicely illustrates the main advantage of MSM modeling compared
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to classical long-term simulation: since only neighboring core sets have to be connected by accurately

estimated rates, the long residence time of long-term trajectories between and in core sets can be

avoided, thus cutting down total simulation time.

Computation from Trajectories. Clearly, constructing and analyzing a core set MSM will only

have a computational advantage compared to the direct sampling of a rare event if the transition

events between neighboring core sets occur on a much shorter timescale than the rare event itself.

One should note that from the purely theoretical point of view, it would be optimal to choose only

very few core sets in the most metastable regions of state space, because this would minimize the

projection error δ = ‖u − Qu‖ for each dominant eigenvector u, as discussed in Section 3. On the

other hand, when estimating the MSM from trajectories, only a finite amount of statistics will be

available, so there will also be a statistical error. In order to keep the total error small, additional core

sets in less metastable parts of state space typically have to be introduced. In the end, this makes the

estimation of a core set MSM possible without having to sample rare events. Note that the projection

error is still under control, as long as there is a transition region between the core sets that is typically

left very quickly (see Property (P2) in Section 4).

In practice, the statistics of the transition events between core sets will preferably be estimated

from many short trajectories using milestoning techniques [27,28] and parallel computing. However,

any algorithm for the construction of a core set MSM has to find a balance between sampling

issues (not too many too long trajectories needed) and discretization issues (not too many core sets).

Construction of such an algorithm still is ongoing research.

This article cannot give a detailed review on the algorithmic realization of MSMs for realistic

molecular systems and on the findings resulting from such applications, since this is discussed

to some extent elsewhere; see [7] for a recent review of the algorithmic aspects and [32,35] for

ligand-receptor interaction.

7. MSM for Optimal Control Problems

In this section, we will borrow ideas from the previous section and explain how MSMs can be

used to discretize optimal control problems that are linear-quadratic in the control variables and

which appear in, e.g., the sampling of rare events. Specifically, we consider the case that (Xt)t≥0 is

the solution of:

dXt = (
√
2ut −∇V (Xt))dt+

√
2εdBt (26)

with potential V , Brownian motion Bt and temperature ε > 0, as in Equation (16), and an unknown

control variable, u : [0,∞) → R
d, that is chosen so as to minimize the cost function:

J(u; x) = E

[∫ τ

0

(
f(Xs) +

1

2
|ut|2

)
ds

∣∣∣∣X0 = x

]
(27)

(The factors of 1/2 and
√
2 in front of the control terms are for notational convenience.) Here, f ≥ 0

is a bounded continuous function called running cost and τ < ∞ (almost surely) is a random stopping

time that is determined by Xt hitting a given target set, A ⊂ E, i.e., τ = inf{t > 0: Xt ∈ A}, in
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other words, we are interested in controlling Xt = Xu
t until it reaches A. As an example, consider

the case f = 1 with the potential considered in Figure 5 and the target region, A, around the left well.

This situation is illustrated in Figure 9 and amounts to the situation that one seeks to minimize the

time to reach A by tilting the potential towards A; tilting the potential too much is prevented by the

quadratic penalization term in the cost functional that grows when too much force is applied.

Figure 9. The potential from Figure 5 (blue) and a tilted potential to minimize the time

required to hit the target set, A (green).
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Other choices of f in Equation (26) result in alternative applications. One obvious application

would be to set τ = T to a fixed time and f to the characteristic function of the complement of a

conformation set C, f = 1E\C . In this case, minimization of J wrt. the control ut would mean

maximization of the probability to find the system in the conformation, C, until time T under a

penalty on the external work done to the system. See [14] for more details on such applications.

There are other types of cost functions, J , one might consider, e.g., control until a deterministic

finite time τ = T is reached or, even, τ → ∞, and the construction would follow analogously. For

compactness, we consider here only cost functions as in Equation (27).

Optimal Control and Equilibrium Expectation Values. It turns out that when minimizing J , it is

sufficient to consider control strategies that are Markovian and depend only on Xt, i.e., we consider

feedback laws of the form ut = α(Xt) for some smooth function, α : E → R
d. Moreover, only

controls with finite energy are considered, for otherwise, J(u; x) = ∞. For control problems of the

form Equations (26) and (27), the optimal feedback function can be shown to be α∗(x) = −
√
2∇W ,

where W is the value function or optimal-cost-to-go [1,15]:

W (x) = min
u

J(u; x) (28)

with the minimum running over all admissible Markovian feedback strategies. It can be shown that

W satisfies the following dynamic programming equation of the Hamilton–Jacobi–Bellman type

(see [36]):
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LW (x)− |∇W (x)|2 + f = 0

W |A = 0
(29)

with the second-order differential operator:

L = εΔ−∇V · ∇

that is the infinitesimal generator of the process, Xt, for u = 0. If the value function, W , is known, it

can be plugged into the equation of motion, which then turns out to be of the form:

dX∗
t = −∇U(X∗

t )dt+
√
2εdBt (30)

with the new potential:

U(x) = V (x) + 2W (x)

The difficulty is that Equation (29) is a nonlinear partial differential equation and for realistic

high-dimensional systems, it is not at all obvious how to discretize it, employing any kind of state

space partitioning. It has been demonstrated in [14,15] that Equation (29) can be transformed into

a linear equation by a logarithmic transformation. Setting: W (x) = −ε log φ(x) it readily follows,

using chain rule and Equation (29), that φ solves the linear equation:

(L− ε−1f)φ = 0

φ|A = 1
(31)

The last equation is linear and can be solved by using MSMs, as we will show below. Moreover, by

the Feynman–Kac theorem [37], the solution to Equation (31) can be expressed as:

φ(x) = E

[
exp

(
−1

ε

∫ τ

0

f(Xt)dt

)∣∣∣∣X0 = x

]
(32)

where Xt solves the control-free equation:

dXt = −∇V (Xt)dt+
√
2εdBt

That is, the optimal control for Equation (26) can be computed by solving Equation (31), which can

be done in principle via Monte Carlo approximation of the expected value in Equation (32) if critical

slowing down by rare events can be avoided.

Remark. The optimization problem Equation (28) admits an interpretation in terms of entropy

minimization: let Q = Qu
x and P = Q0

x denote the path probability measures of controlled and

uncontrolled trajectories starting at x at time t = 0, and set:

Z =

∫ τ

0

f(Xs) ds

Then, it follows that we can write:

W (x) = min
Q�P

J(u; x), J(u; x) =

∫ {
Z + ε log

(
dQ

dP

)}
dQ (33)
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where the notation “Q � P ” means that Q has a density (That is, the density function, dQ/dP ,

exists and is almost everywhere positive and normalized) with respect to P . It turns out that for every

such Q, there is exactly one control strategy, u, such that Q = Qu
x is generated by Equation (26); in

this sense, the notation in Equation (33) is meaningful. The second term:

H(Q‖P ) = ε

∫
log

(
dQ

dP

)
dQ

is the relative entropy or Kullback–Leibler divergence between Q and P . For details on this matter

that are based on Girsanov transformations for stochastic differential equations, we refer to [38] or

the article [1] in this special issue.

8. MSM Discretization of Optimal Control Problems

The basic idea is now to choose a subspace, D ⊂ L2(μ), with basis χ1, . . . , χn as in Markov

State Modeling and then discretize the dynamic programming Equation (29) of our optimal control

problem by projecting the equivalent log transformed Equation (31) onto that subspace. As we will

see, the resulting discrete matrix equation can be transformed back into an optimal control problem

for a discrete Markov jump process (MJP).

We will do this construction for the full partition case χi = 1Ai
and the core set case χi = qi

discussed earlier. We will see that in both cases, we arrive at a structure-preserving discretization of

the original optimal control problem, where the states of the corresponding MJP will be related

to the partition subsets, Ai. The first case will give us back a well-known lattice discretization

for continuous control problems, the Markov chain approximation [39]. This is illustrated in the

following diagram:

Lφ = ε−1fφ

SDE

W = minu J(u)

Gφ̂ = ε−1f̂ φ̂

MJP

Ŵ = minv Ĵ(v)

Linear equation

Control Problem

W = −ε log φ Ŵ = −ε log φ̂

discretize

D ⊂ V

?

Subspace Projection. The key step for the discretization is that we pick a suitable subspace,

D ⊂ L2(μ), that is adapted to the boundary value problem Equation (31). Specifically, we require

that the subspace contains the constant function, 1 ∈ D, and that it gives a good representation of

the most dominant metastable sets. To this end, we choose basis functions χ1, . . . , χn+1 with the

following properties:

(S1) The χi form a partition of unity, that is
∑n+1

i=1 χi = 1.

(S2) The χi are adapted to the boundary conditions in Equation (31), that is χn+1|A = 1 and χi|A =

0 for i ∈ {1, . . . , n}.
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Now, let Q be the orthogonal projection onto D, and define the matrices:

Fij =
〈χi, fχj〉
〈χi,1〉

, Kij =
〈χi, Lχj〉
〈χi,1〉

Now, if φ solves the linear boundary value problem Equation (31), then the coefficients, φ̂1, . . . , φ̂n+1,

of its finite-dimensional representation Qφ =
∑

j φ̂jχj on the subspace, D, satisfy the constrained

linear system:
n+1∑
j=1

(
Kij − ε−1Fij

)
φ̂j = 0 , i ∈ {1, . . . , n}

φ̂n+1 = 1

(34)

that is the discrete analogue of Equation (31). The discrete solution φ̂ = Qφ is optimal in the sense

of being the best approximation of φ in the energy norm, i.e.,:

‖φ− φ̂‖A = inf
ψ∈D

‖φ− ψ‖A (35)

where:

‖φ‖2A =
〈
φ, (ε−1f − L)φ

〉
is the energy norm on L2(μ), and the infimum runs over all functions, ψ ∈ L2(μ), that are of the

form ψ(x) =
∑

j ψjχj(x) with coefficients ψj ∈ R. This is a standard result about projections

of PDEs; see [40] for details. (By the same argument as in the previous sections, A = ε−1f − L

is symmetric and positive definite as an operator on the weighted Hilbert space, L2(μ). Moreover,

‖φ‖2A = ε−1〈φ, fφ〉+ ε〈∇φ,∇φ〉.) In analogy with Equation (14), we can use the above result to get

the error estimate:

‖φ− φ̂‖2μ ≤
(
1 +

1

δ2
‖QAQ⊥‖2

)
inf
ψ∈D

‖φ− ψ‖2μ (36)

where A = ε−1f − L is a shorthand for the operator appearing in Equation (31) and the constant

δ > 0 is defined, such that ‖v‖2A ≥ δ‖v‖2μ holds for all v ∈ L2(μ); see [41]. The bottom line of

Equation (35) shows that discretizing Equation (31) via Equation (34) minimizes the projection error

measured in the energy norm. Since all functions are μ-weighted, the approximation will be good

in regions visited with high probability and less good in regions with lower probability. The error

estimate Equation (36) is along the lines of the MSM approximation result: if we switch to the norm

on L2(μ), the function φ̂ = Qφ is still almost the best approximation of φ, provided that A leaves

the subspace, D, almost invariant. As was pointed out earlier, this is exactly the case when the χi are

close to the eigenfunctions of A (e.g., when the system is metastable).

The best approximation error ‖Q⊥φ‖μ = infψ∈D ‖φ− ψ‖μ, which appears in Equation (36), will

vanish if the χi form an arbitrarily fine full partition of E. If we follow the core set idea from Section

4 and choose the χi to be committor functions, we have good control over ‖Q⊥φ‖μ. Due to [41]:

‖Q⊥φ‖μ ≤ ‖P⊥φ‖μ + μ(C)1/2
[
κ‖f‖∞ + 2‖P⊥φ‖∞

]
(37)

where C = E \ ∪iCi is the transition region, κ = supx∈C ExτE\C is the maximum expected time

of hitting the metastable set from outside (which is short) and P is the orthogonal projection onto
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the subspace V = {v ∈ L2(μ), v = const on every Ci} ⊂ L2(μ). Note that P⊥φ = 0 on C. The

errors, ‖P⊥φ‖μ and ‖P⊥φ‖∞, measure how constant the solution, φ, is on the core sets. Hence,

Equation (37) together with Equation (36) gives us complete control over the approximation error of

our projection method, even if we consider just a few core sets. In Section 9, we will investigate the

full and core set partition cases further.

Properties of the Projected Problem. We introduce now the diagonal matrix, Λ, with entries

Λii =
∑

j Fij (zero otherwise) and the full matrix G = K−ε−1(F −Λ), and rearrange Equation (34)

as follows:
n+1∑
j=1

(
Gij − ε−1Λij

)
φ̂j = 0 , i ∈ {1, . . . , n}

φ̂n+1 = 1

(38)

This equation can be given a stochastic interpretation. To this end, let us introduce the vector,

π ∈ R
n+1, with nonnegative entries πi = 〈χi,1〉 and notice that

∑
i πi = 1 follows immediately

from the fact that the basis functions, χi, form a partition of unity, i.e.,
∑

i χi = 1. This implies

that π is a probability distribution on the discrete state space Ê = {1, . . . , n + 1}. We summarize

properties of the matrices, K, F and G; see also [41]:

(M1) K is a generator matrix of an MJP (X̂t)t≥0 (i.e., K is a real-valued square matrix with

row sum zero and positive off-diagonal entries) with stationary distribution, π, that satisfies

detailed balance:

πiKij = πjKji , i, j ∈ Ê

(M2) F ≥ 0 (entry-wise) with πiFij = πjFji for all i, j ∈ Ê.

(M3) G has a row sum of zero and satisfies πTG = 0 and πiGij = πjGji for all i, j ∈ Ê; furthermore,

there exists a constant 0 < C < ∞, such that Gij ≥ 0 for all i �= j if ‖f‖∞ ≤ C. In this case,

Equation (38) admits a unique and strictly positive solution φ̂ > 0.

It follows that if the running costs, f , are such that (M3) holds, then G is a generator matrix of an

MJP that we shall denote by (X̂t)t≥0, and Equation (38) has a unique and positive solution. In this

case, the logarithmic transformation Ŵ = −ε log φ̂ is well defined. It was shown in [42] that Ŵ can

be interpreted as the value function of a Markov decision problem with cost functional (cf. also [36]):

Ĵ(v; i) = E

[∫ τ

0

(
f̂(X̂s) + k(X̂s, vs)

)
ds

∣∣∣∣X̂0 = i

]
(39)

that is minimized over the set of Markovian control strategies, v : Ê → (0,∞), subject to the

constraint that the controlled process X̂t = X̂v
t is generated by Gv, where:

Gv
ij =

{
v(i)−1Gijv(j) , i �= j

−∑
j �=i G

v
ij , i = j

(40)

with stopping time τ = inf{t > 0: X̂t = n+ 1} and running costs:

f̂(i) = Λii , k(i, v) = ε
∑
j �=i

Gij

{
v(j)

v(i)

[
log

v(j)

v(i)
− 1

]
+ 1

}
(41)
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Properties of the Projected Problem, Continued. From [42], we know that the optimal cost:

Ŵ (i) = min
v

Ĵ(v; i)

is given by Ŵ = −ε log φ̂, where φ̂ solves Equation (38), with the optimal feedback strategy given

by v∗(i) = φ̂i (see [36]). We list additional properties:

(i) The v-controlled system has the unique invariant distribution:

πv = (πv
1 , . . . , π

v
n+1) , πv

i =
v(i)2πi

Zv

with Zv an appropriate normalization constant; in terms of the value function, π∗ = πv∗ reads:

π∗ = (π∗
1, . . . , π

∗
n+1) , π∗

i =
1

Z∗
e−2ε−1Ŵ (i)πi

(ii) Gv is reversible and stationary with respect to πv, i.e., πv
iG

v
ij = πv

jG
v
ji for all i, j ∈ Ê.

(iii) Ĵ admits the same interpretation as Equation (33) in terms of the relative entropy:

Ŵ (i) = min
Q�P

Ĵ(v; i), Ĵ(v; i) =

∫ {
Ẑ + ε log

(
dQ

dP

)}
dQ

where P denotes expectation with respect to the uncontrolled MJP, X̂t, starting at X̂0 = i, Q

denotes the path measure of the corresponding controlled process with generator Gv and:

Ẑ =

∫ τ

0

f̂(X̂s) ds

A few remarks seem in order: Item (i) of the above list is in accordance with the continuous

setting, in which the optimally controlled dynamics is governed by the new potential U = V + 2W

and has the stationary distribution, μ∗ ∝ exp(−2ε−1W )μ, with μ being the stationary distribution of

the uncontrolled process. Hence, the effect of the control on the invariant distribution is the same in

both cases. Further, note that optimal strategies change the jump rates according to:

Gv∗
ij = Gije

−ε−1(Ŵ (j)−Ŵ (i)) (42)

that is, Ŵ acts as an effective potential as in the continuous case, and the change in the jump rates

can be interpreted in terms of Kramer’s law for this effective potential.

This completes our derivation of the discretized optimal control problem, and we now compare

it with the continuous problem we started with for the case of a full partition of E and a core set

partition of E.
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9. Markov Chain Approximations and Beyond

Full Partitions. Let E be fully partitioned into disjoint sets, A1, . . . , An+1, with centers

x1, . . . , xn+1 and such that An+1 := A, and define χi := χAi
. These χi satisfy Assumptions (S1) and

(S2) discussed in Section 8. Since they are not overlapping, F is diagonal, and:

f̂(i) =
1

πi

∫
Ai

f(x)μ(x)dx = Eμ[f(Xt)|Xt ∈ Ai] (43)

is just obtained by averaging f(x) over the cell, Ai. Equation (43) is also a sampling formula for

f̂(i). It follows directly that G = K, and in particular, (M3) holds for any f . One can show that K

has components:

Kij ≈
1

Δij

e−β(V (x̄ij)−V (xi)), Δ−1
ij = β−1 m(Sij)

m(hij)m(Ai)
(44)

if i and j are neighbors (Kij = 0 otherwise). Here, m is the Lebesgue measure, and hij , Sij and x̄ij are

defined as in Figure 10. K is the generator of an MJP on the cells, Ai, and coincides with the so-called

finite volume approximation of L discussed in [43]. It is reversible with stationary distribution:

πi =

∫
Ai

dμ ≈ m(Ai)e
−βV (xi)

Figure 10. The mesh for the full partition.

xi

xj

x̄ij

Sij

Ai

Aj

hij

One can show that the approximation error vanishes for n → ∞. K and π can be computed from

the potential, V , and the geometry of the mesh. By inspecting Equations (12) and (13), we see that

K is connected to the transition matrix, P τ , of a full partition MSM with lag time τ by

lim
τ→0

1

τ

(
P τ
ij −Mij

)
= lim

τ→0

1

πi

〈χi,
1

τ
(Tτ − 1)χj〉 =

1

πi

〈χi, Lχj〉 = Kij,

thus K is the generator of the semigroup of transition matrices, P τ . Therefore we could obtain K

by sampling in the same way we obtained P τ through Equation (19) in Section 5. This is difficult,
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however, due to recrossing problems for small τ ; see e.g., [44]. Finally, let us note in passing that

we can drastically simplify kv if the cells, Ai, are boxes of length h. Denote the elementary lattice

vectors by en. Then,

kv(i) =
1

2
|uv(i)|2 +O(h), uv

n(i) :=
1√
2

ε

2h
(log v(i+ en)− log v(i− en)) ,

which establishes the connection to the continuous case. However, more is true: The whole

discrete control problem reduces to first order in h to the well-known Markov chain approximation

(MCA) [39], which allows us to use convergence theory for MCAs to conclude that, for n → ∞,

the optimal control and value function of the discrete control problem converge to their continuous

counterparts. More details can be found in [41].

Core Set Partition. Now, we choose core sets C1, . . . , Cn+1 with Cn+1 = A, and we let χi = qi

be the committor function of the process with respect to Ci, as in Section 4. These χi satisfy

Assumptions (S1) and (S2) discussed in Section 8. The projection onto the committor basis also

allows for a stochastic interpretation. Recall the definition of the forward and backward milestoning

process, X̃±
t , from Equation (18). The discrete costs can be written as:

f̂(i) =
1

πi

〈qi, f
∑
j

qj〉 =
∫

νi(x)f(x)dx = Eμ

[
f(Xt)

∣∣∣X̃−
t = i

]
(45)

where νi(x) = qi(x)μ(x)
πi

= P(Xt = x|X̃−
t = i) is the probability density of finding the system in

state x given that it came last from i. Hence, f̂(i) is the average costs conditioned on the information

X̃−
t = i, i.e., Xt came last from Ai, which is the natural extension to the full partition case, where

f̂(i) was the average costs conditioned on the information that Xt ∈ Ai.

The matrix K = π−1
i 〈qi, Lqj〉 is reversible with stationary distribution

πi = 〈qi,1〉 = Pμ(X̃
−
t = i)

and is related to core MSMs again:

K = lim
τ→0

1

τ
(P τ −M)

where P τ and M are now the matrices for core MSMs, as in Equation (18). Formally, K is the

generator of the P τ , but these do not form a semigroup, since M �= 1. Therefore, we cannot interpret

K directly as, e.g., the generator of X̃−
t . Nevertheless, the entries of K are the transition rates

between the core sets, as defined in transition path theory [45]. We can sample P τ and M using

Equations (20) and (21); because we used an incomplete partition, the recrossing problem is removed,

and there is no difficulty in sampling P τ for all lag times, τ , and therefore, K directly. It is worth

noting that F can also be sampled:

Fij = Eμ

[
f(Xt)χ{X̃+

t =j}
∣∣∣X̃−

t = i
]

Therefore, as in the construction of core MSMs, we do not need to compute committor functions

explicitly. Note, however, that G �= L, there is a reweighting, due to the overlap of the qi’s, which
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causes F to be non-diagonal. This reweighting is the surprising bit of this discretization. From

properties (M1)–(M3) from Section 8, we see, however, that G and K are both reversible with

stationary distribution, π. Finally, note that if the cost function, f(x), does not satisfy ‖f‖∞ ≤ C

from (M3), G will not even be a generator matrix. In this case, (34) still has a solution, φ̂, which is

the best approximation to φ, but this solution may not be unique; it may not satisfy φ̂ > 0, and we

have no interpretation as a discrete control problem.

10. Numerical Results

10.1. 1D Potential Revisited

Firstly, we study diffusion in the triple well potential, which is presented in Figure 2. This

potential has three minima at approximately x0/1 = ±3.4 and x2 = 0. We choose the three core sets

Ci = [xi − δ, xi + δ] around the minima with δ = 0.2. Take τ to be the first hitting time of C0. We

are interested in the moment generating function φ(x) = E

[
e−ε−1στ

]
of passages into C0 and the

cumulant generating function W = ε log φ. This is of the form Equation (32) for A = Ci and f = σ,

a constant function.

In Figure 11a, the potential, V , and effective potential, U , are shown for β = 2 and σ = 0.08

(solid lines), cf. Equation (30). One can observe that the optimal control effectively lifts the second

and third well up, which means that the optimal control will drive the system into C0 very quickly.

The reference computations here have been carried out using a full partition FEM (finite element

method) discretization of Equation (31) with a lattice spacing of h = 0.01. Now, we study the

MJP approximation constructed via the committor functions shown in Figure 11b. These span a

three-dimensional subspace, but due to the boundary conditions, the subspace, D, of the method is

actually two-dimensional. The dashed line in Figure 11a gives the approximation to U calculated

by solving Equation (38). We can observe extremely good approximation quality, even in the

transition region. In Figure 11c, the approximation to the optimal control, α∗(x) (solid line), and

its approximation α̂∗ = −
√
2∇Ŵ (dashed line) are shown. The core sets are shown in blue. We

can observe jumps in α̂∗ at the left boundaries of the core sets. This is to be expected and comes

from the fact that the committor functions are not smooth at the boundaries of the core sets, but only

continuous. Therefore, the approximation to U is continuous, but the approximation to α∗ is not.

Next, we construct a core MSM to sample the matrices, K and F . One hundred trajectories of

length T = 20, 000 were used to build the MSM. In Figure 11d, W and its estimate using the core

MSM are shown for ε = 0.5 and different values of σ. Each of the 100 trajectories has seen about four

transitions. For comparison, a direct sampling estimate of W using the same data is shown (green).

The direct sampling estimate suffers from a large bias and variance and is practically useless. In

contrast, the MSM estimator for W performs well for all considered values of σ, and always, its

variance is significantly small. The constant, C, which ensures φ̂ > 0 when σ ≤ C, is approximately

0.2 in this case. This seems restrictive, but still allows one to capture all interesting information about

φ and W .
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Figure 11. Three well potential example for ε = 0.5 and σ = 0.08. (a) Potential V (x)

(blue), effective potential U = V +2W (green) and approximation of U with committors

(dashed red). (b) The three committors, q1(x), q2(x) and q3(x). (c) The optimal control

α∗(x) (solid line) and its approximation (dashed line). Core sets are shown in blue;

(d) Optimal cost W for β = 2 as a function of σ. Blue: Exact solution. Red: Core MSM

estimate. Green: Direct sampling estimate.
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10.2. Alanine Dipeptide

Lastly, we study α-β-transitions in alanine dipeptide, a well-studied test system for molecular

dynamics applications. We use a 1μs long trajectory simulated with the CHARMM (Chemistry at

HARvard Molecular Mechanics) 27 force field. The conformational dynamics is monitored as usual

via the backbone dihedral angles, φ and ψ. The data was first presented in [27]. We construct a full

partition MSM with 250 clusters using k-means clustering. We are interested in the MFPT (mean

first passage time) t̂(i) = Ei[τα], where τα is the first hitting time of the α conformation, which we

define as a circle with radius r = 45 around (φα, ψα) = (−80,−60). The MFPT vector, t̂, solves the

boundary value problem

Kt̂ = −1 outside of α, t̂ = 0 in α
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but since K is not available directly via sampling, we have to consider the equation

1

τ
(P τ − 1) t̂ = −1 outside of α, t̂ = 0 in α

instead. The result will depend on the choice of lag time τ . In Figure 12a, the results are shown

for τ = 5; we can identify the β-structure as the red cloud of clusters where t̂(i) is approximately

constant. In Figure 12b, t̂βα = E(t̂(i)|i ∈ β) is shown as a function of τ . We observe a linear behavior

for large τ , which is due to the linear error introduced in the replacement of K with 1
τ
(P τ − 1), and

a nonlinear drop for small τ , which is due to non-Markovianity. Our best guess is, therefore, a

linear interpolation to τ = 0, which is indicated by the solid line. The result is t̂
(0)
βα = 35.5ps.

As a comparison, the reference value t̂refβα = 36.1ps from [27] is shown as a dashed line. It was

computed in [27] as an inverse rate, using the slowest ITS (implied time scale) and information about

the equilibrium weights of the α and β structure. We see very good agreement. The result is, of

course, dependent, though, on the assignment of clusters to the α and β structure. Some tests show

that t̂
(0)
βα as computed with the interpolation method is fairly insensitive to this choice.

Figure 12. Dipeptide example. (a) MFPT from β to α in φ-ψ space for τ = 5. The

red cloud to the right is the β-structure. (b) MFPT as a function of τ (dashed line) and

linear interpolation to τ = 0 (solid line). Green dashed line: reference computed via the

slowest ITS .
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In [14], it is demonstrated how to use the method presented herein for maximizing the population

of the α-conformation of alanine dipeptide based on the MSM used here.

11. Conclusions

In this article, we have discussed an approach to overcome direct sampling issues of rare events

in molecular dynamics based on spatial discretization of the molecular state space. The strategy

is to define a discretization by subsets of state space, such that the sampling effort with respect

to transitions between the sets is much lower than the direct estimation of the rare events under
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consideration. That is, without having to simulate rare events, we construct a so-called Markov State

Model, a Markov chain approximation to the original dynamics. Since the state space of the MSM is

finite, we can then calculate the properties of interest by simply solving linear systems of equations.

Of course, it is crucial that these properties of the MSM can be related to the rare event properties of

the original process that we have not been able to sample directly.

This is why we have analyzed the approximation quality of MSMs in the first part of the article.

We have used the interpretation of MSMs as projections of the transfer operator to: (1) derive

conditions that guarantee an accurate reproduction of the dynamics; and (2) show how to construct

models based on a core set discretization by leaving the state space partly undiscretized.

In the second part of the article, we have used the concept of MSM discretization to solve MD

optimal control problems in which one computes the optimal external force that drives the molecular

system to show an optimized behavior (maximal possible population in a conformation; minimal

mean first passage time to a certain conformation) under certain constraints. We have demonstrated

that the spatial discretization underlying an MSM turns the high-dimensional continuous optimal

control problem into a rather low-dimensional discrete optimal control problem of the same form

that can be solved efficiently. This result allows two different types of applications: (1) if one can

construct an MSM for a molecular system in equilibrium, then one can use it to compute optimal

controls that extremize a given costs criterion; (2) if an MSM can be computed based on transition

probabilities between neighboring core sets alone, then the rare event statistics for transitions between

strongly separated metastable states of the system can be computed from an associated optimal

control problem that can be solved after discretization using the pre-computed MSM.
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Abstract: In this work, we make an attempt to answer the question of what a

multiscale problem is in Molecular Dynamics (MD), or, more in general, in Molecular

Simulation (MS). By introducing the criterion of separability of scales, we identify three

major (reference) categories of multiscale problems and discuss their corresponding

computational strategies by making explicit examples of applications.
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adaptive resolution

1. Introduction

One of the major challenges of Molecular Dynamics (MD) over the last decade has been the

development and application of techniques that allow the bridging of length and time scales in a

physically consistent way. The relevance of such an effort is obvious: the understanding of the

microscopic origin of large-scale properties leads to a deeper knowledge of physical phenomena

and, when required, to the design of physical systems with specific properties on demand. The

computational and conceptual progress in bridging scales, in condensed matter, material science,

chemical physics and related fields, has been rather massive, and nowadays, the expression

“multiscale modeling” has become almost routine. However, what is exactly meant by multiscale

modeling is not clear yet. Obviously, one must go beyond the approach of combining, in a brute

force fashion, different simulation techniques designed for different scales; computers will always

give an answer; however, physical consistency must not be violated beyond the level of a controlled

error/approximation. In this work, we discuss a possible classification of multiscale problems and

relate them to the corresponding computational techniques and to the idea of physical consistency.
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The paper is organized as follows. Based on the concept of scale separability, that is, how much

scales can be separated in a system, we will identify three major categories: problems with “separated

scales”, those with “separable scales” and those with “highly-interconnected scales”. Next, we will

treat for each case some specific examples taken from applications and discuss the corresponding

computational strategy. The final part will be dedicated to one (specific) emerging scale-coupling

technique, that is, the adaptive resolution MD approach. This latter allows, in principle, one to

describe in a unified simulation framework, the molecular (chemical) origin of large-scale properties

and, thus, to interpret the multiscale idea in its full meaning.

2. Separability of Scales

Rather than providing a universal definition of multiscale, we instead introduce an objective

criterion and define the idea of multiscale accordingly. The criterion in question is the “separability of

scales”, that is, how much in space and time, given some properties or phenomena of interest, scales

can be separated in a system. Obviously, this separation is never sharp, and scales are never exactly

disjoint; for this reason, this classification must be intended only as a general reference scheme.

According to the concept above, we have identified three major categories: “separated scales”,

“separable scales” and “highly-interconnected scales”; below, we comment on each specific category.

• Separated Scales: This corresponds to the typical situation where simulation data from a

scale (let us say), A, are used as input for modeling a molecular system at scale B. Next,

simulations at scale B can proceed, and the connection to scale A is no longer required. The

corresponding computational strategy goes under the name of “sequential strategy”. Just to

give an immediate idea, this is the typical case of molecular-based coarse graining: one needs

an atomistic simulation to derive an effective coarse-grained model. Next, the coarse-grained

simulation can run without any reference to atomistic details, provided that the properties of

interest can be described by the coarse-grained model only.

• Separable scales: As for the situation above, scale A is used to model scale B. Next, scale

B evolves, but differently from the case above, in this case one needs to go back from B

to A, refine the model and start again. A loop-like strategy involves the two scales, i.e.,
A → B → A → B........ The corresponding computational strategy is usually called a

“backmapping scheme”.

• Highly-interconnected scales: Scales cannot be separated at all, and actually, it is exactly the

interplay between different scales that characterizes the essential physics and chemistry of

the system. The corresponding computational strategy requires that the different scales are

treated on the same footing in a simultaneous coupling; for this reason, the technique is named

“concurrent coupling”.

Above, we have reported, for simplicity, only the case of a two scales problem; however, the

extension to multiple scales is obvious. Moreover, in real applications, multiscale problems occupy

the spectrum of categories given above in a sort of continuous way and, thus, require various

combinations of the computational strategies reported above. It must be clarified that the separability
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of scales is not the only criterion possible for such a classification. An example of a complementary

criterion is the one used by Berendsen: scales’ hierarchy. This stems from deciding a priori which

scale is more relevant in a problem rather than looking primarily at how scales are connected [1,2].

An overview of how the idea of multiscale is interpreted in the field of condensed matter, material

science, chemical physics and related disciplines, together with recent method developments and

applications, can be found in [3,4]. The fact that two relevant journals in the field dedicate an entire

issue to the subject is an implicit confirmation of the relevance of the idea within the community of

chemists and physicists (and even beyond, e.g., to mathematicians, engineers, biologists). In the next

section, we will provide few examples of problems where the abstract classification defined above

finds practical application in the field of MD.

3. Separated Scales and Sequential Strategy

Let us start by discussing an example where scales can be separated in a quite good

approximation, and thus, the sequential coupling strategy is appropriate. The system we will discuss

is that of macromolecular samples on solid inorganic surfaces. There are two main aspects in

this problem:

• adhesion of the macromolecule at the surface, dominated by the specific local chemistry of the

polymer moieties and by the specific reactivity of the surface;

• bulk properties of the macromolecular liquid, dominated by molecular packing and by slow

equilibration processes.

The first aspect requires the detailed description of specific chemistry and its corresponding electronic

properties; thus, a quantum mechanical description is mandatory. The second aspect is dominated

by the entropic character of the chain entanglements in bulk and, thus, requires classical statistical

methods, which properly sample the vast configurational space of a liquid. When we put the solid

surface in contact with the macromolecular liquid, the properties of interest are those at the interface.

These would emerge as a result of a non-trivial combination of adhesion and molecular packing.

From a methodological point of view, this implies that one must combine, in a proper consistent

way, quantum mechanics and classical statistical mechanics. As an example, this idea has been put

in practice for a polycarbonate melt on a surface of nickel (111) [5,6]. Figure 1 gives a pictorial

explanation of the idea. First, quantum mechanical calculations are performed for each isolated

polymer subgroup. However, calculations are done by taking into account all possible allowed

geometries at the surface consistent with the topological constraints of the large polymer; then,

an effective moiety-surface potential is derived. In parallel, a coarse-grained (bead and spring)

model for the polymer, which reproduces the bulk properties of the liquid, is derived from short full

atomistic simulations. Finally, a coarse-grained simulation of a large system with the quantum-based

surface-polymer interaction is performed [7]. In this specific case, we found that only phenolic

chain ends experience a strong attraction; internal beads or other suitable chemical modifications

of the chain ends, experience the surface as a hard wall. The results of this study allow one, then,

to establish whether the interface properties are energy dominated (polymers are grafted onto the
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surface, and this leads to a sort of brush-like interface structure) or entropy dominated (polymers

are topologically confined by a purely repulsive surface, and this leads to a parallel layering of the

liquid) [8–10]. The same general idea has been later on extended to the case of the adsorption of

large biomolecules out of solution on metal surfaces [11–15].

Figure 1. Pictorial representation of the computational strategy adopted for studying

a melt of polycarbonate on a Ni(111) surface. On the left side, part (c), the explicit

chemistry of the submolecular unit studied at the quantum level on the nickel surface.

Part (a) illustrates the corresponding bead and spring coarse-grained model with the

underlying atomistic structure. Part (b) represents one polymer out of the melt at

the surface, interacting with the effective, quantum-based-derived potential (only the

phenolic chain ends sticks onto the surface). On the right side, the cartoon summarizes

the result of the simulation at a large scale; as a function of the chemical specificity of the

chain ends, one can go from energy-dominated interface properties to entropy-dominated

interface properties.
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The case illustrated above is a sequential strategy in the “bottom-up” fashion, that is, from a

finer to a coarser scale; however, the sequential strategy can be applied in the other direction, in a

“top-down” fashion, that is, from a coarse scale down to a refined finer scale. For example, this

was done by Zhu and Hummer (see, also, Figure 2 for a pictorial representation) when studying the

gating transition in biological ion channels: the transition from opened to closed configuration (and

vice versa) is done at a coarse-grained level and later refined at the atomistic level to study the specific

role of hydration, which requires the atomistic resolution of water molecules [16,17].

In the next section, we will make a step forward and consider those cases where hopping between

scales is required.
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Figure 2. Pictorial representation of the top-down strategy adopted by Zhu and Hummer

for studying the gating transition in biological ion channels. The first step consists of

describing the large-scale conformational changes using a computationally affordable

and physically consistent coarse-grained model. Next, atomistic details are reinserted,

and finally, water is treated with atomistic resolution; this allows for investigating the

role of channel hydration in the gating transition. This figure is adapted from Figure 2

of [17] with the permission of the corresponding author.
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4. Separable Scales and Backmapping Strategy

The sequential strategy of the chapter above cannot be applied when, despite a clear separation

of scales in space and time, the evolution of the system requires a refinement of the coarser model as

the simulation proceeds. This case of “separable”, but not fully separated, scales is illustrated in this

section via the example of photoswitchable liquid crystals. The physical ingredients of the problem

are the following: liquid crystals containing azobenzene groups (see Figure 3) upon illumination can

isomerize by changing conformation from the trans to the cis state.

This is the basic mechanism for light-induced mesoscopic transition: upon illumination, one can

have a transition from the nematic to the isotropic phase, as shown by Ikeda and Tsutsumi [18].

From the computational point of view, the scales involved are the electronic/quantum, the classical

atomistic and the coarse-grained. From the quantum mechanical point of view, one must describe the

photoinduced electronic excitation and the possible consequent isomerization. The classical atomistic

level is then required, because as the molecule is excited, a certain intermediate conformation

is taken; however, the conformation resulting from the de-excitation (i.e., staying in the trans or

isomerizing in the cis state) strongly depends on the immediate atomistic environment; this, in turn,
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leads to a local rearrangement of the surrounding molecules. Finally, the coarse-grained scale is

required to describe the large conformational response in the bulk involving the slow relaxation

process of the photo-mechanical response. From the point of view of the computational strategy, one

needs to link quantum, classical atomistic and coarse-grained in a consistent way [19–22]. Figure 4

illustrates the strategy. First, a coarse-grained model is derived from an all atom simulation of a

relatively small system. Next, a large coarse-grained sample is simulated for long enough to have

bulk equilibration. From the equilibrated system, a subsystem is cut out, and the atomistic degrees

of freedom are mapped back. Next, one runs a simulation that ensures atomistic equilibration, and

then, from the atomistic sample, a subsystem is cut out. Next, in this subsystem, the excitation of

one molecule is allowed by treating the problem at quantum mechanical level. After the system

decays from the excited state and the electronic degrees of freedom are equilibrated, the resulting

configuration of the subsystem is reinserted into the the classical atomistic sample, equilibrated at the

atomistic level, then, reinserted into the coarse-grained sample and equilibrated at the coarse-grained

level; at this point, the loop is repeated. The meaning of separable becomes clear: time scales

are separated at least by one order of magnitude (order of femtoseconds for the quantum, at least

picoseconds, for the atomistic, and at least nanoseconds, for the coarse grained). Length scales are

obviously separated as well, thus space and time scales are separable. However, the process at each

scale is intimately linked to the response at the other scale.

Figure 3. The azobenzene group in the trans (top) and cis (bottom) configuration.

Upon illumination, the isomerization can take place; the molecule goes through an

intermediate configuration corresponding to the excited state and, then, decays, either

back into the trans or isomerizes into the cis state; this depends on the immediate

atomistic neighborhood.
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At this point, it must be clarified that the idea of the example discussed above can capture, at

this stage, only the response of the system to the excitation/de-excitation of one single molecule

per time and cannot directly address the question of how many molecules can concurrently undergo

the cis-trans transition. In order to model this more realistic scenario, one would require treating

larger quantum systems in order to understand how excited molecules influence each other. At the

current state-of-the-art, this would imply a prohibitive computational effort, even for the simple case

of three molecules treated at the quantum level. Tests (quantum calculations) are being performed

for the case of two molecules in order to understand, at a basic level, the mutual influence of excited
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molecules. The idea, in perspective, is that of including the information obtained by the quantum

studies of one molecule and two molecules into a classical model of an azobenzene molecule that

can switch mechanically from trans to cis [23], under the hypothesis that, further, many-molecule

effects, at the quantum level, may be negligible. Next, one would use the multiscale simulation,

including the quantum subsystem, as a reference for a test of basic consistency of the classical model.

If the test is satisfactory, then the question of how many molecules can concurrently undergo the

cis-trans transition could be treated at the (classical) atomistic-coarse-grained level, keeping in mind

that beyond two-molecule correlations, the quantum effects in the switching process are neglected.

Obviously, when larger computational resources become available, one could systematically improve

the classical model, adding information from larger quantum calculations. Anyway, in the current

paper, the specific strategy reported above has to be intended as a typical example of a problem where

going back and forward from one scale to another is the main characteristic of the modeling idea;

however, from the practical point of view, it shows also that, because of the current computational

limitations, the whole complexity of the problem can only be addressed in an approximate way.

Nevertheless the relevant message here is that, because of the clear separation of time and length

scales, the basic strategy of going back and forward is still the optimal one, even in the case that

computational resources were available for studying macroscopic systems. Finally, in the next

section, we will describe the case where scales cannot be separated and, thus, a simultaneous coupling

of the corresponding computational techniques and models is required.

Figure 4. The backmapping loop. Following the black-arrowed line (I), derive a suitable

coarse-grained model; (II) then, equilibrate a large coarse-grained sample; (III) next,

cut out a subsystem and map back the atomistic degrees of freedom; (IV) the atomistic

sample is then equilibrated; and finally, (V) a subsystem is cut out from it, and for this

latter, the quantum process is allowed. Once the quantum process has occurred, the

procedure continues by reinserting the subsystem into the atomistic sample, and then, the

loop is repeated (red-arrowed line).
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5. Highly-Interconnected Scales and Concurrent Coupling

As reported above, the backmapping strategy is rather efficient if there is a clear separation in

length and time scales; however, when scales are intimately interconnected, in most of the cases, the

relevant properties of the system are the expression of this interconnection. From the computational

point of view, it is then mandatory to adopt strategies where, within a unified approach, all the scales

are treated at the same time, i.e., a simultaneous or concurrent coupling of scales. A typical example

is that reported in Figure 5 of solvation of molecules in water. High resolution—at least classical

atomistic—is needed in the first hydration shells of the molecule, where the explicit formation

of the hydrogen bonding network is required, as this uniquely characterizes the solvation of the

specific molecule. Far away in the bulk, water plays the role of a thermodynamic bath, and thus, it

may be described by coarser models, which reproduce the essential thermodynamic features (e.g.,

temperature and particle density fluctuations). However, the scale at which the first hydration shells

evolve cannot be separated by the thermodynamic scale of the bulk, since between the two regions,

there is a simultaneous exchange of information in terms of energy and (eventually) particles.

For this reason, both scales must be treated in a simultaneous fashion, taking care that the overall

thermodynamics is well preserved. Popular computational approaches of this kind are, for example,

the Quantum Mechanical/Molecular Mechanical (QM/MM) set-ups, where a small quantum region

is coupled to a large atomistic or coarse-grained classical region, allowing free exchange of energy

(though not particles, see the discussion later on) (see, e.g., [24]). The set-up mentioned above

allows then for studying systems where the local process can be linked to the global behavior; for

example, in situ simulation of chemical reactions and molecular excitations in solution, where the

chemical reaction or the molecular excitation occurs at the quantum level in a small region of the

simulation space, while the bulk solvent can be treated at the classical atomistic level [25]. Another

example, relevant for mechanical engineering, is that of the crack propagation in solids. The breaking

of atomic bonds in the region of the crack must be treated at the quantum level, because this is an

electronic property; then, the surrounding region can be described at the classical atomistic level,

so that one can see the induced crystal distortion. Finally, the bulk material is described at the

continuum (finite elements) level in order to detect its macroscopic mechanical changes. However, all

the scales exchange information simultaneously as the crack propagates, and thus, they are coupled in

a simultaneous fashion [26]. Although the dividing line between separable scales and interconnected

scales is not sharp, one can see a clear difference between the examples reported in this section and

that of the azobenzene systems of the previous section. In fact, let us suppose, for example, that we

were interested only in the influence of the immediate molecular neighborhood onto the excitation

and de-excitation of an azobenzene molecule. In this case, a QM/MM approach would be highly

appropriate, because the local liquid structure and its local fluctuations would slowly follow (and at

the same time, influence) the evolution of the electronic and conformational properties of the excited

molecule. In fact, in the multiscale study of the azobenzene system, the QM/MM approach was used

for quantum calculations; however, the macroscopic response of the bulk cannot be predicted only by

QM/MM calculations, because it would require a size for the MM system and a time scale that are,
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at this stage, computationally prohibitive. For this reason, the coarse-grained approach for obtaining

relaxed macroscopic configurations is in this case mandatory. The three categories of problems so

far discussed provide an overview of what in the literature can be classified as multiscale. However,

there is an underlying general message in all the examples made: multiscale essentially means the

interplay between local and global aspects (in space and time). Thus, the detailed understanding of

the molecular origin of macroscopic properties requires a step forward, beyond the strategies shown

so far (or their possible combinations). This will be discussed in the next chapter, where we introduce

the idea of adaptive resolution simulation.

Figure 5. Pictorial representation of a molecule solvated in water. The first hydration

shells must be treated at least at the atomistic level, so that the formation of the hydrogen

bonding network can be explicitly described. Far away in the bulk, a coarse model (e.g.,

spherical) can be employed to assure the proper thermodynamic bath. However, the two

scales are coupled simultaneously. Note that in standard computational set-ups, such as

the one of Quantum Mechanical/Molecular Mechanical (QM/MM) discussed in the text,

the high resolution region is fixed and particles cannot be exchanged; thus, there is only

an exchange of energy.

Solvation Shell=Hydrogen Bonding Network

Bulk=Thermodynamic Bath

6. Molecular Origin of Macroscopic Properties: Zooming in at the Molecular Scale

The molecular origin of macroscopic properties can be understood by zooming in (and out) in the

region where the relevant microscopic physics and chemistry is taking place.

Figure 6 explains this idea for two examples previously discussed, namely, the adsorption of a

large molecule on a solid surface and the solvation of a molecule in water. In the first case, while

the molecule is far away from the surface, the only relevant physics is related to the proper sampling

of the conformational space of the backbone; thus, a simplified bead and spring model would be

sufficient for this purpose. Instead, as the molecule approaches the surface, one needs to zoom in (put

the system under a magnifying glass) at the contact region and have an explicit atomistic description,
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so that the chemical recognition between the molecule and the surface can be properly described and

be understood together with the consequent conformational rearrangement of the rest of the molecule

(at a coarser scale). The same kind of idea applies to the solvation of molecules in water; the specific

solvation structures of the liquid can be understood by zooming in at the hydration region around the

solute: when a water molecule enters under the viewing region of the magnification glass, it must

be described at the atomistic level; when it leaves, it then takes a coarse-grained description. This

process requires that the high resolution region be open and allow for a free exchange of molecules.

This, from the methodological point of view, implies that one must go beyond the idea of concurrent

coupling to that of “adaptive resolution simulation”.

Figure 6. On the left side, (a), zooming in on the contact region between the molecule

and the surface. The magnifying glass is intended as a computational tool to introduce

explicit chemistry and atomistic structure, so that the process of chemical recognition

between the molecule and the solid surface can be properly described together with the

simultaneous evolution of the large-scale conformational changes of the polymer. On the

right side, (b), the same idea, but for the solvation process. All the molecules under the

magnifying glass must have atomistic resolution, so that the hydrogen bonding network

of the hydration shell can be properly described. Molecules that leave the solvation region

loose atomistic degrees of freedom.

(a) (b)

6.1. Beyond Concurrent Coupling: Adaptive Resolution Molecular Dynamics

From the methodological point of view, the essential requirements of an adaptive resolution

molecular dynamics scheme are the following:

• (i) The algorithm should change molecular resolution in a subregion of the space, leaving the

rest of the system at lower resolution.

• (ii) It should allow for free exchange of molecules from the high resolution to the low resolution

region and vice versa.
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• (iii) Finally, the process of (i) and (ii) should occur under conditions of thermodynamic

equilibrium: i.e., the same particle density, same temperature and same pressure all over the

simulation box (ρatom = ρcg, patom = pcg, Tatom = Tcg).

Of course, the thermodynamic state point must be the same as if the whole system was described

at high resolution. Several adaptive resolution methods, which sometimes satisfy and sometime

do not satisfy the requirements above, have been proposed in the last few years [27–31]. While

most of the methods can switch only between two resolutions, the AdResS method has extended

the idea of adaptivity from the quantum description of atoms [32–34] to the continuum description

of a liquid [35,36]. The original idea was to have an on-the-fly interchange between atomistic and

coarse-grained description of a liquid through a two-stage procedure. First, develop an effective,

coarse-grained pair potential, U cm, from the reference all atom simulation. Next, the atomistic and

coarse-grained resolutions are coupled through an interpolation formula on the forces:

Fαβ = w(Xα)w(Xβ)F
atom
αβ + [1− w(Xα)w(Xβ)]F

cm
αβ (1)

Here, α and β are the labels of two molecules, Fatom
αβ is the force derived from the atomistic potential

and Fcm
αβ is the force derived from the coarse-grained potential. Xα and Xβ are the coordinates of

the center of mass of, respectively, the molecule α and the molecule β. The multiplicative function,

w(x), is zero in the coarse-grained region, one in the atomistic region and smooth and monotonic in

an intermediate region, Δ. Figure 7 shows the idea for a test molecule (tetrahedral molecule), left,

coarse grained, in Δ, a hybrid resolution according to w(x) and, on the right, atomistic.

Figure 7. Schematic representation of the adaptive idea for tetrahedral molecules.
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With this set-up, two atomistic molecules interact as atomistic, coarse-grained molecules interacts

with all the others as coarse-grained pairs (coarse-grained molecules do not posses any atomistic

degrees of freedom), while for the other cases, molecules interact according to their coupled value

of w(Xα)w(Xβ) with hybrid resolutions. This means that a molecule that goes from the atomistic

to the coarse-grained region slowly looses its atomistic degrees of freedom (rotations and vibrations)

and becomes an effective sphere, going through a continuous stage of hybrid resolutions in Δ. The

same process, but in the opposite direction (acquiring degrees of freedom) occurs to a coarse-grained

molecule moving towards the atomistic region. At this point, the “technical” meaning of “loosing”

or “acquiring” degrees of freedom in the boundary (hybrid) region that divides the atomistic and

the coarse-grained region must be clarified. All molecules of the system, independently of their
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position in space, retain the full atomistic structure. For a molecule, α, in the hybrid region, the

force acting on each single atom (derived from the atomistic potential) is weighted by an amount,

w(Xα), multiplied by the weight, w(Xβ), of the paired molecule, β, and, by construction, the

remaining total force acting on the molecule (derived from the coarse-grained potential) is assigned

to the center of mass by the weighting term, [1 − w(Xα)w(Xβ)]. Since w(x) goes to zero in the

coarse-grained region, the closer the molecule is to the coarse-grained region, the weaker is the

force (derived from the atomistic potential) acting on each atom (and the larger the force on the

center of mass). When the molecule enters into the coarse-grained region, the only force acting on

the molecule is that on the center of mass, independently of the resolution of the paired molecule.

The forces acting on each atomistic degrees of freedom coming from the atomistic potential are

no more considered, although the underlying atomistic structure is artificially kept for technical

reasons. In practice, the interactions of the atomistic degrees of freedom for this molecule are no

more explicitly considered. This implies that their contributions to the dynamic evolution and to the

energy of the system disappear. Moreover, the internal kinetic energy of the molecule (i.e., kinetic

energy associated with rotations and internal vibrations) is also not considered in the calculation of

the properties of the system (thus, effectively, the molecule behaves as a sphere). The computational

gain consists of a drastically reduced number of interactions that needs to be calculated. Vice versa,

when a molecule enters into the transition region, the force acting on each single atom is slowly

reactivated according to the weight, w(Xβ) (and to the weight of the paired molecule, w(Xβ)).

When the molecule reaches the atomistic region, we have w(Xα) = 1, and thus, it interacts in

the standard full atomistic manner with molecules of the atomistic region, while for the interaction

with molecules in other regions, the weight on the atomistic force depends only on the position

of the paired molecule (above is commented the extreme case of the paired molecule being in the

coarse-grained region). A detailed explanation of all the technical details of the implementation

of this idea can be found in [37]. Obviously, in the diving boundary region between the atomistic

and coarse-grained region, one must properly deactivate/reactivate the atomistic degrees of freedom.

This is done by introducing an external source of heat (thermostat), which acts locally on each

degree of freedom in order to assure that despite the deactivated/reactivated degrees of freedom,

the temperature in this region is the same as the target one (that is, the temperature of the atomistic

and of the coarse-grained systems) [38–40]. Additionally an external force derived on the basis of the

first principles of thermodynamics (i.e., a force that balances the difference of the chemical potential

between the atomistic region and the rest of the system) [41] is added to assure thermodynamic

equilibrium. The natural question for a such molecular dynamics scheme is whether the force of

Equation (1) is conservative, and the answer is negative. In fact, despite a different claim [29,42,43],

it has been shown both analytically [44] and numerically [45] that within this scheme, there is no

possibility of deriving Equation (1) from a potential. According to the statement above, a natural

conclusion is that without a conservative force one cannot be in the microcanonical (or canonical)

ensemble, and thus, even time-independent properties cannot be accurately calculated. However,

it has been shown that the atomistic region (the most delicate case) is characterized by a Grand

Canonical distribution [46], and thus, the method reproduces the same statistics of the equivalent
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region in a full atomistic system (the key property of any valid adaptive resolution method!).

Moreover, an exact Hamiltonian can be written for the atomistic (and coarse-grained) region, where

exact means that each term of the Hamiltonian is physically well defined without introducing any

artificial (unphysical) quantity; this, then, allows for a full Grand Canonical-like formalization of the

adaptive set-up [47,48]. In general, all the relevant properties (radial distribution functions, density

distribution across the simulation box, molecular diffusion, particle density fluctuations and solvation

structures) determined via full atomistic simulation for several liquids and solvated systems were

properly reproduced (see, e.g., [27,38,41,49–53]). However, a key issue remains unresolved, that is,

whether or not there exists a well-founded Hamiltonian route to adaptive resolution simulation. If a

Hamiltonian approach exists, it must fulfill the following necessary requirements:

• It should lead to the correct limits. That is, it should be an atomistic Hamiltonian in the

atomistic region and a coarse-grained Hamiltonian in the coarse grained region

• It should automatically lead, in the atomistic region, to a spatial probability distribution, which

is the same as that in the corresponding subregion in a full atomistic simulation.

Recently, Potestio et al. proposed a global Hamiltonian approach of AdResS [54]. This is based

on the interpolation in space of the atomistic and coarse-grained potential, that is, in this case, the

potential is interpolated instead of the forces, as in the standard AdResS. The idea provides an elegant

thermodynamic procedure of how to equilibrate the system, but, by construction, cannot satisfy the

requirement of correct limit according to [44]. In fact, an additional force is generated by the gradient

of the weighting function, w(x). This force induces an unphysical flux of particles from one region

to another. In order to balance this flux, an additional field must be added to the original Hamiltonian.

In [54], an elegant thermodynamic procedure is used to determine this field. However, in [44], it has

been shown that such a field is a solution of a first order partial differential equation, and in order to

describe a proper adaptive system, it requires that the field satisfies two boundary conditions; that is, it

must be zero in the atomistic and in the coarse-grained region. Since the equation is of the first order,

only one boundary condition can be used to fix the solution. Let us suppose we fix the boundary

condition in the atomistic region; then, inevitably, in the coarse-grained region, the original potential

is changed by an artificial, unphysical additional term. This implies that if we, ideally, shrink the

atomistic region to zero, we do not recover the original coarse-grained potential. The additional term

is constant in space, but strongly depends on the size of the system; although this may turn out to be

a non-relevant aspect from the technical point of view, however, from the conceptual point of view,

this makes the Hamiltonian, and, thus, the corresponding adaptive process, artificial. Moreover, at a

more practical level, according to [48], as it stands now, the method can assure that in the atomistic

region (when compared to a reference full atomistic simulation), only the first order of the probability

distribution of the system, that is, the molecular number density, can be obtained with high accuracy.

Higher orders, as atom-atom (or even molecule-molecule) radial distribution functions or three-body

correlations, do not come automatically. Nevertheless, the approach of [54] may represent the closest

(somehow “first order”) procedure for a truly adaptive Hamiltonian procedure with the further, major,

advantage of the possibility of performing adaptive Monte Carlo simulations [55]. In conclusion, a
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truly, satisfactory, adaptive Hamiltonian has not been found yet, and my personal opinion is that this

is not really needed; however, the cultural barrier in the MD community is such that, unfortunately, a

method without a Hamiltonian is seen as a problem, rather than an alternative to the standard routes.

The consequence is that often, the various additions to the original idea of AdResS, despite being

based on clear thermodynamic arguments, are considered more at the level of practical patches, to

cover, at the best, unavoidable conceptual holes, due to the lack of a Hamiltonian, rather than a natural

methodological evolution per se.

On the other hand, one should keep in mind the following: the constraint that the atomistic region

of the adaptive simulation should reproduce the probability distribution of the full atomistic system

(that is, the key criterion to evaluate the quality of any adaptive method) can be easily implemented

within the standard force-based AdResS, but (so far) not in a Hamiltonian one [48]. In [47,48],

first principles, analytic/numerical conditions on the probability distribution of the system have

been defined in such a way that the accuracy in the high resolution region can be controlled and

systematically improved. Moreover, in [48], it has been also shown that the method is also a very

powerful tool for the calculation of the chemical potential of complex liquids, at a computational cost

that is orders of magnitude below that of the Insertion Particle Method, routinely used for calculating

such a quantity.

7. Conclusions

We have addressed the question of how to provide a concrete meaning to the expression multiscale
modeling in Molecular Dynamics (simulation). The use of the criterion of separability of scale allows

for classifying multiscale problems in three main categories. Next, the most popular computational

strategies adopted for each category have been discussed. In this perspective, we have underlined the

role of the concurrent coupling of scales via the idea of adaptive molecular resolution. In principle,

this approach can be considered a truly multiscale technique, which acts as a sort of computational

microscope to determine the molecular origin of the large-scale behavior of matter. In fact, it can

zoom in to the very microscopic detail and zoom out to the large-scale behavior while the simulation

is running. Future developments should be focused on including electronic resolution and, thus,

address the question of interfacing a quantum and a classical system in a physically-consistent way.
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Abstract: Quantum time correlation functions are often the principal objects of interest

in experimental investigations of the dynamics of quantum systems. For instance,

transport properties, such as diffusion and reaction rate coefficients, can be obtained by

integrating these functions. The evaluation of such correlation functions entails sampling

from quantum equilibrium density operators and quantum time evolution of operators.

For condensed phase and complex systems, where quantum dynamics is difficult to carry

out, approximations must often be made to compute these functions. We present a

general scheme for the computation of correlation functions, which preserves the full

quantum equilibrium structure of the system and approximates the time evolution with

quantum-classical Liouville dynamics. Several aspects of the scheme are discussed,

including a practical and general approach to sample the quantum equilibrium density,

the properties of the quantum-classical Liouville equation in the context of correlation

function computations, simulation schemes for the approximate dynamics and their

interpretation and connections to other approximate quantum dynamical methods.

Keywords: quantum correlation functions; quantum-classical systems; nonadiabatic

dynamics

1. Introduction

The dynamical properties of condensed-phase or complex systems are often investigated

experimentally by applying external fields to weakly perturb a system and observe its relaxation
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back to the thermal equilibrium state. In such experiments, measurable quantities can be related to

equilibrium time correlation functions via linear response theory [1,2]:

CAB(t) =
1

ZQ

Tr
[
e−βĤÂ(0)B̂(t)

]
=

1

ZQ

Tr
[
e−βĤÂe

i
h̄
ĤtB̂e−

i
h̄
Ĥt

]
(1)

where Â and B̂ are operators corresponding to some specific dynamical variables under

investigation, Ĥ is the unperturbed Hamiltonian and ZQ is the quantum canonical partition function

associated with Ĥ . Many experiments employing spectroscopic methods directly probe such time

correlation functions.

Exact numerical evaluation of Equation (1) for real condensed phase quantum systems is

prohibitive, since the computational cost scales exponentially with respect to the number of degrees

of freedom (DOF). Various approaches have been developed to address this challenging problem. A

common approach shared by many methods is to partition the entire system into a subsystem (whose

dynamical properties are of interest) and an environment (or bath) in which the subsystem resides.

Other recently developed schemes for computing quantum correlation functions do not rely on such

a partition and instead utilize approximations to treat the quantum evolution of the entire system in

conjunction with quantum equilibrium sampling [3–5]. In this paper, we focus on schemes based on

the system-bath partition, and using this partition, the Hamiltonian reads: Ĥ = Ĥb + ĥs + V̂c(R̂);

where Ĥb =
P̂ 2

2M
+ V̂b(R̂) and ĥs represent the pure bath and subsystem Hamiltonians, respectively.

The last term in Ĥ is a coupling potential that depends on the spatial coordinates of the bath wave

functions. We shall always take the bath part of the Hamiltonian in the coordinate representation;

however, we can represent ĥs =
p̂2

2m
+ V̂s(r̂) in some quantum basis: ĥs =

∑
ij |i〉 〈i| ĥs |j〉 〈j|.

Several methods based on various master equations [6–10] and path integral influence functional

methods [11,12] provide approximate schemes, often in the weak coupling limit, to systematically

project out the environmental DOF and yield a subsystem dynamics that incorporates dissipation

and decoherence, due to coupling to the environment. However, for many applications, such

as proton and electron transfer in condensed phases, it is desirable to explicitly simulate, even

approximately, the bath dynamics, since specific local bath DOF may be crucial for a description of

the dynamics of the quantum subsystem. For this purpose, several semiclassical [13–15] and mixed

quantum-classical [16,17] (MQC) methods, which either treat the entire dynamics semiclassically or

simulate the dynamics of the bath and subsystem with different levels of rigor (e.g., classical versus
quantum mechanical), have been formulated. Many semiclassical and mixed quantum-classical

approaches, adopting powerful classical simulation techniques, evaluate Equation (1) by combined

Monte Carlo-molecular dynamics (MC-MD) techniques.

In this paper, we formulate MC-MD schemes to evaluate Equation (1) within the framework

of the quantum-classical Liouville equation (QCLE) [18]. The QCLE employs a partial Wigner

representation of the environmental (bath) DOF and may be derived from full quantum dynamics by

truncating the quantum evolution operator to the first order in a small parameter related to the ratio of

the characteristic masses of quantum and bath DOF [18]. In particular, we suppose that the quantum
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subsystem has a finite-dimension Hilbert space. Under this assumption, Equation (1) is cast in the

following form [19,20]:

CAB(t) =
1

ZQ

∑
n1,n2

∫
dX

[(
e−βĤA

)n1n2

W
(X)Bn2n1

W (X, t)
]

(2)

where the nj indices label the basis states (in some chosen quantum basis), X = (R,P ) represents

the Wigner-transformed phase space point for the bath, NB is the number of bath DOF and the

subscript, W , on an operator indicates a partial Wigner transform on the bath DOF; e.g., an operator

is partially Wigner transformed as B̂W (X) =
∫
dZ

〈
R− Z

2

∣∣ B̂ ∣∣R + Z
2

〉
e

i
h̄
P ·Z .

Two main tasks are involved in evaluating Equation (2) with an MC-MD algorithm. First,

one needs to sample initial conditions (for an ensemble of trajectories) from the partially

Wigner-transformed quantum density,
(
ρ̂eqÂ

)
W
(X) with ρeq = e−βĤ/ZQ. There exist numerical

algorithms to accomplish such a task [21,22]. Second, one needs to propagate the initial points in

the phase space. These time-evolved trajectories may then be used to construct the matrix elements,

Bnm
W (X, t), needed to compute the correlation function. Various simulation methods, whose structure

depends on the basis chosen to represent the quantum degrees of freedom in the QCLE, have been

devised to simulate the mixed quantum-classical dynamics [23–31]. Simulation methods that utilize

an adiabatic basis can be cast into the form of surface-hopping dynamics, but in a way that includes

coherent evolution segments that account for creation and destruction of coherence in a proper

manner. More recently, as in some semiclassical approaches [32], the mapping basis [33] was used to

describe the quantum degrees of freedom in the QCLE in a continuous classical-like manner, leading

to a trajectory description in the full system phase space [30,31,34–36].

The goals and outline of the paper are as follows: We first consider how the two ingredients,

quantum equilibrium sampling and evolution of quantum operators, which are needed to compute

quantum correlation functions, may be carried out. In Section 2, we describe a path-integral

scheme to perform MC sampling from the partially Wigner transformed quantum density. In the

Appendix, we also discuss a simplified, but approximate sampling scheme that is useful in the

high-temperature limit. Another aim of this paper is to demonstrate how a recently-developed

simulation method for the QCLE, the forward-backward trajectory solution (FBTS), can be used

to efficiently obtain quantum correlation functions. To place these results in proper context, in

Section 3, we sketch the important features and properties of the QCLE and discuss both the adiabatic

Trotter-based surface-hopping (TBSH) algorithm and the FBTS, which is formulated in the mapping

basis. In this section, we also present the explicit form of the N-level generalization of the TBSH

algorithm. Comparisons of the trajectories that underlie these algorithms allow us to investigate

how completely different ensembles of trajectories can be used to simulate the same observable

correlation function. The implementation and utility of the simulation algorithms are illustrated on

the dynamics in a two-level system coupled to a quartic oscillator embedded in a bath of independent

harmonic oscillators, described in Section 4. Finally, in Section 5, we comment on the advantages,

challenges and potential problems in adopting an approximate mixed quantum-classical dynamics

for the computation of quantum time-correlation functions.
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2. Sampling from the Partially Wigner-Transformed Density

In general, analytical expressions for the Wigner transform of the density matrix cannot be

determined easily. In this section, we present a path-integral-based scheme to perform MC sampling

from the Wigner-transformed density,
(
ρ̂eqÂ

)n1n2

W
(X), in Equation (2).

First, we recall the definition of partial Wigner transform:(
ρ̂eqÂ

)n1n2

W
(X) =

1

ZQ

∫
dZ

〈
n1, R− Z

2

∣∣∣∣ e−βĤÂ

∣∣∣∣n2, R +
Z

2

〉
e

i
h̄
P ·Z (3)

where R represents the vector of bath coordinates, n denotes a basis state for the subsystem and

Ĥ = P̂ 2

2M
+ V̂b(R̂) + ĥ(R̂) with ĥ(R̂) ≡ ĥs + V̂c(R̂). One way to compute the integral on the right

side of Equation (3) is to first factorize e−βĤ =
∏

e−βLĤ into L − 1 pieces with βL = β/(L − 1).

Following the standard procedures for path integral calculations, we then insert resolutions of the

identity, I =
∫
dRi

∑
mi

|mi, Ri〉 〈mi, Ri|, between every pair of factorized operators and apply the

approximation, e−βLĤ ≈ e−βL
P2

2M e−βL(V̂b(R̂)+ĥ(R̂)). The integrand on the right side of Equation (3)

can then be written as follows:〈
n1, R− Z

2

∣∣∣∣ e−βĤÂ

∣∣∣∣n2, R +
Z

2

〉
=

∫ L−1∏
i=1

dRi

∑
{mi}

〈
n1, R− Z

2

∣∣∣∣ e−βLĤ
∣∣∣m1, R1

〉〈
m1, R1

∣∣∣ e−βLĤ
∣∣∣m2, R2

〉
. . .

×
〈
mL−1, RL−1

∣∣∣ Â ∣∣∣∣n2, R +
Z

2

〉
,

=

(
M

2πβLh̄
2

)NB(L−1)

2
∫ L−1∏

i=1

dRi

∑
{mi}

{
L−2∏
i=1

Mi,i+1(Ri)e
−βLVb(Ri)e

− M
2βLh̄2

(Ri−Ri+1)
2

}

×
〈
n1, R− Z

2

∣∣∣∣ (e−βLĤ
∣∣∣m1, R1

〉〈
mL−1, RL−1

∣∣∣ Â) ∣∣∣∣n2, R +
Z

2

〉
(4)

where:

Mi,j = 〈mi| e−βLĥ(Ri) |mj〉 =
{

e−βLhij(Ri), i = j

−βLh
ij(Ri)e

−βLh
ij(R), i �= j

(5)

which is correct to order O(β2
L). Substituting Equation (4) into Equation (3), the new integrand of

the Wigner transform becomes Â =
(
e−βLĤ |m1, R1〉 〈mL−1, RL−1| Â

)
, as shown in the last line

of Equation (4). An analytical approximation for the Wigner transform of Â can be obtained easily

in most cases when Â is a pure observable subsystem or if it depends on just one of the conjugate

variables: R or P . Since βL � 1, it is possible to replace the term, e−βLĤ , inside Â with its

high-temperature approximation (discussed in the Appendix). Letting ÂW (X) be the partial Wigner

transform of Â, Equation (3) reads:(
ρ̂eqÂ

)n1n2

W
(X) =

GNB(L−1)/2

ZQ

∫ L−1∏
i=1

dRi

∑
{mi}

{
L−2∏
i=1

Mi,i+1(Ri)e
−βLVb(Ri)e−πG(Ri−Ri+1)

2

}
An1n2

W (X)

(6)



302

where G =
(

M
2πβLh̄

2

)
. Substituting Equation (6) into Equation (2), the time correlation

function becomes:

CAB(t) =
GNB(L−1)/2

ZQ

∑
n1,n2

∑
{mi}

∫ L−1∏
i=1

dRi

{
L−2∏
i=1

Mi,i+1(Ri)e
−βLVb(Ri)e−πG(Ri−Ri+1)

2

}

×
∫

dX
(
Â
)n1n2

W
(X)Bn2n1

W (X, t) (7)

Following [37], we remark that the initial phase space coordinate X = (R,P ) and auxiliary

variables, {Ri}, can be sampled from probability densities constructed from ÂW (X) and

|Mi,i+1(Ri)|e−βLVb(Ri)e−πG(Ri−Ri+1)
2
, respectively.

3. Quantum-Classical Liouville Equation

In this section, we discuss how one can simulate the time-evolved matrix elements, Bn2n1
W (X, t),

in Equation (2) using the QCLE:

∂B̂W (X, t)

∂t
=

i

h̄
[ĤW , B̂W ]− 1

2
({ĤW , B̂W} − {B̂W , ĤW})

= iL̂B̂W (X, t) =
i

h̄

( →
HΛ B̂W − B̂W

←
HΛ

)
(8)

where Λ =
←
∇P

→
∇R −

←
∇R

→
∇P . The arrow on top of a differential operator indicates the direction

in which it acts. In the first line, the square bracket and the curly brackets denote the quantum

commutator and classical Poisson brackets, respectively. The two kinds of Lie bracket act together

as the generator of the mixed quantum-classical dynamics. Due to the fact that ĤW (X) and

B̂W (X, t) are quantum operators with respect to the subsystem DOF, two differently ordered Poisson

brackets are needed to properly account for the mixed dynamics. However, in general, the dynamics

described by the QCLE does not have a Lie algebraic structure, a feature that is common to mixed

quantum-classical approaches [38]. In the second line, we introduce the abstract, quantum-classical

Liouville (QCL) superoperator, L̂. Finally, the third equality is another equivalent representation of

QCLE in terms of the forward and backward mixed quantum-classical Hamiltonians:

→
HΛ = ĤW

(
1 +

h̄Λ

2i

)
,

←
HΛ =

(
1 +

h̄Λ

2i

)
ĤW (9)

The QCLE has many desirable features, such as the conservation of energy, momentum and

phase space volumes. Furthermore, the QCLE is equivalent to full quantum dynamics for arbitrary

quantum subsystems, which are bilinearly coupled to a harmonic bath. For instance, commonly used

spin boson models are of this type. In this circumstance, the combination of quantum and classical

brackets in the QCLE does have a Lie algebraic structure. For the more general bath and coupling

potentials, the QCLE provides an approximate description of the quantum dynamics. In this case,

comparisons of simulations of QCL dynamics with exact quantum results have indicated that it is

quantitatively accurate for a wide range of systems [36,39–48]
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The QCLE equation can be simulated using ensembles of trajectories, which, in combination

with the quantum initial condition sampling discussed above, provides a way to compute quantum

correlation functions. As we shall see, the nature of the trajectories that enter in the simulations

depends on the algorithm and should not be ascribed physical significance. It is only the observable,

in this case, the correlation function, that has physical meaning and is independent of the manner

in which it is simulated, provided the simulation algorithm is capable of exactly solving the QCLE,

which is not always the case. One of the goals of this paper is to illustrate how a recently-developed

FBTS [31] can be used to easily compute quantum correlation functions. For this purpose, it is

interesting to contrast the solution using this scheme, and the trajectory description that underlies

it, with the previously-developed and frequently-used TBSH algorithm [26]. Taking the adiabatic

representation of the QCL superoperator is the key step in implementing the TBSH algorithm. The

last representation of QCLE in Equation (8) resembles the quantum Liouville equation and forms the

starting point of the FBTS.

3.1. Adiabatic Trotter-Based Surface Hopping

In order to discuss the nature of the trajectory description involved in the TBSH algorithm,

we briefly describe how it is implemented and, in particular, present the explicit generalization to

an N -level quantum subsystem, which was only outlined in [26]. We first consider the adiabatic

representation of the QCLE, since the TBSH algorithm is cast in this basis. The adiabatic basis

is defined by ĥW (R) |α;R〉 = Eα(R) |α;R〉, where ĥW (R) = ĤW (R) − P 2/2M is taken to be

the adiabatic Hamiltonian for a static configuration of R in this section. In the adiabatic basis, the

QCLE reads:

∂Bαα′
W

∂t
= iLαα′,ββ′Bββ′

W (X, t) (10)

where the matrix elements of the QCL superoperator are given by:

iLαα′,ββ′ = (iωαα′ + iLαα′) δαβδα′β′ − Jαα′,ββ′ = iL0
αα′δαβδα′β′ − Jαα′,ββ′ (11)

with ωαα′ = (Eα − Eα′)/h̄. (The Einstein summation convention will be used throughout the

following sections, although sometimes, sums will be explicitly written if there is the possibility

of confusion.) The Liouville operator, iL, may be separated into two contributions: The classical

propagator is defined as:

iLαα′ =
P

M
· ∂

∂P
+

1

2
(Fα + Fα′) · ∂

∂R
(12)

where F α = 〈α;R| ∂ĥW (R)
∂R

|α;R〉 is the Hellmann-Feynman force. The superoperator, Jαα′,ββ′ ,

is responsible for nonadiabatic transitions and associated momentum changes in the bath. For an
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N -level system, there exist N(N − 1)/2 unique transitions. In the following, we define J as a sum

of Jλλ′ , which introduces transitions only between the specific pair of λ and λ′ adiabatic states:

Jαα′,ββ′ =
∑
λ>λ′

(Jλλ′)αα′,ββ′

=
∑
λ>λ′

{
−dλλ′ · P

M
((δλαδλ′β − δλ′αδλβ)δα′β′ + ((δλα′δλ′β′ − δλ′α′δλβ′)δαβ)

−1

2
h̄ωλλ′dλλ′ · ∂

∂P
((δλαδλ′β + δλ′αδλβ)δα′β′ + (δλα′δλ′β′ + δλ′α′δλβ′) δαβ

}
= − P

M
· dαβ

(
1 +

1

2
Sαβ ·

∂

∂P

)
δα′β′ +

P

M
· dβ′α′

(
1− 1

2
Sβ′α′ · ∂

∂P

)
δαβ (13)

where dαβ = 〈α;R| ∂/∂R |β;R〉 and Sαβ = h̄ωαβdαβ
(
P
M

· dαβ
)−1

. The second equality gives the

adiabatic representation of Jλλ′ . We remark that it is difficult to exactly simulate the term, J ,

involving bath momentum derivatives within the context of a trajectory-based algorithm. Using

the identity that 1
2
Sαβ · ∂

∂P
= h̄ωαβM · ∂/∂(d̂αβ · P )2, where M is a diagonal matrix of the

masses of the bath particles and d̂αβ is the unit vector along dαβ , allows us to employ the

momentum-jump approximation:(
1 +

c

2
Sαβ ·

∂

∂P

)
f(P ) ≈ e

c
2
Sαβ · ∂

∂P f(P ) = ech̄ωαβM ·∂/∂(d̂αβ ·P )2f(P ) = f(P +ΔPc) (14)

where c = 1, 2 corresponding to single and double hops, respectively, and

ΔPc = d̂αβsgn
(
d̂ · P

)√
(d̂αβ · P )2 + ch̄ωαβM − d̂

(
d̂ · P

)
. We have a translation

operator with respect to the variable, (d̂αβ · P )2, in the above equation. Decomposing

P = P⊥ + P‖ = P⊥ + d̂αβsgn
(
d̂αβ · P

)√(
d̂αβ · P

)2

, it becomes obvious that the translation

operator updates P‖ components by ΔPc, as presented in Equation (14). This momentum update

conserves the energy of surface-hopping trajectories. Apart from technical issues associated with

sampling when the algorithm is implemented, this is the only approximation made to QCL evolution.

In fact, it is this approximation that gives this algorithm a surface-hopping structure that has some

features in common with Tully’s surface-hopping method; however, coherence and decoherence

are automatically incorporated in the evolution. The QCLE does not have such sudden momentum

changes, and its evolution is described by continuous momentum changes in the course of the

evolution. Comparisons of results using this algorithm with exact quantum solutions indicate that

the momentum-jump is rarely the source of problems.

Equation (10) admits a formal solution:

B̂αα′
W (X, t) =

(
eiLt

)
αα′,ββ′ B

ββ′
W (X) (15)

Thus, our following discussion focuses on evaluating:

(
eiL̂t

)
αα′,αKα′

K

=
∑

(α1α′
1)...(αKα′

K)

K∏
j=1

(
eiL̂Δtj

)
αj−1α′

j−1,αjα′
j

(16)



305

In the above equation, we simply factorize the propagator into K pieces with Δtj = tj − tj−1 = Δt.

In each small time slice, we perform the symmetric Trotter decomposition:(
eiL̂Δtj

)
αα′,ββ′

≈ Wββ′

(
tj−1, tj−1 +

Δt

2

)
eiLββ′Δt/2Qββ′,αα′Wαα′

(
tj−1 +

Δt

2
, tj

)
eiLαα′Δt/2

(17)

where: Wαα′(t1, t2) = eiωαα′ (t2−t1), and:

Qαα′,ββ′ =
(
eJΔt

)
αα′,ββ′ =

(
e
∑

λ>λ′ Jλλ′Δt
)
αα′,ββ′ ≈

(∏
λ>λ′

eJλλ′Δt

)
αα′,ββ′

(18)

We observe that it is possible to express eJλλ′Δt in the following block-diagonal matrix form:

eJλλ′Δt = Mλλ′ ⊕Kλλ′
ξ1

· · · ⊕ Kλλ′
ξN−2

⊕N λλ′
(19)

where ξi is one of the N − 2 adiabatic states other than λ and λ′. In the above equation, M is a four

by four matrix, defined with respect to the basis, {(λ, λ), (λ, λ′), (λ′, λ), (λ′, λ′)}:

Mλλ′
=

⎛⎜⎜⎜⎝
cos2(a) − cos(a) sin(a)ĵλλ′ − cos(a) sin(a)ĵλλ′ sin2(a)ĵλ→λ′

cos(a) sin(a)ĵλλ′ cos2(a) − sin2(a) − sin(a) cos(a)ĵλλ′

cos(a) sin(a)ĵλλ′ − sin2(a) cos2(a) − sin(a) cos(a)ĵλλ′

sin2(a)ĵλ→λ′ cos(a) sin(a)ĵλλ′ cos(a) sin(a)ĵλλ′ cos2(a)

⎞⎟⎟⎟⎠(20)

with a = (P/M) · dλλ′Δt, and ĵλλ′ and ĵλ→λ′ are the momentum-jump operators, e
1
2
Sλλ′

∂
∂P and

eSλλ′
∂
∂P , defined in Equation (14) with c = 1, 2, respectively. In Equation (19), there exists another

set of four by four matrices, Kλλ′
ξi

, with i = 1, . . . , N − 2. Each of these matrices is defined with

respect to a basis of the form, {(λ, ξi), (λ′, ξi)} ⊕ {(ξi, λ), (ξi, λ′)}:

Kλλ′
ξ =

(
cos(a) − sin(a)ĵλλ′

sin(a)ĵλλ′ cos(a)

)
⊕

(
cos(a) − sin(a)ĵλλ′

sin(a)ĵλλ′ cos(a)

)
(21)

Finally, there is a null matrix, N λλ′
, of a size of (N − 2)2, and the associated null space is spanned

by basis vectors, (ξ1, ξ2), where ξi �= λ(′). We remark that one has to permute the basis vectors in

order to construct these block-diagonal matrices [26].

At this point, we have specified all the necessary details in order to simulate the QCL dynamics

in the adiabatic basis:

Bαα′
W (X, t) =

∑
(α1α′

1),...,
(αKα′

K)

[
K∏
j=1

Wαj−1α′
j−1

e
iLαj−1α

′
j−1

ΔtQαj−1α′
j−1.αjα′

j
Wαjα′

j
e
iLαjα

′
j
Δt

]
B

αKα′
K

W (X) (22)

where α
(′)
0 = α(′). The explicit summation over all quantum indices, (α1α

′
1) . . . (αKα

′
K), can also be

evaluated stochastically. For instance, given a pair of indices, (αjαj−1), one can determine the next

pair at the time slice, j + 1, by drawing an MC sample from the transition probability:

P (αj+1, α
′
j+1|αj, α

′
j) =

|Qαjα′
j ,αj+1α′

j+1
|∑

βj+1,β′
j+1

|Qαjα′
j ,βj+1β′

j+1
| (23)
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If the sampled new pair of indices differs from the starting pair, then the sampled Q matrix

element must contain the proper momentum-jump operators to update the energy of the trajectory

after the jump. In any actual implementation of this algorithm, it is desirable to restrict to

nonadiabatic transitions between one pair of states in every time slice. Under this assumption, one

can then approximate:

Qαα′,ββ′ ≈

⎧⎪⎨⎪⎩
δαβδα′β′ if no hop happens,(
eJμγ

)
αα′,ββ′ if (α, α′) → (β, β′) involves transition between (μ, γ) states,

0 if (α, α′) → (β, β′) involves transitions between two or more pairs of states.

(24)

In this algorithm, we see that the trajectories in the ensemble that are used to simulate the

time evolution are non-Newtonian in character, consisting of Newtonian segments where the system

evolves on adiabatic surfaces, or the mean of two adiabatic surfaces, interspersed with quantum

transitions and momentum changes.

3.2. Forward-Backward Trajectory Solution

This scheme is motivated by another way of writing the formally exact solution [38] of the QCLE

using the last line of Equation (8):

B̂W (X, t) = S
(
ei

→
HΛt/h̄B̂W (X)e−i

←
HΛt/h̄

)
(25)

The S operator [31,38] specifies the order in which the forward and backward evolution operators

act on B̂W (X). The ordering of evolution operators is critical because of the lack of an underlying

Lie algebraic structure [38] of the QCLE.

One approach to solve Equation (25) is to apply the mapping transformation in which N discrete

quantum states of the subsystem are represented by the continuous position and momenta of N

fictitious harmonic oscillators. The properties of the original subsystem are then obtained via an

ensemble average involving trajectories in the phase space of the fictitious oscillators. More precisely,

in the mapping representation, a subsystem state, |λ〉, is replaced by |mλ〉 = |01, · · · , 1λ, · · · 0N〉, a

product state specifying the occupation numbers (limited to zero or one) of N fictitious harmonic

oscillators [33,49]. Creation and annihilation operators, â†λ and âλ, satisfy the commutation relation

[âλ, â
†
λ′ ] = δλ,λ′ for harmonic oscillators. The actions of these operators on the single-excitation

mapping states are â†λ |0〉 = |mλ〉 and âλ |mλ〉 = |0〉, where |0〉 = |01 . . . 0N〉 is the ground state of

the mapping basis.

Next, we define the mapping version of operators, B̂m(X) = Bλλ′
W (X)â†λâλ′ , such that matrix

elements of B̂W in the subsystem basis are equal to the matrix elements of the corresponding

mapping operator: Bλλ′
W (X) = 〈λ|B̂W (X)|λ′〉 = 〈mλ|B̂m(X)|mλ′〉. In particular, the mapping

Hamiltonian is:

Ĥm = Hb(X) + hλλ′
(R)â†λâλ′ ≡ Hb(X) + ĥm (26)

where we applied the mapping transformation only on the part of the Hamiltonian that involves the

subsystem DOF in Equation (26). The mapping Hamiltonian, ĥm, is always a quadratic Hamiltonian
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with respect to the quantum DOF. The pure bath term, Ĥb(X), acts as an identity operator in the

subsystem basis and is mapped onto the identity operator of the mapping space directly. The mapped

formal solution of QCLE now reads:

B̂m(X, t) = S
(
ei

→
Hm

Λ t/h̄B̂m(X)e−i
←
Hm

Λ t/h̄

)
(27)

where
→
Hm

Λ is given by
→
Hm

Λ = Ĥm(1 + h̄Λ/2i), with an analogous definition for
←
Hm

Λ .

We now introduce the coherent states, |z〉, in the mapping space, âλ |z〉 = zλ |z〉 and

〈z| â†λ = z∗λ 〈z|, where |z〉 = |z1, . . . , zN〉, and the eigenvalue is zλ = (qλ + ipλ)/
√
h̄. The variables

q = (q1, . . . , qN) and p = (p1, . . . , pN) are mean coordinates and momenta of the harmonic

oscillators encoded in the coherent state, |z〉, respectively. The coherent states form an overcomplete

basis with the inner product between any two such states, 〈z| z′〉 = e−(|z−z′|2)−i(z·z′∗−z∗·z′). Finally,

we remark that the coherent states provide the resolution of identity:

I =

∫
d2z

πN
|z〉 〈z| (28)

where d2z = d(#(z))d($(z)) = dqdp/(2h̄)N .

Similar to the path integral approach for solving the quantum dynamics, we decompose the

forward and backward evolution operators in Equation (27) into a concatenation of M short-time

evolutions with Δti = τ and Mτ = t. In each short-time interval, Δti, we introduce two sets of

coherent states, |zi〉 and |z′i〉, via Equation (28) to expand the forward and backward time evolution

operators, respectively. The time evolution (generated by a quadratic Hamiltonian) of coherent states

can be represented by trajectory evolution in the phase space of (q, p). After some algebra, the matrix

elements of Equation (27) can be approximated by:

Bλλ′
W (X, t) =

∑
μμ′

∫
dxdx′φ(x)φ(x′)

1

h̄
(qλ + ipλ)(q

′
λ′ − ip′λ′)B

μμ′
W (Xt)

×1

h̄
(qμ(t)− ipμ(t))(q

′
μ′(t) + ip′μ′(t)) (29)

where x = (q, p) gives the real and imaginary parts of z, dx = dqdp and φ(x) = (h̄)−N e−
∑

ν(q
2
ν+p2ν)/h̄

is the normalized Gaussian distribution function. In deriving Equation (29), we have invoked

an orthogonality approximation on the inner product between subsequent coherent state variables,

〈zi|e
i
h̄
ĥt |zi+1〉 = 〈zi(t)|zi+1〉 ≈ πNδ(zi+1 − zi(ti)), with i being the time step index. This

approximation is necessary to construct a continuous trajectory of z(t). In the extended phase space

of (X(t), z(t), z′(t)), the trajectories follow Hamiltonian dynamics:

dχμ

dt
=

∂He(χ, π)

∂πμ

,
dπμ

dt
= −∂He(χ, π)

∂χμ

(30)

where He(χ, π) = P 2/2M + V0(R) + 1
2h̄
hλλ′

(R)(qλqλ′ + pλpλ′ + q′λq
′
λ′ + p′λp

′
λ′) with

V0(R) = Vb(R)− Trĥ(R), χ = (R, q, q′) and π = (P, p, p′). We remark that the FBTS trajectories

manifestly conserve energy. Furthermore, simulating the dynamics with a standard velocity Verlet
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type of symplectic integrator has a stationary solution proportional to Hpseudo = He(χ, π) +Δt2δH ,

as discussed in [35].

The main approximation introduced in the derivation of the FBTS, Equation (29), is the

orthogonality approximation. The simplest improvement to the algorithm is to refrain from applying

this approximation at every time step. In [36], we outlined a practical approach to evaluate the

set of selected integrals of zi and z′i (which could be evaluated analytically if the orthogonality

approximation were applied). We termed this extension of FBTS as the jump FBTS (JFBTS). Since

the computational cost grows quickly with respect to the number of jumps inserted, one needs to

make a trade-off between numerical efficiency and accuracy.

In the simplest approach, one selects every (M/K) time step from a total of M steps to fully

evaluate the coherent state integrals:

Bλλ′
W (X, t) =

∑
μμ′

∑
s0s′0...

sK−1s
′
K−1

∫ K∏
v=0

dxdx′φ(xv)φ(x
′
v)

×1

h̄
(q0λ + ip0λ)(q

′
0λ′ − ip′0λ′)B

μμ′
W (Xt)

×1

h̄

{
K∏
v=1

(
q(v−1)sv−1(τv)− ip(v−1)sv−1(τv)

)
(qvsv + ipvsv)

}

×1

h̄

{
K∏
v=1

(
q′(v−1)sv−1

(τv) + ip′(v−1)sv−1
(τv)

) (
q′vsv − ip′vsv

)}

×1

h̄
(qKμ(τK+1)− ipKμ(τK+1))(q

′
Kμ′(τK+1) + ip′Kμ′(τK+1)) (31)

where the subscripts, v and s, refer to the v-th time step and the s-th component of the q and p

vectors, respectively, and τv = tiv − tiv−1 with ti0 = 0 and tiK+1
= t. According to this prescription,

the continuous FB trajectories experience K discontinuous jumps in the (x, x′) phase space. Between

subsequent jumps, the evolution of the FB trajectory is governed by Equation (30). Simulations show

that with a sufficient number of jumps, numerically exact solutions of the QCLE can be obtained [36].

3.3. Comparisons between Algorithms

The differences between the two QCLE simulation algorithms can be traced to the quantum basis

that is used and the way that feedback between quantum and classical systems is treated. In the

case of the TBSH algorithm, the trajectories are propagated through a Hellmann-Feynman force,

or the mean of two Hellmann-Feynman forces [Equation (12)], with intermittent surface hops that

switch the adiabatic surfaces on which the trajectories propagate. In the case of FBTS, one not only

propagates the bath dynamical variables as trajectories, but also the quantum dynamical variables,

which are associated with fictitious harmonic oscillators. In this extended phase space, we have

exact Hamiltonian dynamics. In particular, the force acting on the bath particles simultaneously

involves all N adiabatic surfaces, which is similar to, but different from, the Ehrenfest mean-field

approach. The very different characteristics of the trajectories in two algorithms manifest the artificial



309

character of the trajectory dynamics. Thus, one should not attach physical significance to single

trajectories in the computation. All physical properties of the system can only be extracted from

a proper ensemble average of a large set of trajectories, as implied in Equation (2). Nevertheless,

insight into the trajectory dynamics of each algorithm will help to judge the simulation efficiency for

various classes of models.

For certain problems, such as proton transfer reactions, where the time scales of the bath and

subsystem are well-separated, even during nonadiabatic transitions, the TBSH algorithm can yield

quantitatively accurate results with a few hops. There are also dynamical problems in which distinct

bath motions can be explicitly correlated with the subsystem’s quantum states. For instance, in

the simple Tully I model [35,50], trajectories populated on the excited state will cross the avoided

crossing point, while the ground state trajectories will eventually be reflected and retrace their

paths in the opposite direction. This kind of behavior is, however, completely missed when one

propagates trajectories in a single effective mean field. Again, the inherent multi-configuration

nature of surface-hopping-like algorithms is a more appropriate choice for this case. However, a

recent study [51] has indicated that the “jump” version of mean-field-like algorithms can improve

the simulation results in cases of this type.

Alternatively, there are also many examples where one would expect FBTS to be the preferred

simulation method. In general, the TBSH algorithm has convergence issues, as the MC weights

associated with nonadiabatic hops grows rapidly. Even for the simple spin boson model, one can

identify parameter regimes where this numerical instability is clearly observed. In these cases, the

FBTS and JFBTS are certainly the alternatives that one should adopt for efficient simulations.

4. An Example: Quartic Oscillator in a Harmonic Bath

As a specific example to illustrate the formalism outlined above, we consider a two-level system

coupled to a quartic bistable oscillator with a single pair of phase space coordinates X0 = (R0, P0).

The quartic oscillator is, in turn, coupled to an Ohmic heat bath of Nb independent harmonic

oscillators with phase space coordinates Xi = (Ri, Pi) and i = 1 . . . Nb. The partially Wigner

transformed Hamiltonian, expressed in the diabatic basis, {|R〉 , |L〉}, reads:

ĤW =

(
h̄γ0R0 −h̄Ω

−h̄Ω −h̄γ0R0

)
+

(
P 2
0

2M0

+ Vn(R0) +

Nb∑
j=1

P 2
j

2Mj

+
Mjω

2
j

2

(
Rj −

γbcj
Mjω2

j

R0

)2
)
I

(32)

where Vn(R0) = −M0ω
2
0R

2
0/2 + AR4

0/4 and I is an identity matrix. We take Nb = 40

harmonic oscillators for the discretization of the Ohmic heat bath. Following the discretization

scheme introduced in [52], we set ωj = ωc ln(1 − jωc/δω) and cj = (ξh̄δωMj)
1/2ωj with

δω = (1 − exp(ωmax/ωc))/Nb. The parameters, ωc and ωmax, are the characteristic and cut-off

frequencies for the Ohmic bath, respectively. The Kondo parameter is ξ.
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The adiabatic states for the subsystem are:

|+;R0〉 =
1

N (R0)
[(1−G) |R〉 − (1 +G) |L〉]

|−;R0〉 =
1

N (R0)
[(1 +G) |R〉+ (1−G) |L〉] (33)

where N (R0) =
√

2(1 +G2(R0)) and G(R0) = (γ0R0)
−1

[
−Ω +

√
Ω2 + γ2

0R
2
0

]
. The adiabatic

energies are given by E± = Vn(R0)± h̄
√
Ω2 + γ2

0R
2
0 = Vn(R0)± ε±(R0).

We shall study the autocorrelation functions, CLL, with Â = B̂ = |L〉 〈L|. The entire system is

assumed to be in thermal equilibrium initially. Using the high-temperature approximation presented

in the Appendix, the correlation function of interest can be given in a compact form:

CLL(t) =

∫
dX0dXb W(R0)G

(
P0;

M0

β

) Nb∏
j=1

G
(
Pj;

Mj

β

)
G
(
Rj −

γbcj
Mjω2

j

R0;
1

βMjω2
j

)
×

∑
n=L,R

∑
α,α′

Fαα′(X0)〈n|α;R0〉〈α′;R0|L〉BLn
W (Xt) (34)

where G(x; σ2) = (2πσ2)
−1/2

e−x2/2σ2
, and:

W(R0) =
e−β(A

4
R4

0− 1
2
M0ω2

0R
2
0)

(
e−βε+(R0) + eβε−(R0)

)∫
dR0e

−β(A
4
R4

0− 1
2
M0ω2

0R
2
0) (e−βε+(R0) + eβε−(R0))

(35)

An MC evaluation of the integrals can be done by sampling P0, Rb, Pb from the Gaussian

distributions and sampling R0 from W(R0), respectively. The time-evolved matrix element,

Bnm
W (Xt), will be computed using both the TBSH and the FBTS algorithms. Finally, we

note that the path-integral-based sampling scheme introduced in Section 2 should be adopted to

sample phase-space points from (ρ̂eq)W (X) for more generalized situations, including cases of

low-temperature, arbitrary subsystem-bath divisions of a composite system, strong subsystem-bath

couplings and an arbitrary potential energy profile.

In this study, we report numerical results in the energy unit, h̄ωc, and distance unit,
√
h̄/Mjωc, for

each environmental DOF. We consider two sets of parameters. In the first case, we use the following

parameter values, a = 1.0, ω0 = 1.2, γ0 = 0.05 γb = 1.0, Ω = 0.3, ξ = 0.1, ωmax = 3 and β = 0.2,

in the dimensionless units. Figure 1a presents the potential surface profiles [53], Wα(R0). The two

diabatic surfaces, WL,R(R0), remain close to each other, and the two adiabatic surfaces, W±(R0),

share essentially the same characteristics. In this case, a mean-field-based algorithm, like FBTS,

should be accurate and efficient. This problem can also be handled easily in the adiabatic basis, since

the surface-hopping trajectories will be initialized in both the adiabatic ground and excited states,

because the system is in a thermal equilibrium state at t = 0. Furthermore, the coupling parameter,

γb, was purposely chosen to be small in order to minimize the number of nonadiabatic transitions (or

hops) encountered in the TBSH algorithm. In panel (b), CLL(t) is computed using both algorithms.

The agreement between these results is good.
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Figure 1. (a) Potential surface profiles, Wα(R0), for the ground adiabatic state (black,

dotted), excited adiabatic state (black, dotted) and for the diabatic states, L (green) and

R (red). (b) CLL(t) correlation function. These results are associated with the first set

of parameters.

Figure 2. (a) Potential surface profiles, Wα(R0), for the ground adiabatic state (black,

dotted), excited adiabatic state (black, dotted) and for the diabatic states, L (green) and

R (red). The blue curve is a plot of the un-normalized distribution function, W(R0),

Equation (35). (b) CLL(t) correlation functions. (Inset) Short-time CLL(t) computed

by the FBTS (blue) and TBSH (red) algorithms. These results are associated with the

second set of parameters.

Next, we consider the following parameter set, a = 0.8, ω0 = 0.6, γ0 = 0.3 γb = 1.0,

Ω = 0.1, ξ = 0.1, ωmax = 3, and β = 0.2 in the dimensionless units. Figure 2a shows the

potential surface profiles, Wα(R0), obtained from this set of parameters. In this case, the adiabatic,

W±(R0), and diabatic surfaces, WL,R(R0), only differ markedly near the region of the barrier top,

where an avoided crossing point indicates significant mixing of the two diabatic states. Nonadiabatic

effects should be most prominent near this barrier top. A stronger coupling, γ0, is also chosen in this

case. Figure 2b presents the autocorrelation functions. In the main figure of panel (b), the blue curves

(CLL(t) computed by the FBTS) start with the full correlation at one, then gradually reduce to 1/2,

which implies that the subsystem is in an equal admixture of the two diabatic states in the asymptotic

limit. The TBSH simulation results are only valid for very short times (as shown in the inset of
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the Figure 2b), due to instability arising from the accumulation of weights, even with filtering [54].

The thermal equilibrium distribution, W(R0), has a bimodal distribution profile, as illustrated in

Figure 2a; however, for the (inverse) temperature, β = 0.2, the double-peaked structure is very broad.

The W(R0) distribution profile (blue curve in Figure 2a) suggests that the thermal equilibrium state

has a non-trivial contribution from the excited surface. Sampling from W(R0) yields many R0 values

near the barrier top, where several hops immediately take place for this strong-coupling case, and the

instability sets in early in the simulation. Lowering β will produce a more pronounced double-peak

structure for W(R0), but the quartic oscillator’s momentum, P0, will fluctuate with a larger variance

in the presence of the heat bath in this case. Since nonadiabatic transitions depend non-trivially on

a = P0 · d12(R0)Δt in the TBSH algorithm, large momentum fluctuations will eventually affect the

long-time result. This case shows some of the practical limitations of the TBSH algorithm for the

computation of this correlation function.

5. Conclusions

The scheme for computing the quantum correlation function in Equation (2) combines a

numerically exact quantum initial sampling method with dynamics described by the QCLE; thus,

the approximations in the simulation method reside in the dynamics. It is easier to compute the

equilibrium properties of a quantum system, for instance, by using the imaginary-time Feynman

path integral method, than to obtain dynamical properties by using similar real-time Feynman path

integrals without adopting further approximations. Since we approximate the quantum dynamics of

the entire system, quantum subsystem plus bath, by QCL dynamics, it is appropriate to comment on

some of its features.

It is known that the quantum-classical bracket, defined in terms of the commutator and Poisson

brackets in Equation (8), does not possess a Lie algebraic structure, since it fails to satisfy the

Jacobi identity [2,38]. This lack of a proper algebraic structure is shared by all known MQC

methods and simply reflects the inconsistency in mixing classical and quantum mechanical dynamics.

One consequence of this inconsistency is that the partial Wigner transform, ρ̂We(R,P ), of the full

canonical equilibrium density function, ρ̂eq = e−βĤ/ZQ, is not stationary under the QCLE; however,

ρ̂We(R,P ) can be written as an expansion in the mass ratio (or h̄), and it has been shown that the

full quantum equilibrium density is conserved under the QCL dynamics up to O(h̄). Therefore, the

detailed balance relation is also satisfied to this order. The violation of a detailed balance is a common

problem that affects all major MQC methods, including the two most popular approaches, Ehrenfest

mean-field [55] and Tully’s fewest switching surface hopping [56] (FSSH), to various degrees. Of

course, as noted earlier, for the class of models where an arbitrary quantum system is bilinearly

coupled to a harmonic bath, the dynamics is exact, and a detailed balance is exactly satisfied.

The dynamics described by the QCLE can be related to that prescribed by other methods.

In [57], it was shown that one could derive both Ehrenfest mean-field dynamics and a version of

surface-hopping dynamics starting from the QCLE. In the former case, one simply drops all the

“correlations” (including entanglement) between the subsystem and bath densities in the QCLE [58].

In the later case, one projects out all the off-diagonal matrix elements of the density in the QCLE
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to obtain a generalized master equation for the subsystem alone. Then, one considers decoherence

to suppress the coherences in order to recover a simple “surface hopping” dynamics [59] similar to

that prescribed in the FSSH algorithm. Furthermore, it had been proven [60] that the QCLE and

the partially linearized path integral (PLPI) method [61–64] share the same starting mathematical

foundation. In particular, the most recent PLPI algorithm, called PLDM (Partially Linearized Density

Matrix) method [64], is very similar to the FBTS presented in this paper [31]. One can also draw

comparisons between methods based on the QCLE and semiclassical initial value representations.

For instance, numerical schemes based on the Poisson bracket mapping equation (PBME) [30], an

approximate equation derived from the mapping-transformed QCLE, and the linearized semiclassical

initial value representations [65] share the same set of equations of motion for the trajectories.

Mixed quantum-classical methods are often the only feasible approach to explore the dynamics

of large complex systems, such as condensed phase or biochemical systems, where only a few

light-mass DOF need be treated quantum mechanically. In many rate processes of interest,

such as electron transfer or proton transfer, the local polar solvent motions are responsible for

important features of the reaction mechanism. As a result, it is essential that the dynamics of these

environmental degrees of freedom be treated in detail. Open quantum system methods that trace out

all bath details cannot capture important aspects of such dynamics.

Some recent work [48,66] has suggested interesting ways to combine the QCLE and the

generalized master equation [67–69] approach. Simulation tests on spin boson models [48] and a

two-level system coupled to an anharmonic bath [68] indicate that accurate, long-time dynamical

properties of such systems can be efficiently calculated with an improved memory kernel (which

takes the short-time QCLE computation of some bath correlation functions as the input) for the

general master equation. This type of hybrid approach may eventually prove to be useful for studies

of more complex systems.

Finally, we provide comments that may help in choosing between the two algorithms for

simulations. The TBSH algorithm, without filtering, provides a very accurate QCL dynamics before

the onset of the sign problem associated with its heavy reliance on Monte Carlo sampling. While

filtering can be used to extend simulations to much longer times, the problems related to Monte

Carlo sampling limits its usefulness in performing long-time simulations, as vividly illustrated in

Section 4. However, the TBSH is found to be the preferred simulation method (in comparison to

the FBTS) when one investigates bath dynamical properties of systems in the vicinity of conical

intersections and avoided crossings. For instance, the TBSH results accurately capture the intricate

geometric phases [46] and the bimodal structure in the momentum distribution [35] in the Tully 1

model (a single avoided crossing model), while the FBTS fails to reproduce these delicate features,

even though it provides fairly accurate population dynamics, as reported in [36]. Since the FBTS

trajectory dynamics is based on a mean-field description, one finds that the results are usually very

accurate (even in the long-time limit) when the energy gap between diabatic energy surfaces is small

in comparison to the typical subsystem-bath coupling strength. Another advantage of the FBTS

is the availability of the JFBTS [36] algorithm, which implements systematic correction of FBTS
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results towards the exact QCL dynamics and provides a simple method to gauge the sufficiency of

the FBTS results.
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Appendix

High Temperature Limit

Many realistic chemical and biological processes take place at room temperature, in which case,

it is often justified to apply a classical approximation to the bath. In this Appendix, we make two

assumptions: As in most condensed phase models, we consider a pure subsystem observable, Â,

such that
(
ρ̂eqÂ

)
W

= (ρ̂eq)W Â. We also assume that the environment is further partitioned into

an immediate part that can couple nonlinearly to the quantum subsystem and shield the subsystem

from the larger set of environmental DOF, often modeled as a heat bath of independent harmonic

oscillators. Furthermore, we write X = {Xb, Xn}, where n refers to the few DOF that couple

directly to the quantum subsystem and b refers to the remainder of the large number of coordinates

that only couple to the n-labeled coordinates. Similarly, we re-label different parts of the Hamiltonian

as follows: Ĥ = Ĥs + Ĥn + V̂sn + Ĥb + V̂bn with Ĥi = K̂i + V̂i and i = s, b, n. The quantities, K̂i

and V̂i, are the total kinetic energy and isolated potential, respectively, of the i-th system. Potential

energy terms with a subscript of two letters imply a coupling potential between two components of

the composite system. In addition, we introduce ĥW (Rn) = Ĥs + V̂sn(Rn) + Vn(Rn), Ĥbn(Rn) =

Ĥb + V̂bn(Rn) and Ĥsn = ĥW (Rn) + K̂n. In the following, we express the distance in units of

λj =
√
h̄/Mjωc and energy in units of h̄ωc, where ωc is the cut-off frequency of the heat bath.

Under these assumptions, one needs to evaluate the partial Wigner transform of e−βĤ alone.

In the high temperature limit, we factorize the un-normalized equilibrium density matrix operator,

ρ̂ = e−βĤsne−βĤbn . The partial Wigner transform of this approximate density operator reads:

ρ̂W (X) =

∫
dZe−iPn·Z

〈
Rn +

Z

2

∣∣∣∣ e−βĤsn

∣∣∣∣Rn −
Z

2

〉
ρb(Xb;Rn) (36)

where ρb(Xb;Rn) =
∫
dZbe

−iPb·Zb
〈
Rb +

Zb

2

∣∣ e−βĤbn(Rn)
∣∣Rb − Zb

2

〉
is the Wigner transform of the

un-normalized equilibrium density matrix for the heat bath.
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We next apply a symmetric Trotter decomposition to the matrix element of Equation (36):〈
Rn +

Z

2

∣∣∣∣ e−βĤsn

∣∣∣∣Rn −
Z

2

〉
≈

〈
Rn +

Z

2

∣∣∣∣ e−β
2
ΔĤW (Rn+

Z
2
)e−βĤhoe−

β
2
ΔĤW (Rn−Z

2
)

∣∣∣∣Rn −
Z

2

〉
=

(
ω

2π sinh(ωβ)

)Nn/2

exp

(
− coth

(
ωβ

2

)
ωZ2

4

)
exp

(
− tanh

(
ωβ

2

)
ωR2

n

)
×e−

β
2
ΔĤW (Rn+

Z
2
)e−

β
2
ΔĤW (R−Z

2
) (37)

In this equation, the symmetric Trotter decomposition separates the subsystem potential in

ĥW (Rn) into harmonic, V̂ho = 1
2
ω2R2

n, and anharmonic, ΔĤ(Rn) = ĥW (Rn) − Vho(Rn),

contributions; furthermore, we define Ĥho = K̂n + V̂ho.

The anharmonic term in Equation (37) can be approximated as follows:

e−βΔĥW (Rn+
Z
2
)e−βΔĥW (Rn−Z

2
)

=
∑
α,α′

e−βẼα(Rn)

[
δαα′ +

Z

2
Oαα′(Rn)dαα′(Rn)

]
|α;Rn〉 〈α′;Rn| (38)

where |n〉 is the subsystem basis and |α;Rn〉 is the real-valued adiabatic state with adiabatic energy

Eα(Rn) with respect to the Hamiltonian, ĥW (Rn). The adjusted energy is Ẽα(Rn) = Eα(Rn) −
Vho(Rn). The O function in Equation (38) reads:

Oαα′(Rn) =
[
1− e−

β
2
(Ẽα′ (Rn)−Ẽα(Rn))

]2
(39)

and dαα′ = 〈α;Rn| ∇Rn |α′;Rn〉. Details of a similar derivation for Equations (37) and (38) may be

found in [70].

Substituting Equation (37) into Equation (36) and integrating out the Z variable, Equation (36)

simplifies to:

ρ̂W (X) =

(
1

2πh̄ cosh(ωβ
2
)

)Nn

ρb(Xb;Rn)e
−P2

n
ω

tanh(ωβ
2 )

∑
λ

e−βEλ(Rn)

∑
α,α′

|α;Rn〉 〈α′;Rn|Fαα′(Xn) (40)

where:

Fαα′(Xn) =
e−βEα(Rn)∑
λ e

−βEλ(Rn)

[
δαα′ − i

Pn

ω
tanh(ωβ/2)Oαα′(Rn)dαα′(Rn)

]
(41)

Now, the canonical partition function is determined by:

ZQ =
∑
α

∫
dXndXbρ

αα
W (X)

=

(
1

cosh(ωβ
2
)

)Nn
(

Nb∏
j=1

π

sinh(ωjβ/2)

)√
πω

tanh(ωβ/2)

∫
dRn

∑
λ

e−βEλ(Rn)

=

(
1

cosh(ωβ
2
)

)Nn

ZbZsn (42)
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where Zb is defined by the expression in the second bracket on the second line and Zsn is defined by

the expression behind the second bracket on the second line. Zb and Zsn are the bath and subsystem

(with its immediate environment) canonical partition functions, respectively. In summary, the time

correlation function takes the following simple form:

CAB(t) =
1

ZQ

∑
n1,n2,n3

∫
dX 〈n1| ρ̂W (X) |n3〉 〈n3| Â |n2〉 〈n2| B̂W (X, t) |n1〉 (43)

where ρ̂W (X) and ZQ are given by Equations (40) and (42), respectively.
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Abstract: Computing quantum dynamics in condensed matter systems is an open

challenge due to the exponential scaling of exact algorithms with the number of degrees

of freedom. Current methods try to reduce the cost of the calculation using classical

dynamics as the key ingredient of approximations of the quantum time evolution. Two

main approaches exist, quantum classical and semi-classical, but they suffer from various

difficulties, in particular when trying to go beyond the classical approximation. It

may then be useful to reconsider the problem focusing on statistical time-dependent

averages rather than directly on the dynamics. In this paper, we discuss a recently

developed scheme for calculating symmetrized correlation functions. In this scheme,

the full (complex time) evolution is broken into segments alternating thermal and

real-time propagation, and the latter is reduced to classical dynamics via a linearization

approximation. Increasing the number of segments systematically improves the result

with respect to full classical dynamics, but at a cost which is still prohibitive. If

only one segment is considered, a cumulant expansion can be used to obtain a

computationally efficient algorithm, which has proven accurate for condensed phase

systems in moderately quantum regimes. This scheme is summarized in the second

part of the paper. We conclude by outlining how the cumulant expansion formally

provides a way to improve convergence also for more than one segment. Future work will

focus on testing the numerical performance of this extension and, more importantly, on

investigating the limit for the number of segments that goes to infinity of the approximate

expression for the symmetrized correlation function to assess formally its convergence to

the exact result.
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1. Introduction

Exact simulation methods to compute either the evolution of the wave function or dynamical

statistical averages for quantum systems in the condensed phase are currently restricted to small

sizes and short times. The exponential scaling of available algorithms with the number of degrees of

freedom, in fact, limits calculations to ten–twenty particles (and this for Hamiltonians of relatively

simple form) and to time scales of at most a few picoseconds. This situation is in striking contrast

with analogous classical calculations, which, when empirical potentials are adopted, are nowadays

routinely used to study high dimensional, complex systems for times reaching, on dedicated

machines, microseconds. (Ab initio classical molecular dynamics is considerably more expensive,

but, depending on the number of electrons that have to be included, even in this case moderately

sized systems of up to a hundred particles can be integrated for hundreds of picoseconds.) Several

approximate schemes have thus been proposed attempting to import, with appropriate modifications,

methods from classical molecular dynamics to quantum dynamics. Two approaches, in particular,

can be identified in which classical trajectories play a crucial role: semi-classical and mixed

quantum classical.

In semi-classical schemes, originally developed for approximating wave function propagation,

all degrees of freedom are treated on equal footings. To begin with, the quantum time propagator is

expressed, in the path integral formalism [1], as a sum over all possible paths connecting the initial

and final states, each path being weighted by a complex exponential, whose argument is the classical

action along it. The approximate propagator is then obtained by expanding the action to second order

around its stationary points, which are classical trajectories, and performing the remaining quadratic

path integral analytically [2,3]. Different forms exist for the semi-classical propagator depending

on the specific representation adopted for the path integral (most notably standard coordinates,

usually followed by the so-called initial value transformation [4,5], hybrid coordinate momenta [6]

or coherent states [7–9]), but the evolved wave function has always the same structure, which we

illustrate with the most commonly used Herman Kluk expression [10–12]:

|Ψ(t)〉sc =
∫

dpdq|q(t), p(t)〉W (t)e
i
h̄
Scl(t)〈p, q|Ψ(0)〉 (1)

In the expression above, |q, p〉 indicates a coherent state (in the coordinate representation,

〈r|q, p〉 ∝ e−γ(q−r)2+ip(q−r)/h̄), Scl(t) is the action computed along a classical trajectory propagated

to time t from initial conditions (q, p), (q(t), p(t)) is the endpoint of the trajectory and W (t), a

known function, is the result of the integration over the quadratic fluctuations around the stationary

paths. All the functions of time in the integrand are calculable using classical evolution algorithms

and, once the ket has been saturated (for example, via a scalar product), the integral over the initial
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conditions can be estimated via Monte Carlo sampling of a probability density based on the absolute

value of the wave function at t = 0. Although calculations based on this scheme have been used,

the semi-classical wave function is still remarkably expensive, due mainly to the characteristics of

W (t). This function is in fact related to a linear combination of the monodromy matrices of the

system (i.e., the matrices of the derivatives of the endpoints of the trajectory with respect to the initial

conditions), and, for chaotic dynamics, it can assume values varying over several orders of magnitude,

hindering the convergence of the Monte Carlo sampling. Furthermore, the actual evaluation of the

wave function requires one to project |Ψ(t)〉sc on a basis. While this is, in principle, straightforward

(for example, one could choose the continuous coordinate representation and then discretize it on

a grid), in practice it reinstates the exponential scaling of the numerical effort with the number of

degrees of freedom. This last problem can be avoided focusing on expected values (observables):

sc〈Ψ(t)|Â|Ψ(t)〉sc =
∫

dp̃dq̃dpdq〈Ψ(0)|q̃, p̃〉W̃ ∗(t)e−
i
h̄ S̃cl(t)〈q̃(t), p̃(t)|Â|q(t), p(t)〉W (t)e

i
h̄Scl(t)〈p, q|Ψ(0)〉 (2)

(Â is a Hermitian operator) at the price of doubling the dimension of the Monte Carlo sampling.

The expression above, however, requires averaging the product of the two unstable W functions

(for common operators, the matrix element in the integrand is known analytically, thus posing

no problem), and although some schemes exist to mitigate the problem [13,14], this approach

is of limited practical use. Shifting the focus from the wave function to the observables proves

considerably more effective moving to the Heisenberg representation and taking advantage of the

presence of two propagators in their exact quantum expression to develop alternative approximations.

This strategy is most commonly adopted when calculating time-dependent statistical properties, more

specifically, time correlation functions of operators Â and B̂, usually defined as:

CA,B(t; β) =
1

Z
Tr
{
e−βĤÂe

i
h̄
ĤtB̂e−

i
h̄
Ĥt
}

(3)

=
1

Z

∫
drdrNdr̃dr̃N〈r|e−βĤÂ|r̃〉〈r̃|e i

h̄
Ĥt|r̃N〉〈r̃N |B̂|rN〉〈rN |e−

i
h̄
Ĥt|r〉

where Ĥ is the Hamiltonian, Z the partition function, β = 1/kBT with kB Boltzmann’s constant and

T temperature. (Throughout the paper, we consider distinguishable particles.) In the second line,

the trace was expressed, in the coordinate representation, as the product of four matrix elements;

from left to right, that of the product of the quantum Boltzmann density times operator Â, the

propagator backward in time, the matrix element of operator B̂ and the propagator forward in time.

To pave the way for the so-called linearized approximation of the correlation function [13,15–18],

the two propagators are expressed as path integrals in the hybrid coordinate-momenta representation,

in which the resolution of the identity in the momentum basis (inserted, as usual, to evaluate the

exponential of the kinetic energy contribution in the Trotter break up of the propagators) are not

resolved analytically. The advantage of this representation is a closer analogy to the phase space

representation of classical mechanics. The quantum expression of the correlation function thus

obtained is then manipulated via a change of variables: the forward and backward paths are changed

to semi-sum and difference paths (see the next section for a more precise definition of these paths),

and the key approximation of the approach is introduced. A Taylor series expansion of the action to
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quadratic order in the difference path is performed, allowing all integrals on the difference variables,

except the ones over the initial and endpoint in coordinate space, to be performed analytically. The

integration results in a product of delta functions constraining the semi-sum path to be a classical

(Hamiltonian) trajectory. The remaining integrals over the difference coordinates define Wigner

transforms [19] of operators to give:

C l
A,B(t; β) =

1

(2πh̄)Z

∫
drdp

[
e−βĤÂ

]
w
(r, p)Bw(r(t), p(t)) (4)

where, for example, Bw(r(t), p(t)) =
∫
dξe

i
h̄
p(t)ξ〈r(t) + ξ/2|B̂|r(t) − ξ/2〉. The superscript,

l, indicates the linearization approximation. Compared to the semi-classical expression for the

wave function, Equation (4) has the remarkable advantage of not containing unstable factors in the

integrand, even though the approximation of the overall dynamics is accurate to the same order in h̄.

Indeed, the second order terms in the action expansion, which originated the W (t) in Equation (1),

cancel exactly when the difference of the action along the forward and backward paths is considered.

The absence of the W s suggests computing the approximate time correlation by combining Monte

Carlo sampling of initial conditions and molecular dynamics. The serious difficulty with this idea

lies in the sampling of the initial conditions. The probability density is, in fact, usually defined from

the absolute value of
[
e−βĤÂ

]
w
(r, p)/(2πh̄)Z, but computing this Wigner transform is far from

trivial, and the available methods introduce further, uncontrolled, approximations. In addition to

this practical difficulty, there is also a conceptual problem with linearized calculations: the classical

evolution conserves the quantum probability density only for short times. The rapid decay time of

correlations for standard condensed phase systems is usually invoked to mitigate the consequences

of this pathology, but it is known that in some cases, e.g., low dimensional systems with a long time

coherence, it may lead to unphysical results (this is the so-called zero energy leakage problem).

The problems and numerical cost of semi-classical calculations justify the development of the

second, alternative approximation scheme mentioned at the beginning of this section: mixed quantum

classical dynamics. In this approach, the degrees of freedom of the system are partitioned into two

sets, usually based on their mass ratio. The first set (called the subsystem) is composed of a few

degrees of freedom and is treated quantum mechanically; the second (called the environment or

the bath) is often high dimensional and is treated classically. Existing quantum classical methods

differ in the way in which the coupling among the classical evolution of the bath and the quantum

propagation of the subsystem is taken into account. The first approach of this kind, still very popular

due to its efficiency and ease of implementation, is Tully’s surface hopping [20]. In this scheme,

electrons and nuclei constitute the subsystem and the bath, respectively, and the coupling, designed to

mimic dynamics beyond the Born–Oppenheimer approximation, is defined ad hoc based on heuristic

arguments. In more recent, and more rigorous, developments, the coupling is derived starting from

a fully quantum representation of the evolution equations for the system and then taking a partial

classical limit on the bath’s degrees of freedom. Examples of this type are schemes to propagate

the full density matrix of the quantum subsystem, such as the Wigner Liouville mixed quantum

dynamics [21,22], or the iterative linearized density propagation methods [23,24]. Both surface

hopping and Wigner Liouville dynamics (with particular reference to its most recent developments
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aimed at computing correlation functions) are discussed (and/or criticized) in other contributions to

this issue. Focusing on the latter, we quickly recall that it adopts a mixed representation in which the

operators related to the bath’s degrees of freedom are described using the Wigner representation,

while for the subsystem an abstract operator representation is retained. The quantum evolution

operator in this mixed representation is then expanded to first order in the ratio of the thermal De

Broglie wavelength of subsystem to the bath to obtain the generator of the mixed quantum classical

dynamics. This generator has the form of a generalized Lie bracket in which both a commutator

(linked to the operators for the subsystem) and a Poisson parenthesis (acting on the bath’s phase

space) appear. Once a specific basis set is chosen for the subsystem (e.g., adiabatic electronic

states [21,25] or, more recently, the so-called mapping representation [26,27]) the evolution equation

for the density matrix, or any observable, becomes explicit, and several different algorithms, sharing

the characteristic that the bath motion is obtained via classical evolution (possibly with generalized

forces describing the influence of more than one electronic state), have been proposed to solve them.

In spite of its merits, it has been shown that this mixed quantum classical dynamics lacks several

properties that characterize fully quantum and classical dynamics [28]. In particular the mixed

Lie bracket does not satisfy the Jacobi identity exactly, and, similar to linearized calculations, the

quantum thermal density is not stationary under the mixed dynamics. The loss of formal properties

with respect to classical and quantum mechanics arises, in different forms, in all current mixed

quantum classical schemes (see also [29]).

While application driven calculations might not be paralyzed by the state of affairs described

above, in particular, if and when it is possible to verify that these well-known pathologies have

no uncontrolled effects on the results, it is important to pursue alternative approaches in an effort

to derive more general schemes allowing for systematic improvement and/or assessment of the

approximations employed. Indeed, a critical stumbling block common to semi-classical and mixed

quantum classical methods is that it is essentially impossible to go beyond classical trajectories to

approximate the quantum evolution of the full system (semi-classical) or of the bath (mixed). In

the semi-classical case, including terms of higher order, the expansion of the action along the paths

makes it impossible to obtain calculable expressions for the pre-factor in the expression of the wave

function (already at third order, the integral corresponds to intractable Airy functions [2]), while in

the linearized correlation function, it kills the emergence of delta functions that univocally determine

the semi-sum path. In mixed quantum classical calculations, we refer to the Wigner Liouville

formalism, but analogous problems appear, for example, in the iterative linearized propagation

methods, including higher order terms in the mass ratio expansion of the propagator introduces terms

in the phase space evolution of the bath that cannot be integrated numerically. In this paper, we

summarize (in the spirit of an extended review) a recently developed method [30] attempting to

overcome this problem. In this approach, the focus is not directly on the dynamics, but, rather, on

statistical time-dependent averages, which are linked (via linear response theory) to experimental

observables. In particular, we focus on time correlation functions expressed in the symmetrized form

first introduced by Schofield [31]:

GA,B(t; β) =
1

Z
Tr
{
Âe

i
h̄
Ĥt∗c B̂e−

i
h̄
Ĥtc
}

(5)
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where tc = t − iβh̄
2

. The time Fourier transform of this complex time correlation function is

related to the time Fourier transform of Equation (3) by a known multiplicative factor so both

carry equivalent information. Furthermore, the symmetrized function shares some properties with its

classical counterpart (e.g., it is a real function of time), which makes it a convenient starting point for

developing approximations [32–37]. In the following, we summarize how the path integral formalism

can be used to express the full complex time evolution in Equation (5) as a concatenation of segments

alternating imaginary (i.e., thermal sampling) and real-time propagation. The real-time propagation

is then reduced to classical evolution via a linearization approximation. In our approach, the number

of segments, L, plays a role analogous to that of the number of beads in standard thermal path

integral calculations. Although the precise nature of the limit for L → ∞ is still under investigation,

this analogy and numerical calculations on relatively simple model systems indicate that increasing

the number of segments systematically improves the results with respect to classical dynamics or to

the previously mentioned linearization schemes. It may be worth stressing that, in this approach, the

focus is on computing the correlation by defining an appropriate stochastic process inspired by the

full quantum expression. Adopting this perspective, the dynamics does not have any meaning per se
and is viewed simply as part of a sampling mechanism, which is implemented via a generalized

Monte Carlo scheme. While this circumvents some of the inconsistency of standard semi-classical

and mixed quantum classical schemes and justifies further investigation of the method, it remains

to be seen whether the approach outlined in the following has practical value. In fact, due to the

presence of an increasing number of phase factors in the Monte Carlo estimator of the correlation

function, the numerical cost of the calculation scales very badly with the number of segments (and of

degrees of freedom). In the second part of the paper, we then summarize (again reviewing published

material) how, when only one segment is considered, it is possible to improve the situation via a

cumulant expansion that tames the phase factor present already in this lowest order approximation

of the result [38]. We then present a new formal development of our approach that generalizes the

use of cumulants to the case of more than one propagation segment, and we give the explicit formal

expression for the case L = 2. Future work will focus on testing the accuracy of this new result.

We conclude by stating some of the open questions related to the approach and indicating possible

further developments.

2. Theory

Let us begin by expressing the symmetrized correlation function, Equation (5), in the coordinate

representation. Inserting resolutions of the identity, we have:

GA,B(t; β) =
1

Z

∫
dr0dr̃0drtcdr̃tc〈r0|Â|r̃0〉〈r̃0|e

i
h̄
Ĥt∗c |r̃tc〉〈r̃tc |B̂|rtc〉〈rtc |e−

i
h̄
Ĥtc |r0〉 (6)

The structure of the integrand is represented in Figure 1 in which we show the sequence of

matrix elements to be evaluated. Reading the figure from the bottom left corner up, we see the

matrix element of operator Â, the backward complex time propagator (from r̃0 to r̃c), the matrix

element of operator B̂ and, finally, the forward propagator that closes the circuit representing the
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trace operation. The difficult task is the evaluation of the propagators in complex time. To set the

stage for the approximation we intend to perform, we use the time composition property to divide the

two propagations into L segments of duration τc = tc/L (τc need not be infinitesimal) and rewrite,

for example:

〈rtc |e−
i
h̄
Ĥtc |r0〉 =

∫
dr1...drL−1

L−1∏
J=0

〈rJ+1|e−
i
h̄
Ĥτc |rJ〉 (7)

with rL = rtc . Introducing an analogous expression for the backward propagator changes the scheme

of the integrand as sketched in Figure 2, where each propagation lag (from J to J + 1) is indicated

by the segment with arrows. We can now pair corresponding segments of propagation along the

forward and backward paths, as indicated by the red frame in the figure, and define the product

K(rJ+1, rJ ; r̃J+1, r̃J) = 〈r̃J+1|e
i
h̄
Ĥτ∗c |r̃J〉〈rJ+1|e−

i
h̄
Ĥτc |rJ〉 to rewrite the symmetrized correlation

function as:

GA,B(t; β) =
1

Z

∫
dr̃LdrL〈r̃L|B̂|rL〉

{
L−1∏
J=1

∫
dr̃JdrJK(rJ+1, rJ ; r̃J+1, r̃J)

}

×
∫

dr0dr̃0K(r1, r0; r̃1, r̃0)〈r0|Â|r̃0〉 (8)

Figure 1. Schematic representation of the integrand in the coordinate representation of

the symmetrized time correlation function; see the text.

Figure 2. Schematic representation of the break up of the propagators in complex time:

the short complex time propagators are represented as the segments with arrows along

the forward and backward path, and the pairing mentioned in the text to obtain the K

propagators is indicated by the red frame.
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The expression above is an exact, incalculable, expression of the time correlation function. In

the following, we will work on the generic K to obtain an approximate expression for it that has the

key advantage of being analytically known as a product of functions calculable via an appropriate

combination of Monte Carlo and molecular dynamics. To obtain this result, we first separate the real

from the imaginary time part of the propagation by inserting one more resolution of the coordinate

identity, thus:

K(rJ+1, rJ ; r̃J+1, r̃J) = 〈r̃J+1|e
i
h̄
Ĥτ∗c |r̃J〉〈rJ+1|e−

i
h̄
Ĥτc |rJ〉 (9)

=

∫
dr̃νJdr

ν
J〈r̃J+1|e

i
h̄
Ĥτt |r̃νJ〉〈r̃νJ |e−τβĤ |r̃J〉〈rJ+1|e−

i
h̄
Ĥτt |rνJ〉〈rνJ |e−τβĤ |rJ〉

The two (thermal) propagators in the integrand above, associated with the inverse temperature,

τβ , can be expressed relatively easily in the path integral formalism as positive definite functions

and interpreted, via the so-called classical isomorphism, as probability densities associated with

systems of polymers. Well established techniques allow one to sample these densities. The

real-time propagators, on the other hand, are prohibitive, even in path integral form. Feynman’s

prescription requires, in fact, to generate “all possible paths” connecting the initial and final point

of the propagation, but, in contrast to the thermal case in which the probability density provides us

with a sampling mechanism for the paths, no rule is given to determine them. Furthermore, even if

we had a recipe for generating the paths, we would have to sum a (potentially infinite) set of phase

factors, the exponential weighting each path. Capturing accurately the interference among these

factors is essentially impossible (this is the well-known dynamical sign problem). As shown in detail

in [30], progress can be made by deriving an approximate form for the product of the two real-time

propagators in Equation (9). In analogy with the standard linearization methods mentioned in the

Introduction, this is done most conveniently using a hybrid coordinate momenta representation of the

propagators. The propagation time is divided into n intervals of length δt = τt/n, and appropriate

resolutions of the identity are introduced to isolate matrix elements of the propagator for each short

time interval. As usual, after a Trotter break up of the exponential of the Hamiltonian is performed,

the (diagonal) exponential of the potential can be trivially evaluated. The matrix element of the

kinetic energy part of the propagator, on the other hand, is easily evaluated by inserting a resolution

of the identity in the momenta. Contrary to what is done in standard path integrals, however, the

resulting generalized Gaussian integral in the momenta is not performed analytically, but left in the

expression. This sequence of operations results in:

〈r̃J+1|e
i
h̄
Ĥτt |r̃νJ〉〈rJ+1|e−

i
h̄
Ĥτt |rνJ〉 ≈

∫ n∏
l=1

dp̃lJ
2πh̄

n−1∏
l=1

dr̃ν+l
J e−

i
h̄
S({r̃,p̃})

∫ n∏
l=1

dplJ
2πh̄

n−1∏
l=1

drν+l
J e

i
h̄
S({r,p})(10)

where ({r, p}) indicates the full set of path variables and S({r, p}) =∑n
l=1

{
plJ(r

(ν+l)
J − r

(ν+l−1)
J )− δt[(p

l
J)

2/2m− V (r
(ν+l−1)
J )]

}
with analogous definitions for the

tilde variables. The expression above becomes exact for n → ∞. At this stage, the forward and

backward path integrals above are independent. Proceeding in analogy with standard linearization

methods, we combine them by introducing the semi-sum and difference variables:

r̄ν+l
J =

rν+l
J + r̃ν+l

J

2
p̄lJ =

plJ + p̃lJ
2
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Δrν+l
J = rν+l

J − r̃ν+l
J ΔplJ = plJ − p̃lJ (11)

with l = 0, ..., n. In these variables, the difference of actions in Equation (10) is a linear function

in ΔplJ . Integrals over the difference momenta can then be performed analytically and result in a

set of delta functions (this originates the last set of deltas in Equation (12) below). The dependence

of the difference of the actions on Δr
(ν+l)
J is more complicated: they appear in an explicit, linear

term, but also in the argument of the potentials. This dependence can also be linearized via the

expansion V (r̄
(ν+l)
J + Δr

(ν+l)
J /2) − V (r̄

(ν+l)
J − Δr

(ν+l)
J /2) = ∇V (r̄

(ν+l)
J )Δr

(ν+l)
J + o[(Δr

(ν+l)
J )3].

This is the key approximation that we perform. An appropriate rescaling of the variables shows that

the approximation is equivalent to a second order expansion in h̄ of the phase, but a more precise

analysis of its validity is required and under consideration (see, also, the discussion at the end of this

section). Bearing this in mind, we observe that, once the expansion is performed, also the integrals

on the Δr
(ν+l)
J variables can be analytically solved, producing a second set of delta functions. Thus:

〈r̄νJ − ΔrνJ
2

|e i
h̄
Ĥτt |r̄J+1 −

ΔrJ+1

2
〉〈r̄J+1 +

ΔrJ+1

2
|e− i

h̄
Ĥτt |r̄νJ +

ΔrνJ
2

〉 ≈∫
dr̄ν+1

J ...dr̄ν+n−1
J

∫
dp̄1J ...dp̄

n
Je

i
h̄
p̄nJΔr

(ν+n)
J e−

i
h̄
p̄1JΔrνJ (12)

×
n−1∏
l=1

δ
[
(p̄

(l+1)
J − p̄lJ) + δt∇V (r̄

(ν+l)
J )

] n∏
l=1

δ

[
p̄lJ
m

δt − (r̄
(ν+l)
J − r̄

(ν+l−1)
J )

]
The linearization approximation then has two crucial consequences: (1) by allowing the

integration over the difference paths, it transforms the quantum expression of the correlation function,

which, in the beginning, includes two propagators and, therefore, two paths, into a formula where

only the semi-sum path appears, thus leading to a structure more similar to classical time correlations

in which only one propagation is present; (2) (perhaps more importantly) it forces the semi-sum path

to follow a, classical, Hamiltonian trajectory, as identified by the arguments of the delta functions.

The final step to obtain a suitable expression for Equation (9) does not introduce any further

approximation. Let us consider again the product of the thermal propagators in the equation. As

mentioned above, these can be written via standard coordinate path integrals. Once this is done, it is

convenient to introduce also for these propagators semi-sum and difference path (this is important, in

particular, to ensure that the common boundaries of the thermal and real-time propagations, rνJ and

r̃νJ , are represented coherently). In the semi-sum and difference variables, the product of the thermal

propagators takes the form:

〈r̄J − ΔrJ
2

|e−Ĥτβ |r̄νJ − ΔrνJ
2

〉〈r̄νJ +
ΔrνJ
2

|e−Ĥτβ |r̄J +
ΔrJ
2

〉 ≈
[

m

2πh̄δβ

](ν−1)

∫
dr̄1J ...dr̄

ν−1
J

∫
dΔr1J ...dΔrν−1

J e−δβ
∑ν

λ=1[V (r̄
(λ−1)
J +Δr

(λ−1)
J /2)+V (r̄

(λ−1)
J −Δr

(λ−1)
J /2)] (13)

× e−
σ2
p
2

∑ν
λ=1(ΔrλJ−Δr

(λ−1)
J )2e

− 1

σ2
r

∑ν
λ=1(r̄

λ
J−r̄

(λ−1)
J )2

with σ2
p = m/2δβh̄ and σ2

r = h̄δβ/2m. Substituting Equations (12) and (13) in Equation (9), it can be

noted that the integral over Δrν is of a Gaussian form and can be performed analytically. Introducing
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the notation XJ = ({r̄λJ}λ=0,...ν , {ΔrλJ}λ=0,...ν−1, {r̄ν+l
J }l=1,...n−1, {p̄lJ}l=1,...,n), after integration over

Δrν , the linearized short time propagator can be written as:

K l(r̄J+1,ΔrJ+1; r̄J ,ΔrJ) =

∫
dXJe

i
h̄
p̄nJΔrJ+1ρ(XJ , r̄J+1)e

− i
h̄
p̄1JΔr

(ν−1)
J (14)

with:

ρ(XJ , r̄J+1) =
n−1∏
l=1

δ
[
(p̄

(l+1)
J − p̄lJ) + δt∇V (r̄

(ν+l)
J )

] n∏
l=1

δ

[
p̄lJ
m

δt − (r̄
(ν+l)
J − r̄

(ν+l−1)
J )

]
× e−δβ

∑ν
λ=1[V (r̄

(λ−1)
J +Δr

(λ−1)
J /2)+V (r̄

(λ−1)
J −Δr

(λ−1)
J /2)] (15)

× e
− (p̄1J )2

2σ2
p e−

σ2
p
2

∑(ν−1)
λ=1 (ΔrλJ−Δr

(λ−1)
J )2e

− 1

σ2
r

∑ν
λ=1(r̄

λ
J−r̄

(λ−1)
J )2

(The Gaussian in p̄1J , the first factor in the last line of the expression above, is the result of the

integration over Δrν .) Substituting the approximate form of the propagator between complex time

slices J and J + 1, we obtain for the symmetrized correlation function:

G
(L)
A,B(t, β) =

1

Z

∫
dΔrtcdr̄tc〈r̄tc +

Δrtc
2

|B̂|r̄tc −
Δrtc
2

〉

×
L−1∏
J=1

∫
dXJe

i
h̄
p̄nJΔrJ+1ρ(XJ , r̄J+1)e

− i
h̄
p̄1JΔr

(ν−1)
J (16)

×
∫

dX0e
i
h̄
p̄n0Δr1ρ(X0, r̄1)e

− i
h̄
p̄10Δr

(ν−1)
0 〈r̄0 +

Δr0
2

|Â|r̄0 −
Δr0
2

〉

The expression above is interesting. First of all, assuming that the linearization approximation of

each short time propagator improves when the propagation time goes to zero, there is potential for

systematic improvement with increasing L, and indeed, numerical tests [30] indicate that this is the

case. However, the limit for large L, and, in particular, the validity of the expansion in the difference

path at the intermediate times of the propagation, is delicate. In fact, while it can be argued that

the matrix elements of operators Â and B̂ (usually diagonal) force the forward and backward paths

(the free and tilde variables in the upper panel of Figure 1) to start and end close to one another,

and, therefore, that only small values of the difference among the paths will be relevant close to the

initial and final time, truncating the expansion of the difference of the potentials along the whole pair

of paths is considerably more delicate. This issue, and the nature of the dynamics when L → ∞,

are currently under investigation. In the meantime, note that the ρ functions are positive definite,

so that they can be used to define a probability density for sampling the overall path variables (i.e.,
the full set of {XJ}J=0,...,L−1 variables) as Π = 1

Ω

∏L−1
J=0 ρ(XJ , r̄J+1), where Ω is the (unknown)

normalization factor. The method to deal with this factor is illustrated in the next subsection for

the case L = 1 and can be straightforwardly generalized to L > 1. The probability density, Π,

corresponds to a stochastic process, which concatenates the thermal and time propagations within

each short time propagator, K l. The structure of the propagations in real and imaginary time is

determined by the definition of ρ in Equation (15) and can be described as follows. For L = 1,

there is only one real-time leg of duration τt = t, while the imaginary time propagation corresponds
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to an inverse temperature β/2 for both the semi-sum and difference variables. The upper panel of

Figure 3 illustrates these propagations with a sketch. In the figure, the horizontal axis is time and

the vertical axis temperature. The vertical plane represents the space of configurations associated

with the thermal path integral for both the semi-sum and difference variables; the thermal beads are

represented with the red circles. The harmonic interactions in the thermal paths are indicated with

zigzagged lines connecting adjacent beads, while the interactions among the two paths due to the

potential are drawn as dashed lines. Note that the difference variables path, on the left in the vertical

plane in the figure, has one less bead than the semi-sum variables path, due to the integration carried

out to isolate a Gaussian probability density for the initial momenta. The propagation in real time is

drawn as the curve on the horizontal plane, which represents the phase space of the system. The red

and golden circle at t = 0 represents the initial conditions for the time evolution: the initial coordinate

coincides with the last bead of the thermal path in the semi-sum variables, while the initial momentum

is sampled from the Gaussian mentioned before. A phase factor is associated with the initial point of

the classical propagation. The exponent of this phase couples the initial momentum of the trajectory

with the last bead of the thermal path in the difference variables. A phase factor is also associated with

the final point of the classical propagation, where, for L = 1, the exponent couples the momentum

at time t with the variable, Δr1. The integrals over Δr
(ν−1)
0 and Δr1 in the expression for G1

AB(t; β)

involve products of these phase factors with the matrix elements of operators Â and B̂. The end-point

integral reconstructs the Wigner transform of the operator, B̂. To see this, consider Equation (16). For

L = 1, the second line of the equation is absent, and boundary conditions impose Δr1 = Δrtc (with

similar relationships for the sum variables). With this notation, the integral over Δrtc is recognizable

as the Wigner transform of operator B̂. The structure of the sequence of imaginary and real-time

propagation for generic values of L can be inferred from the lower part of Figure 3, where we show

what happens for L = 2. In this case, there are two segments of classical dynamics, each of duration

t/2, and two propagations of semi-sum and difference variables in imaginary time, taking the system

from zero inverse temperature to β/4 and from β/4 to β/2, respectively. As before, the first segment

of dynamics starts, with a Gaussian initial momentum, from the last bead of the semi-sum variable

thermal path at t = 0. The end-point of this leg of propagation is the initial configuration for the

semi-sum variable thermal path at t/2, and the second segment of dynamics has as initial conditions

the final coordinate of the semi-sum variable thermal path and a new momentum sampled from a

Gaussian. The variances of the Gaussians associated with the momentum sampling are doubled with

respect to the case L = 1. The integrand now contains four phase factors coupling the momenta at the

beginning and end of each classical dynamics segment with the values of the difference path variables

at the end and at the beginning of each thermal slice, respectively. The phase factor that depends on

Δr2p̄
n
1 (i.e., the phase factor computed at time t) can again be combined with the matrix element of

operator B̂ to obtain the Wigner transform of this operator at the final time of the propagation, so

that only three phases remain to contribute to the result. In general, G
(L)
AB(t; β) involves L segments

of classical propagation, each of duration t/L, interspersed with L pairs of thermal paths in the

semi-sum and difference variables, each at an inverse temperature β/2L. The rules for connecting the

coordinate and momenta at the initial and final time of the dynamics with the final and initial points
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of the thermal paths and for constructing the 2L − 1 phase factors contributing to the integrand (the

phase factor at time t can always be absorbed in the Wigner transform of operator B̂) are completely

analogous to the L = 2 case.

Figure 3. Graphic representation of the propagators in real and imaginary times

contributing to the approximate Schofield function for the case L = 1 (upper panel)
and L = 2 (lower panel). The horizontal axis is real time, while the vertical axis

is inverse temperature. The mean and difference coordinates in the thermal paths are

represented as red dots on the vertical planes (in the upper panel, for example, ν = 6,

i.e., we use six beads to represent the thermal path integrals at inverse temperature

β/2). Segments of classical propagation in phase space are represented as continuous

red curves in the horizontal planes. The golden circles indicate the connection between

the coordinate-momentum representation of the dynamics in real time (horizontal planes)

and the representation of the dynamics in imaginary time that takes place in coordinate

space (vertical planes).

β

2

t

β

4

β

2

t

2
t
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A Monte Carlo algorithm to sample Π for different values of L was illustrated in [30]. This

Monte Carlo has several non-standard features, most notably the fact that the normalization of

the probability density is unknown and that Π contains products of delta functions, i.e., singular

distributions. These difficulties can be circumvented as detailed in [30]. The first one is tackled by

recasting (without further approximations) Equation (16) in the form of a ratio of expected values.

The second is addressed via an appropriate choice of the trial moves and acceptance probabilities.

The most serious numerical difficulty, unfortunately, comes from the estimator of the observable.
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In fact, from Equation (16), it can be seen that, in addition to the matrix elements of the operators,

the integrand contains a product of phase factors to be evaluated at the beginning and end of each

real-time propagation segment. As mentioned above, the number of these phase factors for the

“order L” approximation of the symmetrized correlation function is 2L − 1, and their presence

rapidly hinders the convergence of the calculation. Furthermore, for a system of n particles in three

dimensions, the phases take the (generic) form e±
i
h̄
p·Δr, where p and Δr are 3n-dimensional vectors.

The number of phase factors thus scales linearly with the number of degrees of freedom, so that, even

for small values of L, convergence is problematic. The numerical tests performed so far on simple

model systems confirm both the interest and the difficulties of Equation (16). In [30], we computed

position autocorrelation functions for a set of one-dimensional systems (e.g., quartic potential) at

temperatures low enough to ensure that the system was in the quantum regime. We observed that

increasing the number of complex time slices did systematically improve the length of time for

which we were able to get accurate results. However, the numerical effort to go beyond L = 3,

though not exponential in time, became essentially prohibitive, even for these simple systems. To

indicate possible means to reduce the numerical effort involved in these calculations, we now discuss

a recent development of the method developed to address the problem of the phase in the simplest

case, L = 1, in which it presents itself. We then illustrate how to formally extend this development,

which, in its simplest form, has been successfully applied to realistic models of condensed phase

systems, to the case L > 1.

3. L = 1: Fully Linearized Approximation

The expression for the L = 1 approximation of the symmetrized correlation function is given by

(see Equation (16)):

G
(1)
A,B(t; β) =

1

Z

∫
dΔrtcdr̄tc

∫
dX0〈r̄tc +

Δrtc
2

|B̂|r̄tc −
Δrtc
2

〉e i
h̄
p̄n0Δrtc

× ρ(X0, r̄tc)e
− i

h̄
p̄10Δr

(ν−1)
0 〈r̄0 +

Δr0
2

|Â|r̄0 −
Δr0
2

〉 (17)

We are now going to simplify the expression above using four steps: (1) observe that the integral

over Δrtc in the first line of the equation above defines the Wigner transform of operator B̂ (see,

also, the definition below Equation (4)); (2) note that the product of δ functions in the definition

of ρ (Equation (15)) forces (r̄tc , p̄
n
tc) to be endpoints of a classical trajectory of length t starting at

(r̄ν0 , p̄
1
0), so that, after integration over r̄(ν+l) (l = 1, ..., n−1) and p̄l (l = 1, ..., n), (r̄tc , p̄

n
tc) = (rt, pt)

(where (rt, pt) denote the classically evolved variables); (3) choose, for the sake of simplicity, to

specialize the discussion to an operator, Â, which is diagonal in the coordinate representation (the

case of generic operators is considered in the Appendix of [39]). This choice, producing a δ(Δr0) in

the evaluation of the matrix elements, allows one to integrate also over Δr0. The surviving variables

(i.e., the semi-sum and difference variables of the thermal path integral and the initial momentum

of the classical trajectory) will be indicated collectively as Γ = {p1, r0, ...., rν ,Δr1, ...,Δrν−1};

(4) simplify the notation by dropping the bar from the semi-sum variables and the subscript, which
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identifies the J = 0 propagation segment in Equation (16), since only one segment is now present.

Once these operations are performed, the correlation function can be written as:

G
(1)
A,B(t; β) =

Q̂

Z

∫
dΓBw(rt, pt)P (Γ)e−

i
h̄
p1Δr(ν−1)

A(r0) (18)

with:

P (Γ) =
1

Q̂
e
− (p1)2

2σ2
p e−2δβV (r0)e

− 1

2σ2
r

∑ν
λ=1(r

λ−rλ−1)2

e−
σ2
p
2

∑ν−1
λ=2(Δrλ−Δrλ−1)2e−

σ2
p
2
(Δr1)2

× e
−δβ

∑ν
λ=2

[
V
(
r(λ−1)+Δrλ−1

2

)
+V

(
r(λ−1)−Δrλ−1

2

)]
(19)

and Q̂ the normalization of P (Γ). Note that the expression above for the probability is quite

standard, being an explicit function of the semi-sum and difference variables, which can be sampled

via Monte Carlo, multiplied by a Gaussian term for the momenta. As mentioned in the previous

section, the ratio of the normalization over the partition function, which appears in Equation (18),

is, in general, not known, and we estimate it via the autocorrelation of the identity, G
(1)
I,I = 1 =

Q̂
Z

∫
dΓP (Γ)e−

i
h̄
p1Δr(ν−1)

. Using this approach, the L = 1 estimator of the correlation function is

given by the following ratio of expectation values over P (Γ):

G
(1)
A,B(t; β) =

〈Bw(rt, pt)e
− i

h̄
p1Δr(ν−1)

A(r0)〉P
〈e− i

h̄
p1Δr(ν−1)〉P

(20)

As anticipated, both in the numerator and denominator of this expression, a phase factor appears,

which, for high dimensional systems, hinders an efficient convergence of the calculation. To alleviate

this problem, we proposed a method, described in detail in [39], which starts by obtaining an

alternative expression for G
(1)
A,B. As will be shown in the following, the new expression does not

introduce further (analytical) approximations, but it has the advantage of eliminating the phase

factor from the observable. Let us consider in more detail the structure of the probability, P (Γ).

This probability is given by the product of a Gaussian for the momenta, ρG(p) ∝ e
− p2

2σ2
p (note

that, with respect to Equation (19), we dropped the superscript, 1, on the momenta to simplify the

notation), times a joint probability function for the semi-sum and difference thermal variables to be

indicated in the following as ρ̃(r,Δr), where we have introduced the notation r = {r0, ..., rν} and

Δr = {Δr1, ...,Δr(ν−1)}. This joint probability (whose form can be inferred from Equation (19) by

taking out the momentum Gaussian) is most conveniently expressed as:

ρ̃(r,Δr) = ρc(Δr|r)ρm(r) (21)

where:

ρm(r) =
1

Q̂
e−2δβV (r0)e

− 1

2σ2
r

∑ν
λ=1(r

λ−rλ−1)2
∫

dΔre−
σ2
p
2

∑ν−1
λ=2(Δrλ−Δrλ−1)2e−

σ2
p
2
(Δr1)2

× e
−δβ

∑ν
λ=2

[
V
(
r(λ−1)+Δrλ−1

2

)
+V

(
r(λ−1)−Δrλ−1

2

)]
(22)

is the marginal probability for the semi-sum variables and ρc(Δr|r) ≡ ρ̃(r,Δr)/ρm(r) is the

conditional probability for the difference variables given the semi-sum variables. This rewriting
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of the probability density is convenient because the phase factors in Equation (20) depend only on

the momenta and difference variables. We can use this observation to define:

F (p, r) =

∫
dΔre−

i
h̄
pΔr(ν−1)

ρc(Δr|r) (23)

which is the average of the phase with respect to the conditional probability density, and investigate

the properties of this function to see if we can use them to improve the convergence of our

calculations. To that end, note that F is also, by definition, the cumulant generating function of the

variable Δr(ν−1) with respect to the conditional probability, ρc(see, for example, [40,41] for previous

use of cumulants in this field). This means that the coefficients of the Taylor series expansion (with

respect to −ip/h̄):

lnF (p, r) =
∞∑
n=1

(−ip/h̄)n

n!
〈
(
Δr(ν−1)

)n〉cρc(Δr|r) (24)

(these coefficients are indicated above as 〈
(
Δr(ν−1)

)n〉cρc(Δr|r)) are the cumulant moments of Δr(ν−1).

Importantly, the conditional probability density is an even function of the difference variables,

implying that only even order terms in the series above are non-zero and that the series corresponds

to a real function that we will denote in the following with E(p, r). We can then express the average

of the phase as:

F (p, r) = e−E(p,r) (25)

i.e., a positive definite function of the momenta and the semi-sum variables. We now use the function

above to define a new probability density:

P(p, r) =
ρg(p)e

−E(p,r)ρm(r)∫
dpdrρg(p)e−E(p,r)ρm(r)

(26)

and note that, by direct substitution of this definition in the (explicit) expression of Equation (20),

we obtain:

G
(1)
A,B(t; β) = 〈Bw(rt, pt)A(r

0)〉P (27)

The key advantage of the expression above is that the observable does not contain phase factors

anymore and is, therefore, well suited for a Monte Carlo estimate. Sampling the distribution, P ,

however, is non-trivial, since this probability density contains two factors, e−E(p,r) and ρm(r), that do

not have an explicit analytic form, but, for each value of r and p, can only be estimated numerically.

The numerical estimate of E(r, p), in particular, requires one to truncate the cumulant series at a

given order. The convergence of the calculation with respect to truncation of the series can always

be checked numerically, and, although the cost scales up where terms of higher order are included,

it does not present any particular difficulty. (In all calculations performed so far, a second order

cumulant expansion proved sufficient.) In the following subsection, we briefly describe how to

combine two schemes, known as the Kennedy and Penalty methods, for Monte Carlo sampling of

noisy probability densities and obtain G
(1)
A,B(t; β). Our goal is to highlight the main differences among

these schemes and standard Monte Carlo and to indicate where the algorithm is most affected by

them. A detailed description of the algorithm can be found in [38,39].
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3.1. Noisy Monte Carlo Algorithm

To simplify the discussion, we introduce some notation. Let us indicate the coordinate-dependent

Gaussian terms in Equation (19) as:

e
− 1

2σ2
r

∑ν
λ=1(r

λ−r(λ−1))2

= e−Vr(r)

e−
σ2
p
2

∑ν−1
λ=1(Δrλ−Δr(λ−1))2 = e−VΔ(Δr) (28)

(above Δr0 = 0) and write the potential term as:

e−δβ
∑ν

λ=2

[
V(r(λ−1)+Δr

2

(λ−1)
)+V(r(λ−1)−Δr

2

(λ−1)
)
]
e−2δβV(r0)

= e−δβV̄(r,Δr) (29)

We also rewrite the marginal probability, ρm(r), defined in Equation (22), isolating the terms that

do not depend on Δr and have an explicit analytic expression, thus:

ρm(r) =

∫
dΔrρ̃(r,Δr) =

1

Q
e−Vr(r)

∫
dΔr e−δβV̄(r,Δr)e−VΔ(Δr)

=
1

Q
e−Vr(r)ρ′m(r) (30)

With the definitions above, P(p, r) takes the form:

P(p, r) =
1

QρG(p)e
−E(r,p)e−Vr(r)ρ′m(r) (31)

where Q is the normalization. The scheme that we use to perform the sampling is based on earlier

work by Ceperley [42] and Kennedy [43]. Adapting their ideas to our case, we will introduce a

Monte Carlo algorithm in which the definition of the probability to generate a new state of the

system by changing either the coordinates or the momenta of the particle (unlike what happens in

classical canonical densities, in our probability, the variables, p and r, are not independent (with the

momenta Gaussian and then integrable) and must be treated together) and/or to accept this new state

is modified to guarantee that detailed balance is satisfied also when ρ′m(r) and E(r, p) are estimated

with significant noise. Both the Ceperley and Kennedy scheme require the introduction of appropriate

numerical estimators of the unknown functions. These estimators will be indicated with calligraphic

fonts.

The Monte Carlo scheme to sample Equation (31) is constructed as follows. Choose, with

probability 1/2, if the move will involve r or p.

(1) A move on p has been selected:

choose a new momentum according to p′ = p + δp, where δp is a uniform random number

centered on zero (the magnitude of the displacement is chosen so as to optimize the acceptance).

Taking into account that the r variables are not being updated, detailed balance for this trial move

takes the form:

ρG(p)e
−E(r,p)Ap(p → p′) = ρG(p

′)e−E(r,p′)Ap(p′ → p) (32)
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where Ap(p → p′) is the acceptance probability. The detailed balance relationship above has the

same form as the one discussed by Ceperly et al. within the penalty method [42], a generalized

Monte Carlo for sampling a density given by the exponential of a function, in our case E(., .), known

with statistical errors. According to the penalty method, if a numerical estimate, ΔEp(p′, p; r), of the

difference E(r, p′) − E(r, p) has been obtained (for example, by averaging Ns values of a specific

estimator) and an estimate of its variance, χ2
p, is also known, detailed balance can be satisfied by

defining the acceptance as:

Ap(p → p′) = min
[
1,

ρG(p
′)

ρG(p)
e
−ΔEp(p′,p;r)−u

χ2
p

]
(33)

where:

uχ2
p
=

χ2
p

2
+

χ4
p

4(Ns + 1)
+ ... (34)

The expression for the acceptance probability differs from the standard

Metropolis prescription for the presence of uχ2
p

and is valid when χ2
p/n <

1/4(herenisthesizeofthesampleusedtoestimatetheenergydifference) [42]. In the limit of

an infinitely precise estimate of the difference, uχ2
p
→ 0 and the standard criterion is recovered;

when non-zero, this function corrects, on average, for the effect of the noise.

(2) A move on r has been selected:

in this case, indicating with T r(r → r′) and Ar(r → r′) the probability to generate and accept a

new configuration, respectively, detailed balance is expressed, after simplifying ρG(p), as:

e−E(r,p)e−Vr(r)ρ′m(r)T
r(r → r′)Ar(r → r′) =

e−E(r′,p)e−Vr(r′)ρ′m(r
′)T r(r′ → r)Ar(r′ → r) (35)

The structure of this relationship is analogous to the one considered by Kennedy et al. [43], who

adapted Monte Carlo sampling to probability densities given by an exponential term times a “noisy”

(positive definite) function. They showed that detailed balance is satisfied if states are generated

according to the probability:

T r(r → r′) ∝ e−E(r′,p)e−Vr(r′) (36)

(a method to sample T r(r → r′) is described after the next equation) and accepted with probability:

Ar(r → r′) =

⎧⎨⎩cU(r → r′) if e−δβV(r,0) > e−δβV(r′,0)

c if e−δβV(r,0) ≤ e−δβV(r′,0)
(37)

Above, U(r → r′) is an unbiased estimator of the ratio, ρ′m(r
′)/ρ′m(r), and c < 1 is a constant

that ensures Ar(r → r′) ∈ [0, 1] (for details on the meaning and choice of c, see [43] and the

discussion on page 8 of [39]). The conditions on the exponential of the potential enforce an

ordering criterion on the states, whose optimal choice depends on the problem (here, we used the

one adopted in our previous work [39]). In the usual implementation of the Kennedy method,

the exponential part of the probability density is assumed to be known analytically, and the states
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are generated via a standard Monte Carlo method. In our case, the situation is more complicated,

since e−E(r′,p) is only known with noise. To solve this problem, we employ the penalty method

to obtain configurations distributed according to Equation (36). These configurations are generated

using a Monte Carlo with transition probability t(r → r′) ∝ e−Vr(r′) and acceptance probability

a(r → r′) = min[1, exp(−ΔEr(r′, r; p) − uχ2
r
)], where ΔEr(r′, r; p) is an unbiased estimator of

E(r′, p)− E(r, p), and uχ2
r

is defined in analogy with Equation (34).

This concludes the description of our Monte Carlo moves. The practical implementation of

this algorithm requires the definition of the numerical estimators, U(r → r′),ΔEp(p′,p; r) and

ΔEr(r′, r;p). While this is an important technical point, it only involves a set of calculations,

each performed via an auxiliary Monte Carlo move, that are quite standard. To provide a typical

example, we consider one of the estimators referring the reader to [39] for a detailed description of

the others. Let us then consider U(r → r′). This quantity, necessary in the Kennedy acceptance test,

see Equation (37), is obtained by writing the ratio of the marginal probabilities as:

ρ′m(r
′)

ρ′m(r)
=

∫
dΔr e−VΔ(Δr)e−δβV̄(r′,Δr)∫
dΔr e−VΔ(Δr)e−δβV̄(r,Δr)

=

∫
dΔr e−VΔ(Δr)e−δβV̄(r,Δr)e−δβ

[
V̄(r′,Δr)−V̄(r,Δr)

]
∫
dΔr e−VΔ(Δr)e−δβV̄(r,Δr)

(38)

= 〈e−δβ

[
V̄(r′,Δr)−V̄(r,Δr)

]
〉ρc(Δr|r)

whose unbiased estimator is:

U(r → r′) =
1

Na

Na∑
i=1

e−δβ

[
V̄(r′,Δri)−V̄(r,Δri)

]
(39)

where {Δri} are a sample distributed according to ρc(Δr|r). This sample is obtained via an

auxiliary (standard) Monte Carlo calculation over the conditional probability, ρc(Δr|r), in which

new configurations are generated according to T (Δr → Δr′) ∝ exp[−VΔ(Δr′)] (To do this, we

use the staging method [44], which allows one to sample exactly a probability density containing

Gaussian-like distributions, see Equation (28)), and moves are accepted or rejected based on

A(Δr → Δr′) = min
{
1, exp[−δβ(V̄ (r,Δr′)− V̄ (r,Δr)]

}
. As can be seen from the expression

above, calculating the estimator requires Na steps in the auxiliary Monte Carlo calculation. A similar

situation arises when the other estimators introduced above are considered, so that the total number

of Monte Carlo moves in our scheme is given by Nt = Nm × Na, where we indicated with Nm the

number of moves in the “main” Monte Carlo cycle (i.e., each choice of a move on r or p) and with

Na the number of auxiliary Monte Carlo steps per “main” move.

The computational overhead introduced by the auxiliary Monte Carlo calculation increases the

cost of our calculation, but it is very small compared to the number of moves necessary to converge

the estimate of Equation (20). The algorithm just described is, in fact, efficient enough to make

possible calculations on realistic condensed phase systems with relatively little numerical effort. In

particular, the algorithm was used to compute the dynamic structure factor of a model of liquid neon

composed of 64 atoms [38]. Details of the calculation can be found in [38]. Here, we show, in



339

Figure 4, our results (red triangles with error bars in the figure) and compare them with experiments

(green curve) and the results of a calculation (with the same empirical potential and simulation

parameters) performed by Poulsen et al. [45] using the linearized approximation for quantum time

correlation functions described in the Introduction (see Equation (4) and the discussion above it).

Figure 4. Dynamic structure factor for liquid neon (see the text). The solid green line

shows the experimental curve, our results (with error bars) are the red triangles. We also

report for comparison results obtained with the linearized IVRmethod by Polusen et al.
(see the Introduction); blue circles.
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The results show a rather pronounced asymmetry around zero, due to detailed balance, that indicates

the presence of relevant quantum effects in the system. The agreement between our calculations

and experiments is very good, as it is the agreement with the standard linearized calculation by

Poulsen (a state-of-the-art reference in the field). The numerical cost of the two calculations is very

similar (about a million Monte Carlo steps in total for initial condition sampling), showing that the

auxiliary steps, due to the noisy distributions in our approach, are essentially irrelevant. Indeed,

other tests indicate that, depending on the system, the overall cost of our method can be less than that

of alternative schemes with comparable or better accuracy. The approach described in this section,

for example, has also been used to obtain the infrared spectra of simple models of molecules in

the gas phase [46]. Although these systems are quite small, the calculations that we performed

are known to pose a considerable challenge to alternative, less rigorous methods, such as Centroid

Molecular Dynamics [47] and Ring Polymer Molecular Dynamics [48], which fail to capture the

spectra and/or introduce spurious features. In contrast, even though obtaining the exact intensities

is quite expensive, our method proved remarkably effective in identifying the positions of the peaks,

which could be obtained with only about one hundred Monte Carlo moves.
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3.2. L > 1

In this subsection, we present a new development of the approach summarized above that extends

the use of cumulants to pre-average the phase factors in the expression of the symmetrized correlation

function to the case L > 1 (This possibility came out in discussions with M. Monteferrante.). For

simplicity of notation, in this subsection, we describe how this can be done for L = 2, but the steps

that we shall use can be generalized to a larger number of segments. In the following, we report the

formal result, while the construction and test of an algorithm that generalizes the noisy Monte Carlo

scheme described in the previous section will be the object of future work. Let us begin by rewriting

the L = 2 approximation of the symmetrized correlation function, for diagonal Â, as follows (see

Equations (16) and (20) for structure and notation):

G
(2)
A,B(t;β) =

∫
dΓ1dΓ0Bw(r

(2)
t , p

(2)
t )

[
e−

i
h̄
p11Δr

(ν−1)
1 P (Γ1; r

n
0 )e

i
h̄
pn0Δr1

] [
e−

i
h̄
p10Δr

(ν−1)
0 P (Γ0)

]
A(r0)∫

dΓ1dΓ0

[
e−

i
h̄
p11Δr

(ν−1)
1 P (Γ1; rn0 )e

i
h̄
pn0Δr1

] [
e−

i
h̄
p10Δr(ν−1)

P (Γ0)
]

(40)

In the equation above, (r
(2)
t , p

(2)
t ) is the endpoint of the propagation obtained by combining

the two segments of classical dynamics described in the lower panel of Figure 3; Γ0 =

{p10, r00, ..., rν0 ,Δr10, ...,Δr
(ν−1)
0 } and Γ1 = {p11, r11, ..., rν1 ,Δr01, ...,Δr

(ν−1)
1 } indicate the variables

associated with the first and second set of thermal path integrals, respectively (the first set does

not include Δr00, since this variable can be integrated over for diagonal Â, and the second does not

include r01 ≡ rn0 , since this is the endpoint of the, deterministic, classical propagation from zero to

t/2 in Figure 3). P (Γ0) was defined in the previous section (see Equation (19)), and:

P (Γ1; r
n
0 ) = ρG(p

1
1)ρm(r1; r

n
0 )ρc(Δr1|r1) (41)

where r1 = {r11, ..., rν1} and Δr1 = {Δr01, ...,Δr
(ν−1)
1 }. The Gaussian probability for the momenta,

ρG(p
1
1), and the marginal, ρm(r1; r

n
0 ), and conditional, ρc(Δr1|r1), probabilities are defined in

analogy with the expressions introduced in Section 3, with the caveat that for J = 1 (and, in general,

for J > 0), the sum involving the potentials in the second line of Equation (22) runs from one to

ν − 1. In the marginal probability, we have also indicated the (parametric) dependence of the density

on rn0 , i.e., the endpoint of the classical propagation of the first segment, which corresponds, due

to the boundary condition mentioned above, to the first bead of the concatenated semi-sum thermal

path. The square brackets in Equation (40) isolate the terms that play the most significant role in

the following. The first bracket from the left (corresponding to the J = 0 term in the approximation

of the correlation function) is the same as the one we encountered in the previous subsection, while

the second shows the general structure of the terms involving the phase factors for J > 0. As

summarized when discussing Figure 3, in this bracket the first phase factor is given by the product

of the momentum at the endpoint of the first segment of classical dynamics (i.e., a variable fixed by

the classical evolution) and the first difference variable of the second thermal segment. The second

phase factor is given by the product of the initial momentum of the second leg of classical dynamics

(a variable to be sampled in analogy with p10) and the final difference variable of the thermal path.
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As in the L = 1 case, these phase factors do not depend on the semi-sum variables and can be

pre-averaged with respect to the conditional probability density. Let us indicate this average as:

F (πJ , rJ) =

∫
dΔrJe

− i
h̄
πJ ·δrJρc(ΔrJ |rJ) (42)

where, for J = 0, π0 = p10 and δr0 = Δr
(ν−1)
0 , while for J = 1, and, more in general, for J > 0,

πJ = {−pnJ−1, p
1
J} and δrJ = {Δr0J ,Δr

(ν−1)
J }. The equation above is formally identical to

Equation (23), with the important difference that, when J > 0, the phase is now given by the scalar

product of two vectors and can be recognized as the definition of the joint cumulant generating

function for the components of δrJ [40]. Although such joint cumulants are formally more complex,

the cumulant moments of δrJ are still given by the coefficients of the expansion:

lnF (πJ , rJ) =
∞∑

|λ|≥1

(−i)|λ|

λ!h̄|λ| π
λ
JCλ(rJ) (43)

For J = 0, the definition above is to be read as identical to Equation (24). For J = 1 (and,

in general, J > 0), λ = {λ1, λ2} is a vector of positive integers (including zero), |λ| is their sum,

λ! = λ1!λ2! and:

Cλ(rJ) = Cλ1,λ2(rJ) =

(
∂|λ| lnF (πJ , rJ)

∂(−pnJ−1)
λ1∂(p1J)

λ2

)
πJ=0

(44)

As in the previous subsection, the conditional distribution density is even with respect to the

difference variables, implying that only even terms are non-zero in Equation (43). The function

F (πJ , rJ) is then real and positive, so we can set F (πJ , rJ) = e−E(πJ ,rJ ) and define, in analogy with

Equation (26), the probability density:

P(πJ , rJ ; r
n
0 ) =

ρG(p
1
J)ρm(rJ ; r

n
0 )e

−E(πJ ,rJ )∫
dp1JdrJρg(p

1
J)ρm(rJ)e

−E(πJ ,rJ )
(45)

Substitution of the definition above in the expression for the symmetrized correlation function

shows that we can write the two-segment approximation as the following expectation value:

G
(2)
A,B(t; β) = 〈Bw(r

(2)
t , p

(2)
t )A(r0)〉P(2) (46)

where P (2) = P(π1, r1; r
n
0 )P(p10, r0) (with a straightforward generalization of the notation adopted

here, the L-segment approximation of the correlation function can be written as G
(L)
A,B(t; β) =

〈Bw(r
(L)
t , p

(L)
t )A(r0)〉P(L) , where P (L) =

∏L−1
J=1 P(πJ , rJ ; r

n
J−1)P(p10, r0)). The average above

presents the same immediate advantage of the L = 1 case in that the “observable” does not

contain any explicit phase factors. It also presents the same numerical difficulties, given that the

probability density contains analytically unknown quantities (the marginal probabilities, ρm(rJ), and

the cumulants). Although it is possible to construct generalization of the noisy Monte Carlo scheme

described in the previous section, it is not certain that the favorable convergence properties of the

auxiliary sampling necessary, in particular, for computing the cumulants (the decisive ingredient in

the L = 1 case) will be preserved in this more general situation. Developing and testing the most

appropriate algorithm for this generalization will be the focus of future work.
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4. Conclusions

In this paper, we summarized a recently developed method to approximate symmetrized quantum

time correlation functions. The method recasts the problem as the calculation of averages over

a stochastic process based on a linearized approximation of the complex time propagators in the

correlation function. This approximation can be enforced either on the full length of the evolution

(fully linearized approach) or in an iterative form obtained via the (complex) time composition

property of the evolution operators. Thanks to the use of a cumulant expansion, which tames the

phase factors present in the observable, the fully linearized approach has proven efficient and accurate

in calculations on moderately quantum systems in the condensed phase. The iterative form offers, in

principle, a way to improve the accuracy of the results with respect to the fully linearized case and

may be useful when higher order quantum effects must be kept into account. While the potential

for systematic improvement with respect to the fully classical limit for the dynamics is indeed

the most interesting feature of the approach (and the one that distinguishes it from other available

methods for which there is no way to improve upon the classical or semi-classical approximation),

the practical use of the approach for L > 1 is currently hindered by numerical instabilities. In the

final section of the paper, we have shown how to extend the use of the cumulant expansion to obtain

a formal expression for this case that does not require one to average phase factors in the observable.

This expression may be a promising starting point for considerable improvement of the algorithm

for more than one segment, and future work will focus on developing and testing an appropriate

algorithm. However, importantly, while numerical evidence on model systems supports the claim

that systematic improvements can be obtained by higher order iterations, an exact statement on the

convergence properties of the method is lacking, and further investigation is needed to formally assess

the features of the scheme.
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Abstract: Performing molecular dynamics in electronically excited states requires

the inclusion of nonadiabatic effects to properly describe phenomena beyond the

Born-Oppenheimer approximation. This article provides a survey of selected

nonadiabatic methods based on quantum or classical trajectories. Among these

techniques, trajectory surface hopping constitutes an interesting compromise between

accuracy and efficiency for the simulation of medium- to large-scale molecular systems.

This approach is however, based on non-rigorous approximations that could compromise,

in some cases, the correct description of the nonadiabatic effects under consideration

and hamper a systematic improvement of the theory. With the help of an in principle
exact description of nonadiabatic dynamics based on Bohmian quantum trajectories, we

will investigate the origin of the main approximations in trajectory surface hopping and

illustrate some of the limits of this approach by means of a few simple examples.

Keywords: nonadiabatic dynamics; trajectory surface hopping; Ehrenfest dynamics;

Bohmian dynamics; Born-Oppenheimer approximation

1. Introduction

Traditionally, ab-initio molecular dynamics (AIMD) is described within the so-called

Born-Oppenheimer approximation, which assumes that the electronic and nuclear dynamics can
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be adiabatically separated [1], due to a large difference in mass between nuclei and electrons.

Within this approximation, one usually solves the time-independent electronic Schrödinger equation

for a given nuclear configuration [2] and then computes the quantum mechanical forces acting on

the nuclei from the gradient of the corresponding eigenvalues, which depend parametrically on

the nuclear coordinates and form the so-called potential energy surfaces (PES). However, in the

description of most photophysical and photochemical processes, the electronic and nuclear dynamics

become entangled, and therefore, more accurate nonadiabatic molecular dynamics schemes that

go beyond the Born-Oppenheimer (BO) approximation are required. The most commonly used

ab initio nonadiabatic molecular dynamics schemes are those based on the mixed quantum/classical

propagation of an ensemble of (quasi-) classical trajectories [3–6], which, to some extent, reproduce

the quantum dynamics of the nuclei. These mixed quantum/classical methods are especially popular,

because they only require that the necessary electronic structure properties be computed on-the-fly,

i.e., only at the points in the configuration space visited during the dynamics, therefore making the

calculation of the full potential energy surfaces unnecessary. These approaches can be implemented

numerically using electronic structure methods, such as Kohn-Sham Density Functional Theory

(DFT) [7,8] and its time-dependent version (TDDFT) [9–12] or wavefunction-based approaches,

such as Complete Active Space Self-Consistent Field (CASSCF), Multireference Configuration

Interaction (MRCI) and Second-Order Approximate Coupled-Cluster (CC2) [13].

Among all nonadiabatic AIMD schemes, Tully’s fewest switches trajectory surface

hopping [14,15] (TSH) and its extensions to mixed quantum/classical dynamics [16] are probably

the most widely used. In the framework of TSH, the nuclear wave packets on the different PESs are

described as a swarm of independent classical trajectories, while the nonadiabatic couplings induce

hops of the trajectories from one electronic state to another; the occurrence of a trajectory hop is

governed by the evaluation of a hopping probability, which depends on the temporal evolution of

state amplitudes (Tully’s coefficients) and on the value of the nonadiabatic couplings.

Alternative schemes have been proposed for the description of the nonadiabatic dynamics

of the nuclear degrees of freedom, among which we quote semiclassical approaches [17,18],

extended surface hopping [19,20], quantum/classical Liouville approaches [21,22], hydrodynamic

nonadiabatic dynamics [23], linearized nonadiabatic dynamics (LAND-map) [24] or correlated

electron-ion dynamics methods [25].

Despite the success of the nonadiabatic trajectory-based approaches, there are many quantum

mechanical phenomena that cannot be entirely captured within this framework, namely nuclear

quantum effects, like wavepacket interference [22], decoherence [26–28] and tunneling. Quantum

dynamics methods based on a quantum mechanical representation of both electronic and nuclear

degrees of freedom have also become available (see, for example, [29]). However, their high

computational cost and the need for a numerical fit of the relevant PESs prior to propagation have

limited their application to just a few nuclear degrees of freedom, and they are therefore not yet suited

for the simulation of complex molecular systems.

One possible way to account for quantum nuclear effects within a trajectory-based framework

consists in the use of quantum (or Bohmian) trajectories [30–32]. This approach emerges from
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a transformation of the time-dependent Schrödinger equation using a polar representation of the

complex nuclear wavefunction (see [33] and Section 2 below). Robert. E. Wyatt and coworkers

have recently introduced a numerical formulation of Bohmian dynamics using a trajectory-based

solution of the so-called quantum hydrodynamics equations [34], named the quantum trajectory

method (QTM). In their approach, the spatial support of the nuclear wave packet is split into fluid

elements (FEs) that represent volume elements in configuration space carrying quantum information

(amplitude and phase). Each of them is propagated according to a Newton-like equation of motion

augmented by a nonlocal quantum potential. The latter supplies correlation between the FEs and is,

therefore responsible for most quantum nuclear effects. The QTM approach has been employed to

address challenging quantum dynamics problems in low dimensional model systems (see [35–37]

for an extended presentation of quantum trajectory methods). Generalizations of QTM for multiple

electronic states have also been proposed [38–42]. These are, however, based on a diabatic

representation of the PESs. In an attempt to extend this type of dynamics to the investigation of

molecular systems, we have recently developed an in principle exact QTM approach, named NABDY

(nonadiabatic Bohmian dynamics), which solves the non-relativistic quantum dynamics of nuclei and

electrons within the framework of quantum hydrodynamics, using the adiabatic representation of the

electronic states [43,44].

In this article, we review a number of trajectory-based nonadiabatic molecular dynamics schemes

together with our recent work on nonadiabatic Bohmian dynamics. Our aim is to provide a unified

picture of the field by trying to “derive” the different approaches starting from a common framework,

namely the quantum hydrodynamics reformulation of the molecular time-dependent Schrödinger

equation. In particular, we propose a classification of the different trajectory-based approaches based

on the choice of the initial expansion of the molecular wavefunction (that depends on both the nuclear

and the electronic degrees of freedom) into a sum or a single product of electronic and nuclear

wavefunctions. Finally, we propose a rationalization of the TSH equation of motion based on our

exact nonadiabatic Bohmian dynamics scheme, showing by means of tests on two simple model

systems the origin of some typical failures of TSH.

2. Nonadiabatic Dynamics with Classical and Quantum Trajectories

In this Section, we briefly review the theoretical background of the different nonadiabatic

molecular dynamics schemes that we have selected for this study. The selection is based on the

fact that all these trajectory-based approaches can be classified according to the way the molecular

wavefunction is represented in terms of the electronic and nuclear components.

Starting from the Born-Huang representation of the total molecular wavefunction, we first

introduce the Born-Oppenheimer molecular dynamics (BO-MD), which is based on the adiabatic

separation of the electronic and nuclear dynamics, the latter being described by a single classical

trajectory. Nonadiabaticity is then reintroduced following different strategies. In trajectory

surface hopping (TSH), when the classical trajectories enter a region of strong coupling between

different PESs, they are allowed to hop from one surface to another according to a hopping

algorithm designed by Tully [15]. An interesting improvement of this scheme consists in adding
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Gaussian-expanded nuclear wavefunctions to the propagating trajectories; this approach is named

Full Multiple Spawning [45–48] and is characterized by a balance between accuracy and numerical

efficiency. Finally, we will describe a trajectory-based approach in which classical trajectories are

replaced by Bohmian quantum trajectories that evolve under the influence of quantum adiabatic and

nonadiabatic potentials. All these methods make use of the computationally advantageous adiabatic

representation of all involved electronic states.

In the second part of this review, we discuss nonadiabatic AIMD approaches that can be derived

from a single product ansatz for the total molecular wavefunction. Two of these methods will be

investigated, namely the approximated Ehrenfest dynamics and the exact solution, named “Exact

Factorization”, which has recently been proposed by Gross and coworkers.

We begin by introducing the time-dependent Schrödinger equation (TDSE) for a molecular

system, which, neglecting the nuclear and electronic spins, is given by

i�
∂

∂t
Ψ(r,R, t) = Ĥ(r,R)Ψ(r,R, t), (1)

where Ψ(r,R, t) is the total wavefunction of the system, r = (r1, . . . , rk, . . . , rNel
) is the collective

position vector for the Nel electrons and R = (R1, . . . ,Rγ . . . ,RNn) the corresponding one for the

Nn nuclei of mass Mγ . The molecular Hamiltonian can be expressed in the following form

Ĥ(r,R) = −
∑
γ

�
2

2Mγ

∇2
γ −

�
2

2

∑
k

∇2
k +

∑
k<l

1

|rk − rl|
−
∑
γ,k

Zγ

|Rγ − rk|
+
∑
γ<ζ

ZγZζ

|Rγ −Rζ |

= −
∑
γ

�
2

2Mγ

∇2
γ + Ĥel(r;R), (2)

where Ĥel(r;R) is the electronic Hamiltonian, which is parametrically dependent on the nuclear

coordinates. In Equation (2) and in the ones that follow, atomic units are used, except for the reduced

Planck’s constant, �, that will be kept for clarity.

2.1. Methods Based on the Born-Huang Expansion

The Born-Huang expansion gives an exact expression for the total wavefunction [49,50]

Ψ(r,R, t) =
∞∑
i

Ωi(R, t)Φi(r;R). (3)

The total wavefunction, Ψ(r,R, t), is expanded in the complete basis set of of electronic

eigenfunctions of Ĥel(r;R), which depend parametrically on the nuclear positions, R. The

expansion “coefficients”, Ωi(R, t), are functions of the nuclear coordinates, R, and are explicitly

dependent on time. Inserting Equation (3) into the TDSE, multiplying by Φ∗
j(r;R) and then

integrating over r gives the equation of motion for the amplitudes, Ωj(R, t)

i�
∂

∂t
Ωj(R, t) =

[
−
∑
γ

�
2

2Mγ

∇2
γ + Eel

j (R)

]
Ωj(R, t) +

∞∑
i

Fji(R)Ωi(R, t), (4)
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where the Fji(R) are the elements of the nonadiabatic coupling matrix

Fji(R) =

∫
dr Φ∗

j(r;R)

[
−
∑
γ

�
2

2Mγ

∇2
γ

]
Φi(r;R)

+
∑
γ

1

Mγ

{∫
dr Φ∗

j(r;R) [−i�∇γ] Φi(r;R)

}
[−i�∇γ] . (5)

These terms induce nonadiabatic coupling between different electronic states (for i �= j) due

to nuclear motion. Equation (4) can be interpreted as a Schrödinger-like equation for “nuclear”

wavefunctions Ωj(R, t) augmented by nonadiabatic coupling terms. In fact, the amplitudes Ωj(R, t)

can be interpreted as nuclear wavefunctions in state j only when the coupling terms vanish.

2.1.1. The Born-Oppenheimer Approximation and Adiabatic Dynamics

The BO approximation consists in neglecting all off-diagonal terms Fji(R) in Equation (4)

(i.e., neglecting inter-state couplings, but keeping intra-state electronic-nuclear couplings). The

molecular wavefunction on each PES is therefore represented by the simple product Ψ(r,R, t) =

Ωj(R, t)Φj(r;R). If the diagonal terms Fjj(R) are also neglected, then we obtain what is usually

called the adiabatic BO approximation [51]. Introducing the polar representation of Ωj(R, t),

we obtain

Ωj(R, t) = Aj(R, t) exp

[
i

�
Sj(R, t)

]
, (6)

where both the amplitude, Aj(R, t), and the phase, Sj(R, t), are real. By inserting Equation (6)

into Equation (4) and separating the real and imaginary parts, we obtain, within the adiabatic BO

approximation, two separate, but coupled, equations for the amplitude and the phases

∂Sj(R, t)

∂t
=

�
2

2

∑
γ

M−1
γ

∇2
γAj(R, t)

Aj(R, t)
− 1

2

∑
γ

M−1
γ

(
∇γSj(R, t)

)2 − Eel
j (R), (7)

∂Aj(R, t)

∂t
= −

∑
γ

M−1
γ ∇γAj(R, t) · ∇γSj(R, t)− 1

2

∑
γ

M−1
γ Aj(R, t)∇2

γSj(R, t). (8)

Taking the so-called classical limit � → 0 in Equation (7) leads to something akin to the classical

Hamilton-Jacobi equation of motion

∂Sj(R, t)

∂t
= −1

2

∑
γ

M−1
γ

(
∇γSj(R, t)

)2 − Eel
j (R), (9)

where Sj(R, t) can now be interpreted as the classical Hamilton’s principal function. In this case,

∇γSj(R, t) corresponds to the nuclear momentum pγ
j (t). By rearranging Equation (9), we finally

obtain the Newtonian equation of motion for the nuclei

MγR̈
γ

j (t) = −∇γE
el
j (R(t)). (10)

The nuclei therefore evolve on a given potential energy surface, Eel
j (R(t)) (selected by the initial

conditions), while the electrons adiabatically follow the nuclei along their classical trajectories R(t).
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Equation (8) represents a continuity equation for the nuclear amplitudes, Aj(R, t), in an arbitrary

state j, which, in the classical limit, is trivially fulfilled because of the conservation of the number

of trajectories. The BO-MD method therefore consists in solving the time-independent electronic

Schrödinger equation to get the potential and the forces acting on the nuclei; these are then used to

propagate the nuclei for time step dt using Equation (10), and the process is iterated until the desired

propagation time is reached.

2.1.2. Tully’s Trajectory Surface Hopping

One of the most successful methods for nonadiabatic dynamics is Tully’s trajectory surface

hopping [14,15]. In this method, the nuclei are treated classically, and the only nuclear quantum

effect that is accounted for is the nonadiabatic transfer of “amplitude” between electronic states. This

is achieved classically through hops of trajectories from one electronic state to another according to

a hopping probability determined by the strength of the nonadiabatic couplings and the values of the

state amplitudes C
[α]
i (t) defined below. A swarm of trajectories needs to be propagated in order to

reproduce the probability distribution associated with corresponding nuclear quantum wave packet.

In this section, we only give a brief introduction to TSH, while a more detailed description of the

method is given in Section 3, where we attempt a “derivation” of TSH, starting from the nonadiabatic

Bohmian dynamics equations of motion.

The main ansatz in TSH is given by the following description of the molecular

wavefunction [5,15]

Ψ[α](r,R, t) =
∞∑
i

C
[α]
i (t)Φ

[α]
i (r;R), (11)

which, in a way, constitutes a simplified version of the original Born-Huang expansion. When we

introduce Equation (11) into the electronic time-dependent Schrödinger equation, we get a set of

coupled equations of motion for the complex nuclear state amplitudes, C
[α]
j (t) (for trajectory α)

i�Ċ
[α]
j (t) =

∞∑
i

C
[α]
i (t)

(
Eel

i (R
[α])δij − i�

Nn∑
γ

dγ
ji(R

[α]) · Ṙ[α]

γ

)
, (12)

where dγ
ji(R) =

∫
drΦ∗

j(r;R)∇γΦi(r;R) are the first-order nonadiabatic couplings (see

Equation (5)). These coupled equations will be solved along a classical trajectory α, evolving

adiabatically in a given electronic state j. The probability, g
[α]
ji (t, t + dt), for the trajectory α to

jump from state j to state i during the time interval [t, t+ dt] is given by

g
[α]
ji (t, t+ dt) = 2

∫ t+dt

t

dτ
−�[C [α]

i (τ)C
[α]∗
j (τ)Ξ

[α]
ij (τ)]

C
[α]
j (τ)C

[α]∗
j (τ)

, (13)

where Ξ
[α]
ij (τ) =

∑Nn

γ dγ
ij(R

[α]) · Ṙ[α]

γ .

A surface hop between two PESs, j and i (j → i), occurs “stochastically” when, for a randomly

generated number, ζ ∈ [0, 1], we get: ∑
k≤i−1

g
[α]
jk < ζ <

∑
k≤i

g
[α]
jk . (14)
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This algorithm guarantees that a minimum number of hops is performed along each trajectory; for

this reason, the method is also referred to as the “fewest switches algorithm”.

2.1.3. Full Multiple Spawning

Full Multiple Spawning (FMS) [45–48] proposes an interesting compromise between accuracy

and efficiency by representing nuclear wavefunctions as sums of time-dependent Gaussian basis

functions, whose width is frozen and whose center evolves adiabatically according to classical

mechanics. This ansatz on the classical evolution of the Gaussian centers is consistently applied

throughout the full derivation of the FMS equations of motion.

In the FMS method, the nuclear wavefunction Ωi(R, t) in electronic state i, is represented by

a linear combination of multidimensional Gaussian wave packets Ωi
J(R;R

i

J(t),p
i
J(t), γ

i
J(t),α

i
J),

products of one-dimensional Gaussian functions [52]

Ωi(R, t) =

Ni(t)∑
J=1

C i
J(t)Ω

i
J(R;R

i

J(t),p
i
J(t), γ

i
J(t),α

i
J)

=

Ni(t)∑
J=1

C i
J(t)

[
eiγ

i
J (t)t

3Nn∏
ρ

(
2αi

ρJ

π

)1/4

e
−αi

ρJ

(
Rρ−R

i
ρJ

(t)
)2

+ipiρJ
(t)

(
Rρ−R

i
ρJ

(t)
)]

. (15)

In Equation (15), the multidimensional Gaussian basis functions are labeled with index J , their

time-independent width by αi
J and their time-dependent position, momentum and nuclear phase

by R
i

J(t), p
i
J(t) and γi

J(t), respectively. Ni(t) gives the number of Gaussian basis functions used in

order to describe the nuclear wavefunction in electronic state i, and its time dependence comes from

the possible “spawning” of new basis functions (as further discussed here below). The nuclear phases

are propagated semi-classically, whereas the positions and momenta of the center of the Gaussians

obey classical equations of motion in a given electronic state [52].

The time-evolution of the expansion coefficients Ci(t) is obtained through the solution of the

following differential equation:

dCi(t)

dt
= −i(S−1

ii )

{[
H ii − iṠii

]
Ci +

∑
j 	=i

H ijC
j

}
(16)

This equation is derived by plugging the Born-Huang expansion (Equation (3)) and the ansatz

for the nuclear wavefunctions (Equation (15)) into the time-dependent Schrödinger equation. In

Equation (16) the bold symbols emphasize that, for each electronic state i, there is a time-dependent

coefficient per each Gaussian basis function, and Sii and Ṡii represent different overlap matrices of

the Gaussian functions (see [52] for the more details). The matrix elements of H ij are given by:

(H ij)KK′ = HiKjK′ = 〈Ωi
KΦi|Ĥel + T̂R|Ωj

K′Φj〉
= 〈Ωi

K |Hij
el|Ωj

K′〉R + 2DiKjK′ +GiKjK′ (17)

where Ĥel is the electronic Hamiltonian and T̂R the kinetic energy operator for the nuclei.

In Equation (17), DiKjK′ = 〈Ωi
K |
∑Nn

γ
1

2Mγ
〈Φi|∇γ|Φj〉r · ∇γ|Ωj

K′〉R and GiKjK′ =
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〈Ωi
K |
∑Nn

γ
1

2Mγ
〈Φi|∇2

γ|Φj〉r|Ωj
K′〉R couple the electronic and nuclear motions (〈· · · 〉R means

integration over R and 〈· · · 〉r integration over r).

The spawning procedure takes place when a region of nonadiabaticity is detected along a

trajectory (by monitoring the strength of nonadiabatic couplings in the adiabatic representation)

and allows for the generation of new Gaussian basis functions (children), placed in the newly

populated electronic state according to physical rules (like position or momentum conservation [52])

maximizing the coupling between the parent and children Gaussian basis functions [52] until the

system leaves the region of strong nonadiabatic coupling [53]

The spawning procedure, therefore, limits the number of Gaussian basis function used in the

calculation by defining precisely where and when they are needed. Moreover, the FMS method offers

a numerically exact [48] solution when all matrix elements are computed exactly, and a complete

Gaussian basis set is used.

While keeping a trajectory-based formalism, FMS fully incorporates nuclear quantum effects that

are missing in methods like TSH. Furthermore, the nuclear propagation can be performed on-the-fly,

by computing any electronic structure property needed, like electronic energies (Hii
el in Equation (17))

or nonadiabatic couplings (〈Φi|∇R|Φj〉r and 〈Φi|∇2
R|Φj〉r; note that the GiKjK′ terms are normally

small and usually neglected) with either an ab initio electronic structure or semiempirical methods

(Ab Initio Multiple Spawning, AIMS [54]). AIMS, therefore, overcomes the limitations in accuracy

of TSH, preserving efficiency all the while. For additional information about the derivation and

numerical procedure of this method, the interested reader is referred to [52].

2.1.4. Nonadiabatic Bohmian Dynamics

Just as for the previous three methods, nonadiabatic Bohmian dynamics (NABDY) is also

based on the propagation of trajectories. However, this time, the trajectories evolve under the

action of additional quantum potentials (adiabatic and nonadiabatic), which make the dynamics

exact in principle. In other words, this approach is able to capture all adiabatic and nonadiabatic

nuclear quantum effects through the propagation of a sufficiently large (i.e., converged) number

of trajectories.

The derivation of the NABDY equations of motion starts from the insertion of the polar

representation of the nuclear wavefunction in Equation (6) into Equation (4). After separation of

the real and imaginary parts, we obtain

−∂Sj(R, t)

∂t
=
∑
γ

1

2Mγ

(
∇γSj(R, t)

)2
+ Eel

j (R)−
∑
γ

�
2

2Mγ

∇2
γAj(R, t)

Aj(R, t)

+
∑
γi

�
2

2Mγ

Dγ
ji(R)

Ai(R, t)

Aj(R, t)
�
[
eiφij(R,t)

]
−
∑
γ,i 	=j

�
2

Mγ

dγ
ji(R) · ∇γAi(R, t)

Aj(R, t)
�
[
eiφij(R,t)

]
+
∑
γ,i 	=j

�

Mγ

Ai(R, t)

Aj(R, t)
dγ
ji(R) · ∇γSi(R, t)�

[
eiφij(R,t)

]
, (18)
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and

�
∂Aj(R, t)

∂t
=−

∑
γ

�

Mγ

∇γAj(R, t) · ∇γSj(R, t)−
∑
γ

�

2Mγ

Aj(R, t)∇2
γSj(R, t)

+
∑
γi

�
2

2Mγ

Dγ
ji(R)Ai(R, t)�

[
eiφij(R,t)

]
−
∑
γ,i 	=j

�
2

Mγ

dγ
ji(R) · ∇γAi(R, t)�

[
eiφij(R,t)

]
−
∑
γ,i 	=j

�

Mγ

Ai(R, t)dγ
ji(R) · ∇γSi(R, t)�

[
eiφij(R,t)

]
, (19)

where φij(R, t) = 1
�
(Si(R, t)− Sj(R, t)) and Dγ

ji(R) are the second-order nonadiabatic couplings.

Equation (18) is equivalent to the classical Hamilton-Jacobi equation augmented by terms that are

O(�) and O(�2). The third term, Q(R, t), on the right-hand side of Equation (18) is called the

quantum potential, and it includes all adiabatic quantum effects (adiabatic in the sense that the

potential Q(R, t) acts on a single PES and does not include contributions from other surfaces).

Unlike “classical” potentials, it is non-local in space, in the sense that it depends on the position of

all particle in configuration space [55]. The last three terms on the right-hand side of Equation (18)

describe inter-state nonadiabatic quantum effects and, like the quantum potential, Q(R, t), do not

have a classical equivalent.

Equation (19) represents a continuity equation the for probability density, |Aj(R, t)|2, with

corresponding probability density flux J(R, t) [33,35,44]. The first two terms on the right-hand side

describe the “adiabatic” probability density flow within a given state, j, while the remaining terms

that depend on the first-order and second-order nonadiabatic couplings induce probability density

exchanges across different electronic states. Of course, the overall nuclear amplitude (summed up

over all states) is conserved.

The two equations for the phases and the amplitudes are coupled, and they therefore need to

be solved simultaneously. Instead of solving complex differential equations for the two fields,

(Aj(R, t) and Sj(R, t)), we reintroduce trajectories in configuration space that drive the dynamics

of “infinitesimal” volume elements called “fluid elements” [35]. The derivation of the equations of

motion is similar to that described in Section 2.1.1 for the BO approach, with the important difference

that in NABDY new fluid elements can be created at any time on any other PES according to the size

of the nonadiabatic terms in Equation (19). The details of the numerical implementation of NABDY

are given in [44], while a possible extension of NABDY to large dimensions (in the adiabatic case)

is proposed in [56].

2.2. Methods Based on a Single Product Ansatz

2.2.1. Ehrenfest Dynamics

The equation of motion that drives Ehrenfest dynamics (EHD) is derived from a simpler ansatz for

the total wavefunction than the Born-Huang expansion (Equation (3)) used for the methods presented

in Section 2.1.
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In EHD, the molecular wavefunction is described by the simple product

Ψ(r,R, t) = Φ(r, t)Ω(R, t) exp

[
i

�

∫ t

t0

dt′ Eel(t
′)
]

(20)

where Φ(r, t) is the electronic wavefunction and Ω(R, t) is the nuclear wavefunction. Note that in

this case, both amplitudes Φ(r, t) and Ω(R, t) depend explicitly on time. In addition, they also have

a parametric dependence on the other set of coordinates (Φ(r, t) on R and Ω(R, t) on r), which is

not explicitly shown, so as to simplify the notation.

The exponential in Equation (20) is named the phase term and is defined as

Eel(t) =

∫ ∫
dr dRΦ∗(r, t)Ω∗(R, t)Ĥel(r,R)Φ(r, t)Ω(R, t) (21)

and it guarantees that the product wavefunction, Ψ(r,R, t), fulfills the corresponding time-dependent

Schrödinger equation.

Following the derivation proposed by Tully [57], we can substitute Equation (20) into the

TDSE, multiply by Ω∗(R, t) and integrate over R, and assuming that Ω(R, t) is normalized, we

finally obtain

i�
∂Φ(r, t)

∂t
= −�

2

2

∑
k

∇2
kΦ(r, t)+ (22){∫

dR Ω∗(R, t)

[
−�

2

2

∑
γ

M−1
γ ∇2

γ + V̂ (r,R)

]
Ω(R, t)

}
Φ(r, t)+

Eel(t)Φ(r, t)− i�

[∫
dR Ω∗(R, t)

∂Ω(R, t)

∂t

]
Φ(r, t)

where V̂ (r,R) is the sum of all the potential energy terms in the molecular Hamiltonian.

Applying an analogous procedure, we can also derive the equation of motion for Ω(R, t)

i�
∂Ω(R, t)

∂t
= −�

2

2

∑
γ

M−1
γ ∇2

γΩ(R, t)+ (23){∫
dr Φ∗(r, t)

[
Ĥel(r,R)

]
Φ(r, t)

}
Ω(R, t)

+ Eel(t)Ω(R, t)− i�

[∫
dr Φ∗(r, t)

∂Φ(r, t)

∂t

]
Ω(R, t).

Using the relations [57] ∫
dr Φ∗(r, t)

∂Φ(r, t)

∂t
= Eel(t) (24)

and ∫
dR Ω∗(R, t)

∂Ω(R, t)

∂t
= E (25)

where E is the expectation value of the molecular Hamiltonian for the wavefunction appearing in

Equation (20), and the fact that E = Eel(t) + 〈TR〉 (〈TR〉 is the expectation value of the nuclear



356

kinetic energy), we can further simplify Equations (22) and (23) and obtain the following differential

equations for the two amplitudes

i�
∂Φ(r, t)

∂t
= −�

2

2

∑
k

∇2
kΦ(r, t) +

[∫
dR Ω∗(R, t)V̂ (r,R)Ω(R, t)

]
Φ(r, t) (26)

and

i�
∂Ω(R, t)

∂t
= −�

2

2

∑
γ

M−1
γ ∇2

γΩ(R, t) +

[∫
dr Φ∗(r, t)Ĥel(r,R)Φ(r, t)

]
Ω(R, t) (27)

These are mean field coupled equations, in which the electrons move in a field generated by the

nuclei (second term on the right hand side (r.h.s.) of Equation (26)) and the nuclei move in a field

generated by the electrons (second term on the r.h.s. of Equation (27)). Strictly speaking, these are

not yet the EHD equations of motion, but, rather, a version of the time-dependent self-consistent field

equations. EHD implies the passage to the classical limit for the nuclear amplitudes, which is again

accomplished through the use of the polar representation of the nuclear wavefunction (Equation (6))

in Equation (27).

Once again, we obtain a classical Hamilton-Jacobi equation, which can be transformed into a

Newton equation of motion given by

MγR̈γ(t) = −∇γ〈Ĥel(r,R)〉t = −∇γ

[∫
dr Φ∗(r, t)Ĥel(r,R)Φ(r, t)

]
. (28)

Notice that the potential acting on the nuclei is now given by the expectation value of the electronic

Hamiltonian computed using the time-dependent electronic “wavefunction” Φ(r, t), which is not

necessarily an eigenstate of Ĥel(r,R(t)), but which can be expressed as a linear combination of

the static solutions of the corresponding time-independent electronic Schrödinger equation for the

same nuclear position, R, at time t . For this reason, EHD is called a mean-field solution of the

time-dependent molecular Schrödinger equation.

The equation of motion for the electronic amplitudes, Equation (26), also depends on the nuclear

amplitudes, Ω(R, t). However, since the nuclei are treated as classical particles, we can set

|Ω(R(t))|2 =
∏
γ

δ(Rγ −Rγ(t)) (29)

that is to say, we induce localization of the nuclear densities at a fixed position, Rγ(t). By plugging

Equation (29) into Equation (26) we obtain a TDSE for the electronic amplitude

i�
∂Φ(r;R(t), t)

∂t
= Ĥel(r;R(t))Φ(r;R(t), t) (30)

where the Hamiltonian and the wavefunction both depend parametrically on the nuclear positions,

which induces the coupling with the nuclear equation of motion (Equation (28)). As we mentioned

before, in EHD the nuclei will evolve on a single time-dependent PES, which can be expressed at any

instant of time as a linear combination of all adiabatic PESs. This implies that in EHD nonadiabatic

effects are taken into account through the propagation of the electronic wavefunction [58]; a

perspective that is indeed very different from what is observed in the approaches derived from the

Born-Huang expansion (Section 2.1).
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2.2.2. The Exact Factorization-Based Dynamics

Recently, Gross et al. [59,60] have shown that the (exact) solution of the molecular TDSE can

be factorized into the product of an electronic and a nuclear wavefunction [61] (even when the

Hamiltonian includes coupling to external electromagnetic fields)

Ψ(r,R, t) = Φ(r;R, t)Ω(R, t) . (31)

Equation (31) might seem counter-intuitive at first, because the molecular Hamiltonian is not

separable. In fact, while the factorization in Equation (31) can be made at any time, t, and at any

position, r or R, the persistence of this kind of solution along the time propagation of the two

wavefunctions is less obvious (as can be seen from the resulting evolution equations [59]). As

discussed in [60], the factorization in Equation (31) can be justified using multivariate statistics,

according to which any probability distribution (here, the square of the molecular wavefunction)

can be factored into a marginal probability and a conditional probability. In this respect, it is also

important to notice that Φ(r;R, t) depends (parametrically) on the nuclear coordinates, R, and there

is, therefore, no loss of generality in applying Equation (31).

The factorization of Ψ(r,R, t) does not simplify, per se, the task of solving the molecular

TDSE. Nonetheless, this approach has a great interpretive power, since Φ(r;R, t) and Ω(R, t)

have both a clear physical meaning: they are the exact electronic and nuclear time-dependent

wavefunctions, respectively. One crucial requirement for this to be true is the so-called partial

normalization condition ∫
dr |Φ(r;R, t)|2 = 1. (32)

This condition allows for the interpretation of dr|Φ(r;R, t)|2 as the conditional probability of finding

an electron in volume element, dr, at position r given a nuclear configuration, R; that is to say,

|Φ(r;R, t)|2 is an electronic probability density function. According to the standard interpretation

of quantum mechanics, Φ(r;R, t) is then the corresponding electronic wavefunction. Similarly,

Ω(R, t) is the marginal probability density for the nuclear position, R (marginal, and not conditional,

because r is unknown), and Ω(R, t) is the corresponding nuclear wavefunction. Interestingly, just as

in EHD, this factorization leads to the definition of a single time-dependent potential energy surface

(because of the time-dependence of the electronic wavefunction), which this time is however, exact

and unique. What is lost is the picture of a time-dependent nuclear wave packet (or corresponding

trajectories) evolving on an ensemble of static PESs; a picture that has provided important insights

for the understanding of many photophysical and photochemical processes.

The time evolution of the wavefunctions, Φ(r;R, t) and Ω(R, t), is described by two connected

differential equations, which contain, besides the usual interaction terms, additional scalar and vector

potential terms [59,60,62,63].

3. Trajectory Surface Hopping from the Nonadiabatic Bohmian Dynamics Equations

When it comes to nonadiabatic molecular dynamics, TSH is probably the most popular simulation

scheme. As stated in Section 2, it relies on the description of nuclear wave packets by means of a
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swarm of classical trajectories. A complex coefficient, C
[α]
j , for each electronic state, j, is propagated

along a given classical trajectory, α, according to Equation (12). The classical trajectory may “hop”

from its current electronic state, i, to another at any point in time, and the probability that a hop to

state j occurs is given by Equation (13) [15,64–66].

In this Section, starting from Equations (18) and (19), we will present a “rationalization” of the

TSH equations of motion based on the nonadiabatic Bohmian dynamics equations.

The following steps were reported in [44] and can be summarized as follows:

(a) The nuclear wave packet dynamics is discretized into a swarm of classical trajectories.

Within the independent trajectory approximation, the quantum potential is set to zero,

Qj(R, t) = 0, ∀j and so is the divergence of the current, ∇R · J [α]
j (R, t) = 0, ∀j, ∀α. The

independent trajectory approximation arises from the assumption that all adiabatic non-local

terms (involving a single electronic state, j) are set to zero. This will ensure that there is no

adiabatic quantum transfer of amplitude among trajectories. In the adiabatic regime (dji(R)

and Dji(R) → 0), the trajectories evolve independently from each other, and their equation

of motion is obtained from the solution by characteristics of Equation (18) in the classical

limit, which corresponds to the classical Newton equation of motion with classical forces

−∇RE
el
j (R).

(b) For the description of the nonadiabatic components of the dynamics (the three last terms in

Equations (18) and (19)), we first move to a reference frame evolving along the classical

trajectories for which

−∂Sj(R, t)

∂t
=Eel

j (R) +
Nn∑
γ

∞∑
i

�
2

2Mγ

Dγ
ji(R)

Ai(R, t)

Aj(R, t)
�
[
eiφij(R,t)

]
−

Nn∑
γ

∞∑
i 	=j

�
2

Mγ

dγ
ji(R) · ∇γAi(R, t)

Aj(R, t)
�
[
eiφij(R,t)

]
+

Nn∑
γ

∞∑
i 	=j

�

Mγ

Ai(R, t)

Aj(R, t)
dγ
ji(R) · ∇γSi(R, t)�

[
eiφij(R,t)

]
(33)

and

∂Aj(R, t)

∂t
=

Nn∑
γ

∞∑
i

�

2Mγ

Dγ
ji(R)Ai(R, t)�

[
eiφij(R,t)

]
−

Nn∑
γ

∞∑
i 	=j

�

Mγ

dγ
ji(R) · ∇γAi(R, t)�

[
eiφij(R,t)

]
−

Nn∑
γ

∞∑
i 	=j

1

Mγ

Ai(R, t)dγ
ji(R) · ∇γSi(R, t)�

[
eiφij(R,t)

]
. (34)

Note that due to the independent trajectory approximation, we assume that there is no

amplitude exchange among the FEs propagated along the different trajectories.
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Neglecting the second-order nonadiabatic couplings, Dji(R), due to their usually small

size [67], we are left with an equation of motion for the phases and the amplitudes, which

is equivalent to the following nuclear wavefunction time-evolution equation

i�
∂Ωj(R, t)

∂t
= Eel

j (R)Ωj(R, t)− i�
∞∑
i 	=j

Nn∑
γ

1

Mγ

dγ
ji(R) · p̂γΩi(R, t) (35)

where we have used the definition of the momentum operator p̂γ = −i�∇γ .

(c) In the derivation of the equation of motion for the nuclear amplitude coefficients, we start by

assigning delta-like wave packets (denoted as the TSH wave packet in the following) to each

trajectory, α, defined as

Ω̃
λ,[α]
j (R, t) = Ã

[α]
j (t) exp

[
i

�
S̃
[α]
j (t)

]
gλ(R−R[α](t)) (36)

where Ã
[α]
j (t) and S̃

[α]
j (t)/� are real functions representing the amplitude and the phase of the

TSH nuclear wave packet at R[α](t) in electronic state j. The function gλ(R − R[α](t)) =
1

λ
√
π
exp

(
−(R−R[α](t))2/λ2)

)
, localized at the position of the classical trajectory, α, is

normalized to
∫
dR gλ(R−R[α](t)) = 1 and becomes a δ-function in the limit limλ→∞ gλ(R−

R[α](t)) = δ(R −R[α](t)). The total probability density of the nuclear wave packet in state j

becomes |Ωj(R, t)|2 ∼ 1
Ntraj

∑
[α]

∫∞
t=0

dt′ |Ã[α]
j (t′)|2gλ(R −R[α](t′))δ(t − t′), where Ntraj is

the total number of trajectories. The independent trajectory approximation invoked in point (a)
also has an important impact on the nonadiabatic component of the nuclear dynamics (due to

their nonlocality; see Equations (18) and (19)). Indeed, it has the consequence that, for a given

trajectory, α, the complex amplitudes, Ω̃
λ,[α]
j (R, t), for each and every electronic state, j, share

the same support (localized around the instantaneous nuclear position, R, in configuration

space). Said otherwise, the TSH nuclear wave packet component, gλ(R − R[α](t)), will be

the same for all electronic states of a trajectory, α, at any time, t (this is why gλ does not

have an electronic state index). This is indubitably the strongest approximation made in the

“derivation”, since it induces “overcoherence” in the dynamics of the amplitudes, C
[α]
j (t), and

suppresses all (nonadiabatic) decoherence effects that could occur, for example, at and after

the branching of nuclear wave packets.

(d) Since we are working in the Lagrangian frame, we need only consider the explicit

time-dependence of the amplitudes and phases. As a consequence, the TSH nuclear wave

packet evolving in electronic state j follows the classical trajectory, α, on the support of the

function, gλ(R − R[α]) (where R[α] is the position vector in the Lagrangian frame), and is

described by Ã
[α]
j (t) exp

[
i
�
S̃
[α]
j (t)

]
.

If we substitute Ωj(R, t) in Equation (35) by the form given in Equation (36) and then apply

points (a), (b) and (d), we obtain [44]

− ˙̃S
[α]
j (t) =Eel

j (R
[α]) + �

Nn∑
γ

∞∑
i 	=j

Ã
[α]
i (t)

Ã
[α]
j (t)

(
dγ
ji(R

[α]) · Ṙ[α]

γ

)
�
[
eiφ̃

[α]
ij (t)

]
(37)
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˙̃A
[α]
j (t) =−

Nn∑
γ

∞∑
i 	=j

Ã
[α]
i (t)

(
dγ
ji(R

[α]) · Ṙ[α]

γ

)
�
[
eiφ̃

[α]
ij (t)

]
. (38)

Here, φ̃ij(t) =
1
�

(
S̃
[α]
i (t)− S̃

[α]
j (t)

)
and Ṙ

[α]
are the nuclear velocities at time t along trajectory α.

Notice that Equations (37) and (38) are equivalent to the TSH equations for the complex

coefficients, C
[α]
j (t) (Equation (12)), which is obtained using a polar representation of the complex

coefficients, C
[α]
j (t) = Ã

[α]
j (t) exp

[
i
�
S̃
[α]
j (t)

]
.

We have described until now the dynamics of TSH nuclear wave packets following a single

classical trajectory, α. At this point, we have to account for the fact that the nuclear dynamics in

TSH is described by a “swarm” of classical trajectories that evolve according to the adiabatic and

nonadiabatic components of the equation of motion (points (a) to (d)). In order to to this, we have to

require that the following be maintained

(ATSH
j (R, t))2dR ≈ (Aj(R, t))2dR (39)

at all times, for a sufficiently large number of trajectories. In Equation (39), (ATSH
j (R, t))2 is

computed as the density (histogram) of configuration space points in the volume element, dR, at

R(t) in state j that are sampled by the ensemble of Ntraj trajectories

(ATSH
j (R, t))2dR =

Nj(R, dR, t)

Ntraj

(40)

while the right-hand side is the corresponding nuclear density obtained from the corresponding

quantum mechanically propagated nuclear wave packets. Note that Equation (39) is only valid when

correlated quantum (Bohmian) trajectories are used [36].

In TSH, the balance described in Equation (39) is maintained (in an approximative way) through

the use of the switching algorithm given in Equations (13) and (14), which can be motivated by the

following considerations:

(e) In the independent trajectory approximation, the nonadiabatic terms in the time-evolution

of the TSH nuclear wave packets (Equations (37) and (38)) induce trajectory surface hop

transitions between different states according to the probability, g
[α]
ji (t, t + dt), which is a

function of local variables computed along the propagation of a single trajectory.

(f ) The switching probability is obtained from quantum mechanical arguments [15] under the

assumption that ∫
dR (ATSH

j (R, t))2 = |Cj(t)|2av (41)

where the |Cj(t)|av are the norms of the coefficients defined in Equation (12) averaged over the

ensemble of trajectories. Equation (41) is the internal consistency criterion described in [68].

However, in practice, one replaces the |Cj(t)|2av with the corresponding amplitudes computed

along a single trajectory, |C [α]
j (t)|2, which are the coefficients that appear in Equation (13).

The reason for this modification is that in the independent trajectory approximation, one

computes single trajectories, and therefore, the average over the ensemble is not available

during propagation. This replacement of |Cj(t)|2av by |C [α]
j (t)|2 is, in our opinion, more of an

assumption than an approximation and remains without formal justification.
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In summary, starting from the exact formulation of the nonadiabatic dynamics within the

nonadiabatic Bohmian dynamics framework, we proposed a series of approximations/assumptions

(points (a) to (f )) that help rationalize Tully’s TSH equations of motion for the nuclear trajectories

and amplitudes. In particular, the independent trajectory approximation (point (a)) implies that

the amplitudes and phases associated with the classical trajectories are uncorrelated (which is also

evident from the fact that the trajectories are propagated separately) and that quantum nonlocality

is, therefore, lost. The assumption made in point (f ) is particularly strong, as it states that the

averaged TSH population amplitude (on a given electronic state, j) taken over the ensemble of

trajectories can be replaced by the corresponding amplitude, C
[α]
j , computed along a single trajectory,

α. Furthermore, the nuclear amplitudes associated to each electronic state are evaluated strictly at

the same position in space, at any time t, even though the different curvature of the PESs involved in

the dynamics may drive the nuclear wave packets towards different regions in configuration space.

This implies that TSH is strictly local in space and time or, equivalently, that equal-time corresponds

to equal-space events, which leads to the loss of quantum mechanical nonlocality [37]. This is the

case, even if we allow for retardation (causality), since the TSH equations have no memory. In other

words, Equation (12) is obtained from

i�Ċ
[α]
j (t) =

∞∑
i

∫ t

t0

dt′F (t− t′)C [α]
i (t′)

(
Eel

i (R
[α])δij − i�

Nn∑
γ

dγ
ji(R

[α]) · Ṙ[α]

γ

)
(42)

with the kernel, F (t − t′), replaced by a delta function, δ(t − t′). Some implication of these

approximations will be described in Section 4 for simple one-dimensional model systems.

4. Trajectory Surface Hopping at Work

While TSH is an elegant compromise between accuracy and efficiency for the simulation of

nonadiabatic phenomena, its accuracy (either in its fewest-switches version or with additional

corrections) has been challenged several times in the literature (see [22,68–72] for an non-exhaustive

list). Recently, a series of simple one-dimensional model systems were used to highlight potential

failures of the standard TSH, even with high initial momenta [28,73–76]. The “double arch” model

is composed of a couple of potential energy curves, whose shapes strongly differ in the region where

they are not degenerate (−10 ≤ x ≤ 10 a.u. in Figure 1).

In this model, a Gaussian wave packet launched from x = −20 a.u. with a positive initial

momentum will first reach a region of strong nonadiabaticity (Figure 2, upper panel), leading to a

population of both the ground state (GS) and the first excited state (S1). Right after this nonadiabatic

event occurs, the two potential energy curves will diverge, one exhibiting a strong positive slope

(S1 state), the other a negative one (GS). The wave packet contribution in each electronic state will

therefore be spatially split and eventually recombined in a second nonadiabatic region at x = 10 a.u.

(Figure 2, upper panel). The final population on S1 after the second nonadiabatic region strongly

depends on the spatial decoherence between the nuclear wave packets. However, such peculiar

decoherence is hardly captured by TSH, due to the independent trajectory approximation (and other

approximations discussed in Section 3). This is observed from its deviation with respect to an exact
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nuclear wave packet propagation in the lower panel of Figure 2. TSH in general fails qualitatively for

all different initial momenta tested here, which correspond in all cases to a propagation with no back

reflections. Changing the initial conditions of TSH strongly alters the final population of S1, but does

not improve it substantially [75]. On the other hand, the correlated quantum trajectories (NABDY)

provide an accurate description of the nuclear wave packet propagation with only minor deviations

from the exact propagation (full numerical details can be found in [44]).

Figure 1. The double arch model in the adiabatic representation. The ground state

(GS) (S1) potential energy curve is represented with a red (dashed) line and nonadiabatic

coupling with a blue dotted line. The initial nuclear wave packet is displayed in grey.
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We further investigate the effects of overcoherence on the TSH dynamics by means of a second

model system consisting of two coupled harmonic potentials, as depicted in the upper inset of

Figure 3. A swarm of trajectories (and a corresponding Gaussian wave packet for the exact

propagation) is initialized in the excited state (S1) at x = 0 a.u., with a positive initial momentum

p0 = 40 a.u.. In this model system, a single nonadiabatic region is located at x = 10 a.u.; the

initial conditions are chosen in such a way that the wave packets (and the classical trajectories) will

reflect back shortly after the first transition through the nonadiabatic coupling region recrossing,

and therefore the same coupling region a second time, with opposite velocity (for a total of two

nonadiabatic events, see the lower inset of Figure 3).

The S1 wave packet enters the strong coupling region at x = 10 a.u. (for t < 1, 000 a.u.)

and populates the GS (87%, Figure 3). This first nonadiabatic event is perfectly described by TSH

(Figure 3, 1000 ≤ t ≤ 2000 a.u.). Due to the difference between the potential energy curves (slope of

Eel
S1

larger than the one of Eel
GS), the wave packet component in the GS travels further towards positive

x values, while the weak contribution in S1 inverts the direction of its propagation and rapidly returns

towards the nonadiabatic region at x = 10 a.u.. In the exact propagation, there is no interference with

the wave packet evolving in the GS, since the two wave packets (GS and S1) are spatially separated.
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As for the first transition through the nonadiabatic region at x ∼ 10 a.u., the S1 wave packet is

transferred almost entirely to the other electronic state (now, the GS, Figure 3, t ≥ 3000 a.u.). On

the other hand, in TSH, each independent trajectory carries a set of coherently coupled complex

amplitudes (see point (c) of Section 3). When reaching the nonadiabatic coupling at x = 10 a.u. for

the second time, the complex amplitudes, C
[α]
GS(t) and C

[α]
S1
(t), evolved along a given trajectory, α,

in S1 couple coherently because they share the same support (same position in space for any time

t). This induces “overcoherence” in dynamics for the amplitudes, which leads to deviations from

the exact propagation (Figure 3, 3000 ≤ t ≤ 5000 a.u.). The total population in S1 increases back

to ∼78% of the t = 0 value when the wave packet in the GS recrosses the nonadiabatic region at

t = 6000 a.u.. Some additional deviations of TSH with respect to the exact propagation are observed,

and they are linked to subsequent recrossings of the nuclear wave packets.

Figure 2. Nonadiabatic dynamics for the double arch system. (Upper panel) Time series

(gray scale) of the nuclear wave packet probability density, |Aj(x, t)|2, and trajectory

surface hopping (TSH) histograms for p0 = 45 a.u. (lower panel = GS; upper panel = S1).

The adiabatic potential energy curves are given in red, while the nonadiabatic coupling

vectors are shown in blue. (Lower panel) Deviation of the final population in S1 from

an exact nuclear wave packet propagation obtained with TSH and nonadiabatic Bohmian

dynamics (NABDY), for different initial momenta (“TSH”: initial conditions sampled

from a Gaussian distribution for positions and momenta, 1,500 trajectories; “TSH∗”:

same initial conditions, momentum and position, for all 1,500 trajectories; “NABDY” is

based on a maximum total number of 162 trajectories). The maximum total number of

quantum trajectories used in NABDY is 162.
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Figure 3. Nonadiabatic dynamics on two coupled harmonic potential energy curves.

Population in the first excited state (S1) along the dynamics for 3,444 TSH trajectories

(green) and an exact propagation (red). (Upper inset) Schematic representation of the

model. The GS (S1) potential energy curve is represented with a continuous (dashed)

black line and the nonadiabatic coupling with a blue dotted line. The initial nuclear

wave packet is displayed in grey. (Lower inset) Time series of potential energies along

a TSH trajectory. The trajectory is initially in S1, then jumps to the GS after the first

coupling and, finally, hops back to S1 after it reaches back to the coupling region. This

representation highlights that the model describes two nonadiabatic events with a single

nonadiabatic region.
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5. Conclusions

The description of the nonadiabatic dynamics of molecular systems is a challenging task for

theory, due to the difficulty of providing both the electronic structure of a system beyond its electronic

ground state and the corresponding nuclear dynamics beyond the Born-Oppenheimer approximation.

Moreover, nonadiabatic phenomena require a description of the nuclear degrees of freedom that goes

beyond the classical approximation and, finally a good compromise between accuracy and efficiency

is also required when realistic molecular systems are investigated. In this article, we have summarized

some of the main techniques for describing the nonadiabatic dynamics of molecular systems, namely

Ehrenfest dynamics, nonadiabatic Bohmian dynamics, Multiple Spawning, the recently proposed

Exact Factorization, and trajectory surface hopping. We have also shown how the latter method

can be rationalized starting from the “exact” nonadiabatic Bohmian dynamics equations. Trajectory

surface hopping is indeed one of the most commonly applied on-the-fly trajectory-based methods
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to describe the dynamics of molecular systems beyond the Born-Oppenheimer approximation in the

(unconstrained) configuration space. This is possible at the cost of describing the nuclear wave

packet dynamics with a swarm of uncorrelated classical trajectories with the consequent banishing

of all quantum (de)coherence effects. Understanding the underlying limitations of trajectory surface

hopping is of foremost importance for the future improvement of the theory and, in our opinion,

quantum Bohmian dynamics can give valuable contributions in this direction.
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Abstract: Coarse-grained models of soft matter are usually combined with implicit

solvent models that take the electrostatic polarizability into account via a dielectric

background. In biophysical or nanoscale simulations that include water, this constant

can vary greatly within the system. Performing molecular dynamics or other simulations

that need to compute exact electrostatic interactions between charges in those systems

is computationally demanding. We review here several algorithms developed by us that

perform exactly this task. For planar dielectric surfaces in partial periodic boundary

conditions, the arising image charges can be either treated with the MMM2D algorithm

in a very efficient and accurate way or with the electrostatic layer correction term, which

enables the user to use his favorite 3D periodic Coulomb solver. Arbitrarily-shaped

interfaces can be dealt with using induced surface charges with the induced charge

calculation (ICC*) algorithm. Finally, the local electrostatics algorithm, MEMD

(Maxwell Equations Molecular Dynamics), even allows one to employ a smoothly

varying dielectric constant in the systems. We introduce the concepts of these three

algorithms and an extension for the inclusion of boundaries that are to be held fixed

at a constant potential (metal conditions). For each method, we present a showcase

application to highlight the importance of dielectric interfaces.
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1. Introduction

Electrostatic interactions play an important role in many nano- or meso-scale systems. Almost

every surface immersed in water develops a significant surface charge, due to the acid-base reactions

of surface groups, and most biomolecules also carry charges. Therefore, it is often indispensable to

include these long-ranged interactions in computer simulations. However, the system sizes that can

be handled in simulations are orders of magnitude smaller than in real experiments, which drastically

enhances the influence of boundary effects. To avoid artifacts due to an artificially small simulation

volume, one typically uses periodic boundary conditions (PBC), which in simulations have to be

taken into account by special electrostatics algorithms. These are often based on the idea of the

Ewald summation [1–4], namely splitting the potential into a smooth, long-ranged and a singular,

short-ranged contribution. In modern computer simulations, one usually uses mesh-based variants

of the Ewald summation [5–8], which have a favorable O(N logN) computing time scaling with

respect to the number of charged particles, N .

When studying capacitors, membranes or thin films, one does not want PBC perpendicular to

the surfaces of interest. For these systems, partially periodic boundary conditions with only two

periodically replicated dimensions are desirable, while the third one has a finite extent h (2D + h

geometry). For these geometries, the Ewald summation becomes ineffective [9]. However, it has

been shown that replicating the system artificially in the direction perpendicular to the surface results

in reasonable accuracy when compared to the non-periodic system, provided a sufficient gap is left

between the replicas, and a correction term for the summation order is included [10]. The ELC

(electrostatic layer correction) approach [11,12] can, in principal, compute electrostatic interactions

with the charges in the unwanted periodic dimension exactly. Practically, it allows one to tune the

gap size to a desired accuracy, so that the 2D + h geometry is computationally tractable with any

Coulomb solver for 3D PBC. It has to be stated that an algorithmic approach for partially periodic

systems has been presented in [13,14] using a Monte Carlo extension to the local update scheme

sketched in Section 5, but it is not implemented into the molecular dynamics implementation used

for this article.

When studying large-scale problems, for example, the buckling of membranes, solutions

containing charged polymers or colloids, DNA translocation or crystallization of charged colloids, an

atomistic representation of the system under study is often unfeasible, even with periodic boundary

conditions. This is related to the vast numbers of charges that would need to be treated, but also

with the unfavorable scaling of the relaxation times of the system. One popular route to tackle

such problems is to use implicit solvent models, which electrostatically represent the solvent as an

effective dielectric medium of the representative dielectric constant at the investigated temperature.

This works well if particles, for example, colloids or polymers, are in bulk solution, since, then, the

dielectric medium is isotropic and, to a good approximation, homogeneous. However, if surfaces



372

are involved, the dielectric constant of the solvent is usually drastically different from the material

forming the surface. For example, water at room temperature has a dielectric constant of εrel ≈ 80,

while a typical membrane has a dielectric constant of εrel ≈ 2− 5.

In systems with spatial variations of the dielectric constant, the Poisson equation for electrostatics

reads as:

∇ · (ε(r)∇Φ) = −ρ (1)

with the permittivity ε(r) = ε0εrel(r), the electrostatic potential, Φ, and the charge distribution, ρ.

Equation (1) leads to complex boundary conditions at dielectric interfaces, which need to be taken

into account by the underlying electrostatics method. Conducting media can, in principle, be treated

as the ε → ∞ limit of the above equation and, thus, allow one to treat this case with very similar

methods to those for dielectric contrast. Since these materials appear in important fields, such as

energy storage and electrolyte capacitors, our described methods of treating dielectric contrast will

also be useful there.

In the following, we will describe how to fulfill the dielectric boundary conditions for planar

surfaces using the concept of image charges [15–17]. These approaches can even be extended

to the special case of two connected conducting surfaces. As an alternative route, we present the

ICC* (induced charge calculation) algorithm, which can handle arbitrarily-shaped surfaces [18,19].

Instead of computing image charge interactions, which is only feasible in some simple geometries,

the method determines the induced charges at the surfaces self-consistently.

Both image charge and induced charge approaches can only handle boundaries between media

of otherwise constant dielectric properties. In this article, we will also describe an extension

of the Maxwell Equations Molecular Dynamics (MEMD) algorithm [20,21], which can also

handle continuously varying dielectric constants. It solves a simplified version of the Maxwell

electrodynamics equations on a discrete lattice.

The methods and results presented in this review were mostly published before in [16–19,22].

Implementations of all methods, including the features discussed here, can be found in ESPResSo,

the Extensible Simulation Package for Research on Soft matter [22,23]. A review article on the

general topic of long-range interactions in soft matter can be found in [24].

2. Planar Interfaces: Image Charges

We start by discussing the simplest case of dielectric interfaces, namely, two planar, parallel

interfaces that enclose a set of charges. We assume a vertical orientation of the interfaces and refer to

a left and a right (l/r) interface. The electric field between the two interfaces can be computed from

these charges, plus additional image charges outside of the dielectric boundaries [25]. The positions

and magnitude of these images charges are chosen to satisfy the boundary conditions for the electric

field. If only one interface, the left or the right interface, were present, image charges would appear

reflected at the respective interface, with the charge scaled down by a factor of:

Δl =
εm − εl
εm + εl

and Δr =
εm − εr
εm + εr

(2)
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where εm is the background permittivity in the main cell and εl and εr are the permittivities in the

adjacent left and right media, respectively. Note that Δl and Δr can be positive, as well as negative,

so that a charge can be attracted to the wall or repelled by it.

To construct the image charges in a situation with two interfaces, every image charge created by

reflection on one interface also needs to be reflected again onto the other interface. This leads to an

infinite set of images: A charge, q, is reflected at the right (left) interface and yields an image of the

magnitude of qΔr (resp. qΔl). The next reflection gives rise to another image charge, qΔlΔr (resp.

qΔrΔl), in the opposite dielectric domain, and so on. The infinite array of image charges is depicted

in Figure 1: a charge, q, at position z will produce a series of mirror charges in the right dielectric

domain (with εr) with charges:

qΔn+1 at positions − 2(n+ 1)Lz + z and qΔrΔ
n at positions − 2nLz − z, n ≥ 0 (3)

where Lz denotes the distance between the two interfaces and Δ := ΔrΔl. In the left dielectric

domain (with εl), the charges are:

qΔn+1 at positions 2(n+ 1)Lz + z and qΔlΔ
n at positions 2(n+ 1)Lz − z, n ≥ 0 (4)

Figure 1. Schematic summation scheme for Image Charge MMM2D (ICMMM2D): in

order to take into account dielectric boundaries, image charges are introduced outside the

dielectric boundaries, to the left and right of the original box. The dielectric contrasts,

Δl and Δr, are computed from the dielectric jump at the left and right boundaries,

respectively. Depending on the dielectric contrasts, charges will either be repelled by the

surface (as in this sketch) or attracted to it. Note that in usual computer simulations, the

system is periodically replicated in the dimensions parallel to the interfaces, as indicated

in the figure.
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When computing the electrostatic interaction in a computer simulation with such parallel, infinite

planar walls, it is often desired to employ periodic boundary conditions in the two directions parallel

to the walls to minimize surface effects. The direct summation of periodic replicas is very costly, as

the sum is only slowly convergent. Thus, special techniques to compute the electrostatic interactions

are required. MMM2D is such an algorithm that computes the electrostatic interaction with two
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periodic dimensions [26,27] and is well suited for computing the interactions with the image charges.

The key idea of the MMM2D algorithm is to use two different formulas for the interaction of two

charges. One of the formulas, the near formula, is only used if the two particles are sufficiently close.

In combination with image charges, it is only used for the closest of all images, and its discussion is

beyond the scope of this article.

The second, far formula is accurate if a certain distance between the two charges is exceeded.

We assume a simulation box of L×L×Lz that is periodically replicated in the x and y dimensions.

Then, the Coulomb potential of a unit charge placed at the origin evaluated at position (x, y, z) with

|z| > 0, including periodic replicas in the x and y direction, can be written as:

Φ(x, y, z) =
1

4πεL2

∑
p,q �=0

e−2πfpq |z|

fpq
e(2πpx+2πqy)/L +

1

2εL2
|z| (5)

where fpq :=
√

p2 + q2/L. This formula follows from a Fourier transformation of the Poisson

equation in the x and y direction and can be factorized into contributions. This makes it possible to

compute the interactions between N separated charges in O(N) operations. Due to the unfavorable

scaling of the near formula, MMM2D scales only like O(N5/3) overall. It, however, is still superior

to Ewald-based methods [9] in partially periodic boundary conditions.

Coming back to our original problem of taking into account the infinite array of image charges,

we note that all these charges, with the exception of those directly adjacent, i.e., with index n ≥ 1,

are far from the slab containing the real charges. Therefore, we can apply the fast far formula in order

to compute the interaction with these charges. The infinite sums of image charges lead to geometric

series of the form: ∞∑
n=0

Δn 1

4πεmL2

∑
p,q �=0

e−2πfpq(2nLz±z)

fpq
e(2πpx+2πqy)/L (6)

which is a geometric series that can be easily simplified to:

1

4πεmL2

∑
p,q �=0

e±2πfpqz

fpq(1−Δe4πfpqLz)
e(2πpx+2πqy)/L (7)

In other words, an existing implementation of MMM2D can be easily enhanced in order to include

dielectric interfaces, simply by modifying the prefactors of the p, q-Fourier sum. For the detailed

expressions, see [16]. In the following, we denote such an MMM2D implementation for dielectric

interfaces as ICMMM2D (Image Charge MMM2D).

Note that Equation (5) contains an additional term, |z|/(2εmL2), which represents the constant

Fourier mode. The summation over the image charges of this term leads to expressions of the form:

1

2εmL2

∑
n≥0

Δn (2nLz ± z) (8)

since 2nLz is larger than any possible particle distance z. Unlike Equation (6), this is not a simple

geometric series. However, when computing the total potential in a charge neutral system, terms that
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do not depend on the positions cancel out, in particular, the 2nLz terms. What remains from the four

image charge sums are again geometric series that lead to a contribution of:

1

2εmL2

Δr −Δl

1−Δ
z (9)

If the two planar walls have the same dielectric contrast, this contribution to the potential vanishes.

Furthermore, if one is only interested in energy or forces, this contribution vanishes, due to

charge neutrality.

An alternative method for planar dielectric interfaces is based on an extension of our ELC method.

It also uses the technique to sum up the image charges with the ICMM2D far formula, and we termed

it ELCIC (ELC with Image Charges), see [17] for details of the method.

Note that it is also possible to consider systems that are not charge neutral. Formally, one assumes

two equally charged plates at the positions of the dielectric interfaces that cancel the total charge [28].

The field of a charged plate is, however, exactly what the |z|/(2εmL2) term represents, so that the

above considerations for this term still hold. Therefore, one can safely ignore this contribution.

Figure 2. (a) Sketch of our simulation setup, a 3:1 electrolyte, e.g., AlCl3, between two

walls with a dielectric constant different from that of water. The size difference between

the ion types is neglected in this simulation. The slab is periodically replicated parallel

to the walls, vertical in the sketch. (b) Density distribution of anions and cations of the

trivalent electrolyte, near the dielectric interface. The dielectric interfaces is placed at

x = 0, and a repulsive potential maintains a minimum distance of 0.5 nanometers for all

ions. A good dielectric εC = 800, representing conducting material, strongly attracts

cations, while anions are less attracted. A bad dielectric εC = 2, representing a typical

biological membrane, repels cations. The univalent anions are much less repelled.
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2.1. Example: Electrolyte between Dielectric Walls

As an example application of the ICMMM2D algorithm, we simulated a 3:1 electrolyte (e.g.,

AlCl3) with a concentration of 0.01 mol/l confined by planar walls to a slab, as depicted in Figure 2a.

The size difference between positive and negative ions has been neglected here. This is a good model

for the narrow slit between the electrodes of a capacitor, as well as two biological membranes or glass

plates. However, the dielectric properties of a metal electrode (here approximated with εC ≈ 800)

and a biological membrane (εC ≈ 2) are very different and in both cases also differ strongly from

the permittivity of the solvent; here, water (εW = 80). The resulting dielectric jumps at the surfaces

have a pronounced effect on the distribution of ions near the walls.

Figure 2b shows this strong influence of the dielectric interfaces. Both cations and anions are

attracted to the walls of high permittivity (εC = 800), but repelled by the low permittivity (εC = 2)

walls. On a microscopic level, the electric field of a charge will give rise to a dielectric displacement

in the wall. This displacement will weaken or pronounce the field within the dielectric medium,

compared to the other side of the interface. It can be accounted for by imagining virtual mirror

charges or surface charges directly on the interface. To correctly reproduce the field discontinuities

at the boundary, these charges will be of an attractive nature in the region of lower permittivity and

of a repulsive nature in the region of higher permittivity. Note also that the effect is more pronounced

for multivalent ions. Ignoring the dielectric jumps would lead to a much more homogeneous charge

distribution, so that one would strongly underestimate the effect of including multivalent ions.

3. Arbitrarily-Shaped Interfaces: Induced Charges

The concept of induced charges rather than image charges is a direct route to take into account

dielectric interfaces of arbitrary shape. Conventionally, charge induction is considered to be the

origin of Faraday’s cage effect: applying an electric field to a conductor will trigger the mobile

charges inside to move until the electric field vanishes inside and field lines end orthogonally to the

surface of induced charges. The same concept, however, can also be applied to dielectrics, hence

materials with immobile charges. This can be seen from the following mathematical consideration.

The Poisson equation in an inhomogeneous dielectric medium (1) can be rewritten as:

ΔΦ = −1

ε
ρ− 1

ε
∇ε · ∇Φ (10)

The term, ∇ε · ∇Φ, is identified as the induced surface charge density, σ. It is nonzero only on the

dielectric interfaces, since ∇ε vanishes everywhere else.

Let us introduce the Green’s function, G, for the Laplace operator. It can, e.g., be just 1
4π|r−r′| , but

may also include the desired periodicity. Then, it is possible to eliminate the Laplace operator from

the equation above and express the potential by means of two integrals:

Φ =

∫
V

G (r, r′) ρ (r′) /ε dV ′ +
∫
A

G (r, r′) σ (r′) /ε dA′ (11)

The volume integral extends over medium 1, and the surface integral extends over all dielectric

interfaces. The potential is now expressed in terms of the Green’s function of a homogeneous
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dielectric, yet the induced charge density, σ, is still unknown. We now assume that the charges

are embedded in a medium with permittivity, ε1, and for simplicity, only a second permittivity, ε2.

By taking the gradient and inserting this expression in the definition of the induced charge density,

we obtain the following integral equation:

σ = 2
ε1 − ε2
ε1 + ε2

(∫
V

∇rG (r, r′) ρ (r′) /ε1dV ′ +
∫
A

∇rG (r, r′) σ (r′) /ε1dA′
)

(12)

This result is easily generalized to multiple regions with different permittivities The idea of the ICC*

algorithm [18] is to determine this charge density self-consistently, after discretizing the surface.

In principle, this approach is a boundary element method, an approach that is very widely used,

e.g., for a low Reynold number flow [29]. Different from other approaches is, however, that the

efficient evaluation of the Green’s function can be borrowed from standard Coulomb solvers. This

can be seen from the following: assuming a discretized surface of m point charges on the dielectric

interface, the equation above for discretization point k can be written as:

qk = Ak
ε1 − ε2
ε1 + ε2

nk ·
[

n∑
i=1

qi∇rkG (rk, ri) +
m∑

j=1,j �=k

qj∇rkG (rk, rj)

]

where Ak is the surface area of the surface element, k. The term in square brackets is just the electric

field acting at the position of point k, assuming a homogeneous dielectric constant, ε1, in the system,

created by conventional (not induced) charges. Any standard Coulomb solver can thus be used to

perform the calculation. The desired solution of all qk is the fix point of the following iteration:

ql+1
k = (1− ω) qlk + ωAk

ε1 − ε2
ε1 + ε2

nk ·E
(
[qi] ,

[
qlj
])

It turned out that this iteration is very stable and with a choice of ω ≈ 0.7, no stability issues occur.

In every MD step, only 1–3 iterations are necessary, as the particle positions change only slightly.

An important advantage of this algorithm is that the computationally most costly part, the

evaluation of the electric field, can be done with any usual electrostatics solver without modifications.

Thus, not only the computational efficiency, but also the periodicity is inherited from the Coulomb

solver. The complexity of the algorithm remains unchanged by the presence of induced surface

charges. However, the number of particles can increase considerably. We found it sufficient to

discretize the surface with mutual particle distances equal to the distance of closest approach. For

the system shown in Section 2, this would mean, in total, 1,600 surface charges per wall, compared

to less than 100 ions in the system.

In our research, this algorithm was applied to investigate if dielectric effects can change the

electrolytic conductance of very narrow pores, nanopores, through membranes or have an influence

on the translocation of charged macromolecules through nanopores [19,30]. Here, dielectric

boundary forces lead to a repulsion of (unpaired) ions. Taking into account dielectric effects in

small pores will decrease the number of available ions and, thus, decrease the conductance.

The error in the obtained electric field depends on the applied resolution with which the surface

is resolved. The method has been tested for planar and curved surfaces [18], and it was found that



378

from a distance larger than one lattice spacing, the relative error remains smaller than 1%. Since

the permissible error depends often on the desired application, we advise to determine the necessary

accuracy specifically for each case. If interfaces with media with a high dielectric constant or even

metallic boundaries are considered, charges are attracted to the surface and can come quite close to

the interface, depending on the ion size. In this case, the necessary accuracy is clearly higher than

for interfaces with lower dielectric media, from which particles are repelled.

3.1. Example: Ion Distribution in a Pore

As an example, we investigate the ion distribution in a cylindrical pore of radius 5 nm in a

40 nm-thick membrane in an aqueous electrolyte. This geometry resembles the so-called solid state

nanopores [31–33] in silicon wafers. In several experiments (e.g., [34,35]), it was shown that single

DNA molecules present in such a pore can be detected by the change of the electric conductance of

such a system. To make the dielectric effect more pronounced, we again used a 3:1 electrolyte with

a concentration of 10 mmol/L. Our setup is sketched in Figure 3a: the surface charges of the ICC*

algorithm are displayed along with the ions, each as spheres. We assume the dielectric constant of the

membrane to be εP = 2. In Figure 3b, the equilibrium distribution of ions near the center of the pore

is shown. Ions, especially the trivalent ones, are repelled from the dielectric interface. This leads to

an overall decrease of ions in the pore by around 20%. Thus, the conductance of the system can be

expected to be reduced similarly, compared to a model that does not consider the dielectric contrast.

Figure 3. (a) The induced charge calculation (ICC*) example system: positive and

negative ions are displayed as red and blue spheres, the ICC* discretization points by

grey spheres; (b) ion density of both species in the pore measured close to the center of

the pore.
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4. Metallic Interfaces: Corrections

Metallic boundary conditions are the ε → ∞ limit of Equations (2) or (11), where ε denotes the

dielectric constant of the surrounding medium. The corresponding dielectric contrasts become −1,
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so that the field automatically vanishes in the conductor. In the case of two dielectric interfaces,

this simply leads to constant potentials on each of the two interfaces, but the potentials are not

necessarily the same. It is, however, also possible to fix the electrostatic potential on surfaces in

periodic systems. This has been done, for example, for the Monte Carlo implementation of the local

algorithm presented in Section 5 [13,14]. The fixing of the surface potential in periodic systems can

be achieved also for other algorithms, but the details are different, and we therefore briefly describe

the necessary ingredients for the algorithms previously described.

Figure 4. (a) Illustration of the dielectric boundary problem of single charge q outside

of a grounded conducting sphere. The problem can be solved by assuming an image

charge, q′, inside the sphere, leading to zero potential Φ on its surface. If the sphere

is assumed to be conducting, but isolated, the excess charge, q′, has to be canceled by

adding a second charge, q′′, in the center of the sphere, which leads to a constant surface

potential, Φ. (adapted from [25]). (b) A more complex geometry with an upper and lower

electrode (yellow). The electrodes are treated with the ICC* algorithm. If a Coulomb

solver with periodic boundary conditions (BCs) in the vertical direction is applied, the

potential difference between both electrodes is automatically zero. This is because the

periodicity yields zero potential difference between an electrode and its periodic image,

and the ICC* algorithm ensures that the two electrodes connected over periodic BCs are

on equal potential.
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The starting point is the textbook example of a single point charge outside of a conducting sphere,

as depicted in Figure 4a. A metallic sphere brought into an electric field can either be isolated, i.e., the

charge on the sphere is constant, or on a constant electrostatic potential, typically grounded. Again,

the boundary problem can be solved by adding an image charge opposite to the source charge in the

sphere. This ensures that the surface potential of the sphere does not vary. A second image charge

can be placed at the center, which dictates the electrostatic potential at the surface of the sphere: for

an isolated sphere with zero net charge, the image charge at the center must be of the same magnitude
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as the other image charge, but with the opposite sign. For a grounded sphere, it is simply zero. In the

following, we will show how conducting or grounded boundary conditions can be added to both the

image charge and induced charge methods, in order to perform computer simulations with constant

electrostatic metallic surface potentials.

Using the MMM2D far formula, the potential difference between the two plates appears as the

p = q = 0 mode of the electrostatic potential, i.e., the 2πlb|z|/L2 term in Equation (5). The

higher modes, in the limit of ε → ∞, serve to hold the potential constant on each conducting plate

individually. Due to the absolute value, this term does not cancel when considering the interactions

in the primary box. The potential difference, V , of the two plates is:

V =
1

2εL2

∫ L

0

∫ L

0

∫ Lz

0

ρ (x, y, z) (|Lz − z| − |z|)︸ ︷︷ ︸
Lz−2z

dz dy dx

where ρ denotes the charge density. In terms of the z-component of the dipole moment of the system,

Pz =
∑

i qizi, this equals:

V = − 1

εL2
Pz

since the Lz contribution vanishes once more due to charge neutrality. In order to cancel this potential

difference, one has to apply a constant external field E = (0, 0, 1
εL2Lz

Pz) in every MD step. This

additional field corresponds to that created by the central charge in the spherical image charge picture,

which puts the surfaces to equal potential. To obtain a different fixed potential ΔΦ0, an additional

field, ΔΦ0/Lz, needs to be applied in the z direction.

Systems treated with ICC* require no special measures if the surface on the constant potential

is connected within the simulation box. However, some attention is required when considering

electrodes at the boundary of the simulation box, as depicted in Figure 4b. If an electrostatics

method is applied that is not periodic in the respective direction, this will result in two electrically

unconnected surfaces. To obtain electrically connected surfaces, such as two grounded plates, it

is sufficient to use a solver periodic in the required direction and to leave a gap in the periodic

images. This can be seen from the simple case depicted in Figure 4b. If a periodic solver with

metallic boundary conditions is used, for example, the Ewald summation, the difference between the

electrostatic potential at a given position and its nearest periodic image is necessarily zero, due to

periodicity. However, since the induced charges create a constant potential in both sections of the

conductor, these must be the same throughout the whole, periodically connected conductor.

To obtain a non-zero electrostatic surface potential, the solution of the Poisson equation with zero

potential can be superimposed with a solution of the empty simulation box with nonzero potential on

the surfaces. This requires a solution of the Laplace equation that is then applied as an external field,

just as in the simple case of parallel plates. To do that, our simulation package, ESPResSo, supports

reading in tabulated external potentials, which are applied to charged particles weighted with the

according charge. It also takes care that the external potential is not applied to image charges. The

solution of the Laplace equation has to be obtained externally. We use a finite element solution based

on the DUNE framework [36,37]. Packages, like Matlab or Comsol, can, of course, also be applied.
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4.1. Verification: Field and Potential in Metallic BCs

In order to illustrate the methods described above, we show its importance on a simple model

system. We chose a planar geometry, because in this geometry, it is possible to use both the image

charge method, as well as the induced charge method. Thus, our system consists of a set of charges

confined by two parallel conducting planes. In the following, we will show that isolated plates can

be simulated either by using the ICMMM2D algorithm without correction or by using the ICC*

method with a Coulomb solver, which is not periodic in the direction of the planes’ normal vectors.

Connected plates at zero potential difference can either be simulated using the ICMMM2D method

with the correction derived above or using the ICC* method with a Coulomb solver, which is periodic

in the normal direction. As a solver for the fully periodic case, we use the P3M algorithm [8,38]; as

a solver for the partially periodic case, MMM2D [26,27].

Figure 5. (a) Sketch of the model system that was used to probe the influence of

grounded and isolated metallic boundary conditions. The two possible setups are

depicted by adding a switch to electrically connect the two plates. (b) The resulting

electrostatic field, E, perpendicular to the plates and the electrostatic potential in the slab.
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For simplicity, we construct a constant charge distribution with a net dipole moment and probe

the electrostatic field with a small test charge q = 10−9e that is moved through the system. Metallic

boundary conditions are created at z = 0 and z = Lz = 10 nm by using the four algorithms described

above. The dielectric permittivity between the surrounding metal plates is assumed to be εW = 80

for bulk water. The charge distribution we chose is depicted in Figure 5a: fixed, charged particles

form two oppositely charged plates at z = 0.25Lz and 0.75Lz. In one of the two directions parallel

to the surrounding metal plates, a void of a length of 0.5 Lx is left, so that the test charge can be

moved through the gaps without getting close to the charged plates. We measure the electric field by

performing a force calculation with the respective algorithm and dividing the obtained force by the

small value of the test charge. In Figure 5b, we report the measured electric field and the potential

obtained from the integration of the electric field. We observe the expected behavior: the shape of
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the electric field is identical in all cases up to a constant. In the cases where the the algorithms are

supposed to simulate two connected metal electrodes, the electric field is shifted downwards, so that

the integral is zero, and both electrodes have the same potential.

These two methods are, in our opinion, very interesting for investigating supercapacitors based

on electrolytes or ionic liquids, (e.g., [39–41]). They are complimentary in the sense that the image

charge method is computationally very cheap: the extra cost of image charges is typically negligible,

and the only model parameter is the distance of closest approach between ions and the metallic

interface. The induced charge methods, however, allow for arbitrarily-shaped surfaces, and one can

investigate very complex geometries. The extra computational cost is feasible if the resolution of the

surface can be relatively coarse or, in other words, a certain electrostatic “roughness” or inaccuracy

is acceptable and can be considered as an adjustable model parameter.

5. Smooth Variations: Local Method

We have presented methods to deal with sharp dielectric interfaces of several types and shapes.

Yet, none of these methods offer the possibility of a spatially smooth varying permittivity. More

precisely, they are all restricted to single step-like changes and do not allow charges to pass through

those regions of variation.

In the following, we sketch an algorithm that allows for an arbitrary distribution, ε(r), of

the permittivity that we call Maxwell Equations Molecular Dynamics (MEMD). The concept of

diffusive field propagation was first presented by Maggs in 2002 [20,42] and adapted for molecular

dynamics simulations simultaneously by Rottler and Maggs [43] and Dünweg and Pasichnyk [21].

The algorithm is not based on the static Poisson Equation (1), which is of a global nature. Instead,

the time derivative of Gauss’ law ∇D = ρ of electrodynamics, with D = ε(r)E, is extended to the

following constraint of the most general form.

Ḋ + j −∇× Θ̇ = 0 (13)

where j denotes the local electric current and Θ is an arbitrary vector field representing an additional

degree of freedom. If we apply this constraint to the system propagation via a Lagrange multiplier,

A, fix the gauge degree of freedom from Equation (13) to:

Ȧ = −D, define (14)

B := ∇×A (15)

and introduce the magnetic field, B, then this so-called temporal (or Weyl) gauge will, via variational

calculus, lead to the equations of motion for the charges and fields that are known as the Maxwell

equations. The actual electrostatic potential, Φ, is never calculated in this algorithm, only the electric

field, E, for Lorentz force calculation:

FL = q

(
E +

1

c2
v ×B

)
(16)

It is remarkable that simply by applying constraint (13) and the Weyl gauge, (14), the complete

equations of the electromagnetic formalism can be reproduced. It can even be shown [20] that the
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propagation speed of the magnetic field, an equivalent of the speed of light, c, can be reduced in a

Car-Parrinello manner, and correct retarded solutions for statistic observables can still be maintained.

This reduces the elliptic partial differential Equation (1) to a set of hyperbolic differential

equations for the propagation of magnetic fields and charges, requiring only local operations for

the solution. It therefore opens up the possibility of arbitrary local dielectric permittivities within the

system. If discretized on a lattice and coupled with a linear next neighbor interpolation scheme for

the charges and electric currents, the permittivity can be set individually on every lattice link [44].

The discretization is carried out as seen in Figure 6a. This is in agreement with ε(r) being a

differential one-form, if we assume the tensor to only have identical diagonal entries (optically

isotropic dielectric medium).

In this algorithm, the charges can move freely through a smoothly varying dielectric medium.

At the current implementation state, the variations are only spatial, but temporal changes of the

dielectric during the simulation are theoretically possible. It has also been shown that the field

propagation within the system reproduces the classical Keesom potential interactions between two

dielectric interfaces [45].

Figure 6. Maxwell Equations Molecular Dynamics (MEMD) interpolation of the charges

onto the lattice. (a) The electric current, j, permittivity ε and electric field D are

interpolated to the adjacent lattice links. The magnetic field component, B, is placed

on the lattice plaquettes via a finite-differences curl (∇×) operator. (b) The numerical

error of the algorithm is dependent on the lattice spacing. The error can be reduced by

applying a coarser mesh, coming from the right in this graph, and, thereby, increasing

the field propagation speed in the system. However, at large lattice spacings a, the

interpolation error at small distances dominates and diverges. In a densely-populated

system, like the examples seen here, a minimal relative error of 10−3 is achieved at

mesh sizes comparable to the minimum distance of two charges, denoted here by σ. For

reference, the errors compared to a high precision P3M force calculation are included for

three example systems.
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One source of numerical errors in this algorithm stems from the retarded solution of the Maxwell

equations with the Lorentz force calculation (16) at the finite speed of light c � ∞. The second

error is introduced via the linear lattice interpolation of the charges. The self-interaction of a

charge with the lattice can be corrected, for example, using a lattice Greens function for constant

dielectric backgrounds, but for locally varying dielectric properties, the implementation relies on a

straight-forward direct subtraction scheme. Here, the local electric field created by the interpolated

charges of one particle is calculated and subtracted from the resulting force. Still, an interpolation

error remains for the coupling between two particles at close distances, since the charge is spread out

on the lattice.

Since the field propagation speed within the system is proportional to the lattice spacing, a, the

first of these errors depends on (1/a2) (see Equation (16)), whereas the second error for geometrical

reasons scales like a3. It can be seen in Figure 6b that the error can be reduced by making the mesh

coarser, until the interpolation error at close distances dominates for a very coarse mesh. The plot

shows a theoretical estimate of the error and simulation data for three example systems: an artificial

system with a charged infinite plate (cloud-wall), a polyelectrolyte in aqueous solution and a silica

salt melt. The second parameter, besides the lattice spacing, the artificial speed of light, c, was chosen

to obey the Courant-Friedrichs-Lewy stability condition, c � a/dt, where dt is the time step of the

MD simulation. For every lattice spacing, there exists a maximum speed of light parameter that

keeps the algorithm stable. Here, we picked the speed of light c = 0.1 · a/dt as the parameter for all

three setups. It turns out that a relative force error of 10−3 is achievable in sufficiently homogeneous

systems, and the optimal lattice spacing is comparable to the minimal distance between charges. The

interpolation error, and, therefore, the total error, can be reduced by splitting off a near field that

spans across multiple mesh cells and applying a short-range calculation in this region. However, this

is not possible for spatially varying permittivity and will not be discussed here.

5.1. Example: Colloid with Dielectric Jump and Continuous Dielectric Constant

An example where such smoothly varying changes in ε can play a substantial role is the

simulation of a charged colloid in a salt solution (Figure 7a). The first approach at dielectric

coarse graining is a sharp dielectric contrast between the colloid and the solvent. Such a system

can be simulated by the ICC* method presented in Section 3 with a dielectric permittivity εC = 2

within the colloid and εW = 80 for the surrounding bulk water. However, in practice, the

polarizability, and, therefore, bulk permittivity, of water close to charged surfaces and in regions of

high ion concentrations is significantly reduced [46]. Many workarounds were proposed to address

this behavior, including the introduction of an artificial Stern layer [47] to reproduce the desired

Gouy-Chapman predictions. A more direct and more physical approach is to interpolate the bulk

permittivity from the colloid to free water between the colloid surface and the solution (see the

bottom of Figure 7b). A linear interpolation is sufficient to describe the local permittivity obtained

from atomistic simulations [48].

In order to illustrate the difference between dielectric jump and continuous dielectric constant,

we simulated a spherical setup with two different models of radial permittivity dependence ε(|r|).
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Model 1 includes a discontinuity of ε at the colloid surface, whereas model 2 uses a linear

interpolation ε(|r|) = εC + (εW − εC)/(4σ) · (r − R) over four ion radii σ = 0.425 nm. Model 1

additionally has been simulated using the ICC* algorithm combined with the P3M Coulomb solver,

for comparison. Figure 7b shows the radial charge density of the counterions around a colloid

of charge Z = 60 with radius Rc = 30σ = 12.75 nm in a monovalent electrolyte solvent of

c = 50mmol/L concentration. The difference between the two models is drastic and can be explained

by the stronger Coulomb attraction of counterions towards the colloid, due to the smaller dielectric

permittivity close to the colloid surface. Another effect is the earlier occurrence of overcharging

effects, because of increased ion correlations, due to their entering the region of lower permittivity.

The comparison with the ICC* algorithm, on the other hand, shows that MEMD is also very well

capable of simulating dielectric jumps, provided a sufficiently small mesh, comparable to the particle

size, for the discretization of the electrodynamic equations can be realized. The computational

overhead, compared to a simulation with MEMD at constant background permittivity, is negligible at

less than 0.1% in this setup. MEMD ran 41% longer than the identical setup for the ICC* algorithm.

This overhead could be reduced by further optimizing the mesh size, which was chosen to be well

resolved here at a colloid diameter of 16 mesh spacings.

Figure 7. (a) A charged colloid (charge Z = 60e, radius R = 12.75 nm) is suspended

in a salt solution (concentration c = 50mmol/L). The dielectric constant is modeled as

an abrupt jump to the bulk water permittivity with the MEMD and ICCP3M algorithms

(gray points, green curve) or a linear radial increase within two ion diameters from the

colloid surface between the two regimes (red). (b) The resulting radial charge density

profiles, which exhibit a drastic difference between the dielectric jump in model 1 and a

smooth interpolation in model 2.
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6. Conclusions

In this review, we have presented several methods to compute electrostatic interactions in the

presence of dielectric interfaces in computer simulations and give examples that demonstrate the

importance of taking the dielectric contrasts into account, like they appear in implicit solvent models.
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In a planar slit pore, such as a plate capacitor, ions are attracted to the walls or are repelled by

them, depending on whether the walls consist of an dielectric medium with high or low polarizability.

The presented ICMMM2D [16] or the ELCIC [17] algorithms allow one to treat a slit pore with

dielectric jumps at both confining interfaces, like capacitors or thin films.

In curved or more complex geometries, such as a nanopore, dielectric properties can also

drastically alter the ion distribution or the translocation properties of charged macromolecules. The

presented ICC* algorithm allows one to include arbitrarily-shaped dielectric interfaces in computer

simulations, by computing the induced surface charges necessary to fulfill the dielectric boundary

conditions on the fly.

As another interesting application, we presented the example of plates that are held electrically

at a constant potential, such as one would use to study capacitors. This will lead to a different

polarization than isolated grounded plates, and this effect has to be taken into account in simulations,

with algorithms that are adjusted accordingly. Both the ICMMM2D and the ICC* algorithm can

handle this special case, as we have demonstrated.

Finally, we have shown that smoothly varying dielectric properties again are very different

from dielectric jumps as treated by ICMMM2D or ICC*. At present, only the sketched MEMD

electrostatics algorithm [20,21,44] is able to treat such systems.

All algorithms presented here, including the extensions for varying dielectric constants, are

implemented in the open source simulation package, ESPResSo [22,23]. MEMD is also part of

the open source ScaFaCoS (Scalable Fast Coulomb Solvers) library for fast Coulomb solvers [49].

In conclusion, computational tools for the most common cases of varying dielectric properties are

readily available for computer simulations. This will become more and more important with the

increased interest of applying coarse-grained or implicit solvent models in nanopores, biological

membranes, thin films and supercapacitors.
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Abstract: A methodology for the determination of the solid-fluid contact angle, to be 
employed within molecular dynamics (MD) simulations, is developed and systematically 
applied. The calculation of the contact angle of a fluid drop on a given surface, 
averaged over an equilibrated MD trajectory, is divided in three main steps: (i) the 
determination of the fluid molecules that constitute the interface, (ii) the treatment of 
the interfacial molecules as a point cloud data set to define a geometric surface, using 
surface meshing techniques to compute the surface normals from the mesh, (iii) the 
collection and averaging of the interface normals collected from the post-processing of 
the MD trajectory. The average vector thus found is used to calculate the Cassie contact 
angle (i.e., the arccosine of the averaged normal z-component). As an example we 
explore the effect of the size of a drop of water on the observed solid-fluid contact 
angle. A single coarse-grained bead representing two water molecules and parameterized 
using the SAFT-� Mie equation of state (EoS) is employed, meanwhile the solid 
surfaces are mimicked using integrated potentials. The contact angle is seen to be a 
strong function of the system size for small nano-droplets. The thermodynamic limit, 
corresponding to the infinite size (macroscopic) drop is only truly recovered when 
using an excess of half a million water coarse-grained beads and/or a drop radius of 
over 26 nm. 

Keywords: cloud data set; interfacial tension; coarse-graining; water; line tension; 
graphene 
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1. Introduction 

Wetting is the ability of a liquid to maintain contact with a solid surface, resulting from 
intermolecular interactions when the two are brought together. The presence of a liquid drop on a 
rigid surface is a reflection of the force balance between adhesive and cohesive forces and is 
commonly used to determine the wettability (the degree of wetting) of the solid-fluid system in 
terms of the solid-fluid contact angle, � (see Figure 1). In this context, hydrophobicity is commonly 
referred to as the ability of a solid surface to repel water: if the water contact angle is smaller than 
90°, the solid surface is considered hydrophilic and if the water contact angle is larger than 90°, the 
solid surface is considered hydrophobic. 

Figure 1. Schematic of a liquid drop on a solid surface showing the contact angle. 

 

Despite the fact of being such a well-defined problem the amount of conflicting (both theoretical 
and experimental) reported values for a given system is intriguing (see Figure 2, data from 
reference [1]). 

Figure 2. Frequency of contact angle values of water on graphite reported in literature; 
both from experimental results and numerical simulations [1]. 

 

For instance, in the case of the graphite-water system, contact angles have been addressed 
extensively by experimental and theoretical approaches; however, a single general value has not 
been accepted [2–9]. 

A variety of causes for the discrepancies can be enumerated: heterogeneity and/or impurities at 
the surfaces or in the fluids, different methodological unstandardized calibration of equipment in 
experiments, possible system size effects and the distinct interaction potentials in simulations. 
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At the molecular scale, the main hurdle is that estimating contact angles for nanodroplets on 
surfaces is complicated by the fact that there are significant fluctuations in the shape of the droplet, 
and its geometry at a given step is often not axially symmetric. Furthermore, for very small 
nanoclusters, the fluid interfacial tension is a function of the curvature, and the planar limit is, in 
some cases, not recovered even after drop radii of 14 times the molecular diameter [10,11]. The 
change in the line tension with curvature (discussed in the latter part of this manuscript) is also an 
important factor affecting the result. It is seen that the contact angle will be, in the nanoscopic 
limit, a strong function of the system size [2]. In the analysis of simulations, contact angles [12,13] 
are commonly determined by using two-dimensional slices of the droplet and fitting its density 
profile to an empirical function, usually a circular section [14]. Such an approach, although 
appealing from the simplicity of the method, provides inconsistent results, particularly for small 
droplets [11]. Understandingly, different methods of increasing complexity have been devised for 
this purpose [15–17].  

Figure 3 illustrates the difficulties associated with defining the contact angle using  
two-dimensional slices of molecular snapshots, especially for small droplets. Such droplets are 
often asymmetrical, and their shape changes substantially with time, due to capillary fluctuations. 
Using one or a few two-dimensional projections of a few molecular snapshots can thus potentially 
lead to large errors on the measured contact angle: for example, the values shown on Figure 3 vary 
over range of about 10°. 

Figure 3. Two-dimensional projections of a given configuration of a water droplet on a 
surface. The contact angles, measured using the auxiliary lines depicted in black, are:  
(a) 63.77° (b) 60.52° (c) 64.56° (d) 54.93°. 

(a) (b) 

(c) (d) 
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In addition to the inherent fluctuations of the drop’s shape, there is a degree of arbitrariness in 
defining a single line separating the two phases in the two-dimensional projection. The interface 
layer is actually diffuse, as seen in Figure 3, spanning a width of several molecular diameters.  
This introduces another potential source of error, as the contact angle measured can change over a 
range of 5° or more depending on the choice of the contact line. 

In this paper, we propose a method that does not make any a priori assumption about the shape 
of the drop, and uses the complete three-dimensional structure of the droplet near the surface to 
estimate the contact angle. For such analysis, we propose a geometrical estimation of the contact 
angle based on cloud point data breakdown of an equilibrated molecular dynamics (MD) trajectory 
of a drop on a given surface, this eliminates the effect of both spatial and temporal fluctuations on 
the estimated value of contact angle, yielding a value that better represents the average shape of the 
drop, as explained in detail in the next section. 

2. Methodology 

In order to estimate the average contact angle during an MD simulation, we first define a contact 
layer at each time step. This layer is defined as the set of molecules within the liquid-vapor 
interface that are close to (i.e., within a maximum distance zmax from) the solid surface. We then 
estimate the normal to the interface for each molecule in the contact layer by finding the plane that 
best fits the local shape of the interface at that point. The average of all the local normal vectors for 
all the time steps, , can be used to calculate the average contact angle as , 
where  is the normal to the solid surface. 

In practice, at each time step in the simulation, we carry out a two-step calculation: In the first 
step we use a discretized density profile to identify the molecules belonging to the liquid-vapor 
interface. In the second step, we estimate the local surface normal vectors for the molecules in the 
contact layer. The procedure is explained in detail below. 

2.1. Identification of Interfacial Molecules 

We identify the molecules belonging to the liquid-vapor interface using the following procedure: 

(1) We divide the simulation box into subcells, and calculate the local number density in  
each subcell. 

(2) We mark subcells as liquid if their number density is greater than a cutoff value , 
otherwise we mark them as vapor cells. The cutoff density is chosen close to the average 
between the liquid and vapor number densities at the conditions of interest. 

(3) Every subcell that is adjacent to at least one liquid cell and one vapor cell is marked as an 
interface cell. 

(4) Finally, all molecules contained within the above-determined interface cells are marked as 
interfacial molecules. 

The results obtained using the interface-sensing procedure are only weakly dependent on the 
choice of cutoff density, as long as this density is between the liquid and vapor densities. The 
number of subcells, on the other hand, should be chosen carefully: having more subcells identifies 

n � � cos�1 n �nsurf� �
nsurf

�c
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the interface with a higher resolution. However, if the number of subcells is too large, the density 
fluctuations within the droplet may cause the algorithm to incorrectly label too many cells as part 
of the interface. This can be easily detected by visualizing the interface molecules at one or a  
few simulation steps. Alternatively, one can use the average coordination number or the 
Minkowski-Bouligand dimension (obtained from a box-counting algorithm) [18,19] as a 
quantitative measure to select the appropriate subcell size. As the cells become smaller and the 
interface-sensing algorithm starts fitting the molecular-level fluctuations in the density rather than 
the actual interface, both the fractal dimension and the average coordination number will start 
deviating from the value expected for the larger subcells, indicating that the subcell size has 
become too small. 

Figure 4. (a) A snapshot from a MD simulation showing a droplet on top of a given 
surface (not shown). (b) The discretized density profile from the same system obtained 
using cubic subcells of width 3 nm. Density values are in molecules/Å [3]. 

(a) (b) 

2.2. Estimation of Local Contact Angles 

Having identified the molecules belonging to the interface, we choose a subset of the interface 
molecules as the interface contact layer. This layer contains the interface molecules that are within 
a given distance zmax from the solid surface. We then estimate the local contact angle at the position 
of each molecule i using the following procedure: 

(a). Find all the interface molecules within a given cutoff radius, , of molecule i. 
(b). Find the average position  of all the interface molecules found in step (a), including 

molecule i. 
(c). Subtract the average position from the position of all the neighboring molecules, 

including i. 
(d). Construct the covariance matrix  of the centered positions,  found in step (c): 

 
(1)

where  denotes the outer (Kronecker) product. 
(e). Find the eigenvector of 	 corresponding to its smallest eigenvalue. This is the normal to 

the plane that best fits the set of molecules in step (c). The sign of this normal is chosen 
to point away from the center of the droplet [20]. 
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We average all the local normal vectors obtained at all the time steps to obtain the average 
normal. The component of this average normal perpendicular to the solid surface is the cosine of 
the average contact angle. The eigenvalues of the covariance matrix measure the variability of the 
positions along the three orthogonal directions defined by the eigenvectors. These can be used as a 
measure of how 1-, 2- or 3-dimensional the interface is. If one of the eigenvectors is close to zero, 
the interface is close to planar in that region. 

The procedure described above to estimate the local contact angle requires arbitrarily setting a 
distance from the solid surface, zmax, to define the contact layer, and a cutoff radius  to estimate 

the tangent plane. In theory the contact angle would correspond to the limit when zmax� 0. 
However, if zmax is chosen to be too small, the local density fluctuations within the contact layer 
cause the distribution of local contact angle values to be too noisy. Thus, one should choose the 
smallest value that gives a reasonable estimation error for the average contact angle. For the 
examples shown in this work, we have found zmax = 0.5 nm to give reasonable results. 

For the cutoff radius, rc, a compromise is also needed: if the value is too small, local density 
fluctuations cause the error in the estimated normal to be too large, whereas if the value is too large 
the orientation of the tangent plane will be affected by molecules far from the position of interest. 
The choice of rc should be made by considerations similar to those used in choosing zmax. For the 
examples in this work, we have found rc = 1 nm to be a reasonable value. A more detailed 
discussion of how to choose this cutoff can be found in reference [21]. Finally, we estimate the 
statistical error associated with the average contact angle computed by our method, we use the 
bootstrapping method [22]. 

2.3. Molecular Dynamics Details 

Atomistic MD simulations are generally limited to nanometer-sized water droplets [2] 
Consequently, the apparent contact angle is usually drop-size dependent. To explore bigger 
systems, and aiming to find the optimal size for the MD contact angle calculation, we adopted a 
coarse-grained (CG) approach to describe the solid-water system in order to test the system size 
dependence beyond the atomistic limits, in a reasonable time [2]. 

We used the GROMACS simulation open source [23] suite to calculate the MD, which is well 
suited to implement Mie potentials [24]. Here, a single CG isotropic bead represents two water 
molecules [25]. Although several options are available for choosing the number of water molecules 
in a CG bead [26], this choice and the current parameterization produces sensible results, including 
a melting point, the surface tension, liquid densities and vapour pressures close to the experimental. 
The parameterization was carried out using SAFT-
 Mie approach, [27–29] where the water 
parameters were obtained by fitting to macroscopic properties, namely, the planar limit interfacial 
tension and liquid state density of water in a range from 0 °C to 40 °C. The SAFT EoS is a 
perturbation approach based on a well-defined Hamiltonian; here the CG beads are represented in 
the theory by a Mie potential, u:

( )
a

r a
r a

arr r

r a a

u r Ar Cr
r r
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where r is the intermolecular distance, and �, and �, are the adjustable parameters relating to the 
energy and distance scales, �a is the dispersion exponent and �r is the short-range repulsion. The 
potential is expressed in terms of two constants A and C for ease of tabulating in MD codes. Solid 
walls are modeled implicitly and described by an integrated potential of the same form in the  
z-dimension. Eight implicit solid surfaces of increasing � Wall#-W/kB increments of 10 K, from 60 
K to 130 K (labeled Wall01 to Wall08 respectively) are employed [30]. Table 1 summarizes the 
selected coarse-grained parameters. 

Table 1. Coarse-grained parameters. W refers to a CG representation of water that 
accounts for two water molecules. 

Interaction 
�  

[nm] 
�/kB 
[K] 

�r , �a 
C ×102  

[kJ mol�1 nm�a] 
A × 104  

[kJ mol�1 nm�r] 
� Wall01-W/kB 

0.38716 

60 

10, 4 

3.44107 1.15888 
� Wall02-W/kB 70 4.01458 1.35203 
� Wall03-W/kB 80 4.58810 1.54518 
� Wall04-W/kB 90 5.16161 1.73832 
� Wall05-W/kB 100 5.73512 1.93147 
� Wall06-W/kB 110 6.30863 2.12462 
� Wall07-W/kB 120 6.88214 2.31776 
� Wall08-W/kB 130 7.45565 2.51091 

� W-W/kB 0.37459 399.96 8, 6 8.71139 1.222380 × 102 

The systems are run under a canonical (NVT) ensemble, where the total volume, concentration 
and temperature are kept constant. Periodic boundary conditions were applied in xy dimensions, 
meanwhile an attractive wall was placed at z = 0 and a repulsive one (C = 5.73512 × 10�4 kJ mol�1 
nm4, A = 1.93147 × 10�6 kJ mol�1 nm10 at the maximum height of the box. The number density of 
the atoms for each wall was set in 5 nm�2 (c.f. in a Si crystal the number of atoms per nm2 on the 
(100), (111) and (110) planes are 6.78, 7.83 and 9.59 nm�2, respectively [31]). The simulations are 
thermostated to 298.15 K every 1 ps by a Nose-Hoover algorithm, all non-bonded interactions were 
truncated at 2.0 nm. The trajectories were recorded every 1000 time-steps (�t = 0.01 ps) for at least 
2000 ps after equilibrium. 

3. Results and Discussions  

We simulate 16,000, 32,000, 64,000, 128,000, 256,000, 512,000 and 1,024,000 water molecules 
(8,000, 16,000, 32,000, 64,000, 128,000 and 512,000 beads) on the eight solid surfaces. The 
simulation boxes dimensions can be seen in Table 2. 

Although arbitrary, the reason guiding the choice of the simulation box size is to prevent the 
interaction between the sample and its periodic images. The meshing was done by dividing the 
simulation domain with a 1.2 × 1.2 × 1.2 nm3 subcell. The water droplet density contour is 
obtained from the cloud point data set analysis explained in the methodology section. 

To test the size dependence of the water contact angle on a given surface we chose the 
intermediate Wall05 (see Table 1). The contact angles obtained using a moderately hydrophilic 
substrate (Wall05) as a function of the drop size can be seen in the Figure 5. The water contact 
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angle over Wall05 exhibits a marked system-size dependence even up to 256,000 water molecules 
(128,000 beads) Larger drops exhibit a less pronounced but nevertheless noticeable size 
dependence. It is interesting to note that the effect of this scale up is an increase in the 
hydrophobicity of this surface in correspondence with previous simulations [32] and experimental 
studies at the macroscale. For this substrate, a system with 1,024,000 water molecules shows an 
apparent limiting contact angle of 74.30° [8]. The Wall05 parameters are chosen to loosely relate to 
graphene, a hydrophilic substrate. 

Table 2. Simulation box size for each system. 

Water molecules xy-dimensions [nm] z-dimension [nm] 
16,000 

60 × 60 18 
32,000 
64,000 

128,000 
256,000 

80 × 80 37.2 
512,000 

1,024,000 144 × 144 48 

Figure 5. (a) Water contact angle as a function of the water molecules on Wall05, inset 
shows the correspondent drop diameter, dashed lines are guide to the eye. (b) Snapshots 
of the drop interfaces for the smallest and the biggest system studied. 

 
(a)  

 
(b)  
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Figure 6. (a) Water contact angle as a function of the fluid-substrate interactions, solid 
circles are simulation results, dashed red line marks the hydrophobic-hydrophilic 
threshold. (b) Corresponding equilibrium interface snapshots depicting interfacial beads. 

 
(a) 

 
(b) 

Following from the above, we use the system of 256,000 water molecules to study its contact 
angle as a function of the fluid-substrate interactions; the results can be seen in Figure 6. As 
expected, increasing the interaction energy between water molecules and the attractive wall 
diminishes the solid-fluid contact angle. For this particular coarse-grained surface model the 
functionality is linear, and a value of �Wall-W/kB ~ 85 K can be taken as the boundary between 
hydrophilic and hydrophobic surface behavior. 

An ancillary quantity of interest in the context of the drops on surfaces is the line tension. The 
line tension is the relation between the energy associated with the three phase contact line and the 
length of this line. This quantity is inherently dependent on the size of the drop [33] and is discussed 
as one of the reasons why the calculated tensions appear to be size-dependent. For large drops, one 
can obtain an estimate of the line tension using the approximation described by Weijs et al. [34]. 
For a typical case as shown above: the case of a drop of roughly 26 nm in diameter and considering 
the planar limit of the fluid-vapor tension (72 mN·m�1) results in a contact tension line strength of 
O(10�8) J·m�1. While this number seems to be different from those estimated from micrometer 
drop experiments [35] or from molecular simulation of atomistic water models [36,37]; it is 
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appropriate to point out that values as low as ×10�11 J·m�1 and as high as ×10�5 J·m�1 have been 
reported [33], which place our results in the correct context. Obviously, there is scope for much 
more detailed research into this topic. 

4. Conclusions 

We have proposed and validated a methodology for the unambiguous calculation of the solid-
fluid contact angle from molecular dynamics simulations. We have tested model coarse-grained 
water-solid systems far beyond the limits commonly taken in atomistic simulation and showed, that 
for this particular model, more than 500,000 effective beads and/or drop diameters in excess of 50 
nm would be required in order to obtain a result which is invariant of system size. So far the 
methodology has been applied over homogenous surfaces. However, is a well-known fact that 
surface roughness and energetic heterogeneities will have a profound effect on the contact angle 
calculations. The methodology presented is well suited to capture those effects. 
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Abstract: Since most experimental observations are performed at constant temperature

and pressure, the isothermal-isobaric (NPT ) ensemble has been widely used in

molecular simulations. Nevertheless, the NPT ensemble has only recently been placed

on a rigorous foundation. The proper formulation of the NPT ensemble requires a

“shell” particle to uniquely identify the volume of the system, thereby avoiding the

redundant counting of configurations. Here, we review our recent work in incorporating

a shell particle into molecular dynamics simulation algorithms to generate the correct

NPT ensemble averages. Unlike previous methods, a piston of unknown mass is no

longer needed to control the response time of the volume fluctuations. As the volume of

the system is attached to the shell particle, the system itself now sets the time scales for

volume and pressure fluctuations. Finally, we discuss a number of tests that ensure the

equations of motion sample phase space correctly and consider the response time of the

system to pressure changes with and without the shell particle. Overall, the shell particle

algorithm is an effective simulation method for studying systems exposed to a constant

external pressure and may provide an advantage over other existing constant pressure

approaches when developing nonequilibrium molecular dynamics methods.

Keywords: isothermal-isobaric ensemble; molecular dynamics
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1. Introduction

The molecular dynamics (MD) simulation method can be straightforwardly applied to the analysis

of an isolated system or a system described by the microcanonical ensemble in which the energy,

volume V and particle number N are held fixed. The equations of motion that describe the time

evolution of the positions and momenta of the particles, i.e., the resulting microcanonical ensemble

phase space trajectory, follow directly from Newtonian mechanics. Energy, however, is not a variable

of choice for experiments. Many experimental observations are carried out under conditions of

constant pressure and temperature, such that the system is no longer isolated from its environment.

Therefore, while the generation of dynamic information about these systems is of interest, how to

modify the equations of motion to describe a system at constant temperature and/or constant pressure

is arguably not an obvious task.

An extension of the MD method to systems not described by the microcanonical ensemble

was presented by Andersen in 1980 [1]. Andersen showed, for example, that by modifying the

Lagrangian of the system, a constant external pressure could be imposed within MD. Specifically,

additional control variables were introduced into the Lagrangian, beyond the standard coordinate and

momentum vectors needed to describe the classical N -particle system. The new variables served to

drive the fluctuations of those variables no longer held fixed within the ensemble of interest. For a

system in which a constant external pressure is imposed, the system volume is now introduced as a

dynamic variable that serves to maintain, on average, mechanical equilibrium between the external

and system pressure. Consequently, the system is exposed to a barostat, whereby a “piston” of

arbitrary “mass” controls the dynamics of the volume. While ensemble averages are independent of

the piston mass, the fictitious mass does affect the response time for volume fluctuations.

Andersen’s extended Lagrangian approach was later adapted by Nosé [2,3] to simulate systems

in contact with a thermostat using MD. Hoover [4,5] proposed another isothermal-isobaric (NPT )

MD algorithm using a modification of Andersen’s piston method for maintaining constant pressure

and the thermostating method of Nosé. As Hoover was aware of, and as discussed in detail by

Tuckerman et al. [6], this algorithm does not yield ensemble averages consistent with the then

accepted form of the NPT ensemble partition function. Consequently, several new NPT MD

algorithms have been introduced in the literature (a non-exhaustive list is given here [7–11]).

Yet, starting nearly 20 years ago, the foundation of the NPT ensemble (when the volume is

considered to be a continuous variable) has been reconsidered [12–14]. What was noted was that

the NPT partition function redundantly counts the configurations of the system. This problem of

over-counting was removed by requiring that the volume, V , of the system be defined by a “shell”

particle, where at least one particle resides in the volume, dV , encapsulating V . All of the NPT MD

algorithms mentioned above are not, however, consistent with the proper shell-particle formulation of

the NPT ensemble (we will show later that Hoover’s algorithm does give the correct distribution of

volumes if periodic boundary conditions are employed). As such, new NPT MD algorithms should

be introduced in order to generate the correct NPT ensemble averages.
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Corti [15] previously modified the Monte Carlo NPT algorithm to be consistent with the

correct NPT partition function. The current authors performed a similar reformulation for the

constant pressure MD algorithm for systems whose particles interact via continuous [16,17] and

discontinuous [18] potentials. In these new MD algorithms, a shell particle is used to uniquely define

the volume of a system exposed to a constant external pressure. Consequently, since the shell particle

sets the volume of the system, no piston mass needs to be specified. In other words, the system itself

controls the response time of volume fluctuations, as the mass of the shell particle is known, and not

the user through the introduction of an arbitrary piston mass. Various benefits arise from the removal

of this ambiguity in the NPT MD algorithm.

As a side note, Evans and Morriss [19,20] utilized constrained dynamics to develop an NPT

MD algorithm. In this method, both the instantaneous pressure and kinetic energy are made strict

constants of motion, and so, the Andersen piston is not employed. Nevertheless, this algorithm

does not yield ensemble averages consistent with the NPT partition function (either with or without

the shell particle), as the instantaneous pressure fluctuates within the NPT ensemble [15]. Even

though the constraint dynamics also does not utilize a piston, the resulting equations of motion do

not generate the proper NPT ensemble averages.

In this paper, we review our previous work on employing the shell particle to generate

equations of motion that are consistent with the proper shell-particle formulation of the NPT

ensemble. To begin, we provide in Section 2 an overview of the reformulation of the NPT

ensemble partition function and the need to employ the shell particle to eliminate the redundant

counting of configurations. In Section 3, the equations of motion required to properly generate

a system within the NPT ensemble are presented, in which the piston of arbitrary mass is

replaced with a shell particle of known mass. We include the previously derived equations in

which an external temperature is imposed via the use of the Nosé-Hoover thermostat chains, as

well as recently developed equations making use of a thermostat based on the configurational

temperature. The Trotter expansion to the Liouville operator formalism [21–26] is used to factorize

the classical propagator into analytically solvable operators. We also provide simulation results for

the Lennard-Jones fluid, particularly for small system sizes, where interesting differences between

the old and new NPT partition function appear for various ensemble averages. ‘Nonequilibrium’

simulations are presented in Section 4, in which the external pressure is changed after the system

has equilibrated. As the system evolves to a new equilibrium state, we compare the dynamics of

the volume as defined via the shell particle to that when the Hoover algorithm is used with different

piston masses. Conclusions are provided in Section 5, as well as a discussion of some particular

dynamic systems of interest that may benefit from the use of the shell-particle formalism.

2. The Volume Scale in Constant Pressure Ensembles

The original formulation of the isothermal-isobaric ensemble can be traced back to 1939, where

Guggenheim [27] wrote the partition function, Δ(N,P, T ), as:

Δ(N,P, T ) =
∑
V

Q(N, V, T )e−PV/kBT (1)
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where kB is Boltzmann constant, Q(N, V, T ) is the canonical ensemble partition function of a system

composed of N particles held in a volume, V , and at a temperature, T , and P is the external pressure

to which the system is exposed as the volume is allowed to fluctuate. Although Equation (1) is

formally correct, an ambiguity arises when dealing with systems in which the volume is a continuous

variable. In the late 1950s, several authors [28–31] attempted to remove the conceptual difficulty

associated with the sum over an unspecified set of discrete volumes by expressing Δ(N,P, T ) as:

Δ0(N,P, T ) =
1

V0

∫ ∞

0

Q(N, V, T )e−PV/kBTdV (2)

The replacement of the sum in Equation (1) by an integral enables the inclusion of all volumes, but

at the expense of generating a partition function that has the dimensions of volume. Consequently,

this partition function must be rendered dimensionless through division by some constant with units

of volume denoted by V0 in Equation (2). Note that we wrote the partition function with a subscript

(Δ0(N,P, T )) in Equation (2) to signify that this partition function uses V0 as its volume scale. The

constant, V0, does cancels out when determining the ensemble average of a given variable and, so,

need not be specified. Even so, Sack [30] showed in the thermodynamic limit that:

V0 =
kBT

P
(3)

Hill [31] noted that in the thermodynamic limit, the choice of V0 is arbitrary, due in part to

the equivalency of the ensembles in the thermodynamic limit. Evaluation of ensemble averages of

macroscopic systems using Equation (2) yields only a completely negligible error. Yet, the precise

value of the volume scale is important when dealing with systems of sufficiently small size [12–14].

The volume scale must be chosen carefully, since it depends upon the properties of the boundary

separating the system of interest from the surroundings [14]. The boundary serves to define the

volume of the system and allows the system volume to fluctuate against the external pressure imposed

by the surroundings. Hence, the boundary cannot be chosen arbitrarily, particularly when the system

is not in the thermodynamic limit. In other words, the properties assigned to the boundary must

conform to the actual physical situation in which the system is found.

As shown by Koper and Reiss [12] using the microcanonical ensemble, verified later by Corti and

Soto-Campos [13] and Corti [14] using the canonical ensemble, when the boundary is not a physical

object to which a mass or momentum can be assigned (i.e., a mathematical construct to aid in the

specification of the system volume), then the partition function in Equation (2) counts configurations

of the system redundantly (whether or not V0 is specified). The problem of over-counting is removed

by requiring that the volume, V , of the system be specified by a “shell” molecule, where at least one

molecule resides in the volume, dV , surrounding V . To illustrate this problem, turn to Figure 1, which

demonstrates how several volumes may enclose the same configuration of n particles surrounded

by N − n particles. In the rigorous formulation of the NPT ensemble, each configuration of the

system must correspond to only one specific volume state of the n particles. Otherwise, the same

configuration will be counted more than once in Equation (2) [14]. The problem of over-counting,

or redundancy, is resolved by defining a “shell” particle [12–14], in which at least one of the system

particles resides in the shell that encapsulates the system volume. Defining the n-particle system
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with the shell particle means that a new and distinct state of the total N -particle system is necessarily

created when the volume of the n-particle system is varied (whether or not the configuration of the

surrounding N − n particles changes), since the position of the shell particle changes, as well [14].

Consequently, the inclusion of configurations of the n particles common to larger values of the

volume is explicitly avoided.

Figure 1. One particular configuration of N particles enclosed within a total volume, V ,

demonstrating how to uniquely define one specific volume state of n particles (shaded

circles). The unshaded circles represent the surrounding N − n particles that comprise

the bath. Each particle center is marked by a dot and is surrounded by an effective

diameter. The first step in determining the volume occupied by the n particles is to choose

a particular reference point in V as the origin, rc. Yet, several volumes (dashed circles)

centered at rc still enclose the n particles and, therefore, include common configurations.

The exact volume, v (bold circle), of the n particles is defined by the presence of a shell

particle that is farthest from rc and resides in the shell, dv, encapsulating v. (Adapted

from Figure 2 in reference [14].)

rc 

Shell Molecule 

Therefore, the proper form of Δ(N,P, T ), in which interactions between the system and

surroundings are neglected, as in Equation (2), should be [12–14]:

Δ(N,P, T ) =

∫ ∞

0

Q∗(N, V, T )e−PV/kBTdV (4)

where Q∗(N, V, T )dV represents the number of configurations in which at least one of the N particles

resides in the shell, dV , surrounding V . Note that the above partition function is dimensionless,

since Q∗(N, V, T )dV is a pure number (or Q∗(N, V, T ) is a density of states). The shell particle is

the correct volume scale when there is not a physical boundary to attach the volume of the system.

Koper and Reiss [12] demonstrated that the states summed in Equation (4) do not contain common
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configurations, because the shell particle sets the volume. As shown above, all redundancies are

eliminated by equating the system volume to the shell molecule.

2.1. Cubic System Volume

The application of the constant pressure ensemble to small systems also reveals the effects

of additional variables, such as surface area and curvature, on the system’s properties. In the

thermodynamic limit, the shape of the container enclosing the system has no influence on its

properties. As the size of the system is decreased, additional independent thermodynamic variables

(e.g., surface area, curvature) must be introduced to ensure that the system’s properties are described

properly. These additional parameters are a function of the “shape” of the system volume. Therefore,

the constant pressure ensemble partition function must be formulated differently in order to describe

a system in which its volume is always either spherical (e.g., physical cluster) or cubic (the standard

shape used to apply periodic boundary conditions). As a result, ensemble averages within the constant

pressure ensemble will depend upon the shape of the system volume. This dependence upon shape,

of course, becomes negligible in the thermodynamic limit. A reader interested in spherical systems

is referred to [15]. However, since we are focusing on MD simulations with periodic boundary

conditions, we are going to present results for a cubic volume [15].

The mathematical representation of Q∗(N, V, T )dV for a cubic volume, V = L3, whose length,

L, lies between L and L+ dL with at least one particle in the shell, dL, is given by [15–18]:

Q∗
cub(N,L, T )dL =

3dL

(N − 1)!Λ3N

∫
A

dy1dz1

∫
V N−1

dτ12...dτ1Ne
−βUN (5)

where β = 1/kBT , Λ is the de Broglie wavelength, A represents the area of a face of the cube, dy1

and dz1 represent the differential change in the y and z coordinates of particle 1 (the shell particle),

respectively, τ12...τ1N are the coordinates of the remaining N − 1 particles relative to the position of

particle 1, and UN is the interaction potential of all the N particles. The number three is required

by the switch from dV to 3L2dL, since volume changes occur with constant shape, and indicates the

three sets of equivalent configurations generated if a particle is held fixed in the shell in either the x,

y or z direction. Particle 1 cannot be integrated throughout the entire shell, but due to symmetry, can

be integrated separately in the x direction (or the y or z direction). The above integral is therefore

evaluated with the x coordinate of particle 1 held fixed in the plane that corresponds to one of the

two faces of the cube perpendicular to the x-axis of the coordinate system.

With Equation (5), the isothermal-isobaric ensemble partition function for a cubic volume is now

represented by [15–18]:

Δcub(N,P, T ) =

∫
Q∗

cub(N,L, T )e−PL3/kBTdL (6)

Within the NPT ensemble, the instantaneous pressure, P ′′, of the system fluctuates. The

instantaneous pressure is defined as [15–18]:

P ′′ =
kBT

3L2

(∂lnQ∗
cub

∂L

)
T,N

(7)
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and is calculated during a simulation via the following equation [15]:

P ′′ =
(N − 1/3)kBT

V
+

〈∑i

∑
j>i �rij · �fij〉
3V

(8)

where the second term on the right side is the standard virial of the system, �rij is the vector between

the centers of particles i and j and �fij is the corresponding force. The ideal, or kinetic, term now

reflects the loss of one, out of 3N , translational degree of freedom. By defining the system volume

and, therefore, being directly coupled to the barostat via the changes in the volume, the shell particle

does not translate freely, that is, independently of the volume, in the x direction and, so, does not

impart any momentum in the x direction to the surface of the cube. The shell particle translates

freely in only two directions (y and z). The virial term in Equation (8) remains unchanged, since the

shell particle still interacts with the other particles in the system. The ensemble average of 〈P ′′〉 is

related to the externally imposed pressure, P , as follows [15]:

〈P ′′〉 = P +
2kBT

3N
〈ρ〉 (9)

where 〈ρ〉 is the average density of the system.

While revising the Monte Carlo NPT algorithm to incorporate the shell particle, Corti [15]

derived several relations that describe how ensemble averages obtained within the new NPT

partition function, Equation (4) or (6), relate to ensemble averages obtained with the old no-shell

NPT (Equation (2)) partition function, Δ0, [15]. If 〈V 〉 represents the ensemble-averaged volume

defined via the shell particle and 〈V 〉0 represents the ensemble-averaged volume defined via the old

definition, then [15]:

〈V 〉 = 〈V 〉0 −
kBT

P
(10)

Consequently, 〈V 〉 < 〈V 〉0; the difference between these two average volumes is only apparent at

small system sizes, since in the thermodynamic limit, 〈V 〉 → 〈V 〉0 (kBT/P is intensive).

2.2. Ideal Gas Results

The ideal gas offers a unique opportunity to obtain a closed form solution for the partition

function. Using the shell molecule definition (Equation (4)), we obtain [14]:

Δ(N,P, T ) =

∫ ∞

0

Q∗
id(N, V, T )e−βPV dV =

∫ ∞

0

V N−1

(N − 1)!Λ3N
e−βPV dV =

( 1

βPΛ3

)N

(11)

Using the following definition [31,32]:

〈V 〉 = −kBT
(∂lnΔ

∂P

)
β,N

(12)

we get the following expression for the equation of state [14]:

P 〈V 〉 = NkBT (13)
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Now, we can use the older partition function (Equation (2)) and perform the same analysis. The

partition function is [14]:

Δ0(N,P, T ) =
1

V0

∫ ∞

0

Qid(N, V, T )e−βPV dV =
1

V0

∫ ∞

0

V N

(N)!Λ3N
e−βPV dV =

1

V0

1

Λ3N(βP )N+1
(14)

We then get the following equation of state, noting that V0 is a constant [14]:

P 〈V 〉0 = (N + 1)kBT (15)

The use of (N+1) or N is clearly inconsequential in the thermodynamic limit. Yet, the difference

between Equations (13) and (15) is significant when the system is sufficiently small. In general, the

ensemble averages calculated within different ensembles will not be the same for small systems.

In contrast, ensemble averages are independent of the particular ensemble chosen to evaluate them

when the system is in the thermodynamic limit. One exception, however, is the ideal gas. Due to the

absence of inter-particle interactions, identical results should be obtained within all ensembles and

for all system sizes. Hence, the small system NPT partition function of the ideal gas should yield

Equation (13) and not Equation (15).

3. Shell Molecule Equations of Motion

In order to simulate the NPT ensemble, a technique for maintaining a constant temperature

needs to be introduced into the equations of motion. As mentioned earlier, Nosé [2,3] and Hoover [4]

proposed a completely dynamic method for maintaining constant temperature in an MD simulation.

An additional variable, which serves to couple the system to a thermostat of fixed temperature T ,

is added to the Lagrangian of the N -body system. An effective mass is then associated with this

new variable and controls the time scale for temperature fluctuations. While this scheme is usually

effective, it does not always perform well [23]. In some cases, the resulting equations of motion

do not generate phase-space trajectories that are ergodic [4]. To overcome this potential problem,

the Nosé- Hoover chain method [23] was later developed. In this method, multiple thermostats are

themselves successively coupled to adjacent thermostats, thereby forming a chain of thermostats.

The equations of motion for the NPT ensemble with the shell particle are straightforwardly

obtained by employing an extended Lagrangian approach. The full derivation is presented in

appendix A of reference [16]. For a cubic volume in which V = L3, we let the +x coordinate

of particle 1, or the shell particle, define half the box length, L/2, of the simulation cell. We also

choose qi and pi to represent the 3N -generalized coordinates and conjugate momenta, respectively.

Note that we always have that q1 = L/2. We therefore get the following equations of motion for an

isothermal-isobaric ensemble consistent with Equation (6) using a single thermostat chain for all of

the particles [16]:

q̇i =
pi
mi

+
( q̇1
q1

)
qi

ṗi = Fi −
( q̇1
q1

)
pi − ξ̇1pi
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q̇1 =
p1
m1

ṗ1 = 24q21(Pint − P )− ξ̇1p1

ξ̇k =
pξk
Qk

ṗξ1 =
3N∑
j=1

p2j
mj

− ξ̇2pξ1 − gkBT

ṗξk =
p2ξk−1

Qk−1

− (ξ̇k+1)pξk − kBT

ṗξC =
p2ξC−1

QC−1

− kBT (16)

where i = 2, ..., 3N , and the overdots signify time derivatives. Fi is the x, y or z component of the

force acting on the particle represented by the ith-generalized coordinate, and mi is the corresponding

mass of the particle. Each ξk is a thermodynamic friction coefficient introduced to simplify the

equations, and pξk is the corresponding momentum of ξk, whose effective mass is Qk. C is the total

number of coupled thermostats in the chain, so that k = 1, ..., C, and g denotes the total number of

degrees of freedom of the momenta of the particles. The expression for the internal pressure, Pint,

which follows from Equation (6), is:

Pint =
1

24q31

[ 3N∑
i=2

p2i
mi

+
3N∑
i=1

qiFi

]
(17)

where the first summation runs from two to 3N , indicating that the x momentum of the shell particle

does not contribute to the internal pressure.

The extended Hamiltonian, Hext, for this system is [16–18]:

Hext =
3N∑
i=1

p2i
2mi

+
∑
i

∑
j>i

U(rij) + 8q31P +
C∑

k=1

p2ξk
2Qk

+ gkBTξ1 +
C∑

k=2

kBTξk (18)

where V = 8q31 , U(rij) is the interaction potential between particles i and j and
∑

i

∑
j>i is a sum

over all distinct pairs of particles. Although the equations of motion cannot be obtained directly from

Equation (18), Hext is a conserved quantity.

With the exception of those equations of motion that describe the velocity and acceleration of

q1, the proposed equations are the same as those of Andersen’s method [1]. The expression for the

acceleration of q1 provides an interesting physical interpretation. Given that the area of a single

face of the simulation cell is 4q21 (since L = 2q1), the total surface area of the cube is 24q21 .

When multiplied by the difference between the internal and external pressures, we obtain the net

force that drives the acceleration of q1. This connection between the acceleration of q1 and the

pressure difference is more physically appealing than what appears in other methods [1,5,8]. Another

benefit to the shell formulation is that the system itself sets the time scale for volume and pressure

fluctuations, since the mass of the shell particle is known. In Andersen’s method, there is an unknown

piston mass that sets the response time of volume and pressure fluctuations.
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In the simulations performed in this work, the forces acting in the y and z directions on each

particle sum to zero when there are no external forces in the y and z directions. The sum of

forces in the x direction will not be zero, since the x directional momentum of the shell particle

is directly coupled to the barostat. Therefore, only the linear momenta in the y and z directions are

conserved. Furthermore, to avoid particle drift during simulations when periodic boundary conditions

are applied, the center-of-mass momentum in the y and z directions is set equal to zero. Again, the

center-of-mass momentum in the x direction is driven by the external pressure and cannot be held

fixed at a zero value, though volume fluctuations ensure that the total momentum in the x direction

averages to zero. Consequently, it can be shown that g = 3N − 2 [16,33], indicating that the above

equations of motion yield trajectories in phase space that are consistent with a (3N − 2)PT partition

function (there are 3N − 2 momentum degrees of freedom) [16].

The new equations of motion that employ a shell particle to define the system volume provide

another example of a non-Hamiltonian system, in that Equation (16) cannot be derived from the

extended Hamiltonian in Equation (18). A systematic procedure for extending classical statistical

mechanics to non-Hamiltonian systems was proposed by Tuckerman et al. [6,34]. The crux of their

analysis relies on the notion that non-Hamiltonian phase space is compressible, as opposed to its

Hamiltonian counterpart. For a non-Hamiltonian system, the Jacobian describing the transformation

from an initial phase-space vector to a phase-space vector at time t is not equal to unity. The invariant

phase-space metric for a non-Hamiltonian system is therefore not the same as the Hamiltonian

system. Nevertheless, using the procedure of Tuckerman et al. [6,34], where the compressibility of

the phase space is taken into account, the extended system partition function can still be derived from

the equations of motion and the various constraints, or conservation relations, on the system. The

detailed phase space analysis of Equation (16) presented in reference [16] shows that the proposed

shell particle equations of motion are completely consistent with the shell particle partition function

(Equation (6)) with and without periodic boundary conditions.

3.1. The Hoover Algorithm and Periodic Boundary Conditions

The NPT partition function in Equation (6) can be rewritten if the system is homogeneous and

periodic boundary conditions are applied. Han and Son [35] showed that since periodic boundary

conditions yield a transitionally symmetric system, particle 1 does not need to be held fixed inside the

shell, dL. If all of the relative distances between the particles remain fixed, identical configurations

will be generated if particle 1 is allowed to sample the entire instantaneous volume. Thus [15]:

Q∗
cub(N,L, T )dL =

3dL

(N − 1)!Λ3N

∫
A

dy1dz1

∫
V N−1

dτ12...dτ1Ne
−βUN

=
3dL

(N − 1)!Λ3N

1

L

∫
V

dτ1...dτNe
−βUN =

N

V
Q(N, V, T )dV (19)

where Q(N, V, T ) is the canonical partition function without the shell molecule. Using Equation (19),

we can write the isothermal-isobaric partition function as:

ΔPB(N,P, T ) =

∫
N

V
Q(N, V, T )e−βPV dV (20)
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where the PB subscript signifies that the partition function is only valid under the symmetry imposed

by periodic boundary conditions [15,16]. This volume scale was derived earlier using the information

theory by Attard [36].

Let us now consider the following equations of motion proposed for the NPT ensemble by

Hoover [4,5] with a single chained thermostat:

q̇i =
pi
mi

+
( V̇

3V

)
qi

ṗi = Fi −
( V̇

3V

)
pi − ξ̇1pi

V̇ =
3pε
Mp

V

ṗε = 3V (Pint − P )− ξ̇1pε

ξ̇k =
pξk
Qk

ṗξ1 =
3N∑
j=1

p2j
mj

+
p2ε
Mp

− ξ̇2pξ1 − gkBT

ṗξk =
p2ξk−1

Qk−1

− (ξ̇k+1)pξk − kBT

ṗξC =
p2ξC−1

QC−1

− kBT (21)

where i = 1, ..., 3N and:

Pint =
1

3V

[ 3N∑
i=1

p2i
mi

+
3N∑
i=1

qiFi

]
(22)

The extended Hamiltonian for the Hoover NPT algorithm is:

Hext =
3N∑
i=1

p2i
2mi

+
∑
i

∑
j>i

U(rij) +
p2ε

2MP

+ PV +
C∑

k=1

p2ξk
2Qk

+ gkBTξ1 +
C∑

k=2

kBTξk (23)

Tuckerman et al. [6] already performed the phase-space analysis on Hoover’s equations of

motion, in which they obtained a 1/V weighting in the volume distribution function when all three

directional linear momenta are conserved, as well as the three center-of-mass momenta being set to

zero. The appearance of the 1/V weighting of the volume distribution makes it completely consistent

with the partition function introduced by Attard (Equation (20)). The Hoover algorithm does in

fact lead to the correct sampling of volume states, but only for homogenous systems with periodic

boundary conditions. In the absence of external forces, Hoover’s algorithm yields a (3N − 2)PT

ensemble: there are a total of (3N + 1) momentum degrees of freedom (3N particles and one

volume), but now, the total linear momentum in each of the three directions is conserved. Therefore,

g = 3N − 2 in Equation (21).

Although the Hoover algorithm does sample phase space correctly (but only for periodic

boundary conditions), there is still an unknown piston mass, which sets the response time of volume
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and pressure fluctuations, which must be specified. On the other hand, when the shell particle

formulation is used, the system itself sets the time scale for volume and pressure fluctuations, since

the mass of the shell particle is known. Furthermore, since the piston mass associated with the Hoover

algorithm can have very different dynamics compared to the particles in the system, it is the suggested

form of the equations of motion to use two separate chained thermostats, one coupled to the particles

and the other to the volume [8]. The need to introduce another set of chained thermostats to drive

the volume fluctuations in the Hoover algorithm requires that another set of unknown parameters, the

additional thermostat masses, be specified [8]. This separate thermostat chain is not necessary with

the shell particle algorithm, as the momentum of the shell particle is on the same scale as the rest of

the particles of the system [16,17].

As a final point of interest and, again, to focus on the effects of the different barostats, we

briefly consider the results of the phase-space analysis of the NPT equations of motion for the

shell (Equation (16)) and the Hoover algorithm (Equation (21)). The explicit partition functions are

derived in reference [16], where the influence of each barostat is clearly seen. By definition, the

enthalpy, H , of the system is equal to H = H(q, p) + PV , where H(p, q) =
∑3N

i=1 p
2
i /2mi + U(q).

Hoover’s algorithm generates an extended Hamiltonian (Equation (23)) that contains an additional

term associated with the kinetic energy of the volume (p2ε/2MP ), a quantity that should not appear

in the enthalpy if the boundary used to describe the system volume is a mathematical construct to

which a mass or momentum cannot be assigned [14]. In contrast, each configuration in the shell

particle partition function corresponds to one and only one volume state, since the non-extended

Hamiltonian is directly coupled to the volume (i.e., there is a one to one correspondence with the

non-extended Hamiltonian and the volume states) [16]. The redundant counting of volume states

is not eliminated in the other algorithms, because those non-extended Hamiltonians are decoupled

from the volume. Note that whenever we use the extended variables approach to thermostat systems

in this manuscript that there is always a kinetic term associated with the thermostat variables in the

extended Hamiltonian. We are focusing here on how the positions and momenta are sampling the

correct distribution, and the preceding argument on the enthalpy is independent of this kinetic term,

due to the thermostat variables.

We conclude this section by noting that the ensemble average pressure for a system whose

partition function is described by Equation (20) obeys the following relation [15]:

〈P ′′〉 = P +
kBT

N
〈ρ〉 (24)

The correction to the ensemble average volume is the same as is given in Equation (10).

3.2. Multicomponent Systems

In this section, we discuss the extension of the shell particle MD algorithm to multicomponent

systems. In particular, we consider a binary mixture comprised of species A and B. In this case,

the isothermal-isobaric partition function must include configurations in which the shell particle is of
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type A and configurations in which the shell particle is of type B. Therefore, the isothermal-isobaric

partition function, ΔAB, is given by (only the case of a cubical volume is considered) [15,17]:

ΔAB(N,P, T ) =

∫
Q∗A

cub(N, V, T )e−βPL3

dL+

∫
Q∗B

cub(N, V, T )e−βPL3

dL (25)

where Q∗A
cub(N, V, T ), for example, is the total number of configurations of NA particles of type A

and NB particles of type B contained in a volume V = L3 in which at least one of the NA particles

resides in the shell, dL, encapsulating V .

When periodic boundary conditions are applied, one can show that the probability of a given

configuration having a shell particle of type A is simply equal to the mole fraction of A. Begin with

the partition function, ΔA, that includes only those configurations in which the shell particle is of

type A:

ΔA(N,P, T ) =

∫
Q∗A

cub(N, V, T )e−βPL3

dL (26)

For a homogeneous fluid in which periodic boundary conditions are employed, one can rewrite ΔA,

following the argument presented by Han and Son [35], as:

ΔA(N,P, T ) = NA

∫
Q(N, V, T )

V
e−βPV dV (27)

where Q(N, V, T ) is the canonical ensemble partition function for NA and NB particles without a

shell particle used to define the volume. The fraction of configurations containing a shell particle of

type A is therefore given by NA/(NA + NB) = xA [17]. It was shown in reference [17] that the

ensemble average of F (F being any given quantity) is given by:

〈F 〉 = xA〈F 〉A + xB〈F 〉B (28)

where 〈F 〉A is the ensemble average obtained with only A as the shell particle and 〈F 〉A is the

ensemble average obtained with only B as the shell particle. Hence, two separate simulations can

be run, each with different identities of the shell particle, with the resulting ensemble averages

simply weighted by the mole fractions of each component. Yet, one can proceed even further

and demonstrate that only one simulation per state point is ultimately required, with the identity

of the shell particle being completely arbitrary. With periodic boundary conditions, we showed

in reference [17] that 〈F 〉 = 〈F 〉A = 〈F 〉B. Therefore, only one single simulation is required;

the choice of which species to be the shell particle is solely a matter of convenience [17]. This

conclusion also holds for mixtures with more than two components, again, only when periodic

boundary conditions are employed.

3.3. Collision Dynamics for Discontinuous Potentials

In this section, we discuss the implementation of the shell particle formalism to simulate

systems that have discontinuous intermolecular potentials [18]. Discontinuous molecular dynamics

(DMD) have been widely used for quite some time, beginning with the initial work of Alder
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and Wainwright [37,38] in the microcanonical ensemble. Gruhn and Monson [39], following an

analysis by de Smedt et al. [40], extended DMD for the hard-sphere potential to the NPT ensemble.

Their method, however, was based on Andersen’s constant pressure algorithm [1], which does not

yield averages consistent with Equation (6). Gruhn and Monson [39] derived expressions for the

discontinuous change of the momenta of two hard spheres upon collision, as well as the change of

the velocity of the piston (or system volume) upon that same collision.

We use the shell particle equations of motion provided in Equation (16) to develop a constant

pressure DMD algorithm for both the hard-sphere and square-well fluids that are consistent with

the proper NPT ensemble partition function, Equation (6). Momentum changes upon the collision

of any two particles, including those changes for the shell particle, whether or not it participates in

the collision, were derived in reference [18] and presented below. Our method is based on that of

Gruhn and Monson [39], though we utilize the conservation of the extended Hamiltonian to obtain

the collision dynamics. We simply present the results below, so the reader interested in the detailed

derivations are referred to [18].

In an additive hard-sphere system, the potential of interaction between two particles, i and j, with

diameters, σi and σj , respectively, is represented by:

u(r) =

⎧⎨⎩∞, r < σ

0, r ≥ σ
(29)

where r is the distance between the particle centers and σ = (σi + σj)/2. In between collisions,

the hard-sphere fluid evolves dynamically without any force interactions. When applying the shell

particle equations of motion to a hard-sphere collision, one must consider two separate cases:

(1) neither particle i nor particle j is the shell particle and (2) either i or j is the shell particle.

Furthermore, even if the shell particle does not participate in a collision, its x momentum will still

change, since the acceleration of the shell particle is proportional to the internal pressure, which

varies upon any collision.

There are several variables that are present in all of the expressions for the collision dynamics.

These are the reduced mass, μ, the center-to-center vector, �q, and ṙ. The reduced mass is

μ =
mimj

mi +mj

(30)

where mi and mj are the masses of particles i and j, respectively. �q is defined as �q = �qi − �qj , and

ṙ is ṙ = (�q · �̇q)/σ, which is the time rate of change of �q evaluated at |�q| = σ. When neither of the

colliding particles are the shell particle, the collision dynamics are given by:

td =
−2μṙ

1 + μσ2/m1q21

Δ�pi = td
�q

σ

Δ�pj = −td
�q

σ

Δp1 = td
σ

q1
(31)
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When one of the colliding particles is the shell particle, the collision dynamics are now given by:

td =
−2μṙ

1 + μσ2/m1q21 − μq2x/m1σ2

Δ�pi = td
�q

σ

Δp1,y = −td
qy
σ

Δp1,z = −td
qz
σ

Δp1 = td
σ

q1
(32)

where, for example, qx is the x component of �q.

The square-well interaction potential is represented by:

u(r) =

⎧⎪⎪⎨⎪⎪⎩
∞, r < σ

−ε, σ ≤ r < λσ

0, r ≥ λσ

(33)

where λ is the width and ε is the depth of the square-well (and may vary depending upon the

interaction between any two particles). The interaction at r → σ is identical to the hard-sphere

collision obtained above. There are three other types of collisions that occur in the square-well

system at r → λσ. The capture interaction is the case where i and j start beyond λσ. There are

two types of collision that occur at λσ when the starting distance between i and j are within the

attractive well. The dissociation collision occurs when the molecules have enough kinetic energy

to overcome the attractive potential energy and the molecules no longer interact, and the bounce

collision occurs when there is not enough kinetic energy to overcome the attractive energy and the

particle centers stay within the attractive well. The bounce dynamics are analogous to the hard-sphere

collision presented above with the only difference being setting σ = λσ in Equations (31) and (32).

The mathematical condition for determining if the collision is a bounce or a dissociation collision

is that if μṙ2/2 ≥ ε(1 + μσ2/m1q
2
1) for the shell particle not taking part in the collision and

μṙ2/2 ≥ ε(1 + μσ2/m1q
2
1 − μq2x/m1λ

2σ2) when the shell particle is taking part in the collision,

then the collision is a dissociation collision.

The collision dynamics for capture and dissociation differ only by a plus/minus sign, so we

present them together. When neither of the colliding particles are the shell particle, the collision

dynamics are given by:

td =
μṙ ± μ[ṙ2 ± (2ε/μ)(1 + μλ2σ2/m1q

2
1)]

1/2

1 + μλ2σ2/m1q21

Δ�pi = −td
�q

λσ

Δ�pj = td
�q

λσ

Δp1 = −td
λσ

q1
(34)
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with the “+” being for capture and the “−” being for dissociation. When one of the colliding particles

is the shell particle, then the collision dynamics are given by:

td =
μṙ ± μ[ṙ2 ± (2ε/μ)(1 + μλ2σ2/m1q

2
1 − μq2x/m1λ

2σ2)]1/2

1 + μλ2σ2/m1q21 − μq2x/m1λ2σ2

Δ�pi = −td
�q

λσ

Δp1,y = td
qy
λσ

Δp1,z = td
qz
λσ

Δp1 = −td
λσ

q1
(35)

We integrate the NPT equations of motion in between collisions via the application of the

generalized Trotter expansion formula to the extended phase space classical Liouville operator

discussed in the appendix and [17,18,22,24,41]. Since the thermostat variables have no influence on

a hard-sphere or square-well collision, the updates of the thermostats can be completely decoupled

from the updates of the particle positions and the momentum changes upon a collision. The full

integration scheme is presented in detail in [18].

3.4. Shell Particle Simulations Using the Configurational Temperature

The concept of a configurational temperature was introduced in 1997 in the seminal paper

by Rugh [42], which provided a tractable statistical mechanical expression for the reciprocal of

this temperature. The expression for the configurational temperature was later generalized by

Jepps et al. [43]. Since then, several MD algorithms have been developed that make use of the

configurational temperature, but the few that are most useful for the current discussion are by

Braga and Travis [44,45]. They introduced NPT equations of motion that use the configurational

temperature and showed the benefits of using this temperature, instead of the standard kinetic

temperature, within nonequilibrium simulations [44,45].

The equations of motion that they derived are not consistent with the shell molecule partition

function, however, and so, we reformulated their equations to account for this. The new equations of

motion are:

q̇i =
pi
mi

+
( q̇1
q1

)
qi +

( q̇1
q1

)
(3N − 1)

Fi

Δ′ + ξ̇
Fi

Δ′

ṗi = Fi

q̇1 =
p1
m1

ṗ1 = 24q21(Pint − P )

ξ̇ =
pξ
Q

ṗξ =
3N∑
i=2

F 2
i

Δ′ − kBT (36)
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where i = 2, ..., 3N ,

Δ′ =
3N∑
i=2

(
∂2U

∂q2i
) (37)

where U is the total potential energy, and:

Pint =
1

24q31

[
(3N − 1)

3N∑
i=2

F 2
i

Δ′ +
3N∑
j=1

qjFj

]
(38)

The extended Hamiltonian for the configurational temperature shell molecule system is:

Hext =
3N∑
i=1

p2i
2mi

+
∑
i

∑
j>i

U(rij) + 8q31P +
p2ξ
2Q

+ kBTξ (39)

The instantaneous configurational temperature, kBTconf , is:

kBTconf =
3N∑
i=2

F 2
i

Δ′ (40)

The instantaneous configurational temperature appearing in the above shell particle equations of

motion differs from that of Braga and Travis [44,45], whereby the sums appearing in Equations (37)

and (40) run from two to 3N , as compared to one to 3N . The x-component of the shell particle is not

included in these summations, although the shell particle does still contribute to the forces (and their

derivatives) of the remaining particles. Since the configurational temperature thermostating appears

to be preferred in nonequilibrium simulations, as known artifacts seen in some simulations with the

Nosé-Hoover thermostat were not exhibited with the configurational temperature thermostat [44,45],

we also include below new results for NPT MD simulations with the shell molecule using the

configurational temperature.

4. Results and Discussion

Several tests of the new shell particle equations of motion (Equation (16)) have been published

previously. The agreement between isobars predicted by the new shell molecule molecular dynamics,

the shell molecule Monte Carlo algorithm [15] and the equation of state for the Lennard-Jones fluid

introduced by Johnson et al. [46] is shown in Figure 1 of [17]. Similar agreement between the MD

and MC results is presented in Figure 1 of [18] for the square-well potential, which also includes,

for comparison, the predictions of an equation of state introduced by Patel et al. [47]. For both

systems, the MD and MC simulation results agree with each other and with the appropriate equation

of state to high accuracy over a very broad range of pressures. On the scale of the plots, the MD

and MC results are nearly indistinguishable [17,18]. We also looked at the self-diffusion coefficients

for various binary Lennard-Jones mixtures and compared them with results from MD simulations in

the microcanonical ensemble [17]. The self-diffusion coefficients of each species were essentially

identical within both ensembles.
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Table 1. Comparison of various ensemble averages for the truncated and shifted

Lennard-Jones fluid with a cuttoff of 1.5σ for T ∗ = 1.5 and P ∗ = 0.5. The top dataset

was obtained with the shell particle Monte Carlo method [15]. The second dataset

was generated from the shell particle molecular dynamics (MD) algorithm using the

Nosé-Hoover chained thermostat. The third dataset was obtained from the shell particle

MD algorithm using the configurational temperature thermostat. The fourth dataset was

obtained from the Hoover algorithm. The bottom set are the results of constant pressure

MC simulations without a shell particle. The numbers in parentheses indicate the error

in the final significant digits.

N 〈P ∗
int〉 〈ρ∗〉 〈V ∗〉 〈U∗〉 〈T ∗〉

16 0.514(54) 0.227(43) 73(7) −0.045(32) 1.5

32 0.507(49) 0.223(34) 145(11) −0.045(18) 1.5

64 0.503(37) 0.222(16) 291(14) −0.045(12) 1.5

108 0.502(24) 0.221(8) 490(18) −0.045(10) 1.5

256 0.501(15) 0.221(2) 1161(32) −0.045(9) 1.5

16 0.514(235) 0.229(31) 72(12) −0.045(111) 1.49(31)

32 0.506(161) 0.224(27) 144(17) −0.045(78) 1.50(22)

64 0.503(111) 0.223(19) 290(25) −0.045(55) 1.50(15)

108 0.502(85) 0.221(14) 489(32) −0.045(42) 1.50(12)

256 0.501(55) 0.221(9) 1161(49) −0.045(28) 1.50(8)

16 — — — — —

32 0.506(346) 0.218(27) 148(18) −0.038(86) 1.51(15)

64 0.503(289) 0.219(21) 294(27) −0.041(55) 1.51(14)

108 0.502(203) 0.219(15) 493(36) −0.043(42) 1.50(12)

256 0.501(133) 0.220(9) 1165(50) −0.044(28) 1.50(5)

16 0.522(235) 0.230(40) 71(12) −0.047(111) 1.50(31)

32 0.511(162) 0.226(27) 144(17) −0.045(78) 1.50(22)

64 0.505(111) 0.223(19) 289(24) −0.045(55) 1.50(15)

108 0.503(85) 0.222(14) 488(32) −0.045(42) 1.50(12)

256 0.501(56) 0.221(9) 1163(48) −0.045(28) 1.50(8)

16 0.500(62) 0.220(18) 75(8) −0.045(26) 1.5

32 0.500(44) 0.220(15) 147(11) −0.045(18) 1.5

64 0.500(31) 0.220(10) 293(14) −0.045(13) 1.5

108 0.500(25) 0.220(8) 492(20) −0.045(8) 1.5

256 0.500(16) 0.220(2) 1164(36) −0.045(5) 1.5
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The differences between systems that sample the rigorously correct volume distributions and

those that do not can most readily be seen in small systems. Equations (9) and (10), for example,

provide strict tests of the validity of the shell particle equations of motion when compared against

simulation methodologies that don not employ the correct volume scale. Several state points for

Lennard-Jones, hard-sphere and square-well fluids are compared in [17,18]. In each of the conditions

studied, the relations derived earlier are found to be satisfied to a high accuracy. We also included

results from the Hoover algorithm (Equation (21), where it is important to note that the internal

pressure equation for the Hoover algorithm is given by Equation (24)).

As an additional test, we present here results for a pure component Lennard-Jones fluid with

system sizes ranging from N = 16 to 256. To avoid the use of long-range corrections, as well as

force profiles that would not sum to zero in the y and z directions, we utilized the truncated and

shifted force Lennard-Jones potential [38]:

u(r) = 4ε
[(σ

r

)12

−
(σ
r

)6]
− uLJ(rc)− (r − rc)u

′
LJ(rc) (41)

where rc is the cutoff distance and u′
LJ(rc) is the derivative of the potential at the cutoff distance.

At the chosen truncation distance, both the potential and force smoothly vanish. To prevent the

truncation distance from exceeding half the box length at small system sizes, since periodic boundary

conditions were employed, we chose rc = 1.5σ. Up to 106 time steps of equilibration were

performed, followed by up to 108 time steps at the smallest system sizes for the determination of

ensemble averages. All simulations were run at T ∗ = 1.5. The results for a reduced external pressure

of P ∗ = 0.5 are included in Table 1. Additionally, provided in the tables are the averages obtained

from MC simulations both with and without the shell particle.

According to Equation (10), the average volume of the shell particle simulations should be three

units lower than the no-shell simulations in Table 1. The simulation results agree quite well with

these predictions, considering the large absolute volume fluctuations that are obtained and satisfy

Equation (10) with similar accuracy as noted in [15]. As expected, the average volume, density and

internal energy per particle obtained with the shell particle MD with the traditional Nosé-Hoover

thermostat, the shell particle MD with the configurational thermostat and the Hoover algorithms are

in agreement, at least within the error bars. Both sets of averages are nearly the same for P ∗ = 0.5.

The average internal pressures differ, but each is seen to satisfy Equations (9) and (24) to a high

degree of accuracy. Both of the shell particle results and Hoover results also agree, within the error

bars, with the MC shell particle simulations. There is, however, a slight discrepancy between the

MD and MC shell particle results at very small system sizes (N ≤ 64), particularly for the values

of Pint and the average density or volume. This difference can be attributed to the relatively large

temperature fluctuations that develop within the MD simulations, as opposed to the strictly fixed

temperature during the MC simulations. Statistical mechanics requires that the kinetic temperature

of the system have a standard deviation of:

σT =
√

〈T 2〉 − 〈T 〉2 = Tbath

√
2

3N
(42)
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where Tbath is the temperature of the surrounding temperature reservoir and N is the number

of particles in the system. Equation (42) holds regardless of the usage of periodic boundary

conditions [25,33]. In Table 1, we report the standard deviation by the number in parentheses

indicating the error in the final significant digits. As an example, the number 1.50(31) means that the

average is calculated to be 1.50 and the standard deviation is 0.31. The results for the temperature

fluctuations in Table 1 agree very closely to Equation (42).

Furthermore, presented in Table 1 are the results for the shell molecule configurational

temperature NPT . Note that the results for the configurational temperature are not provided for

N = 16. At this small density and small number of particles, there is a chance that no pairs of

particles reside within the cuttoff distance. As a result, Δ′ is equal to zero and the integration scheme

breaks down for that time step. This problem only arose for the smallest system size (N = 16).

Additionally, note in Table 1 that the configurational temperature yields the largest temperature

fluctuations as compared to the other simulation methods. Again, at this relatively low density, the

effects of adding or deleting one or two particle pairs within the potential cutoff for each time step are

greatly enhanced for the configurational temperature (as compared to the kinetic temperature, which

is based solely on the particle momenta). The average volumes are larger than they should be and the

average potential energy is lower than it should be for the configurational temperature simulations.

Interestingly, the results do seem to improve consistently as the number of particles increases. This

may be due, in some small part, to the given expression for the configurational temperature, which

as a measure of the system temperature is only accurate on the order of (1/N ) [44,45].

4.1. Discontinuous Pressure Jumps

Ultimately, the true benefits of the shell particle algorithm may become apparent for

nonequilibrium simulations where the system itself sets the time scale for pressure/volume

fluctuations. It is important to note that in a multicomponent system, there is freedom to choose the

identity of the shell particle, although the masses of the various components comprising the mixture

are still known. To gain some initial idea of how the shell particle equations of motion might behave

in a nonequilibrium application, we ran a pressure-jump simulation in which the external pressure is

abruptly changed after the system has equilibrated. For example, we first consider the response of

the internal pressure to a sudden change in the external pressure from P ∗ = 1.0 to P ∗ = 2.0 and

then back to P ∗ = 1.0 at T ∗ = 2.0 for the pure component Lennard-Jones fluid with N = 500 and

long-range corrections applied after a potential cutoff of 3.0σ. The resulting time evolution of the

internal pressure is shown in Figure 2.

The figure includes results for the shell molecule with the Nosé-Hoover thermostat, the shell

molecule with the configurational temperature thermostat and results for the Hoover algorithm with

the reduced piston mass, M∗
p , equal to M∗

p = 10.0 and M∗
p = 5.0, respectively. Both of the shell

particle simulations and the Hoover simulation with M∗
p = 10.0 quickly adjust to the new external

pressure, while the Hoover simulation with M∗
p = 5.0 requires a much longer time to re-equilibrate

(again, the time scale obtained from the Hoover code is directly dependent upon the mass of the

piston, whereas the time scale for the shell particle algorithm is automatically set by the system). This



422

result is somewhat surprising, since the two piston masses are so close in their numerical values. The

fluctuations of the internal pressure exhibited by both of the shell particle codes at the new external

pressure of P ∗ = 2.0 and, then, again, at P ∗ = 1.0 are immediately identical to the fluctuations seen

from regular equilibrium simulations at P ∗ = 2.0 and P ∗ = 1.0. The internal pressure for the Hoover

simulations also adjusts to the new external pressure, but there does appear to be a considerable

“decay” to the new set point after the pressure jump. This decay is dependent on the value of the

piston mass. A smaller value of the piston mass yields a longer decay in the instantaneous pressure

to the new equilibrium point.

Figure 2. Time response of the internal pressure of the pure component Lennard-Jones

fluid to a sudden change of the external pressure from P ∗ = 1.0 to P ∗ = 2.0 and, then,

back down to P ∗ = 1.0. For the given choice of the time origin, the pressure is increased

after 2000 time steps and, then, reduced after another 4000 time steps. The solid line is

the set external pressure, P . The dashed lines are the simulation results. In all cases,

T ∗ = 2.0 and N = 500. The plot in the upper-left corner is the results for the shell

molecule with the Nosé-Hoover thermostat. The plot in the upper-right corner is the

results for the shell molecule with the configurational temperature thermostat; The plots

in the lower-left and lower-right corner are the results for the Hoover algorithm with

M∗
p = 10.0 and M∗

p = 5.0, respectively.
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We also preformed an isothermal compression as a series of steps from P ∗ = 1.0 to P ∗ = 4.0 in

increments of 1.0 unit of reduced pressure every 2000 time steps at T ∗ = 2.0 for the pure component

Lennard-Jones fluid with N = 500 and long-range corrections applied after a potential cutoff of 3.0σ.
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The results are presented in Figure 3. The value of the time steps, along with every other aspect of

the simulations, are the same as those performed for Figure 2. As before, both of the shell particle

simulations exhibit fluctuations of the internal pressure after the jumps to be almost immediately

identical to the fluctuations seen from regular equilibrium simulations at the respective set external

pressures at equilibrium. The internal pressure for the Hoover simulations also adjust to the new

external pressure, but again, there appears to be a considerable decay to the new set point after the

pressure jump. The simulation with M∗
P = 5.0 does not allow the internal pressure to equilibrate

after an external pressure jump before the system takes the next jump. This shows that the value of

the piston mass is critical to capturing the dynamics and fluctuations in nonequilibrium systems and

that the results can be considerably different for values of the piston mass that are relatively close to

one another.

Figure 3. Time response of the internal pressure of the pure component Lennard-Jones

fluid to an isothermal compression from P ∗ = 1.0 to P ∗ = 4.0 in increments of 1.0 unit

of reduced pressure every 2000 time steps. For the given choice of the time origin, the

pressure is increased after 2000, 4000 and, again, after 6000 time steps. The solid line

is the set external pressure, P . The dashed lines are the simulation results. In all cases,

T ∗ = 2.0 and N = 500. The plot in the upper-left corner is the results for the shell

molecule with the Nosé-Hoover thermostat. The plot in the upper-right corner is the

results for the shell molecule with the configurational temperature thermostat. The plots

in the lower-left and lower-right corner are the results for the Hoover algorithm with

M∗
p = 10.0 and M∗

p = 5.0, respectively.
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5. Conclusions

The MD NPT simulation method that employs the shell particle is based on equations of motion

consistent with the proper statistical mechanical formulation of the NPT ensemble. Within other

MD methods, a piston of arbitrary mass is introduced to control the response time of volume

fluctuations. Now, the shell particle of known mass determines the time scale for volume and pressure

fluctuations, in addition to performing the important function of eliminating the redundant counting

of configurations through its unique definition of the volume of the system.

There are several benefits to using the shell particle algorithm for MD equilibrium simulations.

For example, as the shell particle directly interacts with all other particles in the system, only a single

Nosé-Hoover chained thermostat need be employed. Additionally, as noted above, the mass of the

“volume”, that is, the shell particle, is a known quantity.

Allowing the system itself to control the relaxation time of property fluctuations should ultimately

provide a significant edge over piston-based methods, specifically for nonequilibrium systems

(though that has yet to be shown). Adapting the shell particle approach to a simulation of

isothermal-isobaric shear flow [44,45] or homogeneous nucleation in simple fluids [48–50] may

provide another worthwhile test of the shell particle formalism. The piston mass is not known a priori
and greatly affects the response time of the system. As such, for nonequilibrium simulations, the

appropriate choice of a piston mass is unclear. On the other hand, at least for a pure component

system, there is no ambiguity as to what should be the response time of the volume fluctuations;

the mass of the shell particle is again a known input to the simulation. For mixtures, however, the

identity of the shell particle is important (though not for equilibrium averages). Yet, the masses of the

components comprising the mixture are still known. How the identity of the shell particle controls

the response time of pressure and volume fluctuations is therefore, in the end, still a property of the

system itself.

Future directions include incorporating the shell particle formalism into constant pressure

molecular dynamics algorithms for both molecular systems and systems with long-range

intermolecular interactions (such as electrostatic interactions). To date, we have not performed any

simulations of these systems with the shell particle, so definitive statements would be inappropriate

at this time. However, at first sight, it would appear that selecting the center of mass of one of the

molecules as the volume scale is a logical choice for molecular systems. It also appears that the

techniques already employed to deal with long-range interactions in previous algorithms (such as the

Ewald summation in electrostatic systems) would apply equally to shell particle algorithms. There

is nothing in the derivations given in this manuscript that suggests to us that intra- or long-range

intermolecular interactions would have any effect on the validity of the shell molecule formulation.

Finally, various shape changing, or isotension, simulations [25] may also benefit from the

use of the shell particle. The introduction of a shell particle into these codes would add some

complexities, such as possibly allowing the shell particle to move along different faces of the system

volume. Nevertheless, eliminating the need to specify a piston mass might be very helpful for

these simulations.
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Appendix

Integration Scheme Using the Liouville Operator

We integrate the NPT equations of motion via the application of the generalized Trotter

expansion formula to the extended phase space classical Liouville operator [25,41]. What follows

from this approach is an integration scheme that is time-reversible and volume-preserving in the

appropriate extended phase space, yielding stable trajectories with no significant drift in the extended

Hamiltonian. One begins with a unitary operator, called the classical propagator, that propagates the

appropriate phase space vector, �Γ, from an initial state at time t = 0 to a final state at time t, i.e.,

�Γ(t) → �Γ(0). The evolution as a function of time t can be formally written as the solution of the

following equation:

�Γ(t) = exp(iLt)�Γ(0) (43)

where iL is the Liouville operator, defined as iL = �Γ · ∇�Γ, and exp(iLt) is the classical propagator.

The Liouville operator can be expressed as the sum of other operators, for example, iL = iL1 + iL2,

such that the action of each separate classical propagator can be evaluated analytically. Since iL1 and

iL2 do not, in general, commute, exp(iLt) cannot be replaced by exp(iL1)exp(iL2). The classical

propagator can be rewritten, however, using the Trotter expansion theorem [21–26],

eiLt = e(iL1t+iL2t) = e(iL1t/2)e(iL2t)e(iL1t/2) +O(t3) (44)

Application of the above operator, along with the given equations of motion, provides a sequence

of operations on the components of �Γ, thereby generating an integration scheme that updates �Γ

from time t to time t + Δt. Since we start from the Liouville formulation of classical mechanics

and the classical propagator is a unitary operator, the resulting MD algorithm is guaranteed to be

time-reversible and (phase space) volume-preserving (within finite machine precision and to the

second order in the chosen time step, Δt).

The phase space vector appropriate for the shell particle equations of motion with a single chain

of C thermostats is �Γ = �Γ(q1, p1, qi, pi, ξk, pξk), where i = 2 to 3N and k = 1 to C. In this case, the

Liouville operator is given by [17]:

iLNPT = q̇1
∂

∂q1
+ ṗ1

∂

∂p1
+

3N∑
i=2

[
q̇i

∂

∂qi
+ ṗi

∂

∂pi

]
+

C∑
k=1

[
ξ̇k

∂

∂ξk
+ ṗξk

∂

∂pξk

]
(45)
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By changing the order of some of the terms and replacing the various time derivatives with their

expressions given in Equation (16), we rewrite the full Liouville operator as a sum of the following

five separate operators:

iLNPT = iLq + iLp1 + iLpi + iLp1i + iLNH (46)

in which:

iLq =
p1
m1

∂

∂q1
+

3N∑
i=2

[( pi
mi

+
( q̇1
q1

)
qi

) ∂

∂qi

]
iLp1 = Gε

∂

∂p1

iLpi =
3N∑
i=2

[
Fi

∂

∂pi

]
(47)

iLp1i =
3N∑
i=2

[(
− q̇1

q1

)
pi

∂

∂pi

]
iLNH =

3N∑
i=2

[(
− pξ1

Q1

)
pi

∂

∂pi

]
− pξ1

Q1

p1
∂

∂p1
+

C∑
k=1

pξk
Qk

∂

∂ξk
+

C∑
k=1

Gξk

∂

∂pξk
−

C−1∑
k=1

pξk+1

Qk+1

pξk
∂

∂pξk

where:

Gε =
[ 1

q1

( 3N∑
i=2

p2i
mi

+
3N∑
i=1

qiFi

)
− 24q21Pext

]
Gξ1 =

[ 3N∑
i=1

p2i
mi

− gkBT
]

Gξk =
p2ξk−1

Qk−1

− kBT

It is assumed in the above expressions that periodic boundary conditions are imposed, and we

lose three of the momentum degrees of freedom in determining the instantaneous kinetic temperature

(one from the x coordinate of the shell particle being coupled to the barostat and the center-of-mass

momentum in the y and z directions being conserved and set equal to zero [33]). Under these

circumstances, the instantaneous pressure is given in Equation (17), and the total number of the

momentum degrees of freedom is g = 3N − 2.

The above decomposition of iLNPT is slightly different from what was done previously for

continuous potentials [17,24]. In particular, all particle positions have been removed from iLNH

and, so, are not altered by the action of this operator. What remains in iLNH are the thermostat

variables, as well as the influence of the thermostats on the particle momenta. Changes in the

particle positions, along with further updates of the particle momenta due to the dilatation of the

system volume, are now only generated by the action of the remaining four operators. We found

slightly better conservation of the extended Hamiltonian by splitting up the operator in this way

relative to our previous factorization [17]. This approach of completely separating the influence of
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the thermostat variables on the particle momentum was our approach to factorize the propagator

when using discontinuous potentials [18]. The reason being that since the collision dynamics do not

influence the thermostat variables, it is much more convenient to update the positions and momentum

of the physical particles and their collision properties all at once separated from the thermostat

variables [18].

To determine the effect of the full Liouville operator, or exp(iLNPT t), on �Γ, the Trotter expansion

formula must be applied. Although there are several ways to do so, we follow a similar factorization

proposed by Martyna et al. [24], whereby:

eiLNPT t = eiLNH t/2eiLp1 t/2eiLp1i t/2eiLpi t/2eiLqteiLpi t/2eiLp1i t/2eiLp1 t/2eiLNH t/2 +O(t3) (48)

The operator iLNH has to be further divided, which we split in the following manner:

iLNH = iLcv + iLvε +
C∑

k=1

iLGξk
+

C−1∑
k=1

iLvξk
+ iLξ (49)

where:

iLcv =
3N∑
i=2

[(
− pξ1

Q1

)
pi

∂

∂pi

]
iLvε = −pξ1

Q1

p1
∂

∂p1

iLGξk
= Gξk

∂

∂pξk

iLvξk
= − pξk+1

Qk+1

pξk
∂

∂pξk

iLξ =
C∑

k=1

pξk
Qk

∂

∂ξk

We again apply the Trotter expansion to factorize exp(iLNHt/2), the final form of which depends

upon the number of thermostats in the chain. We present the results for C = 3 with exp(iLNHt/2)

expanded as:

eiLNH t/2 = e
iLGξ3

t/4
[
e
iLvξ2

t/8
e
iLGξ2

t/4
e
iLvξ2

t/8
][
e
iLvξ1

t/8
e
iLGξ1

t/4
e
iLvξ1

t/8
]

eiLvε t/4
[
eiLcvt/2eiLξt/2

]
eiLvε t/4

[
e
iLvξ1

t/8
e
iLGξ1

t/4
e
iLvξ1

t/8
]

(50)[
e
iLvξ2

t/8
e
iLGξ2

t/4
e
iLvξ2

t/8
]
e
iLGξ3

t/4

Each of the above operators individually performs the following operations on the phase space

vector [25]:

e
iLGξk

t/4
: pξk → pξk +Gξkt/4

e
iLvξk

t/8
: pξk → pξkexp

(
− pξk+1

Qk+1

t/8
)
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eiLvε t/4 : p1 → p1exp
(
− pξ1

Q1

t/4
)

eiLξt/2 : ξk → ξk +
pξk
Qk

t/2; k = 1, ..., C

eiLcvt/2 : pi → piexp
(
− pξ1

Q1

t/2
)
; i = 2, ..., 3N

eiLp1 t/2 : p1 → p1 +Gεt/2 (51)

eiLp1i t/2 : pi → piexp
(
− q̇1

q1
t/2

)
; i = 2, ..., 3N

eiLpi t/2 : pi → pi + Fit/2; i = 2, ..., 3N

eiLqt : q1 → q1 +
p1
m1

t

qi → qiexp
( q̇1
q1
t
)
+

pi
mi

t
sinh

(
q̇1
q1

t
2

)
(

q̇1
q1

t
2

) exp
( q̇1
q1
t/2

)
; i = 2, ..., 3N

where sinh(x)/x can be expanded in a Maclaurin series to an arbitrarily high order [24] (we choose

to truncate at the eighth order). In deriving the expression for qi, we follow the literature and use a

slightly different approach relative to propagating all of the other phase space variables forward in

time [26]. Instead of using a Taylor series expansion (truncated at the second order) to express the

action of the propagator on qi [25], we instead rigorously solve the equation of motion (an ordinary

first order differential equation with constant coefficients) for qi, noting that all of the variables in

the equation of motion are constant, except for qi and t. Expanding sinh(x)/x to an arbitrarily high

order is equivalent to truncating the Taylor series expansion of the operator to an arbitrarily high

order [21,24].

Now that the full operator exp(iLNPT t) has been factorized, we operate on the phase space vector

by following the order of the expansion of exp(iLNPT t) from right to left, thereby sequentially

propagating various components of �Γ from time t to t+Δt.
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Abstract: Molecular modeling is an important subdomain in the field of computational

modeling, regarding both scientific and industrial applications. This is because computer

simulations on a molecular level are a virtuous instrument to study the impact of

microscopic on macroscopic phenomena. Accurate molecular models are indispensable

for such simulations in order to predict physical target observables, like density,

pressure, diffusion coefficients or energetic properties, quantitatively over a wide range

of temperatures. Thereby, molecular interactions are described mathematically by

force fields. The mathematical description includes parameters for both intramolecular

and intermolecular interactions. While intramolecular force field parameters can be

determined by quantum mechanics, the parameterization of the intermolecular part is

often tedious. Recently, an empirical procedure, based on the minimization of a loss

function between simulated and experimental physical properties, was published by the

authors. Thereby, efficient gradient-based numerical optimization algorithms were used.

However, empirical force field optimization is inhibited by the two following central

issues appearing in molecular simulations: firstly, they are extremely time-consuming,

even on modern and high-performance computer clusters, and secondly, simulation data

is affected by statistical noise. The latter provokes the fact that an accurate computation
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of gradients or Hessians is nearly impossible close to a local or global minimum, mainly

because the loss function is flat. Therefore, the question arises of whether to apply a

derivative-free method approximating the loss function by an appropriate model function.

In this paper, a new Sparse Grid-based Optimization Workflow (SpaGrOW) is presented,

which accomplishes this task robustly and, at the same time, keeps the number of

time-consuming simulations relatively small. This is achieved by an efficient sampling

procedure for the approximation based on sparse grids, which is described in full detail:

in order to counteract the fact that sparse grids are fully occupied on their boundaries,

a mathematical transformation is applied to generate homogeneous Dirichlet boundary

conditions. As the main drawback of sparse grids methods is the assumption that the

function to be modeled exhibits certain smoothness properties, it has to be approximated

by smooth functions first. Radial basis functions turned out to be very suitable to solve

this task. The smoothing procedure and the subsequent interpolation on sparse grids

are performed within sufficiently large compact trust regions of the parameter space. It

is shown and explained how the combination of the three ingredients leads to a new

efficient derivative-free algorithm, which has the additional advantage that it is capable

of reducing the overall number of simulations by a factor of about two in comparison to

gradient-based optimization methods. At the same time, the robustness with respect to

statistical noise is maintained. This assertion is proven by both theoretical considerations

and practical evaluations for molecular simulations on chemical example substances.

Keywords: force field parameterization; molecular simulations; atomistic models;

derivative-free optimization; sparse grids; smoothing procedures

Classification: PACS 34.20.Gj; 64.75.Gh

1. Introduction

In the last few decades, computer simulations have gained in importance for both science and

industry, particularly due to the fast development of parallel high performance clusters. A denotative

subarea of computer simulations are molecular simulations, which allow one to study the effects of

modifications in microscopic states on macroscopic system properties. In contrast to simulations in

process engineering, not the continuum, but the molecular level of a system is modeled. Thereby,

the goal is to describe interatomic and intermolecular interactions, so that, on the one hand, certain

accuracy demands are fulfilled, and on the other hand, the required computation time is as low as

possible. The latter aspect is very important, because molecular simulations are numerically costly,

also on modern computer clusters. The industrial relevance of molecular simulations originates from

the fact that labor- and cost-intensive chemical experiments can be avoided. Hence, chemical systems

can be simulated at temperatures and pressures that are very difficult to realize in a laboratory, the

properties of toxic substances can be calculated without any risk and measure of precaution and
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processes on surfaces or within membranes are observable on a microscopic level. Another advantage

of molecular simulations is that both the location and velocity of each particle are saved after certain

time intervals, which results in a detailed observation of the behavior of the system. Altogether,

molecular simulations have emerged as their own scientific discipline, and because of the continuous

growth of computer resources, they will still become much more important in the coming years [1,2].

In principle, it is possible to describe interactions within a chemical system by quantum

mechanics. Thereby, a partial differential equation, the so-called Schrödinger equation [3], has to be

solved. As this turns out to be extremely difficult, especially for multi-particle systems, the problem

is simplified by classical mechanical methods. Then, the system is considered on an atomistic level,

i.e., the smallest unit is an atom. Molecular simulation techniques are based on statistical mechanics,

a subarea of classical mechanics. The most important simulation methods are molecular dynamics

(MD) and Monte Carlo (MC). Thereby, both intra- and inter-molecular interactions are described

by the foundation of a simulation, the force field. A force field consists of an analytic term and

parameters to be adjusted. It is given by the potential energy, which has the following typical

form [1,4]:

Upot(r
M) :=

∑
Bonds

kr
2
(r − r0)

2 +
∑
Angles

kφ
2
(φ− φ0)

2 +
∑

Dihedrals

m∑
n=1

Vn cos(nω)

+
N∑
i<j

{
4εij

[(
σij

rij

)12

−
(
σij

rij

)6
]
+

qiqj
4πε0rij

}
(1)

Thereby, rM ∈ R
3M is a vector containing all three-dimensional coordinates of the interaction

sites, where M is the number of particles in the system. The first row of Equation (1)

describes the intramolecular and the second row the intermolecular part. The parameters of

the intramolecular part, modeling the interactions caused by the modifications of bond lengths

r, bond angles φ and dihedral angles ω can be computed by quantum mechanics. Please note

that the index, 0, denotes the respective parameter in equilibrium and that kr and kφ are force

constants. The factors, Vn, n = 1, ...,m, m ∈ N, describe the rotation barriers around the

molecular axes. The parameterization of the intermolecular part, modeling the interactions caused

by dispersion—described by the Lennard-Jones (LJ) parameters, σij and εij, i, j = 1, ...,M, i < j,

and electrostatic effects—described by partial atomic charges, qi and qj, i, j = 1, ...,M, i < j, is

often tedious. The constant, ε0 = 8.854× 10−12 Fm−1, is the dielectric constant.

1.1. Force Field Parameterization

It is known from the literature that many force fields describe molecular interactions accurately,

qualitatively and quantitatively [5]. Intramolecular parameters can be determined by quantum

mechanics, i.e., by the minimization of a potential hyperplane. Partial atomic charges can also be

computed from the position of nuclei and electrons. However, quantum mechanical methods require

a high computational effort, especially for large molecules. This is why some simplifications were
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carried out, and the adjustment of the parameters was performed by fitting them to spectroscopic data.

Some of the most famous force fields based on such semiempirical methods have been developed,

e.g., by [6–8]. Quantum mechanical calculations of partial atomic charges were realized, e.g., by [9].

In related work [10,11], the automized optimization workflow, WOLF2PACK, was created, which

combines quantum mechanical algorithms with atomistic models and is capable of calculating both

optimal intramolecular force field parameters and partial atomic charges. For the intermolecular

part of Equation (1), the respective force field parameters were mostly adjusted to experimental

target data, i.e., physical properties resulting from a molecular simulation were compared with

experimental reference data. In particular, this empirical approach was realized by [12–14]. However,

the parameters obtained cannot be considered as optimal, because they were not fitted to a large

number of experimental data. Furthermore, in most cases, they ware adjusted manually, which is

always time-consuming. They are transferable to other substances, but a subsequent readjustment is

indispensable [15]. Many users take standard force fields from the literature for their simulations,

which may lead to satisfactory, but not to optimal, target properties.

In the last decade, a few approaches were published realizing an automated force field

parameterization procedure [16–20]. Thereby, physical target properties, like density, enthalpy

of vaporization and vapor pressure, were fitted to their respective experimental reference data at

different temperatures and pressures simultaneously. This was done via the minimization of a

quadratic loss function between simulated and experimental data, i.e., by solving a mathematical

optimization problem with numerical optimization algorithms. This approach is pursued in this paper,

as well. The loss function to be minimized is given by:

F : RN → R
+
0 (2)

x %→
n∑

i=1

w2
i

(
f exp
i − f sim

i (x)

f exp
i

)2

(3)

where x = (x1, ..., xN)
T is a force field parameter vector, N the dimension of the parameter space, n

the number of considered physical properties, maybe at different temperatures, f sim
i (x), i = 1, ..., n

the simulated physical target properties as functions of the parameter vector, x, and f exp
i , i = 1, ..., n

the respective experimental reference data. The weights, w2
i , i = 1, ..., n, account for the fact that

some properties are easier to reproduce or measured more accurately than others. The loss function,

F , is minimized within a compact domain, Ω ⊂ R
N .

The optimization workflow is shown in Figure 1: the initial guess has to be reasonably close to

the minimum. The target properties computed by a simulation tool are inserted into loss function in

Equation (3) and compared with the experimental target properties. If a specified stopping criterion

is fulfilled, the parameters are final, and the workflow terminates. Otherwise, the current parameter

vector is passed on to the optimization procedure searching for new parameters with a lower loss

function value.

There are two main requirements for the numerical optimization algorithms solving the

minimization problem: Firstly, they have to be efficient, i.e., their convergency must be fast and the

number of function evaluations has to be low, because for each function evaluation, time-consuming
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molecular simulations are needed, which can be parallelized for the different temperatures. Secondly,

they have to be robust with respect to statistical noise, because simulation data is always affected by

uncertainties. The reason for this is the fact that physical properties are computed by averaging

over a certain time period in the case of MD simulations and over a certain number of system states

in the case of MC simulations. In previous work [21–23], the software package, Gradient-based
Optimization Workflow (GROW), was developed. Thereby, efficient gradient-based numerical

optimization algorithms were successfully applied to minimize loss function in Equation (3) in an

efficient and robust way. Thereby, simple methods, like steepest descent and conjugate gradient

algorithms, turned out to be most suitable. Algorithms requiring a Hessian were too time-consuming

or not reliable whenever the Hessian was assumed to be positive definite, which it was not in most

cases. Gradients and Hessians were approximated using first-order finite differences. The lengths of

the descent directions were computed by an Armijo step length control mechanism.

Figure 1. Optimization workflow: The target properties are computed for an initial guess

for the force field parameters. If they do not agree sufficiently well with the experimental

target properties, the optimization procedure is performed searching for new parameters

with a lower loss function value.
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However, the accurate computation of a gradient or a Hessian is problematic close to a global or

local minimum of F , due to the presence of statistical noise, cf. Figure 2. For the finite difference

approximation of the gradient, two adjacent points are necessary. If these two points are situated too

close to each other, their loss function values cannot be distinguished anymore, due to the error bars

surrounding them. Therefore, the direction of the approximated gradient can be completely wrong.
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This leads to the motivation to develop a new efficient derivative-free method counteracting this

problem. The right side of Figure 2 shows that a possible solution is to approximate the loss function

by an adequate model function and to determine the minimum of the model function. In this work,

a new Sparse Grid-based Optimization Workflow (SpaGrOW) is presented in detail, implementing

the aforesaid modeling approach. The main difficulty is to filter out the statistical noise during the

approximation process, which is realized in SpaGrOW by regularization methods. As approximation

is always based on sampling the parameter space and as molecular simulations are required for

all selected points within the sampling process, sparse grids are involved in order to avoid high

computational effort. The combination technique developed by [24] is applied in order to perform a

piecewise multilinear interpolation from a sparse grid to a full grid. As sparse grids are fully occupied

at their boundaries, the loss function is artificially set to zero at the boundary by a mathematical

transformation. Then, the minimum on the full grid is determined, and a back-transformation is

performed. As the combination technique requires certain smoothness properties, and as the loss

function cannot be assumed to be smooth, it has to be preprocessed. Hence, it is approximated by a

smooth model function before. The selection of a suitable model function is done by both theoretical

considerations and practical evaluations.

Figure 2. Motivation of a derivative-free method in the case of noisy loss function values

close to the minimum; the direction of a gradient can be completely wrong. Hence, an

approximation of the loss function is necessary. This regression procedure has to filter

out the statistical noise.

Another very important goal of SpaGrOW is to outperform gradient-based optimization

algorithms with respect to computational effort, i.e., the number of molecular simulations to be

performed should be reduced by about a factor of two. At the same time, it should be at least as

robust as gradient-based methods. Hence, SpaGrOW should also be applicable in domains that are

further away from the minimum. This can only be realized efficiently by a local consideration. The

minimization of SpaGrOW is performed in a small compact trust region. As the minimum can be

situated at the boundary of the trust region, the method becomes an iterative procedure. The actual
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minimum is accepted as a new iteration, if the piecewise multilinear model predicts the decreasing

trend of the loss function in a reliable way. Hence, SpaGrOW is combined with the approach of

another category of optimization algorithms, the Trust Region methods, cf. [25,26]. The speed of

convergency can be controlled by the size of the trust region. Altogether, SpaGrOW is shown to be an

efficient combination of numerical methods, which has the following three very important issues: it

is efficient, robust and gets very close to the minimum, if certain assumptions are fulfilled. However,

these assumptions cannot be proven a priori, because the shape of the loss function and the amount of

statistical noise is unknown in most cases. Therefore, a detailed practical evaluation is indispensable.

The methodology of SpaGrOW is presented in detail in Section 2, including complexity and

convergency considerations. Section 4 shows the results of a detailed practical evaluation of the

methodology, and finally, Section 5 concludes the paper.

1.2. Drawbacks of Gradient-Based Methods

Although gradient-based optimization methods turned out to be suitable and also efficient

instruments for the parameterization of force fields in previous work [21–23], they unfortunately

have the following disadvantages:

• Due to the statistical noise in the simulation data, the accuracy of a gradient is always

limited. It can only predict the decreasing trend of the loss function. As motivated above,

this becomes problematic close to the minimum. Theoretically, it is possible to counteract

this problem by a suitable discretization for the calculation of the finite differences. However,

optimizing the distance of two adjacent points would lead to much more computational effort.

Moreover, even if the direction of the gradient can be calculated accurately, the step length

control algorithm will only deliver insignificantly small improvements compared to the higher

amount of computation time. This is a drawback of the Armijo step length control, but the

application of more efficient step length control mechanisms would lead to more computational

effort again.

• Whenever a descent direction is incorrect, a point with a smaller loss function value can only

be found by chance, because there is no possibility to change the direction. In contrast to

descent methods, Trust Region methods decrease the step length in order to find a new, maybe

more suitable descent direction of the loss function. This is why these methods are able to get

closer to the minimum. However, the Trust Region method applied in previous work requires

a Hessian matrix, which leads to significantly more loss function evaluations.

• The amount of simulations is still quite high for gradient- and especially Hessian-based

optimization algorithms. At each iteration, a gradient or, additionally, a Hessian have to be

computed, which leads to N or, even, N+N(N+1)/2 loss function evaluations. Furthermore,

the Armijo step length control algorithm requires additional functional evaluations.

These drawbacks of gradient-based methods motivate the development of an algorithm that

is capable of both getting robustly closer to the minimum and solving the optimization problem

with significantly less simulations. It should not assume the loss function to be smooth. Instead,
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it should use smoothing and regularization procedures in order to handle the statistical noise and

jagged functions.

2. SpaGrOW Methodology: The Main Elements

In this work, a new derivative-free algorithm based on sparse grids and smoothing methods is

presented. Figure 3 visualizes the gain in both efficiency and robustness by the combination of

the Trust Region approach with the interpolation on sparse grids and smoothing procedures: the

interpolation from a sparse grid to a full grid realizes a significant reduction of function evaluations,

i.e., simulations, without increasing the interpolation error significantly, on the other hand. At each

iteration, the loss function is smoothed before the interpolation is carried out. The quality of the

interpolation model is measured following the Trust Region idea. The actual minimum, which is

determined on the full grid, is either accepted as a new iteration or the trust region is decreased.

It is desisted from a continuous minimization within the trust region in order to avoid additional

internal optimization iterations. There also exist approaches to determine the global minimum of

a piecewise-linearly interpolated function via so-called subgradients [27]. However, only for the

interpolation itself, at least 3N function evaluations are required. In the present case, there are

constraints, due to the minimization on a compact trust region. Hence, the sparse grid approach

seems to be more reasonable. Another advantage of the Trust Region approach is the fact that it is

able to be fast at the beginning of the optimization procedure and to jump over undesired intermediate

local minima. This is due to the size of the step length, which is selected before a descent direction

is calculated.

Figure 3. Overview of the Sparse Grid-based Optimization Workflow (SpaGrOW): the

combination of the Trust Region approach with the interpolation on sparse grids requiring

a smoothing procedure to be preceded leads to both increasing efficiency and robustness.

be preceded 

Smoothing and regula−
rization procedures to

sparse grids

Special treatment
of boundary points of

Interpolation on sparse
grids to reduce computa−
tional effort (simulations)

Trust Region approach
to make fast steps at
the beginning possible

Efficient and
robust optimization 
procedure

Acceleration in
comparison to gradient−
based methods

First, the two main elements of SpaGrOW are presented: In Section 2.1, the idea of sparse grids is

introduced and the advantages with respect to reduction of computation time are presented. Suitable
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smoothing and regularization procedures are described in Section 2.2. The algorithm of SpaGrOW

is introduced afterwards in Section 3.

2.1. Interpolation on Sparse Grids

The interpolation on sparse grids is a highly efficient discretization method in the field of Finite

Element Methodology (FEM). In contrast to full grids, sparse grids possess significantly less grid

points, especially in high dimensional spaces. The computational effort decreases from O(h−N) to

O(h−1 × (log h−1)N−1), where h is the mesh size of the full grid. In the meantime, the interpolation

error increases from O(h2) to O(h2 × (log h−1)N−1) only, with respect to the L∞-norm [28]. The

interpolation is founded on a tensor product approach for high dimensions and a linear combination

of basis functions, e.g., of hierarchical hat functions [29]. Thereby, the basis functions with small

coefficients within the linear combination are left out, and the remaining basis functions correspond

to points of a sparse grid. Here, the combination technique by [24] is used, an efficient methodology

interpolating a function on regular subgrids. The combination of these subgrids results in a sparse

grid. The most important application of interpolation on sparse grids is the solution of partial

differential equations, cf. [30].

2.1.1. Idea of Sparse Grids

The main idea of sparse grids is to reduce the computational effort without obtaining an

intolerable increase of the interpolation error. Especially in high dimensions, the reduction of

computational effort becomes notable; Table 1 shows the number of grid points of full and sparse

grids of different resolutions and dimensions. In the following, full and sparse grids are introduced

with the aid of basis functions for piecewise-bilinear functions, i.e., for the two-dimensional case:

Table 1. Comparison of the number of grid points on full and sparse grids of different

levels and dimensions. Especially for high levels and dimensions, the computational

effort decreases significantly using sparse grids.

Level N = 1 N = 2 N = 3 N = 4

1 3 → 3 9 → 9 27 → 27 81 → 81

2 5 → 5 25 → 21 125 → 81 625 → 393

3 9 → 9 81 → 49 729 → 225 6561 → 1329

4 17 → 17 289 → 113 4913 → 593 83521 → 3921

10 1025 → 1025 1.05 ×106 → 9217 1.07 ×109 → 47103 1.1 ×1012 → 1.78 ×105

Let Ωi,j be the equidistant rectangular grid on the unit square, Ω := [0, 1]2, with mesh sizes

hi := 2−i in x- and hj := 2−j in the y-direction. The vector, � := (i, j) ∈ N
2, is called level of

the grid, Ωi,j , with one-norm |�|1 := i + j. Moreover, let Si,j be the space of piecewise-bilinear

functions on the grid, Ωi,j . For reasons of simplicity, only those piecewise-bilinear functions are
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considered here, which fulfill homogeneous Dirichlet boundary conditions in Ωi,j . The respective

space is denoted by S0
i,j . It can be expressed as a tensor product of subspaces Ts,t, s = 1, ..., i,

t = 1, ..., j, whose functions vanish on all grid points corresponding to S0
s−1,t and S0

s,t−1:

S0
i,j =

i⊗
s=1

j⊗
t=1

Ts,t (4)

Uniquely determined piecewise-bilinear basis functions in Ts,t with non-overlapping rectangular

supports of size 1/2s−1 × 1/2t−1 are introduced; the so-called hierarchical basis [29]. Thereby, each

grid point corresponds to a specific hierarchical basis function. It is situated in the center of the

support. Moreover, each grid point belongs to a grid of a certain level, �. The full grid results from

the combination of these grids, and the direct sums of the hierarchical basis functions are the standard

basis functions of the full grid.

Each function, u ∈ S0
i,j , can be expressed by a linear combination of hierarchical basis functions:

u =
i∑

s=1

j∑
t=1

us,t, us,t ∈ Ts,t, s = 1, ..., i, t = 1, ..., j. (5)

In [29], the inequality:

‖us,t‖∞ ≤ 4−s−t−1|u| (6)

was proven, where the seminorm, |u|, is given by:

|u| :=
∥∥∥∥ ∂4u

∂x2∂y2

∥∥∥∥
∞

(7)

In order to obtain a sparse grid, only the functions whose coefficients are greater than or equal to a

certain tolerance value are chosen. In [29], this tolerance value is set to 4−�̂−1|u|, where �̂ is the level

of the sparse grid, which is defined in the following. All remaining basis functions are neglected, and

a sparse grid space can be defined as follows:

Definition 1 (Sparse grid space). The space, Ŝ0
�̂
, spanned by the subspaces, Ti,j , with i+j = � ≤ �̂+1,

i.e.,

Ŝ0
�̂
:=

�̂⊗
s=1

�̂−s+1⊗
t=1

Ts,t =
⊗

s+t≤�̂+1

Ts,t (8)

is called the sparse grid space. The grid resulting from the combination of the subgrids corresponding
to the subspaces, Ts,t, s+ t ≤ �̂+ 1, is called the sparse grid and has the level, �̂.

The condition, |�|1 ≤ �̂ + 1, leads to a triangular scheme of subspaces, Ti,j , which is depicted

in Figure 4. Please note that �k = 0, k ∈ {1, 2}, is feasible, but it must hold ∀k∈{1,2} �k < �̂. The

transition to N -dimensional sparse grids of the level, �̂, is trivial: all subgrids of the level, �, with

|�|1 ≤ �̂+N − 1 ∧ ∀k=1,...,N �k < �̂ have to be combined, where |�|1 =
∑N

i=1 �i.

Figure 5 shows some examples of sparse grids of the levels 3, 4 and 5 in 2D and 3D, which were

produced with an algorithm combining sparse grids of a given level from the respective subgrids.
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Figure 4. Triangular scheme for the combination of a sparse grid of level 3 from

two-dimensional subgrids meeting the condition, |�|1 ≤ 3 + 2− 1 = 4∧ ∀k∈{1,2} �k < 3.

If all eight subgrids are combined, a full grid of level 3 is obtained. If only the subgrids of

levels (0,0), (1,0), (2,0), (3,0), (0,1), (0,2), (0,3), (1,1), (2,1), (1,2), (2,2), (3,1) and (1,3)

are taken, i.e., if the small triangle consisting of three grids at the bottom right is left out,

the corresponding sparse grid is obtained, cf. Figure 5 top left.

Figure 5. Sparse grids of the levels 3, 4, and 5 in 2D and 3D.
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The coefficients corresponding to grid points of a grid with a high level do not contribute

considerably to the interpolant. Hence, they can be neglected. However, a drawback of the sparse grid

interpolation is the fact that this is only possible for functions that are sufficiently smooth. Because

of inequality in Equation (6), the function that is interpolated must be at least four times continuously

differentiable. Otherwise, the estimate cannot be made. As differentiability cannot be assumed in the

present application, the combination technique developed by [24] is used here. A second problem

concerning the computational effort is that sparse grids are still fully occupied at the boundary, cf.
Figure 5. This problem can be handled using a transformation that sets the loss function to zero at

the boundary. The methodology applied for SpaGrOW is described in the following.

2.1.2. Combination Technique

The combination technique developed by [24] combines problems on regular grids of the level, �,

with different mesh sizes, �1, ..., �N , to a sparse grid problem in a very efficient way. As this method

has proven of value in practical applications and as it is also applicable to functions that are not

necessarily smooth, it is taken as the sparse grid interpolation method for SpaGrOW.

As before, the two-dimensional case is considered first: Let u : R2 → R be an arbitrary function.

Every function defined on a sparse grid can be linearly combined from their interpolants on the

regular subgrids, Ωi,j, i+ j ∈ {�̂, �̂+1}. If ui,j ∈ Ti,j is considered, a combination function, uc
�̂
, can

be defined as follows:

Definition 2 (Combination function (2D)). The combination function of solutions
ui,j ∈ Ti,j of FEM problems on regular two-dimensional grids of the level, (i, j),
i+ j ∈ {�̂, �̂+ 1}, is given by:

uc
�̂
:=

∑
i+j=�̂+1

ui,j −
∑
i+j=�̂

ui,j (9)

The error, u − uc
�̂
, is in O

(
h2
�̂
log(h�̂)

−1
)

, cf. Section 3.3.1. Analogous to Definition 2, the

following definition is given for the three-dimensional case:

Definition 3 (Combination function (3D)). The combination function of solutions
ui,j,k ∈ Ti,j,k of FEM problems on regular three-dimensional grids of the level, (i, j, k),
i+ j + k ∈ {�̂, �̂+ 1, �̂+ 2}, is given by:

uc
�̂
:=

∑
i+j+k=�̂+2

ui,j,k − 2
∑

i+j+k=�̂+1

ui,j,k +
∑

i+j+k=�̂

ui,j,k (10)

Via complete induction, this can directly be transferred to the N -dimensional case:



444

Definition 4 (Combination function (in general)). The combination function of solutions u� ∈ T�

of FEM problems on regular N -dimensional grids of the level, �, with |�|1 = �̂ + N − 1 − i, i =

0, ..., N − 1, is given by:

uc
�̂
:=

N−1∑
i=0

(−1)i
(
N − 1

i

) ∑
|�|1=�̂+N−1−i

u� (11)

Remark 5. Because of the condition, |�|1 = �̂+N−1−i, i = 0, ..., N−1, a multilinear interpolation
on a full regular grid with mesh size 1/2�̂ and level �̄ = (�̂) can be executed as follows: All function
values are computed on a sparse grid of the level, (�̂, ..., �̂) ∈ N

N . Because of the hierarchical
structure of the sparse grid, all function values of the regular subgrids of the level, �, with |�|1 ≤
�̂+N − 1 are known, i.e., all function values required for the interpolation, cf. Equation (11).

2.2. Smoothing Procedures

As already mentioned, the combination technique is applicable to functions that are not

necessarily differentiable. However, an assumption of this method is the existence of an asymptotic

error expansion for the discrete solution, cf. Section 3.3.1. Hence, the function to be interpolated

should possess certain smoothness properties. At least, the statistical noise has to be filtered out

as effectively as possible, and the quality of the continuity of the loss function should be high

enough. As noise can be unfavorable for the combination technique, smoothing procedures have

to be applied before the piecewise-linear interpolation is performed. In SpaGrOW, radial basis

functions (RBFs) have turned out to be very suitable in order to approximate the loss function.

In some cases, especially close to the minimum, a simple quadratic model is sufficient, as well.

Additionally, the noise is filtered out via regularization procedures. In the approximation process,

the respective nonlinear regression problem is not solved via least squares, but estimators with a

lower variance. The regularization methods used in SpaGrOW are elastic nets and multi-adaptive

regression splines. The applied smoothing and regularization algorithms are described in brief, and a

theoretical selection is presented and discussed in the following. The final decision can only be made

after a detailed practical evaluation, which is performed in Section 4.1.

2.2.1. Effects of Statistical Noise on Piecewise-linear Interpolation

Suppose u is linear and noisy. Then, the piecewise-linear interpolation should reproduce the

function exactly. However, statistical noise can lead to a staggered function, which is shown in

Figure 6. As this is not desired, a preprocessing, which approximates the function to be interpolated

and eliminates the noise, is indispensable.

However, another problematic may appear whenever the sampled points used for the

approximation are situated too close to each other: Figure 7 indicates that in this case, the trend

of the function can be reproduced completely incorrectly. Therefore, SpaGrOW has to deal with this

phenomenon, and the size of the trust region becomes too small has to be avoided.



445

Figure 6. Problematic in the case of piecewise-linear interpolation of a noisy function,

the interpolation leads to a staggered function reproducing the noise.

noisy function

piecewise−linear interpolation model

Figure 7. Problematic in the case of the approximation of a noisy function, when the

points are situated too close to each other, the function values cannot be differentiated

anymore, and the trend of the function can be reproduced completely incorrectly by the

smoothing procedure.

original loss function

computed noisy function values
approximation model

2.2.2. Smoothing Functions

In the following, the approximation of high-dimensional functions with radial basis functions

(RBFs) is presented shortly.

RBFs are an efficient and common method for interpolation and approximation tasks [31]. The

word radial indicates that they are functions of the distance of two adjacent points. Hence, points

which are situated on a hyperball with radius r around a reference point have the same function value.

Here are some examples:
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φ(r) = r (linear) (12)

φ(r) = exp
(
−cr2

)
, c ∈ R

+ (Gaussian) (13)

φ(r) =
√
r2 + c2, c ∈ R

�=0 (multiquadric) (14)

φ(r) =
1√

r2 + c2
, c ∈ R

�=0 (inverse multiquadric) (15)

φ(r) = r3 (cubic) (16)

φ(r) = r2 log r (thin plate splines) (17)

A function, f : RN → R, is approximated by:

f(X) ≈
K∑
i=1

βihi (‖X −Xi‖) (18)

where X ∈ R
N is an arbitrary test point and K ≤ m, where m ∈ N is the total number of points. The

points, Xi ∈ R
N , i = 1, ..., K, are the K representative centers of the training set, on the basis of

which the coefficients, βi ∈ R, i = 1, ..., K, are determined. The functions, hi ∈ H, i = 1, ..., K, are

from the set of RBFs, H. The computation of the coefficients is realized by so-called RBF networks,

cf. Figure 8, which are directed neuronal networks [32] and proceed from the input to the output

neurons. They possess one layer of hidden neurons only, which corresponds to the determination of

the coefficients. In the case of an approximation, it holds m ≤ K, and the following overdetermined

linear equation system (LES) has to be solved:

Hβ = Y (19)

where:

H =

⎛⎜⎜⎜⎜⎝
h1 (‖X1 −X1‖) h2 (‖X1 −X2‖) · · · hK (‖X1 −XK‖)
h1 (‖X2 −X1‖) h2 (‖X2 −X2‖) · · · hK (‖X2 −XK‖)

...
...

...
...

h1 (‖Xm −X1‖) h2 (‖Xm −X2‖) · · · hK (‖Xm −XK‖)

⎞⎟⎟⎟⎟⎠ ∈ R
m×K

and:

Y =

⎛⎜⎜⎜⎜⎝
y1

y2
...

ym

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
f(X1)

f(X2)
...

f(Xm)

⎞⎟⎟⎟⎟⎠ ∈ R
m

The solution vector, β := (β1, ..., βK)
T ∈ R

K , can be computed e.g., by using least squares.

In order to select K representative centers out of the m training data in an efficient way, an

unsupervised learning method is used, namely the automated classification (clustering) procedure,

k-means [33]. The K centers are also the centroids of the data classes obtained by the

clustering algorithm.
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A drawback of RBFs is the high computational effort required for the collocation of the matrix,

H , in Equation (19). For N = 5, more than one thousand and for N = 6, over 72 million RBF

evaluations are necessary. Hence, RBFs should not be used for N > 4.

For dimensions optimization problems, a simpler smoothing procedure is applied, whose

complexity is only quadratic in the dimension. Instead of approximating the loss function itself,

each of the physical target properties is approximated linearly, which results in a quadratic model of

the loss function. This method is called linear property approximation (Lipra) and only requires the

solution of an LES of the size N on a sparse grid. The loss function values can easily be obtained

by inserting the approximated physical properties into the loss function. The complexity of the Lipra

algorithm depends on the number of properties n and the dimension, N . It is O(nN2).

Figure 8. Radial basis function (RBF) network: The network proceeds for a test point,

X , from the input neurons, Xj, j = 1, ..., N, (components of X), over a layer of hidden

neurons containing the RBF evaluations, hi(X −Xi), i = 1, ..., K, with the coefficients,

βi, i = 1, ..., K, to the output neuron, where the summation takes place. The result is the

function value, f(X).

β1
β2

βK

...

...

X X

Σ

X

(f

(h1

X

(h2 (hK

1 2 N

X−X1 X−X2

X)

) ) X−XK)

2.2.3. Regularization Algorithms

In order to avoid overfitting, the statistical noise the simulation data is affected with has to be

eliminated. Therefore, the regression coefficients computed within the smoothing procedure may

not be overestimated, so that not too much stress is laid on noisy data points. This can be achieved

by a weighted regression, where a weighting factor is assigned to each data point that is small,

whenever the noise on its function value is high, and vice versa. Another way is to constrain the

coefficients in the optimization problem contained in the regression procedure. These so-called
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regularization algorithms do not solve the regression problem with the least square estimator, βLS,

but with low-variance estimators. The former is given by:

βLS = argmin
β

||Y −Hβ||22 (20)

and has the following drawbacks:

(1) Due to its high variance, the probability of overfitting is always high.

(2) The euclidean norm, ||βLS||2, is, in general, high, as well.

(3) There is no variable selection, i.e., none of the coefficients of βLS can be zero. Hence, correlated

variables have always an influence within the model, even if they do not have any impact on

the loss function.

(4) If the dimension is greater than the number of data points, the least square method does not

have a solution. However, due to K << m, this is not important in the present case.

In order to counteract these drawbacks, the regression coefficients have to be shrinked or set

to zero in some cases (variable selection). This has the effect that especially correlated variables

and outliers only have low influence within the model. Moreover, the variance of the estimator is

reduced, so that the probability of overfitting decreases. In SpaGrOW, this is realized by a Naive
Elastic Net [34]:

βNEN = argmin
β

||Y −Hβ||22, where α||β||22 + (1− α)|β|1 ≤ t, α ∈ [0, 1], t > 0 (21)

It contains two additional model parameters, α ∈ [0, 1] and t ∈ R
>0, which can be determined,

e.g., by a ten-fold cross-validation. A naive elastic net possesses a so-called grouping effect,
i.e., correlated model variables have similar regression coefficients. A penalized formulation of

Equation (21) is achieved by introducing Lagrangian multiplicators, λ1, λ2 ≥ 0:

βNEN = argmin
β

L(β, λ1, λ2), L(β, λ1, λ2) := ||Y −Hβ||22 + λ2||β||22 + λ1|β|1 (22)

It holds α = λ2

λ1+λ2
. For α ∈ {0, 1}, the two most famous methods in the field of biased regression

are obtained: for α = 1, it is the Ridge Regression [35], and for α = 0, it is the Least Absolute
Shrinkage and Selection Operator (LASSO) [36]. Both methods contain shrinkage, but only in the

case of the LASSO, a variable selection is possible. For more details about Elastic Nets, Ridge

Regression and the LASSO, cf. [34].

Another regularization method is based on the application of Multivariate Adaptive Regression
Splines (MARS) [37]. The basis functions within this algorithm are products of so-called hinge
functions of the order q ∈ N:

Sq(x) = Sq(x− ν) := [±(x− ν)]q+, q ∈ N (23)

where ν is a node. “+” means that for negative arguments, the functions becomes zero. Two hinge

functions with opposite sign belong together and are mirrored at their common node. Hence, they
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divide the input space into two disjoint subsets. By the recursive selection of p nodes, the input space

is divided into p+ 1 disjoint subsets. A single hinge function or a product of hinge functions, which

lead to even more divisions, is assigned to each subspace. This models the interaction of the input

variables. The approximation of a function, f : RN → R, within the MARS algorithm is realized

as follows:

f(x) ≈
p∑

i=1

(βM)i

si∏
j=1

Sq(xN(i,j) − νi,j) (24)

Thereby, the si are the numbers of hinge functions considered in the partitioning, i ∈ {1, ..., p},

νi,j, i = 1, ..., p, j = 1, ..., si are the nodes of the recursive division and N(i, j) is the dimension of

the input vector, x, to which the division defined by the node νi,j refers. In total, f is approximated

by a regression spline and, in the case of q = 1, by a piecewise-linear function. The lower probability

of overfitting is reached by pruning the basis functions involved in the model. For more details about

MARS, cf. [37]. A disadvantage of this regularization algorithm is the fact that it requires high

computational effort for higher dimensions, due to the pruning procedure.

Please note that in the case of the Lipra algorithm, which is used for high-dimensional problems,

no regularization procedure is applied, due to the high amount of computational effort.

2.2.4. Selection of Smoothing Procedures: Theoretical Considerations

The selection of the best smoothing procedure is made first from a theoretical perspective. A

detailed practical evaluation is pointed out in Section 4.1. Theoretically, an approximation method

can be selected, due to a reliable estimate of the approximation error within a domain, Ω ⊂ R
N .

Such estimates exist for positive definite RBFs, cf. [38]. The Gaussian, the inverse multiquadric and

so-called Wendland functions [39] are positive definite. The latter are RBFs with compact supports

and are piecewise polynomial with a minimal degree dependent on differentiability and dimension.

An estimate of the approximation error can be realized via the introduction of Native Spaces [38]:

Definition 6 (Native Spaces). The Native Space, Nφ(Ω), for a given positive definite RBF, φ, within
the domain, Ω, is given by:

Nφ(Ω) := {φ(|| · −x||), x ∈ Ω} (25)

where for f1 =
∑n1

k=1 αkφ(|| · −xk||) ∈ Nφ(Ω) and f2 =
∑n2

j=1 βjφ(|| · −xj||) ∈ Nφ(Ω):

〈f1, f2〉φ(Ω) :=

n1∑
k=1

n2∑
j=1

αkβjφ(||xk − xj||) (26)

Thereby, n1, n2 ∈ N, αk, βj ∈ R, k = 1, ..., n1, j = 1, ..., n2, and xk, xj ∈ Ω, k = 1, ..., n1,

j = 1, ..., n2.

The Hilbert space Nφ(Ω) is the completing of the pre-Hilbert space, {φ(|| · −x||), x ∈ Ω}. As the

approximation error depends on the size of the domain, Ω, the so-called fill distance is defined next:



450

Definition 7 (Fill distance). For a given discrete training set, X ⊂ Ω, with training data, xj, j =

1, ...,m, m ∈ N, the fill distance, ΔΩ,X , is defined by:

ΔΩ,X := sup
x∈Ω

min
j=1,...,m

||x− xj|| (27)

From Definitions 6 and 7, the following theorem for the estimation of the approximation error

can be formulated:

Theorem 8 (Approximation error for positive definite RBFs). Let Ω, X , φ and f be defined as
above. Let, furthermore, g be the approximating function for f ∈ Nφ(Ω), obtained by the positive
definite RBF, φ. Then, the following estimate for the approximation error holds:

||f − g||L∞(Ω) ≤ h(ΔΩ,X )||f ||Nφ(Ω)
(28)

where limΔΩ,X→0 h(ΔΩ,X ) = 0.

Proof. [38]

This theorem is very important for the convergency of SpaGrOW, cf. Section 3.3.2. However, for

SpaGrOW, another condition, limΔΩ,X→0 h(ΔΩ,X ) = 0, has to be fulfilled. The following definition

introduces the term stability of an approximation in the sense of SpaGrOW:

Definition 9 (Stable approximation). Let Ω and X be defined as above. Let be f ∈ H, where H is
a Hilbert space of functions on Ω with the scalar product, 〈·, ·〉H, and norm ||f ||H =

√
〈f, f〉H for

f ∈ H. An approximation within the domain, Ω, by a function, g ∈ P , where P is a pre-Hilbert
space with the same scalar product and P̄ = H, is called stable, if:

||f − g||H ≤ κh(ΔΩ,X ) (29)

where κ > 0, limΔΩ,X→0 h(ΔΩ,X ) = 0 and limΔΩ,X→0
h(ΔΩ,X )

ΔΩ,X
= 0.

The second important condition for the convergency of SpaGrOW is limΔΩ,X→0
h(ΔΩ,X )

ΔΩ,X
= 0. The

following corollary ascertains the stability of an approximation based on a Gaussian RBF:

Corollary 10 (Stability of an approximation based on a Gaussian RBF). Let Ω,X and f be defined as
in Theorem 8. Let, furthermore, φ(|| · −x||) = exp (−c|| · −x||2) for x ∈ Ω and c ∈ R

+ a Gaussian
RBF. Then, the approximation of f by g(x) :=

∑ν
k=1 αkφ(||xk − x||), ν ∈ N, αk ∈ R, xk ∈ Ω, k =

1, ..., ν, is stable.

Proof. For a Gaussian RBF, the following estimation holds (cf. [38]):

||f − g||L∞(Ω) ≤ exp

(
−d

(
log(ΔΩ,X )

ΔΩ,X

))
||f ||Nφ(Ω)

(30)

where d > 0 is a constant. With h(ΔΩ,X ) := exp
(
−d

(
log(ΔΩ,X )

ΔΩ,X

))
, it holds limΔΩ,X→0 h(ΔΩ,X ) = 0

and limΔΩ,X→0
h(ΔΩ,X )

ΔΩ,X
= 0. With κ := ||f ||Nφ(Ω)

and the fact that Nφ(Ω) is a Hilbert space and g an

element of the pre-Hilbert space, {φ(||·−x||), x ∈ Ω}, with {φ(|| · −x||), x ∈ Ω} = Nφ(Ω), it follows

that the approximation based on a Gaussian RBF is stable with respect to Definition 9.
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Because of Corollary 10, the Gaussian RBF is selected for SpaGrOW for theoretical reasons.

However, such estimates exist for other positive RBFs, as well. The final selection of the Gaussian

RBF is made after a detailed practical evaluation, as mentioned above.

3. The SpaGrOW Algorithm

3.1. Ingredients of the Algorithm

Within SpaGrOW, the minimization of the interpolation model on a full grid is performed

discretely. The corresponding complexity is O
(
(n+ 1)2N

)
, where n + 1 (n ∈ N) is the number

of points of the full grid in one dimension. The first question arising is whether the algorithm should

be applied locally or globally. Globally, this means that the smoothing procedure and the sparse

grid interpolation are performed on the complete feasible domain for the force field parameters.

However, it results that a local consideration is the better way, i.e., the combination with the Trust

Region approach is highly important. This makes SpaGrOW an iterative local optimization method.

The algorithm is described in detail in the following.

3.1.1. Local and Global Consideration

The combination technique delivers a piecewise-multilinear function, q : RN → R, which either

interpolates the loss function, F , itself or an approximating function, G, from a sparse grid of the

level, �̂ ∈ N, on a full grid, GN
�̄

, with the level, �̄ = (�̂, ..., �̂) ∈ N
N . The total error resulting from the

approximation and interpolation error can be measured via the L2- or L∞-distance between F and

the interpolation model, q, on the unit square, Ω := [0, 1]N :

||e||L2,[0,1]N := ||F − q||L2,[0,1]N =

(∫
[0,1]N

(F (x)− q(x))2 dx

) 1
2

(31)

||e||L∞,[0,1]N := ||F − q||L∞,[0,1]N = max
x∈[0,1]N

|F (x)− q(x)| (32)

If the function values, F (x), are known for x ∈ GN
�̄

, the error terms in Equations (31) and (32)

can be approximated numerically.

The total error is important for the assessment of whether SpaGrOW can be applied globally or

not. Hence, it has to be determined on a full grid for the local and the global variant. Moreover,

the convergency behavior of SpaGrOW has to be analyzed. There are some arguments for a local

consideration: Following the heuristics indicated in Section 2.2, it is indispensable to perform a

smoothing procedure before interpolating. In the global case, this smoothing procedure would be

executed on a sparse grid discretizing the complete feasible domain. As the loss function can be

arbitrarily complex and jagged, it should be nearly impossible to reproduce them in an accurate way

within a huge domain with only a small number of data points. Furthermore, the discretization error

would be too high within a huge domain for the determination of the global minimum. However,

it would be possible to apply the algorithm globally first and to make local refinements afterwards,

but an inaccurate approximation of the loss function can lead far away from the minimum. Hence, a
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local consideration should be preferred, and SpaGrOW should be a local iterative procedure, like the

gradient-based methods applied for the present task.

In order to verify these heuristic considerations, a practical analysis was performed,

where the loss function was replaced by the simple two-dimensional function, H(x1, x2) =

− exp (−(x1 − 2)2 − (x2 + 1)2). The global minimum is situated at (x∗
1, x

∗
2) = (2,−1), with

corresponding function value, H(2,−1) = −1. Artificial statistical uncertainties, i.e., uniformly

distributed random numbers from the interval, [−0.03H(x1, x2),+0.03H(x1, x2)], were added on

the function values, H(x1, x2). For reasons of brevity, the analysis is not reported here. The results

were the following:

• Comparison of the total errors:

– In the global consideration, the total errors were significantly higher than in the local

consideration with respect to both the L2- and the L∞-norm.

– The smoothing error is considerably higher in the global case than in the local one, i.e.,

the function cannot be reproduced accurately. This was also the case when the function

was not affected with statistical noise.

• Convergency analysis:

– Without artificial uncertainties, the global variant of SpaGrOW only led to the minimum

when the minimum was a grid point. Otherwise, the minimum could only be determined

within the accuracy of the discretization.

– With artificial uncertainties, both discretization and approximation error had a negative

effect on the convergency. The resulting approximated minimum was far away from the

real one.

To summarize, a local consideration is preferred to a global one.

3.1.2. Combination with the Trust Region Approach

For each iteration, a compact neighborhood, where the minimization problem is solved discretely,

is determined. In most cases, the minimum is situated at the boundary of the compact domain. If

certain assumptions are fulfilled, this boundary minimum becomes the new iteration and the center

of a new compact neighborhood.

Following the idea of Trust Region methods [25,26], the compact neighborhood is a trust region

of the size, Δk > 0. Due to the sparse grid interpolation, it is not a ball, BΔk
(xk), but a hyperdice,

Wk, of the form:

Wk :=
N⊗
i=1

[
xk
i −Δk, x

k
i +Δk

]
(33)

where xk is the kth iteration of SpaGrOW. On the one hand, the size, Δk, has to be small enough,

so that Wk is situated within the feasible domain of the force field parameters and the interpolation

model is consistent with the original loss function, F , as already discussed in Section 3.1.1. On the
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other hand, Δk has to be large enough, so that the method converges as fast as possible to the global

minimum within the feasible domain. Hence, the division of the domain into non-disjoint hyperdices

should not be too fine.

The quality of the model, q, is estimated using the following ratio:

rk :=
F (xk)− F (x∗)
q(xk)− q(x∗)

=
F (xk)− F (x∗)
G(xk)− q(x∗)

(34)

where x∗ is the discrete minimum on a full grid within the hyperdice, Wk. As xk is a point of the

sparse grid and the model, q, interpolates the approximating function, G, from the sparse grid on the

full grid, it holds q(xk) = G(xk).

In practice, two thresholds, 0 < η1 < η2, and size parameters, 0 < γ1 < 1 < γ2, are introduced,

and the following three cases are considered:

• η2 > rk ≥ η1—in this case, the model is consistent with F , and the minimum, x∗, is taken as a

new iteration: xk+1 := x∗.
• rk ≥ η2 > η1—then, x∗ is taken as a new iteration, as well, and at the same time, the trust

region is increased in order to accelerate the convergency: Δk+1 := γ2Δk.

• rk < η1—in this case, the model is not consistent with F , and a better model has to be

determined by decreasing the trust region: Δk+1 := γ1Δk.

As for the Trust Region methods, a minimal Δmin > 0 is defined a priori. The algorithm is stopped

as soon as ∃ k : Δk < Δmin.

3.1.3. Treatment of Boundary Points

After the application of a transformation, ξ : Wk → [0, 1]N , into the unit hyperdice, cf.
Section 3.2.1, the loss function values are set to zero at its boundary by an appropriate modification.

The reason of the realization of homogeneous Dirichlet boundary conditions is the fact that also

sparse grids are fully occupied at their boundaries. In order to save a magnitude of simulations, the

original loss function, F , is multiplied with a product of sine functions, i.e., the modified function:

F̄ : [0, 1]N → R
+
0

y %→
(

N∏
i=1

sin πyi

)
F (y) (35)

where y = ξ(x) with x ∈ Wk is considered instead of F . Hence, the smoothing and interpolation

procedures are applied for F̄ ◦ ξ : Wk → R
+
0 . Due to Equation (35), it holds F̄ |∂[0,1]N = 0.

However, as F and not F̄ has to be minimized and as F and F̄ do not have the same minimum,

the back-transformation:

F (x) = F (ξ−1(y)) =
F̄ (y)∏N

i=1 sin πyi
(36)
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has to be applied before the discrete minimization is performed. Hence, the minimum of F ◦ ξ−1 has

to be determined, which is not possible at the boundary of Wk. As the minimum is expected to be

situated at the boundary, only the grid:

G̃N
�̄ := GN

�̄ \∂GN
�̄ (37)

is considered for the minimization. This grid does not contain any boundary point of the original grid.

However, this reduces the size of the trust region, but the loss in convergency speed is negligible, due

to the number of simulations to be saved; for N = 4 and �̂ = 2, only nine instead of 393 simulations

(cf. Table 1) per iteration are required.

Figure 9. Overview of the SpaGrOW algorithm, i.e., the inner iteration of the

optimization procedure visualized in Figure 1. The Trust Region size, Δ, is increased

or decreased, depending on the quality of the approximation model on the sparse grid.
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3.2. The Full Algorithm

3.2.1. Structure

The algorithm of SpaGrOW, i.e., the inner iteration of the optimization procedure shown in

Figure 1, is visualized in Figure 9 and has the following structure:
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• Initialization: Choose an initial vector, x0, and an initial step length, D0 > 0, so that:

∀i=1,...,N c0i ≤ x0
i ≤ C0

i , Δ0 < C0
i − x0

i , Δ0 < x0
i − c0i (38)

Thereby, [c0i , C
0
i ] is the feasible interval for the ith force field parameter. The maximal step

length possible, Δmax, is computed at the beginning, and Δ0, as well as a minimal step length,

Δmin, are set in relation to it. Please note that on the one hand, Δ0 must not be too small, due to

the noise, and that, on the other hand, it must not be too large, so that the problematic described

in Section 3.1.1 is not faced.

Let k := 0.

• Transformation: Via the transformation:

ξ : Wk → [0, 1]N

x %→ x−
(
mini=1,...,N xk

i

)
· e(

maxi=1,...,N xk
i

)
· e−

(
mini=1,...,N xk

i

)
· e

=
1

2Δk

(
x− xk +Δk · e

)
(39)

the initial vector, x0, is mapped from the hyperdice of the size, Δ0, into the unit hyperdice.

Thereby, e = (1, ..., 1)T ∈ R
N and xk

i , i = 1, ..., N are the components of the vector, xk.

Please note that only the back-transformation obtained by the inverse function:

ξ−1 : [0, 1]N → Wk

y %→ 2Δky + xk −Δk · e (40)

is important, because, first, a sparse grid is simply collocated in [0, 1]N . Then, the grid points

are back-transformed into the force field parameter space via ξ−1, so that molecular simulations

can be executed.

• Sparse grid: A sparse grid, ĜN
�̂

, is determined within [0, 1]N = ξ
(
Wk

)
. Note that the

transformation, ξ, has not to be applied explicitly. As the combination technique is used,

the grid points of the sparse grid are determined hierarchically from the required subgrids, cf.
Equation (11). Let y�,j be a point of the subgrids of the level, � = (�1, ..., �N), and position,

j = (j1, ..., jN), which is, at the same time, a non-boundary point of the sparse grid. For each

of these points, the loss function value, F (y�,j), is computed.

• Boundary: By multiplying F with a sine term:

F̄ : [0, 1]N → R
+
0 (41)

y %→
(

N∏
i=1

sin πyi

)
F (y) (42)

homogeneous Dirichlet boundary conditions are realized in order to reduce the computational

effort significantly. The function, F̄ , is applied to each point, y�,j , of the sparse grid.

• Smoothing: As the function to be minimized is affected with statistical noise, the function, F̄ ,

is smoothed and regularized by the methods indicated in Section 2.2.2. Hence, for each point,

y�,j , of the sparse grid, a value, G(y�,j), of the approximating function is obtained.
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• Interpolation: The function, G, is interpolated from the sparse grid, ĜN
�̂

, on the full grid, GN
�̄

,

by the combination technique. Hence, an interpolation model, q̄, is obtained for each point,

y ∈ GN
�̄

.

As the smoothing and interpolation procedures have been executed for F̄ , the following

division has to be applied for each non-boundary point of the full grid:

∀y∈G̃N

̄
q(y) =

q̄(y)∏N
i=1 sin πyi

(43)

The interpolation model, q, is only valid for all y ∈ G̃N
�̄

.

• Discrete minimization: Determine:

y∗ := arg min
y∈G̃N


̄

q(y) (44)

• Iteration step xk → xk+1: The ratio:

rk :=
F (yk)− F (y∗)
q(yk)− q(y∗)

=
F (yk)− F (y∗)
G(yk)− q(y∗)

, yk = ξ(xk) (45)

is determined, and the following three cases are differentiated:

– rk ≥ η1 ⇒ xk+1 := ξ−1(y∗) ∧Δk+1 := Δk.

– rk ≥ η2 > η1 ⇒ xk+1 := ξ−1(y∗) ∧Δk+1 := γ2Δk

– rk < η1 ⇒ xk+1 := xk ∧Δk+1 := γ1Δk.

Thereby, η2 > η1 > 0 and γ2 > 1 > γ1 > 0 are global parameters.

Let k := k + 1, and go to step 2.

• Stopping criteria: The general stopping criterion is:

F (x∗) ≤ τ (46)

where τ > 0. However, an additional criterion is that the minimum is situated within the

hyperdice and not at its boundary. In total, the following three stopping criteria are considered:

(i) F (x∗) ≤ τ ∧ ξ(x∗) /∈ U0 ∪ U1

(ii) F (x∗) ≤ τ ∧ ξ(x∗) /∈ U0 ∪ U1 ∧Δ∗ < Δmin

(iii) ∃ k ∈ N : rk < η1 ∧Δk < Δmin.

Thereby:

U0 := {y ∈ [0, 1]N | ∃ i ∈ 1, ..., N : yi ∈ {0, 1}},
U1 := {y ∈ [0, 1]N | ∃ i ∈ 1, ..., N : yi ∈ {2−�̂, 1− 2−�̂}}

Moreover, Δ∗ := Δk, where x∗ = xk.

If the stopping criteria, (i) and (ii), are fulfilled, then SpaGrOW has converged successfully.

Due to ξ(x∗) /∈ U1, it is excluded, as well, that the minimum is situated at the boundary of the

grid, where the interpolation model, q, is valid. Stopping criterion (ii) contains the additional
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condition, Δ∗ < Δmin, excluding that improvements can be achieved by local refinements.

Hence, this is the ideal stopping criterion.

Stopping criterion (iii) means that SpaGrOW has not led to success, i.e., even by decreasing

the trust region, no accurate model, q, can be found. In particular, this is the case when the

assumptions for the application of the combination technique are not fulfilled, which may be

caused by an inaccurate smoothing procedure, wherein the noise has not been filtered out in a

sufficient way.

3.2.2. Complexity

In the following, the complexity of SpaGrOW is discussed. The present section is organized like

Section 3.2.1, but here, SpaGrOW is discussed with respect to complexity:

• Initialization: The effort is only caused by the allocation of the initial variables, like the

initial force field parameters, their upper and lower bounds, as well as the maximal, initial and

minimal step length.

• Transformation: The transformation is performed in an imaginary way only. The sparse grid

is constructed directly in step 3. Only the execution of the back-transformation, ξ−1, requires

a small computational effort.

• Sparse grid: The complexity to obtain a sparse grid of the level, �̂, is O
(
2�̂ · �̂N−1

)
, which

is still exponential in the dimension, but especially in the case of higher dimensions, it is

significantly lower than for a full grid of the same level. The computational effort does not

only concern the number of grid points to be computed, but in the first instance, the number of

loss function evaluations, i.e., simulations.

• Boundary: Setting the loss function values to zero at the boundary of the sparse grid does

not mean any computational effort. For all other grid points, 2N + 1 (O(N)) multiplications

have to be performed, cf. Equation (35). Furthermore, there are N sine evaluations. The

number of boundary points of an N -dimensional sparse grid of the level, �̂, is O
(
N2N−12�̂

)
.

Thereby, N2N−1 is the number of edges of an N -dimensional hyperdice. Hence, the number

of simulations to be executed is reduced to:

O
[
2�̂

(
�̂N−1 −N2N−1

)]
(47)

This number multiplied by 2N +1 is the number of required multiplications and multiplied by

N , the number of sine evaluations required. The reduction of molecular simulations is achieved

at the expense of

O
[
N2�̂

(
�̂N−1 −N2N−1

)]
(48)

multiplications and sine evaluations, a computational effort that can be neglected, if the high

amount of computation time for a simulation is opposed.

• Smoothing: In the case of most approximation methods, a multivariate linear regression has

to be performed with complexity O(mM2 + M3), where m is the number of data points and

M , the number of basis functions (e.g., M = K for RBFs). However, this complexity can
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often be reduced to O(mM2 + M2) or, even, to O(1) by smart numerical methods, e.g., by

a Cholesky factorization, in the case of positive definiteness. In contrast to simulations, the

computational effort required for a smoothing procedure is negligible, as well. However, one

has to consider that m and M must be large enough, on the one hand, in order to achieve an

approximation as accurate as possible, and also small enough, on the other hand, in order to

keep the computational effort low and to avoid overfitting. Additional effort appears due to the

selection of centroids by the k-means algorithm, whose convergency speed always depends on

the random choice of the initial centroids. The evaluation of the model function is done by a

summation of the centroids only.

Furthermore, the regularization methods require some amount of computational effort,

in particular, due to the application of Newton-Lagrange algorithms for the constrained

optimization. Please note that most of them have been parameterized, as well, e.g., by

cross validation.

• Interpolation: In the multilinear interpolation, all adjacent points have to be considered for

each grid point. Hence, the interpolation is in O
[
(2N + 1) · 2�̂ · �̂N−1

]
.

After the multilinear interpolation, a division by a sine term has to be executed for each point

situated inside the unit hyperdice. As the sine term has already been calculated for each point

of the sparse grid, only:

O
[
(2N + 1)

(
(2�̂ − 1)N − 2�̂�̂N−1

)]
(49)

multiplications and:

O
[
N

(
(2�̂ − 1)N − 2�̂�̂N−1

)]
(50)

sine evaluations have to be performed. The number of required divisions is equal to (2�̂ − 1)N .

Please note that the divisions have to be performed for each inner point of the sparse grid, as

well, because only the approximating function, G, coincides with the interpolation model, but

not F̄ .

• Discrete minimization For the minimization of q, a maximal function value of 106 is

supposed. For each point on the full grid, a comparison has to be performed, in total,

(2�̂ − 1)N comparisons.

• Iteration step: Only a few small operations are necessary in order to perform an iteration step,

i.e., simple subtractions, divisions, multiplications and comparisons.

• Stopping criteria: Only comparisons have to be performed in order to check the stopping

criteria. The decision whether a vector is situated in U0 ∪ U1 or not is made by comparing the

components of y with the values zero, one, h and 1− h. If one component coincides with one

of these four values, the procedure is stopped, and y ∈ U0 ∪ U1 is observed.

3.3. Convergency

In the following, some convergency aspects the SpaGrOW algorithm are considered. In [40], it

was proven that the algorithm converges under certain assumptions. Thereby, both smooth and noisy
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objective functions were considered. In the smooth case, the interpolation error is relevant, and in the

noisy case, the approximation error with respect to the original function, i.e., the function without

noise, has to be taken into account. Moreover, it is examined to what extent SpaGrOW manages

with less simulations than gradient-based methods. In the case of the latter, simulations have to

be performed for the gradient components, the entries of the Hessian matrix and the Armijo steps.

In the case of SpaGrOW, they have to be executed for the sparse grid points and the Trust Region

steps. The steepest descent algorithm and the conjugate gradient methods required significantly less

simulations for the gradient than SpaGrOW for the sparse grid: for N = 4, four simulations are

required for the gradient and nine for a sparse grid of the level 2. As for the step length control,

it can be observed that both gradient-based methods and SpaGrOW mostly need one Armijo or,

respectively, one Trust Region step at the beginning of the optimization, but many more close to

the minimum. The reason for the reduction of computational effort in the case of SpaGrOW lies in

the lower number of iterations, not in the lower number of function evaluations per iteration. The

advantage is that the step length is determined before, so that, especially at the beginning of the

optimization, large steps can be realized. For smooth functions, the combination technique delivers

small interpolation errors in most cases, also when the trust region is quite large, but always a descent

direction, mostly leading to the boundary of the actual trust region.

Close to the minimum, both approaches have the drawback that after a high number of step

length control iterations, i.e., after a large computational effort, only marginal improvements in the

loss function values are observed. However, due to the statistical noise, the minimum can never be

predicted exactly. At some point, the minimization has to be stopped, and the actual result has to be

evaluated. However SpaGrOW is capable of searching for a smaller loss function value in more than

one direction, due to the grid approach. Furthermore, its modeling approach increases the probability

to get close to the minimum than gradient-based methods, as motivated in Section 1.

As the interpolation and smoothing errors are essential for the convergency of SpaGrOW, they

are introduced and discussed in the following.

3.3.1. Interpolation Error

Under certain assumptions [24], the interpolation error for a sparse grid of the level, �̂, is of the

order O
(
h2
�̂
(log(h�̂)

−1)
�̂−1

)
. First, the two-dimensional case is considered again. If the difference

u− ui,j , where ui,j ∈ Ti,j , i+ j ∈ {�̂, �̂+ 1}, meets point-wise an asymptotic error expansion, i.e.,

u− ui,j = C1(hi)h
2
i + C2(hj)h

2
j +D(hi, hj)h

2
ih

2
j (51)

where ∀i |C1(hi)| ≤ κ, ∀j |C2(hj)| ≤ κ and ∀i,j |D(hi, hj)| ≤ κ, κ > 0, then the interpolation error

can be estimated as follows:

|u− ûc
�̂
| ≤

(
1 +

5

4
log

(
h−1

�̂

))
κh2

�̂
= O

(
h2
�̂
log(h�̂)

−1
)

(52)
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For the N -dimensional case, an analogous asymptotic error expansion delivers the

following formula:

|u− ûc
�̂
| ≤

(
N−1∑
l=0

χl

(
log

(
h−1

�̂

))l
)
κh2

�̂
= O

(
h2
�̂

(
log(h�̂)

−1
)�̂−1

)
(53)

Thereby, u ∈ S0
�̄
, �̄ = (�̂, ..., �̂) ∈ N

N and χl ∈ N, l = 0, ..., �̂− 1.

Please note that in order to guarantee the existence of such an asymptotic error expansion, the

exact solution, u, must fulfill certain continuity and smoothness conditions. As u is supposed to

reproduce F exactly on the sparse grid and as accurately as possible between the sparse grid points,

these assumptions have to be transferred to F . This motivates again the need for a smoothing

procedure in the case of statistical noise. In most cases, the existence of an asymptotic error expansion

cannot be proven a priori. However, the combination technique was shown to deliver very good

results in practice [24].

The interpolation error can be estimated above as follows:

Theorem 11 (Estimate for the interpolation error). Let Δ > 0 be the size of the hyperdice, WΔ(x),
with center x ∈ R

N , where a sparse grid of the level, �̂, is defined. Let the approximated function,
G : RN → R

+
0 , be given on the sparse grid and interpolated by the model function, q : BΔ(0) → R,

on a full grid of the level, � := (�̂, ..., �̂) ∈ N
N , using the combination method. Then, for the

interpolation error, ε = |u− ûc
�̂
|, in Inequality (53), it holds for u := G and ûc

�̂
:= q:

∀y∈WΔ(x) |ε(y)| ≤ κε(�̂)f
ε
�̂
(Δ) (54)

where κε : N → R
+ and f ε

�̂
: R

+ → R
+ with lim�̂→∞ κε(�̂) = 0 and limΔ→0 f

ε
�̂
(Δ) = 0.

The function, f ε
�̂
, is continuous. Moreover, f̃ ε

�̂
:=

fε

̂

Δ
: R

+ → R
+ is continuous, as well, with

limΔ→0 f̃
ε
�̂
(Δ) = 0.

Proof. Let y ∈ WΔ(x) be an arbitrary point in the hyperdice. It holds h�̂ = 21−�̂Δ. Following

Inequality (53), there exist constants χl > 0, l = 0, ..., N − 1 and a κ > 0, so that:

|ε(y)| ≤
(

N−1∑
l=0

χl

(
log

(
2�̂−1Δ−1

))l
)
κ22−2�̂Δ2

=

(
N−1∑
l=0

χl

(
�̂− 1− logΔ

)l
)
κ22−2�̂Δ2

≤ N · N−1
max
l=0

χl · κ22−2�̂︸ ︷︷ ︸
:=κε(�̂)

· N−1
max
l=0

(
�̂− 1− logΔ

)l

·Δ2︸ ︷︷ ︸
:=fε


̂
(Δ)

= κε(�̂)f
ε
�̂
(Δ) (55)

It holds lim�̂→∞ κε(�̂) = 0, and also, because of l’Hospital’s rule, limΔ→0 f
ε
�̂
(Δ) = 0.

Due to f̃ ε
�̂
(Δ) = maxN−1

l=0

(
�̂− 1− logΔ

)l

· Δ, it follows also from l’Hospital’s rule that

limΔ→0 f̃
ε
�̂
(Δ) = 0.
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3.3.2. Smoothing Error

Let || · || be one of the two norms, || · ||L2 or || · ||L∞ . The smoothing error, μ, is the error with

respect to || · || between the original function, F = F̃ − ΔF , without noise and the approximating

function, G. Thereby, F̃ is the noisy function. It holds:

μ := ||F −G|| = ||(F +ΔF )−G−ΔF || = ||F̃ −G−ΔF || ≤ |ϑ|+ ||ΔF || (56)

where ϑ denotes the training error. If Ω is a trust region, then define

∀x∈Ω ϑ(x) := F̃ (x)−G(x). In the ideal case, ϑ(x) = ΔFx, it holds μ(x) = 0. Otherwise, for

0 < δ << |ΔFx|, the following inequation must hold:

|μ(x)| = |ΔFx − ϑ(x)| ≤ δ (57)

This means that the training error, ϑ, must not be too small. Figure 10a shows an overfitted

model, G, which reproduces exactly the oscillations produced by the noise. In this case, ϑ = 0, but

|μ(x)| = |ΔFx| >> δ for certain x ∈ Ω. On the other hand, the training error must not be too high.

In Figure 10b, it holds ∀x∈Ω |μ(x)| ≈ |ΔFx| >> δ. Only Figure 10c depicts a feasible case; here,

the training error is in the same order as the noise, and it holds |μ| ≤ δ.

Figure 10. Approximation models with different training errors, ϑ, where the function,

G, approximates the noisy function, F̃ = F + ΔF , overfitted model with ϑ = 0 (a);

model, where ϑ is too high (b); and feasible model with |ΔF − ϑ| ≤ δ (c). In the ideal

case, it holds ϑ(x) = ΔFx.
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δ
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In order to keep the smoothing error low enough, a smoothing procedure has to be applied,

which filters out the noise and reproduces the loss function, at least on the sparse grid, as exactly as

possible. As a smoothing procedure can only be evaluated on a sparse grid, due to the high amount

of computation time for molecular simulations, the condition, |μ| ≤ δ, is considered only on the

sparse grid. It does not matter if G has oscillations between the sparse grid points, because the

piecewise-multilinear sparse grid interpolation is not capable of modeling them anyway.

The following theorem is essential for the convergency proof of SpaGrOW and gives an estimate

for the smoothing error in the case of positive definite RBFs:
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Theorem 12 (Estimate for the smoothing error). Let Δ > 0 be the size of the hyperdice, WΔ(x),
with the center, x ∈ R

N , in which a sparse grid of the level, �̂, is constructed. Let the loss function,
F : RN → R

+
0 , be given on the sparse grid and approximated by the function, G : RN → R. Suppose

that the approximation be stable. Then, the smoothing error μ from Equation (56) can be estimated
as follows:

∃ κμ > 0 : ∀y∈WΔ(x) |μ(y)| ≤ κμf
μ(Δ) (58)

where fμ : R+ → R
+ is continuous with limΔ→0 f

μ(Δ) = 0. Furthermore, f̃(μ) := fμ

Δ
: R+ → R

+

is continuous, as well, with limΔ→0 f̃
μ(Δ) = 0.

Proof. Due to the stability of the smoothness, Inequality (29) holds, where Ω = WΔ(x) and X is

the sparse grid. The fill distance on the sparse grid and Δ only differ by a constant, ω > 0, i.e.,

ΔΩ,X = ωΔ. For κμ := κ and fμ(Δ) := h(ωΔ) = h(ΔΩ,X ), the estimate for the smoothing error in

Equation (58) follows directly.

Remark 13. Following Corollary 10, estimate Equation (58) is given in the case of a smoothing
procedure based on Gaussian RBFs.

Remark 14. For Theorem 12 and the full convergency proof, it is irrelevant whether the original
function, F : R

N → R
+
0 , or the transformed function, F̄ : [0, 1]N → R

+
0 , is approximated by

G : R
N → R. The function to be smoothed only has to be continuous within the trust region.

Please note that in the case of F̄ , the function, G, can have negative values, as F̄ is equal to zero
at the boundary of the trust region. For the original function, G(x) ≥ 0 can be assumed, due to
Theorem 12, when Δ is small enough. For F̄ , this can be assumed, as well. Otherwise, consider a
translation that does not have any impact on either the approximation or the minimization.

The convergency proof executed for SpaGrOW was related to a general convergency proof for

derivative-free Trust Region methods [41]. However, the Trust Region method used in that paper

is based on an interpolation with Newtonian fundamental polynomials. Hence, the partial proofs

cannot be transferred, but have to be developed anew. Another crucial difference consists in the

assumption for the loss function to be at least two times continuously differentiable with a bounded

Hessian norm, which cannot be made in the case of SpaGrOW. The detailed convergency proof was

performed in [40].

3.4. Speed of Convergency Compared to Gradient-Based Methods

The speed of convergency of SpaGrOW is discussed in the following, also with respect to

statistical noise. As already mentioned, the trust region size, Δ, may not be too small, due to the

noise. However, the convergency proof is based on the choice of a small Δ. This dilemma, which is

also present in the case of gradient-based methods whenever two adjacent points are required for the

computation of a partial derivative, leads to the need for an optimal parameterization of SpaGrOW.

To achieve a high speed of convergency, primarily at the beginning of the optimization, the choice of

a large Δ is required without hurting one of the assumptions for the convergency proof, cf. [40]. In
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the following, some heuristic considerations are made in this regard. Thereby, the index, g, refers to

gradient-based descent methods, the index, H to descent methods using a Hessian and the index, S to

SpaGrOW. Furthermore, let M̄ be the average number of function evaluations per iteration and l̄, the

average number of Armijo or Trust Region steps. Then, it holds:

M̄g = N + l̄g (59)

M̄H = N +
N(N + 1)

2
+ l̄H (60)

M̄S = 2N · l̄S (61)

The drawback of SpaGrOW lies in the multiplicative dependency of M̄S on l̄S . This is due to the

fact that a new sparse grid is used at each iteration step. However, at the beginning of the optimization,

l̄g = l̄H = l̄S = 1 is assumed. Then, it holds M̄g < M̄S < M̄H . Hence, SpaGrOW requires less

iterations on average than a method based on Hessians. However, in total, it has to manage with less

iterations than a gradient-based method requiring less function evaluations per iteration: Let k be the

general number of iterations; then it must hold: kS < kg. If:

kS <
N + 1

2N
kg (62)

SpaGrOW needs less iterations and function evaluations than a gradient-based method. Now, the

question arises, how this can be steered. By choosing an initial Δ0 (and also γ1) that is large enough,

a faster convergency can be achieved.

In the following, the initial phase of an optimization process is considered, and a short comparison

between SpaGrOW and a gradient-based descent method is pointed out, i.e., it is discussed under

what conditions the speed of convergency is significantly higher in the case of SpaGrOW. Please

note that at the beginning of the optimization means here that the number of trust region or Armijo

steps is equal to one at each iterations and that kg is chosen, so that the number of Armijo steps

for xkg is still equal to one and for xkg+1, greater than one. Furthermore, choose kS , so that

||xkS − x0|| ≤ ||xkg − x0||, the size of the trust region is equal to Δ0 and xkg ∈ Ωk. Hence,

xkg /∈ Ωk−1. This means that both xkS and xkg are reached by SpaGrOW with kS steps of length

Δ0, which is depicted in Figure 11. The distance between x0 and xkS is equal to kSΔ0. It holds:

kSΔ0 ≤ ||xkg − x0|| (63)

If:

Δ0 >
||xkg − x0||
N + 1

2N
kg︸ ︷︷ ︸

>1, if kg≥2

(64)

i.e., if:

Δ0 > ζ||xkg − x0|| (65)

for a maximal ζ ∈ (0, 1); then, Inequality (62) follows. In practice, a realistic case is kg = 4. If:

ζ :=
4N

(N + 1)kg
=

N

N + 1
< 1 (66)
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is chosen, SpaGrOW requires less than 50% of the iterations and function evaluations required by

the gradient-based descent method. Hence, a reduction of computation time by a factor of two is

plausible at the beginning of the optimization process.

Figure 11. Speed of convergency of SpaGrOW at the beginning of the optimization. For

an appropriate choice of the size of the initial trust region, Δ0, the number of iterations

in the case of SpaGrOW (kS) is significantly smaller than in the case of a gradient-based

method (kg). It is realistic that the number of iterations and function evaluations can be

reduced by a factor of two.

xx
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4. Practical Evaluation and Results

The methodology of SpaGrOW was implemented in python (version 2.4.3) and is modularly

constructed. The software consists of a main control script and secondary control scripts for specific

parts of the algorithm, e.g., for the sparse grid interpolations and the control of the smoothing

procedures, which were implemented in S+ (version 2.1.10), scripting language related to the R
Project for Statistical Computing [42].

The implementation of SpaGrOW contains the full algorithm described in the previous section

and acts as an interface between optimization and simulation, providing all necessary control routines

for both tasks. On the optimization side, the method starts with an initial guess and evaluates the loss

function based on the results of a simulation. If one of the stopping criteria of SpaGrOW is fulfilled,

the optimization workflow terminates. Otherwise, the parameters are updated by SpaGrOW.

On the simulation side, a control script calls the simulation tool performing all preparation

routines and computing the trajectory, as well as the desired physical target properties. The latter

are passed on to the optimization workflow of SpaGrOW. In the case of a simultaneous optimization

of properties at different temperatures, the respective simulations are executed in parallel. In this
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case, a script distributing K jobs at K temperatures is called. A script controlling the parallel

environment and the simulation control script are called K times. If m = n/K physical properties

are fitted, the result of each job consists of m properties files. Figure 12 shows both the optimization

and the simulation side and how they interact with each other in the case of parallel jobs at

different temperatures.

Figure 12. Technical realization of optimization procedure for physical target

properties at different temperatures. If the simulated properties do no coincide well

with their experimental reference data, the optimization control script—depicted on

the left—passes the current force field parameters on to a distribution control script,

which submits parallel jobs at different temperatures. Then, a parallel environment

control script is executed, and a simulation control script is called, which performs the

following three tasks: preparation routines, the simulation itself and the computation of

the simulated target properties. The properties are written into separate files, which are

read by the optimization control script. Finally, the loss function is evaluated and the

workflow continues.
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The simulations were performed on a parallel computer cluster with 215 available nodes, where

each node is provided with two Intel-Nehalem-EP-Quadcore processors (Xeon X5550) with 24 GB

of main storage, which are connected by a fast QDR infiniband interconnect with a 40-Gb/s Double

Date Rate (DDR).

In this section, SpaGrOW is evaluated in practice and applied to molecular simulations as

described above. The questions to be answered are the following:

• Which smoothing and regularization procedure are most suitable?

• Is SpaGrOW capable of saving simulations in comparison to gradient-based methods?

• How close does SpaGrOW get to the minimum?
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4.1. Selection of Smoothing and Regularization Methods

As molecular simulations are extremely time-consuming, an analytical model replacing them was

used for the selection. In previous work [22], a similar assessment has already been performed for

gradient-based methods. Vapor-Liquid Equilibrium (VLE) data, like the saturated liquid density,

ρl, the enthalpy of vaporization, ΔvH , and the vapor pressure, pσ, can be evaluated directly as

functions of certain force field parameters. These functions were determined by [43] by nonlinear

regression using a high amount of simulation data for two-centered Lennard-Jones (LJ) fluids with a

quadrupolar moment. Here, nitrogen was considered as an example for this kind of fluid. The model

parameters to be optimized were the elongation, L, of the two LJ sites, the quadrupolar moment, Q2,

and the two LJ parameters, σ and ε. In order to mimic molecular simulations, uniformly distributed

artificial uncertainties (0.5% for the density and 3% for the pressure) were added for the simultaneous

optimization of ρl and pσ at six different temperatures, T/K ∈ {65, 75, 85, 95, 105, 115}. As in [22],

the weights of the properties in the loss function were all equal to one, because all properties were

considered as homologous. As the simulation data were noisy, ten statistically independent random

replicates were performed for each optimization run, whose results were averaged.

Due to theoretical considerations, the tendency consists in selecting positive definite RBFs, in

particular, Gaussian RBFs. In the following, it is shown that this is also a good choice in practice.

In order to evaluate, whether a smoothing or regularization procedure is appropriate for

SpaGrOW, the behavior of the algorithm combined with each preprocessing procedure is analyzed.

Thereby, both efficiency and robustness with respect to noise are considered. Table 2 shows the

candidates and their abbreviations.

Table 2. Candidates for smoothing and regularization procedures within SpaGrOW

together with their abbreviations.

Smoothing procedures Regularization procedures

Radial Basis Functions Least squares

Naive Elastic Nets (NENs)

α = 0: Least Absolute Shrinkage and Selection Operator (LASSO)

α = 1: Ridge Regression

Linear property approximation (Lipra) Multivariate Adaptive Regression Splines (MARS)

Selection of the Best Smoothing Procedure It was already motivated that a smoothing procedure

is indispensable, whenever noisy loss function values are present. A detailed analysis has shown that

certain RBFs deliver better results by far than others. Suitable RBFs are the linear, cubic, Gaussian

and thin plate spline RBF, cf. Section 2.2.2. The multiquadric functions were not reliable. Moreover,

Wendland functions were considered, as well. Figure 13 shows box plots for the loss function values

achieved by SpaGrOW combined with the different RBFs, which is a criterion for the quality of

convergency. The results over ten statistically independent replicates are indicated. The lower the

loss function achieved was, the closer got the algorithm to the minimum. The smallest loss function
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values were achieved robustly by the four RBFs mentioned above. A Gaussian RBF is selected here

for the following reasons:

• No outliers were detected.

• A more accurate analysis of the approximation error has shown that the smoothing procedures

based on cubic and thin plate spline RBFs reproduced the function, F̄ , cf. Section 3.2.1, worse

than the one based on Gaussian RBFs. Figure 14 depicts the results for the Gaussian RBFs

(Figure 14a) and the thin plate spline RBFs (Figure 14b) for the two-dimensional case: The

approximating function and the original function values of F̄ , cf. Equation (35), on a sparse

grid of the level 2 are plotted versus ξ(Q2) and ξ(L), cf. Equation (39). The LJ parameters,

σ and ε, were fixed. As can be seen, a smoothing procedure based on thin plate spline RBFs

reproduced F̄ at the boundary of the unit square in a very bad fashion, whereas Gaussian RBFs

delivered a good approximation on the complete unit square.

• The Gaussian RBF is the only of the four RBFs mentioned above that is positive definite, i.e.,

the selection of Gaussian RBFs is also founded theoretically according to the considerations in

Section 2.2.4.

Please note that linear RBFs delivered good approximations at the beginning of the optimization,

as well, which was not surprising, because the steepest descent method was also very successful [22].

For higher dimensions, the Lipra method, i.e., a quadratic approximation of the loss function, could

be convincing.

Figure 13. Box plots of the loss function values achieved by SpaGrOW in combination

with a smoothing procedure based on Radial Basis Functions (RBFs). The RBFs were

the linear, cubic, multiquadric (Multi), inverse multiquadric (Invers), Gaussian, thin plate

spline RBF (TPS) and a Wendland function. Suitable RBFs were only the linear, cubic,

Gaussian and thin plate spline RBF.



468

Figure 14. Approximations on the unit square, [0, 1]2, based on Gaussian RBFs (a) and

thin plate spline RBFs (b). The blue points mark the original (noisy) function values

of F̄ on the sparse grid. It holds x1 = ξ(Q2), x2 = ξ(L) and y = F̄ (x1, x2). The

smoothing procedure based on thin plate spline RBFs reproduces F̄ at the boundary of

the unit square in a very bad fashion.

(a) (b)

Selection of the Best Regularization Method As already mentioned, the selection of the best

regularization method can only be achieved by practical evaluations. Candidates are least squares,

NENs (LASSO for α = 0 and Ridge Regression for α = 1), as well as MARS.

Figure 15. Approximations of F̄ on the unit square, [0, 1]2, based on Gaussian RBFs,

combined with a LASSO regularization. The blue points mark the original (noisy)

function values of F̄ on the sparse grid. It holds x1 = ξ(Q2), x2 = ξ(L) and

y = F̄ (x1, x2). At the boundary of the unit square, the function is reproduced in a

bad fashion.

The regularization methods were evaluated in combination with the selected smoothing procedure

based on Gaussian RBFs. The application of least squares is the same as not using any regularization
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method. All other regularization methods could improve the results achieved with least squares

only. The LASSO algorithm performs a variable selection, i.e., it tends to detect outliers by mistake.

Hence, the model obtained by LASSO was often under-fitted. In contrast, the Ridge Regression

estimator was more suitable for the present task, as it is a compromise between least squares, which

often lead to overfitting, and the LASSO, which often leads to under-fitting. Figure 15 shows an

approximation based on Gaussian RBFs in combination with LASSO. As can be seen, the function

to be approximated was reproduced in a bad fashion at the boundary.

An NEN with α = 0.7 delivered an even better quality of convergence; however, the

computational effort to optimize α was too high compared to the benefit achieved. The application

of an NEN with α /∈ {0, 1} is not worthwhile for the present task.

Figure 16. Box plots of the loss function values (a) and of the number of function

evaluations (b) resulting from the application of SpaGrOW combined with a smoothing

procedure based on Gaussian RBFs and different regularization methods: Ridge

Regression, LASSO, a weighted linear regression (rlm), an RBF approximation with an

additional linear term (lt), an NEN (eln) with α = 0.7 and MARS. It becomes clear that

MARS is the algorithm to select for regularization. Ridge Regression is reliable, as well.

The best regularization method is the MARS algorithm, not only with respect to robustness and

quality of convergency, but also with respect to the number of function evaluations: Figure 16 shows

box plots of all regularization methods applied. Figure 16a shows the loss function values achieved

and Figure 16b the number of function evaluations. Besides the methods considered here, two other

ones were tried: a weighted linear regression based on M -estimators and an RBF approximation with

an additional linear term. As can be seen, the MARS algorithm delivers the best results. Hence, it is

selected as regularization method for SpaGrOW. However, Ridge Regression is reliable, as well, and

suggested as the alternative. The NEN with α = 0.7 achieved very low loss function values in a very

robust way, but it always required more than a hundred function evaluations.
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For Lipra, the least square estimator was the best regularization method. All other methods biased

the quadratic approximation in a highly inappropriate way.

To summarize, Gaussian RBFs in combination with MARS and, in particular, for N ≥ 5, the

Lipra method together with the least square estimator have turned out to be most suitable for the

present task and are implemented in SpaGrOW for this reason.

4.2. Application of SpaGROW to Molecular Simulations

Finally, SpaGrOW is applied to molecular simulations. Thereby, it is compared to gradient-based

methods with respect to computational effort. Additionally, for an eight-dimensional problem, the

Lipra method is evaluated, and it is analyzed how close SpaGrOW can get to the minimum.

4.2.1. Comparison to Gradient-Based Methods with Respect to Computation Time: Benzene and

Ethylene Oxide

In the following, SpaGrOW is compared to GROW with respect to computational effort on the

basis of two applications: benzene and ethylene oxide.

Benzene Benzene (C6H6) is a quite simple molecule, because of its symmetric structure and the

fact that it does not possess a permanent dipolar moment. Furthermore, benzene has two chemically

independent atom types only. Hence, the force field parameterization for benzene was deemed to be

a relatively easy task. However, it is still challenging, because of the π interactions.

Figure 17 shows the comparison between SpaGrOW and GROW with respect to the

computational effort required within the respective optimization procedures. The target observables

were the enthalpy of vaporization (Figure 17a) and the saturated liquid density (Figure 17b),

considered at three different temperatures. The values indicated on the y-axis are the Mean Absolute

Percentage Errors (MAPE), i.e., the absolute deviations from the respective experimental reference

data in %, averaged over the range of temperatures. The experimental saturated liquid density was

taken from [44] and the enthalpy of vaporization from the NISTdatabase [45]. The simulations

performed were molecular dynamics simulations in the NpT ensemble executed with the software

tool, GROMACS [46]. The non-bonded potential energy was computed by Moscito [47] using the

trajectories collocated by GROMACS. Please note that the experimental target observables were VLE

define data and that the simulated properties were only approximations, due to the lack of an explicit

gas phase, which was assumed to be ideal. On the computer cluster mentioned above, three to four

hours were required for the simulation of 1,000 benzene molecules for 2 ns using a time step of 2 fs.

For SpaGrOW, the following variables were chosen: η1 = 0.2, η2 = 0.7, γ1 = 0.5, γ2 = 1.1,

and Δ0 = 0.3 × Δmax. The force field parameters were σ(H), σ(C), ε(H) and ε(C). The initial

parameters were taken from previous work [23]. Thereby, the saturated liquid density and the

self-diffusion coefficient were optimized at the vapor-liquid coexistence curve. The feasible domain

was defined as follows: σ was changed by no more than 30% and ε by no more than 80%. As it
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was a four-dimensional optimization problem, Gaussian RBFs were chosen for the smoothing and

the MARS algorithm for the regularization procedure.

Figure 17. Mean Absolute Percentage Errors (MAPE) values with respect to ΔvH

(a) and ρl (b) for benzene during the SpaGrOW optimization in comparison to GROW.

The smoothing procedure was based on Gaussian RBFs in combination with MARS.

The force field parameters to be optimized were σ(H), σ(C), ε(H) and ε(C). A faster

convergency of SpaGrOW could be confirmed.

(a) (b)

GROW needed seven iterations in total: five steepest descent and two conjugate gradient

iterations. In contrast, SpaGrOW required six iterations only. Please note that an optimal force field

with respect to ΔvH and ρl was already achieved after four iterations, i.e., both target observables

were equal to their experimental reference data up to statistical uncertainties for all temperatures.

Typical statistical uncertainties for ΔvH and ρl are 1% and 0.5%, respectively, cf. e.g., [19]. For

GROW, this was the case after seven iterations. The number of function evaluations, i.e., simulations,

for SpaGrOW and GROW was 37 and 62, respectively. However, in the latter case, seven simulations

have to be subtracted for the comparison, because the partial atomic charged were optimized, as

well. Hence, in the case of GROW, it was a five-dimensional optimization problem, and for the

gradient calculation, one simulation more was required at each iteration. However, SpaGrOW was

significantly faster than GROW.

Figure 18 depicts the development of the LJ Parameters for GROW and SpaGrOW (Figure 18a

refers to σ and Figure 18b to ε). σ(C) remained constant, and all other force field parameters were

increased. At the fourth iteration of SpaGrOW, the parameters were very similar to the ones of

GROW at the seventh iteration. However, the following interesting observation could be made.

The parameter, σ(C), remained constant, even during the whole optimization procedure. In the

case of GROW, it was first decreased in order to obtain nearly the same value as before. As it is

gradient-based, GROW tends to make detours. As it is grid-based, SpaGrOW is capable of keeping

one or more parameters constant during the whole optimization procedure, because it can converge

along a certain grid line or hyperplane. This is another reason for the faster convergency of SpaGrOW.
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Only in the case of ε, some small detours were observed. The algorithm ran through the triangle

indicated in Figure 18b. SpaGrOW delivered a set of force field parameters, which differed a little

from the ones obtained by GROW. Hence, it achieved a different domain close to the minimum.

Figure 18. Development of the Lennard-Jones (LJ) parameters in the case of benzene

(ΔvH ,ρl) for GROW and SpaGrOW—σ(H) and σ(C) (a)—as well as ε(H) and ε(C) (b).

The unfilled circles indicate the optimal parameters. SpaGrOW led in a more direct way

to the minimum than GROW. Only in the case of ε, some detours could be observed, due

to the triangle.

(a) (b)

Ethylene oxide Ethylene oxide (C2H4O) is a highly toxic substance, but very relevant for

industrial applications, because it is an educt for many industrially fabricated materials. It is very

suitable for the evaluations of the optimization algorithms, because it has been characterized both

experimentally [48,49] and by molecular simulations [14,50,51].

Figure 19 shows the MAPE values for ethylene oxide during the optimization procedures. The

target observables were the saturated liquid density (Figure 19a), the enthalpy of vaporization

(Figure 19b) and the vapor pressure (Figure 19c), considered at seven different temperatures. For

pressures, the statistical uncertainty within molecular simulations is higher than for ΔvH and ρl.

Here, 5% were assumed. Experimental data was taken from [48]. The simulations performed were

Grand-Equilibrium Monte-Carlo (GEMC) simulations based on a rigid united-atom model with a

dipolar moment developed by [14]. They were executed with the software tool ms2 [52]. As

GEMC simulations simulate the liquid and gas phase successively, the VLE data could be calculated

correctly. The liquid simulation was performed in the NpT ensemble and the gas simulation in

the μVT ensemble, where the chemical potential, μ, was kept constant. On the computer cluster

mentioned above, eight to ten hours were required for the simulation of 500 liquid and 500 gaseous

ethylene oxide molecules. Thereby, the total number of 345,000 Monte-Carlo steps was distributed

on eight processors. The force field parameters to be optimized were ε(CH2), ε(O), σ(CH2) and

σ(O). The initial parameters were the result of parameters obtained by a global pre-optimization

based on random search [51]. Both parameters were changed by no more than 20%. The SpaGrOW
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variables were the same as for benzene. As the optimization problem was four-dimensional, Gaussian

RBFs in combination with MARS were used again.

Figure 19. MAPE values with respect to ρl (a), ΔvH (b) and pσ (c) in the case of

ethylene oxide during the Vapor-Liquid Equilibrium (VLE) optimization for SpaGrOW

and GROW. The smoothing procedure was based on Gaussian RBFs combined with the

MARS algorithm. The force field parameters were ε(CH2), ε(O), σ(CH2) and σ(O).

The faster convergency of SpaGrOW compared to GROW could be confirmed again.

(a) (b)

(c)

In total, GROW required 14 iterations for the optimization using the steepest descent method

only. SpaGrOW only needed five to achieve a comparable loss function value in the same order of

magnitude: for GROW, F (x(14)) = 2.4×10−4 and, for SpaGrOW, F (x(5)) = 3.9×10−4. Please note

that the force field was not optimal and that other methods had to be applied in order to optimize it.

For details, cf. [40]. SpaGrOW and GROW required 54 and 77 molecular simulations, respectively.

Hence, SpaGrOW was significantly faster again.

Figure 20 shows the development of the LJ parameters during the optimization process in

comparison to GROW (Figure 20a refers to ε and Figure 20b to σ). All parameters were decreased,
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and SpaGrOW delivered approximately the same parameters as GROW. Undesired detours were

avoided again, except for σ. However, the detours made by GROW could be linearized.

Figure 20. Development of the LJ parameters in the case of ethylene oxide (VLE)

for GROW and SpaGrOW: ε(CH2) and ε(O) (a), as well as σ(CH2) and σ(O) (b). The

unfilled circles show the final parameters. SpaGrOW led to a more direct way to the

minimum again.

(a) (b)

To summarize, SpaGrOW exhibits a significantly higher speed of convergency than GROW.

4.2.2. Comparison to Gradient-Based Methods Close to the Minimum: Dipropylene Glycol

Dimethyl Ether

In the framework of the Industrial Fluid Property Simulation Challenge (IFPSC) 2010 [53],

a liquid-liquid equilibrium (LLE) between two liquid phases should be calculated with molecular

models. One of the two component was water and the other, dipropylene glycol dimethyl ether

(C8H18O3), an inert, water-resistant, nontoxic and industrially highly relevant solvent.

The target observable was the liquid density, ρ, only, considered at four different temperatures

and taken from [54]. The simulations performed were molecular dynamics simulations in the NpT

ensemble executed with the software tool, GROMACS [46]. On the computer cluster mentioned

above, three to four hours were required for the simulation of 512 ether molecules for 0.5 ns using a

time step of 2 fs.

The LJ sites were located at the CH3, the CH2, the CH group and the oxygen. Hence, it was an

eight-dimensional optimization problem. The initial force field parameters from [55]. As GROW

could not achieve an optimal force field reproducing the liquid density of the ether [55], another

gradient-based method was applied, based on a Taylor series up to the first member for the target

observables, delivering a quadratic model for the loss function. It is a modified Gauss-Newton

method combined with the Trust Region approach, i.e., the quadratic model is minimized within

a compact domain, as well. The algorithm has also been developed by the authors, cf. [40] for
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more details. After three iterations, the modified Gauss-Newton method could achieve optimal

liquid densities.

Figure 21 indicates that SpaGrOW (with Δ0 = 0.3 × Δmax) required two iterations only to

do so. As the optimization problem was eight-dimensional, the Lipra method was applied as

a smoothing procedure. However, SpaGrOW needed 38 simulations, three-times more than the

modified Gauss–Newton method, which only had to execute twelve simulations. With an optimal

Δ0, the number of simulations could have been reduced to 19 in the case of SpaGrOW. The modified

Gauss-Newton method is more reliable than SpaGrOW close to the minimum, but it could be

shown that SpaGrOW is capable of getting closer to the minimum than the standard gradient-based

algorithms used in GROW.

Figure 21. MAPE values with respect to ρ in the case of dipropylene glycol dimethyl

ether during the optimization process of SpaGrOW in comparison to the modified

Gauss-Newton method. The smoothing procedure was realized by the Lipra method.

The optimization problem was eight-dimensional. SpaGrOW needed two iterations only,

but significantly more simulations than the modified Gauss-Newton method in order to

achieve optimal liquid densities.

However, the Gauss-Newton method is only applicable close to the minimum, i.e., when the

loss function is nearly quadratic. In contrast, SpaGrOW is more generally applicable, and another

drawback of the Gauss-Newton method is that it requires a gradient, which is not guaranteed to be

computable, due to the reasons mentioned in Section 1. Please note that the density is not as noisy

as other target properties, like the pressure or diffusion coefficient. Of course, the existence of an

optimal Δ for SpaGrOW is not guaranteed either in practice.

Figure 22 shows the optimal liquid densities as a function of temperature for the modified

Gauss-Newton method and SpaGrOW. Both methods could achieve an optimal force field with

respect to ρ in contrast to GROW. However, SpaGrOW could reproduce the trend of the curve better

than the modified Gauss-Newton method.
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To summarize, SpaGrOW is capable of getting closer to the minimum than GROW, when the

smoothing procedure and Δ0 are chosen properly. However, the modified Gauss-Newton method

needs significantly less simulations.

Figure 22. Optimization of the density ρ in the case of dipropylene glycol dimethyl

ether using the modified Gauss-Newton method and SpaGrOW. Optimal densities could

be achieved by both methods, but SpaGrOW needed many more simulations. However,

SpaGrOW could reproduce the trend of the curve better.

5. Conclusions

In this paper, the new derivative-free optimization method was presented in detail and applied

to the parameterization of force fields in the field of molecular simulations. It is a combination

of appropriate smoothing and regularization procedures, interpolation on sparse grids and the Trust

Region approach. SpaGrOW turned out to be a highly efficient algorithm outperforming standard

gradient-based methods with respect to the speed of convergency. Furthermore, it is capable of

getting closer to the minimum. However, if a gradient can be calculated correctly, the gradient-based

methods exhibit a slightly higher robustness than SpaGrOW. The new method is validated in the

following with respect to the three criteria speed of convergency, local refinements and robustness:

• Speed of convergency: Whenever Δ0 is chosen properly, SpaGrOW often requires only half

of the number of simulations than gradient-based methods. The speed of convergency was also

higher, i.e., the number of iterations was significantly lower.

The choice, Δ0 = 0.3 × Δmax, was suitable in most cases, i.e., the parameterization of

SpaGrOW is not critical at the beginning of the optimization.

• Local refinements: SpaGrOW is capable of getting closer to the minimum than GROW.

However, the choice of Δ becomes critical, which reduces the robustness of SpaGrOW: If

Δ is too high, the smoothing and interpolation algorithms cannot deliver a reliable model for

the loss functions. If it is too small, only noise can be reproduced. A modified Gauss-Newton

method turned out to be more efficient and close to the minimum, if the associated gradients
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can be computed correctly. An important advantage of SpaGrOW is the fact that the step length

can be modified by the Trust Region steps, leading to different descent directions, which is not

possible for gradient-based methods first determining the descent direction and, then, searching

for a reliable step length.

• Robustness: SpaGrOW exhibits a slightly lower robustness than the gradient-based methods.

Due to an inappropriate choice of Δ, the minimum of the model can be transferred under certain

conditions, and the course of the algorithm can be modified. The variable must be chosen, so

that a decreasing trend of the loss function is present within the actual trust region. However,

this is not trivial here, because the shape of the loss function is not known a priori.

It is extremely difficult to find a method that is efficient and robust at the same time. These two

properties often face each other: Stochastic global optimization methods, like simulated annealing

or evolutionary algorithms, are very robust with respect to statistical noise, but require a high

amount of computation time to determine the global minimum exactly. Gradient-based ones are

fast-convergent, but are less robust and reliant on the differentiability of the function to be minimized.

SpaGrOW is situated in between: The higher speed of convergency has to be compensated by a lower

robustness. However, the robustness was not reduced significantly, and the assumption that the loss

function is smooth does not have to be made. Furthermore, SpaGrOW may still be successful when

gradient-based methods exist.

To summarize, SpaGrOW is a generic, efficient and, also, quite robust algorithm, which can

be used for many optimization problems. For force field parameterization tasks, it is highly

recommended and preferred to gradient-based algorithms.
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Abstract: A reduction of the cost for long-range interaction calculation is essential

for large-scale molecular systems that contain a lot of point charges. Cutoff methods

are often used to reduce the cost of long-range interaction calculations. Molecular

dynamics (MD) simulations can be accelerated by using cutoff methods; however, simple

truncation or approximation of long-range interactions often offers serious defects for

various systems. For example, thermodynamical properties of polar molecular systems

are strongly affected by the treatment of the Coulombic interactions and may lead

to unphysical results. To assess the truncation effect of some cutoff methods that

are categorized as the shift function method, MD simulations for bulk water systems

were performed. The results reflect two main factors, i.e., the treatment of cutoff

boundary conditions and the presence/absence of the theoretical background for the

long-range approximation.

Keywords: molecular-dynamics simulations; long-range interactions; liquid water;

electrostatic interactions; reaction field

1. Introduction

In the calculation of thermodynamic, structural and dynamical properties by molecular dynamics

(MD) simulations, the effect of long-range interactions is an important issue. Long-range interactions

on the periodic boundary conditions (PBCs) can be calculated using the Ewald sum or cutoff

methods. The Ewald sum [1] is the key standard method used in calculations involving long-range
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interactions with the periodic boundary condition. In this method, the total energy is split into real

and reciprocal space contributions. Calculation of the Ewald sum involves three problems, the first

being that the reciprocal part is computationally expensive. Particle mesh Ewald (PME) [2,3] reduces

computational cost for the reciprocal part by using fast Fourier transform (FFT); however, FFT has

problems, becoming a cause of a strong bottle neck in massively parallel computers [4]. The second

is the inherent periodicity, which can develop artifacts [5–14]. The third is that the thermodynamic

limit is unclear [15]. Notwithstanding the three problems, the Ewald sum and PME are methods of

choice that most appropriately represent the long-range interactions.

Cutoff methods are often used to accelerate long-range interaction calculations. The interactions

between molecular pairs only with a distance shorter than a given cutoff length are considered, and

effects from more distant pairs are truncated or approximated. The plain cutoff, the cutoff with

the switch/shift function and the reaction field (RF) method are some examples of typical cutoff

methods for Coulombic systems. Simulations can be accelerated by using cutoff methods, but simple

truncation or approximation of long-range interactions have serious defects for various systems. In

Lennard-Jones (LJ) fluid systems, long-range interactions do not have a prominent effect on transport

properties [16,17], but phase equilibria and interfacial properties change drastically [18–20]. In

water systems, the electrostatic interactions dominate the physical properties, and truncation or

continuum approximation may lead to unphysical results. A lot of cutoff methods applied to the

Coulombic interaction offer insufficient accuracy [21–31], and all of the results are highly sensitive

to the cutoff distance. Cutoff methods are also applied to macromolecular systems [12–14,32–43],

and many results indicate that the aforementioned approximations have difficulties when estimating

these systems. On the other hand, advanced cutoff-like methods have been developed to avoid the

aforementioned difficulties and to accelerate long-range interaction calculations. Wolf et al. [44]

developed a method to calculate electrostatic interactions, which is simpler than the Ewald sum.

They took into account charge neutrality in the cutoff sphere and discovered that the electrostatic

potential of condensed phases seems to have short range behavior. The modified method developed

by Fennel and Gezelter [45] could reproduce some thermodynamic properties of homogeneous

systems obtained by the Ewald sum. However, the method can hardly estimate heterogeneous

systems [46,47]. Wu and Brooks developed the isotropic periodic sum (IPS) method [48–50].

The IPS method is a method that can calculate contributions from the infinite periodic structure

without reciprocal space calculations. Some reports on the accuracy of the IPS method of

homogeneous [48,50–54] and heterogeneous systems [47,50,55–57] show that the method yields

estimates in good agreement with the results of the Ewald sum. Improved methods were developed

to speed up calculations for large-scale systems [58] and to improve the accuracy for homogeneous

and heterogeneous systems [59,60].

Some cutoff methods and the aforementioned two cutoff-like methods can be regarded as the

shift function method, which produces the pairwise-potential shifted from the original potential

function (e.g., Coulombic interaction) by any theoretical or other requirements. To discover

the relation between truncation effects and approximation treatments of long-range interactions,

in this work, we focused on shift function methods. MD simulations of bulk water systems
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were carried out for evaluating the truncation effects of the potential energy, self-diffusion, radial

distribution function and the dipole-dipole correlation. The results reflect two main factors, i.e., the

treatment of cutoff boundary conditions and the presence/absence of the theoretical background for

long-range approximation.

2. Experimental

MD simulations for bulk water systems were conducted to examine the truncation effects

of shifted potentials, and physical properties were compared with those from the simulations

of the Ewald sum. For shift function methods, CHARMm-shift [61], Ohmine-shift [62], the

dumped-shifted-force potential of the Wolf method (Wolf-DSF) [45], the RFmethod with an

infinite dielectric constant (RF-metal), the IPS method for non-polar systems (IPSn) [48], the IPS

method for polar systems (IPSp) [50] and the linear-combination-based IPS (LIPS) method with

a fifth-order cutoff boundary condition (LIPS-fifth) [59] were chosen. CHARMm-shift is used in

CHARMm [61] for shifting Coulombic and LJ interactions. The cutoff boundary conditions are

considered until the first-order differential of the interaction potential (first-order cutoff boundary

condition). Ohmine-shift is originally one of the switching function methods. The method provides

shifted pairwise-potential, if the switching point is set to zero. This potential has second-order cutoff

boundary conditions. Wolf-DSF was developed by Fennel and Gezelter [45]. The charge neutrality

assumption inside the cutoff sphere is the basic concept of the original Wolf method and Wolf-DSF.

In the bulk water systems, the α-parameter of Wolf-DSF is set to 0.2 nm−1 [45]. It should be noted

that better α-parameters for any other systems potentially exist [46,47]. RF-metal is the RF method

with an infinite dielectric constant. In the RF theory, the Coulombic interaction can be modified

for homogeneous systems, by assuming a constant dielectric environment beyond the cutoff sphere.

Originally, the dielectric constant of the RF method should be set to realistic value. However, some

results indicate that the RF method with an infinite dielectric constant is best for estimating bulk

water systems [30]. Therefore, we set the dielectric constant of the RF method to the infinite value,

like a bulk metal. IPSn and IPSp are two different versions of the IPS method. IPSn is applied to

calculations for point charges, whereas IPSp calculates polar molecules. The IPS method assumes the

isotropic periodic structure outside of the cutoff sphere. The contribution from this structure (periodic

reaction field) determines the shape of the IPS potentials. LIPS-fifth is the potential produced by the

improved IPS method, called the LIPS method. The LIPS method is based on the extended IPS

theory that provides the design procedure of the periodic reaction fields.

In order to clarify the truncation effect of the Coulombic interaction for shift function methods,

it was only applied for the Coulombic interaction, and a cutoff method was used for the LJ

interaction. The cutoff radius of the LJ interaction was set as 1.2664 nm, which is 4.0 in LJ

length units. For the shift function methods, the cutoff radius, rc, of the Coulombic interaction

was changed from 1.2 nm to 2.0 nm by 0.2 nm increments. In this simulation, the extended simple

point charge (SPC/E) model [63] was used for water molecules. The velocity Verlet algorithm [64]

was used with three-dimensional periodic boundary conditions along with a time step of 2 fs. The

atoms in a water molecule were constrained by the RATTLEalgorithm [65]. The simulation was
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performed in a constant particle-number, volume and temperature ensemble with the Nosé-Hoover

thermostat [66–68], where the number of water molecules was 6,192, the density was 0.997 cm3

and the temperature was 298.15 K. After equilibrating the system, a total of 5× 105 time steps (1 ns)

were carried out for each cutoff radius of the shift function methods. The potential energy, U , the

self-diffusion coefficient, D, the radial distribution function, g(r), the distance dependence of the

Kirkwood factor, GK(r), and the radial distribution of the dipole ordering, s(r), were calculated. We

calculated the self-diffusion coefficient for the transport coefficients. The self-diffusion coefficient

can be determined either by the Einstein relation or the Green-Kubo formula, which are basically

equivalent formulas. Here, we used the Einstein relation:

D = lim
t→∞

1

6t
〈|ri(t)− ri(0)|2〉N (1)

where t is the time, ri(t) is the position of particle i and 〈· · · 〉N denotes the particle average. The

slope of the mean-squared displacement of the diffusing particle in the long-time limit is calculated

for the diffusion coefficient. The radial distribution function, the distance dependence of the

Kirkwood factor and the radial distribution of dipole ordering were calculated for the configuration of

water. These properties are given as a function of the distance between two water molecules, denoted

r. The conventional expressions give:

g(r) =
V

4πr2ΔrN(N − 1)

〈∑
i

ni(r)

〉
e

(2)

GK(r) =
1

N

〈∑
i

(
ui ·

∑
j,rij<r

uj

)〉
e

(3)

and:

s(r) =
1

N

〈∑
i

1

ni(r)

(ni(r)∑
j=1

ui · uj

)〉
e

(4)

where ni(r) is the number of molecules that exist in the region between r and r+Δr from molecule

i. ui and uj are the normalized dipole moments of molecules i and j, respectively, while 〈· · · 〉e
signifies an equilibrium ensemble average.

All of above properties calculated from the shift function methods were compared with that from

the Ewald sum. For the Ewald sum, the cutoff radius for the real part was 2.8 nm. The α-parameter

was determined by the following equation:

erfc(−αrc) ≈ exp(−α2r2c) = δ (5)

where δ is a small number, which indicates the convergence of real space potentials in the Ewald

sum. δ was 10−6, so αrc = (6 ln 10)1/2.
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3. Results and Discussions

3.1. Bulk Water

3.1.1. Potential Energy

The thermodynamic properties for the shift function methods and Ewald sum were calculated by

potential energies. Figure 1 shows the potential energy per molecule with different cutoff radii, for

the shift function methods and the Ewald sum. The results from CHARMm-shift, Ohmine-shift and

Wolf-DSF are far from that of the Ewald sum. In contrast, RF-metal, IPSn, IPSp and LIPS-fifth are

close to that of the Ewald sum.

Figure 1. Potential energy for the shift function methods and the Ewald sum. The results

from CHARMm-shift, Ohmine-shift and the Wolf method (Wolf-DSF) are far from that

of the Ewald sum. In contrast, RF-metal, the isotropic periodic sum for non-polar systems

(IPSn), for polar systems (IPSp) and the linear-combination-based IPS (LIPS)-fifth are

close to that of the Ewald sum.
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To examine the cutoff radius tendency of the potential energy thoroughly, we plotted the error

of the potential energy calculated with the shift function methods against that determined with the

Ewald sum, as shown in Figure 2. The error of the potential energy for each method decreases by an

increment of the cutoff radius, except for the case of the Wolf-DSF. The fastest decline was observed

in the case of LIPS-fifth; the error was roughly in proportion to r−4
c . RF-metal and LIPS-fifth at

rc = 2.0 nm achieved the smallest error and had the same value as that of the Ewald sum within

0.02%. It is clearly shown that CHARMm-shift, Ohmine-shift and Wolf-DSF poorly estimated the

potential energy for bulk water systems. The reason for this is related to the presence/absence of the

theoretical background for contributions outside the cutoff sphere. CHARMm-shift and Ohmine-shift

do not have the theory that justifies their shifting procedure. Wolf-DSF explains its own truncation

treatment by the charge neutrality assumption inside the cutoff sphere, but contributions from outside

are not considered. In contrast, RF-metal, IPSn and LIPS-fifth are, respectively, based on a definite

theory that considers the contributions from long-range interactions. Therefore, RF-metal, IPSn and
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LIPS-fifth have much better accuracy for estimating the potential energy. IPSp had intermediate

values between the former and latter. This seems to be related to the counter-charge assumption

of the IPSp. The counter-charge effect assumed at the cutoff boundary may partially interrupt

long-range contributions.

Figure 2. The error of the potential energy calculated with the shift function methods

against that determined with the Ewald sum. It is clearly shown that CHARMm-shift,

Ohmine-shift and Wolf-DSF poorly estimated the potential energy for bulk water

systems. In contrast, RF-metal, IPSn and LIPS-fifth have much better accuracy for

estimating the potential energy. IPSp had intermediate values between the former and

latter. The error of the potential energy for each method decreases by an increment of the

cutoff radius, except for the case of the Wolf-DSF. The fastest decline was observed in the

case of LIPS-fifth; the error was roughly in proportion to r−4
c . RF-metal and LIPS-fifth

at rc = 2.0 nm achieved the smallest error and had the same value as that of the Ewald

sum within 0.02%.
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3.1.2. Self-Diffusion Coefficient

We calculated the self-diffusion coefficient for the Figure 3 shows the self-diffusion coefficient

for shift function methods and the Ewald sum. The results from CHARMm-shift could not have a

similar value to that of the Ewald sum at 1.2 nm ≤ rc ≤ 2.0 nm. Other methods seem to estimate the

self-diffusion coefficient with an adequate accuracy.

To examine the cutoff radius tendency of the self-diffusion coefficient thoroughly, we plotted

the error of the self-diffusion coefficient calculated with the shift function methods against that

determined with the Ewald sum, as shown in Figure 4. The convergence of the IPSp and LIPS-fifth is

much faster than other methods. For IPSp, the self-diffusion coefficient is saturated at rc ≥ 1.6 nm,

and the saturated value is almost the same as that of the Ewald sum (within 0.35%). For LIPS-fifth,

the self-diffusion coefficient is saturated at rc ≥ 1.4 nm, and the saturated value is almost the

same as that of the Ewald sum (within 0.36%). The difference of the cutoff radius tendency

comes from the treatment of the cutoff boundary conditions and long-range interactions. The

results show that the improvement of the cutoff boundary conditions or long-range interaction
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treatment strongly affects the accuracy of the self-diffusion coefficient. In CHARMm-shift, both

treatments are insufficient. It has a first-order cutoff boundary condition and does not have any

theoretical background for long-range interaction treatment. Ohmine-shift had improved accuracy in

comparison with that of CHARMm-shift, even if it merely comes from an advantage on the cutoff

boundary condition. RF-metal and IPSn consider the first-order cutoff boundary condition and the

adequate treatment for long-range contributions. Therefore, these two methods have similar accuracy

to that of Ohmine-shift. Wolf-DSF also had similar accuracy to the result of Ohmine-shift, despite the

absence of the theoretical background for the long-range interaction treatment. Strictly, Wolf-DSF

has a first-order cutoff boundary condition, but it can be regarded as an infinite-order cutoff boundary

condition under the certain value of alpha. This is the reason for the results of Wolf-DSF. In IPSp, a

faster convergence of errors were observed, because it has a third-order cutoff boundary condition and

the long-range interaction treatment. LIPS-fifth achieved the fastest convergence. It has a fifth-order

cutoff boundary condition and a reliable background for the long-range interaction treatment.

Figure 3. The self-diffusion coefficient for the shift function methods and the Ewald

sum. The results from CHARMm-shift could not have a similar value to that of the

Ewald sum at 1.2 nm ≤ rc ≤ 2.0 nm. Other methods seem to estimate the self-diffusion

coefficient with an adequate accuracy.
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3.1.3. Radial Distribution Function

To examine the structure around a molecule for shift function methods, the radial distribution

function, g(r), was calculated. Figure 5 shows the oxygen-oxygen, g(r), of the water molecule

for shift function methods at rc = 2.0 nm and for the Ewald sum. In Figure 5, CHARMm-shift,

Ohmine-shift, RF-metal and IPSn have notable deviations from the result of the Ewald sum. On the

other hand, Wolf-DSF, IPSp and LIPS-fifth provided adequate accuracy. The oxygen-hydrogen and

hydrogen-hydrogen, g(r), have very similar behavior in comparison to oxygen-oxygen in Figure 5.
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Figure 4. The error of the self-diffusion coefficient calculated with the shift function

methods against that determined with the Ewald sum. The convergence of the IPSp and

LIPS-fifth is much faster than other methods. For IPSp, the self-diffusion coefficient is

saturated at rc ≥ 1.6 nm and the saturated value is almost the same as that of the Ewald

sum (within 0.35%). For LIPS-fifth, the self-diffusion coefficient is saturated at rc ≥ 1.4

nm, and the saturated value is almost the same as that of the Ewald sum (within 0.36%).
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Figure 5. The oxygen-oxygen radial distribution function of the water molecule for

the shift function methods at rc = 2.0 nm and for the Ewald sum. CHARMm-shift,

Ohmine-shift, RF-metal and IPSn have notable deviations from the result of the Ewald

sum. On the other hand, Wolf-DSF, IPSp and LIPS-fifth provided adequate accuracy.

The oxygen-hydrogen and hydrogen-hydrogen, g(r), have very similar behavior in

comparison to oxygen-oxygen (figures not shown).
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To examine the decrease of the deviation for rc thoroughly, we plotted the root mean square

deviation (RMSD) of the oxygen-oxygen, g(r), for each shift function method against the Ewald sum

at different cutoff radii in Figure 6a. The RMSDs of the oxygen-hydrogen and hydrogen-hydrogen,
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g(r), are also plotted in Figure 6b,c, respectively. The difference of the cutoff radius tendency is

affected strongly by the treatment of the cutoff boundary conditions. In CHARMm-shift, RF-metal

and IPSn that have a first-order cutoff boundary condition, the deviation decreases roughly in

proportion to r−2.5
c , r−3

c and r−3
c , respectively. Ohmine-shift has a second-order cutoff boundary

condition, and the RMSD of g(r) declines roughly in proportion to r−4
c . The RMSD of LIPS-fifth has

a similar tendency with these shift function methods for cutoff radii, but a faster decline is observed.

The RMSD of LIPS-fifth decreases roughly in proportion to r−6
c . Furthermore, LIPS-fifth gives

accurate estimations of g(r); the RMSD converges at rc ≥ 2.0 nm. Converged values of RMSD for

LIPS-fifth are most accurate. On the other hand, the RMSDs of Wolf-DSF and IPSp have an adequate

accuracy in any cutoff radius. The charge neutrality and counter-charge assumptions of Wolf-DSF

and IPSp, respectively, seem to work better for bulk water systems.

Figure 6. The RMSDs of (a) the oxygen-oxygen, (b) the oxygen-hydrogen and (c) the

hydrogen-hydrogen radial distribution function for the shift function method against the

Ewald sum at different cutoff radii. In CHARMm-shift, RF-metal and IPSn that have

a first-order cutoff boundary condition, the deviation decreases roughly in proportion

to r−2.5
c , r−3

c and r−3
c , respectively. Ohmine-shift has a second-order cutoff boundary

condition, and the RMSD of g(r) declines roughly in proportion to r−4
c . The RMSD of

LIPS-fifth has a similar tendency with these shift function methods for cutoff radii, but a

faster decline is observed. The RMSD of LIPS-fifth decreases roughly in proportion to

r−6
c . Furthermore, LIPS-fifth gives accurate estimations of g(r); the RMSD converges at

rc ≥ 2.0 nm. Converged values of RMSD for LIPS-fifth are most accurate. The RMSDs

of Wolf-DSF and IPSp have an adequate accuracy in any cutoff radius.
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3.1.4. Dipole-Dipole Correlation

We focused on the distance dependence of the Kirkwood factor, GK(r), where one can see

the dipole-dipole correlation of bulk water systems. GK(r) has a strong cutoff radius effect, and

the influence of the interaction treatment is quantitatively-expressible by the shape of GK(r). An

evident shortcoming of the cutoff-like method appears for the GK(r) value in bulk water systems.

Thus, GK(r) of various cutoff radii were calculated using the shift function methods to evaluate the

truncation effect of the dipole-dipole correlation.

Figure 7. Distance dependence of the Kirkwood factor for the shift function methods

and the Ewald sum. It is clearly seen that GK(r) calculated with CHARMm-shift,

Ohmine-shift, RF-metal and IPSn fluctuate near rc as in g(r), and this fluctuation still

remains in spite of the increment of the cutoff radius. The artificial configuration of

Ohmine-shift was smaller than that of the other three methods. The defect of GK(r)

for these above shift function methods was not seen in Wolf-DSF, IPSp and LIPS-fifth.

Wolf-DSF, IPSp and LIPS-fifth can estimate GK(r) more adequately than other shift

function methods.
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Figure 7 shows the shape of GK(r) determined using the shift function methods and the Ewald

sum. It is clearly seen that GK(r) calculated with CHARMm-shift, Ohmine-shift, RF-metal and IPSn

fluctuate near rc as in g(r), and this fluctuation still remains in spite of the increment of the cutoff

radius. The artificial configuration of Ohmine-shift was smaller than that of the other three methods.

The defect of GK(r) for these above shift function methods was not seen in Wolf-DSF, IPSp and

LIPS-fifth. Wolf-DSF, IPSp and LIPS-fifth can estimate GK(r) more adequately than other shift

function methods.

The result of s(r) shows the radial distribution of the dipole ordering for water molecules.

Figure 8 presents s(r) calculated with the shift function methods at rc = 2.0 nm, along with

that determined by the Ewald sum for comparison. s(r) calculated with the CHARMm-shift,

Ohmine-shift, RF-metal and IPSn fluctuate near rc, like g(r), despite the long cutoff radius.

Wolf-DSF, IPSp and LIPS-fifth did not calculate any singular configurations of s(r), like that for

the other shift function methods. These three methods can estimate s(r) with adequate accuracy.

The aforementioned characteristics of the truncation effect in the dipole-dipole correlation for the

shift function methods are affected strongly by the treatment of the cutoff boundary condition, like

the case of g(r).

Figure 8. Radial distributions of dipole ordering calculated with the shift function

methods at rc = 2.0 nm and for the Ewald sum. s(r) calculated with the CHARMm-shift,

Ohmine-shift, RF-metal and IPSn fluctuate near rc, like g(r), despite the long cutoff

radius. Wolf-DSF, IPSp and LIPS-fifth did not calculate any singular configurations of

s(r), like that for the other shift function methods. These three methods can estimate

s(r) with adequate accuracy.
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4. Conclusions

To assess the truncation effect of some cutoff methods that are categorized as the shift function

method, MD simulations for bulk water systems were performed. The results reflect mainly two main
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factors, i.e., the treatment of cutoff boundary conditions and the presence/absence of the theoretical

background for long-range approximation.

The difference of estimated value of the potential energy is related to the presence/absence of the

theoretical background for contributions outside the cutoff sphere. CHARMm-shift, Ohmine-shift

and Wolf-DSF poorly estimated the potential energy, because these methods do not have a reliable

theory that justifies their shifting procedure. In contrast, RF-metal, IPSn and LIPS-fifth are,

respectively, based on a definite theory, which considers contributions from long-range interactions.

RF-metal, IPSn and LIPS-fifth have much better accuracy for estimating the potential energy. The

fastest decline was observed in the case of LIPS-fifth; the error was roughly in proportion to r−4
c .

RF-metal and LIPS-fifth at rc = 2.0 nm achieved the smallest error and had the same value as that of

the Ewald sum within 0.02%.

For estimating the self-diffusion coefficient, the difference of the cutoff radius tendency comes

from the treatment of cutoff boundary conditions and long-range interactions. In IPSp, a faster

convergence of errors was observed, because it has a third-order cutoff boundary condition and the

long-range interaction treatment. For IPSp, the self-diffusion coefficient is saturated at rc ≥ 1.6 nm,

and the saturated value is almost the same as that of the Ewald sum (within 0.35%). LIPS-fifth

achieved the fastest convergence in this work. It has a fifth-order cutoff boundary condition

and reliable treatment for long-range interactions. For LIPS-fifth, the self-diffusion coefficient is

saturated at rc ≥ 1.4 nm, and the saturated value is almost the same as that of the Ewald sum

(within 0.36%).

The truncation effect in the radial distribution function mainly reflects the treatment of cutoff

boundary conditions. In CHARMm-shift, RF-metal and IPSn, which have a first-order cutoff

boundary condition, the deviation decreases roughly in proportion to r−2.5
c , r−3

c and r−3
c , respectively.

Ohmine-shift has a second-order cutoff boundary condition, and the RMSD of g(r) declines roughly

in proportion to r−4
c . The RMSD of LIPS-fifth has a similar tendency with these shift function

methods for cutoff radii, but a faster decline is observed. The RMSD of LIPS-fifth decreases

roughly in proportion to r−6
c . Furthermore, LIPS-fifth gives accurate estimations of g(r); the RMSD

converges at rc = 2.0 nm. Converged values of RMSD for LIPS-fifth are most accurate. On the other

hand, the RMSDs of Wolf-DSF and IPSp have an adequate accuracy in any cutoff radius. The charge

neutrality and counter-charge assumptions of Wolf-DSF and IPSp, respectively, seem to work better

for bulk water systems.

The cutoff radius effect in the dipole-dipole correlation is very similar to that of g(r). GK(r),

and s(r) calculated with CHARMm-shift, Ohmine-shift, RF-metal and IPSn fluctuate near rc, as in

g(r). The artificial configuration of Ohmine-shift was smaller than that of the other three methods.

The defect of GK(r) and s(r) for these above shift function methods was not seen in Wolf-DSF,

IPSp and LIPS-fifth. Wolf-DSF, IPSp and LIPS-fifth can estimate the dipole-dipole correlation more

adequately than other shift function methods.

Overall, the shift function method that has a higher-order cutoff boundary condition and a reliable

theoretical background for long-range interaction treatments achieves better accuracy. For estimating

the potential energy and self-diffusion, LIPS-fifth is the most accurate shift function method. In the
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estimation of the radial distribution function, Wolf-DSF and IPSp have good accuracy with relatively

short cutoff radii, and LIPS-fifth becomes most accurate at rc = 2.0 nm.
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Abstract: Ab initio molecular dynamics simulations were performed to investigate the 
elasticity of cubic CaSiO3 perovskite at high pressure and temperature. All three 
independent elastic constants for cubic CaSiO3 perovskite, C11, C12, and C44, were 
calculated from the computation of stress generated by small strains. The elastic 
constants were used to estimate the moduli and seismic wave velocities at the high 
pressure and high temperature characteristic of the Earth’s interior. The dependence of 
temperature for sound wave velocities decreased as the pressure increased. There was 
little difference between the estimated compressional sound wave velocity (VP) in cubic 
CaSiO3 perovskite and that in the Earth’s mantle, determined by seismological data. By 
contrast, a significant difference between the estimated shear sound wave velocity (VS) 
and that in the Earth’s mantle was confirmed. The elastic properties of cubic CaSiO3 
perovskite cannot explain the properties of the Earth’s lower mantle, indicating that the 
cubic CaSiO3 perovskite phase is a minor mineral in the Earth’s lower mantle. 

Keywords: perovskite; first-principles calculation; seismic wave velocity 

PACS Codes: 62.20.de; 91.60.Gf 
 

1. Introduction 

Mineral physics constraints on the composition of the Earth’s lower mantle rely on knowledge 
of the equations of state (EOSs) and sound wave velocities in candidate minerals. According to 
reliable estimates of the composition of the Earth, an MgO-FeO-SiO2-CaO-Al2O3 system could 
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comprise about 99% of the mantle volume [1]. Three minerals have been proposed to be possible 
hosts of the MgO-FeO-SiO2-CaO-Al2O3 system in the Earth’s lower mantle. A recent phase 
equilibrium study using a more representative composition of the mantle shows that Mg, Fe, and Al 
are mostly accommodated in orthorhombic (Mg,Fe)SiO3 perovskite and ferropericlase, (Mg,Fe)O. 
On the other hand, a number of other experimental studies indicate that the most likely Ca-bearing 
phase is CaSiO3 perovskite [2,3]. Thus, the Earth’s lower mantle may be composed mainly of 
aluminous (Mg,Fe)SiO3 perovskite, CaSiO3 perovskite, and ferropericlase. To gain an 
understanding of the structure and dynamics of the Earth’s lower mantle, it is important to 
investigate the elastic properties of these minerals under the pressure and temperature conditions 
found in this region. It is easy to investigate the physical properties of orthorhombic (Mg,Fe)SiO3 
perovskite and ferropericlase, because both minerals can be recovered under ambient conditions. 
By contrast, CaSiO3 perovskite is unstable under ambient conditions, and it readily transforms to 
glass on the release of pressure. Therefore, it is difficult to measure some of its physical properties. 

The structure of CaSiO3 perovskite has tetragonal or orthorhombic symmetry at high pressures 
and room temperature, e.g., [4,5]. The structure of low-symmetry CaSiO3 perovskite is still an open 
question [6–8]. A phase transformation of CaSiO3 perovskite from this low symmetry into cubic 
symmetry with an increase in temperature was found in a previous study [5], indicating that the 
cubic structure of CaSiO3 perovskite is stable under the conditions of the Earth’s lower mantle, and 
that its physical properties are important for understanding the dynamics and evolution of the 
Earth’s interior. The elastic properties of cubic CaSiO3 perovskite were calculated at 0 K [9,10] and 
high temperatures [8]. These data relating to the elastic properties of cubic CaSiO3 perovskite are 
insufficient to discuss the composition of the Earth’s lower mantle, because an internally consistent 
data set describing the density-VP-VS relationship in cubic CaSiO3 perovskite is needed in order to 
compare the density-VP-VS relationship of a preliminary reference earth model (PREM) [11] with 
that estimated based on cubic CaSiO3 perovskite. Therefore, it is necessary to reevaluate the 
density-VP-VS relationship using ab initio calculations. 

We employed the ab initio molecular dynamics (AIMD) method using density functional theory 
(DFT) to determine the density values and sound wave velocities for cubic CaSiO3 perovskite at 
pressures typical of the Earth’s lower mantle. We also used the experimental data to correct the 
calculated values of the density and the sound wave velocities for cubic CaSiO3 perovskite. 

2. Method 

We performed the AIMD calculations based on DFT using the VASP code [12]. The interactions 
between the electrons and the ionic cores were described using the projector augmented wave 
(PAW) method [13] with generalized gradient approximations, known as PBE [14]. The advantage 
of this code is that the ab initio energy of the system can be combined with the molecular dynamics 
method to simulate the properties of cubic CaSiO3 perovskite at high pressure and high temperature 
simultaneously. The PAW potentials of Ca, Si, and O had core radii of 2.3, 1.5, and 1.1 a.u., 
respectively. Single particle orbitals were expanded in plane waves, with a plane-wave cut-off of 
900 eV. The calculations were performed on the basis of a self-consistency convergence on the 
total energy of 10�4 eV per simulation cell. We used a 135-atom supercell, with �-point Brillouin 
zone sampling and a time step of 1 fs at a constant volume. The simulations were run in the 
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constant NVT ensemble with a Nosé thermostat [15] for at least 5 ps after equilibration. The 
computation time required to reach equilibrium varied between configurations, and depended on 
the starting atomic position, velocity, temperature, and pressure. In previous studies, we have 
confirmed that useful data for the elastic properties of solids in high pressure and temperature 
conditions can be acquired using the previous AIMD calculations, e.g., [16,17]. In this study, 
AIMD calculations were performed under 27 selected pressure and temperature conditions up to 
175 GPa and 4000 K. A comprehensive description of our method as applied to the modeling of 
condensed matter has been described previously [18]. 

The elastic constants can be determined from the computation of the second derivatives of the 
free energy as a function of small strains [19]. For a cubic crystal, the three elastic moduli, C11, C12, 
and C44, fully describe its elastic behavior. The values of C11 and C12 can be determined from the 
bulk modulus K and shear constant CS: 

3/)2( 1211 CCK ��  (1)

2/)( 1211 CCCS ��  (2)

The following tetragonal strains were applied to obtain CS: 
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where e is the strain magnitude. The change in the free energy of the strained structure, �E(e), is 
related to e as follows: 
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where V is the volume of the cell. C44 was calculated by applying the volume-conserving 
orthorhombic strain: 
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The energy associated with this strain is: 
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According to the calculations for unstrained and strained structures, the elasticity of cubic 
CaSiO3 perovskite at high pressure and high temperature can be determined.  

3. Results 

The EOS of cubic CaSiO3 perovskite has been investigated in a previous experimental study [20]. 
Recent theoretical studies have investigated the physical properties of materials under high 
pressure and high temperature using first-principles calculations. We noticed that the scatter of the 
EOS determined by experimental study was smaller than that obtained from first-principles 
calculations [18], indicating that the EOS determined in experiments was more accurate than that 
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determined from first-principles calculations. By contrast, the AIMD calculations present 
significant advantages for investigating the elastic properties of materials under high temperatures 
and high temperatures. Therefore, we used the experimental data to determine the EOS for cubic 
CaSiO3 perovskite. The pressures estimated by the AIMD calculations were corrected based on the 
EOS determined by the experimental data. The combination of first-principles molecular dynamics 
calculations and high pressure experimental data led us to determine reliable physical properties 
over a wide range of pressures and temperatures. The EOS for a solid can be described in a general 
form as a functional relationship between pressure, volume, and temperature: 

� � � � � �TVPVPTVP thstTotal ,300,, ��  (7) 

A fit of the volume-pressure data yielded volume and bulk modulus values of V0 = 45.58 Å3,  
KT0 = 236 GPa and K’T0 = 3.9 [20] for a third-order Birch-Murnaghan EOS [21]:  
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where V0 and KT0, and K’T0 are the volume, isothermal bulk modulus, and first pressure derivative 
of the isothermal bulk modulus, respectively. The thermal pressure, Pth, of the thermal pressure 
EOS can be written as follows: 
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A least squares fit of the high temperature data from the AIMD calculations yields  
�KT(V0,T) = 0.0083 and (�KT/�T)V = �0.0031. The value of Pth of cubic CaSiO3 perovskite was not 
sensitive to changes in volume at the pressures investigated in this study, because the values of 
(�KT/�T)V were very small. The fitting parameters of the third-order Birch-Murnaghan EOS 
combined with the thermal pressure EOS were V0, KT0, KT0’, 	KT(V0,T), and (�KT/�T)V. The results 
of the fit of our P-V-T data to the thermal pressure equation of state are summarized in Table 1. 

Table 1. The thermoelastic parameters of cubic CaSiO3 perovskite. The third-order  
Birch–Murnaghan EOS was used to calculate the parameters of cubic CaSiO3 
perovskite. Key: KT0, isothermal bulk modulus at 0 GPa and 300 K; K’T0, first pressure 
derivation of the bulk modulus; V0, volume at 0 GPa and 300 K. The terms �KT(V0,T) 
and (&KT/&T)V are parameters of the thermal pressure. 

Parameter Value 
V0 (Å3) 45.58 a 

KT0 (GPa) 236 a 
K’T0 3.9 a 

�KT(V0,T) (GPa/K) 0.0083(3) 
(&KT/& T)V (GPa/K) �0.0031(31) 

a The parameters are from Shim et al. [20]. 

We determined the elastic constant by computing the stress generated by small deformations of 
the equilibrium cell. Figure 1 shows three elastic constants of cubic CaSiO3 perovskite (C11, C12 
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and C44) at 2000 K as a function of pressure up to 160 GPa. The bulk modulus of an isotropic 
aggregate cubic crystal is well defined, whereas the shear modulus can be constrained by the 
Voigt-Reuss-Hill scheme [22]: 
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We also show the bulk modulus K and Hill’s average G at 2000 K as a function of pressure in 
Figure 1. Karki and Crain [9] calculated elastic constants and moduli of cubic CaSiO3 perovskite at 
0 K up to 140 GPa. Our results for elastic parameters calculated at 2000 K were in general 
agreement with those at 0 K reported by previous studies. 

Figure 1. Pressure dependence of three elastic constants, C11, C12, and C44, and the 
isotropic bulk (K) and shear (G) moduli of cubic CaSiO3 perovskite at 2000 K. The 
solid circles and diamonds represent the elastic constants and the elastic moduli, 
respectively. The solid and dashed lines are the fits of each parameter. 

 

The three isotropically averaged aggregate sound velocities could be derived from the bulk 
modulus K and shear modulus G: 
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where VP, VB, and VS are the compressional, bulk, and shear sound wave velocities, respectively, 
and � is the density. The three sound wave velocities, VP, VB, and VS, increased with increasing 
pressure at 2000 K in Figure 2. Our results for sound wave velocities were in good agreement with 
those reported by Li et al. [8]. 

Figure 2. Sound wave velocities in cubic CaSiO3 perovskite at 2000 K calculated from 
the elastic constants. The solid circles, squares, and diamonds represent the 
compressional, bulk, and shear velocities, respectively. 

 

The effect of temperature on the sound wave velocities was investigated at high temperatures 
corresponding to conditions in the Earth’s mantle. In Figure 3, the results of the AIMD simulations 
at high temperatures of 2000 
 T(K) 
 4000 showed that sound wave velocities decreased with 
increasing temperature. However, there were only small dependencies on temperature. As the 
pressure increased, these dependencies on temperature became small. The sound wave velocities 
were fitted to the following equation as functions of temperature and pressure: 

� � � �PdTcPbav ln����  (16) 

where a, b, c and d are fitted parameters, and T and P are given in K and GPa, respectively.  
The results of the fitted parameters are summarized in Table 2. 
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Figure 3. Sound wave velocities in cubic CaSiO3 perovskite at high temperatures. The 
diamonds represent the compressional and shear wave velocities calculated by the 
AIMD simulations. The dashed lines represent the fitted velocities for 2000, 3000, and 
4000 K. 

 

Table 2. Parameters of the compressional and shear sound velocities. The parameters 
are given by � � � �PdTcPbav ln���� , where T and P are the temperature (K) and  
the pressure (GPa), respectively. The conditions for applying these parameters to 
Equation (16) are 15 GPa < P < 140 GPa and 1500 K < T < 4500 K. 

 a b c d 
VP 7.12(0.27) �6.96(0.33) × 10�4 4.07(0.30) × 10�7 1.56(0.06) 
VS 4.65(0.15) �3.20(0.02) × 10�4 1.75(0.17) × 10�6 0.74(0.04) 

4. Discussion  

It is important to assess the uncertainties of the ab initio calculations to understand the 
implications of the calculated results. In general, different types of approximation have led to 
different values in previous ab initio studies, e.g., [18]. The difference between Local Density 
Approximation (LDA) and Generalized Gradient Approximation (GGA) leads to a change in cell 
volume of a few percent. This uncertainty is non-negligible in the context of discussing the 
behavior of the Earth’s mantle. Although GGA was used in the present study, we corrected the 
calculated values according to the experimental EOS to minimize the uncertainties related to 
approximations used in ab initio simulations. Therefore, our discussion of the comparison between 
estimated elastic properties and PREM values is more reliable than those of previous studies. 

It is believed that the lower mantle contains three minerals; (Fe,Al)-bearing Mg-perovskite, 
ferropericlase, and Ca-perovskite [2,3]. We calculated the density, and the compressional and shear 
sound wave velocities for cubic CaSiO3 perovskite in order to compare them with the values from 
the PREM [11]. The values for cubic CaSiO3 perovskite were calculated using the EOS defined in 
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Table 1 and Equation (16) defined in Table 2. The estimated values for cubic CaSiO3 perovskite 
and the PREM are compared in Figure 4. The adiabatic temperature profile (geotherm) was used as 
the temperature profile in the Earth’s lower mantle [3]. The calculated density of cubic CaSiO3 
perovskite was in good agreement with that estimated by seismological data (PREM). Li et al. [8] 
estimated the density of cubic CaSiO3 perovskite, and the estimated density was higher than that in 
the PREM data. Although our AIMD method was similar to that used by Li et al. [8], the 
discrepancy between this and the previous study was confirmed. As the pressure was corrected to 
estimate density accurately in this study, the difference between our estimated density of cubic 
CaSiO3 perovskite and that from the PREM data should be small. For the compressional sound 
wave velocity, the discrepancy between the calculated values for cubic CaSiO3 perovskite and the 
observed data was small. The difference increased as the depth increased. By contrast, the shear 
sound wave velocity in cubic CaSiO3 perovskite was much higher than that from the PREM data. If 
cubic CaSiO3 perovskite is a major mineral in the Earth’s lower mantle, the sound wave velocity 
profiles cannot be explained. Therefore, our study implies that cubic CaSiO3 perovskite is a minor 
mineral in the Earth’s lower mantle. In a previous study, the shear sound wave velocity in 
orthorhombic (Mg,Fe)SiO3 perovskite was reported to be lower than that in cubic CaSiO3 
perovskite at 0 K [23]. As the shear sound wave velocity in ferropericlase, (Mg,Fe)O, is much 
lower than that of orthorhombic (Mg,Fe)SiO3 perovskite, sound wave velocities in orthorhombic 
(Mg,Fe)SiO3 perovskite at higher temperatures are therefore in general agreement with those from 
PREM, indicating that orthorhombic (Mg,Fe)SiO3 perovskite might be a major mineral in the 
Earth’s lower mantle. 

Figure 4. Density and sound wave velocities for cubic CaSiO3 perovskite compared 
with PREM data. The solid circles represent the values from PREM [11]. The solid 
lines represent the calculated values under the conditions of the Earth’s lower mantle. 
The values for cubic CaSiO3 perovskite were calculated using the equations defined in  
Tables 1 and 2 and the adiabatic temperature profile (geotherm) in the Earth’s  
interior [3]; a: compressional sound velocity; b: shear sound velocity; c: density. 
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In general, a certain quantity of most elements dissolves in three minerals, namely (Fe,Al)-bearing 
Mg-perovskite, ferropericlase, and Ca-perovskite, and the partition coefficients of minor elements 
between the three minerals change with temperature and pressure. In this study, the physical 
properties of a pure cubic CaSiO3 perovskite host were calculated, because the complicated 
chemical composition would need a very large simulation time, and it would have been difficult to 
perform a reliable AIMD study. The effects of the minor elements on the density and the sound 
wave velocities therefore require further investigation. 

5. Conclusions 

We have predicted from the first-principles theory the sound velocities of cubic CaSiO3 
perovskite at high pressures and temperatures corresponding to the Earth’s lower mantle. 
Comparison of the elastic properties of cubic CaSiO3 perovskite with the lower mantle properties 
estimated from the seismic observations supports the prevailing hypothesis that the lower mantle 
consists primarily of (Mg,Fe)SiO3 perovskite. 
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Abstract: Molecular dynamics simulations are used to study the evaporation of water 
droplets containing either dissolved LiCl, NaCl or KCl salt in a gaseous surrounding 
(nitrogen) with a constant high temperature of 600 K. The initial droplet has 298 K 
temperature and contains 1,120 water molecules, 0, 40, 80 or 120 salt molecules. The 
effects of the salt type and concentration on the evaporation rate are examined. Three 
stages with different evaporation rates are observed for all cases. In the initial stage of 
evaporation, the droplet evaporates slowly due to low droplet temperature and high 
evaporation latent heat for water, and pure water and aqueous solution have almost the 
same evaporation rates. In the second stage, evaporation rate is increased significantly, 
and evaporation is somewhat slower for the aqueous salt-containing droplet than the 
pure water droplet due to the attracted ion-water interaction and hydration effect. The 
Li+-water has the strongest interaction and hydration effect, so LiCl aqueous droplets 
evaporate the slowest, then NaCl and KCl. Higher salt concentration also enhances the 
ion-water interaction and hydration effect, and hence corresponds to a slower 
evaporation. In the last stage of evaporation, only a small amount of water molecules 
are left in the droplet, leading to a significant increase in ion-water interactions, so that 
the evaporation becomes slower compared to that in the second stage. 
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1. Introduction 

The physics of droplet evaporation in an infinite space has attracted much interest due to the 
crucial role played in energy engineering, in chemical engineering as well as in environmental 
processes [1], and has been under investigation for many years by different methods: 
hydrodynamics [2], kinetic theory [3], and molecular simulations [4–11]. Molecular dynamics 
attempts to simulate the real behavior of Nature by identifying each atom and following their 
motion in time through the basic laws of classical mechanics [7]. The system behavior and 
temporal evolution of its thermodynamic and transport properties can be obtained by statistically 
averaging the results of all molecular motions. Molecular dynamics simulating an evaporation 
process has no need of some assumptions made by CFD (computational fluid dynamics), so this 
method was adopted to study the droplet evaporation [4–11] and the evaporation of flat thin liquid 
films on solid surfaces [12–14]. These studies focused on evaporation of droplets consisting of one 
component under various conditions, and compared the evaporation rates simulated by molecular 
dynamics and predicted by classical kinetic theory, such as the D2 law [5,6,9]. The D2 law was 
derived based on the droplet evaporation in an infinite space [15], and predicts that the derivative 
of the square of the droplet diameter with respect to time is constant, or dD2/dt = �K, where K is 
the evaporation constant. However, Semenov et al. [16] presented that for the evaporation of 
sessile drops on hydrophobic substrates, the evaporation rate is proportional to the radius of the 
three phase line instead of being proportional to the area of the surface of the droplet.  
Semenov et al. [17] also investigated the effect of the influence of kinetic effects on evaporation of 
pinned sessile water droplets of submicrometer size placed on a heat conductive substrate. Their 
computer simulation model took into account the following phenomena: influence of curvature of 
the droplet’s surface on the saturated vapor pressure above the surface (Kelvin’s equation), the 
effect of latent heat of vaporization, thermal Marangoni convection, and Stefan flow inside an air 
domain above the droplet. 

The evaporation of droplets of dissolved salts (aqueous droplets) has extensive applications in 
many industrial processes such as crystallization [2,18], electrospraying [19], electrospinning [20], 
and atmospheric science [21–25]. Starov and Churaev [2] investigated the crystallization process of 
aqueous solutions in a thin capillary using hydrodynamics, and they presented that the evaporation 
flux differs significantly from that predicted by the classical solution with a one-component liquid. 
Recently, some studies have used molecular dynamics simulations to investigate the evaporation of 
a small water cluster dissolving a single kind of charged ion [19,26–28]. Caleman and Spoel [26] 
simulated the evaporation from a water cluster (N = 216 and 512) containing either Cl�, H2PO4

�, 
Na+ or NH4

+ (N = 0, 4 and 8) under a vacuum, and their results showed a somewhat slower 
evaporation rate for clusters with Cl� and Na+ than those with H2PO4

� and NH4
+. Daub and  

Cann [27] studied evaporation and condensation of a small cluster (N = 10, 20, 30 and 40) of water 
or methanol containing one single Ca2+, Na+ or Cl� ion in either a vacuum or under argon gas. 
Daub and Cann [19] also studied the evaporation of a water cluster (N = 10, 15 or 20) containing 
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one Na+ ion or one Ca2+ ion under the action of an electric field. Daub and Cann’s results 
demonstrated that the interaction between ions and water molecules affects the evaporation of the 
cluster [19,27]. K�hler [21] investigated the process of formation of liquid cloud drops based on 
equilibrium thermodynamics, where water vapor condensed with existence of nucleus (solutes), 
and proposed the well-known K�hler theory expressed as: 

� �w w w s w
0 3

w w

4 6ln
p D M n M

p RT D D
�

� (�
� �

� �� �
� �

 (1)

where pw is the water vapor pressure outside the droplet, p° is the corresponding saturation vapor 
pressure over a flat surface, �w is the droplet surface tension, �w is the density of pure water, ns is 
the moles of solute, Mw is the molecular weight of water, and D is the droplet diameter. According 
to K�hler’s theory, the droplet diameter, water surface tension, and molar concentration of the 
solute significantly affect the water vapor pressure and hence the droplet evaporation rate. 

Generally, an aqueous solution is electrically neutral and it includes the same number of cations 
and anions for monovalent salts, the interaction between cations and anions may influence the 
evaporation properties of the aqueous droplet, however, few molecular dynamics simulations have 
been carried out considering this process. The salt crystallization process from an evaporating NaCl 
aqueous solution has been studied by Mucha and Jungwirth [18] using molecular dynamics 
simulations, but they did not focus on evaporation rates. This work uses molecular dynamics 
simulations to investigate the evaporation of water droplets containing either dissolved LiCl, NaCl 
or KCl salt. The droplet is surrounded and heated by a nitrogen gas atmosphere at a constant 
temperature. The effects of the salt concentration and salt type on the evaporation rate are 
examined. By analyzing the spatial position and the interaction energy of ions and water molecules, 
the differences between evaporation rates for various cases are explained in detail. 

2. Molecular Dynamics Simulations 

2.1. Interatomic Potential and Initial Configuration 

For molecular dynamics simulations, selecting a proper intermolecular potential function and 
constructing a correct initial configuration of system are important to correctly describe the 
physical process concerned. This work simulates the evaporation of water droplets with or without 
dissolved salts. Three salts, LiCl, NaCl or KCl, at various concentrations are added to the water droplet. 
The droplet is surrounded and heated by nitrogen gas at a constant temperature. Since the system 
includes nitrogen molecules, water molecules, Li+, Na+, K+, and Cl� ions, the long-range Coulombic 
force between ions must be considered. Thus, a combined potential model of Lennard-Jones 12-6 
potential and Coulombic potential is adopted here, which can be expressed as [29,30]: 

 (2)

where the subscripts i and j denote ith and jth particles (atoms or ions), q is the charge of particle, r 
is the distance between particles, � and � are the minimum energy and the zero energy separation 
distance. The water molecules are characterized by the SPC/E model [30]. The values of the potential 
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parameters q, � and � for the same particles are summarized in Table 1 [29,30]. The following 
mixing rules are adopted to describe the potential parameters between different particles, or: 

 (3)

 (4)

Table 1. Values of potential parameters. 

Particle � (Å) � (KJ mol�1) q (e) 
O 3.169 0.6502 �0.8476 
H 0.000 0.0000 +0.4238 

Na+ 2.583 0.4184 +1.0000 
Li+ 1.505 0.6904 +1.0000 
K+ 3.331 0.4184 +1.0000 
Cl� 4.400 0.4184 �1.0000 
N 3.710 0.6990 +0.0000 

The truncated distances for short-range and long-range forces are taken as 10 Å and the PPPM 
summation technique [31] is used to modify the long-range Coulomb interaction. The equations of 
motion are integrated using the Velocity-Verlet algorithm [5]. The method of constraints [29] is 
applied for nitrogen molecules and water molecules to maintain their bond lengths and angles. 

The initial configuration of the system is shown in Figure 1, where the nitrogen molecules, 
water molecules, and ions are distinguished with different colors. The droplet is placed in the 
center of a cubic box with a side length of 12 nm, and nitrogen molecules surround the droplet. The 
number of water molecules in the droplet is 1,120, and the number of nitrogen molecules is 600, 
corresponding to a 16.47 kg·m�3 gas density. The number of salt molecules is assumed to be 0, 40, 
80, and 120, respectively, to analyze the effect of salt concentration on droplet evaporation. It is 
noted that the maximum salt mole concentration is 9.7%, which is less than its saturation 
concentration, and hence salt crystallization cannot occur. The droplet radius is fixed to 2 nm for 
all cases. This value corresponds to a density of 1 g·cm�3 as the droplet is composed of pure water. 

Figure 1. Initial configuration of system: green balls are N, white balls are H, red balls 
are O, blue balls are positive ions, and purple balls are chloride ions. 

 

� � / 2ij i j� � �� �
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2.2. Preparation of Initial Equilibrium State 

Before the onset of evaporation a well-defined system has to be prepared. Initial velocities of 
particles in both the gaseous phase (nitrogen) and the droplet are generated by assuming a 
Maxwell-Boltzmann distribution based on the initial temperature of 298 K. Periodic boundary 
condition is applied to the three coordinates of the box. A time step length �t = 1 fs is used for all 
cases. The system with the initial configuration is simulated in an NVT ensemble and it reaches an 
equilibrium state after 100,000 time steps. For each time step, the velocities of the gaseous phase 
and the droplet are separately rescaled to maintain a constant temperature of 298 K. It is noted that 
a very small amount of water molecules (less than 10 water molecules for the case in Figure 2a) 
escape from the droplet and occur in the surrounding vapor when the initial equilibrium state is 
reached, as shown Figure 2a. 

To analyze the temporal evolution of the evaporation rate, one must define whether a  
water molecule belongs to the droplet or to the vapor. The method originally proposed by  
Shigeo et al. [32] is adopted here, which is based on counting the number of neighboring water 
molecules around each water molecule. Neighbor molecules are determined as the molecules 
within a distance of 4.34 Å from the molecule of interest. A molecule is considered to be in the 
droplet if its neighbor molecule number nneighbor � 9, in the vapor phase if nneighbor 
 1, or in 
interface region if 2 
 nneighbor 
 8. The interface is ignored in the present work, so nneighbor � 4 is 
used as a threshold value to determine the droplets. 

Figure 2. Snapshots of the simulation boxes and corresponding number densities of 
water molecules, Na+ and Cl¯ ions at different evaporation instants: (a) t = 0 ps;  
(b) t = 500 ps; (c) t = 1,000 ps; (d) t = 1,600 ps. 

 

2.3. Droplet Evaporation 

The temperature of the gaseous phase is abruptly increased to 600 K to trigger the droplet 
evaporation and this temperature is kept by the velocity-rescaling method [4] for nitrogen 
molecules for every time step throughout the evaporation process for all cases. Total evaporation 
time is set as 1,600 ps. The instantaneous positions and velocities of particles are recorded every 1 
ps and all quantities of interest are calculated statistically for 10 recorded results to reduce 
statistical fluctuations. Figure 2 presents snapshots for the water droplets with 120 dissolved NaCl 
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molecules and the number densities of water molecules, Na+ and Cl� ions at different evaporation 
instants. It can be seen that the droplets deviate from the initial spherical shape and their volume 
gradually decreases with time, however, Na+ and Cl� ions cannot escape from the droplet and 
finally crystallize as the droplet evaporates completely. 

3. Results and Discussion 

3.1. Effect of Salt Concentration 

To analyze the effect of the salt concentration on the droplet evaporation, 0, 40, 80, and 120 
LiCl molecules are added into 1,120 water molecules, respectively, to prepare aqueous droplets. 
The initial temperature of the droplet is 298 K, the droplet is heated by 600 K nitrogen gas and 
evaporates. The temporal evolution of the water molecule number in the droplet is shown in  
Figure 3. 

Figure 3 shows that the evaporation process can be divided into three stages. At the beginning of 
evaporation the evaporation rates for pure water and three aqueous solutions are low, since only a 
small amount of heat is transferred to the droplet and water has high latent heat of evaporation, and 
no visible difference is observed for four droplets which means that Li+ and Cl� have not yet 
affected the evaporation. Later, the evaporation rates increase because more heat is transferred to 
the droplet and the difference between four droplets occurs, the water droplet evaporates faster than 
three aqueous droplets and vanishes about at t = 1,150 ps. The aqueous droplet with high LiCl 
concentration has a lower evaporation rate than that with low LiCl concentration. In the last stage 
of evaporation (at about t > 1,200 ps), the evaporation rates for aqueous droplets decrease 
compared to that in the second stage. 

Figure 3. Temporal evolution of the water molecule number in the droplet with various 
salt concentrations. 
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The radial distribution functions and their integrals of Li+-O, Cl�-O for the aqueous droplet with 
80 LiCl molecules at different evaporation instants are shown in Figure 4. The hydration number in 
the present work is defined as the average number of water molecules around an ion in the first 
solvation shell, and can be expressed as: 
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where, �ion is the number density of ions (Li+ or Cl�), gion-O (r) is the radial distribution function, 
and rsol is the radius of the first solvation shell. Figure 4 shows that the first peak values of gLi+-O(r) 
and gCl�-O (r) occur at r = 1.95 Å and 3.25 Å, and the first valley values at 2.85 Å and 4.15 Å  
at t < 600 ps, which implies that the water molecules located at a distance r < 2.85 from Li+ and 
4.15 Å from Cl� are attracted strongly by the ions, thus, 2.85 Å and 4.15 Å can be regarded as the 
radius of the first solvation shell for Li+ and Cl�, respectively. 

Figure 4. Radial distribution functions and hydration numbers at various evaporation 
instants for aqueous droplet with 80 LiCl molecules: (a) gLi+-O(r) and NLi+-O (r);  
(b) gCl�-O(r) and NCl�-O(r).�
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Figure 4 shows that hydration number of Li+ is 3.80 at t = 0 ps, 3.71 at t = 200 ps, 3.45 at  
t = 400 ps, as well as 3.34 at t = 600 ps, with only 9.2% decrease from t = 0 ps to t = 600 ps; 
however, hydration number of Cl� is 8.70 at t = 0 ps, 8.68 at t = 200 ps, 8.67 at t = 400 ps, and 8.65 
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at t = 600 ps. Therefore, only 52 and four water molecules escape the confinement of Li+ and Cl�, 
respectively. At the same period, about 270 water molecules escape from the droplet due to 
evaporation (Figure 3). The results above demonstrates that the free water molecules with a weak 
interaction with ions made the biggest contribution to evaporation rate at the beginning of 
evaporation, and hence no visible difference is observed for pure water and aqueous solution with 
various LiCl concentrations. 

The hydration numbers of Li+ and Cl� at t = 600 ps for aqueous droplets with 40, 80, and 120 
LiCl molecules are listed in Table 2. Although high LiCl concentration leads to a small hydration 
number, the hydration effect is enhanced because the total number of water molecules bounded by 
Li+ and Cl� is increased. The addition of Li+ and Cl� into the water droplet also affects the 
interaction between water molecules. Table 3 lists the coordination number of water molecular  
at t = 0 ps, which is defined as the average number of water molecules in a sphere with 0.35 nm 
radius around a water molecule. The value of 0.35 nm chosen here is based on the fact that it is a 
standard length to determine the formation of hydrogen bonds between water molecules [26].  
Table 3 shows that the coordination number of water molecular is reduced for high LiCl 
concentration, thus, the interaction between water molecules becomes less with increased LiCl 
concentration. The average interaction energies between water molecules and ions (Li+ and Cl�) for 
various LiCl concentrations are calculated by Equation (2) and shown in Figure 5. The negative 
value means that water molecules are attracted by ions. The interaction energy is stronger for high 
LiCl concentration at t < 1,200 ps. Based on results above, the low evaporation rate of the droplet 
with high LiCl concentration can be attributed to stronger hydration effect and stronger attractive 
force to water imposed by Li+ and Cl� as compared to that with low LiCl concentration. 

Table 2. hydration number of Li+ and Cl� for different cases at t = 600 ps. 

Case Hydration number of Li+ Hydration number of Cl� 
40 LiCl 3.76 9.02 
80 LiCl 3.34 8.65 

120 LiCl 3.06 8.16 

Table 3. Coordination number of water molecule at t = 0 ps. 

Case 0 LiCl 40 LiCl 80 LiCl 120 LiCl 
Hydration number 4.97 4.79 4.67 4.42 

Figure 5 also shows that the interaction energy is significantly elevated at t > 1,200 ps, because 
less and less water molecules are left in the droplet, hence, the evaporation becomes slower  
at t > 1,200 ps. The vapor pressure is low at the beginning stage of evaporation, and it gradually 
increases as water molecules escape from the droplet. High vapor pressure means larger 
evaporation resistance, which is another important factor for the slower evaporation rate in the last 
stage of evaporation than that in the second stage. 

The aqueous droplet with 40 dissolved LiCl molecules has the highest evaporation rate  
at t < 1,200 ps (Figure 3), thus, less water molecules are left in the droplet compared to the droplets 
with 80 and 120 LiCl, so that each water molecule in the droplet is surrounded by more ions  
at t > 1,200 ps, which leads to a stronger ion-water interaction for the droplet with 40 LiCl. 
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Therefore, the crossover of curves of ion-water interaction for various LiCl concentrations is 
observed at t = 1,200 s. 

Figure 5. Average interaction energies between water molecules and ions (Li+ and Cl�) 
for various LiCl concentrations. 
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3.2. Effect of Salt Category 

Due to the difference of interactions between water molecules and various ions, the evaporation 
rates of droplets with dissolved different salts may be different. Three common salts LiCl, NaCl 
and KCl are used to analyze this effect. Figure 6 shows temporal evolution of the number of water 
molecules in the droplets with 120 LiCl, NaCl or KCl molecules. Again, three stages are observed 
during evaporation for all the three aqueous droplets. The evaporation rates of aqueous droplets are 
lower than that of pure water droplet, and the slowest is LiCl aqueous droplet, then NaCl and KCl. 

Figure 6. Temporal evolution of the water molecule number in the droplets with 
various salts. 
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Figure 7 shows the distribution of water molecules in a sphere with 0.45 nm radius around Li+, 
Na+, and K+ at evaporation instants of 0, 300, and 1,000 ps. Oxygen atoms are closer to cations 
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than hydrogen atoms due to attracted Coulombic interaction. The number of water molecules 
around Li+, Na+, and K+ differs significantly, more water molecules occur around Li+, then Na+ and 
K+. As the droplet evaporates, the water molecules around cations are gradually reduced. 

Figure 7. Snapshots of local distribution of water molecules around cations at different 
evaporation instants for various salts: (a1), (a2) and (a3) KCl at 0, 300, and 1,000 ps; 
(b1), (b2) and (b3) NaCl at 0, 300, and 1,000 ps; (c1), (c2) and (c3) LiCl at 0, 300, and 
1,000 ps. (White balls: H, red balls: O, purple balls: Cl� blue ball: K+, Na+ or Li+). 

 

The radial distribution functions g(r)Cation-Cl�, g(r)Cation-O, g(r)Cl�-O for LiCl, NaCl, and KCl 
aqueous droplets at various evaporation instants of 0, 600, 1,300, and 1,600 ps are show in  
Figure 8, where the subscript “Cation” denotes K+, Na+, or Li+, respectively. The positions of first 
peak of g(r)Cation-Cl� are 0.24 nm, 0.27 nm and 0.33 nm for LiCl, NaCl, and KCl aqueous droplets 
(Figure 8a), and the positions are almost unchanged throughout the evaporation process. However, 
the peak values of g(r)Cation-Cl� are elevated with the time, which means that more and more cations 
and chloride ions aggregate together. Eventually, a crystal will form when all water molecules in 
the droplet evaporate completely. The peak values of g(r)Cation-O (Figure 8b) and g(r)Cl�-O  
(Figure 8c) for LiCl aqueous droplet are the largest throughout the evaporation process, then for 
NaCl and the smallest for KCl. Thus, the strongest hydration effect occurs for LiCl aqueous droplet 
according to Equation (4). 



519 

Comparison of Figure 8b,c indicates that the difference of g(r)Cation-O for three aqueous droplets 
is more significant than that of g(r)Cl�-O. Therefore, only the average interaction energy between 
water molecules and cations (K+, Na+, or Li+) is calculated by Equation (2) and is plotted in  
Figure 9. The attractive force between water molecules and Li+ is the strongest, while the weakest 
is for K+. The results confirm again that the strong hydration effect and attractive force are 
responsible for the slow evaporation. The results can also be connected to the Hoffmeister series 
effect [33] in term of structure breakers or structure enhancer cations. Hofmeister series is a 
classification of ions in order of their ability to salt out. The order of cations is usually given as:  
K+ > Na+ > Li+ in Hofmeister series, therefore, the present results are in good agreement with the 
Hofmeister series effects. 

Figure 8. The radial distribution functions at different evaporation instants:  
(a) g(r)Cation-Cl�; (b) g(r)Cation-O; (c) g(r)Cl�-O. (cation denotes K+, Na+, or Li+). 
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(c) 

In Nature, many aqueous solutions include two or more solutes, so it is necessary to discuss the 
evaporation of water droplet simultaneously dissolved various kinds of salts. The evaporation of 
KCl + LiCl aqueous droplet is simulated and the results are shown in Figure 10, where 
KCl20+LiCl60 means that droplet dissolves simultaneously 20 KCl molecules and 60 LiCl 
molecules. With the same salt concentration, the evaporation rates of KCl20 + LiCl60 and  
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KCl40 + LiCl40 aqueous droplets are between the ones of KCl and LiCl aqueous droplets, and 
faster evaporation occurs at KCl40 + LiCl40 since K+ has weaker hydration effect and smaller 
attractive force towards water molecules than Li+. 

Figure 9. Average interaction energies between water molecules and ions (Li+ and Cl�) 
for various salts. 
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Figure 10. Temporal evolution of the water molecule number in the droplets with 
various salts. 
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4. Conclusions 

The evaporations of pure water droplets as well as NaCl, KCl and LiCl aqueous droplets are 
studied by molecular dynamics simulations. The droplets are placed in a gaseous nitrogen 
surrounding and heated by the surrounding with a constant high temperature of 600 K. The 
evaporation of aqueous droplet can be divided into three stages with different evaporation rates. 
The rate is slow at the beginning of evaporation, because only a small amount of heat is transferred 
to the droplet and water has high latent heat of evaporation. The rate is increased in the second 
stage as more and more heat is transferred to the droplet, however, the rate is again decreased at the 
last stage of evaporation due to the much stronger ion-water interaction. 
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The addition of salts into water droplet results in a slower evaporation rate compared to  
pure water droplets, which can be attributed to the strong hydration effect and strong attractive 
force on the water imposed by cations and anions. The evaporation rates for various aqueous 
droplets are LiCl < NaCl < KCl, and the evaporation becomes slower for high salt concentrations, 
due to the stronger hydration effect and attractive force occur in LiCl aqueous droplets and at high 
salt concentration. 

The interaction potential model of particles is important for MD simulation results, however, the 
present study focuses on the effect of the salts concentration and category on the evaporation of the 
aqueous droplets, the conclusions are expected to be still applicable when a different interaction 
potential model is adopted. Furthermore, the previous MD studies [5,6,9] showed that because 
there was no “bulk” liquid for nano-scale droplets, its evaporation rate deviated from the classical 
D2 law, which was regarded as a good description of evaporation of micro- and milli-scale droplets. 
Therefore, it is worth studying further that whether the present results may extend to micro- and 
milli-scale droplets. 

Acknowledgments 

This study was partially supported by the National Natural Science Foundation of China  
(No. 51076009), by the 111 Project (No. B12034), and by the National Natural Science Foundation 
of China (Nos. 50876049 and 51210011). 

References 

1. Semenov, S.; Starov, V.M.; Velarde, M.G.; Rubio, R.G. Droplets evaporation: Problems and 
solutions. Eur. Phys. J.-Spec. Top. 2011, 197, 265–278. 

2. Starov, V.M.; Churaev, N.V. Crystal groth at the end of a capillary on solution evaporation.  
J. Eng. Phys. 1988, 54, 443–446. 

3. Sone, Y.; Sugimoto, H. Kinetic theory analysis of steady evaporating flows from a spherical 
condensed phase into a vacuum. Phys. Fluids 1993, 5, 1491–1511. 

4. Sumardiono, S.; Fischer, J. Molecular simulations of droplet evaporation by heat transfer. 
Micro�uid. Nano�uid. 2007, 3, 127–140. 

5. Landry, E.S.; Mikkilineni, S.; Paharia, M.; McGaughey, A.J.H. Droplet evaporation: A 
molecular dynamics investigation. J. Appl. Phys. 2007, 102, 124301. 

6. Long, L.N.; Micci, M.M.; Wong, B.C. Molecular dynamics investigation of droplet 
evaporation. Comput. Phys. Commun. 1996, 96, 167–172. 

7. Mason, P.E. Molecular dynamics study on the microscopic details of the evaporation of water.  
J. Phys. Chem. A 2011, 115, 6054–6058. 

8. Consolini, L.; Aggarwal, S.K.; Murad, S. A molecular dynamics simulation of droplet 
evaporation. Int. J. Heat Mass Tran. 2003, 46, 3179–3188. 

9. Walther, J.H.; Koumoutsakos, P. Molecular dynamics simulation of nanodroplet evaporation.  
J. Heat Tran. 2001, 123, 741–748. 

10. Kaltz, T.L.; Long, L.N.; Micci, M.M. Supercritical vaporization of liquid oxygen droplets 
using molecular dynamics. Combust. Sci. Technol. 1998, 136, 279–301. 



522 

11. Bhansali, A.P.; Bayazitoglu, Y.; Maruyama, S.; Little, J.K. Molecular dynamics simulation of 
an evaporating sodium droplet. Int. J. Therm. Sci. 1999, 38, 66–74. 

12. Wang, Z.J.; Chen, M.; Guo, Z.Y.; Yang, C. Molecular dynamics study on the liquid vapor 
interfacial profiles. Fluid Phase Equilibr. 2001, 183, 321–329.  

13. Carey, V.P.; Wemhoff, A.P. Disjoining pressure effects in ultra-thin liquid films in 
micropassages-comparison of thermodynamic theory with predictions of molecular dynamics 
simulations. J. Heat Transfer 2006, 128, 1276–1284. 

14. Yu, J.P.; Wang, H. A molecular dynamics investigation on evaporation of thin liquid films.  
Int. J. Heat Mass Transfer 2012, 55, 1218–1225. 

15. Faeth, G.M. Current status of droplet and liquid combustion. Prog. Energy Combust. Sci. 
1977, 3, 191–224. 

16. Semenov, S.; Starov, V.M.; Rubio, R.G.; Agogo, H.; Velarde, M.G. Evaporation of sessile 
water droplets: Universal behaviour in presence of contact angle hysteresis. Colloid. Surface. A 
2011, 391, 135–144. 

17. Semenov, S.; Starov, V.M.; Rubio, R.G.; Velarde, M.G. Computer simulations of evaporation 
of pinned sessile droplets: influence of kinetic effects. Langmuir 2012, 28, 15203–15211. 

18. Mucha, M.; Jungwirth, P. Salt crystallization from an evaporating aqueous solution by 
molecular dynamics simulations. J. Phys. Chem. B 2003, 107, 8271–8274. 

19. Daub, C.D.; Cann, N.M. How are completely desolvated ions produced in electrospray 
ionization: Insights from molecular dynamics simulations. Anal. Chem. 2011, 83, 8372–8376. 

20. Theron, S.A.; Zussman, E.; Yarin, A.L. Experimental investigation of the governing 
parameters in the electrospinning of polymer solution. Polymer 2004, 45, 2017–2030. 

21. K�hler, H. The nucleus in and the crowth of hygroscopic droplets. Trans. Faraday Soc. 1936, 
32, 1152–1161. 

22. Jungwirth, P.; Tobias, D.J. Molecular stucture of salt solution: A new view of the interface 
with implications for heterogeneous atmospheric chemistry. J. Phys. Chem. B 2001, 105, 
10468–10472.  

23. Jungwirth, P.; Tobias, D.J. Ions at the air/water interface. J. Phys. Chem. B 2002, 106,  
6361–6373.  

24. Li, X.; Hede, T.; Tu Y.Q.; Leck, C.; Ågren, H. Surface-active cis-pinonic acid in atmopheric 
droplet: A molecular dynamics study. J. Phys. Chem. Lett. 2010, 1, 769�773.  

25. Sun, L.; Li, X.; Hede, T.; Tu, Y.Q.; Leck, C.; Ågren, H. Molecular dynamics simulations of 
the surface tension and structure of salt solution and clusters. J. Phys. Chem. B 2012, 116, 
3198�3204. 

26. Caleman, C.; Spoel, D.V.D. Evaporation from water clusters containing singly charged ions. 
Phys. Chem. Chem. Phys. 2007, 9, 5105–5111. 

27. Daub, C.D.; Cann, N.M. Molecular dynamics simulations to examine structure, energetics, 
and evaporation/condensation dynamics in small charged clusters of water or methanol 
containing a single monatomic ion. J. Phys. Chem. A 2012, 116, 10488–10495. 

28. Znamenskiy, V.; Marginean, I.; Vertes, A. Solvated ion evaporation from charged water 
nanodroplets. J. Phys. Chem. A 2003, 107, 7406–7412. 



523 

29. Bouazizi, S.; Nasr, S. Local order in aqueous lithium chloride solutions as studied by X-ray 
scattering and molecular dynamics simulations. J. Mol. Struct. 2007, 837, 206–213. 

30. Chowdhuri, S.; Chandra, A. Molecular dynamics simulations of aqueous NaCl and KCl 
solutions: Effects of ion concentration on the single-particle, pair, and collective dynamical 
properties of ions and water molecules. J. Phys. Chem. 2001, 115, 3732–3741. 

31. Beckers, J.V.L.; Lowe, C.P.; Leeuw, S.W.D. An iterative PPPM method for simulating 
coulombic systems on distributed memory parallel computers. Mol. Simulat. 1998, 3, 369–383. 

32. Shigeo, M.A.; Sohei, M.; Akihiro, O. Surface phenomena of molecular clusters by molecular 
dynamics method. Therm. Sci. Eng. 1994, 2, 77–84. 

33. Zhang, Y.J.; Cremer, P.S. Interactions between macromolecules and ions: the Hofmeister 
series. Curr. Opin. Chem. Biol. 2006, 10, 658–663. 

 



524

Reprinted from Entropy. Cite as: Akhter, T.; Rohlf, K. Quantifying Compressibility and Slip in

Multiparticle Collision (MPC) Flow through a Local Constriction. Entropy 2014, 16, 418–442.

Article

Quantifying Compressibility and Slip in Multiparticle
Collision (MPC) Flow through a Local Constriction
Tahmina Akhter 1 and Katrin Rohlf 2,*

1 Department of Applied Mathematics, University of Waterloo, Waterloo, ON N2L 3G1, Canada;

E-Mail: takhter@uwaterloo.ca
2 Department of Mathematics, Ryerson University, 350 Victoria Street, Toronto,

ON M5B 2K3, Canada

* Author to whom correspondence should be addressed; E-Mail: krohlf@ryerson.ca;

Tel.: +1-416-979-5000, Fax: +1-416-598-5917.

Received: 27 October 2013; in revised form: 13 December 2013 / Accepted: 16 December 2013 /
Published: 2 January 2014

Abstract: The flow of a compressible fluid with slip through a cylinder with

an asymmetric local constriction has been considered both numerically, as well as

analytically. For the numerical work, a particle-based method whose dynamics is

governed by the multiparticle collision (MPC) rule has been used together with a

generalized boundary condition that allows for slip at the wall. Since it is well known that

an MPC system corresponds to an ideal gas and behaves like a compressible, viscous flow

on average, an approximate analytical solution has been derived from the compressible

Navier–Stokes equations of motion coupled to an ideal gas equation of state using the

Karman–Pohlhausen method. The constriction is assumed to have a polynomial form,

and the location of maximum constriction is varied throughout the constricted portion of

the cylinder. Results for centerline densities and centerline velocities have been compared

for various Reynolds numbers, Mach numbers, wall slip values and flow geometries.

Keywords: multiparticle collision (MPC) dynamics; constriction; slip;

Karman–Pohlhausen method; compressible; ideal gas
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1. Introduction

Flows through microchannels and microtubes have become recent areas of interest due to new

developments in the fabrication technology of microfluidic devices. Examples of applications include

micro-gas turbine generators and bio-analytical devices. In order to implement flow control measures

or to optimize the design of bio-analytical devices, for example, a proper understanding of the flow

through the device has to be developed. On the other hand, in gas microflows, compressibility effects

can be important, and wall slip can be measurable, requiring incorporation of these in any numerical

or analytical studies in this field. Particle-based methods, such as multiparticle collision dynamics

(MPCD), are a means to simulate flows of a Newtonian, compressible, ideal gas, and slip effects

can be incorporated very easily. Additionally, a constricted geometry is an ideal flow domain where

compressibility effects can be important, for which an analytical solution is feasible. Our goal in

this paper is to develop a better understanding, both theoretically and numerically, of the effects of

compressibility and wall slip in a flow through a local constriction.

Flows through constrictions are popular in blood flow studies, and the analytical method used

in this paper is an extension of the pioneering analysis carried out in [1–3]. The method used is

called the Karman–Pohlhausen method, which essentially leads to the determination of the axial

velocity profile. In [1–3], the fluid is considered to be Newtonian and incompressible, and the no-slip

assumption is used, as would be common for blood flow applications. A more accurate pressure

distribution was later developed for the same flow problem and presented in [4]. The same method

was also used in [5], where the flow of an incompressible couple-stress fluid through a constriction

was developed. In [6], a modified Karman–Pohlhausen method was proposed, and a general

(2M)-degree polynomial was used for the flow field rather than a fourth degree polynomial, as per the

original Karman–Pohlhausen method. In [7], slip was incorporated for incompressible, Newtonian

flow through a local constriction. Weakly compressible flow with slip was later considered by [8,9],

who also allowed for a flow geometry that is not necessarily symmetric about the location of

maximum constriction. The results presented here are extensions of the results given in [8,9], giving

more accurate expressions for the axial velocity profile.

Numerical works for flow through constrictions are two-fold. Discretization of the Navier–Stokes

equations of motion for steady flow through stenoses was carried out by a number of authors for a

Newtonian fluid [10–16]. Non-Newtonian models were considered numerically in [17–19] to name a

few. All but [19] used the no-slip boundary condition. All of these works are for incompressible

flows as they are applied to blood flow studies. Particle-based numerical methods, such as the

Lattice-Boltzmann method [20], dissipative particle dynamics (DPD) [21,22] and multiparticle

collision (MPC) dynamics [8,9,16], have more recently led to numerical solutions for flow through a

local constriction. The Lattice-Boltzmann method has also recently been used for blood flow studies

in complex flow geometries for realistic cardiovascular flow domains [23–25]. The method has been

reviewed recently in [26], and its use for complex flows has been reviewed in [27]. Except for [8,9],

the results are numerical. Since compressible flows through constrictions can exhibit significant
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compressibility effects and since particle-based methods have compressibility built-in, such methods

are ideal numerical means for simulating compressible flow through local constrictions.

Additional particle-based methods applied to blood flow studies in microvessels, for which

deformable particles are modeled separately from the fluid in which they are suspended, include

simulations with MPC [28,29] and DPD [30–33]. In [32], a Y-shaped bifurcation is considered,

and [29] consider a complex flow domain. The simulations in this paper differ from these references

in that the MPC fluid in this paper has point particles that neither deform nor aggregate, and there is

only one type of particle in the system.

In this paper, the Karman–Pohlhausen method is used to develop the axial velocity distribution

for steady, Newtonian flow through a stenosed vessel, allowing for slip at the wall, as well as

compressibility. The analysis is a natural extension of [1] and an improvement to the results given

in [8,9]. The flow geometry considered is axisymmetric, but asymmetric about the location of

maximum constriction. Effects of compressibility, slip and flow geometry are assessed. Numerical

results for flow through the same geometry using multiparticle collision (MPC) dynamics are also

obtained and compared to the analytical solution.

2. Multiparticle Collision Dynamics

The particle system contains N identical point particles of unit mass that are distributed uniformly

over cells on a regular three-dimensional lattice. Each cell, ξ, contains n particles on average.

At discrete time intervals, Δt, the continuous positions, ri, and velocities, vi (i = 1, . . . N ), are

updated according to the multiparticle collision (MPC) dynamics originally developed in [34]. So as

to ensure Galilean invariance, a random grid shift is implemented prior to each collision step as first

introduced in [35]. The idealized collisions of the MPC algorithm then update the velocity of particle

i according to:

v → Vξ + ω̂ξ(vi −Vξ) (1)

where ω̂ξ is a stochastic rotation matrix that rotates the velocities by either +π/2 or −π/2 about a

randomly chosen axis that varies from cell to cell and in time, and Vξ is the average velocity of all

particles in cell ξ in the pre-collision state [34].

Next, a constant external force accelerates the post-collision velocity of particle i in the

z-direction according to:

viz → viz + gΔt (2)

where viz is the z-component of the velocity of particle i and g is the acceleration value.

To simulate isothermal flow conditions, a thermostat is applied to the system, so as to remove

the energy that the external force pumps into the system. The velocity of each particle is rescaled

according to a profile-unbiased Galilean invariant thermostat first introduced by [36], the details of

which can be found in [8,9,16].

Finally, free-streaming of the particles updates the positions according to:

ri → ri + viΔt (3)
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where the velocity here is the velocity after the collision, acceleration and thermostatting steps have

taken place.

2.1. Boundary Conditions

Periodic boundary conditions are applied in the z-direction, and collisions with the cylinder walls

follow the generalized boundary condition [8,9,16,37,38]:

vn → −vn (4)

vt → (2λ− 1)vt (5)

which is capable of incorporating macroscopic slip by means of changing the value of λ ∈ [0, 1].

No-slip flow is obtained with the λ = 0 bounce-back rule, while elastic collisions (λ = 1) would

result in uniform flow through the pipe. For our simulations, we use λ ∈ [0, 0.5].

In order to compare the particle-based method with the analytical results, the particle-system

is subjected to a cumulative averaging procedure as outlined in [16], where it was found that the

averaging method is ideal for determining the macroscopic velocity profile for MPC flows.

Theoretical expressions for the viscosity coefficient of an MPC flow have been developed, and it

has been shown that for our choice in ω̂:

μ = μkin + μcoll (6)

where:

μkin =

(
nkBT

m(Δx)3

)
Δt

[
5n

6(n− 1 + e−n)
− 1

2

]
(7)

μcoll =
m

18ΔxΔt
(n− 1 + e−n) (8)

and kB is the Boltzmann constant, T the system temperature, Δx the length of a cubic cell in the

lattice and n the average number of particles in a cell [34,35,39–43].

3. Theoretical Analysis

The governing equations of motion for a compressible, isothermal, viscous flow of an ideal gas

are given by:

∂ρ

∂t
+∇ · (ρu) = 0, (conservation of mass) (9)

ρ
D

Dt
u = −∇P + ρf + μ∇2u+ (κ− 2

3
μ)∇(∇ · u)

(conservation of momentum) (10)

P =
kBT

m
ρ, (equation of state) (11)

where ρ is the density, t is time, D/Dt = ∂/∂t + u · ∇ is the material derivative, u is the

velocity vector, P is the pressure, f corresponds to an external force, μ is the viscosity, κ is the
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bulk viscosity, m is the mass of the fluid particle, kB is the Boltzmann constant and T is the constant

fluid temperature.

Assuming steady-state and axisymmetry, the velocity vector in cylindrical coordinates is assumed

to have the form:

u = (ur, uθ, uz) = (u(r, z), 0, w(r, z)) (12)

together with ρ = ρ(r, z). Under the Stokes assumption (κ = 0), the governing equations, with an

external force in the form f = (fr, fθ, fz) = (0, 0, ρg) become:

∂

∂r
(ρu) +

∂

∂z
(ρw) +

ρu

r
= 0, (mass) (13)

ρ

(
u
∂u

∂r
+ w

∂u

∂z

)
= −∂P

∂r
+ μ

(
∂2u

∂r2
+

1

r

∂u

∂r
+

∂2u

∂z2
− u

r2

)
+

μ

3

∂

∂r
(∇ · v), (r-momentum) (14)

ρ

(
u
∂w

∂r
+ w

∂w

∂z

)
= ρg − ∂P

∂z
+ μ

(
∂2w

∂r2
+

1

r

∂w

∂r
+

∂2w

∂z2

)
+

μ

3

∂

∂z
(∇ · v), (z-momentum) (15)

P (r, z) =
kBT

m
ρ(r, z), (equation of state) (16)

where:

∇ · v =
u

r
+

∂u

∂r
+

∂w

∂z
(17)

and the θ-momentum equation is identically satisfied.

As per [1], for a mild stenosis geometry, the r-momentum Equation (14) can be approximated as
∂P
∂r

= 0, in which case, Equation (16) implies ρ = ρ(z), which can be used in Equation (13) to give:

u

r
+

∂u

∂r
= −1

ρ

∂

∂z
(ρw) (18)

Using this in the last term of Equation (15), together with the assumption that u∂w
∂r

� w ∂w
∂z

allows us

to write the system for determining w(r, z) and P (z) as:

ρw
∂w

∂z
= ρg − dP

dz
+ μ

(
∂2w

∂r2
+

1

r

∂w

∂r
+

4

3

∂2w

∂z2

)
− μ

3

∂

∂z

(
1

ρ

∂

∂z
(ρw)

)
(19)

P (z) =
kBT

m
ρ(z) (20)

Following [1], we now assume that the radial dependence of the axial velocity, w, is a fourth-order

polynomial in the form:

w

W
= Aη +Bη2 + Cη3 +Dη4 + E (21)
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where η = R−r
R

, and W = W (z) is the as yet unknown centerline velocity. Constants A to E are

determined by imposing:

(i) w = ws√
1+R′2 at r = R (slip boundary condition),

(ii) ∂w
∂r

= 0 at r = 0 (axisymmetric flow),

(iii) w = W at r = 0 (by definition of centerline velocity W ),

(iv) ∂2w
∂r2

= −2(W−ws)
R2 at r = 0 (nearly parabolic flow with slip),

(v) dP
dz

≈ ρg + μ
(

∂2w
∂r2

+ 1
r
∂w
∂r

)
at r = R (using (19)).

Condition (i) follows from solving u · n = 0 (the vanishing normal component of velocity)

and u · t = ws (the tangential component of velocity is ws) for w, while (iv) comes from the

velocity profile:

wpoi(r) = (W − ws)

[
1− r2

R2

]
+ ws (22)

which is Poiseuille flow in an unconstricted tube with slip, ws, at the wall (r = R) and W is

centerline velocity.

Imposing (i)–(v) and solving for the unknown constants gives:

A =
1

7

(
−λ+ 10− 12E + T + 2

ws

W

)
(23)

B =
1

7

(
3λ+ 5− 6E − 3T +

ws

W

)
(24)

C =
1

7

(
−3λ− 12 + 20E + 3T − 8

ws

W

)
(25)

D =
1

7

(
λ+ 4− 9E − T + 5

ws

W

)
(26)

E =
ws

W
√
1 +R′2 (27)

where:

λ =
R2

μW

dP

dz
(28)

and:

T =
ρgR2

μW
(29)

By definition, the flow rate is given by:

Q = πρR2W =

R∫
0

2πρwr dr (30)

Substituting Equation (21) for w, using Equations (23)–(27) and solving for W in terms of W , gives

the relationship:

W =
210

97
W +

2

97

R2

μ

dP

dz
− 2

97

R2ρg

μ
− 11

97
ws −

102

97

ws√
1 +R′2 (31)
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The details pertaining to the next step involving the derivation of the equation for dP
dz

are outlined in

Appendix A. The result is:

R2

μW

dP

dz

(
1− 388

225
Ma2 +

97

225

ws

W
Ma2 − 194

225

ws

W

R′
√
1 +R′2

Ma2

Re

)
=

388

225
R′Re+

gR

W
2Re

−8− 8

25

ws

W
− 97

225

w2
s

W
2R

′Re+
ws

W

1√
1 +R′2

(
208

25
− 194

75

d

dz
(RR′)

)
(32)

+
97

75

R′

1 +R′2
w2

s

W
2Re− 388

75
RR′ws

W

d

dz
(1 +R′2)−1/2

where we have defined the local Reynolds and Mach numbers as:

Re =
ρWR

μ
(33)

and:

Ma =
W√
kBT
m

(34)

respectively.

Finally, substitution of Equations (31) and (32) in Equation (21) and subsequent simplification

gives the axial velocity as:

w(η, z)

W
=

Gη +Hη2 + Iη3 + Jη4(
1− 388

225
Ma2 + 97

225
ws

W
Ma2 − 194

225
ws

W
R′√
1+R′2

Ma2

Re

) +K (35)

where G, H , I , J and K are given in Appendix B.

Substituting η = 1 and simplifying gives the centerline velocity as:[
w(η = 1, z)

W
− ws

W
√
1 +R′2

](
1− 388

225
Ma2 +

97

225

ws

W
Ma2 − 194

225

ws

W

R′
√
1 +R′2

Ma2

Re

)
= 2 +Re

dR

dz

[
8

225
− 2

225

w2
s

W
2 +

6

225

1

1 +R′2
w2

s

W
2

]
+

1

75

ws

W

[
−9− 141√

1 +R′2 − 4√
1 +R′2 (R

′2 +RR′′) + 8
RR′2R′′

(1 +R′2)3/2

]
+Ma2

[
−56

15
+

2

225

gR

W
2

(
4Re− ws

W
Re+ 2

ws

W

R′
√
1 +R′2

)
(36)

+
1

225

ws

W

(
254− 11

ws

W
+

796√
1 +R′2 − 199√

1 +R′2
ws

W

)
+

2

225

1

Re

ws

W

(
−210

R′
√
1 +R′2 + 11

ws

W

R′
√
1 +R′2 + 199

ws

W

R′

1 +R′2

)]
Note that substituting Ma = 0 and dR

dz
= 0 leads to W

W
= 2 − ws

W
, which agrees with Equation (A9)

for w = wpoi, as it should, and that substitution of Ma = 0 and ws = 0 for dR
dz

�= 0 in the above

solution gives Forrester and Young’s [1] result for incompressible no-slip flow.



531

4. Equation for Density

In order to plot the velocity profile obtained in the previous section, the explicit solution for

ρ(z) has to be found, since Re and Ma depend on ρ(z), due to their local nature. To achieve this,

the ideal gas equation of state Equation (20) can be used to replace pressure terms with density

in Equation (A2), while constant flow rate can be used to replace local Re and Ma numbers with

upstream values and ρ(z) terms. Specifically, constant flow rate implies (see Equation (30)):

W =
W 0ρ0R

2
0

ρR2
(37)

where the zero subscript indicates constant upstream values in the unconstricted portion of the

cylinder. Thus:

Re =
ρWR

μ
=

ρW 0ρ0R
2
0R

ρR2μ

= Re0
R0

R
(38)

and:

Ma =
W√
kBT
m

=
W 0ρ0R

2
0

ρR2

√
kBT
m

= Ma0
ρ0
ρ

(
R0

R

)2

(39)

Lastly, the dimensionless slip velocity can be written as:

ws

W
=

ws

W 0

(
R

R0

)2
ρ

ρ0
(40)

It follows that the pressure equation can be written in terms of ρ(z) using the equation of state,

Equation (20), giving:

− R2
0

μW0

(
R

R0

)4
ρ

ρ0

kBT

m

dρ

dz

[
1− 388

225
Ma20

(
ρ0
ρ

)2 (
R0

R

)4

+
97

225

ws

W0

Ma20
ρ0
ρ

(
R0

R

)2

−194

225

ws

W0

R′
√
1 +R′2

Ma20
Re0

ρ0
ρ

R0

R

]
=

388

225
R′Re+

gR

W
2Re

−8− 8

25

ws

W
− 97

225

w2
s

W
2R

′Re+
ws

W

1√
1 +R′2

(
208

25
− 194

75

d

dz
(RR′)

)
(41)

+
97

75

R′

1 +R′2
w2

s

W
2Re− 388

75
RR′ws

W

d

dz
(1 +R′2)−1/2

where Re and Ma must be written in terms of Re0, Ma0 and ρ as given by Equations (38)–(40).
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5. Flow Geometry

In order to be able to consider an asymmetric stenosis, the radius is taken to have the idealized

polynomial form:

R(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
R0, for z ≤ z1

az3 + bz2 + cz + d, for z1 ≤ z ≤ z2

ez3 + fz2 + gz + h, for z2 ≤ z ≤ z3

R0 for z ≥ z3

(42)

where z2 = z1 + l1 and z3 = z2 + l2.

Imposing that R(z) be continuously differentiable and that R(z2) = R0 − δ and R′(z2) = 0

requires:

a =
2δ

l31
(43)

b = −3δ(2z1 + l1)

l31
(44)

c =
6δz1(z1 + l1)

l31
(45)

d = −2δz31 + 3δz21l1 −R0l
3
1

l31
(46)

e = −2δ

l32
(47)

f =
3δ(2z1 + 2l1 + l2)

l32
(48)

g = −6δ(z1 + l1)(z1 + l1 + l2)

l32
(49)

h =
3δl2(z

2
1 + l21) + 6δz1l1(z1 + l1 + l2) + 2δ(z31 + l31) + (R0 − δ)l32

l32
(50)

The resulting axisymmetric flow domain is shown in Figure 1. As can be seen from the figure, by

construction, δ controls the severity of the constriction, while l1 can be used to create the asymmetry

about the z2 location.

Figure 1. Flow geometry.
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For all results that follow, R0 = 10.5, z1 = 600.5 and l1 + l2 = 30.
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6. Numerical Results and Discussion

For all (dimensionless) MPC simulations that follow, there were approximately N = 8.5 million

particles of unit mass m = 1 in the system, Δx = 1 = Δy = Δz; there were 1, 200 cells in

the z direction and 25 cells in the x and y directions, respectively. The time step was taken to be

Δt = 1 and kBT = 1, together with n = 20. For the cumulative average, the averaging started after

5, 000 time steps and was performed for 35, 000 time steps thereafter. The initial system was set up

with x and y velocities drawn from a Maxwellian velocity distribution, and z velocity drawn from

the steady velocity profile of flow through a cylinder of fixed radius R0.

A length of 1, 200 cells in the z-direction was chosen so as to ensure that periodic boundary

conditions are valid. For this cylinder length, the velocity settled back to the expected parabolic

profile in an unconstricted cylinder prior to reaching the exit for all constrictions considered here.

In addition, since the velocity and density were found to be affected upstream in some simulations,

starting the constriction at z = 600.5 ensured that there was a region upstream for which this effect

was not present. Although some constrictions did not require a length of 1,200, this length was fixed

for all simulations, so as to ensure that the most severe constriction with the highest Reynolds number

would satisfy the periodic boundary condition.

The initial velocity distribution in the z direction was chosen, so as to reduce the simulation time.

Test simulations (not reported here) were performed using a Maxwellian velocity distribution in all

three directions as the initial state. The system maintained the Maxwellian velocity distribution in

the x and y directions, and on average, the expected z velocity distribution that was later chosen as

the initial state. In this way, the system reached equilibrium earlier, and the cumulative averaging

could start after 5,000 time steps in all cases considered.

Table 1. Parameter values used in the analytical solution in Figure 2 for comparison with

the particle-based method for compressible no-slip flow (λ = 0, ws = 0).

g ρ0 ρequil ρ0−ρequil

ρ0
W 0 Re0

0.005 20.025321 20.55929025 −0.0267 0.168938215102975 4.126

0.01 20.187479 20.73938113 −0.0273 0.338610045766591 8.277

0.02 20.9408427 21.57604487 −0.0303 0.683610724092841 16.770

Table 2. Parameter values used in the analytical solution in Figure 3 for comparison with

the particle-based method for compressible flow with slip (λ = 0.5).

g ρ0 ρequil ρ0−ρequil

ρ0
ws W 0 Re0

0.005 12.3602273 12.70014982 −0.0275 0.0358641 0.164985484616928 3.784

0.01 12.4565002 12.57105274 −0.0092 0.0733492 0.331580364858540 7.616

0.02 12.8636085 12.53377480 +0.0256 0.145642 0.670483591369728 15.479
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Simulations were done using serial code on an Intel Xeon X5482 3.2 GHz machine with 8 GB

RAM. Typical run times were 3–4 days.

To obtain the required upstream values for ρ0, the particle-based numerical results were averaged

over the centerline density values for z ∈ [0, 100], and a best parabolic fit to the cross-section at

z = 100.5 gave rise to the values for W 0 and ws, as provided in Tables 1 and 2. These values were

then used to determine the density from numerical integration of Equation (41).

Figure 2. Comparison of analytical results with the particle-based method for variation

in the Reynolds number in a constriction for which δ = 0.5, l1 = 20, λ = 0 (no slip)

and ws = 0. (a) Numerical and theoretically-predicted scaled centerline densities; and

(b) corresponding numerical and analytical scaled centerline velocities. See also Table 1.
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Figure 3. Comparison of analytical results with the particle-based method for variation

in the Reynolds number in a constriction for which δ = 0.5, l1 = 20, λ = 0.5

(slip). (a) Numerical and approximate scaled centerline densities; and (b) corresponding

numerical and analytical scaled centerline velocities. See also Table 2.
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It can be seen in Figure 4 that the bounce-back rule (MPC-BB, λ = 0) correctly leads to the

expected zero velocity at the wall, while slip is clearly present in the MPC-LIT(λ = 0.5) case.

Figure 4. Cross-section velocity profile at various z locations far upstream of the

constriction for λ = 0 (bounce-back, multiparticle collision (MPC)-BB) and for λ = 0.5

(loss-in-tangential, MPC-LIT) together with a best parabolic fit. MPC-BB correctly leads

to the no-slip boundary condition, while MPC-LIT clearly has finite slip at the wall.
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The differential equation for density was found to have a stable positive steady state, ρequil, that

differed slightly from the ρ0 determined from the MPC results. The values have been added to the

Tables, as well as the relative errors from ρ0. The density equation was solved numerically using

the fourth-order Runge–Kutta scheme with Δz = 0.001 using MAPLE. Since the geometry is a

piecewise defined function, the equation was solved one piece at a time, and instead of imposing ρ0

as an initial condition at z = 0, ρequil was used. The differential equation was then solved on [0, z1]

with the value at z1 becoming the initial condition for the differential equation on [z1, z2], and so on.

In this way, the numerical solution was found for z ∈ [0, 1200]. Since the system has a steady state,

the density settled back to the equilibrium value downstream of the constriction, thus ensuring that

periodic boundary conditions are obtained in the analysis allowing comparison with the MPC results.

6.1. Compressible No-Slip Flow

In Figure 2a, a comparison of the theoretically-predicted centerline density arising from the

numerical solution of Equation (41) is made with the particle-based MPC density results in the

no-slip case. It can be seen that although there are some discrepancies between the predicted density

curves and those obtained from the MPC simulations, both predict a density increase through the

constriction, and the best agreement is found for the lowest Reynolds number considered (g = 0.005

curves). Worth noting in Table 1 is the increase in ρ0 as Re0 increases, which is consisted with the

increase in ρequil.



537

Using the theoretically-predicted density curves in the centerline velocity expression (36) gives

rise to the theoretically-predicted centerline velocity curves in Figure 2b. It can be seen that the

theoretically-predicted centerline velocity agrees fairly well with the MPC result for g = 0.005,

but as the Reynolds number increases, the agreement worsens. Worth noting is the appearance of a

dip in the centerline velocity in both the theoretically-predicted and MPC results as a result of the

constriction for the largest Reynolds number considered (g = 0.02).

6.2. Compressible Flow with Slip

For compressible flow with slip at the wall, relevant parameter values arising from the theoretical

and numerical results are shown in Table 2. Theoretical scaled centerline densities and centerline

velocities are compared to MPC results in Figure 3. It can be seen in (a) of the figure that there

is some discrepancy between the theoretically predicted and MPC density results, but that the

agreement is somewhat better than in the no-slip case. Likely due to the better agreement between

the density curves, the scaled centerline velocities agree better, as well, and the dip for the largest

Reynolds number (g = 0.02) is slightly overestimated by the theoretical predictions, contrary to the

no-slip case.

Worth noting here is that, although the density curves seem to match better in the slip case,

glancing at Table 2, ρ0 is found to increase as the Reynolds number increases, while the reverse is

predicted with ρequil.

Table 3. Parameter values used in the analytical solution in Figure 5 for comparison with

particle-based method for compressible flow through constrictions of varying degrees.

δ λ ρ0 ρequil ws W 0 Re0

0.5 0 20.025321 20.55929025 0 0.168938215102975 4.126

0.5 0.5 12.3602273 12.70014982 0.0358642 0.164985484616928 3.784

1.5 0 19.9307477 20.43003857 0 0.168324883949003 4.109

1.5 0.5 12.3319318 12.67373252 0.0379518 0.165379390657969 3.792

2 0 19.8767493 20.32769045 0 0.167506930369402 4.088

2 0.5 12.3103817 12.61661932 0.0356837 0.163995726106273 3.759

6.3. Effect of the Severity of the Constriction

For the smallest Reynolds number considered (g = 0.005), the severity of the constriction is

varied for both slip (λ = 0.5) and no-slip (λ = 0) flow. Corresponding parameter values are given

in Table 3, and resulting scaled centerline velocity plots are shown in Figure 5. It can be seen

that there is relatively good agreement between the theoretically-predicted curves and those from

the MPC results for the mildest constriction (δ = 0.5) and that there is some discrepancy as the

constriction becomes more severe. The appearance of a dip in the scaled centerline velocity for the

more severe constrictions is captured in the slip case, while the decrease in scaled centerline velocity
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upstream of the constriction is found in the MPC no-slip results, but not in the theoretical predictions.

On these same no-slip plots, the theoretical results predict a lower scaled centerline velocity in the

post-constriction region, while MPC results do not show this feature.

Figure 5. Comparison of analytical results with the particle-based method as the severity

of the constriction varies with g = 0.005, l1 = 20. (a) Scaled centerline velocities for

no-slip flow (λ = 0); (b) scaled centerline velocities for flow with slip (λ = 0.5). See

also Table 3.
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6.4. Effect of Increasing Slip

Increasing the slip parameter, λ, and, thus, the wall slip, ws, leads to Figure 6. Parameter values

used in the analytical velocity profiles are provided in Table 4. There is very good agreement between

the analytical and the numerical results as the slip is varied, and the equilibrium density values from

the theoretical predictions agree well with the centerline densities obtained in the MPC results.

Table 4. Parameter values used in the analytical solution in Figure 6 for comparison with

the particle-based method for compressible flow through a constriction with δ = 0.5,

g = 0.005, l1 = 20 and variable slip parameter values.

λ ρ0 ρequil ws W 0 Re0

0 20.025321 20.55929025 0 0.168938215102975 4.126

0.2 14.9570845 14.90941499 0.00852200 0.155209851730363 3.663

0.4 12.6323301 12.66736550 0.0242417 0.155669931290677 3.583

0.5 12.3602273 12.70014982 0.0358642 0.164985484616928 3.784

Figure 6. Comparison of analytical and numerical scaled centerline velocities for varying

values of the wall slip through a constriction with g = 0.005, δ = 0.5 and l1 = 20. See

also Table 4.
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6.5. Contour Plot Comparison

Figure 7 shows contour plots for the scaled centerline velocity for both the analytical and

numerical particle-based method results for a constriction with δ = 2, g = 0.005, l1 = 20 and

λ = 0.5. For the analytical results, the values of the last row of Table 3 were used.

Figure 7. (Color online) Contour plots for the scaled velocity with δ = 2, λ = 0.5,

l1 = 20 and g = 0.005 for (a) the analytical results and (b) the particle-based method.
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7. Discussion and Conclusions

An approximate analytical solution for the density, and for the axial velocity distribution, in

an asymmetric constriction have been developed and compared to the numerical solution of a

particle-based system governed by the multiparticle collision (MPC) dynamics. The solutions in

all cases correspond to compressible flow with slip at the cylinder wall. Reynolds numbers varied

from approximately four to 17.

Analysis of results revealed that increasing the Reynolds number in a fixed geometry leads to the

appearance of a dip in the scaled centerline velocity in the entry region of the constriction, together

with more pronounced flow acceleration following the location of maximum constriction. This is

true with and without slip. In addition, as the Reynolds number increases, there is an increase in

scaled centerline density, ρ0, in all cases considered, except in the analytical results with slip that

predict a decrease in centerline density (ρequil) instead. As the severity of the constriction increases,

both slip and no-slip results show acceleration through the constriction, although the analytical and

MPC results agree best for the mildest constriction (δ = 0.5) considered. Consistent with theory and

MPC is the appearance of a dip in the scaled centerline velocity in the post-constriction region that

is more pronounced as the severity of the constriction increases. This dip is, however, missing from

the no-slip MPC results, which, instead, show a dip in the upstream section that is not captured in

the theoretical predictions. Lastly, increasing slip has the effect of leading to faster flow through the

constriction with the appearance of a dip in the post-constriction region that is consistent with the

MPC results.
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Figure 8. Comparison of W versus Wapprox = 2W−ws for both (a) no-slip; and (b) slip.

The best agreement is found for g = 0.005.
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Since many key features compare well between the theoretically predicted results and those

obtained by MPC, it is expected that improvements in the theory will lead to even better agreement in

the constriction region and thereafter. In particular, an approximation was made for
∫ R

0
rw2dr, which

led to some errors in the pressure equation and all equations in the subsequent analysis. In Figure 8,

plots of W and Wapprox = 2W − ws can be found for the constrictions considered in Figures 2 and

3. It can be seen that relationship Equation (A9) is true for the smallest constriction considered and

fails to hold for the higher Reynolds numbers, more so for the no-slip case in (a). This is likely a
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key reason as to why the agreement between MPC and theory is worse for larger Reynolds numbers.

Furthermore, all quadratic (dP/dz)2 and second-order d2P/dz2 terms were dropped in the analysis,

which likely led to some errors, as well. It would be interesting to explore whether or not keeping

such terms in the analysis leads to significant improvements over what was found here, and this is

currently under investigation. An additional source of discrepancy between the results could be the

use of a thermostat in the MPC simulations that is applied uniformly, rather than locally, and whether

or not using a local thermostat leads to better agreement is currently under investigation. A discussion

on the use of thermostats in MPC simulations has been given in [43,44], and it would be interesting

to see whether or not changing the thermostat in the simulations can lead to better agreement with

the theoretical results.

In summary, an analytical solution for the flow of a compressible Newtonian fluid with slip at the

wall was developed and found to compare fairly well to a numerical solution for a particle-based fluid

governed by MPC in mild constrictions with low Reynolds numbers. Various Reynolds numbers,

Mach numbers, wall slip values and flow geometries were considered in the analysis for asymmetric

flow domains.
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Appendix A

In this Appendix, the details of obtaining pressure Equation (A19) are shown.

To obtain an expression for dP
dz

, we first integrate Equation (19) across the cylinder to get:

1
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Next, we divide by ρ = ρ(z) and take all z-derivatives outside of the integral using:

d

dz

R∫
0

h(r, z)dr = h(R, z)
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to get:
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where ν = μ
ρ
. Taking w ≈ wpoi in the integral on the left-hand side gives,
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where:

W =
1

2
(W + ws) (A9)

has been used in Equation (A6) to replace W in terms of W , and Equation (30) has been used in

Equation (A7) to replace W in terms of Q. The relationship in Equation (A9) follows from using

wpoi as given in Equation (22), in flow rate Equation (30). Although this relationship is exact for

w = wpoi in an unconstricted portion of the cylinder, it is also assumed to hold throughout the

constriction, thus potentially giving rise to some error in the analysis.

Now:
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Thus, Equation (A8) gives:
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where we have also used equation of state Equation (16) to write dρ
dz

in terms of dP
dz

and flow rate

Equation (30) to write Q in terms of W .

Substituting Equation (A18) in Equation (A4), writing all integrals in terms of Q and

differentiating, noting that dQ/dz = 0, using
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from Equation (21) together
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where we have defined the local Reynolds and Mach numbers as:
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respectively.

This is the pressure equation provided in Equation (32).

Appendix B In this Appendix, we provide the coefficients of η in axial velocity Equation (35):
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Abstract: Although substantial progress has been made in recent years in research

on sheared granular matter, relatively few studies concentrate on the behavior of

materials with very strong polydispersity. In this paper, shear deformation of a

two-dimensional granular material composed of frictional disk-shaped grains with

power-law size distribution is analyzed numerically with a finite-difference model. The

analysis of the results concentrates on those aspects of the behavior of the modeled

system that are related to its polydispersity. It is demonstrated that many important

global material properties are dependent on the behavior of the largest grains from the

tail of the size distribution. In particular, they are responsible for global correlation

of velocity anomalies emerging at the jamming transition. They also build a skeleton

of the global contact and force networks in shear-jammed systems, leading to the very

open, “sparse” structure of those networks, consisting of only ∼35% of all grains. The

details of the model are formulated so that it represents fragmented sea ice moving on a

two-dimensional sea surface; however, the results are relevant for other types of strongly

polydisperse granular materials, as well.

Keywords: granular materials; finite-element simulation; shear deformation; jamming

phase transition; polydispersity; force networks

1. Introduction

Granular materials are an example of systems in which relatively simple interactions between

similar discrete objects (grains, or particles) produce very complex emergent behavior. Extensive
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experimental and numerical research on granular materials in recent years produced many important

insights into the dynamics of those systems. One group of studies has concentrated on the

jamming phase transition, revealing new details of the (relatively well understood) isotropic jamming

(e.g., [1,2]), as well as the existence of previously unexplored jammed states in systems subject to

shear strain [3–10]. However, the behavior of very strongly polydisperse materials in those settings

remains very poorly understood. Most works, including those cited above, concentrate on materials

with narrow grain-size distributions (GSD). How polydispersity influences the system dynamics close

to and at the jamming phase transition remains an open question.

An example of a granular material with a very wide GSD is sea ice, especially close to the ice

edge (the so-called marginal ice zone) or, more generally, in regions where, due to the action of wind,

ocean surface waves and currents, the ice cover is fragmented into separate floes. A typical example

of this ice cover type is shown in Figure 1. Because the vertical dimension (thickness) of the floes is

much smaller than their horizontal dimension (diameter), sea ice can be regarded as two-dimensional

(2D). The shape of the ice floes may vary from very irregular through polygonal to nearly circular,

depending on the external forcing (especially waves) and the ice age and thickness. However, in

most situations, the geometrical properties of the floes, like, e.g., the aspect ratio, remain within

a relatively narrow range independently of the area and conditions of observation [11–13]. More

importantly, the observed floe-size distributions (FSDs) are very wide and have power-law tails with

an exponent α < 2 [11–16]. Although it is generally acknowledged that the granular nature of

fragmented sea ice influences its dynamics (see, e.g., [17]), most large-scale sea ice models treat ice

as a viscous-plastic continuum; our knowledge of how and when the processes taking place at a floe

level influence the large-scale behavior of sea ice is very limited.

Figure 1. Fragment of a satellite image of fragmented sea ice in the marginal ice zone

off the Antarctic Peninsula (source: Landsat [18]).
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This work is a continuation of previous numerical studies on sea ice composed of disk-shaped

floes with power-law size distribution [19–21]. It examines the behavior of a 2D polydisperse

granular material composed of frictional grains under pure-shear deformation (constant packing

fraction, or, in the sea-ice nomenclature, ice concentration A). The grains are placed on a frictional

substrate (representing the ocean) and interact with each other by means of Hertzian contact forces.

Although the details of the model are formulated so that it can represent sea ice moving on the sea

surface, the results are relevant in a more general context of sheared, strongly polydisperse granular

materials. Therefore, the specific sea-ice terminology is generally avoided in the rest of this paper,

with an exception yo some parts of the discussion in the last section.

The paper is structured as follows: the next section contains the description of the model—its

assumptions, governing equations and numerical formulation. The results are presented and

discussed in Section 3, with an emphasis on those aspects of the model behavior that are related

to the polydispersity of the material. In particular, it is demonstrated that grains from the tail of the

GSD play a crucial role in the development of the force and contact networks during the jamming

phase transition and are responsible for the emergence of domain-wide correlations between velocity

anomalies of individual grains. Finally, conclusions are formulated in Section 4.

2. Model Description

2.1. Model Equations

The modeled system consists of i = 1, . . . , N disk-shaped grains with radii ri, thickness hi and

density ρi, occupying a certain two-dimensional region, S . Let us denote the surface area, volume

and mass of the i-th grain with Si, Vi and mi, respectively. Obviously, mi = ρiVi = πρihir
2
i . The

grains move within S , due to both external forcing (e.g., friction against the underlying material)

and interactions with neighboring grains. The external forcing acting on the individual grains can

be expressed in terms of the density of the surface and body forces, denoted with f̌s,i and f̌b,i,

respectively. The net interaction force acting on grain i at a given time instance, t, is a sum of

all pairwise interaction forces with grains that are in contact with i at time t. The set of those grains

will be denoted with Ci(t). For j ∈ Ci, F̂ij,n and F̂ij,t, denote the normal and tangential components,

respectively, of the grain-grain interaction force. Under these assumptions, the general form of the

equations for the linear and angular momentum of the i-th grain is:

mi
dui

dt
=

∫
Si

f̌s,ids+

∫
Vi

f̌b,idv +
∑

j∈Ci(t)
F̂ij,n (1)

and:

mi
r2i
2

dωi

dt
= k ·

⎡⎣∫
Si

r× f̌s,ids+

∫
Vi

r× f̌b,idv +
∑

j∈Ci(t)
rij × F̂ij,t

⎤⎦ (2)

where ui denotes the velocity of the grain’s mass center, ωi (its angular velocity), k (a unit vector

pointing vertically upward), r (the horizontal distance from the grain’s center) and rij (a vector
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pointing from the center of grain i to the contact point with grain j). The interaction forces are

calculated based on the Hertzian contact model. The normal force, F̂ij,n, has two components, a

contact force (dependent on the overlap between grains) and a damping force (dependent on the

relative normal velocity between grains). The tangential force, F̂ij,t, has two component,s as well,

namely the shear force (the so-called “history effect” that accounts for the tangential displacement

of the interacting grains during contact) and the damping force (dependent on the relative tangential

velocity between grains). All four of those forces depend on the effective radius of grains i and j,

rij = rirj/(ri+ rj), and on their material properties, i.e., the elastic modulus, E, and Poisson’s ratio,

ν, assumed constant for all grains. Details concerning the formulation of F̂ij,n and F̂ij,t can be found,

e.g., in [22,23] and in the documentation of the numerical model (see below).

Further details concerning the model formulation are given in [21]. The previous works [19–21]

stressed the importance of the size-dependent response of individual grains (ice floes) to the forcing

acting on them, relevant at low and medium packing fractions (A � 1). However, the focus of this

paper is on a slow deformation of a compact material in or close to the jammed state. Therefore,

the simulations described further were performed with a simplified set of equations, without the

form-drag terms responsible for the size-dependent response (see [21] for comparison). Furthermore,

it is assumed that the frictional substrate is at rest (i.e., both the wind speed and the current speed are

zero); the inertial effects (Coriolis term) are omitted, as well. Linearized formulae are used for the

grain-substrate (ice-ocean) friction term. Thus, Equations (1) and (2) simplify to:

mi
dui

dt
= −πr2iCfui +

∑
j∈Ci(t)

F̂ij,n (3)

and:

mi
r2i
2

dωi

dt
= −π

r4i
2
Cfωi + k ·

∑
j∈Ci(t)

rij × F̂ij,t (4)

where Cf denotes the friction coefficient (in the context of sea ice, Cf = ρwChw, where ρw is the

water density and Chw, the water-ice drag coefficient).

As described in [21], the model is based on the LAMMPS (Large-scale Atomic/Molecular

Massively Parallel Simulator) library [24,25], designed for simulating large systems of interacting

objects (particles, molecules, etc.). For the purpose of sea ice modeling, LAMMPS has been extended

to disk-shaped particles moving within two-dimensional domains. The Hertzian contact model,

available in the official version of LAMMPS, but only for spherical particles, has been modified in

order to account for non-spherical grain shape. The modification concerns the relationship between

the overlap between the grains and the shape and size of the contact area between them, which, in

turn, determines the resulting interaction force. In the case of spherical particles, the contact area is

circular, in the case of cylindrical particles, rectangular.

For all N grains, Newton equations of motion (1) and (2) (or, in this particular case, (3) and (4))

are solved by means of the velocity-Verlet integrator.
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2.2. Model Configuration and Simulations

In the simulations described in this work, the model domain, S , was rectangular, with length Lx,

width Ly = Lx/2 and surface area S = LxLy = π
∑N

i=1 r
2
i /A. In isotropic-compression simulations,

periodic boundary conditions were used in both x and y directions; in pure-shear simulations, only

along the x-axis, with the grains along the lower model boundary defined as “frozen” (velocity set

to zero throughout the simulation) and the grains along the upper model boundary moving with a

prescribed velocity ui = [ub, 0].

A complete list of the model parameters can be found in Table 1. The simulations were conducted

for grains with a power-law (PL) GSD, with the mean grain radius r̄ = 4.0 m and the slope of

the distribution α = 1.8, a typical value observed in sea ice (see, e.g., [15,16]). The sample of

N = 2 · 104 grain radii was generated with a maximum-likelihood method (e.g., [26], chapter 6.5),

which provides an estimate of the most probable value of the i-th element in the rank-ordered sample

of finite size N from a given distribution. Thus, deviations from a power law in the tail of the GSD,

resulting from the finite sample size, are properly accounted for.

Table 1. Physical and numerical model parameters used in the simulations. GSD,

grain-size distributions.

Parameter Symbol Value Units

Grain density ρi 910 kg/m3

Friction coefficient Cf 1.025 kg/m2/s

Disk thickness hi 1.5 m

Mean grain radius r̄ 4.0 m

Exponent of the power-law GSD α 1.8 —

Elastic modulus E 9.0·109 Pa

Poisson’s ratio ν 0.33 —

Static yield criterion μ 0.7 —

No. of grains N 20,000 —

Speed at the upper boundary ub 0.2–1.0 m/s

Time step Δt 5 · 10−4 s

In order to better illustrate the role of the extreme polydispersity in systems with a PL GSD,

additional simulations were performed with a narrow, bidisperse (BD) GSD, corresponding to that

used by Bi and colleagues [7,8], i.e., with the ratio of the radii of the coarse and fine fraction

r1/r2 = 1.16 and the respective numbers of grains n1 = 0.2N and n2 = 0.8N . The total number,

N , and mean grain radius, r̄, were the same as in the model setup with the PL GSD, resulting in

r1 = 4.503 m, r2 = 3.874 m. In the remaining parts of the paper, all results and comments relate

to the PL-GSD simulations unless clearly stated otherwise. Experiments with PL GSD with other

values of α from the range [1.5, 2.0] produced very similar results and will not be discussed here.
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The simulations were performed in two stages: (i) uniform, biaxial compression up to the

jamming phase transition; and (ii) pure shear for a set of combinations of packing fraction A and

strain rate ε values (with ε = ub/Ly). The simulations of the second stage were initialized by

sampling the results of the first stage at selected values of A and letting the system relax before

applying shear strain.

3. Results and Discussion

The general model behavior in uniform-compression simulations is described in [21]. The

jamming phase transition in the analyzed case occurs at AJ ≈ 0.918. It is accompanied by a rapid

increase of the internal pressure, p, the fraction of non-rattler grains (defined here as grains with

at least two contacts) and the mean contact number, ηc, i.e., changes indicative of the percolation

of the contact and force network. Additional simulations performed with different values of the

GSD exponent, α, showed that, not surprisingly, the jamming packing fraction, AJ , increases with

decreasing α (the wider the GSD, the denser the packing fraction attainable), but the course of the

jamming transition (for example, the shape of the p(A−AJ) curve) remains almost unaffected. This

suggests that the results presented here are relevant for a wider range of model parameters than those

actually used in the simulations.

The analysis below concentrates on the pure-shear model runs, with an emphasis on the role

of polydispersity in the model behavior close to and at the jamming phase transition. All results

have been obtained for packing fractions A < AJ , i.e., below the isotropic jamming point. Hence,

the “jammed states” in the discussion below refer to regions of shear-jammed and fragile states on

the jamming phase diagram proposed by Bi and colleagues [8]. Anticipating the further analysis

of the results, the term “jammed state” used throughout the rest of the paper refers to states in

which the largest contact network has percolated the whole system in both directions (and which

are accompanied by certain global characteristics described further).

3.1. Shear Jamming: General Characteristics

The general behavior of the modeled system under pure shear deformation depends on the

packing fraction, A, and the strain rate, ε [8]. At low A, the system remains in an unjammed state,

in which the internal stress is generated via short, binary collisions between neighboring grains.

Regions of jammed, more densely packed grains develop only locally (Figure 2); they are short-lived

and disperse, due to interactions with the surrounding, more loosely packed regions. Hence, the

internal stress level at the system scale remains very low, a few orders of magnitude lower than in

the jammed states (Figure 3), when the force network between grains percolates the whole system

(Figure 2) and the neighboring grains remain in contact for many seconds or even minutes (see further

Section 3.2), i.e., periods of time up to a few orders of magnitude longer than the duration of a typical

binary collision.
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Figure 2. Snapshots of contact networks in the modeled system in the unjammed (left;
A = 0.890, ub = 0.5 m/s) and jammed (right; A = 0.905, ub = 1.0 m/s) state. For

each grain, i, a line is drawn from its center to the center of the neighboring grain, j, if

j ∈ Ci(t). Grains belonging to the ‘frozen’ and moving boundaries are not shown.
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Figure 3. Time series of the average contact number, ηc (a), force-network anisotropy

ηa (b), pressure p (c), shear stress τ (d) and the principal angle, θp (e), during simulations

with: A = 0.908 and ub = 1.0 m/s (blue); A = 0.905 and ub = 0.5 m/s (black);

A = 0.905 and ub = 0.2 m/s (magenta).
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The large-scale system behavior can be described by means of the properties of the stress and

fabric tensors: the pressure p = (σ1+σ2)/2 and the shear stress τ = (σ2−σ1)/2 are calculated from

the principal stresses, σ1 and σ2; the mean contact number ηc = λ1 + λ2 and the contact-network

anisotropy ηa = (λ2 − λ1)/ηc are calculated from the eigenvalues of the fabric tensor, λ1 and λ2

(see [8,21] for details). Both in the jammed and unjammed states, far from the jamming-transition

point, those four large-scale system characteristics—p, τ , ηc and ηa—remain relatively stable in time,

and the system recovers fast from short rearrangement events that sporadically take place (Figure 3).

In between those two extremes, the system undergoes rapid changes and shifts from unjammed to

jammed states and vice versa (black lines in Figure 3). Between those two extremes, the force

networks often have a fragile, “openwork” structure, with relatively large unjammed areas where

the stress remains very low and with forces transmitted via long “strands” of approximately linearly

aligned grains. As in the case of fragile states observed recently [8], those force networks may span

the whole model domain in only one (compressive) direction, giving the material anisotropic strength

in response to deformation, which manifests itself in high values of ηa (see, also, Section 3.2). The

present results suggest that, even in constant strain conditions, the fragile states are short-lived, at

least in the range of A and ε combinations analyzed here.

Apart from the properties of the stress and contact-fabric tensors, a signature of jamming is

also present in the grains’ velocity, both means and their anomalies. Let us define um(y, t) and

σm(y, t), as the mean and standard deviation, respectively, of the velocity of all grains that at time

t have their y-coordinate within a certain small distance, δ, from y (i.e., that lie inside a stripe

of length Lx and width 2δ). Further, let 〈um(y)〉 and 〈σm(y)〉 denote the time mean of um(y, t)

and σm(y, t) over the whole simulation time and u′
i(x, t)—the velocity anomaly of grain i, i.e.,

u′
i(x, t) = ui(x, t)− 〈um(y)〉.

The profiles of 〈um(y)〉 and 〈σm(y)〉 are shown in Figure 4 for a range of A values corresponding

to unjammed and jammed states. At low packing fractions, the motion of the grains is confined to the

region close to the moving boundary, and a narrow zone of strong shear separates this region from the

rest of the model domain, remaining almost at rest. To the contrary, jammed states are characterized

by an almost constant velocity gradient d 〈um(y)〉 /dy and constant standard deviation of velocity

〈σm(y)〉, independently on the distance from the moving boundary, i.e., the strain is distributed over

the whole system.

In order to characterize the variability of velocity anomalies, it is convenient to define a

measure analogous to entropy (as used in statistical mechanics), characterizing the spread of velocity

anomalies of individual grains at a given time, t:

E(t) = −c

n∑
i=1

(pi log2 pi) (5)

where n denotes the number of bins of the discrete pdfof u′
i(x, t), pi is the probability density of

the i-th bin and c = 1/ log2 n—a normalization constant, introduced so that the maximum value

of E = 1. In order to account for different ranges of u′
i(x, t) in different model runs, the pdfs

were estimated by dividing the range, [q0.01, q0.99], into n = 100 bins of equal width, where q0.01,

q0.99 denote the 1% and 99% quantiles of the data, respectively. Thus, E analyzed here reflects the
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shape of the pdfs within the respective inter-quantile range, and not their widths, which, as shown in

Figure 4b, is much larger in the jammed than in the unjammed states.

Figure 4. Profiles of the average (a) and standard deviation (b) of the x-component

of grain velocity in the function of the normalized y-distance (y = 0 at the “frozen”

boundary and y = 1 at the moving boundary). Results obtained with ub = 1.0 m/s.
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Figure 5. Normalized entropy E of the anomalies, u′
i(x, t), in the function of the grain

packing fraction, A (a), and grain size (b). On each box, the central mark is the median,

the edges of the box are the 25th and 75th percentiles and the whiskers extend to the

most extreme data points not considered outliers. In (b), for the two selected values of A

(0.890 and 0.905), the statistics are calculated three times: for all N grains and for the

subsets of the 10% largest and 10% smallest grains, respectively. Results obtained with

ub = 1.0 m/s.
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As can be seen in Figure 5a, E increases with increasing packing fraction A. It has highest values,

exceeding 0.85, and lowest time variability (see the boxes and whiskers in Figure 5) in shear-jammed

states. In unjammed states, E, most of the time remains within the 0.65–0.7 range. Thus, the range

of instantaneous velocity anomalies in jammed systems is significantly larger, even corrected for the

width of the respective pdfs. On the other hand, jamming is associated with a transition from local

to global correlations of u′
i(x, t), as illustrated in Figures 6 and 7, showing the linear correlation

coefficient, C, between pairs of grains in two selected model runs (for two grains, i and j, C is a

Pearson correlation coefficient between the x-components of u′
i and u′

j over time tc = 100 min).

At low A, statistically significant correlation of velocity anomalies is observed only between grains

within a small spatial distance from each other. At high A, the correlation remains high within the

whole model domain. Those two facts—velocity anomalies correlated on the system-scale and high

values of E—indicate that in a jammed state, the grains tend to have large velocity anomalies that

are of the same sign.

Figure 6. Snapshots of the modeled system for ub = 1.0 m/s and the packing fraction

A = 0.809 (a) and A = 0.905 (b), showing the linear correlation coefficient, C, between

the velocity anomalies, u′
i(x, t), of a selected grain (dark brown, C = 1) and all other

grains in the system. C was calculated for a period of time equal to 100 minutes. Grains

belonging to the “frozen” and moving boundaries are not shown.
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Figure 7. The correlation coefficient, C, between the velocity anomalies, u′
i(x, t),

calculated for pairs of grains from a subset of the 10% largest (continuous lines)

and 10% smallest (dashed lines) grains in the whole ensemble, in the function of the

grain-grain distance. Results of simulations with ub = 1.0 m/s and A = 0.890 (blue),

A = 0.905 (red).
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3.2. The Role of Polydispersity

In systems with power-law GSD, the largest grains occupy a substantial part of the model domain

(even with increasing system size N ), and it is their locations and relative movement that have a

deciding influence on the system as a whole. Sub-regions of the model domain that at a given time

instance are filled with small grains can change their shape (and thus react to strain deformation)

more easily than assemblies of large grains. In many respects, assemblies of very small grains

act as a plastic, easily deformable ‘filler’ occupying empty spaces between very large grains. An

analysis of animations illustrating the time evolution of the modeled system reveal that the rapid

jamming and un-jamming events mentioned earlier (black curves in Figure 3) tend to be associated

with reorganization of the positions of the largest grains. This observation seems confirmed by the

fact that, at high packing fractions, the analyzed measures of the grains’ velocity anomalies, like the

entropy, E, are strongly correlated to the global instantaneous pressure, p, and shear stress τ and that

this correlation is higher for a subset of the largest grains than for the whole system. For example, in

the model run with A = 0.905 and ub = 1 m/s, the correlation of E with log(p) equals 0.83 and 0.95

for, respectively, all and the subset of 10% of the largest grains.

Previous experiments with an earlier version of the model demonstrated that polydispersity plays

an important role in many aspects of the dynamics of sea ice composed of floes with power-law

size distribution, including the formation of clusters in response to wind [19,20]. Not surprisingly,
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polydispersity also influences the behavior of the sheared systems studied here. Many global

characteristics of the system, including those analyzed above, have different values when they are

calculated for a subset of the largest or smallest grains, revealing their different response to the forcing

and interactions with neighboring grains. In particular, the entropy, E, of velocity anomalies of the

largest grains in an ensemble is higher than the system average at all packing fractions analyzed, i.e.,
both in jammed and unjammed states (Figure 5b). The emergence of long-range correlations between

velocity anomalies at the jamming transition, described in the previous section, takes place almost

exclusively due to correlations between the largest grains in the system (Figures 7 and 8). Similarly,

at low A, the high values of C within clusters (0.5–0.6 on average) are observed only for pairs of the

largest grains. Furthermore, whereas at low A, those values drop rapidly with increasing grain-grain

distance, the rate of that decrease is much slower in jammed states (compare the continuous curves

in Figure 7), resulting in a shift of the pdf of C towards larger values, representing statistically

significant correlation (Figure 8b). To the contrary, the pdfs of C of the smallest grains (in this case,

ri < 1.87 m) hardly change at the jamming transition, with most values of C remaining at a very low,

statistically insignificant level.

Figure 8. pdfsof the correlation coefficient, C, between the velocity anomalies, u′
i(x, t),

calculated for pairs of grains from a subset of the 10% largest (blue) and 10% smallest

(red) grains in the whole ensemble. Results of simulations with ub = 1.0 m/s and

A = 0.890 (a), A = 0.905 (b).
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Thus, the increase of the packing fraction, A, towards jamming is accompanied by the growth of

clusters of coordinated motion of the relatively small subset of the largest grains (notably, the range

of sizes of those grains is still very wide, between 6.5 and 180 m). It is worth noting that similar

behavior has been described recently for sheared bidisperse granular systems, in which the dominant
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dynamical modes were associated with reorganization of grains within localized clusters [10].

Similarly, Weeks and colleagues [27] observed cooperative motion of particles within clusters in

colloidal supercooled fluids, with the size of clusters rapidly increasing when the system approached

the glass transition.

Figure 9. Selected properties of the contact networks in the modeled system for a number

of packing fractions, A: number of contacts of individual non-rattler grains, nc,i (a); nc,i

scaled with grain perimeter 2πri (b); percentage of the simulation time when individual

grains were non-rattler grains (c); percentage of grains with at least three contacts (d);

average contact number ηc (e); and contact-network anisotropy ηa (f). In (d–f), the

elements of the box symbols are the same as in Figure 5; they reflect the time variability

of the analyzed variables during the simulation.
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Due to obvious geometrical reasons, in strongly polydisperse materials, the number of contacts of

individual grains strongly varies. Interestingly, the jamming transition (inferred from the size of the

largest connected cluster) in the analyzed cases still takes place when the average contact number, ηc,

exceeds the value of three (packing fraction A = 0.905 in Figure 9e), similarly as in monodisperse

and weakly polydisperse systems ([8] and Figure 10). For the large grains from the tail of the GSD,

the contact number of individual grains, nc,i, is an approximately linear function of their radius (and

perimeter), with nc,i/(2πri) ≈ 0.05 in the jammed state (Figure 9a,b), e.g., nc,i ∼ 30 for ri = 100 m.
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A linear relationship for nc(r) has been obtained recently by Shaebani and colleagues [28] in

simulations of 2D uniformly compressed, weakly polydisperse systems, in agreement with their

mean-field solution. In our simulations, smaller grains often have just one or two neighbors (hence

the points on the left side of Figure 9b tend to lie on the r−1 curve), and importantly, it is their

incorporation into the system-wide contact network that leads to its consolidation at the jamming

transition: whereas the largest grains are non-rattler grains most of the time, even in unjammed

states, the smallest grains switch at jamming from predominantly freely moving to predominantly

non-rattler (Figure 9c; see also Figure 2). Consequently, jamming is associated with a decrease of

the mean radius of grains forming the main contact network (not shown). On the other hand, it is the

largest grains that build the stable skeleton of the global contact and force network, in the sense that

the great majority of grains, predominantly from the left part of the GSD, does not participate in its

formation. Even in a jammed state, only ∼35% of grains have three or more contacts (Figure 9d), and

even though ηc > 3, the mean contact number for the 90% smaller grains (i.e., excluding the 10%

largest) is smaller than three. The “sparse” character of the grain-grain contacts is clearly seen in

Figure 11. In the jammed state at A = 0.905, the force network percolates the whole model domain

(see also Figure 2), but it has an “openwork” structure, with the largest grains incorporated into

long force chains and irregular “cells”, surrounding unjammed regions, usually filled with very small

grains. As already mentioned, the assemblies of the smallest grains act as a semi-plastic “filler”,

adjusting its shape to the deforming cells of the main force network.

All those properties of the analyzed system are directly related to its extreme polydispersity. In

the bidisperse reference case (Figure 10), the jamming transition is much more rapid in terms of

the amount of grains that are incorporated into the global contact network: as soon as ηc exceeds

the value of three, roughly 80% of grains become non-rattler grains (Figure 10d,e). Moreover, the

coarser and finer fractions contribute similarly to the contact network (compare Figure 10b,c), and

the (very small) difference between the average number of neighbors of individual grains from the

two fractions (Figure 10a) results simply from the difference between their perimeters.

Back to the PL-GSD simulation, it is also worth noticing that although the contact numbers of the

largest grains are high independent of the packing fraction (Figures 9c and 11), in unjammed states,

most of those contacts do not form part of stable force strains, but reflect individual collisions as they

‘fight their way’ among smaller neighbors (in Figure 11 at A = 0.890, most of the lines outgoing

from the centers of the largest grains are black, i.e., they lead to grains with a number of contacts

lower than three). Such contacts rarely survive more than a few seconds. Indeed, the exceedance

probability of contact lifetime is at low A similar for all grain sizes (Figure 12) and only ∼10% of

contacts survive for longer than one minute, as compared to ∼25% and 40% of contacts between the

smallest and largest grains, respectively, observed in the jammed state.

Moreover, it must be remembered that the condition, nc,i ≥ 3, alone is not sufficient to stabilize

the position of individual grains within the contact network. The arrangement of the contacts around

the grain’s perimeter is important, as well. For a given grain, i, this arrangement is determined by

a set of vectors, rij , for all j ∈ Ci (see Section 2.1), which divide the grain into nc,i sectors. The

central angle of the widest of those sectors (for brevity, we will call it the maximum contact angle,
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αmax) provides a useful measure of the above-mentioned stability of the i-th grain within the force

network. Obviously, αmax < 180◦, possible only if nc,i > 2, is necessary for stability; αmax < 120◦

is possible only if nc,i > 3.

Figure 10. Selected properties of the contact networks in the bidisperse (BD) model case

for a number of packing fractions, A: mean number of contacts of individual non-rattler

grains, nc,i, from the finer and coarser fractions (a); percentage of the simulation time

when individual grains from the finer (b) and coarser (c) fraction were non-rattler grains;

percentage of grains with at least three contacts (d); average contact number ηc (e); and

contact-network anisotropy ηa (f). In (b–f), the elements of the box symbols are the

same as in Figure 5; they reflect the time variability of the analyzed variables during

the simulation.
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As can be seen in Figure 11b, many non-rattler grains, i.e., those with nc,i > 2, have αmax > 180◦.

In fact, ∼14% out of the ∼35% of grains building the percolated contact network (i.e., ∼5% of the

total) have αmax > 180◦. For comparison, out of 82%–83% of grains building the global network

in the BD case, only ∼1% are unstable. Figure 13 shows the pdfs of αmax for the PL and BD cases

in shear-jammed states. In the BD simulations, the pdfs have high peaks close to the 120◦ value,

indicating the prevailing—very stable—contact arrangement with nc,i = 3 and roughly uniform

distribution of neighbors around the grain’s perimeter. Notably, the pdfs for the coarser and finer

fractions have very similar shapes, with an exception of a small second peak close to 180◦ for the
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finer fraction. To the contrary, in the PL simulations, the pdf of αmax of the smallest grains has

a wide maximum shifted towards the unstable region and a long tail corresponding to individual,

instantaneous collisions.

Figure 11. Zoomed fragments of the modeled system (top: A = 0.890; bottom:

A = 0.905) corresponding to the situations shown in Figure 2. Color scale: number

of contacts, nc,i, of individual grains (dark blue: zero; light blue: one; yellow: two;

brown: three or more). Red lines: forces between grains with nc ≥ 3; black lines: the

remaining forces.
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Finally, another very important property of force networks in sheared systems is their anisotropy,

ηa. It has been identified as an order parameter for shear-jammed states, in that it is non-zero in

such states and zero in isotropically jammed systems [8]. The values of ηa obtained in this work, in

the BD and, especially, PL simulations, are lower than those reported in [8], which may be related

to the details of the contact-model formulation. Characteristically, for the PL case, the ηa values are

roughly 50% higher for the 10% largest grains than the ensemble mean (not shown), again underlying

the special role of those grains in shaping the force network structure. The overall variability of ηa(A)

is, however, similar in both PL and BD simulations, i.e., a rapid drop of ηa is observed at jamming,

preceded by a slight increase when the jamming is approached from below (Figures 9f and 10f). The
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strongest anisotropy was obtained in those model runs, in which the system underwent strong shifts

between unjammed and jammed states (black curves in Figure 3).

Figure 12. Exceedance probability of the contact lifetime (in seconds) for two values of

the packing fraction (A = 0.890, dashed lines; A = 0.905, continuous lines), calculated

for contacts between the 10% largest (blue) and 10% smallest (red) grains.
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Figure 13. pdfs of the maximum contact angle, αmax, for two model runs: with

bidisperse (BD; A = 0.816) and power-law (PL; A = 0.905) grain-size distribution. For

the BD case, the pdfs are calculated separately for the coarser and finer grain fraction; for

the PL case—for the subsets of 10% largest and 10% smallest grains. The vertical dotted

and dashed lines mark the values αmax = 120◦ and αmax = 180◦, respectively (see the

text for a description).
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4. Conclusions

The results of the present study suggest that many global characteristics of granular materials

with very wide GSD, including those indicative of the jamming phase transition, are determined by

the behavior of and interactions between a relatively small subset of the largest grains from the tail of

the GSD. They build the “core” of the contact and force networks in the material and, consequently,

react in a coordinated manner to strain deformation.

To summarize, the percolation of the contact networks in the analyzed system with PL GSD

is associated with the following changes of the global system properties: (i) rapid increase of the

entropy of grain velocity anomalies; (ii) emergence of large-scale correlation between the velocity

anomalies of the largest grains; (iii) rapid increase of the mean contact number and the fraction of

non-rattler grains, accompanied by a rapid decrease of the contact network anisotropy; and (iv) rapid

increase of the contact lifetimes, especially between the largest grains. In comparison to less strongly

polydisperse systems, the percolated contact networks are built of a significantly smaller subset of

grains in stable positions, capable of sustaining non-zero strain.

In the context of sea ice (and presumably other real-world polydisperse granular material, as

well), the behavior of the largest grains is relevant from a practical point of view: very likely, it is they

that are subject to observation. Measuring equipment is usually mounted on the largest and thickest

ice floes, providing stable and relatively safe observational platforms. Similarly, in the analysis

of remote sensing (satellite or airborne) images of sea ice, it is the largest floes that can be easily

identified and tracked. Thus, it is relevant to understand how the behavior of floes (or, more generally,

grains) from the tail of the GSD is different from the behavior of the remaining grains and how it is

related to the properties of the granular material as a whole. Even though the simulations described

in this paper are highly idealized (no wind, ocean currents, etc.), in view of the fact of how little is

known about the influence of granular effects on sea ice dynamics, they provide a starting point for

further, more advanced studies.
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Abstract: In the last few decades, computer simulations have become a fundamental tool

in the field of soft matter science, allowing researchers to investigate the properties of a

large variety of systems. Nonetheless, even the most powerful computational resources

presently available are, in general, sufficient to simulate complex biomolecules only for a

few nanoseconds. This limitation is often circumvented by using coarse-grained models,

in which only a subset of the system’s degrees of freedom is retained; for an effective

and insightful use of these simplified models; however, an appropriate parametrization

of the interactions is of fundamental importance. Additionally, in many cases the

removal of fine-grained details in a specific, small region of the system would destroy

relevant features; such cases can be treated using dual-resolution simulation methods,

where a subregion of the system is described with high resolution, and a coarse-grained

representation is employed in the rest of the simulation domain. In this review

we discuss the basic notions of coarse-graining theory, presenting the most common

methodologies employed to build low-resolution descriptions of a system and putting

particular emphasis on their similarities and differences. The AdResS and H-AdResS

adaptive resolution simulation schemes are reported as examples of dual-resolution

approaches, especially focusing in particular on their theoretical background.

Keywords: soft matter; coarse-graining; adaptive resolution simulations
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1. Introduction

Since the pioneering work carried out by Berni Alder [1] in the 1950s, in silico experiments,

such as Molecular Dynamics (MD) or Monte Carlo (MC) simulations, allowed researchers to

obtain major advancements in the understanding of systems with many degrees of freedom. In

particular, during the last few decades, the increasing accuracy of the force-fields, the improvement

of the algorithms, and the steady boost of computer power made it possible to perform insightful

simulations of a broad variety of systems of increasing size and complexity, ranging from

simple liquids -composed of idealized, point-like molecules interacting via simple potentials- to

biomolecules. Nonetheless, the amount of available computational resources can be insufficient to

simulate, for a physically meaningful time, even the simplest nontrivial macromolecule. It is often

the case, in fact, that “interesting” phenomena in these systems occur on very long time-scales: a

simple example of this is provided by the diffusion of a polymer in a melt [2,3]; the same behavior

can observed in conformational changes of proteins [4–9], at least in those cases in which the force

field provides a good approximation to the real atomistic interactions.

At the same time, in many cases the massive amount of data that are produced in a simulation

is composed mostly of non-useful information. A prototypical example is given by the solvent: the

water molecules that solvate a protein or a membrane are typically discarded from the analysis that

follows the simulation, with the possible exception of a few solvation shells around the molecule

itself. In this case a large fraction of the computational power is employed in the integration of the

equations of motion of degrees of freedom which are extremely relevant during the simulations, but

are completely neglected afterwards.

In order to overcome this limitation, coarse-grained models [10–15] have been developed, where

the structure and interactions of the original system are replaced with simpler ones, which are easier

to describe, model, simulate and understand. The assumption underlying the coarse-graining of

a system is that above a given length scale the low-level, chemistry-specific detail of the model

affects some properties of the system only in a simple, functionally trivial way - often through

prefactors. Examples of systems for which this approach proved to be extremely successful are

molecular fluids, polymers [2,3,16,17], elastic network models of proteins [18–23], lipid membranes

and other biomolecular systems, just to mention a few.

In recent years, systematic coarse graining approaches have gained importance, where the

interactions in the coarse-grained (CG) model are derived systematically from atomistic reference

simulations in a bottom-up fashion. These models are often used in a multiscale simulation

framework, where the closeness of higher and lower levels of resolution allows a switching back

and forth between them. Below, we will review several systematic coarse graining approaches and

address some of the most important methodological issues and challenges.

The smaller amount of degrees of freedom that are retained in coarse-grained models and the

simpler force-fields employed allow the characterization of relevant properties of a system at a

cheaper computational cost compared to the high-resolution atomistic models; on the other hand,

there are cases in which the chemical detail in a small region of the system plays a crucial role, such
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that no simplification of the description is possible: think, for example, of the active site of a large

enzyme, where fine-grained chemical processes take place. A high-resolution modeling of each part

of the system would not be necessary, but at the same time a coarse-graining approach would delete

important information.

This last observation naturally leads us to identify a particular class of soft matter systems among

those that are studied with the help of computer simulations. Specifically, we can consider those

systems where the focus is on a small, well-defined subregion of the simulation box. To this class

belong, for example, certain solvated (macro)molecules, active sites of enzymes, the interaction of

specific polymer ends at a surface, or simply a small spherical region in a homogeneous fluid whose

radius is of the length scale of the property we are interested in.

For such systems the remaining, “non-interesting” region consists of the volume containing all

those degrees of freedom which will be eventually neglected and/or discarded once the simulation is

done, such as the solvent or large parts of a macromolecule which do not play an active role in the

process of interest (e.g., all atoms sufficiently far from the active site of an enzyme). Usually, detailed

knowledge about structural, energetic and thermodynamical properties of these large sections of the

system is not required; nonetheless these “non-interesting” degrees of freedom have to be explicitly

present and integrated, inasmuch as they “scaffold” the target object of the simulation and represent

a reservoir of energy and molecules.

A method is thus required that allows one to perform a simulation where the largest part of

the computational resources is concentrated on that region of the system that will be subsequently

analyzed. Adaptive resolution simulations methods [24–34] were developed to solve the contradiction

between the necessity of simulating all parts of the system and the fact that, eventually, the detailed

information from a large subgroup of them will be neglected. The underlying idea is to replace these

“non-interesting” degrees of freedom of the system with a simpler, coarse-grained representation,

such that a sensibly smaller number of computations (e.g., force calculations) is required, while the

“interesting” region is treated at a higher resolution.

This approach gives rise to at least two important conceptual problems that have to be solved:

(1) what is the smallest number of properties of the original system that have to be retained in the

coarser model, and which are they;

(2) how to interface the low-resolution, “non-interesting” region and the high-resolution region to

preserve the correct physics at least in the latter.

These two problems are obviously interconnected, since the way the high- and low-resolution

regions interact at the interface naturally depends on the specific properties of the models used in

each of them; a thorough discussion of these aspects will be carried out in the context of the Adaptive

Resolution Simulation (AdResS) [24–32] and Hamiltonian AdResS [33,34] (H-AdResS) methods.

The present review is composed of two principal parts: in Section 2 the basics of coarse-graining

theory are presented together with a few examples of the most commonly used techniques,

e.g., Force Matching, Boltzmann Inversion and Relative Entropy; in Section 3 we discuss two

strategies, the adaptive resolution simulation (AdResS) scheme and the Hamiltonian AdResS
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(H-AdResS) to perform simulations in which different regions of the same system are modeled with

different resolution.

Large parts of the present review are based on course material that was compiled for two

workshops at the Forschungszentrum Jülich (“Hierarchical Methods for Dynamics in Complex

Molecular Systems, 2012” [35], and “Workshop on Hybrid Particle-Continuum Methods in

Computational Materials Physics”, 2013 [36]), as well as on original publications on the respective

methodologies [33,34,37–40].

2. Coarse-Graining

As was mentioned in the Introduction, there are many interesting physical problems for which

a detailed description of the system at the all-atom (AA) level is not necessary to obtain the

relevant information. In these cases a simpler model might be used, where a given high-resolution,

computationally expensive model is replaced with a simpler one.

These Coarse-Grained models possess a number of features that make them particularly

appealing. For example, a smaller amount of computational resources is required to perform a

simulation: this is due to both the reduced number of degrees of freedom and the simpler form of the

interactions. Another important characteristic is that since many interaction centers are replaced with

a single one, the fluctuations of the force experienced by a molecule are generally much smaller;

this results in smoother free energy profiles and, as a consequence, in faster diffusive processes,

allowing the system to reach larger time-scales with less computations. This last aspect implies that

one typically has to determine a rescaling factor between the simulation timescale (usually given

in Lennard Jones units) and the corresponding real world time (or the corresponding timescale in a

higher resolution system). A detailed discussion of these dynamic aspects with further references

can be found in Reference [41]. Finally, coarse-grained models are designed to reproduce large

length-scale properties of the system, such as the global, collective conformational changes of a

protein or the diffusive process of a polymer in a melt, that can be strongly insensitive to the

fine-grained, chemistry-specific details; as a consequence, the parametrization of the coarse-grained

interactions is also advantageously simpler.

Many CG models are generic, i.e., they were not developed to model a specific chemical system

but rather with the aim of studying a physical phenomenon such as folding or aggregation in

general. One example is generic CG lipid models, which have been successfully employed to

study the self assembly of micelles, bilayers and other structures [42–46]. Generic CG models

have also been employed to study folding and aggregation of peptides and proteins [47–59]. For

polymers, such generic models were especially successful. Following the so called 1/N theorem of

de Gennes [60–62] it was shown that properties such as the overall chain extension as a function

of the polymerisation index follow the same power law with the same exponent for all polymers,

independent of the chemical species. The results of these scaling theories were instrumental in

the development of generic and thus very efficient models, as well as in the interpretation of

experiments. For dynamical properties generic models simulations provided the first direct evidence

of the reptation/tube concept put forward by Edwards and de Gennes [63,64]. The reptation model



573

is based on the fact that the dynamics of long polymer chains is dominated by the constraint that

polymer chains cannot simply cut through each other.

A wide range of approaches have been developed that aim for consistency between a CG

model and either experimental data or simulations of accurate high resolution models. Typically,

these approaches are divided into thermodynamics-based and so-called structure-based ones. In

thermodynamic coarse graining approaches, individual elements of the CG interaction function are

separately parameterized based on thermodynamic reference data such as solvation free energies and

partitioning data, liquid densities, surface tension, etc. [65–76]. (These are usually experimental

reference data, but in a multiscale simulation approach the reference data can of course also be

obtained from an atomistic simulation, to keep the CG and atomistic level thermodynamically

consistent). In another group of approaches, one numerically generates CG interaction functions

with the aim of reproducing the configurational phase space sampled in an atomistic reference

simulation. These approaches may rely on different types of reference properties such as structure

functions [77–89], mean forces [90–95] or relative entropies [96–98]. In the following subsection,

a few basic notions of coarse-graining theory will be introduced, together with examples of the

strategies that can be employed to perform the coarse-graining in practice.

2.1. The Mapping Function and the Potential of Mean Force

In a multiscale approach, one first needs to define the relationship between the two levels

of resolution. This is typically done via mapping functions which determine the CG Cartesian

coordinates of each site as a linear combination of coordinates for the atoms that are involved in

the site (that could be via a center-of-mass or a center-of-geometry mapping or some other geometric

construction). This means the CG coordinates R are constructed from the atomistic coordinates r via

R = Mr (1)

where M is an n×N matrix (n and N being the number of particles in the atomistic and CG system,

respectively). In the (canonical) sampling of the atomistic and CG systems with respective interaction

potentials V AA(r) and V CG(R) the corresponding configuration functions PAA(r) and PCG(R) are

given by

PAA(r) = Z−1
AA exp[−βV AA(r)] (2)

and

PCG(R) = Z−1
CG exp[−βV CG(R)] (3)

with ZAA =
∫
exp[−βV AA(r)]dr and ZCG =

∫
exp[−βV CG(R)]dR being the respective partition

functions and β = 1/kBT . If one analyses the atomistically sampled system in CG coordinates one

can determine the probability distribution of sampling atomistic coordinates that map to a given CG

coordinate r)

PAA(R) = 〈δ(Mr−R)〉 (4)

(Here, we follow the notation used by Noid and collaborators, e.g., in References [99,100]). The

angular brackets indicate canonical sampling of the atomistic system (i.e., according to PAA(r)).
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One can formulate the aim of many systematic coarse graining approaches in the following way: To

sample the part of phase space which is sampled by the atomistic system with the same probability

distribution. Following this, one possible definition of consistency between atomistic and CG level of

resolution is that the two models are consistent if the canonical configurational distribution sampled

by the CG model PCG(R) is equal to the probability distribution PAA(R) obtained after mapping

the atomistic system to CG coordinates. In a canonical ensemble, independent degrees of freedom q

are Boltzmann distributed and the Boltzmann inverse of P (q)

V (q) = −kBT lnP (q) (5)

is a many-dimensional potential of mean force (PMF), which, when used for example as an

interaction potential in a CG simulation, reproduces the distribution P (q) . This means that

Boltzmann inversion of PAA(R) defines, uniquely up to an additive constant, a high-dimensional

CG potential

V CG
PMF (R) = −kBT lnPAA(R) + const (6)

which will result in a sampling of CG configurations consistent with the atomistic reference

simulation. This high-dimensional, many-body CG potential contains both energetic and entropic

contributions from the configurational sampling in the high-resolution model and the mapping

between high-resolution and CG model (Equation (4)). Therefore, the resulting CG model is state

point dependent and not necessarily readily transferable. While it is conceptually easy to formulate

the PMF as a solution of the systematic coarse graining task, it is practically unfeasible. In most cases

the PMF cannot be easily determined, and even if it were possible, the resulting high-dimensional

potentials are computationally prohibitive. In addition, V CG
PMF (R) is a function of R, i.e., this PMF

as is can in principle only be applied to a system which is identical in size to the atomistic reference

system; if this limitation cannot be overcome, e.g., by breaking it down to short-range interactions,

it would defeat the purpose of coarse graining. Therefore, one has to decompose the PMF into

simpler independent terms and approximate it by simpler interaction functions, ideally ones that

resemble interaction functions typically used in molecular mechanics forcefields, i.e., short range

bonded contributions and pair potentials or similar. Conceptually, one can decompose the PMF into

a series of many-body terms up to an N -body term, where N is the number of particles on the

system. However, this itself does not solve the problem since these multi-body interactions are again

computationally unfeasible.

V CG
PMF (R) =

∑
i,j

V2(rij) +
∑
i,j,k

V3(rij, rjk, rik) + · · ·+ const

≈
∑
i,j

Veff(rij) + const (7)

In Equation (7) one approximates the series by an effective pair interaction which also contains

contributions from the higher order terms in Equation (7) (some approaches also include three-body

terms for systems where this is necessary [101]). There are many approaches to this task of

determining effective CG interactions, and all the resulting CG models are (only) approximations

to V CG
PMF (R).
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2.2. Multi-Scale Coarse-Graining

Probably the most painful limitation in the use of the many-body PMF is the fact that, in general,

it cannot be decomposed into a sum of local contributions depending on the interactions between

two to a few particles. A simple strategy would therefore be to decide a simple functional form

of the potential, e.g., a sum of pairwise, radial interactions, which depend on a set of parameters;

the values of the latter are then chosen so that the CG potential is as close as possible to the

true PMF. This approach was pioneered by Ercolessi and Adams in 1994 [102] and Tschöp and

coworkers in 1998 [103]. Later, Izvekov and Voth [104,105] made use of the force-matching concept

of Ercolessi and Adams in the development of the Multi-Scale Coarse-Graining (MS-CG) method.

These approaches have been successfully applied to a multitude of biomolecular and other soft matter

systems, in particular to biomolecules [90–95].

The central idea of Force Matching is to use a variational (i.e., non-iterative) approach for

constructing the CG potential based on the atomistic reference simulation (the recorded forces from

the atomistic simulation). The numerical implementation of this variational principle works in such

a way that the exact many-body PMF (Equation (6)) is represented by a linear combination of basis

functions that are functions of the CG site coordinates [14,15]. For a given configuration of the CG

coordinates, in fact, the average of the total atomistic force fα acting on a CG site α is equal to the

derivative of the many-body PMF:

〈fα〉R ≡ −∂U [R]

∂Rα

(8)

where the subscript R on the averages indicates that the sampling is constrained to those

configurations of the AA system having the CG sites in a fixed configuration. The CG force field

depends on M parameters g1, · · · , gM , that can be prefactors of analytical functions, tabulated values

of the interaction potentials, or coefficients of splines used to describe these potentials. These

parameters have to be optimized so that the CG force field reproduces the forces in the atomistic

system (after mapping) as close as possible. To this end, one minimizes the difference between

the average AA force 〈fα〉R and the force Fα due to the CG potential by minimizing the following

quadratic function:

χ2[F] =
1

3N

〈
N∑

α=1

|fα − Fα|2
〉

(9)

Equation (9) can be rephrased in terms of generalized scalar products of elements in a

multi-dimensional vector space; these elements are the 3N -dimensional force-fields f and F acting

on the CG sites, with the scalar product and the corresponding norm given by:

Fa · Fb ≡
〈

N∑
α=1

Fa
α · Fb

α

〉
(10)

||F|| ≡
√
F · F
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Given the definitions in Equation (10), it can be shown that minimizing the function χ2 in the

MS-CG method is equivalent to minimizing the ‘distance’ between the many-body PMF and the

CG potential:

χ2[F] = χ2[FPMF] +
1

3N
||FPMF − F||2 (11)

The force-matching strategy thus projects the true many-body PMF onto the basis of functions

that are used to define the CG force-field; a thorough formal explanation of this interpretation can be

found in Reference [14,15].

It should be noted, however, that the CG force field is still an approximation to the high

dimensional PMF within the limitations of the types of CG forces chosen (for example pair forces

that can be derived either from analytical or from numerical tabulated potentials). This also

implies that a CG model obtained from force matching does not by construction reproduce the

pair correlation functions in the system, and the reproduction of local structural properties such as

pair distributions may (or may not) be imperfect depending on the importance of cross-correlations

between degrees of freedom. An exact reproduction of the underlying atomistic problem by

matching mean forces therefore potentially requires the introduction of higher order (e.g., three-body)

interactions. Noid and coworkers have extended the force matching method and demonstrated that

the CG force field can be directly determined from structural correlation functions obtained from the

atomistic system instead of the forces [99]. Their theoretical approach also allows an assessment

of the correlations between different interactions that are neglected by straightforward Boltzmann

inversion and allows the quantification of the importance of many-body correlations in CG models.

In a recent study, Rudzinski and Noid explore these aspects in detail [106]. They demonstrate how

the balance between accurately reproducing individual correlation functions (such as pair correlation

functions or angle distributions) and also reproducing cross correlations between the respective

degrees of freedom is affected by the mapping scheme and the coarse graining method (or more

accurately its targets, namely the mean forces versus the individual correlation functions).

2.3. Boltzmann-Inversion Based Methods

In contrast to the Force Matching or Multi-scale coarse graining scheme, other structure-based

methods provide CG interactions that reproduce pre-defined target structure properties—often a set

of radial distribution functions [77–89]. This means that the many-body PMF (Equations (6) and

(7)) is replaced as a target by a set of simpler structural correlation functions. If the interactions

in the CG model are statistically independent or only weakly coupled then direct Boltzmann

inversion determines each term in the potential immediately from the corresponding distribution

function [77,107–109]; for non-bonded interactions in dense systems, though, this is typically not

the case. This means that the individual distribution functions and their corresponding potentials of

mean force, e.g., a radial distribution function of a simple liquid gtarget(r) and its Boltzmann inverse,

the pair PMF, V CG
0 (r) = −kBT ln gtarget(r), cannot be directly used as an interaction function since

they correspond not only to the interaction potential but also to the correlated contributions from

the surroundings. These multi-body effects of the environment need to be removed from the PMF
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in order to generate an effective pair potential that reproduces the target structure, for example the

pair correlation function in the liquid. It can be shown that such a pair potential is unique up to an

arbitrary constant [110] and exists [96,111–113]. There are several numerical methods to generate

this pair potential (tabulated interaction function).

Iterative Boltzmann inversion (IBI) [81,114,115] is a natural extension of the Boltzmann

inversion method. Here, a numerical CG potential is iteratively refined until the target structure

is reproduced within a predefined error. Each step in the iteration procedure is a CG simulation with

potential V CG
i (r) which yields an RDF gi(r) that differs from the target gtarget(r). The potential is

then modified by a correction term ΔV (r) according to

V CG
i+1 (r) = V CG

i (r) + ΔVi(r) = V CG
i (r) + kBT ln

gi(r)

gtarget(r)

Sometimes the potential correction ΔVi(r) is multiplied by a prefactor 0 < λ ≤ 1 to avoid

overshooting in the numerical procedure. The iterative procedure is often initiated with the pair

potential of mean force V CG
0 (r) = −kBT ln gtarget(r), but that is not mandatory. Different starting

potentials can be useful, in particular for more complex mixed systems where the iterative procedure

may be unstable because intermediate CG models lead to phase separation. This is for example

observed in the case of hydrophobic molecules in aqueous solution where both above-mentioned

precautions have found to be useful to prevent strong oscillations or even instability of the

IBI procedure.

IBI is by no means the only numerical method that solves the above task. Another numerical

scheme is the so called inverse Monte Carlo (or more recently renamed Newton inversion)

method [78,79,83,84] which, according to Henderson’s theorem, should lead to the same numerical

solution for the pair potential corresponding to a given pair correlation function. While in IBI

the potential update ΔVi is ad hoc, in IMC it is computed using rigorous statistical mechanical

arguments (for details see Reference [78]). In the case of multicomponent systems, where several

pair potentials need to be updated, IMC accounts for correlations between observables, i.e., the

updates for the different potentials are interdependent. In contrast, for IBI each potential is

updated independently, which might lead to oscillations and convergence problems in the iteration

procedure. The disadvantage of IMC on the other hand is a high computational cost and problems

with numerical stability; for a detailed comparison see Reference [116]. Related to IMC, there

are several other recent developments, e.g., a molecular renormalization group approach [85–87]

or an approach that relies on relative entropies [96–98] (which will be discussed in more detail

below). While the above structure-based methods by construction reproduce exactly, within the

error of the numerical procedure, the local pair structures and thus are well-suited to the reinsertion

of atomistic coordinates, it can be expected a priori that they will not be equally well suited to

the reproduction of thermodynamic properties (pressure, phase behavior, etc.) of the reference

system; in this respect, water provides a prototypical case and a reference for testing. Note also

that CG models based on pair correlation functions do not necessarily reproduce higher-order (e.g.,

three-body) structural correlations [116] since the pair correlation functions as structural targets are

just an approximation to the total conformational distribution function obtained from the atomistic
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sampling, PAA(R) (Equation (4)). This means that if higher order correlations are a crucial part of

the many-body PMF, models based on pair structures may fail to represent these, and it may even

be possible that models which are limited to pair potentials may fail to reproduce these correlations

irrespective of the parametrization methodology. One example where this is studied in detail is liquid

water [101,116–119]. Recently Noid and coworkers have analyzed these aspects using concepts from

liquid state theory [100,120].

One more note concerning Henderson’s theorem: even though there is in principle one exact
solution for the effective pair potential that reproduces a given pair correlation function, different

potentials might give a reasonably close representation of the structure, i.e., the above inverse

problem is mathematically ill-posed [116,121]. This effect becomes even more pronounced in

complex systems where several interaction functions corresponding to several RDFs need to be

numerically determined. This can to some extent be turned into an advantage since it allows one to

impose thermodynamic constraints in the parametrization procedure. This will result in interaction

functions which do not exactly reproduce the target structure but give a very close representation

while at the same time producing the desired thermodynamic behavior. One example of this is

pressure correction terms [81,117]. Here, an additional linear pressure correction is applied during

the iterative Boltzmann inversion procedure with

ΔV CG
i,P (r) = Ai

(
1− r

rcut

)
(12)

where rcut is the radial cutoff distance of the non-bonded interaction and the constant A is determined

via the virial expression for the pressure to

−
[
2πNρ

3rcut

∫ rcut

0

r3gi(r)dr

]
Ai ≈ (Pi − Ptarget)V (13)

V is the volume of the system, Pi the pressure of the CG model in the i-th iteration, and Ptarget the

target pressure. The price to pay for this adjustment, however, is the loss of the perfect compressibility

match. This phenomenon is of course a direct consequence of the state point dependency of coarse

grained interactions. Further details on this topic can be found in Reference [117]. Recently,

different functional forms of pressure correction terms and the influence of the cutoff length have

been explored by Fu et al. [122].

It is to be expected that there will be more development in this direction (using other types

of thermodynamic constraints) since in particular for complex soft matter system the balancing of

structural and thermodynamic behavior in CG models is an ongoing field of research [88,89].

The IBI method is in its original form designed and best suited for systems with uniform density

distributions. Recently, Jochum et al. have shown how it can be generalized for non-bonded

potentials for inhomogeneous systems [123]. For a system with a slab geometry (such as systems

of solvent slabs in vacuum or phase-separated systems consisting of two liquid slabs in contact with

each other), the method is analogous to IBI but the iterative update of the interaction potential consists

of two terms, one based on the radial distribution function calculated in a slab geometry and one that

accounts for the slab and interfacial widths. These latter geometric features are very sensitive to the
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thermodynamic properties (surface tension) of the interface. Therefore the two update terms allow

for a balance between the local liquid structure and the thermodynamic properties of the liquid/vapor

or liquid/liquid interface. In addition to water/vapor and methanol/vapor interfaces, the method

has also been successfully applied to a solute-solvent system of a single benzene molecule at the

vacuum-water interface, i.e., it is possible to account to some extent for the partitioning behavior of

a solute between bulk and interface, an aspect that makes this method promising in the context of

designing transferable CG models for phase separation processes (see below).

Last but not least, one should mention the particular case of Boltzmann-inversion based

approaches for mixed systems where (at least) one component is very dilute (from now on termed

solute), e.g., biomolecules in aqueous solution. In this case, iterative Boltzmann inversion and similar

methods are problematic. While one can easily compute the solvent-solvent and the solute-solvent

radial distribution functions, and therefore determine the corresponding CG potentials with for

example IBI, this is not so straightforward for the interactions between the low concentration

component (solute). (Note that for simplicity only solutes that are represented by a single CG

bead will be discussed here.) In these cases, obtaining the PMF through brute force sampling of

a radial distribution function is not advisable. One should rather compute the solute-solute pair PMF

(between two solute particles) with an advanced sampling method such as umbrella sampling or

thermodynamic integration (using distance constraints) [124,125].

When solvent degrees of freedom are not explicitly present in the CG system, this solute-solute

PMF can be used directly as an effective solute-solute non-bonded interaction since the

environmental (solvent) effects within the PMF are not explicitly represented through solvent degrees

of freedom in the CG model. For many types of solutes the solute-solute PMF has been used as an

interaction potential in implicit solvent models [126,127]. One prominent example is the use of the

solute-solute pair PMF for implicit solvent models of aqueous electrolyte solutions, i.e., implicit

solvent ion models [37,79,85,128,129].

The case is somewhat different if some sort of explicit solvent representation, for example in

the form of a CG water model, is present in the CG system. In this case, effective solute-solute

non-bonded pair interactions are needed from which the solvent contributions are removed in the

same way they are removed by IBI in other systems. However, due to the sampling problem of the

PMF between dilute components, an iterative procedure is prohibitive for solute-solute interactions.

To solve this problem, an approximate method has been developed by Villa et al. [38,130]. Here,

the CG solvent-solvent and solute-solvent interactions are first determined, for example through

normal IBI. Now the pair PMF between the solutes V AA
PMF (r) is computed (from atomistic umbrella

sampling or thermodynamic integration) and used as a target, in other words the resulting CG model

is parameterized to reproduce the solute-solute association strength observed in the atomistic system.

In order to remove the solvent contribution from V AA
PMF (r), a subtraction procedure is employed.

One conducts a separate PMF calculation (again with umbrella sampling or thermodynamic

integration), this time in a CG system, where the (previously determined) CG solvent-solvent and

solute-solvent interactions are present but no direct interaction between the solute particles is turned

on. The resulting PMF V CG
PMF,excl(r) only consists of the environmental contributions (in the CG
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environment). By subtracting V CG
PMF,excl(r) from the target PMF one obtains the missing direct

pair interaction

V CG(r) = V AA
PMF (r)− V CG

PMF,excl(r) (14)

which by construction reproduces the target PMF. Note that this subtraction procedure is not

necessarily limited to CG solvent-solvent or solute-solvent interactions determined by IBI. In

principle other types of CG solvent-solvent or solute-solvent interactions could also be used to

determine V CG
PMF,excl(r). If one then applies Equation (14), one obtains an effective solute-solute

interaction V CG(r) which reproduces the atomistically observed solute-solute association strength

(i.e., V AA
PMF (r)) in the particular CG solvent that was chosen.

2.4. Relative Entropy

Aiming at reproducing different properties or objective functions of the reference, atomistic

system, IBI and Force Matching have manifestly different algorithms and produce qualitatively

different results. Recently a different coarse-graining strategy has been developed, namely the

Relative Entropy method [131–133], which relies on a quantitative measure of the loss of information

that follows from the description of a system in terms of different interaction potentials and/or

different resolution. Remarkably, it is possible to demonstrate that the information function employed

in this strategy connects Relative Entropy, IBI and Force Matching together. The functional form of

this measure function is given by the relative entropy, or Kullback–Leibler distance:

Srel =
∑
ν

PAA(ν) · ln
(PAA(ν)

PCG(ν)

)
(15)

In Equation (15), ν labels a given microstate or atomistic configuration, PAA(ν) is the probability

of sampling a configuration ν in the fully atomistic system, and PCG(ν) is the probability of

sampling the same (atomistic) configuration in the system with coarse-grained interactions, but

still described by a high-resolution structure. This latter probability is degenerate with respect

to the atomistic-potential configurations, as many of them correspond to the same coarse-grained

configuration V . It is therefore advantageous to write the probability to sample a given atomistic

configuration in the CG system in terms of the function that maps the fine-grained configurations

onto the coarse-grained ones:

PCG(ν) ≡
P ′

CG(V)
Ω(V)

V ≡ M(ν) (16)

Here, P ′
CG(V) is the probability of sampling the CG configuration V in the low-resolution system

and Ω(V) = ∑
ν δ(M(ν)−V) is a measure of the degeneracy of the configuration V in the atomistic

system. It should be noted that this last quantity depends only on the mapping function M and not
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on the coarse-grained interactions; this term can therefore be separated out in the definition of the

relative entropy to obtain:

Srel = Smap + 〈φ〉
with:

〈Q〉 ≡
∑
ν

PAA(ν) · Q(ν) (17)

Smap = 〈ln (Ω(M(ν)))〉

φ(ν) = ln

( PAA(ν)

PCG(M(ν))

)
(18)

The quantity φ(ν) can be interpreted as the amount of information in the configuration ν

which discriminates between the atomistic and the coarse-grained probability. The definition in

Equation (17) is particularly appealing because it shows that the relative entropy can be computed

as the sum of operator averages. In the special, but quite common case of systems in thermal

equilibrium, the probability distributions P are simply given by the Boltzmann weights, and the

relative entropy reduces to the form:

Srel = Smap + β [(AAA − ACG)− 〈UAA − UCG〉AA]

with AAA (resp. AAA) being the free energy of the atomistic (resp. CG) system. For a given

choice of the mapping function M, the optimal coarse-grained potential is obtained by minimizing

the relative entropy functional with respect to the parameters in terms of which the aforementioned

potential is defined: common choices for non-bonded, two-body interactions are the coefficients of a

Lennard-Jones potential or the nodes of a spline.

As anticipated at the beginning of this section, IBI and Force Matching can be connected using the

concept of relative entropy. In fact, a straightforward minimization of Srel making use of two-body

coarse-grained potentials can be shown to be equivalent to the IBI algorithm; on the other hand, the

Force Matching scheme is retrieved if the average of the function |∇φ|2 is minimized instead of the

average of φ [134]: the squared gradient of the φ function with respect to the Cartesian coordinates,

in fact, is proportional to the squared difference of the forces obtained from the AA and the CG

descriptions, so that:

χ2[F] = χ2[FPMF] +
(kBT )

2

3N

〈
|∇φ|2

〉
(19)

In conclusion, it therefore appears evident that different coarse-graining schemes are obtained

through the minimization of different functionals of the same information function φ, which

represents the unifying element between various approaches.

2.5. Transferability of Coarse-Grained Models

From the preceding sections we have seen that there are different approaches to the systematical

parameterization of CG models which by construction will not be equally well suited to the
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reproduction of thermodynamic and structural properties of the system. It is not a priori clear

whether structure-based potentials reproduce macroscopic thermodynamic properties and, vice versa,

if thermodynamics-based potentials reproduce microscopic structural properties. However, the

interplay of structure and thermodynamics is crucial for the investigation of structure formation

processes, in particular for biomolecular aggregation in aqueous solution where partitioning and

phase separation play a decisive role. All CG models (in fact also all classical atomistic forcefields)

are state-point dependent and cannot necessarily be—without reparametrization—transferred to

different thermodynamic conditions or a different chemical environment compared to the one where

they had been derived. This means “transferability” can refer to a change in temperature, density,

concentration, system composition, phase, etc., but also a change in chemical environment, e.g.,

the change of length or sequence of an amino acid chain. Structure-motivated CG models which

approximate the high dimensional PMF obtained from an atomistic reference are by construction

heavily state point dependent, and several studies have addressed questions regarding their ability to

reproduce thermodynamic properties. One system that has been of particular interest in this context

is liquid water [112,117,135]. The reason is on the one hand of course its immense importance in

all questions regarding biomolecular systems. In addition, it is of particular methodological interest

because for single bead models of water it is known that three-body correlations play a decisive

role and the potential compromise between reproducing pair- or higher order structural correlations

is particularly relevant for the properties of the model [101,116,117]. Different studies have been

carried out that compare structure-motivated and thermodynamics-based CG models [121,136,137].

While CG models where the parametrization targets had been solvation and partitioning properties

are particularly well suited to reproduce processes where for example hydrophilicity/hydrophobicity

arguments play a decisive role, they do not per se reproduce the structure of the system [121,136].

Related to their ability to reproduce the thermodynamic properties of certain chemical units, these

models exhibit considerable transferability and can often be applied to a variety of molecular systems

and a range of thermodynamic conditions. Motivated by these observations, intensive research

is currently being carried out to derive CG potentials that are both thermodynamically as well as

structurally consistent with the underlying higher-resolution description, thus ensuring for example

a certain state point transferability [38,88,89,94,138].

One possibility to improve transferability in this context is to exploit—similar to the case of

the pressure correction described above—the fact that the derivation of a CG model based on

the reproduction of structural properties (potentials of mean force) is an ill-posed problem which

allows a reproduction of the original target property within a given error while at the same time

including certain thermodynamic target properties during parametrization. One approach developed

by Ganguly et al. for multicomponent systems that follows this idea combines the IBI method

with Kirkwood–Buff integrals as additional targets which are related to the activity coefficients of

the components [139]. With this approach transferability over a certain concentration range can

be achieved.

Yet another non-structure-based method that produces CG pair potentials with remarkable state

point transferability is the conditional reversible work method by Brini et al. [140–142]. Here,



583

several calculations of pair potentials of mean force on the atomistic level are used to assess and

correctly account for the indirect contribution by the environment to the effective CG pair forces.

The observed transferability of this method can be ascribed to the fact that the method relies on

direct pairwise interactions in the atomistic reference system. In other words, the method does not
rely on reproducing a structural property such as a pair PMF or multi-body PMF, i.e., on properties

that are extremely dependent on the precise thermodynamic state of the reference system.

It has been mentioned before that effective pair potentials account for multi-body effects, for

example, three body interactions. For this reason, they are only to a limited extent additive,

which limits the transferability of the potentials [38,143]. Understanding the physical nature of

non-additivity in the system of interest can help to make a CG model transferable. In principle,

there are various possibilities to approach the question of transferability of effective pair potentials:

(i) One applies a model derived at/optimized for a given state point unaltered to a range of state points

nearby; in that case, one has to carefully investigate the range in which this is permitted [144–146];

(ii) One creates a new set of potentials for each state point one wants to investigate [144]; (iii) One

specifically designs a single CG model with the aim of transferability (for example specific density

dependent potentials [94,147,148], CG models that are designed to be applicable for a range of

mixture compositions [71,138], or CG models that are capable of capturing a liquid crystalline phase

transition [88,89]); (iv) One uses a model derived at one state point and (analytically) modifies it to

be applicable to different conditions (one example being the rescaling of potentials in order to apply

them to a different temperature [149]).

The approach of using a model at a specific state point and then testing its transferability

over a reasonably wide range of different physical conditions has traditionally been applied in the

case of classical polymer melts. In this field, structure-based models have been very successfully

applied, and decent temperature [77,150–152] and pressure transferability [153] have been found.

In fact in the first papers by Tschöp et al. [77,103] the temperature transferability already allowed

the semi-quantitative prediction of shifts in Vogel Fulcher temperature for different polycarbonate

modifications. This observation appears to hold for classical isotropic polymer melt systems where

the behavior is largely dominated by the correct representation of the chain conformations and the

excluded volume of the chain. As soon as more specific chemical interactions play a role, the case of

transferability becomes more delicate.

In the following, we discuss three examples which illustrate that understanding the physical basis

behind the limitations in transferability can help to design transferable models.

Binary mixtures have in general been widely used as model systems to explore various aspects

of the transferability of CG models [37,38,71,128,129,138,143,147,148]. The transferability to

different concentrations of liquid mixtures or solutions is of vital importance for simulation of

processes such as (bio)molecular aggregation which are characterized by spatially varying structure

and fluctuating concentrations.

Following the above-described method to apply Boltzmann-inversion derived methods in dilute

solute solvent systems, a CG model for mixed systems of benzene in water had been derived [38].

This means that the CG benzene-benzene potential had been parameterized on the basis of the
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benzene-benzene PMF of two benzene molecules in aqueous solution, i.e., at “infinite” dilution.

Benzene-water mixtures of different composition have been studied with this CG model and

analyzed using the Kirkwood-Buff theory of solutions [154]. Kirkwood-Buff theory provides a link

between local structural information and thermodynamic properties of the solution. This CG model,

parametrized at infinite dilution of benzene, reproduces the Kirkwood-Buff integrals of mixtures at

various concentrations obtained with the detailed-atomistic model. It reproduces the changes in the

benzene chemical potential and the activity coefficients of the mixtures over a range of mixture

compositions (up to concentrations where benzene and water demix in the atomistic reference

simulation). A possible explanation is that hydrophobic interactions between benzene solutes are

short-ranged, and the multi-body correlations involved in hydrophobic association can be described

by pairwise additive effective potentials (category (i) of the above list). The observed transferability

of the potential supports the idea that hydrophobic interactions between small molecules are pairwise

additive. Villa et al. also found that a different CG model for benzene-benzene interactions that had

been derived for pure benzene (via IBI) is neither suited to describe benzene-benzene interactions in

aqueous solution at different concentrations nor a phase-separated benzene/water system with a bulk

benzene layer [38].

To reproduce the actual phase separation process as well as the behavior of the mixed (or dilute)

systems is much more complicated (yet it is of vital importance in the parameterization of bottom-up

CG models that are able to reproduce biological partitioning and self aggregation phenomena). Here,

a combination of a wise choice of one or possibly several reference state points is promising, in

particular combining the reference of infinite dilution with the phase separated one. For the latter,

application of the IBI extension by Jochum et al. for inhomogeneous systems with an interface/phase

boundary can be utilized [123].

In this context it should also be mentioned that similar transferability problems exist in other

areas, for example in the simulations of solids (e.g., with embedded atom potentials). As soon as

one encounters surfaces or interfaces the local environment of an atom differs substantially from the

bulk (crystalline) phase, which was used to parameterize the interaction potentials. Consequently the

transferability of the potentials will affect the ability to model processes such as crack formation or

the relocation of grain boundaries [155,156].

In the second example, the situation is different. Here, the transferability of CG (in this

case implicit-solvent) ion models in aqueous solution had been investigated. Due to long-range

electrostatic interactions, the ions affect the behavior of water increasingly strongly with increasing

ion concentration. More specifically, the presence of many ions reduces the orientational

fluctuations of the water molecules and thus the dielectric permittivity of the solvent. Therefore,

effective ion-ion potentials parametrized at infinite dilution are not directly transferable to higher

salt concentrations. Hess et al. developed a reduced-resolution (in this case implicit-solvent)

potential for aqueous electrolyte solutions where an ion-concentration-dependent Coulomb term was

added to the (ion-specific) pair interaction. Thus, by using a concentration-dependent dielectric

permittivity for water, part of the multi-body effects in the system were accounted for in the

ion-ion pairwise interaction in the implicit solvent model [128,129]. This approach reproduced
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the NaCl solution osmotic properties and the ion coordination up to a concentration of 2.8 M

(mol/L). While in the case of the CG model of benzene/water mixtures [38] the short-range

hydrophobic interactions parameterized at infinite dilution were directly transferable to higher

benzene concentrations, the ion-ion interactions determined at infinite dilution had to be split into

a short-range ion-specific and a long-range electrostatic part. The interactions were then made

transferable by keeping the short-ranged part constant and analytically modifying the long-ranged

electrostatic part (category (iv) of the above list). Shen et al. have further investigated the structure

and osmotic properties of electrolyte solutions over a wide range of concentrations [37]. Using a

concentration-dependent dielectric constant one also obtains very good structural properties of the

electrolyte solution at low and intermediate salt concentrations while for larger salt concentrations

multi-body ion-ion correlations limit straightforward transferability. Guided by this structural

analysis, the transferability of the implicit-solvent model could also be improved for high ion

concentrations. One obtains transferable implicit-solvent effective pair potentials which are both

structurally and thermodynamically consistent with an explicit solvent reference model.

The third example again stresses the immense importance of a good reference state point. It also

shows how the reference choice can be guided by understanding the underlying physics.

One highly relevant case of a transferability problem is the ability of a CG model to correctly

describe a phase transition while being (reasonably) faithful at both phases below and above, a

prominent example being liquid crystalline systems. For such systems, coarse graining can gain

access to large system sizes with local disorder, domains etc., and a bottom-up, non-generic CG

model has the power to include molecular flexibility and other chemistry specific details. This means

that the model should on the one hand faithfully represent the structure in the LC ordered state and

on the other hand reproduce the LC/isotropic phase transition.

For an azobenzene-based liquid crystalline compound (8AB8) it was found that state point

transferability could be achieved by choosing as an appropriate state point for the reference

simulation the supercooled liquid just below the smectic-isotropic phase transition. This reference

state is characterized by a high degree of local nematic order while being overall isotropic. The

primary idea behind this choice of reference state is the observation that—in the spirit of arguments

from classical density functional theories of liquids [157]—the short ranged correlations in the

ordered phase are not very different from the local correlations present in a disordered phase at

suitable thermodynamic state (density, temperature, etc.) (as one approaches the transition from

the high-temperature side). If one captures these local correlations and builds them into the

(structure-based) potentials, then these potentials should be able to describe phases on both sides of

the transition. For 8AB8, indeed an excellent structural correspondence with the atomistic reference

in the smectic state has been found. With the resulting CG model it is possible to switch between

the atomistic and the CG levels (and vice versa) in a seamless manner maintaining values of all

the relevant order parameters which describe the LC ordered state (see Figure 1). At the same

time, this CG model shows remarkable state point transferability and reproduces the LC-isotropic

phase transition upon heating and cooling [39]. Such a CG LC model—since it is on the one hand

sufficiently coarse grained to study a variety of processes in the LC phase while being at the same time
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still very closely related to an underlying chemically realistic atomistic description, e.g., allowing for

realistic molecular flexibility—is able to give new insights into for example microscopic dynamics

in LC phases [40]

Figure 1. A transferable coarse-grained (CG) model for a liquid crystalline molecule

that reproduces the ordered/disordered phase transition while at the same time being

highly consistent with an atomistic level of resolution. This is achieved by the choice

of reference state point, namely the supercooled liquid just below the smectic-isotropic

phase transition which is characterized by a high degree of local nematic order while

being overall isotropic, for details see Reference [39]. Left panel: snapshot of a

CG simulation in the LC state with a backmapped atomistic structure superimposed;

Right panel: This model allows mechanistic studies of dynamic processes in smectic

systems, where the influence of the intrinsic flexibility of the molecules on the free energy

of different permeation pathways can be elucidated (reprinted from [40]).

3. Adaptive Resolution Simulations

In the introduction we defined a class of systems for which the focus of the researcher’s interest is

on a (possibly small) subregion of the simulated system: this is the case, for example, of the hydrogen

bond network at the surface of a solvated molecule in water. The bulk of water molecules has to

be simulated in order to sustain the thermodynamical properties of the subsystem of interest—the

interfacial water—and to provide the correct exchange of molecules. Nonetheless, the fine-grained

detail of molecules far from the interface is not relevant; it would be therefore desirable to replace

the atomistic, expensive interactions of hydrogen and oxygen atoms with a coarser model.

We can then introduce a geometrical separation between an “inside” and an “outside”, i.e., an

all-atom and a coarse-grained region, and assign different types of representations and interactions

to the molecules according to their position in the simulation domain.

This idea has a long and successful history: to investigate crack propagation in hard matter,

for example, several authors [158–162] made use of a hybrid description of the system, where

a “high resolution” description is employed only for the area in the proximity of the crack, and

the material far from the crack is treated with a simpler model. Another important example of
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hybrid resolution simulation is provided by Quantum Mechanics/Molecular Mechanics (QM/MM)

methods [163–167]. In this case the structure of the system is described at the same (atomistic)

level everywhere; however, the interactions are obtained from a classical force-field in the bulk of

the system, but in a small region ab initio methods -such as Density Functional Theory, DFT- are

employed to calculate the forces. Many different “flavors” of this approach have been developed; in

all of them, though, one of the crucial aspects is how to interface the two domains where interactions

are different, and in most of the established methods the identity or resolution of the particle is not

allowed to change. In general, one has to answer the two following questions:

(1) how should two atoms/molecules in different domains interact?

(2) how should the properties of an atom/molecule change in crossing the interface?

The last question is of particular importance for all systems whose components can diffuse on

large length scales (at last of the order of the molecules’ size) in the simulation time. It appears

natural to introduce a transition region (often called hybrid region, or healing region) that allows for

a smooth interpolation from a given representation of the molecule’s structure/interaction to another;

a schematic representation of this setup is provided in Figure 2. The choice of the specific way this

interpolation is implemented depends, as we mentioned earlier, on the properties that have to be

preserved in the CG region.

Figure 2. Typical scheme of an adaptive resolution simulation: a high-resolution region,

where molecules are described at the atomistic level, is coupled to a low-resolution

region where a simpler, coarse-grained model is employed. These two sub-parts of

the system are interfaced via a hybrid region, in which the molecule’s representation

smoothly changes from one to the other, depending on their positions. It is on this last

region and its properties (i.e., the way molecules change resolution) that the complexity

of adaptive resolution schemes concentrates.

Irrespective of the chosen method to interface the two regions of the system, however, it is natural

to expect that the equilibrium state that will be reached in the absence of external driving forces

will not be the desired one. A further crucial point is then to find the simplest way to impose the

desired thermodynamics.
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The central, strong requirement that has to be satisfied is that molecules should be free to diffuse

from any region of the simulation box to any other. Additionally, in a hybrid resolution model thermal

equilibrium should be preserved, i.e., the temperature of the system has to be constant during the

simulation. Another possible constraint is to impose a uniform density across the box, irrespective

of the specific resolution; nonetheless, we’ll see that there are cases where this is neither strictly

necessary nor desirable.

These are the fundamental constraints that can be imposed on the system as a whole.

Other, more specific ones can be introduced on the properties of the CG region as well as the

transition region, which will “drive” us towards a specific formulation of a double-resolution

simulation method.

3.1. The Adaptive Resolution Simulation Scheme

The Adaptive Resolution Scheme (AdResS) represents the first effective and computationally

efficient method to simulate a system where two different models, e.g., an all-atom one and a

coarse-grained one, are simultaneously employed in different subregions of the simulation domain,

interfaced in such a way to allow molecules to freely diffuse from one region to the other.

The basic constraint that was enforced in the original version of this scheme is that Newton’s 3rd

law has to be exactly satisfied everywhere in the simulation domain. This requirement rules out any

form of potential energy interpolation: it can in fact be formally demonstrated [168] that no method

exists to smoothly “blend” the interaction between two molecules from a given potential energy to

another without generating forces that cannot be recast in a form that satisfies Newton’s Third Law.

In order to preserve the latter, then, a force-interpolation scheme is required, such that the force that

a given molecule receives due to the interaction with a second one is antisymmetric under exchange

of the molecules’ labels:

Fα|β = −Fβ|α (20)

A second, less strict requirement is that CG molecules possess CG degrees of freedom only;

this determines the specific way the force mixing is performed: a molecule in the CG region loses

completely its atomistic detail (thus retaining, for example, the center of mass coordinates only),

and interacts with a molecule in the AA or even the transition region only via its CG degrees of

freedom. Formally, this constraint imposes that the atomistic forces vanish when at least one of the

two interacting molecules is in the CG domain.

These two constraints are sufficient to define the force-field interpolation; the force acting

between molecules α and β is given by:

Fαβ = λ(Rα)λ(Rβ)FAA
αβ + (1− λ(Rα)λ(Rβ))FCG

αβ (21)

In Equation (21) λ(x) is any smooth function that goes from 1 in the AA region to 0 in the

CG region. Rα (resp. Rβ) is the CoM coordinate of molecule α (resp. β). FAA
αβ and FCG

αβ are,

respectively, the atomistic and the coarse-grained forces acting on molecule α due to the interaction

with molecule β.
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The CG force is computed between the coarse grained centers of the molecules and then

redistributed to the atoms weighted by the ratio of the atom’s mass to the mass of molecule [169];

in the transition region this operation is required by the fact that molecules interact at both the AA

and the CG level. AA degrees of freedom thus have to be explicitly integrated, at least into the

hybrid region. In the CG region, on the other hand, it is in principle not necessary to conserve

the atomistic detail of the molecules, so that the CG force could be applied directly to the CoM

coordinate; a molecule’s internal structure can thus be removed when it enters the CG region, and

reintroduced (e.g., taking it from a reservoir/repertoire of equilibrated atomistic molecules) as soon

as it approaches the hybrid region. In all AdResS versions implemented so far, though, the atomistic

DoFs are retained for simplicity of implementation [24]; the CoM of the molecule is nonetheless

decoupled from the internal atomistic structure, and it evolves only subject to the CG force.

It was previously mentioned that no energy interpolation is possible, that is compatible with the

requirement of having Newton’s 3rd law preserved everywhere in the system [168]; as a consequence,

a force interpolation had to be chosen. It is evident, then, that the AdResS scheme cannot be

formulated in terms of a Hamiltonian, thus making it impossible to perform microcanonical, i.e.,
energy-conserving simulations. The force-field used in this adaptive resolution simulation framework

is not conservative in the transition region, and when crossing it a molecule receives a surplus of

energy that has to be removed in order to prevent the system from artificially heating up. This

excess energy can be removed with a local thermostat, such as Langevin thermostat: in this way,

the temperature of the system is kept constant everywhere. The equilibrium state of the system is

then dynamical: the thermostat takes care of absorbing the extra heat produced in the transition

region by non-conservative forces, and the system samples equilibrium configurations according to

Boltzmann’s distribution [24–32].

The pressure difference between an AA system and a low-resolution model typically resulting

from coarse graining procedures determines the onset of a non-uniform density profile. For example,

a one-site CG model of water obtained with IBI can have a pressure ∼6000 times the atomistic

reference value [117]. Therefore, the densities in the two subregions will change in order to equate

the pressures. A possible solution to this density imbalance is to parametrize the CG potential to the

target pressure. In the IBI framework this can be achieved by introducing a “pressure correction” [81].

This approach can provide a CG potential that has the target pressure, but this would also result in a

modified compressibility [117].

Another option to preserve a uniform density across the simulation domain without modifying

the CG potential is to introduce an external force which counterbalances the high pressure of the

CG model. This thermodynamic force can be obtained with an iterative procedure via the following

expression [169–171]:

f i+1
th = f ith −

1

ρ
κT

∇ρi(r) (22)

where ρ
 is the reference molecular density, κT is the system’s isothermal compressibility and ρi(r)

is the molecular density profile as a function of the position in the direction perpendicular to the

CG-AA interface. The thermodynamic force is initialized to zero, f0th = 0, while the initial density
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profile is the one calculated from an AdResS simulation with fth = 0. As can be easily seen, the

iterative procedure converges once the density profile is flat (∇ρ(r) = 0).

This approach guarantees a flat density profile without having to modify the CG potential:

because of its very definition, the thermodynamic force only acts on those molecules that cross the

hybrid region, leaving the others unaffected. It can also be shown [24,169] that the integral of the

thermodynamic force across the interface, i.e., the work due to this force performed by a molecule

while crossing the hybrid region, is proportional to the local pressure profile, the proportionality

factor being the reference density ρ
.

In summary, the thermodynamic force allows us to couple a system at atomistic resolution

to a coarse-grained counterpart whose pressure, for given values of density and temperature, is

significantly different. The global properties of the force, whose direct effect is restricted to the hybrid

region, only depend on the pressure difference between the two coupled subsystems; the detailed

profile of the force, on the other hand, can be obtained via a system-specific iterative procedure.

This method not only allows one to preserve the desired structure of the system in the CG region; in

principle, in fact, an arbitrary CG force-field, with pressure and structure completely different from

the target atomistic ones, can be used. Consequently, the AA region behaves as an open system [169]

that exchanges energy and molecules with a reservoir: the molecule number fluctuations, the pressure

and all other thermodynamically relevant quantities are the same as if the AA region were simply

‘cut’ from a large all-atom simulations. It is relevant to stress here that because of the thermodynamic

force this condition can be established irrespective of the specific model used in the CG region.

3.2. Applications

The possibility of treating a system with a reduced number of degrees of freedom except

where it is strictly necessary was explored, making use of the AdResS method, in several

applications [24–30,172]. From the numerical/computational point of view it clearly represents an

advantage, since a much smaller number of force calculations are required in the coarse-grained

region: this is particularly true for parallel MD codes such as GROMACS [173], where a dynamical

decomposition of the simulation box allows one to subdivide the box with a finer grid in the AA and

hybrid region, while a smaller number of processors is assigned to the CG region. For example, for a

water system with an AA region covering 1/6 of the total simulation box, simulated with GROMACS

on a 16-cores processor, the speed-up is about a factor three. This factor is nonetheless small

compared to what can be achieved with other simulation packages, such as ESPRESSO++ [174]:

in fact, water simulation in GROMACS is extremely optimized, and any hacking of the standard

code can introduce a bottleneck.

A major strength of the AdResS method is the fact that it introduces a decoupling between a

given region of the system and the rest while keeping the thermodynamic properties of both regions

under control: as a consequence, it is possible to conceive numerical experiments in which the

spatial extension of correlations in the system is investigated. More specifically, one can study the

structural properties of the high-resolution region as a function of its size, in order to determine

their dependency on the interaction with molecules in the bulk region. This kind of experiments is



591

different from the study of finite-size effects: in the latter, in fact, the system has the same resolution

and interaction type everywhere, and the change of a property with the box size depends on the

asymptotic approach to the thermodynamic limit. In the AdResS setup, on the other hand, finite-size

effect can be neglected for sufficiently large boxes, thus allowing one to characterize the response of

the system’s properties in a small subregion when atomistic interactions with the bulk are switched

off, but the thermodynamics is the same as in a fully-atomistic simulation. An example of this

applications is provided by the work in Reference [175]: here a molecule with both hydrophilic and

hydrophobic interactions was solvated in water and put at the center of the high-resolution region,

while the water molecules far from the surface were treated at the coarse-grained level. The ordering

degree of the hydrogen bond network on the molecule’s surface was measured as a function of the

size of the all-atom region: the results showed a dependency of the ordering for water molecules close

to the surface of the repulsive solute, while no relevant effect was observed for the attractive case.

The same strategy has been applied to investigate the extent of spatial correlations in a quantum

fluid, namely low-temperature para-hydrogen [30,176]. The latter is the spin-zero singlet state of

molecular hydrogen. Because of the spherical symmetry of the global wave function, para-hydrogen

in the solid and gas phase can be modeled as a classical, point-like particle interacting via a simple

radial potential, such as Lennard-Jones or the more accurate Silvera-Goldman potential [177,178].

The same classical potential has been shown to correctly reproduce the experimental results both in

the solid and the gas phase [178]. In the fluid phase, however, nuclear delocalization effects become

important, and a quantum mechanical treatment of the problem is necessary. This can be achieved

through the path integral formalism [179,180], which allows for the explicit inclusion of nuclear

quantum effects in a “classical” description; unfortunately, this also implies a significant increase in

the number of degrees of freedom that have to be simulated, since each molecule becomes a collection

of P beads connected by springs. The possibility to simulate a quantum system in a classical

framework such as classical MD makes it possible to couple quantum a classical descriptions with

the AdResS scheme. In particular, a low-temperature para-hydrogen system was simulated making

use of the explicit path integral representation only in a small spherical subregion of the domain,

while the molecules in the outer region were treated at the purely classical level, i.e., point-like

particles interacting through a coarse-grained potential [30]; in Figure 3 a snapshot of the simulated

system is provided. This study showed that a few molecules in a small (∼0.6 nm radius) region

of the system are sufficient to reproduce the quantum pair correlation function obtained from a full

path integral simulation, but treating the molecules in the outer region at the CG level; this result

opens the way to simulate large systems of low-temperature para-hydrogen taking advantage of a

double resolution without disrupting the thermodynamical and structural properties of the small,

purely quantum region, thus saving computational time in the CG region.

More recently the AdResS scheme has been successfully employed to perform simulations of

biologically relevant systems such as methanol-water mixtures [181] and triglycine in aqueous

urea [171], and to study the coil-globule transition of a PNIPAm molecule in aqueous methanol [182].

In all these cases a crucial necessity is to correctly reproduce the solvation free energies of the

system, a condition that is verified only when the particle number fluctuations are compatible with
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those observed in the Grand Canonical ensemble. The large system sizes necessary to fulfill this

requirement in a standard, all atom simulation often make the latter unfeasible; the employment

of dual-resolution simulation methods, possibly coupled to a Monte Carlo scheme [182] to enforce

fluctuations in the total number of molecules, see Figure 4, allows one to keep the computational cost

low and obtain results that would otherwise require a significantly longer time.

Figure 3. Set-up of the Adaptive Resolution Simulation (AdResS) para-hydrogen

simulation performed in Reference [30] (figure adapted from therein). A small sphere

in the center of the box, having radius as small as 0.6 nm, is treated at the path integral

level (red rings), while the rest is described by point-like molecules (the white spheres);

the hybrid region (blue) interfaces these two representations.

Figure 4. Schematic representation of the schemes used for the simulations of a PNIPAm

molecule solvated in aqueous methanol: (a) Conventional AdResS scheme, where a small

all-atom (AA) region is coupled to a large “closed boundary” coarse-grained reservoir;

(b) Particle exchange adaptive resolution scheme (PE-AdResS), where an AA region

is coupled to a much smaller open boundary coarse-grained reservoir, where particle

exchange is performed at the eight corners of the simulation domain to avoid depletion

effects; (c) Mapping scheme representing the smooth coupling between AA and CG

particle representations. Figure from [182].
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3.3. The Limitations of the Force-Based Approach

The AdResS method discussed so far represents a simple, effective way to perform

double-resolution simulations, i.e., simulations where the model used to represent a molecule

and its interactions with the others changes according to the molecule position. Assigning the

lowest-resolution model to the largest region allows one to save computational resources and

characterize the bulk dependence of structural properties of the high-resolution subsystem. A majorly

important point is given by the possibility to keep the thermodynamics of the system under control:

this can be achieved by direct intervention on the CG model’s properties, or by introducing an external

field -the thermodynamic force- in the hybrid region to compensate for density imbalances. This

second streategy is crucial, since it allows one to couple arbitrarily different systems while keeping

locally well-defined temperature, pressure and energy.

The AdResS method was conceived based on the requirement that Newton’s Third Law has to be

exactly satisfied everywhere. This constraint poses a strict limitation to the possible ways to interface

the two representations of the system: specifically, no potential energy interpolation is possible, via a

position-dependent switching function, that preserves Newton’s Third Law [168]; as a consequence,

the only acceptable interpolation can be performed on the forces.

A posteriori, the lack of a global energy function proves not to be a major problem: equilibrium

and canonical sampling can be enforced making use of a local Langevin thermostat. A theoretical

analysis of the AdResS dual resolution scheme has been recently carried out in Reference [183],

where the presence of a local thermostat and the thermodynamic force have been shown to be

necessary and sufficient conditions to guarantee the equivalence of the atomistic region to an open

region of a fully atomistic simulation up to second order correlation functions (density profile and

radial distribution function). These results have been obtained from a completely general model

of a dual resolution setup under the assumption of the thermodynamic limit; the generality of this

approach makes it thus applicable to different types of adaptive resolution schemes, independently

of the detailed form of the method chosen to interpolate the resolutions.

Nonetheless, the lack of a Hamiltonian has negative consequences on the usage of the AdResS

method; the four major ones are: microcanonical, i.e., energy-conserving simulation are not possible;

no partition function can be written for the system as a whole; no Monte Carlo scheme can be

implemented. Finally, due to the non-conservative nature of the forces in the hybrid region the

system necessarily has to be locally thermostatted to compensate for the heat that is produced in the

hybrid region, so that an AdResS simulation is found to be in a state of dynamical equilibrium [32],

with a constant flux of heat between the system and the thermostat.

In the next section a method is discussed, named H-AdResS [33] (for Hamiltonian Adaptive

Resolution Simulation scheme), that provides a solution to the aforementioned problems; clearly,

as no free lunch is usually available, there is a price to pay: the Hamiltonian formulation requires a

local breakdown of Newton’s Third Law.



594

3.4. The Hamiltonian Adaptive Resolution Scheme

As was discussed in the previous section, the force-based AdResS method was developed

on the basis of a central requirement, namely that Newton’s 3rd law has to be exactly satisfied

everywhere. A consequence of this constraint is that no Hamiltonian formulation is possible [168]:

if a position-dependent interpolation of the potential energies is done, in fact, the resulting forces

include a term proportional to the derivatives of the switching function λ that cannot be recast in

a form that satisfies Newton’s Third Law. The only method developed in the past that allows one

to explicitly conserve the energy in an adaptive resolution simulation is that proposed by Heyden

and Truhlar, [184,185], where a sum of the Lagrangians of all possible groupings of atomistic and

coarse-grained molecules is done. Due to its combinatoric nature, this approach is extremely difficult

to implement efficiently; moreover, the resulting Lagrangian includes a position-dependent kinetic

energy term for which a specific, non-symplectic integrator is required.

In the H-AdResS method [33], which we now describe, the aforementioned constraints are

relaxed in order to develop an energy-based, Hamiltonian adaptive resolution simulation scheme.

As will be clear in a few lines, the particular choice of energy “mixing” gives rise to forces that

do not comply with the first constraint; nevertheless, the physical interpretation of these terms is

immediate and naturally points towards the solution -though approximate- of the Newton’s Third

Law breakdown.

The core idea of the energy-based approach is to weight the total energy of each molecule with a

position-dependent function:

H = K + V int +
∑
α

{
λαV

AA
α + (1− λα)V

CG
α

}
(23)

where K is the (all-atom) kinetic energy of the molecules, V int is the interaction internal to the

molecules, and: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

V AA
α ≡ 1

2

N∑
β,β �=α

∑
ij

V AA(|rαi − rβj|)

V CG
α ≡ 1

2

N∑
β,β �=α

V CG(|Rα − Rβ|)

λα = λ(Rα)

The switching function λ goes from 0 (purely CG) to 1 (purely AA). The force acting on atom i

in molecule α is obtained through differentiation of the Hamiltonian in Equation (23):

Fαi = Fint
αi +

∑
β,β �=α

{
λα + λβ

2
FAA
αi|β +

(
1− λα + λβ

2

)
FCG
αi|β

}
−

[
V AA
α − V CG

α

]
∇αiλα (24)

The forces FAA
αi|β and FCG

αi|β are defined as:

FAA
αi|β ≡

nβ∑
j=1

− ∂

∂rαi
V (|rαi − rβj|)

FCG
αi|β ≡ −mαi

Mα

∂

∂Rα

V CG(|Rα −Rβ|) (25)
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The redistribution of the CG force on the atomistic degrees of freedom follows the same rules as

applied in the case of the force-based AdResS method. It’s worth noting that in this energy-based

scheme the atomistic degrees of freedom are retained and integrated everywhere in the system, a

necessary requirement in order to perform a microcanonical simulation making use of a Hamiltonian.

We now detail the various components of the force, Equation (24). The first term, Fint
αi , is due to

the interactions internal to the molecule; as such, it automatically satisfies Newton’s Third Law. The

second term is a sum of pairwise forces obtained from all-atom and coarse-grained Hamiltonians,

weighted by a function that is symmetric under molecule label exchange, that is α ↔ β; this force

also complies with Newton’s Law. Up to this point we modified only one aspect of the original

AdResS scheme, that is, the force weights are not given by the product of the two molecules’

switching function, rather by the average; consequently, the molecules in the coarse-grained region

are also allowed to interact through their atomistic degrees of freedom.

The third term of the forces in Equation (24) is the part that breaks down Newton’s Third Law: in

fact, it cannot be written as a sum of terms antisymmetric under molecule label exchange. This force,

which is nonzero only in the hybrid region, is proportional to the difference between the potential

energies of a given molecule in the AA and the CG representation; if a systematic difference exists

between the AA and the CG potentials, the effect of this term is to push molecules into one of

the two bulk regions. The hybrid region thus behaves as an active membrane, inducing a density

imbalance and a non-flat pressure profile. One is then naturally led to ask how strong is the drift term

Fdr
α = −

[
V AA
α − V CG

α

]
∇αiλα; if it is negligible in some cases; which these cases are; and if there

is a general way at least to minimize its effect without giving up the Hamiltonian character of these

forces. We shall now address these questions.

The optimal case in which this term is minimized is when the CG potential perfectly reproduces
the many-body PMF. If this is true, in fact, the drift term vanishes on average:

V CG
αβ ≡

〈
V AA
αβ

〉
⇒ 〈Fdr

α 〉 ∝
〈[
V AA
α − V CG

α

]〉
→ 0

This can be numerically verified with a simple toy model, for which a pairwise CG potential

represents an excellent approximation to the PMF. Such a model is provided by a low-density fluid

of purely repulsive tetrahedral molecules [24], whose CG potential has been obtained from IBI. This

model was used in an energy-conserving H-AdResS simulation, and the resulting density profile is

plotted in Figure 5. The molecular density attains the same value in both the AA and CG regions;

in the hybrid region a small depletion is present, because the free energy of the mixed potential is

different from the free energy of the “pure” (i.e., purely AA or purely CG) potentials. The same

behavior has been systematically observed in AdResS simulations [24].

Needless to say, this particular case is very fortunate: as we discussed in the previous sections,

the CG potentials almost never reproduce the many-body potential of mean force [117,186]. The

difference between an atomistic model and its coarse-grained representation therefore results in a

thermodynamic imbalance, that is, both pressure and density of the two bulk (AA and CG) regions

are different [13]. The solution to this problem is again to introduce a compensation term in the
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Hamiltonian, as was done in the AdResS scheme with the thermodynamic force. More specifically,

we modify the Hamiltonian as follows:

HΔ = H −
N∑

α=1

ΔH(λ(Rα)) (26)

where ΔH(λ) is a function to be defined. It’s worth noting that this term preserves the conservative

nature of the Hamiltonian.

Figure 5. H-AdResS simulation of a system of tetrahedral molecules coupled to

point-like molecules interacting through an Iterative Boltzmann inversion (IBI)-CG

potential (reprinted from the Supporting Information of Reference [33]). Top: density

profile; bottom: radial distribution functions of the atomistic (red lines) and

coarse-grained (blue lines) degrees of freedom in the all-atom region; the solid lines are

the reference RDFs calculated in the all-atom system, while the dashed lines are obtained

from a H-AdResS simulation.

In order to determine the specific form of ΔH we impose that the drift force cancels on average:

dΔH(λ)

dλ

∣∣∣∣
λα

∇αλα + 〈Fdr
α 〉 ≡ 0 (27)

or equivalently:

dΔH(λ)

dλ

∣∣∣∣
λ=λα

=
〈[
V AA
α − V CG

α

]〉
Rα

(28)

where the subscript in the average indicates that the latter has to be performed constraining the CG

site of molecule α in the position Rα.
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In principle, Equation (28) provides us with the way to compute the compensating function—or,

more precisely, its derivative; nonetheless, an approximation to ΔH might be sufficient. A way to do

this is the following: 〈[
V AA
α − V CG

α

]〉
Rα

� 1

N

〈[
V AA − V CG

]〉
λ′ (29)

where λ′ ≡ λ(Rα) is the same for all molecules. The approximate function ΔH is obtained

by integration:

ΔH(λ) =

∫ λ

0

dλ′dΔH(λ′)
dλ′ � 1

N

∫ λ

0

dλ′ 〈[V AA − V CG
]〉

λ′ =
ΔF (λ)

N

Most interestingly, we see from Equation (30) that the compensation needed to cancel 〈Fdr
α 〉 is

related to the Helmholtz free energy difference between AA and CG system [187]. Therefore, it is

possible to calculate the compensating function needed to restore, on average, Newton’s Third Law

by performing a Kirkwood thermodynamic integration.

The “Helmholtz free energy compensation” thus cancels the active effect of the hybrid region,

restoring a flat pressure profile. Nonetheless, coarse-grained models have, in general, a substantially

different pressure with respect to their atomistic reference [117], thus inducing a further density

imbalance (usually larger than the one due to the different Helmholtz free energy). In order to

restore a flat density profile a second term has then to be added to the compensating function, that

counterbalances the pressure difference.

The right way to introduce the pressure into the compensating function is to balance, rather than

Helmholtz free energy, the Gibbs free energy difference per particle, that is, the chemical potential

Δμ = ΔG/N :

ΔH(λ) ≡ Δμ(λ) =
ΔF (λ)

N
+

Δp(λ)

ρ

(30)

Figure 6 shows the density and pressure profiles for the three possible cases we discussed: the

previously mentioned system of tetrahedral molecules was coupled to a coarse-grained fluid of purely

repulsive point-like molecules; the pressure of this fluid has a larger pressure then the reference

all-atom one for the same temperature and density. In the plot, the red lines correspond to the case in

which no free energy compensation is introduced: the density is higher in the AA region, due to the

molecules in the CG region that “push” with a higher pressure. The profile of the pressure is also not

flat: the Helmholtz free energy of two systems differs, therefore an active force exists in the hybrid

region. When the Helmholtz free energy compensation is applied we have the situation shown by

the green lines: the density is still higher in the AA region, but the pressure profile is now flat: the

forces that break Newton’s Third Law in the hybrid region are cancelled on average, and the density

imbalance decreases. Finally, when the Gibbs free energy compensation is applied the densities of the

AA and CG regions attain the same value, but for a small deviation due to the fluctuations present in

the hybrid region (that the compensation function ΔH , computed in a homogeneous system, cannot

remove). The pressure, on the other hand, is different: in fact, in each region it reaches the value that

corresponds to the reference state of density and temperature. Analogous results are obtained in a
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thermostatted simulation of a water box, as shown in Figure 7: here the system is composed of a slab

of water molecules described at atomistic resolution, coupled to a CG bulk where particles interact

via a purely repulsive WCA potential. As in the previous case, the CG interaction was parametrized to

induce an increase of the density in the atomistic region, as can be seen in Figure 8 (upper panel). The

Free Energy Compensation restores the correct density profile, and guarantees that in the AA region

the pairwise correlations, i.e., the radial distribution functions, are the same that one would measure in

a fully atomistic simulation, as shown in Figure 8 (bottom panel). We notice that Gibbs free energy

compensation, even though it equates the densities in the bulk regions, is not sufficient to remove

small fluctuations (of the order of ∼3%) in the hybrid region: these deviations from the reference

value are due to the fact that the compensation ΔH is computed in a homogeneous system, where

all molecules have the same value of λ—that is, a regular Kirkwood thermodynamic integration

Hamiltonian. The molecules in the hybrid region, on the other hand, interact with other molecules

having different λ values. The resulting fluctuations are expected to decrease with increasing size

of the hybrid region, in which case the environment of a given molecule approaches the condition

of homogeneous λ. Another strategy to flatten the density profile is clearly provided by the iterative

approach of the thermodynamic force (Equation (22)), a few iterations of which would be sufficient

to modify the ΔH function by the small amount necessary to remove the fluctuations.

Figure 6. Plots showing the effect of the free energy compensations on the density

profile (upper panel) and pressure profile (lower panel) in a H-AdResS simulation with

CG potential having larger pressure, for identical temperature and density values, than the

all-atom one (reprinted from Reference [33]). The red line corresponds to the case where

no compensating function was employed; the green line to the Helmholtz free energy

compensation; and the blue line to the Gibbs free energy compensation. All densities

are normalized to the value of the fully atomistic simulation (dotted line at ρ = 1). All

pressures are normalized to the value of the fully atomistic simulation (dash-dot line);

the dotted line indicates the normalized pressure of the fully coarse-grained simulation.
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Figure 7. Schematic view of a dual-resolution simulation of water: the central slab of

the box is described at atomistic resolution, while in the bulk the molecules are point-like

particles interacting via a purely repulsive WCA potential.

Figure 8. Top panel: density profile of the water system along the x coordinate. The

red dotted line corresponds to the H-AdResS simulation without FEC, while the solid

back line has been obtained using the FEC. Bottom panel: radial distribution functions

of the water atoms in the central (AT) slab of the box, as obtained from a fully atomistic

simulation (solid lines) and a H-AdResS simulation with FEC (dots).
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The Free Energy Compensation (FEC) strategy, defined by Equation (26), can be extended to

multi-component systems. To illustrate this idea we consider a molecular liquid composed by two

types of molecules, A and B, indexed with a and b, respectively. The corresponding H-AdResS

Hamiltonian for this system reads:

HMIX = K + V int +
∑
a∈A

[
λaV

AA
a + (1− λa)V

CG
a

]
+

∑
b∈B

[
λbV

AA
b + (1− λb)V

CG
b

]
(31)

with λa = λ(Ra) and λb = λ(Rb). The intermolecular potential energy terms are given by the

following expressions:

V AA
a =

1

2

⎡⎢⎢⎣∑
a′∈A
a′ �=a

∑
ij

V [AA]AA
ai;a′j +

∑
b∈B

∑
ij

V [AB]AA
ai;bj

⎤⎥⎥⎦

V CG
a =

1

2

⎡⎢⎢⎣∑
a′∈A
a′ �=a

V [AA]CG
aa′ +

∑
b∈B

V [AB]CG
ab

⎤⎥⎥⎦

V AA
b =

1

2

⎡⎢⎢⎣∑
b′∈B
b′ �=b

∑
ij

V [BB]AA
bi;b′j +

∑
a∈A

∑
ij

V [AB]AA
bi;aj

⎤⎥⎥⎦

V CG
b =

1

2

⎡⎢⎢⎣∑
b′∈B
b′ �=b

V [BB]CG
bb′ +

∑
a∈A

V [AB]CG
ba

⎤⎥⎥⎦

(32)

where V [XY ] is the non-bonded interaction between a molecule of type X and a molecule of type

Y , with X, Y = A,B, and the indices i, j labeling the atoms.

In analogy with one-component systems we introduce a FEC term for each species to compensate

for the free energy difference between the AA and the CG regions:

HMIX
Δ = HMIX −

∑
a∈A

ΔHA(λa)−
∑
b∈B

ΔHB(λb) (33)

An Ansatz for the compensation term of a given species k = a, b can be obtained from TI

as follows:

ΔHk(λ) =
ΔFk(λ)

Nk

+
Δpk(λ)

ρ
k

ΔFk(λ) =

∫ λ

0

dλ′ 〈[V AA
k − V CG

k

]〉
λ′

Δpk(λ) = pk(λ)− pk(0) (34)

where the Nk, ρ
k ≡ Nk/V and pk are, respectively, the number of molecules, the reference partial

density and the partial virial pressure of species k. We stress that all the quantities in Equation (34)
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can be computed in a single TI of the mixture from AA to CG at the concentration of interest,

irrespective of the number of species. All the cross-interactions between different types of molecules

are automatically included in the free energy contribution of each species. Additionally, the Free

Energy Compensation ΔHk(λ) is an intensive quantity and does not depend on the specific geometry

of the H-AdResS setup. It is therefore possible to perform the TI in a relatively small system,

provided that it is statistically representative, i.e., finite size effects are negligible.

The effectiveness of this strategy has been proven by the Monte Carlo simulations of binary

mixtures performed in Reference [34]. Here we report one of these simulations, specifically

the mixture of 70% A-type molecules and 30% B-type molecules, both made of four identical

atoms; the A–A and B–B interactions are identical WCA potentials, while the A–B interaction

is a Lennard-Jones potential. In the CG region both molecules are represented as spherical

particles with identical, purely repulsive WCA A–A, B–B and A–B interactions, resulting in

a particularly large thermodynamic mismatch between AA and CG domains. This can be

directly observed in the snapshot of the simulation reported in Figure 9 (top) as well as in the

density profiles (dotted lines in Figure 10): the chemical potential imbalance between the two

resolutions leads to a large accumulation of B-molecules in the AA zone. As a consequence,

neither the total density nor the relative concentrations in the AA zone obtained using the

uncompensated adaptive resolution Hamiltonian in Equation (31) correspond to the reference

atomistic system.

Figure 9. Snapshots of a H-AdResS Monte Carlo simulation (reprinted from [34]).

Top panel: Equilibrated configuration, without FEC. Bottom panel: Equilibrated

configuration, with FEC. The A-type atoms are represented in gray, the B-type atoms

in orange. Molecules in the coarse-grained (CG) region are represented as large spheres.

White vertical lines mark the boundaries of the CG-hybrid and hybrid-atomistic regions.

According to Equation (34), a thermodynamic integration was performed to determine the

thermodynamic mismatch between the AA and the CG zone. The Helmholtz and Gibbs free energy

differences per molecule between the CG and AA models as a function of the coupling parameter
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λ, computed for both species simultaneously in a single TI, are shown in Figure 11. In spite of

the same interaction between molecules of the same type (V [AA] ≡ V [BB]), the uneven relative

concentration of the two species determines a much larger free energy difference between the AA

and CG models for the B-type. In fact, the latter shows a Gibbs free energy difference per particle

|ΔGB/NB| > 2 |ΔGA/NA|. This is mainly due to the fact that the interaction between A and B

types is attractive only in the AA representation, thus determining a lower chemical potential for the

minority type (B) in the AA region. In addition, in both cases the sign of ΔG favors the densification

of particles in the AA region, as can be seen in Figure 10. To counterbalance the mismatch in

chemical potentials a FEC was introduced in the H-AdResS Hamiltonian according to Equation (33),

using the free energy functions shown in Figure 11. The resulting density profiles (solid lines in

Figure 10) demonstrate the success of the procedure.

Figure 10. Density profiles along the direction of resolution change (reprinted

from [34]). Dotted lines: H-AdResS simulations without FEC; solid lines: With FEC.

Vertical dashed lines indicate the boundaries between the AT, hybrid and CG regions;

horizontal dashed lines mark the reference value of the density (normalized to the total

density) as expected in a fully atomistic simulation of the system.
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In this section we discussed the H-AdResS method, which allows for a seamless coupling of

two models of the same system with different resolution within a Hamiltonian framework. In order

to define an energy-based mixing rule for the two models, the requirement to preserve Newton’s

Third Law everywhere in the system had to be relaxed. Nonetheless, the “undesired” term that

appears in the forces due to the differentiation of the switching function λ is non-zero only in the

hybrid region, and its particular form naturally indicates how to introduce, in a physically sound

manner, a compensation function that cancels the average effect of the drift force without disrupting

the Hamiltonian character of the model. The computational cost of the H-AdResS simulations is

comparable to that of the AdResS method, the only difference being the need to calculate the drift

force Fdr
α in the hybrid region: nonetheless, the number of molecules that are affected by this force

is typically small (both the AA and the CG regions are expected to be much larger than the hybrid

region), and the quantities involved, namely interaction energies and molecules’ CoM coordinates,

are normally computed in a MD simulation.

In spite of its simple formulation and relatively small difference with respect to the force-based

method, H-AdResS represents a major step forward in terms of understanding and practical

advantages. In fact, the existence of a Hamiltonian allows one to precisely formulate a statistical

physics theory of double-resolution systems, providing a deep insight into the properties of a given

all-atom model, its coarse-grained counterpart and the relation between them. In particular, the free

energy compensations provide a simple and effective way to modulate the thermodynamic balance

of AA and CG regions, thus leaving to the user the choice of the environment for the AA region most

appropriate for the specific problem under examination. Last but not least, this scheme broadens the

spectrum of physical ensembles that can be simulated to the microcanonical ensemble, and allows the

use use of simulations techniques—e.g., Monte Carlo—that were not accessible in the force-based

AdResS framework, with the a priori guarantee that real equilibrium configurations are sampled.

4. Conclusions

The characterization of the properties of new materials, as well as the investigation of biological

macromolecular machineries, have largely benefited from in silico experiments. In spite of a steady

increase in available computational power for very large systems and long timescales of the processes

involved these resources turn out to be insufficient, due to the extraordinarily large amount of data

that has to be stored and force/energy calculations that have to be performed. To overcome these

limitations, the field of multiscale simulations has vastly expanded over recent years, and in the

present review we have covered two aspects that are central to many multiscale approaches.

In the first part of the review we have addressed methodological questions associated with

the development of coarse grained models, where atoms are grouped into super-atoms to reduce

the number of degrees of freedom in the system. We have summarized the current approaches

to bottom-up coarse graining and addressed some of the ongoing coarse graining issues such as

the choice of parametrization targets and the choice of interaction functions used for the coarse

grained model. These choices lead to several possibilities (i.e., coarse graining methodologies)

for solving the inverse problem of finding parameters for the coarse grained interaction functions
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given the selected target properties. We have briefly discussed these (statistical-mechanically

interrelated) methods in context with each other. An inevitable question that arises from having to

choose coarse graining target properties and approximations to solve the parametrization problem

is the question of representability of different thermodynamic and structural properties. These

representability challenges go hand in hand with the question of transferability, i.e., to which extent

a reduced-resolution model is applicable to a state-point that is different from the one where it was

parametrized. In general it can be said that transferability problems increase with decreasing level of

resolution, i.e., the coarser a model the more limited is its applicability range, which then needs to be

very carefully assessed. However, as a positive aspect one should mention that the investigation

of transferability issues can help to gain insight into physical-chemical principles that drive the

behavior of the system. We have illustrated transferability-related questions with the help of a few

examples. In conclusion, one should mention that transferability problems are not specific to coarse

grained models. Such problems are well known for classical atomistic forcefield models as well.

A good example is simulations of mineral systems in contact with electrolyte or polyelectrolyte

solutions. Here, forcefields for ions in solution and in the mineral solid have to be combined.

This combination leads to transferability issues since electronic polarizability is not represented in

a classical atomistic forcefield, and the compromises that are made to approximately account for

its effects in a classical parametrization are different in the different phases. As a consequence,

the typical “recipes” to combine parameters for different components cannot be straightforwardly

applied, resulting in a significant parametrization effort for such problems [188–190]. The increasing

awareness of transferability as a modeling challenge and the solution strategies developed in the

context of coarse grained models may therefore very well benefit other areas of model development

such as classical atomistic force-fieds for multicomponent materials systems.

In the second part of the review we have discussed the recent advances in the field of adaptive

resolution approaches. The above mentioned limitation in system size comes together with the

disappointing fact that a considerable fraction of the simulated data is often discarded afterwards:

the solvent, for example, is usually not involved in the analysis of the system, but it is nonetheless

required by the simulation. Adaptive resolution methods try to reduce the amount of resources

dedicated to the simulation of large, non-interesting regions of the system by replacing them with

a simpler, coarse-grained representation of their content. Such “dual-resolution” schemes are built

with the constraint that the thermodynamical properties of the region of interest (i.e., the one with the

higher resolution) do not differ from those that an equivalent subdomain of the system would have in

a fully high-resolution simulation.

In the present work we discussed two methods to achieve this goal: the Adaptive Resolution

Simulation (AdResS) scheme, based on the interpolation of two different force-fields, and its

Hamiltonian formulation, H-AdResS, where the all-atom and coarse-grained potential energies are

interpolated. These methods have been successfully used to interface different molecular fluids,

treated at the atomistic level, with their coarse-grained models; the different properties of the AA and

the CG potentials naturally induce thermodynamical imbalances in the corresponding sub-regions,

but simple and effective ways to overcome this problem have been described.
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The possibility of replacing vast regions of the simulated system with a crude, cheap-to-compute

representation and concentrating the computational resources on smaller parts while keeping

the relative thermodynamics under control makes it possible to sensibly reduce the amount of

calculations required to perform a simulation, and opens the way to a broad spectrum of applications,

such as large-scale simulations of complex biomolecules in solution and efficient open-boundary

simulations with varying number of particles.
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