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Editorial

Computer Vision and Machine Learning for Intelligent
Sensing Systems

Jing Tian

Institute of Systems Science, National University of Singapore, Singapore 119615, Singapore; tianjing@nus.edu.sg

Intelligent sensing systems have been fueled to make sense of visual sensory data to
handle complex and difficult real-world sense-making challenges due to the rapid growth
of computer vision and machine learning technologies. We can now interpret visual sensory
data more effectively thanks to recent developments in machine learning algorithms. This
means that in related research, significant attention is now being paid to problems in this
field, such as visual surveillance, smart cities, etc.

The Special Issue offers a selection of high-quality research articles that tackle the major
difficulties in computer vision and machine learning for intelligent sensing systems from
both a theoretical and practical standpoint. It includes intelligent sensing techniques [1–5],
twelve foundational investigations into sense-making methods [6–10], and particular uses
of intelligent sensing systems in autonomous driving [11] and virtual reality [12].

Intelligent sensing techniques

• Kokhanovskiy et al. [1] demonstrated the application of deep neural networks to
process the reflectance spectrum from a fiberoptic temperature sensor.

• Shiba et al. [2] proposed collapse metrics by using the first principles of space–time
deformation based on differential geometry and physics for contrast maximization,
which provided state-of-the-art results on several event-based computer vision tasks.

• Chen et al. [3] presented a system that integrates mobile edge computing technology
and simultaneous wireless information and power transfer technology to improve the
service supply capability of WSN-assisted IoT applications.

• Niu et al. [4] proposed a new fusion network to minimize the influences from the two
most common sensor noises, i.e., depth noises and pose noises.

• Hashmani et al. [5] presented a novel SLIC extension based on a hybrid distance
measure to retain content-aware information for semi-dark images.

Intelligent sense-making techniques

• Le and Scherer [6] performed a comprehensive survey of many studies, methods,
datasets, and results for human segmentation and tracking in video.

• Tran et al. [7] proposed a heuristic attention representation learning framework relying
on the joint embedding architecture, in which the two neural networks are trained to
produce similar embedding results for different augmented views of the same image.

• Zaferani et al. [8] proposed a method for the automatic hyper-parameter tuning of a
stacked asymmetric auto-encoder to extract personality perception from speech.

• Hu et al. [9] developed two attention modules that work together to extract the
coordination characteristics in the process of motion and strengthen the attention of
the model to the more important joints in the process of moving.

• Oh et al. [10] suggested estimating gaze by detecting eye region landmarks through
a single eye image. It learns representations of images at various resolutions, and
the self-attention module is used to obtain a refined feature map with better spatial
information.

Sensors 2023, 23, 4214. https://doi.org/10.3390/s23094214 https://www.mdpi.com/journal/sensors
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Applications of intelligent sensing systems

• Song and Lee [11] studied autonomous driving and proposed a novel algorithm for on-
line self-calibration between sensors using voxels and three-dimensional convolution
kernels.

• Moreno-Armendáriz et al. [12] described a system composed of deep neural networks
that analyze characteristics of customers based on their face, as well as the ambient
temperature, to generate a personalized signal to potential buyers who pass in front of
a beverage establishment.

In conclusion, through the wide range of research presented in this Special Issue, we
would like to boost fundamental and practical research on applying computer vision and
machine learning for intelligent sensing systems.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: In this paper, we demonstrate the application of deep neural networks (DNNs) for process-
ing the reflectance spectrum from a fiberoptic temperature sensor composed of densely inscribed
fiber bragg gratings (FBG). Such sensors are commonly avoided in practice since close arrangement
of short FBGs results in distortion of the spectrum caused by mutual interference between gratings.
In our work the temperature sensor contained 50 FBGs with the length of 0.95 mm, edge-to-edge
distance of 0.05 mm and arranged in the 1500–1600 nm spectral range. Instead of solving the direct
peak detection problem for distorted signal, we applied DNNs to predict temperature distribution
from entire reflectance spectrum registered by the sensor. We propose an experimental calibration
setup where the dense FBG sensor is located close to an array of sparse FBG sensors. The goal of
DNNs is to predict the positions of the reflectance peaks of the reference sparse FBG sensors from the
reflectance spectrum of the dense FBG sensor. We show that a convolution neural network is able to
predict the positions of FBG reflectance peaks of sparse sensors with mean absolute error of 7.8 pm
that is slightly higher than the hardware reused interrogator equal to 5 pm. We believe that dense
FBG sensors assisted with DNNs have a high potential to increase spatial resolution and also extend
the length of a fiber optical sensors.

Keywords: fiber bragg grating; optical fiber sensor; distributed temperature sensor; deep learning
algorithms; fully connected neural network; convolutional neural network

1. Introduction

Fiber bragg grating sensors are widely used for distributed temperature and strain
sensing [1–3]. The performance of FBG-based sensors significantly depends on the accuracy
of the peak detection algorithms that provide the possibility of converting a registered
signal into temperature/strain values. Commonly, an array of FBGs is sparsely inscribed
on a stretch of fiber in spatial and spectral domains to avoid mutual interference between
neighboring FBGs. In this case, the peaks positions and their shapes are relatively simple
to distinguish and plenty of algorithms may be applied for processing [4–6].

However, there is always a trade-off between peak detection accuracy and the number
of FBG sensors in the sensing channel. The limited capacity of a sensing channel results
in the limited length and spatial resolution of an FBG sensor. Increasing the number of
sensing channels limits the sensor interrogation rate and increases the cost of a final device.

At the same time, FBG sensors with high spatial resolution are attractive for various
applications including damage processes monitoring [7], healthcare [8], and heat localiza-
tion [9]. The spatial resolution of a fiber optical sensor may be raised by implementation of
chirped FBGs [10] or the implementation more advanced interrogation technique [11].

Software solutions are mainly focused on the coupling of the reflectance spectra of
several FBG sensors into one sensing channel and processing the resulting signal for peaks
discrimination [12,13]. Today, the scientific community is paying significant attention

Sensors 2021, 21, 6188. https://doi.org/10.3390/s21186188 https://www.mdpi.com/journal/sensors
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to machine-learning (ML) algorithms, which have already shown good performance at
various fundamental levels and practical applications [14,15]. Particularly, data-driven
algorithms are capable of operating with large-scale high-dimensional data and finding
hidden intrinsic features and dependencies. There have already been successive attempts
to apply ML algorithms for interpretation the of overlapped reflectance spectra from
sparse FBG sensors including: extreme learning machines [12], least squares support
vector regression [16], convolutional neural networks [17], particle swarm optimization
algorithms, long short-term memory algorithms [18] and others [19,20].

However, in most of the presented works, the performances of the algorithms were
demonstrated on the model spectra of FBGs, where various additional spectrum distortions
associated, for example, with mutual interference between neighboring FBGs, are not
considered. Additionally, FBG arrays with a small number of gratings (up to 4 FBGs) were
used in experiments, while a real network of sensors can contain more than 50 individual
sensing points, for which the presented algorithms will have a significant root mean square
error and a significantly longer signal processing time (~s), which makes it difficult to use
these algorithms for real-time measurement applications. The possibility of interrogating
a sensors network containing 60 FBGs was recently demonstrated [20], but in this case
spectral bandwidth was divided into 30 independent regions without crosstalk containing
only two paired FBGs with spectral overlap. Each FBG has a bandwidth of ≈0.25 nm to
ensure the absence of crosstalk between adjacent regions (1–3 nm), so a length of FBG was
~5 mm, which limits the spatial resolution of measurements. In the case of short FBGs
(<1 mm) used for high spatial resolution measurements, the spectral width is much higher
(~1.5 nm) and for this reason the spectra will significantly affect each other and therefore
these algorithms will give a large error.

Here, we investigate alternative method to process experimental reflection spectra of
a highly dense FBG temperature sensor. Fifty closely inscribed FBGs allowed us to increase
the length and spatial resolution of the temperature sensor interrogated by using a single
optical channel of interrogator. To fabricate the sensor, we used the femtosecond point-
by-point inscription technique, allowing high-precision FBG positioning and wavelength
resonance specification. For adequate interpretation of a complex reflection signal we do
not solve the peak detection problem, but apply deep learning algorithms in order to match
the whole reflectance spectrum of the dense FBG sensor with temperature distribution.
We also propose an experimental setup based on optical interrogator and Peltier cells for
training procedures of deep learning algorithms. By applying the developed algorithms,
we show that the capacity of the optical channel of the interrogator can be increased without
significant loss of accuracy in the FBG peak detection.

2. Experimental Setup

In the following experiments we used two different types of FBG-based temperature
sensors inscribed in Fibercore SM1500(9/125)P polyimide-coated fiber by using femtosec-
ond IR laser pulses [21]. The first one was a highly dense sensor composed of 50 uniform
FBGs equidistantly arranged along 50 mm fiber segment. Each of the gratings had a length
of 0.95 mm and was separated from the neighboring by 0.05 mm, as shown in Figure 1. The
resonant wavelengths of the FBGs in the array were chosen to uniformly fill the spectral
range of the used 8-channels HBM FS22-SI interrogator (1500–1600 nm). The interrogator
operated in optical spectrum analyzer mode providing 1 Spectrum per second refresh rate,
20,001 points per spectrum, and 5 pm resolution. The second type of FBG array was an
array containing only intermediate elements of a highly dense array, as shown in Figure 1.
Due to the decrease in the FBG density, the reflection spectra the array possess a less noisy
shape, making it possible to use such a sensor as a reference when processing the data of a
highly dense sensor.

4
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Figure 1. Arrangement of FBGs in highly dense and sparse temperature sensors.

Figure 2a shows a fragment of a reflection spectrum of the highly dense FBG tem-
perature sensor and one of the sparse FBG temperature sensors measured by the optical
interrogator. The whole reflectance spectrums are depicted in Figure 2b. As can be seen
from the spectra, the close spectral arrangement of the FBGs in a highly dense array leads
to mutual interference between adjacent gratings, which consequently increases the noise
level of the resonance peaks compared to a sparse FBG array.

(a) 

 

(b) 

Figure 2. Reflection spectra of a highly dense and one of the sparse FBG sensors: zoomed (a) and full
(b) spectral ranges.

We used five calibrated sparse temperature sensors and additional channels of the
interrogator to calibrate the dense FBG sensor. The general scheme of the experimental
setup is depicted in Figure 3.

FBG sensors were glued closely to each other (as shown at Figure 1) on an aluminum
plate with attached Peltier cells on the back surface. By controlling the current and polarity
of the electrical power supplies, as well as the positions of Peltier cells, we applied dif-
ferent temperature gradients to the plate, some of which are presented on Figure 4. The
temperature of the plate varied in the range from 10 to 80 ◦C with spatial gradients in the
range from −0.38 ◦C/mm to 0.44 ◦C/mm. The diversity of the temperature gradients was
exploited during the training procedure, thus improving the ability of the deep neural
network to generalize incoming data and improve the sensitivity of the dense FBG sensor.

5
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Figure 3. Principle scheme of the experimental setup.

Figure 4. Examples of exploited temperature gradients during training procedure.

3. Architectures of Deep Neural Network

The task for deep neural networks was to predict the reflectance peak positions of
50 FBGs contained in 5 sparse sensors by the optical reflectance spectrum of the highly
dense sensor. We investigated the performances of full-connected and convolutional neural
networks, which were built using the TensorFlow software package [22]. A fully connected
neural network (FCNN) was selected as the most common and simple architecture. Our
FCNN consisted of input, hidden and output layers, as shown in Figure 5. The size of
the input layer was 20,001 neurons corresponding to the size of the signal array from
the interrogator, the output layer had 50 neurons corresponding to the number of the
FBGs of the dense sensor. The size of the hidden layer was optimized in order to reduce
computational time and maintain the precision of the algorithm. During the grid search
procedure of hyperparameters of FCNN we used Mean Squared Error as a loss function
and Adamax optimizer for neuron weights optimization. FCNN with 500 neurons at the
hidden layer with sigmoid activation function showed the best performance (Section 4).

We also chose a convolutional neural network (CNN) for the task, because of its
potential capability to reveal hidden features related to interference between reflectance
patterns of nearby FBGs (Figure 6). The input layer was a two-dimensional array of the
reflectance pattern, after which there was a layer with one convolutional filter of size 2 × 2
and Relu activation function. The 2-dimensional convoluted image was then flattened and
transferred to two fully connected layers. The size of the last output layer was 50 neurons.

6
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Figure 5. Feed forward neural network with three layers. The final architecture had 20,001 neurons
at the input layer, 500 neurons at the hidden layer, 50 neurons at the output layer.

Figure 6. Convolutional neural network consisted of six layers.

Unlike FCNN, where we have used a 1-dimensional array as an input, we transformed
the input signal array into a two-dimensional image. This was undertaken in order to
reduce the size of a convolutional filter. Our first attempt was to slice 1-dimensional into
50 windows with centered reflectance peaks of FBGs (Figure 7a). However, this approach
leads to greater challenges during signal processing due to the aperiodic arrangement of
the peaks. Instead, we sliced the input signal into 59 parts, since 59 is a prime factor for
20,001 (Figure 7b). Despite the image losing its physical meaning, such an approach is
more robust and straightforward.

7
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(a) (b) 

Figure 7. (a) 2D reflectance spectrum of FBG sensor with centered reflectance peaks; (b) 2D reflectance pattern of FBG
obtained by slicing the reflectance spectrum into 59 pieces.

The input data was scaled for both neural networks in following order: first, each
sample of a reflectance spectra was shifted by mean value of the intensity, then it was
normalized by standard deviation of the intensity. Sample size of training, validation and
testing datasets were 2000, 500 and 1000, respectively.

4. Results

The learning curve of the FCNN on a training dataset and prediction error on a
validation dataset are depicted at Figure 8a. We plotted the curves on a logarithmic scale
for the convenience of their analysis. During training epochs loss function (mean absolute
error) drops down and saturates after 100 epochs. The evolution of the prediction error
(orange line) shows that the neural network was not overfitted. Figure 8b shows mean
absolute error rates for different activation functions and number of nodes at the hidden
layer. Figure 8c demonstrates the predicted positions of the reflectance peaks for all 50 FBGs
of the sparse sensors against measured ones in scaled units. Figure 8c is the same curve for a
single FBG in nm units. The curves are in close proximity to the straight line corresponding
to the ideal case when predicted values are equal to measured values. We found out that
FCNN is able to predict the positions of the reflectance peak of the sparse FBG sensors with
a mean absolute error equal to 10.9 pm. The root mean square error (RMSE) was 18 pm
and the coefficient of determination (R2) was 0.9988.

In the same way we analyzed the performance of CNN (Figure 9). It can be seen
that neural networks have similar performance; however, CNN shows the lowest mean
absolute error, equal to 7.4 pm, RMSE equal to 14 pm and R2 equal to 0.9993.

The RMSE metric is more sensitive to large errors comparing to MAE. It is clearly seen
from Figures 8c and 9c that the mismatch between real, predicted and measured values is
not uniformly distributed along different FBGs. For some FBGs, the mean absolute error
does not exceed 5 pm; however, for one FBG the mean absolute error reaches 14 pm. We
attribute this to the violation of the uniformity of the temperature field across fiber sensors
during the mechanical translation of the Peltier cells. Indeed, CNN performed worse at
convex temperature distribution when only one Peltier cell was used. The RMSE was equal
to 14.48 pm and R2 was equal to 0.9967 for convex temperature distribution comparing to
8.48 pm and 0.9993 for raised gradient temperature distribution. The issue may be solved
by adding more Peltier cells with lower size or building more complicated heating/cooling
systems, for instance, using laser heating in combination with a spatial light modulator.

8



Sensors 2021, 21, 6188

  
(a) (b) 

      
(c) (d) 

Figure 8. Performance of the FCNN. (a) Learning curve of the model on training dataset and evolution of the loss function
of validation dataset. (b) Mean absolute error of FCNN for different activation functions and different number of nodes
of the hidden layer. (c) Predicted reflectance peak positions of the FBGs of the sparse sensors against measured values at
normalized scales. (d) Predicted positions of the reflectance peak for single FBG of sparse sensor against measured value.

Computational complexities of FCNN and CNN may be estimated as follows:

CFCNN = Ninput · Nhidden + Nhiden ∗ Noutput, (1)

CCNN = Ninput · D2 + Ninput ∗ Nf cl1 + Nf cl1 · Nf cnn2 + Nf cnn2 ∗ Noutput, (2)

where Ninput, Noutput, Nhidden—numbers of neurons of the input, output layers and hidden
layers in FCNN, D—dimension of the convolution filter, Nfcl1 and Nfcl2—numbers of neu-
rons of the fully connected layers in CNN architecture. Calculation of FCNN output takes
around 10 million operations, while calculation of CNN output takes around 16 million
operations. Better performance of CNN may be related to increased complexity of the
architecture. At any case the computational time of the neural networks output is negligible
comparing to hardware acquisition time of reflectance spectrum. Computation time of the
CNN output from a single sample of the registered reflectance spectrum takes in average
37 milliseconds running on modest graphical processor unit NVIDEA GeForce GTX 950M.
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(a) (b) 

     
(c) (d) 

Figure 9. Performance of the CNN (a) Learning curve of the model on training dataset and evolution of the loss function of
validation dataset. (b) Mean absolute error of CNN for different activation functions and different number of nodes of the
fully connected layers. (c) Predicted reflectance peak positions of the FBGs of the sparse sensors against measured values at
normalized scales. (d) Predicted positions of the reflectance peak for single FBG of sparse sensor against measured value.

5. Conclusions

Thus, the calibration method of a highly dense FBG temperature sensor is proposed in
the paper. It provides a possibility for increasing the spatial resolution of a fiberoptic sensor,
avoiding the complications of FBG manufacturing or of an interrogation setup. The method
is an alternative to the more common approach, wherein several sparse FBGs sensors are
coupled into one optical channel. It was shown that deep learning algorithms are capable
of mapping the complex reflectance spectrum of the dense sensor with 50 peaks to position
of reflectance peaks of the sparse calibrated FBG temperature sensors. The relatively simple
architecture of convolutional neural network allowed us to increase the spatial resolution
of the dense FBG sensor by five times while maintaining a high temperature resolution
close to hardware resolution. Future improvements of the method may be associated with
complication of the architecture of the neural network and increasing the uniformity of the
temperature distribution across fiber sensors.
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Abstract: Contrast maximization (CMax) is a framework that provides state-of-the-art results on
several event-based computer vision tasks, such as ego-motion or optical flow estimation. However,
it may suffer from a problem called event collapse, which is an undesired solution where events are
warped into too few pixels. As prior works have largely ignored the issue or proposed workarounds,
it is imperative to analyze this phenomenon in detail. Our work demonstrates event collapse in its
simplest form and proposes collapse metrics by using first principles of space–time deformation
based on differential geometry and physics. We experimentally show on publicly available datasets
that the proposed metrics mitigate event collapse and do not harm well-posed warps. To the best of
our knowledge, regularizers based on the proposed metrics are the only effective solution against
event collapse in the experimental settings considered, compared with other methods. We hope that
this work inspires further research to tackle more complex warp models.

Keywords: computer vision; intelligent sensors; robotics; event-based camera; contrast maximization;
optical flow; motion estimation

1. Introduction

Event cameras [1–3] offer potential advantages over standard cameras to tackle difficult
scenarios (high speed, high dynamic range, low power). However, new algorithms are
needed to deal with the unconventional type of data they produce (per-pixel asynchronous
brightness changes, called events) and unlock their advantages [4]. Contrast maximization
(CMax) is an event processing framework that provides state-of-the-art results on several
tasks, such as rotational motion estimation [5,6], feature flow estimation and tracking [7–11],
ego-motion estimation [12–14], 3D reconstruction [12,15], optical flow estimation [16–19],
motion segmentation [20–24], guided filtering [25], and image reconstruction [26].

The main idea of CMax and similar event alignment frameworks [27,28] is to find
the motion and/or scene parameters that align corresponding events (i.e., events that are
triggered by the same scene edge), thus achieving motion compensation. The framework
simultaneously estimates the motion parameters and the correspondences between events
(data association). However, in some cases CMax optimization converges to an undesired
solution where events accumulate into too few pixels, a phenomenon called event collapse
(Figure 1). Because CMax is at the heart of many state-of-the-art event-based motion
estimation methods, it is important to understand the above limitation and propose ways to
overcome it. Prior works have largely ignored the issue or proposed workarounds without
analyzing the phenomenon in detail. A more thorough discussion of the phenomenon is
overdue, which is the goal of this work.

Contrary to the expectation that event collapse occurs when the event transformation
becomes sufficiently complex [16,27], we show that it may occur even in the simplest case
of one degree-of-freedom (DOF) motion. Drawing inspiration from differential geometry
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and electrostatics, we propose principled metrics to quantify event collapse and discourage
it by incorporating penalty terms in the event alignment objective function. Although event
collapse depends on many factors, our strategy aims at modifying the objective’s landscape
to improve the well-posedness of the problem and be able to use well-known, standard
optimization algorithms.

Loss Landscape Original events at A Collapsed IWE at B Desired IWE at C

Figure 1. Event Collapse. Left: Landscape of the image variance loss as a function of the warp
parameter hz. Right: The IWEs at the different hz marked in the landspace. (A) Original events
(identity warp), accumulated over a small Δt (polarity is not used). (B) Image of warped events (IWE)
showing event collapse due to maximization of the objective function. (C) Desired IWE solution
using our proposed regularizer: sharper than (A) while avoiding event collapse (C).

In summary, our contributions are:

1. A study of the event collapse phenomenon in regard to event warping and objective
functions (Sections 3.3 and 4).

2. Two principled metrics of event collapse (one based on flow divergence and one
based on area-element deformations) and their use as regularizers to mitigate the
above-mentioned phenomenon (Sections 3.4 to 3.6).

3. Experiments on publicly available datasets that demonstrate, in comparison with
other strategies, the effectiveness of the proposed regularizers (Section 4).

To the best of our knowledge, this is the first work that focuses on the paramount phe-
nomenon of event collapse, which may arise in state-of-the-art event-alignment methods.
Our experiments show that the proposed metrics mitigate event collapse while they do not
harm well-posed warps.

2. Related Work

2.1. Contrast Maximization

Our study is based on the CMax framework for event alignment (Figure 2, bottom
branch). The CMax framework is an iterative method with two main steps per iteration:
transforming events and computing an objective function from such events. Assuming
constant illumination, events are triggered by moving edges, and the goal is to find the
transformation/warping parameters θ (e.g., motion and scene) that achieve motion com-
pensation (i.e., alignment of events triggered at different times and pixels), hence revealing
the edge structure that caused the events. Standard optimization algorithms (gradient
ascent, sampling, etc.) can be used to maximize the event-alignment objective. Upon
convergence, the method provides the best transformation parameters and the transformed
events, i.e., motion-compensated image of warped events (IWE).

The first step of the CMax framework transforms events according to a motion or
deformation model defined by the task at hand. For instance, camera rotational motion
estimation [5,29] often assumes constant angular velocity (θ ≡ ω) during short time spans,
hence events are transformed following 3-DOF motion curves defined on the image plane
by candidate values of ω. Feature tracking may assume constant image velocity θ ≡ v

(2-DOF) [7,30], hence events are transformed following straight lines.
In the second step of CMax, several event-alignment objectives have been proposed

to measure the goodness of fit between the events and the model [10,13], establishing
connections between visual contrast, sharpness, and depth-from-focus. Finally, the choice

14



Sensors 2022, 22, 5190

of iterative optimization algorithm also plays a big role in finding the desired motion-
compensation parameters. First-order methods, such as non-linear conjugate gradient
(CG), are a popular choice, trading off accuracy and speed [12,21,22]. Exhaustive search,
sampling, or branch-and-bound strategies may be affordable for low-dimensional (DOF)
search spaces [14,29]. As will be presented (Section 3), our proposal consists of modifying
the second step by means of a regularizer (Figure 2, top branch).

2

14.54
160

14014.56 120
100

Figure 2. Proposed modification of the contrast maximization (CMax) framework in [12,13] to also
account for the degree of regularity (collapsing behavior) of the warp. Events are colored in red/blue
according to their polarity. Reprinted/adapted with permission from Ref. [13], 2019, Gallego et al.

2.2. Event Collapse

In which estimation problems does event collapse appear? At first look, it may appear
that event collapse occurs when the number of DOFs in the warp becomes large enough,
i.e., for complex motions. Event collapse has been reported in homographic motions
(8 DOFs) [27,31] and in dense optical flow estimation [16], where an artificial neural
network (ANN) predicts a flow field with 2Np DOFs (Np pixels), whereas it does not occur
in feature flow (2 DOFs) or rotational motion flow (3 DOFs). However, a more careful
analysis reveals that this is not the entire story because event collapse may occur even in
the case of 1 DOF, as we show.

How did previous works tackle event collapse? Previous works have tackled the issue in
several ways, such as: (i) initializing the parameters sufficiently close to the desired solution
(in the basin of attraction of the local optimum) [12]; (ii) reformulating the problem, chang-
ing the parameter space to reduce the number of DOFs and increase the well-posedness
of the problem [14,31]; (iii) providing additional data, such as depth [27], thus changing
the problem from motion estimation given only events to motion estimation given events
and additional sensor data; (iv) whitening the warped events before computing the objec-
tive [27]; and (v) redesigning the objective function and possibly adding a strong classical
regularizer (e.g., Charbonnier loss) [10,16]. Many of the above mitigation strategies are task-
specific because it may not always be possible to consider additional data or reparametrize
the estimation problem. Our goal is to approach the issue without the need for additional
data or changing the parameter space, and to show how previous objective functions and
newly regularized ones handle event collapse.

3. Method

Let us present our approach to measure and mitigate event collapse. First, we revise
how event cameras work (Section 3.1) and the CMax framework (Section 3.2), which
was informally introduced in Section 2.1. Then, Section 3.3 builds our intuition on event
collapse by analyzing a simple example. Section 3.4 presents our proposed metrics for
event collapse, based on 1-DOF and 2-DOF warps. Section 3.5 specifies them for higher
DOFs, and Section 3.6 presents the regularized objective function.

3.1. How Event Cameras Work

Event cameras, such as the Dynamic Vision Sensor (DVS) [2,3,32], are bio-inspired
sensors that capture pixel-wise intensity changes, called events, instead of intensity images.
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An event ek
.
= (xk, tk, pk) is triggered as soon as the logarithmic intensity L at a pixel

exceeds a contrast sensitivity C > 0,

L(xk, tk)− L(xk, tk − Δtk) = pk C, (1)

where xk
.
= (xk, yk)

�, tk (with μs resolution) and polarity pk ∈ {+1,−1} are the spatio-
temporal coordinates and sign of the intensity change, respectively, and tk − Δtk is the time
of the previous event at the same pixel xk. Hence, each pixel has its own sampling rate,
which depends on the visual input.

3.2. Mathematical Description of the CMax Framework

The CMax framework [12] transforms events in a set E = {ek}Ne
k=1 geometrically

ek
.
= (xk, tk, pk)

W�→ e′k
.
= (x′k, tref, pk), (2)

according to a motion model W, producing a set of warped events E′ = {e′k}Ne
k=1. The warp

x′k = W(xk, tk; θ) transports each event along the point trajectory that passes through it
(Figure 2, left), until tref is reached. The point trajectories are parametrized by θ, which
contains the motion and/or scene unknowns. Then, an objective function [10,13] measures
the alignment of the warped events E′. Many objective functions are given in terms of
the count of events along the point trajectories, which is called the image of warped
events (IWE):

I(x; θ)
.
=

Ne

∑
k=1

bk δ(x − x′k(θ)). (3)

Each IWE pixel x sums the values of the warped events x′k that fall within it: bk = pk if
polarity is used or bk = 1 if polarity is not used. The Dirac delta δ is in practice replaced by a
smooth approximation [33], such as a Gaussian, δ(x − μ) ≈ N (x; μ, ε2) with ε = 1 pixel. A
popular objective function G(θ) is the visual contrast of the IWE (3), given by the variance

G(θ) ≡ Var
(

I(x; θ)
) .
=

1
|Ω|

∫
Ω
(I(x; θ)− μI)

2dx, (4)

with mean μI
.
= 1

|Ω|
∫

Ω I(x; θ)dx and image domain Ω. Hence, the alignment of the
transformed events E′ (i.e., the candidate “corresponding events”, triggered by the same
scene edge) is measured by the strength of the edges of the IWE. Finally, an optimization
algorithm iterates the above steps until the best parameters are found:

θ∗ = arg max
θ

G(θ). (5)

3.3. Simplest Example of Event Collapse: 1 DOF

To analyze event collapse in the simplest case, let us consider an approximation to
a translational motion of the camera along its optical axis Z (1-DOF warp). In theory,
translational motions also require the knowledge of the scene depth. Here, inspired by
the 4-DOF in-plane warp in [20] that approximates a 6-DOF camera motion, we consider a
simplified warp that does not require knowledge of the scene depth. In terms of data, let
us consider events from one of the driving sequences of the standard MVSEC dataset [34]
(Figure 1).

For further simplicity, let us normalize the timestamps of E to the unit interval
t ∈ [t1, tNe ] �→ t̃ ∈ [0, 1], and assume a coordinate frame at the center of the image plane,
then the warp W is given by

x′k = (1 − t̃khz) xk, (6)

where θ ≡ hz. Hence, events are transformed along the radial direction from the image
center, acting as a virtual focus of expansion (FOE) (cf. the true FOE is given by the data).
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Letting the scaling factor in (6) be sk
.
= 1 − t̃khz, we observe the following: (i) sk cannot be

negative since it would imply that at least one event has flipped the side on which it lies
with respect to the image center; (ii) if sk > 1 the warped event gets away from the image
center (“expansion” or “zoom-in”); and (iii) if sk ∈ [0, 1) the warped event gets closer to the
image center (“contraction” or “zoom-out”). The equivalent conditions in terms of hz are:
(i) hz < 1, (ii) hz < 0 is an expansion, and (iii) 0 < hz < 1 is a contraction.

Intuitively, event collapse occurs if the contraction is large (0 < sk � 1) (see Figures 1C and 3a).
This phenomenon is not specific of the image variance; other objective functions lead to the
same result. As we see, the objective function has a local maximum at the desired motion
parameters (Figure 1B). The optimization over the entire parameter space converges to a
global optimum that explains the event collapse.

(a) (b) (c)

Figure 3. Point trajectories (streamlines) defined on x − y − t image space by various warps. (a) Zoom
in/out warp from image center (1 DOF). (b) Constant image velocity warp (2 DOF). (c) Rotational
warp around X axis (3 DOF).

Discussion

The above example shows that event collapse is enabled (or disabled) by the type
of warp. If the warp does not enable event collapse (contraction or accumulation of flow
vectors cannot happen due to the geometric properties of the warp), as in the case of feature
flow (2 DOF) [7,30] (Figure 3b) or rotational motion flow (3 DOF) [5,29] (Figure 3c), then
the optimization problem is well posed and multiple objective functions can be designed to
achieve event alignment [10,13]. However, the disadvantage is that the type of warps that
satisfy this condition may not be rich enough to describe complex scene motions.

On the other hand, if the warp allows for event collapse, more complex scenarios can
be described by such a broader class of motion hypotheses, but the optimization framework
designed for non-event-collapsing scenarios (where the local maximum is assumed to be
the global maximum) may not hold anymore. Optimizing the objective function may lead
to an undesired solution with a larger value than the desired one. This depends on multiple
elements: the landscape of the objective function (which depends on the data, the warp
parametrization, and the shape of the objective function), and the initialization and search
strategy of the optimization algorithm used to explore such a landscape. The challenge
in this situation is to overcome the issue of multiple local maxima and make the problem
better posed. Our approach consists of characterizing event collapse via novel metrics
and including them in the objective function as weak constraints (penalties) to yield a
better landscape.

3.4. Proposed Regularizers
3.4.1. Divergence of the Event Transformation Flow

Inspired by physics, we may think of the flow vectors given by the event transforma-
tion E �→ E′ as an electrostatic field, whose sources and sinks correspond to the location
of electric charges (Figure 4). Sources and sinks are mathematically described by the di-
vergence operator ∇· . Therefore, the divergence of the flow field is a natural choice to
characterize event collapse.
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Figure 4. Divergence of different vector fields, ∇ · v = ∂xvx + ∂yvy. From left to right: contraction
(“sink”, leading to event collapse), expansion (“source”), and incompressible fields. Image adapted
from khanacademy.org (accessed on 6 July 2022).

The warp W is defined over the space-time coordinates of the events, hence its time
derivative defines a flow field over space-time:

f
.
=

∂W(x, t; θ)

∂t
. (7)

For the warp in (6), we obtain f = −hzx, which gives ∇ · f = −hz∇ · x = −2hz.
Hence, (6) defines a constant divergence flow, and imposing a penalty on the degree of
concentration of the flow field accounts to directly penalizing the value of the parameter hz.

Computing the divergence at each event gives the set

D(E , θ)
.
= {∇ · fk}Ne

k=1, (8)

from which we can compute statistical scores (mean, median, min, etc.):

RD(E , θ)
.
=

1
Ne

Ne

∑
k=1

∇ · fk. (mean) (9)

To have a 2D visual representation (“feature map”) of collapse, we build an image
(like the IWE) by taking some statistic of the values ∇ · fk that warp to each pixel, such as
the “average divergence per pixel”:

DIWE(x; E , θ)
.
=

1
Ne(x)

∑
k
(∇ · fk) δ(x − x′k), (10)

where Ne(x)
.
= ∑k δ(x − x′k) is the number of warped events at pixel x (the IWE). Then we

aggregate further into a score, such as the mean:

RDIWE(E , θ)
.
=

1
|Ω|

∫
Ω

DIWE(x; E , θ)dx. (11)

In practice we focus on the collapsing part by computing a trimmed mean: the mean
of the DIWE pixels smaller than a margin α (−0.2 in the experiments). Such a margin does
not penalize small, admissible deformations.

3.4.2. Area-Based Deformation of the Event Transformation

In addition to vector calculus, we may also use tools from differential geometry to
characterize event collapse. Building on [12], the point trajectories define the streamlines
of the transformation flow, and we may measure how they concentrate or disperse based
on how the area element deforms along them. That is, we consider a small area element
dA = dxdy attached to each point along the trajectory and measure how much it deforms
when transported to the reference time: dA′ = |det(J)| dA, with the Jacobian

J(x, t; θ)
.
=

∂W(x, t; θ)

∂x
(12)
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(see Figure 5). The determinant of the Jacobian is the amplification factor: |det(J)| > 1 if
the area expands, and |det(J)| < 1 if the area shrinks.

Contraction No change of area Expansion

Figure 5. Area deformation of various warps. An area of dA pix2 at (xk, tk) and is warped to tref, giving
an area dA′ = |det(Jk)|dA pix2 at (x′k, tref), where Jk ≡ J(ek) ≡ J(xk, tk; θ) (see (12)). From left to
right, increasing area amplification factor |det(J)| ∈ [0, ∞).

For the warp in (6), we have the Jacobian J = (1 − t̃hz)Id, and so det(J) = (1 − t̃hz)2.
Interestingly, the area deformation around event ek, J(ek) ≡ J(xk, tk; θ), is directly related
to the scaling factor sk: det(J(ek)) = s2

k .
Computing the amplification factors at each event gives the set

A(E , θ)
.
=
{|det(J(ek))|

}Ne
k=1, (13)

from which we can compute statistical scores. For example,

RA(E , θ)
.
=

1
Ne

Ne

∑
k=1

|det(J(ek))| (mean) (14)

gives an average score: RA > 1 for expansion, and RA < 1 for contraction.
We build a deformation map (or image of warped areas (IWA)) by taking some statistic of

the values |det(J(ek))| that warp to each pixel, such as the “average amplification per pixel”:

IWA(x)
.
= 1 +

1
Ne(x)

Ne

∑
k=1

(|det(J(ek))| − 1
)

δ(x − x′k). (15)

This assumes that if no events warp to a pixel xp, then Ne(xp) = 0, and there is no
deformation (IWA(xp) = 1). Then, we summarize the deformation map into a score, such
as the mean:

RIWA(E , θ)
.
=

1
|Ω|

∫
Ω

IWA(x; E , θ)dx. (16)

To concentrate on the collapsing part, we compute a trimmed mean: the mean of the
IWA pixels smaller than a margin α (0.8 in the experiments). The margin approves small,
admissible deformations.

3.5. Higher DOF Warp Models
3.5.1. Feature Flow

Event-based feature tracking is often described by the warp W(x, t; θ) = x+ (t− tref)θ,
which assumes constant image velocity θ (2 DOFs) over short time intervals. As expected,
the flow for this warp coincides with the image velocity, f = θ, which is independent of the
space-time coordinates (x, t). Hence, the flow is incompressible (∇ · f = 0): the streamlines
given by the feature flow do not concentrate or disperse; they are parallel. Regarding the
area deformation, the Jacobian J = ∂(x + (t − tref)θ)/∂x = Id is the identity matrix. Hence
|det(J)| = 1, that is, translations on the image plane do not change the area of the pixels
around a point.
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In-plane translation warps, such as the above 2-DOF warp, are well-posed and serve
as reference to design the regularizers that measure event collapse. It is sensible for well-
designed regularizers to penalize warps whose characteristics deviate from those of the
reference warp: zero divergence and unit area amplification factor.

3.5.2. Rotational Motion

As the previous sections show, the proposed metrics designed for the zoom in/out
warp produce the expected characterization of the 2-DOF feature flow (zero divergence
and unit area amplification), which is a well-posed warp. Hence, if they were added as
penalties into the objective function they would not modify the energy landscape. We
now consider their influence on rotational motions, which are also well-posed warps. In
particular, we consider the problem of estimating the angular velocity of a predominantly
rotating event camera by means of CMax, which is a popular research topic [5,14,27–29].
By using calibrated and homogeneous coordinates, the warp is given by

xh′ ∼ R(tω) xh, (17)

where θ ≡ ω = (ω1, ω2, ω3)
� is the angular velocity, t ∈ [0, Δt], and R is parametrized by

using exponential coordinates (Rodrigues rotation formula [35,36]).
Divergence: It is well known that the flow is f = B(x)ω, where B(x) is the rotational

part of the feature sensitivity matrix [37]. Hence

∇ · f = 3(xω2 − yω1). (18)

Area element: Letting r�3 be the third row of R, and using (32)–(34) in [38],

det(J) = (r�3 xh)−3. (19)

Rotations around the Z axis clearly present no deformation, regardless of the amount
of rotation, and this is captured by the proposed metrics because: (i) the divergence is zero,
thus the flow is incompressible, and (ii) det(J) = 1 since r3 = (0, 0, 1)� and xh = (x, y, 1)�.
For other, arbitrary rotations, there are deformations, but these are mild if the rotation angle
Δt‖ω‖ is small.

3.5.3. Planar Motion

Planar motion is the term used to describe the motion of a ground robot that can
translate and rotate freely on a flat ground. If such a robot is equipped with a camera
pointing upwards or downwards, the resulting motion induced on the image plane, parallel
to the ground plane, is an isometry (Euclidean transformation). This motion model is a
subset of the parametric ones in [12], and it has been used for CMax in [14,27]. For short
time intervals, planar motion may be parametrized by 3 DOFs: linear velocity (2 DOFs)
and angular velocity (1 DOF). As the divergence and area metrics show in the Appendix A,
planar motion is a well-posed warp. The resulting motion curves on the image plane do
not lead to event collapse.

3.5.4. Similarity Transformation

The 1-DOF zoom in/out warp in Section 3.3 is a particular case of the 4-DOF warp
in [20], which is an in-plane approximation to the motion induced by a freely moving
camera. The same idea of combining translation, rotation, and scaling for CMax is expressed
by the similarity transformation in [27]. Both 4-DOF warps enable event collapse because
they allow for zoom-out motion curves. Formulas justifying it are given in the Appendix A.
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3.6. Augmented Objective Function

We propose to augment previous objective functions (e.g., (5)) with penalties obtained
from the metrics developed above for event collapse:

θ∗ = argmin
θ

J(θ) = argmin
θ

(−G(θ) + λR(θ)). (20)

We may interpret G(θ) (e.g., contrast or focus score [13]) as the data fidelity term and
R(θ) as the regularizer, or, in Bayesian terms, the likelihood and the prior, respectively.

4. Experiments

We evaluate our method on publicly available datasets, whose details are described in
Section 4.1. First, Section 4.2 shows that the proposed regularizers mitigate the overfitting
issue on warps that enable collapse. For this purpose we use driving datasets (MVSEC [34],
DSEC [39]). Next, Section 4.3 shows that the regularizers do not harm well-posed warps.
To this end, we use the ECD dataset [40]. Finally, Section 4.4 conducts a sensitivity analysis
of the regularizers.

4.1. Evaluation Datasets and Metrics
4.1.1. Datasets

The MVSEC dataset [34] is a widely used dataset for various vision tasks, such as
optical flow estimation [16,18,19,41,42]. Its sequences are recorded on a drone (indoors)
or on a car (outdoors), and comprise events, grayscale frames and IMU data from an
mDAVIS346 [43] (346 × 260 pixels), as well as camera poses and LiDAR data. Ground truth
optical flow is computed as the motion field [44], given the camera velocity and the depth
of the scene (from the LiDAR). We select several excerpts from the outdoor_day1 sequence
with a forward motion. This motion is reasonably well approximated by collapse-enabled
warps such as (6). In total, we evaluate 3.2 million events spanning 10 s.

The DSEC dataset [39] is a more recent driving dataset with a higher resolution event
camera (Prophesee Gen3, 640 × 480 pixels). Ground truth optical flow is also computed as
the motion field using the scene depth from a LiDAR [41]. We evaluate on the zurich_city_11
sequence, using in total 380 million events spanning 40 s.

The ECD dataset [40] is the de facto standard to assess event camera ego-motion [5,8,28,45–48].
Each sequence provides events, frames, a calibration file, and IMU data (at 1kHz) from
a DAVIS240C camera [49] (240 × 180 pixels), as well as ground-truth camera poses from
a motion-capture system (at 200Hz). For rotational motion estimation (3DOF), we use
the natural-looking boxes_rotation and dynamic_rotation sequences. We evaluate 43 million
events (10 s) of the box sequence, and 15 million events (11 s) of the dynamic sequence.

The driving datasets (MVSEC, DSEC) and the selected sequences in the ECD dataset
have different type of motions: forward (which enables event collapse) vs. rotational (which
does not suffer from event collapse). Each sequence serves a different test purpose, as
discussed in the next sections.

4.1.2. Metrics

The metrics used to assess optical flow accuracy (MVSEC and DSEC datasets) are
the average endpoint error (AEE) and the percentage of pixels with AEE greater than N
pixels (denoted by “NPE”, for N = {3, 10, 20}). Both are measured over pixels with valid
ground-truth values. We also use the FWL metric [50] to assess event alignment by means
of the IWE sharpness (the FWL is the IWE variance relative to that of the identity warp).

Following previous works [13,27,28], rotational motion accuracy is assessed as the
RMS error of angular velocity estimation. Angular velocity ω is assumed to be constant
over a window of events, estimated and compared with the ground truth at the midpoint
of the window. Additionally, we use the FWL metric to gauge event alignment [50].

The event time windows are as follows: the events in the time spanned by dt = 4 frames
in MVSEC (standard in [16,18,41]), 500k events for DSEC, and 30k events for ECD [28]. The
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regularizer weights for divergence (λdiv) and deformation (λdef) are as follows: λdiv = 2
and λdef = 5 for MVSEC, λdiv = 50 and λdef = 100 for DSEC, and λdiv = 5 and λdef = 10
for ECD experiments.

4.2. Effect of the Regularizers on Collapse-Enabled Warps

Tables 1 and 2 report the results on the MVSEC and DSEC benchmarks, respectively, by
using two different loss functions G: the IWE variance (4) and the squared magnitude of the
IWE gradient, abbreviated “Gradient Magnitude” [13]. For MVSEC, we report the accuracy
within the time interval of dt = 4 grayscale frame (at ≈45 Hz). The optimization algorithm
is the Tree-Structured Parzen Estimator (TPE) sampler [51] for both experiments, with a
number of sampling points equal to 300 (1 DOF) and 600 (4 DOF). The tables quantitatively
capture the collapse phenomenon suffered by the original CMax framework [12] and the
whitening technique [27]. Their high FWL values indicate that contrast is maximized;
however, the AEE and NPE values are exceedingly high (e.g., >80 pixels, 20PE > 80%),
indicating that the estimated flow is unrealistic.

Table 1. Results of MVSEC dataset [44].

Variance Gradient Magnitude

AEE ↓ 3PE ↓ 10PE ↓ 20PE ↓ FWL ↑ AEE ↓ 3PE ↓ 10PE ↓ 20PE ↓ FWL ↑
Ground truth flow _ _ _ _ 1.05 _ _ _ _ 1.05
Identity warp 4.85 60.59 10.38 0.31 1.00 4.85 60.59 10.38 0.31 1.00

1
D

O
F

No regularizer 89.34 97.30 95.42 92.39 1.90 85.77 93.96 86.24 83.45 1.87
Whitening [27] 89.58 97.18 96.77 93.76 1.90 81.10 90.86 89.04 86.20 1.85
Divergence (Ours) 4.00 46.02 2.77 0.05 1.12 2.87 32.68 2.52 0.03 1.17
Deformation (Ours) 4.47 52.60 5.16 0.13 1.08 3.97 48.79 3.21 0.07 1.09
Div. + Def. (Ours) 3.30 33.09 2.61 0.48 1.20 2.85 32.34 2.44 0.03 1.17

4
D

O
F

[2
0] No regularizer 90.22 90.22 96.94 93.86 2.05 91.26 99.49 95.06 91.46 2.01

Whitening [27] 90.82 99.11 98.04 95.04 2.04 88.38 98.87 92.41 88.66 2.00
Divergence (Ours) 7.25 81.75 18.53 0.69 1.09 5.37 66.18 10.81 0.28 1.14
Deformation (Ours) 8.13 87.46 18.53 1.09 1.03 5.25 64.79 13.18 0.37 1.15
Div. + Def. (Ours) 5.14 65.61 10.75 0.38 1.16 5.41 66.01 13.19 0.54 1.14

Table 2. Results of DSEC dataset [39].

Variance Gradient Magnitude

AEE ↓ 3PE ↓ 10PE ↓ 20PE ↓ FWL ↑ AEE ↓ 3PE ↓ 10PE ↓ 20PE ↓ FWL ↑
Ground truth flow _ _ _ _ 1.09 _ _ _ _ 1.09
Identity warp 5.84 60.45 16.65 3.40 1.00 5.84 60.45 16.65 3.40 1.00

1
D

O
F

No regularizer 156.13 99.88 99.33 98.18 2.58 156.08 99.93 99.40 98.11 2.58
Whitening [27] 156.18 99.95 99.51 98.26 2.58 156.82 99.88 99.38 98.33 2.58
Divergence (Ours) 12.49 69.86 20.78 6.66 1.43 5.47 63.48 14.66 1.35 1.34
Deformation (Ours) 9.01 68.96 18.86 4.77 1.40 5.79 64.02 16.11 2.75 1.36
Div. + Def. (Ours) 6.06 68.48 17.08 2.27 1.36 5.53 64.09 15.06 1.37 1.35

4
D

O
F

[2
0] No regularizer 157.54 99.97 99.64 98.67 2.64 157.34 99.94 99.53 98.44 2.62

Whitening [27] 157.73 99.97 99.66 98.71 2.60 156.12 99.91 99.26 97.93 2.61
Divergence (Ours) 14.35 90.84 41.62 10.82 1.35 10.43 91.38 41.63 9.43 1.21
Deformation (Ours) 15.12 94.96 62.59 22.62 1.25 10.01 90.15 39.45 8.67 1.25
Div. + Def. (Ours) 10.06 90.65 40.61 8.58 1.26 10.39 91.02 41.81 9.40 1.23

By contrast, our regularizers (Divergence and Deformation rows) work well to mitigate
the collapse, as observed in smaller AEE and NPE values. Compared with the values of no
regularizer or whitening [27], our regularizers achieve more than 90% improvement for
AEE on average. The AEE values are high for optical flow standards (4–8 pix in MVSEC
vs. 0.5–1 pixel [16], or 10–20 pix in DSEC vs. 2–5 pix [41]); however, this is due to the fact
that the warps used have very few DOFs (≤4) compared to the considerably higher DOFs
(2Np) of optical flow estimation algorithms. The same reason explains the high 3PE values
(standard in [52]): using an end-point error threshold of 3 pix to consider that the flow is
correctly estimated does not convey the intended goal of inlier/outlier classification for the
low-DOF warps used. This is the reason why Tables 1 and 2 also report 10PE, 20PE metrics,
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and the values for the identity warp (zero flow). As expected, for the range of AEE values
in the tables, the 10PE and 20PE figures demonstrate the large difference between methods
suffering from collapse (20PE > 80%) and those that do not (20PE < 1.1% for MVSEC and
<22.6% for DSEC).

The FWL values of our regularizers are moderately high (≥1), indicating that event
alignment is better than that of the identity warp. However, because the FWL depends
on the number of events [50], it is not easy to establish a global threshold to classify each
method as suffering from collapse or not. The AEE, 10PE, and 20PE are better for such
a classification.

Tables 1 and 2 also include the results of the use of both regularizers simultaneously
(“Div. + Def.”). The results improve across all sequences if the data fidelity term is given by
the variance loss, whereas they remain approximately the same for the gradient magnitude
loss. Regardless of the choice of the proposed regularizer, the results in these tables clearly
show the effectiveness of our proposal, i.e., the large improvements compared with prior
works (rows “No regularizer” and [27]).

The collapse results are more visible in Figure 6, where we used the variance loss. With-
out a regularizer, the events collapse in the MVSEC and DSEC sequences. Our regularizers
successfully mitigate overfitting, having a remarkable impact on the estimated motion.

4.3. Effect of the Regularizers on Well-Posed Warps

Table 3 shows the results on the ECD dataset for a well-posed warp (3-DOF rotational
motion, in the benchmark). We use the variance loss and the Adam optimizer [53] with
100 iterations. All values in the table (RMS error and FWL, with and without regularization,
are very similar, indicating that: (i) our regularizers do not affect the motion estimation
algorithm, and (ii) results without regularization are good due to the well-posed warp. This
is qualitatively shown in the bottom part of Figure 6. The fluctuations of the divergence
and deformation values away from those of the identity warp (0 and 1, respectively) are at
least one order of magnitude smaller than the collapse-enabled warps (e.g., 0.2 vs. 2).

Table 3. Results on ECD dataset [40].

boxes_rot dynamic_rot

RMS ↓ FWL ↑ RMS ↓ FWL ↑
Ground truth pose _ 1.559 _ 1.414
No regularizer 8.858 1.562 4.823 1.420
Divergence (Ours) 9.237 1.558 4.826 1.420
Deformation (Ours) 8.664 1.561 4.822 1.420

4.4. Sensitivity Analysis

The landscapes of loss functions as well as sensitivity analysis of λ are shown in
Figure 7, for the MVSEC experiments. Without regularizer (λ = 0), all objective functions
tested (variance, gradient magnitude, and average timestamp [16]) suffer from event
collapse, which is the undesired global minimum of (20). Reaching the desired local
optimum depends on the optimizing algorithm and its initialization (e.g., starting gradient
descent close enough to the local optimum). Our regularizers (divergence and deformation)
change the landscape: the previously undesired global minimum becomes local, and the
desired minimum becomes the new global one as λ increases.

Specifically, the larger the weight λ, the smaller the effect of the undesired minimum
(at hz = 1). However, this is true only within some reasonable range: a too large λ discards
the data-fidelity part G in (20), which is unwanted because it would remove the desired
local optimum (near hz ≈ 0). Minimizing (20) with only the regularizer is not sensible.

Observe that for completeness, we include the average timestamp loss in the last
column. However, this loss also suffers from an undesired optimum in the expansion
region (hz ≈ −1). Our regularizers could be modified to also remove this undesired
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optimum, but investigating this particular loss, which was proposed as an alternative to
the original contrast loss, is outside the scope of this work.

Original events IWE w/o regularizer IWE with regularizer Divergence map Deformation map
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Figure 6. Proposed regularizers and collapse analysis. The scene motion is approximated by 1-DOF
warp (zoom in/out) for MVSEC [34] and DSEC [39] sequences, and 3-DOF warp (rotation) for boxes
and dynamic ECD sequences [40]. (a) Original events. (b) Best warp without regularization. Event
collapse happens for 1-DOF warp. (c) Best warp with regularization. (d) Divergence map ((10) is
zero-based). (e) Deformation map ((15), centered at 1). Our regularizers successfully penalize event
collapse and do not damage non-collapsing scenarios.
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Figure 7. Cost function landscapes over the warp parameter hz for: (a) Image variance [12], (b) gradient
magnitude [13], and (c) mean square of average timestamp [16]. Data from MVSEC [34] with
dominant forward motion. The legend weights denote λ in (20).

4.5. Computational Complexity

Computing the regularizer(s) requires more computation than the non-regularized
objective. However, complexity is linear with the number of events and the number of
pixels, which is an advantage, and the warped events are reutilized to compute the DIWE or
IWA. Hence, the runtime is less than doubled (warping is the dominant runtime term [13]
and is computed only once). The computational complexity of our regularized CMax
framework is O(Ne + Np), the same as that of the non-regularized one.

4.6. Application to Motion Segmentation

Although most of the results on standard datasets comprise stationary scenes, we have
also provided results on a dynamic scene (from dataset [40]). Because the time spanned by
each set of events processed is small, the scene motion is also small (even for complicated
objects like the person in the bottom row of Figure 6), hence often a single warp fits the
scene reasonably well. In some scenarios, a single warp may not be enough to fit the
event data because there are distinctive motions in the scene of equal importance. Our
proposed regularizers can be extended to such more complex scene motions. To this end,
we demonstrate it with an example in Figure 8.
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Figure 8. Application to Motion Segmentation. (a) Output IWE, whose colors (red and blue) represent
different clusters of events (segmented according to motion). (b) Divergence map. The range of
divergence values is larger in the presence of event collapse than in its absence. Our regularizer
(divergence in this example) mitigates the event collapse for this complex motion, even with an
independently moving object (IMO) in the scene.

Specifically, we use the MVSEC dataset, in a clip where the scene consists of two
motions: the ego-motion (forward motion of the recording vehicle) and the motion of a car
driving in the opposite direction in a nearby lane (an independently moving object—IMO).
We model the scene by using the combination of two warps. Intuitively, the 1-DOF warp (6)
describes the ego-motion, while the feature flow (2 DOF) describes the IMO. Then, we
apply the contrast maximization approach (augmented with our regularizing terms) and
the expectation-maximization scheme in [21] to segment the scene, to determine which
events belong to each motion. The results in Figure 8 clearly show the effectiveness of our
regularizer, even for such a commonplace and complex scene. Without regularizers, (i)
event collapse appears in the ego-motion cluster of events and (ii) a considerable portion of
the events that correspond to ego-motion are assigned to the second cluster (2-DOF warp),
thus causing a segmentation failure. Our regularization approach mitigates event collapse
(bottom row of Figure 8) and provides the correct segmentation: the 1-DOF warp fits the
ego-motion and the feature flow (2-DOF warp) fits the IMO.

5. Conclusions

We have analyzed the event collapse phenomenon of the CMax framework and pro-
posed collapse metrics using first principles of space-time deformation, inspired by differen-
tial geometry and physics. Our experimental results on publicly available datasets demon-
strate that the proposed divergence and area-based metrics mitigate the phenomenon for
collapse-enabled warps and do not harm well-posed warps. To the best of our knowledge,
our regularizers are the only effective solution compared to the unregularized CMax frame-
work and whitening. Our regularizers achieve, on average, more than 90% improvement
on optical flow endpoint error calculation (AEE) on collapse-enabled warps.

This is the first work that focuses on the paramount phenomenon of event collapse.
No prior work has analyzed this phenomenon in such detail or proposed new regularizers
without additional data or reparameterizing the search space [14,16,27]. As we analyzed
various warps from 1 DOF to 4 DOFs, we hope that the ideas presented here inspire further
research to tackle more complex warp models. Our work shows how the divergence and
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area-based deformation can be computed for warps given by analytical formulas. For more
complex warps, like those used in dense optical flow estimation [16,18], the divergence or
area-based deformation could be approximated by using finite difference formulas.
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Appendix A. Warp Models, Jacobians and Flow Divergence

Appendix A.1. Planar Motion — Euclidean Transformation on the Image Plane, SE(2)

If the point trajectories of an isometry are x(t), the warp is given by [27](
x′k
1

)
∼
(
R(tkωZ) tkv

0� 1

)−1(
xk
1

)
, (A1)

where v, ωZ comprise the 3 DOFs of a translation and an in-plane rotation. The in-plane
rotation is

R(φ) =

(
cos φ − sin φ
sin φ cos φ

)
. (A2)

Since (
A b

0� 1

)−1

=

(
A−1 −A−1b

0� 1

)
(A3)

and R−1(φ) = R(−φ), we have(
x′k
1

)
∼
(
R(−tkωZ) −R(−tkωZ)(tkv)

0� 1

)(
xk
1

)
. (A4)

Hence, in Euclidean coordinates the warp is

x′k = R(−tkωZ)(xk − tkv). (A5)

The Jacobian and its determinant are:

Jk =
∂x′k
∂xk

= R(−tkωZ), (A6)

det(Jk) = 1. (A7)

The flow corresponding to (A5) is:

f =
∂x′

∂t
= R�

(π

2
+ tωZ

)
(x − tv)ωZ − R(−tωZ)v, (A8)
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whose divergence is
∇ · f = −2ωZ sin(tωZ). (A9)

Hence, for small angles |tωZ| � 1, the divergence of the flow vanishes.
In short, this warp has the same determinant and approximate zero divergence as the

2-DOF feature flow warp (Section 3.5.1), which is well-behaved. Note, however, that the
trajectories are not straight in space-time.

Appendix A.2. 3-DOF Camera Rotation, SO(3)

Using calibrated and homogeneous coordinates, the warp is given by [5,12]

xh′
k ∼ R(tkω) xh

k , (A10)

where θ = ω = (ω1, ω2, ω3)
� is the angular velocity, and R (3 × 3 rotation matrix in space)

is parametrized using exponential coordinates (Rodrigues rotation formula [35,36]).
By the chain rule, the Jacobian is:

Jk =
∂x′k
∂xk

=
∂x′k
∂xh′

k

∂xh′
k

∂xh
k

∂xh
k

∂xk
=

1
(xh′

k )3

(
1 0 −x′k
0 1 −y′k

)
R(tkω)

⎛⎝1 0
0 1
0 0

⎞⎠. (A11)

Letting r�3,k be the third row of R(tkω), and using (32)–(34) in [38], gives

det(Jk) = (r�3,kxh
k)

−3. (A12)

Connection between Divergence and Deformation Maps

If the rotation angle tk‖ω‖ is small, using the first two terms of the exponential map we
approximate R(tkω) ≈ Id+ (tkω)∧, where the hat operator ∧ in SO(3) represents the cross
product matrix [54]. Then, r�3,kxh

k ≈ (−tkω2, tkω1, 1)�(xk, yk, 1) = 1 + (ykω1 − xkω2)tk.
Substituting this expression into (A12) and using the first two terms in Taylor’s expansion
around z = 0 of (1 + z)−3 ≈ 1 − 3z + 6z2 (convergent for |z| < 1) gives det(Jk) ≈
1 + 3(xkω2 − ykω1)tk. Notably, the divergence (18) and the approximate amplification
factor depend linearly on 3(xkω2 − ykω1). This resemblance is seen in the divergence and
deformation maps of the bottom rows in Figure 6 (ECD dataset).

Appendix A.3. 4-DOF In-Plane Camera Motion Approximation

The warp presented in [20],

x′k = xk − tk
(
v + (hz + 1)R(φ)xk − xk

)
(A13)

has 4 DOFs: θ = (v, φ, hz)�. The Jacobian and its determinant are:

Jk =
∂x′k
∂xk

= (1 + tk)Id− (hz + 1)tkR(φ), (A14)

det(Jk) = (1 + tk)
2 − 2(1 + tk)tk(hz + 1) cos φ + t2

k(hz + 1)2. (A15)

The flow corresponding to (A13) is given by

f =
∂x′

∂t
= −(v + (hz + 1)R(φ)x − x

)
, (A16)

whose divergence is:

∇ · f = −(hz + 1)∇ · (R(φ)x)+∇ · x (A17)

= 2 − 2(hz + 1) cos(φ). (A18)
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As particular cases of this warp, one can identify:

• 1-DOF Zoom in/out (v = 0, φ = 0). x′k = (1 − tkhz)xk.
• 2-DOF translation (φ = 0, hz = 0). x′k = xk − tkv.
• 1-DOF “rotation” (v = 0, hz = 0). x′k = xk − tk

(
R(φ)xk − xk

)
.

Using a couple of approximations of the exponential map in SO(2), we obtain

x′k = xk − tk
(
R(φ)− Id

)
xk (A19)

≈ xk − tkφ∧xk if φ is small (A20)

= (Id+ (−tkφ)∧)xk (A21)

≈ R(−tkφ)xk if tkφ is small. (A22)

Hence, φ plays the role of a small angular velocity ωZ around the camera’s optical
axis Z, i.e., in-plane rotation.

• 3-DOF planar motion (“isometry”) (hz = 0). Using the previous result, the warp splits
into translational and rotational components:

x′k = xk − tk
(
v + R(φ)xk − xk

)
(A23)

(A22)≈ −tkv + R(−tkφ)xk. (A24)

Appendix A.4. 4-DOF Similarity Transformation on the Image Plane, Sim(2)

Another 4-DOF warp is proposed in [27]. Its DOFs are the linear, angular and scaling
velocities on the image plane: θ = (v, ωZ, s)�.

Letting βk = 1 + tks, the warp is:(
x′k
1

)
∼
(

βkR(tkωZ) tkv

0� 1

)−1(
xk
1

)
. (A25)

Using (A3) gives(
x′k
1

)
∼
(

β−1
k R(−tkωZ) −β−1

k R(−tkωZ)(tkv)
0� 1

)(
xk
1

)
. (A26)

Hence, in Euclidean coordinates the warp is

x′k = β−1
k R(−tkωZ)(xk − tkv). (A27)

The Jacobian and its determinant are:

Jk =
∂x′k
∂xk

= β−1
k R(−tkωZ), (A28)

det(Jk) = β−2
k =

1
(1 + tks)2 . (A29)

The following result will be useful to simplify equations. For a 2D rotation R(φ(t)), it
holds that:

∂R(φ(t))
∂t

= −R�
(π

2
− φ

) ∂φ

∂t
. (A30)

To compute the flow of (A27), there are three time-dependent factors. Hence, applying
the product rule we obtain three terms, and substituting (A30) (with φ = −tωZ) gives:

fk =
(∂β−1

k
∂tk

R(−tkωZ) + β−1
k ωZR

�(π

2
+ tkωZ

))
(xk − tkv)− β−1

k R(−tkωZ)v, (A31)
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where, by the chain rule,

∂β−1
k

∂tk
= −β−2

k
∂βk
∂tk

= −β−2
k s = − s

(1 + tks)2 . (A32)

Hence, the divergence of the flow is:

∇ · fk =
∂β−1

k
∂tk

∇ ·
(
R(−tkωZ)xk

)
+ β−1

k ωZ∇ ·
(
R�
(π

2
+ tkωZ

)
xk

)
(A33)

=
∂β−1

k
∂tk

2 cos(tkωZ) + β−1
k ωZ2 sin(−tkωZ) (A34)

The formulas for SE(2) are obtained from the above ones with s = 0 (i.e., βk = 1).
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Abstract: With the increasing deployment of IoT devices and applications, a large number of devices
that can sense and monitor the environment in IoT network are needed. This trend also brings
great challenges, such as data explosion and energy insufficiency. This paper proposes a system
that integrates mobile edge computing (MEC) technology and simultaneous wireless information
and power transfer (SWIPT) technology to improve the service supply capability of WSN-assisted
IoT applications. A novel optimization problem is formulated to minimize the total system energy
consumption under the constraints of data transmission rate and transmitting power requirements
by jointly considering power allocation, CPU frequency, offloading weight factor and energy harvest
weight factor. Since the problem is non-convex, we propose a novel alternate group iteration
optimization (AGIO) algorithm, which decomposes the original problem into three subproblems, and
alternately optimizes each subproblem using the group interior point iterative algorithm. Numerical
simulations validate that the energy consumption of our proposed design is much lower than the
two benchmark algorithms. The relationship between system variables and energy consumption of
the system is also discussed.

Keywords: mobile edge computaing; simultaneous wireless information and power transfer; energy
minimization; 5G; wireless sensing network; IoT

1. Introduction

1.1. Backgroud

The 5G enabled Internet of Things (5G-IoT) [1–4] connects the real world with the
internet world and human civilization is currently transforming from informatization to
intelligence. The four abilities of 5G communication system, namely massive capacity, ultra-
low latency, high reliability and extensive connection, are the key driving forces for the
development of IoT [5,6]. The integration of 5G and WSN-assisted IoT not only strengthens
the connection between the real world and the internet world, but also widens the scope
of IoT services such that IoT can not only serve the smart city [7] but also penetrate into
agriculture [8], medical care [9], transportation [10], industry [11] and other fields [12].
However, WSN-assisted IoT is facing grand challenges and the huge amount data traffic
brought by great number of IoT devices and sensors can impose an enormous burden on
the network, resulting in higher service delays and reduced quality of service (QoS) [13].

Although the current terminal devices are equipped with high-performance hardware,
it is still difficult to meet the needs of computing intensive tasks, especially in the case
of ensuring low power consumption and low latency. Mobile Edge Computing (MEC)
technology is considered as a crucial solution for 5G-IoT [14,15]. With the help of MEC,
terminal devices can upload part of or all of the computing tasks to the edge computing

Sensors 2021, 21, 4798. https://doi.org/10.3390/s21144798 https://www.mdpi.com/journal/sensors
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platform for computing so as to reduce their own computing pressure and energy consump-
tion, improve the computing efficiency and performance and bring better QoS [16–18]. The
authors of [19] studied how the MEC enabled industrial verticals in 5G. Yang et al. [20]
analyzed the main features of MEC in the context of 5G and IoT and presented several
fundamental key technologies that enable MEC to be applied in 5G and IoT.

Despite the fact that MEC brings great benefits for IoT, it still faces an important
problem: how can we effectively and conveniently extend the lifetime of IoT devices in the
network? Simultaneous wireless information and power transfer (SWIPT) is considered as
the key technology to solve this problem. The principle of SWIPT system is that RF signals
can carry energy and information at the same time. It was first proposed by the author
of [21] in 2008. Rui Zhang et.al. [22] proposed two practical SWIPT receivers, which are
the time switching (TS) receiver and power splitting (PS) receiver. The TS receiver divides
the time slot into two parts, the RF signal received in the first part of time is used for
information demodulation and then the signal collected in the remaining time is used for
energy harvesting. The PS receiver divides the received RF signal into two parts and then
transmits them to the energy collector and information demodulator, respectively, so that
the information demodulation and energy harvesting can be realized simultaneously. Since
then, a lot of researches focus on the design and performance of the SWIPT systems [23,24].
The author of [25] proposes a more complex dynamic energy splitting receiver based on
the above two receivers framework. The author of [26] studied the trade off between the
harvested energy and forward data in SWIPT sensor networks. Tang et al. [27] proposed a
TS receiver design to maximize the energy efficiency in MIMO channels for IoT.

1.2. Related Works

As both SWIPT and MEC technologies benefit the IoT system, MEC deployed WSN
IoT network design with SWIPT has attracted increasing attention. In such new frame-
work, the communication and computation resource allocation as well as wireless energy
harvesting scheme are crucial for maximizing the system performance. The authors of [8]
studied an energy efficiency optimization scheme for OFDM transmission WSN in smart
agriculture. By jointly optimizing the power allocation and the pairing of subcarriers,
the optimization scheme can help to solve the problem of energy deficiency. An achiev-
able rate maximization problem was discussed in [28] for multiuser satellite IoT system
with SWIPT and MEC to overcome the limitation in battery capacity and computing
capability of IoT terminals. In [29], a UAV-enabled wireless powered MEC system was
investigated, where the offloading modes were optimized to reach the maximum computa-
tion rate under the power constraint and the UAV speed constraint. The authors of [30]
extended multi-access edge computing to support the long range (LoRa) system for IoT
applications. The novel framework allowed dynamic IoT deployment at the edge and life
cycle management.

With the development of artificial intelligence technology, reinforcement learning (RL)
methods are used to solve various communication problems in 5G and IoT systems. Aiming
at minimizing the difference between the distributed and demanded throughput for each
user, ref. [31] presented a novel deep reinforcement learning (DRL) scheme, which satisfied
the user requirements by power regulation. In [32], a RL based offloading scheme was
studied to select the edge device and the offloading rate for IoT devices. The distinguished
merit of this scheme is that the offloading policy can be optimized without knowledge
required in traditional schemes. A hybrid-decision-based DRL approach is proposed
in [33] to provide coordinated decisions of dynamic offloading scheme for multi-device
multi-server MEC-IoT systems with energy harvesting devices.

1.3. Contributions

In this paper, we investigate energy consumption minimization for SWIPT based mobile
edge computing in WSN assisted IoT System by using the optimization process. It is a
continuation of our previous work [34] that focused on the cellular system. However, this
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study focus on the WSN assisted IoT network. Different from existing works, an in-depth
research is carried to analyze the effects of computation task size, mobile node (including
wireless sensor node) number, antenna number and energy harvest weight factor on the
system energy consumption. The novelties of this work are summarized as follows.

(1) We design a novel WSN assisted IoT System, which integrates a MEC-deployed
and FD-deployed anchor node (AN) and multiple SWIPT-equipped mobile nodes (MNs).
The research problem of modeling is completely different from our previous work since
the transmission conditions and requirements between cellular communication system and
wireless sensor network are different. We aim to achieve the minimum energy consump-
tion by optimizing CPU frequency, power allocation, offloading weight factor and SWIPT
weight factor. Moreover, given the analysis of uplink, we provide the closed form expres-
sion of downlink rate and obtain the downlink transmission delay. Moreover, we optimize
the SWIPT weight factor, which will affect the energy consumption of downlink harvesting
and then affect the total system energy consumption. A more reasonable expression of
harvesting energy is provided, which is based on the SWIPT weight factor and downlink
time delay. In other words, the uplink and downlink parameters are jointly optimized.

(2) We formulate a more practical WSN energy minimization problem by jointly
optimizing the key decision variables in the system. Since the multiple variables to be
optimized are coupled and the original problem is non-convex, the optimization is quite
challenging. An efficient algorithm called alternate group iteration optimization (AGIO) is
proposed. We decompose the decision variables into three groups and divide the original
problem into three subproblems. Then, we alternately optimize each subproblem using the
interior point iteration method until the convergence.

The rest of the paper is organized as follows. Section 2 describes the system model and
analyzes the transmission process. Section 3 formulates the energy minimization problem.
Sections 4 and 5 present the algorithms to solve the problem and provides simulation
results. Section 6 concludes the paper.

2. System Model

Let us consider a SWIPT-MEC enabled WSN assisted IoT system as demonstrated
in Figure 1. There are N mobile nodes (MNs) including wireless sensor nodes denoted
as {D1, D2, . . . , DN} that are overwhelmed with computation tasks and one M-antenna
Full Duplex enabled anchor node (AN). Each MN deploys single antenna and a power
splitting (PS) SWIPT equipment to harvest energy. The PS receiver is capable of switching
between energy harvesting (EH) state and information decoding (ID) state. The anchor
node is equipped with a MEC server that can help MNs with the enormous amount of
computation tasks.

Assume that each MN can divide its computation task into two parts and one is
for local computing and the other is for offloading to the MEC enabled AN. The total
computation task size of Di is represented as Li bits and the offloading computation task
size is Lu

i bits, which satisfies Lu
i = αiLi, where 0 ≤ αi ≤ 1 is a offloading weight factor.

Since MN can decide how much computation task will be offloaded to AN, αi is a variable
to be optimized to achieve better performance.

The operation processes of the system can be illustrated in the following steps.
(1) During the uplink process, MN Di (i ∈ {1, . . . , N} ) offloads the computation task

Lu
i to the MEC server at AN.

(2) When the MEC server receives the offloading task, it immediately implements the
computation task. Due to the strong computation ability, MEC server can finish the offloading
computation task in a short time, which can be ignored compared to the other operation times.

(3) Since AN deploys FD technology when MN Di is offloading, AN can simultane-
ously download the computation result Ld

j from the MEC server to MN Dj (j ∈ {1, . . . , N},
j �= i ), which shares the same frequency as the uplink MN Di. The computation result
satisfies Ld

j = β jLu
i , where 0 ≤ β j ≤ 1 is a weight factor.
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(4) After Dj receives the computation result, the PS receiver will perform energy
harvesting and information decoding according to the received RF signal.

(5) Mobile node Di will perform local computing on the remaining computaion task
when it finishes the offloading.

The above processes can be divided into three phases: the offloading phase, download-
ing phase and local computing phase. They are described in detail in the following analysis.

Figure 1. SWIPT-MEC enabled WSN assisted IoT System Model.

2.1. Offloading Phase

In the offloading phase, MNs {D1, D2, . . . , DN} that are overwhelmed by the com-
putation tasks will offload part of the tasks to AN. Without loss of generality, AN re-
ceives the offloading computation task Lu

i from MN Di during the time interval tu
i . Mean-

while, AN simultaneously downloads computation result Ld
j to Dj, where i ∈ {1, . . . , N},

j ∈ {1, . . . , N}, i �= j. Thus, the received signal at AN is the following:

yu
i =

√
pu

i Hu
i su

i +
√

ηjH0(
√

pd
j sd

j ) + nAN, (1)

where pu
i and su

i are the transmitted power and transmitted signal of Di, pd
j and sd

j are
the transmitted power and the computation result signal transmitted from AN to MN
Dj. The two transmitted signals are assumed with normalized power, i.e., |su

i |2 = 1 and
|sd

j |2 = 1. Hu
i ∈ C

M×1 is the uplink channel from Di to AN and H0 ∈ C
M×M is the

self-interference channel induced by FD transmission. ηj is the residual self-interference
(RSI) coefficient. The received noise is nAN ∼ CN(0, σ2

ANIM) .
According to the above expression, only the first part on the right side of Equation (1)

contains the target offloading task su
i , the seond part is the RSI due to FD transmission of

AN and the third part is the additive white Gaussian noise (AWGN) at AN. Thus, the signal
to interference plus noise ratio (SINR) can be represented as the following:

γu
i =

pu
i tr{Hu

i (H
u
i )

H}
ηpd

j tr{H0HH
0 }+ σ2

AN
, (2)
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where tr{.} represents the matrix trace. Then, we can obtain the transmission rate as the
following:

Ru
i = Blog2(1 + γu

i ), (3)

where B denotes the bandwidth allocated. Let Ru
min represent the minimum uplink trans-

mission rate requirement. Therefore, we can obtain the first constraint condition in this
system model shown as the following:

Ru
i ≥ Ru

min. (4)

Meanwhile, we can calculate the transmission time for offloading as follows.

tu
i =

Lu
i

Ru
i

. (5)

Thus, the energy consumed by Di at the offloading phase can be expressed as
the following:

Eo f f
i = pu

i
Lu

i
Ru

i
, (6)

and the resulting transmission energy consumed by all MNs is provided by the following.

Eo f f =
N

∑
i=1

Eo f f
i . (7)

2.2. Downloading Phase

Since AN is equipped with FD technology, it can download the computation result to
MN Dj and receive offloading task from other MN Di simultaneously. Thus, the received
signal at Dj is described as the following:

yd
j =

√
pd

j Hd
j sd

j + nd
j , (8)

where pd
j is the transmitted power AN uses for downloading the computation result to Dj.

nd
j is the AWGN with power σ2

j .
Here, we suppose that the co-channel interference can be canceled perfectly in the

receiver for the sake of simplicity.
Then, the signal to interference plus noise ratio (SINR) and the transmission rate at

MN Dj are the following.

γd
j =

pd
j tr{Hd

j (H
d
j )

H}
σ2

j
, (9)

Rd
j = Blog2(1 + γd

j ). (10)

Let Rd
min represent the minimum downlink transmission rate requirement and we can

obtain another constraint condition described as follows.

Rd
j ≥ Rd

min. (11)

Meanwhile, we can calculate the latency of the downlink transmission as follows.

td
j =

Ld
j

Rd
j

. (12)
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The PS receiver at Dj then divides the received RF signal into two parts; the θj
(0 ≤ θ ≤ 1) part is used for energy harvesting, while the rest (1 − θj) part is used for
information decoding. We can obtain the harvest energy of Dj as follows.

Ehav
j = θj(pd

j tr{Hd
j (H

d
j )

H}+ σ2
j )t

d
j . (13)

Meanwhile, the energy consumption of AN can be calculated as the following.

EAN =
N

∑
j=1

pd
j td

j . (14)

2.3. Local Computation Phase

After offloading, MN operates on the remaining computation task. Let f n
i denote the

CPU frequency needed for the n-th CPU cycle of Di. The following constraint condition
should be met:

0 ≤ f n
i ≤ f max

i , ∀i (15)

where f max
i is the maximum CPU frequency of Di. Then, the time for local computation of

Di is the following:

tlocal
i =

C(Li−Lu
i )

∑
n=1

1
f n
i

, (16)

where C is the CPU cycles required for computing 1-bit of data. The energy consumption
of local computation is given by the following:

Eloc
i =

C(Li−Lu
i )

∑
n=1

κ( f n
i )

2, (17)

where κ is the effective capacitance coefficient based on the chip architecture [35]. Thus, we
can obtain the total local energy consumption as follows.

Eloc =
N

∑
i=1

Eloc
i . (18)

3. Problem Formulation

After we analyze the transmission process of the system, we can formulate an problem
which can optimize the system performance. This paper aims at minimizing the total
energy consumption of the system, while simultaneously ensuring the transmission re-
quirements. The total energy consumption of the system contains AN energy consumption
EAN , the offloading energy consumption Eo f f and the energy consumption of local com-
putation Eloc. In addition, we need to remove the harvest energy Ehav MNs can obtain.
Based on Equations (7), (13), (14) and (18), we can write the total energy consumption of
the system as the following.

Etotal = EAN + Eo f f + Eloc − Euh

=
N

∑
j=1

pd
j

Ld
j

Rd
j
+

N

∑
i=1

pu
i

Lu
i

Ru
i
+

N

∑
i=1

C(Li−Lu
i )

∑
n=1

κ( f n
i )

2

−
N

∑
j=1

θj(pd
j tr{Hd

j (H
d
j )

H}+ σ2
j )

Ld
j

Rd
j

(19)

Finally, the problem can be described as follows:
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(P1) min
f,pu ,pd ,α,θ

Etotal

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1 : 0 ≤ α, θ ≤ 1
C2 : Ru

i ≥ Ru
min, ∀i

C3 : Rd
j ≥ Rd

min, ∀j
C4 : pu

i ≤ Pu
max, ∀i

C5 : pd
j ≤ Pd

max, ∀j
C6 : 0 ≤ tlocal

i ≤ tu
i , ∀i

C7 : 0 ≤ f n
i ≤ f max

i , ∀i

(20)

where f = [ f1, f2, . . . , fN ], pu = [pu
1 , pu

2 , . . . , pu
N ], pd = [pd

1, pd
2, . . . , pd

N ], α = [α1, α2, . . . , αN ]
and θ = [θ1, θ2, . . . , θN ].

In problem P1, C1 provides the constraints on weight factors. C2 and C3 imply that
the offloading rate and downloading rate should not be less than the QoS requirements
Ru

min and Rd
min, respectively. C4 and C5 indicate the uplink and downlink transmission

power limits Pu
max and Pd

max. C6 denotes that the time of the local computation should be
no more than the time of the offloading phase, otherwise it is better to offload all the tasks.
C7 indicates the CPU frequency constraint according to Equation (15).

4. The Proposed Algorithm

In this section, we will solve the formulated problem in steps. The problem P1 is
full of challenges since both the objective function and the constraints are non-convex.
Although the variables that need to be optimized are all coupled in P1, we find that the
CPU frequency f is the least relevant variable compared to other variables. We divide P1
into the following three subproblems. (i) Local computation optimization is as follows:
In this subproblem, we obtain the optimal CPU frequency using the scheme in [36]. (ii)
Power optimization is as follows: When f and the weight factors α, θ are fixed, we can
use the interior point algorithm to solve the problem. (iii) Weight factor optimization is as
follows: After frequency and power optimization are completed, interior point algorithm
can be used again to obtain the optimal weight factors. The three subproblems should be
optimized alternately by the iteration method.

4.1. Local Computation Optimization

Inspired by [36], the optimal CPU frequency should satisfy the following.

f 1
i = f 2

i = · · · = f
C(Li−Lu

i )
i = fi. (21)

The above equation reveals the CPU frequency should maintain the same in each cycle
as fi. Suppose the other four variables have been optimized, the initial problem (P1) can be
reformulated as follows:

(P2) min
f

E +
N
∑

i=1
C(Li − Lu

i )κ( fi)
2

s.t.

{
C6 : 0 ≤ C(Li−Lu

i )

fi
≤ tu

i , ∀i

C7 : 0 ≤ fi ≤ f max
i , ∀i

(22)

where E = EAN + Eo f f − Ehav, f = [ f1, f2, . . . , fN ]. According to the optimization objective
function, the energy consumption increases monotonically with fi. In other words, fi has
to be the smallest value to achieve the minimum energy consumption. Thus, from the
constraint C6, we can obtain the following.

f opt
i =

C(Li − Lu
i )

tu
i

. (23)
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Then, by replacing f n
i with f opt

i in Equation (16), we can obtain the local energy
consumption of user Du

i as follows.

Eloc
i =

κC3(Li − Lu
i )

3

(tu
i )

2 . (24)

According to Equation (16), we find that the effect of CPU frequency on energy
consumption can be transformed to the effect of offloading ratio and transmitting power.
Therefore, we only need to focus on the optimization of these two parameters in the
following steps.

4.2. Power Optimization

After the CPU frequency has been optimized and with the assumption that the two
weight factors have been optimized, problem P1 now can be rewritten as the following.

(P3) min
pu ,pd

∑N
j=1 pd

j
Ld

j

Rd
j
+ ∑N

i=1 pu
i

Lu
i

Ru
i
+ ∑N

i=1
κC3(Li−Lu

i )
3

(tu
i )

2

−∑N
j=1 θj(pd

j tr{Hd
j (H

d
j )

H}+ σ2
j )

Ld
j

Rd
j

s.t. C2, C3, C4, C5.

(25)

For problem P3, the second-order derivative of each variable, i.e., pu
1 , pu

2 , . . . , pu
N and

pd
1, pd

2, . . . , pd
N of the objective function is zero. Moreover, all constraints are linear. Thus, the

standard interior point algorithm can be applied to this convex problem and the optimal
solution can be achieved.

4.3. Weight Factor Optimization

With the optimized variables f, pu, pd, the problem can can be expressed as the following:

(P4) min
α,θ

∑N
j=1 pd

j
β jαi Li

Rd
j

+ ∑N
i=1 pu

i
αi Li
Ru

i
+ ∑N

i=1
κC3(1−αi)

3(Li)
3

(tu
i )

2

−∑N
j=1 θj(Pd

j + σ2
j )

β jαi Li

Rd
j

s.t. C1 : 0 ≤ α, θ ≤ 1

(26)

where Pd
j = pd

j tr{Hd
j (H

d
j )

H}. Similar to problem P3, problem P4 is a convex problem
which can be solved by the interior point algorithm.

Based on the above discussion, the proposed AGIO algorithm can effectively solve
the optimization problem P1, which is illustrated in Algorithm 1.

Algorithm 1 Alternate Group Iterative Optimization

Input: N, M, B, Hu, Hd, H0, C, κ, L, σ2
j , σ2

AN , β, η, Pu
max, Pd

max, Ru
min, Rd

min

Output: optimal solutions f∗, p(u)∗, p(d)∗, α∗, , θ∗
1: Set iteration number n = 1.
2: Set maximum iteration number Imax.
3: Set the initial values: pu(0), pd(0), α(0), θ(0).
4: While n ≤ Imax
5: Solve problem P2 to obtain the optimal f;
6: Solve problem P3 to obtain the optimal (pu(n), pd(n));
7: Solve problem P4 to obtain the optimal (α(n), θ(n))
8: Set n = n + 1;
9: End While .
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5. Simulation and Analysis

5.1. Simulation Results

In this section, the research work above is simulated and the effects of different variables
on the system performance are investigated. The simulation parameters are summarized
as follows: the bandwidth is 5 MHz; the upper limits of transmitting power are pu

1,max =

pu
2,max = · · · = pu

N,max = 5 W and pd
1,max = pd

2,max = · · · = pd
N,max = 20 W; the weight

factors are β1 = β2 = · · · = βN = 1; and the noise power is σ2
AN = σ2

j = −120 dBm, ∀j.
We also set the chip effective capacitance coefficient to κ = 10−20 and the CPU cycles are
C = 103 cycles/bit. We choose a random Rayleigh fading channel model for all the channel
matrix in the simulation. Moreover, we apply two benchmark algorithms to compare with
the proposed AGIO algorithm.

(1) The fixed-variable (FV) algorithm: The variables pu, pd, α, θ are fixed at initial values.
(2) The full-offloading (FO) algorithm: MNs upload all computation tasks to the MEC

server. Thus, the local computation task is zero, the CPU frequency of local computation is
f1 = f2 = · · · = fN = 0 and the offloading weight factor is α1 = α2 = · · · = αN = 1.

Figure 2 demonstrates that convergence performance of the proposed AGIO algorithm
under different computation task size L (4 Mbits, 8 Mbits and 12 Mbits ) with 6 MNs and
the antenna number of AN is 6. As shown in the figure, the algorithm converges after five
iterations under varying L. This proves the effectiveness of our algorithm.The convergence
curves also indicate that the energy consumption increases with computation task size L.

Figure 2. Convergence behavior of the proposed AGIO algorithm.

Figure 3 compares the system energy consumption of the three different algorithms
under a different number of AN antennas M. The proposed AGIO has the minimum
system energy consumption in all the scenarios, which shows the performance superiority
of the AGIO algorithm. The number of antennas of the FV algorithm has the least impact
on energy consumption. It increases gently with the number of AN antennas. On the
other hand, for FO algorithm and the proposed AGIO algorithm, the energy consumption
is greatly reduced with M. As a result, our algorithm indicates greater performance
improvement in energy consumption when the number of the AN antennas increases.
Thus, we can conclude that the proposed AGIO algorithm is suitable for multi-antenna AN.
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Figure 3. Comparison of energy consumption with a different number of antennas.

Figure 4 compares the three different algorithms under different number of MNs.
The energy consumption increases with N which is attributed to the increased number
in computation tasks when the number of users increases. Again, the proposed AGIO
algorithm outperforms both FV and FO algorithms. The superiority increases with the
number of MNs, which reveals the applicability of the proposed algorithm in multi-user
senarios. In addition, it is clear that the FO scheme outperforms the FV scheme, which
mainly benefits from the optimal power allocation process in FO scheme.

Figure 4. Comparison of energy consumption with a different number of mobile nodes.

Figure 5 shows the energy consumption of the three algorithms under different harvest
weight factor θ with N = 2 and N = 4, respectively. For the three algorithms, the energy
consumption decreases with the parameter θ. The FO and AGIO algorithms demonstrate
increased significant decline than FV due to the reason that θ represents the capability

42



Sensors 2021, 21, 4798

of energy harvesting and the greater value of θ means more harvested energy and less
total system energy consumption. Thus, we can conclude MN tends to offload a larger
proportion of computation bits to AN in the view of energy efficiency.

Figure 5. Comparison of energy consumption with different θ.

Figure 6 demonstrates the offloading delay of MNs in the uplink transmission. The FV
scheme shows a slight advantage than the FO algorithm because we set the offload-
ing weight factor α = 0.1 for FV, which means smaller offloading task in FV than in
FO. Compared with the two benchmark algorithms, AGIO algorithm displays better la-
tency performance due to the excellent design of optimization steps. It also indicates
the distinguished feature of our algorithm both in energy consumption performance and
latency performance.

Figure 6. Comparison of offloading delay with different computation task size L.
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5.2. Analysis and Discussion

Aiming at solving the data explosion and energy insufficiency challenges in WSN-
assisted IoT system, we designed a novel framework that integrates MEC and SWIPT
technologies into the IoT system. We formulate the energy consumption minimization
problem and propose an AGIO algorithm to solve it. By jointly optimizing the CPU
frequency, power allocation, offloading scheme and SWIPT scheme, we can achieve the
minimum energy consumption.

Simulation results in Section 5.1 have verified our original intention. First, the pro-
posed novel system shows great advantages in energy consumption and time delay, which
are demonstrated in Figures 5 and 6. It can attribute the success to more reasonable expres-
sions of several parameters, which affects the system performance. That is also achieved by
the first contribution listed in Section 1.3. In addition, the convergence result displayed in
Figure 2 confirms the effectiveness of the AGIO algorithm as we stated in the second contri-
bution. Furthermore, the simulation result in Figure 3 shows that the energy consumption
decreases with the number of AN antennas. It provides a clue that our system is suitable
for multi-antenna system, which is more efficient in applications. The simulation results in
Figure 4 shows the superiority of the proposed algorithm in a multi-user scenario, which is
exactly the practical application of a WSN-assisted IoT system.

6. Conclusions

In this paper, we investigate the wireless information transmission and energy transfer
of a novel SWIPT-MEC enabled WSN-assisted IoT System. We fomulate an optimization
problem by jointly optimizing the CPU frequency, transmitted power, offloading weight fac-
tor and harvest weight factor to achieve the minimum system energy consumption. In order
to render the problem solvable, we propose a novel alternate group iteration optimization
(AGIO) algorithm, which decomposes the original problem into three subproblems and al-
ternately optimizes each subproblem using the group interior point iterative optimization
algorithm. Finally, numerical simulation of the proposed strategy is carried on to compare
with the two other benchmark schemes. The results demonstrate that the proposed design
presents the performance advantages both in energy consumption and latency.

Author Contributions: Conceptualization, F.C. and J.H.; methodology, F.C. and A.W.; software,
F.C. and Y.Z.; validation, Y.Z. and Z.N.; writing—original draft preparation, F.C. and A.W.; writ-
ing—review and editing, all co-authors; supervision, J.H; funding acquisition, J.H. and F.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This work is funded by the National Natural Science Foundation of China (61601409),
Zhejiang Natural Science Foundation (LQ21F010008), Zhejiang Province Science and technology
Projects (2021C04004), the Scientific Research Project of the Department of Education of Zhejiang
Province (Y202044549) and Zhejiang Postdoctoral Funding.

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References

1. Chettri, L.; Bera, R. A comprehensive survey on internet of things (IoT) toward 5G sireless systems. IEEE Internet Things J.
2020, 7, 16–32. [CrossRef]

2. Shafique, K.; Khawaja, B.A.; Sabir, F.; Qazi, S.; Mustaqim, M. Internet of things (IoT) for next-generation smart systems: A review
of current challenges, future trends and prospects for emerging 5G-IoT scenarios. IEEE Access 2020, 7, 23022–23040. [CrossRef]

3. Wang, D.; Chen, D.; Song, B.; Guizani, N.; Yu, X.; Du, X. From IoT to 5G HoT: The next generation IoT-based intelligent algorithms
and 5G technologies. IEEE Commun. Mag. 2018, 56, 114–120. [CrossRef]

4. Shahzadi, R.; Niaz, A.; Ali, M.; Naeem, M.; Rodrigues, J.J.; Qamar, F.; Anwar, S.M. Three tier fog networks: Enabling IoT/5G for
latency sensitive applications. China Commun. 2019, 16, 1–11.

5. Wazid, M.; Das, A.K.; Shetty, S.; Gope, P.; Rodrigues, J.J. Security in 5G-Enabled internet of things communication: Issues,
challenges, and future research roadmap. IEEE Access 2020, 9, 4466–4489. [CrossRef]

44



Sensors 2021, 21, 4798

6. Ma, X.E.Z.; Yu, K. Energy-efficient computation offloading and resource allocation in SWIPT-based MEC Networks. IEEE Access
2020. [CrossRef]

7. Dua, A.; Dutta, A.; Zaman, N.; Kumar, N. Blockchain-based E-waste Management in 5G Smart Communities. In Proceedings of
the IEEE INFOCOM 2020—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Toronto, ON,
Canada, 6–9 July 2020; pp. 195–200.

8. Lu, W.; Xu, X.; Huang, G.; Li, B.; Wu, Y.; Zhao, N.; Yu, F.R. Energy efficiency optimization in SWIPT enabled WSNs for smart
agriculture. IEEE Trans. Ind. Inform. 2020, 17, 4335–4344. [CrossRef]

9. Cui, J.; Zhang, Y.; Cao, M.; Wang, S.; Xu, Y. Thyroid tumor care risk based on medical IoT system. Micropress. Microsyst. 2021, 82,
103845. [CrossRef]

10. Zhang, Q.; Sun, H.; Wei, Z.; Feng, Z. Sensing and Communication Integrated System for Autonomous Driving Vehicles. In
Proceedings of the IEEE INFOCOM 2020—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS),
Toronto, ON, Canada, 6–9 July 2020; pp. 1278–1279.

11. Lu, W.; Xu, X.; Ye, Q.; Li, B.; Peng, H.; Hu, S.; Gong, Y. Power optimisation in UAV-assisted wireless powered cooperative mobile
edge computing systems. IET Commun. 2020, 14, 2516–2523. [CrossRef]

12. Jiang, D.; Wang, Z.; Lv, Z.; Li, W. Smart antenna-based multihop highly-energy-efficient DSA approach to drone-assisted backhaul
networks for 5G. In Proceedings of the IEEE INFOCOM 2020—IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), Toronto, ON, Canada, 6–9 July 2020; pp. 883–887.

13. Zhang, F.; Han, G.; Liu, L.; Martinez-Garcia, M.; Peng, Y. Joint Optimization of Cooperative Edge Caching and Radio Resource
Allocation in 5G-Enabled Massive IoT Networks. IEEE Internet Things J. 2021. [CrossRef]

14. Zhang, K.; Mao, Y.; Leng, S.; Zhao, Q.; Li, L.; Peng, X.; Zhang, Y. Energy-efficient offloading for mobile edge computing in 5G
heterogeneous networks. IEEE Access 2016, 4, 5896–5907. [CrossRef]

15. Hewa, T.; Braeken, A.; Ylianttila, M.; Liyanage, M. Multi-Access Edge Computing and Blockchain-based Secure Telehealth System
Connected with 5G and IoT. In Proceedings of the GLOBECOM 2020—2020 IEEE Global Communications Conference, Taipei,
Taiwan, 7–11 December 2020.

16. Yang, X.; Fei, Z.; Zheng, J.; Zhang, N.; Anpalagan, A. Joint multi-user computation offloading and data caching for hybrid mobile
cloud/Edge computing. IEEE Trans. Veh. Technol. 2019, 68, 11018–11030. [CrossRef]

17. Wu, Y.; Chen, J.; Qian, L.P.; Huang, J.; Shen, X.S. Energy-aware cooperative traffic offloading via device-to-device cooperations:
An analytical approach. IEEE Trans. Mob. Comput. 2017, 16, 97–114. [CrossRef]

18. Liu, C.F.; Bennis, M.; Debbah, M.; Poor, H.V. Dynamic task offloading and resource allocation for ultra-reliable low-latency edge
computing. IEEE Trans. Commun. 2019, 67, 4132–4150. [CrossRef]

19. Spinelli, F.; Mancuso, V. Toward Enabled Industrial Verticals in 5G: A Survey on MEC-Based Approaches to Provisioning and
Flexibility. IEEE Commun. Surv. Tutor. 2021, 23, 596–630. [CrossRef]

20. Liu, Y.; Peng, M.; Shou, G.; Chen, Y.; Chen, S. Toward Edge Intelligence: Multiaccess Edge Computing for 5G and Internet of
Things. IEEE Internet Things J. 2020, 7, 6722–6747. [CrossRef]

21. Varshney, L.R. Transporting information and energy simultaneously. In Proceedings of the 2008 IEEE International Symposium
on Information Theory, Toronto, ON, Canada, 6–11 July 2008

22. Zhang, R.; Ho, C.K. MIMO Broadcasting for Simultaneous Wireless Information and Power Transfer. IEEE Trans. Wirel. Commun.
2013, 12, 1989–2001. [CrossRef]

23. Park, J.; Clerckx, B. Joint wireless information and energy transfer in a two-user mimo interference channel. IEEE Trans. Wirel.
Commun. 2013, 12, 4210–4221. [CrossRef]

24. Nasir, A.A.; Zhou, X.; Durrani, S.; Kennedy, R.A. Relaying protocols for wireless energy harvesting and information processing.
IEEE Trans. Wirel. Commun. 2013, 12, 3622–3636. [CrossRef]

25. Zhou, X.; Zhang, R.; Ho, C.K. Wireless information and power transfer: Architecture design and rate-energy tradeoff. IEEE Trans.
Commun. 2013, 61, 4754–4767. [CrossRef]

26. Guo, S.; Shi, Y.; Yang, Y.; Xiao, B. Energy efficiency maximization in mobile wireless energy harvesting sensor networks. IEEE
Trans. Mob. Comput. 2018, 17, 1524–1537. [CrossRef]

27. Tang, J.; So, D.; Zhao, N.; Shojaeifard, A.; Wang, K. Energy efficiency optimization with SWIPT in MIMO broadcast channels for
internet of things. IEEE Internet Things J. 2018, 5, 2605–2619. [CrossRef]

28. Fu, J.; Hua, J.; Wen, J.; Zhou, K.; Li, J.; Sheng, B. Optimization of Achievable Rate in the Multiuser Satellite IoT System With
SWIPT and MEC. IEEE Trans. Ind. Inform. 2021, 17, 2072–2080. [CrossRef]

29. Zhou, F.H.; Wu, Y.P.; Hu, R.Q.; Qian, Y. Computation rate maximization in UAV-enabled wireless-powered mobile-edge
computing systems. IEEE J. Sel. Areas Commun. 2018, 36, 1927–1941. [CrossRef]

30. Ksentini, A.; Frangoudis, P.A. On Extending ETSI MEC to Support LoRa for Efficient IoT Application Deployment at the Edge.
IEEE Commun. Stand. Mag. 2020, 4, 57–63. [CrossRef]

31. Giannopoulos, A.; Spantideas, S.; Tsinos, C.; Trakadas, P. Power Control in 5G Heterogeneous Cells Considering User Demands
Using Deep Reinforcement Learning. Int. Fed. Inf. Process. 2021, 95–105. [CrossRef]

32. Min, M.; Xiao, L.; Chen, Y.; Cheng, P.; Wu, D.; Zhuang, W. Learning-Based Computation Offloading for IoT Devices With Energy
Harvesting. IEEE Trans. Veh. Technol. 2019, 68, 1930–1941. [CrossRef]

45



Sensors 2021, 21, 4798

33. Zhang, J.; Du, J.; Shen, Y.; Wang, J. Dynamic Computation Offloading With Energy Harvesting Devices: A Hybrid-Decision-Based
Deep Reinforcement Learning Approach. IEEE Internet Things J. 2020, 7, 9303–9317. [CrossRef]

34. Chen, F.; Fu, J.; Wang, Z.; Zhou, Y.; Qiu, W. Joint Communication and Computation Resource Optimization in FD-MEC Cellular
Networks. IEEE Access 2019, 7, 168444–168454. [CrossRef]

35. Mao, Y.; Zhang, J.; Ben Letaief, K. Dynamic Computation Offloading for Mobile-Edge Computing With Energy Harvesting
Devices. IEEE J. Sel. Areas Commun. 2016, 34, 3590–3605. [CrossRef]

36. Wang, F.; Xu, J.; Wang, X.; Cui, S. Joint offloading and computing optimization in wireless powered mobile-edge computing
Systems. IEEE Trans. Wirel. Commun. 2018, 17, 1784–1797. [CrossRef]

46



Citation: Niu, Z.; Fujimoto, Y.;

Kanbara, M.; Sawabe, T.; Kato, H.

DFusion: Denoised TSDF Fusion of

Multiple Depth Maps with Sensor

Pose Noises. Sensors 2022, 22, 1631.

https://doi.org/10.3390/s22041631

Academic Editor: Jing Tian

Received: 4 January 2022

Accepted: 2 February 2022

Published: 19 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

DFusion: Denoised TSDF Fusion of Multiple Depth Maps with
Sensor Pose Noises

Zhaofeng Niu *, Yuichiro Fujimoto, Masayuki Kanbara, Taishi Sawabe and Hirokazu Kato

Nara Institute of Science and Technology (NAIST), Ikoma 630-0192, Nara, Japan; yfujimoto@is.naist.jp (Y.F.);
kanbara@is.naist.jp (M.K.); t.sawabe@is.naist.jp (T.S.); kato@is.naist.jp (H.K.)
* Correspondence: niu.zhaofeng.mv7@is.naist.jp

Abstract: The truncated signed distance function (TSDF) fusion is one of the key operations in the 3D
reconstruction process. However, existing TSDF fusion methods usually suffer from the inevitable
sensor noises. In this paper, we propose a new TSDF fusion network, named DFusion, to minimize
the influences from the two most common sensor noises, i.e., depth noises and pose noises. To the
best of our knowledge, this is the first depth fusion for resolving both depth noises and pose noises.
DFusion consists of a fusion module, which fuses depth maps together and generates a TSDF volume,
as well as the following denoising module, which takes the TSDF volume as the input and removes
both depth noises and pose noises. To utilize the 3D structural information of the TSDF volume, 3D
convolutional layers are used in the encoder and decoder parts of the denoising module. In addition,
a specially-designed loss function is adopted to improve the fusion performance in object and surface
regions. The experiments are conducted on a synthetic dataset as well as a real-scene dataset. The
results prove that our method outperforms existing methods.

Keywords: depth fusion; TSDF; sensor noises

1. Introduction

Depth fusion is of great importance for many applications, such as augmented reality
applications and autonomous driving. Many methods have been proposed in this area
and truncated signed distance function (TSDF) [1] is one of the most famous. However,
TSDF requires manual adjustment on its parameters, possibly leading to thick artifacts. To
address this problem, some depth fusion methods have emerged with improved perfor-
mance. Methods such as [2,3] use surfel-based or probabilistic approaches to generate 3D
representations, which may be a voxel grid, a mesh or a point cloud. In addition, compared
with these classical methods, convolutional neural network (CNN) based methods have
shown advantages in the fusion performance. However, their results still suffer from noisy
input, which results in missing surface details and incomplete geometry [4].

The data acquired by depth cameras inevitably contain a significant amount of noise.
Although researchers have proposed many methods to remove the noise, most of the works
only focus on removing the noise caused by depth maps but neglect the noise of camera
poses (pose noises for simplicity). Figure 1 illustrates the two types of noises. Figure 1a
shows the situation where there is no noise and a plane is in the sight of the camera. If
there are depth noises, the noise may be outliers or missing data, as shown in Figure 1b,
which leads to noisy TSDF volumes. As for the pose noise, Figure 1c provides an example
when the camera has translation and rotation error compared with Figure 1a, which causes
troubles when integrating the TSDF updates due to the inaccurate extrinsic data. Both
types of noises may have adverse impacts on depth fusion results. However, there are only
a few works that focus on removing noises for TSDF fusion, even given the fact that both
types of noises are inevitable.

Sensors 2022, 22, 1631. https://doi.org/10.3390/s22041631 https://www.mdpi.com/journal/sensors
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(a) (b) (c)

Figure 1. Illustration of the sensor noises. (a) Sensor without noises. (b) Depth noises. (c) Sensor
pose noises.

RoutedFusion method [4], as an example, considers the depth noise and aims to obtain
a robust TSDF volume against different levels of depth noise. It uses depth maps derived
from synthetic datasets and puts random noises into the depth maps. However, in the
fusion process, the camera pose they use is the ground-truth pose from the synthetic dataset,
so that the results can only be robust against depth noise, but not against pose noise. In this
paper, we propose a method named DFusion that considers not only depth noises but also
pose noises, as shown in Figure 2. To the best of our knowledge, this is one of the earliest
research that tries to avoid the performance drop caused by pose noises.

Figure 2. DFusion can minimize the influence of both types of noises.

Generally, depth fusion is conducted with 2D convolutional models. However, when
considering the pose noise, it is better to remove the noise with the 3D representation be-
cause it is challenging to recognize and remove the surface shifts in the 2D space. Therefore,
we firstly adopt a Fusion Module, as the first part of DFusion, with the same setting as the
fusion network in the RoutedFusion method, to fuse the depth maps with camera poses
into a TSDF volume. After gaining the integrated TSDF volume, we design a Denoising
Module, an UNet-like neural network, as the second part of DFusion to denoise the TSDF
volume. Since the input of the Denoising Module is a 3D volume, 3D convolutional layers
are utilized to obtain the 3D features. Skip connections are used to avoid the vanishing
gradient problem, which is prone to occur due to the small value of TSDF volume.

For training the networks, we utilize a synthetic dataset which can provide the ground-
truth value of depth maps and camera poses. The model is trained in a supervised manner.
In addition to the commonly-used fusion loss, several specially-designed loss functions
are proposed, including a L1 loss for all voxels in the whole scene and L1 losses over the
objects and surfaces for better fusion performance on these regions.

In sum, the contributions of this work are as follows:

• We propose a new fusion network named DFusion, which considers both depth noises
and pose noises in the fusion process. DFusion can avoid the performance drops
caused by both types of noises, and conduct accurate and robust depth fusion.

• We design new fusion loss functions that focus on all the voxels while emphasizing
the object and surface regions, which can improve the overall performance.

• The experiments are conducted on a synthetic dataset as well as a real scene dataset,
measuring the actual noise levels with the real-world setting and demonstrating the
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denoising effects of the proposed method. The ablation study proves the effectiveness
of the proposed loss function.

2. Related Works

2.1. Depth Fusion and Reconstruction
2.1.1. Classical Methods

TSDF fusion method [1] is one of the most important classical fusion methods that
fuses depth maps with camera intrinsics and the corresponding viewpoints, i.e., camera
poses, into a discretized signed distance function and weight function, thereby obtaining a
volumetric representation. It has been adopted as the fundamental in the majority of depth
map fusion based 3D reconstruction, including KinectFusion [5], BundleFusion [6], and
voxel hashing [7,8]. However, the depth maps always involve noises but all these methods
update a wider band to deal with the noise, as a result, there are noise artifacts, especially
outlier blobs and thickening surfaces, on the results.

In contrast to the voxel-based method, there are some reconstruction approaches
that update the results in different ways. For example, Zienkiewicz et al. [9] introduce
a scalable method that fuses depth maps into a multi-resolution mesh instead of a voxel
grid. Keller et al. [10] design a flat point-based representation method [2], which utilizes
the input from the depth sensor directly without converting representations, thereby
saving the memory and increasing the speed. In addition, the surfel-based approach
that approximates the surface with local points is adopted for reconstruction [2,11]. The
unstructured neighborhood relationship can be built by this approach, although it usually
tends to miss connectivity information among surfels. MRSMap [12], as an example,
integrates depth maps into a multi-resolution surfel map for objects and indoor scenes.

Some researchers also regard the depth map fusion process as a probabilistic density
problem [3,12–14], considering various ray directions. Yong et al. [15] estimate the prob-
ability density function based on the original point cloud instead of the depth map and
use a mathematical expectation method to decrease the complexity of computation. In [16],
the marginal distribution of each voxel’s occupancy and appearance is calculated by a
Markov random field along with the camera rays. However, all these classical methods
have limitations to balance reconstruction quality, scene assumptions, speed and spatial
scale due to the large and complex computation but limited memory.

2.1.2. Learning-Based Methods

Along with the development of deep learning methods, there exist lots of proposals
that fuse and improve the performance of classical 3D reconstruction [17]. For example,
ScanComplete [18] method completes and refines the 3D scan with a CNN model, which
can deal with the large-scale input and obtain the high-resolution output. RayNet [19],
which combines a CNN model with Markov random fields method, considers both local
information and global information of the multi-view images. It can cope with large
surfaces and solve the occlusion problem. Based on Mask R-CNN method [20], Mesh
R-CNN [21] detects objects in an image, then builds meshes with a mesh prediction model
and refines the meshes with a mesh refinement model.

Specifically, in many learning-based approaches, TSDF fusion is still one of the im-
portant steps [22]. OctNetFusion [23] fuses the depth maps with TSDF fusion and subse-
quently utilizes a 3D CNN model to deal with the occluded regions and refines the surfaces.
Leroy et al. [24] propose a deep learning-based method to achieve multi-view photocon-
sistency, which focuses on matching features among viewpoints for obtaining the depth
information. Similarly, the depth maps are finally fused by TSDF fusion. RoutedFusion [4]
also fuses the depth maps based on the standard TSDF fusion. Different from other meth-
ods, it reproduces TSDF fusion by a CNN model, which predicts the parameters of volume
and weight, then the volumetric representation can be updated with new volume and
weight sequentially.
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Compared with the classical method, deep learning-based methods show advantages
in handling thickening artifacts and increasing diversity and efficiency. In addition, existing
methods pay little attention to the noise problem during the fusion process. Our method
adopts a part of RoutedFusion models to fuse the 3D volume firstly, then combines a
special-designed neural network to remove the noise, thereby improving the performance
of the depth fusion.

2.2. Denoising/Noise Reduction

Most of the works consider the noise as the depth noise and try to remove the noise at
the beginning of the fusion process. The authors in [3,25] adopt Gaussian noise to mimic
the real depth noise derived from the depth sensors, then achieve the scene reconstruction.
Cherabier et al. [26] also remove some regions of random shapes, such as circles and
triangles, to simulate the missing data. In RoutedFusion [4], the authors add random
noise to the depth maps and propose a routing network that can remove the random noise,
then use a fusion network to fuse the denoised depth maps into a TSDF volume. The
experiments prove that the routing network has a significant effect on improving accuracy.

Another way to cope with the noise is to refine the 3D representation directly. NPD [27]
trains the network by utilizing a reference plane from the noiseless point cloud as well as
the normal vector of each point while PointCleanNet [28] removes the outlier firstly then
denoises the remaining points by estimating normal vectors. Han et al. [29] propose a local
3D network to refine the patch-level surface but it needs to obtain the global structure from
the depth images firstly, which is inconvenient and time-consuming. Zollhöfer et al. [25]
propose a method that utilizes the details, such as shading cues, of the color image to
refine the fused TSDF volume since the color image typically has a higher resolution. A
3D-CFCN model [30], which is a cascaded fully convolutional network, combines the
feature of low-resolution input TSDF volume and high-resolution input TSDF volume to
remove the noise and refine the surface. However, all these methods only consider either
the outliers of the 3D representation or the noises caused by depth maps. In our method,
we design a denoising network with 3D convolutional layers, which remove the noise for
the TSDF volume without any other additional information. In addition, we take the noise
of both depth maps and camera poses into account; thus, the network is robust against not
only depth noises but also pose noises.

3. Methodology

3.1. TSDF Fusion

Standard TSDF fusion, which is proposed by Curless and Levoy [1], integrates a
depth map Di with the camera pose and camera intrinsic into a signed distance function
Vi ∈ RX×Y×Z and weight function Wi ∈ RX×Y×Z. For location x, the integration process
can be expressed as follows:

Vi(x) =
Wi−1(x)Vi−1(x) + wi(x)vi(x)

Wi−1(x) + wi(x)
(1)

Wi(x) = Wi−1(x) + wi(x) (2)

It is an incremental process, and V0 and W0 are initially set as zero volumes. In each
time step i, the signed distance vi and its weight wi are estimated according to the depth
map of the current ray, then are integrated into a cumulative signed distance function Vi(x)
and a cumulative weight Wi(x).

However, in the traditional way, the parameters are tuned manually, so that it is a heavy
task and difficult to exclude artifacts and maintain high performance. In RoutedFusion [4],
the TSDF fusion process has been conducted in a convolutional network, named depth
fusion network, which is trained to tune the parameters automatically. The input of the
fusion network is depth maps, camera intrinsics and camera poses. The depth map is fused
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into the previous TSDF volume with the camera intrinsic and camera pose incrementally.
The main purpose of RoutedFusion method is to deal with the noise of the TSDF volume
caused by the noise on depth maps. To remove the depth noise, the authors firstly adopt
the depth maps with random noises for training, then use a routing network to denoise the
depth maps before fusing them with the fusion network.

In a real application, however, the pose noise is also inevitable. Therefore, in our
method, the inputs include noised depth maps and noised camera poses.

3.2. Network Architecture

The proposed DFusion method mainly includes two parts: a Fusion Module for fusing
depth maps and a Denoising Module for removing the depth noises and pose noises. These
two modules are trained independently, with different loss functions.

Fusion Module. The Fusion Module follows the design of the fusion network pro-
posed in the RoutedFusion method [4]. It fuses depth maps incrementally with a learned
TSDF updating function, using the information of camera intrinsics and camera poses.
Then the TSDF update will be integrated to form a TSDF volume for the whole scene.
The process of the Fusion Module is illustrated in the upper part of Figure 3. Although
RoutedFusion can remove the depth noise, its denoising process is implemented as a
pre-processing network, i.e., the routing network as metioned in Section 3.1, rather than
the Fusion Module which is used in our method. Also, different from the RoutedFusion
method, we consider not only the depth noise but also the pose noise, the latter of which is
much more obvious when fusion is finished than before/during fusion. Therefore, we add
a post-processing module to deal with both of these two types of noises.

Figure 3. The DFusion model.

Denoising Module. After obtaining the TSDF volume, the Denoising Module is
designed to remove the noise of the TSDF volume. The input of the Denoising Module,
which is also the output of the Fusion Module, is a TSDF volume with depth noises and
pose noises. Since it deals with a 3D volume, we adopt 3D convolutional layers instead of
2D convolutional layers, aiming to capture more 3D features to remove the noise (as using
3D convolutional layers is a natural choice for tasks such as 3D reconstruction [30] and
recognizing 3D shifts are extremely difficult for 2D convolutions). As shown in Figure 3,
the Denoising Module is implemented as an UNet-like network, which downsamples the
features in the encoder part and upsamples them back to the original size in the decoder
part. Skip connections are added among encoder layers and decoder layers.
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In the training phase, to mimic the noises of real-world applications, we add random
noises to the ground-truth depth maps and camera poses of the dataset. Therefore, the
output of the Fusion Module, as well as the input of the Denoising Module, is noisy
and needs to be fixed. For the depth noise, we add the noises Bd that follow a normal
distribution to all pixels P in the depth maps (following the solutions in [4,23]). This process
can be represented as

P′ := P + Bd, (3)

and
Bd ∼ N[0, σd], (4)

where σd is the pre-defined scale parameter. This parameter should be set to reflect the
actual noise levels of the applications. We set σd = 0.005 following [4,23].

As for pose noises, we add the noise to translation matrix T and rotation matrix R,
respectively. Firstly, given a random translation error Bt, a random rotation error Br, two
random unit vectors nt = (n1, n2, n3) and nr = (n4, n5, n6) (respectively, for translation and
rotation errors), the noised translation matrix and rotation matrix are calculated as follows.

T′ := T + nt · Bt

R′ := R + Rodri(nr, Br),
(5)

where Rodri(nr, Br) follows Rodrigues’s rotation formula and it can be represented as:⎛⎜⎝ n2
4(1 − cosBr) + cosBr n4n5(1 − cosBr)− n6sinBr n4n6(1 − cosBr) + n5sinBr

n4n5(1 − cosBr) + n6sinBr n2
5(1 − cosBr) + cosBr n5n6(1 − cosBr)− n4sinBr

n4n6(1 − cosBr)− n5sinBr n5n6(1 − cosBr) + n4sinBr n2
6(1 − cosBr) + cosBr

⎞⎟⎠ (6)

In addition, Bt and Br also follow the normal distribution.

Bt ∼ N[μt, σt]

Br ∼ N[μr, σr]
(7)

Since there is no existing method that adds artificial pose noises to improve the
denoising performance, the value of μ and σ is decided based on a real scene dataset. More
details are given in Section 4.2.

3.3. Loss Functions

Since there are two modules in the network, i.e., Fusion module and Denoising module,
the total loss function involves two parts as follows.

Fusion Loss. The loss function of the Fusion Module is expressed as follows:

LF = ∑
a

λF
1 L1(Vlocal,a, V′

local,a) + λF
2 LC(Vlocal,a, V′

local,a), (8)

where Vlocal and V′
local are two local volumes along ray a, respectively, from the the network

output and from the ground-truth. L1 is the L1 loss and can be represented as

L1(V, V′) =
∑vm∈V,v′m∈V′ |vm − v′m|

|V| (9)

In addition, we use the cosine distance loss LC (on the signs of the output volume and
ground-truth volume) to ensure the fusion accuracy of the surface, following the setting
in [4], which can be represented as

LC(V, V′) = 1 − cos(sign(V), sign(V′)), (10)

where sign() is to get the signs of the inputs and cos() is to get the cosine values of the
angles between the input vectors.
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In addition, λF
1 and λF

2 are the weigths for the loss terms and are emperically decided
as 1 and 0.1 [4], respectively.

Denoising Loss. The Denoising Module is also trained in a supervised manner,
considering the fusion accuracy on the whole scene, objects, and surface regions. The loss
function is defined as follows:

LD = λD
1 LSPACE + λD

2 LOBJECT + λD
3 LSURFACE, (11)

where LSPACE, LOBJECT , and LSURFACE are, respectively, for the losses of the whole scene,
objects, and the surface regions (as shown in Figure 4). λD

1 , λD
2 , and λD

3 are the weights to
adjust their relative importance.

LSPACE is defined as

LSPACE = L1(V, V′), (12)

where V is the predicted scene volume while V′ is the ground-truth volume.
Let VOBJECT ⊆ V, and for each vm ∈ VOBJECT , v′m ≤ 0, then

LOBJECT = L1(VOBJECT , V′
OBJECT) (13)

Similarly, let VSURFACE ⊆ V, and for each vm in VSURFACE, −S ≤ v′m ≤ S, where S is a
threshold of the surface range (we set S to 0.02), then

LSURFACE = L1(VSURFACE, V′
SURFACE) (14)

We set the values of hyperparameter λD
1 , λD

2 , and λD
3 to 0.5, 0.25, and 0.25, respectively.

The effects of object loss and surface loss are explored in the ablation study.

(a) (b)

(c) (d)

Figure 4. The focus regions of the loss functions (green masks for the focus regions). (a) The
illustration of the example scene, where one object exists. (b) The scene loss. (c) The object loss.
(d) The surface loss.
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4. Experiments

In this section, we first explain the details of the experimental setup. Then we introduce
the adopted datasets, with which both quantitative and qualitative results prove that our
proposed method outperforms existing methods.

4.1. Experimental Setup

All the network models are implemented in PyTorch and trained with NVIDIA P100
GPU. The RMSprop optimization algorithm [31] is adopted with an initial learning rate
of 10−4 and the momentum of 0.9, for both the fusion network and denoising network.
The networks are trained sequentially, that is, the fusion network is pre-trained before the
training of the denoising network. 10K frames sampled from ShapeNet dataset [32] are
utilized for training the network.

4.2. Dataset and Noise Simulation

ShapeNet dataset [32] includes a large scale of synthetic 3D shapes, such as the plane,
sofa and car. The ground-truth data, including depth maps, camera intrinsics and camera
poses, can be obtained from the 3D shapes. Similar to RoutedFusion [4], we use the
ShapeNet dataset to train the networks. To simulate the realistic noisy situation, not only
depth maps but also camera poses are added random noises in the training process.

CoRBS dataset [33], a comprehensive RGB-D benchmark for SLAM, provides (i) real
depth data and (ii) real color data, which are captured with a Kinect v2, (iii) a ground-truth
trajectory of the camera that is obtained with an external motion capture system, and (iv) a
ground-truth 3D model of the scene that is generated via an external 3D scanner. Totally,
the dataset involves 20 image sequences of 4 different scenes.

Noise Simulation. As introduced in Section 3.2, we need the μt, σt, μr, and σr param-
eters to mimic the real sensor noises. Since the CoRBS dataset provides not only real-scene
data but also the ground-truth data, we adopt it to obtain the realistic pose noise for
simulation. In order to measure the pose noise, we follow the calculation process of the
commonly-used relative pose error (RPE) [34]. RPE is defined as the drift of the trajectory
over a fixed time interval Δ. For a sequence of n frames, firstly, the relative pose error at
time step i is calculated as follows:

Ei = (I−1
i Ii+Δ)

−1(J−1
i Ji+Δ), (15)

where I is the ground-truth trajectory and J is the estimated trajectory. Then m = n − Δ
individual relative pose error matrices can be obtained along the sequence. Generally, the
RPE is considered as two components, i.e., RPE for translation matrix (T = trans(Ei)) and
RPE for rotation matrix (R = rot(Ei)). We use the following formulas for obtaining the μ
and σ parameters for the normal distribution.

μt =
1
m

m

∑
i=1

‖ trans(Ei) ‖ (16)

σt =

√
1
m

m

∑
i=1

(‖ trans(Ei) ‖ −μt)2 (17)

μr =
1
m

m

∑
i=1

∠rot(Ei) (18)

σr =

√
1
m

m

∑
i=1

(∠rot(Ei)− μr)2, (19)

where ∠rot(Ei) = arccos( Tr(R)−1
2 ) and Tr(R) represents the sum of the diagonal elements

of the rotation matrix R.
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For the translation error, μt is 0.006 and σt is 0.004, while for the rotation error, μr is
0.094 and σr is 0.068, which are used in the noise simulation for our experiments. These
parameters are also preferable in the training of DFusion model for actual uses, while they
can also be increased a bit (better keeping μt and σt no larger than 0.02, μr and σr no larger
than 0.2, with which the DFusion model can give good fusion results) if strong sensor
noises are expected.

4.3. Evaluation Results

The experiments are conducted on ShapeNet and CoRBS datasets. For ShapeNet
dataset, which involves the synthetic data, we add only depth noises and both depth noises
and pose noises, respectively. The results are shown in Tables 1 and 2. To compare with
state-of-the-art methods, our method is evaluated with four metrics, i.e., the mean squared
error (MSE), the mean absolute distance (MAD), intersection over union (IoU) and accuracy
(ACC). MSE and MAD mainly focus on the distance between the estimated TSDF and the
ground truth, while IoU and ACC quantify the occupancy of the estimation. According to
the results, our method outperforms the state-of-the-art methods on all metrics for both
scenarios. Especially when there exist both depth noises and pose noises, our method
shows a significant advantage over other methods. When only depth noises exist, the
RoutedFusion method and the proposed DFusion method have similar performance, while
the latter shows a slight advantage due to the post-processing of the Denoising Module.
Figures 5 and 6 illustrate the fusion results on the ShapeNet dataset with depth noises
or pose noises, respectively, which is more intuitive to show the advantages of DFusion
method. Consistent with the metric results, we can see that DFusion can give clean and
precise fusion for all these objects. Due to the use of deep learning models, RoutedFusion
and DFusion both have satisfactory outputs when depth noises are added, as shown in
Figure 5. However, when pose noises exist (as shown in Figure 6), the fusion results of
RoutedFusion deteriorate a lot, while our DFusion model can still have a precise output.

Table 1. Comparison results on ShapeNet (with only depth noise).

Methods MSE MAD ACC IoU

DeepSDF [35] 412.0 0.049 68.11 0.541
OccupacyNetworks [23] 47.5 0.016 86.38 0.509

TSDF Fusion [1] 10.9 0.008 88.07 0.659
RoutedFusion [4] 5.4 0.005 95.29 0.816
DFusion (Ours) 3.5 0.003 96.12 0.847

Table 2. Comparison results on ShapeNet (with depth noise and pose noise).

Methods MSE MAD ACC IoU

DeepSDF [35] 420.3 0.052 66.90 0.476
OccupacyNetworks [23] 108.6 0.037 77.34 0.453

TSDF Fusion [1] 43.4 0.020 80.45 0.582
RoutedFusion [4] 20.8 0.017 88.19 0.729
DFusion (Ours) 6.1 0.006 95.08 0.801
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Figure 5. Fusion results on the ShapeNet dataset with depth noise added.
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Figure 6. Fusion results on the ShapeNet dataset with pose noise added.

For the CoRBS dataset, we choose four real scenes to perform the comparison with
KinectFusion and RoutedFusion method. However, the pose information needs to be
calculated before fusing the depth maps. KinectFusion method involves the process of
calculating the pose information, which is the iterative closest point (ICP) algorithm [36].
Hence, to generate the TSDF volume, we use the ICP algorithm to obtain pose information
for RoutedFusion and DFusion method, then compare the results on the MAD metric. The
results are shown in Table 3. For all the scenes, our method achieves the best result. We also
show some visualization results in Figure 7, which proves that our method can denoise the
TSDF volume effectively and obtain more complete and smooth object models (note the
cabinet edges, desk legs, and the human model arms).
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Figure 7. Fusion results on the CoRBS dataset. ICP algorithm [36] is used to obtain the sensor
trajectory for RoutedFusion and DFusion.

Table 3. Quantitative results (MAD) on the CoRBS dataset.

Methods Human Desk Cabinet Car

KinectFusion [5] 0.015 0.005 0.009 0.009
ICP + RoutedFusion [4] 0.014 0.005 0.008 0.009
ICP + DFusion (Ours) 0.012 0.004 0.006 0.007

4.4. Ablation Study

To verify the effectiveness of the proposed loss function, we perform an ablation study,
which compares the results with other three variants of the loss function, i.e., the loss
function without object loss, the loss function without surface loss and the loss function
without both object and surface loss. The original loss is our default setting which involves
space loss, object loss and surface loss. For all variants, the experiment is conducted on the
ShapeNet dataset with both depth noises and pose noises added. The results are shown
in Table 4. It can be seen that the original setting can achieve the best performance for all
metrics, which demonstrates the effectiveness of the proposed loss functions.

Table 4. Variants of the proposed method (with depth noise and pose noise).

Methods MSE MAD ACC IoU

Without object loss 8.3 0.007 92.11 0.744
Without surface loss 7.5 0.006 91.83 0.769

Without object&surface loss 16.3 0.015 90.87 0.740

Original 6.1 0.006 95.08 0.801
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5. Conclusions

In this paper, we propose a new depth fusion network, considering not only depth
noises but also pose noises of depth sensors, which is more realistic in 3D reconstruction.
To improve the fusion quality, a new CNN model is proposed after fusing the depth maps.
A synthetic dataset and a real-scene dataset are adopted to verify the effectiveness of our
method. It has been proved that our method outperforms existing depth fusion methods
for both quantitative results and qualitative results.

One limitation of our proposed method is that it can only be used after all depth
sequences have been obtained. Therefore, it cannot be deployed in systems that require real-
time fusion. A possible solution is to involve incomplete depth sequences in the training
process, where we may need to redesign the noise generation and model optimization
methods, which can be one of the future objectives. In addition, DFusion may have some
performance issues if it is only trained on a small dataset, as the Denoising Module requires
enough training samples. Therefore, more works are needed to lower its data requirements.
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Abstract: Super-pixels represent perceptually similar visual feature vectors of the image. Super-pixels
are the meaningful group of pixels of the image, bunched together based on the color and proximity
of singular pixel. Computation of super-pixels is highly affected in terms of accuracy if the image has
high pixel intensities, i.e., a semi-dark image is observed. For computation of super-pixels, a widely
used method is SLIC (Simple Linear Iterative Clustering), due to its simplistic approach. The SLIC is
considerably faster than other state-of-the-art methods. However, it lacks in functionality to retain
the content-aware information of the image due to constrained underlying clustering technique.
Moreover, the efficiency of SLIC on semi-dark images is lower than bright images. We extend the
functionality of SLIC to several computational distance measures to identify potential substitutes
resulting in regular and accurate image segments. We propose a novel SLIC extension, namely,
SLIC++ based on hybrid distance measure to retain content-aware information (lacking in SLIC).
This makes SLIC++ more efficient than SLIC. The proposed SLIC++ does not only hold efficiency for
normal images but also for semi-dark images. The hybrid content-aware distance measure effectively
integrates the Euclidean super-pixel calculation features with Geodesic distance calculations to retain
the angular movements of the components present in the visual image exclusively targeting semi-
dark images. The proposed method is quantitively and qualitatively analyzed using the Berkeley
dataset. We not only visually illustrate the benchmarking results, but also report on the associated
accuracies against the ground-truth image segments in terms of boundary precision. SLIC++ attains
high accuracy and creates content-aware super-pixels even if the images are semi-dark in nature. Our
findings show that SLIC++ achieves precision of 39.7%, outperforming the precision of SLIC by a
substantial margin of up to 8.1%.

Keywords: clustering; similarity measure; geodesic measure; Euclidean measure

1. Introduction

Image segmentation has potential to reduce the image complexities associated with
processing of singular image primitives. Low-level segmentation of an image in non-
overlapping set of regions called super-pixels helps in pre-processing and speeding up
further high-level computational tasks related to visual images. The coherence feature of
super-pixels allows faster architectural functionalities of many visual applications including
object localization [1], tracking [2], posture estimation [3], recognition [4,5], semantic
segmentation [6], instance segmentation [7], and segmentation of medical imagery [8,9].
These applications will be aided by super-pixels in terms of boosted performances, as the
super-pixels put forward only the discriminating visual information [10].

Sensors 2022, 22, 906. https://doi.org/10.3390/s22030906 https://www.mdpi.com/journal/sensors
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Low-level segmentation tends to result in incorrect segmentations if the visual image
has high pixel intensities; these high pixeled values are usually the biproduct of visual
scenes captured in low lighting conditions, i.e., semi-dark images and dark images. The
obtained incorrect super-pixels are attributed to the underlying approach used for the final
segment creation. The existing super-pixel methods fail due to incorrect pixel manipula-
tions for base operational functionality. The currently employed pixel manipulation relies
on straight line differences for super-pixel creation. These straight-line difference manipu-
lations fail to retain the content-aware information of the image. The results are further
degraded if the image has low contrasted values, which result in no clear discrimination
among the objects present. The existing super-pixel creation methods are divided into
two categories based on the implemented workflow. The two categories are graph-based
and gradient ascent based [10,11]. The former, focuses on minimization of cost function
by grouping and treating each pixel of the image as a graph node. The later, iteratively
processes each image pixel using clustering techniques until convergence [12]. One of the
typical features observed for identification of super-pixel accuracy is regularity, i.e., to what
extent the super-pixel is close to the actual object boundary of the image. All the graph-
based methods for super-pixel calculations suffer from poorly adhered super-pixels which
result in irregularity of segments presented by super-pixels [11]. Additionally, graph-based
methods are constrained by the excessive computational complexity and other initializa-
tion parameters. Whereas, the gradient-ascent methods are simplistic in nature and are
recommended in the literature due to resultant high performance and accuracy [13,14].
However, there are some issues associated with content irrelevant manipulation of sin-
gular pixels to form resultant super-pixels. Some of the key features of using super-pixel
segmentations are:

• Super-pixels abstraction potentially decreases the overhead of processing each pixel at
a time.

• Gray-level or color images can be processed by a single algorithm implementation.
• Integrated user control provided for performance tuning.

With these advantages of super-pixels, they are highly preferred. However, super-
pixel abstraction methods backed by gradient-ascent workflows are also limited in their
working functionality to retain the contextual information of the given image [15]. The
contextual information retainment is required to achieve the richer details of the visual
image. This loss of contextual information is caused by flawed pixel clusters created based
on Euclidean distance measure [16]. As the Euclidean distance measures calculates straight
line differences among pixels which ends up in irregular and lousy super-pixels. Moreover,
further degradation can be expected to process the semi-dark images where high pixel
intensities along with no clear boundaries are observed. In such scenarios, the propagation
of inaccurate super-pixels will affect the overall functionality of automated solutions [11].
To overcome this problem of information loss for creation of compact and uniform super-
pixels, we propose content-aware distance measures for image pixel cluster creation. The
content-aware distance measure as the core foundational component of gradient-ascent
methods for super-pixel creation will not only help in alleviation of information loss,
but it will also help in preserving less observant/perceptually visible information of
semi-dark images. The state-of-the-art methods for super-pixels creation have not been
analyzed exclusively on the semi-dark images which further raises the concerns related to
segmentation accuracy. In nutshell, the problems in existing segmentation algorithms are:

• Absence of classification of state-of-the-art methods based on low level manipulations.
• Inherited discontinuity in super-pixel segmentation due to inconsistent manipulations.
• Unknown pixel grouping criteria in terms of distance measure to retain fine grained details.
• Unknown effect of semi-dark images on final super-pixel segmentations.

To resolve these issues, the presented research exclusively presents multifaceted study
offering following features:

1. Classification of Literary Studies w.r.t Singular Pixel Manipulation Strategies:
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The categorization of the existing studies is based on entire image taken as one en-
tity. The image entity can represent either graph or a feature space to be clustered, i.e.,
graph-based or gradient-ascent based methodology for pixel grouping. To the best of our
knowledge, there has been no study that categorizes existing studies based on the manipu-
lation strategy performed over each pixel. We present the detailed comparative analysis of
existing research highlighting their core functionality as the basis for classification.

2. Investigation of Appropriate Pixel Grouping Scheme:

The grouping scheme backing the image segmentation module being crucial com-
ponent can highly affect the accuracy of the entire model. For this reason, to propose
a novel extension as a generalized solution of all types of images including semi-dark
images, we present a detailed qualitative investigation of up to seven distance measures
for grouping pixels to create super-pixels. The investigation resulted in shortlisted pixel
grouping measures to retain fine grained details of the visual image.

3. Novel Hybrid Content-Aware Extension of SLIC—SLIC++:

SLIC, being the simplest and fastest solution for the pixel grouping, remains the
inspiration, and we enhance the performance of SLIC by adding content-aware feature in
its discourse. The proposed extension holds the fundamental functionality with improved
features to preserve content-aware information. The enhancement results in better seg-
mentation accuracy by extracting regular and continuous super-pixels for all scenarios
including semi-dark scenarios.

4. Comprehensive Perceptual Results focusing Semi-dark Images:

To assess the performance of the proposed extension SLIC++ for extraction of the
richer information of the visual scene, we conduct experiments over semi-dark images. The
experimental analysis is benchmarked against the standard super-pixel creation methods
to verify that incorporating content-aware hybrid distance measure leads to improved
performance. The perceptual results further conform better performance, the scalability,
and generalizability of results produced by SLIC++.

Paper Organization

The remainder of paper is organized as follows: Section 2 presents the prior super-
pixel creation research and its relevance to semi-dark technology. In this section we
also present critical analysis of studies proposed over period of two decades and their
possible applicability for semi-dark imagery. We also critically analyze two closely related
studies and highlight the difference among them w.r.t SLIC++. Section 3 describes the
extension hypothesis and the final detailed proposal for super-pixel segmentation of semi-
dark images. Section 4 presents the detailed quantitative and qualitative analysis of SLIC
extension against state-of-the-art algorithms validating the proposal. Section 5 discusses the
applicability of the proposed algorithm in the domain of computer vision. Finally, Section 6
concludes the presented research and points out some future directions of research.

2. Literature Review

2.1. Limited Semi-Dark Image Centric Research Focusing Gradient-Ascent Methods

The gradient ascent methods are also called clustering-based methods. These methods
take the input image and rasterize the image. Then, based on the local image cues such
as color and spatial information the pixels are clustered iteratively. After each iteration,
gradients are calculated to refine the new clusters from the previously created clusters [14].
The iterative process continues till the algorithm converges after the gradients stop chang-
ing, thus named gradient-ascent methods. A lot of research has been already done in the
domain of gradient-ascent methods; the list of these methods is presented in Table 1.
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The gradient ascent methods for super-pixel creation seems to be a promising solution
due to their simplicity of implementation, speed of processing and easy adaptation for
handling the latest demands of complex visual image scenarios. However, the concerns
associated with underlying proper extraction strategies is one of the challenging aspects to
cater the dynamic featural requirements imposed by complex visual image scenarios such
as semi-dark images.

2.2. Critical Analysis of Gradient-Ascent Super-Pixel Creation Algorithms Based on
Manipulation Strategy

For the critical analysis we have considered gradient ascent based super-pixel al-
gorithms presented over period of two decades ranging from 2001 through 2021. The
studies are retrieved from Google Scholar’s repository with keywords including super-
pixel segmentation, pixel abstraction, content sensitive super-pixel creation, content-aware
super-pixel segmentation. The search resulted in a lot of segmentation related studies in
domain of image processing including the basic image transformations along with related
super-pixel segmentation studies. For the critical analysis, the studies mentioning clus-
tering based super-pixel creations were shortlisted due to their relevance with proposed
algorithm. The key features of these studies are critically analyzed and comprehensively
presented in Table 1, along with the critiques for respective handling concerns associated
with semi-dark imagery.

Key Takeaways

The critical analysis presented in Table 1 uncovers the fact that recent research ex-
plicitly points towards the need of segmentation algorithm which considers the content
relevant super-pixel segmentations. To accomplish this task several techniques are pro-
posed with incorporation of prior transformations of image via deep learning methods,
simple image processing, and probabilistic methods. Mostly the research uses and con-
forms the achievements of Simple Linear Iterative Clustering (SLIC). Furthermore, most of
the research studies are using SLIC algorithm for super-pixel creation as base mechanisms
with added features. Generally, the algorithms proposed in last decade have computational
complexity of O(N), whereas if neural networks are employed for automation of required
parameter initialization, then the complexity becomes O

(
NNo. o f layers

)
. All the proposed

algorithms use two distance measures for final super-pixel creation, i.e., Euclidean, or
geodesic distance measure. However, all these studies have not mentioned the occurrence
of semi-dark images and their impact on the overall performance. It is estimated that
huge margin of the existing image dataset already includes the problem centric image data.
The Berkeley dataset that is substantially used for performance analysis of super-pixel
algorithms contains up to 63% semi-dark images. The proposed study uses the semi-dark
images of Berkeley dataset for benchmarking analysis of the SLIC++ algorithm.

2.3. Exclusiveness of SLIC++ w.r.t Recent Developments

The recent studies substantially focus on super-pixels with the induced key features of
content sensitivity and adherence of the final segmentations; consequently several related
research studies have been proposed. Generally, the desired features are good boundary
adherence, compact super-pixel size and low complexity. The same features are required for
super-pixel segmentation of semi-dark images. In this section we briefly review the recent
developments which are closely related to our proposed method for creating super-pixel in
semi-dark images.

BASS (Boundary-Aware Super-pixel Segmentation) [28], is closely related to the
methodology that we have chosen, i.e., incorporation of content relevant information
in the final pixel labeling which ends up with the creation of super-pixels. However,
the major difference resides in the initialization of the super-pixel seeds/centers. BASS
recommends the usage of forest classification method prior to the super-pixel creation.
This forest classification of image space results with the creation of a binary image with
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highlighted boundary information over the image space. This boundary information is
then utilized to aid the initialization process of the seed/ cluster centers. Theoretically, the
problem with this entire configuration is additional complexity of boundary map creation
which raise the complexity from O(N) to O(NlogN). This boundary map creation and
its associated condition of addition and deletion of seeds is expected to further introduce
undesired super-pixel feature under-segmentation. The under-segmentation might take
place due to easy seed deletion condition and difficult addition condition which means
more seeds would be deleted and less would be added. This aspect of the study is not
desired for the super-pixel creation in semi-dark scenarios. On the contrary we propose
regularly distributed seeds along with usage of both the recommended distance measures
without prior image transformation which further reduces the overall complexity. Finally,
we also propose the usage of geodesic distance for color components of the pixel rather
than only using it for spatial component.

Intrinsic manifold SLIC [30], is an extension of manifold SLIC which proposes usage
of manifolds to map high dimensional image data on the manifolds resembling Euclidean
space near each point. IMSLIC uses Geodesic Centroidal Voronoi Tessellations (GCVT) this
allows flexibility of skipping the post-processing heuristics. For computation of geodesic
distance on image manifold weighted image graph is overlayed with the same graph
theory of edges, nodes, and weights. For this mapping 8-connected neighbors of pixel
are considered. This entire process of mapping and calculation of geodesic distances
seems complex. The theoretical complexity is O(N), however with the incorporation
of image graph the computational complexity will increase. Moreover, the conducted
study computes only geodesic distance between the pixels leaving behind the Euclidean
counterpart. With substantially less complexity we propose to implement both the distance
measures for all the crucial pixel components.

2.4. Summary and Critiques

The comprehensive literature survey is conducted to benefit the readers and provide
a kickstart review of advancements of super-pixel segmentation over the period of two
decades. Moreover, the survey resulted in critical analysis of existing segmentation tech-
niques which steered the attention to studies conducted for adverse image scenarios such
as semi-dark images. Arguably, with the increased automated solutions the incoming
image data will be of dynamic nature (including lighting conditions). To deal with this
dynamic image data, there is a critical need of a super-pixel segmentation technique that
takes into account the aspect of semi-dark imagery and results in regular and content-aware
super-pixel segmentation in semi-dark scenarios. The super-pixel segmentation techniques
currently employed for the task suffer from two major issues, i.e., high complexity, and
information loss. The information loss associated with the gradient-ascent methods is
attributed to restrictions imposed due to usage of Euclidean image space which totally loses
the context of the information present in the image by calculating straight line differences.
Many attempts have been made to incorporate CNN probabilistic methods in super-pixel
creation methods to optimize and aid the final segmentation results. However, to the best
of our knowledge there has been no method proposed exclusively for semi-dark images
scenarios keeping the simplicity and optimal performance intact.

In following sections, we describe the preliminaries which are the base for the pro-
posed extension of SLIC namely SLIC++. We also present several distance measures
incorporated in base SLIC algorithm namely SLIC+ to analyze the performance for semi-
dark images.

3. Materials and Methods

3.1. The Semi-Dark Dataset

For the analysis of the content-aware super-pixel segmentation algorithm, we have
used the state-of-the-art dataset which has been used in the literature for years now. The
Berkeley image dataset [39] has been used for the comprehensive analysis and benchmark-
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ing of the proposed SLIC++ algorithm with the state-of-the-art algorithms. The Berkeley
image dataset namely BSDS 500 has got five hundred images overall, whereas the problem
under consideration is of semi-dark images. For this purpose, we have initially extracted
semi-dark images using RPLC (Relative Perceived Luminance Classification) algorithm.
The labels are created based on the manipulation of color model information, i.e., Hue,
Saturation, Lightness (HSL) [40]. The final semi-dark images extracted from the BSDS-500
dataset turned out to be 316 images. Each image has resolution of either 321 × 481 or
481 × 321 dimensions. The BSDS-500 image dataset provides the basis for empirical anal-
ysis of segmentation algorithms. For the performance analysis and boundary detection,
the BSDS-500 dataset provides ground-truth labels by at least five human annotators on
average. This raises questions about the selection of annotation provided by the subjects.
To deal with this problem, we have performed a simple logic over the image ground truth
labels. All the image labels are iterated with ‘OR’ operation to generate singular ground
truth image label. The ‘OR’ operation is performed to make sure that the final ground
truth is suggested by most of the human annotators. Finally, every image is segmented
and benchmarked against this single ground truth labeled image.

3.2. Desiderata of Accurate Super-Pixels

Generally, for super-pixel algorithms there are no definite features for super-pixels
to be accurate. The literary studies refer accurate super-pixels in terms of boundary
adherence, connectivity of super-pixels, super-pixel partitioning, compactness, regularity,
efficiency, controllable number of super-pixels and so on [13,41,42]. As the proposed study
is research focused on semi-dark images, we take into account features that are desired for
conformation of accurate boundary extraction in semi-dark images.

1. Boundary Adherence

The boundary adherence is the measure to compute the accuracy to which the bound-
ary has been extracted by super-pixels against boundary image or ground-truth images.
The idea is to preserve information as much as possible by creating super-pixels over the
image. The boundary adherence feature is basically a measure that results how accurately
the super-pixels have followed the ground-truth boundaries. This can be easily calculated
by segmentation quality metrics precision-recall.

2. Efficiency with Less Complexity

As super-pixel segmentation algorithms are now widely used as preprocessing step
for further visually intelligent tasks. The second desired feature is efficiency with less com-
plexity. The focus should be creation of memory-efficient and optimal usage of processing
resources so that more memory and computational resources can be used by subsequent
process. We take into account this feature and propose an algorithm that uses exactly same
resources as of Basic SLIC with added distance measures in its discourse.

3. Controllable Number of Super-Pixels

The controllable number is super-pixels is a desired feature to ensure the optimal
boundary is extracted using the computational resources ideally. The super-pixel algo-
rithms are susceptible to this feature that is number of super-pixels. The number of super-
pixels to be created can directly impact the overall algorithm performance. The performance
is degraded in terms of under-segmentation or over-segmentation error. In the former one,
the respective algorithm fails to retrieve most of the boundaries due to the smaller number
of super-pixels to be created, whereas the latter one retrieves maximum boundary portions
of the ground-truth images but there is surplus of computational resources.

Nevertheless, as mentioned earlier there is a huge list of accuracy measures and all
those measures refer to different segmentation aspects and features. The required features
and subsequent accuracy measures to be reported depend on the application of algorithm.
For semi-dark image segmentation, it is mandatory to ensure that most of the optimal
boundary is extracted and this requirement can be related to precision-recall metrics.
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3.3. SLIC Preliminaries

Before presenting the SLIC++, we first introduce base functionality of SLIC. The overall
functionality is based on creation of restricted windows in which the user defined seeds are
placed, and clustering of image point is performed in this restricted window. This restricted
window is called Voronoi Tessellations [43]. Voronoi Tessellations is all about partitioning
the image plane into convex polygons. This polygon is square in case of SLIC initialization
windows. The Voronoi tessellations are made such that each partition has one generating
point and all the point in the partition are close to the generating point or the mass center
of that partition. As the generating point lies in the center these partitions are also called
Centroidal Voronoi Tessellation (CVT). The SLIC algorithm considers CIELAB color space
for the processing, where every pixel p on image I is presented by color components
and spatial components as c(p) = (l(p), a(p), b(p)) being colour components and p(u, v)
being spatial components. For any two pixels SLIC measures straight line difference or
Euclidean distance between the two pixels for the entire image space R5.

The spatial distance between two pixels is given by ds and color component distance
dc are given in Equations (1) and (2).

ds =

√
(u1 − u2)

2 + (v1 − v2)
2 (1)

And,

dc =

√
(l1 − l2)

2 + (a1 − a2)
2 + (b1 − b2)

2 (2)

Here ds and dc represent Euclidean distance between pixel p1 and p2. Instead of simple
Euclidean, SLIC uses distance term infused with Euclidean norm given by Equation (3).

Ds = dc +
m
S

ds (3)

The final distance term is normalized using interval S and m provides control over the
super-pixel compactness which results in perceptually meaningful distance with balanced
aspect of spatial and color components. Provided the number of super-pixels K seeds
(si)

K
i=1 are evenly distributed in over the image I clusters are created in restricted regions of

Voronoi Tessellations. The initialization seed are placed in image space within a window of
2S × 2S having center si. After that simple K-means is performed over the pixels residing
in the window to its center. SLIC computes the distance between pixels using Equation (3)
and iteratively processes the pixels until convergence.

3.4. The Extension Hypothesis—Fusion Similarity Measure

The super-pixels created by the SLIC algorithm basically uses the Euclidean distance
measure to create pixel clusters or the super-pixels based on the seed or cluster centers.
The Euclidean distance measure takes into account the similarity among pixels using
straight line differences among cluster centers and the image pixels. This property of
distance measure results in distortion of extracted boundaries of image. The reason is
measure remains same no matter if there is a path along the pixels. The path along the
pixels will result in smoother and content relevant pixels [16,36]. The Euclidean distance
overlays a segmentation map over the image without having relevance to the actual content
present in the image. Moreover, large diversity in the image (light conditions/high density
portions) result in unavoidable distortion. Therefore, we hypothesize to use accurate
distance measure which presents content relevant information of the visual scene. For this
reason, we extend the functionality of SLIC by replacing the Euclidean distance measure
with four potential similarity measures including chessboard, cosine, Minkowski, and
geodesic and named it as SLIC+. These distance measures have been used in the literature
integrated in clustering algorithms for synthetic textual data clustering where studies
mentioned to render reasonable results for focused problem solving [44]. However, we use
these similarity measures to investigate the effects on visual images using SLIC approach.
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Prior to implementation, a brief introductory discussion will help understand the overall
integration and foundation for choosing these similarity measures. The distance measures
are basically the distance transforms applied on different images, specifying the distance
from each pixel to the desired pixel. For uniformity and easy understanding, let pixel p1
and p2 have the coordinates (x1, y1) and (x2, y2), respectively.

• Chessboard: This measure calculates the maximum distance between vectors. This
can be referred to measuring path between the pixels based on eight connected
neighborhood whose edges are one unit apart. The chessboard distance along any
co-ordinate is given by identifying maximum, as presented in Equation (4).

Dchess = max(|x2 − x1|, |y2 − y1|) (4)

Rationale of Consideration: Since the problem with existing similarity measures is loss
of information, chessboard is one of the alternate to be incorporated in super-pixel
creation base. This measure is considered as it takes into account information of
eight connected neighbors of pixels under consideration. However, it might add
computational overhead due to the same.

• Cosine: This measure calculates distance based on the angle between two vectors. The
cosine angular dimensions counteract the problem of high dimensionality. The inner
angular product between the vectors turns out to be one if vectors were previously
normalized. Cosine distance is based on cosine similarity which is then plugged-
in distance equation. Equations (5) and (6) shows calculation of cosine distance
between pixels.

cosine similarity =
p1.p2√

p1
2
√

p22
(5)

Dcosine = 1 − cosine similarity (6)

Rationale of Consideration: One of the aspects of content aware similarity measure
is to retain the angular information thus we attempted to incorporate this measure.
The resulting super-pixels are expected to retain the content relevant boundaries.
However, this measure does not consider magnitude of the vectors/pixels due to
which boundary performance might fall.

• Minkowski: This measure is a bit more intricate. It can be used for normed vector
spaces, where distance is represented as vector having some length. The measure mul-
tiplies a positive weight value which changes the length whilst keeping its direction.
Equation (7) presents distance formulation of Minkowski similarity measure.

Dmin =
(|p2 − p1|μ

)1/μ (7)

Here μ is the weight, if its value is set to 1 the resultant measure corresponds to Man-
hattan distance measure. μ = 2, refers to euclidean and μ = ∞, refers to chessboard or
Chebyshev distance measure. Rationale of Consideration: As user-control in respective
application is desired, Minkowski similarity provides the functionality by replacing
merely one parameter which changes the entire operationality without changing the
core equations. However, here we still have problems relating to the retainment of
angular information.

• Geodesic: This measure considers geometric movements along the pixel path in
image space. This distance presents locally shortest path in the image plane. Geodesic
distance computes distance between two pixels which results in surface segmentation
with minimum distortion. Efficient numerical implementation of geodesic distance is
achieved using first order approximation. For approximation parametric surfaces are
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considered with n number of points on the surface. Given an image mask, geodesic
distance for image pixels can be calculated using Equation (8).

Dgeo = min
Pxi ,xj

∫ 1

0
D(Pxi ,xj(t)‖

.
Pxi ,xj(t)‖dt (8)

where Pxi ,xj(t) is connected path between pixel xi, xj, provided t = 0,1. The density
function D(x) increments the distance and can be computed using Equation (9).

D(x) = e
E(x)

υ , E(x) =
‖ � I‖

Gσ ∗ ‖ � I‖+ γ′ (9)

where υ is scaling factor, E(x) is edge measurement also provides normalization of
gradient magnitude of image ‖ � I‖. Gσ is the Gaussian function with its standard
deviation being σ. γ minimizes the effect of weak intensity boundaries over density
function. D(x) always produces constant distance, for homogeneous appearing re-
gions if E(x) is zero D(x) becomes one. Rationale of Consideration: For shape analysis
by computing distances geodesic has been the natural choice. However, computing
geodesic distance is computationally expensive and is susceptible to noise [44]. There-
fore, to overcome effect of noise geodesic distance should be used in amalgamation of
Euclidean properties to retain maximum possible information in terms of minimum
distance among pixels and their relevant angles.

The mentioned distance measures for identification of similarity among pixels based
on pixel proximity provides different functionality features including extraction of infor-
mation based on the 4-connected and 8-connected pixel neighborhood, and incorporation
of geometric flows to keep track of angular movements of image pixels. However, none of
these similarity measures provide balanced equation with integrated features of optimal
boundary extraction based on connected neighbors and their angular movements. Thus,
we hypothesize boundary extraction to be more accurate and intricate in presence of a
similarity measure which provides greater information of spatial component provided by
neighborhood pixels along with geometric flows.

3.5. SLIC++ Proposal
3.5.1. Euclidean Geodesic—Content-Aware Similarity Measure

Considering the simplicity and fast computation as critical components for segmenta-
tion, the proposed algorithm uses fusion of Euclidean and geodesic distance measures. The
depiction of Euclidean and geodesic similarity is presented in Figure 1, where straight line
shows Euclidean similarity while curved line shows geodesic similarity. Since using only
Euclidean similarity loses the context information due to usage of straight-line distance
and geodesic similarity focuses more on the actual possible path along the pixels. We
propose the fusion of both the similarities to extract accurate information of image pixels
and their associations.

Figure 1. Irrelevance of Euclidean distance measure for super-pixel creation relating to image content.
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Using the same logic as SLIC, we propose a normalized similarity measure. The
normalization is based on the interval S between the pixel cluster centers. To provide
the control over super-pixel same variable m is also used. Beforehand the contribution
of Euclidean and geodesic distance in final similarity measure cannot be determined in
terms of optimized performance. Hence, we have introduced two weight parameters for
proposal of final similarity measure which based on weighted combination of Euclidean
and geodesic distance. The proposed similarity measure is presented in Equation (10).

Dca = w1

(
d1 +

m
S

d2

)
+ w2

(
d3 +

m
S

d4

)
(10)

where Dca is content-aware distance measure, d1 and d2 are same as ds and dc (Equations (5)
and (6)) calculating the Euclidean distance for spatial and color component of image
pixels. Variables d3 and d4 presents color and spatial component distance calculation
using geodesic distance equation 8. Specifically, d3 represents geodesic calculation of color
components of image pixel and d4 represents geodesic calculation of spatial components of
pixel. Here, again we introduce similar normalization as of SLIC using variable S and m
to provide control super-pixel compactness using geometric flows. The weights w1 and
w2 further provides user control to choose the contribution of Euclidean and geodesic
distance in final segmentation. These weights provide user flexibility, and these values
can be changed based on the application. Moreover, these weights can be further tuned in
future studies.

3.5.2. Proposal of Content-Aware Feature Infusion in SLIC

The SLIC++ is proposed to extract the optimal information from a visual scene cap-
tured in semi-dark scenarios. Nevertheless, the same algorithm holds for any type of
image if the objective is to retrieve maximum information from the image space. The steps
involved in computing super-pixels are written in SLIC++ algorithm (refer Algorithm 1).
Basically, super-pixels are perceptual cluster computed based on pixel proximity and color
intensities. Some of the parameters include: Kbeing the number of super-pixels, Ntotal
number of pixels, Aapproximate number of pixels also called area of super-pixel, and
Slength of super-pixel.

Algorithm 1. SLIC++ Algorithm

1: Initialize K cluster center with seed (si)
K
i=1 defined at regular intervals S

2: Move cluster centers in n × n pixel neighborhood to lowest gradient
3: Repeat
4: For each cluster center si do
5: Assign the pixel from 2S×2S in a square window or CVT using distance measure

given by Equation (3).
6: Assign the pixel from 2S×2S in a square window or CVT using distance measure

given by Equation (10).
7: End for
8: Compute new cluster centers and residual error εrr (distance between previous centers and

recomputed centers).
9: Until εrr<= threshold
10: Enforce connectivity.

Keeping simplicity and fast computation intact we present SLIC++ algorithm, here
only one of the steps mentioned on step 5 or 6 will be used. If step 5 is implemented, i.e.,
distance measure given by Equation (3) is used entire functionality of SLIC algorithm is im-
plemented. Whereas, if step 6 is implemented, i.e., distance measure given by Equation (10)
is used entire functionality of SLIC algorithm is implemented.
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a. Initialization and Termination

For initialization a grid of initial point is created separated by distance S in each
direction as seen in Figure 2. The number of initial centers is given as parameter K.
Placement of initial center in restricted squared grids can result in error if the initial center
is placed on the edge of image content. This initial center is termed as confused center. To
overcome this error gradient of the image is computed and the cluster center is moved in
the direction of minimum gradient. The gradient is computed with 4-neighboring pixels
and the centroid is moved. To solve this mathematically L2 Norm distance is computed
among four connected neighbors of center pixel. The gradient calculation is given by
Equation (11).

G(x, y) = ‖(x + 1, y)− (x − 1, y)‖2 + ‖(x, y + 1)− (x, y − 1)‖2 (11)

G(x, y) is the gradient of center pixel under consideration.
The gradient of the image pixels is calculated until stability where pixels stop changing

the clusters based on the initialized clusters. Overall, the termination and optimization
is controlled by parameter ‘n’ which represents number of iterations the overall SLIC
algorithm goes through before finally resulting in super-pixel creation of the image. To
keep the uniformity in presented research we have selected ‘n’ as 10 which has been a
common practice [11,14,29,32].

Figure 2. Restricted Image search area for super-pixel creation specified by input argument for image
window under consideration [31].

How it works?

The incoming image is converted to CIELAB space. The user provides information
of all the initialization parameters including ‘K’, ‘m’, ‘n’. Referring to the algorithm steps
presented in SLIC++ algorithm. Step 1, places K number of super-pixels provided by user

on an equidistant grid. This grid is created separated by S, where S is given by
√

N
K , N

is total number of image pixels. Step 2 performs reallocation of initial seed takes places
subjected to the gradient condition to overcome the effect of initial centers placed over the
edge pixels in image. Step 3 through step 7, are iteratively executed till the image pixels
stop changing the clusters based on the cluster centers/seeds. Steps 5 or 6 are chosen
based for respective implementation of SLIC or SLIC++ vice versa. Step 5 and 6 basically
performs clustering over the image pixels based on different distance measures. If user
opts for SLIC then Euclidean distance measure is used (base functionality). If user opts for
SLIC++ then proposed hybrid distance measure is used. Step 8 checks if the new cluster
center after every iteration of clustering is different than the previous center (distance
between previous centers and recomputed centers). Step 9 keeps track of the threshold
value for iterations as specified by the parameter ‘n’. Step 10 enforces connectivity among
the created super-pixel/clusters of image pixels.
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The simple difference in the implementation of SLIC and SLIC++ lies in the usage of
distance measure being used for the computation of image super-pixels. The presented
research shows merely changing the distance measure to content-aware computational
distance measure leads to better accuracy of results against the ground-truth for semi-
dark images.

b. Algorithm Complexity

The proposed algorithm follows the same steps as of Basic SLIC by introducing a new
content-aware distance equation, thus the complexity of the proposed SLIC++ remains
the same without any addition of new parameters, except the weights associated to the
Euclidean and geodesic distance. These weights are merely scaler values to be taken into
account in the core implementation of content-aware variant of SLIC, i.e., SLIC++. Hence,
the complexity for the pixel manipulation is up to O(N) where N is the total number of
image pixels. With the minimum possible imposed requirements of computation SLIC++
manages to find accurate balance of implementation with infused functionality of Euclidean
and geodesic distance. This fusion results in optimal boundary detection verified in terms
of precision-recall in Section 4.

4. Validation of the Proposed Algorithm

4.1. Experimental Setup and Implementation Details

Following the proposed algorithm and details of implementation scheme, SLIC++ is
implemented in MATLAB. The benchmarking analysis and experiments are conducted in
MATLAB workspace version R2020a using the core computer vision and machine learning
toolboxes. For experiments, the semi-dark images of Berkeley dataset have been used. The
reported experiments are conducted on processor with specs core i7 10750H CPU, 16 GB
RAM and 64-bit operating system.

The images are extracted form a folder using Fullfile method then incoming RGB
images are converted in CIELAB space. After that parameter initialization takes place to
get the algorithm started. Based on the number of K seed are initialized on the CIELAB
image space and the condition relating to the gradient is checked using several different
built-in methods. After that each pixel is processed using the proposed similarity measure
and super-pixels are created until the threshold specified by user is reached. Similarly, the
performance of reported state-of-the-arts is checked using the same environmental setup
using the relevant parameters. Finally, the reported boundary performance is reported in
form of precision recall measure to check the boundary adherence of super-pixel methods
including Meanshift, SLIC and SLIC++. For analysis in terms of precision recall bfscore
method is used which takes in the segmented image, ground-truth image and compares
the extracted boundary with the ground-truth boundary by returning parameters precision,
recall and score.

4.2. Parameter Selection

In this section we introduce the parameter associated with Meanshift, SLIC and
SLIC++. Starting off with the proposed algorithm, SLIC++ uses several parameters as
of Basic SLIC. Scaling factor m is set to 10, threshold on the iteration is set to value 10
represented by variable n and parameter S is computed based on N number of image pixels
divided by user defined number of super-pixels in terms of variable K. The variable K
provides user control for the number of super-pixels. Compact super-pixels are created
as the value of K is increased but it increases the computational overhead. We have
reported the performance using four different set of values of K, i.e., 500, 1000, 1500 and
2000. All these parameters including m, n and K are kept same as for the basic SLIC
experiments. However, there are some additional parameters associated with SLIC++
which are w1 and w2 and their values are set to 0.3175 and 0.6825, respectively. The
weights are cautiously picked based on trial-and-error experimentation procedure. The
images were tested for a range of different weights. The weight values were varied to have
weight ratios including 10:90, 30:70, 50:50, 70:30, and 90:10 for Euclidean and Geodesic
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distance, respectively. The ratio of 30:70 retains empirically maximum and perceptually
meaningful super-pixels resulting in the optimal performance against the ground-truth.
For Meanshift implementation the bandwidth parameter is set to 16 and 32, keeping rest
of the implementation parameter default. Table 2 shows the averaged performance of the
proposed SLIC++ algorithm acquired by varying different values of weights for random
test cases.

Table 2. Summary statistics of average performance of SLIC++ for varying weights.

Row Ratio w1 (Euclidean) w2 (Geodesic) Precision Recall Score

Test Case 1 (Image ID = 14037):
1 10:90 0.1123 0.8877 0.47882 0.88930 0.62248
2 70:30 0.6825 0.3175 0.38850 0.92210 0.54660
3 50:50 0.4863 0.5137 0.37780 0.93040 0.53740
4 30:70 0.3175 0.6825 0.48854 0.89124 0.63113
5 90:10 0.8877 0.1123 0.38840 0.87340 0.53770

Test Case 2 (Image ID = 26031):
6 10:90 0.1123 0.8877 0.21623 0.78808 0.33935
7 70:30 0.6825 0.3175 0.18370 0.82790 0.30070
8 50:50 0.4863 0.5137 0.18910 0.85000 0.31000
9 30:70 0.3175 0.6825 0.22661 0.86520 0.35920
10 90:10 0.8877 0.1123 0.18650 0.79000 0.30220

Test Case 3 (Image ID = 108082):
11 10:90 0.1123 0.8877 0.27023 0.89832 0.41548
12 70:30 0.6825 0.3175 0.21840 0.82160 0.34510
13 50:50 0.4863 0.5137 0.22640 0.86800 0.35920
14 30:70 0.3175 0.6825 0.28547 0.91629 0.43532
15 90:10 0.8877 0.1123 0.22360 0.79470 0.34900

Empirically optimized performance of SLIC++ over 30:70 weight ratio for Euclidean
and Geodesic distance hybridization has been tabulated in Table 2 row number 4, 9, 14
(formatted bold and italics). Moreover, the parameter values have been set as K = 500,
m = 10 and n = 10 for the conducted experiments.

4.3. Performance Analysis

For performance analysis we considered two different experimental setups including
qualitative analysis and quantitative analysis. Initially, we extended and analyzed the
performance of SLIC with different distance measures to propose the most relevant distance
measure for optimal boundary extension in semi-dark images. Then we compare the
proposed algorithm with state-of-the-art super-pixel segmentation algorithms. The detail
of the analysis is presented in following sub-sections.

4.3.1. Numeric Analysis of SLIC Extension with Different Distance Measures

For the detailed analysis of the proposed algorithm, we first compare the performance
of basic SLIC with the variants of SLIC+ proposed in this study. The evaluation is presented
in form of precision recall. For the optimal boundary detection greater values of precision
are required. High precision rates relate to low number of false positives eventually
resulting in high chance of accurate boundary retrieval, whereas high recall rates are
relevant to matching of ground-truth boundaries to segmented boundary. Mathematically,
precision is probability of valid results and recall is probability of detected ground-truths
data [42]. For analysis of image segmentation modules, both high precision and recall are
required to ensure maximum information retrieval [45].

Table 3 shows performance analysis of basic SLIC and its variants over randomly
picked semi-dark images.
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Table 3. Performance analysis of SLIC extensions.

Row K m n Parameters Score Precision Recall Distance Measure

Test Case 1 (Image ID = 14037):

1 500 10 10 0.54430 0.39120 0.89390 Euclidean—SLIC

2 500 10 10 0.61234 0.46563 0.89406 Chessboard—SLIC+

3 500 10 10 0.59713 0.44407 0.91118 Cosine—SLIC+

4 500 10 10 μ = 4 0.62792 0.47345 0.93199 Min4—SLIC+

5 500 10 10 0.56128 0.43777 0.78186 Geodesic—SLIC+

6 500 10 10 w1 = 0.3175 w2 = 0.6825 0.63113 0.48854 0.89124
Euclidean

Geodesic—SLIC++

Test Case 2 (Image ID = 26031):

7 500 10 10 0.30420 0.18690 0.81740 Euclidean—SLIC

8 500 10 10 0.35454 0.22098 0.89623 Chessboard—SLIC+

9 500 10 10 0.35698 0.22329 0.88957 Cosine—SLIC+

10 500 10 10 μ = 4 0.34057 0.20959 0.90798 Min4—SLIC+

11 500 10 10 0.33715 0.21369 0.79842 Geodesic—SLIC+

12 500 10 10 w1 = 0.3175 w2 = 0.6825 0.3592 0.22661 0.86525
Euclidean

Geodesic—SLIC++

Test Case 3 (Image ID = 108082):

13 500 10 10 0.35410 0.22720 0.80260 Euclidean—SLIC

14 500 10 10 0.42099 0.27720 0.87476 Chessboard—SLIC+

15 500 10 10 0.38368 0.24251 0.91811 Cosine—SLIC+

16 500 10 10 μ = 4 0.42465 0.27694 0.91004 Min4—SLIC+

17 500 10 10 0.40382 0.26764 0.82216 Geodesic—SLIC+

18 500 10 10 w1 = 0.3175 w2 = 0.6825 0.43532 0.28547 0.91629
Euclidean

Geodesic—SLIC++

Table 2 depicts all the extension of SLIC perform better in terms of precision-recall.
The parameters are kept uniform for all the experiments specifically parameter m and n as
in SLIC [11]. Moreover, there is up to 3–9% gain in precision percentage using SLIC++ as
compared to the basic SLIC algorithm. The relevant scores based on precision and recall
also shoot up by margin of 5–9% using SLIC++ (row 1 vs. 6 and row 7 vs. 12). However,
the performance of other variants of SLIC is subjective to dimensions of incoming data,
magnitudes, and memory overload. There usually is no defined consensus regarding
best generalized performer in terms of similarity measure so far [44]. Thus, we propose
an integration of two similarity measures which takes into account minimal processing
resources and still provides optimal boundary detection.

For further detailed qualitative analysis using the same test cases by changing the
number of super-pixels we extend the analysis of SLIC versus SLIC++. The precision recall
and score graphs are shown in Figure 3.

In Figure 3, solid lines represents performance of SLIC and SLIC++ for Test case 1 and
dashed lines represents performance for Test case 2. Figure 3a shows precision curves of
SLIC++ are substantially better than the SLIC presented by brown (dark and light) lines
for test case 1 and 2, respectively. Figure 3b shows the SLIC++ recall is less the resulting
recall of SLIC for the same images. Subsequently, based on the precision, recall and the
final scores SLIC++ outperforms basic SLIC on semi-dark images. For number of pixels
set to 1000 there is a drop observed in precision and recall of SLIC++, this behavior can be
attributed to accuracy measure’s intolerance, i.e., even mutual refinements may result in
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low precision and recall values [45]. Nevertheless, performance for retrieval increases with
increasing number of super-pixels and SLIC++ outperforms SLIC up to margin of 10%.

Figure 3. SLIC v/s SLIC++ performance over different number of pixels: (a) precision values;
(b) recall value; (c) score values.

4.3.2. Comparative Analysis with State-of-the-Art

For the benchmarking of SLIC++ two different algorithms, i.e., SLIC and Meanshift
are considered. To investigate the performance of SLIC and SLIC++ for the analysis over
entire Berkeley dataset (semi-dark images), we set the number of super-pixels to 1500.
The number of super-pixels is chosen 1500 because the peak performance of both the
algorithms in experiment for test case 1 and 2 (refer Figure 3) is achieved by setting this
parameter to value 1500. For the comparative analysis we also used Meanshift algorithm
with input parameter, i.e., bandwidth set to 32. The bandwidth of Meanshift decides the
complexity of the algorithm as this value is decreased the segmentation becomes more
intricate with the overhead of computational complexity. To maintain computational
resources throughout the experiment and keeping it uniform the parameters are chosen.
The summary statistics of the obtained super-pixel segmentation results are shown in
Table 4. The numerals presented in table are averaged values of precision, recall, and scores
obtained for 316 images separately. The average precision, recall, and scores are presented
in Table 4.

Table 4. Summary statistics of average performance for Berkeley dataset.

Algorithm Score Precision Recall

SLIC 0.47020 0.31604 0.97719

SLIC++ 0.54799 0.39776 0.93470

Meanshift-32 0.55705 0.57573 0.68416
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Table 4 shows SLIC++ achieves average percentage score up to 54%, whereas SLIC
maintains a score of 47%. Finally, Meanshift achieves a score of 55%, which is greater
than SLIC++ but as stated earlier for segmentation application greater values of precision
and recall are required. So, comparing the recall of SLIC++ versus Meanshift a huge
difference is observed. This difference is in terms of low recall of Meanshift which means
algorithm fails to capture salient image structure [45] which is not desired for semi-dark
image segmentation.

4.3.3. Boundary Precision Visualization against Ground-Truth

To validate the point-of-view relating to high precision and high recall we present
perceptual results of Meanshift, SLIC and SLIC++. Notice that, the high precision means the
algorithm has retrieved most of the boundary as presented by the ground-truth, whereas
high recall means most of the salient structural information is retrieved from the visual
scene. Meanshift resulted in a minimum recall, which hypothetically means the structural
information was lost. Table 5 presents how Meanshift, SLIC, and SLIC++ performed in
terms of perceptual results for visual information retrieval. The reported results are for
parameters K = 1500 for SLIC and SLIC++ and bandwidth = 32 for Meanshift.

Table 5. Semi-dark perceptual results conforming boundary retrieval.

Row ID Image Groundtruth Image Prediction
Prediction Map Compared

with Groundtruth

Test Case 1:

1

2

3

Test Case 2:

4
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Table 5. Cont.

Row ID Image Groundtruth Image Prediction
Prediction Map Compared

with Groundtruth

5

  

6

  
Test Case 3:

7

 

8

9

As super-pixels are not just about the boundary detection, resulting applications also
expect the structural information present in the visual scene. Consequently, we are not
just interested in the object boundaries but also the small structural information present
in the visual image specifically semi-dark images. Table 5 shows SLIC and SLIC++ not
only retrieves boundaries correctly with minimal computational power consumed but also
retrieves the structural information. Column 4 shows the fact by mapping prediction over
ground-truth image. For test case 1, in column 4 row id 3 Meanshift fails to extract the
structural information as few green lines are observed. Whereas, for the same image SLIC
and SLIC++ perform better as a lot of green textured lines are observed (refer column 4 row
id 1 and 2). Meanwhile for test case 2, all three algorithms perform equally likely. Similar
performance is observed with test case 3, SLIC and SLIC++ retains structural information
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better than Meanshift. Since Meanshift resulted in minimum recall over the entire semi-
dark Berkeley dataset (refer Table 4) it does not qualify to be a good fit for super-pixel
segmentation. The reason is less reliability of structural information fetching and its
performance is highly subjective to the incoming input images.

4.3.4. Visualizing Super-Pixels on Images

For one more layer of subjective analysis of super-pixel performance we present
super-pixel masks in this section. Initially, we present the input image in Figure 4 with the
highlighted boxes to look closely for retrieval of structural information from the image.
Here, the red box shows the texture information present on the hill whereas the green box
shows water flowing in a very dark region of the semi-dark image.

Figure 4. Input image with highlighted regions for detailed analysis.

Using the input image presented in Figure 4, we conducted experiments by changing
the initialization parameters of all three algorithms. Table 5 shows the perceptual analysis
visualizing the retrieval of salient structural information.

Table 6 shows that Meanshift extracts the boundaries correctly, whereas it loses all the
contextual information when the bandwidth parameter is set to 32. This loss of information
is attributed to low recall scores, whereas decreasing the value of the bandwidth increases
the computational complexity and at the cost of additional complexity Meanshift now
retrieves contextual information. SLIC and SLIC++ with minimal computational power
retains structural information as seen in the red and green boxes in rows 1 and 2 of
Table 5. Moreover, as the number of super-pixels ‘K’ increases, better and greater structural
information retrieval is observed.

Figure 5 shows a zoomed in view of the super-pixels created by SLIC and SLIC++,
residing in the red box. Here, we can see that SLIC++ retrieves content-aware information
and SLIC ends up creating circular super-pixels (Figure 5a) due to the content irrelevant
distance measure being used in its operational discourse.

Key Takeaways

The benchmarking analysis shows that the proposed algorithm SLIC++ achieves
robust performance over different cases. The results of SLIC++ are more predictable
as compared to the state-of-the-art methods Meanshift and SLIC. The performance of
Meanshift is highly subjective as the recall keeps changing. Less recall values eventually
result in less scores at the cost of information loss. Whereas, SLIC achieves 7% less scores
and 8% less precision values in terms of boundary retrieval. The results of SLIC++ indicate
that the proposed content-aware distance measure integrated in base SLIC demonstrates
superior results. The significant improvement to the existing knowledge of super-pixel
creation research is hybridization of proximity measures. Based on the comprehensive
research it is seen that the hybrid measure performs better than the singular proximity
measure counterparts of the same algorithm. These measures substantially control the end
results of super-pixel segmentation in terms of accuracy. The proposed hybrid proximity
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measure carefully finds a balance between the two existing distance measure and performs
clustering over image pixels making sure to retain content-aware information.

Table 6. Detailed perceptual analysis with increasing parameters.

Number of
Super-

Pixels/Algorithm
500 1000 1500 2000

SLIC

   

 

 

SLIC++

 

 

 

 

 

  

Bandwidth/
Meanshift

16 32

 

 

 

Figure 5. Zoomed in view of test case image for content-aware super-pixel analysis created by SLIC++
(b) against SLIC (a).

5. Limitations of Content-Aware SLIC++ Super-Pixels

The super-pixel segmentation algorithms are considered pre-processing step for wide
range of computer vision applications. To obtain the optimal performance of sophisticated
applications, the base super-pixel algorithm SLIC uses set of input parameters. These
parameters allow the user control over different aspects of image segmentation. The idea is
to extract uniform super-pixels throughout the image grid to maintain reliable learning
statistics throughout the process. To make this possible the SLIC initially allows user to
choose number of pixels ‘K’ (values ranging from 500–2000), parameter ‘m’ (where m = 10)
which decides the extent of enforcement of color similarity over spatial similarity, number
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of iterations ‘N’ (where N = 10) which decides the convergence of the algorithm, neighbor-
hood window ‘w’ (where w = 3) for gradient calculation to relocate cluster centers (if placed
on edge pixel). This makes four input parameters for the base SLIC, whereas the proposed
extension SLIC++ introduces two more weight parameters, w1 and w2 (0.3175 and 0.6825,
respectively), to decide the impact of each distance measure in the hybrid distance measure.
All these parameters significantly control the accuracy of segmentation results. Incor-
rect selection of these parameters leads to overall poor performance. Hence, for diverse
applications, initial parameter search is necessary, which in turn requires several runs.
For the reported research, using the state-of-the-art segmentation dataset, i.e., Berkeley
dataset we chose the parameters as selected by the base SLIC. These parameters offer good
performance over the image size of 321 × 481 or 481 × 321, whereas, as we increased the
resolution of images during the extended research we observed that a higher value of ‘K’ is
required for better segmentation accuracy.

For the existing research, we conducted experiments focused to identify the gains
associated with usage of the proposed content-aware distance measure over the straight
line distance measure. For the extended research, the input parameters shall be considered
for optimization.

6. Emerging Successes and Practical Implications

Several decades of research in computer vision for boosted implementations resulting
in fast accurate decisions, super-pixels have been a topic of research for long time now. The
super-pixel segmentation is taken as entry stage providing pre-processing functionality for
sophisticated intelligent workflows such as semantic image segmentation. To speed up the
overall process of training and testing of these intelligent systems super-pixels are probable
to provide remedies. As the intelligent automated vision systems have critical applications
in medicine [46,47], manufacturing [48], surveillance [49], tracking [2] and so on. For this
reason, fast and accurate visual decision are required. As the environmental conditions
in form of visual dynamicity is challenging task to tackle by pre-processing modules.
These modules are required to provide reliable visual results. Many super-pixel creation
algorithms have been proposed over time to solve focused problems of image content
sparsity [30], initialization optimization [28], and accurate edge detection [38]. However,
the topic of the lightning condition in this domain remains untouched and needs attention.
The dynamic lightning condition is a key component in autonomous vehicles, autonomous
robots, surgical robots. The Berkeley dataset is comprised of images of different objects,
ranging from humans, flowers, mountains, animals and so on. The conducted research
holds for applications of autonomous robots and autonomous vehicles. However, the
proposed algorithm is backed by the core concepts of image segmentation. For this reason,
the presented work can be extended for variety of applications. Depending on the nature
of application, the ranges of input parameters would be changed based on the required
sensitivity of the end results, such as for the segmentation application in the medical
domain compact where content-aware information is required. Consequently, the input
values including the number of super-pixels to be created will be carefully selected. To
handle the pre-processing problems associated with dynamic lightning conditions focusing
autonomous robotics, the proposed extension of SLIC is a good fit. SLIC++ imposing
minimum prerequisite conditions provides direct control over the working functionality
and still manages to provide optimal information retrieval from the visual scenes for not
only normal images but rather inclusive of semi-dark images.

7. Conclusions and Future Work

7.1. Conclusions

In this paper, we introduced a content-aware similarity measure which not only solved
the problem of boundary retrieval in semi-dark images but is also applicable to other image
types such as bright and dark. The content-aware measure is integrated in SLIC to create
content-aware super-pixels which can then be used by other automated applications for fast
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implementations of high-level vision task. We also report results of integration of SLIC with
existing similarity measures and describe their limitations of applicability for visual image
data. To validate out proposed algorithm along with the proposed similarity measure,
we conduct qualitative and quantitative evaluations on semi-dark images extracted from
Berkeley dataset. We also compare SLIC++ with state-of-the-art super-pixel algorithms.
Our comparisons show that the SLIC++ outperforms the existing super-pixel algorithms in
terms of precision and score values by a margin of 8% and 7%, respectively. Perceptual
experimental results also confirm that the proposed extension of SLIC, i.e., SLIC++ backed
by content-aware distance measure outperforms the existing super-pixel creation methods.
Moreover, SLIC++ results in consistent and reliable performance for different test image
cases characterizing a generic workflow for super-pixel creation.

7.2. Future Work

For the extended research, density-based similarity measures integrated with content-
aware nature may lead the future analysis. The density-based feature is expected to aid the
overall all working functionality with noise resistant properties against the noisy incoming
image data. Moreover, another aspect is the creation of accurate super-pixels in the presence
of non-linearly separable data properties. Finally, the input parameter selection for the
initialization of SLIC variants depending on the application domain and incoming image
size remains an open area of research.
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Abstract: Human segmentation and tracking often use the outcome of person detection in the video.
Thus, the results of segmentation and tracking depend heavily on human detection results in the
video. With the advent of Convolutional Neural Networks (CNNs), there are excellent results in
this field. Segmentation and tracking of the person in the video have significant applications in
monitoring and estimating human pose in 2D images and 3D space. In this paper, we performed
a survey of many studies, methods, datasets, and results for human segmentation and tracking in
video. We also touch upon detecting persons as it affects the results of human segmentation and
human tracking. The survey is performed in great detail up to source code paths. The MADS (Martial
Arts, Dancing and Sports) dataset comprises fast and complex activities. It has been published for
the task of estimating human posture. However, before determining the human pose, the person
needs to be detected as a segment in the video. Moreover, in the paper, we publish a mask dataset
to evaluate the segmentation and tracking of people in the video. In our MASK MADS dataset, we
have prepared 28 k mask images. We also evaluated the MADS dataset for segmenting and tracking
people in the video with many recently published CNNs methods.

Keywords: MADS dataset; human segmentation; human tracking; convolutional neural networks

1. Introduction

Human segmentation and tracking in the video are two crucial problems in computer
vision. Segmentation is the process of separating human data from other data in a complex
scene of an image. This problem is widely applied in recognizing the activities of humans
in the video. Human tracking extracts the person’s position during the video and is applied
in many tasks such as monitoring and surveillance.

The MADS dataset is a benchmark dataset for evaluating human pose estimation.
This dataset includes activities in traditional martial arts (tai-chi and karate), dancing
(hip-hop and jazz), and sports (basketball, volleyball, football, rugby, tennis, badminton).
The fast execution speed of actions poses many challenges for human segmentation and
tracking methods. In [1], the authors report on the results of human tracking in the
video; however, the results are evaluated based on baseline tracking methods. Human
tracking and segmentation evaluation are based on the segmented person data based on
the constraint of the context. In the MADS dataset, only two sets of human mask data are
provided (tai-chi and karate).

The human data needs to be segmented and tracked in the video to reduce the es-
timated space and computations in human pose estimation in 2D images or 3D space.
Specifically, to reduce the space to estimate 3D human pose on the 3D data/point cloud
in future studies, we have prepared manually masked data of humans in the single view
(depth video) of various actions (jazz, hip-hop, sports). Nowadays, with the strong de-
velopment of CNNs, many studies have applied CNN methods in the task of estimating,
detecting, and tracking humans. Human tracking in the video can be done based on two

Sensors 2021, 21, 8397. https://doi.org/10.3390/s21248397 https://www.mdpi.com/journal/sensors
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methods. The first method is based on human detection in each frame, the results of human
being detected and marked with a bounding box. The CNNs (Faster R-CNN [2], SSD [3],
YOLO [4–6], etc.) used to detect humans were surveyed in the study of Xu et al. [7] and
Tsai et al. [8]. The second method to track humans is motion-based [9]. In this paper, we
survey studies that use CNNs to segment and track humans in the video. We manually
prepared the masked data for the MADS dataset (MASK MADS). We also fine-tuned a
set of parameters on the depth videos of the MADS dataset. Moreover, we trained and
evaluated human segmentation and tracking by various state-of-the-art CNNs.

The main contribution of the paper is as follows:

• We manually prepared human masks for nearly 28 k images captured from a single-
view. The marking process was performed using the interactive-segmentation tool
(http://web.archive.org/web/20110827170646/, http://kspace.cdvp.dcu.ie/public/
interactive-segmentation/index.html (accessed on 18 April 2021)).

• We summarised significant studies on human segmentation and human tracking
in RGB images, in which we focus on survey studies that use CNNs for human
segmentation and tracking in video. Our survey process is based on methods, datasets,
evaluations, and metrics for human segmentation and human tracking. We ultimately
analyze the challenges during the process. We also refer to the implementation or the
source code path of each study. In particular, we investigate the challenges and results
in human segmentation and human tracking in images and video.

• We fine-tuned a set of parameters of the recently published CNNs (Mask R-CNN,
PointRend, TridentNet, TensorMask, CenterMask, etc.) to retrain the model for human
segmentation and tracking on the video that was captured from single-views of the
MADS dataset, as illustred in Figure 1. The data of the MADS dataset was divided
into different ratios for training and evaluation.

• We evaluated the results of human segmentation in images based on the retrained
CNN models (Mask R-CNN, PointRend, TridentNet, TensorMask, CenterMask) ac-
cording to the data rates of the MADS dataset. We used the most significant CNNs in
recent years for object segmentation.

Convolutional Neural 
Networks

Resnet,
Unet, 
Deeplabv, 
HRNet, 
PSPNet, 
FastSCNN,
…

Input frames Human segmentation Human tracking

Mask R-CNN,
PointRend,
TridentNet,
TensorMask,
CenterMask,
…

Figure 1. Illustrating of the process of segmenting and tracking humans in image sequences
and video.

The paper is organized as follows. Section 2 discusses related works by the methods,
results of the human segmentation, and tracking. Section 3 presents the survey of human
segmentation and tracking methods based on CNNs, and Section 4 our MASK MADS
dataset. Section 5 shows and discusses the experimental results of human segmentation
and tracking on state-of-the-art CNNs, and Section 6 concludes the paper.
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2. Related Works

Human segmentation and tracking in video are highly applicable in activity recog-
nition and surveillance. Therefore, these two issues have spurred research interest for
many years. Especially in the past five years, with the advent of CNNs, their performance
improved significantly in terms of processing time and accuracy. Since then, many studies
have been investigated these two issues based on CNNs.

In the research of Xu et al. [10], the authors performed a survey of segments of human
data in images obtained from still cameras using CNN. In their work, a person is detected
and marked with a bounding box in their work. In this study, the authors also presented
the method to segment the human data based on detecting humans in images. Among
these, there are some awe-inspiring results of CNNs: Fast R-CNN [11], Faster R-CNN and
YOLO, etc. The precision of SSD300, SSD512, YOLO on the Pascal VOC 2007 is reported
79.4%, 82.5%, 63.5% [12], respectively. The processing speed of Faster R-CNN and YOLO
is 10 fps and 45 fps, respectively. In this study, the authors are also presented pixel-level
segmentation of human data that uses CNNs for fine-tuning. The CNNs are introduced as
Fully Convolutional Network [13], AlexNet [14], VGGNet [15].

Yao et al. [9] conducted an overall survey of methods and challenges in object seg-
mentation and tracking in video. They divided the methods for segmenting and tracking
objects into five groups as follows: unsupervised methods for object segmentation, semi-
supervised methods for object segmentation, interactive methods for object segmentation,
weakly supervised methods for object segmentation, and segmentation-based methods for
object tracking. The authors also presented challenges in the process of object segmentation
and tracking in video, namely: complex background of the scene, low resolution, occlusion,
deformation, motion blur, and scale variation. The authors attempt to present approaches
to answering questions such as: What is the application context of segmentation and audi-
ence tracking? What form is the object represented (point, superpixel, pixel)? What are the
features that can be extracted from the image for object segmentation and tracking? How
to build an object’s motion model? Which datasets are suitable for object segmentation and
tracking? Although the authors have introduced datasets and metrics for the evaluating of
subject tracking in the video, the results on these datasets have not been presented.

Ciaparrone et al. [16] performed a surveyed of deep learning-based multi-object
tracking in the video captured from a single camera. The authors have presented the
methods, measurements, and datasets of multi-object tracking. Therein, the used methods
for multi-object tracking are presented in the following direction: object detection for
tracking. According to the objects, the stages of the process are listed as follows: object
detection with output marked with the bounding box, appearance feature extraction to
predict the motion; computing a similarity between pairs of detections; assigning an ID
for each object. In this study, the authors also presented metrics that evaluate the tracking
of objects in the image: an evaluation based on trajectories, ground-truth trajectories are
marked on the frames in the video; evaluation based on Jaccard similarity coefficient based
on accuracy, precision, and recall of the detected, labeled bounding box of each object [17].
In [1], the authors were followed by the Bayesian tracker algorithm [18] and twin Gaussian
processes algorithm [19] for multi-view tracking; Personalized Depth Tracker [20] and
Gaussian Mixture Model tracker [21]. Although these methods are the start of human
tracking, many CNNs have recently been introduced to solve this problem. We will
introduce them in the next section.

The process of detecting, segmenting, and tracking people in the video is sequential in
computer vision. To track people in videos, people need to be detected and segmented in
each frame; to segment people in videos at the pixel level, people’s data must be detected
and marked with a bounding box. As described above, each step of detecting, segmenting,
and tracking people in videos is surveyed in our study. To provide an overview of the
whole process, we conducted a survey covering all three stages: detecting, segmenting,
and tracking people in the video.
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In our future studies, we will use human mask data to segment human point cloud
(3D point) data with the scene, supporting the estimation and evaluation of 3D human
pose estimation. The point cloud data of a human is generated based on depth data and
color data a human segmented from a human mask. The process of converting to point
cloud data is done [22]. Each 3D point (P) is created from a pixel with coordinates (x, y)
on the depth image and a corresponding pixel on the color image that has a color value
C(r, g, b). P includes the following information: coordinates (Px, Py, Pz) in 3D space, the
color value of that point (Pr, Pg, Pb), where the depth value (D) of point P(x, y) must be
greater than 0. P is computed according to the Formula (1).

Px =
(x − cx) ∗ D

fx

Py =
(y − cy) ∗ D

fy

Pz = D

Pr = Cr

Pg = Cg

Pb = Cb

(1)

where ( fx, fy—focal length), (cx, cy—center of the images) are intrinsics of the depth camera.
There are now many CNNs for estimating 3D human pose from human point cloud

data such as HandpointNet [23], V2V [24], Point-to-Point [25]. Especially, there are many
studies on 3D human pose estimation with amazing results on depth image data and point
cloud data [26–28]. These studies have been examined in detail in our previous study on
3D human pose estimation [29]. In the future, we will study more deeply about using point
cloud data in the MASK MADS dataset.

3. Human Segmentation and Tracking by CNNs—Survey

3.1. CNN-Based Human Segmentation
3.1.1. Methods

Human segmentation is applicable in many practical and real-world scenarios, for
example, surveillance person activities, virtual reality, action localization, 3D human
modeling, etc. Human segmentation is the process of separating human data and scene
data [10]. The methods for segmenting human data can be divided into three directions:
top-down (semantic segmentation), bottom-up (instance segmentation), and combined. The
top-down methods are based on training human-extracted features (shapes, appearance
characteristics, and texture) to generate a classification model to classify the human pixels
and scene pixels. This family of methods only segments persons into one class; despite
there being many people and cars in the image, people are classified into one class, cars
into another class. The bottom-up methods are based on generating the candidate regions
that include a human and then identifying these regions following texture and bounding
contours. Thus they segment the details of each person in the image. Figure 2 shows the
differences between the approaches for human segmentation in images. The combined
methods synergistically promote the advantages of both top-down and bottom-up methods
to obtain the best effect. The human segmentation process is usually based on three steps
described later on, as illustrated in Figure 3.
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Figure 2. An explanation of object detection and semantic and instance segmentation [30].

Input 
Images

Human detection
Instance

identification Segmentation Output

Figure 3. Illustration of the model of human segmentation in images.

a. Human detection
Object detection, and specifically human detection in images or videos, is one of

the most important problems in computer vision. During appearance-based methods,
traditional machine learning often uses hand-crafted features and a classification algorithm
(e.g., SVM, AdaBoost, random forest, etc.) to train the human detection model. In recent
years, most of the studies and applications have used CNNs to detect persons and objects
in general and demonstrated many impressive results.

Girshick et al. [31] proposed a Region-based Convolutional Neural Network (R-CNN)
for object detection. This network can be applied as a bottom-up method for localizing
and segmenting objects of region proposals and improved classification efficiency by using
supervised pre-training for labeled training data. He et al. [32] proposed SPPnet (Spatial
Pyramid Pooling network) to train the object detection model. Traditional CNNs include
two main components: convolutional layers and fully connected layers. To overcome the
fixed-size constraint of the network, SPPnet adds an SPP layer to the last convolutional
layer. The fixed-length output features are generated from the SPP layer pools. SPP is
robust with object deformations. The extracted features of variable scales are pooled by
SPP. Karen et al. [15] based their assumptions on the characteristics of CNNs that the
depth of the CNNs affects the accuracy. The greater the depth, the greater the identi-
fication detection accuracy. Therefore, the authors have proposed the VGG16 network
with the input size of the convolutional layer of 224 × 224 RGB image. After that, the
input image passed a stack of convolutional layers. The final output size of the convo-
lutional layer is 3 × 3. Recently, Xiangyu et al. [33] improved the VGG model in Fast
R-CNN for object classification and detection; Haque et al. [34] also applied the VGG
model to ResNet to detect objects. Implementation details of VGG for object detection
are shown under the links (https://www.robots.ox.ac.uk/~vgg/research/very_deep/,
https://neurohive.io/en/popular-networks/vgg16/ (accessed on 20 May 2021)). To
improve the results of R-CNN and SPPnet, Girshick et al. [11] proposed Fast R-CNN,
which input is the entire image and a set of region proposals. Fast R-CNN performs
two main computational steps: processes several convolutional and max-pooling lay-
ers on the whole image to generate a feature map. Each proposal interest region of
the pooling layer then extracts a fixed-length feature vector from the generated feature
map, and the input of a sequence of fully connected layers is the extracted feature vec-
tor. Implementation details of Fast R-CNN for object detection are shown under link
(https://github.com/rbgirshick/fast-rcnn (accessed on 25 May 2021)). The SPPnet [32]
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and Fast R-CNN [11] models work on region proposals that could be the object, which
reduces the computation burden of these CNNs. However, the accuracy of these networks
has not been greatly improved. Ren et al. [2] proposed an RPN (Region Proposal Net-
work) that shares the full-image convolutional features with the detection network, which
makes a nearly cost-free region proposal. The architecture of Faster R-CNN consists of
two parts: a deep, fully convolutional network (RPN) and a Fast R-CNN detector that uses
the proposed regions. Implementation details of Faster R-CNN for object detection are
available under link (https://towardsdatascience.com/faster-r-cnn-object-detection-imple
mented-by-keras\-for-custom-data-from-googles-open-images-125f62b9141a (accessed
on 10 July 2021)). Especially recently, Goon et al. [35] used Faster R-CNN for detecting
pedestrians from drone images. The CNNs presented (R-CNN, SPPnet, VGG, Fast R-CNN,
Faster R-CNN) are mainly concerned with the high accuracy, but the computation time for
object detection is high. Therefore, Redmon et al. [4] proposed the YOLO network with
a computation speed of about 67 fps of YOLO version 2 on the VOC 2007 dataset. The
bounding boxes are predicted directly using the fully connected layers on top of the convo-
lutional feature extractor. Currently, the YOLO network has four versions (YOLO version 1
to 4). Implementation details of YOLO versions for object detection are available under the
link (https://pjreddie.com/darknet/yolov1/, https://pjreddie.com/darknet/yolov2/,
https://pjreddie.com/darknet/yolo/ and https://github.com/AlexeyAB/darknet (ac-
cessed on June 2021)), respectively. Lui et al. [3] proposed the Single Shot Detector (SSD)
network for object detection. It uses the following mechanism: the base network is used
for high-quality image classification, fixed-size bounding boxes and scores are generated
from a feed-forward convolutional network, and the final detections are generated by a
non-maximum suppression step (https://github.com/weiliu89/caffe/tree/ssd (accessed
on 12 June 2021)). Jonathan et al. [36] have performed a comparative study for objects
detection, which focuses on comparing object detection results-based on typical CNNs:
Faster R-CNN [2], R-FCN [37], and SSD [3]. The CNNs used the feature extractors as VGG
or ResNet, calling them “meta-architectures”. The authors evaluated many configurations
of each CNN and analyzed the effect of configurations, image size on the detection results.

b. Human segmentation
The next step in the model shown in Figure 3 is human segmentation, which is the

process of labeling each pixel as either human or non-human data. It uses the result
of object detection in the form of bounding boxes or identifies the human region, and
then classifies the pixels in the bounding box or the area as human or non-human giving
the most accurate results [10]. Previously there were studies by Meghna et al. [38,39]
that suggested human pose-based segmentation. Lately, much research was proposed
based on deep learning, for example, He et al. [40]. In [40], the authors proposed Mask
R-CNN using Faster R-CNN for object detection and predicting an object mask on each
Region of Interest (RoI) conducted in parallel, in which predicting a segmentation mask
in a pixel-to-pixel basis. Implementation details of Mask R-CNN are available under link
(https://github.com/matterport/Mask_RCNN (accessed on 14 June 2021)), and as Detec-
tron2 (https://github.com/facebookresearch/detectron2 (accessed on 14 June 2021)) [41].
In the Detectron2 toolkit from Facebook AI Research [41], the authors also developed
source code to train and test the segmentation of the image on some CNNs models:
DeepLabv3 [42,43], details are shown in link (https://github.com/facebookresearch/detect
ron2/tree/master/projects/DeepLab (accessed on 12 June 2021)). DeepLabv3 is the human
semantic segmentation group, this CNN is an improvement of the DeepLab2 [44] method.
This method has been applied in parallel to the Atrous Spatial Pyramid Pooling (ASPP)
method for multi-scale context. In [42], the authors improved the DeepLabv3 network with
a combination of the spatial pyramid pooling module and the encoder-decoder structure.
Therein, the rich semantic features are obtained from the encoder module; the detected
objects by the bounding boxes are recovered by the decoder module. This network architec-
ture of DeepLabv3+ made a trade-off between precision and processing time based on the
extracted encoder features by atrous convolution. DensePose [45,46], details are shown in
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link (https://github.com/facebookresearch/detectron2/tree/master/projects/DensePose
(accessed on 12 June 2021)). Riza et al. [46] proposed DensePose-RCNN for estimat-
ing human pose. DensePose-RCNN is a combination of the DenseReg and the Mask-
RCNN to improve the accuracy, with the cascaded extensions. Cheng et al. [47,48] pro-
posed the Panoptic-DeepLab (details are shown in the link (https://github.com/faceb
ookresearch/detectron2/tree/master/projects/Panoptic-DeepLab (accessed on 14 June
2021)), which predicts the semantic segmentation and instance segmentation based on
the dual-context and dual-decoder modules. The ASPP is employed in the decoder
module. Kirillov et al. [49] proposed the PointRend method, details are shown in link
(https://github.com/facebookresearch/detectron2/tree/master/projects/PointRend (ac-
cessed on 14 June 2021)). The PointRend network is applied in both semantic segmentation
and instance segmentation. It was applied to each region in the coarse-to-fine method
(from large to small size). Chen et al. [50] proposed a TensorMask network applied
to the instance segmentation. Before the sliding window method used for object detec-
tion, the results are displayed on bounding boxes. After that, they use Mask R-CNN
for object segmentation on the data inside in bounding box. Details are shown in link
(https://github.com/facebookresearch/detectron2/tree/master/projects/TensorMask (ac-
cessed on 20 June 2021)); Li et al. [51] proposed a parallel multi-branch architecture called
the TridentNet with ResNet-101 backbone retrained, details are shown in link (https:
//github.com/facebookresearch/detectron2/tree/master/projects/TridentNet (accessed
on 15 June 2021)). This CNN used the image with multi-scales as the input. After that the
image pyramid methods are used for feature extraction and object detection for each scale.
Especially recently, the Centermask network is proposed and published by Lee et al. [52],
this CNN implemented the human instance segmentation, details are shown in link
(https://github.com/youngwanLEE/CenterMask (accessed on 16 June 2021)). This net-
work used the anchor-free object detector (FCOS) [53,54] to predict the per-pixel object
detection. After that, the SAG-Mask branch was added to predict a segmentation mask on
each detected box. The feature extractions and feature map used the pyramid method of
VoVNetV2 [55] backbone network.

George et al. [56] proposed the PersonLab model to estimate human pose and seg-
ment human instance from the images. This model used CNNs to predict all key points
of each person in the image, after that the author predicted instance-agnostic semantic
person segmentation maps by a greedy decoding process to group them into instances.
This means that the determination of an ith human pixel is based on the probable dis-
tance from that pixel to the nearest detected keypoint. Implementation details are shown
in link (https://github.com/scnuhealthy/Tensorflow_PersonLab (accessed on 16 June
2021)). Zhang et al. [57] have proposed a model based on the human instance segmentation
method where the object detection step is based on the results of human pose estimation.
The human pose is estimated based on the combination of scale, translation, rotation, and
left-right flip, and it is called Affine-Align. The Affine-Align operation uses human pose
templates to align the people which does not use a bounding box as in Faster R-CNN or
Mask R-CNN, in which the human pose templates are divided into clusters and center of
clusters used to compute the error function with detected poses by the affine transforma-
tion. The human segmentation module is concatenated from the Skeleton features to the
instance feature map after Affine-Align. Implementation details are available under link
(https://github.com/liruilong940607/Pose2Seg (accessed on 18 June 2021)).

3.1.2. Datasets, Metrics and Results

a. Human detection
Object detection in images and videos is the first operation applied in computer vision

pipelines such as object segmentation, object identification, or object localization. Object
detection methods have been evaluated on many benchmark datasets. In this section, we
present some typical benchmark datasets.
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Everingham et al. [58] introduced the Pascal VOC (PV) 2007 with 20 object classes
with 9963 images which are collected from both indoor and outdoor environments. The
interesting objects are divided into the following groups: person; animal (bird, cat, cow,
dog, horse, sheep); vehicle (airplane, bicycle, boat, bus, car, motorbike, train); indoor
(bottle, chair, dining table, potted plant, sofa, tv/monitor). This data set is divided into
50% for training/validation and 50% for testing. The dataset can be downloaded from link
(http://host.robots.ox.ac.uk/pascal/VOC/voc2007/ (accessed on 19 June 2021)). In [59],
the authors updated the Pascal VOC dataset (PV 2010) with 10,103 images containing 23,374
annotated objects and 4203 segmentations. In this dataset, the authors changed the way of
computing the average precision and used all data points rather than TREC style sampling.
In 2012, the authors updated the PV 2012 dataset [60] with the training/validation data
of 11,530 images containing 27,450 ROI annotated objects and 6929 segmentations. These
versions of the PV dataset are presented, compared in link (http://host.robots.ox.ac.uk/p
ascal/VOC/voc2012/ (accessed on 18 June 2021)).

In [61], Lin et al. published the benchmark MS COCO (Microsoft Common Objects
in COntext) dataset. It includes 328,000 images with 80 common object categories and
2,500,000 labeled instances. The objects in the images are person, car, elephant and the
background is grass, wall, or sky. After six years, this dataset is now available with more
than 200,000 images and 80 object categories, and over 500,000 object instances segmented.

The ImageNet Large Scale Visual Recognition Challenge 2014 detection [62] task in-
volves 200 categories. There are 450 k/20 k/40 k images in the training/validation/testing
sets. The authors focus on the task of the provided data-only track (the 1000-category CLS
training data is not allowed to use).

Most of the research on object detection presented above use the mean Average
Precision (mAP) measurement for evaluation. It is calculated according to Equation (2).

mAP =
∑

q=1
Q AverageP(q)

Q
(2)

where Q is the number of frames and AverageP(q) is the Average Precision (AP) of object
detection for each frame. Precision is calculated as in [17]. Some results of human detection
are shown in Tables 1 and 2.

Table 1. Human detection results (mAP) on the several benchmark datasets.

Measurement/
Dataset/Methods

mAP (Mean Average Precision) (%)

PV
2007

PV
2010

PV
2012

COCO
(Year)

IC
2013

IC
2014

IC
2015

R-CNN [31] 58.7 58.1 - - 31.4 - -
SPPnet [32] 58.9 - - - - 35.11 -

VGG vs. Fast R-CNN [15] 66.1 - - - - - -
VGG vs. ResNet [34] - - 93.7 - - - -

VGG 16 [15] 89.3 - 89 - - - -
Fast R-CNN [11] 69.9 72.7 72.0 35.9 (2015) - - 42.9
Faster R-CNN [2] 78.8 - 75.9 42.7 (2015) - - 32.6

YOLO v1 [63] 63.4 - 63.5 - - - -
YOLO v2 [4] 78.6 - 81.3 21.6 (2015)
YOLO v3 [5] - - - 60.6 (2015) - - -
YOLO v4 [6] - - - 65.7 (2017) - - -
SSD300 [3] 74.3 - 79.4 23.2 (2015) - - -
SSD500 [3] 76.8 83.3 26.8 (2015) - - -
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Table 2. The frame rate of human detection (fps—frames per second) on the PV 2007 benchmark
dataset.

Measurement/
Dataset/Methods

Procesing Time (fps)

PV 2007

R-CNN [31] 0.076
SPPnet [32] 0.142

VGG vs. Fast R-CNN [15] 7
VGG vs. ResNet [34] 5

Fast R-CNN [11] 0.5
Faster R-CNN [2] 7

YOLO v1 [63] 45
YOLO v2 [4] 40
YOLO v3 [5] 45
YOLO v4 [6] 54
SSD300 [3] 46
SSD500 [3] 19

b. Human segmentation
Human data segmentation is the process of classifying whether each pixel belongs to a

human object or not. To evaluate the human segmentation, the studies of Kaiming et al. [40]
and Zhang et al. [57] were evaluated on the COCO [61] dataset and introduced the above. The
metric used to evaluate is AP (Average Precision), precision is calculated as shown in [17].

The results of the human segmentation on the PV 2007 benchmark are shown in Table 3.
The processing time of Mask R-CNN, Pose2Seg for human segmentation is 5 fps, 20 fps,
respectively. We also listed the results of object segmentation on the PV 2017 benchmark
dataset with the validation/testing sets from [61], and they are presented in Table 4.

Table 3. The frame rate of human detection (fps—frames per second) on the PV 2007 benchmark
dataset. APM, APL are the Median, Large AP categories, respectively.

Measurement/
Method/

Backbone APM APL

Mask R-CNN [40] Resnet50-fpn 43.3 64.8
PersonLab [56] Resnet101 47.6 59.2
PersonLab [56] Resnet101(ms scale) 49.2 62.1
PersonLab [56] Resnet152 48.3 59.5
PersonLab [56] Resnet152(ms scale) 49.7 62.1
Pose2Seg [57] Resnet50-fpn 49.8 67.0

Pose2Seg(GTKpt) [57] Resnet50-fpn 53.9 67.9

Table 4. The object segmentation results (m—mask, b—box) on the COCO 2017 Val/Test dataset [61] (%—percent).

Measurement/
CNNs

Backbone
Network

APm APb APb
S APb

M APb
L IS SS

CenterMask VoVNetV2-99 38.3 43.5 25.8 47.8 57.3
√

-
TridentNet ResNet-101 - 42.0 24.9 47.0 56.9 -

√
TensorMask ResNet-101-FPN - 37.1 17.4 39.1 51.6

√
-

PointRend (IS) X101-FPN 40.9 - - - -
√ √

Panoptic-DeepLab Xception-71 39.0 - - - -
√ √

3.1.3. Discussions

Table 1 shows the human detection accuracy based on some benchmark datasets such
as PV 2007, PV 2010, PV 2012, COCO, or IC datasets. Table 2 shows the processing time
of human detection on the PV 2007 dataset. The results of human detection can show us
that accuracy increases the following time and that the processing time of human detection
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has reached real-time. We only surveyed on the PV 2007 dataset to agree on the dataset.
Each different version of the PV dataset has a different number of images and complexity.
So the processing time will be different. When compared to the same dataset, we can
see the processing speed of CNNs (e.g, R-CNN, Fast R-CNN, YOLO, etc) for detecting
humans. Our survey is based on an evaluation of CNNs for human detection using the
TensorFlow framework on the PV 2007 dataset. A part of which we refer to in the survey
of Sanchez et al. [64].

As presented above, the human detection results significantly affect the process of
human segmentation. As shown in first table and second table of [56], the keypoint
detection results of human pose on the COCO dataset are between 61% and 75% on
the APM, APL measurements, in the human segmentation step is between 47% and 62%.
Therefore, the error from detecting humans is from 25% to 39%, and the human segment
error is about 14%. These results also show that the segmentation of the human data on the
COCO dataset still poses many challenges.

3.2. CNN-Based Human Tracking
3.2.1. Methods

Human tracking is the process of estimating the movement trajectory of people in
the scene based on the video captured by the scene. A tracker is a set of object labels and
classifications between that object and other objects and the background [65]. Human
tracking is the process of reusing the results of human detection or human segmentation
on each frame of the video. From there, the person’s trajectory is drawn on the video.
Watada et al. [65] performed a human tracking survey, which uses the results of human
detection (which is the process of detecting points of interest in the human body). This
detector is called a “point detector” and the second method is to use the results of the
human segment in the image. In this paper, we are interested in studies using CNNs
to track people in the video. Dina et al. [66] experimented with a method for tracking
multiple persons in images using Faster R-CNN to detect people. The results of people
detection in the image are shown as bounding boxes. The author used VGG16 with thirteen
convolutional layers of various sizes (64, 128, 256, 512), two fully connected layers, and a
softmax layer to build the Faster R-CNN. Javier [67] has generalized the object tracking
problem in video, in which the author presented Siamese Network Algorithm (SNA) for
object tracking. SNA assumes that the object to track always be unknown, and there is
no need to learn it. SNA uses the CNNs to parallel object detection in the images, and
then it computes the differences of the pairs of images. Implementation details are shown
in link (https://github.com/JaviLaplaza/Pytorch-Siamese (accessed on 20 June 2021)).
Gulraiz et al. [68] proposed a model of human detection and tracking that used Faster
R-CNN to detect the human with five implementation steps. Then, they use more Deep
Appearance Features (DAF) to track humans. Especially, the method provided the motion
information and appearance information. The authors also presented the challenges of
object tracking systems. The first one concerns real-time human tracking. There has been
much research trying to achieve the goal of real-time tracking of people. The second is
the identity switch in all frames or specific time duration. The third is the fragmentation
problem when the person is not detected at some frames, which causes the person’s
moving trajectory to be interrupted. Particularly, we proposed solutions to improve the
detection results in some frames by using CNNs for human detection or just detecting
parts of the person, such as the head or shoulder. To address identity switches, the authors
suggested using the appearance, localization features, and the size of a human in frames
or perhaps using facial recognition. The proposed system is better than both SORT and
Deep SORT [69,70] in real-time scenarios for pedestrian tracking. Ejaz et al. [71] proposed
a method for improving human detection and tracking accuracy in noisy and occluded
environments. To improve the accuracy of human detection and classification, a softmax
layer is used in the CNN model. Special tactics of enhancing learning complex data (data
augmentation) are applied.
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3.2.2. Datasets, Metrics and Results

To evaluate the results of human tracking, Laura et al. [72] proposed a huge MOTChel-
lange dataset, which combined of 22 different subsets. Some results of human detection in
images of MOTChellange dataset before human tracking based on the CNNs are shown in
Table 5.

Table 5. The results (accuaracy, precision (%)) of human segmentation on the MOTChallenge dataset.
SNN is a human tracking evaluation based on the Siamese Neural Network. Ecdist is a human
tracking evaluation based on the simple minimum Euclidean distance.

Measurement/Model
MOTA

(MOT Accuracy) [%]
MOTP

(MOT Precision) [%]

SORT [73] 59.8 79.6
Deep SORT [69] 61.4 79.1

Faster RCNN + DAF [68] 75.2 81.3
Faster RCNN [66] (Ecdist) 61.26 -
Faster RCNN [66] (SNN) 47.38 -

However, Gulraiz et al. [68] were only interested in 10-minute videos of individuals
with 61,440 rectangles of human detection. It is composed of 14 different sequences with
proper annotations by expert annotators. This dataset collection camera is set up in multiple
states (dynamic or static). The camera position can be positioned horizontally with people
or lower. The lighting conditions are also quite varied: lighting, shadows, and blurring
of the pedestrians are inconsistent. The processing times of human detection for various
ResNets are shown in Table 6.

Table 6. The processing time (ms—millisecond) of Human detection for various ResNets. The
calculation process is performed on a computer with the following configuration: GeForce GTX
1080 Ti GPU with Ubuntu OS installed in the system. The experiments are performed using the
TensorFlow framework [68].

Measurement/Model Processing Time [ms]

ResNet-34 52.09
ResNet-50 104.13
ResNet-101 158.35
ResNet-152 219.06
ResNet-30 48.93

In [34], the authors evaluated the INRIA human dataset and Pedestrian parsing on
surveillance scenes (PPSS) dataset. The authors used the INRIA dataset that includes
2416 images for training and 1126 images for testing. The persons in the INRIA dataset
were captured from many different positions: pose and occluded background, crowd
scenes. The PPSS dataset included a total of 3673 images captured from 171 videos of
different scenes and 2064 images in this dataset that the people are occluded. Haque
et al. [34] used 100 videos for training and 71 videos for testing. The results of human
tracking on the INRIA dataset and PPSS dataset are shown in Table 7.

Table 7. The results of Human segmentation on the INRIA dataset and PPSS dataset [34].

Dataset Model Accuracy [%]

INRIA dataset VGG-16 96.4
CNNs + DA [34] 98.8

PPSS dataset VGG-16 94.3
CNNs + DA [34] 98.3
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4. Human Mask of MADS Dataset

The MADS dataset includes martial arts (tai-chi and karate), dancing (hip-hop and
jazz), and sports (basketball, volleyball, football, rugby, tennis, and badminton) actions. The
activities in this dataset are fast and dynamic, and many body parts are active, especially
arms and legs. The MADS dataset consists of two sets of data: The RGB image data
collected from multi-view settings; RGB image data and depth image data collected from a
single viewpoint (captured from the depth sensor). Figure 4 shows the mask image of the
human (left) when segmented to the pixel level, and the point cloud data of a human (right)
generated from the person data segmented on the depth image with the camera’s intrinsic
parameter based on Equation (1). We also illustrate a result of 3D human pose estimation
based on point cloud data (right). Therefore in this paper, we are only interested in the
dataset collected from the depth sensor (the data is collected from a single viewpoint). We
will use human point cloud data in further studies. An example of the RGB and depth data
from the dataset is illustrated in Figure 5. To evaluate the results of human segmentation
and tracking humans in videos, we implemented pixel marking of the human area in the
RGB images that were captured from a single viewpoint (depth sensor).

Mask image Point cloud, 3D human pose

Figure 4. Illustrating of 3D human annotation data correction results according to point cloud data
based on the human mask from the image. The red human skeleton is a result of 3D human pose
estimation in the point cloud data.

Figure 5. Illustration of image data of an unmarked human and masked image. Human depth data
is delimited by a yellow border. The depth value of the human pixels is greater than 0 (which is
the distance from the camera to the surface of the body) and is a gray color, the other pixels are the
background and is black color. The depth image is the result of mapping from the human mask to
the depth image obtained from the environment.

To mask people in the image, we have manually prepared the mask data of the human
using the Interactive Segmentation tool (http://web.archive.org/web/20110827170646/http:
//kspace.cdvp.dcu.ie/public/interactive-segmentation/index.html (accessed on 18 April
2021)). We have prepared about 28,000 frames and make available at the link (https://drive.go
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ogle.com/file/d/1Ssob496MJMUy3vAiXkC_ChKbp4gx7OGL/view?usp=sharing (accessed
on 18 July 2021)).

5. Human Segmentation and Tracking of MADS Dataset

5.1. Methods

In this paper, we evaluate in detail the human instance segmentation on the MASK
MADS dataset with the Mask R-CNN benchmark [40] method and some of its improve-
ments in the Detectron2 toolkit [41].

• Mask R-CNN [40] is an improvement of Faster R-CNN [2] for image segmentation at
the pixel level. The operation of Mask R-CNN for human instance segmentation does
the following several steps.
Backbone Model: Using ConvNet like Resnet to extract human features from the
input image.
Region Proposal Network (RPN): The model uses the extracted feature applied to
the RPN network to predict whether the object is in that area or not. After this
step, bounding boxes at the possible areas of objects from the prediction model will
be obtained.
Region of Interest (RoI): The bounding boxes from the human detection areas will
have different sizes, so through this step, all those bounding boxes will be merged to a
certain size at 1 person. These regions are then passed through a fully connected layer
to predict the layer labels and bounding boxes. The gradual elimination of bounding
boxes through the calculation of the IOU. If the IOU is greater than or equal to 0.5
then be taken into account else be discarded.
Segmentation Mask: Mask R-CNN adds the third branch to predict the person’s mask
parallel to the current branches. Mask detection is a Fully-Connected Network (FCN)
applied to each RoI. The architecture of the Mask-RCNN is illustrated in Figure 6.
In this paper, we use Mask-RCNN’s code developed in [41]. The backbone model
used is ResNet-50 and the pre-trained weights is
“COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml”.
It is trained with ResNet-50-FPN on COCO trainval35k takes 32 h in our synchronized
8-GPU implementation (0.72 s per 16-image mini-batch) [40]. The code that we used
for training, validation, testing is shared under the link (https://github.com/duonglo
ng289/detectron2 (accessed on 10 June 2021)).

• PointRend [49]: PointRend is an enhancement of the Mask R-CNN for human instance
and human semantic segmentation. This network only differs from Mask R-CNN
in the prediction step on bounding-boxes (FCN), Mask R-CNN [40] performs the
coarse prediction on a low-resolution (28 × 28) grid for instance segmentation, the
grid is not irrespective of object size. However, it is not suitable for large objects, it
generates undesirable “blobby” output that over smooths the fine-level details of large
objects. PointRend predicts on the high-resolution output grid (224 × 224), to avoid
computations over the entire high-resolution grid. PointRend suggests 3 strategies:
choose a small number of real-value points to make predictions, extract features of
selected points, a small neural network trained to predict a label from this point-wise
feature representation of a point head. In this paper, the pre-trained weights that we
use is “InstanceSegmentation/pointrend_rcnn_R_50_FPN_1x_coco.yaml”.
That means the backbone we use is the ResNet-50. It is trained on the COCO [61]
dataset with train2017 (∼118 k images). The code that we used for training, validation,
testing is shared in the link (https://github.com/duonglong289/detectron2/tree/ma
ster/projects/PointRend (accessed on 15 June 2021)).

• TridentNet [51]: TridentNet is proposed for human detection by bounding-box on
images that are based on the start-of-the-art Faster R-CNN. TridentNet can improve
the limitations of two groups of networks for object detection (one-stage methods:
YOLO, SSD, and two-stage methods: Faster R-CNN, R-FCN). TridentNet generates
scale-specific feature maps with a uniform representational power for training with
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multiple branches; trident blocks share the same parameters with different dilation
rates. TridentNet training with ResNet-50 backbone on 8 GPUs, the pre-trained
weights initialized in file “tridentnet_fast_R_50_C4_1x.yaml”. The code that we used
for training, validation, testing is shared at the link (https://github.com/duonglong
289/detectron2/tree/master/projects/TridentNet (accessed on 16 June 2021)).

• TensorMask [50]: TensorMask is an improvement of Mask R-CNN to use structured
4D tensors ((V, U) represent relative mask position; (H, W) represent the object posi-
tion) to represent mask image content in a set of densely sliding windows. The dense
mask predictor of TensorMask extends the original dense bounding box predictor
of Mask R-CNN. TensorMask performs multiclass classification in parallel to mask
prediction. The code we use has the pre-trained weights initialized in the file “ten-
sormask_R_50_FPN_1x.yaml” and the ResNet-50 backbone on 8 GPUs are used. The
code that we used for training, validation, testing is shared in the link (https://github
.com/duonglong289/detectron2/tree/master/projects/TensorMask (accessed on 16
June 2021)).

• CenterMask [52]: CenterMask is an improvement of Mask R-CNN. During the im-
plementation of Mask R-CNN, Centermask added a novel spatial attention-guided
mask (SAG-Mask) branch to anchor-free one stage object detector (FCOS), the SAG-
Mask branch predicts a segmentation mask on each box with the spatial atten-
tion the map that helps to focus on informative pixels and suppress noise. Al-
though, in the present paper [52] used the backbone network VoVNetV2 based on
VoVNet [55] to ease optimization and boosts the performance, that shows better per-
formance and faster speed than ResNet [74] and DenseNet [75]. In this paper, we
still use the pre-trained weights initialized in file “centermask_R_50_FPN_1x.yaml”
The code that we used for training, validation, testing is shared in the link (https:
//github.com/duonglong289/centermask2 (accessed on 16 June 2021)).

Start-of-the-art Backbone: As discussed above, the backbone used to train the pre-train
weights is ResNet-50.

ResNet is a very efficient deep learning network designed to work with hundreds
or thousands of convolutional layers. When building a CNN with many convolutional
layers, Vanishing Gradient will occur, leading to a suboptimal learning process. To solve
the problem, ResNet proposes the idea of going from the output layer to the input layer
and computing the gradient of the corresponding cost function for each parameter (weight)
of the network. Gradient descent is then used to update those parameters. It is proposed to
use a uniform “identity shortcut connection” connection to traverse one or more layers,
illustrated in Figure 7. Such a block is called a Residual Block. The input of this layer is not
only the output of the layer above but also the input of the layers that shorten to it.

In residual bock, the input x is added directly and the output of the network is F(x)+ x,
and this path is called an identity shortcut connection. The output of Residual Block is
called H(x) = F(x) + x. So, when F(x) = 0, then H(x) = x is said to be a homogeneous
mapping when the input of the network equals its output. To add F(x) + x, the shape of
both must be the same. If the shapes are not the same then we multiply a matrix Ws by the
input x. H(x) = F(x) + Ws ∗ (x), where Ws can be trained. When the input of the network
and the output of the network are the same, ResNet uses an identity block, otherwise uses
a convolutional block, as presented in Figure 8.

Using residual blocks, in the worst case, the deeper layers learn nothing, and perfor-
mance is not affected, thanks to skipping connections. But in most cases, these classes will
also learn something that can help improve performance.

Recently, Resnet version 1 (v1) has been improved to ameliorate classification perfor-
mance, and was called ResNet version 2 (v2) [76], where Resnet v2 has two changes in the
residual block [77]: The use of a stack of (1 × 1) − (3 × 3) − (1 × 1) at the steps BN, ReLU,
Conv2D, respectively; the Batch normalization, and ReLU activation that comes before 2D
convolution. The difference between ResNet v1 and ResNet v2 is shown in Figure 9.
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Figure 6. Mask R-CNN architecture human instance segmentation in images.

Figure 7. A Residual Block across two layers of ResNet.

Figure 8. Illustrating convolutional block of ResNet.

Figure 9. A comparison of residual blocks between ResNet v1 and ResNet v2 [77].
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5.2. Experiments

To evaluate the results of human detection and human segmentation on the MADS
dataset, we divide the MADS database into training and testing sets according to the
following ratios: 50% for training and 50% for testing (rate_50_50), 60% for training, and
40% for testing (rate_60_40), 70% for training and 30% for testing (rate_70_30), 80% for
training and 20% for testing (rate_80_20). The images are randomly assigned. The number
of frames in the ratios is shown in Table 8.

Table 8. The number of frames in the ratios (%—percent) for training and testing of MASK
MADS dataset.

Ratios (%)
The Number of

Frames for Training
The Number of

Frames for Testing

rate_50_50 14,414 14,414
rate_60_40 17,047 11,492
rate_70_30 19,141 8616
rate_80_20 21,473 5742

In this paper, we used Colab Notebook with GPU Tesla P100, 16 GB for fine-tuning,
training, testing the CNNs on the MASK MADS dataset. The processing steps, code fine-
tuning, training, testing, and development process were performed in Python language
(≥3.6 version) with the support of the OpenCV, Pytorch (≥3.6 version), CUDA/cuDNN
libraries, gcc/& g++ (≥5.4 version), In addition, there are a number of other libraries such
as Numpy, scipy, Pillow, cython, matplotlib, scikit-image, tensorflow ≥ 1.3.0, keras ≥ 2.0.8,
opencv-python, h5py, imgaug, IPython. The parameters that we use are as follows: the
batch size is 2, trained on 90 thousand iterations, the learning rate of 0.02; the weight decay
is 0.0001, the momentum is 0.9, and other parameters are the same as when the default
training of Mask R-CNN [40] and Detectron2 [41].

In this paper, we also use metrics of the standard COCO metrics including AP (Av-
erage Precision) of over IoU thresholds, AP50, AP75, and APS, APM, APL (AP at different
scales) [40].

5.3. Results

We compare the results of human segments based on Mask R-CNN, PointRend,
TridentNet, TensorMask, CenterMask on the MADS dataset, which have been divided
by the ratios. The results based on box (b) are shown in Table 9. In Tables 9 and 10, the
human segmentation results on the box (b) and mask (m) of the CenterMask are the highest
(APb = 69.47%, APm = 61.28%). Human segmentation results on the MADS dataset are
also shown in Figure 10, and the wrong human segmentation results are also shown in
Figure 11.

Table 9. The results (%—percent) of human segmentation (box-m) on the MADS dataset is evaluated on the CNNs.

CNN Model
Training/Testing

Ratios (%)
APb

(%)
APb

50
(%)

APb
75

(%)
APb

S
(%)

APb
M

(%)
APb

L
(%)

Mask R-CNN [40]

rate_50_50 59.25 71.45 65.82 7.22 86.85 86.80
rate_60_40 59.12 72.02 65.29 7.18 86.45 86.22
rate_70_30 59.44 71.85 65.84 6.72 87.50 86.55
rate_80_20 59.96 71.98 66.35 7.16 88.04 86.58

PointRend [49]

rate_50_50 63.25 78.98 72.19 8.03 67.89 84.71
rate_60_40 64.58 79.81 72.87 9.64 68.84 85.78
rate_70_30 67.90 81.40 74.30 13.82 72.11 88.69
rate_80_20 66.67 80.91 73.53 11.29 71.74 87.52
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Table 9. Cont.

CNN Model
Training/Testing

Ratios (%)
APb

(%)
APb

50
(%)

APb
75

(%)
APb

S
(%)

APb
M

(%)
APb

L
(%)

TridentNet [51]

rate_50_50 61.17 70.84 65.89 6.42 91.39 88.77
rate_60_40 55.50 71.80 66.25 0.75 50.81 79.66
rate_70_30 61.28 70.87 65.85 5.71 91.53 88.86
rate_80_20 61.50 70.96 66.67 6.18 92.01 88.23

TensorMask [50]

rate_50_50 67.11 80.95 74.15 11.78 69.58 88.49
rate_60_40 67.41 81.71 74.01 12.36 73.79 87.67
rate_70_30 64.37 79.81 72.38 7.93 67.09 85.74
rate_80_20 64.78 80.20 73.13 8.95 69.69 85.63

CenterMask [52]

rate_50_50 65.94 79.78 73.09 8.39 71.59 87.75
rate_60_40 64.75 79.89 72.08 9.21 68.03 86.24
rate_70_30 65.40 79.36 71.57 6.77 68.72 87.95
rate_80_20 69.47 81.63 75.04 12.95 74.44 91.10

The results based on the mask (m) are shown in Table 10.

Table 10. The results (%—percent) of human segmentation (mask-m) on the MADS dataset evaluated on the CNNs.

CNN Model
Training/Testing

Ratios (%)
APm

(%)
APm

50
(%)

APm
75

(%)
APm

S
(%)

APm
M

(%)
APm

L
(%)

PointRend [49]

rate_50_50 58.73 78.86 69.17 9.35 59.70 80.63
rate_60_40 59.39 79.26 68.48 10.81 55.64 81.07
rate_70_30 62.66 81.23 70.70 14.11 60.39 83.55
rate_80_20 61.93 80.58 70.48 11.48 63.29 83.17

TensorMask [50]

rate_50_50 54.10 79.38 65.71 8.48 52.30 74.35
rate_60_40 57.08 80.01 67.97 10.23 55.36 77.26
rate_70_30 47.71 77.97 55.07 5.88 38.55 69.53
rate_80_20 50.87 78.39 60.42 6.70 44.74 72.12

CenterMask [52]

rate_50_50 53.43 79.18 65.85 8.47 56.48 71.71
rate_60_40 52.24 78.69 64.28 8.80 53.35 70.93
rate_70_30 52.67 78.96 64.60 7.19 54.36 71.27
rate_80_20 61.28 81.19 72.10 13.61 66.89 79.72

Figure 11 shows that there are a lot of wrongly segmented pixels (segmented back-
ground pixels of human data), and there are also some segmented areas of human data. The
problem is the result of the wrong person detection step in the image. In this paper, we also
have shared the complete revised source code of CNNs on links (https://github.com/d
uonglong289/detectron2.git), (https://github.com/duonglong289/centermask2.git), and
the retrained model of CNNs on link (https://drive.google.com/drive/folders/16YHR
8MxOn4l8fMdNCJZv56AcLKfP_K4-?usp=sharing (accessed on 16 June 2021)). Although
there is only one person in the image of the MADS dataset (the data captured by the stereo
sensor), it still poses many challenges. Due to the low quality of the images obtained from
the stereo sensor, the images are blurred, the lighting is not perfect, and the activities of the
people in the image are fast (martial arts, dancing, and sports), so the gestures of the legs
and arms are blurred.

103



Sensors 2021, 21, 8397

Figure 10. Examples of human segmentation results on the MADS dataset by CNNs.

Figure 11. Examples of false human segmentation results on the MADS dataset.
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6. Conclusions

In this paper, we performed manual annotation of human masks in videos of data
captured from a single view of the MADS dataset on 28 thousand images. This is called the
Mask MADS dataset; it is shared for the community to use. We have conducted complete
and detailed surveys on using CNNs to detect, segment, and track the people in the video.
This survey goes from the mode of methods (CNNs), datasets, metrics, results, analysis,
and some discussion. In particular, links to the source code of the CNNs are provided
in this survey. Finally, we fine-tuned a set of parameters from the masked human data.
We have represented the architecture of start-of-the-art methods and backbone model to
fine-tune the human detection, segmentation model. We performed detailed evaluations
with many recently published CNNs and published the results on the mask MADS dataset
(Tables 8–10).
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Abstract: Recently, self-supervised learning methods have been shown to be very powerful and
efficient for yielding robust representation learning by maximizing the similarity across different
augmented views in embedding vector space. However, the main challenge is generating different
views with random cropping; the semantic feature might exist differently across different views
leading to inappropriately maximizing similarity objective. We tackle this problem by introducing
Heuristic Attention Representation Learning (HARL). This self-supervised framework relies on
the joint embedding architecture in which the two neural networks are trained to produce similar
embedding for different augmented views of the same image. HARL framework adopts prior visual
object-level attention by generating a heuristic mask proposal for each training image and maximizes
the abstract object-level embedding on vector space instead of whole image representation from
previous works. As a result, HARL extracts the quality semantic representation from each training
sample and outperforms existing self-supervised baselines on several downstream tasks. In addition,
we provide efficient techniques based on conventional computer vision and deep learning methods
for generating heuristic mask proposals on natural image datasets. Our HARL achieves +1.3%
advancement in the ImageNet semi-supervised learning benchmark and +0.9% improvement in
AP50 of the COCO object detection task over the previous state-of-the-art method BYOL. Our code
implementation is available for both TensorFlow and PyTorch frameworks.

Keywords: heuristic attention; perceptual grouping; self-supervised learning; visual representation
learning; deep learning; computer vision

1. Introduction

Visual representation learning has been an extended research area on supervised and
unsupervised methods. Most supervised learning models learn visual representations by
training with many labeled datasets, then transferring the knowledge to other tasks [1–5].
Most supervised learning frameworks try to tune their parameters such that they maximally
compress mapping the particular input variables that preserve the information on the
output variables [6–8]. As a result, most deep neural networks fail to generalize and
maintain robustness if the test samples are different from the training samples on variant
distribution and domains.

The new approaches are self-supervised representation learning to overcome the
existing drawbacks of supervised learning [9–15]. These techniques have attracted signifi-
cant attention for efficient, generalization, and robustness representation learning when
transferring learned representation on multiple downstream tasks achieving on-par or
even outperforming supervised baselines. Furthermore, self-supervised learning methods
overcome the human supervision capability of leveraging the enormous availability of
unlabeled data. Despite various self-supervised frameworks, these methods involve certain
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forms of the joint embedding architectures of the two branches neural network such as the
Siamese network [16]. The neural networks of two branches are usually weights-sharing
or different. In the joint embedding self-supervised framework, the common objective is
to maximize the agreement between embedding vectors from different views of the same
image. However, the biggest challenge is avoiding collapsing to a trivial constant solution,
which is that all output embedding vectors are the same. Several strategies to prevent
the collapsing phenomenon can be categorized into two main approaches: contrastive
learning and non-contrastive learning. Self-supervised contrastive learning [9,17] prevents
collapse via negative sample pairs. However, contrastive learning requires a large number
of negative samples leading to the requirement of high computational resources. The
efficient alternative approach is non-contrastive learning [13,14,18]. These frameworks rely
only on positive pairs with a momentum encoder [13] or using an extra neural network on
one branch with the block gradient flow [14,18].

Most existing contrastive and non-contrastive objectives are optimized based on
the whole image semantic features across different augmented views. However, under
this assumption, several challenges exist. First, popular contrastive methods such as
SimCLR [9] and MoCo [17] require more computation and training samples than supervised
methods. Second, more importantly, there is no guarantee that semantic representation of
different objects will differentiate between different cropping views of the same image. For
instance, several meaningful objects (vehicles, humans, animals, etc.) may exist in the same
image. The semantic representation of vehicles and humans is different, so contrasting
the similarity between different views based on the whole-image semantic feature may
be misleading. Research in cognitive psychology and neural science [19–22] showed that
early visual attention helps humans focus on the main group of important objects. In
computer vision, the perceptual grouping principle is used to group visual features into
meaningful parts that allow a much more effective learning representation of the input
context information [21].

Motivated by perceptual grouping, we proposed the Heuristic Attention Representation
Learning (HARL) framework that comprises two main components. First, the early atten-
tion mechanism uses unsupervised techniques to generate the heuristic mask to extract
object-level semantic features. Second, we construct a framework to abstract and maximize
similarity object-level agreement (foreground and background) across different views be-
yond augmentations of the same image [13,18,23]. This approach helps enrich the quantity
and quality of semantic representation by leveraging foreground and background features
extracted from the training dataset.

We can summarize our main findings and contributions as follows:

1. We introduce a new self-supervised learning framework (HARL) that maximizes the
similarity agreement of object-level latent embedding on vector space across different
augmented views. The framework implementation is available in the Supplementary
Material section.

2. We utilized two heuristic mask proposal techniques from conventional computer
vision and unsupervised deep learning methods to generate a binary mask for the
natural image dataset.

3. We construct the two novel heuristic binary segmentation mask datasets for the
ImageNet ILSVRC-2012 [24] to facilitate the research in the perceptual grouping for
self-supervised visual representation learning. The datasets are available to download
in the Data Availability Statement section.

4. Finally, we demonstrate that adopting early visual attention provides a diverse set of
high-quality semantic features that increase more effective learning representation for
self-supervised pretraining. We report promising results when transferring HARL’s
learned representation on a wide range of downstream vision tasks.

The remainder of this paper is organized as follows. In Section 2, we discussed related
works. Section 3 introduces the HARL framework in detail. Section 4.1 briefly describes
the implementation of the HARL framework in self-supervised pretraining. Section 4.2

110



Sensors 2022, 22, 5169

evaluates and benchmarks HARL performance on the ImageNet evaluation, transfers
learning to other downstream tasks and compares it to previous state-of-the-art methods.
In Section 5, we provide the analysis of the components impacting the performance and
understanding of the behavior of our proposed method. Finally, this paper is concluded in
Section 6.

2. Related Works

Our method is mostly related to unsupervised visual representation learning methods,
aiming to exploit input signals’ internal distributions and semantic information without
human supervision. The early works focused on several design-solving pretext tasks, and
image generation approaches. Pretext tasks focus on the aspects of image restoration such
as denoising [25], predicting noise [26], colorization [27,28], inpainting [29], predicting
image rotation [30], solving jigsaw puzzles [31] and more [32,33]. However, these methods,
the learned representation of neural networks pre-trained on pretext tasks, still failed
in generalization and robustness when performed on different downstream tasks. The
generative adversarial learning [34–36] and variational auto-encoding [25,37,38] operate
directly on pixel space and high-level details for image generations, which require costly
computation that may not be essential and efficient for visual representation learning.

Self-supervised contrastive learning. The popular self-supervised contrastive learn-
ing frameworks [9,39,40] aim to pull semantic features from different cropping views of
the same image while pushing other features away from other images. However, the
downside of contrastive methods is that they require a considerable number of negative
pairs, leading to significant computation resources and memory footprint. The efficient al-
ternative approach is non-contrastive learning [13,18], which only maximizes the similarity
of two views from the same image without contrast to other views from different images.

Self-supervised non-contrastive learning. Distillation learning-based framework [13,18]
inspired by knowledge distillation [41] is applied to joint embedding architecture. One branch
is defined as a student network, and another is described as a teacher network. The student
network is trained to predict the representation of the teacher network; the teacher net-
work’s weights are optimized from the student network by a running average of the student
network’s weights [13] or by sharing with the student’s weights and blocking the gradient
flow through the teacher network [18]. Non-contrastive frameworks are effective and
computationally efficient compared to self-supervised contrastive frameworks [9,17,39].

However, most contrastive or non-contrastive self-supervised techniques maximize
similarity agreements of the whole-image context representation of different augmented
views. While developing localization attention to separate the semantically features [42,43]
by the perceptual grouping of semantic information proved that adopting prior mid-level
visible in pretraining gains efficiency for representation learning. The most recent study
related to our [39] leveraging visual attention with segmentation obtained impressive re-
sults when transferring the learned representation to downstream tasks on object detection
and segmentation in multiple datasets. In contrast to our work, previous work employs
pixel-level models for contrastive learning, which uses backbones specialized for semantic
segmentation and uses different loss functions. It is important to note that the primary
work objective is difficult to transfer to other self-supervised frameworks. It also did
not investigate the masking feature method or the impact of the dimension and size of
the output spatial feature maps on the latent embedding representation, which we will
examine next.

3. Methods

In contrastive or non-contrastive learning-based frameworks, HARL object-level ob-
jectives are applicable. For example, our study implements a non-contrastive learning
framework using an exponential moving average weight parameter of one encoder to
another and an extra predictor inspired by BYOL [13]. HARL’s objective maximizes the
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agreement of the object-level (foreground and background) latent embedding vector across
different cropping views beyond augmentations shown in Figure 1.

Figure 1. The HARL’s architecture. The heuristic binary mask can be estimated by using either con-
ventional computer vision or deep learning approaches. After that, data augmentation transformation
is applied to both the image and its mask (bottom). Then, the image pairs flow to a convolutional
feature extraction module. The heuristic mask is used to mask the feature maps (which are the
outputs of the feature extraction module) in order to separate the foreground from the background
features (middle). These features are further processed by non-linear multi-layer perceptron modules
(MLP). Finally, the similarity objective maximizes foreground and background embedding vectors
across different augmented views from the same image (top).

3.1. HARL Framework

The HARL framework consists of three essential steps. In step 1, we estimate the
heuristic binary mask for the input image, which segments an image into foreground
and background (see described detail in Section 3.2). Next, these masks can be computed
using either conventional computer vision methods such as DRFI [44] or unsupervised
deep learning saliency prediction [42]. After the mask is estimated, we perform the same
image transformation (cropping, flipping, resizing, etc.) to both the image and its mask.
Finally, if it is the RGB image, transformations such as color distortion can be applied to the
image, such as the image augmentation pipeline of SimCLR [9]. The detailed augmentation
pipeline is described in Appendix A.1. After data augmentation, each image and mask pair
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generated two augmented images x, x′ aligned with two augmented masks m and m′ as
illustrated in Figure 1.

In step 2, we implement standard ResNet-50 [45] convolution residual neural network
for feature extractor denotation as ƒ. Each image through the feature extractor encodes the
output to obtain the spatial feature maps of size 7 × 7 × 2048, and this feature extraction
process can be formulated as h = ƒ(x), where h ∈ RH×W×D.. Then, the feature maps can be
separated into the foreground and background feature maps by performing element-wise
multiplication with the heuristic binary mask. In addition, we provide ablation studies to
analyze the impact of the spatial feature map in various sizes and dimensions, as described
in Section 5.1. The foreground and background features are denoted as, h f hb (Appendix A.2
provides detail of the masking feature method). The foreground and background spatial
features are down-sampled using global average pooling to project to a smaller dimension
with non-linear multi-layer perceptron (MLP) architecture g.

HARL framework structure adapts from BYOL [13], in which one augmented image
(x) is processed with the encoder fθ , and projection network gθ , where θ is the learned
parameters. Another augmented image (x′) is processed with fξ and gξ , where ξ is an
exponential moving average of θ. The first augmented image is further processed with
the predictor network qθ . The projection and predictor network architectures are the same
using the non-linear multi-layer perceptron (MLP), as detailed in Section 4. The definition
of encoder, projection, and prediction network is adapted from the BYOL. Finally, the latent
representation embedding vectors corresponding to the augmented image’s foreground
and background features are denoted as z f , zb, z f ′ and zb′ ∈ Rd.

where : z f , zb � gθ
◦qθ

(
h f , hb

)
,

z f ′ , zb′ � gξ

(
h f ′ , hb′

)
.

In step 3, we compute the HARL’s loss function of the given foreground and back-
ground latent representations (z f , zb, z f ′ and zb′ are extracted from two augmented images
x, x′) which is defined as mask loss, as illustrated in Equation (1). We apply �2-normalization
to these latent vectors, then minimize their negative cosine similarity agreement with the
weighting coefficient α . We study the impact of α value and the combination of the whole
image and object-level latent embedding vector in the loss objective provided in Section 5.2.

LMaskloss
θ = −

(
α· z f

‖z f ‖2
· z f ′

‖z f ′ ‖2
+ (1 − α)· zb

‖zb‖2
· zb′

‖zb′ ‖2

)
, (1)

where ‖.‖2 is �2-norm, and it is equivalent to the mean squared error of �2-normalized
vectors. The weighting coefficient α is in the range [0–1].

We symmetrized loss L by separately feeding augmented image and mask of view
one to the online network and augmented image and mask of view two to the target
network and vice versa to compute the loss at each training step. We perform a stochastic
optimization step to minimize the symmetrized loss Lsymmetrized = L + L∼.

Lsymmetrized = LMaskloss
θ + L∼Maskloss

θ . (2)

After pretraining processing is complete, we only keep the encoder θ and discard
all other parts of the networks. The whole training procedure summary is in the python
pseudo-code Algorithm 1.
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Algorithm 1: HARL: Heuristic Attention Representation Learning

Input:
D, M, T, and T′: set of images, mask and distributions of transformations
θ, fθ , gθ , and Qθ : initial online parameters, encoder, projector, and predictor
ξ, fξ , gξ ; // initial target parameters, target encoder, and target projector
Optimizer; //optimizer, updates online parameters using the loss gradient
K and N; //total number of optimization steps and batch size
{TK}K

k=1 and {ηk}K
k=1; //target network update schedule and learning rate

schedule

1. For k = 1 to K do
2. B ← {xi ∼ D}N

i=1; //sample a batch of N images
3. C ← {mi ∼ M}N

i=1; //sample a batch of N mask
4. For xi ∈ B, mi ∈ C
5. h ← fθ(t(xi)); //compute the encoder feature map
6. h′ ← fθ(t′(xi)); //compute the target encoder feature map
7. h f , hb ← mi ∗ h; //separate the feature map
8. h f ′, hb′ ← mi ∗ h′; //separate the target feature map

9. z f , zb ← qθ

(
gθ

(
h f , hb

))
; //compute projections

10. z f ′, zb′ ← gξ

(
h f ′, hb′

)
; compute target projections

11. li ← −2 ·
(

α · z f

‖z f ‖2
· z f

‖z f ‖2
+ (1 − α) · zb′

‖zb′ ‖2
· zb′
‖zb′ ‖2

)
; //compute loss

12. End for
13. δθ ← 1

N Σi=1
N ∂li //compute the total loss gradient w.r.t. θ

14. θ ← optimizer(θ, δθ, ηk); //update online parameters
15. ξ ← τkξ + (1 − τk)θ; //update target parameters encoder fθ

3.2. Heuristic Binary Mask

Our heuristic binary mask estimation technique does not rely on external supervision,
nor is it trained with the limited annotated dataset. We proposed two approaches using
conventional computer vision and unsupervised deep learning to carry it out, and these
methods appear to be well generalized for various image datasets. First, we use the
traditional computer vision method DRFI [44] to generate a diverse set of binary masks
by varying the two hyperparameters (the Gaussian filter variance σ and the minimum
cluster size s). In our implementation, we defined σ = 0.8 and s = 1000 for generating
binary masks in the ImageNet [24] dataset. In the second approach, we leverage the self-
supervised encoder feature extractor of the pre-trained ResNet-50 backbone from [9,42],
then pass the output feature maps into a 1 × 1 convolutional classification layer for saliency
prediction. The classification layer predicts the saliency or “foregroundness” of a pixel.
Therefore, we take the output values of the classification layer and set a threshold of 0.5
to decide which pixels belong to the foreground. Pixel saliency values greater than the
threshold are determined as foreground objects. Figure 2 shows the example heuristic mask
estimated by these two methods. The detailed implementation of the two methods, DRFI
and deep learning feature extractor combined with 1 × 1 convolutional layer is described in
Appendix C. In most of our experiments, we used the mask generated by the deep learning
method because it is faster than DRFI by running with GPU instead of only with CPU.
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Figure 2. Example of heuristic binary masks used for mask contrastive learning framework. First
row: random images from the ImageNet [24] training set. Second row: mask generated based on
DRFI algorithm with a predefined sigma σ value of 0.8 and component size values of 1000. The third
row is the mask obtained from the self-supervised pre-trained feature extractor ResNet-50 backbone
directly followed by a 1 × 1 convolutional classification foreground and background prediction.

4. Experiments

4.1. Self-Supervised Pretraining Implementation

HARL is trained on RGB images and the corresponding heuristic mask of the ImageNet
ILSVRC-2012 [24] training set without labels. We implement standard encoder ResNet [45].
According to previous works by SimCLR and BYOL [9,13], the encoder representation
output is projected into a smaller dimension using a multi-layer perceptron (MLP). In our
implementation, the MLP comprised a linear layer with an output size of 4960 followed by
batch normalization [46], rectified linear units (ReLU) [47] and the final linear layer with
512 output units. We apply the LARS optimizer [48] with the cosine decay learning rate
schedule without restarts [49], over 1000 epochs on the base learning rate of 0.2, scaled
linearly [50] with the batch size (LearningRate = 0.2 × BatchSize/256) and the warmup
epochs of 10. Furthermore, we apply a global weight decay parameter of 5 × 10−7 while
excluding the biases and normalization parameters from the LARS adaptation and weight
decay. The optimization of the online network and target network follow the protocol of
BYOL [13]. We use a batch size of 4096 splits over 8 Nvidia A100GPUs. This setup takes
approximately 149 h to train a ResNet-50 (×1).

The computational self-supervised pretraining stage requirements are largely due to
forward and backward passes through the convolutional backbone. For the typical ResNet-
50 architecture applied to 224 × 224 resolution images, a single forward pass requires
approximately 4B FLOPS. The projection head MLP (2048 × 4096 + 4096 × 512) requires
roughly 10M FLOPS. In our implementation, the convolution network backbone and MLP
network are similar compared to baselines BYOL. Since we forward to the foreground and
background representation through the projection head two times instead of one, it results
in an additional 10M FLOPS in our framework, less than 0.25% of the total. Finally, the
cost of computing the heuristic mask images is negligible because they can be computed
once and reused throughout training. Therefore, the complexity of each iteration between
our method and the baseline BYOL is almost the same for “computational cost” and
“training time”.
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4.2. Evaluation Protocol

We evaluate the learned representation from the self-supervised pretraining stage on
various natural image datasets and tasks, including image classification, segmentation and
object detection. First, we assess the obtained representation on the linear classification and
semi-supervised learning on the ImageNet following the protocols of [9,51]. Second, we
evaluate the generalization and robustness of the learned representation by conducting
transfer learning to other natural image datasets and other vision tasks across image
classification, object detection and segmentation. Finally, in Appendix B, we provide a
detailed configuration and hyperparameters setting of the linear and fine-tuning protocol
in our transfer learning implementation.

4.2.1. Linear Evaluation and Semi-Supervised Learning on the ImageNet Dataset

The evaluation for linear and semi-supervised learning follows the procedure in [9,52,53].
For the linear evaluation, we train a linear classifier on top of the frozen encoder represen-
tation and report Top-1 and Top-5 accuracies in percentage for the test set, as shown in
Table 1. We then evaluate semi-supervised learning, which is fine-tuning the pre-trained
encoder on a small subset with 1% and 10% of the labeled ILSVRC-2012 ImageNet [24]
training set. We also report the Top-1 and Top-5 accuracies for the test set in Table 1. HARL
obtains 54.5% and 69.5% in Top-1 accuracy for semi-supervised learning using the standard
ResNet-50 (×1). It represents a +1.3% and +0.7% advancement over the baseline framework
BYOL [13] and significant improvement compared to the strong supervised baseline in the
accuracy metric.

Table 1. Evaluation on the ImageNet. The linear evaluation and semi-supervised learning with
a fraction (1% and 10%) on ImageNet labels report Top-1 and Top-5 accuracies (in%) using the
pre-trained ResNet-50 backbone. The best result is bolded.

Method
Linear Evaluation Semi-Supervised Learning

Top-1 Top-5 Top-1 Top-5

1% 10% 1% 10%
Supervised 76.5 - 25.4 56.4 48.4 80.4
PIRL [11] 63.6 - - - 57.2 83.8

SimCLR [9] 69.3 89.0 48.3 65.6 75.5 87.8
MoCo [17] 60.6 - - - - -

MoCo v2 [54] 71.1 - - - - -
SimSiam [18] 71.3 - - - - -

BYOL [13] 74.3 91.6 53.2 68.8 78.4 89.0
HARL (ours) 74.0 91.3 54.5 69.5 79.2 89.3

4.2.2. Transfer Learning to Other Downstream Tasks

We evaluated the HARL’s quality of representation learning on linear classification
and fine-tuned model following the evaluation setup protocol [9,13,39,55] as detailed in
Appendix B.2. HARL’s learned representation can perform well for all six different natural
distribution image datasets. It has competitive performance in various distribution datasets
compared to baseline BYOL [13] and improves significantly compared to the SimCLR [9]
approach over six datasets, as shown in Table 2.

We further evaluated HARL’s generalization ability and robustness with different
computer vision tasks, including object detection of VOC07 + 12 [56] using Faster R-
CNN [57] architecture with R50-C4 backbone and instance segmentation task of COCO [58]
using Mask R-CNN [59] with R50-FPN backbone. The fine-tuning setup procedure and
setting hyperparameter are detailed in Appendix B.3. We report the performance of
the standard AP, AP50 and AP75 metrics in Table 3. HARL outperforms the baselines
BYOL [13] and also has a significantly better performance than other self-supervised
frameworks such as SimCLR [9], MoCo_v2 [17] and supervised baseline on object detection
and segmentation.
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Table 2. Transfer via fine-tuning on the image classification task. The transfer learning perfor-
mance between HARL framework and other self-supervised baseline benchmarks across six natural
image classification datasets with the self-supervised pre-trained representation on the ImageNet
1000 classes using the standard ResNet-50 backbone. The best result is bolded.

Method Food101 CIFAR10 CIFAR100 SUN397 Cars DTD

Linear evaluation:
HARL (ours) 75.0 92.6 77.6 61.4 67.3 77.3

BYOL [13] 75.3 91.3 78.4 62.2 67.8 75.5
MoCo v2 (repo) 69.2 91.4 73.7 58.6 47.3 71.1

SimCLR [9] 68.4 90.6 71.6 58.8 50.3 74.5
Fine-tuned:

HARL (ours) 88.0 97.6 85.6 64.1 91.1 78.0
BYOL [13] 88.5 97.4 85.3 63.7 91.6 76.2

MoCo v2 (repo) 86.1 97.0 83.7 59.1 90.0 74.1
SimCLR [9] 88.2 97.7 85.9 63.5 91.3 73.2

Table 3. Transfer learning to other downstream vision tasks. Benchmark the transfer learning
performance between HARL framework and other self-supervised baselines on object detection and
instance segmentation task. We use Faster R-CNN with C4 backbone for object detection and Mask-
RCNN with FPN backbone for instance segmentation. Object detection and instance segmentation
backbone initialize with the pre-trained ResNet-50 backbone on ImageNet 1000 classes. The best
result is bolded.

Method
Object Detection Instance Segmentation

VOC07 + 12 Detection COCO Detection COCO Segmentation

AP50 AP AP75 AP50 AP AP75 APmask
50 APmask APmask

75
Supervised 81.3 53.5 58.8 58.2 38.2 41.2 54.7 33.3 35.2

SimCLR-IN [18] 81.8 55.5 61.4 57.7 37.9 40.9 54.6 33.3 35.3
MoCo [17] 82.2 57.2 63.7 58.9 38.5 42.0 55.9 35.1 37.7

MoCo v2 [54] 82.5 57.4 64.0 - 39.8 - - 36.1 -
SimSiam [18] 82.4 57.0 63.7 59.3 39.2 42.1 56.0 34.4 36.7

BYOL [13] - - - 40.4 - - 37.0 -
BYOL (repo) 82.6 55.5 61.9 61.2 40.2 43.9 58.2 36.7 39.5
HARL (ours) 82.7 56.3 62.4 62.1 40.9 44.5 59.0 37.3 40.0

5. Ablation and Analysis

We study the HARL’s components to give the intuition of its behavior and impact on
performance. We reproduce the HARL framework with multiple running experiments.
For this reason, we hold the same set of hyperparameter configurations and change the
configuration of the corresponding component, which we try to investigate. We perform
our ablation experiments on the ResNet-50 and ResNet-18 architecture on the ImageNet
training set without labels. We evaluate the learned representation on the ImageNet linear
evaluation during the self-supervised pretraining stage. To do so, we attach the linear
classifier on top of the base encoder with the block gradient flow on the linear classifier’s
input, which stops influencing and updating the encoder with the label information (a
similar approach to SimCLR [9]). We run ablations over 100 epochs and evaluate the
performance of the public validation set of the original ILSVRC2012 ImageNet [24] in
the Top-1 accuracy metric at every 100 or 200 steps per epoch following the protocol as
described in Appendix B.1.

5.1. The Output of Spatial Feature Map (Size and Dimension)

In our HARL framework, separating foreground and background features from the
output spatial feature map is essential to maximize the similarity objective across different
augmented views. To verify this hypothesis, we analyze several spatial outputs in various
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sizes and dimensions by modifying the ResNet kernel’s stride to generate the different
feature map sizes with the same dimension. For illustration, the standard ResNet is the
sequence of four convolution building blocks (conv2_x, conv3_x, conv4_x, conv5_x). For
ResNet-50 architecture, the dimension of conv_5x block output feature map is 7 × 7 × 2048.
After changing the kernel stride of the conv_4x block from two to one, its new dimension
will be 14 × 14 × 2048. In this modified ResNet-50 architecture, the conv5_x block’s spatial
feature map size is the same as the conv4_x block output.

We conduct the experiment for three different sizes including a deep ResNet-50
(7 × 7 × 2048, 14 × 14 × 2048, 28 × 28 × 2048) and a shallow ResNet-18 (7 × 7 × 512,
14 × 14 × 512, 28 × 28 × 512). Figure 3 shows the experimental results of various output
sizes and dimensions in the pretraining stage that impact the learned representation when
evaluating transfer representation on the ImageNet with linear evaluation protocol. Both
shallow and deep ResNet architecture yields better learning ability on the larger output
spatial feature map size 14 × 14 than 7 × 7. In our experiments, the performance decreases
as we continue to go to a larger output size, 28 × 28 or 56 × 56.

 
(a) (b) 

Figure 3. The ImageNet linear evaluation Top-1 accuracy (in %) of spatial output feature maps in
various sizes and dimensions during the self-supervised pretraining stage. (a) The self-supervised
pre-trained encoder uses the ResNet-18 backbone; (b) The self-supervised pre-trained encoder uses
the ResNet-50 backbone.

5.2. Objective Loss Functions

HARL framework structure reuses elements of BYOL [13]. We use two neural networks
denoted as online network and target network. Each network is defined by a set of parameters
θ and ξ. The optimization objective minimizes the loss Lθ, ξ with respect to learnable
parameters θ, while the set ξ is parameterized by using an exponential moving average of
the θ, as shown in Equation (3):

ξ ← τξ + (1 − τ)θ. (3)

Unlike previous approaches that minimize loss function only based on the whole
image latent embedding vector between two augmented views, HARL minimized the
similarity of object-level latent representation, which associated the same spatial regions
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abstracting from segmentation mask and thus same semantic meanings. As shown in
Figure 1, we use the mask information to separate the spatial semantic object-level feature
(foreground and background) of the two augmented views. Then, we minimize their
negative cosine similarity, denoting mask loss in Equation (1). In addition to our mask loss
objective, we combine the distance loss of the whole image representation and object-level,
resulting in hybrid loss as described in Equation (4). We study these two loss objectives in
the self-supervised pretraining stage and then evaluate the obtained representation on the
ImageNet with a linear evaluation protocol.

5.2.1. Mask Loss

The mask loss objective converges to minimizing the distance loss objective be-
tween foreground and background latent embedding on vector space Lforeground(θ, ξ) and
Lbackground(θ, ξ) with the weighting coefficient α as described in Equation (1). We study
the impact of α when it is set to a few predefined values and when it varies according to
the cosine scheduling rule. In the first approach, we perform self-supervised pretraining
sweeping over three different values {0.3, 0.5, 0.7}. In the second approach, we schedule
the α based on a cosine schedule, α � (1 − (1 − αbase))·(cos πk/K) + 1)/2, to gradually
increase from the starting αbase value to 1 corresponding current training step k over total
training step K. We tried three αbase values, including 0.3, 0.5 and 0.7. We report the Top-1
accuracy on the ImageNet linear evaluation set during the self-supervised pretraining stage,
as shown in Figure 4. The weighting coefficient α value of 0.7 yields the consistent learned
representation of both approaches. Furthermore, the experimental results demonstrate that
the foreground is more important than the background latent representation. For example,
in the ImageNet training set, many images exist in which the background information is
more than 50% of the image.

 
(a) (b) 

Figure 4. The impact of weighting coefficient α value to the obtained representation during the
self-supervised pretraining stage with the ResNet-50 backbone. The evaluation during pretraining
uses the ImageNet linear evaluation protocol in Top-1 accuracy (in%). (a) The α value is the fixed
value; (b) The α value follows the cosine function scheduler.

5.2.2. Hybrid Loss

The objective combines whole image representation embedding v1 and v2 together
with object-level representation embedding mask loss described in Equation (1). v1 and v2
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are extracted from the two augmented views x and x’ and are denoted as v1 �θ
◦gθ

◦qθ(x) Rd

and v2 � ξ
◦gξ( x′) Rd. The hybrid loss minizines the negative cosine similarity with

weighting coefficient λ:

Lhybrid
θ = −

[
λ· v1

‖v1‖2
· v2

‖v2‖2
+ (1 − λ)·LMaskloss

θ

]
, (4)

where v1 and v2 are the whole image latent representation; LMaskloss
θ is the distance loss com-

puted from the foreground and background latent representation described in Equation (1);
‖.‖2 is �2-norm; and λ is the weighting coefficient in the range [0–1].

To study the impact of weighting coefficient λ, we use a cosine scheduling value
similar to α in the mask loss section. In our experiment, the weighting coefficient λ cosine
scheduling sweeping over four λbase values {0.3, 0.6, 0.7, 0.9}. We report the Top-1 accuracy
of the ImageNet linear evaluation protocol on the validation set during the self-supervised
pretraining stage, shown in Figure 5. We found using the weighting coefficient λbase value
of 0.7 obtains the consistent learned representation when transferring to downstream tasks.

Figure 5. The impact of the weighting coefficient λ value to the obtained representation of the
pre-trained encoder (ResNet-50) during the self-supervised pretraining stage on the ImageNet linear
evaluation protocol in Top-1 accuracy (in%).

5.2.3. Mask Loss versus Hybrid Loss

We compare the obtained representation using mask loss and hybrid loss on self-
supervised pretraining. To do so, we implement the HARL framework with both loss
objectives on self-supervised pretraining. We use the cosine schedule function to control
the weighting coefficient α and λ sweeping on three different initial values {0.3, 0.5, 0.7}
for both coefficients. We evaluate the obtained representation of the pre-trained encoder
using ResNet-50 backbone in Top-1 and Top-5 accuracy (in%) on ImageNet linear eval-
uation protocol, as shown in Table 4. According to the experimental result, using the
hybrid loss incorporated between global and object-level latent representation yields better
representation learning during self-supervised pretraining.
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Table 4. The comparison obtained representation of HARL framework using mask loss and hybrid
loss objective. We report Top-1 and Top-5 (in %) accuracy on ImageNet linear evaluation from
100 epochs pre-trained ResNet-50 backbone on ImageNet 1000 classes.

Method Top-1 Accuracy Top-5 Accuracy

Mask Loss

α_base = 0.3 51.3 77.4
α_base = 0.5 53.9 79.4
α_base = 0.7 54.6 79.8

Hybrid Loss

λ_base = 0.3 55.0 79.4
λ_base = 0.5 57.8 81.7
λ_base = 0.7 58.2 81.8

5.3. The Impact of Heuristic Mask Quality

In our work, the HARL objective uses two different image segmentation techniques.
Which ones lead to the best representation? We first consider the heuristics mask retriev-
ing from the computer vision DRFI [44] approach by varying the two hyperparameters
(the Gaussian filter variance σ and the minimum cluster size s) as described in detail
in Appendix C.1. In our implementation, we generate a diverse set of binary masks by
different combinations of σ ∈ {0.2, 0.4, 0.8} and c ∈ {1000, 1500}. The sets of the generated
masks are shown in Figure 6. We found that the setting of σ = 0.8 and s = 1000 generate
more stable mask quality than other combinations. Following the deep learning technique,
we use the pre-trained deep convolution neural network as the feature extractor and design
a saliency head prediction on top of the feature extractor output’s representation in the
following three steps described in Appendix C.2. The generated masks are dependent on
the pixel saliency threshold, which determines the foregroundness and backgrounness
of the pixel. In our implementation, we tested the saliency threshold value ranging in
{0.4, 0.6, 0.7} as shown in Figure 7. We choose the threshold value equal to 0.5 for generating
masks in the ImageNet dataset. After choosing the best configure of the two techniques, we
generate the mask for the whole training set of the ImageNet [24] dataset. We evaluate the
mask quality generated by computing the mean Intersection-Over-Union (mIoU) between
masks generated with the ImageNet ground-truth mask annotated by humans from Pixel-
ImageNet [60]. The mIoU of the deep learning masks achieves 0.485 over 0.398 of DRFI
masks on the subset of 0.485 million images (946/1000 classes of ImageNet). We found that
in a complex scene, where multiple objects exist in a single image, the mask generated from
the DRFI technique is noisier and less accurate than the deep learning masks, as illustrated
in Figure 8.

To fully evaluate the impact of representation learning on downstream performance,
we inspect the obtained representational quality with the transfer learning performance
on the object detection and segmentation shown in Table 5. The result indicates that for
most object detection and segmentation tasks, HARL learning based on masks with deep
learning outperforms the one with DRFI masks, although the difference is very small.
It shows that the quality of the mask used for HARL does have a small impact on the
performance of the downstream task.
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Figure 6. The heuristic binary masks are generated using DRFI with σ = {0.2, 0.4, 0.8} with c =
{1000, 1500}.

 

Figure 7. The heuristic binary masks are generated using an unsupervised deep learning encoder
with saliency threshold values.
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Figure 8. The inspection examples of the generated heuristic binary masks between DRFI and
deep learning.

Table 5. The impact of mask quality on HARL framework performance on the downstream object
detection and instance segmentation task. We use Faster R-CNN with C4 backbone for object
detection and Mask-RCNN with FPN backbone for instance segmentation. Object detection and
instance segmentation backbones are initialized with the 100-epoch pre-trained ResNet-50 backbone
on ImageNet dataset. The best result is bolded.

Method
Object Detection Instance Segmentation

VOC07 + 12 Detection COCO Detection COCO Segmentation

AP50 AP AP75 AP50 AP AP75 APmask
50 APmask APmask

75
HARL (DRFI Masks) 82.3 55.4 61.2 44.2 24.6 24.8 41.8 24.3 25.1

HARL (Deep Learning Masks) 82.1 55.5 61.7 44.7 24.7 25.3 42.3 24.6 25.2

6. Conclusions and Future Work

We introduce the HARL framework, a new self-supervised visual representation
learning framework, by leveraging visual attention with the heuristic binary mask. As a
result, HARL manages higher-quality semantical information that considerably improves
representation learning of self-supervised pretraining compared to previous state-of-the-art
methods [9,13,17,18] on semi-supervised and transfers learning on various benchmarks.
The two main advantages of the proposed method include: (i) the early attention mecha-
nism that can be applied across different natural image datasets because we use unsuper-
vised techniques to generate the heuristic mask and do not rely on external supervision;
(ii) the entire framework can transfer and adapt quickly either to self-supervised contrastive
or non-contrastive learning framework. Furthermore, our method will apply and accelerate
the currently self-supervised learning direction on pixel-level objectives. Our object-level
abstract will make this objective more efficient than the existing work based on computing
pixel distance [61].

In our HARL framework, the heuristic binary mask is critical. However, the remaining
challenge of estimating accurate masks is suitable for datasets with one primary object,
such as the ImageNet dataset. The alternative is mining the object proposal of the image
in the complex dataset which contains multiple things by producing heuristic semantic
segmentation masks. Designing the new self-supervised framework to solve the remaining
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challenge of datasets which contain multiple objects is an essential next step and exciting
research direction for our future work.
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Appendix A. Implementation Detail

Appendix A.1. Implementation Data Augmentation

HARL data augmentation pipeline starts with the standard inception-style random
cropping [62]. These cropping views continue to transform using the same set of im-
age augmentation as in SimCLR [9], consisting of the arbitrary sequence composition
transformation (color distortion, grayscale conversion, gaussian blur, solarization).

Each RGB image and the heuristic binary mask corresponding to each image are
transformed through the augmentation pipeline composed of the following operations
described below. First, we utilize the image with the random crop with resizing and random
flipping. For the binary mask, these masks apply, only cropping and flipping the underlying
RGB image which corresponds. Then, these crop images used give the probability of color
distortion (color jittering, color dropping), random Gaussian blur and solarization.

1. Random cropping with resizes: a random patch of the image is selected. In our
pipeline, we use the inception-style random cropping [62], whose area crop is uni-
formly sampled in [0.08 to 1.0] of the original image, and the random aspect ratio is
logarithmically sampled in [3/4, 4/3]. The patch is then resized to 224 × 224 pixels
using bicubic interpolation;

2. Optional horizontal flipping (left and right);
3. Color jittering: the brightness, contrast, saturation and hue are shifted by a uniformly

distributed offset;
4. Optional color dropping: the RGB image is replaced by its greyscale values;
5. Gaussian blurring with a 224 × 224 square kernel and a standard deviation uniformly

sampled from [0.1, 2.0];
6. Optional solarization: a point-wise color transformation x �→ x · x<0.5 + (1− x)· x<0.5

for pixel values in the range [0–1].
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The two views augmented image’s x, x′ and mask pair m, m′ results from augmenta-
tions sample from distributions T, T′, M and M′, respectively. These distributions apply the
primitives described above with different probabilities and magnitudes shown in Table A1.
The following table specifies these parameters’ inherence from the BYOL framework [13]
without modification.

Table A1. Parameters used to generate image augmentations.

Parameter T T′ M M′

Inception-style random crop probability 1.0 1.0 1.0 1.0
Flip probability 0.5 0.5 0.5 0.5

Color jittering probability 0.8 0.8 - -
Brightness adjustment max intensity 0.4 0.4 - -
Contrast adjustment max intensity 0.4 0.4 - -

Saturation adjustment max intensity 0.2 0.2 - -
Hue adjustment max intensity 0.1 0.1 - -

Color dropping probability 0.2 0.2 - -
Gaussian blurring probability 1.0 0.1 - -

Solarization probability 0.0 0.2 - -

Appendix A.2. Implementation Masking Feature

The masking feature step of the HARL framework is essential to leverage the objective-
level information from the heuristic binary mask. The masking features method is com-
posed of three steps. The first step is taking the spatial feature map output 7 × 7 × 2048,
which is the final layer before the global average output pooling of the ResNet architecture.
Second, in our training loop design, the mask image is directly resized to 7 × 7 × 3 to
match the size of the output spatial feature maps without passing through the encoder.
Then, the resized mask indexes the feature, one encodes for the foreground feature and zero
encodes for the background feature. In the end, we multiply the indexing mask with the
spatial features maps to separate the foreground and background features (the correspond-
ing output is two spatial features maps of 7 × 7 × 2048 for foreground and background
features). Then, these two spatial feature map outputs apply global average pooling and
further reduce dimension with non-linear multi-layer perceptron (MLP) architecture.

Appendix B. Evaluation on the ImageNet and Transfer Learning

Appendix B.1. Implementation Masking Feature Linear Evaluation Semi-Supervised Protocol
on ImageNet

Our data preprocessing procedure is described as follows: At training time, the images
apply the simple augmentations strategies, including random flip and crops with resizing
to 224 × 224 pixels. At testing time, all images applied are resized to 256 pixels along the
shorter side using bicubic resampling, which took a 224 × 224 center crop. Images are
normalized by color channel in training time and testing and divided by standard deviation
computed on ImageNet ([9,13] provide a similar pipeline for data processing).

Linear evaluation: We train a linear classifier on top of the frozen pre-trained encoder
representation in the linear evaluation without updating the network parameters and the
batch statistics. In design and configuration protocol, we follow the standard on ImageNet
as in [9,51,54,55]. To train and optimize the linear classifier, we use the SGD optimizer to
optimize the cross-entropy loss with the Nesterov momentum over 100 epochs using a
batch size of 1024 and a momentum of 0.9. without regularization methods such as weight
decay, gradient clipping [63], etc. We report the test set’s accuracy (the public validation set
of the original ILSVRC2012 ImageNet [24] dataset).

Semi-supervised evaluation: We fine-tuned the network parameters of the pre-
trained encoder representation following the semi-supervised learning protocol and proce-
dure as in [9]. Data preprocessing and augmentation strategies at training and testing time
for 1% and 10% follow a similar procedure of linear evaluation (described in Appendix C.1)
except that with a larger batch size of 2048 and trained over 60 epochs for 1% labeled data
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and 30 epochs for 10% labeled data. In Table 1 of Section 5.1, we report that the result
fine-tuned the representation over the 1% and 10% ImageNet splits from [9] with ResNet-50
(1×) architectures.

Datasets: We followed previous works [9,13] to transfer the representation on the
linear classification and fine-tuned it on six different natural image datasets. These datasets
are namely Food-101 [64], CIFAR-10 [65] and CIFAR-100 [65], the SUN397 scene dataset [66],
Stanford Cars [67] and the Describable Textures Dataset (DTD) [68]. The detail of each
dataset is described in Table A2. We use the training set and validation set, which are
specified by the dataset creators, to select hyperparameters. On datasets without a test set
or validation set, we use the validation examples as a test set or hold out a subset of the
training examples we use as the validation set, as described in Table A2.

Table A2. The different image datasets used in transfer learning. When an official test split with
labels is not publicly available, we use the official validation split as a test set and create a held-out
validation set from the training examples.

Dataset Classes
Original Training

Examples
Training
Examples

Validation
Examples

Test Examples
Accuracy
Measure

Test
Provided

Food101 101 75,750 68,175 7575 25,250 Top-1 accuracy -
CIFAR-10 10 50,000 45,000 5000 10,000 Top-1 accuracy -

CIFAR-100 100 50,000 44,933 5067 10,000 Top-1 accuracy -
Sun397 (split 1) 397 19,850 15,880 3970 19,850 Top-1 accuracy -

Cars 196 8144 6494 1650 8041 Top-1 accuracy -
DTD (split 1) 47 1880 1880 1880 1880 Top-1 accuracy Yes

Standard evaluation metrics: To evaluate HARL transfer learning on different datasets
and other vision tasks, we use the standard evaluation metrics of each dataset to assess and
benchmark our results on these datasets as described in Top-1, AP, AP50 and AP75.

• Top-1: We compute the proportion of correctly classified examples.
• AP, AP50 and AP75: We compute the average precision as defined in [56].

Appendix B.2. Transfer via Linear Classification and Fine-Tuning

Transfer linear classification: We initialize the network parameters and freeze the
pre-trained encoder without updating the network parameters and batch statistics. The
standard linear evaluation protocol follows [9,51,55]. In training and testing, the images are
resized to 224 × 224 along the shorter side using bicubic resampling and then normalized
with ImageNet statistics without data augmentation. Both phase images normalized the
color channels by subtracting the average color and dividing by the standard deviation. We
train a regularized multinomial logistic regression classifier on top of the frozen representa-
tion. We optimize cross-entropy loss �2—regularization with the parameters from a range
of 45 logarithmically spaced values between 10−6 and 105 (similar to the optimization
procedure of [13]). The model is retrained on the training and validation set combined. The
model accuracy performance is reported for the test set.

Transfer fine-tuning: We follow fine-tuning protocol as in [9,51,69] to initialize the
network with the parameters of the pre-trained representation. At both phase training
and testing time, we follow the image preprocessing and data augmentation strategies to
the linear evaluation procedure in Appendix B.1. To fine-tune the network, we optimized
the cross-entropy loss using SGD optimizer with a Nesterov momentum value of 0.9 and
trained over 20,000 steps with a batch size of 256. We set a hyperparameter including the
momentum parameter for batch statistics, learning rate and weight decay selection method,
same as in [9,13]. After selecting the optimal hyperparameters configured for the validation
set, the model is retrained on the combined training and validation set together, using the
specified parameters. The absolute accuracy is reported for the test set.
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Appendix B.3. Transfer Learning to Other Vision Tasks

Object detection and instance segmentation: We followed previous works [13,17]
for the standard setup transferring procedure on Pascal object detection. We use a Faster
R-CNN [57] with the R50-C4 backbone. We fine-tune with the training and validation set
(16K images) and report the results for the test set of the PASCAL VOC07 + 12 [56] dataset.
The backbone is initialized with our pre-trained ResNet50. We use the SGD optimizer to
optimize network parameters for 24K iterations with a batch size of 16. We use the initial
learning rate of 0.08, then it is reduced to 10−2 at 18K and 10−3 at 22K with a linear warmup
of the slope 0.3333 for 1000 iterations and the region proposal loss weight of 0.2. Then, we
report the final results of AP, AP50 and AP75 metrics for the test set. For instance, regarding
the segmentation task on the COCO [58] dataset, we use Mask R-CNN with FPN backbone
to iterate over 90K iterations with a batch size of 16. We initialize the learning rate at 0.03
and reduce it by 10 at the 60K and 80K iterations with warmup iterations of 50.

Appendix C. Heuristic Mask Proposal Methods

In our HARL framework, to generate the heuristic binary mask we investigated
various supervised and unsupervised techniques from conventional machine learning to
deep-learning-based approaches. The benchmark qualitative and quantitatively state-of-
the-art approaches use computer vision methods [70]. The comprehensive literature survey
and benchmark [71] offer multiple supervised deep-learning-based methods for salient
object detection on multi-level supervision, network architectures and learning paradigms.
Several works of the unsupervised deep learning method [72,73] used predictions obtained
with the hand-crafted prior as the pseudo label to train the deep neural network.

Appendix C.1. Heuristic Binary Mask Generates Using DRFI

Our first approach uses the conventional machine learning method to generate binary
masks by adopting the DRFI [44] technique. This method detects a salient object inside
an image by carrying out three main steps: multi-level segmentation that segments an
image into regions and regional saliency computation that maps the features extracted
from each area to a saliency score, which is predicted by a random forest based on three
elements: regional contrast, regional property and regional backgrounds. Additionally, at
last, multi-level saliency fusion combines the saliency maps over all the layers of segmen-
tation to obtain the final saliency map. To obtain a binary mask, we generate the saliency
map of an image. Then, we define a threshold of 40% (top 40% saliency score) to determine
what regions are considered salient objects. Any area that is not a salient object will be
regarded as background. We generate a diverse set of binary masks by varying the two hy-
perparameters σ and the minimum cluster size c. Using σ ∈ {0.2, 0.4, 0.8} and c ∈ {1000,
1500} in our implementation, we defined σ = 0.8 and c = 1000 for generating masks in the
ImageNet dataset. Additionally, the different configuration hyperparameters experimented
with sweeping sigma values σ = {0.2, 0.4, 0.8} and component sizes of c = {1000, 1500} are
shown in Figure 6.

Appendix C.2. Heuristic Binary Mask Generates Using Unsupervised Deep Learning

The second approach in our mask-generated techniques is based on a self-supervised
pre-trained feature extractor from previous works [9,17,39,42]. We design a new saliency
head prediction with pre-trained encoder representation to generate the binary masks. The
design is to obtain a binary mask by carrying out three main steps. First, we take the output
feature maps from a pre-trained ResNet-50 encoder [9,42]. Second, we pass the output
feature map into a 1 × 1 convolutional classification layer for saliency prediction. The
classification layer predicts the saliency or “foregroundness” of a pixel. Finally, we take the
classification layer’s output values and set a threshold to decide which pixels belong to the
foreground. The pixel saliency value more significant than the threshold is determined as a
foreground object. In our implementation, we defined a threshold value equal to 0.5 for
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generating masks in the ImageNet dataset. We further experiment with several threshold
values in {0.4, 0.6, 0.7}; all these configure mask-generated examples in Figure 7.
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Abstract: In this work, a method for automatic hyper-parameter tuning of the stacked asymmetric
auto-encoder is proposed. In previous work, the deep learning ability to extract personality perception
from speech was shown, but hyper-parameter tuning was attained by trial-and-error, which is time-
consuming and requires machine learning knowledge. Therefore, obtaining hyper-parameter values
is challenging and places limits on deep learning usage. To address this challenge, researchers have
applied optimization methods. Although there were successes, the search space is very large due to
the large number of deep learning hyper-parameters, which increases the probability of getting stuck
in local optima. Researchers have also focused on improving global optimization methods. In this
regard, we suggest a novel global optimization method based on the cultural algorithm, multi-island
and the concept of parallelism to search this large space smartly. At first, we evaluated our method
on three well-known optimization benchmarks and compared the results with recently published
papers. Results indicate that the convergence of the proposed method speeds up due to the ability
to escape from local optima, and the precision of the results improves dramatically. Afterward, we
applied our method to optimize five hyper-parameters of an asymmetric auto-encoder for automatic
personality perception. Since inappropriate hyper-parameters lead the network to over-fitting and
under-fitting, we used a novel cost function to prevent over-fitting and under-fitting. As observed,
the unweighted average recall (accuracy) was improved by 6.52% (9.54%) compared to our previous
work and had remarkable outcomes compared to other published personality perception works.

Keywords: big five personality traits; cultural algorithm; deep learning; hyper-parameter optimization;
personality perception

1. Introduction

Whether deep or shallow, the operation of artificial neural networks (ANNs) depends
on their hyper-parameters and parameters [1–3]. Certain variables of ANNs are called
hyper-parameters, such as the number of layers [2], or control the training process, such as
the learning rate [4]. In contrast, the trainable variables pertaining to layer connections and
tuned during the training process, which are weights and biases, are called parameters [5–7].
Although parameter tuning may yield good results, it does not yield notable results without
hyper-parameter tuning (HPT).

The importance of HPT became more manifest than before with the development of
deep learning algorithms. Deep learning is a type of machine learning (ML) technique
with diverse hyper-parameters that severely affect its performance [8–10]. Since HPT is
an arduous task and requires data and network knowledge [11,12], it is often acquired
by empirical methods (trial-and-error), which is time-consuming and does not guarantee
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significant results in terms of efficient algorithms and overall cost complexity. Therefore,
studies based on applying optimization methods to ANNs have gained attention.

Accordingly, the usage of optimization algorithms is divided into three groups, as follows:

1. HPT with the classical method and parameter optimization [13–16]: The fine-tuning
of weights and biases (parameters) can provide useful information about the problem,
but their size and initial value rely on HPT. Moreover, the number of parameters in
deep neural networks (DNNs) and high dimensional datasets is enormous, and calcu-
lating the optimum value of these parameters is complicated, not easily implemented,
and requires computational systems with remarkable capabilities.

2. Hyper-parameter and parameter optimization [17–19]: Adaptive hyper-parameters
are obtained by parameter training. The critical disadvantage is that with each possible
vector of hyper-parameters, the parameters must be optimized, which causes runtime
errors in the computational system and requires expensive training and large storage
capacity to save the best parameters value over epochs. Additionally, all possible
combinations of hyper-parameters are computationally infeasible. Hence, this method
is not applicable in a large model such as deep learning [20,21].

3. Hyper-parameter optimization (HPO) and parameter tuning with back-
propagation [4,11,22]: The main drawback is that although optimization methods are
efficient in finding global optima, the gradient may vanish when back-propagating.
As a result, not all network parameters are tuned well, which impacts results [23]. To
tackle the poor-tuning process of deep neural network parameters, an asymmetric
auto-encoder (AsyAE) was presented in our previous work for automatic personality
perception (APP) from speech [24]. We showed that AsyAE could improve the model
outcome results compared with conventional auto-encoders by semi-supervised train-
ing of parameters, and it can be effectively employed in deep learning. However, the
stacked asymmetric auto-encoder (SAAE) hyper-parameters were chosen by trial-and-
error, which was time-consuming, and two personality traits achieved lower accuracy
than other prior research [24].

Thus, the aims of the present work were to (1) propose a novel optimization method
based on cultural evolution and parallel computing, (2) obtain the near-optimal values of
hyper-parameters of SAAE, and (3) classify five personality traits.

The rest of the article is organized as follows. In Section 2, some related works of HPO
in deep learning and APP are explained. In Section 3, the dataset is introduced, and the
summary of the feature extraction method is presented in Section 4. The new optimization
method is proposed in Section 5. The simulation results of the new method, which is
applied to three benchmark functions of finding global optima, are presented in Section 6.
In addition, this section discusses the outcomes of applying the proposed method to SAAE
for automatic personality perception classification.

2. Related Works

Given that this article examines HPO methods in order to find a proper one to optimize
the hyper-parameters of SAAE for automatic personality trait perception, the related works
section is divided into two parts. The focus of the first part is on recently published methods
of neural network hyper-parameter tuning, regardless of the application in which it is used.
Thus, the works related to the investigation of HPO in ML are summarized in the first
part. Since the aim of our research was HPT of SAAE to classify five personality traits from
speech, the second part is related to studying HPO in machine learning methods applied in
the field of personality trait perception.

2.1. Hyper-Parameter Tuning in ML

Deep learning hyper-parameter types are vast and can be divided into three groups:
integer, real, and categorical. The integer group consists of variables such as the number of
layers (whether hidden or convolutional) [25], the number of neurons [8], the size of the
kernel [26], the number of kernels [27], batch size, pooling size, and number of maximum
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epochs [9]. The real group includes the learning rate [25], dropout rate [25], regularization
factor [25], network weight initialization [5], and momentum [4]. The categorical group
comprises activation function type [8] and optimization method [8].

Considering that a change in the value of each hyper-parameter changes the values
of the neural network parameters that affect the output of the network, and also that ex-
amination of any possible combination of hyper-parameters is time-consuming, expensive
and practically impossible, studies have investigated the effect of adjusting and optimizing
some of the most important hyper-parameters.

In this regard, the article in [4] employed the HPO method for bearing fault diag-
nosis in mechanical equipment. Parallel computing was used to find hyper-parameters
of the deep belief network (DBN). The learning rate and momentum were optimized,
while other hyper-parameters were predefined and kept constant. Additionally, Wu Deng
et al. used quantum-inspired differential evolution (DE) to optimize DBN parameters.
Results showed an improvement in global search and avoiding premature convergence for
fault classification [28].

The numbers of hidden neurons as a hyper-parameter and of the weights/biases
as parameters were optimized in a feed-forward ANN by Gray wolf optimizer in [18].
Feed-forward ANNs (not back-propagation) were used because adjusted parameters were
achieved by the optimization method.

Y. Peng et al. proposed an HPO method based on a fuzzy system in [8]. They
optimized the number of hidden layers and the number of neurons in each layer of a DNN.
The activation function type and optimization method, including Genetic Algorithms (GA),
Bayesian search, grid search, random search, and quasi-random search, were selected
automatically during HPO. For preventing over-fitting, the dropout technique was used.
The proposed method was tested in three rainfall prediction datasets.

The authors of [29] suggested a distributed particle swarm optimization (PSO) for
the HPO of a convolution neural network (CNN). They were concerned about the time-
consuming population search based on distributed PSO, and parallel computing was
employed to speed up the algorithm. They optimized the number and size of the kernels,
the type of pooling (max or average) for two convolutional layers, the activation function
type in convolutional layers, the number of neurons, learning rate, and the dropout rate of
the fully connected layers.

Time-series prediction of congestion in highway systems based on long short-term
memory (LSTM) was investigated in [9]. To obtain the proper model and structure, the au-
thors recommended an HPO method by applying the Bayesian optimization (BO) method.
Five hyper-parameters were automatically obtained, including learning rate, the number
of hidden layers, the number of neurons in each layer, batch size, and dropout rate.

The intention of [25] was to examine the robustness of one HPO method over six
benchmarks, contrary to other works that designed an algorithm that fit one problem. In
other work, the authors used BO as an old HPO method in CNN [1] and applied four
strategies to alleviate the drawbacks of BO. They tuned the hyper-parameters of two
convolutional layers and two fully connected layers in this way.

In [26], an intuitive architecture design using GA was proposed for CNN. The obtained
model was evaluated on a CNN with a single convolutional layer and a fully connected
layer. Additionally, some hyper-parameters, including maximum epochs, batch size, initial
learning rate, regularization, and momentum were optimized by PSO to prepare a CNN
for expression recognition in [30].

Since the success of neural networks depends on their structure, the article in [31] pro-
posed a micro-canonical optimization algorithm for overcoming large parameter spaces and
optimizing hyper-parameters of a CNN. Hyper-parameters were the number of convolu-
tion layers, activation function type, batch size, pooling type, and dropout rate. The method
was evaluated by six image recognition datasets and exhibited accuracy improvement.

State-of-health estimation and remaining usable life prediction in battery prognosis
were examined in [32] by a deep convolution neural network. The authors addressed
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hyper-parameter tuning that affected DNN performance. They improved the algorithm by
using the BO method.

Anjir A. Chowdhury et al. concentrated on the role of hyper-parameter optimization
in the performance and reliability of deep learning outcomes [33]. They compared several
HPO algorithms to obtain better validation accuracy in DNNs and concluded that most of
them are computationally expensive. Finally, a greedy approach-based HPO algorithm was
proposed for enabling faster computing on edge devices for on-the-fly learning applications.
The VGG and ResNet architectures were used, and their hyper-parameters such as epochs,
number of hidden layers, number of units per layer, activation function, dropout rate, batch
size, and learning rate were optimized.

The Gray wolf optimization was employed to optimize the parameters of the kernel
extreme learning machine to realize a hyperspectral image classification method in [34].

2.2. Automatic Personality Perception

In psychology, the big five inventory (BFI) is a well-known theory of personality with
five traits, including openness to experience (Ope.), conscientiousness (Con.), extraversion
(Ext.), agreeableness (Agr.), and neuroticism (Neu.). These traits are in an individual simul-
taneously by different scores and can be measured by a BFI questionnaire in general [35,36].

Due to the importance of personality in daily life, computer science researchers have
investigated personality trait identification by multimodal media (audio, text, video, image)
recently. Here, we focus on studies structured by deep learning methods.

A multimodal approach for perceiving personality traits was proposed by employing
well-known deep structures (ResNet-v2-101 and VGGish) [37]. The LSTM network for
using temporal information was added at the end. The authors optimized only the learning
rate, while other hyper-parameters were configured manually. It is clear that the structure of
the mentioned deep methods is fixed, and the weights and biases are pre-trained. Therefore,
HPO or HPT does not tune according to each dataset in these networks.

Given the fact that personality traits can influence appearance, MobileNetv2 and
ResNeSt50 networks were employed in [38] to extract facial features and classification.
Results specified that one pre-trained network such as MobileNetv2 is inappropriate for
classifying all five personality traits. It indicated that each trait must classify by a specific
model, which means different hyper-parameters are necessary. However, the authors did
not mention it directly and applied a combination of two pre-trained deep networks to
build a complex deep model.

Onno Kampman et al. examined feature extraction and the classification of five person-
ality traits by applying a one-dimensional CNN to a raw audio dataset. The HPT of the deep
network containing regularization factors and kernel size was performed manually [39].

One of the personality detection applications is discovering interpersonal communica-
tion skills. Article [40] investigated this aspect from a video interview using a semisuper-
vised CNN in which HPT was performed by trial-and-error. The authors concentrated on
video processing, and a fixed hyper-parameter set to utilize for all traits.

The study in [41] analyzed the acoustic and lexical features of a speech signal that
were affected by BFI traits. Additionally, it designed six models based on recurrent neural
networks for classifying those traits. Hyper-parameters such as hidden size, learning rate,
batch size, and dropout percentage were defined, but tuning them was not discussed.

3. Dataset

The SSPNet speaker personality corpus (SPC) is a well-known automatic personality
perception dataset introduced in 2010. This dataset originally contained 640 recorded
speech signals of 322 native French speakers. There is one speaker in each clip recorded
for 10 s. Due to the studies on the effect of mental factors on speech signals [42], the
collected clips were emotionally neutral, and to confirm that lexical content did not affect
the personality scores, evaluators who were foreign to the French language were selected.
Therefore, eleven assessors who did not understand French evaluated each clip based on
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the BFI questionnaire. The average score of these assessors was considered as the final
score for each clip. Hence, five scores were obtained for each clip [43].

Although the SPC dataset has been applied in several works and is a proper dataset
for comparison with the new methods, the number of samples is uses is low to train the
enormous number of parameters of a DNN. This important challenge was addressed in
our previous work [24], and we proved that the sample size of speech signals could be
enhanced with data augmentation methods based on a spectrogram so that the prosodic
content of speech could be preserved. Data augmentation is a popular technique to expand
the size of the dataset artificially and is widely used in image processing. However, using
this technique in speech is not as easy as using an image. In other words, we needed to
choose transformations that maintain the speaker’s personality, and we had to be confident
that such manipulations in the spectrogram do not interfere with the extracted features
related to personality traits. In this regard, frequency masking and time warping were
selected as data augmentation methods, and the number of clips increased up to 640,000.
For more details, please see [24].

4. Feature Extraction

Despite DNN’s ability to perform automatic feature extraction from raw speech signals,
deep learning methods have been generally applied to manually extracted hand-crafted
audio features. This is mainly because of the large volume of data required for deep
learning methods to outperform. Nevertheless, building a dataset with large available
labeled samples is costly, time-consuming, and laborious work in the automatic personality
perception field, which restricts various methods. Therefore, previous studies have used
handcrafted features for the DNN input [44].

These handcrafted features contain 6373 statistical features extracted from 130 low-
level descriptions (LLD) [45]. Table 1 contains 65 LLD features and 65 first derivatives of
LLD (ΔLLD), for a total of 130 LLD features.

For the LLD feature extraction process, each clip was divided into 60 ms frames with a
20 ms overlap in the time domain and 20 ms frames with a 10 ms overlap in the frequency
domain by the Opensmile2.3 toolkit.

Table 1. The 130 LLD features, including 65 LLD and 65 ΔLLD features [46].

4 Energy Related LLD Group

Sum of Auditory Spectrum (Loudness) Prosodic
Sum of RASTA-Style Filtered Auditory Spectrum Prosodic
RMS Energy, Zero-Crossing Rate Prosodic

55 Spectral LLD Group

RASTA-Style Auditory Spectrum, Bands 1–26 (0–8 kHz) Spectral
MFCC 1-14 Cepstral
Spectral Energy 250–650 Hz, 1 k–4 kHz Spectral
Spectral Roll Off Point 0.25, 0.50, 0.75, 0.90 Spectral
Spectral Flux, Centroid, Entropy, Slope, Harmonicity Spectral
Spectral Psychoacoustic Sharpness Spectral
Spectral Variance, Skewness, Kurtosis Spectral

6 Voicing Related LLD Group

F0 (SHS & Viterbi Smoothing) Prosodic
Probability of Voicing Sound Quality
Log. HNR, Jitter (Local, Delta), Shimmer (Local) Sound Quality
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Table 1. Cont.

4 Energy Related LLD Group

Mean Values
Arithmetic Mean AΔ, B, Arithmetic Mean of Positive Values AΔ, B,
Root-Quadratic Mean, Flatness
Moments: Standard Deviation, Skewness, Kurtosis
Temporal Centroid AΔ, B
Percentiles
Quartiles 1–3, Inter-Quartile Ranges 1–2, 2–3, 1–3,
1%—tile, 99%—tile, Range 1–99%
Extrema
Relative Position of Maximum and Minimum, Full Range (Maximum–Minimum)
Peaks and Valleys A

Mean of Peak Amplitudes,
Difference of Mean of Peak Amplitudes to Arithmetic Mean,
Peak to Peak Distances: Mean and Standard Deviation,
Peak Range Relative to Arithmetic Mean,
Range of Peak Amplitude Values,
Range of Valley Amplitude Values Relative to Arithmetic Mean,
Valley-Peak (Rising) Slopes: Mean and Standard Deviation,
Peak-Valley (Falling) Slopes: Mean and Standard Deviation
Up-Level Times: 25%, 50%, 75%, 90%
Rise and Curvature Time
Relative Time in which Signal is Rising,
Relative Time in which Signal has Left Curvative
Segment Lengths A

Mean, Standard Deviation, Minimum, Maximum
Regression AΔ, B
Linear Regression: Slope, Offset, Quadratic Error,
Quadratic Regression: Coefficients a and b, Offset c, Quadratic Error
Linear Prediction LP Analysis Gain (Amplitude Error), LP Coefficients 1–5
A Functionals applied only to energy related and spectral LLDs (group A)
B Functionals applied only to voicing related LLDs (group B)
Δ Functionals applied only to ΔLLDs
Δ Functionals not applied only to ΔLLDs

5. Proposed Method

This section is divided into two parts. In the first part, we thoroughly describe the
new optimization method mathematically. In order to apply our optimization method to
the SAAE, we had to address several problems. The second part deals with this issue and
its solution.

5.1. The Proposed Optimization Method

HPO of deep learning is a time-consuming task in practice that depends on the network
depth, the size of parameters, processor system, and optimization algorithm speed [5].
Applying HPO to deep learning is challenging. It can be (1) the unsupervised learning
of most deep learning methods that causes trouble for optimization and imperfect tuning
of parameters [47], (2) a large model with enormous trainable parameters that lead the
processing system to runtime errors [5,8], and (3) an intricate search space created by
different types of hyper-parameter domains (categorical, continuous, and integer value),
causing inherent computational complexity [5]. A larger search space gives rise to a longer
search time.

Parallel evaluation can partly reduce optimization time [48], and culture speeds up the
population’s evolution more than chromosomes (each chromosome represents a solution
in the population space) [49]. Accumulated experience that is potentially accessible to all
individuals is called culture, which is used in problem-solving activities [50]. The knowl-
edge extracted by identifying patterns in the population’s problem-solving experiences
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influences the generation of new solutions [51]. Therefore, the combination of CA and
parallel computing can facilitate the discovery of the search space [52]. In this regard,
researchers are interested in combining CA with other optimization algorithms. Sun et al.
combined a cultural algorithm and two PSO populations and shared their belief space. It
indicated that sharing knowledge of belief space can improve performance by avoiding
local optima [53]. A single population and multi-population based on CA was proposed
in [54]. A PSO population-based method with interactive belief space was introduced
by [49]. A hybrid evolutionary optimization method coupling CA with GAs was defined
in [55]. Fuzzy operations were employed to exchange individuals between belief space and
population space in [56].

From this perspective, we proposed a four-island approach based on the parallel
evaluation and CA.

Although CA and parallel computing can perform better than the basic optimization
algorithms [57], they do not provide enough convergence speed alone for deep learning.
Thus, three driving force factors were applied to population space for creating interactive
space between four island population spaces. Creating interactive population space causes
interactive belief space, which can determine the direction and step size faster than tradi-
tional optimization methods. In this regard, our proposed method is called the multi-island
interactive cultural (MIC) algorithm.

The MIC method is illustrated in Figure 1. In this method, control parameters are
configured firstly. The initial population X[m, D] is generated randomly in the feasible
space. The variable m indicates the population size (the number of chromosomes or
individuals), and D is chromosome dimension (the number of genes).

< >

 

Figure 1. Flowchart of the MIC algorithm.

After preparing the random initial population, it transfers into the four islands in
parallel (gray lines): GA, PSO, DE, and evaluation strategy (ES). The GA and PSO are the
optimization algorithms widely applied to HPO studies in deep learning [1,8]. GA is far
more successful in complex networks such as CNNs, but eliminates previous information
by changing the population every iteration [50]. PSO shares information between the
particles and is popular on the smaller networks [29]. The DE algorithm is utilized in
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optimization problems due to the high convergence speed and low control parameters
when searching global optima. It is suitable for nonlinear search spaces [28]. The ES is less
popular among the global optimization algorithms because it is a simple mutation-selection
method, but it is helpful in making small changes [48]. It should be noticed that in the first
iteration, the population of the four islands is the same.

The four islands were evaluated individually and in parallel. Then, some individuals
of each island were randomly selected to transfer into an interactive belief space (InBS)
through an acceptance function (colored arrows). Here, the acceptance function was 25% of
the best individuals of each island. So, the belief space size was y[m, D].

The InBS consisted of normative (N[D]) and situational knowledge (S) of all islands.
Knowledge of different islands in the belief space causes the chromosomes to move away
from unwanted regions and get closer to the optimal points by using different experi-
ences faster than previously published works. InBS can be used effectively to prune the
population space.

Normative knowledge represents the range of the best solutions by determining the
upper and lower bands of each gene of a chromosome and is used to influence the direction
of the search efforts within the promising ranges. In other words, it computes the range of
each gene that leads the individual to a good solution.

The offspring affected by normative knowledge are generated by Equation (1) as
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(1)

where uj is the upper and lj is the lower band of InBS for jth gene, respectively, β is a
constant value, t is the current iteration, and N(0, 1) is the normal distribution.

For each gene, the structure contains the upper band (ut
j ), the lower bound (ltj ), the upper

band value (Ut
j ), and the lower bound value (Lt

j ), which are obtained by Equations (2)–(5),
respectively.
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j ,
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(5)

where yi,j is the jth gene in the ith individual of InBS, and the f(yi) is the value of the individual
yi calculated by the fitness function. A fitness function (loss function) evaluated individuals
of each island separately. The problem description determines the fitness function.

The situational knowledge, as seen in Equation (6), adjusts the mutation step size
relative to the distance between the current best individual and the other individuals. The
greater the distance between ith individual, yi, and the current best individual, the greater
the step size and vice versa.

Updating the situational knowledge adds the InBS’s best individual to the situational
knowledge if it outperforms the current best individual, as described in Equation (6).
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Here, yt
best is the best individual in the InBS at iteration t. The influence rule can be

represented with Equation (7) (for i = 1, . . . , m and j = 1, . . . , D).
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where Ej is the jth gene in the best individual, β is a constant factor, N(0, 1) is the normal
distribution, and yp+i,j is the offspring of the individual yi,j.

After updating InBS with new generations, some individuals are transferred into
each island population space by influence function. There is no doubt that the individuals
of InBS contain the knowledge of all of the islands. This is the ability of the proposed
method. Various studies have shown that the efficiency of optimization methods is altered
for different problems. In other words, choosing an optimization method for a problem
is a challenge that some researchers consider as a kind of hyper-parameter that needs
to be tuned. Hence, 25% of the best individuals of InBS were replaced with 25% of the
worst population on each island. Offspring generation processing is started in each island
separately and evaluated through fitness function.

If the algorithm reaches the stopping criterion, the process will be stopped. Other-
wise, interactive population space is created by three driving forces in order to promote
cooperation among the islands and increase diversity.

The three driving-force methods are named the elitism method (EM), merge method
(MM), and lambda method (LM).

In interactive population space, all individuals of each island are considered. In EM,
the best individuals with size m are preserved and replaced with the old population on each
island. As we use this method, the populations of the next generation for each island are
the same. This driving force method forces the four basic algorithms to create interactive
space only by the best individuals of four islands.

In MM, after considering all individuals of each island, a random number a, a ∈ (0, 1), is
produced. The a × m (a ∗ sizeofpopulation) of the best individuals are merged with (a − 1) × m
of the old population on each island. It is clear that each island has a unique new population
in this interactive space.

In LM, two of the islands are selected randomly, according to two random numbers
μ, μ ∈ (0, 1), and λ, λ ∈ (0, 1), representing emigration and immigration, respectively. The
random numbers of individuals based on μ and λ of each island indicate which individuals
can immigrate to and emigrate from another random island. This method forces islands to
cooperate with the best individual and the worst one to create interactive space.

Due to the interaction and sharing of individuals among the four islands, if one
algorithm traps in local optima, others can lead MIC into global optima because the result
is not dependent on a single algorithm. This feature allows the MIC to be used for various
global optimization problems to escape local optima efficiently.

The MIC strategy is presented step by step below (Algorithm 1).
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Algorithm 1: Implementation of MIC

Step 1: Set the MIC parameters randomly.
Step 2: Generate the initial population randomly.
Step 3: Transfer 25% of the best individuals of each island into InBS (Accept).
Step 4: Update Belief space whith Equations (1)–(7).
Step 5: Transfer 25% of offspring into each island (Influ).
Step 6: If stop criterion < ζ

Stop algoriyhm.
Else

Go to Step 7.
Step 7: Create Interactive population space by using the following three methods:

EM: m of the best individuals of four islands are selected and replaced with an old
population.

MM: The a × m (a ∗ sizeo f population) of the best individuals are selected and merged
with (a − 1) × m, which is obtained from the old population in islands.

LM: According to two random numbers, μ and λ, some individuals of a random island
can immigrate to and emigrate from another random island.
Step 8: Go to Step 3.

5.2. Stacked Asymmetric Auto-Encoder HPO Using MIC

Since our work aimed to obtain the SAAE near-optimal structure, a brief overview of
this method is presented below.

(1) Stacked asymmetric auto-encoder

The AsyAE is a semi-supervised DNN that poses the curse of dimensionality. The
schematic of the AsyAE is illustrated in Figure 2.

x

x

x
x

x

x

x

x
x

x

Figure 2. Schematic of the asymmetric auto-encoder [24].

In this type, one neuron is added in the decoder part of the conventional auto-encoder
with the desired value of the problem, which is the studied personality score in our field.
The symmetry of the encoder and decoder parts is disrupted by this single neuron and
made asymmetric.
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The feed-forward equations of the AsyAE are similar to the conventional one as follows.
For representing encoder and decoder layers, superscripts of 1 and 2 were used, respectively.

net(1) = W(1)X, (8)

O(1) = f
(

net(1)
)

, (9)

where W(1) indicates the encoder weight matrix, X displays the input matrix, O(1) is the
encoder output matrix, and f is the activation function.

net(2)=W(2)O(1), (10)

O(2) = f
(

net(2)
)

, (11)

where W(2) and O(2) are the weight and output matrixes of the decoder layer, respectively.
The error back-propagation related to the encoder and decoder weights matrixes is

calculated by Equation (12).

E :=
1
k

k

∑
i=1

log(cosh(et)), (12)

where et is the error vector of AsyAE at time t, which is described by Equation (13), and k is
the neuron size of decoder layer output.

et : =dt− ot
(2). (13)

The desired output vector at time t is presented by dt, which belongs to the matrix D.
It is the desired output matrix of AsyAE, which is produced by the combination of desired
labels and AsyAE input.

D =

⎡⎢⎢⎢⎣
x11 x12 . . . x1n0 L
x21 x22 . . . x2n0 L

...
...

...
...

xm1 xm2 · · · xmn0 L

⎤⎥⎥⎥⎦.

Here, xij is the AsyAE input matrix element, and L is the desired label of the problem.
A stacked asymmetric auto-encoder is a result of putting several AsyAEs together.

(2) Optimizing some hyper-parameters of a stacked asymmetric auto-encoder

Given the fact that the number of DNN hyper-parameters is significantly large, the
simultaneous optimization of all of them complicates the computation and requires high-
performance computing systems. Hence, we compromised between MIC and expertise for
calculating the six critical DNN hyper-parameters as follows:

1. number of neurons in each hidden layer
2. learning rate value
3. initial parameters
4. number of hidden layers
5. maximum epoch of network training
6. preventing over-fitting and under-fitting

For HPO of SAAE, the following principles come after. Figure 3 illustrates the flowchart
of the proposed method in detail.
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Figure 3. Flowchart of SAAE hyper-parameter optimization.

Determining the number of neurons in each hidden layer: In our work, Ni indicates
the number of neurons in the ith hidden layer that will be optimized by the MIC method.
So, the first variable of MIC is Ni, which is an integer value, Ni ∈ [1, m] where m value is
equal to the input size of AsyAE. It forces the AsyAE to be an incomplete network. It means
the encoder layer has fewer neurons than the input layer.

Determining the learning rate in each hidden layer: μi specifies the learning rate in
the ith hidden layer, which will be optimized by the MIC method. Therefore, the second
variable of the MIC population is a real value between zero and one, μi ∈ (0, 1). It
should be mentioned that we set the decimal digit of μi equal to 5 to examine its effect on
SAAE performance.

Initial value of trainable parameters: Although deep learning methods have good
performance in various problems, they are complicated tasks. Because there are huge
factors that strongly influence them, one of the critical factors is initialization.

The DNN parameters need a starting point in the feasible area to be trained. The
proper initial parameters can accelerate the convergence. Contrarily, random initialization
can trap the network in the local optima.

Optimization algorithms such as GA and PSO can be used in this field. However,
the number of DNN parameters (weights and biases) is vast, e.g., 1015, and producing the
chromosomes with these dimensions causes a memory error in the processor system and is
not efficient in practice. Another method, suggested by Hinton et al., applies the restricted
Boltzman machine (RBM) network to tune the auto-encoder’s initial parameters [58,59].

According to the ANN-base of an AsyAE and RBM, the AsyAE can be interpreted as
two consecutive RBMs illustrated in Figure 4. The input layer is the visible unit, and the
encoder layer is the hidden unit for the RBM1. In the RBM2, the encoder layer is the visible
unit, and the decoder layer is the hidden unit.
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Figure 4. Converting auto-encoder to two RBMs for tuning the initial weights of the encoder and
decoder layers.

The conventional RBM is based on binary visible and hidden units, called Bernoulli-
Bernoulli RBM (BBRBM). If both visible and hidden units have a Gaussian distribution, the
Gaussian-Gaussian RBM (GGRBM) is employed [60]. Since the AsyAE input and parameters
are real values, we used the GGRBM equations.

The energy function of the GGRBM is defined as Equation (14), where v presents
visible units and h shows hidden units. It should be noted that the AsyAE input and the
encoder output are the visible units of RBM1 and RBM2, respectively.

E(v, h) = −
gv

∑
i=1

gh

∑
j=1

Wi,j
vihj

σiσj
−

gv

∑
i=1

(vi − ai)
2

2σ2
i

−
gh

∑
j=1

(hj − bj)
2

2σ2
j

, (14)

where ai and bj are visible and hidden units biases, respectively, σi and σj are their standard
deviations. Wi,j is the weight between the visible and hidden units. A probability value is
assigned to each possible visible and hidden unit by Equation (15),

P(v, h) =
1
Z

exp(−E(v, h)). (15)

Here, Z is the normalization constant calculated by Equation (16).

Z = ∑
v

∑
h

exp(−E(v, h)). (16)

Equation (17) shows the loss function, which must be maximized,

maximize{Wi,j,ai,bj}
1
c

c

∑
L=1

log
(

P
(

vL, hL
))

, (17)

The updating functions are

ΔWi,j = ζ
(
< vihj >data − < vihj >model

)
, (18)

Δai = ζ(< vi >data − < vi >model), (19)
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Δbj = ζ
(
< hj >data − < hj >model

)
, (20)

where < • >data and < • >model are expanded values of sample data and model proba-
bilistic distribution, and ζ is the learning rate.

We described GGRBM briefly, and this is the time to use it. For a traditional auto-
encoder, first, the initial parameters of the encoder layer are randomly selected and then
trained by the GGRBM method. The trained parameters are considered the encoder layer’s
initial parameters, and its transposition is employed for the decoder layer. However,
in the AsyAE, the encoder and decoder parameters are not symmetric and have to be
obtained individually. So, the above principle is applied to the decoder layer to obtain
the initial parameters.

The number of hidden layers: The value of this hyper-parameter is dependent on
the performance of AsyAEs. The classification performance of each AsyAE is examined in
MIC for each pair of (Ni, μi). For the next AsyAE, the performance has to be better than that
of the previous one. If the performance of AsyAE(i+1) is better than that of AsyAE(i), the MIC
algorithm is continued.

The performance criterion is different from one problem to another. The Unweighted
Average (UA) recall criterion frequently used in personality perception studies is calculated
by Equation (21),

UA recall =
1
2

(
recallLow + recallHigh

)
, (21)

The recallLow means the recall of detecting the low degree of studied personality, and
the recallHigh indicates the recall of detecting its high degree.

The maximum epoch of network training: Generally, the DNN training process
proceeds to reach maximum epoch (updating time) [40]. As discussed in [24], proper data
separation does not occur in the maximum epoch. Thus, a J variation is employed as
a stopping criterion to finish the training process in the epoch in which the maximum
separation is achieved.

J is calculated as follows,

J =
det(SB)

det(SW)
, (22)

where SW is a within-class scattering matrix, and SB is a between-class scattering matrix [61].
det represents the determinant of a matrix.

Sw =
c

∑
i=1

∑
x∈ci

(X−μi)(X − μi)
T, (23)

SB =
c

∑
i=1

ni(μi − μ)(μi − μ)T. (24)

Here, ni is the instance number of ith class, X is the encoder output matrix, and c is
the number of classes, μ is the matrix for average all instances, and μi is the class average
matrix of ith class.

Preventing over-fitting and under-fitting problems: The over-fitting problem hap-
pens when a model trains properly on the training dataset but performs poorly on the
testing dataset. The under-fitting problem occurs when a model performs poorly on both
the training and testing samples.

The number of layers and the neurons in each layer can excessively lead a model
into over-fitting or under-fitting. This can be easily changed by changing the structure.
More neurons and layers complicate the model, but fewer cannot pursue the data pattern.
Therefore, this is one of the problems that has to be dealt with in designing an optimum
structure. So, a new loss function is defined to guide the model toward good fitting.

Loss =
UAtrain

a
∗ UAval

b
, (25)
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where a is the training threshold, and b is the validation threshold. We already discussed
the UA recall criterion used chiefly in personality perception. We applied the loss function
defined in Equation (25) instead of Equation (21). The aim is the maximization of Equation
(25). We set a = 0.8 and b = 0.6 because a UAtrain of more than 80% and UAval of more than
60% are acceptable. The loss value can be in the range of [2.08, 0]. So, the set of (Ni, μi) is
acceptable to be maximized in Equation (25).

Final algorithm: The pseudo-code of optimizing SAAE hyper-parameters is described
in Algorithm 2.

Algorithm 2: Optimizing SAAE hyperparameters

Set the initial parameters Old_max = 0, G_max = 2.08 (upper band of Loss), OldEv_Asy = 0 (the
first AsyAE performance) and the other randomly.
Set the input matrix of AsyAE.
Set i = 1 (i indicates the number of hidden layer)
Set NewEv_Asy = 1 (the (i + 1)th AsyAE performance)
While NewEv_Asy> OldEv_Asy

OldEv_Asy = NewEv_Asy
While (G_max-Old_max) > 0.1

Optimize (Ni, μi) with MIC.
Initialize the AsyAE parameter randomly.
Tune AsyAE initial parameters with GGRBM.
Train AsyAE while J increases.
Evaluate Equation (25).
If the value of Equation (25) ≥ Old_max

Old_max = the current value of Equation (25),
NewEv_Asy = the value of Equation (25).

End if

Set the encoder layer output of ith AsyAE as the input of (i + 1)th AsyAE.
i = i + 1.

End while

End while

6. Simulations and Results

In this section, firstly, the results of the MIC method on three benchmarks and com-
parison with other published methods will be discussed. Then, the MIC will be used to
design the structure of five individual DNNs for classifying five personality traits. A final
comparison can be found at the end of this section.

6.1. The Results of the MIC on Three Optimization Benchmarks

Three well-known, multimodal, continuous, and non-separable benchmark func-
tions that have a global minimum value of zero, called Rastrigin [52], Ackley [62], and
Griewang [62], are used to validate the MIC method.

The multimodal property means having many local optima or peaks in the function,
which can test the ability of an algorithm to avoid being stuck in a local minimum. Non-
separable refers to the independence of obtained solution variables. If all variables are
independent, they can be optimized independently, and the function will be optimized [62].
Therefore, these three functions are complex problems in evaluating the performance of
any new optimization algorithm.

The formula, feasible range of variables, and the global optima points of three functions
are summarized in Table 2.
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Table 2. Description of Three Benchmark Functions.

Name Formula Range Optimal f(x)

Rastrigin f(x) = 10n +
n
∑

i=1
x2

i − 10 cos(2πxi) −5.12 < xi < 5.12 0

Ackley f(x) = −20 exp

(
−0.02

√
1
n

n
∑

i=1
x2

i

)
− exp

(
1
n

n
∑

i=1
cos(2πxi)

)
+ 20 + exp(1) −32 ≤ xi ≤ 32 0

Griewang f(x) = 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

xi√
i

)
+ 1 −600 < xi < 600 0

Here, n indicates the dimension of the function, which is n ≥ 2 for all mentioned functions.
Figure 5 shows the shape of the functions described in Table 2. As can be seen, all

three functions have many local optima and are suitable to show the ability of optimization
methods to escape from being stuck in local optima.

  
(A) (B) (C) 

Figure 5. Benchmark functions (A) Rastrigin, (B) Ackley, and (C) Griewang.

In order to show the performance of MIC against the conventional optimization methods,
the comparison results of the mentioned four islands and MIC are reported in Table 3.

Given the fact that the problem complexity increases with increasing dimensionality,
increasing the number of the variables (dimension) grows the search space, which makes
exploring the best solution difficult [62]. To investigate the effect of dimension on searching
quality in MIC, we compared our results with 30D and 10D in Table 3.

For a fair comparison, all parameters and initial populations for the basic algorithms
and MIC were set to the same values.

The following six criteria were utilized for a more reliable analysis. It should be
mentioned that these criteria are common in optimization problems.

• The average of iterations where the stop criterion is reached for examining convergence
speed (AvI).

• The average of obtained best optima point (AvP).
• The smallest iteration at which the stop criterion occurs (SI).
• The best-obtained optima point (BOP).
• Calculating the standard deviation (SD) for proving the efficiency and robustness of

the algorithm.
• The number of successful runs divided by the total number of runs called success rate (SR).

It was concluded by AvI numerical results that MIC can reach more accurate solutions
with a faster convergence speed than traditional algorithms in n = 10. Although for the
n = 30, the MM performance diminishes, LM and EM preserve their performance with
increasing complexity. It is demonstrated that LM and EM improve solutions steadily for a
long time without getting stuck in local minima. It is clear that MIC is more powerful than
the four basic algorithms alone when it comes to solving global optimization problems.
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Table 3 shows the simulation outcomes of MIC and four basic optimization algorithms.
According to the AvP values in n = 10 and n = 30, traditional algorithms are often

unsuccessful in finding favorable solutions in comparison to MIC, especially EM. Addition-
ally, it can be concluded from AvP that the MIC speeds up the convergence to the global
optima. The AvP values in n = 30 in comparison to n = 10 decreased about 0.1 in Rastrigin
and remained constant for the other two functions in LM and EM. The change in the AvP
values in MM is meaningful, which indicates getting stuck in the local optimum with the
increase in the complexity of the problem, like the traditional methods.

Our SI outcomes show that the MIC method, especially EM and LM, reaches the
stop criterion in a few iterations. It means the MIC method speeds up convergence.
Moreover, the SI criterion shows that although the MM method performs better than the
basic optimization methods in simpler functions (n = 10), its performance drops in complex
functions (n = 30). LM and EM not only show their effectiveness in simple functions, but
also perform well in complex problems compared to other methods.

The evaluation results of criterion BOP show that the LM and EM methods achieve the
global optimal value more accurately than the basic methods in n = 10 and n = 30. However,
MM implementation results decrease with increasing complexity.

It can be seen that the SD values of MIC, except for MM, are very small in comparison
to those of the four basic algorithms in n = 10 and n = 30, which means the repeatability
and robustness of the new algorithm are due to pruning search space.

The SR results prove that the MIC is very promising in bringing higher reliability than
traditional algorithms because the number of times that LM, EM, and MM reached the
desired value of the function was 100% in n = 10. As can be seen, as the complexity of the
function increases (n = 30), the LM and EM methods are still successful in reaching the
desired value.

From Table 3, it is concluded that despite increasing dimensions, the implementation
outcomes of all algorithms decrease, except EM and LM.

Our study indicates that the quality of the solutions found using our proposed method
for widespread global optima functions is higher than that of the solutions provided by
traditional algorithms. This is due to a more appropriate tradeoff between exploring new
individuals and exploiting highly fit individuals found at the parallelism level. By means of
three widespread test functions, it is demonstrated that the new method has great potential
for substantial improvement in search performance.

Due to the wide usage of these benchmarks, a comparison with other published works
is presented in Table 4. It can be observed that LM and EM achieved the best solution in
Ackley and Griewang functions (30D).

Table 4. Comparison with Other Published Methods in 30D. N/A means not available.

Methods

Benchmarks

Rastrigin Ackley Griewang

AvP SD SR% AvP SD SR% AvP SD SR%

Xin Zhao et al., 2022 [55] 2.1 × 10−13 4.1 × 10−14 100 8.2 × 10−15 1.3 × 10−15 100 3.78 × 10−13 1.7 × 10−13 100
Chentoufi et al., 2021 [49] 0.99 1.31 100 1.0 × 10−15 6.4 × 10−16 43 8.3 × 10−4 5.4 × 10−4 67

MIC_LM 7.8 × 10−4 2.4 × 10−4 100 4.4 × 10−15 0 100 8.4 × 10−14 4.4 × 10−14 100
MIC_EM 7.4 × 10−4 5.6 × 10−4 100 3.1 × 10−14 1.9 × 10−15 100 1.1 × 10−13 2.5 × 10−14 100
MIC_MM 0.46 1.32 60 2.48 0.20 0 0.27 0.16 20

6.2. The Results of Personality Perception with The MIC Method

After the successful outcomes with the MIC method to find the global optima of three
complex benchmark functions, we applied our novel method to find the near-optimal
values of hyper-parameters for classifying five personality traits. We used “near-optimal”
instead of “optimal” structure because tuning of MIC hyper-parameters such as mutation
and crossover rating is chosen randomly.

Taking into account that different personality traits have different effects on speech
characteristics [24,42], using the same DNN structure for all traits to extract features is not

148



Sensors 2022, 22, 6206

recommended. Assuming the five personality traits were independent, five separate neural
networks were designed and trained to classify the five personality traits.

Hence, the network’s depth was determined by classifying the output of each AsyAE
encoder layer by the SVM with radial basis function kernel. The AsyAE with higher
classification results is considered as the output layer of the SAE.

Table 5 shows the comparison results of our proposed method with other works in
the SPC dataset in terms of UA recall and accuracy. In our previous work, the structure
of SAAE was chosen by trial-and-error, which was time-consuming, and two traits (ex-
traversion and openness) achieved lower accuracy than reported by other research [24].
N/A means not available.

Table 5. Comparison Results of Our Proposed Method with Other Works in the SPC Dataset in Terms
of UA Recall % (Accuracy %).

Methods
Traits

Neu. Ext. Ope. Agr. Con.

Mohammadi et al., 2010 [43] N/A (63) N/A (76.3) N/A (57.9) N/A (63) N/A (72)
Mohammadi et al., 2012 [63] N/A (65.9) N/A (73.5) N/A (60.1) N/A (63.1) N/A (71.3)
Chastagnol et al., 2012 [64] 58 (N/A) 75.5 (N/A) 73.4 (N/A) 65 (N/A) 62.2 (N/A)

Mohammadi et al., 2015 [65] N/A (66.1) N/A (71.4) N/A (58.6) N/A (58.8) N/A (72.5)
Solera-Urena et al., 2017 [66] 65.1 (64.7) 75 (75.1) 59.1 (58.2) 60.3 (60.2) 75.7 (75.6)
Carbonneau et al., 2017 [67] 70.8 (N/A) 75.2 (N/A) 56.3 (N/A) 64.9 (N/A) 63.8 (N/A)

Zhen-Tao Liu et al., 2020 [68] N/A (69.2) N/A (76.3) N/A (74.7) N/A (65.3) N/A (73.3)
Our privuse work 2021 [24] 77.1 (76.9) 76.6 (72.9) 81.2 (70.4) 80.7 (68.7) 78.5 (69.5)

Proposed method 89.8 (80.5) 82.2 (83.4) 87.1 (84.7) 85.8 (76.2) 81.8 (72.6)

In the present study, not only were the accuracy of extraversion and openness improved,
but UA recalls were also increased more than before. This evidences that the performance
and robustness of trained models are highly dependent on their hyper-parameter settings.

7. Conclusions

Since HPT is the most challenging aspect of ANN studies, it is mostly obtained by
trial-and-error, affecting its performance. This article proposed a new approach based on
cultural evolution and parallel computing to achieve a near-optimal structure of SAAE in a
reasonable time for automatic personality perception. We used the concept of parallelism
and information on different regions of the search space to improve the search spaces
in MIC and exchanged them between islands to provide greater population diversity.
The proposed approach was implemented on three complex benchmarks, and six criteria
evaluated our method’s performance in comparison with four basic optimization methods.
The results showed that our approach outperforms other traditional optimization and newly
published algorithms in four aspects: (1) convergence speed, (2) precision, (3) escaping
from entrapment in local optima, and (4) repeatability. As an indication of our method’s
performance, we increased the problem complexity by increasing the number of variables
up to 30. The outcomes demonstrated the reliability of the MIC method, especially LM
and EM. Subsequently, five hyper-parameters of SAAE were optimized. Since the tuning of
hyper-parameters affects over-fitting and under-fitting, we introduced a new cost function
to control them during the optimization process.

In comparison with the results of our previous published work, the outcomes of ap-
plying MIC to SAAE indicated 3.3% (3.1%) for consciousness, 5.1% (7.5%) for agreeableness,
5.9% (14.3%) for openness, 5.6% (10.1%) for extraversion, and 12.7% (3.6%) for neuroticism.
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Abstract: Human action recognition (HAR) is the foundation of human behavior comprehension. It
is of great significance and can be used in many real-world applications. From the point of view of
human kinematics, the coordination of limbs is an important intrinsic factor of motion and contains
a great deal of information. In addition, for different movements, the HAR algorithm provides
important, multifaceted attention to each joint. Based on the above analysis, this paper proposes
a HAR algorithm, which adopts two attention modules that work together to extract the coordination
characteristics in the process of motion, and strengthens the attention of the model to the more
important joints in the process of moving. Experimental data shows these two modules can improve
the recognition accuracy of the model on the public HAR dataset (NTU-RGB + D, Kinetics-Skeleton).

Keywords: human action recognition; graph neural network; attention module

1. Introduction

With the rapid development of artificial intelligence algorithms, motion-recognition
technology, which is an important part of artificial intelligence, is being studied for its
application in many fields, such as human–computer interaction, video surveillance, film
and television production, and other areas [1–3]. Many researchers [4–6] have invested
a great deal of energy in this field and designed many excellent algorithms. Among them,
most of the traditional algorithms use manual feature extraction, and these algorithms
have made a breakthrough [7]. With the rapid development of machine learning and deep
learning, many end-to-end motion recognition algorithms have appeared. These methods
do not need to consume a lot of manpower and can achieve high recognition accuracy [8,9].

On the one hand, with deep learning and the rapid development of computer hard-
ware, especially GPU, the performance of action-recognition algorithms is getting better
and better. These algorithms can recognize more and more complex actions. Action-
recognition algorithms based on deep learning can be roughly divided into the following
two categories.

(1) The first category is the motion-recognition algorithm based on traditional CNN,
RNN, and LSTM networks, for example, two-stream [10], C3D [11], and LSTM [12],
and so on. These algorithms use end-to-end methods to train the model, which can
effectively reduce the number of parameters and improve the accuracy of model recog-
nition. Karens et al. [13] designed a two-stream model, which can extract the features of
space and time latitude at the same time. They creatively fused the models of the two
branches, effectively improving the recognition accuracy of the model. Du et al. [11] applied
3D convolution to action-recognition tasks. The model proposed by them can effectively
extract the features of spatial and temporal latitude, and proved that 3 × 3 × 3 convolution
is more suitable for action-recognition tasks through experiments. Jeff et al. [12] applied the
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LSTM model to the action-recognition task and proved through experiments that LSTM is
more prominent in the features with time series.

(2) Secondly, with the rise of the graph convolution model, a large number of bone-
based motion-recognition models have emerged. These models use human bones as the
data of the training model. This type of data is not affected by environmental occlusion,
complex background, and optical flow interference, which makes the model more robust.
Yan et al. [14] used the graph convolution network in the task of action recognition for the
first time. They used the graph convolution model to extract the features in the human
skeleton map, and combined with the time convolution to extract the features in the time
latitude. Kalpit et al. [15] proposed a bone-partition strategy. They use a partition strategy,
which effectively fits the task of local graph convolution. Shi et al. [16] creatively proposed
an adaptive graph convolution method based on the spatio–temporal graph convolution,
which can adaptively learn bone features and further extract the hidden length, direction,
and other features in bones.

On the other hand, coordination is not only the key to improving athletes’ technical
ability, but also is an essential part of everyday human physical activities. Coordination
refers to the ability of each part of an organism to cooperate with other parts in time
and space, and to complete actions in an effective manner. Coordination ability can
make movements more accurate and subtle, especially periodic movements. Therefore,
athletes attach great importance to the training of coordination ability and regard it as
an indispensable and important physical quality to develop in order to more effectively
compete and improve. Body coordination also includes three categories: force coordination,
movement coordination, and space coordination. First, force coordination refers to the
coordination ability of each muscle during tension and contraction. The coordination
among the active, antagonistic, and supportive muscles is an important factor in muscle
tension and contraction. Therefore, strength coordination training is mainly performed to
improve the ability of the nervous system, to get more athletes to participate, to improve
the degree of muscle fiber synchronization, to improve the coordination of muscles, and to
make athletes exert their maximum potential when exerting strength. Secondly, movement
coordination refers to the coordination ability that all humans shows when completing a
certain action. Strengthening coordination training can improve human sports performance.
Therefore, athletes with good movement coordination ability demonstrate the timeliness
and economy of sports technology when they complete technical movements. Finally,
spatial coordination refers to the body’s coordination and adaptability with regard to its
ability to maintain balance when changing its position. The training of spatial coordination
ability is mainly performed to improve people’s adaptability to their three-dimensional
sense of space (up and down, left and right, front and back), so as to enhance their spatial
awareness or position perception [17]. In terms of coordination in motion theory, we
associate coordination features with motion-recognition algorithms. Therefore, this paper
proposes a coordinated attention module based on coordination theory.

Through the research and learning of the existing algorithms, the author found the
following two problems:

(1). According to the theory of human body-motion balance, the body will produce
a coordination feature to maintain balance in the process of moving. Learning about this
coordination feature was very helpful for understanding action, but the existing models
did not make full use of this feature.

(2). Although the graph convolution neural network was successful in the field of ac-
tion recognition, the limitation of its adjacency matrix led to the model that can only extract
features at the neighbor nodes, and cannot extract features from the global perspective.

To solve the above problems, we improve the Two-Stream Adaptive Graph Convolu-
tional Network (2S-AGCN) algorithm and propose a novel multiple attention mechanism
graph convolution action-recognition model based on coordination theory (MA-CT). In this
paper, a coordinated attention module (CAM) and an important attention module (IAM)
are proposed. The important takeaways from these developments are as follows.
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(1). The CAM effectively extracts coordination features generated during motion,
and simulate the coordination of human movement through the covariance matrix. This
module could effectively improve the accuracy of the basic model.

(2). In addition, the IAM directly started from the feature level, captured the changes
of features on nodes, and gave more weight to the more important joints. The module
could realize plug and play and effectively improve the accuracy of the basic model.

The structure of this paper is as follows. In the first section, this paper briefly intro-
duces the development of action recognition and the previous methods. Section 2 briefly
introduces the graph convolution neural network and the related knowledge of attention
mechanism. Section 3 introduces the graph convolution action recognition model based
on multiple attention modules, and introduces the details of the two attention modules in
detail. In Section 4, experiments are carried out on two large public datasets to verify the
effectiveness of the module proposed in this paper, and the model in this paper is compared
with the existing model. Section 5 is the summary and prospect of this paper.

2. Related Works

2.1. Graph Convolution Neural Network

The graph convolution neural network (GCN) [18–21] summarized the convolution
operation from grid image data to graph data with a topological structure. Its main idea was
to aggregate the characteristics of its nodes and the characteristics of neighbor nodes, cou-
pled with the natural constraints of the topological graph so that new node characteristics
could be generated. The motivation of GCN comes from the combination of convolutional
neural networks (CNN) [22–24] and topological graphs. With the further development of
GCN, graph convolution neural networks could be divided into graph convolution neural
networks based on spectral method and graph convolution neural networks based on
the spatial method. Kipf et al. proposed a convolution formula combined with a graph
Laplacian under the background of spectrum graph theory; however, the spatial-based
method was intended to directly convolute the structure of the graph and its neighborhood,
and then extract and normalize it according to the manually designed rules. After that,
more and more scholars devoted themselves to the task of studying graph convolution neu-
ral networks. The fundamental reason is human bone data is topology type data, whereas
CNN can only deal with two-dimensional grid data-like images, which is not competent
for most tasks in human life. Therefore, in the field of action recognition, more and more
people are engaged in the research of graph neural networks because the skeleton data is
represented as a topological graph structure rather than a sequence or 2D grid structure.

2.2. Study on Action Coordination

Sports cannot be played without the intensively cultivated body coordination of
athletes. To improve sports performance, athletes also need to carry out coordination
training. Existing algorithms in the field of action recognition do not make full use of the
coordination features of the body. Therefore, after consulting many books and papers on
basic theories and training methods related to coordination, we chose the skeleton-based
action-recognition dataset to deeply study the specific expression of body coordination.
Among our findings, we learned that the coordination of the human body requires the
sense of space when moving. This sense of space refers to the orientation of each part
of the body when moving. Take running as an example. As shown in Figure 1, when
a human is running, his hands and legs always swing alternately one after the other,
and the arms and legs on the same side must be one after the other. According to the
characteristics of the sense of motion space in the coordination of body movement, we
studied how to extract the coordination features in the process of movement. To this end,
we roughly divide the human body into five areas, including the left arm, the right arm,
the left leg, the right leg, and the trunk, which includes the head. The position feature
is expressed through appropriate expression, and the position relationship between two
pairs is calculated. The coordination feature generated by human motion is calculated
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through this relationship. In this paper, the local center of gravity theory in physics and the
covariance matrix in mathematics are used to express the coordination characteristics of
the body.

Figure 1. Running: position diagram of arms, legs and body.

3. Proposed Methods

In recent years, GCN has been used successfully in the field of motion recognition.
On the one hand, because human bone data is not affected by interference information such
as optical flow and occlusion, the data is purer. On the other hand, the topology of human
bone data is a beat set with a graph neural network. The first section investigates the
advantages and disadvantages of the existing algorithms in detail. When dealing with the
task of human motion recognition based on bone data, these models ignore the coordination
features of human action and cannot pay good attention to the more important joints in
the process of motion due to the limitation of GCN. On the one hand, the theory of human
movement balance [17] describes how the body acts in order to prevent the act of falling
and the body’s need to constantly adjust its posture to keep the position of the center of
gravity unchanged. In particular, athletes can maintain their balance by swinging their
arms and stretching their legs. For ordinary people, everyday actions are also needed to
maintain balance, and the cooperation of limbs and trunk is needed to ensure that people
will not fall to the ground. Therefore, in the process of completing a certain action, people’s
limbs have roughly fixed movement tracks. For example, in the action of running, when
the left foot moves forward, the right arm must swing back to keep the position of the
body’s center of gravity unchanged; otherwise, there will be a risk of falling. On the other
hand, the importance of different joints in different human actions is different, and these
more important joints often number more than one. The existing models fail to pay good
attention to the extraction of this part of the features. In addition, due to the fixity of the
physical connection of the human body, the GCN is often fixed when extracting features
and fails to pay better attention to the mutual features of several more important joints from
a global perspective. These joints are often not connected in most actions. For example,
in the action of clapping hands, from the perspective of the human skeleton map, the nodes
of both hands are not directly connected and are far apart. However, both hands are an
important part of the action of clapping hands, and the changes of various characteristics
also focus on both hands. To solve the above problems, we propose two attention modules,
namely the coordination attention module and the importance attention module, to solve
the above two problems.

3.1. Multiple Attention Mechanism Graph Convolution Action-Recognition Model Based on
Action Coordination Theory

Based on the 2S-AGCN algorithm, we propose a multiple attention mechanism
graph convolution action-recognition model based on action coordination theory (MA-CT).
The model solves some problems and helps the model to better identify the categories
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of human actions. On the one hand, the coordinated attention module (CAM) is mainly
used to extract the coordination features generated in the process of human movement,
and use this coordination feature to further strengthen the input of the model. On the
other hand, the importance of attention module (IAM) aims to solve the problem that the
model is limited by the graph convolution neural network, which makes the model unable
to observe the more important joints in the movement process through the global field
of vision. This section mainly introduces the original adaptive graph convolution model
structure, the multiple attention mechanism graph convolution action-recognition model
structure based on action coordination theory, and the structure of two attention modules.

3.1.1. Adaptive Graph Convolution Module

We take 2S-AGCN as the basic model that was introduced in detail in our other pa-
per [5]. This article will briefly introduce the prominent contents. As shown in Figure 2,
an adaptive graph convolution network is used to stack the above adaptive graph con-
volution modules. There are nine modules in total. The numbers of output channels of
each module are 64, 64, 64, 128, 256, 256, and 256. Before the beginning of the network,
add a BN layer to standardize the input data, add global average pooling after the ninth
module, and finally input the results into the softmax layer to obtain the predicted result.
The calculation formula of adaptive graph convolution is shown in Equation (1),

fout =
Kv

∑
k

Wk fin(Ak + Bk + Ck), (1)

where Kv is the kernel size of the spatial dimension and set to 3, Wk is the weight matrix.
Ak, Bk, and Ck is three kinds of the adjacency matrix.

Here we will focus on the calculation process of Ck. Ck can learn a unique graph for
each sample. To determine whether there is a connection between two adjacent nodes and
how strong the connection is, we use the normalized Gaussian embedding function to
calculate the similarity of the two nodes, as shown in Equation (2):

f (vi, vj) =
eθ(vi)

TΦ(vj)

N
∑

j=1
eθ(vi)

TΦ(vj)

. (2)

Figure 2. Original adaptive graph convolution module (left) and adaptive graph convolution model
(right) [7].

3.1.2. Multiple Attention Mechanism Graph Convolution Action-Recognition Model Based
on Action Coordination Theory

In this section, aiming at the existing models cannot effectively use the coordination
characteristics of the body in the process of human movement, and due to the limitations
of the graph convolution network, it is impossible to obtain the importance of joints from
the global field of vision; therefore, a multiple attention mechanism graph convolution
action-recognition model based on motion coordination theory is proposed. The overall
framework of the model is shown in Figure 3. The light blue square in Figure 3 represents
the CAM proposed in this paper, and the highlighted part in yellow represents the new
adaptive graph convolution network after inserting IAM.
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Figure 3. Multiple attention mechanism convolution action-recognition model based on action
coordination theory (MA-CT).

The multi-attention mechanism graph convolution action-recognition model based
on the action coordination theory proposed in this paper is an end-to-end training model.
The overall framework can be roughly divided into three parts: coordination attention
module, dual flow adaptive graph convolution model, and importance attention module.
The model is based on the 2S-AGCN algorithm. After inputting the action sequence, the co-
ordination attention module is used to preprocess the original data, mine the coordination
characteristics of human action, and obtain a group of action sequences with coordination
characteristics, which effectively integrates the concept of body coordination in human
motion theory into the deep learning model. Then, according to the idea of the dual flow
adaptive graph convolution model, the new action sequence is decomposed into two parts;
one is a node feature, and the other is bone feature. Among them, the node characteristics
include the coordinates on the node, confidence, and so on. Bone length, orientation,
and other features are included. The two sets of data are used as the input of two identical
adaptive graph convolutions for feature extraction. After the ninth layer of the adaptive
graph convolution model, the features are input into the importance attention module,
which can pay attention to the more important joints in the movement process, which
effectively solves the deficiency that the existing models cannot obtain the important joints
through the global field of view. Finally, through the softmax layer, two classification results
are obtained, respectively. Finally, the two classification results are fused to obtain the final
classification result of this model.

3.2. Coordination Attention Module

In the process of movement, people are always maintaining balance, which requires
the cooperation of limbs and the trunk. Therefore, in the process of movement, the position
and trajectory of each body part are roughly fixed. Inspired by this idea, the coordination
of human motion is introduced into the action-recognition model. Therefore, this paper
proposes a coordinated attention module, which is a computing unit, which is composed
of the bone-partition strategy, matrix calculation, covariance matrix, and so on. The bone-
partition strategy of the coordinated attention module proposed in this paper is shown in
Figure 4. According to the structure of the human body, the human bone map is divided
into five partitions, including the head, left arm, right arm, left leg, and right leg, and five
subgraphs are obtained.
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Figure 4. Partition strategy of human skeleton map. (a) shows the unprocessed human skeleton
diagram, in which the red connecting part represents the divided connecting line, and (b) shows the
human skeleton diagram after being divided into five partitions.

Then the model calculates the center-of-gravity point of each region. Mathematically
and physically, it is stipulated that the center of gravity is closely related to the balance of the
object, the motion of the object, and the internal force distribution of the constituent object.
The author considers that to reduce the calculation amount of the model, the module uses
the center of gravity of each region to calculate the coordination, which will be much less
than the calculation amount of directly using joints, and can effectively avoid the problem
of inconsistent nodes of each part. According to Equation (3), the center of gravity points
on the five sub-graphs are calculated, respectively, and the center-of-gravity coordinates of
each part are calculated to represent the general position of the area. The general motion
trajectory of each area can be obtained by tracking the motion trajectory of the center of
gravity. Let the center-of-gravity matrix be (w1, w2, w3, w4, w5). n in Equation (3) represents
the number of nodes, and xn represents the value of the abscissa of the nth node. Here,
to simplify the expression, only the calculation formula of abscissa is shown, and the
calculation of the other two coordinates is consistent with Equation (3):

w =
(x1 + x2 + . . . + xn)

n
, n = 1, 2, . . . , n. (3)

As shown in Figure 5, according to Equation (3), the center-of-gravity points in five
zones can be obtained. Then calculate the body coordination matrix. Covariance is widely
used in statistics and machine learning. Statistically, covariance is generally used to describe
the similarity between two variables, and variance is a special case of covariance. The author
believes that the covariance matrix can be used to calculate the similarity between various
regions, and the similarity between two barycenters can be used to express the coordination
of the body. The module introduces the covariance matrix into the action-recognition
module to calculate the coordination relationship between two regions. The following
will introduce the specific calculation methods of covariance and variance and rewrite the
calculation of the covariance matrix according to the characteristics of the data used in this
paper to make it more consistent with said data. The standard variance and covariance are
calculated as shown in Equations (4) and (5).

s2 =

n
∑

i−1
(Xi − X)

2

n − 1
, i = 1, 2, . . . , n (4)

cov(X, Y) =

n
∑

i−1
(Xi − X)(Yi − Y)

n − 1
, i = 1, 2, . . . , n (5)
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Figure 5. Coordination attention module.

Here, s represents variance, X and Y represent two groups of random variables,
cov(X, Y) represents the covariance of variables X and Y, i represents the ith variable in X
or Y, and n represents the number of samples. According to the characteristics of the data
in this paper, combined with Equations (4) and (5), we rewrite the covariance matrix into
a form suitable for application in this paper. Here, n is set to 5, samples X and Y are set
to the same sample, and the values are consistent, which is the center-of-gravity matrix.
Let Xi = Yj = (w1, w2, w3, w4, w5), i = j = 1, 2, 3, 4, 5. Rewrite Equation (5) to obtain the
calculation formula of coordination matrix used in this module, as shown in Equation (6):

cov(X, Y) =

5
∑

i−1
(Xi − X)(Yi − Y)

4
, i = 1, 2, 3, 4, 5. (6)

According to Equation (6) and the center-of-gravity matrix, the coordination matrix
related to each other can be calculated. The matrix form is shown in Equation (7). Similarly,
the coordination matrix of the remaining two coordinates can be calculated by using
Equation (6).

cov(X, Y) =⎡⎢⎢⎢⎢⎣
cov(w1, w1) cov(w1, w2) cov(w1, w3) cov(w1, w4)
cov(w2, w1) cov(w2, w2) cov(w2, w3) cov(w2, w4)
cov(w3, w1) cov(w3, w2) cov(w3, w3) cov(w3, w4)
cov(w4, w1) cov(w4, w2) cov(w4, w3) cov(w4, w4)

cov(w1, w5)
cov(w2, w5)
cov(w3, w5)
cov(w4, w5)

cov(w5, w1) cov(w5, w2) cov(w5, w3) cov(w5, w4) cov(w5, w5)

⎤⎥⎥⎥⎥⎦ (7)

According to Equation (7), three groups of coordination matrices can be obtained.
These three groups of coordination matrices are expressed as wx, wy, and wz, respectively.
These three groups of matrices can be used to represent the coordination characteristics
of the body. Compress wx, wy, and wz to the same size as the dimension of the center-
of-gravity matrix. The compression method here is in the form of column-by-column
addition, as shown in Equation (8). Take the first column as an example to illustrate the
compression method.

Xi = cov(w1, w1) + cov(w2, w1) + cov(w3, w1) + cov(w4, w1) + cov(w5, w1) (8)

Add the barycentric matrix and the compressed coordination matrix to obtain the
barycentric matrix (ẇ1, ẇ2, ẇ3, ẇ4, ẇ5) with coordination characteristics. Here, we consider
the operation of matrix multiplication, but the coordinate values of most points are less
than 1. If the matrix is multiplied, it will be smaller, and even lead to the loss of features.
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Finally, the center-of-gravity matrix is added to each node according to the region, so that
a set of bone data with coordination characteristics can be obtained.

3.3. Importance Attention Module

The graph volume model processes the data of the topology structure, which is in good
agreement with the action-recognition task based on the human skeleton graph. At present,
many models have achieved very good results. However, these models still have some
shortcomings in the global field of view. Due to the limitation of human body topology, it is
difficult for the graph volume model to learn the relationship between various end nodes,
which is often an important part of the action. In addition, the deep graph convolution
model easily leads to the phenomenon of excessive smoothing of features [25–27], so it
is not suitable to use the deep model [28–30]. Inspired by the dual attention network
(DA-net) [31,32], an attention module is proposed. DA-net can capture the global feature
dependencies in both spatial and channel dimensions. The model uses the location at-
tention module to learn the spatial interdependence of features and designs the channel
attention module to simulate the interdependence between channels. Inspired by this
idea, the location attention mechanism is embedded into the adaptive graph convolution
model to obtain the important features of nodes in the feature graph and transfer them
to the original feature graph. This paper proposes an important attention module. When
extracting features, the module operates directly on the feature map, which can effectively
overcome the limitations of the graph convolution neural network. The important attention
module proposed in this paper is shown in Figure 6. The input of this module is the feature
map obtained after spatial map convolution sampling and time convolution sampling,
and the output is the feature map with attention characteristics.

Figure 6. Importance attention module (IAM).

Because the number of channels in the ninth layer of the adaptive graph convolution
model has reached 256, the value is too large, and the calculation size in the process of
parameter transmission is large. To reduce the computational burden, use the convolution
of 11 reduces the dimension of the feature channel, which effectively reduces the amount
of calculation. First, the characteristic diagram in Figure·6 is divided into three branches,
A ∈ R(N×M)×C×T×V , where (N × M) represents the product of the batch size and the
number of characters, C indicates the number of channels, T indicates the number of
action frames, and V indicates the number of nodes. Then, A is sent into two convolution
layers of 11 to obtain two new feature maps B and C, {B, C} ∈ R(N×M)×C×T×V . Then
the characteristic figure B and C are reconstituted into RC×D, D = (NM)TV, where D
represents the number of feature points on each channel. Then the transposition of B and C
is matrix-multiplied, and the position attention feature map S is calculated by the softmax
layer, S ∈ RD×D. The calculation formula of the attention characteristic map is shown in
Equation (9). where sji represents the influence of the ith position on the jth position:

Sji =
exp(Bi · Cj)

N
∑

i=1
exp(Bi · Cj)

. (9)

At the same time, the feature map S is reorganized and multiplied by a scale coefficient
α, which is added to the feature map a to obtain the final output D, D ∈ R(N×M)×C×T×V .
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The initial value of α is set to 0 and can gradually learn greater weight. The feature D of each
position is the weighted sum of all position features and the original features. Therefore,
it has a global vision and can selectively aggregate context information according to the
spatial attention map:

Ej = α
N

∑
i=1

sji + Aj. (10)

Here, the initial value of α is set to 0, and the corresponding weight can be gradually
obtained through training.

The importance attention module proposed in this paper can realize plug and play.
The author puts it after the space graph convolution and time convolution in the adaptive
graph convolution model. As shown in Figure 7, the more important joints in the process
of human motion are extracted from the space dimension and time dimension respectively.

Figure 7. Adaptive graph convolution model with importance attention module.

In order to better explain the algorithm proposed in this paper, we simply provide an
algorithm flow chart, as shown in Figure 8.

Figure 8. Flowchart of the methodology.

4. Experimental Results and Analysis

This section verifies the effectiveness of the coordination attention module and im-
portance attention module proposed in this paper through experiments. To facilitate the
comparison with the initial model 2S-AGCN, experimental verification is carried out on
two large datasets: Kinetics-Skeleton and NTU-RGB + D. When verifying the coordination
attention module, this section compares each branch of the two-stream network and then
compares the results of the two-stream fusion. When verifying the importance attention
module, because this paper inserts the importance attention module in two positions,
to verify its effectiveness this section verifies the effectiveness of the importance attention
module in space and time dimensions respectively. Then the two modules are fused to ver-
ify the effectiveness of the spatio–temporal importance attention module. Finally, the graph
convolution motion recognition model based on multiple attention modules proposed in
this paper is compared with the model on the same dataset to verify its effectiveness.
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4.1. Datasets and Experimental Details
4.1.1. NTU-RGB + D

NTU-RGB + D [33] is one of the largest datasets in the human action-recognition task
and contains 56,000 action clips in 60 action classes. Each action is taken with three cameras.
The dataset gives the position information of nodes in each frame. There are 25 nodes in
each frame. The author of this dataset two proposed benchmarks—cross-subject (X-Sub)
and cross-view (X-View)—in his paper [33]. The former divides the training set and the test
set according to the subject, and the latter divides the training set and the test set according
to the camera number.

4.1.2. Kinetics-Skeleton

Kinetics [34] is another of the largest human action datasets, and contains 400 action
categories. These video clips are taken from YouTube. We use the OpenPose toolbox to
extract bone data from these videos, and extract bone data with 18 key points from the
video sequence. In this paper, we use their released data (Kinetics-Skeleton) to evaluate the
model in this paper. This dataset can be divided into a training set and a verification set.
The training set has 240,000 segments, and the verification set includes 20,000 segments.

4.1.3. Training Details

All the experiments in this paper were completed under the same equipment. The hard-
ware condition of the device was the ninth-generation Intel CPU, 64 g RAM and two
2080 Ti GPUs. The software condition was based on the Pytoch framework. The optimiza-
tion algorithm was the stochastic gradient descent (SGD). Its momentum was set to 0.9.
The cross-entropy loss function was used, and the initial learning rate was set to 0.1. For the
NTU-RGBD and Kinetics-Skeleton datasets, due to the limitations of the experimental
conditions in this paper, we set the batch size of the model to 16. The learning rate is set
as 0.1 and is divided by 10 at the 30th epoch and the 40th epoch. The training process is
ended at the 50th epoch [16]. For the Kinetics-Skeleton dataset, the size of the input tensor
of Kinetics is set the same as [16], which contains 150 frames with two bodies in each frame.
We perform the same data-augmentation methods as in [16]. In detail, we randomly choose
300 frames from the input skeleton sequence and slightly disturb the joint coordinates
with randomly chosen rotations and translations. The learning rate is also set as 0.1 and is
divided by 10 at the 45th epoch and 55th epoch. The training process is ended at the 65th
epoch [16]. To enhance the accuracy of the experimental results, we did 10 experiments
and took the average value as the final experimental results.

4.2. Ablation Experiment
4.2.1. Effectiveness Analysis of Coordination Attention Module

To verify the effectiveness of the coordination attention module (CAM) proposed in
this paper, this section uses two large datasets—NTU-RGB + D and Kinetics-Skeleton—and
compares the effectiveness of the coordination module by controlling variables. Under the
same hardware conditions and the same parameter settings, the results shown in Table 1 are
obtained, in which “J-Stream” and “B-Stream” respectively represent the joint stream and
bone stream of the 2S-AGCN, and “CAM” represents the abbreviation of the coordinated
attention module proposed in this paper. On the CV index of the NTU-RGB + D dataset,
the accuracy of “J-Stream” of the initial 2S-AGCN is 93.1%, the accuracy of “B-Stream” is
93.3%, and the accuracy after two-stream fusion is 95.1%. In terms of CS index, the accuracy
of “J-Stream” in the experimental environment is 86.3%, the accuracy of “B-Stream” is
86.7%, and the accuracy after two-stream fusion is 88.5%. In the Kinetics-Skeleton dataset,
the accuracy of “J-Stream” in the experimental environment is 34.0%, that of “B-Stream” is
34.3%, and that of 2S-AGCN is 36.1%.
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Table 1. Effectiveness analysis of coordination attention module on NTU-RGB + D and Kinetics-
Skeleton datasets.

Methods
NTU-RGB + D

Kinetics-Skeleton (%)
CV (%) CS (%)

J-Stream 93.1 86.3 34.0
B-Stream 93.3 86.7 34.3
2s-AGCN 95.1 88.5 36.1

CAM + J-Stream 94.0 86.9 35.4
CAM + B-Stream 93.5 87.5 34.5
CAM + 2s-AGCN 95.3 88.8 36.5

Under the same test conditions, the CAM proposed in this paper is inserted into
the adaptive graph convolution model. In the CV index of the NTU-RGB + D dataset,
the accuracy of “CAM + J-Stream” is 94%, which is 0.9% higher than the original accuracy.
The accuracy of “CAM + B-Stream” is 93.5%, which is 0.2% higher than the original accuracy.
The accuracy of two-stream fusion is 95.3%, which is 0.2% higher than the original accuracy.
In terms of CS index, the accuracy of “CAM + J-Stream” is 86.9%, which is 0.6% higher
than the original accuracy. The accuracy of “CAM + B-Stream” is 87.5%, which is 0.8%
higher than the original accuracy. The accuracy of two-stream fusion is 88.8%, which is
0.3% higher than the original accuracy. In the Kinetics-Skeleton dataset, the accuracy of
“CAM + J-Stream” is 35.4%, which is 1.4% higher than the original accuracy. The accuracy of
“CAM + B-Stream” is 34.5%, which is 0.2% higher than the original accuracy. The accuracy
of two-stream fusion is 36.5%, which is 0.4% higher than the original accuracy.

It can be seen from Table 1 that the performance of the adaptive graph convolution
model combined with the coordinated attention module has improved in the two datasets.
The module calculates the barycenter positions of the five partitions of the body, then
calculates the relationship between the five locations by using the covariance matrix,
and adds it to the features as a coordination matrix, which enriches the representation
of the features. From the experimental results, this module can improve the accuracy of
the model. After the two-stream fusion, the effect is better than the model without the
coordination feature.

To further verify the effectiveness of the module, this section also records the changes
in accuracy during model training and draws a curve to compare the changes in inaccuracy,
as shown in Figures 9–11. It can be seen from the accuracy curve that the coordinated
attention module proposed in this paper is better able to help the model understand the
action semantics. In the two datasets, the initial accuracy of the model is higher than
that of the original two-stream adaptive graph convolution model, and the oscillation
amplitude of the accuracy is also small in the training process. When the final model
tends to converge, the accuracy is also improved to a certain extent, which shows that the
coordination attention module can effectively extract the coordination features of human
bones, and provide help for the discrimination of action semantics.
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Figure 9. Accuracy change curve on CV index of NTU-RGB + D.

Figure 10. Accuracy change curve on CS index of NTU-RGB + D.

Figure 11. Accuracy change curve of Kinetics-Skeleton.
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4.2.2. Effectiveness Analysis of Importance Attention Module

Aiming at the shortcomings of the existing models, this paper proposes an importance
attention module (IAM). The module can observe the changes in joints from a global
perspective and can calculate the dependencies between non-adjacent nodes from the
topology. This module can realize plug and play. Because the adaptive graph convolution
module extracts the features of the data in both space and time dimensions at the same
time, this paper places the importance module after the spatial graph convolution layer and
time convolution layer respectively. This section will verify and analyze the effectiveness
of the module on two large public datasets. All data in Table 2 are completed under the
same parameter settings and hardware conditions. “IAM-S” in the table indicates that the
importance attention module is placed after spatial map convolution, “IAM-T” indicates
that the importance attention module is placed after time convolution, and “IAM-ST”
indicates that the importance attention module is placed at both locations. To facilitate
the comparison with the 2S-AGCN, this section compares the accuracy of the importance
attention module with the “J-Stream” and “B-Stream” of the initial model and verifies its
effectiveness one by one. Then, the results of the two streams are fused to obtain the final
classification result. From the experimental results in Table 2, it can be concluded that the
IAM will improve the accuracy of the model after the spatial map convolution or time
convolution. When the two positions are placed at the same time, the accuracy of the model
will be further improved, which shows that the important attention module can effectively
observe the joints that are more important for motion understanding from the perspective
of global vision. In the CV index of the NTU-RGB + D dataset, after adding two groups of
IAMs, the accuracy of the model is 95.7%, which is 0.6% higher than the initial 2S-AGCN.
In the CS index, the accuracy of the model is improved by 0.4% compared with the initial
model. In the Kinetics-Skeleton dataset, the accuracy of the model is improved by 0.9%
compared with the initial model. The results in Table 2 illustrate the effectiveness of the
importance attention module proposed in this paper.

Table 2. Effectiveness analysis of importance attention module in NTU-RGB + D and Kinetics-Skeleton.

Methods
NTU-RGB + D

Kinetics-Skeleton (%)
CV (%) CS (%)

J-Stream 93.1 86.3 34.0
B-Stream 93.3 86.7 34.3

IAM-S + J-Stream 93.9 86.9 34.9
IAM-S + B-Stream 93.5 86.5 34.5

IAM-T + J-Stream 94.4 87.1 35.0
IAM-T + B-Stream 94.1 86.7 34.5

(IAM-ST) + J-Stream 94.6 86.9 34.8
(IAM-ST) + B-Stream 94.3 86.6 34.6

2s-AGCN 95.1 88.5 36.1
IAM-S + 2s-AGCN 95.2 88.6 36.3
IAM-T + 2s-AGCN 95.5 88.7 36.4

(IAM-ST) + 2s-AGCN 95.7 88.9 37.0

4.3. Comparison with Other Methods

This paper proposes a convolution action recognition model of multiple attention
mechanism graphs based on action coordination theory. The experiments in Section 4.3 con-
firm the effectiveness of the two attention modules proposed in this paper. This section com-
pares the MA-CT with some existing algorithms in the same datasets. The results of these
two comparisons are shown in Tables 3 and 4, in these tables, bolded data is best. The meth-
ods used for comparison include the handcrafted feature-based method [35], RNN-based
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methods [36–38], CNN-based methods [39,40], and GCN-based methods [5,14,16,41–47].
The accuracy of MA-CT in CV index on NTU-RGB + D is 95.9%, and the accuracy in the CS
index is 89.7%. Compared with the original 2S-AGCN, it is improved by 0.8% and 1.2%,
respectively. In the Kinetics-Skeleton dataset, the accuracy of MA-CT reaches 37.3%, which
is 1.2% higher than that of the original model. At the same time, compared with the model
proposed in Section 3 it is improved by 0.2%. As can be seen from Table 3, in terms of the
CV index, the model proposed in this paper is still inferior to the more advanced MV-IGNet.
However, in terms of the CS index, the accuracy of the model proposed in this paper is
0.3% higher than that of MV-IGNet. It can be seen from Table 3 that the model proposed in
this paper has improved upon the initial model, indicating that the coordination attention
module and importance attention module can improve the accuracy of model recognition
to a certain extent. In the Kinetics-Skeleton dataset, the accuracy of the proposed model
in top-1 is 37.3%, which is 1.2% higher than the original 2S-AGCN. The accuracy of this
model in top-1 is still not as good as 2S-AAGCN and 4S-AAGCN, but the accuracy of top-5
is 1% and 0.4% higher.

Table 3. Comparison of accuracy between ours model and other models on NTU-RGB + D dataset.

Methods CV (%) CS (%)

Deep LSTM [36] 67.3 60.7
Temporal ConvNet [39] 83.1 74.3

VA-LSTM [37] 87.6 79.4
Two-stream CNN [40] 89.3 83.2

GCA-LSTM [41] 82.8 74.4
ARRN-LATM [38] 89.6 81.8

MANs [42] 93.22 83.01
ST-GCN [14] 88.3 81.5

DPRL + GCNN [43] 89.8 83.5
2S-AGCN [16] 95.1 88.5
RA-GCN [44] 93.6 87.3

MV-IGNet [45] 96.3 89.2
MST-AGCN [5] 95.5 89.5

MA-CT (ours) 95.9 89.7

Table 4. Comparison of accuracy between ours model and other models on Kinetics-Skeleton dataset.

Methods CV (%) CS (%)

Feature Encoding [35] 14.9 25.8
Deep LSTM [36] 16.4 35.3

Temporal ConvNet [39] 20.3 40.0
ST-GCN [14] 30.7 52.8

2S-AGCN [16] 36.1 58.7
GCN-NAS [46] 37.1 60.0
1s-AAGCN [47] 36.0 58.4
2s-AAGCN [47] 37.4 60.4
4s-AAGCN [47] 37.8 61.0
MST-AGCN [5] 37.1 61.0

MA-CT (ours) 37.3 61.4

5. Discussion

With the rapid development of artificial intelligence and its application in various
fields, HAR has become an important area of development through deep learning to
identify human movement. There is still room for further improvement in the accuracy of
current HAR algorithms before its best engineering applications can be achieved.
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In the development of existing HAR algorithms, people are always accustomed to
introducing newly developed deep learning algorithms into HAR algorithms, which has
played a role in improving the accuracy. Compared with traditional machine learning,
deep learning essentially uses complex networks for automatic learning data features.
In order to achieve better learning of such features, the network of deep learning becomes
more and more complex, which requires more expensive hardware, and the requirement
is contradictory to engineering application. Therefore, if the network structure remains
unchanged (the requirements for hardware also remain unchanged), artificial emphasis
on some prior knowledge and enhancement of some features will enable the network to
quickly grasp these important features, and improve the accuracy to become a better choice.

Based on the coordination theory in sports kinematics, and by combining the digital
robot control theory and the attention mechanism, this study has some innovations in
feature enhancement and model structure. For feature extraction, this study uses a two-
channel scheme to extract joint and bones features, which are divided into two data streams
for analysis. In the aspect of feature enhancement, the coordination attention module and
the importance attention module are designed and used to focus on the correlation of upper
and lower frames action coordination, and finally achieve the fusion output. This study
improves the accuracy, which proves that the idea of HAR combined with the coordination
theory is correct.

In addition, we also recognize that because the learning data and validation data of
this algorithm come from generally accepted standard datasets, and most of these standard
datasets are stable movements of healthy people, this is obviously a positive sample for
whole data, and uncoordinated actions should also be the content of learning and analysis,
which is one of the defects of this study. Of course, it is easy to imagine that if human
movements were inconsistent and the center of gravity was unstable, the predictable results
are falls, so this algorithm should be used to predict the action of human falls.

6. Conclusions

In this work, we propose a multiple attention mechanism graph convolution action
recognition model based on coordination theory (MA-CT). It parameterizes the graph
structure of the skeleton data and embeds it into the network to be jointly learned and
updated with the model. This data-driven approach increases the flexibility of the graph
convolutional network and is more suitable for the action recognition task. Furthermore,
the existing methods do not make full use of the coordination features of human motion,
and because of the existence of an adjacency matrix, the model cannot extract features from
the global perspective. In this work, we propose a coordination attention module (CAM)
and importance attention module (IAM). In this paper, experiments are carried out on two
large public datasets. For the two indicators of NTU-RGB + D, the CAM improves the
accuracy of the model by 0.2% and 0.3%, and the IAM improves the accuracy of the model
by 0.6% and 0.4%. In the Kinetics dataset, the CAM improves the accuracy of the model by
0.4%, and the IAM improves the accuracy of the model by 0.9%. They are used to solve the
problems of insufficient feature extraction and the capturing of key joints. The final model
has achieved good results in NTU-RGB + D and Kinetics.
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Abstract: Gaze is an excellent indicator and has utility in that it can express interest or intention and
the condition of an object. Recent deep-learning methods are mainly appearance-based methods that
estimate gaze based on a simple regression from entire face and eye images. However, sometimes,
this method does not give satisfactory results for gaze estimations in low-resolution and noisy images
obtained in unconstrained real-world settings (e.g., places with severe lighting changes). In this study,
we propose a method that estimates gaze by detecting eye region landmarks through a single eye
image; and this approach is shown to be competitive with recent appearance-based methods. Our
approach acquires rich information by extracting more landmarks and including iris and eye edges,
similar to the existing feature-based methods. To acquire strong features even at low resolutions,
we used the HRNet backbone network to learn representations of images at various resolutions.
Furthermore, we used the self-attention module CBAM to obtain a refined feature map with better
spatial information, which enhanced the robustness to noisy inputs, thereby yielding a performance
of a 3.18% landmark localization error, a 4% improvement over the existing error and A large number
of landmarks were acquired and used as inputs for a lightweight neural network to estimate the
gaze. We conducted a within-datasets evaluation on the MPIIGaze, which was obtained in a natural
environment and achieved a state-of-the-art performance of 4.32 degrees, a 6% improvement over the
existing performance.

Keywords: gaze estimation based on feature; eye landmark detection; self-attention; synthetic eye
images

1. Introduction

Accurately estimating gaze direction plays a major role in applications, such as the anal-
ysis of visual attention, research on consumer behavior, augmented reality (AR), and virtual
reality (VR). Because inference results are more improved by using deep-learning models
than other approaches, they can be applied to advanced technologies, such as autonomous
driving [1] and smart glasses [2], and can overcome challenges in the medical field [3].
Using these deep-learning models is quite helpful, but it is difficult to train them due
to lighting conditions and insufficient and poor-quality datasets. Moreover, the value of
gaze datasets is very expensive and complicated to process. To alleviate this problem, we
propose a model that extracts eye features using UnityEyes [4], high-quality synthetic data.
An exact position of a feature is obtained from the enhanced model by using a self-attention
module. Subsequently, gaze estimation is performed through using high-level eye fea-
tures, which is less restrictive as it does not utilize complex information, such as full-face
information and head poses used for gaze estimation [5–7].

Recently, deep-learning-based eye-tracking technology has been developed mainly
through appearance-based methods [5–11] that use eye images or face images. These
appearance-based models currently perform particularly well in a controlled, environment
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in which there are no disturbances, such as noise in an input frame. However, these
models have some drawbacks. First, the cost of datasets is very high, and the quality
of data has a significant impact on the training of the model. Second, most models are
black-box solutions, which pose the challenge of locating and understanding points for
improvement. This study reduces the dependency of the feature map, which is difficult to
interpret and approaches a feature-based method that can estimate a gaze vector through
accurate feature points after acquiring landmarks obtained from an image. Refs. [12,13]
used a stacked hourglass model [14] to extract a few eyelid and iris points.

In this study, we reinforced and used an advanced model, called HRNet [15], which
shows state-of-the-art performance in the pose estimation task to extract high-quality land-
marks. In pixel-wise fields, such as pose estimation and landmark detection, the resolutions
and sizes of images have huge impacts on performance. Therefore, we extracted landmarks
with a high accuracy by remodeling the model using a self-attention module [16–18]. CBAM [18],
a self-attention technology, helps to generate a refined feature map that better encodes
positional information using channel and spatial attention.

Because we aimed to estimate a gaze vector centered on a landmark extraction, a la-
beled gaze vector and eye-landmark dataset were essential. However, because gaze data are
very expensive and difficult to generate, it is more difficult to obtain a dataset that provides
both high-resolution images and landmarks simultaneously. Therefore, UnityEyes, a syn-
thetic eye-image dataset with eye landmarks, was adopted as a training dataset through
high-resolution images and an automatic labeling system. The model was trained by
processing 32 iris and 16 eyelid points from the eye image obtained by fixing the head pose.
Figure 1 shows the predicted heatmaps during the training We evaluated landmark and
gaze performance by composing a test set for UnityEyes and performed a gaze performance
evaluation using MPIIGaze [11], which has real environment settings.

Our paper is organized as follows. We first summarize related work in Section 2.
In Section 3, the proposed gaze estimation method is explained. Section 4 describes the
datasets used in the experiments. The experiment results are provided in Section 5. Finally,
Section 6 presents our discussion on this study, and Section 7 presents the conclusion.

Figure 1. From left to right, the predicted heatmaps are shown as the training epoch increases.
The heatmaps have high confidence scores where the landmarks are most likely to be located, and the
right bar represents the color space corresponding to the confidence score.

2. Related Work

The gaze estimation method is a research topic of great interest as it has excellent
applicabilities to real environments. As it can be applied to various fields, obtaining and
creating accurate gaze values and gaze estimations with less constraints are challenging
tasks. In this section, we provide a brief overview of the research related to our method.
The studies in each subsection are summarized in Tables 1–3, respectively.

2.1. Feature-Based Method

Feature-based estimation [13,19–22], a method of gaze estimation, mainly uses unique
features that have geometric relationships with the eye. Existing research studies have
focused on objects that have a strong visual influences on images.

Roberto et al. [19] used the saliency method to estimate visual gaze behavior and
used gaze estimation devices to compensate for errors caused by incorrect calibrations,
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thereby reducing restrictions caused by user movements. However, the use of these devices
increases the error rate as the head moves and interferes with gaze detection.

Some researchers added multiple cameras to compute and focus head movements in
multiple directions, extending the influence of eye information and head posture informa-
tion [20,21]. Head pose has a significant effect on the gaze and requires many restrictions.

To avoid this problem, studies dealing with the static head-pose problem were con-
ducted [13,22] using the convolutional neural network (CNN) model, in which images
from a single camera are used to perform gaze estimations based on landmarks as they are
less restrictive features. This makes it less difficult to build an experimental environment
because there is no need for separate camera calibrations. As only eye images are used
for gaze estimations, the dependence of the eye landmark feature vector is increased. Af-
ter acquiring eye landmarks using a CNN model, a gaze is inferred using support-vector
regression (SVR) [23].

Bernard et al. [24] used two gaze maps; one represented the eyeball region and the
other represented the iris region. A gaze vector was regressed through the positional
relationship between the two gaze maps.

Table 1. A summary table of the feature-based gaze estimation method.

Author Methodology Highlights Limitations
Roberto et al. [19] Saliency method Fixing the shortcoming of low-quality monocular head and eye trackers Controlled poses

Manolova et al. [20] SDM algorithm Estimating accurate gaze direction based on
3D head positions using a Kinect

Multiple device settings

Lai et al. [21] CFB and GFB approaches Integrating CFB and GFB to provide a robust and flexible system Multiple camera settings

Wood et al. [22] CNN and 3D head scans Providing synthetic eye-image datasets with
landmarks, a head pose and a gaze direction annotation

Weak to unmodelled occlusions

S. Park et al. [13] Hourglass network and SVR Estimating an accurate gaze vector based on
eye landmarks in wild settings

Computational costs

Bernard et al. [24] Capsule network Utilizing two beat maps where one represents the eyeball
and the other represents the iris

Computational costs

2.2. Landmark Detection

We used a deep-learning-based pose-estimation model as a tool to acquire eye region
features. The landmark-detection task includes a key-point detection to detect a skeleton
representing the body structure and a facial-landmark detection to extract landmarks in
the face; this is a field that requires a large number of datasets depending on the domain.
Some models have a direct regression structure based on the deep neural network and have
predicted key points [25]. The predicted key-point positions are progressively improved
using feedback on the error prediction.

Some researchers proposed a heatmap generation method through using soft-max
in a manner that can be fully differentiated [26]. The convolutional pose machine [27]
predicts a heatmap with intermediate supervision to prevent vanishing gradients, which
are detrimental to deep-learning models. A new network architecture called the stacked
hourglass [14] proved that repeated bottom-up and top-down processing with intermediate
supervision is an important process for improving performance. A network structure
that used high to low sub-networks in parallel is one of the networks that are currently
showing the best performance [15]. For a spatially accurate heatmap estimation, high-
resolution learning is maintained throughout the entire process; unlike the stack hourglass,
it does not use intermediate heatmap supervision, which makes it efficient in terms of
complexity and parameters and can generate highly information-rich feature outputs
through a multi-scale feature fusion process. Yang et al. [28] introduced a transformer for
key-point detections using HRNet as a backbone that extracts a feature map. It causes a
performance improvement over existing performance through multi-head self-attention
but is computationally demanding.
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Table 2. A summary table of the landmark detection.

Author Methodology Highlights Limitations
Toshev et al. [25] DNN Introducing a cascade of direct DNN regressors for landmark detection Overfitting problem

Luvizon et al. [26] CNN Using the soft-max function to convert feature maps directly into
landmark coordinates in a fully differentiable framework

Limited memory resources

Wei et al. [27] CPMs Providing a natural learning-objective function that enforces intermediate supervision
to adder the difficulty of vanishing gradients

Enabled for only a single object

Newell et al. [14] Stacked hourglass Processing repeated bottom-up and top-down sampling used in conjunction
with intermediate supervision

Limited input-image size

Sun et al. [15] HRNet Generating highly information-rich feature outputs through
a multi-scale feature fusion process

Limited input image size

Yang et al. [28] TransPose Introducing a transformer for key-point detections to yield performance improvements
through multi-head self-attention

Computationally expensive

2.3. Attention Mechanism

Attention mechanisms in computer vision aim to selectively focus on the prominent
parts of an image to better capture the human visual structure. Several attempts have
been made to improve the performance of CNN models in large-scale classification tasks.
Residual attention networks improve feature maps through encoder–decoder style attention
modules and are very robust to noisy inputs. The attention module reduces the complexity
and parameters by dividing calculations into channels and spaces instead of performing
calculations in the typical three-dimensional space manner in addition to achieving a
significant effect.

The squeeze-and-excitation module [16] proposes an attention module to exploit the
relationship between channels. Channel weights are generated through average pooling or
max pooling to apply attention to each channel. BAM [17] adds a spatial attention module
in addition to the above channel method and places it in the bottleneck to create richer
features. CBAM [18] is not only located in each bottleneck of a network but also forms
a convolution block to configure the network. In addition, the performance is increased
empirically by using the sequential processing method for channel and spatial attention;
this method has an empirically better performance than using only the channel unit and
has achieved state-of-the-art performance in the classification field.

The self-attention module with such a flexible structure has been applied to many
tasks, such as image captioning and visual question answering [29]. The self-attention
module is widely used in detection and key-point detection in which spatial information is
important [30,31].

Table 3. A summary table of the attention mechanism.

Author Methodology Highlights Limitations

Hu et al. [16] SENet Providing a novel architectural unit focusing on the channel relationships
on feature maps

Lack of information
on pixel-wise relationships

J. Park et al. [17] BAM Providing a module which infers an attention map along two separate pathways
(channel and spatial)

Computational complexity

S. Woo et al. [18] CBAM Introducing a lightweight and general module that can be integrated
into any CNN architecture

Computational complexity

3. Proposed Method

3.1. Overview of Gaze Estimation Based on Landmark Features

In this section, we introduce a network structure and a process for extracting a rich
and accurate landmark feature vector from an eye image and then estimating a gaze based
on it. A series of procedures for estimating a proposed gaze is shown in Figure 2. Eye
images can simply be acquired from a single camera. If a frame contains a full-face image,
the frame must be cropped to a 160× 96 sized image centered on the eye area using the face
detection algorithm [32]. The image is converted into black and white image for simple
processing. This can enhance the performance output of the infrared camera.
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Figure 2. Overall flowchart of our feature-based gaze-estimation system.

To obtain eye-feature vectors from processed images, we selected HRNet as a baseline
model that can generate feature maps containing rich information through fusions with
various feature maps while maintaining a high image resolution. HRNet showed the
best performance in the key-point detection task, proving its utility. We modified HRNet
by additionally using the self-attention module CBAM. Channel-wise and spatial-wise
weights were applied to infer the most important channels in the 3D feature map and
most important spatial points in the channels. Section 5.1 shows that the proposed model
achieved higher landmark accuracy than models in previous studies.

The EAR [33] threshold (T), which can be different for each individual, was set using
the initial 30 input frames. The EAR ratio value (E) was calculated for each frame; if the
calculated EAR ratio value was less than the threshold value, it was judged that there was
no need to estimate gaze because the eyes were closed. By reducing false-positive errors,
it was possible to proceed with a gaze estimation that had a computational advantage.
In some cases, 3D gaze regressions use SVR, but we proceeded by constructing an optimal
MLP. The architecture configurations of these models have the advantage of being able to
proceed one step when learning.

The most important task of our proposed method was to acquire a high-level landmark
feature that affects the EAR ratio and gaze. Before training the model, we were faced with
the problem of a lack of a dataset, which is a chronic problem of deep-learning models,
adversely affects their training, and can result in over-fitting. Landmark datasets are
especially expensive, and only a few datasets include both a gaze and a landmark. To avoid
this problem, we used a large set of UnityEyes synthetic data for training the dataset.
UnityEyes synthetic data is a dataset that includes annotations, such as rich eye landmarks
and gazes, by modeling a 3D eyeball based on an actual eye shape created by using the
game engine Unity. The models [4] trained with this synthetic dataset showed good
performances and had a lot of information and high resolutions; therefore, they are very
suitable for processing and applications.

3.2. Architecture of Proposed Landmark-Detection Model

We used a feature vector for gazes with large amounts of eye landmarks obtained
through the model from the input frame that contains eye information from a single camera.
To increase the gaze accuracy, it was important to generate a high-level feature, and we set
the advancement of the model that extracted a heatmap output most similar to the correct
answer as the main goal of this study. Previous studies [12,13] that used eye landmarks
as features mainly adopted [14] the production of feature outputs. However, because the
feature map is restored through decoding after passing forward from high resolution
to low resolution, it is weak in expression learning at a high resolution. Because our
model requires extracting more eye landmarks from small-sized eye images than previous
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studies [13], feature learning at high resolution, which has high sensitivity to positional
information in an image space, was necessary. Therefore, we adopted HRNet, which
maintains multi-resolution learning (including a high-resolution), as a baseline model.

The basic structure of HRNet consists of 4 steps and 4 stages. Each step creates a
feature that doubles the number of channels with half the resolution of the previous step.
Each stage consists of a residual block and an exchange unit, and the feature map of each
step is processed in parallel. The exchange unit is an information exchange process through
fusion between feature maps of each step through fusion, and the second, third, and fourth
stages have one, four, and three units, respectively. At the end of each stage, there are
feature fusion and transition processes that increase a step by generating a feature map
that is half the previous size. Fusion between multi-scale features includes an up-sampling
process that uses 1 × 1 convolution, a nearest-neighbor interpolation in the bottom-up path,
and a down-sampling process that uses several 3 × 3 convolution blocks with strides of
2 in the top-down path.

input = {X1, X2, ...Xr} output = {Y1, Y2, ...Yr}

Yk =
r

∑
i=1

F(Xi, k) , F(Xi, k) =

⎧⎪⎨⎪⎩
identi f y connection, if i = k
up sampling, if i < k (i, k ≤ r)
down sampling, if i > k

(1)

Equation (1) describes the feature fusion process. For input {X1, X2, ...Xr} of dif-
ferent resolutions, output features {Y1, Y2, ...Yr} are generated through an element-wise
summation of features after down-sampling and up-sampling. r represents resolution
numbers; if r is the same, the widths and resolutions of the input and output are the same.
At the end of the 4th stage, all step information is concatenated to create the feature block
Fb
{
[Y4

1 ; Y4
2 ; Y4

3 ; Y4
4 ]
}

and to head to the prediction head.
To solve the problem of the typically acquired eye image having a small resolution,

we introduced an additional residual block layer composed of a 3 × 3 convolution to the
model to create feature (Fo) of the origin resolution that stores the information of the largest
resolution. Through the summation of Fo and up-sampled Fb, more spatially accurate
features are created.

Because the heat map, which is the final result of the network, requires accurate spatial
information for each channel, we applied CBAM, a self-attention technique, to the normal
residual and convolution blocks of each stage. Architecture of the modified network is
illustrated in Figure 3. These techniques (adding the residual CBAM layer and applying
CBAM to all stages of the residual block) improved the landmark-detection performance,
which is described in Section 5.1.

Figure 3. Our landmark-detection network architecture used to extract feature map.
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3.3. Network Engineering with the Self-Attention Module CBAM

Attention mechanisms have been widely used for feature selection using multi-modal
relationships. Refining the feature maps using attention module helps the network and
causes it to perform well and become robust to noisy inputs. Based on empirical results,
such as those in [16,17], the CBAM self-attention module has developed rapidly and
showed higher accuracy than existing modules in the image classification task through
various structure and processing experiments. We judged that the positional information
of the refined feature would improve the performance; therefore, we applied the residual
block of the network by replacing the CBAM block. The architecture of CBAM is illustrated
in Figure 4.

Figure 4. Convolutional block attention module (CBAM) architecture in residual block.

CBAM adds two sub-networks that consist of channel attention and spatial attention
networks to the basic residual block. Feature F ∈ R C×H×W is generated through a 3 × 3
convolution of the residual, which is the output of the previous block. F goes through the
channel attention and spatial attention networks sequentially. First, in the case of channel
attention, the two types of channel-wise pooling, that is, max pooling and average pooling,
are performed to obtain weight parameters for channels. Feature vectors Fmax ∈ R C×1×1

and Favg ∈ R C×1×1, generated through pixel-wise pooling, share an MLP that has a
bottleneck structure with the advantages of parameter reduction and generalization and are
merged using element-wise summation. Finally, the product is normalized using sigmoid
function to obtain the meaningful weights Mc(F) ∈ R C×1×1 and generate Fc ∈ R C×H×W

by multiplying Mc(F) and F. The above process is described by using Equation (2).

Mc(F) = Fsigmoid(MLP(Fmax) + MLP(Favg)),

Fc = Mc(F)
⊗

F
(2)
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Subsequently, using the channel-refined feature (Fc) as an input, Ms(Fc) is generated
through the spatial attention module.

Ms(Fc) = Fsigmoid(Conv7×7([Fmax; Favg])),

Fsc = Mc(Fc)
⊗

Fc,

output = Residual
⊕

F

(3)

In Equation (3), spatial weight feature Ms(F) ∈ R 1×H×W is made by using sequential
process pooling, concatenation, 7 × 7 convolution and normalizing using with sigmoid
function, then Fsc ∈ R C×H×W is merged by multiplying Ms(Fc) ∈ R 1×H×W and Fc.
The output of blocks that are merged by using the element-summation residual and Fsc is
refined with a focus on ‘what’ and ‘where’, respectively. Because we applied this module to
the residual block of the processing stage in parallel, the output at each stage contains very
rich information and encodes channel information at each pixel over all spatial locations
due to attention and fusion.

We applied the CBAM module of the additional residual layer and additionally applied
the CBAM module to all steps of the stage. We showed performance improvement through
the normalized mean error (NME) value, which is a key-point-detection performance value.
Detailed outcome indicators are described in Section 5.

3.4. Gaze-Estimation-Based Eye Landmarks with EAR

We estimated gaze vectors based on an eye feature that consists of a total of 50 eye
landmarks (1 from an eye center, 1 from an iris center, 16 from an eyelid, and 32 from an iris).
We extracted high-accuracy eye landmark localization while optimizing and improving
the network. As the quality of the landmark extracted by the network improved, the gaze
regression performance also improved empirically. Existing feature-based studies [13,34]
mainly used the SVR for gaze regressions. We empirically confirmed that the difference
between the SVR and multi-layer perceptron (MLP) performance is very small and that
the MLP performance is relatively good. The MLP simply contains two hidden layers and
uses Leaky ReLU [35] as an activation function. In addition, when the MLP is used, there
is the advantage that landmark detection and gaze estimation are possible in one-stage
training. The MLP contains two hidden layers and uses Leaky ReLU as an activation
function. The co-ordinates used as the inputs are normalized to the distance between the
eye endpoints, and all eye points are translated with respect to the eye center coordinates.

To reduce false positives and increase efficiency, we utilized an EAR value. The EAR
value was calculated to decide whether an eye was closed or not using 16 eyelid points.
We introduced a new EAR metric based on a method that uses 6 points because we could
obtain richer, high-quality eyelid points. Figure 5 shows the measured lengths of an eye
using images that include a closed eye. We measured the horizontal length through the
p1 and p9 points out of a total of 16 points {p1, p2, ...p16}, and the average value of the
remaining seven pairs of points {(p2, p16), (p3, p15)...(p8, p10)} was defined as the vertical
length. The EAR was calculated using Equation (4).

EAR =
∑7

n=1 ‖ pn+1 − p17−n ‖1
7 ‖ p1 − p9 ‖1

(4)

Because the EAR varies considerably from user to user, we set the EAR threshold (T)
to half the median value after receiving the EARs for the initial 30 frames’ inputs. Then, if
the measured EAR was smaller than T , the network did not estimate gaze.

178



Sensors 2022, 22, 4026

Figure 5. EAR was calculated through the displayed landmark coordinates (from P1 to P16). The blue
dots are used to represent the width of the eye and the red the height. The eye on the right is in a
state at which there is no need to estimate the gaze.

3.5. Learning

Two losses, a landmark loss and a gaze loss, were required for the training of our
proposed network. The method of regressing the heatmap, which is the probability of
the existence of each feature point using a CNN model, has fewer parameters than the
method of directly regressing the feature point coordinates and can avoid the problem
of over-fitting. However, it is difficult to precisely detect units below the decimal point
because heatmap regression acquires integer co-ordinates through an arg-max operation
in the process of converting heatmap into coordinates. We used integral regression [36]
to properly compensate for the above two shortcomings. The integral regression module
removes negative values by applying AB ReLU operation to the heatmap and divides
the operation by the total sum to normalize it. As shown in Equation (5), all values of Ĥ
are between 0 and 1 and the total sum becomes 1; therefore, it is defined as a probability
distribution. Subsequently, the co-ordinates of each feature point in the heatmap can be
obtained through the expected value calculation.

Ĥc(x, y) =
FReLU(Hc(x, y))
∑i ∑j(Hc(i, j)

predicted coordinates =

{
xc = ∑i ∑j iĤc(i, j)
yc = ∑i ∑j jĤc(i, j)

(5)

Therefore, the final landmark cost function consists of the mean squared error (MSE)
loss between the output and the ground-truth heatmap, the L1 loss of the ground-truth
co-ordinate and the co-ordinates obtained by using the expected value operation. H

′
is the

predicted heatmap, H is the ground-truth heatmap, (x
′
, y

′
) is the co-ordinate predicted

through the integral module, and (x, y) is the ground-truth co-ordinate.

Lossheatmap = ∑
i

∑
x

∑
y
‖ H

′
i (x, y)− Hi(x, y) ‖2

2 , Losscoordinates = ∑
i
‖ (x

′
, y

′
)− (x, y) ‖1

Losslandmark = Lossheatmap + Losscoordinates

(6)

To compare each gaze performance, experiments were conducted using several meth-
ods. There are two frequently used methods of gaze regression. The first is a method of
directly regressing a 3D vector and the second is a method of encoding a 3D normal vector
into 2D space pitch (θ) and yaw (ϕ) regression. The pitch and yaw are the angles between
the pupil and the eyeball, which can explain the positional relationship. The positional
relationship between an eyeball and a pupil is illustrated in Figure 6. We found that the
generalization was better when a 2D angle vector was encoded empirically and cosine
distance loss and MSE were used as cost functions, and the best performance was obtained
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in MSE. (Pitch, yaw), that is, (θ
′
, ϕ

′
), is the predicted 2D gaze and (θ, ϕ) is the ground-truth

2D gaze.

pitch(θ) = arcsin(y), yaw(ϕ) = arctan(
x
z
)

Lossgaze =‖ (θ
′
, ϕ

′
)− (θ, ϕ) ‖2

2

(7)

We trained our model using a UnityEyes dataset that consists of 80,000 images, and each
validation and test used 10,000 images. We used black and white 1 × 160 × 96 images and
set batch size to 16. We used the Adam optimizer. The learning schedule followed the
settings in [15]. We used pre-trained data on ImageNet. The base learning rate was set as
4 × 10−4 and decreased by every 25 epochs. Specifications of the PC used in the experiment
were an Intel Core i9-11900K, 3.5 GHz CPU, and NVIDIA RTX 3090 GPU with 24 GB of
memory for training.

Figure 6. (a) illustrates the simple network architecture for gaze estimation and (b) shows the relationship
between the pupil and the eyeball. Gray embedding vector encode the landmarks coordinates. Gaze
vector (red) can be explained through a pitch (θ) and yaw (ϕ).

4. Description of the Dataset

This section describes the dataset used for network training and evaluation. Figure 7
shows the original forms of the utilized datasets.

Figure 7. Samples from two datasets: left is UnityEyes and right is MPIIGaze.

4.1. UnityEyes

In a real-world setting, datasets for gaze estimation are very expensive to acquire, do
not support eye landmarks, or are very poor; therefore, they are inadequate for training a
network. We selected UnityEyes synthetic datasets for training to solve the above problem.
UnityEyes creates an eye model by manipulating several parameters using the Unity
game engine and provides high-resolution 2D images from the camera position, high-
quality 3D eye coordinates, and a 3D gaze vector. We also processed rich annotations and
utilized them for network learning. Previous studies [4,13] showed good performance
using synthetic datasets.
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An eye landmark provided in UnityEyes is presented in Figure 8. A total of 53 eye
landmarks consisting of 16 eye edges, 7 caruncles, and 32 iris edges were used. We used
all the labeled eye and iris edges while ignoring the caruncles because it was judged that
they would have no effect on gaze. Subsequently, the eyes and iris centers, which were
mean values of all the eyes and iris edges, were added to configure the ground -truth with
a total of 50. It was possible to create a resolution of 640 × 480 up to 4K, and we cropped an
800 × 600 image to a 160 × 96 size.

Figure 8. An annotated sample from UnityEyes. The red, green, and blue points are 16 eye edges,
7 caruncles, and 32 iris edges, respectively. The yellow arrow represents the 3D gaze direction.

4.2. MPIIGaze

The MPIIGaze datasets were recorded using a laptop for several months over the
daily lives of 15 experimental participants. The datasets were representative evaluations
and very suitable for judging the performance of networks in uncontrolled settings. They
were proposed in 2015 and include a head pose vector, gaze vector, full-face image, and
60 × 36 normalized image required for evaluations. The datasets also provide eye landmark
co-ordinates of six eye edges and one iris center but do not provide enough for within-
dataset leave-one-person-out evaluations [11]. That is, the proposed network was trained
using the data of 14 participants (3000 images consisting of left and right eyes) and then
validated on the data of an excluded person. Thus, we made a labeling tool for rich eye
landmarks as one is required by a neural network that is robust against noise.

Figure 9 illustrates an overview of this labeling tool. First, when a user draws a point
on both endpoints of an eye, a line connecting the two points and straight lines dividing the
line into eight equal parts are created. Subsequently, the remaining eye-edge co-ordinates
are obtained by dotting the points at which the eight straight lines and eye region overlap.
At this time, a correction effect is applied so that the drawn points lie on the straight lines.
When a total of 16 eye edges are completed, the user specifies an elliptical area that can
include the iris area. When eight dots are obtained, an ellipse is generated that best contains
the iris through the RANSAC algorithm [37]. Users obtain 32 iris edges spaced at regular
intervals from the ellipse. The datasets and code on 12 April 2022 are available to the public:
https://github.com/OhJaeKwang/Eye_Region_Labeling.

Figure 9. From left to right presents the sequential labeling process. The red and green lines and blue
dots are tools for landmark coordinates, and the red and yellow dots represent annotations. Outputs
are comprised of 16 eye edges, 32 iris edges, 1 eye center, and 1 iris center.
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5. Experiments

In this section, we describe the experiments conducted in this study. The experiments
included an evaluation considering the performance of landmark detection and gaze
estimation with respect to MPIIGaze (45K) and UnityEyes (10K). The NME and mean angle
error (MAE) were adopted as metrics for evaluation.

5.1. Landmark-Detection Accuracy

There are several metrics for evaluating the accuracies of landmarks, but we adopted
the NME [38], which is main metric used in facial landmark detection and is the most
relevant among them. The NME represents the average Euclidean distance between an
estimated landmark position (P

′
) and a corresponding ground truth (P). The NME is

calculated using Equation (8), where N is the number of images, L is the number of
landmarks, and d is defined as average eye width of a test set for the normalization factor.

NME =
1
N

N

∑
i=1

∑L
j=1 ‖ P

′
i,j − Pi,j ‖2

2

L × d
(8)

We compared our approach to a baseline model. Two approaches were introduced
as follows. The first added a CBAM residual layer and the second applied CBAM to
convolution blocks of all stages. We used the model parameters trained on UnityEyes. The
landmark detection results of our approaches and the baseline model (HRNet-W18) with
respect to MPIIGaze and UnityEyes are shown in Table 4. HRNet-w18 and HRNet-w32
are lightweight models of HRNet, and 18 and 32 indicated the channel multiples of the
last stage. In the results, each approach showed a better performance than the existing
model, and the final model achieved an approximately 4% higher NME score compared
to HRNet-W18 on all datasets. Graphs showing the ratios of the test sets according to the
NME value are presented in Figure 10. Similarly, the AUC [39] value (the area under the
curve) demonstrated that the two approaches using self-attention improved performance.

Figure 10. Comparisons of the cumulative error distribution curves of the test datasets. We compared
our method with baseline approaches (HRNet). HRNet+CBAM and HRNet+CBAM_FULL denote
adding a residual CBAM layer and applying CBAM to all stages of the residual blocks, respectively.

Because the MPIIGaze dataset before pre-processing consisted of a very low resolution
of 60 × 36, we interpolated it with a 160 × 96 dataset and processed the result; we judged
that the performance with respect to MPIIGaze was inferior to UnityEyes due to noise
generated during this process, problems of poor quality, and reliability of labeling.
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Table 4. The approaches that applied a CBAM module improved the quantitative metric.

Method
UnityEyes MPIIGaze

NME (%) ↓ AUC ↑ NME (%) ↓ AUC ↑
HRNet-W18 7.21 75.95 11.71 60.93
HRNet-W32 6.69 78.79 11.13 62.91

HRNet + CBAM 4.95 83.49 10.72 64.20
HRNet + CBAM_FULL 3.18 89.39 8.82 70.59

5.2. Gaze Estimation Accuracy

Our method, which showed the best landmark performance, achieved an angle error
of 1.7 for 10,000 UnityEyes test sets. Subsequently, we compared various systems for
within-dataset evaluation (leave-one-person-out strategy) to the MPIIGaze dataset using
an MAE that represents the differences in the angles of two unit vectors. The results of the
models evaluated using the MPIIGaze dataset, usage techniques, and information used
as inputs are included in Table 5. Our method achieved a competitive degree of error
in the above experiment. Fine-tuning the model parameters pre-trained on UnityEyes
using MPIIGaze improved the performance by approximately 6.80% (from 4.64◦ to 4.32◦),
and our approach surpassed the baseline method (from 4.60◦ to 4.32◦). We improved the
performance by approximately 6.04% compared to the baseline model. Additionally, unlike
the appearance method, our method was less constrained by registration conditions and
had better usability in that we could create high-level landmarks. This result showed that
the performance improvement of landmark detection had an effect on gaze regression. We
show the qualitative predictions of our gaze estimation system with respect to UnityEyes
and MPIIGaze in Figure 11. It was observed that it acquired high-level features even for
noisy MPIIGaze data and had good gaze accuracy.

Table 5. Comparing the MAE, representation, and registration of several methods evaluated using
MPIIGaze. (*: baseline method).

Method MAE (◦) Representation Registration

RF [10] 7.99◦ Appearance Eyes and head pose
Mnist [11] 6.30◦ Appearance Single eye

GazeNet [8] 5.83◦ Appearance Single eye
AR-Net [9] 5.65◦ Appearance Eyes

ARE-Net [9] 5.02◦ Appearance Eyes

* S. Park et al. [13] 4.60◦ Feature and gaze regression
network Single eye

S. Park et al. [12] 4.50◦ Appearance Single eye
FARE-Net [6] 4.41◦ Appearance Face, eyes

Ours 4.32◦ Feature and gaze regression
network Single eye
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Figure 11. Results of our gaze estimation system with respect to UnityEyes and MPIIGaze test sets.
The red, blue points represent the iris edge and the eye edges, respectively. Ground-truth gaze is
represented by green arrows and predicted gaze is represented by yellow arrows.

6. Discussion

Applications that utilize gaze information practically and visually provide novelty
and satisfaction to users, so it is essential to improve the accuracy of predicted information.
To achieve a performance improvement, we conducted a study by adapting the feature-
based method, which is better for generalizing than the appearance-based method. In prior
work, features were usually hand-crafted for gaze using image-processing and model-
fitting techniques. However, because these approaches make assumptions about geometry,
such as the 3D eyeball and 3D head coordinates, they are sensitive to noise in uncontrolled
real-world images.

In this study, we proposed a gaze estimation method using a more accurate and de-
tailed eye region where eye landmarks represent the locations of the iris and eyelid. We used
the UnityEyes dataset, which has high quality annotation that helped the representation
learning of our network.

Since we assumed that the accuracy of gaze estimation increases as the confidence of
the landmarks intended to be used as features increases, we tried to develop an advanced
landmark-detection model. We also assumed that the feature map of the layer should
represent meaningful location information and proposed a method combining the self-
attention module with the model. The first results suggested that adding the self-attention
module improves the inference accuracy. In particular, the best performance improvements
were seen with negligible overheads when the module was applied to all layers. Moreover,
since the inference accuracy for low-quality MPIIGaze had increased, it was shown to be
robust to the noise of the input data. Then, we were able to confirm that the performance of
landmark and gaze were proportional through considering the second result. We obtained
a meaningful study, but there difficulties were encountered during the study.

We had to train the models on the real-world MPIIGaze dataset for the evaluation.
Unavoidably, in order for our network to learn, we needed to take landmark annotations
unconditionally. However, MPIIGaze didn’t have as many as we needed. Consequently,
we made a labeling tool and labeled MPIIGaze (45K) using it. An unsupervised domain
adaptation [40] can solve this limitation. It does not require annotations on the target
domain and is used for only feature training for a target. Using generative adversarial
networks (GAN), the method for a fusion between datasets from different domains might
help a model to perform transfer learning well [41]. To alleviate the limitation, the hope is
that our work will apply these skills to our method.
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7. Conclusions

In this study, we proposed a feature-based gaze system that achieved a higher accuracy
than existing models trained on the same datasets by introducing a network to extract
high-level landmarks. Contrary to the existing methods, we predicted a heatmap with
richer representations from the transferred multi-scale features using HRNet to obtain more
accurate and more spatially precise eye features. Moreover, we achieved the best perfor-
mance improvement by applying a self-attention module that emphasized meaningful
features in the principal dimensions, which were the channel and spatial axes of the feature
map, in addition to achieving efficient computational and parameter overheads. Using
UnityEyes, which supports a high-level annotation and a high resolution, we were able to
extract more and greater landmarks, and these richer landmarks resulted in a competitive
gaze accuracy for a within-dataset evaluation with respect to MPIIGaze. Additionally, our
method had less restrictive registration conditions and great utility in providing landmarks.

During the experiment, we found that the transfer learning of the model through
various real-world gaze datasets was superior to the results of the model trained with
only UnityEyes. However, our model required numerous landmark annotations, and there
was no dataset that satisfied this requirement. To solve this problem, we used a labeling
tool in this study. However, in the next study, we plan to apply the unsupervised domain
adaptation technique to optimize the model using UnityEyes and real-environment datasets
without using a key-point annotation simultaneously.
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Abstract: Multi-sensor fusion is important in the field of autonomous driving. A basic prerequisite
for multi-sensor fusion is calibration between sensors. Such calibrations must be accurate and need
to be performed online. Traditional calibration methods have strict rules. In contrast, the latest
online calibration methods based on convolutional neural networks (CNNs) have gone beyond the
limits of the conventional methods. We propose a novel algorithm for online self-calibration between
sensors using voxels and three-dimensional (3D) convolution kernels. The proposed approach has
the following features: (1) it is intended for calibration between sensors that measure 3D space; (2) the
proposed network is capable of end-to-end learning; (3) the input 3D point cloud is converted to
voxel information; (4) it uses five networks that process voxel information, and it improves calibration
accuracy through iterative refinement of the output of the five networks and temporal filtering. We
use the KITTI and Oxford datasets to evaluate the calibration performance of the proposed method.
The proposed method achieves a rotation error of less than 0.1◦ and a translation error of less than
1 cm on both the KITTI and Oxford datasets.

Keywords: online self-calibration; convolutional neural network; voxel information

1. Introduction

Multi-sensor fusion is performed in many fields, such as autonomous driving and
robotics. A single sensor does not guarantee reliable recognition in complex and varied
scenarios [1]. Therefore, it is difficult to cope with various autonomous driving situations
using only one sensor. Conversely, fusing two or more sensors supports reliable environ-
mental perception around the vehicle. In multi-sensor fusion, one sensor compensates
for the shortcomings of the other sensor [2]. In addition, multi-sensor fusion expands the
detection range and improves the measurement density compared with using a single
sensor [3]. Studies based on multi-sensor fusion include 3D object detection, road detection,
semantic segmentation, object tracking, visual odometry, and mapping [4–9]. Moreover,
most large datasets that are built for autonomous driving research [10–13] provide data
measured by at least two different sensors. Importantly, multi-sensor fusion is greatly
affected by the calibration accuracy of the sensors used. While the vehicle is driving, the
pose or position of the sensors mounted on the vehicle may change for various reasons.
Therefore, for multi-sensor fusion, it is essential to perform the online calibration of sensors
to accurately recognize changes in sensor pose or changes in the positions of the sensors.

Extensive academic research on multi-sensor calibration has been performed [2,3].
Many traditional calibration methods [14–17] use artificial markers, including checker-
boards, as calibration targets. The target-based calibration algorithms are not suitable
for autonomous driving because they involve processes that require manual intervention.
Some of the calibration methods currently used focus on fully automatic and targetless
online self-calibration [3,18–24]. However, most online calibration methods perform cali-
bration only when certain conditions are met, and their calibration accuracy is not as high

Sensors 2022, 22, 6447. https://doi.org/10.3390/s22176447 https://www.mdpi.com/journal/sensors
189



Sensors 2022, 22, 6447

as the target-based offline methods [1]. The latest online calibration methods [1,2,25–27]
based on deep learning use optimization through gradient descent, large-scale datasets, and
CNNs to overcome the limitations of the previous online methods. In particular, the latest
research based on CNNs has shown suitable results. Compared with previous methods,
CNN-based online self-calibration methods do not require strict conditions and provide
excellent calibration accuracy when they are run online.

Many CNN-based LiDAR-camera calibration methods use an image for calibration. In
this case, the point cloud of the LiDAR is projected onto the image. Then, 2D convolution
kernels are used to extract the features of the inputs.

In this study, we propose a CNN-based multi-sensor online self-calibration method.
This method estimates the values of six parameters that describe rotation and translation
between sensors that are capable of measuring 3D space. The combinations of sensors that
are subject to calibration in our proposed method are: a LiDAR and stereo camera and a
LiDAR and LiDAR. One of the two sensors is set as the reference sensor and the other as
the target sensor. In the combination of LiDAR and stereo camera, the stereo camera is set
as the reference sensor.

The CNN we propose is a network that uses voxels instead of using image features.
Therefore, we convert the stereo image into 3D points called pseudo-LiDAR points to feed
the stereo image into this network. Pseudo-LiDAR points and actual LiDAR points are
expressed in voxel spaces through voxelization. Then, 3D convolution kernels are applied
to the voxels to generate features that can be used for calibration parameter regression.
In particular, the attention mechanism [28] included in our proposed network confirms
the correlation between the input information of the two sensors. The research fields that
use voxels are diverse, including shape completion, semantic segmentation, multi-view
stereoscopic vision, object detection, etc. [29–32].

The amount of data in public datasets is insufficient to perform online self-calibration.
Therefore, existing studies have assigned random deviations to the values of known param-
eters and have evaluated the performance of online self-calibration based on how accurately
the algorithm proposed in the respective study predicts this deviation. This approach is
commonly referred to as miscalibration [1,2,25]. To sample the random deviation, we
choose the rotation range and translation range as ±20◦ and ±1.5 m, respectively, as in [1].
In this study, we train five networks on a wide range of miscalibrations and apply iterative
refinement to the outputs of the five networks and temporal filtering over time to increase
the calibration accuracy. The KITTI dataset [10] and Oxford dataset [12] are used to conduct
the research of the proposed method. The KITTI dataset is used for online LiDAR-stereo
camera calibration, and the Oxford dataset is used for online LiDAR-LiDAR calibration.

The rest of this paper is organized as follows. Section 2 provides an overview of
existing calibration studies. Section 3 describes the proposed method. Section 4 presents
the experimental results for the proposed method, and Section 5 draws conclusions.

2. Related Work

This section provides a brief overview of traditional calibration methods. In addition,
we introduce how CNN-based calibration methods have been improved. Specifically,
the calibrations covered in this section are LiDAR-camera calibration and LiDAR-LiDAR
calibration.

2.1. Traditional Methods

Traditional methods of calibration that use targets mainly use artificial markers. One
example is the LiDAR-camera calibration method that uses a polygonal planar board [14].
This method first finds the vertices of the planar board in the image and in the LiDAR point
cloud. Then, the corresponding points between the vertices of the image and the vertices
of the point cloud are searched, and a linear equation is formulated. Finally, this method
uses singular value decomposition to solve the linear equation and obtain calibration
parameters. Another example is the LiDAR-camera calibration method that uses a planar
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chessboard [15]. The edge information in an image and the Perspective-n-Point algorithm
are used to find the plane of the chessboard that appears in the image. Then, distance
filtering and a random sample consensus (RANSAC) algorithm are used to obtain the
chessboard plane information from the LiDAR point cloud. After obtaining the plane
information, this method aligns the normal vectors of the planes with obtaining the rotation
parameters between LiDAR and the camera. The translation parameters between LiDAR
and camera are calculated by minimizing the distance between the plane searched from
the LiDAR points, and the rotated plane searched from the image. Similarly, the algorithm
in [16] is an automatic LiDAR-LiDAR calibration that uses planar surfaces. This method
uses three planes. The planes are obtained through a RANSAC algorithm. The calibration
of LiDAR-LiDAR is formulated as a nonlinear optimization problem by minimizing the
distance between corresponding planes. This approach adopts the Levenberg-Marquardt
algorithm for nonlinear optimization. Another LiDAR-LiDAR calibration in [17] uses two
poles plastered with retro-reflective tape to easily identify them in the point cloud. This
method first uses a threshold to find the reflected points on the pole. The searched point
cloud is expressed as a linear equation that represents a line. The points and the linear
equation are then used to solve the least squares problem. The data obtained by solving
the least squares problem are the calibration parameters.

Among the targetless online LiDAR-camera calibration methods, some methods use
edge information [18,19]. In these methods, when the LiDAR-camera calibration is correct,
the edges of the depth map of the LiDAR points are projected onto the image, and the
edges of the image are naturally aligned. As another example, there is a method that uses
the correlation between sensor data, as in [20,21]. The method in [20] uses the reflectance
information from the LiDAR and the intensity information from the camera for calibration.
According to this method, the correlation between reflectivity and intensity is maximized
when the LiDAR-camera calibration is accurate. The method in [21] uses the surface normal
of the LiDAR points and the intensity of image pixels for calibration. There is also a method
based on the hand-eye calibration framework [22], which estimates the motion of the
LiDAR and camera, respectively, and uses this information for calibration. A targetless
online LiDAR-LiDAR calibration is introduced in [23]. This method first performs a rough
calibration from an arbitrary initial pose. Then, the calibration parameters are corrected
through an iterative closest point algorithm and are further optimized using an octree-
based method. Other LiDAR-LiDAR calibration methods are presented in [3,24]. These
methods are based on the hand-eye calibration framework, and the motion of each LiDAR
is estimated. This information is used for calibration.

2.2. CNN-Based Methods

RegNet [25], the first CNN-based online LiDAR-camera self-calibration method,
adopted a three-step convolution consisting of feature extraction, feature matching, and
global regression. RegNet uses the decalibration of a given point cloud to train the proposed
CNN and also uses five networks to predict the six-degree of freedom (6-DoF) extrinsic
parameters for five different decalibration ranges.

CalibNet [5], the CNN-based online LiDAR-camera self-calibration method, proposed
a geometrically supervised deep network that was capable of automatically predicting the
6-DoF extrinsic parameters. The end-to-end training is performed by maximizing the pho-
tometric and geometric consistencies. Here, photometric consistency is obtained between
two depth maps constructed by projecting a given point cloud onto the input image with
the 6-DoF parameters predicted by the network and the ground-truth 6-DoF parameters.
Similarly, geometric consistency is calculated between two kinds of 3D points obtained by
transforming the point cloud into 3D space with the predicted 6-DoF parameters and the
ground-truth 6-DoF parameters.

LCCNet [1], which represents a significant improvement over previous CNN-based
methods, is a CNN-based online LiDAR-camera self-calibration method. This network
considers the correlation between the RGB image features and the depth image projected
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from point clouds. Additional CNN-based online LiDAR-camera self-calibration methods
are presented in [26,27]. They utilize the semantic information extracted by CNN to perform
more robust calibration even under changes in lighting and noise [26].

To the best of our knowledge, no deep learning-based LiDAR-LiDAR or LiDAR-stereo
camera online self-calibration method has yet been reported. In this paper, we propose,
for the first time, a deep learning-based method that is capable of online self-calibration
between such sensor combinations.

3. Methodology

This section describes the preprocessing of stereo images and LiDAR point clouds,
the structure of our proposed network, the loss function for network training, and the
postprocessing of the network output. These descriptions are commonly applied to the
calibration of the LiDAR-stereo camera and LiDAR-LiDAR combinations. We chose a
LiDAR as the target sensor in the LiDAR-stereo camera and LiDAR-LiDAR combinations,
and the rest of the sensors as the reference sensor.

3.1. Preprocessing

In order to perform online self-calibration with the network we designed, several
processes, including data preparation, were performed in advance. This section describes
these processes. We assume that sensors targeted for online calibration are capable of 3D
measurement. Therefore, we use point clouds that are generated by these sensors. In the
LiDAR-LiDAR combination, this premise is satisfied, but in the case of the LiDAR-stereo
camera combination, this premise is not satisfied, so we obtain a 3D point cloud from
the stereo images. The conversion of the stereo depth map to 3D points and the removal
of the 3D points, which are covered in the next two subsections, are not required for the
LiDAR-LiDAR combination.

3.1.1. Conversion of Stereo Depth Map to 3D Points

A depth map is built from stereo images through stereo matching. In this paper, we
obtain the depth map using the method in [33] that implements semi-global matching [34].
This depth map composed of disparities is converted to 3D points, which are called pseudo-
LiDAR points, as follows:

P =
[
X Y Z

]
=
[

base·(u−cu)
disp

base·(v−cv)
disp

fu ·base
disp

]
(1)

where cu, cv, and fu are the camera intrinsic parameters, u and v are pixel coordinates,
base is the baseline distance between cameras, and disp is the disparity obtained from the
stereo matching.

3.1.2. Removal of Pseudo-LiDAR Points

The pseudo-LiDAR points are too many in number compared with the points mea-
sured by a LiDAR. Therefore, we, in this paper, reduce the quantity of pseudo-LiDAR
points through a spherical projection, which is implemented using the method presented
in [35] as follows: [

p
q

]
=

[ 1
2 (1 − atan(−X, Z)/π)·w(

1 − (
asin

(−Y·r−1)+ fup
)· f−1)·h

]
(2)

where (X, Y, Z) are 3D coordinates of a pseudo-LiDAR point, (p, q) are the angular coor-
dinates, (h, w) are the height and width of the desired projected 2D map, r is the range of
each point, and f = fup + fdown is the vertical field of view (FOV) of the sensor. We set fup
to 3◦ and fdown to −25◦. Here, the range 3◦ to −25◦ is the vertical FOV of the LiDAR used
to build the KITTI benchmarks [10]. The pseudo-LiDAR points become a 2D image via this
spherical projection. Multiple pseudo-LiDAR points can be projected onto a single pixel
in the 2D map. In this case, only the last projected pseudo-LiDAR point is left, and the
previously projected pseudo-LiDAR points are removed.

192



Sensors 2022, 22, 6447

3.1.3. Setting of Region of Interest

Because the FOVs of the sensors used are usually different, we determine the region
of interest (ROI) of each sensor and perform calibration only with data belonging to this
ROI. However, the ROI cannot be determined theoretically but can only be determined
experimentally. We determine the ROI of the sensors by looking at the distribution of data
acquired with the sensors.

We provide an example of setting the ROI using data provided by the KITTI [10] and
Oxford [12] datasets. For the KITTI dataset, which was built using a stereo camera and
LiDAR, the ROI of the stereo camera is set to [Horizon: −10 m–10 m, Vertical: −2 m–1 m,
Depth: 0 m–50 m], and the ROI of the LiDAR is set to the same values as the ROI of the
stereo camera. For the Oxford dataset, which was built using two LiDARs, the ROI of the
LiDAR is set to [Horizon: −30–30 m, Vertical: −2–1 m, Depth: −30–30 m].

3.1.4. Transformation of Point Cloud of Target Sensor

In this paper, the miscalibration method used in previous studies [1,2,25] is used to
perform the calibration of the stereo camera-LiDAR and LiDAR-LiDAR combination. In
the KITTI [10] and Oxford [12] datasets we use, the values of six extrinsic parameters
between two heterogeneous sensors and the 3D point clouds generated by them are given.
Therefore, we can transform the 3D point cloud created by one sensor into a new 3D point
cloud using the values of these six parameters. If we assign arbitrary deviations to these
parameters, we can retransform the transformed point cloud in another space. At this time,
if a calibration algorithm accurately finds the deviations that we randomly assign, we can
move the retransformed point cloud to the position before the retransformation.

In order to apply the aforementioned approach to our proposed online self-calibration
method, a 3D point P = [x, y, z] ∈ R3 measured by the target sensor is transformed by
Equation (3) as follows:

P̂′ = RTmisRTinit P̂T =

[
Rmis

0 0 0
Tmis

1

][
Rinit

0 0 0
Tinit

1

]
P̂T (3)

RTgt = RTmis
−1 (4)

Rinit =

⎡⎣cos(Rz) − sin(Rz) 0
sin(Rz) cos(Rz) 0

0 0 1

⎤⎦⎡⎣ cos
(

Ry
)

0 sin
(

Ry
)

0 1 0
− sin

(
Ry
)

0 cos
(

Ry
)
⎤⎦⎡⎣1 0 0

0 cos(Rx) − sin(Rx)
0 sin(Rx) cos(Rx)

⎤⎦ (5)

Tinit =
[
Tx Ty Tz

]T (6)

Rmis =

⎡⎣cos(θz) − sin(θz) 0
sin(θz) cos(θz) 0

0 0 1

⎤⎦⎡⎣ cos
(
θy
)

0 sin
(
θy
)

0 1 0
− sin

(
θy
)

0 cos
(
θy
)
⎤⎦⎡⎣1 0 0

0 cos(θx) − sin(θx)
0 sin(θx) cos(θx)

⎤⎦ (7)

Tmis =
[
τx τy τz

]T (8)

where P′ is the transformed point of P, and superscript T represents the transpose. P̂
and P̂′ are expressed with homogeneous coordinates. RTgt, described in Equation (4), is
the transformation matrix we want to predict with our proposed method. RTgt is used
as the ground truth when the loss for training is calculated. In Equation (5), each of the
parameters Rx, Ry, and Rz describes the angle rotated about the x-, y-, and z-axes between
the two sensors. In Equation (6), Tx, Ty, and Tz describe the relative displacement between
two sensors along the x-, y-, and z-axes. In this study, we assume that the values of the six
parameters Rx, Ry, Rz, Tx, Ty, and Tz are given. In Equations (7) and (8), the parameters
θx, θy, θz, τx, τy, and τz represent the random deviations for Rx, Ry, Rz, Tx, Ty, and Tz,
respectively. Each of these six deviations is sampled randomly with equal probability
within a predefined range of deviations described next. In Equations (5)–(8), Rinit and
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Rmis are rotation matrices and Tinit and Tmis are translation vectors. The transformation
by Equation (3) is performed only on points belonging to a predetermined ROI of the
target sensor.

We set the random sampling ranges for θx, θy, θz, τx, τy, and τz the same as in pre-
vious studies [1,25] as follows: (rotational deviation: −θ–θ, translation deviation: −τ–τ),
Rg1 = {θ: ±20◦, τ: ±1.5 m}, Rg2 = {θ: ±10◦, τ: ±1.0 m}, Rg3 = {θ: ±5◦, τ: ±0.5 m},
Rg4 = {θ: ±2◦, τ: ±0.2 m}, and Rg5 = {θ: ±1◦,τ: ±0.1 m}. Each of Rg1, Rg2, Rg3, Rg4, and
Rg5 set in this way is used for training each of the five networks named Net1, Net2, Net3,
Net4, and Net5. One deviation range is assigned to one network training. Training for
calibration starts with Net1 assigned to Rg1, and it continues with networks assigned
to progressively smaller deviation ranges. The network mentioned here is described in
Section 3.2.

3.1.5. Voxelization

We first perform a voxel partition by dividing the 3D points obtained by the sensors
into equally spaced 3D voxels, as was performed in [36]. This voxel partition requires
a space that limits the 3D points acquired by a sensor to a certain range. We call this
range a voxel space. We consider the length of a side of a voxel, which is a cube, as a
hyper-parameter, and denote it as S. In this paper, the unit of S is expressed in cm. A voxel
can contain multiple points, of which up to three are randomly chosen, and the rest are
discarded. Here, it is an experimental decision that we leave only up to three points per
voxel. Referring to the method in [37], the average coordinates along the x-, y-, and z-axes
of the points in each voxel are then calculated. We build three initial voxel maps, Fx, Fy, and
Fz, using the average coordinates for each axis. For each sensor, these initial voxel maps
become the input to our proposed network. Section 3.2 describes the network.

In this paper, we set the voxel space to be somewhat larger than the predetermined
ROI of the sensor, considering the range of deviation. For example, in the case of the
KITTI dataset, the voxel space of the stereo input is set as [horizontal: −15–15 m, vertical:
−15–15 m, depth: 0–55 m], and the voxel space of the LiDAR input is set to the same size as
the voxel space of the stereo input. In contrast, the voxel space of the 3D points generated
by the two LiDARs in the Oxford dataset is set to [width: −40–40 m, height: −15–15 m,
depth: −40–40 m]. The points outside of the voxel space are discarded.

3.2. Network Architecture

We propose a network of three parts, which are referred to as a feature extraction
network (FEN), an attention module (AM), and an inference network (IN). The overall
structure of the proposed network is shown in Figure 1. The input of this network is the Fx,
Fy, and Fz for each sensor built from voxelization, and the output is seven numbers, three
of which are translation-related parameter values, and the other four are rotation-related
quaternion values. The network is capable of end-to-end training because every step is
differentiable.

3.2.1. FEN

Starting from the initial input voxel maps Fx, Fy, and Fz, FEN extracts features for use in
predicting calibration parameters by performing 3D convolution on 20 layers. The number
of layers, the size of the kernel used, the number of kernels used in each layer, and the stride
applied in each layer are experimentally determined. The kernel size is 3 × 3 × 3. There are
two types of stride, 1 and 2, which are used selectively for each layer. The number of kernels
used in each layer is indicated at the bottom of Figure 1. This number corresponds to the
quantity of the feature volume created in the layer. In the deep learning terminologies, this
quantity is called channels. Convolution is performed differently depending on the stride
applied to each layer. When stride 1 is applied, submanifold convolution [38] is performed,
and when stride 2 is applied, general convolution is performed. General convolution is
performed on all voxels with or without a value, but submanifold convolution is performed
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only when a voxel with a value corresponds to the central cell of the kernel. In addition,
batch normalization (BN) [39] and rectified linear unit (ReLU) activation functions are
sequentially applied after convolution in the FEN.

Figure 1. Overall structure of the proposed network. In the attention module, the T within a circle
represents the transpose of a matrix; @ within a circle represents a matrix multiplication; S’ within a
circle represents the soft max function; C’ within a circle represents concatenation. In the inference
network, Trs and Rot represent the translation and rotation parameters predicted by the network,
respectively.

We want the proposed network to perform robust calibration for large rotational and
translational deviations between two sensors. To this end, a large receptive field is required.
Therefore, we included seven layers with a stride of 2 in the FEN.

The final output of the FEN is 1024 feature volumes. The number of cells in the feature
volume depends on the size of the voxel, but we let V be the number of cells in the feature
volume. At this time, because each feature volume can be reconstructed as a V-dimensional
column vector, we represent 1024 feature volumes as a matrix F of dimension V × 1024. The
outputs of FENs for the reference and target sensors are denoted by Fr and Ft, respectively.

3.2.2. AM

It is not easy to match the features extracted from the FEN through convolutions be-
cause the point clouds from the LiDAR-stereo camera combination are generated differently.
Even in the LiDAR-LiDAR combination, if the FOVs of the two LiDARs are significantly
different, it is also not easy to match the features extracted from the FEN through convo-
lutions. Moreover, because the deviation range of rotation and translation is set large to
estimate calibration parameters, it becomes difficult to check the similarity between the
point cloud of the target sensor and the point cloud of the reference sensor.

Inspired by the attention mechanism proposed by Vaswani et al. [28], we solve these
problems: we design an AM that implements the attention mechanism, as shown in Figure 1.
The AM calculates an attention value for each voxel of the reference sensor input using the
following procedure.

The AM has four fully connected layers (FCs): FC1, FC2, FC3, and FC4. A feature is
input into these FCs, and a transformed feature is output. We denote the outputs of FC1,
FC2, FC3, and FC4 as matrices M1, M2, M3, and M4, respectively. Each FC has 1024 input
nodes. Here, the number 1024 is the number of feature volumes extracted from the FEN.
The FC1 and FC4 have G/2 output nodes, and the FC2 and FC3 have G output nodes. These
FCs transform 1024 features to G or G/2 features. Here, G is a hyper-parameter. If the sum
of the elements in a row of matrix F, which is the output of the FEN, is 0, the row vector
is not input to FC. We apply layer normalization (LN) [40] and the ReLU function to the
output of these FCs so that the final output becomes nonlinear. The output M2 of FC2 is a
matrix of dimension Vt × G, and the output M3 of FC3 is a matrix of dimension Vr × G.
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Here, Vr and Vt are the number of rows in which there is at least one element with a feature
value among the elements in each row of Fr and Ft, respectively. Therefore, Vr and Vt can
be different for each input. However, we fix the values of Vr and Vt because the number
of input nodes of the multi-layer perceptron (MLP) of the IN following the AM cannot be
changed every time. In order to fix the values of Vr and Vt, we input all the data to be used
in the experiments into the network and set the values when they are the largest, but we
make them a multiple of 8. This is because Vr and Vt are also hyper-parameters. If the
actual Vr and Vt are less than the predetermined Vr and Vt, the elements of the output
matrices of FCs will be filled with zeros. The output M1 of FC1 is a matrix of dimension
Vt × G/2, and the output M4 of FC4 is a matrix of dimension Vr × G/2.

• Computation of attention score by dot product

An attention score is obtained from the dot product of a row vector of M3 and a column
vector of MT

2 . This score is the same as the cosine similarity. The matrix AS is obtained
through the dot products of all row vectors of M3 and all column vectors of MT

2 are called
an attention score matrix. The dimension of the matrix AS (AS = M3·MT

2 ) is Vr × Vt.

• Generation of attention distribution by softmax

We apply the softmax function to each row vector of AS and obtain the attention
distribution. The softmax function calculates the probability of each element of the input
vector. We call this probability an attention weight, and the matrix obtained by this process
is the attention weight matrix AW of dimension Vr × Vt.

• Computation of attention value by dot product

An attention value is obtained from the dot product of a row vector of AW and a
column vector of the matrix M1. A matrix AV obtained through the dot products of all
row vectors of AW and all column vectors of M1 is called an attention value matrix. The
dimension of the matrix AV (AV = AW·M1) is Vr × G/2.

Finally, we concatenate the attention value matrix AV and the matrix M4. The resulting
matrix from this final process is denoted as AC (AC = [AV M4]) and has dimension Vr × G;
this matrix becomes the input to the IN. The reason we set the output dimension of FC1
and FC4 to G/2 instead of G is to save memory and reduce processing time.

3.2.3. IN

The IN infers rotation and translation parameters. The IN consists of an MLP and two
fully connected layers, FC5 and FC6. The MLP is composed of an input and an output layer,
as well as a single hidden layer. The input layer has Vr × G nodes, and the hidden and
output layers have 1024 nodes, respectively. Therefore, when we input AC, the output of
the AM, into the MLP, we make AC a flat vector. In addition, this MLP has no bias input,
and it uses ReLU as an activation function. Moreover, LN is performed on the weighted
sums that are input to nodes in the hidden layer and output layer, and ReLU is applied
to the normalization result to obtain the output of these nodes. The output of the MLP
becomes the input to the FC5 and FC6. The MLP plays the role of dimension reduction in
the input vector.

We do not apply a normalization or an activation function to the FC5 and FC6. FC5
produces three translation-related parameter values, which are τ

p
x , τ

p
y , and τ

p
z , and FC6

produces four rotation-related quaternion values, which are q0, q1, q3, and q4.

3.3. Loss Function

To train the proposed network, we use a loss function as follows:

L = λ1Lrot + λ2Ltrs (9)
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where Lrot is a regression loss related to rotation, Ltrs is a regression loss related to transla-
tion, and hyper-parameters λ1 and λ2, respectively, are their weights. We use the quaternion
distance to regress the rotation. The quaternion distance is defined as:

Lrot = acos(2(
qp∣∣qp
∣∣ · qgt∣∣qgt

∣∣ )2
− 1) (10)

where · represents the dot product, |·| indicates the norm, and qp and qgt indicate a
vector of the quaternion parameters predicted by the network and the ground-truth vector
of quaternion parameters, respectively. From RTgt of Equation (4), we obtain the four
quaternion values. These four quaternion values are used for rotation regression as the
ground truth.

For the regression of the translation vector, the smooth L1 loss is applied. The loss Ltrs
is defined as follows:

Ltrs =
1
3

(
smoothL1

(
τ

p
x − τ

gt
x

)
+ smoothL1

(
τ

p
y − τ

gt
y

)
+ smoothL1

(
τ

p
z − τ

gt
z

))
smoothL1(x) =

{
x2

2β if |x| < β

|x| − β
2 otherwise

(11)

where the superscripts p and gt represent prediction and ground truth, respectively, β is a
hyper-parameter and is usually taken to be 1, and |·| represents an absolute value. The
parameters τ

p
x , τ

p
y and τ

p
z are inferred by the network, and τ

gt
x , τ

gt
y , and τ

gt
z are obtained

from RTgt of Equation (4).

3.4. Postprocessing
3.4.1. Generation of a Calibration Matrix from a Network

Basically, postprocessing is performed to generate the calibration matrix RTpred that is
shown in Equation (12). The rotation matrix Rpred and translation vector Tpred in Equation (12)
are generated by the quaternion parameters q0, q1, q2, and q3, and translation parameters τ

p
x ,

τ
p
y , and τ

p
z inferred from the network we built, as shown in Equations (13) and (14).

RTpred =

[
Rpred

0 0 0
Tpred

1

]
(12)

Rpred =

⎡⎣1 − 2
(
q2

2 + q2
3
)

2(q1q2 − q0q3) 2(q0q2 + q1q3)
2(q1q2 + q0q3) 1 − 2

(
q2

1 + q2
3
)

2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q0q1 + q2q3) 1 − 2

(
q2

1 + q2
2
)
⎤⎦ (13)

Tpred =
[
τ

p
x τ

p
y τ

p
z
]T

(14)

θ
p
x = atan2

(
Rpred(3, 2), Rpred(3, 3)

)
θ

p
y = atan2

(
−Rpred(3, 1),

√
Rpred(3, 2)2 + Rpred(3, 3)2

)
θ

p
z = atan2

(
Rpred(2, 1), Rpred(1, 1)

) (15)

Equation (15) shows how to calculate the rotation angle about each of the x-, y-, and
z-axes from the rotation matrix Rpred. In Equation (15), (r,c) indicates the row index r and
column index c of the matrix Rpred. The angle calculation described in Equation (15) is used
to convert a given rotation matrix into Euler angles.

3.4.2. Calculation of Calibration Error

To evaluate the proposed calibration system, it is necessary to calculate the error of
the predicted parameters. For this, we calculate the transformation matrix RTerror, which
contains the errors of the predicted parameters by Equation (16). RTmis and RTonline in
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Equation (16) are calculated by Equations (3) and (17), respectively. In Equation (17), each
of RT1, RT2, RT3, RT4, and RT5 is a calibration matrix predicted by each of the five networks,
Net1, Net2, Net3, Net4, and Net5. The calculation of these five matrices is described in
detail in 3.4.3. From RTerror, we calculate the error of the rotation-related parameters using
Equation (18) and the error of the translation-related parameters using Equation (19).

RTerror = RTonline·RTmis (16)

RTonline = RT5·RT4·RT3·RT2·RT1 (17)

θe
x = atan2(RTerror(3, 2), RTerror(3, 3))

θe
y = atan2

(
−RTerror(3, 1),

√
RTerror(3, 2)2 + RTerror(3, 3)2

)
θe

z = atan2(RTerror(2, 1), RTerror(1, 1))

(18)

τe
x = RTerror(1, 4)

τe
y = RTerror(2, 4)

τe
z = RTerror(3, 4)

(19)

In Equations (18) and (19), (r,c) indicates the row index r and column index c of the
matrix RTerror.

In the KITTI dataset, the rotation angle about the x-axis, the rotation angle about the y-
axis, and the rotation angle about the z-axis correspond to pitch, yaw, and roll, respectively.
In contrast, in the Oxford dataset, they correspond to roll, pitch, and yaw, respectively.

3.4.3. Iterative Refinement for Precise Calibration

The training uses all five deviation ranges, but the evaluation of the proposed method
is performed with randomly sampled deviations only in Rg1, which is the largest deviation
range. Using this sampled deviation, the transformation matrix RTmis is formed as shown
in Equations (3), (7), and (8). Then, a point cloud prepared for evaluation is initially
transformed using Equation (3). By inputting this transformed point cloud into the trained
Net1, the values of parameters that describe translation and rotation are inferred. With
these inferred values, we obtain the RTpred of Equation (12). This RTpred becomes RT1. We
multiply the initial transformed points by this RT1 to obtain new transformed points, and
we input these new transformed points into the trained Net2 to obtain RTpred from Net2.
This new RTpred becomes RT2. In this way, the input points to the current network are
multiplied by RTpred, which is the output of the current network, to obtain new transformed
points for use as the input to the next network; this process of obtaining new RTpred by
inputting them into the next network is repeated until Net5. For each point cloud prepared
for evaluation as described above, a calibration matrix (RTi, i = 1,···,5) is obtained from each
of the five networks, and the final calibration matrix RTonline is obtained by multiplying the
calibration matrices as shown in Equation (17). The iterative transformation process of the
point cloud for evaluation as described above is expressed as follows:

P̂′
1 = RTmisRTinit P̂T (20)

P̂′
i = RTi−1P̂′

i−1, i = 2, . . . , 5 (21)

3.4.4. Temporal Filtering for Precise Calibration

Calibration performed with only a single frame can be vulnerable to various forms
of noise. According to [25], this problem can be improved by analyzing the results over
time. For this purpose, N. Schneider et al. [25] check the distribution of the results over
all evaluation frames while maintaining the value of the sampled deviation used for
the first frame. They take the median over the whole sequence, which enables the best
performance on the test set. They sample the deviations from Rg1. They repeat 100 runs
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of this experiment, keeping the sampled deviations until all test frames are passed and
resampling the deviations at the start of a new run.

It is good to analyze the results obtained over multiple frames. However, applying all
the test frames to temporal filtering has a drawback in the context of autonomous driving.
In the case of the KITTI dataset, the calibration parameter values are inferred from the
results obtained from processing about 4500 frames, which takes a long time. It is also
difficult to predict what will happen during this time. Therefore, we reduce the number of
frames to use for temporal filtering and randomly determine the start frame for filtering
among these frames. We set the bundle size of frames to 100 and performed quantitative
analysis by taking the median from 100 results obtained by applying this bundle. The value
of parameters from RTonline for each frame is obtained using Equations (14) and (15). The
basis for setting the bundle size is given in Section 4.3.3.

4. Experiments

There are several tasks, such as data preparation in training and evaluation of the
proposed calibration system. The KITTI dataset provides images captured with a stereo
camera and point clouds acquired using a LiDAR. The dataset consists of 21 sequences (00
to 20) from different scenarios. The Oxford dataset provides point clouds acquired using
two LiDARs. In addition, both datasets provide initial calibration parameters and visual
odometry information.

We used the KITTI dataset for LiDAR-stereo camera calibration. We referred to
the method proposed by Lv et al. [1] in using the 00 sequence (4541 frames) for testing
and using the rest (39,011 frames) of the sequences for training. We used the Oxford
dataset for LiDAR-LiDAR calibration. Of the many sequences in the Oxford dataset, we
used the 2019-01-10-12-32-52 sequence for training and the 2019-01-17-12-32-52 sequence
for evaluation. The two LiDARs that were used to build the Oxford dataset were not
synchronized. Therefore, we used visual odometry information to synchronize the frames.
After the synchronization, the unsynchronized frames were deleted, and our Oxford dataset
consisted of 43,130 frames for training and 35,989 frames for evaluation.

We did not apply the same hyper-parameter values to all five networks (Net1 to
Net5) because of the large difference in the range of allowable deviations for rotation and
translation in Rg1 and Rg5. Because Net5 is trained with Rg5, which has the smallest
deviation range, and is applied last in determining the calibration matrix, we trained
Net5 using different hyper-parameter values from other networks. Such hyper-parameters
included S, Vr, Vt, G, λ1, λ2, and B, which are the length of a side of a voxel, the number
of voxels with data among voxels in a voxel space of the reference sensor, the number of
voxels with data among voxels in a voxel space of the target sensor, the number of output
nodes of the FC2 and FC3 in the AM, the weight of the loss function Lrot, the weight of the
loss function Ltrs, and the batch size, respectively.

Through the experiments with the Oxford dataset, we observed that data screening
is required to enhance the calibration accuracy. The dataset was built with two LiDARs
mounted at the left and right corners in front of the roof of a platform vehicle. Figure 2
shows a point cloud for one frame in the Oxford dataset. This point cloud contains points
generated by scanning the surface of the platform vehicle by LiDARs. We confirmed that
the calibrations performed on point clouds containing these points degrade the calibration
accuracy. Therefore, to perform calibration after excluding these points, we set a point
removal area to [Horizon: −5–5 m, Vertical: −2–1 m, Depth: −5–5 m] for the target sensor
and [Horizon: −1.5–1.5 m, Vertical: −2–1 m, Depth: −2.5–1.5 m] for the reference sensor.
Experimental results with respect to this region cropping are provided in Section 4.3.1.

We trained the network for a total of 60 epochs. We initially set the learning rate to
0.0005 and halved it when the epochs reached 30, and we halved it again when the epochs
reached 40. The batch size B was determined to be within the limits allowed by the memory
of the equipment used. We used one NVIDIA GeForce RTX 2080Ti graphic card for all our
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experiments. Adam [41] was used for model optimization, and hyper-parameters β1 = 0.9
and β2 = 0.999 were used.

 

Figure 2. Point cloud constituting one frame in the Oxford dataset. The green dots represent points
obtained by the right LiDAR, and the red dots represent the points obtained by the left LiDAR.

4.1. Evaluation Using the KITTI Dataset

Figure 3 shows a visual representation of the results for performing calibration on
the KITTI dataset using the proposed five networks. In this experiment, we transform a
point cloud using the calibration matrix inferred from the proposed network and using
the ground-truth parameters given in the dataset. We want to show how consistent these
two transformation results are. Figure 3a,b show the transformation of a point cloud by
randomly sampled deviations from Rg1 and the calibrated parameters given in the KITTI
dataset, respectively. The left side of Figure 3c shows the transformation of the point
cloud by RT1 predicted by the trained Net1. This result looks suitable, but as shown to
the right of Figure 3c, it can be seen that the points measured on a thin column were
projected to positions that deviated from the column. The effect of iterative refinement
appears here. Calibration does not end at Net1 but continues to Net5. Figure 3d shows the
transformation of the point cloud by RTonline obtained after performing calibration up to
Net5. By comparing the result of Figure 3d with the result shown in Figure 3c, we can see
that the calibration accuracy is improved: suitable alignment even with the thin column.

Table 1 presents the average performance of calibrations performed without temporal
filtering on 4541 frames for testing on the KITTI dataset. From the results shown in Table 1,
we can see the effect of iterative refinement. From Net1 to Net5, the improvements are
progressive. Our method achieves an average rotation error of [Roll: 0.024◦, Pitch: 0.018◦,
Yaw: 0.060◦] and an average translation error of [X: 0.472 cm, Y: 0.272 cm, Z: 0.448 cm].

Table 1. Quantitative results of calibration performed on the KITTI dataset without temporal filtering.
See footnotes 1,2 for hyper-parameter settings.

Refinement Stage
Rotation Error (◦) Translation Error (cm)

Roll Pitch Yaw X Y Z

After Net1 1 0.182 0.110 0.386 2.393 1.205 1.781
After Net2 1 0.112 0.068 0.176 1.513 1.356 1.663
After Net3 1 0.071 0.046 0.134 1.119 0.709 1.027
After Net4 1 0.039 0.024 0.088 0.750 0.428 0.735
After Net5 2 0.024 0.018 0.060 0.472 0.272 0.448

1 S = 5, (Vr, Vt) = (96, 160), G = 1024, (λ1, λ2) = (1, 2), B = 8. 2 S = 2.5, (Vr, Vt) = (384, 416), G = 128, (λ1, λ2) = (0.5, 5),
B = 4.
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(a) (b) 
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(d) 

Figure 3. Results of applying the proposed method to a test frame of the KITTI dataset. (a) Trans-
formation by randomly sampled deviations. (b) Transformation by given calibrated parameters.
(c) Transformation by RT1 inferred from Net1. (d) Transformation by RTonline obtained from iterative
refinement by five networks.

Figure 4 shows two examples of error distribution for individual components by
means of boxplots. From these experiments, we confirmed that temporal filtering provides
suitable calibration results regardless of the amount of arbitrary deviation. The dots shown
in Figure 4a,b are both obtained by transforming the same point cloud of the target sensor
by randomly sampled deviations from Rg1, but the sampled deviations are different. As
can be seen from the boxplots in Figure 4e–h, the distribution of calibration errors was
similar despite the large difference in sampled deviations.

Table 2 shows the calibration results for our method and for the existing CNN-based
online calibration methods. From these results, it can be seen that our method achieves the
best performance. In addition, when these results are compared with the results shown in
Table 1, it can be concluded that our method achieves significant performance improvement
through temporal filtering. CalibNet [2] did not specify a frame bundle.

Table 2. Comparison of calibration performance between our method and other CNN-based methods.

Method Range Bundle Size of Frame
Rotation Error (◦) Translation Error (cm)

Roll Pitch Yaw X Y Z

RegNet [25] Rg1 4541 0.24 0.25 0.36 7 7 4
CalibNet [2] (±10◦, ±0.2 m) - 0.18 0.9 0.15 4.2 1.6 7.22
LCCNet [1] Rg1 4541 0.020 0.012 0.019 0.262 0.271 0.357

Ours Rg1 4541 0.002 0.011 0.004 0.183 0.068 0.183
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c(a) (b) 

(c) (d) 

(e) (f) 

  
(g) (h) 

Figure 4. Calibration results and error distribution when temporal filtering was applied. (a) Trans-
formation by randomly sampled deviation from Rg1. (b) Transformation by randomly sampled
deviation from Rg1. (c) Calibration results from random deviations shown in (a). (d) Calibration re-
sults from random deviations shown in (b). (e) Rotation error for the results shown in (c). (f) Rotation
error for the results shown in (d). (g) Translation error for the results shown in (c). (h) Translation
error for the results shown in (d).

Figure 5 graphically shows the changes in the losses calculated by Equations (10) and (11)
for training the proposed networks on the KITTI dataset. In this figure, the green graph
shows the results of training with randomly sampled deviations from Rg1, and the pink
graph shows the results of training with randomly sampled deviations from Rg5. The
horizontal and vertical axes of these graphs represent epochs and loss, respectively. From
these graphs, we can observe that the loss reduction decreases from approximately the 30th
epoch. This was consistently observed, no matter what deviation range the network was
trained on or what hyper-parameters were used. There were similar trends in loss reduction
for rotation and translation. Given this situation, we halved the initial learning rate after
the 30th epoch of training. Training was performed at a reduced learning rate for 10 epochs

202



Sensors 2022, 22, 6447

after the 30th epoch. After the 40th epoch, we halved the learning rate again. Training
continued until the 60th epoch, and the result that produced the smallest training error
among the results obtained from the 45th to the 60th epoch was selected as the training
result. When Net1 was trained, the hyper-parameters were set as S = 5, (Vr, Vt) = (96, 160),
G = 1024, (λ1, λ2) = (1, 2), and B = 8. When Net5 was trained, the hyper-parameters were
set as S = 2.5, (Vr, Vt) = (384, 416), G = 128, (λ1, λ2) = (0.5, 5), and B = 4. In Figure 5, the
training results before the 10th epoch are not shown because the loss was too large.

 
(a) 

 
(b) 

Figure 5. Changes in loss calculated during the training of Net1 and Net5 on the KITTI dataset.
(a) Lrot calculated using Equation (10). (b) Ltrs calculated using Equation (11).

4.2. Evaluation Using the Oxford Dataset

Figures 6 and 7 show the results of performing calibration on the Oxford dataset using
the proposed five networks. In these figures, the green dots represent the points obtained by
the right LiDAR, which is considered to be the target sensor, and the red dots represent the
points obtained by the left LiDAR. Figure 6a,b show the results of the transformation of a
point cloud from the target sensor by randomly sampled deviations from Rg1 and calibrated
parameters given in the Oxford dataset, respectively. Figure 6c shows the result of the
transformation of the point cloud by RT1 inferred from the trained Net1. Figure 6d shows
the result of the transformation of the point cloud by RTonline obtained after performing
calibration up to Net5. Similar to the results of the calibration performed using the KITTI
dataset, the results of Net1 look suitable, but they are not suitable when compared with the
results shown in Figure 6d. The photo on the right side of Figure 6c shows that the green
and red dots indicated by an arrow are misaligned. In contrast, the photo on the right side
of Figure 6d shows that the green and red dots indicated by an arrow are well aligned. We
show through this comparison that calibration accuracy can be improved by the iterative
refinement of five networks even without temporal filtering.
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(a) (b) 

  
(c) 

  
(d) 

Figure 6. Results of applying the proposed method to a test frame of the Oxford dataset. (a) Trans-
formation by randomly sampled deviations. (b) Transformation by given calibrated parameters.
(c) Transformation by RT1 inferred from Net1. (d) Transformation by RTonline obtained from iterative
refinement by five networks.

  
(a) (b) 

Figure 7. Cont.
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(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 7. Calibration results and error distribution when temporal filtering was applied to the Oxford
dataset. (a) Transformation by randomly sampled deviations from Rg1. (b) Transformation by
randomly sampled deviations from Rg1. (c) Calibration results from random deviations shown in (a).
(d) Calibration results from random deviations shown in (b). (e) Rotation error for the results shown
in (c). (f) Rotation error for the results shown in (d). (g) Translation error for the results shown in (c).
(h) Translation error for the results shown in (d).

Table 3 presents the average performance of calibrations performed without temporal
filtering on 35,989 frames for testing in the Oxford dataset. Our method achieves an
average rotation error of [Roll: 0.056◦, Pitch: 0.029◦, Yaw: 0.082◦] and an average translation
error of [X: 0.520 cm, Y: 0.628 cm, Z: 0.350 cm]. In this experiment, we applied the same
hyper-parameters to all five networks. They are S = 5, (Vr, Vt) = (224, 288), G = 1024,
(λ1, λ2) = (1, 2), and B = 8.
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Table 3. Quantitative results of calibration performed on the Oxford dataset without temporal filtering.

Refinement Stage
Rotation Error (◦) Translation Error (cm)

Roll Pitch Yaw X Y Z

After Net1 0.302 0.223 0.370 3.052 4.440 3.603
After Net2 0.249 0.262 0.266 1.048 2.155 2.240
After Net3 0.136 0.068 0.099 1.469 1.191 1.348
After Net4 0.072 0.036 0.073 0.632 0.809 0.985
After Net5 0.056 0.029 0.082 0.520 0.628 0.350

Figure 7 shows two examples of the error distribution of individual components
by means of boxplots, as shown in Figure 4. From these experiments, we can see that
temporal filtering provides suitable calibration results regardless of the amount of arbitrary
deviation, even for LiDAR-LiDAR calibration. The green dots shown in Figure 7a,b are
both obtained by transforming the same point cloud of the target sensor with randomly
sampled deviations from Rg1, but the sampled deviations are different. As shown in
Figure 7e–g, the distribution of calibration errors is similar despite the large difference in
sampled deviations. In these experiments, the size of the frame bundle used in the temporal
filtering was 100.

Table 4 shows the calibration performance of the proposed method with temporal
filtering. Our method achieves a rotation error of less than 0.1◦ and a translation error of
less than 1 cm. By comparing Tables 3 and 4, it can be seen that temporal filtering achieves
a significant improvement in performance.

Table 4. Quantitative results of calibration on Oxford dataset with temporal filtering.

Method Range Bundle Size of Frame
Rotation Error (◦) Translation Error (cm)

Roll Pitch Yaw X Y Z

Ours Rg1 100 0.035 0.017 0.060 0.277 0.305 0.247

Figure 8 graphically shows the changes in the losses calculated by Equations (10) and (11)
in training the proposed networks with the Oxford dataset. Compared with the results
shown in Figure 5, we observed that the results from this experiment were very similar
to the experimental results achieved with the KITTI dataset. Therefore, we decided to
apply the same training strategy to the KITTI and Oxford datasets. However, the settings
of the hyper-parameter values that were applied to the network were different. When
Net1 was trained, the hyper-parameters were set as S = 5, (Vr, Vt) = (224, 288), G = 1024,
(λ1, λ2) = (1, 2), and B = 8. When Net5 was trained, the hyper-parameters were set as S = 5,
(Vr, Vt) = (224, 288), G = 1024, (λ1, λ2) = (0.5, 5), and B = 4.

 

(a) 

Figure 8. Cont.
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(b) 

Figure 8. Changes in calculated losses during Net1 and Net5 training on the Oxford dataset. (a) Rota-
tion loss Lrot calculated using Equation (10). (b) Translation loss Ltrs calculated using Equation (11).

4.3. Ablation Studies
4.3.1. Performance According to the Cropped Area of the Oxford Dataset

At the beginning of Section 4, we mentioned the need to eliminate some points in
the Oxford dataset that degraded calibration performance. To support this observation,
we presented in Table 5 the results of experiments with and without the removal of those
points. However, although there is a difference in the calibration performance according to
the size of the removed area, it is difficult to theoretically determine the size of the area to
be cropped. Table 5 shows the results of the experiments by setting the area to be cut in two
ways. Through these experiments, we found that the calibration performed after removing
points that caused the performance degradation generally produced better results than the
calibration performed without removing those points. These experiments were performed
with the trained Net5, and the hyper-parameters were as follows. S = 5, V = (224, 288),
G = 1024, λ = (1, 2), and B = 8.

Table 5. Comparison of calibration performance according to the cropped area on the Oxford dataset.

Size of Area to be Cropped
[Horizon, Vertical, Depth]

Rotation Error (◦) Translation Error (cm)

Roll Pitch Yaw X Y Z

N/A 0.038 0.030 0.070 1.922 0.868 0.476
[−5~5 m, −2–1 m, −5~5 m] 0.033 0.027 0.062 0.538 0.668 0.564

[−10~10 m, −2–1 m, −10~10 m] 0.033 0.025 0.054 0.490 1.109 0.496

4.3.2. Performance According to the Length of a Voxel Side, S

We conducted experiments to check how the calibration performance changes accord-
ing to S. Tables 6 and 7 show the results of these experiments. Table 6 shows the results
for the KITTI dataset, and Table 7 shows the results for the Oxford dataset. We performed
an evaluation according to S with a combination of Rg1 and Net1 and a combination of
Rg5 and Net5. These experiments showed that the calibration performance improved as
S became smaller. However, as S became smaller, the computational cost increased, and
in some cases, the performance deteriorated. We tried to experiment with fixed values
of hyper-parameters other than S, but naturally, as S decreased, the hyper-parameters Vr
and Vt increased rapidly. This was a burden on the memory, and thus it was difficult
to keep the batch size B at the same value. Therefore, when S was 2.5, B was 4 in the
experiment performed on the KITTI dataset, and B was 2 in the experiment performed on
the Oxford dataset. However, for S greater than 2.5, B was fixed at 8. In addition, there were
cases where the performance deteriorated when S was very small, such as 2.5, which was
considered to be the result of a small receptive field in the FEN. Even in the experiments
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performed on the Oxford dataset, when S was 2.5 in Net1, the training loss diverged near
the 5th epoch, so the experiment could no longer be performed. For training on the KITTI
dataset, S was set to 2.5 in Net5, and S was set to 5 in Net1 to Net4. However, for training
on the Oxford dataset, S was set to 5 for both Net1 and Net5.

Table 6. Comparison of calibration performance according to S on the KITTI dataset.

Hyper-Parameter Setting
Rotation Error (◦) Translation Error (cm)

Roll Pitch Yaw X Y Z

For the Combination of Net1 and Rg1

S = 10, V = (32, 48), G = 1024, λ = (1, 2), B = 8 0.228 0.166 0.421 3.103 1.681 2.155
S = 7.5, V = (48, 72), G = 1024, λ = (1, 2), B = 8 0.199 0.199 0.429 2.881 1.613 2.514
S = 5, V = (96, 160), G = 1024, λ = (1, 2), B = 8 0.182 0.110 0.386 2.393 1.205 1.781
S = 2.5, V = (384, 416), G = 128, λ = (1, 2), B = 4 0.295 0.206 0.595 4.489 2.288 2.840

For the Combination of Net5 and Rg5

S = 10, V = (32, 48), G = 1024, λ = (1, 2), B = 8 0.344 0.019 0.063 0.778 0.429 0.887
S = 7.5, V = (48, 72), G = 1024, λ = (1, 2), B = 8 0.030 0.020 0.059 0.646 0.487 0.776
S = 5, V = (96, 160), G = 1024, λ = (1, 2), B = 8 0.028 0.017 0.070 0.610 0.363 0.702
S = 2.5, V = (384, 416), G = 128, λ = (1, 2), B = 4 0.023 0.016 0.045 0.450 0.312 0.537

Table 7. Comparison of calibration performance according to S on the Oxford dataset.

Hyper-Parameter Setting
Rotation Error (◦) Translation Error (cm)

Roll Pitch Yaw X Y Z

For the Combination of Net1 and Rg1

S = 10, V = (76, 96), G = 1024, λ = (1, 2), B = 8 0.382 0.328 0.436 2.606 8.114 2.881
S = 7.5, V = (96, 160), G = 1024, λ = (1, 2), B = 8 0.415 0.263 0.433 3.542 7.574 4.151
S = 5, V = (224, 288), G = 1024, λ = (1, 2), B = 8 0.302 0.223 0.370 3.052 4.440 3.603
S = 2.5, V = (608, 608), G = 128, λ = (1, 2), B = 2 - - - - - -

For the Combination of Net5 and Rg5

S = 10, V = (76, 96), G = 1024, λ = (1, 2), B = 8 0.046 0.031 0.085 0.626 1.431 0.610
S = 7.5, V = (96, 160), G = 1024, λ = (1, 2), B = 8 0.031 0.228 0.535 0.448 1.357 0.457
S = 5, V = (224, 288), G = 1024, λ = (1, 2), B = 8 0.033 0.027 0.062 0.538 0.668 0.564
S = 2.5, V = (608, 608), G = 128, λ = (1, 2), B = 2 0.036 0.025 0.057 0.552 0.699 0.539

4.3.3. Performance According to the Bundle Size of Frames

We conducted experiments to observe how the calibration performance changes
according to the bundle size of the frame for temporal filtering. Tables 8 and 9 show the
results of these experiments. Table 8 shows the results for the KITTI dataset, and Table 9
shows the results for the Oxford dataset. We performed the experiments as presented in
Section 3.4.3. Because 100 runs had to be performed, the position of the starting frame for
each run was predetermined. For each run, we took the median of the values of each of
the six parameters associated with rotation and translation inferred from the frames in the
bundle, and we calculated the absolute difference between this median and the deviation
randomly sampled from Rg1. The error of each parameter shown in Tables 8 and 9 was
obtained by adding up the error of the corresponding parameters calculated for each run
and dividing the sum by the number of runs. Through these experiments, we found
that temporal filtering using many frames improves the overall calibration performance.
However, if we look carefully at the results presented in the two tables, the effect is not
shown for all parameters. Considering this observation and the processing time, the bundle
size of the frame was set to 100.
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Table 8. Comparison of calibration performance according to the bundle size of frames for temporal
filtering on the KITTI dataset.

Bundle Size of Frames
Rotation Error (◦) Translation Error (cm)

Roll Pitch Yaw X Y Z

1 0.024 0.017 0.057 0.414 0.257 0.395
10 0.009 0.013 0.018 0.210 0.102 0.245
25 0.006 0.011 0.013 0.176 0.080 0.197
50 0.004 0.011 0.008 0.170 0.070 0.190
100 0.003 0.011 0.006 0.175 0.069 0.195

Table 9. Comparison of calibration performance according to the bundle size of frame for temporal
filtering on the Oxford dataset.

Bundle Size of Frames
Rotation Error (◦) Translation Error (cm)

Roll Pitch Yaw X Y Z

1 0.055 0.028 0.080 0.536 0.532 0.330
10 0.049 0.024 0.066 0.363 0.335 0.305
25 0.044 0.022 0.066 0.334 0.303 0.272
50 0.039 0.019 0.065 0.290 0.286 0.269
100 0.035 0.017 0.060 0.277 0.305 0.247

5. Conclusions

In this paper, we realized a novel approach for online multi-sensor calibration im-
plemented using a voxel-based CNN and 3D convolutional kernels. Our method aims to
calibrate between sensors that can measure 3D space. In particular, the voxelization that
converts the input 3D point cloud into voxel and the AM introduced to find the correlation
of features between the reference and target sensors contributed greatly to the completeness
of the proposed method. We demonstrated through experiments that the proposed method
can perform both LiDAR-stereo camera calibration and LiDAR-LiDAR calibration. In
the calibration of the LiDAR-stereo camera combination, the proposed method showed
experimental results that surpassed all existing CNN-based calibration methods for the
LiDAR-camera combination. We demonstrated the effects of iterative refinement on the
five networks and the effects of temporal filtering through experiments. The proposed
method achieved a rotation error of less than 0.1◦ and a translation error of less than 1 cm
on both the KITTI and Oxford datasets.

Author Contributions: Conceptualization, J.S. and J.L.; methodology, J.S. and J.L.; software, J.S.;
validation, J.S. and J.L.; formal analysis, J.S.; data curation, J.S.; writing—original draft preparation,
J.S.; writing—review and editing, J.S. and J.L.; visualization, J.S.; supervision, J.L.; project adminis-
tration, J.L.; funding acquisition, J.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by Basic Science Research Program through the National Re-
search Foundation of Korea (NRF), funded by the Ministry of Education (NRF-2016R1D1A1B02014422).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

209



Sensors 2022, 22, 6447

References

1. Lv, X.; Wang, B.; Dou, Z.; Ye, D.; Wang, S. LCCNet: LiDAR and Camera Self-Calibration using Cost Volume Network. In
Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 19–25
June 2021; pp. 2888–2895.

2. Iyer, G.; Ram, R.K.; Murthy, J.K.; Krishna, K.M. CalibNet: Geometrically supervised extrinsic calibration using 3D spatial
transformer networks. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Madrid, Spain, 1–5 October 2018; pp. 1110–1117.

3. Jiao, J.; Ye, H.; Zhu, Y.; Liu, M. Robust odometry and mapping for multi-lidar systems with online extrinsic calibration. IEEE
Trans. Robot. 2022, 38, 351–571. [CrossRef]

4. Zhu, H.; Deng, J.; Zhang, Y.; Ji, J.; Mao, Q.; Li, H.; Zhang, Y. VPFNet: Improving 3D Object Detection with Virtual Point based
LiDAR and Stereo Data Fusion. arXiv 2021, arXiv:2111.14382. [CrossRef]

5. Caltagirone, L.; Bellone, M.; Svensson, L.; Wahde, M. LIDAR–camera fusion for road detection using fully convolutional neural
networks. Robot. Auton. Syst. 2019, 111, 125–131. [CrossRef]

6. Vachmanus, S.; Ravankar, A.A.; Emaru, T.; Kobayashi, Y. Multi-modal sensor fusion-based semantic segmentation for snow
driving scenarios. IEEE Sens. J. 2021, 21, 16839–16851. [CrossRef]

7. Dimitrievski, M.; Veelaert, P.; Philips, W. Behavioral pedestrian tracking using a camera and lidar sensors on a moving vehicle.
Sensors 2019, 19, 391. [CrossRef] [PubMed]

8. Palieri, M.; Morrell, B.; Thakur, A.; Ebadi, K.; Nash, J.; Chatterjee, A.; Kanellakis, C.; Carlone, L.; Guaragnella, C.; Agha-
Mohammadi, A.A. Locus: A multi-sensor lidar-centric solution for high-precision odometry and 3d mapping in real-time. IEEE
Robot. Autom. Lett. 2020, 6, 421–428. [CrossRef]

9. Sualeh, M.; Kim, G.-W. Dynamic Multi-LiDAR Based Multiple Object Detection and Tracking. Sensors 2019, 19, 1474. [CrossRef]
[PubMed]

10. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for autonomous driving? The kitti vision benchmark suite. In Proceedings of the
2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 16–21 June 2012; pp. 3354–3361.

11. Sun, P.; Kretzschmar, H.; Dotiwalla, X.; Chouard, A.; Patnaik, V.; Tsui, P.; Guo, J.; Zhou, Y.; Chai, Y.; Caine, B.; et al. Scalability in
perception for autonomous driving: Waymo open dataset. In Proceedings of the 2020 IEEE/CVF conference on computer vision
and pattern recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 2443–2451.

12. Barnes, D.; Gadd, M.; Murcutt, P.; Newman, P.; Posner, I. The oxford radar robotcar dataset: A radar extension to the oxford
robotcar dataset. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31
May–31 August 2020; pp. 6433–6438.

13. Sheeny, M.; De Pellegrin, E.; Mukherjee, S.; Ahrabian, A.; Wang, S.; Wallace, A. RADIATE: A radar dataset for automotive
perception in bad weather. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an,
China, 30 May–5 June 2021; pp. 1–7.

14. Park, Y.; Yun, S.; Won, C.S.; Cho, K.; Um, K.; Sim, S. Calibration between color camera and 3D LIDAR instruments with a
polygonal planar board. Sensors 2014, 14, 5333–5353. [CrossRef] [PubMed]

15. Kim, E.S.; Park, S.Y. Extrinsic calibration between camera and LiDAR sensors by matching multiple 3D planes. Sensors 2019,
20, 52. [CrossRef] [PubMed]

16. Jiao, J.; Liao, Q.; Zhu, Y.; Liu, T.; Yu, Y.; Fan, R.; Wang, L.; Liu, M. A novel dual-lidar calibration algorithm using planar surfaces.
In Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019; pp. 1499–1504.

17. Xue, B.; Jiao, J.; Zhu, Y.; Zhen, L.; Han, D.; Liu, M.; Fan, R. Automatic calibration of dual-LiDARs using two poles stickered with
retro-reflective tape. In Proceedings of the 2019 IEEE International Conference on Imaging Systems and Techniques (IST), Abu
Dhabi, UAE, 8–10 December 2019; pp. 1–6.

18. Castorena, J.; Kamilov, U.S.; Boufounos, P.T. Autocalibration of lidar and optical cameras via edge alignment. In Proceedings of
the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March
2016; pp. 2862–2866.

19. Kang, J.; Doh, N.L. Automatic targetless camera–lidar calibration by aligning edge with gaussian mixture model. J. Field Robot.
2020, 37, 158–179. [CrossRef]

20. Pandey, G.; McBride, J.R.; Savarese, S.; Eustice, R.M. Automatic extrinsic calibration of vision and lidar by maximizing mutual
information. J. Field Robot. 2015, 32, 696–722. [CrossRef]

21. Taylor, Z.; Nieto, J. A mutual information approach to automatic calibration of camera and lidar in natural environments. In
Proceedings of the 2012 Australian Conference on Robotics and Automation, Wellington, New Zealand, 3–5 December 2012;
pp. 3–5.

22. Ishikawa, R.; Oishi, T.; Ikeuchi, K. Lidar and camera calibration using motions estimated by sensor fusion odometry. In
Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October
2018; pp. 7342–7349.

23. Wei, P.; Yan, G.; Li, Y.; Fang, K.; Liu, W.; Cai, X.; Yang, J. CROON: Automatic Multi-LiDAR Calibration and Refinement Method in
Road Scene. arXiv 2022, arXiv:2203.03182.

24. Kümmerle, R.; Grisetti, G.; Burgard, W. Simultaneous calibration, localization, and mapping. In Proceedings of the 2011 IEEE/RSJ
International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 3716–3721.

210



Sensors 2022, 22, 6447

25. Schneider, N.; Piewak, F.; Stiller, C.; Franke, U. RegNet: Multimodal sensor registration using deep neural networks. In
Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 1803–1810.

26. Zhu, Y.; Li, C.; Zhang, Y. Online camera-lidar calibration with sensor semantic information. In Proceedings of the 2020 IEEE
International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 4970–4976.

27. Wang, W.; Nobuhara, S.; Nakamura, R.; Sakurada, K. Soic: Semantic online initialization and calibration for lidar and camera.
arXiv 2020, arXiv:2003.04260.

28. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In
Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December
2017; p. 30.

29. Yan, Y.; Mao, Y.; Li, B. SECOND: Sparsely Embedded Convolutional Detection. Sensors 2018, 18, 3337. [CrossRef] [PubMed]
30. Dai, A.; Ruizhongtai Qi, C.; Nießner, M. Shape completion using 3d-encoder-predictor cnns and shape synthesis. In Proceedings

of the 2017 Proceedings of the IEEE conference on computer vision and pattern recognition, Honolulu, HI, USA, 21–26 July 2017;
pp. 5868–5877.

31. Ji, M.; Gall, J.; Zheng, H.; Liu, Y.; Fang, L. Surfacenet: An end-to-end 3d neural network for multiview stereopsis. In Proceedings of
the 2017 Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2307–2315.

32. Xu, Y.; Tuttas, S.; Hoegner, L.; Stilla, U. Voxel-based segmentation of 3D point clouds from construction sites using a probabilistic
connectivity model. Pattern Recognit. Lett. 2018, 102, 67–74. [CrossRef]

33. Hernandez-Juarez, D.; Chacón, A.; Espinosa, A.; Vázquez, D.; Moure, J.C.; López, A.M. Embedded real-time stereo estimation via
semi-global matching on the GPU. Procedia Comput. Sci. 2016, 80, 143–153. [CrossRef]

34. Hirschmuller, H. Accurate and efficient stereo processing by semi-global matching and mutual information. In Proceedings of the
2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015;
Volume 2, pp. 807–814.

35. Xu, C.; Wu, B.; Wang, Z.; Zhan, W.; Vajda, P.; Keutzer, K.; Tomizuka, M. Squeezesegv3: Spatially-adaptive convolution for efficient
point-cloud segmentation. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020;
pp. 1–19.

36. Zhou, Y.; Tuzel, O. VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection. arXiv 2017, arXiv:1711.06396.
37. Zheng, W.; Tang, W.; Chen, S.; Jiang, L.; Fu, C.W. Cia-ssd: Confident iou-aware single-stage object detector from point cloud. In

Proceedings of the AAAI Conference on Artificial Intelligence, Virtual Event, 2–9 February 2021; Volume 35, pp. 3555–3562.
38. Graham, B.; van der Maaten, L. Submanifold Sparse Convolutional Networks. arXiv 2017, arXiv:1706.01307.
39. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings

of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456.
40. Ba, J.L.; Kiros, J.R.; Hinton, G.E. Layer normalization. arXiv 2016, arXiv:1607.06450.
41. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

211





Citation: Moreno-Armendáriz, M.A.;

Calvo, H.; Duchanoy, C.A.;

Lara-Cázares, A.; Ramos-Diaz, E.;

Morales-Flores, V.L.

Deep-Learning-Based Adaptive

Advertising with Augmented Reality.

Sensors 2022, 22, 63. https://doi.org/

10.3390/s22010063

Academic Editor: Jing Tian

Received: 10 November 2021

Accepted: 21 December 2021

Published: 23 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Deep-Learning-Based Adaptive Advertising with Augmented
Reality

Marco A. Moreno-Armendáriz 1, Hiram Calvo 1,*, Carlos A. Duchanoy 2, Arturo Lara-Cázares 3,

Enrique Ramos-Diaz 3 and Víctor L. Morales-Flores 3

1 Centro de Investigación en Computación, Instituto Politécnico Nacional, Ciudad de Mexico 07738, Mexico;
mam_armendariz@cic.ipn.mx

2 Gus Chat, Ciudad de Mexico 06600, Mexico; carlos.duchanoy@gus.chat
3 Escuela Superior de Cómputo, Instituto Politécnico Nacional, Ciudad de Mexico 07738, Mexico;

jlarac1300@alumno.ipn.mx (A.L.-C.); eramosd1300@alumno.ipn.mx (E.R.-D.);
vmoralesf1300@alumno.ipn.mx (V.L.M.-F.)

* Correspondence: hcalvo@cic.ipn.mx

Abstract: In this work we describe a system composed of deep neural networks that analyzes
characteristics of customers based on their face (age, gender, and personality), as well as the ambient
temperature, with the purpose of generating a personalized signal to potential buyers who pass in
front of a beverage establishment; faces are automatically detected, displaying a recommendation
using deep learning methods. In order to present suitable digital posters for each person, several
technologies were used: Augmented reality, estimation of age, gender, and estimation of personality
through the Big Five test applied to an image. The accuracy of each one of these deep neural
networks is measured separately to ensure an appropriate precision over 80%. The system has been
implemented into a portable solution, and is able to generate a recommendation to one or more
people at the same time.

Keywords: targeted advertising; emotion-based recommendation; augmented reality; computer
vision; deep learning

1. Introduction

Today, competition in the market for products and services is intense, so companies
have been forced to adopt different strategies to differentiate themselves from the crowd
and thereby attract and retain customers [1] because, although the quality of these products
or services is an important point, at present the experience that is provided to the user
during the acquisition of any product becomes a crucial point. Customizing products or
services is a differentiation strategy that allows to satisfy better customer needs [1] to the
point that it is associated with a 26% increase in profitability and a 12% increase in the
capitalization of the market [2].

Given the importance of differentiating companies, the objective of the system pro-
posed in this work is to display a personalized advertisement for each potential client
that passes outside the BubbleTown® establishment, using a screen to display advertising,
which will use technologies such as augmented reality to show the user the recommen-
dation and in this way draw their attention. BubbleTown® is a Mexican company with a
branch in Mexico City specialized in the sale of customizable tea or yogurt-based drinks.

The objective of the system will be to analyze the client by means of an image of their
face and to recommend one of the BubbleTown® products that they might like the most. To
achieve the objective, artificial vision techniques will be used from cameras strategically
installed in the premises, together with neural networks that will allow estimating the age,
gender, and personality of the client.

Sensors 2022, 22, 63. https://doi.org/10.3390/s22010063 https://www.mdpi.com/journal/sensors
213



Sensors 2022, 22, 63

A recommendation system filters personalized information, seeking to understand the
user’s tastes to suggest appropriate things considering the exclusive patterns of them [3].
A content-based recommendation system examines the characteristics of the products in
order to identify those that might be of interest to the user. It is common to have product
information stored in a database and with the description, together with the user’s profile to
generate the recommendation, it is possible to generate a preference profiles for the user’s
feedback [4]. For its part, collaborative filtering is the process in which different articles are
evaluated or filtered using the opinion generated by users. For its correct operation, the
system must have scores or ratings of the article to be recommended, so it requires users to
assign ratings to the articles they consume [4].

Through various studies, it has been questioned whether a person’s taste preference is
determined by some factor, of which it has been found that age, gender, and even personality
can influence these preferences. In [5,6], analysis was carried out considering age, where it
was found that young people prefer sweet flavors, while with aging the preference for this
flavor reduces, giving way to the preference for salty, sour, and bitter flavors; and regarding
gender, in studies such as [7], it has been shown that women tend to prefer sweet flavors 10%
more than men, while in [6], it was concluded that men will have greater acceptance towards
acidic or bitter flavors. Last but not least, it has also been shown that there is a relationship
between personality and the tendency towards some flavor, as is the case of [8] which results
in certain personality traits that influence the preference of any kind of flavors.

Until recently, progress in computer vision was based on the features of manual
engineering however, feature engineering is difficult, time consuming, and requires expert
knowledge of the problem domain. The other problem with hand-designed features, such
as background subtraction and edge detection, is that they are too scarce in terms of the
information they can capture from an image [9]. Fortunately in recent years, deep learning
advances have gained significant attention in fields such as image processing, so the task to
obtain data regarding age, gender, and personality will not be handled through traditional
techniques, but rather through deep neural networks, algorithms that today have gained
importance in the area of computer systems due to their ability to learn.

This work is divided into four parts: The state of the art, methodology, results, and
conclusions. It begins by giving a tour of the relevant works that are related to the areas
that this work addresses in the section on the state of the art. Afterwards, the methodology
section will explain the steps that were carried out to achieve the objective along with a
brief explanation of each of them. Finally, in the results section, a short explanation will be
given about the most relevant parts at the end of the project.

2. State of the Art

Within recommendations, there are many works that propose and achieve the task
of recommending a product to a client, but there are few systems whose main focus is
the generation of dynamic advertising from the detection of an individual in front of this.
The Intel suite® [10,11], distributed in 2011 in the USA, is a targeted advertising device
that makes use of automated systems to detect potential consumers through computer
vision. Among its most striking features are the use of anonymous sensors that temporarily
search and capture patterns of faces or bodies within a predetermined range of vision, in
other words, the ability to detect faces; the analysis of anthropometric features so as to
provide advertisements through screens, depending on the viewer, is also generated based
on attributes such as the age, height, race, and gender of the viewer.

Wang et al., (2020) in [12] use their users’ information, such as age, gender, location,
education level, and more to create a personalized recommendation for online courses.
On the other hand, some recommenders use deep learning, such as Liu et al., (2019) [13]
that presents a recommender which learns from the interaction between user and product
through Deep Learning, highlighting the use of convolutional neural networks.

As mentioned in the introduction, this system analyzes the faces of clients to obtain
information regarding age, gender, and personality using deep learning. Since 2011, the
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use of a CNN for estimating age through a face was proposed for the first time [14]. A
more recent work, presented by Orozco et al., (2017) [15], uses a neural network with
the purpose of obtaining the gender of a person through the image of their face; for this
they implemented 2 stages: Generation of candidate regions (ROI) and classification of
the candidate regions in the male or female person. Another relevant work is the multi-
purpose convolutional network of Ranjan et al., (2017) [16]. This CNN is able to detect faces,
extract key points, pose angles, determine smile expression, gender (binary classification),
and estimate age, simultaneously. Another work by Xing et al., (2017) [17] carried out a
diagnosis on the three types of formulations (classification, regression, or ordinal regression)
to estimate age using five cost functions as well as three different multitasking architectures
that include estimation age, gender, and race classification. Vasileiadis et al., (2019) [18]
proposed a convolutional MobileNet network with TensorFlow Lite, which is suitable for
low computational power devices that simultaneously estimates characteristics such as
age, gender, race, and eye status, as well as whether the subject is smiling or has a beard,
mustache, or glasses. As well as previous works, there are many more that aim to classify,
through an image of a face, the age and gender of a person. In addition, other works
of value are Zhang et al., (2017) [19], where the faces that appear in a video stream are
detected and in [20], Liu et al., (2018), a face detection using LFDNet is presented. In [21], a
probability Boltzmann machine network is used for face detection. Zhou et al., (2019) [22]
presents a system using the YTF dataset, obtaining a 99.83% correct face detection, and
Greco et al., (2020) [23] presented a gender recognition algorithm with a 92.70% accuracy.

Regarding personality, this is not an accessible piece of information that can be found
in documents, but rather a characteristic that requires professionals and personalized
research in human behavior [24], but it has been discovered that personality traits can
be predicted with precision depending on the characteristics of an image, such as the
saturation mean, the variation of the value, the temperature, the number of faces, or the
color level (Instagram filters) [24].

In 2016, the ChaLearn dataset [25] was created for a contest whose objective was to
identify the Big Five in a person through videos, composed of 10,000 videos of people
speaking in front of the camera during 15 s obtained from YouTube in 720-p resolution, each
tagged by Big Five using Amazon Mechanical Turk. Using deep regressions and convolu-
tional neural networks, the ChaLearn winner combines the results of image analysis (face
detection in frames) and analysis of audio characteristics (divided into N pieces) extracted
from the dataset videos, to obtain a final mean precision slightly above 91% [24,25].

In [26,27], audio, images (using OpenFace), and spoken text are extracted from the
videos in the ChaLearn dataset. In both, there are 3 separate components or channels for
processing and extracting characteristics, one for each modality taken, and at the end the
results of each component are combined to obtain a personality prediction.

Similarly, the compilation in [28] shows that the precision of jobs where only images
are used versus those where they are combined with audio and even text (natural language)
varies very little, at no more than 1%, and that the implemented model does not mean a
great impact or increase in it.

In [24,29], a new dataset (PortraitPersonality.v2 dataset) was built from ChaLearn’s,
which consists of selfie-type images where only one person appears and their face is
visible, labeled with the Big Five of the person in the photo. They were tested with the
PortraitPersonality.v2 dataset, giving the FaceNet-1 model the best result. FaceNet is a
face verification, recognition, and grouping network trained with millions of face images.
Applying Transfer Learning reaches an average precision of 65.86%.

2.1. Augmented Reality

The use of augmented reality (AR) for advertising and commercial applications lies
in completely replacing the need to try anything in stores, thus saving a considerable
amount of time for customers, which would probably be used to observe, decide, and
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select a product (not always concluding in the sale of the same) and thus increase the sales
possibilities of the stores [30].

AR also complements web applications by supporting the “live” observation of the
objects displayed on screens, as a supplement to what is being produced. Thus, not only is
the user informed about when they are “live”, but they can also use it as a learning tool for
future activities. In contrast to virtual reality (VR), which creates an artificial environment,
AR simply makes use of the existing environment by overlaying new information on top of
it. In AR, the information about the surrounding real world is made available to the user
for information and/or interaction through the use of screens.

When selecting a beverage from a set of possible options, for example, it is possibly to
see it first in your eyes, through a suitable AR application, a virtual glass, which has your
preferred beverage with the best tasting quality and other associated characteristics such as
the origin of the product, the way the product is processed, the number of calories in a unit
of volume, etc.

A study of the market by Grand View Research, the market research firm, points out
that this kind of application would generate a considerable increase in sales for stores and
restaurants. The total worldwide market for AR is estimated to be more than US$13.4 billion
by 2019 and is expected to reach US$340.16 billion in 2028, growing at a CAGR of 43.8%
from 2021 to 2028 (www.grandviewresearch.com, accessed on 18 December 2021).

An early start in the realization of the commercial potential of AR was made by the
launch of Hololens, a headset capable of creating a virtual vision. This device, with a
screen of about one inch by two inches and a thickness of two centimeters, is a product of
Microsoft, since its development is carried out in the context of HoloLens, a new project of
a company dedicated to the research and development of products focused on augmented
reality applications. Perhaps, the best known example is Magic Mirror [31,32], devices
that are basically a long-dimensional screen where the customer can interact with various
simulated objects, provided by another specific device (markers). The marketing approach
used in work [30] is that the users can see their reflection in the Magic Mirror with a virtual
model of clothing or a product that they would like to try on. The advantage of this system
over going to the store is that once the user selects the garment for testing, they have the
ability to change some details, such as color, size, and even stitching.

Another application where augmented reality interacts with the person is Snapchat
Lenses [33], which is a popular mobile application that applies filters to the face, such as
changing eye color, the shape of the face, adding accessories, having animations started when
the mouth is opened or the eyebrows raised, as well as exchanging faces with someone else.
Other functionalities are the detection of frontal faces by means of the camera of the mobile
device, as well as the application of filters on a three-dimensional mask superimposed on
them in real time. A Snapchat and Kohl collaboration [34] resulted in an AR feature that
allows customers to visualize Kohl’s products at home within the Snapchat app.

Recently, Berman et al., (2021) [35] published a self-explanatory guide on the following
steps to successfully develop an AR app. One of the most important things to consider
is how AR will help meet a business’s marketing goals. Regarding selecting channels,
wAR can be for online or in-store sales. However, one option to consider is to follow
an omnichannel strategy that allows covering all types of customers. Millennials are a
good target market for their affinity to new technologies. One last point to highlight is
the importance of measuring the return on investment of the AR app, where one crucial
aspect is to evaluate AR’s success in increasing profits due to reductions in costs and
increased sales.

2.2. Related Works

A brief comparison of our work with some published works and industry applications [36]
is shown in Table 1. Academic papers focus on facial and gender recognition using various
algorithms but do not incorporate other aspects such as Big Five personality analysis, generation
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of a personalized recommendation, and AR. On the other hand, the AR company apps focus on
AR technology, but other elements are missing.

With the review of previous works, it can be said that, although the task of recom-
mending a product to a client has been approached several times, few works do not
require having the data of the client’s preferences or history in their database to achieve
the recommendation. On the other hand, combining the recommendations with the use
of augmented reality is also scarce since it has focused more on other areas such as video
games or applications for social networks. In most of the researched works, the similarity
is that all the systems are made for previously registered users and that they interact on the
commerce website— this limits the use of the recommender to the online user and forgets
those who prefer interaction in physical stores, this being the motivation for this work.

Table 1. Related works in the literature and industry.

Authors Face/Gender Big5 Ambient Product Augmented Advertising
Recognition Personality Temperature Recommendation Reality Totem

Kim et al., (2021) [37] � � � � √ �
Kohls (2020) [34] � � � � √ �

Xueyi et al., (2020) [21]
√ � � � � �

Wayfair (2020) [38] � � � � √ �
Ikea (2019) [39] � � � � √ �

Adidas (2019) [40] � � � � √ �
L’Oréal (2019) [41] � � � � √ �

Zhou et al., (2019) [22]
√ √ � � � � �

Asos (2019) [42] � � � � √ �
Hamid et al., (2018) [43] � � � � √ �

Liu et al., (2018) [20]
√ � � � � �

Zara (2018) [44] � � � √ √ �
Hamid et al., (2016) [43] � � � √ √ �

Sephora (2016) [45] � � � � √ �
Zhang et al., (2017) [19]

√ � � � � �
Lacoste (2014) [46] � � � √ √ �
Hermès (2015) [47] � � � � √ �

Converse (2012) [48] � � � � √ �
Ours

√ √ √ √ √ √ √

The objective of this work is to analyze the face of a client on a particular pose, that
is, to show the importance of knowing the client’s personality and their age. For the face
recognition of a client, the approach has been made using face detection and classification
methods. After this, the work presents the recommendation of products in a commerce
display (totem); using the detected client’s age, gender, and personality from the customer’s
face, the recommendation is sent by the system allowing to make it possible to use it as
feedback to improve the final recommendation.

The main contributions of this work are:

• A novel deep neural network can predict the age and gender of more than one person
in a selfie (see details in Section 3.7).

• A new content-based recommender can select a different beverage for each user.
• A methodology to provide a complete solution to implement an AR system that

can be of help to stores that seek to boost sales using an innovative display system
(cf. Figure 1).

• A publicity totem that works in soft real-time [49] can present an AR recommendation
to the user.

Finally, to our knowledge, a system with all these features has not yet been developed.
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Figure 1. Global system diagram.

3. Methodology

The proposed system is composed of deep neural networks that analyze independent
characteristics of the user by means of their face (age, gender, and personality), in addition
to obtaining the ambient temperature, to be able to be entered into a drinks recommender
system and display the recommendation obtained through a module that adds augmented
reality to a screen.

Figure 1 shows three types of blocks: The green ones represent external components
used for our purposes. Those in red represent actions that are carried out using communi-
cation protocols between hardware components, and the blue ones are the modules that
were implemented in this work.

Next, a description is made of each of the modules that appear in the diagram in
Figure 1, in addition, in the final block used the hardware is explained in a general way.

3.1. Video Reception

Video from outside the store is continuously sent from an IP camera to an NVIDIA
Jetson device for processing. Previously, the network configuration must be made to
communicate all the devices, as indicated in [50].

3.2. Video-to-Image Capture

Once the video has been obtained in the NVIDIA Jetson from the camera, it is necessary
to extract frame by frame from it, since these are the basis of all the processing, using the
OpenCV library.

3.3. Image Preprocessing

Four main preprocessing operations were performed on the frame obtained by the
previous design:

1. Resize the image: The frames coming from the camera are resized to a size of
300 × 300.

2. Normalize the image Convert the frame to a matrix and then normalize it (divide the
maximum value of a pixel in RGB color format by 255).

3. Increase the brightness: Each value of the matrix is increased.
4. Apply the transpose to the image: In order to improve the precision of face detection,

the transpose operation is applied to the matrix.

3.4. Face Detection in the Image

The architecture of the neural network Single Shot Detection (SSD) [51] has several
advantages, such as the ability to detect objects at different scales and resolutions, in
addition to performing it at high speed. This is a perfect fit for the needs of the project,
as it requires a fast response time and the ability to detect faces at various distances
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from the camera. Therefore, a Single Shot Detection is used based on a neural network
MobileNet [52] to have an even lower processing time.

It is necessary to carry out a new custom training to adapt the detection only of faces, so
using the API Tensorflow Object Detection [53] that already contains the pre-trained neural
network to classify 80 types of classes, together with the transfer of learning technique,
this goal is achieved. The datasets used for this process are Face Detection in Images [54]
and Google Facial Expression Comparison Dataset [55]. Figure 2 shows an example [55] in
which the face is painted in a red box.

Figure 2. Detected face.

3.5. Face Extraction and Preprocessing

Since the location of the faces in the image is known, they are cut out and pre-processed
in order to be independently analyze and propagate in a convolutional neural network.
This process is illustrated in Figure 3.

Figure 3. Extraction of the faces detected by the SSD from the frames captured by the IP camera, and
their processing to be entered into the neural networks.

3.6. Propagation of Each Cropped Face in Neural Networks

Each of the faces obtained in the previous block will be propagated through two
convolutional neural networks to estimate age, gender, and personality characteristics.
Figures 4 and 5 show these propagations with their respective inputs and outputs.
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Figure 4. Diagram showing the flattened input face, the age, and gender network model in TensorRT,
and its two outputs: The age obtained from the regressor, and the gender vector obtained from
the classifier.

Figure 5. Diagram showing the flattened input face, the classification model: CNN-4 [24] of the
Big Five network in TensorRT, and the output vector of size 5 where each position corresponds to a
personality dimension as indicated.

3.7. Getting Age and Gender

To obtain age and gender from an image of a person’s face in selfie form, a multitasking
convolutional neural network is designed with the intention of reducing the amount of
computational resources to be used. We start with the layers estimating age, which is
the first part of the design. The architecture of this network is shown in Figure 6 and its
hyper-parameters in Table 2.

Figure 6. Proposed CNN used to estimate age.

Table 2. Hyper-parameters used to train age in a CNN.

Hyperparameter Value

Epochs 2600

Learning Factor 1 × 10−4

Batch Size 4

Afterwards, we carry out a knowledge transfer that will allow us to reduce the training
times required to obtain the second CNN that will be responsible for determining the gender
of the person. The transfer is carried out in two ways. First, the starting layer enclosed in
the gray rectangle (Conv1) freezes during this workout. Second, the final weights of the
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individual layers are used as initial values for this training which is indicated by the red
arrows, see Figure 7.

Figure 7. Designed transfer learning.

Now the training of the second part of CNN is carried out using the hyper-parameters
of Table 3. For this training, the regularization of the network was necessary; for this,
dropout layers were added. Thus, the final design of the CC is shown in Figure 8.

Table 3. Hyper-parameters used to train the genre rating portion of CNN multitasking.

Hyperparameter Value

Epochs 25

Learning Factor 1 × 10−4

Batch Size 4

Figure 8. Final architecture of the multitasking convolutional neural network to obtain the age and
gender of the person.

3.8. Obtaining the Personality (Big Five)

The estimation of personality based on his face will be measured using the Big Five
model [24], which measures personality through 5 dimensions on scales from 0 to 1:

1. Openness to Experience (O);
2. Conscientiousness (C);
3. Extraversion (E);
4. Agreeableness (A);
5. Neuroticism (N).

For this step, a model previously built and developed from facial analysis in images
will be taken, since these provide better results than all types of existing multimedia files
(audio, text, video, and images) [27], being the model of classification: CNN-4 of the work
in [24,29] the one selected to be integrated into the system, because despite the fact that there
is a better model obtained in the same work called FaceNet-1 [56], its weight, computational
requirement, and convergence time is very high, causing the selected hardware devices not
to be able to support it, taking then the second best model of the work, whose precision
obtained does not differ significantly from this, and in return offers better performance and
speed. In Tables 4 and 5, a comparison of the precision in the detection of personality by
Big Five is made between the various models of [56] from the images of faces, which have
the following characteristics: They are in a selfie format, they are in grayscale, normalized,
and their resolution is 208 × 208.
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Table 4. Comparison of the best results obtained from the different Big Five models developed in [56].

Model Average Precision

Regressor: ACoder 50.05% (with tolerance)

Regressor: CNN-2 (B) 52.06% (with tolerance)

Clasiffier: CNN-4 65.77%

Classiffier: FaceNet-1 65.86%

Table 5. Comparison between the results (each one is the percentage of precision of the detection of
each personality) by dimension of personality among the best Big Five models in [56].

Model Precision O C E A N

Human 56.6 58.3 50.0 33.3 83.3 58.3

CNN-4 65.7 62.0 67.9 72.1 61.4 65.2

FaceNet-1 65.8 61.4 69.5 73.2 60.6 64.3

The convolutional neural network architecture of the CNN-4 classification model [56]
for the detection of Big Five in the system is shown in Figure 9.

Figure 9. CNN-4 classification model architecture for Big Five [24].

3.9. Obtaining the Ambient Temperature

Although the ambient temperature is not a factor that will influence the recommenda-
tion of the drink, knowing this information, the system will have the ability to recommend
the most suitable drink modality, since within the BubbleTown® catalog there are three
options: Zen (hot drink), Iced (cold drink), or Frozen (Frappé). To give the system the ability
to obtain the ambient temperature, the API provided by OpenWeatherMap [57] was used.

3.10. Drink Recommendation

In very simple terms, a recommendation system is an application that filters infor-
mation in order to suggest appropriate things to the user [3], which for this job, the
recommendation will be a drink from the BubbleTown® catalog.

To achieve the proposed task, this work uses a content-based recommender, that
is, a recommendation system that examines the characteristics of the products [4] of
BubbleTown® that could be of interest for the user.

The recommender works by using characteristic flavor vectors for each drink on
the menu, generated with the support of the Coffee Taster’s Flavor Wheel [58] because
although there are flavor wheels specific for tea, these wheels have been built considering
aroma, texture, and flavor characteristics; while the wheel generated in [58] only considers
the flavor.

For the vectorization of the beverages, vectors are first generated for each element of
the flavor wheel. This vectorization process is achieved by dividing the wheel into flavor
classes (sweet, umami, bitter, sour, and spicy), then the ingredients are listed and a value
between 1 (one) and 0 (zero) is assigned depending on the location they have within the
flavor class.

With the vectorized basic flavors, the vectors that characterize the ingredients of each
drink are added and with the “softmax” function of the resulting vector, what will be the
characteristic flavor vector for a said drink is obtained.
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Figure 10 shows in a general way how the system recommender works. It is important
to note that for this recommendation process the salty taste has been eliminated because
none of the BubbleTown® drinks have this flavor.

Figure 10. Diagram of the recommender operation.

• Personality factor: Once the customer’s personality vector is known together with the
Big Five network, the vector will be multiplied by a matrix with the values from Table 6
to obtain a matrix with the customer’s taste preference based on their personality. The
next step will be to add all the values for each flavor and thus a vector of size five will
be obtained, where each value of the vector will correspond to a flavor class (sweet,
umami, bitter, sour, and spicy).

Table 6. Average taste preference as a function of personality in values from 0 to 1. Table obtained
with data from [8].

Taste
Preference

O C E A N

Sweet taste 0.7243 0.4357 0.6138 0.5614 0.4036

Umami taste 0.2986 0.4900 0.5852 0.1886 0.1979

Bitter taste 0.2786 0.1307 0.1600 0.2424 0.1350

Acid taste 0.0271 0.1264 0.2381 0.0252 0.1543

Spicy taste 0.4857 0.2421 0.5971 0.6424 0.5607

• Gender factor: For this objective, Table 7 is used, so that the vector obtained after
applying the personality factor is multiplied by this factor too.

Table 7. Average taste preference based on gender. Table obtained with data from [8].

Taste Preference Female Male

Sweet taste 0.7789 0.7292

Umami taste 0.4434 0.3752

Bitter taste 0.2530 0.3596

Acid taste 0.3783 0.4472

Spicy taste 0.5431 0.8288

• Age factor: After obtaining the estimated age, the customer will be placed in one of
the four age classes and, together with Table 8, the preference vector will be adjusted
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of the customer’s flavor when multiplied by said table. To continue with the vector
format, the flavor umami and spicy are added however, in the Table both have values
of 0 (zero), which means that age will not influence these flavor classes.

Table 8. Average taste preference based on age group. Table obtained with data from [6].

Taste Preference 1–17 Years 18–36 Years 37–50 Years >50 Years

Sweet taste 0.9520 0.8500 0.8100 0.7700

Umami taste 0.0000 0.0000 0.0000 0.0000

Bitter taste 0.2652 0.2400 0.1867 0.1700

Acid taste 0.1972 0.2033 0.2067 0.2233

Spicy taste 0.0000 0.0000 0.0000 0.0000

• Softmax: After applying all the factors that influence the taste preference, the “Soft-
max” function will be applied to the vector in order to obtain a customer flavor
preference vector.
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• KNN (Euclidean distance): Since we have the client flavor preference vector, we will
use the KNN or “nearest neighbor” algorithm using as a metric, the Euclidean distance
to obtain a drink from the database whose flavor is the one that is most similar to
that vector.

• Mode selector: From the previous step, you already have the drink that will be
recommended by the system. In this step, the drink mode (zen, iced, or frozen) will be
selected depending on the ambient temperature.

3.11. Data Storage

The system uses a database to store information such as the beverage catalog, the list
of static advertising images or the recommendations that the system makes for each person.
For this, it was decided to use a non-relational database.

The database will store the drinks that are available for purchase, the static advertising
that will be projected when there is no customer in front of the system, and, finally, each of
the recommendations generated by the system during its operation. The recommendations
are stored together with the recognized face’s features, the estimated age, its gender
classification, and the personality vector. The recommended drink will also be stored with
said parameters, the ambient temperature at the time of recommendation, and the most
suitable drink modality.

Since the face could be considered as a sensitive data, it receives a special treatment
before being stored, since it is encrypted using the AES-256 algorithm, in such a way that
only system administrators can access this image and only in order to maintain or improve
the system proposed through this work.

3.12. Search for the Drink in the Catalog

The database contains the characteristic vectors for each drink from the BubbleTown®

catalog and the valid modalities for each drink (as explained in Section 3.10) however, the
path of the images that will be used to generate the augmented reality is also stored. These
images will be loaded into memory in order to create the augmented reality that shows the
recommendation to the client.

3.13. Generation of Augmented Reality

One of the parts that consumes the most resources is the generation of augmented
reality, since to create that feeling of “interaction” with the user it must be constantly
updating itself and, considering that at the code level, manipulating the images consists
of modifying an array the same size as the image resolution, too many operations are
performed to produce a single image. These operations should be carried out approximately
60 times per second if it is to be made an imperceptible process for the user.

Figure 11 shows in a general way how the module in charge of generating augmented
reality works. To operate the system, it is necessary to feed the module with the frame
obtained from the camera, the faces that have been previously recognized and processed,
as well as advertising (images of the drinks to be recommended). The first component
of the augmented reality module will be in charge of adjusting the size of the thought
balloon based on how close or far it is from the camera to create an effect of depth. The
next step in this process will be to add the advertising to the original frame, where finally
the company logo will be added in the upper left corner, a banner with the name of the
drink to recommend at the bottom, and finally, the balloon of thought with the image of
the drink in the upper left side of each detected face. In order to exemplify the idea for the
reader, the augmented reality proposal is placed in Figure 12.
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Figure 11. Augmented reality design.

Figure 12. Example of the augmented reality to be carried out.

3.14. Display of the Result with Augmented Reality

The image with the recommendation of the drink added in the form of augmented
reality is displayed on the LED screen. It is important to mention that periodically, the
output on the screen will be refreshed with a new frame (obtained from the camera video).

At this point, each frame is completely ready to be shown on the screen. The communi-
cation flow of the system, as well as the type of information that travels between them, the
protocol of communication they use and the way to connect them are shown in Figure 13.

Figure 13. System hardware connection diagram.

All the functionality will be carried out within the NVIDIA Jetson Xavier, a small but
powerful computer for artificial intelligence tasks [59,60] that has an ARM64 architecture
and Linux operating system called Jetpack [61].

4. Validation

4.1. Face Detection

The training of the neural network Single Shot Detection was started using only the
dataset Face Detection in Images [54] with 100,000 epochs, later, with the aim of reducing
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the error substantially, 30,000 epochs were trained with both datasets. Figure 14 represents
the training of the neural network from epoch 1 to 130,000.

Figure 14. Neural network error Single Shot Detection, note that from epoch 100,000 the error
decreases significantly.

While the error metric is a valid indicative. A confusion matrix allows to know
more clearly how the network is performing, since with it, the following scenarios can
be considered:

1. True positive: Is the case where the network detects a face and it is truly a face.
2. False negative: Occurs when the network detects a face but it is not actually a face.
3. False positive: Is the opposite case opposite to the false negative, it occurs when the

network does not detect a face that should.

To evaluate the three previous cases, the Intersection over the Union (IoU) [62] is used as
a metric. Table 9 shows the results of the aforementioned confusion matrix.

Table 9. Confusion matrix for face detection.

Positive Negative

True 6818 -

False 830 2617

4.2. Obtaining Age and Gender

The part of the age estimate is measured with the error obtained in the training and
testing phases, since it is configured as a regressor. In the training, an average error of
0.11 years is achieved at the end of the 2600 epochs, while in the test set, the average error
is 10.44 years. Figures 15 and 16 show the evolutions of the errors during the 2600 training
and test periods, respectively.

Figure 15. Evolution of the error in the training phase of the age estimation.
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Figure 16. Evolution of the error in the test phase of the age estimate.

The classification part of the gender is measured by its accuracy, giving a result of
83.73% in the training phase and 80.09% in the testing phase. The evolution of these are
shown in Figures 17 and 18, respectively.

Figure 17. Evolution of precision in the training phase of gender classification.

Figure 18. Evolution of precision in the test phase of gender classification.

Finally, the confusion matrix of the gender classification is presented in Table 10.

Table 10. Gender classification confusion matrix.

Female (Target) Male (Target)

Classified as Female 5094 1455

Classified as Male 1088 5295
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4.3. Augmented Reality

In Figure 19, the image shown on the screen in a real case is shown. The company logo
(Bubble Town® [63]) is displayed at the upper left part of the face, there is the image of the
drink and name of the drink and modality are shown in the lower central part. However,
even though the NVIDIA Jetson Xavier is a powerful device, it was observed that it is not
enough for the project to flow properly, since there is a delay between the video captured
by the camera and image displayed on the screen (with augmented reality).

Another important aspect to highlight in the work is the capacity of the system
to be able to generate a recommendation to more than one person at the same time,
see Figure 20, given that if there are several faces in the camera image, the system will
recognize them and generate recommendations independently. So that each user knows the
recommended drink, the thought balloons for each one, and the banner will be changing
from time to time; to identify who the banner belongs to, it will have the same color
as the thought balloon. The advertising totem was in operation for several days in the
Laboratory of Computational Cognitive Sciences of the Center for Computing Research [64],
showing that it properly worked at all times. To replicate these results, the reader can
visit https://github.com/vicleo14/PublicidadBT (accessed on 20 December 2021). A short
video demo can be found at https://tinyurl.com/2p8bf68s (accessed on 20 December
2021). Regarding working time, once the system detected a face, it started generating
the augmented reality scene in 2.03 s on average; lastly, on a small poll with 30 users,
86.66% of them liked our beverage recommendation; see all data in Table A1 and logifle in
https://tinyurl.com/59ev279p (accessed on 18 December 2021).

Figure 19. Final result of Augmented Reality.

Figure 20. Final result of augmented reality with two people using our advertising totem.
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5. Conclusions

Generating targeted, different, and personalized advertising to recommend a product
to the customer in an unconventional way is not a trivial task. The main reason that
customer tastes can become so complex is that they become unique and unrepeatable
preferences; for this reason, achieving generalization of the entire process within the system
is highly complex in terms of development and effectiveness.

The raw material of this work are the images in which the clients appear. The prepro-
cessing of the images that will be entered into the deep learning models is one of the main
aspects that will influence obtaining good results, since having an adequate processing in
the data will allow the model to obtain a result with high precision using fewer resources.

The personalized retraining of the Single Shot Detection with the help of transfer of
learning (in order to achieve good results without the need for extensive training) and its
results, as well as the execution tests of the convolutional neural network to estimate age
and gender and the neural network for Big Five confirm something that is very clear in the
world of artificial intelligence: No model will be completely accurate in scenarios of the
real world. There is no model that is perfect, that is why the field of deep learning has had
periods of oblivion throughout history, and although recently, thanks to more powerful
computers, as well as large data banks, it has been a relevant of study, since precisely
obtaining an ideal model is one of the objectives that these fields seek to achieve.

With all this, face detection has an acceptable performance for the purposes of the
system, although it could be improved, since it must be observed that the almost null
existence of data sets available for commercial use or with free licenses is the main cause of
not being able to refine or perfect the Single Shot Detection to detect faces in very difficult
conditions, such as, people with glasses (whether dark or transparent), with hats, scarves,
with tied hair in the case of women, and recently with a mouth mask. The recommendation
generated by the system, in the end, is a suggestion based on certain parameters identified
in a person, and clearly the ultimate decision to accept or reject it will be with the clients.
The importance of this works lies in the “aggressiveness” in which it is suggested, and
since it is simply a graphic that does not compromise the decision or intentions of the buyer,
in addition to how attractive augmented reality can be for a public unfamiliar with this
technology, it is considered to be more likely to arouse interest in Bubble Town®beverages
rather than having some rejection or negative impact due to a breach of their personal data.

A complementary part of this system is to take into account the need to safeguard
people’s sensitive data (faces), stored in its database, to comply with business rules, and not
incur any violations to Federal Law on the Protection of Personal Data. For this reason, a
privacy notice is provided along with the system, and information that could be considered
sensitive is encrypted to prevent its misuse.
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Appendix A

Table A1. Results of the elapsed time to generate the AR and the satisfaction survey.

Poll Number Elapsed Time (s)
Did You Like the

Recommendation?

1 1.479222298 like
2 1.285918808 dislike
3 1.27488842 like
4 2.368936348 like
5 2.293576145 like
6 2.358893967 like
7 2.369532681 like
8 2.393731785 like
9 2.377891922 like
10 2.281593037 dislike
11 2.267432785 dislike
12 2.641290951 like
13 2.449003696 like
14 2.427659225 like
15 2.363572884 like
16 2.310142899 like
17 2.294511223 like
18 1.219994068 like
19 2.308717346 like
20 2.259387589 like
21 2.253286648 like
22 2.304634762 like
23 1.212442875 like
24 1.298417091 like
25 2.355474758 like
26 2.696813393 like
27 1.217700481 like
28 1.231303215 dislike
29 1.212442875 like
30 2.29670248 like

Average: 2.036837222 86.66%
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