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Editorial

Preface to the Special Issue on “Control, Optimization, and
Mathematical Modeling of Complex Systems”

Mikhail Posypkin *, Andrey Gorshenin * and Vladimir Titarev *

Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences,
119333 Moscow, Russia
* Correspondence: mposypkin@frccsc.ru (M.P.); agorshenin@frccsc.ru (A.G.); vladimir.titarev@frccsc.ru (V.T.)

1. Aims, Scope, and Statistics of the Special Issue

Complex systems have long been an integral part of modern life and can be
encountered everywhere. A comprehensive study of such systems is a challenging problem, the
solution of which is impossible without the use of contemporary mathematical modeling tech-
niques. Mathematical models form the basis for optimal design and control of complex systems.

This Special Issue is focused on recent theoretical and computational studies of com-
plex systems modeling, control, and optimization. Topics include, but are not limited to,
the following themes:

• Numerical simulation in physical, social, and life sciences [1–4];
• Modeling and analysis of complex systems based on mathematical methods and

AI/ML approaches [5,6];
• Control problems in robotics [3,7–12];
• Design optimization of complex systems [13];
• Modeling in economics and social sciences [4,14];
• Stochastic models in physics and engineering [1,15–18];
• Mathematical models in material science [19];
• High-performance computing for mathematical modeling [20].

Cross-border modeling and numerical simulation in Physics and Engineering are
particularly welcome in this Special Issue.

In total, 31 manuscripts were submitted, and 20 papers by 49 authors were
successfully published. Authors come from the following 11 countries:

• China [4,7,18];
• Czech Republic [8];
• Great Britain [11];
• Hungary [10];
• Pakistan [4];
• Russia [1,2,5,6,8,10,13,15–17,19];
• Saudi Arabia [4];
• Spain [3,9,12,20];
• Taiwan [4];
• Tunisia [20];
• Vietnam [8,14].

A rose diagram of the number of unique authors from different countries is shown in Figure 1.

Mathematics 2022, 13, 2182. https://doi.org/10.3390/math10132182 https://www.mdpi.com/journal/mathematics1
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Figure 1. Authors and corresponding countries.

2. Papers of the Special Issue

Zeifman et al. [1] consider the computation of the (limiting) time-dependent perfor-
mance characteristics of one-dimensional continuous-time Markov chains with discrete
state space and time-varying intensities. Numerical solution techniques can benefit from
methods providing ergodicity bounds because the latter can indicate how to choose the
position and the length of the “distant time interval” (in the periodic case) on which
the solution has to be computed. They can also be helpful whenever the state space
truncation is required. In this paper, one such analytic method—the logarithmic norm
method—is reviewed. Its applicability is shown within the context of the queuing theory
with three examples: the classical time-varying M/M/2 queue; the time-varying single-
server Markovian system with bulk arrivals, queue-skipping policy, and catastrophes; and
the time-varying Markovian bulk-arrival and bulk-service system with state-dependent
control. In each case, it is shown whether and how the bounds on the rate of convergence
can be obtained. Numerical examples are provided.

Ilyin [2] considers the development of the two-dimensional discrete velocity Boltz-
mann model on a nine-velocity lattice. Compared with the conventional lattice Boltz-
mann approach for the present model, the collision rules for the interacting particles are
formulated explicitly. The collisions are tailored in such a way that mass, momentum, and
energy are conserved, and the H-theorem is fulfilled. By applying the Chapman–Enskog
expansion, the author shows that the model recovers quasi-incompressible hydrodynamic
equations for a small Mach number limit, and he then derives the closed expression for
the viscosity, depending on the collision cross-sections. In addition, the numerical imple-
mentation of the model with the on-lattice streaming and local collision step is proposed.
As test problems, the shear wave decay and Taylor–Green vortex are considered, and a
comparison of the numerical simulations with the analytical solutions is presented.

Nagua et al. [3] design and simulate a soft joint to perform as a robotic joint with
two degrees of freedom (DOF) (inclination and orientation). The joint actuation is based on
a cable-driven parallel mechanism (CDPM). To study its performance in more detail, a test
platform is developed using components that can be manufactured in a 3D printer using a
flexible polymer. The mathematical model of the kinematics of the soft joint is developed,
which includes a blocking mechanism and the morphology workspace. The model is
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validated using finite element analysis (FEA) software. Experimental tests are performed
to validate the inverse kinematic model and to show the potential use of the prototype in
robotic platforms such as manipulators and humanoid robots.

Masood et al. [4] analyze the designed fractional-order Stuxnet, the virus model, to
investigate the spread of the virus in the regime of isolated industrial networks environment
by bridging the air gap between the traditional and critical control network infrastructures.
Removable storage devices are commonly used to exploit the vulnerability of individual
nodes, as well as the associated networks, by transferring data and viruses in the isolated
industrial control system. A mathematical model of an arbitrary order system is constructed
and analyzed numerically to depict the control mechanism. Local and global stability
analysis of the system is performed on the equilibrium points derived for the value of α = 1.
To understand the depth of fractional model behavior, numerical simulations are carried out for
the distinct order of the fractional derivative system, and the results show that fractional-order
models provide rich dynamics by means of fast transient and super-slow evolution of the
model’s steady-state behavior, which are seldom perceived in integer-order counterparts.

Gorshenin and Kuzmin [5] present a feature construction approach called statistical
feature construction (SFC) for time-series prediction. The creation of new features is based
on statistical characteristics of analyzed data series. First, the initial data are transformed
into an array of short pseudo-stationary windows. For each window, a statistical model
is created, and the characteristics of these models are later used as additional features for
a single window or as time-dependent features for the entire time series. To demonstrate
the effect of SFC, five plasma physics and six oceanographic time series are analyzed. For
each window, unknown distribution parameters are estimated with the method of moving
separation of finite normal mixtures. First, four statistical moments of these mixtures for
initial data and increments are used as additional data features. Multilayer recurrent neural
networks are trained to create short- and medium-term forecasts with a single window as
input data; additional features are used to initialize the hidden state of recurrent layers.
A hyperparameter grid search is performed to compare fully optimized neural networks
for original and enriched data. A significant decrease in the RMSE metric is observed, with
a median of 11.4%. There is no increase in the RMSE metric in any of the analyzed time
series. The experimental results show that SFC can be a valuable method for forecasting
accuracy improvement.

The paper by Diveev et al. [6] is devoted to an emerging trend in control—a machine
learning control. Despite the popularity of the idea of machine learning, there are various
interpretations of this concept, and there is an urgent need for its strict mathematical
formalization. An attempt to formalize the concept of machine learning is presented in this
paper. The concepts of an unknown function, work area, and training set are introduced,
and a mathematical formulation of the machine learning problem is presented. Based on
the presented formulation, the idea of machine learning control is considered. One of the
problems of machine learning control is the general synthesis of control. It implies finding
a control function that depends on the state of the object, which ensures the achievement of
the control goal with the optimal value of the quality criterion from any initial state of some
admissible region. Supervised and unsupervised approaches to solving a problem based
on symbolic regression methods are considered. As a computational example, a problem of
general synthesis of optimal control for a spacecraft landing on the surface of the Moon is
considered as a supervised machine learning control, using a training set.

Li and Zhou [7] propose a novel control strategy to address the precise trajectory
tracking control problem of a ship towing system. First, the kinematics and dynamics
models of a ship towing system are established by introducing a passive steering angle
and using its structure relationship. Then, by using the motion law derived from its
nonholonomic constraints, the relative curvature of the target trajectory curve is used to
design a dynamical tracking target. By applying the sliding mode control and inverse
dynamic adaptive control methods, two appropriate robust torque controllers are designed
via the dynamical tracking target, so that both the tugboat and the towed ship are able to

3
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track the desired path precisely. As the authors show, the proposed strategy provides an
excellent agreement with the numerical simulation results.

Diveev et al. [8] present a numerical method based on the Pontryagin maximum
principle for solving an optimal control problem with static and dynamic phase constraints
for a group of objects. Dynamic phase constraints are introduced to avoid collisions between
objects. Phase constraints are included in the functional in the form of smooth penalty
functions. Additional parameters for special control modes and the terminal time of the
control process are also introduced. The search for additional parameters and the initial
conditions for the conjugate variables is carried out using the modified self-organizing
migrating algorithm. An example of using this approach to solve the optimal control
problem for the oncoming movement of two mobile robots is given. Simulation and
comparison with the direct approach show that the problem is multimodal. The application
of the evolutionary algorithm for its solution is presented.

Mena et al. [9] propose a modular robot with an origami structure. The idea is based
on a self-scalable and modular link made of soft parts. The kinematics of single and
multiple interconnected links is studied and validated. In addition, the link is prototyped,
identified, and controlled in position. The experimental data show that the system meets
the scalability requirements, and that its response is totally reliable and robust.

Diveev et al. [10] present a new formulation of the optimal control problem with un-
certainty, in which an additive bounded function is considered as uncertainty. The purpose
of the control is to ensure the achievement of terminal conditions with the optimal value
of the quality functional, while the uncertainty has a limited impact on the change in the
value of the functional. This article introduces the concept of feasibility of the mathematical
model of the object, which is associated with the contraction property of mappings if we
consider the model of the object as a one-parameter mapping. It is shown that this property
is sufficient for the development of stable practical systems. To find a solution to the stated
problem that would ensure the feasibility of the system, the synthesized optimal control method
is proposed. This article formulates the theoretical foundations of the synthesized optimal control.
The method consists of making the control object stable relative to some point in the state space
and controlling the object by changing the position of the equilibrium points. The article pro-
vides evidence that this approach is insensitive to the uncertainties of the mathematical model of
the object. An example of the application of this method for optimal control of a group of robots
is given. A comparison of the synthesized optimal control method with the direct method on the
model with and without disturbances is also presented.

Kuang et al. [11] investigate visual navigation, which is an essential part of planetary
rover autonomy. Rock segmentation emerged as an important interdisciplinary topic in image
processing, robotics, and mathematical modeling. It is a challenging topic for rover auton-
omy because of the high computational consumption, real-time requirement, and annotation
difficulty. This research proposes a rock segmentation framework and a rock segmentation
network (NI-U-Net++) to aid with the visual navigation of rovers. The framework consists
of two stages: the pretraining process and the transfer-training process. The pretraining
process applies the synthetic algorithm to generate the synthetic images; then, it uses the
generated images to pretrain NI-U-Net++. The synthetic algorithm increases the size of the
image dataset and provides pixel-level masks—both of which are challenges with machine
learning tasks. The pretraining process accomplishes the state of the art, compared with
the related studies, which achieved an accuracy, intersection over union (IoU), Dice score,
and root-mean-squared error (RMSE) of 99.41%, 0.8991, 0.9459, and 0.0775, respectively.
The transfer-training process fine-tunes the pretrained NI-U-Net++ using the real-life im-
ages, which achieved an accuracy, IoU, Dice score, and RMSE values of 99.58%, 0.7476,
0.8556, and 0.0557, respectively. Finally, the transfer-trained NI-U-Net++ is integrated into
a planetary rover navigation vision and achieves a real-time performance of 32.57 frames
per second (or the inference time is 0.0307 s per frame). The framework only manually
annotates about 8% (183 images) of the 2250 images in the navigation vision, which is
a labor-saving solution for rock segmentation tasks. The proposed rock segmentation
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framework and NI-U-Net++ improve the performance of the state-of-the-art models. The
synthetic algorithm improves the process of creating valid data for the challenge of rock
segmentation. All source codes, datasets, and trained models of this research are openly
available in Cranfield Online Research Data (CORD).

The paper by Quevedo et al. [12] is devoted to soft robotics, which is becoming
an emerging solution to many of the problems in robotics, such as weight, cost, and
human interaction. In order to overcome such problems, bio-inspired designs have intro-
duced new actuators, links, and architectures. However, the complexity of the required
models for control has increased dramatically, and geometrical model approaches, widely
used to model rigid dynamics, are not enough to model these new hardware types. In this
paper, different linear and nonlinear models are used to model a soft neck consisting of a
central soft link actuated by three motor-driven tendons. By combining the force on the
different tendons, the neck is able to perform a motion similar to that of a human neck.
In order to simplify the modeling, first a system input–output redefinition is proposed,
considering the neck pitch and roll angles as outputs and the tendon lengths as inputs.
Later, two identification strategies are selected and adapted to the case in hand: set mem-
bership, a data-driven, nonlinear, and nonparametric identification strategy that needs no
input redefinition; and recursive least-squares (RLS), a widely recognized identification
technique. The first method offers the possibility of modeling complex dynamics without
specific knowledge of its mathematical representation. This method is selected considering
its possible extension to more complex dynamics and the fact that its impact on soft robotics
is yet to be studied according to the current literature. On the other hand, RLS shows
the implication of using a parametric and linear identification in a nonlinear plant and
also helps to evaluate the degree of nonlinearity of the system by comparing the different
performances. In addition to these methods, neural network identification is used for
comparison purposes. The obtained results validate the modeling approaches proposed.

Posypkin and Khamisov [13] investigate the problem of reliable bounding of a func-
tion’s range, which is essential for deterministic global optimization, approximation, lo-
cating roots of nonlinear equations, and several other computational mathematics areas.
Despite years of extensive research in this direction, there is still room for improvement.
The traditional and compelling approach to this problem is interval analysis. They show
that accounting convexity/concavity can significantly tighten the bounds computed by in-
terval analysis. To make the approach applicable to a broad range of functions, the authors
also develop techniques for handling nondifferentiable composite functions. Traditional
ways to ensure convexity fail in such cases. Experimental evaluation shows the remarkable
potential of the proposed methods.

Nguyen [14] investigates the logistics industry, which can be considered the economic
lifeline of each country because of its role in connecting the production and business
activities of enterprises and promoting socio-economic development between regions and
countries. However, the COVID-19 pandemic, which began at the end of 2019, has seriously
affected the global supply chain, causing heavy impacts on the logistics service sector. In
this study, the authors use the Malmquist productivity index to assess the impact of the
pandemic on logistics businesses in Vietnam. Moreover, the authors employ a super-slack-
based model to find strategic alliance partners for enterprises. The authors also utilize the
Grey forecasting model to forecast the business situation for enterprises during the period
2021–2024, in order to provide the leaders of these enterprises with a complete picture of
their partners as a solid basis for making decisions to implement alliances that will help
logistics enterprises in Vietnam to develop sustainably. The results show that the alliance
between LO7 and L10 is the most optimal, as this alliance can exploit freight in the opposite
direction and reduce logistics costs, creating better competitiveness for businesses.

Popkov [15] has formulated the problem of randomized maximum entropy estima-
tion for the probability density function of random model parameters with real data and
measurement noises. This estimation procedure maximizes an information entropy func-
tional on a set of integral equalities depending on the real dataset. The Gâteaux derivative
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technique is developed to solve this problem in analytical form. The probability density
function estimates depend on Lagrange multipliers, which are obtained by balancing the
model’s output with real data. A global theorem for the implicit dependence of these
Lagrange multipliers on the data sample’s length is established using the rotation of ho-
motopic vector fields. A theorem for the asymptotic efficiency of randomized maximum
entropy estimate in terms of stationary Lagrange multipliers is formulated and proved.
The proposed method is illustrated in the problem of forecasting the evolution of the
thermokarst lake area in western Siberia.

Borisov [16] presents the guaranteeing estimation of parameters in uncertain stochastic
nonlinear regression. The loss function is the conditional mean square of the estimation
error given the available observations. The distribution of regression parameters is partially
unknown, and the uncertainty is described by a subset of probability distributions with a
known compact domain. The essential feature is the usage of some additional constraints
describing the conformity of the uncertain distribution to the realized observation sample.
The paper contains various examples of the conformity indices. The estimation task is
formulated as the minimax optimization problem, which, in turn, is solved in terms of
saddle points. The paper presents the characterization of both the optimal estimator and
the set of least favorable distributions. The saddle points are found via the solution to a
dual finite-dimensional optimization problem, which is simpler than the initial minimax
problem. The paper proposes a numerical solution procedure to the dual optimization prob-
lem. The interconnection between the least favorable distributions under the conformity
constraint, and their Pareto efficiency in the sense of a vector criterion is also indicated. The
influence of various conformity constraints on the estimation performance is demonstrated
by illustrative numerical examples.

Tsitsiashvili [17] develops a method for detecting synergistic effects of the interaction of
elements in multielement stochastic systems of separate redundancy, multiserver queuing,
and statistical estimates of nonlinear recurrent relations parameters. The detected effects
are relatively strong and manifest themselves even with rough estimates. This allows
their analysis with relatively simple mathematical methods and thereby helps expand
the set of possible applications. The new methods are based on special techniques of
the structural analysis of multielement stochastic models in combination with majorant
asymptotic estimates of their performance indicators. They allow moving to more accurate
and rather economical numerical calculations, as they indicate in which direction it is most
convenient to perform these calculations.

A review of Ge [18] is devoted to the latest progress in the controllability of stochastic
linear systems and some unsolved problems. Firstly, the exact controllability of stochastic
linear systems in finite-dimensional spaces is discussed. Secondly, the exact, exact null,
approximate, approximate null, and partial approximate controllability of stochastic linear
systems in infinite-dimensional spaces are considered. Thirdly, the exact, exact null, and
impulse controllability of stochastic singular linear systems in finite-dimensional spaces
are investigated. Fourthly, the exact and approximate controllability of stochastic singular
linear systems in infinite-dimensional spaces are studied. Lastly, the controllability and
observability for a type of time-varying stochastic singular, linear system are studied using
stochastic GE-evolution operator in the sense of mild solution in Banach spaces; some
necessary and sufficient conditions are obtained, and the dual principle is proven to be true.
An example is given to illustrate the validity of the theoretical results obtained in this part,
and a problem to be solved is introduced. The main purpose of this paper is to facilitate
readers to fully understand the latest research results concerning the controllability of
stochastic linear systems and the problems that need to be further studied, thus prompting
more scholars to engage in this research.

Morozov et al. [19] are concerned with the issues of modeling dynamic systems with
interval parameters. In previous works, the authors proposed an adaptive interpolation
algorithm for solving interval problems. The essence of the algorithm is the dynamic
construction of a piecewise, polynomial function that interpolates the solution of the
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problem with a given accuracy. The main problem of applying the algorithm is related
to the curse of dimension, i.e., exponential complexity relative to the number of interval
uncertainties in parameters. The main objective of this work is to apply the previously
proposed adaptive interpolation algorithm to dynamic systems with a large number of
interval parameters. In order to reduce the computational complexity of the algorithm,
the authors propose using adaptive sparse grids. This article introduces a novel approach
to applying sparse grids to problems with interval uncertainties. The efficiency of the
proposed approach has been demonstrated on representative interval problems of nonlinear
dynamics and computational materials science.

Derbeli et al. [20] investigate a proton exchange membrane (PEM) fuel cell.
This problem has recently gained widespread attention from many researchers due to
its cleanliness, high efficiency, and soundless operation. The high-performance output
characteristics are required to overcome the market restrictions of PEMFC technologies.
Therefore, the main aim of this work is to maintain the system operating point at an ad-
equate and efficient power stage with high-performance tracking. To this end, a model
predictive control (MPC) based on a global minimum cost function for a two-step hori-
zon is designed and implemented in a boost converter integrated with a fuel cell system.
An experimental comparative study is carried out between the MPC and a PI controller to
reveal the merits of the proposed technique. Comparative results indicate that a reduction
of 15.65% and 86.9%, respectively, in the overshoot and response time can be achieved
using the suggested control structure.
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Abstract: The problem considered is the computation of the (limiting) time-dependent performance
characteristics of one-dimensional continuous-time Markov chains with discrete state space and time
varying intensities. Numerical solution techniques can benefit from methods providing ergodicity
bounds because the latter can indicate how to choose the position and the length of the “distant
time interval” (in the periodic case) on which the solution has to be computed. They can also be
helpful whenever the state space truncation is required. In this paper one such analytic method—the
logarithmic norm method—is being reviewed. Its applicability is shown within the queueing theory
context with three examples: the classical time-varying M/M/2 queue; the time-varying single-server
Markovian system with bulk arrivals, queue skipping policy and catastrophes; and the time-varying
Markovian bulk-arrival and bulk-service system with state-dependent control. In each case it is
shown whether and how the bounds on the rate of convergence can be obtained. Numerical examples
are provided.

Keywords: continuous-time Markov chains; ergodicity bounds; discrete state space; rate of conver-
gence; logarithmic norm

1. Introduction

The topic of this paper concerns the analysis of (one-dimensional) inhomogeneous
continuous-time Markov chains (CTMC) with discrete state space. The inhomogeneity prop-
erty implies that (some or all) transition intensities are non-random functions of time
and (may or may not) depend on the state of the chain. For such mathematical models
many operations research applications are known (see, for example, [1–4] and [Section 5]
in [5]), but the motivation of this paper is queueing. Thus all the examples considered
in this paper are devoted to time varying queues. Substantial literature on the prob-
lem exists in which various aspects (like existence of processes, numerical algorithms,
asymptotics, approximations and others) are analyzed. The attempt to give a systematic
classification of the available approaches (based on the papers published up to 2016) is
made in [5]; up-to-date point of view is given in [Sections 1 and 1.2] of [4] (see also [6]).

The specific question, being the topic of this paper, is the computation of the long-
run (see, for example, in [Introduction] of [7]), (limiting) time-dependent performance
characteristics of a CTMC with time varying intensities. This question can be considered
from different point of views: computation time, accuracy, complexity, storage use etc.
As a result, various solution techniques have been developed, but none of them is the

Mathematics 2021, 9, 42. https://dx.doi.org/10.3390/math9010042 https://www.mdpi.com/journal/mathematics9
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ubiquitous tool. One of the ways to improve the efficiency of a solution technique is to
supply it with a method for the limiting regime detection, (or, in other words, a method
providing ergodicity bounds): once the limiting regime is reached, there is no need to
continue the computation indefinitely. The main contribution of this paper is the review
of one such method (see Section 2) and presentation of its applicability in two new use-
cases, not considered before in the literature (see Sections 4 and 5). It is worth noting that
methods, which provide ergodicity bounds, can be also helpful, whenever a truncation
of the countable state space of the chain is required. The method presented in Section 2,
whenever applicable, is helpful in this aspect as well (see also [8,9]).

The end of this section is devoted to the review (by no means exhaustive) of the
popular solution techniques for the analysis of Markov chains in time varying queueing
models. The attention is drawn to the ability of a technique to yield limiting time-dependent
performance characteristics of a Markov chain with time varying intensities. For each
technique mentioned, (computer simulation methods and numerical transform inversion
algorithms are not discussed here), it is highlighted if any benefit can be gained when the
technique is used along with a method providing ergodicity bounds.

In many applied settings the performance analysis is based on the procedure known
as point-wise stationary approximation [10] and its ramifications. According to it the time-
dependent probability vector x(t) at time t is approximated by the steady-state probability
vector y(t) by solving y(t)H(t) = 0 and y(t)�1 = 1, where H(t) is the time-dependent
intensity matrix (throughout the paper the vectors denoted by bold letters are regarded
as column vectors, ek denotes the kth unit basis vector, 1T—row vector of 1’s with T
denoting the matrix transpose). In its initial version, the approximation breaks down if
the instantaneous system’s load is allowed to exceed 1. In general its quality depends
on the values of the transition rates, and for some models (like time-dependent birth-
and-death processes) the approach is proved to be correct asymptotically in the limit
(as transition intensities increase). Another fruitful set of techniques, which help one
understand the performance of complex queueing systems, is the (conventional and many-
server) heavy-traffic approximations, (another approximation technique, worth mentioning
here especially because of its applicability to non-Markov time varying queues, is robust
optimization. See [4], Section 2.). Since scaling is important in heavy-traffic limits, usually
the technique is more justified whenever the state space of a chain is in some intuitive
sense close to continuous (see e.g., [11,12] and no doubt others), and less (or even not at
all) justified if the state space is essentially discrete, (for example, when formed by the
number of customers in the system Mt/Mt/1/N (for fixed N) at time t). Due to the nature
of both class of techniques mentioned above they do not benefit from methods providing
ergodicity bounds.

The very popular set of techniques to calculate performance measures, which stands
apart from the two mentioned above, is comprised of numerical methods for systems of
ordinary differential equations (ODEs)—Kolmogorov forward equations, (for an illustra-
tion the reader can refer to, for example, [13]). Due to the increasing computer power such
methods keep gaining popularity. By introducing approximations these methods can be
made more efficient. For example, when only moments of the Markov chain are of interest
one can use closure approximations, (since the moment dynamics are (when available)
close to the true dynamics of the original process, the benefits from the methods providing
ergodicity bounds, when used alongside, are clear), (see e.g., [14–16]). Another method for
the computation of transient distributions of Markov chains is uniformization (see [17]).
It is numerically stable and, as reported, usually outperforms known differential equation
solvers (see [Section 6] in [18]).

The methods based on uniformization suffer from slow convergence of a Markov
chain: whenever it is slow, computations involve a large number of matrix-vector prod-
ucts. An ODE technique yields the numerical values of performance measures, but it is
complicated by a number of facts, among which we highlight only those which are related
to the topic of this paper. Firstly, there can be infinitely many ODEs in the system of
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equations. Traditionally this is circumvented by truncating the system, i.e., making the
number of equations finite. But there is no general “rule of thumb” for choosing the trunca-
tion threshold. Secondly, (time-dependent) limiting characteristics of a CTMC are usually
considered to be identical to the solution of the system on some distant time interval
(see, for example, [17–23]). This procedure yields limiting characteristics with any desired
accuracy, whenever the CTMC is ergodic. Yet, in general, it is not suitable for Markov
chains with countable (or finite but large) state space. Moreover it is not clear, (conver-
gence tests are usually required, which result in additional computations). how to choose
the position and the length of the “distant time interval”, on which the solution of the
system must be found. Thus in practice without an understanding a priori about when the
limiting regime is reached, significant computational efforts are required to make oneself
sure that the obtained solution is the one required, (and, for example, the steady-state is
not detected prematurely (see [24]). The authors in [20] propose the solution technique
equipped with the steady-state detection. As is shown, it allows significant computational
savings and simultaneously ensures strict error bounding. Yet the technique is only ap-
plicable, when the stationary solution of a Markov chain can be efficiently calculated in
advance).

The approaches mentioned in the previous paragraph have straightforward benefit
from the methods providing a priori determination of point of convergence. Although gen-
erally this task is not feasible, certain techniques exist, which provide ergodicity bounds
for some classes of Markov chains. In the next section we review one such technique,
being developed by the authors, which is based on the logarithmic norm of linear operators
and special transformations of the intensity matrix, governing the behaviour of a CTMC.
In the Sections 3–5 it is applied to three use-cases. Section 6 concludes the paper.

In what follows by ‖ · ‖ we denote the l1-norm, i.e., if x is an (l + 1)-dimensional col-
umn vector then ‖x‖ = ∑l

k=0 |xk|. If x is a probability vector, then ‖x‖ = 1. The choice of op-
erator norms will be the one induced by the l1-norm on column vectors,
i.e., ‖A‖ = sup0≤j≤l ∑l

i=0 |aij| for a linear operator (matrix) A.

2. Logarithmic Norm Method

Ergodic properties of Markov chains have been the subject of many research papers
(see e.g., [25,26]). Yet obtaining practically useful general ergodicity bounds is difficult
and remains, to large extent, an open problem. Below we describe one method, called the
“logarithmic norm” method, which is applicable in the situations, when the discrete state
space of the Markov chain cannot be replaced by the continuous one and the transition
intensities are such that the chain is either null or weakly ergodic. The method is based on
the notion of the logarithmic norm (see e.g., [27,28]) and utilizes the properties of linear
systems of differential equations.

Consider an ODE system

d
dt

y(t) = H(t)y(t), t ≥ 0, (1)

where the entries of the matrix H(t) = (hij(t))∞
i,j=0 are locally integrable on [0, ∞) and H(t)

is bounded in the sense that ‖H(t)‖ is finite for any fixed t. Then

d
dt
‖y(t)‖ ≤ −β(t)‖y(t)‖, (2)

where −β(t) is the logarithmic norm of H(t) i.e.

− β(t) = sup
i

{
hii(t) + ∑

j �=i
|hji(t)|

}
. (3)
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Thus the following upper bound holds:

‖y(t)‖ ≤ e−
∫ t

0 β(u) du‖y(0)‖. (4)

If H(t) has non-negative non-diagonal elements (and arbitrary elements on the diago-
nal, (such a matrix in the literature is called sometimes essentially nonnegative).) and all of
its column sums are identical, then there exist ‖y(0)‖ such that in (4) the equality holds.

The logarithmic norm method is put into an application in four consecutive steps.
Firstly one has to determine whether the given Markov chain (further always denoted by
X(t)) is null-ergodic or weakly ergodic,(a Markov chain is called null-ergodic, if for all its
state probabilities pi(t) → 0 as t → ∞ for any initial condition; a Markov chain is called
weakly ergodic if ‖p∗(t)− p∗∗(t)‖ → 0 as t → ∞ for any initial condition p∗(0), p∗∗(0),
where the vector p(t) contains state probabilities). Secondly one excludes one “border
state” from the Kolmogorov forward equations and thus obtains the new system with
the matrix which, in general, may have negative off-diagonal terms. The third step is to
perform (if possible) the similarity transformation (see (11) and (24)), i.e., to transform
the new matrix in such a way that its off-diagonal terms are nonnegative and the column
sums differ as little as possible. At the final, fourth step one uses the logarithmic norm to
estimate the convergence rate. The key step is the third one. The transformation is made
using a sequence of positive numbers (see the sequences {δn, n ≥ 0} below), which usually
has to be guessed, does not have any probabilistic meaning and can be considered as an
analogue of Lyapunov functions.

3. Time-Varying M/M/2 System

We start with the well-known time-varying M/M/2/∞ system with two servers and
the infinite-capacity queue in which customers arrive one by one with the intensity λ(t).
The service intensity of each server does not depend on the total number of customers in
the queue and is equal to μ(t). The functions λ(t) and μ(t) are assumed to be nonrandom,
nonnegative and locally integrable on [0, ∞) continuous functions. Let the integer-valued
time-dependent random variable X(t) denote the total number of customers in the system
at time t ≥ 0. Then X(t) is the CTMC with the state space {0, 1, 2 . . . }. Its transposed
time-dependent intensity matrix (generator) A(t) = (aij(t))∞

i,j=0 has the form

A(t) =

⎛⎜⎜⎜⎜⎜⎜⎝
−λ(t) μ(t) 0 0 . . .
λ(t) −(λ(t) + μ(t)) 2μ(t) 0 . . .

0 λ(t) −(λ(t) + 2μ(t)) 2μ(t) . . .
0 0 λ(t) −(λ(t) + 2μ(t)) . . .
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎠.

For all t ≥ 0 we represent the distribution of X(t) as a probability vector p(t),
where p(t) = ∑∞

k=0 P(X(t) = k)ek (as above, ek denotes the kth unit basis vector). Given any
proper initial condition p(0), the Kolmogorov forward equations for the distribution of
X(t) can be written as

d
dt

p(t) = A(t)p(t). (5)

Assume that X(t) is null ergodic. The condition on the intensities λ(t) and μ(t),
which guarantees null ergodicity will be derived shortly below, (clearly, if the intensities
are constants, i.e., λ(t) = λ and μ(t) = μ, then the condition is simply λ > 2μ. If both
are periodic and the smallest common multiple of the periods is T, then the condition is∫ T

0 λ(u) du > 2
∫ T

0 μ(u) du). Fix a positive number d > 1 and define the sequence {δn, n ≥
0} by δn = d−n. It is the decreasing sequence of positive numbers. By multiplying (5) from
the right with Λ = diag(δ0, δ1, . . . ), we get

d
dt

p̃(t) = Ã(t)p̃(t), (6)
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where p̃(t) = Λp(t) and Ã(t) = ΛA(t)Λ−1. Denote by −α̃k(t) the sum of all elements in
the kth column of Ã(t). By direct inspection it can be checked that

α̃0(t) =
(

1− d−1
)

λ(t),

α̃1(t) =
(

1− d−1
)
(λ(t)− dμ(t)),

α̃k(t) =
(

1− d−1
)
(λ(t)− 2dμ(t))︸ ︷︷ ︸
=β(t)

, k ≥ 2.

Since α̃0(t) ≥ β(t) and α̃1(t) ≥ β(t), the upper bound follows from (4) applied to (6):

∞

∑
k=0

d−k pk(t) ≤ e−
∫ t

0 β(u) du
∞

∑
k=0

d−k pk(0). (7)

If d is chosen such that d > 1 and
∫ ∞

0 (λ(t)− 2dμ(t)) dt = +∞, then from (7) it follows
that pk(t) → 0 as t → ∞ for each k ≥ 0 and thus X(t) is null ergodic. In such a case it is
possible to extract more information from (7). Note that for any fixed n ≥ 0 it holds that

d−n
n

∑
i=0

pi(t) ≤
n

∑
k=0

d−k pk(t) ≤
∞

∑
k=0

d−k pk(t).

Thus, if X(0) = N, i.e., pN(0) = 1 then for any n ≥ 0 the following upper bound for
the conditional probability P(X(t) ≤ n|X(0) = N), N ≥ 0, holds:

P(X(t) ≤ n|X(0) = N) ≤ dn−Ne−
∫ t

0 β(u) du. (8)

Now assume that X(t) is weakly ergodic (the corresponding condition on the inten-
sities λ(t) and μ(t) will be derived shortly below). Using the normalization condition
p0(t) = 1−∑i≥1 pi(t) it can be checked that the system (5) can be rewritten as follows:

d
dt

z(t) = B(t)z(t) + f(t), (9)

where the matrix B(t) with the elements bij(t) = aij(t)− ai0(t) has no probabilistic meaning
and the vectors f(t) and z(t) are

f(t) = (λ(t), 0, , 0 . . . )T , z(t) = (p1(t), p2(t), . . . )T .

Let z∗(t) and z∗∗(t) be the two solutions of (9) corresponding to two different initial
conditions z∗(0) and z∗∗(0). Then for the vector y(t) = z∗(t)− z∗∗(t) = (y1(t), y2(t), . . . )T ,
with arbitrary elements we have the system

d
dt

y(t) = B(t)y(t). (10)

The matrix B(t) in (10) may have negative off-diagonal elements. But it is straightfor-
ward to see, that the similarity transformation TB(t)T−1 = B∗(t), where T is the upper
triangular matrix of the form

T =

⎛⎜⎜⎜⎜⎜⎝
1 1 1 · · ·
0 1 1 · · ·
0 0 1 · · ·
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎠,
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gives the matrix B∗(t):

B∗(t) =

⎛⎜⎜⎜⎜⎝
−(λ(t) + μ(t)) μ(t) 0 0 · · ·

λ(t) −(λ(t) + 2μ(t)) 2μ(t) 0 · · ·
0 λ(t) −(λ(t) + 2μ(t)) 2μ(t) · · ·
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎠, (11)

which off-diagonal elements are always nonnegative. Let u(t) = Ty(t) = (u1(t), u2(t), . . . )T .
Then by multiplying both parts of (10) from the left by T, we get

d
dt

u(t) = B∗(t)u(t). (12)

Fix a positive number d > 1 and define the increasing sequence of positive numbers
{δn, n ≥ 0} by δn = dn−1. Let D = diag(δ1, δ2, . . . ). By putting w(t) = Du(t) in (12),
we obtain the system of equations

d
dt

w(t) = B∗∗(t)w(t), (13)

where the matrix B∗∗(t) = DB∗(t)D−1 has nonnegative off-diagonal elements. Denote by
−αk(t) the sum of all elements in the kth column of B∗∗(t) i.e.

α1(t) = μ(t)− (d− 1)λ(t),

α2(t) =
(

1− d−1
)

μ(t) + μ(t)− (d− 1)λ(t),

αk(t) =
(

1− d−1
)
(2μ(t)− dλ(t))︸ ︷︷ ︸
=β(t)

, k ≥ 3.

Note that if 1 < d ≤ 2 then α1(t) ≥ β(t) and α2(t) ≥ β(t). Now, remembering that
w(t) = Du(t) = DTy(t), the upper bound for y(t) = z∗(t)− z∗∗(t) in the weighted norm
due to (4) is (from (14) the purpose of the similarity transformation DB∗(t)D−1 can be
recognized: it is to make β(t) in the exponent as large as possible).

‖DTy(t)‖ ≤ e−
∫ t

0 β(u) du‖DTy(0)‖. (14)

The upper bound for ‖p∗(t) − p∗∗(t)‖ is obtained from (14). Firstly notice that
‖y(t)‖ ≤ 2‖p∗(t)− p∗∗(t)‖ since y(t) is the solution of (10)—the system with the excluded
state (0). Secondly, it can be proved, (this is shown, for example, in [Equation (18)] of
the [29]), that ‖x‖ ≤ 2‖DTx‖ for any vector x. Hence

‖p∗(t)− p∗∗(t)‖ ≤ 4e−
∫ t

0 β(u) du‖DTy(0)‖. (15)

If d is chosen such that d > 1 and
∫ ∞

0 (2μ(t)− dλ(t)) dt = +∞, then from (15) it
follows that ‖p∗(t)− p∗∗(t)‖ → 0 as t → ∞ for any initial conditions p∗(0) and p∗∗(0),
i.e., X(t) is weakly ergodic. Note that it is sufficient to choose d ∈ (1, 2]: if the integral
diverges for d > 2 it also diverges for d = 2 and this is sufficient for (14) to hold.

Sometimes it is also possible to obtain bounds similar to (15) for other characteris-
tics of X(t). For example, denote by E(t, k) the conditional mean number of customers in
the system at time t, given that initially there where k customers in the system,
i.e., E(t, k) = ∑n≥1 nP(X(t) = n|X(0) = k). Then using [Equation (22)] of [29] it can
be shown, that

|E(t, k)− E(t, 0)| ≤ 4(1− dk)

W(1− d)
e−
∫ t

0 β(u) du, k ≥ 1, W = inf
n

dn

n + 1
. (16)
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The results obtained above for both, null and weak ergodic, cases can be put together
in the single theorem.

Theorem 1. Let there exist a positive d �= 1 such that
∫ ∞

0

(
(1− d)λ(t) + 2(1− d−1)μ(t)

)
dt =

+∞. Then X(t) is null (weakly) ergodic if d < 1 (d > 1) and the ergodicity bounds (7) and (15)
hold.

Whenever the intensities λ(t) and μ(t) are constants or periodic functions stronger
results can be obtained.

Corollary 1. If in the Theorem 1 the intensities λ(t) and μ(t) are constants or 1−periodic,
(i.e., λ(t) and μ(t) are periodic functions and the length of their periods is equal to one), then X(t)
is exponentially null (weakly) ergodic if d < 1 (d > 1) and there exist R > 0 and a > 0 such that
e−
∫ t

s β(u) du ≤ Re−a(t−s) for 0 ≤ s ≤ t.

We now consider the numerical example. Let λ(t) = 9(1 + sin 2πt) and
μ(t) = 8(1 + cos 2πt). It is straightforward to check from the Theorem 1 that if d = 4

3
then X(t) is weakly ergodic. Then the ergodicity bounds follow from (15) and (16):

‖p∗(t)− p∗∗(t)‖ ≤ 72e−t‖DT(p∗(0)− p∗∗(0))‖, (17)

|E(t, k)− E(t, 0)| ≤ 162
(

4
3

)k
e−t, k > 0. (18)

Figure 1 shows the graph of the probability p0(t) as t increases. It can be seen that
for any initial condition p(0) there exists one periodic function of t, say π0(t)
(i.e., π0(t) = π0(t + T), where T = 1 is the smallest common multiple of the periods
of λ(t) and μ(t)), such that limt→∞(p0(t)− π0(t)) = 0. Figure 2 shows the detailed be-
haviour of π0(t). Now consider (17). If t ≥ 37 then the right part of (17) does not exceed
10−3 i.e., starting from the instant t = 37 = t∗ the system “forgets” its initial state and
the distribution of X(t) for t > t∗ can be regarded as limiting. The error (in l1-norm),
which is thus made, is not greater than 10−3. Moreover, since the limiting distribution of
X(t) is periodic, it is sufficient to solve numerically the system of ODEs only in the interval
[0, t∗ + T]. The distribution of X(t) in the interval [t∗, t∗ + T] is the limiting probability
distribution of X(t) (with error not greater than 10−3 in l1-norm). Note that the system of
ODEs contains infinite number of equations. Thus in order to solve it numerically one has
to truncate it; this truncation was performed according to the method in [30]. The upper
bound on the rate of convergence of the conditional mean E(t, k) is given in (18). If t ≥ t∗

then the right part does not exceed 10−2 i.e., starting from t = t∗ the system “forgets” its
initial state and the value of E(t, k) can be regarded as the limiting value of the conditional
mean number of customers with the error not greater than 10−2. The rate of convergence
of E(t, k) and the behaviour of its limiting value is shown in the Figures 3 and 4. Note that
the obtained upper bounds are not tight: the system enters the periodic limiting regime
before the instant t = t∗.

15



Mathematics 2021, 9, 42

Figure 1. Rate of convergence of the empty system probability p0(t) in the interval [0, 37] given two
different initial conditions: p0(0) = 1 (red line), p189(0) = 1 (blue line).

Figure 2. Limiting probability p0(t) of the empty queue given two different initial conditions:
p0(0) = 1 (red line), p189(0) = 1 (blue line).
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Figure 3. Rate of convergence of the conditional mean E(t, k) number of customers in the system in
the interval [0, 37]: E(t, 0) (red line), E(t, 189) (blue line).

Figure 4. Limiting conditional mean E(t, k) number of customers in the system: E(t, 0) (red line),
E(t, 189) (blue line).

4. Time-Varying Single-Server Markovian System with Bulk Arrivals, Queue
Skipping Policy and Catastrophes

Consider the time-varying M/M/1 system with the intensities being periodic func-
tions of time and the queue skipping policy as in [31] (see also [32]). Customers arrive to
the system in batches according to the inhomogeneous Poisson process with the intensity
λ(t). The size of an arriving batch becomes known upon its arrival to the system and
is the random variable with the given probability distribution {bn, n ≥ 1}, having finite
mean b̄ = ∑∞

k=1 Bk, Bk = ∑∞
n=k bn. The implemented queue skipping policy implies that

whenever a batch arrives to the system its size, say B̂, is compared with the remaining total
number of customers in the system, say B̃. If B̂ > B̃, then all customers, that are currently

17
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in the system, are instantly removed from it, the whole batch B̂ is placed in the the queue
and one customer from it enters server. If B̂ ≤ B̃ the new batch leaves the system without
having any effect on it. Whenever the server becomes free the first customer from the queue
(if there is any) enters server and gets served according to the exponential distribution
with the intensity μ(t). Finally the additional inhomogeneous Poisson flow of negative
customers with the intensity γ(t) arrives to the system. Each negative arrival results in the
removal of all customers present in the system at the time of arrival. The negative customer
itself leaves the system. Since γ(t) depends on t it can happen that the effect of negative
arrivals fades away too fast as t → ∞ (for example, if γ(t) = (1 + t)−n, n > 1). Such cases
are excluded from the consideration.

Let X(t) be the total number of customers in the system at time t. From the system
description it follows that X(t) is the CTMC with state space {0, 1, 2, . . . , b∗}, where b∗

is the maximum possible batch size i.e., b∗ = maxn≥1(bn > 0). Thus if the batch size
distribution has infinite support then the state space is countable, otherwise it is finite.

It is straightforward to see that the transposed time-dependent generator
A(t) = (aij(t))∞

i,j=0 for X(t) has the form

A(t) =

⎛⎜⎜⎜⎜⎜⎜⎝

−λ(t) μ(t)+γ(t) γ(t) γ(t) . . .

λ(t)b1 −(λ(t)B2+μ(t) + γ(t)) μ(t) 0 . . .

λ(t)b2 λ(t)b2 −(λ(t)B3+μ(t)+γ(t)) μ(t) . . .

λ(t)b3 λ(t)b3 λ(t)b3 −(λ(t)B4+μ(t)+γ(t)) . . .

...
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎠.

We represent the distribution of X(t) as a probability vector p(t),
where p(t) = ∑b∗

k=0 P(X(t) = k)ek tor all t ≥ 0. Given a proper p(0), the probabilistic
dynamics of X(t) is described by the Kolmogorov forward equations d

dt p(t) = A(t)p(t),
which can be rewritten in the form

d
dt

p(t) = A∗(t)p(t) + g(t), t ≥ 0, (19)

where g(t) = (γ(t), 0, 0, . . . )T and A∗(t) is the matrix with the terms a∗ij(t) equal to

a∗ij(t) =

{
a0j(t)− γ(t), if i = 0,

aij(t), otherwise.
(20)

Due to the restrictions imposed on γ(t), we have that
∫ ∞

0 γ(t) dt = ∞. Thus X(t)
cannot be null ergodic irrespective of the values of λ(t) and μ(t).

Theorem 2. Assume that the catastrophe intensity γ(t) is such that
∫ ∞

0 γ(t) dt = ∞. Then the
Markov chain X(t) is weakly ergodic and for any two initial conditions p∗(0) and p∗∗(0) it
holds that

‖p∗(t)− p∗∗(t)‖ ≤ e
−

t∫
0

γ(u) du
‖p∗(0)− p∗∗(0)‖ ≤ 2e

−
t∫

0
γ(u) du

, t ≥ 0. (21)

Proof. It is straightforward to check, that the logarithmic norm (see (3)) of the
operator A∗(t) is equal to −γ(t). Denote now by U∗(t, s) the Cauchy operator of the
Equation (19). Then the statement of the theorem follows from the inequalities

‖U∗(t, s)‖ ≤ e−
∫ t

s γ(u) du and

‖p∗(t)− p∗∗(t)‖ ≤ ‖U∗(t, 0)‖‖p∗(0)− p∗∗(0)‖.
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Even though (21) is the valid ergodicity bound for X(t), it is of little help whenever
the state space of X(t) is countable and one needs to perform the numerical solution of (5).
This is due to the fact that the bound (21) is in the uniform operator topology, which does
not allow to use the analytic frameworks (for example, [29]) for finding proper truncations
of an infinite ODE system. For the latter task ergodicity bounds for X(t) in stronger (than
l1), weighted norms are required. It can be said that with such bounds we have a weight
assigned to each initial state and thus a truncation procedure becomes sensitive to the
number of states. Below (in the Theorem 3) we obtain such a bound under the additional
assumption, (for the definition used see [33]; appropriate test for monotone functions
can be found in [Proposition 1] of [34]. Although the Theorem 2 below holds for any
distribution {bn, n ≥ 1}, this assumption is essential for the Theorem 3. For distributions
with tails heavier than the geometric distribution we were unable to find the conditions,
which guarantee the existence of the limiting regime of queue-size process even for periodic
intensities). that the batch size distribution {bn, n ≥ 1} is harmonic new better than used
in expectation i.e., ∑∞

j=k Bj+1 ≤ b̄
(
1− b̄−1)k for all k ≥ 0.

Using the normalization condition p0(t) = 1−∑i≥1 pi(t) the forward Kolmogorov
system d

dt p(t) = A(t)p(t) can be rewritten as

d
dt

z(t) = A∗∗(t)z(t) + f(t), t ≥ 0, (22)

where
f(t) = (λ(t)b1, λ(t)b2, λ(t)b3, λ(t)b4, . . . )T and

A∗∗(t) =

⎛⎜⎜⎜⎜⎜⎜⎝

−(λ(t)+μ(t)+γ(t)) μ(t)−λ(t)b1 −λ(t)b1 −λ(t)b1 . . .

0 −(λ(t)B2+μ(t)+γ(t)) μ(t)−λ(t)b2 −λ(t)b2 . . .

0 0 −(λ(t)B3+μ(t)+γ(t)) μ(t)−λ(t)b3 . . .

0 0 0 −(λ(t)B4+μ(t)+γ(t)) . . .

...
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎠. (23)

Fix d ∈ (1, 1 + (b̄ − 1)−1] and define the increasing sequence of positive numbers
{δn, n ≥ 0} by δn = dn−1. Then instead of the matrix B∗∗(t) in (13) we have the matrix
Ã(t) = (ãij(t))∞

i,j=0 with the following structure:

Ã(t) =

⎛⎜⎜⎜⎜⎜⎜⎝

−(λ(t)+μ(t)+γ(t)) 1
d μ(t) 0 0 . . .

0 −(λ(t)B2+μ(t)+γ(t)) 1
d μ(t) 0 . . .

0 0 −(λ(t)B3+μ(t)+γ(t)) 1
d μ(t) . . .

0 0 0 −(λ(t)B4+μ(t)+γ(t)) . . .

...
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎠. (24)

Since the logarithmic norm (see (3)) of Ã(t) is equal to

− β∗(t) = sup
i

{
ãii(t) + ∑

j �=i
ãji(t)

}
= − inf

i

{
γ(t) +

(
1− 1

d

)
μ(t) + λ(t)Bi

}

= −γ(t)−
(

1− 1
d

)
μ(t),

then from (4) we get:

‖z∗(t)− z∗∗(t)‖1D ≤ e
−

t∫
0
(γ(u)+(1−d−1)μ(u)) du

‖z∗(0)− z∗∗(0)‖1D. (25)
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Arguments similar to those used to establish the Theorem 1 lead to the following
ergodicity bounds for ‖p∗(t)− p∗∗(t)‖ and the conditional mean E(t, k):

‖p∗(t)− p∗∗(t)‖ ≤ 4e
−

t∫
0
(γ(u)+(1−d−1)μ(u)) du

‖z∗(0)− z∗∗(0)‖1D, (26)

|E(t, k)− E(t, 0)| ≤ 1 + dk−1

W
e
−

t∫
0
(γ(u)+(1−d−1)μ(u)) du

, k ≥ 1, W = inf
n

dn

n + 1
. (27)

These results can be put together in the single theorem.

Theorem 3. Assume that the distribution {bn, n ≥ 1} with finite mean b̄ is harmonic new
better than used in expectation. Then if

∫ ∞
0

(
γ(t) + (1− d−1)μ(t)

)
dt = +∞ for some

d ∈ (1, 1 + (b̄− 1)−1], then the Markov chain X(t) is weakly ergodic and the ergodicity bound
(26) holds.

We close this section with the example, showing the dependence on t of the same two
quantities — p0(t) and E(t, k)—considered in the Section 3. Assume here that

bk =
1
3
( 2

3
)k−1

, λ(t) = 9(1 + sin 2πt), μ(t) = 8(1 + cos 2πt) and γ(t) = 1, i.e., the catastro-
phe intensity is constant and the mean size b̄ of an arriving batch is equal to 3. It can be
checked that d = 3

2 satisfies the conditions of the Theorem 3. Then from (26) and (27) we get
the upper bounds

‖p∗(t)− p∗∗(t)‖ ≤ 4e−
5
3 t‖z∗(0)− z∗∗(0)‖1D, (28)

|E(t, k)− E(t, 0)| ≤ 1 +
( 3

2
)k−1

9
8

e−
5
3 t, k ≥ 0. (29)

In Figure 5 it is depicted how p0(t) behaves as t increases and Figure 6 shows its
limiting value. If t ≥ 60 then the right part of (28) does not exceed 3 · 10−2, i.e., starting from
the instant t = 60 = t∗ the system “forgets” its initial state and the distribution of X(t)
for t > t∗ can be regarded as limiting. Moreover, since the limiting distribution of X(t)
is periodic, it is sufficient to solve (numerically, (it must be noticed that since bk > 0 for
all k, the system of ODEs contains infinite number of equations. Thus in order to solve it
numerically one has to truncate it. We perform this truncation according to the method
in [30])). the system of ODEs only in the interval [0, t∗ + T], where T is the smallest
common multiple of the periods of λ(t) and μ(t) i.e., T = 1. The probability distribution
of X(t) in the interval [t∗, t∗ + T] is the estimate (with error not greater than 3 · 10−2 in
l1-norm) of the limiting probability distribution of X(t). The upper bound on the rate of
convergence of the conditional mean number of customers in the system E(t, k) is given
in (29). If t ≥ t∗ then the right part does not exceed 0, 3, i.e., starting from the instant
t = t∗ the system “forgets” its initial state and the value of E(t, k) can be regarded as
the limiting value of the mean number of customers with the error not greater than 0, 3.
The rate of convergence of E(t, k) and the behaviour of its limiting value can be seen in
Figures 7 and 8. As in the previous numerical example, the obtained upper bounds are not
tight: the system enters the periodic limiting regime before the instant t = t∗.
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Figure 5. Rate of convergence of the empty system probability p0(t) in the interval [0, 60] given two
different initial conditions: p0(0) = 1 (red line), p250(0) = 1 (blue line).

Figure 6. Limiting probability p0(t) of the empty queue given two different initial conditions:
p0(0) = 1 (red line), p250(0) = 1 (blue line).
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Figure 7. Rate of convergence of the conditional mean E(t, k) number of customers in the system in
the interval [0, 60]: E(t, 0) (red line), E(t, 250) (blue line).

Figure 8. Limiting conditional mean E(t, k) number of customers in the system: E(t, 0) (red line),
E(t, 250) (blue line).

5. Time-Varying Markovian Bulk-Arrival and Bulk-Service System with
State-Dependent Control

In the recent paper [35] the authors considered the Markovian bulk-arrival and bulk-
service system with the general state-dependent control (see also [35–39]). The total number
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X(t) of customers at time t in that system constitutes CTMC with state space {0, 1, 2, . . . }.
Its generator Q(t) = (qij(t))∞

i,j=0 has quite a specific structure:

qij =

⎧⎪⎪⎨⎪⎪⎩
hij, if 0 ≤ i ≤ k− 1, j ≥ 0,

bi−j+k, if i ≥ k, j ≥ i− k,

0, otherwise,

(30)

where k ≥ 1 is the fixed integer. For further explanations and the motivation behind such
structure of Q(t) we refer the reader to [Section 1] in [35]. The purpose of this section is
to show that for at least one particular case of this system, even when the intensities are
time-dependent, one can obtain the upper bounds for the rate of convergence using the
method based on the logarithmic norm. Specifically, we take the example, (in the example
of [Section 7] in [35] the entries of the intensity matrix Q(t) are: hi,i−1 = μ, hi,i+1 = λ,
hi,i = −(λ + μ), b0 = a, bk+1 = b, bk = −(a + b) and k = 3). from the Section 7 of [35],
with the exception that all the transition intensities are time-dependent i.e., bi = λ(t) and
ai = μ(t) and are both nonnegative locally integrable on [0, ∞). Then the transposed
generator A(t) = (aij(t))∞

i,j=0 = QT(t) of X(t) has the form

A(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−λ(t) μ(t) 0 μ(t) 0 0 . . .
λ(t) −(λ(t) + μ(t)) μ(t) 0 μ(t) 0 . . .

0 λ(t) −(λ(t) + μ(t)) 0 0 μ(t) . . .
0 0 λ(t) −(λ(t) + μ(t)) 0 0 . . .
0 0 0 λ(t) −(λ(t) + μ(t)) 0 . . .
0 0 0 0 λ(t) −(λ(t) + μ(t)) . . .
...

...
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(31)

Denote the distribution of X(t) by p(t) i.e., p(t) = (p0(t), p1(t), . . . )T = ∑∞
k=0 P

(X(t) = k)ek (as above, ek denotes the kth unit basis vector). The ergodicity bound for X(t)
in the null ergodic case is given below in the Theorem 4.

Theorem 4. If
∫ ∞

0

(
λ(t)(1− σ) + μ(t)(1− σ−3)

)
dt = +∞ for some σ ∈ (0, 1), then the

Markov chain X(t) is null ergodic,

∞

∑
i=0

σi pi(t) ≤ e−
∫ t

0 (λ(u)+μ(u)−σλ(u)−σ−3μ(u)) du
∞

∑
i=0

σi pi(0), t ≥ 0, (32)

and for any n ≥ 0 and N ≥ 0 the following inequality holds:

P(X(t) > n|X(0) = N) ≥ 1− σN−ne−
∫ t

0 (λ(u)+μ(u)−σλ(u)−σ−3μ(u)) du. (33)

Proof. Fix σ > 0 and define the decreasing sequence of positive numbers {δn, n ≥ 0} by
δn = σn. Put p̃(t) = Λp(t), where Λ = diag(δ0, δ1, . . . ). Then we have (6). Denote by
−α̃k(t) the sum of all elements in the kth column of Ã(t) i.e.

α̃0(t) = (1− σ)λ(t),

α̃k(t) = (1− σ)
(

λ(t) + μ(t)− σ−1μ(t)
)

, k = 1, 2,

α̃k(t) = λ(t) + μ(t)− σλ(t)− σ−3μ(t)︸ ︷︷ ︸
=β(t)

, k ≥ 3.

If 0 < σ < 1 then α̃0(t) ≥ β(t), α̃1(t) ≥ β(t) and α̃2(t) ≥ β(t), and thus (32) and (33)
follow from (4) and (8) respectively.

The ergodicity bound in the weakly ergodic case, state below in the Theorem 5,
is obtained by analogy with the Theorem 1. Define an increasing sequence of positive
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numbers {δn, n ≥ 0}. Then the matrix B∗∗(t) built from the matrix A(t), in the same way
as it is done in the Section 3, has the form:

B∗∗(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(λ(t)+μ(t)) μ(t) δ1
δ2

−μ(t) δ1
δ3

μ(t) δ1
δ4

0 0 . . .

λ(t) δ2
δ1

−(λ(t)+μ(t)) 0 0 μ(t) δ2
δ5

0 . . .

0 λ(t) δ3
δ2

−(λ(t)+μ(t)) 0 0 μ(t) δ3
δ6

. . .

0 0 λ(t) δ4
δ3

−(λ(t)+μ(t)) 0 0 . . .

0 0 0 λ(t) δ5
δ4

−(λ(t)+μ(t)) 0 . . .

0 0 0 0 λ(t) δ6
δ5

−(λ(t)+μ(t)) . . .
...

...
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(34)

Denote by −α̃k(t) the sum of all elements in the kth column of B∗∗(t) i.e.,

α1(t) = λ(t) + μ(t)− λ(t)
δ2

δ1
,

α2(t) = λ(t) + μ(t)− λ(t)
δ3

δ2
− μ(t)

δ1

δ2
,

α3(t) = λ(t) + μ(t)− λ(t)
δ4

δ3
− μ(t)

δ1

δ3
,

αk(t) = λ(t) + μ(t)− λ(t)
δk+1

δk
− μ(t)

δk−3
δk

, k ≥ 4.

Since the logarithmic norm of B∗∗(t) is equal to
−β(t) = −min(min1≤k≤3 αk(t), infk≥4 αk(t)), we can apply (4) to (13) and (15) with δk+1 =
σδk, k ≥ 5.

Theorem 5. If
∫ ∞

0

(
λ(t)(1− σ) + μ(t)(1− σ−3)

)
dt = +∞ for some σ > 0, then the Markov

chain X(t) is weakly ergodic and the ergodicity bound (15) holds.

As the numerical example we again consider the periodic case: λ(t) = 3(1 + sin πt)
and μ(t) = 4(1 + cos 2πt). By direct inspection it can be checked that the sequence

{δn, n ≥ 1}, defined by δn = 10
9

n−1
, leads to β(t) = α2(t). Thus the conditions of the

Theorem 5 are fulfilled with σ = 10
9 . The pre-limiting and the limiting values of the same

quantities as in the two previous examples—p0(t) and E(t, k)—are shown in Figures 9–12.

Figure 9. Rate of convergence of the empty system probability p0(t) in the interval [0, 45] given two
different initial conditions: p0(0) = 1 (red line), p250(0) = 1 (blue line).
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Figure 10. Limiting probability p0(t) of the empty queue given two different initial conditions:
p0(0) = 1 (red line), p300(0) = 1 (blue line).

Figure 11. Rate of convergence of the conditional mean E(t, k) number of customers in the system in
the interval [0, 45]: E(t, 0) (red line), E(t, 300) (blue line).
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Figure 12. Limiting conditional mean E(t, k) number of customers in the system: E(t, 0) (red line),
E(t, 300) (blue line).

6. Conclusions

As can be seen from the last three sections, in order to obtain the ergodicity bounds the
values of λ(t) and μ(t) for each t may not be needed. Instead it may be sufficient to know
only the time-average intensities λ = 1

t limt→∞
∫ t

0 λ(u)du and μ = 1
t limt→∞

∫ t
0 μ(u)du.

For periodic intensities with the smallest common multiple of the periods T, the values λ
and μ are exactly the average arrival and service intensity over one period.

The classes of CTMC to which the logarithmic norm method is applicable and gives
meaningful results is not limited to those considered in this paper, (necessary and sufficient
conditions for a CTMC “to fit” the logarithmic norm method are not known). For example,
the same reasoning, which has led to the Theorem 1, can be used to obtain the upper
bounds for the rate of convergence of the Mt/Mt/S/∞ system with any (finite) number of
servers. Moreover, whenever X(t) is weakly ergodic, the analysis can be carried on beyond
what is stated in the Theorem 1. For example, one can obtain the perturbation bounds
(see e.g., [40]) and study different state space truncation options: one-sided or two sided
(see e.g., [29,41,42]).
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Abstract: In this paper, we consider the development of the two-dimensional discrete velocity Boltz-
mann model on a nine-velocity lattice. Compared to the conventional lattice Boltzmann approach for
the present model, the collision rules for the interacting particles are formulated explicitly. The colli-
sions are tailored in such a way that mass, momentum and energy are conserved and the H-theorem
is fulfilled. By applying the Chapman–Enskog expansion, we show that the model recovers quasi-
incompressible hydrodynamic equations for small Mach number limit and we derive the closed
expression for the viscosity, depending on the collision cross-sections. In addition, the numerical
implementation of the model with the on-lattice streaming and local collision step is proposed. As test
problems, the shear wave decay and Taylor–Green vortex are considered, and a comparison of the
numerical simulations with the analytical solutions is presented.

Keywords: discrete velocity method; lattice Boltzmann method; computational fluid dynamics

1. Introduction

In the kinetic theory, the distribution function of a rarefied gaseous system is governed
by the Boltzmann equation or its models [1]. In the applications, the discretization of
these equations in the velocity (and physical) space is usually performed. One of the
most popular discretization approaches is the Lattice–Boltzmann (LB) method [2–5] which
was initially developed as an alternative to the continuum fluid methods like Navier–
Stokes equations [6]; furthermore, the method has been extended to the rarefied flows
modeling [7–19]. The conventional LB model has the following form

d fi
dt

=
1
τ
( f eq

i − fi), i = 1 . . . N,

where fi(t, x) is the distribution function related to the particles with the velocity ci,
i = 1 . . . N, τ is the relaxation time, f eq

i is the local equilibrium, N is the number of the
discrete velocities, d

dt =
∂
∂t+ ci

∂
∂r , r is the spatial variable. In this approach, the collisions

between the particles are described in a phenomenological way, i.e., it is postulated that,
due to the collisions, the distribution function tends to the local equilibrium state at a
rate proportional to f eq

i − fi. For LB models, the local equilibrium is usually taken as
a finite-order polynomial on the bulk velocity, and the conservation laws for mass and
momentum are satisfied by construction. On the other hand, for this form of the local
equilibrium, the H-theorem does not exist [20–22]. To overcome this issue, models with
non-polynomial equilibria have been proposed [23–26].

Another possible discretization technique is the discrete velocity (DV) Boltzmann
method [27–30], the general DV Boltzmann model reads as

d fi
dt

=
N

∑
jkl

Aij
kl( fk fl − fi f j) ≡ Ii[ f1, . . . fN ], i = 1 . . . N, (1)

where Aij
kl = Akl

ij ≥ 0 are the transition probabilities.

Mathematics 2021, 9, 993. https://doi.org/10.3390/math9090993 https://www.mdpi.com/journal/mathematics29
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Compared to the LB method, the DV models have some attractive properties. Similarly
to the Boltzmann equation, the binary collisions are described explicitly. Moreover, by
construction, the H-theorem is valid for these models [28], i.e.,

dH
dt

≤ 0, H(t) =
∫

dr
N

∑
i

fi log( fi).

Moreover, the local equilibrium for DV kinetic Boltzmann models can be obtained
as an exponential function of the macroscopic variables. The DV Boltzmann approach
attracted the attention of many researchers several decades ago, but, at present, is sig-
nificantly less popular than the LB method. For instance, the well-known four velocity
Broadwell equation in two dimensions has been investigated thoroughly [31–36], this
model has correct collision invariants, but its discrete velocity set is too small and lacks
isotropy [37]; therefore, the correct description of the hydrodynamics is impossible in the
framework of this model. In addition, another subtle feature should be mentioned: for the
discrete velocity models, the molecular chaos hypothesis can be violated, i.e., the particles
can be correlated before the collision [38]. This is undesirable, but the influence of this
effect on the flow properties in applications is not clear. Furthermore, one should con-
struct the DV Boltzmann models in such a way that the only conserved variables are mass,
momentum and energy. The equilibrium state is obtained as minimum of the H-function
under the constraint that these variables are not changed by collisions. The presence of
other conserved quantities (spurious invariants) changes the form of the local equilibrium
state, this, in turn, leads to a distortion of the hydrodynamic equations. The construction of
DV Boltzmann models without excessive invariants is a non-trivial procedure [39–42].

In this paper we consider a DV Boltzmann model on a nine velocity, two-dimensional
lattice. As a starting point, we consider the local equilibrium for the general DV Boltzmann
model and its expansion at the vicinity of the absolute Maxwell distribution. Next, the
Chapman–Enskog expansion for the DV Boltzmann model is performed in order to derive
the hydrodynamic equations. In addition, we show that the model does not have invariants
without physical meaning. The considered model has four different possible transition
probabilities. In terms of the LB theory, this model can be considered as a scheme with
multiple relaxation times. For viscosity, we obtain a closed expression depending on the
values of the transition probabilities. If the viscosity is fixed, we obtain a constraint on the
transition probabilities, but three of them can be chosen as free parameters; for instance,
they can be adjusted to improve stability properties. As benchmark problems, we consider
the shear wave decay and Taylor–Green vortex. The numerical experiments show excellent
agreement between the numerical simulation results and analytical solutions.

2. Equilibrium for DV Boltzmann Kinetic Model and the Euler Equations

The local equilibrium of the model (1) is obtained as a minimum of the H functional
with the constraints corresponding to the conservation laws; it has the following form
(Formula (5) in [43])

f eq
i = exp(a + b · ci + dc2

i ), i = 1 . . . N, (2)

where the coefficients ai, bi, di depend on the density, flow velocityand temperature ρ, u, θ
and “·” defines scalar product. In this paragraph, we consider the particle’s dynamics
in D spatial dimensions. We assume that the local equilibrium is close to the absolute
equilibrium with the density ρ0 = 1 flow velocity u0 = 0 and the temperature θ0; then, one
can write down the absolute equilibrium denoted as wi in the form

wi = exp(a0 + d0c2
i ), i = 1 . . . N,

where a0 = a0(ρ0, θ0), d0 = d0(ρ0, θ0), we also term wi as lattice weights. The conservation
laws for mass, momentum, energy yield the following equations for the lattice velocities
and the lattice weights
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∑
i

wi = 1, ∑
i

wici = 0, ∑
i

wicici = θ0δ, (3)

note that cici is a tensor with elements ci,αci,β, α, β = 1 . . . D, and that D is the number of
spatial dimensions. For the coefficients, we have the expression

ai = a0
i + Δa, bi = Δb, di = d0

i + Δd,

where Δa, Δb, Δd are small quantities. Similarly to the previous studies [43] we expand the
expression (2) on Δa, Δb, Δd, and one has

f eq
i = wi

(
1 + Δa +

1
2

Δa2 + o(Δa2)

)
×

×
(

1 + Δb · ci +
1
2

ΔbΔb : cici + o(Δb2)

)(
1 + Δdc2

i +
1
2

Δd2c4
i + o(Δd2)

)
=

= wi
(
1 + Δa + Δb · ci + Δdc2

i +

+
1
2

Δa2 + ΔaΔb · ci + ΔaΔdc2
i +

1
2

ΔbΔb : cici + ΔdΔb · cic2
i +

1
2

Δd2c4
i
)
+ o(Δ2) (4)

where o(Δ2) stands for o(Δa2), o(Δb2), o(Δd2), also the operator ":" is tensor convolution.
Next, we assume that

ρ = 1 + Δρ, u = Δu, θ = θ0 + Δθ,

where Δρ, Δu, Δθ are small. Taking (4) into account, for the first local equilibrium moments,
we derive the following equations

∑
i

f eq
i = 1 + Δρ = 1 + Δa + Dθ0Δd +

1
2

Δa2 + Dθ0ΔaΔd +
θ0

2
Δb2 +

m4

2
Δd2, (5)

∑
i

f eq
i ci = Δu + ΔρΔu = θ0Δb + θ0ΔaΔb + D−1m4ΔdΔb, (6)

∑
i

f eq
i c2

i = Dθ0 + Dθ0Δρ + DΔθ + Δu2 + DΔρΔθ =

= Dθ0

(
1 + Δa +

1
2

Δa2
)
+ m4

(
Δd + ΔaΔd +

1
2D

Δb2
)
+

m6

2
Δd2, (7)

and we omitted third-order terms and used the definitions

m4 = ∑
i

wic4
i , m6 = ∑

i
wic6

i . (8)

We assume that Δρ, Δu, Δθ are of the same order of smallness, which we define as
O(Δ). Then, we seek solutions to the Equations (5)–(7) in the form

Δa = Δalin + Δanonl , Δb = Δblin + Δbnonl , Δd = Δdlin + Δdnonl ,

where the terms Δalin, Δblin, Δdlin are solutions to the linearized Equations (5)–(7) of order
O(Δ) and Δanonl , Δbnonl , Δdnonl are nonlinear corrections of order O(Δ2). First, from the
linearized Equations (5)–(7), one has

Δρ = Δalin + Dθ0Δdlin, Δu = θ0Δblin, Dθ0Δρ + DΔθ = Dθ0Δalin + m4Δdlin,

these equations have the solutions

Δalin = Δρ− D2θ0Δθ

m4 − D2θ2
0

, Δblin =
Δu
θ0

, Δdlin =
DΔθ

m4 − D2θ2
0

. (9)
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Next, we find the nonlinear corrections Δanonl , Δbnonl , Δdnonl from the Equations (5)–(7).
It would be convenient to start with the Equation (6), which can be rewritten as

ΔρΔu = θ0ΔalinΔblin + D−1m4ΔdlinΔblin + θ0Δbnonl ,

from the last equation, we immediately obtain

Δbnonl = −ΔθΔu
θ2

0
. (10)

Consideration of the Equations (5) and (7) yields

Δanonl + Dθ0Δdnonl +
1
2

Δa2
lin + Dθ0ΔalinΔdlin +

1
2

θ0Δb2
lin +

m4

2
Δd2

lin = 0,

Dθ0Δanonl + m4Δdnonl +
Dθ0

2
Δa2

lin + m4ΔalinΔdlin +
m4

2D
Δb2

lin +
m6

2
Δd2

lin = Δu2 + DΔρΔθ,

by applying (9) we get the solutions

Δanonl = −Δρ2

2
− Dθ0Δu2

(m4 − D2θ2
0)
− D4θ2

0Δθ2

2(m4 − D2θ2
0)

2
+

(Dθ0m6 −m2
4)D2Δθ2

2(m4 − D2θ2
0)

3
, (11)

Δdnonl = − Δu2

2Dθ2
0
+

Δu2

(m4 − D2θ2
0)

+
D3θ0Δθ2

(m4 − D2θ2
0)

2
− (m6 − Dθ0m4)D2Δθ2

2(m4 − D2θ2
0)

3
. (12)

The combination of (9) and (10)–(12) leads to the following expression for f eq
i

Proposition 1. The DV local equilibrium f eq
i in the form (2) can be expressed as

f eq
i = wi(k0 + k1 · ci + k2c2

i + k3 : cici + k4 · cic2
i + k5c4

i ) + O(Δ3), i = 1 . . . N, (13)

where

k0 = 1 + Δρ− Dθ0

(m4 − D2θ2
0)
(DΔθ + DΔρΔθ + Δu2) +

Dθ0m6 −m2
4

2(m4 − D2θ2
0)

3
D2Δθ2, (14)

k1 =
Δu
θ0

+
ΔρΔu

θ0
− m4

θ2
0(m4 − D2θ2

0)
ΔθΔu, (15)

k2 = − Δu2

2Dθ2
0
+

1
(m4 − D2θ2

0)
(DΔθ + DΔρΔθ + Δu2)− m6 − Dθ0m4

2(m4 − D2θ2
0)

3
D2Δθ2, (16)

k3 =
ΔuΔu

2θ2
0

, (17)

k4 =
DΔθΔu

θ0(m4 − D2θ2
0)

, (18)

k5 =
D2Δθ2

2(m4 − D2θ2
0)

2
(19)

and Δρ, Δu Δθ are small density, flow velocity and temperature variations of order O(Δ); moreover,
the moments m4 and m6 are defined by (8), and the absolute equilibrium wi satisfies the conditions

∑
i

wi = 1, ∑
i

wici = 0, ∑
i

wicici = θ0δ,

where θ0 is the reference temperature.
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By applying (13)–(19), the pressure tensor P with the components Pαβ, α, β = 1 . . . D
at the local equilibrium can be derived

P = ∑
i

f eq
i (ci − Δu)(ci − Δu) = ∑

i
f eq
i (cici − 2ciΔu + ΔuΔu) =

= (θ0k0 + D−1m4k2 + D−1m6k5)δ + k3 : R− ΔuΔu + O(Δ3) =

= ρθδ +
2Dθ2

0 −m4

2D2θ2
0

Δu2δ +
ΔuΔu

2θ2
0

: R− ΔuΔu + O(Δ3),

where ρθ = (1 + Δρ)(θ0 + Δθ) and

R = ∑
i

wicicicici.

Now, let us assume that R is isotropic tensor; in such a case, its components can be
written in the form (Formula (69) in [37])

Rαβλγ =
m4

D(D + 2)
(δαβδλγ + δαγδβλ + δαλδβγ), (20)

one can see that the tensor P equalling ρθδ + O(Δ3) is obtained, if

m4 = D(D + 2)θ2
0. (21)

Compared to P for the local Maxwell distribution, in the DV approach, the error O(Δ3)
is observed; therefore, we can conclude that the hydrodynamics (mass and momentum
equations) at the Euler level of accuracy is recovered with the errors of order O(Δ3) if the
conditions (3), (20) and (21) are satisfied.

Finally, we consider the heat flow q at the level of the Euler equations

2q = ∑
i

f eq
i (ci − Δu)2(ci − Δu) = ∑

i
f eq
i c2

i ci − 2Δu · P− 2ρEΔu + O(Δ3),

where E = (ρ/2)(Dθ + Δu2), θ = θ0 + Δθ, ρ = 1 + Δρ, applying (13)–(19) we obtain

2q =
1

Dθ0

(
m4 + m4Δρ +

Dθ0m6 −m2
4

θ0(m4 − D2θ2
0)

Δθ

)
Δu−

−2(θ0 + Δθ + θ0Δρ)Δu · δ− (Dθ0 + Dθ0Δρ + DΔθ)Δu + O(Δ3) =

=
1

Dθ0
(m4 − D(D + 2)θ2

0)(Δu + ΔρΔu) +

(
Dθ0m6 −m2

4
Dθ2

0(m4 − D2θ2
0)
− (D + 2)

)
ΔθΔu + O(Δ3),

one can see that the terms proportional Δu, ΔρΔu are eliminated if m4 satisfies (21), in
addition, the second term can be removed if m6 = D(D + 2)(D + 4)θ3

0 or we are restricted
by the isothermal flows Δθ = 0; in such a case, the heat flow (which equals zero for
the Euler equations) is only of order O(Δ3). In the present study, we assume that the
temperature variations are negligible, Δθ = 0.

3. Navier–Stokes Equations

In order to obtain the Navier–Stokes equations, one needs to find the corrections
to the pressure tensor corresponding to the viscous terms. This can be performed by
applying the Chapman–Enskog expansion for DV Boltzmann model [29]. Then, following
the previous results [29], we assume that the solution to (1) can be expressed in the form
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fi = f eq
i + f (1)i + O(Kn2), where f (1)i are of order O(Kn) and Kn is the Knudsen number.

At the limit of small Mach numbers, the equations for f (1)i read as (Equation (19) in [43])

d f eq
i

dt
=

N

∑
jkl

Aij
kl(wk f (1)l + wl f (1)k − wi f (1)j − wj f (1)i ), i = 1 . . . N, (22)

one can see from (22) that the solutions f (1)i are determined by the concrete DV Boltzmann

model, i.e., f (1)i depend on Aij
kl . The solution to the linear Equations (22) can be obtained as

(Formula (22) in [43])

f (1)i = aiQi :
∂

∂r
Δu + bidiv(Δu), (23)

where Qi is a second-order tensor whose exact form we will discuss further, and ai, bi are
numerical coefficients.

4. Spurious Invariants

For a collision, in which the particles with the velocities ci, cj turn into the particles
with the velocities ck, cl , we introduce the following reaction vector [40,41,44]

e = (. . . ,

k︷︸︸︷
1 , . . . ,

i︷︸︸︷
−1 , . . . ,

l︷︸︸︷
1 , . . . ,

j︷︸︸︷
−1 , . . .) ∈ RN , Aij

kl > 0,

where the entries denoted by dots equal zero. Assume that we have p linearly independent
reaction vectors es, s = 1 . . . p . We denote a matrix consisting of all reaction row vectors es
as the collision matrix

C = (e1; e2; . . . ; ep) ∈ Rp ×RN .

Note that the collision invariants ϕ(c1, . . . cN) ∈ RN are defined by the relation [28]

ϕi + ϕj = ϕk + ϕl , Aij
kl > 0,

this condition can also be rewritten in the following form [44,45]

ϕ · es = 0, s = 1 . . . p, (24)

i.e., the linear subspace spanned by the invariants is orthogonal to the subspace spanned by
the reaction vectors. The condition (24) can be applied for the detection of spurious invariants:

Proposition 2. Assume that, for some DV Boltzmann models, the number of linearly independent
physical collision invariants equals q, then additional invariants do not exist if [40,41,44,45]

rank(C) = N − q,

where N is the number of the discrete velocities.

5. Nine Velocity DV Boltzmann Model for D2Q9 Lattice

We consider the DV Boltzmann model on a nine-velocity lattice (Figure 1). This lattice
is popular in LB theory [3], since the corresponding LB model recovers hydrodynamics at
small Mach numbers limit and, in addition, its numerical implementation is very simple.
For this model, we have three types of discrete velocities: zero velocity c0 = (0, 0) with the
weight w0 = 16/36; four velocities, parallel to x, y axes, i.e., c±1 = (±1, 0)c, c±2 = (0,±1)c
with the weight w0 = 4/36; four diagonal velocities c±3 = (±1,±1)c, c±4 = (±1,∓1)c
with the weight w0 = 1/36—here, c is the positive constant. The lattice velocity magnitudes
for these three groups are 0, c,

√
2c. Moreover, θ0 = ∑i wic2

i = c2/3.
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Figure 1. Two-dimensional nine-velocity lattice (D2Q9). Lattice velocities are labeled by red color.

It is well-known that these lattice velocities and weights satisfy the conditions (3), (20)
and (21); therefore, if it is possible to construct the collisions in such a way that the mass
and momentum are conserved then the Euler equations are satisfied. We mention that
the lattices and collision rules for DV Boltzmann models, which can potentially recover
the hydrodynamics, have been considered previously [46,47]—for instance, the model
with single-relaxation time describing Navier–Stokes equations has been proposed [46,47].
In here we consider only the collisions for the nine-bit lattice in a more detailed way; the
considered model is of the multiple-relaxation-time type:

a. Broadwell type collision is the reaction between the particles 1 and −1, which turn
into the particles 2 and −2 (Figure 1); schematically, we can denote this reaction as
(1,−1) −→ (2,−2). The contribution of this collision to right side of (1) denoted as J0
is as follows

J0 = f−2 f2 − f−1 f1; (25)

b. the collisions linking all three different energy states, they define transitions be-
tween the particle’s states with different kinetic energies, and evidently can not
be excluded. We have four different reactions (1, 2) −→ (0, 3), (1,−2) −→ (0, 4),
(−1,−2) −→ (0,−3), (−1, 2) −→ (0,−4). The corresponding contributions to the
collision kernel are

J1 = f0 f3 − f1 f2, J2 = f0 f4 − f1 f−2,

J3 = f0 f−4 − f−1 f2, J4 = f0 f−3 − f−1 f−2;
(26)

c. Broadwell type collision between the particles with the velocity magnitudes
√

2c
is defined by the reaction (3,−3) −→ (4,−4), the contributions to the collision
kernel are

J5 = f−4 f4 − f−3 f3; (27)

d. the collisions between the particles with the velocity magnitudes
√

2c and c, we
have four different reactions (−4, 1) −→ (−1, 3), (−3, 1) −→ (−1, 4), (−3, 2) −→
(−4,−2), (4, 2) −→ (−2, 3), the contributions to the collision kernel are

J6 = f3 f−1 − f−4 f1, J7 = f−1 f4 − f−3 f1,

J8 = f−4 f−2 − f−3 f2, J9 = f3 f−2 − f4 f2.
(28)
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The collisions (25)–(28) conserve mass, momentum and energy; the corresponding
D2Q9 DV Boltzmann model reads as

∂ f1

∂t
+ c

∂ f1

∂x
= αJ0 + β(J1 + J2) + λ(J6 + J7), (29)

∂ f−1

∂t
− c

∂ f−1

∂x
= αJ0 + β(J3 + J4)− λ(J6 + J7), (30)

∂ f2

∂t
+ c

∂ f2

∂y
= −αJ0 + β(J1 + J3) + λ(J8 + J9), (31)

∂ f−2

∂t
− c

∂ f−2

∂y
= −αJ0 + β(J2 + J4)− λ(J8 + J9), (32)

∂ f3

∂t
+ c

∂ f3

∂x
+ c

∂ f3

∂y
= γJ5 − βJ1 − λ(J6 + J9), (33)

∂ f−3

∂t
− c

∂ f−3

∂x
− c

∂ f−3

∂y
= γJ5 − βJ4 + λ(J7 + J8), (34)

∂ f4

∂t
+ c

∂ f4

∂x
− c

∂ f4

∂y
= −γJ5 − βJ2 + λ(−J7 + J9), (35)

∂ f−4

∂t
− c

∂ f−4

∂x
+ c

∂ f−4

∂y
= −γJ5 − βJ3 + λ(J6 − J8), (36)

∂ f0

∂t
= −β(J1 + J2 + J3 + J4), (37)

where α, β, λ, γ in (29)–(37) are positive transition probabilities. Now, we can consider the
analogs of the Navier–Stokes equations for the model (29)–(37).

Proposition 3. The Equations (29)–(37) lead to Navier–Stokes equations for nearly incompressible
flows with errors of order O(Δ3) if

4α = γ + 4β + 4λ, (38)

the shear viscosity ν equals

ν =
3

4α
. (39)

Proof. From (22), one can deduce that the corrections to the DV distribution function f (1)i

corresponding to the viscous terms can be represented as a linear combination of d f eq
i

dt terms.
In the case of nearly incompressible flow, these terms can be represented as (Formula (2.12)
in [2])

d f eq
i

dt
= wi

cici

θ0
:

∂

∂r
Δu, (40)

where ∂
∂r = ( ∂

∂x , ∂
∂y ). According (23) we can try add the terms proportional div(Δu), but

they equal zero for the incompressible limit; then, we seek the solution in the form

f (1)i = aiQi, Qi = wi
cici

θ0
:

∂

∂r
Δu, (41)

where the coefficients ai are equal for the indexes i corresponding to the discrete velocities ci
with the same kinetic energy. The substitution of (41) into (29)–(37) leads to three algebraic
equations for the coefficients ai, (29)–(32) yield the first equation

3w1
∂

∂x
Δux = 2αw1a1

(
∂

∂y
Δuy −

∂

∂x
Δux

)
=

= 2αw1a1

(
∂

∂y
Δuy −

∂

∂x
Δux − div(Δu)

)
= −4αw1a1

∂

∂x
Δux,
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from which we obtain
a1 = − 3

4α
,

(33)–(36) yield the second equation

3w2

(
∂

∂x
Δuy +

∂

∂y
Δux

)
= −(4γw2 + βw0 + 4λw1)a2

(
∂

∂x
Δuy +

∂

∂y
Δux

)
,

then
a2 = − 3w2

4γw2 + βw0 + 4λw1
.

The third equation, which can be obtained from (37) is satisfied automatically. Now,
with the exact expressions for a1, a2, we can evaluate f (1)i and the viscous corrections to

the pressure tensor P(1) = ∑i f (1)i cici. Then, the Navier–Stokes viscous terms can be
evaluated as

−∑
σ

∂

∂rσ
P(1)

ησ = −∑
σ

∂

∂rσ

(
∑

i
f (1)i ci,ηci,σ

)
,

where σ, η equal x or y. For instance,

− ∂

∂x
P(1)

xx − ∂

∂y
P(1)

xy =
3

2α

∂2

∂x2 Δux +
12w2

4γw2 + βw0 + 4λw1

(
∂2

∂x∂y
Δuy +

∂2

∂y2 Δux

)
we require 4α = γ + 4β + 4λ, then by applying div(Δu) = 0 we finally obtain

− ∂

∂x
P(1)

xx − ∂

∂y
P(1)

xy =
3

4α

(
∂2

∂x2 +
∂2

∂y2

)
Δux,

therefore ν = 3/4α.

For the model (29)–(37), there are ten collisions. If we consider all reaction vectors and
the corresponding collision matrix, one can convince that rank(C) = 5, the number of the
discrete velocities N = 9. This means that we do not have any collision invariants except
mass, momentum, energy (Proposition 2). We can exclude up to five reactions from the
model; for instance, we can keep only the Broadwell collisions (type a.) and the collisions
of type b., i.e., we set γ = λ = 0. On the other side, the numerical simulations show that
the addition of the collisions from the group c. or d. enhances the stability properties.

Finally, we emphasize that, for the model (29)–(37), all the collisions conserve energy
(elastic). Generally speaking, this is not necessary because we are focused on the correct
reproduction of the mass and momentum equations. For instance, it is possible to construct
the model of DV Boltzmann type in one spatial dimension with inelastic collisions [26]
(quasi-chemical model with three discrete velocities) which leads to the correct Navier–
Stokes equation at small Mach limit.

6. Numerical Implementation and Test Problems

The model is implemented similarly to the conventional LB D2Q9 model [3]. Firstly,
we perform the collision step, then post-collision distribution functions are streamed at
appropriate directions. It is well-known from the LB theory that the discretization of
space–time affects the viscosity. The DV Boltzmann model discretized in a similar form as
LB model reads as

fi(t + δt, r + ciδt)− fi(t, r) = Ii[ f1, . . . fN ](t, r)δt, (42)
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by applying the Taylor expansion this equation can be rewritten as(
∂

∂t
+ ci

∂

∂r

)
fi(t, r)δt +

1
2

(
∂

∂t
+ ci

∂

∂r

)2
fi(t, r)δt2 + O(δt3) = Ii[ f1, . . . fN ](t, r)δt,

then (
∂

∂t
+ ci

∂

∂r

)
fi(t, r) = Ii[ f1, . . . fN ](t, r)− 1

2

(
∂

∂t
+ ci

∂

∂r

)2
fi(t, r)δt + O(δt2),

therefore, we can conclude that the scheme (42) led to the hydrodynamic equations in

which the contributions from − 1
2

(
∂
∂t + ci

∂
∂r

)2
fi(t, r)δt + O(δt2) = − δt

2
d2

dt2 fi + O(δt2) are
present. The additional terms for the Navier–Stokes equations can be obtained with the
application of the Chapman–Enskog expansion [3]. Note that the terms O(δt2) do not
affect the Navier–Stokes equations, since they contain third order derivatives, which, in the
Chapman–Enskog multiple-scale expansion, enter the equations for the moments at the
Burnett level. For the Navier–Stokes equation, the additional viscosity terms result from
− δt

2
d2

dt2 f eq
i , its contribution to ∂

∂r · P(1) is δt
2 ∑i cici · d

dr
d
dt f eq

i , remembering that d
dt f eq

i can be

expressed by (40), we eventually obtain δt
6 (

∂2

∂x2 +
∂2

∂y2 )u.
Then, for the DV D2Q9 Boltzmann model in the form (42), the viscosity is given by

ν =
3

4α
− δt

6
.

In the simulations, the parameters are taken as follows

α =
3

4(ν + δt
6 )

, β = 0.25α, γ = 4α− 4β = 3α, λ = 0, (43)

i.e., we have six different collisions.
To validate the second-order convergence of the presented scheme, we estimate the

simulation error defined as

error =
√

∑z(um(z)− ubench(z))2√
∑z ubench(z)2

, (44)

where z denotes the spatial variable, um, ubench are the modeled variable (velocity) and
the benchmark solution, respectively. The convergence rate is evaluated by fitting the
values of log(error) for the various log(h) = log( 1

N ) (N is the number of the lattice nodes,
h is proportional to the lattice spacing) using the linear regression, the second-order
convergence is achieved if the regression slope coefficient is close to 2.

Compared to LB D2Q9 model, the scheme (29)–(37) differs only in the collision term
and the expression for the viscosity. This means that the computation time for (29)–(37)
implemented in the form (42) is approximately the same as for LB D2Q9 model.

6.1. Shear Wave Decay

We consider the dynamics in terms of the time of the sinusoidal velocity wave in a
square domain. The initial flow velocity in x direction is dependent on y coordinate and is
given by

ux(x, y, t = 0) = U0 sin(ky), k =
2π

L
,

where L is the length of the domain equals N lattice nodes and U0 = 0.01. The periodic
boundary conditions are applied for the present problem. This problem has the following
analytical solution

ux(x, y, t) = U0 sin(ky)e−νk2t.
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In the present case, we consider ν = 0.001 and N = 101, the time step δt = 1. We com-
pare the analytical solutions with the velocity profiles obtained by the application of the
model (29)–(37) (implemented in the form (42)). The peak velocity time history and the
velocity profiles for the different moments of time are plotted, Figure 2. One can see that
the simulation results are very similar to the analytical profiles.

It is worth mentioning that it is possible to shorten the model and take γ = λ = 0,
in this case α = β, and we have only five different collisions. The numerical experiments
show that this model becomes unstable for ν < 0.1, while the setting (43) allows to model
the flow with small viscosity and no instabilities are observed.
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Figure 2. Shear wave decay. The logarithm of the peak velocity time histories obtained numerically and analytically are
presented (first slide); velocity profiles at different moments of time (t = 105, t = 2× 105, t = 3× 105) obtained numerically
and analytically are presented (second slide), the spatial variable y is normalized on the domain length L.

6.2. Taylor-Green Vortex

Similarly to the previous problem, we consider a square domain, and the initial
velocity field is given by the formula

ux(x, y, t = 0) = −U0 cos(kx) sin(ky), uy(x, y, t = 0) = U0 sin(kx) cos(ky),

where the size of the domain is L× L (or N × N in lattice units, where N is the number
of the lattice nodes) and k = 2π

L . The periodic boundary conditions are applied. For the
present problem we set U0 = 0.01, ν = 0.001, N = 51, the time step δt = 1. The analytical
solution to the problem is as follows

ux(x, y, t) = −U0 cos(kx) sin(ky)e−2νk2t, uy(x, y, t) = U0 sin(kx) cos(ky)e−2νk2t,

one can see that the initial structure of the velocity field persists in time, and only uni-
form decay of the velocity amplitudes is observed. The numerical simulations for the
model (29)–(37) (implemented in the form (42)) show that the form of the velocity field
does not change. We also present the behavior of the velocity ux(x, y = L/2, t) over time,
obtained analytically and numerically for three different moments of time; obviously, both
approaches give very similar profiles (Figure 3).

Finally, we consider the convergence rates of the numerical simulation results to
the benchmark solutions. This can be performed by considering the logarithms of the
simulation errors (44) for the different values of log(h) = log(1/N). In the present case,
we take N = 25, 49, 73, 101. In Figure 4, the logarithms of the errors of the velocities are
presented for DV and the conventional LB D2Q9 models; the results are very similar for
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both models. One can see that the estimated slope values are close to 2; this indicates that
the proposed scheme is accurate in the second-order.
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Figure 3. Taylor–Green vortex. The velocity streamlines are presented in the (first slide). The velocity profiles ux(x, y =

L/2, t) for three different moments of time t = 2× 104, t = 4× 104, t = 6× 104 obtained analytically and numerically are
presented (second slide), and the spatial variables x, y are normalized on the domain length L.
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Figure 4. Convergence rates for the shear wave decay and Taylor–Green vortex problems are shown. The results are
obtained by applying DV and the conventional LB D2Q9 models. In the (first slide) (shear wave decay), the logarithms of
the errors (44) for the velocity ux(y, t) computed at the moment of time t = 1/(νk2) are presented; in the (second slide)
(Taylor–Green vortex), the logarithms of the errors of the velocity ux(x, y = L/2, t) computed at the moment of time
t = 1/(2νk2) are presented, where the variable h is proportional to the lattice spacing. The slope estimates are obtained by
fitting the values of log(error) using the linear regression.

7. Results and Discussion

In this paper, we have considered the DV Boltzmann model applicable to the modeling
of viscous quasi-incompressible flows at a small Mach number limit. The presented model
has the same discrete velocity structure and absolute equilibrium as LB D2Q9, but the
collision rules for the particles are postulated exactly. There are four types of collision
and ten possible different collisions; the unique transition probability corresponds to all
possible reactions in the group. Moreover, these collisions conserve only mass, momentum
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and energy (spurious invariants do not exist). In terms of LB theory, this model can be
considered as a scheme with multiple relaxation times. Note that the H-theorem is valid
for the model by construction (at least for the continuous space–time variables).

We have demonstrated that DV Boltzmann equations can be a viable tool in modeling
of hydrodynamic flows. The shear wave decay and Taylor–Green vortex have been consid-
ered as benchmark problems. The comparison of the simulation results with the analytical
solutions has shown good accuracy.

One of the most intriguing problems is the evaluation of the stability properties of the
presented DV Boltzmann system and the optimal choice of transition probabilities. One
can expect that the DV Boltzmann model for D2Q9 lattice has a better stability than the
conventional LB D2Q9 model, since the H-theorem is satisfied. In order to elucidate this
issue, one can consider additional problems like Sod shock tube, double shear layer and
lid-driven cavity. These problems are left for future study.
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Abstract: A soft joint has been designed and modeled to perform as a robotic joint with 2 Degrees
of Freedom (DOF) (inclination and orientation). The joint actuation is based on a Cable-Driven
Parallel Mechanism (CDPM). To study its performance in more detail, a test platform has been
developed using components that can be manufactured in a 3D printer using a flexible polymer.
The mathematical model of the kinematics of the soft joint is developed, which includes a blocking
mechanism and the morphology workspace. The model is validated using Finite Element Analysis
(FEA) (CAD software). Experimental tests are performed to validate the inverse kinematic model
and to show the potential use of the prototype in robotic platforms such as manipulators and
humanoid robots.

Keywords: soft robotics; continuum mechanisms; modeling of complex systems; kinematic model of
soft robots

1. Introduction

Soft robotics is a growing research area that has shown advantages over conventional
robotics. In this area highly adaptive robots have been developed for soft interactions,
providing greater security such as safe human-machine interaction. Compliance and
adaptability of the soft structures are used for better efficiency and ability to interact with
the environment [1]. Soft robotics is a new solution that covers the unmet need to perform
tasks in unstructured and poorly defined environments, where conventional rigid robotics
mainly seeks to be fast and accurate.

The advantages of soft robots allow for a wide variety of applications. However,
this requires a paradigm shift in the methods of modeling, operation, control, materials
and new designs to develop soft robots. The deformation property of soft robots is a
restrictive element when using many of the most common conventional rigid sensors or
other conventional control techniques [2].

Soft robotics is a subdomain of what is known as continuum robotics, it is defined
by [3] as those robots with an elastic, continuously flexing structure and an infinite degree
of freedom (DOF); and which are related to (but distinct from) hyperredundant robots,
consisting of a finite number of many short, rigid links [4,5]. These models are usually
more complex than traditional robot models, which have a small number of rigid links.

The incorporation of soft robotics into robotic systems comes mainly with two types of
approaches [6]. One approach involves the use of compliant joints between different rigid
links of the robot, while in another approach continuous soft robots are used, such as those
mentioned above. This article explores this last type of design. Continuum soft robotic
arms show features of soft robotics such as adaptability, high dexterity, and conformability
to the external environment. However, they often cannot achieve the high rigidity and
robustness required to handle objects or higher loads. Therefore, it is necessary to find
a solution capable of providing the robustness of rigid arms and the versatility of soft
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arms [7], which is one of the points addressed in this paper. From now own the term
robustness will refer to the ability to cope with the action of external disturbances or loads
that cause unwanted deformations in soft bodies, while providing sufficient stiffness.

Robots made of soft materials can generate complex behavior with simpler actuation
by partially outsourcing control to their morphological properties and materials. That
improves the active coupling of control, body and environment. Soft robots can be actuated
in different ways, but the most common actuators are variable length tendons in the form
of tension cables or shape memory alloys (SMA) [8,9], fluidic actuators such as pneumatic
or hydraulic ones, and electro-active polymers (EAP) [2]. Other kinds of actuations focus
on the morphological structure of the soft robot itself, as in [10], where the topological
architecture of low-density soft robots is presented; Ref. [11], where a three-dimensional-
printed soft origami rotary actuator is studied; or [12], which presents a soft origami
tendon-driven actuator. For continuum robotic arms, pneumatic actuators are most used
as they can continuously change their shape with a few DOF actuated [13]. However, arms
with pneumatic actuators are usually less precise and difficult to control; less portable,
since they rely on an external energy source such as a pneumatic compressor; and more
expensive to maintain.

Many works have been carried out on the design and control of soft robots in recent
years [14,15], but the state of the art shows that there are few approaches to soft robotic
arms, either for integration into a manipulator robot or for use as a stand-alone manipulator.
Some designs are based on soft silicone tentacles, as in [16] or [17]. Generally, this type of
joint performs an instinctive gripping function that is actuated pneumatically or by cables,
and its morphology does not allow its use in handling tasks that require greater precision
and robustness. Nevertheless, other works such as [18–20] present soft robotic joint designs
that combine a light weight and a high load-weight ratio. Others such as [21,22] present
joints with an inflatable structure that can move through highly restricted environments by
changing their three-dimensional structure.

Within the framework of soft servo-mechanical actuation, there are several examples,
such as a cable-driven soft robot for cardiothoracic endoscopic surgery [23] or a practical
3D-printed soft robotic prosthetic hand [24]. In addition, servomechanically actuated soft
limbs, which are closer to the proposal presented in this document, have been developed.
An example is the neck developed by the DLR [25] and the soft robotic manipulator
applying an adaptive algorithm [26] which includes a continuous silicone-based and
tendon actuated mechanism. The RoboticsLab at the University Carlos III of Madrid has
also developed a soft robotic neck [27,28] within the Humasoft project, with orientation
and inclination capacity in the three-dimensional space and a large load capacity (with only
14 gr of weight, it can support up to 1 kg loads). Work has also been carried out on model
identification of this robotic neck using different methods such as neural networks [29].

However, the use of those soft neck link designs cannot be generalized for soft robotic
joints, as they do not meet the necessary robustness criteria. When working with dif-
ferent joint positions and orientations in 3D space, gravity comes into play depending
on the orientation, and handling large loads can cause the joint to bend or break. Simi-
larly, high stresses exerted on the tendons may seriously compromise the integrity of the
actuation system.

These problems have motivated the approach presented in this paper, which is inspired
by the soft robotic neck previously design by the authors [27,28]. Differently from that
design, this new solution consists of a novel three-dimensional soft joint morphology
based on asymmetric links. The joint is composed of a soft material that is flexible but
robust. This material allows deformation to achieve bending movements, but prevents
too complex deformations and undesired gravity effects. When the designed soft joint
is bending, from a certain inclination angle and at certain orientation angles given by
model measurements, a natural protection is provided by its own morphology, which
limits maximum bending. Therefore, sufficient robustness is achieved to support different
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loads throughout its positioning range in 3D space, while maintaining the advantages of
its soft nature.

Furthermore, the proposed joint is scalable and adaptable to operational requirements
in a modular and simple way. Therefore, joint properties, such as maximum bending
angle or blocking bending, can be configured by modifying the morphological design and
number of the links in the joint, or the distance between them, as well as increasing the
number of DOF by concatenating joints.

Finally, this proposal is a low-cost construction, primarily designed by 3D printing
and actuated by three motors that vary the length of tendons. Tendons are integrated
within the morphology itself, which favors constant curvature and simplification of the
model. Electromechanical action is proposed for the articulation, as opposed to other
energy sources such as pneumatics or hydraulics. This feature allows the portability of the
prototype and a greater integrability in any system (a robot, a humanoid, etc.), as well as
more precise control and easier maintenance.

The rest of the paper is organized as follows: Section 2 introduces the soft joint
design and prototype. It also shows its geometric design and includes the analysis of its
characteristics and configurations. The section also shows the performance and assembly of
the prototype and examines the properties of the material chosen for the joint morphology.
Section 3 introduces the description of the mathematical model developed for the soft
link, considering its workspace and the tendon length ratio that enables performance. The
experimental tests carried out with the platform are described in Section 4, where the
behavior of the soft joint is analyzed against different inputs and movements using two
different tests. The discussion of the experimental results is presented in Section 5, and
Section 6 concludes by highlighting the main achievements. This work is under a licensing
process and the patent details are given in Section 7.

2. Design and Prototype of the Soft Joint

This section presents in detail the design and prototype of the soft joint.

2.1. Geometry

The soft joint has an asymmetrical morphology that allows its end tip to be positioned
in the three-dimensional environment, robustly supporting high loads during its perfor-
mance. Its design provides greater flexibility and a wider range of movement than a rigid
joint. It consists of a series of links with asymmetrical prism morphology and circular
section pitch. A triangular morphology is represented in Figure 1.

The small section and soft nature of the central axis of action, allow a greater bending
capacity in all directions. The asymmetrical prismatic section provides the property of
blocking and a natural protection, as well as the routing of the tendons for their action.

(a) (b)

Figure 1. Cont.
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(c)

Figure 1. Triangular asymmetric geometry of the soft joint with two links in different views. (a) Top
view showing the 120◦ angle relationship between the different tendon routing points. (b) Front
view. (c) Perspective view, showing d1 and d2 distances defining asymmetry and holes for routing
tendons.

The design performance is achieved by tendons that are routed through the asymmet-
ric prismatic sections, as shown in Figure 2. It is possible to change the morphology of
the prism and route the tendons through different points of these sections. This change
would cause the variation of the forces and moments the joint is subjected to, therefore
obtaining different kinematics and dynamics. By acting on the tendons, the joint can flex
and orientate with two DOF.

Figure 2. Conceptual design of the joint with its components: base, continuous soft axis, tendons for
performance and tip (mobile base) of the soft joint.

One of the novel characteristics of this design is the natural morphological protection
of the joint against large loads provided by the proposed asymmetrical morphology. An
example of the triangular morphology are the two different configurations of extreme load:

• Configuration 1: Flexion towards one of the vertices of the triangle.
• Configuration 2: Flexion towards one of the edges of the triangle.

In configuration 1, protection when turning in the direction of one of the vertices is
the most restrictive, as shown in Figure 3a. In the case of excessive bending, caused by
high loads at the end of the joint or by control failures, the vertices contact each other. This
produces a blocking curve of the structure that protects the joint from possible breakage
due to wear or due to exceeding its elastic limit. This protection allows the joint to act with
robustness and safety, especially in the regions of maximum flexion. In this configuration,
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the action is achieved by a single tendon, which is routed through the vertices that form
the bending curve.

Configuration 2 allows larger flexion of the joint, compared to Configuration 1, while
also maintaining the natural protection of the joint. When the flexion is towards one of the
edges of the triangle, the blocking curve has a smaller radius, as shown in Figure 3b. This is
because the edges are closer to the central axis of rotation, as can be seen from the distance
ratio d1 < d2 in Figure 1c. A larger bending occurs due to the fact that a larger bending
angle is necessary before these edges contact each other and lock the joint structure. In this
configuration, performance is achieved by the action of the two tendons that form the edge
of the triangle where bending occurs.

(a) (b)

Figure 3. Different bending configurations. Relationship between bending angles: α < β. (a) Flexion
in configuration 1 has the lowest maximum bending angle. (b) Flexion in configuration 2 has the
higher maximum bending angle.

2.2. Actuation

As mentioned above, there are several ways to operate soft robots. This paper focuses
on operation by tendons of variable length using a winch coupled to a motor shaft. Tendon
lengths must be translated into motor angular positions. Lo = 0.2 m is the length of the
tendons when the joint is at rest position, and Li is the target tendon length. The linear
displacement is transformed into an angular displacement by the length of the arc formed
by the circumference of the winch for a certain angle (Figure 4), following the equation
below:

Ω =
(Lo − Li)

R
(1)

R is the radius of the winch where the tendon is wound or unwound, in this case
9.3 mm, and Ω is the angle that provides that displacement.

(a)

Figure 4. Cont.
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(b)

Figure 4. Diagram depicting winch winding based on radius and angle. Lo − Li is the distance for
tendon winding, and Ω and R are the angle and the radius, respectively. (a) Tendon and soft joint
prior winch actuation. (b) Tendon and soft joint when the winch is operating, with the radius R, and
the angle Ω.

2.3. Prototype

To choose the soft joint operation, a test platform was designed. The goal is that the
rest position of the joint is horizontal. Three motors will be used to operate the joint by
tendons, each of which will wind the three tendons (Figure 5).

Figure 5. The elements of the platform are the soft joint (1), a metal base (2), motors (3), electronic
elements to feed and control the motors (4) and other connective elements such as motor supports
(5), joint bases (6) and tendons (7).

The fixing base is made up of two 3 mm thick metal plates, to be strong enough to
support the test loads. The motors used for the drive are Maxon EC-max 22. The motors
are controlled by Technosoft’s Intelligent Drives iPOS 4808 MX, which communicate with
the PC via busCAN.

Connecting elements have been printed on a 3D printer Creatbot600 pro and Zmorph
from PLA (Polylactic acid) material. They are two bases for fastening the soft joint with
the metal base, a platform for fastening the electronic elements, three motor fasteners with
the metal platform and three winches that are attached to the motor shaft and the tendons,
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made of polyester thread, for the activation of the joint. The designed soft joint has been
built by 3D printing from NinjaFlex using a Creatbot600 pro printer (Figure 6).

(a) (b)

Figure 6. (a) Motor connected to the winch to wind the tendons for joint actuation. (b) Soft joint on the test platform.

2.4. Material Properties and Tests

One of the most important features when prototyping a soft robotic joint is the choice
of material. This design uses NinjaFlex® 3D Printing Filament, a flexible polyurethane
material for Fused Deposition Modeling (FDM) printers. This 3D printing manufacturing
method and this material were chosen for their ease to use and for allowing variations in
percentage or filling patterns of the soft joint body.

The mechanical properties of this material make it a good choice for the purpose of
the prototype (Table 1). Its flexibility allows the joint to bend but, at the same time, it is
rigid enough to prevent big deformations and resist loads.

Table 1. Mechanical properties of NinjaFlex®.

Mechanical Properties Value

Young’s modulus 12 MPa
Hardness 85 Shore A

Poisson Ratio 0.48
Density 1040 Kg/m3

The soft joint design was analyzed in SolidWorks software, which applies a non-linear
finite element study on the material. The prototype was modeled as a simple cantilever
beam (one of its ends is fixed and a force is applied to its free end). This allows an efficient
testing of the design under stresses and strains.

To simplify the simulation, the joint was assumed to be a completely filled solid except
for the inner channel, and to simulate the assembly of the real prototype, the soft joint
model was assembled including its two support pieces, one at each end.

After the design phase, the prototype was 3D printed using NinjaFlex material with
30% infill. The experiments were performed with this specific prototype.

The model in SolidWorks was tested under different conditions. First, a no-load test
was performed on the soft joint, by only simulating gravity and fixing one of the ends, as
shown in Figure 7, with the red arrow representing the orientation of the gravity action in
the simulation.
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Figure 7. No-load simulation of soft joint.

One intended use of this soft joint is as a manipulator able to support different loads.
Therefore, a second simulation was carried out with a rectangular prism with a fixed mass
of 500 gr, homogeneously distributed. This prism represents the weight of the robot gripper
in the simulation, Figure 8. In addition, a 10 Newtons downward force is applied to the
end effector, simulating an external weight of 1 kg and causing a higher end torque. The
simulation shows a deflection of 7.38◦ and a maximum deformation of 0.75 MPa.

Figure 8. Simulation of soft joint with a 500 g prism and a 10 N downward force at the free end.

Additionally, another stress study was carried out to check if the yield strength of
Ninjaflex is not exceeded. It was noted that when applying 60 N force at the end of the
soft joint, as shown in Figure 9, a bending angle of 60◦ was reached and the maximum
deformation was 2.9 MPa. Therefore, a no permanent deformation is confirmed when the
soft link reaches an inclination angle of 60◦.
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Figure 9. Simulation of soft joint with a 60 N upward force applied on the free end.

3. Mathematical Model of the Soft Link

The position of the soft joint is defined as the combination of orientation and inclina-
tion, where inclination is the curvature angle of the joint, and orientation is the angle of
the plane perpendicular to the base that contains that curvature. It achieves two DOF of
flexion from the three tendons, thus the position depends on the distance of the tendons
and their combination. Therefore, a mathematical model of the joint has been created to
obtain the theoretical distances of the tendons required for a specific position of the end
of the joint. This angle is assumed to be zero when it coincides with the Y axis, and the
actuators are named counterclockwise as this angle increases, Figure 10a.

3.1. Calculation of Tendon Lengths

The robot inputs are one inclination value, θ, and one orientation value, ψ, and the
outputs will be tendons lengths:

Li = [L1 L2 L3]
′ (2)

Inverse kinematics was used to calculate tendon lengths for the target end position. It
is important to point out that unlike works such as [27] or [25], this design does not have
the tendons in the open air, but the performance of the tendons is embedded within the
morphology of the soft joint itself. This makes the length of the tendons not straight, but
rather the tendons project the curvature of the soft joint, thus having a curvature similar to
that of the joint. Therefore, Li, the lengths of the tendons form an arc between both ends of
the joint, Figure 10b.

Thus, tendons and joint are considered robots shaped by continuously bending ac-
tuators, such as those described by [30,31], where a pneumatic actuation is usually used,
considering joint curvature and tendon curvature as a continuous curvature. The equations
shown in [3] are adapted to this specific morphology case.

An angular-curved approach is used, with the inclination and orientation parameters.
The lengths of the tendons Li depend on both inclination and orientation angles. The length
of the joint, L, remains constant in its central fiber at all times, regardless of the curvature;
and the distance, a, of the tendons from the center of the joint section, remains constant,
too (Figure 10b). For this morphology, a measures 0.035 m, L measures 0.2 m. The actuator
for tendon 1 is placed at ν1 = π

2 radians, tendon 2 is placed at ν2 = 7·π
6 radians and tendon

3 is placed at ν3 = 10·π
6 radians.
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(a) (b)

Figure 10. (a) Base projection of the soft joint, ψ = 45◦, for the representation of orientation, distances
and numbering of tendons. (b) Three-dimensional representation of the joint with θ = 45◦ orientation
and ψ = 90◦ inclination. Note the different curvatures for the soft joint and for each tendon Li.

As previously discussed, it can be determined that L, the central fiber length of the
soft joint, is constant independently of the inclination angle. Tendon lengths are calculated
through the arc equations, due to the assumption of constant curvature. The radius r of the
curvature L is determined as L = r · θ, where θ has a value in radians. As the central fiber
and tendons move, they move in the direction given by the angle of orientation, and by
projecting the arcs and radii, the representation in Figure 11 is obtained. Therefore, Li can be
determined as Li = ri · θ, where ri = r− a · cos(νi − ψ), resulting in the following equations:

L1 = L− θ · a · cos(ν1 − ψ) (3)

L2 = L− θ · a · cos(ν2 − ψ) (4)

L3 = L− θ · a · cos(ν3 − ψ) (5)

Hence, φi is the angle between orientation, which is the plane containing the curva-
ture, and the plane of tendon location, i. This angle φi depends on the configuration of
the orientation and the number of actuators. The relationship of each tendon with the
orientation is as follows:

φ1 = ν1 − ψ (6)

φ2 = ν2 − ψ (7)

φ3 = ν3 − ψ (8)

A generic equation is obtained for lengths:

Li = L− θ · a · cos(φi) (9)
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Figure 11. Representation in the perpendicular view of the orientation plane formed by the orienta-
tion angle ψ and an inclination angle θ. It can be seen that the projection of the radii of the constant
curvature of the soft joint. The central fiber curvature L and its corresponding radius r are represented
in blue. The arcs of tendons Li are represented by dashed black lines, and their corresponding radii ri

by continuous black lines. The difference between r and ri is represented by a red line whose distance
for each tendon is given by equation a · cos(νi − ψ).

3.2. Calculation of the Blocking Angle

The proposed morphology is designed with a blocking mechanism that protects or
strengthens it at certain angles of inclination and orientation, and that must be parameter-
ized in the kinematics. The angle of inclination at which the blocking occurs depends on
the space between the triangular sections, where Hs is the height of the point of contact
with the bending center of the link, and Ds is the distance from the point of contact with
the bending center of the link, as shown in Figure 12. However, this distance Ds is not a
constant parameter as it would be if the sections were circular. The blocking angle depends,
in this asymmetric triangular design, on the distance Ds, which varies according to the
orientation being a maximum value when the point of contact is the vertices of the triangle
and a minimum value when the point of contact is the center of the edges of the triangle.

(a) (b)

Figure 12. (a) Diagram showing the link bending with the joint at rest. (b) Bending of the beta link at the point where the
morphology makes the blocking contact.

From the values Hs and Ds the angle α is obtained as:
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α = arctan (
Hs

Ds
) (10)

This angle is formed as the bisector of the blocking angle. The blocking angle of a link,
β, is given as the double of alpha and it is obtained from the following equation:

β = 2 · α = 2 · arctan (
Hs

Ds
) (11)

Hs has a fixed value (in our case, 8 mm) while Ds varies according to the orientation.
To calculate Ds, we estimated the maximum, εmax, and minimum, εmin, possible distances
with this morphology (40 mm and 25 mm, respectively), and the angles between them,
ψdi f = 60◦. Knowing the orientation angles where the maximum and minimum occur, it
can be parameterized according to a factor such that:

εmax − εmin
ψdi f

= 0.25 (12)

Based on this factor, we know how the distance between the minimum and the
maximum varies for each degree for Ds.

Once the theoretical blocking angle, β, is estimated for each link according to the
orientation, we can calculate the final joint angle, Γ, when blocking occurs.

The final angle depends on the number of links within the joint, N, such that:

Γ = β · N (13)

3.3. Representation of the Workspace

Joint kinematics will block angles greater than the total blocking joint angle, creating
an asymmetric workspace. X, Y and Z axes represent the soft joint final position in meters.
The soft joint fixed base is at position [0, 0, 0]. Maximum Z value is 0.2 m when the joint is
at rest. As the soft joint flexes, Z value decreases. X and Y values are the projection of the
joint end position on the base plane. They are zero at resting position, and change with
flexion. Therefore, the designed soft joint does not perform the same bending angle, both
being performed in the same plane.

If this is done for different planes, we obtain a 3D mesh of ′∗′ marks. The surface of a
non-complete sphere is obtained, as seen in Figures 13 and 14. This allows knowledge of
where the end will be and how the soft joint will move with respect to the fixed base.

(a)

Figure 13. Cont.
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(b)

Figure 13. Diagram of soft joint end positions, represented by ‘∗’ marks, at different orientation
planes, every 15 degrees, and for every 5 inclination degrees. The dashed line indicates the flexion
limits of the soft joint for each orientation. The soft joint cannot reach further positions due to
blockages. (a) Front view. (b) Side view.

Figure 14. Perspective view of the soft link end positions represented by ‘∗’ marks, at different
orientation planes, every 15 degrees, and for every 5 inclination degrees. The dashed line indicates
the flexion limits of the soft joint for each orientation. The soft joint cannot reach further positions
due to blockages.

3.4. Representation of Variations in Tendon Lengths

Once tendon distances are adjusted to the joint kinematics, with the blocking angle
restrictions, distance changes for each tendon can be represented as inclination and ori-
entation input angles vary. Figure 15 shows tendon lengths according to inclination and
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orientation variations, the restrictions imposed by the design morphology, 0 to 359° orien-
tation degrees and 0 to 170° inclination degrees, and the final length in meters.

(a) (b)

(c)

Figure 15. Representation of each tendon length variation for all possible values of inclination and orientation of the soft
joint. The initial length of each tendon is 0.2 m (rest position). A color range from yellow to dark blue is used to show the
variation from the highest tendon length value (yellow) to the lowest value (dark blue). (a) Length L1 corresponding to
tendon 1, (b) Length L2 corresponding to tendon 2, (c) Length L3 corresponding to tendon 3.

These graphs show how each tendon Li varies according to inclination and orienta-
tion. The higher the inclination, the higher the variation of tendon length with changes
of orientation. For a fixed inclination, when the orientation changes, as in a rotational
movement, the tendon length increases and decreases in a sinusoidal shape, with the
orientation corresponding to a maximum, a minimum or the initial length value. Due to
the soft joint blockages, from certain degrees of inclination, the variation of tendon lengths
is not sinusoidal, and, for certain orientation angle ranges, the length remains fixed.

3.5. Direct Kinematics

A direct kinematics is also provided through the works collected in [3]. This kinematics
allows us to know the inclination and orientation for the input values L1, L2 and L3. These
equations assume that the curvature is constant throughout the flexible body.

ψ = arctan (

√
3(l2 + l3 − 2l1)

3(l2 − l3)
) (14)

θ =
2
√

l2
1 + l2

2 + l2
3 − l2l1 − l2l3 − l1l3

a(l1 + l2 + l3)
(15)
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3.6. Simulation of the Model

Using the above equations, the mathematical model can be represented by simulation.
From the inputs, inclination and orientation, the inverse kinematics is made, and the
linear displacement of the tendons is calculated. Those values are turned into and angular
displacement for each motor. The motor encoders can be used as sensors to measure the
real angular motor position and close the control loop.

The motor models are represented as a function using the values from the motor
datasheet. Following a general control diagram, where K is the motor speed constant in
rpm/V, and τ is the mechanical time constant in seconds, we obtain the transfer function
G(s) [32], such that:

G(s) =
K

s(1 + τs)
=

352
s(1 + 0.00875s)

(16)

For the simulation, a control loop is created in Simulink Matlab, in which the input
values are entered interactively, Figure 16. The tendon lengths for these inputs are obtained
through a Matlab function that has been designed from Equation (9), called “Inverse
Kinematics”, Algorithm 1.

Algorithm 1 Inverse kinematics.

1: input: θ, ψ
2: internal constant: N, L, a
3: procedure
4: β ← block-angle-equation(ψ)
5: if β < θ/N then
6: θ = β · N
7: φi ← phi-equation(ψ)
8: Li ← length-equation(L, a, φi)
9: return Li

The three values of Li returned by the inverse kinematics block are used to obtain the
target Ω (target angular position of the motors), using the “Li to Omega” function block
described by Equation (1), Algorithm 2.

Algorithm 2 Li to Omega.

1: input: Li
2: internal constant: L, r
3: procedure
4: Ω ← Omega-equation(Li, L, r)
5: return Ω

From these target Ω values, the motor control loops return the current Ω values.
The direct kinematics is performed using the “Direct Kinematics and 3D representation”
function block defined by Equations (14) and (15), Algorithm 3. The current inclination
and orientation of the free end through the simulation are obtained. This function block
also provides the position of the simulated soft joint represented in a 3D space, Figure 17.
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Figure 16. Simulink schematic for the soft joint model simulation.
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(a) Incl: 0◦ Orient: 0◦ (b) Incl: 30◦ Orient: 270◦ (c) Incl: 120◦ Orient: 270◦

Figure 17. Three-dimensional representation of the simulation of the soft joint for different input values.

Algorithm 3 Direct Kinematics and 3D representation.

1: input: φi
2: internal constant: L, r, a
3: procedure
4: Li ← Omega-equation-inverse(φi, L, r)
5: θSimu ← Direct-Kinematics-θ(Li, a)
6: ψSimu ← Direct-Kinematics-ψ(Li)
7: Draw-simulation(θSimu, ψSimu)
8: return θSimu, ψSimu

4. Experimental Tests

The soft joint assessment is performed through two types of experimental tests. These
tests allow us to evaluate motion performance and kinematics model accuracy, based on
the error between the target end position and the real end position of the soft joint. A
video showing these tests performance can be viewed at https://vimeo.com/537605947
(accessed on 10 May 2021).

Data were collected from the tests in two ways. Position data from motor encoders
provided information on inclination and orientation through the direct kinematics. Data
from the inertial sensor 3DM-GX5-10 IMU, the yaw, roll and pitch data, were transformed
into inclination and orientation data for comparison with references.

4.1. Test 1

Test 1 consists of a bending movement towards a fixed inclination angle, in each of the
four orientations: 0◦, 90◦, 180◦ and 270◦. This test shows how the joint starts in a resting
position, performs the action and then returns to the resting position before it bends at
the next orientation. The resting position is 0 degrees of inclination and orientation. Tests
were performed for 30◦, 45◦ and 60◦ inclination and results are shown in Figure 18 for the
encoder data and Figure 19 for the sensor data.
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Test 1—Encoder data

(a) Inclination versus time through encoder
measurements for 30◦ inclination.

(b) Orientation versus time through encoder
measurements for 30◦ inclination.

(c) Inclination versus time through encoder
measurements for 45◦ inclination.

(d) Orientation versus time through encoder
measurements for 45◦ inclination.

(e) Inclination versus time through encoder
measurements for 60◦ inclination.

(f) Orientation versus time through encoder
measurements for 60◦ inclination.

Figure 18. Test 1—Encoder data. Fixed 30◦, 45◦ and 60◦ inclination for four orientations: 0◦, 90◦,
180◦ and 270◦. The blue line is the experimental data obtained from the encoder and the orange
dotted line is the reference.
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Test 1—Sensor data

(a) Inclination versus time through inertial
sensor measurements for 30◦ inclination.

(b) Orientation versus time through inertial
sensor measurements for 30◦ inclination.

(c) Inclination versus time through inertial sensor
measurements for 45◦ inclination.

(d) Orientation versus time through inertial
sensor measurements for 45◦ inclination.

(e) Inclination versus time through inertial
sensor measurements for 60◦ inclination.

(f) Orientation versus time through inertial
sensor measurements for 60◦ inclination.

Figure 19. Test 1—Sensor data. Fixed 30◦, 45◦ and 60◦ inclination for four orientations: 0◦, 90◦, 180◦

and 270◦. The blue line is the experimental data obtained from the encoder and the orange dotted
line is the reference.

4.2. Test 2

Test 2 consists of a 360◦ rotation for a given inclination. This rotation starts in a resting
position and is performed by increasing the orientation value by one degree every 0.1 s,
starting from 0◦. When the rotation is complete, it returns to the resting position. The test
was performed for 30◦, 45◦ and 60◦ inclination and results are shown in Figure 20 for the
encoder data and Figure 21 for the sensor data.
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Test 2—Encoder data

(a) Inclination versus time through en-
coder measurements for 30◦ inclination.

(b) Orientation versus time through encoder
measurements for 30◦ inclination.

(c) Inclination versus time through en-
coder measurements for 45◦ inclination.

(d) Orientation versus time through encoder
measurements for 45◦ inclination.

(e) Inclination versus time through en-
coder measurements for 60◦ inclination.

(f) Orientation versus time through encoder
measurements for 60◦ inclination.

Figure 20. Test 2—Encoder data. Fixed 30◦, 45◦ and 60◦ inclination for a 360◦ rotation. The blue line
is the experimental data obtained from the encoder and the orange dotted line is the reference.
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Test 2—Sensor data

(a) Inclination versus time through inertial
sensor measurements for 30◦ inclination.

(b) Orientation versus time through inertial
sensor measurements for 30◦ inclination.

(c) Inclination versus time through inertial sensor
measurements for 45◦ inclination.

(d) Orientation versus time through inertial
sensor measurements for 45◦ inclination.

(e) Inclination versus time through inertial
sensor measurements for 60◦ inclination.

(f) Orientation versus time through inertial
sensor measurements for 60◦ inclination.

Figure 21. Test 2—Sensor data. Fixed 30◦, 45◦ and 60◦ inclination for a 360◦ rotation. The blue line is
the experimental data obtained from the encoder and the orange dotted line is the reference.

5. Discussion

Simulation and experimental results have been performed to analyze and validate
both the design and the proposed model for the cable-driven soft joint.

The simulation results allow the validation of the soft joint through a finite element
study. The soft joint was simulated by applying a load of 60 N, which would be the
maximum force expected for this prototype. It has made possible to validate the joint
structure, ensuring that when maximum loads are applied, the structure does not exceed
the elastic limit and does not lose its elasticity.

The experimental tests performed show the behavior of the soft joint system in differ-
ent situations. Test 1 explores the behavior to reach a target position from a resting position
and how the soft link behaves to return to the home position. It is a movement where the
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inclination changes with a fixed orientation that does not vary. Test 2 explores the ability to
maintain a fixed inclination while gradually varying the orientation.

5.1. Results Using the Encoder Sensor

The inclination results, obtained from the encoder during Test 1, show that the exper-
imental inclination reaches the reference inclination, and this is repeated for each of the
four requested orientations. We also observed that the higher the requested reference, the
longer it takes to reach it.

For the orientation results, the orientation reference is a set of four steps of different
sizes. The first is a step of zero amplitude and the experimental orientation is quickly
reached. This is because, from the zero-degree inclination position (fully extended joint),
reaching any orientation is almost immediate. When the joint is requested to return to the
resting position, the experimental orientation remains constant. Meanwhile, the inclination
decreases and when it reaches zero, the orientation reaches zero, too. This is why, in this
test, the orientation values change so quickly back to zero degrees and the time between
the reference orientation and the experimental orientation reaching zero is longer.

5.2. Results Using the Inertial Sensor

The data obtained from the inertial sensor show more accurately the real behavior of
the end of the soft joint.

The inclination results in Test 1 show that the position of the joint does not reach
the reference inclination. The 90◦ orientation test (downwards, in the sense of gravity)
is the one that presents lower errors when tracking the reference. The tests for 0◦ and
180◦ orientation angles show higher tracking errors, as shown in the attached video. The
kinematics designed for these positions assumes that the length of tendon 1 (lower motor)
should not change. These theoretical results, when taken to the experimental field, are not
fulfilled because the tendons are not perfectly tensioned, and the two upper wires cause
the position rise. This rise is reflected in the orientation that has a negative phase shift
when the reference is 0◦ and a positive phase shift when the reference is 180◦.

We also observed that the orientation results do not reach the zero position when
the reference is zero. This is because it is difficult to move the orientation to zero due
to the fact that the inclination is not exactly zero when returning to the resting position,
as the inclination graphs show. This causes a slight inclination while maintaining the
same orientation. As discussed above for the encoder data, orientation is very sensitive
to inclination.

For the sensor results in Test 2, the inclination graphs show how the experimental
inclination does not reach the reference value. However, it should be noted that it has
a sinusoidal behavior over time. As in the previous test, the reason for both is that
the theoretical behavior of the joint is not the same as the real behavior, because the
model assumes aspects such as a continuous curvature, and because there are also other
influencing mechanical aspects, such as the precision in the tendon length or the tendon
winding in the winches.

This undulatory behavior is observed again in the orientation graphs. However, it can
be seen that for angles 90◦, 210◦ and 330◦ the orientation does not vary, which coincides
with the vertices of the soft joint morphology. For these angles, the inclination is maximum.
Moreover, when one of the vertices is passed, the opposite tendons cause the variation of
orientation, and it takes a little time to change from unwinding to rewinding. This can be
seen in the attached videos for this test.

6. Conclusions

This work presents a novel approach to soft robotics with the design of a flexible and
compact soft joint. It is not only a low-cost prototype, assembled by 3D printing. It also
has a morphology that allows better handling of external loads and gravity thanks to its
blocking configuration. Actuated by tendons, the proposed design has a morphology with
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two main configurations of flexion, which provides more versatility and a flexion limit,
unlike previous designs. These characteristics and configurations can be modified through
the parameters of the joint morphology, to achieve different fields of work and functionality.

A mathematical model of the inverse kinematics of the soft joint is also presented
to obtain the length of the tendons as a function of the morphology and the position
(orientation and inclination) of the end of the joint. The modeling of the soft morphology is
a complex task, but a simplified and sufficiently accurate kinematic model has been shown.
For its validation, the soft link prototype has been built and simulation and experimental
studies have been carried out.

According to the capabilities of the solution described and demonstrated throughout
the paper, the soft joint proposed in this work shows an improvement over other designs
and it could be used for many different applications requiring manipulation of loads. Our
main application will be the use of this joint as an arm for the humanoid robot TEO so that
the robot can perform manipulation tasks with the use of a gripper connected to the arm
tip. There are several uncertainties and mismatches that affect the model of the prototype,
especially when this is a low-cost 3D printed solution. For instance, the curvature of the
real model is not constant, the tension and length of tendons are not exact, and small
variations in the radius of the winches happen after several turns. Despite these facts, the
proposed model is accurate enough to represent the kinematics of the system and will
allow a later control of the soft joint in closed loop. Further research will lead to reducing
these inaccuracies and prototyping effects and to closing the control loop and testing the
platform with different loads during manipulation interactions.

7. Patents

The technology presented in this paper is under a patent licensing process. A patent
entitled “Eslabón para articulación blanda y articulación blanda que comprende dicho
eslabón” (“Link for soft articulation and soft articulation comprising such link”) and
reference number P202030726 (register number 5349) has been presented to the Oficina
Española de Patentes y Marcas—OEPM (Spanish Patents Office) (5 July 2020).
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Abbreviations

The following abbreviations are used in this manuscript:

CAD Computer-aided Design
CDPM Cable-Driven Parallel Mechanism
DLR Germany’s Research Centre for Aeronautics and Space
DOF Degrees of Freedom
FDM Fused Deposition Modeling
FEA Finite Element Analysis
FEM Finite Element Method
PC Personal Computer
PLA Polylactic Acid
SMA Shape Memory Alloy
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Abstract: The designed fractional order Stuxnet, the virus model, is analyzed to investigate the
spread of the virus in the regime of isolated industrial networks environment by bridging the air-gap
between the traditional and the critical control network infrastructures. Removable storage devices
are commonly used to exploit the vulnerability of individual nodes, as well as the associated networks,
by transferring data and viruses in the isolated industrial control system. A mathematical model of
an arbitrary order system is constructed and analyzed numerically to depict the control mechanism.
A local and global stability analysis of the system is performed on the equilibrium points derived
for the value of α = 1. To understand the depth of fractional model behavior, numerical simulations
are carried out for the distinct order of the fractional derivative system, and the results show that
fractional order models provide rich dynamics by means of fast transient and super-slow evolution
of the model’s steady-state behavior, which are seldom perceived in integer-order counterparts.

Keywords: fractional-order virus models; stuxnet virus; numerical computing; supervisory control
and data acquisition systems; computer networks; lyapunov analysis

1. Introduction

A small piece of software code or program in a computer system that works on
a system without the consent of the user may cause damage or steal information for
the exploitation of the desired targets. In strategic conflicting environments, as well
as in the financial market, computer viruses can be used in a network operation as a
digital weapon against the desired targets, e.g., a computer spyware program used as an
information collection platform in the Syrian war [1], or Shamoon and Stuxnet viruses
for cyber incidents [2]. The tools used for cyberwar vary from a tiny code that exhibits
annoying messages on the console to a complicated routine that physically damages the
system, such as Stuxnet [3]. Stuxnet was discovered at Natanz, Iran, a nuclear enrichment
facility, in June 2010 [4]. The name of the Stuxnet virus was derived from two keywords
in its source code, .stub and mrxnet.sys. The Stuxnet virus is a sophisticated piece of
code that mainly targets the supervisory control and data acquisition systems (SCADA),
exploits zero-day vulnerabilities/bugs to attack the targeted hosts, and uses advanced
technology to hide from guard programs. The Stuxnet virus exploits different services,
such as a print spooler (MS 10-061), the zero-day vulnerability of the windows system,
network shares, file-sharing and server message block (SMB), etc. Stuxnet virus monitors
the frequency of motors operating centrifuge machines before modification, which must be
in the range of from 807 Hertz to 1210 Hertz. Stuxnet virus controls the running frequency
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of centrifuge machines for a short interval of time to 1410 Hertz and then decreases to 2 Hz
and increases to 1064 Hertz. A change in the output frequency of the motors essentially
sabotages the working of machines [5]. Due to the attack of the Stuxnet virus, approximately
1000 centrifuge machines were out of order, of a total of 5000 machines operating in the Iran
nuclear facility at Natanz [6]. The purpose of the virus was not just to infect the computers,
but to cause real-world physical damage.

A theoretical study of the Stuxnet’s malicious code behavior was conducted through
the strength of epidemic modeling of virus spread [7–9]. The control scheme of these
malicious codes is very challenging because they often hide, and may exploit zero-day
vulnerabilities, gain administrative rights and execute code as an authenticated program.
The development in technologies creates new issues regarding the safety and security of
the critical infrastructure of the countries in the presence of these vulnerabilities and smart
viruses. The desire to manufacture an automated process immensely increases software
dependencies, which ultimately require lengthy and complex routines.

These complex codes are challenging to screen out completely using software testing
mechanisms, and leftover vulnerabilities in these codes can compromise the whole sys-
tem [10]. Therefore, the comprehensive and dynamic study of these codes is a promising
domain for research communities to investigate.

The spread of the virus in a computer network is closely related to the spread of
biological viruses in the population. Mathematical and statistical models are often based
on concepts and methods borrowed from physics. Models play an important role in
infection control by quickly predicting and understanding disease outbreaks. In recent
decades, new infectious diseases have been observed, together with the development of
eliminated technologies.

The ability to quickly measure the unfolding of outbreaks, communications, and
movements is key to capturing the spread of a virus. The inherent complexity of such
methods limits the study of these processes. However, developments in technology are
helping to lift these limitations [11]. Classical approaches and linear thinking are unable
to effectively mitigate the problem due to the lack of equilibrium and non-linear nature
of the problems. A complex system, its counter-intuitive behavior, and other macro-
level changes can be addressed by applying complex sciences. The usual models did
not provide an in-depth picture of real system dynamics because these systems neglect
feedback scenarios, cascade effects, and instabilities. To predict the global-scale spread of
disease dynamics, several factors, such as demographic disparity, mobility scenarios which
include air-flow system, commuter movement in the area, disease-specific information,
and control mechanisms, should be acccounted for. There has long been work on the
development of mathematical models for use in the analysis of infectious disease behavior.
The mathematical model of Daniel Bernoulli against smallpox disease was published
in 1766. Mathematical models of these types were designed to elaborate the behavior
of an epidemic over the course of time, in which every single population of the virus
is assumed to interact with the individual of other populations. The ability to monitor
hidden outbreaks, as well as contact and communication, are key to the portrayal of
disease-spreading [12]. It is known that immunizing a large fraction of the population or
a computer network, the epidemic that spreads upon contact between infected nodes or
individuals can be stopped.

Some diseases require 80–90% immunization (measles requires 95%), and the same
is true for the computer, where 100% immunization from the Internet may stop viruses
in connected networks [13]. Mathematical modeling of infectious disease or viruses in
biology or in computer systems gives us a thorough understanding of the problem and
helps us to devise a reliable, viable, and robust control strategy [14]. It was observed that
the state of the various biological organisms at a certain time depends on its past states and
fractional derivatives that also contains those characteristics. Thus, a fractional derivative
is a natural approach to the solution of these biological systems. Mathematical modeling is
used in numerous disciplines of science and engineering problems [15,16]. Kermack and
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McKendrick founded mathematical modeling at the beginning of twentieth century with
a series of publications, and introduced a susceptible, infected and recovered epidemic
model [17]. In this field, several other scientists, biologists, computer engineers and
mathematicians have worked on epidemic modeling and published work in this area, such
as time delay virus models [18], a fractional epidemiological model [19], antivirus strategy
for computer virus model [20], modified susceptible, infected and susceptible models [21]
and epidemic models with two control mechanisms, quarantine and immunity [22], and
models that highlight the topological facets of the network [23]. Besides these, the role
of fundamental concepts and underlying theories of fractional calculus was effectively
applied in modeling complex systems in diversified fields with rich dynamics compared to
its integer counterparts [24–27]. Considering these facts, the current study aims to exploit
the rich heritage of fractional dynamics for the development of the fractional Stuxnet
virus model by using the features of the Stuxnet model to illustrate the virus spread in
SCADA systems [28]. In this study, a fractional-order mathematical model of the Stuxnet
virus is presented to study the ultra-fast transient and slow evolutions of the virus spread
dynamic and attack pattern on isolated critical infrastructures, managed by industrial
control computers. The contribution of the proposed fractional Stuxnet virus model is
briefly described as:

• A novel fractional-order Stuxnet virus model is proposed by exploiting the rich
heritage of fractional calculus in an isolated and air-gapped network environment.

• Stability analysis of Stuxnet virus model for both local and global equilibrium points
when disease-free, and endemic spread is performed.

• Correctness of the proposed Grunwald–Letnikov-based fractional numerical solver is
ascertained, with close results to the state-of-the-art Runge–Kutta numerical solver
for integer-order variants of the model.

• Numerical simulation with Grunwald–Letnikov-based fractional numerical solver for
a distinct order of the fractional derivative terms in the system shows that fractional-
order models offer rich characteristics by way of ultrafast transience and ultra-slow
advancements of steady-state.

2. Fractional Calculus Fundamentals

2.1. Preliminaries

Fractional calculus is a branch of mathematics and a generalization of the calculus
theory of integrals and derivatives of a real number or complex number power. The dis-
cussion of fractional calculus was started 300 years ago, and the idea of fractional calculus
was first listed in the literature with a letter from Leibniz to L’Hostital in 1696. In this letter,
a half-derivative term was introduced, i.e., the generalization of the derivative operator
Dα f (), where α, representing the order of a fractional derivative. The history of the frac-
tional derivative is as long as the classical differential operators in calculus, but the inherent
strength of the fractional operator is relatively less exploited in engineering domains until
the early 1980s. The physical interpretation of the fractional derivative outcomes is still
ambiguous, and remained an open debate for clarity in the research community. However,
the fractional derivative is an inspiring operator to describe the physics of many modeling
phenomena, which are difficult to realize through integer-order derivatives. Recently,
the kernel function of a fractional derivative is referred to as a memory function, and
fractional-order derivative is proposed as a memory index [29,30] with different types
of kernel [31–36]. The theory development of fractional calculus belonged to the efforts
of several scientists, such as Letnikov, Liouville, Euler, and Riemann [37,38]. Different
definitions of fractional order derivatives have existed; the most-used definitions are those
of Riemann–Liouville (RL), Caputo (CP), and Grunwald–Letnikov (GL) [39]. The GL
definition of fractional derivative is as follows:

GL
a Dα

t f (t) = lim
h→0

1
hα

(t−a)/h

∑
m=0

(−1)m(α
m) f (t−mh), t > a,a > 0. (1)
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The definition of Caputos fractional derivatives can be written as:

CP
a Dα

t f (t) =
1

Γ(n− α)

t∫
a

f n(x)
(t− x)α−n+1 dx, (2)

for (n− 1 < α < n) and where Γ(·) is a gamma function.
The RL definition is given as:

RL
a Dα

t f (t) =
1

Γ(n− α)

dn

dt

t∫
a

f (x)
(t− x)α−n+1 dx. (3)

For (n− 1 < α < n), while a and t are the bounds of the operation for aDα
t , the Laplace

transform method is normally used with CP, GL and-RL fractional derivatives under zero
initial conditions, as: [40]

£{aD±α
t f (t); s} = s±αF(s), (4)

while the analytical expressions are represented by Mittag–Leffler (ML)-type functions [41]
introduced by Agarwal and Humbert [42] and are given mathematically as:

Eα,β(z) =
∞

∑
k=0

zk

Γ(β + αk)
, (5)

α, β, z ∈ C, �(α) > 0,�(β) > 0,

where C represents the set of complex numbers and Eα,β is a two-parameter-based ML function.

2.2. Grunwald–Letnikov-Based Numerical Solver for FDEs

Analytical solution to the fractional differential equations (FDEs) generally deter-
mined through the Laplace transform method (4), and these expressions are commonly
represented by the ML function (5), while, for the numerical solutions, the most commonly
used method is based on GL definition.

To introduce the numerical solver based on GL [43] for FDEs, let a general from of an
FDE, along with its initial conditions, is given as follows:

aDα
t f (t) = f (y(t), t),

y(k)(0) = y(k)0 , k = 0, 1, 2, . . . n− 1,
(6)

where (n− 1 < α < n) , using Equation (1), Ivo Petras [44] provided the final recursive
expression of a GL-based solver is as follows:

1
hα

[(t−a)/h]

∑
j=0

(−1)j(α
k )y(t− jh) ≈ f (y(t), t),

simplifying above relation, we have

y(t) +
[(t−a)/h]

∑
j=1

(−1)j(α
k )y(t− jh) ≈ h−α f (y(t), t).

In case of discrete input grids between interval t ∈ [0, T] = [0, h, 2h, . . . , Mh = T],
where h represents the step size parameter, so [0, T] = [t0 = 0, t1, . . . , tM = T] and any grid
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points in the interval are represented as tm = mh for m = 0, 1, 2, . . . , M. Thus, in a discrete
form, the above equation is written as:

y(tm) +
m

∑
j=1

(−1)j
(

α
j

)
y(tm − jh) = h−α f (y(tm), tm), m = 0, 1, 2, . . . , M.

In simple usage, the above term is written as:

y(tm) +
m

∑
j=1

cα
j y(tm − jh) = h−α f (y(tm), tm), m = 0, 1, 2, . . . , M,

where c(α)j is defined as:

cα
j = (−1)j

(
α
j

)
, (7)

or equivalently with cα
0 = 1,

cα
j =

(
1− 1 + α

j

)
cα

j−1, j = 0, 1, . . .

GL numerical solver in the recursive form is written as:

y(tm) = f (y(tm), tm)h−α −
k

∑
j=1

cα
j y(tm−j),m = 0, 1, 2, . . . , M. (8)

A further elaboration of the Grunwald–Letnikov (GL)-based numerical solver can be
seen in [45].

3. Model Formulation of Fractional Order Stuxnet Virus

The formulation of a fractional-order Stuxnet virus model (FO-SVM) is presented
here. A detailed workflow of the proposed FO-SVM is shown in Figure 1. The entire
FO-SVM is segmented into five classes: three for computer population, i.e., susceptible S(t),
infected I(t), and damaged M(t), and two for removable storage media, i.e., susceptible
storage media Us(t) and infected storage media Us(t). However, N(t) represents the
total population, i.e., N(t) = S(t) + I(t) + M(t), and total removable devices U(t), i.e.,
U(t) = Us(t) +UI(t). In the rest of the article, the variables with respect to time t, S(t), I(t),
M(t), Us(t), Us(t), N(t), and U(t) are denoted by S, I, M, Us, UI , N, and U, respectively.
Let A1 and A2 represent the arrival of new computing nodes and removable storage media,
respectively, damage rate caused to PLC’s due to virus infection is represented by ρ , β1 is
the infectious contact rate of susceptible nodes with infected nodes during the network scan,
and β2 denotes the contact rate of infectious-removable storage media with susceptible
computer nodes, r1 and r2 represent the natural removal (death) of computer nodes and
removable devices from the network, respectively. The number of nodes in Internet
protocol version 4 (IPv4) is 232, and the probability of finding susceptible nodes in IPv4
scheme is S/232. Susceptible nodes can be infected at the rate β1SI or at β2SUI

/
N, while

the removable storage media could be infected at a rate of β2Us I
/

N. Removable storage
media is a common source of virus spread in critical industrial air-gapped networks, which
are isolated from normal networks. The removable storage devices facilitate the flow of
information to and from the networks that make them as an easy prey for intruders [46]. In
this study, fractional-order virus model is used to explain the spread of the virus, especially
Stuxnet [47,48] in industrial networks through removable storage media. A proposed
flow chart diagram of the Stuxnet virus model is shown in Figure 2, and the fundamental
mathematical equations of the model are given as:
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DαS = A1 −
β1SI
232 − β2SUI

N
− r1S,

Dα I =
β1SI
232 +

β2SUI
N

− ρI − r1 I,

Dα M = ρI − r1M,

DαUs = A2 −
β2Us I

N
− r2Us,

DαUI =
β2Us I

N
− r2UI

(9)

where α ∈ [0, 1] represents the order of the fractional derivative term Dα = dα
/

dtα. For the
value of α = 1, the above-mentioned FO-SVM system provided in a set of Equation (9) will
be converted into a first-order system. From the differential equations mentioned in (9),
solving the equations by taking the value of α = 1, we get

dN
dt

= A1 − r1N,

dU
dt

= A2 − r2U.
(10)

The change in population is given by c1 = A1 − r1 and c2 = A2 − r2, and the values
of these constants may be negative, positive or zero.

Figure 1. FO-SVM model proposed graphical overview.
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Figure 2. FO-SVM model schematic flow diagram.

Solving the set of Equation (10), we get

N(t)→ A1

r1

Δ
= N∗, t → ∞,

U(t)→ A2

r2

Δ
= U∗, t → ∞.

(11)

The system given in Equation (9) can be simplified by incorporating N and U vari-
ables, as in:

Dα I =
β1(N − I − M)I

232 +
β2(N − I − M)UI

N
− ρI − r1 I,

Dα M = ρI − r1M,

DαUI =
β2(U −UI)I

N
− r2UI ,

(12)

where
N(t) = N∗ + (N(0)− N∗)e−r1t,

U(t) = U∗ + (U(0)−U∗)e−r2t.
(13)

Using Equation (11) in system (12), one may obtain a limit system (IMUI), as in [49,50]:

Dα I =
β1(N∗ − I − M)I

232 +
β2(N∗ − I − M)UI

N∗ − ρI − r1 I,

Dα M = ρI − r1M,

DαUI =
β2(U∗ −UI)I

N∗ − r2UI .

(14)

The equations in system (14), are the reduced version of (9), and will be used in
further investigations.

4. Model Analysis

In this unit, stability analysis of the model is performed through the derivation of
basic reproduction number, R0. The endemic and disease-free equilibrium points of the
system are investigated for a local as well as global stability analysis.
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4.1. Basic Reproduction Number (R0)

In epidemiology modeling, a basic reproduction number is defined as the advent of a
new infection in an entirely susceptible population due to an infected individual, and is
usually represented by R0. The value of R0 determines the spread of infection; for R0 > 1
infection will spread in the population, and for R0 < 1 infection will soon end [51].

To simplify the derivation process, a reduced model (14) has been utilized for further
investigation of R0. The calculation of R0 is based on the value of α = 1. The necessary
condition of a disease epidemic is based on the increase in the infected individuals, with
the supposition that, initially, the entire population is susceptible.

For the case of Dα I > 0, we have DαUI > 0

β1(N∗ − I − M)I
232 +

β2(N∗ − I − M)UI
N∗ − ρI − r1 I > 0, (15)

and, accordingly, in case of DαUI > 0, we have

β2(U∗ −UI)I
N∗ − r2UI > 0. (16)

With the assumption that all the population is susceptible at the start, the above
expressions may be written as:

β1N∗ I
232 +

β2N∗UI
N∗ − ρI − r1 I > 0, (17)

β2U∗ I
N∗ − r2UI > 0. (18)

Simplifying the above relations, we have

β1N∗

(ρ + r1)232 +
β2

2U∗

r2N∗(ρ + r1)
> 1. (19)

Accordingly,

R0 =
β1N∗

232(ρ + r1)
+

β2
2U∗

r2N∗(ρ + r1)
. (20)

Equation (20) represents the basic reproduction number derived for the model.

4.2. Equilibria Studies

In this subsection, we study the equilibrium points of FO-SVM model Equation (14).
The FO-SVM model has virus-free equilibrium and endemic equilibrium points. In the
endemic equilibrium point, the spread of infection is observed.

For equilibria studies, we have

Dα I = 0, Dα M = 0, DαUI = 0,

equilibrium points of system (14) for virus-free and endemic are as: K0 = (I, M, UI) = (0, 0, 0)
and K∗ = (I∗, M∗, U∗

I ) for R0 > 1.
The analysis for the endemic equilibria of model (14) is written as:

β1(N∗ − I − M)I
232 +

β2(N∗ − I − M)UI
N∗ − ρI − r1 I = 0,

ρI − r1M = 0,

β2(U∗ −UI)I
N∗ − r2UI = 0.

(21)
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Solving the equations in set (21), we obtain the expressions for the endemic equilibrium
point (I∗, M∗, U∗

I ) as:

I∗ =

√
b2 − 4ac− b

2a
, (22)

M∗ =
ρ

r1
I∗, (23)

U∗
I =

β2U∗

β2 I∗ + r2N∗ I∗, (24)

where

a =
(ρ + r1)β1β2

232r1N∗ ,

b =
β2(ρ + r1)(1− R0)

N∗ +
β3

2U∗

N∗r2
+

β1(r2)β2
2U∗

232r1
(ρ + r1),

c = (ρ + r1)(1− R0)r2.

It is evident from Equation (22) that the possibility of infection spread, i.e., I∗ > 0, is
only verified for the value of R0 > 1.

4.3. Disease Free Equilibrium

Theorem 1. Disease-free equilibrium (DFE) point of a system is locally and asymptotically stable
at K0, if R0 < 1.

Proof. The DFE point of a system is locally asymptotically stable at K0 = (I, M, UI) = (0, 0, 0).
The Jacobian matrix of function f : R3 → R3 with components:

Dα I =
β1(N∗ − I − M)I

232 +
β2(N∗ − I − M)UI

N∗ − ρI − r1 I,

Dα M = ρI − r1M,

DαUI =
β2(U∗ −UI)I

N∗ − r2UI .

(25)

Thus, the Jacobian matrix at K0, DFE point of integer-order model (14) is given as:

DFE(K0) =

⎛⎜⎝
β1 N∗

232 − ρ− r1 0 β2
ρ −r1 0

β2U∗
N∗ 0 −r2.

⎞⎟⎠ (26)

System (26) characteristic equation is

|λI − DFE(K0)| =

∣∣∣∣∣∣∣∣∣
λ− β1 N∗

232 + ρ + r1 0 −β2
−ρ λ + r1 0

− β2U∗
N∗ 0 λ + r2

∣∣∣∣∣∣∣∣∣ = 0, (27)

and simplify as:

(λ + r1)

[(
λ− N∗β1

232 + ρ + r1

)
(λ + r2)−

β2
2U∗

N∗

]
= 0. (28)

The corresponding Eigen values of the above relation are

λ1 = −r1,[(
λ− N∗β1

232 + ρ + r1

)
(λ + r2)− β2

2U∗

N∗

]
= 0.

(29)
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Simplifying the above expression to find the remaining Eigenvalues

r1(λ + r2) + ρ(λ + r2) + λ(λ + r2)− (λ + r2)
N∗β1

232 − β2
2U∗

N∗ = 0,

λ2 + λ

(
r1 + r2 + ρ− N∗β1

232

)
+ r1r2 + ρr2 − r2

N∗β1

232 − β2
2U∗

N∗ = 0,

λ2

r2(ρ + r1)
+

λ
(

r1 + r2 + ρ− N∗β1
232

)
r2(ρ + r1)

+

(
1− N∗β1

232(ρ + r1)
− β2

2U∗

N∗r2(ρ + r1)

)
= 0,

λ2

r2(ρ + r1)
+

λ

r2

(
r2

ρ + r1
+

r1 + ρ

ρ + r1
− N∗β1

232(ρ + r1)

)
+ (1− R0) = 0,

and rearranging the above expression

λ2

r2(ρ + r1)
+

λ

r2

(
r2

ρ + r1
+ 1− N∗β1

232(ρ + r1)

)
+ (1− R0) = 0, (30)

and, for R0 < 1, Equation (9) can be written as:

λ2

r2(ρ + r1)
+

λ

r2

(
r2

ρ + r1
+ 1− N∗β1

232(ρ + r1)

)
+ (1− R0) = 0. (31)

Using the expression (31) in Section 4.3, make the coefficient positive for R0 < 1,
which shows that system Section 4.3 eigenvalues are in a stable region; this confirms that
the system is asymptotically stable for point K0 when R0 < 1. If system is stable for the
value of α = 1, it will be stable for the value of α < 1, as reported in [52]. This completes
the proof.

Theorem 2. If R0 < 1, then point K0 is globally asymptotically stable, and otherwise unstable.

Proof. Considering the Lyapunov function mentioned below,

L(I, M, UI) = I +
β1

233ρ
M2 +

β2

r2
UI . (32)

The function in R3 is positive, for R3 = (I, M, UI) and (I > 0, M > 0, UI > 0).
For α = 1, the derivative of Lyapunov function (32) is

DαL(I, M, UI) = Dα I +
2β1

233ρ
MDα M +

β2

r2
DαUI , (33)

DαL(I, M, UI) =
β1(N∗ − I − M)I

232 +
β2(N∗ − I − M)UI

N∗ − ρI − r1 I +
β1 MI

232 +
r1β1 M2

232ρ

+
β2

2U∗ I
N∗r2

− β2
2U1 I

N∗r2
− β2U1,

=

(
β1N∗

232 +
β2

2U∗

N∗r2
− ρ− r1

)
I − β1 I2

232 − β2(M + I)UI
N∗ − r1β1 M2

232ρ

− β2
2M2UI I
N∗r2

,

=

(
(ρ + r1)

(
β1 N∗

232(ρ+r1)
+ β2

2U∗

N∗r2(ρ+r1)

)
−ρ− r1

)
I − β1 I2

232 − β2(M + I)UI
N∗ − r1β1 M2

232ρ

− β2
2M2UI I
N∗r2

,

= (ρ + r1)(R0 − 1)I − β1 I2

232 − β2(M + I)UI
N∗ − r1β1 M2

232ρ
− β2

2UI I
N∗r2

.

(34)
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For R0 < 1, this implies that DαL ≤ 0 and K0 is the only invariant set of system (21).
According to the LaSalle Invariance Principle, K0 is proven to be globally asymptotically
stable. Hence, equilibrium point K0 is globally asymptotically stable for R0 < 1. Addition-
ally, if the system is stable for the value of α = 1, then the system will be stable for α < 1,
as described in [52].

4.4. Endemic Stability

The endemic stability of equilibrium point K∗= (I∗, M∗, U∗
I ) is investigated in this

section for the values of R0 > 1 and I∗ ≥ 0.

Theorem 3. Endemic equilibrium point K∗ is locally asymptotically stable, if R0 > 1.

Proof. Consider the function f : R3 → R3 with components and the Jacobian matrix of the
system (14) as:

Dα I = f1(I∗, M∗, U∗
I ) =

β1(N∗ − I∗ − M∗)I∗

232 +
β2(N∗ − I∗ − M∗)U∗

I
N∗ − ρI∗ − r1 I∗,

Dα M = f2(I∗, M∗, U∗
I ) = ρI∗ − r1M∗,

DαUI = f3(I∗, M∗, U∗
I ) =

β2(U∗ −U∗
I )I∗

232 − r2U∗
I ,

J(I∗, M∗, U∗
I ) =

⎛⎜⎜⎝
∂ f1
∂I∗

∂ f1
∂M∗

∂ f1
∂U∗

I
∂ f2
∂I∗

∂ f2
∂M∗

∂ f2
∂U∗

I
∂ f3
∂I∗

∂ f3
∂M∗

∂ f3
∂U∗

I

⎞⎟⎟⎠.

The endemic equilibrium of system (14) is K∗= (I∗, M∗, U∗
I ), for the value of α = 1, the

Jacobian matrix at endemic point is mentioned below.

J(K∗) =

⎛⎜⎝ Λ − β1 I∗

232 − β2UI
∗

N∗
β2(N∗−I∗−M∗)

N∗

ρ −r1 0
β2(U∗−UI

∗)
N∗ 0 β2 I∗

N∗ − r2

⎞⎟⎠, (35)

where Λ = β1(N∗−2I∗−M∗)
232 − β2UI

∗
N∗ − ρ− r1.

The characteristic equation of (35) is

|λI − J(K∗)| = 0,∣∣∣∣∣∣∣
λ−Λ β1 I∗

232 + β2UI
∗

N∗ − β2(N∗−I∗−M∗)
N∗

−ρ λ + r1 0
− β2(U∗−UI

∗)
N∗ 0 λ + β2 I∗

N∗ + r2

∣∣∣∣∣∣∣ = 0,

simplifies as:

λ3 + (b11 + b22 + b33)λ
2 + (b11b22 + b11b33 + b22b33 (36)

− b12b21 − b13b31)λ + b11b22b33 − b12b21b33 − b13b31b22 = 0,

where
b11 = − β1 N∗

232 + β1(2I∗+M∗)
232 +

β2U∗
I

N∗ + ρ + r1,

b12 = β1 I∗

232 +
β2U∗

I
N∗ ,

b21 = −ρ, b23 = 0, b22 = r1, b13 = − β2(N∗−I∗−M∗)
N∗ ,

b31 = − β2(U∗−U∗
I )

N∗ , b33 = β2 I∗
N∗ + r2, b32 = 0.
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For stability analysis, Hurwitz criteria may be used, as reported in [53,54] for sys-
tem (36). Equating the Equation (36) coefficient with the general characteristics equation,
we have

b0 = 1,
b1 = b11 + b22 + b33,
b2 = b11b22 + b11b33 + b22b33 − b12b21 − b13b31,
b3 = b11b22b33 − b12b21b33 − b13b31b22.

Determinants (D1, D2 and D3) of the Equation (36) are stated in Hurwitz as:

D1 = b1 = b11 + b22 + b33,

= − β1N∗

232 +
β1(2I∗ + M∗)

232 +
β2U∗

I
N∗

+ ρ + r1 + r1 +
β2 I∗

N∗ + r2,

using the value of Equation (20) for R0 > 1 as:

β1N∗

232 +
β2

2U∗

r2N∗ > ρ + r, we have

D1 = − β1N∗

232 +
β1(2I∗ + M∗)

232 +
β2U∗

I
N∗ +

β1N∗

232 +
β2

2U∗

r2N∗ + r1 +
β2 I∗

N∗ + r2,

D1 =
β1(2I∗ + M∗)

232 +
β2U∗

I
N∗ +

β2
2U∗

r2N∗ + r1 +
β2 I∗

N∗ + r2,

D1 > 0,

and

D2 = b1b2 − b3b0,

D2 = (b11 + b22 + b33)(b11b22 + b11b33 + b22b33 − b12b21

− b13b31)− b11b22b33 + b12b21b33 + b13b31b22,

= b2
11b22 + b2

11b33 + b11b22b33 − b11b12b21 − b11b13b31

+ b11b2
22 + b11b22b33 + b2

22b33 − b22b12b21

− b22b13b31 + b11b22b33 + b11b2
33 + b22b2

33

− b33b12b21 − b33b13b31 − b11b22b33

+ b33b12b21 + b22b13b31,

D2 = b2
11b22 + b2

11b33 + b11b2
22 + b22b2

33 + b11b2
33 + b2

22b33

+ 2b11b22b33 − b11b12b21 − b11b13b31 − b22b12b21 − b33b13b31.

The above expressions remain positive, except for −b13b31(b11 + b33), D2, which, if
positive for R0 > 1, is simply represented as:

D2 = +veterms + (b11b33 − b13b31)(b11 + b33),
D2 = D2−1 + D2−2,

Here, D2−1 represent the positive terms in D2, while, for the remaining terms, repre-
sented with D2−2, we have
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D2−2 = (b11b33 − b13b31)(b11 + b33)

=

⎧⎨⎩
(

β1(N∗−I∗−M∗)
232 + ρ + r1

)
r2

− β2
2(N∗−I∗−M∗)(U∗−UI

∗)
N∗2

⎫⎬⎭(b11 + b33),

=

⎧⎨⎩
⎛⎝ β1(N∗−I∗−M∗)

232 + ρ + r1

− β2
2(N∗−I∗−M∗)(U∗−UI

∗)
r2 N∗2

⎞⎠r2

⎫⎬⎭(b11 + b33),

=

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

β1(N∗−I∗−M∗)
232 + ρ + r1

− β2
2(N∗−I∗−M∗)U∗

r2 N∗2 +
β2

2(N∗−I∗−M∗)UI
∗

r2 N∗2

⎞⎟⎟⎠r2

⎫⎪⎪⎬⎪⎪⎭(b11 + b33),

=

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

β1(N∗−I∗−M∗)
232 + ρ + r1−

β2
2U∗

r2 N∗ +
β2

2 I∗U∗

r2 N∗2 +
β2

2 M∗U∗

r2 N∗2

+
β2

2(N∗−I∗−M∗)UI
∗

r2 N∗2

⎞⎟⎟⎠r2

⎫⎪⎪⎬⎪⎪⎭(b11 + b33),

using the value of R0 > 1, and after simplification, the above expression becomes

D2−2 >

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

β1(N∗−I∗−M∗)
232

+ β1 N∗

232 +
β2

2U∗
r2 N∗ −

β2
2U∗

r2 N∗ +
β2

2 I∗U∗

r2 N∗2

+
β2

2 M∗U∗

r2 N∗2 +
β2

2(N∗−I∗−M∗)UI
∗

r2 N∗2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
r2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(b11 + b33),

D2−2 >

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎝
β1(N∗−I∗−M∗)

232

+ β1 N∗

232 +
β2

2 I∗U∗

r2 N∗2

+
β2

2 M∗U∗

r2 N∗2 +
β2

2(N∗−I∗−M∗)UI
∗

r2 N∗2

⎞⎟⎟⎟⎟⎟⎠r2

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(b11 + b33),

D2−2 > 0,

as a result

D2 > 0.

D3 = b3(b1b2 − b0b3),

D3 = b3(D2),

= (b11b22b33 − b12b21b33 − b13b31b22)((b11 + b22

+ b33)(b11b22 + b11b33 + b22b33 − b12b21 − b13b31)

− b11b22b33 + b12b21b33 + b13b31b22)

= (b11b22b33 − b12b21b33 − b13b31b22)D2,

> (b11b33 − b13b31)b22D2,

The positivity of the expression b11b33 − b13b31 for R0 > 1 is already proved for the case
D2; therefore, D3 > 0.

Thus, all the values of D1, D2 and D3 are positive, so all the eigenvalues of the
Equation (36) are negative, for R0 > 1. This proves that the endemic equilibrium point K∗

is locally asymptotically stable. The proof of theorem is completed.
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5. Simulation and Results

In this section, the results of numerical simulations for FO-SVM are presented to
understand the dynamics of virus spread in a critical network infrastructure in the pres-
ence of removable storage connectivity, which may compromise the air-gap between the
networks. Numerical experimentation is conducted for the designed FO-SVM as given
in Equation (9) for a different variation in parameters and initial start-up scenarios, as
given in Tables 1 and 2, respectively. The dynamic behavior of the fractional order (FO)
model is studied by varying the non-integer order derivative α. Most FO differential sys-
tems lack exact analytical solutions, so the numerical solver based on Grunwald–Letnikov
(GL) procedure, as described in Section 2 is exploited for an approximate solution to the
model. The security firms, including Symantec, tracked 100,000 infected computers as of
29 September 2010, in the world. Additionally, available real data are used to validate the
accuracy and convergence of the model for the Stuxnet virus spread. The virus infects
approximately 100,000 users from 155 different countries, and 63% were only in Iran. Due
to this attack, the number of hosts that lost functionality (hardware connected to these
hosts was damaged due to sudden increase in frequency of up to 1410 Hz, which then
decreased to 2 Hz and increased to 1064 Hz in spite of the normal working range of from
807 Hz to 1210 Hz) due to virus attack. A virus operates the machines connected with the
hosts at an extreme range of frequencies dictated by Stuxnet and caused physical damage
to 1500 centrifuge machines (approximately 1200 in Iran only). Approximately 3280 unique
samples and variants of the Stuxnet virus were recorded by Symantec and other security
corporations [3,6,55].

Table 1. Values of parameters used in model simulation for different scenarios.

Parameter Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

A1 0.042 0.042 40 100 5600 5600 5600 412 5600
A2 0.042 0.042 45.7 60 412 412 412 5600 412
β1 0.6 0.4 0.385 0.4 0.4 0.4 0.745 0.4 0.4
β2 0.6 0.8 0.795 0.635 0.745 0.745 0.4 0.745 0.004
ρ 0.00265 0.0051 0.001 0.009 0.021 0.8 0.021 0.021 0.021
r1 0.1126 0.19 0.0804 0.1598 0.1276 0.0804 0.1276 0.1276 0.1276
r2 0.0088 0.027 0.027 0.027 0.0131 0.0131 0.0131 0.0131 0.0131

Table 2. Starting values of variables used in the simulation of different scenarios.

Variables S I M US UI

Case 1 2.3× 106 10,000 10 50,000 10,000
Case 2 2.3× 106 30,000 10 50,000 10,000
Case 3 2.3× 106 30,000 10 30,000 10,000

Case 4–9 2.3× 106 30,000 10 30,000 5000

In order to establish the working accuracy of GL-based numerical solvers, the results
of the scheme are compared with state-of-the-art numerical solvers based on the Runge–
Kutta (RK) method for the value of α = 1. The results are determined for nine cases of
integer order models (9) by a GL-based computing technique for inputs t ∈ [0, 60] with
step size h = 0.001 (time t represents months). Numerical solutions to the model for the
same inputs are also calculated by the RK method for each variation. Figure 3 highlights the
comparison of model behavior with Stuxnet virus real-world data. FO-SVM model results
shown in Figure 3 are calculated using the RK method to assume the value of fractional
order α = 1.
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Figure 3. Simulation of Stuxnet virus spread with available data of parameters A1 = 0.042, A2 = 0.042,
β1 = 0.366, β2 = 0.6, ρ = 0.00265, r1 = 0.1126, r2 = 0.0088, S = 2.3× 106, I = 10,000, M = 10, Us = 50,000,
UI = 10,000.

In Figure 3, the number of hosts versus time in months is plotted, which shows the
effect of the Stuxnet attack on the number of hosts as time passes.The number of infected
hosts is 96,760 (real infected host number was 100,000), and the number of damaged hosts
is 1500 (real damaged host number was 1500) in 23 months time, which shows the model
accuracy for real-world virus data, as shown in Figure 3, with red and blue dots, respec-
tively. In this case, removable media are considered to be 60,000, and, after increasing the
number of removable-storage media, infection in the host nodes also increases (96,760 after
23 months).

The number of infected removable-storage devices is 43,740 in 23 months, and in
24 months, the time number of infected devices increases to 44,920. An increase in the
number of damaged hosts is observed after the increase in infected hosts in 24 months’
time. This highlights the role of removable-storage media in spreading the infection in
isolated critical networks in the absence of any remedial strategy in the model. Stuxnet is
an advanced, persistent threat (APT) type of malicious code that penetrates in the remote
system in a quasi-autonomous fashion. Then, a 23-month decline in the number of infected
hosts is observed due to the availability of remedial technique and other controlling
mechanisms. However, the Stuxnet virus was carried by removable-storage media spreads
in other·networks.

In Figure 4, the solutions to the RK method with GL solver is compared with an error
analysis of susceptible hosts S: a and b for cases 2 to 4, c and d for cases 5 to 7, and e and f
for cases 8 to 10. Comparisons of results from both the RK numerical solver and GL-based
method (for fractional-order α = 1) are presented for susceptible hosts S in nine cases. The
error analysis, based on the absolute difference between the two approaches, is also plotted
in Figure 4 to assess closeness. The results show a matching of both solutions of up to
three decimal places of accuracy. The small errors in these plots show that the results of
the GL method are in good agreement with the standard RK numerical technique, which
establishes the working accuracy of the GL-based solver. In Figure 5, the solution of the
RK method with the GL solver is compared in the case of infected hosts I and damaged
hosts M: a and b for cases 1 to 3, c and d for cases 4 to 6, and e and f for cases 7 to 9.
Figure 4 compares solutions for the RK method with GL solver in case of susceptible and
infected removable-storage media: a and b for cases 1 to 3, c and d for cases 4 to 6, and
e and f for cases 7 to 9. In Figures 5 and 6, the solution of the RK method with a GL
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solver are compared and presented for infected nodes I, damaged node M, susceptible
removable-storage media Us and infected removable-storage media UI , respectively, for
nine model cases.

Figure 4. Solution comparison of the RK method with GL solver and error analysis with susceptible
S hosts: a and b for cases 2 to 4, c and d for cases 5 to 7, and e and f for cases 8 to 10. (a) Solution
comparison of the RK method with GL solver for cases 2 to 4, (b) error analysis for cases 2 to 4,
(c) Solution comparison of the RK method with GL solver for cases 5 to 7, (d) error analysis for cases
5 to 7, (e) Solution comparison of the RK method with GL solver for cases 8 to 10, (f) error analysis
for cases 8 to 10.

These nine cases also explain the virus spread behavior in different scenarios. Consid-
ering Figures 4–6, and the different cases simulated, we have the following comments.

The effect of changing the infectious contact rate β1 from 36.6% to 60% is highlighted
in case 1 of Equation (9) (value of β1 in Figure 3 is 36.6%). It is observed that the number of
infected hosts in 24 months is 96,760, as shown in Figure 5a (in Figure 3, the number of
infected hosts in 24 months is 96,270), which shows a slight increase in infected hosts due
to β1. In case 2, the number of initially infected hosts is assumed to be 30,000. Increasing
the contact rate of infectious removable media (in case 2) reduces the number of susceptible
hosts rapidly as compared to case 1 (Figure 4a). However, the number of infected hosts is
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reduced (Figure 5a) due to an increase in the natural removal rate of hosts and removable
storage r1 and r2 (hosts are removed to save them from the Stuxnet attack). In case 3, we
reduce the damage rate and the quantity of initial susceptible removable-storage media,
which reduces infected removable-storage media number (Figure 6b) and increases the
infected hosts, as in Figure 5a). A decrease in damaged hosts is observed in case 3, despite
the increase in the number of infected hosts.

Figure 5. Solution comparison of RK method with GL solver for infected hosts I and damaged hosts
M; a and b for cases 1 to 3, c and d for cases 4 to 6 while e and f for cases 7 to 9. (a) Comparison of
RK method with GL solver for infected hosts in cases 1 to 3, (b) Comparison of RK method with GL
solver for damaged hosts in cases 1 to 3, (c) Comparison of RK method with GL solver for infected
hosts in cases 4 to 6, (d) Comparison of RK method with GL solver for damaged hosts in cases 4 to 6,
(e) Comparison of RK method with GL solver for infected hosts in cases 7 to 9, (f) Comparison of RK
method with GL solver for damaged hosts in cases 7 to 9.

In case 4, FO-SVM model dynamics are observed by increasing the arrival rate
of new nodes and the arrival rate of new removable-storage devices, as mentioned in
Tables 1 and 2. The results show that increasing the arrival rate of new hosts and arrival
rate of new removable-storage media will not spread the infection faster without the pres-
ence of a sufficient number of infected removable-storage devices, as shown in Figure 5c.
In cases 5 and 6, we further increase the values of the arrival rate of new nodes as well as
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removable-storage devices for an in-depth behavior analysis of the model. Both cases have
similar parameters, except case 6, which represents a higher damage rate (especially for
zero-day vulnerability or for a new virus attack) that increases the number of damaged
computers and reduces the number of infected computers (removed due to high damage
rate) in the networks as compared to case 5. Case 5 shows the high number of infected
nodes (Figure 5c) because the Stuxnet virus only destroys the machines with specific
hardware (Siemens specific PLCs) and remains dormant till it finds the target. In case 6
(Figure 5c,d), the number of infected hosts decreases; however an increase in the number
of damaged hosts is observed due to an increase in damage rate ρ.

Figure 6. Solution comparison RK method with GL solver for susceptible and infected-removable-
storage media: a and b for cases 1 to 3, c and d for cases 4 to 6, and e and f for cases 7 to 9.
(a) Comparison of RK method with GL solver for susceptible removable storage media in cases 1 to 3,
(b) Comparison of RK method with GL solver for infected removable storage media in cases 1 to 3,
(c) Comparison of RK method with GL solver for susceptible removable storage media in cases 4 to 6,
(d) Comparison of RK method with GL solver for infected removable storage media in cases 4 to 6,
(e) Comparison of RK method with GL solver for susceptible removable storage media in cases 7 to 9,
(f) Comparison of RK method with GL solver for infected removable storage media in cases 7 to 9.
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In case 7, the values of β1 and β2 of case 6 are swapped to observe the behavior of
the model. In case 7, the value of β1 = 0.745, as compared to 0.4 in case 6, and the value
of β2 = 0.4, as compared to 0.745 in case 6. These swaps are carried out to observe the
devastation effect of infected removable storage media as compared to the effect of infected
nodes in the model, because infected removable media have a greater devastation effect.
Simulation results show that the number of damaged nodes in case 6 is 35,000, whereas, in
case 7, it is 5000, due to a decrease in the value of β2 infectious contact rate of removable
storage media (Figure 5e).

However, by increasing β2 value (removable-storage media’s infectious contact rate
with susceptible computers) and A2 (the arrival of removable-storage media) for case 8
will also increase the infection in the network. This outlines the importance of removable-
storage media in spreading the virus in air-gapped networks (Figure 5e). In case 9, the
contact rate of susceptible computer nodes with infectious removable-storage media β2
is reduced, which results in a reduction in damaged nodes (Figure 5f) and infected nodes
(Figure 5e), and an increase in the number of susceptible storage devices (Figure 6e). Case 9
further elaborates the scenario presented in case 8.

The derivative order α = 1 is presented in Figures 4–6. The effect of change in fractional
order α is presented in Figures 7–11. A detailed analysis of the FO-SVM model is conducted
by changing the fractional order α in the system (9), such that one may observe fast-
changing as well as super-slow growth in the model dynamics. The fractional order
solution of the FO-SVM model for different values of the fractional order α is solved using
a GL-based solver. The solutions are determined for nine cases of FO-SVM by a GL-based
numerical procedure for different fractional orders, i.e., α = [0.5, 0.75, 0.8, 0.85, 0.9, 0.95, 1],
for the inputs t ∈ [0, 60] with step size h = 0.001. Results for the dynamics of the FO-SVM
model in terms of susceptible S, infected I, and damaged M computers are plotted in
Figures 7–9 for cases 1–3, 4–6, and 7–9, respectively. Susceptible removable-storage media
Us and infected-removable-storage media UI are plotted in Figures 10 and 11 for cases 1–4
and 5–9, respectively, for different values of the fractional order α.

Figure 7 shows a simulation of fractional order, i.e., α = [0.5, 0.75, 0.8, 0.85, 0.9, 0.95, 1]
for the FO-SVM model for different values of fractional order α for case 1–3 of susceptible
S, infected I and damaged hosts M. In Figure 7, the number of susceptible, infected and
damaged hosts is plotted versus time for cases 1–3 for different values of α = [0.5, 0.75,
0.8, 0.85, 0.9, 0.95, 1]. A consistent pattern is observed in the evolution of curves with the
value of α. The value of infected hosts in case 1 with α = 1 is 96,760, and for α = 0.95, the
value of infected hosts is approximately 56,000 for t = 24 months, as shown in Figure 7b. In
Figure 7c, the number of damaged hosts (hosts that were connected with specific models
of Siemens PLCs) for the value of α = 0.95 are 1000 for t = 30. Adjusting the value of α to
0.98 may adjust the number of damaged hosts to 1500, which matches the real published
data of the Stuxnet virus. This illustrates the controllability feature of α for tuning the
model. Despite the rapid spreadability of the Stuxnet virus, it causes little or no harm to
the systems that do not have specific hardware.

Figure 8 shows the simulation of fractional order dynamics of the FO-SVM model for
different values of fractional order α for cases 4–6, and Figure 9 depicts the simulation of
fractional-order dynamics of the FO-SVM model for case 7–9. Figures 8 and 9 highlight
the results for variation in fractional order α, which shows that variation in α gives smooth
variations in the dynamics of the model. For α = 0.1, we have the slowest evolution.
Simulation of fractional order dynamics of FO-SVM model for different values of fractional
order α for case 1–5 of susceptible removable-storage media Us and infected-removable-
storage media UI are illustrated in Figure 10. Figure 11 shows the simulation of fractional
order dynamics of FO-SVM model for different values of fractional order α, for cases
5–9 of susceptible removable-storage media Us, and infected-removable-storage media
UI . In Figures 10 and 11, the number of susceptible storage media and infected storage
media is plotted for case 1–9 against the time variation for different values of fractional
order α = [0.5, 0.75, 0.8, 0.85, 0.9, 0.95, 1]. It is observed that tuning the values of α tunes
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the dynamics of transients, as shown in Figure 10a. The value of susceptible storage media
for t = 1 and α = 0.95 is 35,000, which is effectively reduced to 10,000 by a slight change in
fractional order α from 0.95 to 0.8. In contrast, a slow change is observed in the dynamics
of the FO-SVM model for α = 0.1. Increasing the fractional order α increases the rate of
change of the variables. Fractional-order virus models provide extra tunable parameters in
the form of α, which highlight more minute changes in the model dynamics.

Figure 7. Simulation of fractional order dynamics of FO-SVM model for different values of fractional order α for cases 1
(a–c), 2 (b–f) and 3 (g–i) of susceptible S, infected I and damaged hosts M.
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Figure 8. Simulation of fractional order dynamics of FO-SVM model for different values of fractional order α for cases 4 (a–c),
5 (b–f) and b (g–i) of susceptible S, infected I and damaged hosts M.
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Figure 9. Simulation of fractional order dynamics of FO-SVM model for different values of fractional order α for cases 7 (a–c),
8 (b–f) and 9 (g–i) of susceptible S, infected I and damaged hosts M.
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Figure 10. Simulation of fractional order dynamics of FO-SVM model for different values of fractional order α for
cases 1 (a,b), 2 (c,d) and 3 (e,f), 4 (g,h) and 5 (i) of susceptible removable-storage media Us and infected-removable-storage
media UI .
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Figure 11. Simulation of fractional order dynamics of FO-SVM model for different values of fractional order α for cases 5 (a),
6 (b,c) and 7 (d,e), 8 (f,g) and 9 (h,i) of susceptible removable-storage media Us and infected-removable-storage media UI .

6. Conclusions

A detailed analysis of the novel design of the fractional order Stuxnet virus model
is presented, with richer dynamics for the transmission of virus spread in an isolated
critical network through removable-storage media. The fractional-order Stuxnet-virus-
based mathematical models are found to be at least as stable as integer-order models. The
fractional order value α of the proposed fractional Stuxnet virus model more effectively
controls the solution reachability towards a steady state point. Additionally, the fractional
order system of the Stuxnet virus model can tackle the different responses, including
super-slow evolutions and very fast transients; these responses are found to have long
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memory characteristics in the system. Taking the value of α = 0.98, one may adjust the
number of damaged hosts to 1500 in case 1, which matches the damage caused by the
Stuxnet virus. The transformation process of the classical model into a fractional model
is very sensitive to the value of the order of differentiation α, and can be converted to a
simple SIR model if we choose the values of the infectious contact rate β2 = 0. A theoretical
analysis of the model capturing the Stuxnet virus-spreading characteristics is determined
by a mathematical derivation of the basic reproduction number R0 for the value of α = 1.
Equilibrium points of the model are globally and asymptomatically stable for R0 < 1 and
R0 > 1, respectively.

In the future, one may exploit the strength of stochastic numerical solvers [56–61]
based on fractional evolutionary and swarming techniques [62–67] for a detailed analysis
of the designed fractional-order Stuxnet virus model. Additionally, new definitions of
the fractional operator, such as Yang–Machado [35] and Yang–Abdel–Aty–Cattani [36]
fractional derivatives looks promising for the development of new computing solvers for
the numerical solution of the fractional-order Stuxnet virus model and other fractional-
order systems with better theoretical justifications, a better applicability domain, proof of
the accuracy, convergence, stability, and robustness.
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Abstract: This paper presents a feature construction approach called Statistical Feature Construction
(SFC) for time series prediction. Creation of new features is based on statistical characteristics of
analyzed data series. First, the initial data are transformed into an array of short pseudo-stationary
windows. For each window, a statistical model is created and characteristics of these models are
later used as additional features for a single window or as time-dependent features for the entire
time series. To demonstrate the effect of SFC, five plasma physics and six oceanographic time series
were analyzed. For each window, unknown distribution parameters were estimated with the method
of moving separation of finite normal mixtures. First four statistical moments of these mixtures
for initial data and increments were used as additional data features. Multi-layer recurrent neural
networks were trained to create short- and medium-term forecasts with a single window as input
data; additional features were used to initialize the hidden state of recurrent layers. A hyperparameter
grid-search was performed to compare fully-optimized neural networks for original and enriched
data. A significant decrease in RMSE metric was observed with a median of 11.4%. There was no
increase in RMSE metric in any of the analyzed time series. The experimental results have shown
that SFC can be a valuable method for forecasting accuracy improvement.

Keywords: feature selection; finite normal mixtures; moving separation of mixtures; deep LSTM;
neural network architectures; deep learning; turbulent plasma; air–sea fluxes

MSC: 65C20; 62M45; 62P12; 62P35

1. Introduction

Forecasting of real-world processes can be limited by the amount of information that
can be reasonably collected. In many problems, data accumulation takes place under
conditions of uncertainty caused by:

• the stochastic nature of the event flow intensity and interactions of a large number of
random factors that cannot be exhaustively predicted;

• the heterogeneity or non-stationarity of data;
• the incompleteness of received and stored information that could arise both from

resource limitations and from the stochastic nature of the external environment.

These stated conditions call for the need for research of probability mixture models
for distributions of the observed processes [1]. A wide class of distributions with the
form of H(x) = EP[F(x, y)] is usually chosen as the base family [2,3]. EP denotes the
mathematical expectation with respect to some probability measure P, which defines a
mixing distribution. It is usually determined through the analysis of external factors
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behavior. F(x, y) is a distribution function with a random vector of parameters y that is
called a mixing (kernel) distribution.

There are two main problems:

• the analytical selection of the kernel type based on limit theorems of probability theory
and mathematical statistics;

• methods of kernel parameter estimation which are random variables themselves.

The combination of parametric and non-parametric methods is the basis of a semi-
parametric approach to the analysis of heterogeneous data. It was successfully applied to
the complex tasks of the precipitation [4] and lunar regolith [5] analysis.

These principles are used as the basis for the method of moving separation of mixtures
(MSM) [1]. MSM is used in this article as a tool for non-trivial extension of the feature space
in neural network training problems. A significant relationship between EM algorithms
and neural networks is well-known. First, backpropagation being the traditional method
of training neural networks is also a specific case [6] of a generalized EM algorithm [7]. Sec-
ondly, finite normal mixtures and various modifications of the EM algorithm that are often
used for estimating the parameters of probability mixture models [8–12] were successfully
applied for solving clustering problems based on various deep neural networks [13,14].

Both short- and long-term data forecasts are essential to the decision-making, pre-
diction of catastrophic events, and experiment planning. Machine learning algorithms,
including neural networks, have proven to be effective forecasting tools for information
flows [15] or weather prediction [16,17]. There are multiple ways to improve prediction
accuracy, the majority of them being feature selection and construction [18–25]. Proper
selection of features plays a critical role in the performance of many machine learning
algorithms [26,27] and may result in better and/or faster trained models [28]. At the same
time, in the analysis of one-dimensional time series, the process of feature construction
becomes valuable as the collection of additional information for data enrichment and
following feature selection may require additional time, resources, or be impossible in cases
of historical data analysis.

Therefore, the idea of using probability mixture models characteristics as additional
features for machine learning solutions of forecasting problems naturally arises. This allows
us to take into account information derived from the mathematical model that is used to
approximate data in a particular subject area. Additionally, a larger set of training data can
be used without the direct increase of the initial observation volume.

In this paper, a new statistical approach to data enrichment and feature construction
that is called Statistical Feature Construction (SFC) has been developed. SFC consists of
two steps. In the first step, initial data are separated into pseudo-stationary sub-samples
(windows). Then, for each of them, the MSM algorithm is used to evaluate parameters
of a corresponding windows-based statistical model. The characteristics of such models
are used to supply additional features to various machine learning methods. In the sec-
ond step, moments of statistical models are used to enhance recurrent neural network
forecasting performance.

This paper significantly expands and generalizes results obtained by the authors in
the field of short- and medium-term neural networks based forecasting [29] including
predictions of mixture moments themselves [30]. To demonstrate the effect of SFC, five
plasma physics experimental datasets of stellarator L-2M [31] and six air–sea interactions
time series were analyzed. New results are focused on the application of statistical char-
acteristics to recurrent networks and comparison of the SFC performance with neural
networks trained on non-enriched data.

The chosen data differ significantly. For example, there is no such phenomenon as
seasonality in plasma while oceanographic data exhibit strong seasonal behavior. The
possibility of significantly improving the accuracy of forecasts for both types of data will be
demonstrated. This proves to be favorable for the generalized application of the proposed
method for accuracy increase of neural network based forecasting.
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Analyzed data are selected for the following reasons. First, for these types of ob-
servations, the possibility of qualitative approximation using finite normal mixtures has
been demonstrated before [32,33]. Secondly, the application of moment characteristics
allowed for obtaining significant results in the task of statistical analysis of experimental
results in plasma physics [33]. Forecasting accuracy increase is the natural continuation of
these studies. Additionally, neural networks were successfully applied in this area [34–38]
including tasks of instability and destructive effect analysis [39,40] and in the interests of
research on the international nuclear fusion ITER megaproject [41].

The paper is organized as follows: Section 2 outlines the MSM approach to the con-
struction of statistical models. Section 3 summarizes the SFC methodology used. Feature
construction and neural network architecture are described, and the question of computa-
tional complexity is addressed. Section 4 presents examples of the real data predictions in
problems of plasma physics and oceanology. Forecasts and accuracy improvement levels
achieved with SFC are shown. In Section 5, the results obtained and the directions for
further research in this area are discussed. Appendix A contains simplified descriptions
(pseudocodes) of the presented algorithms.

2. Finite Normal Mixtures and the MSM Method

The success of approximating distributions for heterogeneous data using arbitrary
mixtures of normal distributions is based on the results for generalized Cox processes [1]
and essentially uses the finiteness of variance of process increments. The main task in this
area is related to the statistical estimation of mixing distribution random parameters.

It is well known that arbitrary continuous normal mixtures are not identifiable, while,
for finite normal mixtures, identifiability holds [42,43]. Therefore, the original ill-posed
problem of parameter estimation can be replaced with the solution closest to the true
one in the space of finite normal mixtures. Such solution exists and is unique due to the
aforementioned identifiability property.

However, the heterogeneity of data arising from the reasons mentioned at the begin-
ning of Section 1 leads to the absence of a universal mixing distribution for a significantly
long timescale. Therefore, the initial time series is divided into possibly intersecting sub-
samples called windows. Then, we can solve the problem of mixing distribution parameter
estimation for each of these intervals while moving them along the time axis in the series.
This procedure is the essence of the method of moving separation of mixtures.

It can be seen that the mixture itself will evolve during the time-movement of subsam-
ples. This in turn allows us to observe the dynamics of the statistical patterns evolution in
the behavior of the studied process.

Created statistical models can serve as qualitative approximations for the distributions
of various processes. We propose to use the first four moments of the corresponding
distributions as additional features for machine learning algorithms.

Let us consider a subsample (nth window) X with size 1 × N and a cumulative
distribution function (a finite normal mixture) of its elements:

F(x, k(n), μn, σn, pn) =
k(n)

∑
i=1

piΦ
(

x− μi(n)
σi(n)

)
, (1)

where x ∈ R, Φ(x) =
+∞∫
−∞

e−x2/2 dx and standard constraints on parameters

μi(n) ∈ R, σi(n) ∈ R, σi(n) > 0,
k(n)

∑
i=1

pi(n) = 1, pi(n) � 0,

hold for all i = 1, . . . , k(n).
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Let a random value Xn have a cumulative distribution function (1). We will assume
that it is an arbitrary element of the sample X. We can assign a set of values to each vector
(E

(n)
X ,D(n)

X , γ
(n)
x , κ

(n)
x ). Those values are defined by the following formulas [44]:

• expectation:

E
(n)
X = EXn =

k(n)

∑
i=1

pi(n)μi(n); (2)

• variance:

D
(n)
X = DXn =

k(n)

∑
i=1

pi(n)
(

μi(n)−
k(n)

∑
i=1

pi(n)μi(n)
)2

+
k(n)

∑
i=1

pi(n)σ2
i (n); (3)

• skewness:

γ
(n)
X =

EX3
n − 3E(n)

X ·D(n)
X −

(
E
(n)
X

)3

(
D
(n)
X

)3/2 =

=

[ k(n)

∑
i=1

pi(n)
(

μ3
i (n) + 3μi(n)σ2

i (n)
)
−
( k(n)

∑
i=1

pi(n)μi(n)
)
×

×
(

3
k(n)

∑
i=1

pi(n)
(

μi(n)−
k(n)

∑
i=1

pi(n)μi(n)
)2

+

+3
k(n)

∑
i=1

pi(n)σ2
i (n)−

( k(n)

∑
i=1

pi(n)μi(n)
)2)]

×

×
[ k(n)

∑
i=1

pi(n)
(

μi(n)−
k(n)

∑
i=1

pi(n)μi(n)
)2

+
k(n)

∑
i=1

pi(n)σ2
i (n)
]−3/2

; (4)

• kurtosis:

κ
(n)
X =

EX4
n − 4E(n)

X ·EX3
n + 6

(
E
(n)
X

)2
·EX2

n − 3
(
E
(n)
X

)4

(
D
(n)
X

)2 − 3 =

=

[ k(n)

∑
i=1

pi(n)
(

μ4
i (n) + 6μ2

i σ2
i (n) + 3σ4

i (n)
)
− 3
( k(n)

∑
i=1

pi(n)μi(n)
)4

−

−4
( k(n)

∑
i=1

pi(n)μi(n)
)( k(n)

∑
i=1

pi(n)
(

μ3
i (n) + 3μi(n)σ2

i (n)
))

+

+6
( k(n)

∑
i=1

pi(n)μi(n)
)2( k(n)

∑
i=1

pi(n)
(

μ2
i (n) + σ2

i (n)
))]

×

×
[ k(n)

∑
i=1

pi(n)
(

μi(n)−
k(n)

∑
i=1

pi(n)μi(n)
)2

+
k(n)

∑
i=1

pi(n)σ2
i (n)
]−2

− 3. (5)

The argument n for each of these values (2)–(5) shows a strict dependence on the step
number of the MSM method. That is, these moments are determined not for the entire
time series, but only for a subsample of it. They are determined by observations that are
separated from the first element X—according to its location in the analyzed series—by the
value L of the moving window of the MSM method.

It is well known that, for the initial moments of a random variable X with a normal
distribution with parameters a and σ2 (that is, X ∼ N(a, σ2)), the following equations hold:
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EXm =

⎧⎪⎨⎪⎩
a2 + σ2, m = 2;
a3 + 3aσ2, m = 3;
a4 + 6a2σ2 + 3σ4, m = 4.

(6)

For the initial moments of a random variable Xn with a cumulative distribution
function F(x, k(n), fn, σn, pn) (1), we have (m = 1, 2, . . .):

EXm
n =

k(n)

∑
i=1

pi(n)
σi(n)

√
2π

+∞∫
−∞

zm exp
{
− (z− μi(n))2

2σ2
i (n)

}
dz =

k(n)

∑
i=1

pi(n)EXm
[i],

where X[i] ∼ N(μi(n), σ2
i (n)). Thus, the analogues of the expressions (6) are as follows:

EXm
n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k(n)
∑

i=1
pi(n)μi(n), m = 1;

k(n)
∑

i=1
pi(n)

(
μ2

i (n) + σ2
i (n)
)
, m = 2;

k(n)
∑

i=1
pi(n)

(
μ3

i (n) + 3μiσ
2
i (n)
)
, m = 3;

k(n)
∑

i=1
pi(n)

(
μ4

i (n) + 6μ2
i σ2

i (n) + 3σ4
i (n)
)
, m = 4.

(7)

Substituting these expressions into formulas for variance (3), skewness (4) and kurto-
sis (5) lead to formulae that depend only on the distribution parameters, namely the values
pi(n), μi(n) and σi(n).

Modern computing systems are optimized for performing matrix computations in-
cluding parameter estimation problems that can be implemented with EM algorithms.
Therefore, expressions (2)–(5) can be represented in an equivalent matrix form [30,45]:

• expectation:
EXn = pn μT

n ; (8)

• variance:

DXn = pn

(
Dan μT

n + Dσn σT
n

)
− (pn μT

n )
2; (9)

• skewness:

γXn =
pn D2

an μT
n + 3 pn Dan Dσn σT

n + 2 (pn μT
n )

2

(pn(Dan μT
n + Dσn σT

n )− (pn μT
n )

2)3/2 −

−3 · pn μT
n pn Dan μT

n + pn μT
n pn Dσn σT

n

(pn(Dan μT
n + Dσn σT

n )− (pn μT
n )

2)3/2 ; (10)

• kurtosis:

κXn =
pn
(

D3
an μT

n + 6 D2
σn Dan μT

n + 3 D3
σn σT

n
)

(pn(Dan μT
n + Dσn σT

n )− (pn μT
n )

2)2 −

− 4 EXn pn Dμn

(
Dan μT

n + 3 Dσn σT
n
)

(pn(Dan μT
n + Dσn σT

n )− (pn μT
n )

2)2 +

+
6 (EXn)2 pn

(
Dan μT

n + Dσn σT
n
)
− 3 (EXn)4

(pn(Dan μT
n + Dσn σT

n )− (pn μT
n )

2)2 − 3, (11)
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where

pn =
(

p1, . . . , pk(n)

)
, μn =

(
μ1, . . . , μk(n)

)
, σn =

(
σ1, . . . , σk(n)

)
,

Dan = diag
{

μ1, . . . , μk(n)

}
, Dσn = diag

{
σ1, . . . , σk(n)

}
,

and diag{. . .} denotes diagonal matrices with corresponding elements.
To obtain relations (8)–(11), it is enough to use the matrix representation of expres-

sions (7):

EXm
n =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
pn μT

n , m = 1;
pn
(

Dμn
· aT

n + Dσn · σT
n
)
, m = 2;

pn · Dμn

(
Dμn

· μT
n + 3 · Dσn · σT

n
)
, m = 3;

pn

(
D3

μn
· μT

n + 6 · D2
σn · Dμn

· μT
n + 3 · D3

σn · σT
n

)
, m = 4.

To evaluate the parameters in expressions (2)–(5) and (8)–(11) for every position of
moved window various modifications of the EM algorithm can be used [7]. For example,
they may include grid modifications of the EM algorithm that were previously implemented
by the authors in the form of a computing service [46]. In this article, we use modifications
with a random selection of initial approximations [32].

3. Methodology of Statistical Feature Construction

3.1. Approach for Feature Construction

The Statistical Feature Construction method is a two step data enrichment algorithm.
The first step of SFC is the creation of statistical models that is the estimation of the
parameters of finite normal mixtures. It is worth noting that the time series of physical
processes can often be non-stationary. Instead of creating one complex statistical model
encompassing the whole time series, we implement the set of models. It consists of a
sequence of models (1) that describes the evolution of the analyzed process.

Time series are split into shorter pseudo-stationary windows on which the mod-
els are constructed. The process of window separation is as follows. Initial data vector
V = {V1, V2, . . . , VL} of L observations serves as input data for the process. Let us choose
some arbitrary window length N (L � N � 1) and divide V into shorter window vectors
X1, X2, X3, . . . where Xi = {Vi, Vi+1, . . . Vi+N−1} are sequences of N consecutive observa-
tions taken from V. We may notice that window vector Xi differs from window vector Xi+1
only by two observations, namely the first observation in Xi and the last observation in
Xi+1.

Once the collection of window vectors is obtained, new difference window vectors
Y1, Y2, Y3, . . . may be constructed, Yj

i = Xj+1
i − Xj

i . Applying the same transformation to all
window vectors, a collection of difference window vectors is built. Each vector has a length
of (N − 1). Difference window vectors serve as input data for the MSM algorithm.

After window vector and difference vector sets are created, they can be used to
estimate statistical parameters for data enrichment. Such process in the application to
neural network forecasting was previously described and explored in [29].

Hyperparameters on the first step of SFC are the following:

• window length (N);
• kernel selection as described in Section 2;
• number of components (K);
• number (T) and composition of statistical features.

Exact choice of window length is open to debate. Window lengths that are too big lead
to loss of stationarity across the window vector. Additionally, larger windows may contain
observations that have little to no effect on the prediction introducing additional noise to
the model. Smaller windows lead to lack of input data for both the machine learning part
of the algorithm and to the construction of statistical models. A K-component mixture
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requires the evaluation of 3K − 1 statistical parameters which can be hard to perform
accurately on smaller windows.

Choice of the component number is also open to debate. Both empirical and classi-
cal statistical approaches based on information criteria (AIC [47], BIC [48]) can be used.
For physical and oceanographic data, we analyzed cases of mixtures consisting of 3–5
components at each step.

The second step of SFC is the feature expansion; given a statistical model, its char-
acteristics can be used for feature enrichment. As outlined in the previous section, the
first four moments are used as additional features for the data enrichment process. The
implementation of this approach will be discussed in the next section. We should notice
that these moments do not contain information about how the series behaves after the last
window observation, and therefore can be correctly used when making forecasts.

Algorithmic representation of SFC is presented in Appendix A, see Algorithms A1–A3.
It can be implemented in computing services [49,50].

3.2. Neural Network Architectures with Additional Features

A deep recurrent neural network was created for forecasting. It consists of two
recurrent neuron layers followed by several dense layers, see Figure 1.

Figure 1. Architecture of SFC processing with a neural network.

While the general architecture of the network remained the same, the number of
layers and number of neurons in each layer varied depending on the hyperparameter
optimization process.
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The hyperparameter optimization may improve the performance of neural networks
and can be used to adapt commonly used architecture to specific domains [51–53]. In this
research, the following hyperparameters are varied:

• type of recurrent layers: Long Short-Term Memory (LSTM) [54], recurrent neural
network (RNN) [55,56] or Gated Recurrent Units (GRU) [57];

• exact number of dense layers;
• number of neurons in each layer;
• dropout rates [58];
• optimizers for the neural network.

Several recurrent layers were used in a neural network architecture. Deep recurrent
neural networks allow for better flexibility compared to one-layer networks and serve as a
powerful model for chaotic sequential data. Deep RNN were used for the task of forecast-
ing and achieved better performance compared to shallow recurrent architectures [59,60].
Neural networks of similar architecture were applied to the analysis of indoor naviga-
tion [61], climate data [62], human activity classification [63], and health assessment [64].
Achieved results combined with the difference in analyzed data led to the choice of deep
RNN architecture. Such combination of deep RNN and MSM algorithms were never used
to process climate and physics data prior to this paper.

The enrichment process occurs in-between data processing and neural network con-
struction. We should note that statistical model created on the window X is a characteristic
of that entire window, not a time-dependent characteristic of any specific observation
contained in the window. This also applies to the features based on that model.

There are several methods of passing features to the neural network. The simplest
way to do so is to create a multi-input model by adding statistical features to the data flow
after recurrent layers, see Figure 2a. Unfortunately, this also means that those layers would
be trained without any information derived from SFC.

Figure 2. Methods of passing features to the neural network: (a) multi-input model; (b) adding
features to window; (c) hidden state initialization.
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In the second approach (see Figure 2b), additional data are added to the window
itself. The input vector for neural network consists of original N window observations
and additional K SFC features are applied to the end or to the beginning of the data vector.
Adding time-independent data to a vector of time observations may create a harder learning
task for the neural network. This approach was used but had proven to give worse accuracy
compared to the hidden state initialization [65,66].

Finally, the approach presented in Figure 2c directly affects the hidden state of recurrent
layers. Additional features for each training sample are transformed into a K-sized vector v

defining the internal state of the recurrent layer:

v = Wx + b,

where x is the vector of features, and W and b are trainable weights. Those weights
can be obtained with an additional single dense layer placed before the recurrent layers
of the neural network as a part of the enrichment process. For the first time step, the
resulting tensor is added to the hidden state of the RNN. It allows both for conditioning
of RNN on additional features and avoiding the problem of increasing the complexity of
model training.

3.3. Computational Complexity

Compared to training on non-enriched data, SFC includes an additional step for model
creation. We raise a question of computational complexity of the first SFC step compared
to the overall complexity of the network training.

The total number of parameters in a LSTM layer can be calculated as follows [67]:

W = n2
c × 4 + ni × nc × 4 + nc × no + no × 3,

where nc is the number of memory cells, ni is the number of input units, and no is the
number of output units. The computational complexity of training the LSTM model per
weight and per time step with used optimizers is O(1). This gives us the computational
complexity of O(W) per time step.

Given the window length N and relatively small prediction size, the computational
complexity is dominated by the nc × (nc + N) factor. Finally, given the total time series
length of L, the number of windows scales linearly with it. Assuming we have a constraint
on maximum number of epochs, we may postulate that the computational complexity of
training an LSTM model would be O(L× nc × (nc + N)). Calculations are similar for GRU
and RNN layers.

At the same time, the computational complexity of the MSM algorithm, see Algorithm A1,
on one window of length N is O(K× N), where K is the number of components. The main
computational complexity lies in the updating of auxiliary matrix g of the algorithm. It gives
us the complexity of O(L × K × N) for the MSM analysis of the whole time series. This
is comparable to the complexity of neural network training. The MSM algorithm can be
tailored for operations with matrices leading to a performance improvement on GPU-assisted
systems [68].

These results are confirmed by the practical application of SFC in GPU-assisted com-
puting. MSM model construction required significantly less time than model training:
the difference reached a factor of ten or even more. Additionally, SFC statistical models
on different windows are independent from each other. It means that already computed
models could be cached and would not be changed with the addition of new observations
to series. This allows for application of SFC to a real-time tasks with continuous data flows.

4. Examples of Real Data Analysis

4.1. Test Data and Neural Networks’ Configurations

Analyzed datasets consist of two distinct sets. The first set contains data obtained in
physical experiments carried on the L-2M stellarator [31]. Time series consists of plasma
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density fluctuations after the medium had been agitated with an energy discharge. A
total of five time series would be analyzed. Each series consists of 60,000 observations
that correspond to a time interval from 48 to 60 ms of each experiment. The time gap
between two consecutive observations is 0.2 microsecond (μs). Time series from this set
had proven to be non-stationary, and the p-value of the Dickey–Fuller test [69] obtains up
to 0.56. For model correctness, it is necessary to analyze not the entire series, but windows,
subsamples for which the necessary assumptions are considered to be satisfied, that is,
to use the MSM approach. The typical waveform as well as empirical distributions are
presented in Figure 3.

Figure 3. Physical time series A19692 (on the left) a corresponding histogram (on the right).

The experiment consists of three stages: the initiation stage when the impulse agitates
the plasma, the main phase, and the relaxation phase. It is worth noting that the distribution
of time series has a strongly non-Gaussian form. It can be seen that an excess of kurtosis
and asymmetry exists. It would require complicated models to describe such data.

The second dataset consists of air–sea fluxes [70], see Figure 4.

Figure 4. Tropical-1 time series (on the left) a corresponding histogram (on the right).

For each spot, two separate time series were collected for latent and hidden fluxes. Each
time series consists of approximately 14, 600 observations, and the time gap between two
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consecutive observations is six hours. Tropical-1 time series and its distribution are shown in
Figure 4. These data are highly seasonal in nature, and the distribution is non-Gaussian.

In order to measure the effect of statistical enrichment on the accuracy, two different
predictions would be made for each set. Short-term prediction outputs M = 12 (see
Figure 1) consecutive values given the 200 previous values. For oceanographic data, short-
term prediction would be a prediction of data for three days after 50 days of observations.

Medium-term prediction outputs M = 12 consecutive values given the 200 previous
values with a skip of 28 observations. Taking the oceanographic data as an example,
medium-term prediction would be a prediction of three days on the next week after 50 days
of observations.

For the purpose of this research, the size of window N = 200 (see Figure 1) was
chosen to be the same as the size of input data for short- and medium-term predictions.
This allows for a proper comparison of enriched and non-enriched accuracy values as no
additional data are supplied to the enrichment process if compared to non-enriched data.
The number of components K = 3 was selected for all time series as outlined in Section 3.
Based on constructed models, four moments were used as additional statistical features for
neural networks.

All data are normalized to the range of [0, 1]. Error decrease is measured with the root
mean squared error metrics over the normalized data forecasts:

RMSE =

√
1
n

n

∑
i=1

(di − fi)
2.

Here, n denotes the number of data points, di is the predicted value of i-th data
point, and fi is the true value of the i-th data point. Such approach allows for compari-
son of the relative error decrease among all analyzed sets of data despite their different
physical nature.

In order to demonstrate the efficiency of SFC, two neural network sets were constructed
for each time series and prediction type. The original set accepts initial observations as
input data. For the enriched network set, time series are supplemented by hidden state
initialization with statistical moments. In both cases, the output consists of either a short-
or medium-term prediction, in total four sets for each time series.

It is known that random search may provide for better results, but, in order to make a
proper comparison of accuracy increase, a grid-search method was used for hyperparameter
optimization [30]. Each set contains neural networks with all possible hyperparameter
combinations, in total about 700 networks in a set. For each time series, error value is
compared between best neural networks in original and enriched short-term sets and
between best neural networks in original and enriched medium-term sets.

Input data were divided into training, validation, and test data sets in 60%/30%/10%
proportion. The customized MSM algorithm and estimation of finite normal mixture
parameters were implemented in MATLAB programming language. Neural networks were
created, trained, and evaluated with TensorFlow/Keras Python libraries. Every network
was ran several times, and the RMSE value was averaged among all runs.

The choice of optimizer varied among observed data sets, but mostly learning speed
and accuracy were better with the Adam optimizer. No strong overfitting was observed in
all constructed neural networks. A non-zero dropout rate affected learning rate negatively.
In all observed cases, the choice of LSTM recurrent layers provided for better results than
the use of GRU/RNN layers.

4.2. Results

The calculations were performed using a hybrid high-performance computing cluster
(IBM Power 9, 1 TB RAM, 2 NVIDIA Tesla V100 (16 GB) with NVLink). Model training
finished after a fixed cut out of 500 epochs or after the error metrics had not decreased for
10 epochs. In practice, training always finished before 500 epochs passed. It took about 20 h
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to perform a complete hyperparameter search for a single training set. Speed difference
between enriched and non-enriched model training varied from 2% to 10% depending on
the exact choice of hyperparameters.

Similar best-performing architectures for most analyzed series in both enriched and
non-enriched cases were found. As in [16,29], neural networks with a smaller number
of wide hidden layers made more accurate predictions than deep neural networks with
stacked but narrower hidden layers. The difference in error metrics was significant and
reached 35% in certain cases. The choice of optimizer varied among observed data sets.
Accuracy and learning speed were mostly better with an Adam optimizer. The non-zero
dropout rate affected the learning rate negatively. In all observed cases, the choice of LSTM
recurrent layers provided for better results than the use of GRU/RNN layers. In general,
the best performance was reached with two dense layers of 300 neurons each, two LSTM
layers of 200 neurons each, the Adam optimizer, and no dropout.

Resulting predictions can be seen in Figures 5–8. Each graph denotes several windows
and a forecast based on these windows.

The graph of a single forecast consists of three parts: input, designated by a thick blue
line; optional skipped data part marked by a dotted line for medium-term forecasts (see
Figures 6 and 8) and output designated by orange and green lines. The green line displays
the true data, and the orange line is the constructed forecast for the data. Forecasting
windows were chosen randomly from the test part of the window series.

It can be seen that the constructed forecasts are good at trend predictions and the
direction of overall movement. Peaks are also predicted accurately. It should be noted that,
in some cases, the model does not give the accurate forecast of the minimum and maximum
values, but, in most observed cases, the minimum of the prediction would lie in a range
of 1–2 observations from the true minimum of the forecasted data. The same is true for
the maximum.

RMSE results for physical data analysis can be seen in Tables 1 and 2. A19692-2 is
a clear outlier with almost no decrease of RMSE metric but overall satisfactory forecasts
in both the enriched and non-enriched data set. A minor decrease in RMSE metrics is
achieved for the short-term forecast, but, for the medium-term forecast, an RMSE decrease
of 10% justifies the use of a more complex SFC approach.

Table 1. Physical RMSE results, short-term forecast.

Time Series Non-Enriched Enriched Improvements

A19692 0.085 0.061 39%
A19692-1 0.086 0.061 41%
A19692-2 0.095 0.094 1%
A20229 0.091 0.084 9%
A20264 0.079 0.070 12%

Table 2. Physical RMSE results, medium-term forecast.

Time Series Non-Enriched Enriched Improvements

A19692 0.068 0.057 19%
A19692-1 0.095 0.077 23%
A19692-2 0.096 0.088 10%
A20229 0.088 0.081 8%
A20264 0.078 0.071 9%
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Figure 5. A19692 short-term forecasts.

Figure 6. A19692-1 medium-term forecasts.

Analysis of oceanographic data leads to similar results. RMSE metrics and their
improvement are presented in Tables 3 and 4.

The choice between enriched and non-enriched data greatly affected RMSE value for
oceanographic data. SFC allowed for 2–21% decrease in RMSE with an average of 14%
for short-term forecasts and 10% for medium-term forecasts. Effective decrease correlated
with the analyzed time series. For both types of forecasts, enrichment performed best on
Tropical-2 time series and worst on Tropical-1 time series.

109



Mathematics 2022, 10, 589

Figure 7. Gulfstream-1 short-term forecasts.

Figure 8. Gulfstream-1 medium-term forecasts.

This level of accuracy improvement according to the RMSE metric may be due to the
fact that, for a specific set of Tropical-1, the basic neural network model already provides
a complete description of the analyzed processes. Therefore, the feature space expansion
provides only to a marginal decrease of learning error. In all other situations, the SFC
based decrease is very noticeable, so such a series can be considered as an outlier for the
proposed method. At the same time, it should be noted that there is still no error increase
for Tropical-1. It means that the proposed method is effective in all situations, but the
magnitude of its effect may vary.
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Table 3. Oceanographic RMSE results, short-term forecast.

Time Series Non-Enriched Enriched Improvements

Gulfstream-1 0.075 0.067 11%
Gulfstream-2 0.064 0.058 11%
Labrador-1 0.069 0.060 15%
Labrador-2 0.069 0.059 17%
Tropical-1 0.073 0.068 7%
Tropical-2 0.074 0.061 21%

Table 4. Oceanographic RMSE results, medium-term forecast.

Time Series Non-Enriched Enriched Improvements

Gulfstream-1 0.081 0.075 8%
Gulfstream-2 0.072 0.066 9%
Labrador-1 0.068 0.061 11%
Labrador-2 0.075 0.066 14%
Tropical-1 0.073 0.072 2%
Tropical-2 0.074 0.063 17%

It should be noted that there was no increase of RMSE error observed among all
enriched sets when compared to the original. For all sets, short-term and medium-term
forecasts follow major data trends. At the same time, enriched sets produce forecasts that
are better at adapting to quick shifts in data. Additionally enriched forecasts offer better
prediction of peak values compared to non-enriched data.

5. Discussion and Conclusions

The paper presents a statistical approach to data modeling and feature construction
with applications for two different sets of data. For six oceanographic datasets and five
plasma physics datasets, multiple neural networks were constructed and trained in an
enriched and non-enriched form. For all analyzed time series, a qualitative predictions
were created for both methods with an average RMSE error of 0.068/0.078 for short-term
forecasts and 0.071/0.079 for medium-term forecasts.

From the numerical perspective, statistical feature construction had shown a significant
decrease in RMSE error metrics among all analyzed time series. The decrease ranged from
1% to 43% with the median of 11.4% and happened on all analyzed time series. It was
also shown that SFC does not add significant computational complexity to the process of
forecasting and can be used with continuous data flows and/or in real-time problems. This
method can also be adjusted for GPU computing.

The significance of the work lies in the possibility of accuracy improvement with a
relatively simple addition to preliminary data analysis. SFC does not require additional
data collection and, as shown above, can be applied to a wide range of different problems
where a stochastic external environment presents. The first step of SFC has relatively few
hyperparameters for optimization, which leads to a smaller overhead on their optimization.
Lastly, the increase of forecasting accuracy due to SFC application can serve as an indicator
of correctness of the chosen statistical model.

For future research, it would be beneficial to apply another features from MSM mod-
els to forecast improvement. For example, in Figures 9 and 10, an evolution of MSM
components [71] is demonstrated. These structural components do not correspond to the
summands in formula (1) but are derived from them with the help of clustering algorithms.
The colors signify the corresponding weight of the component in the mixture (1).

The MSM components based method allows us to determine significant changes in
the stochastic structure of the forming processes. In particular, the detection of the time
moment of an essential change in plasma parameters, which affects its confinement (the
so-called transport transition), has been demonstrated, see Figure 9. Component number
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5 with the maximum weight (red curve in the lower graphs in Figure 9) has the greatest
contribution to the process. However, it breaks off at about 55 ms of the experiment and,
after that, component number 3 dominates.

Figure 9. Example of MSM components for plasma time series.

Figure 10. Example of MSM components for oceanographic time series.
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A similar situation takes place for oceanographic time series, see Figure 10. Here, a
smaller number of structural components are distinguished, and no abrupt disappearances
or creation of new components are observed.

Other finite mixture models that have more features than a normal distribution could
be employed. Those may include finite mixtures based on skew-normal or skew-t densi-
ties [12]. MSM components can be effectively used to process non-trivial trends in data,
which would make it possible to better predict complex time series using neural networks.
Surely, this will require sophisticated architectures such as ensembles of deep LSTM net-
works. However, such solutions are a natural development of the SFC approach proposed
in this article.
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Appendix A. Algorithms

The section presents pseudocode of the MSM and SFC algorithms.

Algorithm A1. EM-based algorithm for estimating mixture parameters

1: function CREATE_FINITE_MIXTURE(Data, K, EL, PreviousEstimation)
2: // Data: N-length window data vector
3: // K: Component number
4: // EL: Stop criteria level for MSM
5: err ← EL; // Mixture parameter change during the step
6: // Vectors of expectation, variance and weights
7: if PreviousEstimation then
8: [E[K], D[K], W[K]] ← UPDATEPREVEST(Data, PreviousEstimation, K);
9: else

10: [E[K], D[K], W[K]] ← RANDOMINITIALESTIMATION(Data, K);
11: g[K][N] ← INITIALIZERANDOMPARAMMATRIX( ); // Matrix of cross-weights
12: while err � EL do
13: W2[K] ← UPDATEWEIGHTS(g, Data);
14: E2[K] ← UPDATEE(g, Data);
15: D2[K] ← UPDATED(g, E2, Data);
16: // Calculating parameter change during the step
17: err ← CALCULATEDISTANCE([E2, D2, W2], [E, D, W]);
18: [E, D, W] ← [E2, D2, W2];
19: g ← UPDATECROSSWEIGHTS(E, D, W, Data);
20: return [E, D, W];
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Procedure A1 is an implementation of the customized EM algorithm for estimating
finite normal mixture parameters. Taking into consideration that consecutive windows
differ only by two (first and last) observations, usage of previous estimations can be
beneficial for increasing algorithm speed.

Algorithm A2. MSM moments

1: function MSM_MOMENTS(Mixture, T )
2: // Mixture: Parameters of finite normal mixture
3: // T: Number of statistical features
4: Moments ← []; // Resulting array of moments
5: for i in (1, T) do
6: // Calculations of moments, see formulas (2)–(5) or (8)–(11)
7: Moment ← CALCULATEMOMENT(Mixture, i, Moments);
8: MOMENTS.APPEND(Moment);
9: return Moments;

An implementation of moment calculations, see line 7 of Algorithm A2, is described
in Section 2. Analyzed realization of SFC uses all of first T moments, so the first two mo-
ments (expectation and variance) are used to greatly simplify calculations of the following
statistical moments.

Algorithm A3. SFC algorithm

1: function SFC(Data, isManual) // see Figure 1
2: // Data: Initial Time Series
3: // isManual: Flag for manual input mode
4: if isManual then
5: K ← INPUTDIALOG( ); // Number of components
6: EL ← INPUTDIALOG( ); // Stop criteria level
7: T ← INPUTDIALOG( ); // Number of statistical features
8: N ← INPUTDIALOG( ); // Window Length
9: else

10: [K, EL, T, N] ← ANALYZEDATA(Data);
11: // Splitting data into windows and adding labels for learning
12: [Windows, Labels] ← SPLITANDNORMALIZEDATA(Data, N);
13: Inputs[K-N+1] ← []; // Input array for machine learning
14: PreviousMixture ← []; // Previous statistical parameter estimation
15: for wnd in Windows do
16: // Calling function from Algorithm A1
17: CurrentMixture ← CREATE_FINITE_MIXTURE(Data, K, EL, PreviousMixture);
18: StatisticalParams ← MSM_MOMENTS(CurrentMixture, T);
19: AdditionalFeatures ← ENRICH(wnd, StatisticalParams); // see Figure 2
20: INPUTS.APPEND(AdditionalFeatures);
21: PreviousMixture ← CurrentMixture;
22: // Neural Network based analysis
23: Model ← CREATEMODEL(Inputs);
24: [Model, Evaluation] ← TRAINANDEVALUATEMODEL(Model, Inputs, Labels);
25: return [Model, Evaluation];

Algorithm A3 is an outline of the SFC procedure. Initial data are divided into windows,
and statistical models are constructed for each window and used to enrich input data vector
with additional features. The output of SFC procedure is a trained neural network model
and evaluation of its performance.
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Abstract: The paper is devoted to an emerging trend in control—a machine learning control. Despite
the popularity of the idea of machine learning, there are various interpretations of this concept, and
there is an urgent need for its strict mathematical formalization. An attempt to formalize the concept
of machine learning is presented in this paper. The concepts of an unknown function, work area,
training set are introduced, and a mathematical formulation of the machine learning problem is
presented. Based on the presented formulation, the concept of machine learning control is considered.
One of the problems of machine learning control is the general synthesis of control. It implies finding
a control function that depends on the state of the object, which ensures the achievement of the
control goal with the optimal value of the quality criterion from any initial state of some admissible
region. Supervised and unsupervised approaches to solving a problem based on symbolic regression
methods are considered. As a computational example, a problem of general synthesis of optimal
control for a spacecraft landing on the surface of the Moon is considered as supervised machine
learning control with a training set.

Keywords: machine learning control; general synthesis problem; symbolic regression; optimal
control; evolutionary algorithm

1. Introduction

Complexity of the control synthesis problems for autonomous robots which must
perform the assigned tasks and achieve the set goal, led to new ideas in the control
theory. Now, to create a control system for an autonomous robot, this system needs to be
trained [1,2], instead of obtaining it by solving some known optimization problems.

To formulate the real problem of mobile robot control, it is needed to describe a large
number of different phase constraints. These can be walls, doors between the rooms,
windows, columns and other obstacles. For example, a robot has to avoid a column, not to
hit on a wall and to get in a door. Now, when control systems for mobile robots are being
created, programmers imagine the problems that this robot must face and decide how it
should overcome them. Quite a laborious process, but it is quite justified in conditions
when control systems were developed on an individual basis for single technical objects,
such as spacecraft. However, modern automation and robotization is reaching a broader
level and becoming ubiquitous. This trend requires the development of new universal and
even automatic approaches to the development of control systems.

Application of symbolic regression methods allows to automatically receive mathe-
matical expressions for control functions. Such mathematical expressions describe how the
robot should optimally reach the goal avoiding the obstacles.

Only symbolic regression methods can search structure and parameters of mathemati-
cal expression. Other methods, and even artificial neural networks, search only parameters.
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The searching of control function structure in the control synthesis problem is called ma-
chine learning control [1]. This is a new technology in the development of control systems
and it has not yet been proposed a rigorous mathematical formulation that defines this
approach. In this paper, we propose some mathematical formalization of the machine
learning problem (Section 2) and, on the basis of the proposed definitions, we single out a
special area of machine learning—machine learning control (Section 3).

One of the main problems of machine learning control is the problem of control synthe-
sis. The paper first presents the general mathematical formulation of the control synthesis
problem, and then proposes its numerical formulation, since according to the methodology
of machine learning control, the synthesis problem must be solved numerically using
symbolic regression methods.

Further in the work in Section 4, we present our approach to solving the problem of
machine learning control based on approximation of optimal trajectories. According to
the technique of learning firstly it is necessary to create a training set in order to show to
learning object what we want of it. For this purpose initially the optimal control problem is
solved with the same quality criterion as for the synthesis problem from some different
initial conditions. Obtained optimal trajectories are templates for learning. They show
what forms of plots for variables must be obtained in the result of control synthesis problem
solution and what values of functional must give these solutions. Then, obtained optimal
trajectories for different initial conditions are approximated by a numerical method of
symbolic regression. The proposed approach of machine learning based on approximation
of optimal trajectories is demonstrated in the computational example of general synthesis
of optimal control for a spacecraft landing on the surface of the Moon (Section 5).

2. Problem Statement of Machine Learning

Definition 1. A set of computational procedures, that transforms a vector x from an input space X
to a vector y from an output space Y, and there is not any algebraic equation y = f(x) for them, is
called an unknown function.

For example, the system of ordinary differential equations ẋ = f(x) is an unknown
function for a vector of initial conditions x(0) and a vector of solutions as functions of time
x(t, x(0)), if a general solution is unknown for this differential equation.

The unknown function between input vector x and output vector y is defined as

y = α(x). (1)

Then for differential equations without general solutions, an unknown function has
a form

x(t, x0) = α(x0). (2)

Definition 2. A work area is a subset of input vector space, where the input vectors exist surely
and that is used for solving the problem.

The unknown function can be realized by a physical equipment or an experiment.
Then unknown function will be called black box, but will be described as (1).

Let a set of input vectors be determined in the work area

X̃ = {x1, . . . , xN} ⊆ X. (3)

For every input vector, output vector is determined by the unknown function (1)

Ỹ = {y1 = α(x1), . . . , yN = α(xN)} ⊆ Y. (4)

Definition 3. A pair of sets,
(X̃, Ỹ), (5)
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is called a training set.

It is known that there are supervised and unsupervised machine learning methods.
An unsupervised machine learning problem can be formulated as follows: for some

unknown function (1) and a positive small value δ it is necessary to find a function

y = β(x, q), (6)

where q is a vector of parameters, q = [q1 . . . qp]T , such that ∀x ∈ X

‖y− β(x, q)‖ ≤ δ. (7)

A supervised machine learning problem consequently can be formulated as follows:
for some unknown function (1) and a positive small value δ, it is necessary to determine a
positive value ε, to build a training set (5) and to find a function (6) such that if the total
error for the training sample is less than the given value ε

N

∑
i=1

‖yi − β(xi, q)‖ ≤ ε, (8)

then for ∀x∗ from work area, but not included in the training set x∗ ∈ X and x∗ /∈ X̃ the
following inequation is performed

‖y∗ − β(x∗, q)‖ ≤ δ, (9)

where y∗ = α(x∗).
Here the function β(x, q) includes a parameter vector q. In many approaches a

structure of function is defined beforehand on the basis of experience or intuitively, and
it is necessary to find only values of some parameters. For example, an artificial neural
network [3–5], which is often used for solving of the machine learning problems, has a
set structure and large number of unknown parameters. In contrast, symbolic regression
methods [6–8] allow you to search for both function structure and parameters.

3. The Problem of General Control Synthesis as Machine Learning Control

In the field of control there are also problems that require machine learning. One of
the main machine learning control problems is a search for a control function in the general
control synthesis problem.

The problem of control general synthesis was formulated in the middle of the last
century by Boltyanskii [9] after studying the Pontryagin’s maximum principle for the
optimal control problem.

The problem has the following description.
The mathematical model of the control object is given in the form of the system of

ordinary differential equations
ẋ = f(x, u), (10)

where x is a vector of state, x ∈ Rn, u is a vector of control, u ∈ U ⊆ Rm, U is a compact
set, m ≤ n.

The domain of initial conditions is given

X0 ⊆ Rn. (11)

Existence of the initial condition domain is a main feature of the control general
synthesis problem. Initially Boltyanskii defined the domain of initial conditions as a whole
space of states X0 = Rn, because he tried to solve this problem analytically. In this case we
assume to solve this problem numerically. Therefore the domain X0 is a restricted set in the
space of states.
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The terminal condition is given

x(t f ) = x f ∈ Rn, (12)

where t f is unassigned time of getting from any initial condition x0 ∈ X0 to the terminal
state (12).

The finishing time is bounded
t f ≤ t+, (13)

where t+ is a given positive value.
The phase constraints are given

ϕi(x) ≤ 0, i = 1, . . . , r. (14)

The quality criterion is given

J =
∫
· · ·
∫

X0

t f∫
t0

f0(x(t, x0), u(t))dt → min
u∈U

, (15)

where x(t, x0) is a partial solution of differential Equation (10) with control u(t) ∈ U from
initial condition x0 ∈ X0.

It is necessary to find a control function in the form

u = h(x) ∈ U, (16)

where h(x) : Rn → Rm.
If one inserts the control function (16) in the right part of differential Equation (10),

then the system of stationary differential equations is received

ẋ = f(x, h(x)), (17)

which does not have a free control vector in the right part.
Any partial solution of the differential Equation (17) from initial conditions (11)

achieves terminal condition (12), performing all conditions on phase constraints (14) with
optimal value of the quality criterion (15).

Note, that the control function (16) can have simple discontinuities, therefore in many
cases analytical methods could not be applied. The majority of analytical methods such as
integrator backstepping [10,11] and analytical design of aggregated regulators [12,13] pro-
vides stability on Lyapunov by nonlinear smooth feedback control. The main drawback of
all analytical methods of control synthesis solution is that they are bounded with the specific
form of the mathematical model of control object. The control synthesis problem (10)–(17)
under consideration is complicated by the arbitrary form of the mathematical model of the
control object and sub-integral function of quality criterion, as well as the phase constraints
and a wide class of control functions, which can have simple discontinuities.

In general case, this control general synthesis problem can be solved numerically by
symbolic regression methods as machine learning control problem.

For application of the numerical methods it is necessary to reformulate the problem
statement. The domain of initial conditions is changed onto finite set of initial state points

X̃0 = {x0,1, . . . , x0,K}. (18)
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The terminal condition (12) and the phase constraints are added into quality
criterion (15), and the integral of the domain of initial conditions is changed onto sum of
all initial state points.

J1 =
K

∑
i=1

(
a1‖x f − x(t f ,i, x0,i)‖ +

t f ,i∫
0

(
f0(x(t, x0,i), u(t))+

ϑ(ϕ(x(t, x0,i)))p(x(t, x0,i))
)

dt
)
→ min

u∈U
, (19)

where a1 is a weight coefficient, ϑ(A) is a Heaviside step function

ϑ(A) =

{
1, if A > 0
0, otherwise

, (20)

p(B) is a penalty function, t f ,i is a time of terminal state (12) achievement from initial
condition x0,i,

t f ,i =

{
t, if t ≤ t+and ‖x f − x(t, x0,i)‖ ≤ ε0
t+, otherwise

, i = 1, . . . , K, (21)

ε0 is a small positive value, that determines accuracy of terminal state achievement.
Within the framework of the formulation of the machine learning problem, the solution

to the synthesis problem based on symbolic regression methods is machine learning control.

3.1. Control Synthesis as Unsupervised Machine Learning Control

The first approach is a direct search of the control function on basis of a quality cri-
terion minimization. In this case we receive unsupervised machine learning control. The
stated general control synthesis problem (10), (12), (18)–(21) can be solved in the concept of
unsupervised machine learning control by different symbolic regression methods. Such
approach is demonstrated by genetic programming [2], network operator method [14],
variational genetic programming [15], variational analytic programming [16], multi-layer
network operator [17], binary variational genetic programming [18], modified Cartesian
genetic programming [19]. All mentioned symbolic regression methods search for mathe-
matical expressions of control functions, that provide for the received solutions achievement
of the terminal condition (12) from all the initial conditions (18) with optimal value of
the quality criterion (19), describing the time and accuracy of terminal state hitting, and
including phase constraints in the form of penalty functions.

Symbolic regression methods use evolutionary algorithms to search for functions and
can achieve a certain level of accuracy when minimizing the functional, but it still remains
unknown how the values of the criterion (19) for these solutions are far from real optimal
values. To correct this problem it is possible to use a supervised machine learning with a
training set received by the solution of the optimal control problem.

3.2. Control Synthesis as Supervised Machine Learning Control

The second approach is a learning with application of a training set. This is a super-
vised machine learning control. In this case firstly it is necessary to obtain the training set.
For this purpose solutions of the optimal control problem can be used.

The statement of optimal control problem includes a mathematical model of control
object (10), an initial condition given in one point

x0 ∈ Rn, (22)
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terminal condition (12), (13) the phase constraints (14), and a quality criterion

J2 = a1‖x f − x(t f )‖+
t f∫

0

( f0(x(t), u(t)) + ϑ(ϕ(x(t))p(x(t)))dt → min
u∈U

, (23)

where

t f =

{
t, if t ≤ t+and ‖x f − x(t)‖ ≤ ε0
t+, otherwise

. (24)

It is necessary to find a control in the form

ũ = v(t, x0) ∈ U. (25)

When inserting the function (25) into the right part of the mathematical model of the
control object (10), the following system of non-stationary differential equations is received

ẋ = f(x, v(t, x0,i)). (26)

To create a training set for the control synthesis problem it is necessary to solve the
optimal control problem on criterion (23) for each particular initial condition from (18) and
to receive sets of optimal controls

U0 = {v(t, x0,1), . . . , v(t, x0,K)} (27)

and optimal trajectories
X̃ = {x̃(t, x0,1), . . . , x̃(t, x0,K)}. (28)

Now we define the time interval Deltat and calculate the value of the state vector
on each optimal trajectory at the interval boundaries. As a result, get a training set of
optimal trajectories

X̃ = {X̃1, . . . , X̃K}, (29)

where
X̃i = {x̃(0, x0,i) = x0,i, x̃i(t1, x0,i), . . . , x̃i(tMi , x0,i)}, i = 1, . . . , K, (30)

tj = tj−1 + Δt, j = 1, . . . , Mi, i = 1, . . . , K, Δt is a given time interval.
Now in order to solve the control synthesis problem (10), (12), (18)–(21), and to find

the control function in the form (16) it is enough to approximate the training set (29) on
a criterion

J3 =
K

∑
i=1

Mi

∑
j=0

‖x(tj, x0,i)− x̃(tj, x0,i)‖ → min
h(x)∈U

, (31)

where t0 = 0, x(t, x0,i) is a partial solution of the Equation (17) with the initial conditions
x0,i, x̃(t, x0,i) is a partial solution of the Equation (28), i ∈ {1, . . . , K}.

To ensure the fulfillment of phase constraints, both criteria (31) and (19) are applied.
In result, the following combined criterion is used

J4 = J1 + γJ3 → min
h(x)∈U

, (32)

where γ is a weight coefficient.
To solve the approximation problem, a symbolic regression is also used. The con-

trol synthesis on the base of optimal trajectories approximation allows to find a control
function (16) that provides receiving optimal control with accuracy to approximation of
the training set. The solution closest to the optimal one is determined by the accuracy of
the optimal control problem.
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4. Computational Algorithms

In order to solve the control synthesis problem as machine learning control on the
base of optimal trajectories set approximation it is required to solve two complex problems,
the optimal control problem in order to form a training set, and the approximation of
optimal trajectories by some symbolic regression method. For both problems evolutionary
computations are used.

4.1. Algorithms for the Optimal Control Problem

The optimal control problem with phase constraints is not uni-modal [20], there-
fore evolutionary algorithms are applied, which can solve a global optimization problem.
Recently, it is popular to use hybrid evolutionary algorithms that combine different evo-
lutionary algorithms. Studies of evolutionary algorithms for numerical solution of the
optimal control problem show [21], that the most successful in solving this problem are
genetic algorithm (GA) [22], Particle swarm optimization algorithm (PSO) [23] and Grey
wolf optimizer algorithm (GWO) [24].

All evolutionary algorithms include evolution of possible solutions. It implies such
changes in possible solutions that some of new possible solutions ensure obtaining the
value of the goal functional not worse than the old possible solutions before the change.
At evolution of possible solutions information about the values of the goal functional for
other possible solutions is used.

PSO-algorithm uses the best current possible solution, and the best of solutions from
some random selected ones as well as information about historical changes for this possible
solution. An evolution is performed for each component of possible solution

q̃i
j = qi

j + σvi
j, j = 1, . . . , p, (33)

where q̃i
j is a new value of the component j of the possible solution i, q̃i = [q̃1 . . . q̃p]T , qi

j

is the component j of the old possible solution i, qi = [qi
1 . . . qp]T , p is a dimension of the

vector, vi
j is the component j of a historical vector for possible solution i, vi = [vi

1 . . . vi
p],

this historical vector is changed one time in one cycle of generation

vi
j ← αvi

j + ξβ(qi
j(k)− qi

j) + ξγ(q0
j − qi

j), j = 1, . . . , p, (34)

q̄i
j is the component j of the best solution from k randomly selected ones, q̄i = [q̄1 . . . q̄p]T ,

qj(0) is the component j of the best current possible solution, q(0) = [q1(0) . . . qp(0)]T , ξ is
a random value in the interval from 0 to 1, at each call this function gives a new random
number, α, β, γ are constant parameters of the algorithm, vector v has zero initial value.

The GWO-algorithm performs the following changes of possible solution on the base
of some best current solutions

q̃i
j =

1
N

N−1

∑
k=0

(qj(k)− r(2ξ − 1)|2ξqj(k)− qi
j|), j = 1, . . . , p, (35)

where qj(0) . . . qj(N − 1) are j components of N best possible solutions,

r = 2
(

1− g
G

)
, (36)

r is calculated one time in a generation, g is a number of generation, G is a quantity
of generations.

The GA considers vectors in the form of Grey code and performs evolution for two
selected possible solutions as operations of crossover and mutation. For crossover two
possible solutions are selected

zi = [zi
1 . . . zi

c+d]
T , zj = [zj

1 . . . zj
c+d]

T , (37)
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where zi
k, zj

k ∈ {0, 1}, c is a number of bit for integer part, d is a number of bits for fractional
part of Grey code.

Then the point of crossover s is determined. As a result two new possible solutions
are received

z̃i = [zi
1 . . . zi

s zj
s+1 . . . zj

c+d]
T , z̃j = [zj

1 . . . zj
s zi

s+1 . . . zi
c+d]

T . (38)

In hybrid algorithms in each cycle of evolution for each possible solution one of three
ways (33), (34) or (35), (36), or (37), (38) of obtaining new possible solutions is selected
randomly. The algorithm stops calculation after all cycles of evolution are performed.

4.2. Numerical Methods of Symbolic Regression for the Control Synthesis Problem

For solution of the control synthesis problem numerical methods of symbolic re-
gression are used. Now more than fourteen methods are know. The methods code a
mathematical expression and search for optimal solution on the code space. All methods
differ in the form of code.

For example, consider the following mathematical expression

y = sin(x1) + exp(−q1x1) cos(q2x2 + q1). (39)

To code this mathematical expression the following basic sets are used:
the set of arguments

F0 = { f0,1 = x1, f0,2 = x2, f0,3 = q1, f0,4 = q2}, (40)

the set of elementary functions

F = { f1,1(z) = z, f1,2(z) = −z, f1,3(z) = sin(z), f1,4(z) = cos(z),

f1,5(z) = exp(z), f2,6(z1, z2) = z1 + z2, f2,7(z1, z2) = z1z2}, (41)

where indexes of elements point the number of arguments and a function number, if the
first index is equal to zero, then this is an argument of the mathematical expression.

The most popular and the earliest symbolic regression method is the genetic pro-
gramming by J.Koza [6]. This method presents a mathematical expression in the form
of computational tree. In the Figure 1 the computational tree for the mathematical
expression (39) is presented.

In the Figure 1 the nodes of the tree contain numbers of functions, the leaves contain
arguments of the mathematical expression.

Figure 1. Computational tree of genetic programming.

A code of genetic programming for the mathematical expression (39) has the follow-
ing form
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([
2
6

]
,
[

1
3

]
,
[

0
1

]
,
[

2
7

]
,
[

1
5

]
,
[

2
7

]
,
[

1
2

]
,
[

0
3

]
,
[

0
1

]
,

[
1
4

]
,
[

2
6

]
,
[

2
7

]
,
[

0
2

]
,
[

0
4

]
,
[

0
3

])
. (42)

The code of genetic programming consists of indexes of elements of the computational
tree on all branches from the top to the leaves. The code of genetic programming is used
for presentation of the computational tree in the computer memory.

A code of genetic programming is not very comfortable, as codes of different mathe-
matical expressions have different length that also changes after crossover operation. If in
the mathematical expression one argument enters several times, then it has to be on leaves
of the computational tree the same number of times.

Another method of symbolic regression—the network operator method [14]—codes
mathematical expression in the form of oriented graph. In the Figure 2 the network operator
graph for the mathematical expression (39) is presented.

Figure 2. The network operator graph of the mathematical expression.

On the network operator graph the nodes contain the numbers of functions with two
arguments, the source-nodes contain the arguments of the mathematical expression, the
arcs are marked with the numbers of functions with one argument.

In the computer memory the network operator graph is presented as an integer matrix.

Ψ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 2 0 3
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 7 1 0 0 0
0 0 0 0 0 6 0 4 0
0 0 0 0 0 0 7 5 0
0 0 0 0 0 0 0 7 1
0 0 0 0 0 0 0 0 6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (43)

Each row of the matrix corresponds to a graph node. The numbers of nodes are located
at the top of the nodes (see Figure 2). The nodes are numbered in such a way that the
number of the node from which the arc exits must be less than the number of the node
where the arc enters. Then a network operator matrix has an upper triangular form. In the
network operator matrix the numbers of functions with two arguments are located on the
main diagonal. Zero element on the main diagonal shows that the row corresponds to a
source-node. Other non-zero non-diagonal elements are the numbers of functions with
one argument.

Consider one more symbolic regression method. In Cartesian genetic program-
ming [25] the code of the mathematical expression (39) has the following form⎛⎝⎡⎣ 7

1
3

⎤⎦,

⎡⎣ 2
5
1

⎤⎦,

⎡⎣ 5
6
2

⎤⎦,

⎡⎣ 3
1
3

⎤⎦,

⎡⎣ 7
2
4

⎤⎦,

⎡⎣ 6
9
3

⎤⎦,

⎡⎣ 4
10
1

⎤⎦,

⎡⎣ 7
11
7

⎤⎦,

⎡⎣ 6
8

12

⎤⎦⎞⎠. (44)
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Here, every integer vector corresponds to one elementary function. The first element
of vector is the function number, other elements are element numbers from the set of
arguments (40). If a function has one argument, then the second argument is not used.
The result of calculation according to each vector is added to the argument set, so a
number of arguments increases in one every time after calculation of functions according
to the vectors.

Due to redundancy, Cartesian genetic programming code has the same length for
all mathematical expressions. A crossover operation for Cartesian genetic programming
are performed by exchange of vectors after crossover point, so the length of codes does
not change.

Studies of symbolic regression methods for the control synthesis problems show that it
is effective to use in these methods the principle of small variations of the basic solution [26].
According to this principle only one basic solution is encoded by a method of symbolic
regression. Other possible solutions are encoded by sets of variation vectors. Each variation
vector makes one small change of basic solution code. After some generations the basic
solution is changed on the best current found solution. This approach makes it possible to
speed up the search process by narrowing the search space and avoiding additional checks
for the correctness of the codes of possible solutions.

5. Computational Experiment

In a computational experiment a problem of general synthesis of optimal control for a
spacecraft landing on the surface of the Moon is considered [27]. The differential equations
of spacecraft state are the following

ẋ1 =
gE(Pc + u2) cos(u1 − x2)

x5
− gMh cos(x2),

ẋ2 =
gE(Pc + u2) sin(u1 − x2)

x5
+

gMh sin(x2)

x1
,

ẋ3 =
x1 cos(x2)

1000
,

ẋ4 =
x1 sin(x2)

1000
,

ẋ5 = −Pc + u2

Ps
,

(45)

where x = [x1 x2 x3 x4 x5]
T is a state vector, namely x1 is the current speed of the spacecraft

(m/s), x2 is a trajectory inclination angle (rad), x3 is the current flight altitude relative to
the lunar surface (km), x4 is a flight distance (km), x5 is the mass of spacecraft including
fuel (kg). u = [u1 u2]

T is a control vector, values of which are constrained

− π

2
≤ u1 ≤

π

2
, − 80 ≤ u2 ≤ 80. (46)

Parameters of model have the following values: gravitational acceleration at the
certain altitude above the lunar surface

gMh = gM

(
rM

rM + x3

)2
, (47)

the Moon gravitational acceleration gM = 1.623 m/s2, the Earth gravitational acceleration
gE = 9.80665 m/s2, the Moon radius rM = 1737 km, nominal thrust of the spacecraft
engine Pc = 720 kg, spacecraft engine thrust Ps = 319 s.

A domain of initial states is

X0 = {x0,1 = 1689, − 1.65 ≤ x0,2 ≤ −1.55, 17 ≤ x0,3 ≤ 20, x0,4 = 0, x0,5 = 1500}. (48)
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A terminal state is
x f =

[
x f

1 = 10, x f
3 = 0.2

]T
. (49)

Phase constraints are determined by the mechanics of spacecraft flight. Obviously the
speed x1, altitude x3 and fuel level x5 cannot be negative, reaching a zero altitude x3 or
zero fuel level x5 at a significant speed x1 means that the spacecraft has crashed. Consider
the following phase constraints

hk(x) = −xj ≤ 0, k = 1, 2, 3, j = 1, 3, 5,
hk(x) = ϑ(0.001− xj)(x1 −Vmax) ≤ 0, k = 4, 5, j = 3, 5,

(50)

where Vmax is the maximum landing speed, Vmax = 1, ϑ(A) is the Heaviside function.
According to the proposed method at the first step the training set is to be formed.

We determine the finite set of initial states within the domain (48) and solve the optimal
control problem for each initial state from this set.

Let us replace the domain of initial states (48) with a set of M = 21 elements uniformly
distributed on this domain

X̃0 =
{

x0,j+7(i−1) = [1689 − 1.65 + 0.05(i− 1) 17 + 0.5(j− 1) 0 1500]T
}

, i = 1, 3, j = 1, 7. (51)

Quality criterion considers the proximity of reaching terminal state and the case of
phase constraints violation

Jj = α1

√(
x1

(
t f (x

0,j)
)
− x f

1

)2
+
(

x3

(
t f (x

0,j)
)
− x f

3

)2
+

α2

∫ t f (x
0,j)

0

(
K

∑
k=1

ϑ
(

hk(x(t, x0,j))
)

hk(x(t, x0,j))

)
dt → min,

(52)

where αi, i = 1, 2 are given penalty factors, K = 5 is a number of phase constraints, j = 1, M.
To search for solution to the optimal control problem the direct approach was used.

The original problem was reduced to a nonlinear programming problem by introducing
the time interval Δt. The solution of each optimal control problem in form of control
vector at discrete moments of time was searched independently by hybrid evolutionary
algorithm combining modern Grey Wolf Optimizer (GWO), which does not require problem
specific tuning of additional parameter, and well-known Particle swarm optimization (PSO).
Separately these algorithms showed a high efficiency in solving optimal control problems.
A hybrid realization is to increase their effectiveness.

In a computational experiment the size of the set of possible solutions was 100, number
of search iterations was 5000. Modeling parameters were the following: maximum control
time tmax = 300, discretization time interval Δt = 30, penalty factors α1 = 10, α2 = 10.

At the second step of proposed approach we use obtained optimal trajectories to
synthesize a multidimensional control function of object state space. The search for a
control function is conducted by a symbolic regression method that search for the most
suitable expression that approximates provided optimal trajectories best.

We used the network operator method to synthesize a control function. NOP allows
to search for the structure of mathematical expression simultaneously with the search for
optimal values of parameter vector. In the computational experiment we used the following
parameters of NOP: size of NOP matrix was 40, size of the set of input variables was 3,
size of the set of input parameters was 12, number of outputs was 2, number of candidate
solutions in the initial set was 256, maximum number of search iteration was 25,000.

As a result of computational experiment, a control function in the form of NOP matrix
and a parameter vector was obtained. The mathematical expression for the found control
function is as follows
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u1 =

⎧⎨⎩
π/2, if ũ1 > π/2
−π/2, if ũ1 < −π/2
ũ1, otherwise

, u2 =

⎧⎨⎩
80, if ũ2 > 80
−80, if ũ2 < −80
ũ2, otherwise

, (53)

where
ũ1 = χ6(−z34, tanh(z35), z37),

ũ2 = sgn(u1)
√
|u1| − z36 + arctan(z35) + sgn(z34)

√
|z34|+ log(|z33|)+

z−1
32 + z31 + z28 − z3

28 + log(|z26|)− z25 + arctan(z21) + sgn((z17))
√
|z17|+

exp(q12) + tanh(q10) + q9 + log(q5) + tanh(q1),

z37 = min{z36 − z3
36, log(|z35|), z34 − z3

34, z−1
32 , sgn(z28)

√
|z28|, tanh(z27), exp(z25), z−1

20 , 3
√

x2},

z36 = min{exp(z29), tanh(z28), sgn(z27)
√
|z27|, arctan(z26), 3

√
z22, z3

20, tanh(q6), 3
√

q1, x3
3},

z35 = arctan(z23) + tanh(z22) + tanh(q12) + log(|x3|),

z34 = max{sgn(z33)
√
|z33|, log(|z30|), z−1

29 , z−1
22 , z−1

20 },

z33 = min{z−1
32 , arctan(z29), tanh(z24), z3

22, z19,−z16, z−1
11 , tanh(q3), tanh(q2), exp(x2)},

z32 = min{z3
31, z26, log(|z25|), z−1

18 ,
√

q10, arctan(q6), 3
√

q2},

z31 = log(|z27|) + z2
26 + z2

24 + arctan(z22) + 3
√

z21 + exp(z20) + exp(z17)+

z−1
16 + q3

12 − q5 + 3
√

q2 + 3
√

x1,

z30 = max{z29,−z26, tanh(z25), arctan(z18), sgn(z16)
√
|z16|, q11},

z29 = χ6(z28, z−1
27 , z3

26, log(|z24|),−z3
22,−z20, 3

√
z17, q7, q−1

2 ,
√

q1),

z28 = max{z27, z−1
23 ,−z20, log(|z19|), z18 − z3

18,−z17, log(|z16|), q7, log(q5)},

z27 = χ6(z24, arctan(z20),
√

q11, q8 − q3
8, q3

6,−q5, log(q4)),

z26 = χ5( 3
√

z23,−z20, z19 − z3
19,−z18, sgn(z15)

√
|z15|, q12, 3

√
x3),

z25 = max{z2
23, z22, z21 − z3

21, arctan(z17), q11, q9,
√

q5},

z24 = max{tanh(z21), z20 − z3
20, z3

15, q12 − q3
12, q10, q3

8, 3
√

q5, q3
4, exp(x2)},

z23 = z20z18z16q9
√

q7sgn(x1)
√
|x1|,

z22 = χ6(z19, z−1
17 , exp(z16), 3

√
q10, arctan(q9), q−1

8 ,
√

q2),

z21 = max{tanh(z18), q2
8, q7,−q6,

√
q3},

z20 = χ6(−z19, z17, arctan(z10), q6,−q2, x−1
3 ),

z19 = z16 + arctan(q11) + q−1
8 + q5 + arctan(x3),

z18 = χ5(z15, q−1
12 , q−1

7 , q4, x1 − x3
1),

z17 = q3 + x3 − q3x3,

z16 = q2x2 tanh(q5),

z15 = sgn(
√

q10 + q5 − q3
5 + q−1

3 + q1 + x1)
√

q10 + (q5 − q3)2 + q−2
3 + q2

1 + x2
1,

χ5(a1, a2) = a1 + a2 − a1a2,

χ5(a1, . . . , as) = χ5(χ5(a1, χ5(. . . , χ5(as−1, as) . . .),
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χ6(a1, . . . , as) = sgn

(
s

∑
i=1

ai

)√
s

∑
i=1

a2
i ,

q1 = 2.3474, q2 = 10.5066, q3 = 9.9106, q4 = 13.1419, q5 = 9.6631, q6 = 4.4541,

q7 = 2.1899, q8 = 4.8552, q9 = 3.1116, q10 = 6.6172, q11 = 12.6812, q12 = 15.6148.

Functions χ5 and χ6 are commutative, associative, and have a unit element, zero.
To check the solution we used the found control function to obtain optimal control

and corresponding trajectories for various initial states from (48). Among considered
initial states were both those that were present in the training set (51) and those that were
not present.

Table 1 shows the values of quality criterion J∗ obtained using the found control
function (53) for 21 initial states from the finite set (51). The optimal trajectories known
for these initial states were previously used as a training set. This test is to show the
quality of approximation. The value of the quality criterion Jocp obtained by solving the
optimal control problem for the same initial state is showed in the table as a reference value.
The average deviation of the quality criterion values from the reference ones is 0.0591,
maximum deviation is 0.2514, the standard deviation is 0.0648.

Table 1. Results of the computational experiment using initial states from the training set.

Initial State x0 J∗ Jocp Initial State x0 J∗ Jocp

[1689 − 1.65 17 0 1500]T 0.1777 0.0018 [1689 − 1.55 18.5 0 1500]T 0.2525 0.0011
[1689 − 1.6 17 0 1500]T 0.0295 0.0056 [1689 − 1.65 19 0 1500]T 0.0240 0.0012
[1689 − 1.55 17 0 1500]T 0.0049 0.0029 [1689 − 1.6 19 0 1500]T 0.0501 0.0024
[1689 − 1.65 17.5 0 1500]T 0.1433 0.0060 [1689 − 1.55 19 0 1500]T 0.0030 0.0009
[1689 − 1.6 17.5 0 1500]T 0.0264 0.0044 [1689 − 1.65 19.5 0 1500]T 0.1035 0.0036
[1689 − 1.55 17.5 0 1500]T 0.0127 0.0024 [1689 − 1.6 19.5 0 1500]T 0.0822 0.0027
[1689 − 1.65 18 0 1500]T 0.0780 0.0033 [1689 − 1.55 19.5 0 1500]T 0.0045 0.0045
[1689 − 1.6 18 0 1500]T 0.0439 0.0084 [1689 − 1.65 20 0 1500]T 0.0954 0.0036
[1689 − 1.55 18 0 1500]T 0.0061 0.0023 [1689 − 1.6 20 0 1500]T 0.0635 0.0052
[1689 − 1.65 18.5 0 1500]T 0.0703 0.0019 [1689 − 1.55 20 0 1500]T 0.0334 0.0099
[1689 − 1.6 18.5 0 1500]T 0.0111 0.0019

Table 2 shows the values of quality criterion J∗ obtained using the found control
function (53) for 10 initial states generated randomly within the domain (48). This test is to
show the suitability of the found control function for any initial state from the domain (48).
The value of the quality criterion Jocp obtained by solving the optimal control problem for
the same initial state is showed in the table as a reference value. The average deviation of
the quality criterion values from the reference ones is 0.0366, maximum deviation is 0.1122,
the standard deviation is 0.0341.

Table 2. Results of the computational experiment for random initial states.

Initial State x0 J∗ Jocp Initial State x0 J∗ Jocp

[1689 − 1.565 18.92 0 1500]T 0.0176 0.0034 [1689 − 1.628 18.2 0 1500]T 0.0398 0.0016
[1689 − 1.571 17.21 0 1500]T 0.0048 0.0018 [1689 − 1.614 19.24 0 1500]T 0.0508 0.0022
[1689 − 1.63 19.39 0 1500]T 0.1136 0.0014 [1689 − 1.644 18.57 0 1500]T 0.0613 0.0052
[1689 − 1.558 19.91 0 1500]T 0.0567 0.0083 [1689 − 1.563 18.33 0 1500]T 0.0032 0.0023
[1689 − 1.582 17.62 0 1500]T 0.0042 0.0016 [1689 − 1.589 18.9 0 1500]T 0.0464 0.0043

Figures 3 and 4 illustrate the results of computational experiment for initial state
x0 = [1689 −1.565 18.92 0 1500]T . Graphs of the trajectories obtained using the found
control function are shown by black solid lines. For comparison the trajectories obtained
by solving the optimal control problem are shown by grey dashed lines. Figure 5 shows
the found control function values over time.
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Figure 3. The graphs of trajectories: (a) spacecraft speed over time x1(t); (b) spacecraft altitude over time x3(t). Found
solution—black solid line; reference solution—grey dashed line.

Figure 4. The graphs of trajectories: (a) spacecraft speed over distance x1(x4); (b) spacecraft altitude over distance x3(x4).
Found solution—black solid line; reference solution—grey dashed line.

The computational experiment showed that the found multidimensional control
function allows one to obtain a close to optimal solution for any initial states from the given
domain (48) even for those initial states that were not in the training set (51).

According to the analysis of the standard deviation, the training set contained a
sufficient number of optimal trajectories. A better value of the standard deviation for the
experiment with randomly distributed in (48) initial states can be explained by the fact that
the set (51) had a large number of initial states on the boundaries of the set (48).
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Figure 5. The graphs of control values over time: (a) control u1(t); (b) control u2(t). Found solution—black solid line;
reference solution—grey dashed line.

6. Conclusions and Perspectives

The paper provides mathematical formulations of the machine learning problem,
supervised and unsupervised, defines the basic concepts, such as the work area and the
training set. Based on the presented formulations, it is shown that the main task of machine
learning is to find a function that determines the correspondence between the input data
and the resulting data. It is shown that today this problem can be solved numerically
using symbolic regression methods. The problem of obtaining a mathematical expression
arises in various situations—approximation of experimental data to determine a physical
law or a trend model; efficiently analyze and predict variables or indicators based on
previous observations; identification of a mathematical model of a process or a dynamic
object; generalization of the control law based on the current state of the control object. The
application of machine learning based on symbolic regression methods to control opens
up the possibility of solving such a complex problem in control theory as the problem of
general control synthesis. The paper presents a mathematical formulation of the control
synthesis problem and provides methods for its solution using machine learning both
directly and based on a training set. An important result of the article is the methodology
for solving the problem of general control synthesis as machine learning control based on a
training set. An approach to constructing a training sample based on multiple solutions
to the optimal control problem is proposed. An example of solving a specific problem of
synthesis of control of a complex technical object based on the approximation of optimal
trajectories is given. It is shown that such a control, obtained on the basis of machine
learning, gives good results not only for the input data from the training set, but also not
from it.

The concept of machine learning is widely known, but very often limited by its associ-
ation with neural network technology. We are expanding the concept of machine learning
to include a description of an unknown function in its formulation. Thus, a function can
be specified and training is aimed only at finding parameters, as in neural networks, but
you can also search for the structure of the function and its parameters. This became
possible with the advent of symbolic regression methods. The complexity of these methods
lies in the need to organize search in a space in which there is no metric. This greatly
complicates the solution of the problem of finding the required structure of the function.
This complexity opens up a wide field of research. One of the ways to solve this problem is
to use the principle of small variations of the basic solution indicated in the article. This
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approach allows you to concentrate the search for a solution around a basic solution based
on the developer’s experience or intuition. This approach also requires further study.
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Abstract: This paper proposes a novel control strategy to address the precise trajectory tracking
control problem of a ship towing system. At first, the kinematics and dynamics models of a ship
towing system are established by introducing a passive steering angle and using its structure rela-
tionship. Then, by using the motion law derived from its nonholonomic constraints, the relative
curvature of the target trajectory curve is applied to design a dynamical tracking target. By applying
the sliding mode control and inverse dynamic adaptive control methods, two appropriate robust
torque controllers are designed via the dynamical tracking target, so that both the tugboat and the
towed ship are able to track the desired path precisely. As we show, the proposed strategy has
excellent agreement with the numerical simulation results.

Keywords: dynamical tracking target; ship towing system; relative curvature; adaptive control

1. Introduction

A ship towing system (STS) consists of a tugboat, a towline, and a towed ship [1].
Owing to its powerful transportation ability, the STS plays an increasing role in the develop-
ment of marine resources, such as oil, natural gas, mineral resource, etc. In the past, due to
external environmental disturbances and inherent internal uncertainties, the motion control
of the STS was mostly based on experimental works or numerical simulations, rather than
theoretical analysis [2]. As a result, an improper control would cause the actual towing
trajectory deviate from the target towing route. This may lead to collisions, capsizing, and
other safety accidents. As a consequence, it is necessary to investigate the precise motion
control of the STS for its safe navigation at sea.

For the STS, it is subject to non-holonomic constraints when the lateral drift motion
is small enough to be neglected. In this case, the inter-coupling action generated by the
relative motion among tugboat, towline, and towed ship makes the trajectory planning
and motion control of the STS especially challenging [3]. In addition, the STS is affected by
various factors and its dynamics model is extremely complex, thus imposing challenges to
the model of STS. Accordingly, the related research studies mainly focus on the simplified
models. For example, in References [4,5], based on the local linearization stability analysis
method, the nonlinear dynamics model of the STS was approximated into a linearized
model. In Reference [6], the nonlinear dynamics equation of the STS was transformed into
a six-dimensional state space model, then the equation was approximated by Taylor series.
However, these methods only solve the nonlinear problem of the STS locally. In addition, in
Reference [7], the investigation showed that the nonholonomic constraints were destroyed
when the hull occurred lateral drift motion. As a result, it is difficult to analyze the motion
law of the STS clearly. To overcome this drawback, the relative width of the towed ship
should be small. In this case, the STS is not prone to lateral drift so as to ensure the
nonholonomic constraints of zero lateral velocity.

In general, STSs could be divided into two types. One is the towed ship without
steering capacity, and the other is the towed ship with certain steering ability. To the former,
its motion ability is completely depended on the traction of the tugboat, so it is fully passive.
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To the latter, it has a certain steering ability to achieve steering motion. For the case of the
towed ship without steering ability, the dynamics equation of the STS can be derived by
conventional method since the nonholonomic constraint is relatively simple. However,
the main drawback of such systems is that the towed ship cannot follow the same trajectory
as the tugboat during turning movements. In this case, the STS is easy to collide with
obstacles. To address this issue, it is necessary to equip the towed ship with a steering
assembly, so that it has a certain steering ability. In general, active steering and passive
steering are two main steering strategies in practical implementation. Active steering
commonly depends on an active control input, and the corresponding nonholonomic
constraints become complex. So, it imposes difficulty in deducing the dynamics model [8].
Thus, it is a challenge to design the model-based controllers. In practice applications,
the active controller is usually designed by measuring numerous accurate datas, which
leads to complicated calculation and expensive cost. In terms of the passive steering
method, the rear beam of the towed ship steers passively through a passive steering
mechanism, such as the following-up steering. This is helpful to the system lateral stability
against rollover.

Since the STS is an underactuated, nonholonomic, and nonlinear system, its mo-
tion control is indeed a challenging problem in the control community. The challenge is
even harder when the external disturbance or internal uncertainty influence the system.
At present, there are mainly two kinds of relevant research methods for the motion control
of the STS. On the one hand, extensively studies consider kinematic models only. Usually,
advanced control methods, such as model predictive control [9,10], adaptive control [11,12],
sliding mode control [13], back-stepping control [14], etc., are used to design speed con-
trollers [15,16] for the STS. According to the kinematics model, the nonlinear adaptive
tracking control and nonlinear feedback tracking control methods, together with the path
tracking algorithm, are adopted to make the towed ship track the trajectory of the towing
boats [17,18]. On the other hand, some studies consider both kinematic and dynamics
models at the same time [19,20]. Howeever, the main drawback of these research studies
is that they do not make full use of the motion laws, resulting in complex control and
insufficient precision. In addition, the problem of inconsistent tracking path between
the tugboat and the towed ship cannot be fundamentally solved by only depending on
advanced control methods and measurement technologies, which is mainly due to the
following two reasons. At first, the steering of the towed ship is not matched with the
tugboat, so that the towed ship is easy to deviate from the trajectory of the tugboat. Second,
the speed error of the STS at the initial moment is very large, and the accumulated position
errors cannot be adjusted. This leads to increasing accumulated position errors, so that
the towed ship deviates increasingly from the trajectory of the tugboat. Therefore, it is
reasonable to design trajectory tracking controllers by combining the motion laws with its
dynamics equation, so that both the tugboat and the towed ship are able to track the same
motion path.

In this paper, motivated by the above observations, we aim to seek a novel control
strategy to solve the precise tracking control of the STS with two robust torque controllers
and a passive steering angle. The major contributions of this paper are summarized
as follows.

• An appropriate passive steering angle is introduced to make the towed ship track
well the trajectory of the tugboat.

• A dynamical tracking target, sliding mode control, and inverse dynamics adaptive
control methods are introduced to design two robust torque controllers for the STS, so
that the tugboat and the towed ship can move along the same target trajectory curve
accurately under uncertainties.

The remainder of this paper is structured as follows. Section 2 describes the mathemat-
ical model of the ship towing system. Section 3 focuses on designing two robust trajectory
tracking controllers. Simulation results are reported and discussed in Section 4. Finally,
some conclusions are given in Section 5.
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2. System Modeling

Consider a STS consisting of a tugboat, a towed ship, and a towline, as depicted in
Figure 1. The tugboat is equipped with two motors, and the towed ship is connected
passively with the tugboat. O0 and O1 represent the midpoints of the tugboat and the
towed ship, respectively. Both the tugboat and the towed ship are connected with a rigid
towline. That is, one end of the towline is flexibly connected to the towing hook of the
tugboat at Op0, and the other end is flexibly hinged to the joint of the towed ship at Op1.
The length of the towline Op0Op1 is defined as a. Then, definitions of symbols used in the
text are presented in Table 1.

Table 1. Parameters and variables of the ship towing system.

Notation Definition

Tv, Tω Torques provided by the propeller and rudder of the tugboat
ϕ0, ϕ1 Yaw angles of the tugboat and the towed ship
ω0, ω1 Yaw rotation speeds of the tugboat and the towed ship, and ωi = ϕ̇i, i = 0, 1
x0, y0 The coordinates of the midpoint O0 of the tugboat
x1, y1 The coordinates of the midpointO1 of the towed ship
θ Angular difference of yaw angles between the tugboat and the towed

ship, and θ = ϕ0 − ϕ1
v0, v1 Forward speeds of the tugboat and the towed ship
vp0 The forward speed of the stern midpoint Op0 of the tugboat
vp1 The forward speed of the bow midpoint Op1 of the towed ship
Ψ Steering angle of the towed ship, and Ψ = μθ
μ Steering coefficient of the steering angle
a Length of the rigid towline
m0, m1 Masses of the tugboat and the towed ship
Mx0, Mx1 Additional lateral masses of the tugboat and the towed ship
Iz0, Iz1 Moment of inertia of the tugboat and the towed ship about Z-axis through

the center point
Jz0, Jz1 Additional moments of inertia of the tugboat and the towed ship about

Z-axis through the center point

The goal of the paper is to design two robust torque controllers for the tugboat, so
that both the tugboat and the towed ship are able to follow the desired trajectory curve
precisely. As such, we introduce a passive steering angle for the towed ship, so that it can
follow the trajectory of the tugboat. The steering angle Ψ is defined as the angle between
vector

−−−−→
Op0Op1 and −→vp1. For convenience, we further assume Ψ = μ(ϕ0 − ϕ1), where μ is

an appropriate steering coefficient which makes the towed ship follow well the trajectory
of the tugboat. In modeling of the STS, some assumptions are considered, as follows:

A1. The motion of the STS is in a horizontal plane. The ship roll, pitch, heave, and lateral
drift motions are negligibly small.

A2. The motion of the towed ship is achieved by the system coupling action.
A3. The nonlinear force is ignored, since the STS commonly does not make large maneu-

vers.
A4. The rudder cannot be controlled directly, and the motion of the towed ship is con-

trolled indirectly by the coupling action of nonholonomic constraints.
A5. The resistance force of the towline is ignored.
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Figure 1. Model of a ship towing system.

2.1. Kinematics Modeling

The generalized coordinate of the STS is defined as p = (x0, y0, ϕ0, θ)T, and the system
state is described by (p, ṗ). Then, the motion states of other degrees of freedom can be
deduced by its constraint equations.

For the STS, the motion of the tugboat and the towed ship is subject to the following
nonholonomic constraints, respectively,{

−ẋ0sinϕ0 + ẏ0cosϕ0 = 0,
v0 = ẋ0cosϕ0 + ẏ0sinϕ0,

(1)

and {
−ẋ1sinϕ1 + ẏ1cosϕ1 = 0,
v1 = ẋ1cosϕ1 + ẏ1sinϕ1.

(2)

As shown in Figure 1, the speed relation between the tugboat and the towed ship is
expressed as {

vp1cosΨ = cos(θ −Ψ)vp0,
vp0sin(θ −Ψ) + vp1sinΨ = a(Ψ̇ − θ̇ + ϕ̇0).

(3)

Here, the first equation denotes that the velocity of joints Op0 and Op1 along the
towline direction are equal. The second equation desribes the speed relation between the
joints Op0 and Op1 in the vertical direction. Such speed relation causes coupling motion
between the adjacent structures.

Substituting Ψ = μθ and the first equation of (3) into the second equation of (3),
we obtain

θ̇ = − sinθ

a(1− μ)cosΨ
vp0 +

1
1− μ

ϕ̇0. (4)

Define Ω = sinθ
cosΨ , and then (4) can be rewritten as

θ̇ = − Ω
a(1− μ)

vp0 +
1

1− μ
ϕ̇0. (5)

Furthermore, according to the coordinates of point O0 and O1, we can get the positional
coordinates of Op0(x0 − L

2 cosϕ0, y0 − L
2 sinϕ0) and Op1(x1 +

L
2 cosϕ1, y1 +

L
2 sinϕ1), where
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L is the length of the tugboat, as shown in Figure 1. In this way, the speed relations of
points Op0 and O0, Op1 and O1 are expressed as{

v2
p0 = ẋ2

0 + ẏ2
0 +

L2

4 ϕ̇2
0 + Lϕ̇0(ẋ0sinϕ0 − ẏ0cosϕ0),

v2
p1 = ẋ2

1 + ẏ2
1 +

L2

4 ϕ̇2
1 + Lϕ̇1(ẏ1cosϕ1 − ẋ1sinϕ1).

(6)

Squaring both sides of the two equations of (1) and adding the two square equations,
we obtain v2

0 = ẋ2
0 + ẏ2

0. Similarly, from (2), we have v2
1 = ẋ2

1 + ẏ2
1. In this way, (6) becomes{

v2
p0 = v2

0 +
L2

4 ϕ̇2
0,

v2
p1 = v2

1 +
L2

4 ϕ̇2
1 = v2

1 +
L2

4 (ϕ̇0 − θ̇)2.
(7)

Substituting vp0 and vp1 of (7) into(3), one has

v1 =

√
cos2(θ −Ψ)

cos2Ψ
(v2

0 +
L2

4
ϕ̇2

0)−
L2

4
(ϕ̇0 − θ̇)2. (8)

Then, substituting vp0 of (7) into (5) gives

θ̇ = − Ω
a(1− μ)

√
v2

0 +
L2

4
ϕ̇2

0 +
1

(1− μ)
ϕ̇0. (9)

With these preparations, all constraint equations of the STS are formulated by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−ẋ0sinϕ0 + ẏ0cosϕ0 = 0,
v0 = ẋ0cosϕ0 + ẏ0sinϕ0,
ϕ̇0 = ω0,

θ̇ = − Ω
a(1−μ)

√
v2

0 +
L2

4 ϕ̇2
0 +

1
(1−μ)

ϕ̇0.

(10)

By using the motion laws derived from (10), the target trajectory curve can be trans-
formed into a speed target of the tugboat [21], so that the dynamics equation of the STS
can match the tracking target well. In fact, the towline is flexibly connected with the two
ships. The angle between the rigid towline and the forward speed direction of the towed
ship can be adjusted by a gear steering equipment. Then, according to the relationship of
motion speed between the towed ship and the tugboat, the towed ship can move along the
trajectory of the tugboat by choosing an appropriate steering angle coefficient μ.

2.2. Dynamics Modeling of a Single Ship

In order to establish the dynamics model of the STS, we should first clarify the
dynamics equation of a single ship, taking the single tugboat for example. As shown in
Figure 2, an earthbound coordinate frame O− XYZ is used to describe the motion of the
single ship in the horizontal plane. The body-fixed coordinate frame O0 − XbYbZb centered
at midship point O0 of the single ship is used for better force analysis.

On the one hand, according to the kinematics equation in Reference [22] and neglecting
the drifting speed, the dynamics equation of the tugboat is given by{

xb = m0v̇0,
zb = Iz0ω̇0,

(11)

where xb represents the component of the external force in the Xb direction, and zb denotes
the component of the external moment of inertia in the Zb direction.
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On the other hand, according to force analysis of the hull [23], one has{
xb = −Mx0v̇0 − 1

2 ρCf Sv2
0 + Xp + Xr,

zb = −Jz0ω̇0 − 1
2 ρL2dv0ω0(0.45λ− λ2)(1 + 0.3τ) + Np + Nr,

(12)

where Xp denotes the component force acting on the propeller along the Xb-axis, and Np
represents the corresponding component of the inertia moment along the Zb-axis. Xr
represents the component force on the rudder along the Xb-axis and Nr is the corresponding
component of the inertia moment along the Zb-axis. ρ is the water density. d is the full load
draft height of the tugboat. S is the hull wet area of the tugboat. λ is the aspect ratio of
the rudder of the tugboat. τ is the trim value of the tugboat. And Cf is the coefficient of
frictional resistance.

It follows from (11) and (12) that the desired dynamics equation of the single tugboat
is expressed by{

(m0 + Mx0)v̇0 = − 1
2 ρCf Sv2

0 + Xp + Xr,
(Iz0 + Jz0)ω̇0 = − 1

2 ρL2dv0ω0(0.45λ− λ2)(1 + 0.3τ) + Np + Nr.
(13)

Figure 2. Force analysis of a single ship.

2.3. Dynamics Modeling

According to the dynamics Equation (13) of the single tugboat, the dynamics model of
the STS can be presented by Reference [24]:⎧⎪⎨⎪⎩

(m0 + Mx0)v̇0 = − 1
2 ρCf Sv2

0 + Xp + Xr − Tcos(θ −Ψ),
(Iz0 + Jz0)ω̇0 = − 1

2 ρL2dv0ω0(0.45λ− λ2)(1 + 0.3τ) + Np + Nr

− 1
2 TLsin(θ −Ψ).

(14)

{
(m1 + Mx1)v̇1 = − 1

2 ρCf Sv2
1 + TcosΨ,

(Iz1 + Jz1)ω̇1 = − 1
2 ρL2dv1ω1(0.45λ− λ2)(1 + 0.3τ) + 1

2 TLsinΨ,
(15)

where T is the towline tension. From (14), one has⎧⎨⎩v̇0 =
− 1

2 ρCf Sv2
0+Xp+Xr−Tcos(θ−Ψ)

(m0+Mx0)
,

ω̇0 =
− 1

2 ρL2dv0ω0(0.45λ−λ2)(1+0.3τ)+Np+Nr− 1
2 TLsin(θ−Ψ)

Iz0+Jz0
.

(16)
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According to (15), the towline tension T is expressed as

T2 =[(m1 + Mx1)v̇1 +
1
2

ρCf Sv2
1]

2 + [
2
L
(Iz1 + Jz1)ω̇1

+ ρLdv1ω1(0.45λ− λ2)(1 + 0.3τ)]2,
(17)

where v1, ϕ1 can be obtained according to (8), (9), and ω1 = ϕ̇1 = ϕ̇0 − θ̇.
It follows from (16) and (17) that the dynamics equation of the STS is ultimately

formulated as ⎧⎨⎩v̇0 =
−Δ2v2

0+u1
Δ1

,

ω̇0 = −Δ4v0ω0+u2
Δ3

,
(18)

where Δ1 = m0 + Mx0, Δ2 = 1
2 ρCf S, Δ3 = Iz0 + Jz0, Δ4 = 1

2 ρL2d(0.45λ − λ2)(1 + 0.3τ),
u1 = Xp + Xr − Tcos(θ −Ψ), and u2 = Np + Nr − 1

2 TLsin(θ −Ψ).

3. Trajectory Tracking Control of the Ship Towing System

In order to make the tugboat track a given target trajectory curve accurately, the target
trajectory curve should be firstly converted into a speed target form so as to match the
dynamics equation. As such, the original motion task is converted into a general trajectory
tracking control problem of the tugboat. Then, two torque controllers can be designed from
the forward and yaw speed subsystems, to achieve the given trajectory tracking task.

3.1. Dynamical Tracking Target

In this subsection, we will solve the problem of converting the target curve to an
appropriate speed tracking target so as to match the dynamics Equation (18). For a
target trajectory curve r̃(t) = (x̃(t), ỹ(t))T, the speed form of the target trajectory curve is
expressed as [21] {

ṽ0 =
√

˙̃x2 + ˙̃y2,

ω̃0 = ˙̃ϕ0 =
˙̃x ¨̃y− ˙̃y ¨̃x
˙̃x2+ ˙̃y2 = k(t)ṽ0,

(19)

where k(t) =
˙̃x ¨̃y− ˙̃y ¨̃x

( ˙̃x2+ ˙̃y2)
3
2

is the relative curvature of the target trajectory curve. We note that

the relative curvature is the key point of the target trajectory curve. If the relative curvature
is tracked very well, the tugboat can follow the target trajectory curve precisely. On this
basis, the target trajectory curve r̃(t) can be further improved into a dynamical tracking
target form as {

ṽ0 = φ̇(t),
ω̃0 = ˙̃ϕ0 = k(s(t))v0,

(20)

where v0 stands for the actual forward speed of the tugboat, and φ̇(t) represents an
appropriate forward speed target which is given by

φ̇(t) = lβ2te−βt. (21)

In (21), l is the length of the target curve, β is an appropriate parameter according to
actual needs [21].

It can be seen from (20) that the target trajectory curve can be converted into a speed
target form with the relative curvature. Combined with the dynamics model, two torque
controllers can be designed to implement the tracking task of the target trajectory curve.
In fact, there are two main advantages by using the dynamical tracking target. First,
by choosing an appropriate forward speed target, the initial speed error is equal to zero,
which can significantly reduce the position error caused by the accumulated speeds errors.
Second, the yaw rotation speed target depends on the actual forward speed, which can
be adjusted from moment to moment. Moreover, no matter how large the actual forward
speed error is, as long as the curvature tracking error is small enough, satisfactory tracking
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performance can still be achieved. As a consequence, the idea of dynamical tracking target
can fundamentally solve the problem of accurate trajectory tracking.

3.2. Control Design

In this subsection, we will design two torque controllers (u1, u2) for the dynamics
Equation (18) by using the dynamical tracking target (20). We see that the yaw rotation
speed target ω̃ in the second equation of (20) is the product of the actual forward speed v
and the relative curvature k(s(t)). Therefore, the controller u1 in the first equation of (18)
should be firstly considered so as to obtain the actual forward speed.

3.2.1. Forward Speed Control Subsystem

At first, we consider the first equation of the dynamics model (18)

v̇0 =
−Δ2v2

0 + u1

Δ1
. (22)

Applying the feedback linearization method to (22) and letting

u1 = Δ1h1 + Δ2v2
0, (23)

a simple control system is obtained as

v̇0 = h1(t).

Defining X1 = (s1, v0)
T and s1 =

∫ t
0 v0(ξ)dξ, the forward speed subsystem is rewritten

in a matrix form as
Ẋ1(t) = A1X1(t) + B1h1(t), (24)

where A1 =

[
0 1
0 0

]
, and B1 =

[
0
1

]
. In this way, (24) is transformed into an error

system as
Ẏ = A1Y + B1h1(t) + η(t), (25)

where X̃1 = (s̃1, ṽ0)
T, s̃1 =

∫ t
0 ṽ0(τ)dτ, Y = (y1, y2)

T = X1 − X̃1, and η(t) = A1X̃1 − ˙̃X1. It
is obvious that the integral of (21) with respect to t from 0 to infinity is convergent. Thus,
a linear quadratic performance index is introduced as

J =
1
2

∫ +∞

0
[YT(t)Q1Y(t) + hT

1 (t)Rh1(t)]dt.

Here, matrix Q1 should be large weight of the forward speed error. In this way, the forward
speed error is able to be small enough by using optimal control. According to the linear
quadratic optimal control theory, the optimal control of forward speed error subsystem (25)
is formulated as

h1(t) = −R−1BT
1 [PY + b(t)]. (26)

where P ∈ R2×2 and b(t) ∈ R2 satisfy the following equations, respectively,{
−PA1 −AT

1 P + PB1R−1BT
1 P−Q1 = 0,

ḃ = −[A1 − B1R−1BT
1 P]Tb− Pη(t), b(+∞) = 0.

Substituting (26) into (23), the controller u1 is formulated by

u1 = −Δ1R−1BT
1 [PY + b(t)] + Δ2v2

0.
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3.2.2. Yaw Rotation Speed Control Subsystem

Since the actual forward speed v is obtained, we now consider the yaw rotation speed
subsystem in the second equation of (18). First, the state equation of the reference model is
obtained as

Δ3ω̇0 + Δ4v0ω0 = Y21D2Y22 = u2, (27)

where D2 = diag(Δ3, Δ4), Y21 = (ω̇0, 1), and Y22 = (1, ω0v0)
T. Since (27) is strongly

nonlinear, it is unlikely to obtain an exact solution. Therefore, to seek an approximate
solution, we introduce the adaptive control method based on its inverse dynamics. To this
end, the basic part of controller u2 is designed as

u20 = Δ̂3s2 + Δ̂4v0ω0, (28)

which yields the adjusted system of (27) as follows:

Δ3ω̇0 + Δ4v0ω0 = u20. (29)

Here, s2 = ˙̃ω0 − k2(ω0 − ω̃0) is the adaptation law, ω̃0 is the ideal yaw rotation speed
target of the tugboat, k2 is an adjustable control parameter, e2 = ω0 − ω̃0 is the yaw
rotation speed error, and Δ̂3, Δ̂4 are the estimated values of Δ3, Δ4, respectively. Besides,
D̂2 = diag(Δ̂3, Δ̂4) is defined as the estimated value of D2. The adjustment gain coefficient
k2 can be obtained by using Lyapunov stability theory, thereby getting the adaptation law
s2. It can be seen from (28) and (29) that large errors between Δ̂3 and Δ3, Δ̂4 and Δ4 may
deteriorate the tracking performance, which can be overcome by adjusting the adjustable
control parameter k2. Substituting (28) into (29), one has

Δ̂3( ˙̃ω0 − k2(ω0 − ω̃0)) + Δ̂4v0ω0 = Δ3ω̇0 + Δ4v0ω0,

which yields

− Δ̂3(ω̇0 − ˙̃ω0 + k2(ω0 − ω̃0)) + (Δ̂3 − Δ3)ω̇0 + (Δ̂4 − Δ4)v0ω0 = 0. (30)

It follows from (30) and ė2 = ω̇0 − ˙̃ω0 that

Δ̂3(ė2 + k2e2) = Δ3eω̇0 + Δ4ev0ω0, (31)

where Δ3e = Δ̂3 − Δ3, Δ4e = Δ̂4 − Δ4, and D2e = D̂2 − D2. Then, together with (27),
one has

Δ3eω̇0 + Δ4ev0ω0 = Y21D2eY22. (32)

Assume that Δ̂3 is reversible, and then (31) can be written as

(ė2 + k2e2) = Δ̂−1
3 (Δ3eω̇0 + Δ4ev0ω0).

Combining (32), one has

ė2 + k2e2 = Δ̂−1
3 Y21D2eY22, (33)

which is the error state equation of (27). Furthermore, (33) can be rewritten in a state
equation form as

Ẋ2 = A2X2 + B2Δ̂−1
3 Y21D2eY22, (34)

where A2 =

(
0 1
0 −k2

)
, B2 =

(
0
1

)
and X2 =

(
ζ2
e2

)
with ζ2 =

∫ t
0 e2(τ)dτ.

On the other hand, to improve the precision of the estimated matrix D̂2, a symmetric
matrix Q2 is chosen to satisfy the following Lyapunov equation:

AT
2 D2 + D2A2 + Q2 = 0, (35)
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which can be rewritten in a more detailed form as(
0 0
1 −k2

)(
Δ3 0
0 Δ4

)
+

(
Δ3 0
0 Δ4

)(
0 1
0 −k2

)
=

(
0 Δ3

Δ3 −2k2Δ4

)
=

( −Q11 −Q12
−Q21 −Q22

)
,

(36)

where Q2 =

(
Q11 Q12
Q21 Q22

)
. It follows from (36) that

⎧⎪⎨⎪⎩
Q11 = 0,
Q12 = Q21 = −Δ3,
Q22 = 2k2Δ4.

Therefore, we can uniquely determine the positive definite matrix D2 by selecting an
appropriate matrix Q2.

After that, apositive definite quadratic function is defined as

V = XT
2 D2X2 + YT

22DT
2eΓ2D2eY22, (37)

where D2 is the unique positive definite solution of (34), and Γ2 is an appropriate pos-
itive definite symmetric matrix. Differentiating both sides of (35) with respect to t and
combining (34) with (35), one has

V̇ =Ẋ
T
2 D2X2 + XT

2 D2Ẋ2 + Ẏ
T
22DT

2eΓ2D2eY22 + YT
22Ḋ

T
2eΓ2D2eY22

+ YT
22DT

2eΓ2Ḋ2eY22 + YT
22DT

2eΓ2D2eẎ22

=(A2X2 + B2Δ̂−1
3 Y21D2eY22)

TD2X2 + XT
2 D2(A2X2 + B2Δ̂−1

3 Y21D2eY22)

+ Ẏ
T
22DT

2eΓ2D2eY22 + YT
22Ḋ

T
2eΓ2D2eY22 + YT

22DT
2eΓ2Ḋ2eY22 + YT

22DT
2eΓ2D2eẎ22

=XT
2 AT

2 D2X2 + Δ̂−1
3 YT

22DT
2eYT

21BT
2 D2X2 + XT

2 D2(A2X2 + B2Δ̂−1
3 Y21D2eY22)

+ Ẏ
T
22DT

2eΓ2D2eY22 + YT
22Ḋ

T
2eΓ2D2eY22 + YT

22DT
2eΓ2Ḋ2eY22 + YT

22DT
2eΓ2D2eẎ22

=XT
2 (−Q2 −D2A2)X2 + Δ̂−1

3 YT
22DT

2eYT
21BT

2 D2X2 + XT
2 D2(A2X2 + B2Δ̂−1

3 Y21D2eY22)

+ Ẏ
T
22DT

2eΓ2D2eY22 + YT
22Ḋ

T
2eΓ2D2eY22 + YT

22DT
2eΓ2Ḋ2eY22 + YT

22DT
2eΓ2D2eẎ22

=− XT
2 Q2X2 + 2YT

22DT
2eYT

21Δ̂−1
3 BT

2 D2X2 + 2YT
22DT

2eΓ2Ḋ2eY22 + 2YT
22DT

2eΓ2D2eẎ22

=− XT
2 Q2X2 + 2YT

22DT
2e[Y

T
21Δ̂−1

3 BT
2 D2X2 + Γ2Ḋ2eY22 + Γ2D2eẎ22].

(38)

Since Ḋ2e =
˙̂D2, D̂2 is assumed to

˙̂D2 = −Γ−1
2 (YT

21Δ̂−1
3 BT

2 D2X2 + Γ2D2eẎ22)Y
−1
22 . (39)

If follows from (38) and (39) that

V̇ = −XT
2 Q2X2 ≤ 0. (40)

We have seen, from (37) and (40), that (33) is stablized. In this way, the adaptive
control u20 can track the ideal yaw rotation speed ω̃0 well, which ensures that all signals of
the control system are bounded. Thus, by choosing appropriate parameters, the tracking
error of the yaw speed can be controlled in a small area.

In order to improve the robustness of the yaw rotation speed subsystem, we introduce
an integral sliding mode control method. On the one hand, the basic part of controller u2 is
designed as (28). On the other hand, a sliding mode function S(ω(t)) is defined as [25]

S(ω(t)) = G[ω(t)−ω0(0)]− G
∫ t

0
˙̃ω0(η)dη,
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where G is an appropriate constant. Then, the switching control part is designed on the
integral sliding mainifold which is defined as

S(ω0(t)) = 0.

Thus, the switching control part of controller u2 is designed as

u21 = −(G−1γ + ε ‖ e2 ‖)sgn(S(ω0(t))). (41)

where ε is the control parameter related to the uncertainties, and γ is the sliding mode
control parameter. As a consequence, from (28) and (41), the controller is eventually
designed as

u2 = u20 + u21.

4. Simulation Results

In this section, we present three simulation results to verify the effectiveness of the
proposed method. First, we performed a comparison between using the dynamical target
and the statical target. Then, we report the actual trajectories of the towed ship affected by
different steering coefficients. Finally, we give an uncertain factor acted on the forward
speed subsystem to validate the robustness of the proposed controller.

The target trajectory curve of the STS is assumed to be

r̃0 = (x̃0(t), ỹ0(t))T = (80 sin(
t− π

2
) + 40t− 40π, 80− 80 cos(

t− π

2
))T,

where t ∈ [0, 2π], l = 80
√

2, φ̇(t) = 80
√

2te−t, k0(s(t)) = 1
320 cos( t−π

4 )
.

4.1. A Comparison between the Dynamical Target and Statical Target

On the one hand, the statical tracking target (19) is expressed by{
ṽ0 =

√
˙̃x2 + ˙̃y2 = 80 cos( t−π

4 ),

ω̃0 =
˙̃x ¨̃y− ¨̃x ˙̃y
˙̃x2+ ˙̃y2 = 1

4 .
(42)

If we use the statical tracking target (42) to design controller u1 and u2, the initial
speed error is not zero, given by{

v0(0)− ṽ0(0) = −80 cos(−π
4 ) = −40

√
2,

ω0(0)− ω̃0(0) = − 1
4 .

On the other hand, the dynamical tracking target (20) is expressed by{
ṽ0 = 80

√
2te−t,

ω̃0 = k0(s)v0(t).

The relative parameters of the towing system are set as λ = 1.3, L = 2.6 m, τ = 0.25, S =
3.3 m2, ρ = 1000 kg/m3, d = 0.1 m, Cf = 0.063, m0 + Mx0 = 103 kg, m1 + Mx1 = 103 kg,
Iz0 + Jz0 = 30 kg ·m2, Iz1 + Jz1 = 30 kg ·m2, Q1 = diag(10, 100), R = 1, k2 = 204, G =
1, ε = 0.1, γ = 0.3. Therefore, all the required quantities in the trajectory tracking controllers
u1 and u2 are available in hand. Accordingly, the time histories of all state variables can
be simulated.

As can be seen in Figure 3, by using the dynamical tracking target, both the initial
forward speed and yaw rotation speed errors are smaller than the one using statical tracking
target. Comparing Figure 4a with Figure 4b, we see that the actual motion trajectory of
the tugboat deviates largely from the target curve by using the statical tracking target,
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whereas the actual motion trajectory of the tugboat coincides well the target curve via the
dynamical tracking target. In other words, by using the dynamical tracking target, accurate
trajectory tracking can be achieved as long as the curvature tracking error is controllable.
Even though forward speed and yaw rotation speed errors are large, accurate tracking can
be also maintained as long as the relative curvature is well tracked.

(a) Forward speed error of the tugboat

(b) Yaw rotation speed error of the tugboat

Figure 3. Actual speed error of the tugboat.
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(a) Actual motion trajectory of the tugboat with statical target

(b) Actual motion trajectory of the tugboat with dynamical target

Figure 4. Actual motion trajectory curve of the tugboat by using different speed targets.

4.2. Actual Trajectories of the Towed Ship with Different Steering Coefficients

In order to further investigate the influence of the steering coefficient on the actual
trajectory of the towed ship, we choose different steering coefficients and lengths of towline
for simulations.

When the length of towline is relatively small, such as a = 20 m, the actual motion
trajectory of the towed ship deviates largely from the target curve, if the steering coefficient
μ = −12 is adopted, as depicted in Figure 5a. However, for the same length of the towline,
the actual trajectory of the towed ship follows very well with the target curve by using the
steering coefficient μ = −16 in Figure 5b. When the length of the towline is relatively large,
such as a = 40 m, we need a larger steering coefficient to obtain a satisfactory tracking
performance, such as μ = −20, as depicted in Figure 6. As a consequence, when the length
of the towline is smaller, a satisfactory trajectory tracking performance can be obtained
with smaller steering coefficient, whereas, when the length of the towline is large, a larger
steering coefficient must be applied to keep the tracking error of the towed ship within a
smaller range.
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(a) μ = −12, a = 20

(b) μ = −16, a = 20

Figure 5. Comparison of actual motion trajectories of the towed ship between different steering
coefficients.
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(a) μ = −16, a = 40

(b) μ = −20, a = 40

Figure 6. Comparison of actual motion trajectories of the towed ship between different steering
coefficients.

4.3. Robustness of the Proposed Controller

Since the controllers are designed by considering the sliding mode control and in-
verse dynamics adaptive control methods simultaneously, it has highly robust. Moreover,
by using the dynamical tracking target, even though the forward speed and yaw rotation
speed error subsystems are unstable due to uncertain factors, the towed ship is also able to
achieve satisfactory tracking performance.

Assume that the forward speed error subsystem is subject to an uncertain factor, which
is given by

Ẏ = A1Y + B1u1(t) + η(t) + d(t),

where d(t) = (10.2y1, 10.2y2)
T is an uncertain factor.

As shown in Figures 7 and 8, although forward speed and yaw rotation speed errors
are large and even divergent, the actual motion trajectory of the tugboat almost coincides
with the target curve. The main reason is that the relative curvature error which is ob-
tained by dividing the actual yaw rotation speed by the actual forward speed is small
via the dynamical tracking target. Therefore, as long as the relative curvature error is
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small enough, the accurate tracking of the target trajectory curve can still be guaranteed.
Moreover, the towed ship can also obtain satisfactory tracking performance by means of an
appropriate steering coefficient, such as μ = −20. Otherwise, there will be a large deviation
from the target trajectory curve, such as μ = −16, as depicted in Figure 8.

(a) Forward speed error of the tugboat

(b) Yaw rotation speed error of the tugboat

Figure 7. Actual motion speed error of the tugboat under the uncertain factor d(t).
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Figure 8. Actual motion trajectory curve under the uncertain factor d(t).

5. Conclusions

A novel control strategy for the ship towing system is proposed, so that both the tug-
boat and the towed ship move along the given target trajectory curve accurately. Compared
with the existing research studies, the proposed method has the following features.

• The towed ship is able to move along the trajectory of the tugboat by introducing
an appropriate passive steering angle. Then, the original motion control problem is
transformed into the tugboat tracking the target trajectory curve.

• The target trajectory curve is converted into a dynamical tracking target by using the
relative curvature of the target curve, which can fundamentally solve the problem of
accurate tracking for the ship towing system.

• By combining dynamical tracking target, sliding mode control and inverse dynamic
adaptive control, the torque controller has strong robustness. Even if the error speed
subsystem is unstable affected by an uncertain factor, all bodies can still track the
target trajectory curve accurately.

The proposed method makes full use of the motion laws under the kinetics model
and solves the accuracy problem of trajectory tracking by using the dynamical tracking
method. In fact, the proposed method can be applied to the precise motion control design
of general mechanical models.
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Abstract: A numerical method based on the Pontryagin maximum principle for solving an optimal control
problem with static and dynamic phase constraints for a group of objects is considered. Dynamic phase
constraints are introduced to avoid collisions between objects. Phase constraints are included in the
functional in the form of smooth penalty functions. Additional parameters for special control modes and
the terminal time of the control process were introduced. The search for additional parameters and the
initial conditions for the conjugate variables was performed by the modified self-organizing migrating
algorithm. An example of using this approach to solve the optimal control problem for the oncoming
movement of two mobile robots is given. Simulation and comparison with direct approach showed that
the problem is multimodal, and it approves application of the evolutionary algorithm for its solution.

Keywords: optimal control problem; evolutionary computation; robotics applications

1. Introduction

The optimal control belongs to complex computational problems for which there are no universal
solution algorithms. The most well-known result in this area [1] transforms the optimization problem
into a boundary-value problem, and the dimension of the problem doubles. The goal of solving the
boundary-value problem is to find the initial conditions for conjugate variables such that the vector of
state variables falls into a given terminal condition. In general, for this problem, there is no guarantee
that the functional for the boundary-value problem is not unimodal and convex on the space of initial
conditions of conjugate variables.

The optimal control problem with phase constraints is considered. Phase constraints are included in
the functional, so they are included in the system of equations for conjugate variables. This greatly
complicates the analysis of the problem on the convexity and unimodality of the target functional.
The accurate solution of optimal control problem has to use additional functions and regularization
of equations at the search of control [2,3]. An additional problem in solving a boundary-value problem is
determination of time for checking the fulfillment of boundary conditions.
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In this paper, for the numerical solution of the problem, it is proposed to use evolutionary algorithms
that have shown efficiency in solving optimal control problems [4]. SOMA is a universal algorithm for
various difficult optimization problems [5,6]. However, our attempt to apply SOMA to the optimal control
problem of four robots with constraints has failed to find a good solution for any values of the algorithm
parameters. We supposed that the modification of each possible solution in population in the process of
evolution using the best current possible solution is not enough [7]. We expanded the modification of
SOMA by introducing the best historical solution among randomly selected ones for each possible solution
in the population.

The article consists of an introduction and eight sections. Statement of the optimal control problem
with phase constraints is presented in Section 2. Section 3 contains Pontryagin maximum principle as one
of main approaches for its numerical solution. Section 4 contains a description of one of the evolutionary
algorithms, modified SOMA. An example is given in Section 5. The computational experiment and
results are presented in Section 6. Section 7 describes the search of optimal control by direct method.
Alternative non-deterministic control methods are observed in Section 8. Results and future research
directions are discussed in Section 9.

2. Optimal Control Problem with Phase Constraints for Group of Robots

Consider the problem of optimal control for a group of robots with phase constraints. Given a
mathematical model of control objects in the form of the system of ordinary differential equations

ẋj = fj(xj, uj), (1)

where xj is a state space vector of control object j, xj ∈ Rnj , uj is a control vector of object j, uj ∈ Uj ⊆ Rmj ,
Uj is a compact limited set, mj � nj, j = 1, . . . , M, M is a number of objects. For the system (1) initial
conditions are given

xj(0) = xj,0 ∈ Rnj , j = 1, . . . , M. (2)

Given terminal conditions
xj(t f ,j) = xj, f ∈ Rnj , (3)

where t f ,j is an unknown limited positive value, that corresponds to time when object j achieves its
terminal position

t f ,j � t+, (4)

t+ is a given time of achievement of terminal conditions (3),

t f ,j =

{
t, if t < t+ and ‖xj(t)− xj, f ‖ � ε1

t+, otherwise
, (5)

ε1 is a small positive value, j = 1, . . . , M. The phase constraints are given

ϕi(x
j(t)) � 0, i = 1, . . . , r, j = 1, . . . , M. (6)

The conditions of collision avoidance are described as

χ(xj(t), xk(t)) � 0, j = 1, . . . , M− 1, k = j + 1, . . . , M. (7)
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The quality functional is given in general integral form

J0 =

t f∫
0

f0(x
1(t), . . . , xM(t), u1(t), . . . , uM(t))dt → min, (8)

where
t f = max{t f ,1, . . . , t f ,M}. (9)

It is necessary to find control as a time function

uj = vj(t), j = 1, . . . , M, (10)

in order to provide terminal conditions (3) with optimal value of functional (8) without violation of
constraints (6) and with collision avoidance (7). For a numerical solution of the problem, let us insert phase
constraints and terminal conditions in quality functional (8)

J1 =

t f∫
0

f0(x
1(t), . . . , xM(t), u1(t), . . . , uM(t))dt + a

t f∫
0

r

∑
i=1

M

∑
j=1

μ2(ϕi(x
j(t)))dt+

b

t f∫
0

M−1

∑
j=1

M

∑
k=j+1

μ2(χ(xj(t), xk(t)))dt + c
M

∑
j=1

||xj(t f )− xj, f || → min, (11)

where a, b, c are given positive weight coefficients, μ(A) = max{0, A}.
To solve the problem stated above, we use the Pontryagin maximum principle.

3. The Pontryagin Maximum Principle

The Pontryagin maximum principle allows one to transform the problem of optimization on infinite
dimensional space to the boundary-value problem for the system of differential Equations (1). Let us
construct Hamilton function for this problem on the base of the system (1) and the quality functional (2)
without terminal conditions

H(x1, . . . , xM, u1, . . . , uM, ψ) = − f0(x
1, . . . , xM, u1, . . . , uM)−

a
r

∑
i=1

M

∑
j=1

μ2(ϕi(x
j))− b

M−1

∑
j=1

M

∑
k=j+1

μ2(χ(xj, xk)) + ψTfj(xj, uj), (12)

where ψ = [ψ1 . . . ψn]T is a vector of conjugate variables, n = n1 + . . . + nM,

ψ̇ = −∂H(x1, . . . , xMu1, . . . , uM, ψ)

∂x1, . . . , ∂xM . (13)

According to the Pontryagin maximum principle, a necessary condition for optimal control is the maximum
of Hamilton function (12)

max
u1∈U1,...,uM∈UM

H(x1, . . . , xM, u1, . . . , uM, ψ). (14)

Pontryagin maximum principle allows one to transform the optimal control problem to a boundary-value
problem. It is necessary to find the initial values of conjugate variables so that the state vector reaches
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terminal conditions (3). To solve the boundary-value problem, we have to solve a finite dimensional
problem of nonlinear programming with the following functional

F(q) =
M

∑
j=1

‖xj(t f ,j)− xj, f ‖ → min
q∈Q

, (15)

where q = [q1 . . . qn]T , Q is a limited compact set, qi = ψi(0), i = 1, . . . , n,

n

∑
i=1

q2
i = 1. (16)

In a boundary-value problem, it is not known exactly when it is necessary to check the boundary conditions
(15). The maximum principle does not provide equations for definition of terminal time t f ,j of the control
process, while a numerical search of some possible solutions may not reach the terminal condition. To avoid
this problem, let us add parameter qn+1 for the time limit of reaching the terminal state. As a result, the goal
functional for the boundary-value problem is the following

F̃(q) =
M

∑
j=1

‖xj(t+ + qn+1)− x f ,j‖ → min
q̃∈Q̃

, (17)

where q̃ = [q1 . . . qn+1]
T ,Q̃ = Q× [q−n+1; q+n+1], q−n+1, q+n+1 are low and up limitations of the parameter

qn+1. During the search process, we can decrease time t+ according to sign of parameter qn+1. If found
parameter qn+1 is less than zero, then t+ is decreased and the interval for values of parameter [q−n+1; q+n+1]

is also narrowed.

4. Evolutionary Algorithm

The boundary-value problem may have a nonconvex and nonunimodal objective functional (15) on
the parameter space q, therefore, to solve this problem, it is advisable to use an evolutionary algorithm.

Evolutionary algorithms differ in the form of changing possible solutions. The first evolutionary
algorithms appeared at the end of the XX century and continue to appear. Currently, hundreds of
evolutionary algorithms are known. Most of them are named after animals, although the connection
between animal behavior and computational algorithms is not strictly proven anywhere and is determined
only by the statement of the author of the algorithm. Common steps of evolutionary algorithms are:
generation of a set of possible solutions, assessment of solutions by objective function to find one or more
best solutions, modification of solutions in accordance with the value of its objective function and with
information about the values of the objective functions of other solutions by evolutionary operators.

In this work, we investigate the application of the Pontryagin maximum principle to solve the optimal
control problem for a group of robots with phase constraints, and do not compare evolutionary algorithms.
We applied one of the effective evolutionary algorithms, self-organizing migrating algorithm (SOMA) [5,6],
with modification [7] to find the parameters, i.e., initial conditions of conjugate variables and additional
parameter qn+1 for terminal time. The modified SOMA includes the following steps.

Generate a population of H possible solutions, taking into account

q̄j
i = ξ(q+i − q−i ) + q−i , i = 1, . . . , n + 1, j = 1, . . . , H, (18)
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where q+i = 1, q−i = −1, i = 1, . . . , n, q+n+1 = 0.2, q−n+1 = −2.5, H is a cardinal number of the population
set, ξ is a random number from 0 to 1. Normalize the first n possible solutions according to (16)

qj
i =

q̄j
i√

∑n
k=1(q̄

j
k)

2
, i = 1, . . . , n, j = 1, . . . , H. (19)

In the optimization problem, we have to find a vector of optimal parameters q = [q1 . . . qn+1]
T in order to

receive the minimal value of functional

J1(q) =
M

∑
j=1

||x(t+ + qn+1)− x f ,j|| → min. (20)

For each vector of parameters, we set a historical vector. Initially, historical vectors contain zero elements

q̃j
i = 0, i = 1, . . . , n + 1, j = 1, . . . , H. (21)

Calculate the values of functional for each possible solution

f j = J1(q
j), j = 1, . . . , H. (22)

Find the best possible solution qj0 on a stage of evolution

J1(q
j0) = min{ f1, . . . , fH}. (23)

For each historical vector, find the best vector among the randomly selected ones q̄j in
current population

J1(q
j∗) = min{ f j1 , . . . , f jK}, (24)

where ji ∈ {1, . . . , H}, i = 1, . . . , K. Transform each historical vector

q̃j
i ← αq̃j

i + β(qj∗

i − qj
i), (25)

where i = 1, . . . , n + 1, j = 1, . . . , H, α and β are parameters of the algorithm, positive numbers less than
one. Let us set a step t = δ. Calculate some new values for each possible solution

q̂j
i(t) =

{
qj

i + q̃i
j + t(qj0

i − qj
i), if ξ < Prt

qj
i + q̃i

j, otherwise
, (26)

where i = 1, . . . , n + 1, Prt is a parameter of the algorithm. Check each component of a new vector
for restrictions

qj
i(t) =

q̂j
i(t)√

∑n
k=1(q̂

j
k(t))

2
, i = 1, . . . , n, (27)

qj
n+1 =

⎧⎪⎨⎪⎩
q+n+1, if q̂j

n+1(t) > q+n+1
q−n+1, if q̂j

n+1(t) < q−n+1
q̂j

n+1(t), otherwise

. (28)
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Calculate the functional for a new vector

f j(t) = J1(q
j(t)). (29)

If f j(t) � f j, then we change possible solution qj by a new vector

qj ← qj(t), (30)

f j ← f j(t). (31)

Increase t
t = t + δ. (32)

If t < Plength then repeat calculations (25)–(32), Plength is a parameter of the algorithm.
Repeat calculations (22)–(32) for all possible solutions in the population. Then again, find the best solution
(23) and change historical vector (25). Repeat all stages R times. The last best vector is a solution of the
optimization problem.

An applied algorithm with historical vector is called a modified SOMA. The value of parameter β = 0
transforms the algorithm from modified SOMA to classical SOMA. Pseudo code of the modified SOMA
has the following form, see Algorithm 1.

Algorithm 1: Modified SOMA for Optimal Control Problem.

Procedure ModSOMA (H, R, Plength, Prt, δ ; var qj0 )
for (j = 1, . . . , H) //generation of initial population

s = 0
for (i = 1, . . . , n) //normalization of first n elements of each qj

qj
i = 2 · Random− 1

s = s + (qj
i)

2

end for

for (i = 1, . . . , n)
qj

i = qj
i/
√

s
q̃j

i = 0 //* setting of initial values of historical vector
end for

qj
n+1 = q−n+1 + Random · (q+n+1 − q−n+1)

q̃j
n+1 = 0 //*

f j = J1(q
j) //estimation of each possible solution

end for

for (r = 1, . . . , R) ; //generations
j0 = 1
for j = 2, . . . , H //search for the best current solution

if f j < f j0 then

j0 = j
end for

for (j = 1, . . . , H) //evolution of all solutions
j∗ = Random(H) //*
for (l = 1, . . . , K) //* search for the best solutions among randomly selected ones

jl = Random(H) //*

160



Mathematics 2020, 8, 2105

Algorithm 1: Cont.

if f jl < f j∗ then

j∗ = jl //*
end if ; //*

end for //*
for (i = 1, . . . , n + 1) //* transformation of historical vectors

q̃j
i = αq̃j

i + Random · β(qj∗
i − qj

i) //*
end for //*
t = δ

while t < Plength do //termination condition
s = 0
for (i = 1, . . . , n) //calculation of new values of parameters

if Random < Prt then

q̂j
i(t) = qj

i + q̃j
i + t(qj0

i − qj
i)

else

q̂j
i = qj

i + q̃j
i

end if

s = s + (q̃j
i)

2

end for

for (i = 1, . . . , n) //normalization
qj

i(t) = q̂j
i(t)/

√
s

end for

if Random < Prt then

q̂j
n+1(t) = qj

n+1 + q̃j
n+1 + t(qj0

n+1 − qj
n+1)

else

q̂j
n+1(t) = q̂j

n+1(t)
end if

if q̂j
n+1 > q+n+1 then

qj
n+1 = q+n+1

end if

if q̂j
n+1 < q−n+1 then

qj
n+1 = q−n+1

end if

f j(t) = J1(q
j(t)) //estimation of new vector of parameters

if f j(t) < f j then

f j = f j(t)
for (i = 1, . . . , n + 1)

qj
i = qj

i(t) //transformation of vector of parameters
end for

end if

t = t + δ

end while do

end for (j = H)

end for (r = R)

In pseudo code, subroutine Random generates a random real number from 0 to 1, and subroutine
Random(A) generates random integer number from 0 to A− 1. We used * in comments to highlight the
modification of modified SOMA in comparison to original SOMA.
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The effectiveness of modified SOMA, as with all evolutionary algorithms, depends on the parameters
that influence the number of computational operations, i.e., number of elements in initial population (H),
number of generations (R), number of evolutions (P). To evaluate one single solution, we need to simulate
the whole system, thus, for the problem, we have to calculate the functional minimum H + nRP times,
where n depends on parameter of algorithm Plength.

As for all evolutionary algorithms, the convergence of modified SOMA is determined by probability.
The more solutions are looked through, the more is the probability to find the optimal one. In evolutionary
algorithms, the value of goal function depends on the number of generations as descending exponent. If the
solution is not improved for some generations, then the search is stopped, and the best current solution
is considered to be the solution to the problem. The optimal control problem with phase constraints is
not unimodal, and the search algorithm is not deterministic, thus, to find the solution, the algorithm ran
multiple times.

5. An Example

Consider a control problem for two similar mobile robots. Mathematical model of control objects has
the following form

ẋj = 0.5(uj
1 + uj

2) cos θ j,
ẏj = 0.5(uj

1 + uj
2) sin θ j,

θ̇ j = 0.5(uj
1 − uj

2),

(33)

where j = 1, 2.
The control is limited

u−i � uj
i � u+

i , (34)

where j = 1, 2, u−i , u+
i are the given constraints, i = 1, 2. For the system (33) , the initial conditions are

xj(0) = xj
0, yj(0) = yj

0, θ j(0) = θ
j
0. (35)

The terminal conditions are
xj(t) = xj

f , yj(t) = yj
f , θ j(t) = θ

j
f . (36)

The static phase constraints are

ϕi(xj, yj) = r2
i − (x∗i − xj)2 − (y∗i − yj) � 0, (37)

where j = 1, 2, ri, x∗i , y∗i are the given parameters of constraints, i = 1, . . . , r, r is a number of static phase
constraints. For two robots, we have only one dynamic phase constraint

χ(x1, x2) = d2 − (x1 − x2)2 − (y1 − y2)2 � 0, (38)

where d is a given minimal distance between robots.
A quality functional is

J = t f +
2

∑
j=1

δj(t f ), (39)

where

t f =

{
t, if t < t+and ∑2

j=1 δj(t) < ε

t+ otherwise
, (40)
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δj(t) =
√
(Δj

x)2(t) + (Δj
y)2(t) + (Δj

θ)
2(t), (41)

Δj
x(t) = xj(t)− xj

f ,

Δj
y(t) = yj(t)− yj

f ,

Δj
θ(t) = θ j(t)− θ

j
f ,

j = 1, 2, ε is a small positive value.
To obtain equations for conjugate variables, all constraints are included in the quality criterion,

and terminal conditions are excluded as follows

J = t f + a
∫ t f

0

2

∑
j=1

μ2(ϕi(xj, yj))dt + b
∫ t f

0
μ2(χ(x1, x2))dt. (42)

Suggesting that the problem is not abnormal, let us write down the Hamilton function in the following form

H(x, u,ψ) = −1−
2

∑
j=1

μ2(ϕi(xj, yj))− aμ2(χ(x1, x2)) + 0.5
2

∑
j=1

ψ1+3(j−1)(u
j
1 + uj

2)cosθ j+

0.5
2

∑
j=1

ψ2+3(j−1)(u
j
1 + uj

2)sinθ j + 0.5
2

∑
j=1

ψ3j(u
j
1 − uj

2). (43)

As a result, the differential equations for conjugate variables are

ψ̇1+3(j−1) = −∂H(x, u,ψ)
∂xj = 4μ(r2

1 − (x∗1 − xj)2 − (y∗1 − yj))(x∗1 − xj)+

4μ(r2
1 − (x∗2 − xj)2 − (y∗2 − yj))(x∗2 − xj)− 4μ(d2 − (x1 − x2)2 − (y1 − y2))(x1 − x2),

ψ̇2+3(j−1) = −∂H(x, u,ψ)
∂yj = 4μ(r2

1 − (x∗1 − xj)2 − (y∗1 − yj))(y∗1 − yj)+ (44)

4μ(r2
1 − (x∗2 − xj)2 − (y∗2 − yj))(y∗2 − yj) + 4μ(d2 − (x1 − x2)2 − (y1 − y2))(y1 − y2),

ψ̇3j = −∂H(x, u,ψ)
∂θ j = 0.5ψ1+3(j−1)(u

j
1 + uj

2) sin θ j − 0.5ψ2+3(j−1)(u
j
1 + uj

2) cos θ j,

where j = 1, 2. Optimal control is calculated from equations

ũj
1 =

⎧⎪⎨⎪⎩
uj+

1 , if Wj + ψ3j > 0
uj−

1 , if Wj + ψ3j < 0
special control mode, if Wj + ψ3j = 0

, (45)

ũj
2 =

⎧⎪⎨⎪⎩
uj+

2 , if Wj − ψ3j > 0
uj−

2 , if Wj − ψ3j < 0
special control mode, if Wj − ψ3j = 0

, (46)

where
Wj = ψ1+3(j−1) sin θ j + ψ2+3(j−1) cos θ j, (47)

uj+
1 , uj+

2 , uj−
1 , uj−

2 are upper and lower values of control for robot j, j = 1, 2.
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The nonlinear programming problem consists of finding initial conditions for conjugate variables

qi = ψi(0), i = 1, . . . , 6, (48)

so that initial conditions have to allocate on a sphere with a unit radius√√√√ 6

∑
i=1

q2
i = 1, (49)

as well as terminal time
t f = t+ + q7, (50)

and special control modes
u1

1 = q8, if |W1 + ψ3| < ε0, (51)

u1
2 = q9, if |W1 − ψ3| < ε0, (52)

u2
1 = q10, if |W2 + ψ6| < ε0, (53)

u2
2 = q11, if |W1 − ψ6| < ε0, (54)

where ε0 is a small positive value.
A goal function for the nonlinear programming has the following form

F =
2

∑
j=1

δj(t f ) + a
∫ t f

0

2

∑
j=1

μ2(ϕi(xj, yj))dt + b
∫ t f

0
μ2(χ(x1, x2))dt. (55)

6. Computational Experiment

The problem had the following parameters: a number of objects M = 2, dimensions of objects n1 = 3,
n2 = 3, dimension of state space vector n = 3 + 3 = 6, dimensions of control m1 = 2, m2 = 2, dimension
of control space m = 2 + 2 = 4 dimension of parameter vector n + 1 + m = 11.

The following values of parameters of the algorithm were used: x1
0 = 0, y1

0 = 0, θ1
0 = 0, x2

0 = 10,
y2

0 = 10, θ2
0 = 0, x1

f = 10, y1
f = 10, θ1

f = 0, x2
f = 0, y2

f = 0, θ2
f = 0, u+

i = 10, u−i = −10, i = 1, 2, t+ = 3.5 s,
x∗1 = 5, y∗1 = 8, r1 = 2, x∗2 = 5, y∗2 = 2, r2 = 2, d = 2, ε0 = 0.1, a = 2, b = 2, ε = 0.01, H = 32, P = 256,
Plength = 8, Prt = 0.33, Δ = 0.22, β = 0.2, α = 0.3, K = 7, constraints on parameter values are q−i = −1,
q+i = 1, i = 1, . . . , 6, q−7 = −2, q+7 = 1, q−i = −10, q+i = 10, i = 8, . . . , 11.

An obtained optimal vector of parameters was

q = [0.7722 0.2142 − 0.2825 − 0.2968 − 0.23 0.3702 − 1.5112 0.0179 3.3965 − 2.96 − 0.5945]T .

This solution provided the value of the goal function (55) F = 0.1238.
To obtain the solution of optimal control problem for (33) and (44) by using the Pontryagin maximum

principle, the complexity of search was the following: H = 32, P = 256, R = H, Plength = 8, step = 0.22,
n = 8/0.22 = 36, H + nRP = 32+ 36× 32× 256 = 294, 944, i.e., the functional was calculated 294,944 times.
Simulation was performed in Lazarus, an open-source Free Pascal-based software, on PC with Intel Core i7,
2.8 GHz, OS Win 7. Series of 10 runs was implemented. The CPU time for 10 runs was approx. 20 min, i.e.,
1 run was approx. 2 min.
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The trajectories of the robots are shown in Figure 1. On Figure 1, red circles present the static
constraints. Plots of obtained control are presented on Figures 2–5. Figures 2–5 show that optimal control
includes sectors of special control modes [8]. The controls u1

2 and u2
1 have sliding modes.

Figure 1. Trajectories of movement of robots.

Figure 2. Control u1
1.

Figure 3. Control u1
2.
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Figure 4. Control u2
1.

Figure 5. Control u2
2.

7. Search of Optimal Control by Direct Method

The same problem was solved by direct numerical method. Control for each robot was searched as a
piece-wise liner function on interval as follows

uj
i =

⎧⎪⎨⎪⎩
u+

i , if u+
i ≤ ũj

i
u−i , if ũj

i ≤ u−i ,
ũj

i , otherwise

(56)

where

ũ1
1 = qi + (qi+1 − qi)

(t− iΔt)
Δt

, (57)

ũ1
2 = qi+K + (qi+K+1 − qi+K)

(t− iΔt)
Δt

, (58)

ũ2
1 = qi+2K + (qi+2K+1 − qi+2K)

(t− iΔt)
Δt

, (59)

ũ2
2 = qi+3K + (qi+3K+1 − qi+3K)

(t− iΔt)
Δt

, (60)
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i = 1, . . . , K, t ∈ [iΔt; (i + 1)Δt), Δt = 0.25,

K =

⌊
t+

Δt

⌋
+ 1 =

⌊
2.5

0.25

⌋
+ 1 = 11, (61)

Eleven time intervals were used. For each control, it was necessary to find 11 parameters of
piece-wise linear function at the boundaries of intervals. Totally, we searched for forty-five parameters
q = [q1 . . . q45]

T , forty-four parameters were for control of two robots, and q45 was for terminal time
t+ + q45. Values of parameters were constrained

q−i � qi � q+i , i = 1, . . . , 45, (62)

where q−i = −20, q+i = 20, i = 1, . . . , 44, q−45 = −0.8, q+45 = 0.8.
The parameter search was also performed by modified SOMA. Vector of obtained parameters was

as follows

q = [15.0129 17.4687 17.6772 2.2532 12.5488 9.0041 0.3886 19.9999 19.3899 19.01849
−8.8472 − 15.2669 10.5164 19.9044 16.5724 18.0328 17.5597 18.3563 16.8607 8, 2100
−18.7127 4.3724 − 8.9377 − 0.7936 10.6309 18.9660 18.4597 18.9742 17.2781 14.6362
18.4152 − 13.7367 − 2.8521 17.0837 18.1753 17.5278 9.4618 19.5178 17.6007 11.3479
−0.6898 − 5.4015 19.9215 9.6850 0.6628]T .

For direct approach, when we searched for 45 parameters by modified SOMA, the complexity of
the algorithm was the following: H = 32, P = 1024, R = H, Plength = 8, step = 0.22, n = 8/0.22 = 36,
H + nRP = 32 + 36× 32× 1024 =1,179,680. Simulation was performed on PC with Intel Core i7, 2.8 GHz.
A series of 10 runs was implemented. The CPU time for 10 runs was approx. 3 hours and 10 min, i.e., 1 run
was approx. 19 min. We used P = 1024 for direct approach, because the number of searched parameters
was 45, and it was several times bigger than 11 parameters in the first experiment.

The obtained solution is presented on Figure 6. On Figures 7–10, the plots of direct controls
are presented.

Figure 6. Trajectories of robots obtained by direct method.
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Figure 7. Direct control u1
1.

Figure 8. Direct control u1
2.
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Figure 9. Direct control u2
1.

Figure 10. Direct control u2
2.

8. An Alternative Non-Deterministic Control

One of the most important issues for swarm robotics applications is catching up with moving targets
and avoiding multiple dynamic obstacles. It is complicated in that it requires an algorithm to work in real
time to avoid obstacles that are standing or moving in an unknown environment, where the robot does
not know their position until detecting them by sensors arranged on the robot. As an alternative to the
method presented above, the use of swarm intelligence algorithms as reported in [9] can be discussed.
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The paper [9] presents a method for swarm robot to catch the moving target and to avoid multiple dynamic
obstacles in the unknown environment. An imaginary map is built, representing N targets, M obstacles
and N robots and a swarm intelligence algorithm is used to control them so that targets are captured
correctly and in the shortest time. The robot dynamics can be viewed as a flow of water moving from high
to low. The flow of water is the robot trajectory that is divided into a set of points created by an algorithm
called SOMA [5,6]. Simulation results are also presented to show that the obstacle avoidance and catching
target task can be reached using this method. All details about those experiments are discussed in [9].
Results are also visualized in selected videos (https://zelinkaivan65.wixsite.com/ivanzelinka/videa).
The typical example is in Figure 11.

Figure 11. Swarm robot control by SOMA.

Besides the long-standing methods such as potential field method [10,11], and the vector field
histogram [12], several new methods such as “follow the gap method” [13], and barrier function [14],
or artificial intelligence methods such as genetic algorithm [15], neural network [16], and fuzzy logic [17,18]
also demonstrate their effectiveness. Among the methods of artificial intelligence used to solve the problem
as a function optimization problem, the self-organizing migrating algorithm (SOMA) emerges as a fast,
powerful and efficient algorithm [5,6].

9. Discussion

The optimal control problem for two mobile robots with phase constraints was considered. To solve
the problem, an approach based on the Pontryagin maximum principle was used. The mathematical model
of robots include linear control in the right parts of differential equations; that is why the optimal control
has sectors of special control modes. It should be noted that we used two robots to test the proposed
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technology and partially to test methodology. A larger group is required to fully test the proposed
methodology and it will be our future research, but in the case of many robots, the optimization problem
will go on backstage and the collision avoidance will become the real problem.

To solve a boundary-value problem and search of initial conditions of conjugate variables,
the modified SOMA was used. Additional parameters for terminal conditions check and control in
special modes were introduced.

The optimal control problem was also solved by direct approach. Control time was divided into
intervals, and control at each interval was a piece-wise linear function. Additional parameter was also a
time of terminal conditions check. The direct approach showed another character of objects movement.

The aim of this paper was to show for the first time how modern evolutionary algorithms can be
applied to solution of boundary-value problems that occur when we solve the optimal control problem by
an indirect method based on the Pontryagin maximum principle. Other known applications of evolutionary
algorithms were mainly with direct approach [4].

Thus, one can conclude that the considered problem is multimodal and application of evolutionary
algorithms to both direct and indirect approaches is expedient and prospective. The next research will be
focused on an extensive comparative study of classical and swarm control based methods.

10. Patents

Certificate of software registration No.2020619668 Diveev A.I., Sofronova E.A. “Optimal control of
group of robots based on Pontryagin maximum principle” 21 August 2020.

Certificate of software registration No.2020619960 Diveev A.I., Sofronova E.A. “Optimal control of
group of robots by direct approach based on piece-wise linear approximation”, 26 August 2020.
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Abstract: This paper presents a proposal of a modular robot with origami structure. The proposal
is based on a self-scalable and modular link made of soft parts. The kinematics of a single link
and several links interconnected is studied and validated. Besides, the link has been prototyped,
identified, and controlled in position. The experimental data show that the system meets the
scalability requirements and that its response is totally reliable and robust.

Keywords: self-scalable robots; modular robots; origami structures

1. Introduction

In this paper we propose the design and construction of a modular robot composed
by several links which are reconfigurable in shape and size in order to generate different
adaptable configurations of the robotic platform. The primary characteristics for this design
are the scalability and modularity of the robot. Two designs will be proposed:

1. A single link capable of changing its size individually (self-scalable) is the first pro-
posed design option. This link could be connected to other links with similar features,
this way achieving the modularity property.

2. A modular design with several interconnected links is the second design approach,
which will improve the scalability of the system and its motion range. This kind of
configuration has been studied by several authors since 1988, like CEBOT [1] or CMU
RMMS [2].

A Modular Robotic System (MRS) can be defined as link arrays joined together to form
a modular structure [3]. MRSs have four interdependent components: Module, Informa-
tion, Task, and Environment (MITE). MITE allows for the extraction of the characteristics
of the MRS, the module properties being the most special features, as other MRS compo-
nents are transversal to every kind of robot. The module component includes two useful
properties for the design of an MRS, these are: class and architecture. The class refers
to the different ways in which modularity can be achieved, such as fixed-configuration,
manually-reconfigurable [2,4], self-reconfigurable [5,6], and self-replicable [7]. On the other
hand, architecture is the hardware categories of configuration: Chain [4,5], Lattice [6,8,9],
Mobile [10–12], Hybrid [13,14], Truss [15–17], and Free form [18,19].

Many MRSs change their shape and size through nesting between each module;
however, in this case study our goal is to allow the resizing of each module before its
connection. This configuration is not often used in the literature. For instance, the closest
example is ShapeBots, which is an individual shape-changing link [20] but with no mod-
ularity capabilities. A reference work closer to our approach is the Extendable Arm by
Matsuo et al. [21], where modular links are connected and each one is scalable. Compared
to our approach, the orientation of this platform is limited and its operation is manual.
Thanks to the introduction of a three degrees of freedom (DoF) joint connecting each link,
our design allows a wider orientation range of the modular robot. Besides, the platform
performs automatically thanks to the use of a control system, which avoids the manual
operation of the robot and improves its usability.

Mathematics 2021, 9, 1324. https://doi.org/10.3390/math9121324 https://www.mdpi.com/journal/mathematics173
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The initial idea about a flexible structure deforming by sections led us to origami-type
constructions. Origami is an ancient technique for paper folding [22], which provides
deployable structures that can be reconfigured and change in size and shape. Reconfig-
urable 3D structures, obtained from a rigid geometric 2D pattern, are booming in designs
for engineering applications such as the solar panel surfaces proposed by Miura [23],
the modular origami continuous manipulator by Santoso et al. [24], which supports a
1 kg mass at its tip, a gripper with multiple grasp modes [25], and other applications
such as biomechanical [26], space [27], or soft robotics [28]. The wide number and type of
applications of these designs has motivated us to research this topic and present a different
approach in the terms described next.

Our design proposal consists of a modular robot that uses an origami-inspired link-
based resizing mechanism. The links can be assembled using a rigid connector or a 3 DoF
joint as proposed below. In this study we use the Kresling pattern for the origami structure
of the basic link. This pattern is formed by the folding of a thin-walled cylinder when
subject to twist buckling under a torsional load. It is characterized by alternating mountain
and valley folds angled along the direction of the twist [29,30].

Figure 1a represents an n faces polygon Kresling pattern in planar state, which forms
a polyhedral cylinder when assembled. The triangulated polyhedron geometry is resolved
by LAB = a, LBC = a · sin(α)/sin(β), LAC = a · sin(α + β)/sinβ at the planar state, where
a, α, and β are constant values. The angles α and β are the main design criteria to create
the cylinder, because the strength of the structure depends on them. Zhai et al. suggest
that, for small angles around 30◦, the structure is easy to deploy and easy to collapse,
and for greater angles around 50◦, the structure is hard to deploy and hard to collapse [31].
For large angles, the structure is stronger and able to support loads. To obtain a symmetric
structure we consider a = r = 30 mm; therefore, n = 2π according to Hunt [32], where
a = 2πr/n and β = π/n. The angle α has been obtained from the geometric resolution
proposed by Jianguo et al. [33]. Here h is considered to be known, α = asin(d/a) and d
can be obtained by ah = d(d · cot(β) +

√
a2 − d2). Consequently, our prototype has been

designed with a = 30 mm, h = 34.25 mm, β = 30◦ and α = 38◦, thus a flexible deformable
link is created, and the unitary ABC triangle angle is >90◦ to achieve continuous strain at
each member tension or compression in the deployed and collapsed states.

The folded cylinder link state generates a twist angle θ with radius r while height h
is compressed (Figure 1b). This bistable behavior is due to the change of the lines length
during folding (Equation (1)).

lAB = 2rsin(π/n)

lBC =
√

h2 − 2r2cosθ + 2r2

lAC =
√

h2 − 2r2cos(2π/n + θ) + 2r2

(1)

r =
a
2

sin(π
n )

(2)

θ =
2π

n
− 2asin

(
lBCcosδ

2r

)
(3)

h = lBC · sin(δ) (4)

The height value h changes during folding and this change is related to δ angle change,
given by Equation (4), as illustrated in Figure 1c. The variable height and bistability allow
the self-scaling of the simple link.
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(a)

(b) (c)

Figure 1. Origamipolyhedron Kresling pattern. (a) 2D Kresling pattern. (b) Folded cylinder link
state. (c) Biestable behavior.

The main contributions of this work with respect to the state of the art are the following:

• Design and prototyping of a self-scalable link as a proof of concept. While being
inspired by the origami technique, the final prototype integrates both rigid and soft
materials in its structure, instead of paper. This novel approach is a real contribution
to the state of the art.

• Design of a complete modular robot with interconnected scalable links. A linkage
joint is proposed that allows modularity for three DOF configurations, enabling a
wider range of applications.

• The final prototype is a 3D printed low cost solution that allows for the validation of
the scalability in an autonomous way through the design and implementation of a
control system. The control problem of these robotic structures is not generally faced
in the majority of the works dealing with these designs, this being another important
contribution of this paper. In addition, solutions to common control problems like
motor’s dead zones or saturation are addressed in this work.

2. Soft Origami-Based Design

An important design parameter of the link is the number of polyhedron faces [34],
as they can limit the movement when folding if they are very close, like the case of four
faces. To generate a symmetrical model, we decided to build a six face polyhedron as shown
in Figure 2 representing every state of folding, from collapse (Figure 2a) to deployment
(Figure 2d).
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(a) (b) (c) (d)

Figure 2. Cylinder polyhedron origami with one section (h1) and six faces (n = 6). (a) Top view
collapsed state. (b–d) Folding state.

A structure having several Kresling layers (for example five) is able to generate a
cylinder composed by the same number of sections. The versatility of this design allows
each section to be compressed or extended independently, so the five-section cylinder can
have a variety of possible lengths, where the maximum height is the extended height of
all sections. This cylinder model meets the scalability parameter by its bending property
and the number of sections mentioned above. Now, the challenge is to make the cylinder
reconfigurable. To achieve this, a number of cylinders have been joined together. Each
cylinder is renamed as link, regardless of its number of sections, and one layer will be
renamed as single link. The link connection represents a greater challenge, because it
requires a mechanism at each end of the link, as shown in Figure 3a, where the input IN
and output OUT unions of the link are shown in blue and orange, respectively. This allows
the link to know which end has been placed in the next link.

(a) (b)

(c)

Figure 3. Connection of links. (a) Five-sections link with joints. (b) Joint between links. (c) Joined
and reconfigurable links.

The joint between links is very wide, and ideally should rotate along the three axes
XYZ and allow mobility in the angles yaw ψ, pitch ρ and roll φ (Figure 3b). The ideal joints
will enable as many links to be joined as required. The links should always be joined in
an orderly sequence, so that there is an IN joint at the beginning of the chain and an OUT
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joint at the end. Using this pattern, each link has corresponding position within the chain,
with the first link acting as the main or master link.

The ideal case with three rotation axes allows the kinematic chain to move either
in a plane or in the three dimensional space. If the yaw angle ψ is rotated in a plane,
a snake-like movement will be obtained, while the rotation of roll angle φ through space
can be assimilated to the behavior of a finger or an arm, according to the number and
length of the connected links, as shown in Figure 3c.

Link Prototype

Our aim was to build a prototype to validate the idea of modular and scalable links,
designing a paperless origami model. With this purpose, all the parts were modeled using
CAD design applications and made using 3D printing technologies. Figure 4 illustrates
the basic parts to generate the triangular polyhedron for a cylinder with six faces (n = 6).
The base with constant length a is shown in Figure 4a. The lAC (Figure 4b) was designed as
a variable length piston with spherical bearings at its ends for mobility. Finally, the length
lBC is a soft material spring that can be warped with spherical bearings as well (Figure 4c).
Values lBC and a have been deemed constant, following Jianguo et al.’s suggestion [33],
and lAC is the only variable. In this case lBC = LBC. This design allows for operation while
keeping constant values, but at the same time, its flexibility enables the free movement of
the link. Design dimensions are a = 35 mm, α = 38◦, β = 30◦, r = 30◦ and planar state
lengths LAC = 64.90 mm, LBC = 43.09 mm. The piston length lAC decreases when the
structure deploys and its size increases during the collapse.

(a) (b) (c)

Figure 4. Components of the triangulated polyhedron prototype. (a) Constant base a. (b) Length lAC,
greater displacement. (c) Length lBC, minor displacement.

Figure 5 illustrates the single link prototype, which represents an assembly of the
components shown in Figure 4. In addition, connecting couplings and pins were required
to keep the link assembled but still able to move. The triangles were assembled according
to the design in Figure 1, where lAC is folded inside the link, and lBC is outside. Therefore,
the bistable movement from the deployed to the collapsed state generates a clockwise
rotation of the angle θ.

(a) (b) (c)

Figure 5. Single link CAD prototype. (a) Collapsed state. (b) Folding state. (c) Deployed state.
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Several single links can be nested between them to obtain a cylinder with multiple
sections. The union of two (h2) is shown in Figure 6a, whereas a cylinder with three sections
(h3) is shown in Figure 6b. Each of these groupings constitutes an independent link, which
is capable of modifying its length by varying the h value in each section, in an adjustable
way. As discussed before, another option providing a relative 3 DoF link movement is
the two-part ball socket. This configuration features two ball joints connected through a
fixed union, attached to both links. The spherical bearing allows free rotation between the
axes. However, for the construction and operation of this coupling, a more complex design
is required.

(a) (b) (c) (d)

Figure 6. Nested links CAD prototype. (a) two-sections link. (b) three-sections link. (c) Two single
links with a joint. (d) Two single links with a joint rotated.

Figure 6c illustrates the union of two links through the spherical joint, where both
bodies are aligned with each other in a starting position, with each body consisting of a
single link and fully deployed. On the other hand, in Figure 6d the chain of cylinders
is horizontal and shows a slight rotation in the roll angle. The double spherical bearing
represents the IN joint and OUT joint, respectively, as described in Figure 3b.

Finally, the prototype components were built in a 3D printer and assembled. The
hexagonal bases (length a), the couplings, and the pistons (lAC) were made of Polylac-
tic Acid (PLA) plastic material. The bar lBC was manufactured with a flexible material
(NinjaFlex) from the manufacturer NinjaTek, to allow short displacements and keep the
structure stable. Metric (M2) screws and 2 mm nuts were used for the final assemble of
the prototype.

Figure 7 shows the bistate of the single link prototype assembly. The completely
unfolded polyhedron is shown in Figure 7a. In this state the lAC pistons are compressed
and the lBC soft links are extended. The final position of the deployment depends on lAC,
as mentioned before, and lBC is adapted to that length.

In addition, the nested links were assembled to validate the design, as shown in
Figure 8. The changing link size feature has been checked; each single link is able to fold
and deploy in a two-sections link according to Figure 8a,b. The spherical joint shown
in Figure 8c allows the union and the rotation of two single links while keeping the
bistable operation.
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(a) (b)

(c) (d)

Figure 7. Single link first prototype. (a) Deployed single link prototype. (b) The single link is
in collapsed state, and the height has changed. The lAC pistons are extended and lBC is slightly
compressed. (c) Top view of the deployed prototype. (d) Top view of the collapsed prototype; the
condition of the pistons and θ rotation are clearly shown.

(a) (b) (c)

(d) (e)

Figure 8. Assembled nested links prototype. (a) Two-sections link collapsed. (b) Two-sections link
deployed. (c) Two single links with a joint. (d) Two single links with a joint, vertically rotated and
one of them extended. (e) Two single links with a joint, horizontally rotated and collapsed.
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3. Cable-Driven Prototype

The prototypes presented in the last section validate the design of this proposal;
however, the bistable behavior is binary. The link has two possible positions, completely
collapsed and completely deployed. Therefore, the change of size does not have intermedi-
ate steps. Our proposal aims to obtain a self-scaling simple link with a continuous change
of the size. For this purpose, a spring and a cable-driven mechanism have been included in
the link. The final movement of each cylinder is composed by 2 DoF: displacement in z(h)
and rotation in θ. Using three tendons and only one motor provides both movements if
attached correctly. The internal spring is needed because of the structure of the link, that
is not capable of maintaining an intermediate position and will fold without an external
agent providing an extension force. Figure 9 illustrates the simple link prototype with an
internal spring and a cable-drive with three tendons. Between the top of the single link
and the top of spring, a bearing has been installed, which allows a free spring rotation
movement when θ changes during collapse and deployment.

Figure 9. Cable-driven single link prototype.

The cable-drive is actuated by a DC motor with a 210:1 gear and no load speed of
75(RPM). It also features an encoder composed by two hall effect sensors displaced 90◦

between each other and a wheel with seven switching magnets. Therefore, one motor
rotation corresponds to 28 quadrature pulses. As the gear ratio is 210:1, a 360◦ turn in
the gear part corresponds to 5880 counts of the encoder. That makes the resolution of the
encoder on the outside part 0.06◦.

The spring elastic constant has been obtained experimentally. Masses between 0(gr)
and 400(gr) have been placed in the upper base of the spring and the deformation lengths
corresponding to the compression have been registered in Table 1, from which the elastic
constant has been approximated to a straight line F = K · x.

A simple linear regression has been applied to the collected data shown in Figure 10,
from which the polynomial in Equation (5) is obtained, where the slope corresponds to the
value of the constant K.

Table 1. Experimental data from spring compression.

x (m) M (kg)

0.13 0
0.128 0.1
0.105 0.2
0.092 0.3
0.082 0.4
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Figure 10. Linear regression to obtain the spring elastic constant K from experimental data.

F(x) = −70.9522x + 9.5803 (5)

K = −70.9522[N/m] (6)

The prototype is expected to validate self-scaling in an autonomous and controlled
manner. Given that the considered prototype physical definition is complex and consists
of several subsystems, starting from the actuator used for the robot positioning and fol-
lowed by the complete link, a system identification was performed in order to obtain the
plant model.

The origami link is divided into two physical systems, the link itself, and the DC motor
driving the mechanism. Given the link geometry described in the previous sections, we
can neglect its effects in the final behavior and model the plant based on the DC motor only.
Due to the lack of information from the motor provider, the DC motor model was obtained
using recursive least squares (RLS) identification to the input-output captured data.

3.1. Motor System Identification

The model considered for identification is the DC motor (and gear) used in the pull
mechanism of the robot. Identification data was captured using different input steps of
[1, 2, 3, 4, 5] Volts corresponding to throttle input values of [200, 400, 600, 800, 1023]. A small
gain variation was observed for the different input values, resulting in several transfer
functions. In order to use a single model, the average will be considered. The time
responses of the identification results and the average transfer function considered are
shown in Figure 11 including the identification captured data.

Observe how the maximum possible velocity is close to 6 rad/s, meaning a saturation
of the system velocity for inputs of this value and higher. In addition, given the low cost
approach of the design, the motor open loop response is noisy and shows dead zones.
Therefore, a velocity feedback is proposed to obtain a linear behavior in the motor side.
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Figure 11. Motor system identification. Different systems identified depending on the inputs (a)
and average system time response (b) compared to the captured data.

3.2. Controller Design

The average transfer function found through RLS identification is shown in Equation (7).
This is the low level plant model used for the low level velocity control loop.

Gv(s)motor =
0.09991

s + 19.11
(7)

The proposed control scheme is shown in Figure 12. It consists of a feedback loop
having a controller with reference in Velocity (rad/s) and output in the same units. As the
motor model considered is the one discussed above, the control signal is the motor throttle
(0–1023), with a saturation in 1023.

Figure 12. Motor velocity control system.

Given the plant gain variability detected, a robust control is proposed to cope with
that plant parameter uncertainty. The controller tuning method proposed is the iso-m
described in [35], which includes the robustness conditions in the tuning algorithm. Similar
to many fractional order controller tuning methods, the desired performance specifications
are based on the phase margin and crossover frequency features of the open loop frequency
response. These are related to closed loop features such as bandwidth frequency and
resonant peak height, which in turn are related to transient time response properties such
as overshoot and peak time. Table 2 shows a summary of the most common constraints
used in the frequency domain and time domain to define performance specification.

Table 2. Equivalence between frequency specifications and time response.

Physical Effect Closed Loop Open Loop
Meaning Defined Specification Specification

Damping ratio Overshoot Resonant peak dB Phase margin

Response speed Peak time Bandwidth Crossover frequency
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It is a common practice to define the system performance by means of the open
loop frequency variables (see [36]). In similar works like [37,38], the usual control spec-
ifications are crossover frequency (ωgc) and phase margin (φm). As stated, the first is
related to the system responsiveness (peak time) and the second to stability (overshoot).
Equations (8) and (9) formulate these specifications, respectively:

|C(jωgc)G(jωgc)|dB = 0 dB, (8)

arg (C(jωgc)G(jωgc)) = −π + φm, (9)

where C(jωgc) is the controller frequency response at ωgc, G(jωgc) is the plant frequency
response at ωgc, and φm is the desired open loop phase margin for the controlled system.

Once the gain crossover frequency ωgc and the phase margin φm are set, following
the steps described in [35] will provide a solution for the controller parameters using the
iso-m method.

Given the method’s flexibility, both fractional and integer order controllers can be
used, allowing a comparison between their results.

The integer order controller is defined by

IOPI(s) = kp + ki/s, (10)

kp and ki being the proportional and integral controller gains, while the fractional order
controller is defined by

FOPI(s) = kp + ka/sα, (11)

where kp and ka are the proportional and integral controller gains and α the fractional order
of the integral operator.

Note that the number of parameters available for tuning while using the IOPI integer
controller Equation (10) is not enough to fulfill the three specifications. This restricts
the possible tuning inputs in that case, requiring a decision between overshoot (φm) or
responsiveness (ωgc). Then, the remaining specification will be given by the system
characteristics and the chosen specification. A controlled overshoot is important to assure
a good upper level control loop behavior; therefore, it will be defined using a phase margin
of φm = 80 deg for the tuning of both controllers.

In the IOPI case, this fully defines the controller using the iso-m method. Using
the algorithm described in [35], the tuning parameters obtained were kp = 163.9 and
ki = 4462.3. The responsiveness depends on the other values, resulting ωgc = 20 rad/s in
this case. Figure 13 shows the frequency open loop response and the expected closed loop
time response for different plant gains using the integer order controller.
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Figure 13. Open loop Bode diagram (a) and closed loop time response (b) for the integer order
(IOPI) controller.
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In the case of the FOPI controller, the two specifications described above can be used
for controller tuning. The fractional order operator improved flexibility allows us to double
the responsiveness while keeping the same robustness compared to the previous results.
Therefore, φm = 80 and ωgc = 40 rad/s can be used to specify the closed loop behavior.
Using the algorithm described in [35], the tuning parameters obtained were α = −0.9100,
Kp = 323.9, Ka = 7388.5. Figure 14 shows the frequency open loop response and the
expected closed loop time response for different plant gains.
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Figure 14. Open loop Bode diagram (a) and closed loop time response (b) for the fractional order
(FOPI) controller.

The resulting plant in closed loop is a velocity reference input, real plant velocity
output system described by Equation (12). Both measured and reference value units are
rad/s. Therefore, the output obtained from the actuator is also expressed in rad/s with a
maximum possible value of 5.5 rad/s.

Fv(s)motor =
16.38s + 445.8

s2 + 35.49s + 445.8
(12)

Using an integrator on Fv(s), the resulting plant Gp(s) = Fv(s)/s is the velocity input,
position output system with 1 rad/s crossover frequency.

Using this plant model, a high level position loop was designed. Given the convenient
low level system response, we can design our servo-system using a feedback loop with a
simple proportional controller. The designed position closed loop is shown in Figure 15.

The expected time response of a controller with a gain of 10 (Kp = 10) is also shown in
Figure 15. This control scheme defines the position output of the motor shaft from an input
reference (in (rad) units).

(a)

Figure 15. Cont.
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Figure 15. Motor position control system. Motor position control system. (a) Control system diagram.
(b) Step response.

3.3. Whole System Behavior

Using the actuator described, an input step was performed in the robot. Given the
results of the model simulation compared to the real response obtained, we can say that
both systems are similar, concluding that the spring and the origami shape are not changing
the behavior of the actuator plant. Therefore, we can find a model based on the feedback
loop proposed resulting in a transfer function as follows:

Gp(s)origami =
163.8s + 4458

s3 + 35.49s2 + 609.6s + 4458
(13)

In order to validate the model, a step input of 0.5 rad (saturation will happen in
the motor for higher targets) was fed into the system, resulting in the time response
shown in Figure 16. The open loop frequency response of the whole system model is also
shown in the figure, with a phase margin of Pm = 65.4 deg at a gain crossover frequency
ωc = 9.62 rad/s.

(a)

Figure 16. Cont.
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Figure 16. Origami system identification. Step response in closed loop (a); Bode diagram in open
loop (b).

4. Results

A Matlab simulation scheme has been created to validate the kinematics for both
simple and nested links with two and three sections. The main parameters a, α and β were
used to compute the origami behavior while the height h was the input data to fold or
deploy the origami. Taking Equation (4) into account, the maximum height is when δ = 90
and the structure is completely deployed. This position is not achieved in the prototype
because the spring force does not generate enough rotation for the links to change position
at a positive θ angle and reach δ = 90.

Figure 17 shows the kinematics simulation for a single link with different heights.
The change of the rotation angle θ can be seen while the origami is deploying. The simula-
tion results are shown in Table 3.

Table 3. Data from single link kinematics simulation.

h (mm) δ (deg) θ (deg)

Collapsed state 0 0 −13.32
Deploying state 30 54.3 −12.27
Deployed state 36.93 90 1.04

The nested link has been simulated, too. In this case the total link height is the sum of
each single link. To achieve a certain height position, we can actuate each individual link
or all at once. Figure 18 shows three different configurations: completely deployed link,
only one section folding, and three sections folding. The data results from this simulation
are shown in Table 4.

Table 4. Three-sections link kinematics simulation data.

h1 (mm) h2 (mm) h3 (mm) htotal (mm)

Completely deployed link 36.93 36.93 36.93 110.8
Only one section folding 36.93 20.55 36.93 94.43
Three sections folding 31.73 25.55 30 87.29
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(a) (b) (c)

Figure 17. Origami Kresling single link kinematics vadidation, with parameters α = 38◦, β = 30◦ and a = 30 mm.
(a) Collapsed state. (b) Deploying state. (c) Deployed state.

(a) (b) (c)

Figure 18. Three-sections link kinematics validation, with parameters α = 38◦, β = 30◦ and a = 30 mm. (a) Completely
deployed link. (b) Only one section folding. (c) Three sections folding.

Single Link Cable-Driven Prototype Experimental Results

Position control tests have been carried out with both the integer and the fractional
controllers adjusted. The tests were made according to encoder data in rad; however,
the origami linear displacement is easy to obtain knowing that the motor coupling ra-
dius is 7.5 (mm) and the encoder resolution is 5580 counts per turn. The linear dis-
placement corresponds to the origami folding, and height h and rotation angle θ can be
indirectly calculated.

Two tests have been designed. The first consists of giving the system individual targets
in position: 0.5, 1.0, 1.5, 2.0 and 2.2 (rad). The physical behavior of the system can be seen
in Figure 19, where the initial reference of the upper part of the origami and the union of
the three tendons to visualize the displacement has been marked with a red dashed line.

Figure 19. Prototype test results with different target position.
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The data results obtained are shown in Figure 20. The saturation of the system is
evident in the higher set points, showing an overshoot in the response of the system. The
control signals of the internal loop in speed and the external loop in position are shown in
Figure 21.
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Figure 20. Test results with different target positions. (a) Integer controller. (b) Fractional controller.
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Figure 21. Cont.
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Figure 21. Control signals. (a) Position loop control signals with integer controller. (b) Position loop control signals
with fractional controller. (c) Velocity loop control signals with Integer controller. (d) Velocity loop control signals with
fractional controller.

Table 5 shows the experimental kinematic data, which have been calculated indirectly
according to the experimental position changes in the first test. For this purpose, the initial
position of the prototype with angle θ = 0.0514 (rad) and initial height h = 39.44 (mm) has
been considered, resulting in a maximum δ = 85.64 (deg). The position data were measured
for all targets once the system reached its permanent state, at time t = 4 s.

A simulation was performed with the obtained δ data in order to make a comparison
between experimental and simulation data in terms of height h and angle θ. The resulting
errors are shown in Table 5. The difference between the real measured and simulated
values is clearly the value of lBC, since in the measured value lBCreal = 39.56 (mm) and in the
simulated value lBCsim = 43.09 (mm). This difference is due to the fact that in the assembled
prototype the link representing lBC is slightly compressed to maintain the desired position
of the structure.

Table 5. Experimental kinematic data indirectly computed.

Real Simulation Error

Position (rad) h (mm) δ (deg) θ (deg) h (mm) θ (deg) h (mm) θ (deg)

0.5 35.69 64.46 −12.11 38.88 −12.28 3.18 −0.1635
1 31.94 53.85 −12.72 34.79 −12.89 2.84 −0.1637

1.5 28.19 45.45 −13.06 30.71 −13.23 2.51 −0.1660
2 24.44 38.16 −13.28 26.64 −13.45 2.19 −0.1634

2.2 22.94 35.45 −13.35 24.99 −13.52 2.04 −0.1642

The second test consists in giving the system sequential targets between 0.5 and 2.5 rad
with steps of 0.5 rad. The results are shown in Figure 22, where the real position data is in
red. Here we can see an expected behavior for the designed controllers. The overshoot in
each step is lower than in the first test because the sequential targets are lower than the
individual ones.

On the other hand, when the loop is restarted and the position must change from
2.5 to 0.5 rad, the system behavior is the opposite, that is, it must change from folding
to deploying. In that case, the position reaches the target with an initial overshoot but
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quickly stabilizes. In this way, the efficiency and robustness of the control system have
been validated.
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Figure 22. Test results with sequential target positions. (a) Integer controller. (b) Fractional controller.

The video of the performance of this test can be visualized in the following link:
https://cutt.ly/rjW0Obi, available since 14 January 2021.

To verify the robustness of both the control and the structure, the steps were tested
with different payloads between 100 and 400 g, as shown in Figure 23.

Figure 23. Prototype test results with different payloads in 2.5 (rad) position.

The results obtained allow for the determination of the behavior of the integer and
fractional controllers (Figure 24), where the most relevant behavior is shown in the return
zone from 2.5 (rad) to 0.5 (rad).

In the case of the integer controller (Figure 24a), the lower peak position reaches
−0.54 (rad) with a stabilization time of 0.63 (s) and a maximum overshoot of 16%, while in
the case of the fractional controller (Figure 24b), the minimum position is −0.44 (rad); it
has no overshoot and the stabilization time is 0.43 (s). Therefore, it can be concluded that
the fractional controller is not only robust but also faster than the integer controller.
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Figure 24. Prototype test results with different payloads. (a) Integer controller. (b) Fractional controller.

The control signals for both controllers are shown in Figure 25.
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Figure 25. Control signals test results with different payloads. (a) Position loop control signals with integer controller.
(b) Position loop control signals with fractional controller. (c) Velocity loop control signals with Integer controller. (d) Velocity
loop control signals with fractional controller.

It is interesting to mention that in this last test the loads were placed in a distributed
way so that the center of mass does not change. In case the loads were placed off-center or
unbalanced, the dynamics of the system would change because an additional DoF would
be generated, allowing the upper base of the platform to tilt in the direction of the weight.
For these scenarios more than one actuator would be required in order to compensate this
tilt movement (and other actuators could be included to generate other different DoF). This
is an interesting topic to be developed in future works.

5. Conclusions

A design proposal has been presented for a scalable and modular link, inspired by
origami structures. The validation of the kinematics for both single and nested links has
been successfully carried out. In the case of the nested link, the change in length of the
link can be done by completely folding one of the single links or by doing a proportional
folding on each single link.

A simple link prototype has been built and experimentally tested to validate its
scalability and shape change. The model with three tendons actuated by a motor allows
the folding of the origami structure while an internal spring generates the unfolding.

Compared to other platforms such as [21], which are manually controlled, in our study
we included system modeling and controller tuning for automatic operation in position
control of the prototype.

The single link prototype has been successfully controlled in position mode. The posi-
tion control has been done with two control loops for the correct operation of the motor.
The internal loop allows for the elimination of the dead zones of the motor with a velocity
control and with the external loop the origami position is controlled. The internal loop has
been designed and tested with two controllers, integer and fractional, where the single link
has been tested for correct operation with and without payload.

The identification of the whole system was carried out considering these two control
loops; otherwise, the direct identification of the system would have resulted in a nonlinear
system, due to the saturation and the dead zone of the motor.

It is also important to remark that the rotational movement of the Kresling pattern can
be seen as an advantage that allows the orientation of the platform. However, the rotation
can be canceled by coupling two simple links with opposite rotation, if only a prismatic
displacement is required.
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Some of the main limitations of the system are due to the fact that it is a very low cost
3D printed prototype that needs the adjustment of the mechanical parts and the use of a
better motor. However, despite these limitations, the prototype works properly and the
design has been validated.

Future works include the improvement of the mechanical and actuation parts of the
link and the introduction of distance and rotation sensors to enhance the position accuracy
h and rotation angle θ, which are now obtained indirectly. Besides, the development of the
three-dimensional joint to interconnect several links is one of our major objectives, which
will allow us to implement and test modularity.
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Abstract: This paper presents a new formulation of the optimal control problem with uncertainty,
in which an additive bounded function is considered as uncertainty. The purpose of the control is
to ensure the achievement of terminal conditions with the optimal value of the quality functional,
while the uncertainty has a limited impact on the change in the value of the functional. The article
introduces the concept of feasibility of the mathematical model of the object, which is associated
with the contraction property of mappings if we consider the model of the object as a one-parameter
mapping. It is shown that this property is sufficient for the development of stable practical systems.
To find a solution to the stated problem, which would ensure the feasibility of the system, the synthe-
sized optimal control method is proposed. This article formulates the theoretical foundations of the
synthesized optimal control. The method consists in making the control object stable relative to some
point in the state space and to control the object by changing the position of the equilibrium points.
The article provides evidence that this approach is insensitive to the uncertainties of the mathematical
model of the object. An example of the application of the method for optimal control of a group of
robots is given. A comparison of the synthesized optimal control method with the direct method on
the model without disturbances and with them is presented.

Keywords: optimal control; Lyapunov stability; equilibrium point; symbolic regression; Pontryagin’s
maximum principle

1. Introduction

Object control in the classical mathematical sense is to qualitatively change the right-
hand sides of the differential equations describing the mathematical model of the control
object, due to the control vector included in them. Thus, the problem of optimal control [1]
consists in finding such a control function, as a function of time, which will make the
required changes in the right-hand sides of the model of the control object so that, for given
initial conditions, the partial solution of the system of differential equations achieves the
control goal with the optimal value of the quality criterion.

There are two main directions for solving the problem of optimal control: direct
and indirect approaches. The indirect approach based on the Pontryagin’s maximum
principle [2–4] solves optimal control by formulating it as a boundary-value problem,
in which it is necessary to find the initial conditions for a system of differential equations
for conjugate variables. Its optimal solution is highly accurate, however, very sensitive to
the formulation of additional conditions that the control must satisfy, along with ensuring
the maximum of the Hamiltonian, which are generally very difficult to set in practice for
problems with complex phase constraints. The direct approach reduces the optimal control
problem to a nonlinear programming problem [5–7], that provides the transition from the
optimization problem in the infinite-dimensional space to the optimization problem in the
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finite-dimensional space, so it is more convenient and can be readily solved within a wider
convergence region.

However, these works generally focus on the nominal trajectory performance without
considering possible uncertainties. In practice, in the right-hand sides of the models, there
are objectively some uncertainties of various nature. As a rule, they are not taken into
account, but the presence of such uncertainties can lead to the loss of optimality of the
obtained control.

There are also approaches when the impact of uncertainties is taken into account
during the reference trajectory design beforehand [8,9]. For example, desensitized op-
timal control [10], modifies the nominal optimal trajectory such that it is less sensitive
with respect to uncertain parameters. This involves constructing an appropriate sensi-
tivity cost which, when penalized, provides solutions that are relatively insensitive to
parametric uncertainties.

Although in practice such solutions do not guarantee the stability and still require
construction of the feedback stabilization control system to eliminate errors [8].

In control theory, there is a field of robust control [11–14], which provides a certain
stability coefficient of the control system. Robust control methods generally move the
eigenvalues of the linearized system as far as possible to the left of the imaginary axis of the
complex plane, so that uncertainties and perturbations do not make the system unstable.
These methods are not aimed at solving the optimal control problem.

In practical control system design, the existing uncertainties of the mathematical
model of the object, which subsequently cause the discrepancy between the real trajectory
of the object and the obtained optimal one, are compensated by the synthesis of a feedback
motion stabilization system relative to the optimal trajectory [8,15–17]. But construction
of the stabilization system changes the mathematical model of the object and the received
control might be not optimal for the new model.

In this paper, uncertainties are included in the problem statement as an additive
bounded function. And the optimal control problem is supposed to be solved after ensuring
stability to the plant in the state space. This approach was called the method of synthesized
optimal control. A control function is found such that the system of differential equations
will always have a stable equilibrium point in the state space. With that, the control
system contains parameters that affect the position of the equilibrium point. Consequently,
the object is controlled by changing the position of the equilibrium point. In this paper,
it is shown that such control can also provide the required value of the quality criterion,
but the mathematical model of the control object turns out to be insensitive to the existing
uncertainties and external disturbances. The approach of synthesized optimal control is
new, but we have already managed to obtain good experimental results [18,19] confirming
the effectiveness of such control. In this paper, we provide mathematical formulations of the
approach and give a theoretical substantiation of the efficiency of the synthesized optimal
control. A comparative numerical example of solving the problem of optimal control of
two robots under phase constraints by the indirect method of synthesized optimal control
and by the direct method based on piecewise linear approximation is given.

2. Problem Statement

The mathematical model of control object with uncertainty is given

ẋ = f(x, u) + y(t), (1)

where x ∈ Rn, u ∈ U ⊆ Rm, U is a compact set, m ≤ n, y is a uncertainty function,
y(t) ∈ Rn,

y− ≤ y(t) ≤ y+ (2)

y−, y+ are set constant vectors.
Initial conditions are set

x(0) = x0. (3)
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Terminal condition is set
x(t f ) = x f , (4)

where time t f of hitting terminal conditions t f is not given, but is limited

t f ≤ t+, (5)

t+ is a given positive value.
The functional is given

J =

t f∫
0

f0(x(t), u(t))dt + p1‖x f − x(t f )‖ → min
u(·)∈U

, (6)

where p1 is a given positive value.
It is necessary to find a control function

u = h(x, t) (7)

such that for any partial solution
x(t, x0) (8)

of the system
ẋ = f(x, h(x, t)) + y(t) (9)

from initial conditions (3) for any uncertainty function (2) value of the functional (6) satisfies
inequation

J(x(t, x0), y(t)) ≤ J(x(t, x0), 0) + Δy, (10)

where J(x(t, x0), y(t)) is a value of functional (6) for the solution (8) with perturbation (2),
J(x(t, x0), 0) is a value of functional (6) for the same solution (8) without perturbations,
y(·) ≡ 0, Δy is a given positive value.

Among possible solutions in the form (7) we consider only such that possess the
following properties. Let x(t, x0) be some partial solution of the system (9) with y(t) ≡ 0
and J(0) be a value of criterion (10) for it. Let us denote

x̃ = x(t, x0) + z̃(t), (11)

˜̃x = x(t, x0) + ˜̃z(t), (12)

and
δ̃ = max

t∈[0;t f ]
‖x(t, x0)− x̃(t)‖, (13)

˜̃δ = max
t∈[0;t f ]

‖x(t, x0) + ˜̃x(t)‖. (14)

Then δ̃ > 0 exist, such that ∀ ˜̃δ ≤ δ̃ conditions are met

˜̃Δ ≤ Δ̃, (15)

where
Δ̃ = |J(x(t, x0), 0)− J(x̃(t), 0)|, (16)

˜̃Δ = |J(x(t, x0), 0)− J( ˜̃x(t), 0)|. (17)

The condition (15) is called the continuous dependence of the functional on perturbations.
The goal is to look for solutions in form (7) so that they satisfy condition (15).
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3. Theoretical Background and Justifications for the Synthesized Optimal
Control Method

Problems with uncertainties are often considered in optimal control, since the question
is relevant in the practical implementation of obtained systems. As a rule, uncertain
parameters of the right-hand sides or initial conditions are considered as uncertainties,
or some random perturbations are introduced. The main direction of solving problems
with perturbations is to ensure the stability of the obtained solution. So, firstly, the problem
of optimal control is solved without uncertainties, and then, using the stabilization system,
an attempt is made to ensure the stability of motion relative to the optimal trajectory. In fact,
the creation of a stabilization system is an attempt to ensure the stability of the differential
equation solution according to Lyapunov.

Theorem 1. To perform the condition (10) it is enough that a partial solution (8) of the system (9)
without perturbations y(t) ≡ 0

ẋ = f(x, h(x, t)), (18)

was stable according to Lyapunov.

Proof. From differential Equation (1) follows

x(t + Δt) = x(t) + Δtf(x, h(x, t)) + Δty(t), (19)

or
x̄(t) = x(t, x0) + v(t), (20)

where

v(t) =
t∫

0

y(t)dt. (21)

Let Δy be given. Then according to condition (15) you can always define Δ̃ and value
δ̄ for perturbed solution x̄ such that according to condition of stability on Lyapunov [20,21]

‖x(t, x0)− x̄(t)‖ < δ̄, ∀t ∈ [0; t f ]. (22)

For this it is enough to satisfy the inequality

0 ≤ ‖v(t)‖ ≤ δ̄/2, ∀t ∈ [0; t f ]. (23)

However, to find control function (7) such that partial solution (8) was stable accord-
ing to Lyapunov is rather difficult and, in fact, it is not always necessary. According to
Lyapunov’s theorem, a stable solution to a differential equation must have the property
of an attractor [20,22], and, therefore, from the mathematical point of view the synthesis
of stabilization system is an attempt to give an attractor property to the found optimal
trajectory [21,23]. The main problem of unstable solutions is that they are difficult to imple-
ment, since small perturbations of the model lead to large errors of the functional, in other
words, the solution does not have the attractor property. But in fact, the requirement for the
optimal solution to obtain the attractor property or be Lyapunov stable is a fairly strict one
and it could be redundant, and other weaker requirements may be enough to implement
the resulting solution. For example, the motion of a pendulum is not Lyapunov stable if it
is not the zero rest point, but it is physically feasible, since its small perturbations lead to
small perturbations of the functional.

In this concern let us introduce the concept of feasibility.
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4. Feasibility Property

Based on a qualitative analysis [24] of the solutions of systems of differential equations,
the feasibility means that small changes in the model do not lead to a loss of quality. In other
words, it is necessary that the solution has the contraction property.

Hypothesis 1. A mathematical model is feasible, if its errors do not increase in time.

Definition 1. The system of differential equations is practically feasible, if this system as a one-
parametric mapping obtains a contraction property in the implementation domain.

Consider a system of differential equations

ẋ = f(x), (24)

where x ∈ Rn.
Any ordinary differential equation is a recurrent description of a time function. A so-

lution of the differential equation is a transformation from a recurrent form to a usual
time function.

Computer calculation of the differential Equation (24) has a form

x(t + Δt) = x(t) + Δtf(x(t)), (25)

where t is an independent parameter, Δt is a constant parameter, and it is called a step
of integration.

The right side of the Equation (25) is a one-parametric mapping from space Rn to itself

F(x, t) = x(t) + Δtf(x(t)) : Rn → Rn. (26)

Let a compact domain D be set in the space Rn. All solutions of the differential
Equations (24), that are of our interest, belong to this domain. Therefore, for the differential
Equations (24) the initial and terminal conditions belong to this domain

x(0) ∈ D ⊆ Rn, x(t f ) ∈ D ⊆ Rn, (27)

where x(t f ) is a terminal point of the solution (24).

Theorem 2. In domain D for the mapping (26), the following property is performed

ρ(xa(t), xb(t)) ≤ ρ(F(xa(t), t), F(xb(t), t)), (28)

where xa(t) ∈ D, xb(t) ∈ D, ρ(xa, xb) is a distance between two points in the space Rn

ρ(xa, xb) =
∥∥∥xa − xb

∥∥∥. (29)

Then the mathematical model (24) is feasible if the domain D ⊆ Rn according to the hypothesis.

Proof. Let x(t) ∈ D be a known state of the system in the moment t and y(t) ∈ D be a real
state of the system in the same moment. The error of the state is

δ(t) = ρ(x(t), y(t)). (30)

According to the mapping (26)

δ(t + Δt) = ρ(F(x(t), t), F(y(t))). (31)
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And according to the condition (28) of the theorem

δ(t) ≤ δ(t + Δt). (32)

This proves the theorem.

The condition (28) shows that the system of differential equations as a one-parametric
mapping has contraction property.

Assume that the system (24) in the neighborhood of the domain D has one stable
equilibrium point, and there is no other equilibrium point in this neighborhood

f(x̃) = 0, (33)

det(λE−A(x̃)) = λn + an−1λn−1 + . . . + a1λ + a0 =
n

∏
j=1

(λ− λj) = 0, (34)

where E is a unit n× n matrix,

A(x̃) =
∂f̃(x)

∂x
, (35)

λj = αj + iβ j, (36)

αj < 0,i =
√
−1, j = 1, . . . , n.

Theorem 3. If for the system (24) there is a domain D that includes one stable equilibrium point
(33)–(36), then the system (24) is practically feasible.

Proof. According to the Lyapunov’s stability theorem on the first approximation the trivial
solution of the differential Equation (24)

x(t) = x̃ = constant (37)

is stable. This means, that, if any solution begins from other initial point x0 �= x̃, then it
will be approximated to the stable solution asymptotically

ρ(x(t + Δt, xa), x̃) ≤ ρ(x(t, xa), x̃), (38)

where x(t, xa) is a solution of the differential Equation (24) from initial point xa.
The same is true for another initial condition xb

ρ(x(t + Δt, xb), x̃) ≤ ρ(x(t, xb), x̃). (39)

From here, it follows that the domain D has a fixed point x̃ of contraction mapping [24],
therefore distance between solutions x(t, xa) and x(t, xb) also tends to zero or

ρ(x(t + Δt, xa), x(t + Δt, xb)) ≤ ρ(x(t, xa), x(t, xb)). (40)

This proves the theorem.

Following the principle of feasibility, an approach is proposed in which the optimal
control problem is solved after ensuring the stability of the object in the state space. This ap-
proach is called the method of synthesized optimal control. It includes two stages. In the
first stage, the system without perturbations is made stable in some point of the state
space. This stage of synthesis of the stabilization system allows to embed the control in
the object so that the system of differential equations would have the necessary property
of feasibility. In this case, the equilibrium point can be changed after some time, but the
object maintains equilibrium at every moment in time. Then we control the position of the
stable equilibrium point, as an attractor, to solve the optimal control problem.
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5. The Synthesized Optimal Control

According to this approach, it is necessary to find such a control function (7) that
the system without perturbations would always have a stable equilibrium point in the
state space. Together with that, in the control function a parameter vector is introduced.
The value of this parameter vector affects on position of the equilibrium point in the
states space

u = g(x, q∗), (41)

where q∗ is a parameter vector.
Control function (41) provides for the system without perturbations

ẋ = f(x, g(x, q∗)) (42)

existence of the equilibrium point

f(x∗(q∗), g(x∗(q∗), q∗)) = 0, (43)

where x∗(q∗) is a vector of coordinates of equilibrium point, depending on the parameter
vector q∗. The system (42) satisfies conditions (34)–(36) in the point x∗(q∗).

Algorithmically, the method of synthesized optimal control first solves the problem of
stabilization system synthesis. For solving the synthesis problem, the functional (6) is not
used. Purpose of the control synthesis problem is to receive such control function (41) to
provide existence of the stable equilibrium point in the state space.

Once the function (41) is found, the optimal control problem is solved next for the
mathematical model (42) with the initial conditions (3) and the terminal conditions (4),
and with the quality criterion

J1 =

t f∫
0

f0(x(t), g(x(t), q∗(t)))dt + p1‖x f − x(t f )‖ → min
q∗∈Q

, (44)

where Q is a compact set in the space of parameters.
In general case, the vector of parameters q∗ can be some function q∗(t). The properties

of this function and methods for finding it requires additional studies. In this work
this function is found for the original optimal control problem (1)–(6) as a piece-wise
constant one.

Thus, in the synthesized optimal control approach, the uncertainty in the right parts is
compensated by the stability of the system relative to a point in the state space. Near the
equilibrium point, all solutions converge and feasibility principle is satisfied. This first step
of stabilization system synthesis is a key idea of the approach, it provides achievement of
better results in the tasks with complex environment and noise. However, this approach
could not be previously presented as a single computational method, since there was
no general numerical approach for solving the problem of control synthesis. Formally,
the problem of synthesis of stabilization system involves the construction of such a feedback
control module described by some functions that produces control basing on the received
data about the object’s state and this control makes the object achieve the terminal goal
with the optimal value of some given criterion. In the overwhelming majority of cases,
the control synthesis problem is solved analytically or technically taking into account the
specific properties of the mathematical model. But now modern numerical methods of
symbolic regression can be applied to find a solution without reference to specific model
equations. Let us consider the issue in more details.

6. The Problem of Control System Synthesis

Consider the problem statement of the general numerical synthesis of the control system.
The mathematical model is

ẋ = f(x, u), (45)
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where x ∈ Rn, u ∈ U ⊆ Rm.
The domain of initial conditions is given

X0 = {x0,1, . . . , x0,K} ⊆ Rn. (46)

The terminal condition is given

x∗ = [x∗1 . . . x∗n]
T ∈ Rn. (47)

The quality criterion is given

J3 =
K

∑
i=1

t f ,i + p1‖x∗ − x(t f ,i, x0,i)‖ → min
u

, (48)

where t f ,i is a time of achieving the terminal condition from the initial condition x0,i. It is
necessary to find a control in the form (41).

The general formulation of the synthesis problem was posed by V.G. Boltyanskiy in
the 60s of the last century [25]. One of the ways to solve it is to reduce the problem to the
partial differential equation of Bellman [26,27], who also proposed a method for its solution
in the form of a dynamic programming method [26,28]. Bellman’s equation in the general
case has no solution; therefore, most often it is solved numerically for one initial condition,
which in our case is not enough to ensure stability.

To solve the synthesis problem and obtain an equilibrium point, methods of modal
control [29] can be applied for linear systems, as well as other analytical methods such as
backstepping [30], analytical design of aggregated controllers [31,32], or synthesis based on
the application of the Lyapunov function [21,33]. Note that all known analytical synthesis
methods for nonlinear systems, when implemented, are associated with a specific type
of model, therefore they cannot be considered universal. In practice, linear controllers,
such as PID or PI controllers, are often used to ensure stability. Their use is also associated
with a specific model, which is linearized in the neighbourhood of the equilibrium point,
and their use is not related to the formal statement of the considered synthesis problem.

To solve the synthesis problem in the considered mathematical formulation, it is
necessary to find the control function in the form (41). Most of the known methods specify
the control function with an accuracy of the parameter values, for example, methods
associated with the solution of the Bellman equation, like analytical design of optimal
controllers [34], as well as the use of various controllers, including controllers based on
very popular now artificial neural networks [35].

This paper proposes to solve the addressed problem numerically. For a solution of the
synthesis problem we apply numerical methods of symbolic regression. These methods
can look for a structure of the function in the form a special code by some genetic algorithm
and also search for the optimal values of parameters in the desired function.

7. Symbolic Regression Methods

To encode a mathematical expression, it is necessary to define sets of arguments of the
mathematical expression and elementary functions. To decode a code of the mathematical
expression it is enough to know how many arguments has each elementary function.
For encoding elementary function, it is enough to use integer vector with two components.
The first component is the number of arguments of the elementary function. The second
component is the function number. Arguments of mathematical expression are elementary
functions without arguments, therefore the first component of an argument code is zero.

For the control synthesis problem (45)–(48) it is necessary to find a mathematical
expression of the control function (41).

Let us define sets of elementary functions.
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A set of mathematical expression arguments or elementary functions without argu-
ments includes variables, parameters, and unit elements for elementary functions with two
arguments,

F0 = { f0,1 = x1, . . . , f0,n = xn, f0,n+1 = c1, . . . , f0,n+p, f0,n+p+1 = e1, . . . , f0,n+p+r = eV}, (49)

where xi is a component of the state vector, i = 1, . . . , n, x = [x1 . . . xn]T , ci is a component
of the parametric vector, i = 1, . . . , p, c = [c1 . . . cp]p, ei is a unit element for function with
two arguments.

A set of functions with one argument includes an identity function

F1 = { f1,1(z) = z, f1,2(z), . . . , f1,W(z)}. (50)

A set of functions with two arguments includes such functions, that are associative,
commutative and have a unit element

F2 = { f2,1(z1, z2), . . . , f2,V(z1, z2)}, (51)

where each element from the set F2 has the following properties:

− associative
f2,j( f2,j(z1, z2), z3) = f2,j(z1, f2,j(z2, z3)), j = 1, . . . , V, (52)

− commutative
f2,j(z1, z2) = f2,j(z2, z1), j = 1, . . . , V, (53)

− existing of a unit element

f2,j(z1, ej) = z1, f2,j(ej, z2) = z2, j = 1, . . . , V. (54)

To describe the most common mathematical expressions, it is enough functions with
one and two arguments. Functions with three and more arguments may not be used.

Any element of the sets (49)–(51) is encoded by integer vector with two arguments

s = [s1 s2]
T , (55)

where s1 is the number of arguments, s2 is a function number.
A code of the mathematical expression is a set of codes of elementary functions

S = s1 . . . sL, (56)

where sj = [sj
1 sj

2]
T , sj

1 ∈ {0, 1, 2},

sj
2 ∈

⎧⎪⎨⎪⎩
{1, . . . , n + p + V}, if sj

1 = 0
{1, . . . , W}, if sj

1 = 1
{1, . . . , V}, otherwise

(57)

Theorem 4. For the mathematical expression code (57) with L elements to be correct, it is necessary
and enough that the following formulas are valid

1 +
j

∑
i=1

si
1 ≤ L, j = 1, . . . , L− 1, (58)

1− L +
L

∑
i=1

si
1 = 0. (59)
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Proof. Consider the Formula (58) and add there −j in the left and right sides

− j + 1 +
j

∑
i=1

si
1 ≤ L− j. (60)

Consider left side of the inequation (60)

T(j) = −j + 1 +
j

∑
i=1

si
1. (61)

This equation calculates how many elements from the set of arguments (49) should be
after element j. The value T(j) is increasing on 1 after each sj

1 = 2, it is not changing after

each sj
1 = 1, and it is decreasing on 1 after sj

1 = 0.
At j = L, we receive the Equation (59). After the last element j = L it must be no

elements on the right from element L.
Assume that the inequation (57) fails. Then from (61) we receive for j = L

T(j) = −L + 1 +
j

∑
i=1

si
1 > 0. (62)

This means, that after the last element there are some elements. This does not allow to
decode the code. Therefore conditions (57) and (58) are necessary.

Let the inequation (57) and Equation (58) be satisfied. If the element after the element
j is an argument from the set (49), then T(j) is decreasing on 1, if it is the function number
with one argument, then T(j) is not changed, if it is the function number with two argu-
ments, then T(j) increases on 1. Equation (58) shows that the last element from the set (49)
does not need arguments. The formula is decoded. Therefore, performing the Formulas
(57) and (58) is enough. QED.

From Equation (58) it follows

L

∑
i=1

si
1 = L− 1. (63)

Such direct encoding is in the genetic programming [36]. This method of symbolic
regression does not include extra elements, therefore codes of different mathematical
expressions have different lengths. It is not very comfortable for programming and imple-
menting crossover in genetic programming. For crossover it is necessary to find in the code
(55) the sub-code of mathematical expression with the properties (57) and (58). Crossover
operation in genetic programming is performed as exchanging sub-codes of mathematical
expressions. Searching for sub-codes and exchanging them takes significant time of the
algorithm. Other symbolic regression methods that can be effectively used to find a math-
ematical expression, such as the network operator method [37,38], or Cartesian genetic
programming [39,40] have codes of equal length for different mathematical expressions
due to redundant elements.

An effective tool in the search for an optimal mathematical expression is the principle
of small variations of the basic solution [41]. According to this principle, the search for
the mathematical expression can begin in the neighbourhood of one given basic solution.
This solution is coded by some symbolic regression method. Other possible solutions are
obtained using sets of codes of small variations of the basic solution. Each small variation
slightly modifies the basic solution code so that a new code corresponds to some kind of
mathematical expression.

To find the optimal mathematical expression by any method of symbolic regression,
a special genetic algorithm is used. Depending on the code of symbolic regression, this
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genetic algorithm has its own crossover and mutation operations. Using the principle of
small variations of the basic solution, crossover and mutation operations are performed on
the sets of small variations.

In the numerical solution of control synthesis problems by symbolic regression meth-
ods, together with the search of the structure of the mathematical expression, it is advisable
to look for the optimal values of the parameter vector c = [c1 . . . cp]T , which is included in
this mathematical expression in the form of its additional arguments (49). For this purpose,
it is convenient to use the same genetic algorithm as for finding the structure. In this case,
a possible solution is a pair including the code for structure of the mathematical expression
and the vector of parameters. When performing a crossover operation, we get not two,
but four offsprings. Two offsprings have new mathematical expression structures and new
parameter values, and two others inherit parent structures and have only new parameter
values. The crossover operation for parameters is performed as in the classical genetic
algorithm, by exchanging codes after the crossover point.

It can be seen that the methods of symbolic regression can automate the process of
synthesis of control systems, but very little of them are used in this direction. Only few
scientific groups [42–44] are developing these approaches for solving the problem of control
system synthesis in view of a number of difficulties, such as non-numerical search space
and the absence of a metric on it, the complexity of the program code and the absence of
publicly available software packages, and so forth.

8. A Computational Example

Let us consider the optimal control problem for two mobile robots. They have to
exchange its position on the plane with obstacles.

Mathematical models of mobile robots [45] are given

ẋj = 0.5(uj
1 + uj

2) cos(θ j),
ẏj = 0.5(uj

1 + uj
2) sin(θ j),

θ̇ j = 0.5(uj
1 − uj

2),

(64)

where uj = [uj
1 uj

2] is a vector of control, j = 1, 2.
Control is restricted

− 10 = u−i ≤ uj
i ≤ u+

i = 10, j = 1, 2, i = 1, 2. (65)

The initial conditions are set

x1(0) = 0, y1(0) = 0, θ1(0) = 0, x2(0) = 10, y2(0) = 10, θ2(0) = 0. (66)

The terminal conditions are set

x1(t f ) = 10, y1(t f ) = 10, θ1(t f ) = 0, x2(t f ) = 0, y2(t f ) = 0, θ2(t f ) = 0, (67)

where

t f =

{
t , if t < t+and Δ f (t) ≤ ε

t+, otherwise
(68)

Δ f (t) =
√
(10− x1(t))2 + (10− y1(t))2 + (θ1(t))2 + (x2(t))2 + (y2(t))2 + (θ2(t))2, (69)

t+ = 2.4 s, ε = 0.01.
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The quality functional includes the time to reach the terminal state and penalty
functions for violation of the accuracy of reaching the terminal state and for violation of
static and dynamic phase constraints

Je = t f + w1Δ f (t f ) + w2

t f∫
0

2

∑
i=1

2

∑
j=1

ϑ(ϕi,j(t))dt+

w3

t f∫
0

ϑ(d2 − (x1(t)− x2(t))2 − (y1(t)− y2(t))2)dt → min
u1,u2

(70)

where w1 = 2.5, w2 = 3, w3 = 3,

ϑ(α) =

{
1, if α > 0
0, otherwise

, (71)

ϕi,j(t) = ri −
√
(xi − xj(t))2 + (yi − yj(t))2, i = 1, 2, j = 1, 2, (72)

r1 = 3, r2 = 3, x1 = 5, x2 = 5, y1 = 9, y2 = 1, d = 2.
It is necessary to find such a control to move all robots from its initial conditions (66)

to the terminal conditions (67) with the minimal value of the quality criterion (70).
To solve the optimal control problem (64)–(72) by the proposed synthesized optimal

control method it is necessary to initially solve the control synthesis problem (45)–(48) for
each robot. Since robots are similar, it is enough to solve the control synthesis problem
once for one robot. For the solution of this problem, the symbolic regression method of
Cartesian genetic programming is used.

In the result, the following control function was obtained:

uj
i =

⎧⎪⎨⎪⎩
u+

i = 10, if u+
i ≤ ũj

i
u−i = −10, if ũj

i ≤ u−i
ũj

i , otherwise

, i = 1, 2, j = 1, 2, (73)

where
ũj

1 = A + B + ρ#(A), j = 1, 2, (74)

ũj
1 = B− A− ρ#(A), j = 1, 2, (75)

A = c1(θ
∗ − θ j) + σ#((x∗ − xJ)(y∗ − yJ)), (76)

B = 2(x∗ − xj) + sgn(x∗ − xJ)c2, (77)

ρ#(α) =

{
sgn(α)B+, if |α| > − log(δ−)
sgn(α)(exp(|α|)− 1)

, σ#(α) = sgn(α)
√
|α|, (78)

c1 = 3.1094, c2 = 3.6289, B+ = 108, δ− = 10−8.
For solution of the synthesis problem eight initial conditions were used and the quality

criterion took into account the speed and the accuracy of terminal position achievement

x∗ = [x∗ y∗ θ∗]T . (79)

In the result of the solution of control synthesis problem a stable equilibrium point
in the state space is appeared. Position of the equilibrium point depends on the terminal
vector (79).

In the second stage the set of four points (79) were searched for each robot on criterion (70)

X∗ = {x∗,1,1, . . . , x∗,1,4, x∗,2,1, . . . , x∗,2,4}. (80)
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These points were switching in some time interval Δt = 0.6 s for control function (73)
of each robot.

To search for the points the evolutionary algorithm of Grey wolf optimizer [46,47] was
used. In result, after more than one hundred tests the following best points were found:

x∗,1,1 = [4.0159 1.8954 1.2397]T , x∗,1,2 = [7.0890 4.2341 0.5270]T ,
x∗,1,3 = [7.2194 − 0.4480 1.3042]T , x∗,1,4 = [11.9722 9.4663 0.1866]T ,
x∗,2,1 = [5.3899 4.0791 − 0.1208]T , x∗,2,2 = [−0.6401 4.3126 − 0.0176]T ,
x∗,2,3 = [0.3103 0.8955 0.6335]T , x∗,2,4 = [−0.0791 − 0.1518 0.0195]T .

(81)

The algorithm simulated the system (64) with the control (73) for calculation of crite-
rion values (70) in one test more than 500,000 times.

When searching for points, the following constraints were used

− 2 ≤ x∗ ≤ 12, −2 ≤ y∗ ≤ 12, −π/2 ≤ θ∗ ≤ π/2. (82)

In the Figure 1 the projections of optimal trajectories on the plane {x, y} are presented.
The trajectories are black lines, red circles are obstacles, small black squares are projections
of found points (81).

Figure 1. Optimal trajectories of robots on the plane {x, y} for synthesized optimal control.

The quality criterion (70) for found control was Je = 2.8914.
For comparative study of the obtained solution, the same optimal control problem was

solved by a direct method. For this purpose control functions of robots were approximated
by piece-wise linear functions of time. The interval of approximation was Δdt = 0.4 s,
therefore a number of intervals was

K =

⌊
t+

Δdt

⌋
=

⌊
2.4
0.4

⌋
= 6. (83)

For the approximation of control function, the values of parameters on the boundaries
of intervals were searched. For each one control function it was necessary to find K + 1 = 7
parameters. Total vector of parameters had twenty eight components.

q = [q1 . . . q28]
T . (84)

The direct control has the following form

uj
i =

⎧⎪⎨⎪⎩
10 = u+

i , if u+
i ≤ ūj

i
−10 = u−i , if ūj

i ≤ u−i
ūj

i , otherwise

, i = 1, 2, j = 1, 2, (85)
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where

ū1
1 = qs + (qs+1 − qs)

(t− sΔdt)
Δdt

, (86)

ū1
2 = qs+L + (qs+L+1 − qs+L)

(t− sΔdt)
Δdt

, (87)

ū2
1 = qs+2K + (qs+2L+1 − qs+2L)

(t− sΔdt)
Δdt

, (88)

ū2
2 = qs+3L + (qs+3L+1 − qs+3L)

(t− sΔdt)
Δdt

, (89)

sΔdt ≤ t ≤ (s + 1)Δdt, s ∈ {1, . . . , 6}, L = K + 1 = 7.
To search for optimal parameters the same evolutionary algorithm of Grey wolf

optimizer was used. In the result of more than one hundred tests the following best values
of parameters were found:

q = [19.6125 5.4318 7.5921 19.4020 2.3928 2.1627 1.6976
1.4941 5.1828 16.9087 11.2478 − 2.4499 17.7201 − 0.6297
−0.9093 − 1.6815 − 19.5283 − 16.4979 − 0.2321 − 11.4719 − 17.7372
−1.4218 − 18.0214 − 3.7942 − 3.0899 − 13.3196 − 9.7212 − 0.3233]T

(90)

The process of searching the parameters had restrictions

− 20 = q− ≤ qi ≤ q+ = 20, i = 1, . . . , 28. (91)

In one test, the algorithm simulated the system (64) with the control (85) for calculation
of criterion values (70) more than 500,000 times. A value of quality criterion (70) for found
control was Je = 2.5134.

In Figure 2, the projection of optimal trajectories of mobile robots on the horizontal
plane {x, y} is presented.

Figure 2. Optimal trajectories of robots on the plane {x, y} for direct control.

To check the obtained solutions of sensitivity to perturbations, we included random
functions of uncertainty into the model (64)

ẋj = 0.5(uj
1 + uj

2) cos(θ j) + Bξ(t),
ẏj = 0.5(uj

1 + uj
2) sin(θ j) + Bξ(t),

θ̇ j = 0.5(uj
1 − uj

2) + Bξ(t),

(92)
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where j = 1, 2, ξ(t) generates new random value in interval from −1 to 1 at every call.
Results of simulations with the found optimal controls and different levels of pertur-

bations of the model are presented in the Table 1. The Table 1 includes average values of
functional (70) on ten tests. As we can see, the synthesized optimal control is less sensitive
to the perturbation of model. For the synthesized control with the level of perturbation
B = 1.5, the average value of the functional is changed by no more than 30% and, for the
direct control with the same level of perturbations, the functional is changed by more
than 200%.

Table 1. The average values of functional (70).

Level of Noise B Synthesized Control Direct Control

0 2.8914 2.5134
0.1 3.0014 3.0260
0.2 3.0066 3.8571
0.5 3.2141 5.5497
0.8 3.3156 5.8968
1 3.4123 6.7952

1.5 3.6954 8.2654

In Figure 3, the trajectories for synthesized optimal control with model perturbations
of level B = 1.5 are presented. In Figure 4, the trajectories for the direct control with the
same level of perturbation B = 1.5 are presented.

As can be seen from Figures 3 and 4, the synthesized control does not change the
nature of the motion of objects under large disturbances, and direct control first of all
violates the accuracy of achieving the terminal conditions.

Figure 3. Optimal trajectories of robots on the plane {x, y} for synthesized control with B = 1.5.

211



Mathematics 2021, 9, 21

Figure 4. Optimal trajectories of robots on the plane {x, y} for direct control with B = 1.5.

9. Conclusions

This work presents the statement of the new optimal control problem with uncertainty.
In this problem, the mathematical model of the control object includes an additive limited
perturbing function simulating possible model inaccuracies. It is necessary to find an opti-
mal control function that provides for limited perturbations bounded variation of functional
value. For this purpose, it is proposed to use the synthesized optimal control method.
According to this method initially, the control synthesis problem is solved. After that,
in the state space a stable equilibrium point appears. In the second stage, the original
optimal control problem is solved by searching positions of some stable equilibrium points,
which are a control for stabilization system, obtained in the first stage. It is shown that such
an approach supplies the property of a contraction mapping for differential equations of the
mathematical model of the plant. Such differential equations are quite feasible, and their
solutions reduce the errors of determining the state vector. For the solution of the control
synthesis problem it is proposed to apply symbolic regression methods. A comparative
example is presented. Computational experiments showed that the obtained solution is
very less sensitive to perturbations in the mathematical model of the control object than
the direct solution of the optimal control problem.

10. Findings/Results

This paper presents a new formulation of the optimal control problem, taking into
account the objectively existing uncertainties of the model. The concept of feasibility is
introduced, which means that small changes in the model do not lead to a loss of quality.
Given the theoretical substantiations (definitions and theorems) that a system of differential
equations of the mathematical model is feasible if it obtains, as a one-parametric mapping,
a contraction property in the implementation domain. This property is an alternative to
Lyapunov stability; it is softer, but sufficient for the development of real stable practical
systems. An approach based on the method of synthesized optimal control is proposed,
which makes it possible to develop systems that have the property of feasibility.

11. Discussion

According to the method of synthesized optimal control, the stability of the object is
first ensured, that is, an equilibrium point appears in the phase space. In the neighbourhood
of the stability point, the phase trajectories contract, and this property determines the
feasibility of the system. For this, it is necessary to numerically solve the problem of
synthesizing the stabilization system in order to obtain expressions for the control and
substitute them in the right-hand sides of the object model. The synthesis problem is quite
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difficult. This paper proposes using numerical methods of symbolic regression to solve
it. There are several successful applications, but they are still not very popular due to the
complexity of the search area on a non-numerical space of functions where there is no
metric. This is the direction for future research.

In the applied method of synthesized optimal control in the second stage we searched
positions of equilibrium points as a piece-wise constant function. It is necessary to investi-
gate other types of functions to change the position of the equilibrium point, how many
points should be and how often they should be switched.

In further studies it is also necessary to consider solutions of the new optimal control
problem for different control objects.

With the numerical solution of the optimal control problem by evolutionary algorithm
it was defined that these algorithms can find solutions for complex optimal control prob-
lems with static and dynamic phase constraints. It is necessary to continue to research
different evolutionary algorithms for the solution of the optimal control problems.
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Abstract: Visual navigation is an essential part of planetary rover autonomy. Rock segmentation
emerged as an important interdisciplinary topic among image processing, robotics, and mathemat-
ical modeling. Rock segmentation is a challenging topic for rover autonomy because of the high
computational consumption, real-time requirement, and annotation difficulty. This research proposes
a rock segmentation framework and a rock segmentation network (NI-U-Net++) to aid with the
visual navigation of rovers. The framework consists of two stages: the pre-training process and
the transfer-training process. The pre-training process applies the synthetic algorithm to generate
the synthetic images; then, it uses the generated images to pre-train NI-U-Net++. The synthetic
algorithm increases the size of the image dataset and provides pixel-level masks—both of which are
challenges with machine learning tasks. The pre-training process accomplishes the state-of-the-art
compared with the related studies, which achieved an accuracy, intersection over union (IoU), Dice
score, and root mean squared error (RMSE) of 99.41%, 0.8991, 0.9459, and 0.0775, respectively. The
transfer-training process fine-tunes the pre-trained NI-U-Net++ using the real-life images, which
achieved an accuracy, IoU, Dice score, and RMSE of 99.58%, 0.7476, 0.8556, and 0.0557, respectively.
Finally, the transfer-trained NI-U-Net++ is integrated into a planetary rover navigation vision and
achieves a real-time performance of 32.57 frames per second (or the inference time is 0.0307 s per
frame). The framework only manually annotates about 8% (183 images) of the 2250 images in the
navigation vision, which is a labor-saving solution for rock segmentation tasks. The proposed rock
segmentation framework and NI-U-Net++ improve the performance of the state-of-the-art models.
The synthetic algorithm improves the process of creating valid data for the challenge of rock seg-
mentation. All source codes, datasets, and trained models of this research are openly available in
Cranfield Online Research Data (CORD).

Keywords: image segmentation; remote sensing; terrain identification; data synthesis; transfer learning

1. Introduction

Planetary rovers integrate various sensors and computing units, making the study
an interdisciplinary research topic of subjects such as mathematics, human–robot interac-
tion, and computer vision [1–3]. The Spirit rover endured the Martian winter, survived
1000 Martian days (sols), and traveled more than 6876 m, while the Opportunity rover
traveled more than 9406 m [4]. However, the space environment poses challenges to the
planetary rover operation [5]. The Spirit and Opportunity rovers experienced communi-
cation and function failures during their explorations [6,7]. To prevent this, automating
onboard systems is essential for future planetary rovers [3,8]. This research focuses on
the semantic terrain segmentation from the monocular navigation vision of the planetary
rovers [8], which can provide support for the high-level planetary rover functionalities.
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Semantic segmentation is an important research topic in computer vision [9]. Semantic
segmentation can be achieved using either traditional computer vision or deep learning [10].
Traditional computer vision solutions utilize probabilistic models to predict pixels [11,12].
Deep learning-based solutions can be further classified into two categories: one-stage
pipelines and two-stage pipelines [10]. One-stage pipelines provide End-to-End (E2E) [13]
pixel-level predictions for each pixel [14,15]. Popular architectures include DeepLab [16],
SSD [17], and U-Net [14]. Two-stage pipelines detect the bounding box of the target and
then conduct pixel-level segmentations. Popular two-stage pipelines include RCNN [18],
SDS [19], and Mask-RCNN [20].

Semantic segmentation plays an essential role in autonomous driving. Dewan et al.
and Badrinarayanan et al. conducted multi-classification for each pixel (road, car, bicycle,
column-pole, tree, and sky) [21,22]. Teichmann et al. committed to the road segmenta-
tion [23]. He et al. and Wu et al. focused on various traffic participants (vehicles and
people) [20,24]. However, autonomous driving operates in a structured environment, while
rover navigation, the focus of this research, operates in an unstructured environment. A
structured environment refers to a scene with prior knowledge, while an unstructured
environment refers to a scene without prior knowledge [25].

Rocks are typical semantic targets in planetary environments [26,27]. The jet propul-
sion laboratory (JPL) in the National Aeronautics and Space Administration (NASA) studied
the terrain classification for the planetary rovers [6,28]. Rocks play a significant role in
the planetary rovers’ autonomy [26]. For example, the Curiosity Mars rover involves a
generally flat plain with about 5% of the area covered by small (tens of cm size or smaller)
rocks [26]. The Spirit, Curiosity, and Opportunity all occurred challenges because of rock-
related terrain [6,7,29]. However, existing geometric hazard detection methods cannot
detect all of the rocks [28].

The related studies on rock segmentation for planetary rovers can be divided into the
following five categories. Table 1 summarizes the discussions in a tabular form, while their
results have been summarized in Table 1 in the Appendix A.

Table 1. The summary of the related studies on rock segmentation for planetary rovers.

Category 1 Explanation Machine Learning-Based Reference Index 2

i 3D point cloud No [30–32]
ii Edge-based method No (except [33]) [4,5,33–36]
iii Outstanding rocks No [5,37,38]
iv Other non-machine learning studies No [32,39–41]
v Machine learning studies Yes [8,27,28,35,42–44]

1 “i”, “ii”, “iii”, “iv”, and “v” correspond to the same index of category in the context. 2 “Reference index” refers to the same citation index
in References.

Category-i refers to the studies that use 3D point clouds [30–32]. The 3D point cloud
is generally obtained through LIDAR or stereo cameras, which requires considerable
computing resources and storage space. This research applies a less computing and lighter
weight solution through 2D images and the monocular camera.

Category-ii refers to the studies that use texture and boundary-based image processing
methods [4,5,33–36]. The Rockster [36] and Rockfinder [34] are popular software packages in
this category. However, some image conditions (such as skylines, textures, backgrounds,
and unclosed contours) can significantly affect their performance [4]. This research has
better robustness on image conditions by applying the various brightness, contrast, and
resolution to the input images.

Category-iii refers to the studies focusing on rock identification [5,37,38], while the
rock segmentation is only a sub-session of the identification studies. However, this research
focuses on pixel-level segmentation, which can achieve more accurate segmentation results.

Category-iv refers to all the rest of the studies using non-machine learning-based
methods. Virginia et al. committed to using shadows to find rocks [39]. Li et al. built
detailed topographic information of the area between two sites based on rock peak and
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surface points [40]. Xiao et al. focus on reducing computational cost [32]. Yang and Zhang
proposed a gradient-region constrained level set method [41]. In general, they applied
artificial features, which usually require significant manual adjustments. This research uses
learning-based features, which can intelligently learn the optimized feature from the image
and annotations.

Category-v refers to the studies using machine learning methods. Dunlop et al. used
a superpixel-based supervised learning method [35]. Ono et al. used Random Forest for
terrain classification [28]. Ding Zhou et al. and Feng Zhou et al. focused on the mechanical
properties corresponding to different terrain types [27,42]. Gao et al. reviewed the related
results of monocular terrain segmentation [8]. Furlan et al. conducted a deeplabv3plus-
based rock segmentation solution [43], and Chiodini et al. proposed a fully convolutional
network-based rock segmentation solution [44]. Although their performance is much better
than Category-i/ii/iii/iv, their training dataset is very small because the annotation costs
significant time and effort. This research proposes a synthetic algorithm that can generate a
large amount of data and corresponding annotations with very limited manual annotation.

Pixel-level rock segmentation is a challenging task. The shape of rocks in an unstruc-
tured planetary exploration environment is hard to predict [5]. Identifying the boundary
of the rocks can be made difficult by the low resolution of the navigation camera and the
blurred outlines between background and rocks. Furthermore, most rock segmentation
datasets for the planetary rovers are confidential to the public or only in the form of images
instead of video [7,45].

A solution based on generating synthetic data addresses these problems. Data synthe-
sis produces pixel-level data annotation and image generation. Therefore, synthetic data
can generate a large amount of images and corresponding annotations for the pre-training
process [46]. Furthermore, the synthetic process is based on the practical video stream,
which guarantees good transferability in the following transfer-training process. Then, the
model can be transfer-trained to the convergence based on the prior knowledge from the
pre-training process.

The contributions of this research include the following:

(i) This research proposed a synthetic algorithm and transfer learning-based framework,
which provides a labor-saving solution for the rock segmentation in the navigation
vision of the planetary rovers.

(ii) This research proposed a synthetic algorithm and a synthetic dataset, which aid the
research into the rock segmentation in the navigation vision of the planetary rovers.

(iii) This research came up with an end-to-end (E2E) network (NI-U-Net++) for the pixel-
level rock segmentation, which achieved state-of-the-art in the synthetic dataset.

All source codes, datasets, and trained models of this research are openly available in
Cranfield Online Research Data (CORD) at https://doi.org/10.17862/cranfield.rd.16958728,
accessed on 26 November 2021.

The article is arranged as follows. Section 2 depicts the proposed synthetic algorithm
and rock segmentation network. Section 3 discusses the experimental results. Conclusions
and future work are placed in Section 4.

2. Methods

The proposed rock segmentation framework is based on the transfer learning process
(see Figure 1). Transfer learning is a typical solution for the data-limited situation [47,48].
The overall framework can be divided into the following.

(1) The framework can be divided into two processes. Figure 1 identifies the pre-training
process and the transfer-training process with the blue and green frames, respectively.
Rock segmentation in an unannotated scenario is significantly difficult, and the
transfer learning strategy divides the learning process into two steps. Although
the synthetic dataset can generate large amount of pixel-level annotated data, they
inevitably have a significant difference from the real-life data. The real-life data
represent the practical mission, while its annotation corresponds to an expensive
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cost. Therefore, a cooperated solution between the synthetic data and real-life images
becomes very promising. The pre-training process aims to achieve prior knowledge
from a similar scene, and then, the transfer-training process fine-tunes the pre-trained
weight to fit the real-life images.

(2) In the pre-training process:

(a) The purple ellipse with “Annotation-1” refers to the first manual annotation,
which aims to acquire the backgrounds and rock samples for the synthetic
algorithm.

(b) Then, the synthetic algorithm utilizes these backgrounds and rock samples to
generate the synthetic dataset. The synthetic dataset contains 14,000 synthetic
images and corresponding annotations.

(c) The orange solid round frame refers to the proposed rock segmentation net-
work (NI-U-Net++). The blue dash arrow refers to the pre-training, which
aims to achieve prior knowledge from the synthetic dataset.

(d) The pre-training process eventually accomplishes the pre-trained weights of
the NI-U-Net++, and these pre-trained weights refer to the prior knowledge
from the synthetic dataset.

(3) In the transfer-training process:

(a) The purple ellipse with “Annotation-2” refers to the second manual annotation,
which aims to produce some pixel-level annotations (see the green round frame
with “Annotated visual dataset”). The “Annotated visual dataset” contains
183 real-life images and corresponding pixel-level annotations.

(b) The green dash arrow refers to the transfer training, which aims to fine-tune
the pre-trained weights to fit the “Annotated visual dataset”.

(c) (iii–iii) The transfer-training process comes up with the final weights of the
NI-U-Net++.

 

Figure 1. The pipeline of the proposed rock segmentation framework. The rover navigation visual
dataset used in this research is the Katwijk beach planetary rover dataset [49], while it can be different
in other scenarios. The synthetic dataset for the pre-training is not augmented, while the annotated
visual dataset for the transfer training is applied augmentation to extend the dataset.

2.1. The Real-Life Visual Navigation Dataset for the Planetary Rovers

The visual navigation dataset of the planetary rovers used in this research is part1
and part2 of the Katwijk beach planetary rover dataset [49] from the European Space
Agency (ESA) [50–53], which contains 2250 frames of the image. The Katwijk dataset
is a professional open dataset for the navigation vision of the planetary rover research,
and many studies use the Katwijk dataset as the planetary environment [44,52,54]. The
Katwijk dataset is achieved at the site where is near the heavy-duty planetary rover (HDPR)
platform project of the European Space and Technology Research Center [49].

The reasons for adopting the Katwijk dataset are as follows: (i) The focus of this research
is to integrate a real-time and E2E rock segmentation framework into the navigation
vision of planetary rovers. Thus, a navigation vision stream for evaluating the real-time
performance is essential. (ii) The Katwijk dataset involves all relevant landmarks supported
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in the research of Ono et al. [28]. (iii) Other datasets are not suitable for this research. For
example, [54] involves some targets that are less likely to appear in planetary exploration
(such as the tree, wall, and people). (iv) Other datasets (such as NASA raw images [55])
contain many different types of rock samples, introducing a more complex marginal
probability distribution (this research utilizes the concept about task, domain, and marginal
probability distribution from [56] as the fundaments). However, rock diversity (or even
new rocks [38]) is not the focus of this research but an entirely new discipline.

2.2. The Synthetic Dataset

The proposed synthetic algorithm aims to generate a large amount of images and
the corresponding pixel-level annotations with limited manual annotations. Although
planetary exploration provides numerous visual data, they have barely been pixel-level
annotated. Labor-saving annotation is a vital and usual challenge for planetary visual
data. The target of the synthetic algorithm is to build a labor-saving solution to generate
a large amount of images and corresponding pixel-level annotations for the pre-training
process. Planetary explorations are expensive regarding labor, time, and resource, while the
synthetic approach aims to minimize the associated costs. Although multi-labeler seems a
promising solution for suppressing human errors, it will further increase the labor and time
required. The proposed synthetic algorithm can generate pixel-level annotations while
generating synthesized images. To maintain the labor-saving and annotation quality, the
following four highlights are essential for designing the synthetic algorithm.

(1) The synthetic algorithm also prepares data for the pre-training process. Therefore, the
materials utilized in the synthetic algorithm should come from the real-life images.

(2) Another target is to generate images and annotations synchronously through the
synthesis algorithm, thereby significantly reducing the cost of manual intervention.

(3) The target is to ensure the diversity of the synthetic dataset. The pre-training dataset
can determine the robustness and generalization ability of the segmentation frame-
work for the navigation visions. The data diversity introduced through morphology,
brightness, and contrast transformations are significantly important to the above end.

(4) The embedded rock samples require further processing to simulate the visual com-
fortable images.

2.2.1. The Proposed Synthetic Algorithm

The synthetic algorithm uses image processing technology and the illumination
intensity-based assumption. Equations (1)–(9) and Figure 2 depict the illumination intensity-
based assumptions and the corresponding process based on the geometrics and mathemat-
ics. Figure 2a abstracts a typical navigation scenario of the planetary rovers using a sketch.
The light source (I) can be approximated as the sun in the scenario. The angles between the
rays i1, i2, and i3 of the light and the horizontal ground (g) are θ1, θ2, and θ3, respectively.
When I is significantly far away from the ground g, this research considers that all light
rays are parallel to each other, so the angles θ1, θ2, and θ3 of i1, i2, and i3 and the horizontal
ground are equal (see Equation (1)).{

i1 ‖ i2 ‖ i3,
θ1 = θ2 = θ3,

i f I → +∞. (1)
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Figure 2. The sketches of the planetary rover navigations. (a) refers to the typical scenario of the planetary rover.
(b) refers to the abstracted scenario through applying Equation (1) to (a). (c) refers to the abstracted scenario with a
small and closer rock landmark compared to (b). G1, G2, G3, P, p1, and p2 in the (b) scenario correspond to G1, G2, G3, P,
p1, and p2 in the (c) scenario, respectively.

Figure 2b shows the abstracted sketch of Figure 2a through applying Equation (1).
The angles between all rays (i) and g all equal to θ. This research defines ρ to refer to the
density of rays, which also refers to the illumination intensity (L) in the unit area on the
ground. Therefore, the L on a specific ground area equals the multiplication between the
area of the region (S) and ρ (see Equation (2)).

L = ρ ∗ S (2)

The solid blue lines (p1 and p2) in Figure 2b refer to the rock area captured by the
navigation camera. The dashed line (lb) refers to the normal line perpendicular to the phase
plane. The solid black line segment (PG3) refers to the corresponding rock on the image.
Although the rock occupies the same image region as the ground G1G3, the L of the rock is
different than the ground without rock because of the difference between G2G3 and G1G3.
In Equation (3), LG1G3 refers to the L in the G1G3 area, and PG3 refers to the PG3 area.

ρ =
LG1G3

PG3
(3)

Notably, all images involved in this section refer to the grayscale images. Thus, PG3 is
a grayscale image. This research assumes the image grayscale value of the PG3 area relates
to two parameters, corresponding density (ρ) and the surface optical properties (Popt) of
the object (cT).

i. The above discussion uses Equation (2) to achieve the desired illumination intensity,
while ρ is difficult to obtain from a grayscale image. However, the known information
is the corresponding image grayscale value (G1G3) and the area of PG3. It is notewor-
thy that G1G3 and G2G3 appear in the same image region. This research assumes that
the ratio (ρ) between the sum grayscale in G1G3 and the area of PG3 can approximate
the value of ρ (see Equation (4)).

ρ ≈ ρ =
LG1G3

PG3
= ∑

(x,y) ∈ T

[
pixelimg(x, y)

Npixel

]
(4)

However, Figure 2c shows another scenario. A pronounced difference between G1G2
(Figure 2b) and G1G2 (Figure 2c) comes from a smaller and closer rock landmark.
Therefore, the difference (Δρ) between ρ and ρ is located on G1G2 (equivalent to
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G1G2). It is noteworthy that ρ is the ratio between the sum grayscale of G1G3 and PG3,
whereas ρ is the ratio between the sum grayscale of G2G3 to PG3 (see Equation (5)).

Δρ = ρ− ρ =
LG1G3

PG3
− LG2G3

PG3
=

LG1G3 − LG2G3

PG3
(5)

Substituting Equation (2) into Equation (5) can produce Equation (6), so Δρ is a value
related to LG1G2 .

Δρ = ρ− ρ =
ρ ∗ G1G3 − ρ ∗ G2G3

PG3
=

ρ ∗ G1G2

PG3
=

LG1G2

PG3
(6)

ii. The optical properties of the object surface are complex (such as surface reflectance,
refracting, and absorptivity), and they do not belong to the scope of this research. Here,
we use a variable cT to pack all factors related to optical properties. Equation (7) depicts
the grayscale change caused through the optical properties.

Popt = f1(cT) (7)

Recalling the objective of the synthetic algorithm, Equation (7) can only correlate the
optical properties and image grayscales implicitly. Thus, this research proposes Equation (8)
to approach Equation (7) artificially. Equation (8) assumes that the grayscale distribution in
the target region (rock in this research) is a function of the coordinates when ρ is constant.
This research calculates the averaged grayscale value (imgmean) for the corresponding
image area. Then, it subtracts the grayscale values (img) to imgmean to obtain a differential
grayscale “image” (imgΔ), which is a statistical result only related to the coordinates.

Popt ≈ imgΔ = img− imgmean (8)

The synthetic algorithm corresponding to the rock-embedded area can be depicted
using Equation (9):

L = ρ ∗ imgΔ − C. (9)

The C refers to the constants used to correct the distance between ρ and ρ. Recalling
Equation (6), Δρ positively correlates to the LG1G2 . The practical area of LG1G2 is a varying
value that is dependent on the appearance of the target. Measuring LG1G2 is challenging,
but LG1G2 positively correlates to imgmean (a brighter image causes a higher LG1G2 ). Thus,
this research assumes C is a constant that depends on imgmean. Table 2 depicts the values
of C, while the detailed experiments for deciding C can be found in Appendix A.2 in
the Appendix A. It is noteworthy that L, L, and imgΔ all contain multiple values, which
correspond to the coordinates.

Table 2. The constant C to correct ρ from ρ.

Conditions Value 1

imgmean ≤ 25 0
25 < imgmean ≤ 50 5
50 < imgmean ≤ 75 10

75 < imgmean ≤ 100 15
100 < imgmean ≤ 125 20
125 < imgmean ≤ 150 25
150 < imgmean ≤ 175 30
175 < imgmean ≤ 225 35
200 < imgmean ≤ 225 40
225 < imgmean ≤ 250 45

250 < imgmean 50
1 The values correspond to the grayscale metric with 256 scales.
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2.2.2. Implementation

Figure 3 and Algorithm 1 show the implementation process of the proposed
synthetic algorithm.

i. This research randomly picks up 35 images from the Katwijk dataset for “Annotation-1”.
The number of 35 images is arbitrary; it needs to be large enough to get a sufficient
dataset of rock annotations but not too large that it takes a long time to annotate
the images. Furthermore, this research focuses on exploring a feasible framework
so that the upper and lower limits of the image number in “Annotation-1” are not
studied thoroughly.

ii. Then, the synthetic algorithm conducts the “Annotation-1” to these images (see
Figure 3). The red mask refers to the rock sample, and the green masks refer to other
rocks. It is noteworthy that each image only includes the largest rock in the rock
samples. Before embedding into a new background, a morphological transformation
is necessary to ensure the variant of the synthetic dataset. However, the enlarged
morphological transformations can bring a significant resolution change if the rock
sample is too small.

iii. The algorithm also utilizes the images in “Annotation-1” as backgrounds for the
synthetic algorithm. The annotation rule for “Annotation-1” is: if a rock cannot be
identified with the three to six times enlargement, this research decides to abandon it
as a part of the background.

iv. The above three steps finish the data preparation for the synthetic algorithm. The
rocks refer to rock samples, and scenes refer to backgrounds. Then, the algorithm
conducts Algorithm 1 to generate the synthetic dataset.

v. Morphological transformations can increase the number and diversity of the syn-
thetic dataset. The morphological transformation schemes for rock samples (augrock)
come from the combinations using mirror, flatten, narrowing, and zooming. The
morphological transformation schemes for backgrounds (augscene) further include the
adjustments of brightness, contrast, and sharpness.

vi. Then, Algorithm 1 traverses each background with all augscene to achieve the mor-
phologically transformed images (sceneaug in Algorithm 1) (see row 3 and 4 in
Algorithm 1). Meanwhile, the sky and ground segmentation model is applied to
identify the ground pixels, and the rock samples are only embedded into the ground
region. The sky and ground segmentation model comes from [57].

vii. For each sceneaug the synthetic algorithm embeds a random number of rockaug (see
row 11 in Algorithm 1).

viii. Each rockaug comes from a random selection from the rocks (rockselect). The algorithm
also randomly selects a morphological transformation scheme (augr) from augrock. The
algorithm conducts augr to rockselect, which results in a morphologically transformed
rock (rockaug) (see rows 9, 10, and 11 in Algorithm 1).

ix. The algorithm adopts Equation (8), Equation (4), Table 2, and Equation (9) to achieve
imgΔ, ρ, the correction constant for the corresponding ρ (Cselect), and the grayscale
values of the embedded rock (rockreplace) (see rows 12, 14, 15, and 16 in Algorithm 1).
The further discussion of the values in Table 2 can be found in Appendix A.2.

x. Finally, the synthetic images that correspond to the sceneaug are saved as the
synthetic dataset.
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Algorithm 1: Synthetic algorithm

Input: rock samples: rock = [rock1, rock2, . . . , rock35]
practical sense: sense = [scene1, scene2, . . . , scene35]
correction constant: C = [C1, C2, . . . , C11]
scene augmentation: augscene = [s1, s2, . . . , s8]
rock augmentation: augrock = [r1, r2, . . . , r9]

Output: Synthetic dataset: img = [img1, img2, . . . , imgn]

1 for  in  do 
2     for  in  do 
3         for  in  do 
4              
5             for  in  do 
6                  a random integer between 5 and 20; 
7                 for  in  do 
8                      random anchor point for rock; 
9                      random select in ; 

10                      random select in ; 
11                      
12                     ; Equation (8) 
13                     ; 
14                     ; Equation (4) 
15                      find in ; Table 2 
16                       &  & ; Equation (9) 
17                      embed  in  at   
18                end  
19             end  
20         end  
21     end  
22 end 

 

Figure 3. The preparation part in the implementation of the proposed synthetic algorithm. “Annotation 1” refers to the
same “Annotation-1” as in Figure 1. The red and green pixels in “Annotation 1” refer to the rock samples and other rocks,
respectively.

It is noteworthy that the proposed synthetic algorithm is a typical incremental method
through embedding new rock samples into the original image, which inevitably adds many
large and obvious rocks. Thus, the synthetic algorithm may lead the quantitative metrics
to a better result in the pre-training process than the transfer-training process. In addition,
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the metrics adopted in this research include the accuracy, intersection over union (IoU),
and Dice score.

2.3. Proposed Rock Segmentation Network

This section discusses the modified rock segmentation network (named the NI-U-Net++).
Figure 4 depicts the proposed NI-U-Net++, which is a modified U-Net++ [15] through
modifying the overall architecture and integrating some modified micro-networks. It is
noteworthy that this research has been inspired by the U-Net++ [15] and NIN [58].

Figure 4. The proposed rock segmentation network (NI-U-Net++).

The U-Net network uses the encoder–decoder configuration and concatenation layer
to configure a deep network [14,59], which provides an efficient and effective structure
for feature extraction and backpropagation. U-Net++ is an updated U-Net, which adopts
a new encoder–decoder network with a series of nested, dense skip pathways. U-Net++
further applies deep supervision to avoid the skips of the shallow sub-U-Nets [15].

The proposed NI-U-Net++ adopts a similar overall structure of the encoder–decoder
design and deep supervision as the U-Net++. The blue and green solid arrows in Figure 4
refer to the encoder and decoder part, respectively. The encoder part in the NI-U-Net++
has four scale reductions (see the four blue arrows in Figure 4). Deep supervision is
implemented using the concatenate and convolutional layers (see the purple arrows and
white blocks at the top of Figure 4). Moreover, the purple arrows refer to the “highway”
using the concatenate layers to connect the front and back layers. These highways can pass
the backpropagation gradients in the front layers, thereby avoiding the gradient vanishing.

The NIN refers to the micro-block of networks assembled in another neural network.
The 1 × 1 convolutions play an essential role in NIN. The 1 × 1 convolutions have low
computational consumption, while they can integrate cross-channel information. Further-
more, 1 × 1 convolutions can transform the number of channels without changing the
tensor scale [58].

This research proposes a modified NIN network as a micro-network to integrate into
the NI-U-Net++. Figure 5 depicts the structure of the proposed micro-network, which
is the orange squares in Figure 4. The channel of the micro-network input tensor is N
channels, and the first 3 × 3 convolution decreases it to N/4 channels. Then, the following
two 1 × 1 convolutions can be understood as the fully connected layers along the channel
axis. Finally, another 3 × 3 convolution restores the tensor channels to N channels. Thus,
the micro-network ensures the proposed NI-U-Net++ can adopt a deep structure with a
small computational graph.
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Figure 5. The layer configuration of the proposed micro-network. The yellow, light blue, orange, green, and dark blue
squares refer to the zero-padding layer, convolution layer with 3 × 3 kernel size, LeakyReLU activation layer, and batch
normalization layer, respectively.

There are three highlights in the proposed NI-U-Net++ rock segmentation network.
(1) NI-U-Net++ does not determine the image scale-change in NI-U-Net++. NI-U-Net++
provides more flexible freedom of the scale-change than U-Net, and the task can automati-
cally find the optimal scale. The scale-change refers to the optimal number of continuous
downsampling operations before the decoder. (2) The strategy of deep supervision is
adopted in the proposed NI-U-Net++. Zhou et al. mentioned that the shallow sub-U-Nets
might be disconnected when the deep supervision is not activated [15]. To this end, deep
supervision can provide the backpropagation to any sub-U-Nets. (3) The micro-network
establishes the cross-channel data relevance in each scale of the segmentation network.
(The further pairwise comparisons between proposed NI-U-Net++ and related studies can
be found in Appendix A.4.)

2.4. The Pre-Training Process

The pre-training process aims to provide efficient prior knowledge for rock segmenta-
tion. The pre-training process divides the synthetic dataset into a training, validation, and
testing set according to the ratios of 80%, 10%, and 10%. The hyperparameters are listed
in Table 3. The number of epochs is set to 50 epochs, the batch size is set to 5 samples per
batch, the learning rate is set to 0.00005, the optimizer adopts the Adam, and the binary
cross-entropy loss is chosen as the loss function. The pixels of the rocks are annotated using
value one, and the background pixels use value zero. Furthermore, the pre-training process
uses six usual metrics to compare the proposed NI-U-Net++ to the related studies. The six
metrics are accuracy, intersection over union (IoU), Dice score, root mean squared error
(RMSE), and receiver operating characteristic curve (ROC). The related studies correspond
to U-Net [14], U-Net++ [15], NI-U-Net [57], Furlan2019 [50], and Chiodini2020 [44].

Table 3. The hyperparameters of the pre-training process.

Hyperparameter Setting Hyperparameter Setting

Epoch 50 epochs Batch size 5 sample per batch
Learning rate 0.00005 Optimizer Adam
Loss function Binary cross-entropy Training set ratio 80% of the synthetic dataset

Validation set ratio 10% of the synthetic dataset Testing set ratio 10% of the synthetic dataset

Evaluation metrics Accuracy, intersection over union (IoU), Dice score, root mean squared error (RMSE), and receiver
operating characteristic curve (ROC)

The chosen evaluation metrics come from the following reasons. (i) Loss function
decides the learning gradient, and it is the specific factor for fitting conditions, converges,
and the learning process. (ii) Accuracy refers to a very intuited indicator for knowing per-
formance. (iii) IoU is a prevalent and influential metric in semantic segmentation studies,
but it is also based on the confusion matrix as the accuracy. (iv) Dice score is a similar
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metric. Thus, this research puts the Dice score in the Appendix A as additional results.
(v) ROC indicates the sensitivity for different thresholds of positive and negative prediction.

It is noteworthy that the training, validation, and testing sets are saved to local storage
to prevent the potential uncertainty from the dataset shuffle. Thus, any synthetic dataset
mentioned in this study refers to the same data distribution. Some details of the related
studies have been discussed as following:

(i) U-Net is proposed by Ronneberger et al. [14], which is a very popular one-stage
image segmentation network [60,61]. The applied U-Net references the high-starred
implementations on GitHub [62,63]. The encoder of U-Net contains four downsam-
pling layers, the decoder contains four upsampling layers, and the activation uses the
“ReLU” function. The size of each convolution kernel is 3 × 3.

(ii) U-Net++ is proposed by Zhou et al. [15] in 2018, which is an undated U-shaped
network based on the U-Net. The applied U-Net++ references the high-stared imple-
mentation on GitHub [64]. The applied U-Net++ contains four downsampling layers,
and the deep supervision has been activated.

(iii) The NI-U-Net [57] shares the same architecture as the sky and ground segmentation
network used in Section 2.2. NI-U-Net only contains a single U-shaped encoder-
decoder design, and the micro-networks have also been applied.

(iv) Furlan et al. proposed a deeplabv3plus-based rock segmentation solution in 2019,
and the implementation of Furlan2019 referenced the study in [43].

(v) Chiodini et al. proposed a fully convolutional network-based rock segmentation
solution in 2020; the implementation of Chiodini2020 referenced the study in [44].

2.5. The Transfer-Training Process

The aim of the transfer-training process is to fine-tune the NI-U-Net++ from the
“Pre-trained weights” to the “Final weights” for the real-life images (see Figure 1). The
“Annotated visual dataset” is divided into training, validation, and testing sets according
to the ratio of 80%:10%:10% (similar to the pre-training process). The hyperparameters
have been depicted in Table 4: the number of epochs is set to 50 epochs, the batch size is set
to 5 samples per batch, the learning rate is set to 0.00005, the optimizer uses the Adam, and
the loss function uses the binary cross-entropy. The evaluation also uses the three popular
metrics, accuracy, IoU, and Dice score.

Table 4. The hyperparameters of the transfer-training process.

Hyperparameter Setting Hyperparameter Setting

Epoch 50 epochs Batch size 5 sample per batch
Learning rate 0.00005 Optimizer Adam
Loss function Binary cross-entropy Training set ratio 80% of the synthetic dataset

Validation set ratio 10% of the synthetic dataset Testing set ratio 10% of the synthetic dataset

Evaluation metrics Accuracy, intersection over union (IoU), Dice score, root mean squared error (RMSE), and receiver
operating characteristic curve (ROC)

The data for the transfer-training process comes from “Annotation-2” in Figure 1.
“Annotation-2” can be composed of the following four steps.

(1) “Annotation-2” randomly re-selects 150 images from the Katwijk dataset.
(2) “Annotation-2” performs pixel-level annotations on these images.
(3) The images annotated in “Annotation-1” can also be used for the transfer-training

process, so “Annotation-2” merges 35 images in “Annotation-1” with the 150 images.
It is noteworthy that there are two duplicate images, so the final number of images for
“Annotation-2” is 183 images (The 183 images are only about 8% of the Katwijk dataset)

(4) “Annotation-2” uses data augmentation to simulate possible situations for the plane-
tary rover operations. For example, rotations simulate the pose changes, brightness
changes simulate changes in illumination conditions, and contrast changes simulate
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changes in imaging conditions. The data augmentation eventually achieves about
4000 images.

3. Results and Discussion

All experiments in this research were conducted on the same data, hardware, and
software. This research saved the random-shuffled dataset to ensure the repeatability for
any experiment. The CPU, GPU, and memory size are Core i7-7700, NVIDIA RTX1080,
and 32 GB. The deep learning platform, GPU parallel computing support, program-
ming language, and operating system are TensorFlow 2.1, CUDA 10.1, Python 3.6, and
Ubuntu 18.04.

3.1. The Results of the Proposed Synthetic Algorithm

The proposed synthetic algorithm (Section 2.2) generates 14,000 synthetic images as the
synthetic dataset using the rock samples and real-life backgrounds from
Section 2.2. Figure 6a visualizes an example in the synthetic dataset. The grayscale
distributions between the rock samples and the real-life backgrounds can be significantly
different. For example, directly embedding a rock sample extracted from a dark region
to a bright region of the real-life background is not visually comfortable. The solid blue
frames in Figure 6a refer to the embedded rocks, and the green dashed frames refer to the
original rocks. The grayscale distributions of the embedded rocks are visually comfortable.
Furthermore, Figure 6 illustrates some complex cases that usually appear in the practical
planetary explorations (such as occlusion, unclosed outline, far and small target, etc.).
These complex cases can significantly enforce the robustness and generalization-ability of
the synthetic dataset. Figure 6b refers to the corresponding annotation of Figure 6a, which
is the synthetic image.

 
Figure 6. A typical example in the synthetic dataset. (a,b) refer to the synthetic image (from the proposed synthetic
algorithm) and the simultaneously generated annotation. Blue solid frames, green dash frames, and orange dot-dash frames
refer to original rocks, embedded synthetic rocks, and un-highlighted rocks, respectively. The reason for the un-highlighted
rocks is their small and dense distribution, which can cause a bad visualization. “1”, “2”, and “3” highlight the complex
cases of occlusion, unclosed outline, far, and small target, respectively. (b) uses white pixels to refer to the rocks, while black
pixels refer to the background.

The target of the synthetic algorithm is to simulate real-life images as much as pos-
sible when generating the synthetic data. The difference between synthetic and real-life
images comes from different imaging sources. Figure A1 in the Appendix A shows that
the synthetic algorithm without well-optimization can cause an apparent visual difference.
The materials used in the synthetic algorithm are all derived from real-life images to en-
sure visual comfort (such as rock samples and backgrounds). Furthermore, the synthetic
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algorithm further optimizes visual comfort through the illumination intensity assumption.
It is noteworthy that using synthetic data aims to assist rock segmentation in real-life
images. Therefore, this research utilizes the results in real-life images to verify the ca-
pacity of the proposed synthetic algorithm (see Figure A2 and the demo video in the
supplementary material).

3.2. The Results of the Pre-Training Process

This section compares the proposed NI-U-Net++ with five related studies. Table 5 de-
scribes the quantitative comparisons of the pre-training process. Figure 7 depicts the loss
and accuracy curves of the training and validation sets for the proposed NI-U-Net++.
Figures A4–A6 describe the loss and accuracy curves of U-Net, U-Net++, NI-U-Net,
Furlan2019, and Chiodini2020, respectively. Dice scores have been described in Table A2 in
the Appendix A. Figure 8 compares the ROC curve of the proposed NI-U-Net++ with the
advanced studies from Furlan2019 [43] and Chiodini2020 [44].

Table 5. The results of the pre-training process.

Network
Loss Accuracy IoU RMSE

Train Valid Test Train Valid Test Train Valid Test Train Valid Test

U-Net 0.0360 0.0393 0.0397 99.13% 98.96% 98.95% 0.8446 0.8248 0.8255 0.1027 0.1039 0.1043
U-Net++ 0.0121 0.0211 0.0209 99.56% 99.28% 99.28% 0.9182 0.8769 0.8783 0.0668 0.0744 0.0743
NI-U-Net 0.0102 0.0281 0.0280 99.63% 99.25% 99.24% 0.9313 0.8715 0.8720 0.0665 0.0775 0.0776

Furlan2019 0.0273 0.0307 0.0308 99.04% 98.86% 98.86% 0.9125 0.9005 0.9001 0.0912 0.0924 0.0926
Chiodini2020 0.0108 0.1724 0.1692 99.38% 97.98% 98.00% 0.9423 0.8299 0.8330 0.1298 0.1336 0.1328

NI-U-
Net++ 0.0117 0.0175 0.0173 99.58% 99.40% 99.41% 0.9209 0.8972 0.8991 0.0665 0.0775 0.0775

The “loss” refers to the binary cross-entropy used for training. The “accuracy”, “IoU”, and “RMSE” refer to the adopted evaluation metrics.
The “train”, “valid”, and “test” refer to the results from the training, validation, and testing sets. U-Net, U-Net++, NI-U-Net, Furlan2019,
and Chiodini2020 refer to the related studies [14,15,43,44,57], respectively. NI-U-Net++ refers to the proposed network. Gray shadings
indicate the lowest loss, highest accuracy, highest IoU, and lowest RMSE.

Figure 7. The loss and accuracy curves of NI-U-Net++ using the synthetic dataset. The green “A” and “B” correspond to the
two highlights mentioned in the content of the NI-U-Net++ curves. (a) refers to the epoch-wised loss curves in the training
and validation sets. (b) refers to the epoch-wised accuracy curves in the training and validation sets. The horizontal dash
lines refer to the references of final converge status.
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Figure 8. The ROC curves of the proposed NI-U-Net++, Furlan2019 [43], and Chiodini2020 [44].

The gray shadings in Tables 5 and A2 highlight the best results in each column. NI-
U-Net and NI-U-Net++ show better performances than the U-Net and U-Net++ with a
lower “loss” value and higher “accuracy”, “IoU”, and “Dice” values. This suggests that
the proposed micro-network helps to improve the performance of rock segmentation.
Moreover, Figures 6 and A6 both appear to have a more rapid initial learning speed
compared to Figures A4 and A5. Thus, the proposed micro-network can accelerate the
learning efficiency.

The NI-U-Net achieves the highest training accuracy (see Table 5). Arrow “A” in
Figure A6a highlights a U-shaped rise that appears on the validation loss curve, while the
training loss curve keeps decreasing. These indicate that overfitting occurs for NI-U-Net.
This can explain that NI-U-Net achieved the lowest training loss and highest training
accuracy, but the validation and testing loss and accuracy were poorer than others. The
green arrow “B” in Figure A6b indicates that NI-U-Net produces the largest distance in
accuracy between the training and validation sets. NI-U-Net is a modified U-Net using the
micro-network. Compared with U-Net, all the results of NI-U-Net achieve improvements.
Therefore, the proposed micro-network can also suppress the overfitting level.

Table 5 and arrow “A” in Figure A4a find that U-Net achieves a higher loss and lower
accuracy. Thus, U-Net has the highest level of underfitting. Arrow “B” in Figure A4b
highlights that accuracy curves keep flat at the first two epochs. This indicates that the
learning process of U-Net is difficult. This comes from a fixed and high encoder ratio. The
down-sampling operations in the encoder can cause significant information loss, especially
for small targets.

U-Net++ also appears to have overfitting in Table 5. The U-Net++ training curves and
the horizontal reference lines depict that the training curves keep learning throughout the
pre-training process, while the validation curves come to the convergence (see the arrows
“A” in Figure A5a and “B” in Figure A5b).

Table 5 shows that the proposed NI-U-Net++ achieves the lowest validation loss,
lowest validation and testing loss, highest validation and testing accuracy, as well as lowest
RMSE. The curves in Figure 6a,b appear to be promising learning trends. In the initial
stage of training, it drops rapidly and then slowly converges. The arrows “A” and “B” in
Figure 6a,b indicate that NI-U-Net++ stays stable on both the training and validation sets,
and the overfitting level is low. The outstanding evaluation results indicate that the risk of
underfitting is also low. NI-U-Net++ achieved the best pre-training results by improving
the overall configuration and introducing the micro-network.

This research further applied two advanced related studies as the comparisons.
(i) The “Chiodini2020” in Table 5 and Figure A7 indicates the results using Chiodini
et al. [44]. The proposed NI-U-Net++ suppresses all qualitative results of Chiodini2020.
Moreover, Chiodini2020 appears to have significant overfitting and unstable conditions
on the validation set. (ii) The “Furlan2019” in Table 5 and Figure A8 indicates the results
using Furlan et al. [43]. Furlan et al. applied a fully convolutional network (FCN)-based
rock segmentation solution. Although Furlan2019 achieves higher IoU than the proposed
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NI-U-Net++, it is only 0.1–0.3% higher than the proposed NI-U-Net. Furthermore, the
proposed NI-U-Net++ achieves significantly better results in loss, accuracy, and RMSE.

Figure 9 depicts the visualizations of NI-U-Net++ from the pre-training process.
Table A3 indicates the quantitative results of using different numbers of synthetic images,
and the further discussion can be found in Appendix A.5.

 

Figure 9. The example results of the NI-U-Net++ rock segmentation network in the pre-training process. “Synthetic image”,
“Annotation”, and “Prediction” refer to the synthetic input images, the simultaneously generated ground truth annotations,
and the predictions from the pre-trained NI-U-Net++, respectively. (a–d) correspond to four examples.

3.3. The Results of the Transfer-Training Process

The results of transfer learning are presented in Table 6. Figure 10 depicts the loss,
accuracy, IoU, and Dice score curves on training and validation sets. Each curve comes
to convergence with a smooth and stable trend. Thus, the model does not appear to be
overfitting. Although transfer learning only used 183 images from the Katwijk dataset, the
proposed synthetic algorithm and the transfer learning strategy accomplish a significantly
low loss value, high accuracy, high IoU, and high Dice score. It is noteworthy that the
used navigation vision has about 2500 images from the Katwijk dataset, and the transfer
learning only uses about 8%. Furthermore, the good results of the metrics indicate that the
NI-U-Net++ does not appear to be underfitting either.

Table 6. Result of transfer-training using the proposed NI-U-Net++.

Loss Accuracy IOU Dice RMSE

Train Valid Test Train Valid Test Train Valid Test Train Valid Test Train Valid Test

0.0061 0.0183 0.0151 99.74% 99.54% 99.58% 0.8841 0.7223 0.7476 0.9384 0.8387 0.8556 0.0499 0.0594 0.0557
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Figure 10. The transfer training curves using the “Annotation-2” dataset. (a–d) refer to the transfer training curves of the
loss, accuracy, IoU, and Dice score, respectively. The blue solid curves and red dash curves refer to the training records from
the training and validation sets.

Table 6 provides the quantitative records of the transfer learning process (the green
frame in Figure 1). The loss value in Table 6 has reached a small magnitude, and the
accuracy reaches a high level. Although IoU is not as high as in the pre-training process
(see Table 5), it is already a considerably high value in the image segmentation topic
(see the IoU level in [16,65,66]). The performance of the Dice score and RMSE are good.
Figure 11 indicates the qualitative results of transfer learning. Figure 11 also involves the
results using the pre-trained model. The pre-trained model can achieve highly similar pre-
dictions, which justified the help using the transfer learning strategy. The Supplementary
Video S1 depicts the integration of the transfer learning achievement into the navigation
vision of the planetary rovers. Compared with the frame rate of the original navigation
vision (8 FPS), the processing speed of the proposed NI-U-Net++ is 32.57 FPS (or the
inference time is 0.0307 s per frame), which is 4.071 times the frame rate in the original
video. The details of the inference time can be found in Appendix A.6 in the Appendix A,
which shows that the real-time performance of the proposed NI-U-Net++ appears excellent
on the tested device.
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Figure 11. The visualized results of the proposed NI-U-Net++ in the transfer-training process. The navigation vision of the
planetary rovers refers to the images from the Katwijk dataset. (a–d) refer to four variant selected images.

Notably, the quantitative results of the metrics between the transfer learning and the
pre-training are not directly comparable. Compared with pre-training, the result of transfer
learning is low (such as IoU in Table 5). As discussed in Section 2.2, the synthetic dataset
is essentially generated using the incremental approach. The synthetic algorithm sets the
scaling to be 0.6 to 1.0. The evaluation metrics (accuracy, IoU, and Dice) are all based on the
statistical results of pixels. The embedded synthetic rock samples can be divided into two
categories: the clustered pixels (that are easy to determine) and the edge pixels (that are not
easy to determine). As the target size increases, the clustered pixels pull the overall metrics
to a high level. Moreover, many situations do not appear in the pre-training dataset (such
as significant changes in pose, brightness, illumination, sharpness, etc.), which enlarges the
marginal probability distribution of the transfer-training process.

4. Conclusions and Future Works

This research proposed a rock segmentation framework for the navigation vision of
the planetary rovers using the synthetic algorithm and transfer learning. This framework
provided an end-to-end rock segmentation solution for the future planetary rover autonomy.
Furthermore, the proposed synthetic algorithm provided a new idea for handling the
challenge of the lack of pixel-level semantic annotations in the planetary explorations. The
synthetic dataset also provided a valid dataset and benchmark for the related research.
The proposed NI-U-Net++ achieved the best results (see Section 3.2) in all three popular
metrics compared to the state-of-the-art (the accuracy, IoU, Dice score, and RMSE are
99.41%, 0.8991, 0.9459, and 0.0075, respectively). Moreover, both the pre-training and
transfer-training processes achieved outstanding training curves and results (the accuracy,
IoU, Dice score, and RMSE are 99.58%, 0.7476, 0.8556, and 0.0557, respectively), which
proved the assumptions (of the proposed synthetic algorithm) in Section 2.2.

The proposed framework made a significant step in the semantic segmentation of
unstructured planetary explorations. As a cheap and extensive sensor, the monocular
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camera generates a large amount of data for planetary rover navigation. The proposed
framework can efficiently conduct a semantic analysis for the planetary rover. These rocks
can be integrated into the visual navigation system to further assist various advanced
functions, such as path planning, localization, scene matching, etc.

The future works include transfering the proposed framework to the onboard device.
The proposed framework uses the normal TensorFlow library, while only TensorFlow lite
can operate on the onboard device. The potential action may also include the network
slimming to fit the specific onboard device. Furthermore, the proposed NI-U-Net++
requires optimizations for the targeted system, hardware, and software.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/math9233048/s1, Video S1: The demo video of the proposed rock segmentation solution.
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Nomenclature

X, Y, X, Y Formal parameters.
I Light source.
i1 − i3, i Rays of light.
g Horizontal ground.
θ1, θ2, θ3, θ Angles between the corresponding ray of the Light and the horizontal ground.
ρ The density of rays in the unit ground area.
L Light intensity.
S Area of a ground region.
p1, p2 The boundary rays between object and camera.
lb The normal line perpendicular to the phase plane.
XY The area between X and Y cross-points.
G1 − G3, G1 −
G3

Cross points on the ground.

P Cross point between p1 and PG3.
O The origin of image plane.
LXY The light intensity in the area between X and Y cross-points in the sketch.
Popt Abstracted value of the optical properties.
cT A variable to pack all factors related to optical properties.
ρ An approximate value of ρ.
T The target (rocks in this research) in the sketch.
(x, y) Coordinate.
pixelimg(x, y) Grayscale value at coordinate (x, y).
Npixel The number of pixels in a specific region.
Δρ The difference between ρ and ρ.
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XY The area between X and Y cross-points.
f1 An implicit function to correlate the optical properties and image grayscales.
imgmean The averaged grayscale value for the corresponding image area.
img A set of the grayscale values for the corresponding image area.
imgΔ A set of the differential values between img and imgmean (only related to

the coordinates).
C The constants to correct ρ from ρ.
L An approximation of L using the proposed synthetic algorithm.

Appendix A

Appendix A.1 Further Details of the Related Studies

Table 1. The detailed results of the related studies of Table 1.

Reference Category in Table 1 1 Results 2

[30] i Only the qualitative segmentation results.

[31] i Only the qualitative segmentation results.

[32] i Only the qualitative segmentation results.

[4] ii Fit error = 1.504~114.934.

[5] ii and iii Only the qualitative segmentation results.

[33] ii Only the qualitative segmentation results.

[34] ii
(1) Average precision = 89% (the center matching method);

(2) Average precision = 87% (the overlap method);
(3) Average precision ≥ 90% = 83 images.

[35] ii and v
(1) Standard deviation of recall = 0.2–0.3;

(2) Standard deviation of precision = 0.2–0.3;
(3) Recall and precision are modestly improved.

[36] ii Only the qualitative segmentation results.

[37] iii Only the qualitative segmentation results.

[38] iii (1) RMS error (X) = 0.22–0.93 (HiRISE pixel), RMS error (Y) = 0.22–0.97 (HiRISE pixel);
(2) RMS error (X) = 0.23–0.70 (HiRISE pixel), RMS error (Y) = 0.23–0.89 (HiRISE pixel).

[32] iv CPU time (seconds): 0.2214–0.7484 (MAD); 0.1966–0.6955 (LMedsq); 0.5994–2.2033 (IKOSE);
0.2931–0.9633 (PDIMSE); 0.0380–0.1238 (RANSAC); 106.4747–236.2487 (RECON).

[39] iv (1) Processing time: 2–3 s for 256 * 256 images; 20–45 s for 640 * 480 images
(2) Only the qualitative segmentation results.

[40] iv Medium rock match is successful (up to 26 m).

[41] iv The proposed method is robust and efficient for small- and large-scale rock detection.

[8] v A survey for terrain classification (including rock segmentation).

[27] v
(1) Pixel-wise accuracy = 99.69% (background); 97.89% (sand); 89.33% (rock); 96.33%

(gravel); 89.73% (bedrock).
(2) Mean intersection-over-union (mIoU) = 0.9459.

[28] v (1) Accuracy = 76.2% (derivable terrain comprising sand, bedrock, and loose rock);
(2) Accuracy = 89.2% (embedded pointy rocks).

[42] v mIoU = 0.93; recall = 96%; frame rate = 116 frame per second

[43] v F-score = 78.5%

[44] v Accuracy = 90~96%; IoU = 0.21~0.58.
1 “i”, “ii”, “iii”, “iv”, and “v” in column “Category in Table 1” correspond to the same category index in Table 1. 2 The “Results” column
only provides a statistic summary among the results of related studies. The exact values have no comparability either between each other or
with this research. The reason comes from the different research focus, applied data, and experimental environments. The valid quantitative
comparisons can be found in Section 3.2.
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A.2. The Experiments of the Values in Table 2

Figure A1 illustrates the examples using different settings for the constant value C.
It is noteworthy that C in Table 2 aims to correct the difference from the “ ρ ≈ ρ” in
Equation (4). According to the assumption in Section 2.2.1, this difference is small but
sensitive to rock property. The goal of C is to optimize the visual comfort mentioned in
Section 3.1. Therefore, C is affected by two settings, range and scale.

The range of the pixel value is between 0 and 256. (i) In Table 2, the range of C
is set from 0 to 50. Thus, the maximum adjustment is less than 20% of the pixel value.
Figure A1b shows a synthetic example using Table 2, and the white pixels in Figure A1a
highlight the rocks. Figure A1a,b depict that Table 2 is a visually comfortable setting.
Figure A1c,d respectively increase the range of C by three times and five times, and the
embedded rock samples are very unreal to the background. Figure A1e reduces the range of
C to about half of Figure A1b. The inserted rock is too bright compared to the background.
Therefore, the range setting of C in Table 2 is in a reasonable range. (ii) C in Table 2
is divided into 11 scales according to the corresponding conditions (imgmean). A higher
img_mean corresponds to a higher C. Figure A1f doubles the scale-setting to 21 scales, but
there is no significant change compared to Figure A1b. Therefore, the classification method
in Table 2 is also reasonable.

 
Figure A1. The visualized results of the experiments for the constant C in Table 2. (a) refers to the synthetic annotation,
while (b–f) corresponds to the synthetic images through different settings of C. (b) applies the same setting as Table 2.
(c) keeps the grade setting but increases the range of the C, the maximum C is set to 250. (d) refers to the results of only
increasing maximum C to 150. (e) refers to the results of decreasing maximum C to 20. (f) keeps the maximum C as the
same as (b), while the grade setting applies 21 grades.

Appendix A.3 Qualitative Examples of the Proposed Synthetic Dataset
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Figure A2. Some examples from the synthetic dataset. “Synthetic image” and “annotation” refer to the synthetic im-
ages and corresponding annotations, respectively. Annotations use white and black pixels to represent the rock and
background pixels.

Appendix A.4 Pairwise Comparisons between Proposed NI-U-Net++ and Related Studies

This research uses Figures 3 and A3 in Section 2.3 to discuss the pairwise comparison
between NI-U-Net++ and related studies in Table 5. Figure A3 uses NI-U-Net++ as
background, but some highlights have been added for further comparison. The red arrows
refer to the sub-U-Nets; each of them has a complete encoder–decoder process. Here
defines a concept of compression ratio, which is the ratio between the input and output
size (height or weight) of the encoder. “Sub-U-Net No.1” has the highest compression
ratio, while “Sub-U-Net No.4” has the lowest compression ratio. The blue dash frame
highlights the deep supervision mentioned in Section 2.3, and the orange frames refer to
the micro-networks.

i. NI-U-Net++ with U-Net [14,63]:

a. U-Net only has the “Sub-U-Net No. 1”. Therefore, the compression ratio is
constant at a high level.

b. U-Net does not have deep supervision design.
c. U-Net utilizes the 3 × 3 convolution layers and “Relu” activation instead of

the micro-network in Figures 3, 4 and A3.

ii. NI-U-Net++ with U-Net++ [15]:

a. U-Net++ also has four sub-U-Nets as in the NI-U-Net++.
b. U-Net++ also has the deep supervision as in the NI-U-Net++.
c. However, the U-Net++ applies the 3 × 3 convolution layer and “Relu” activa-

tion as in U-Net instead of the micro-network in NI-U-Net++.

iii. NI-U-Net++ with NI-U-Net [57]:

a. NI-U-Net only has the “Sub-U-Net No. 1”. Therefore, the compression ratio is
constant at a high level.

b. NI-U-Net has not deep supervision design.
c. NI-U-Net utilizes the same micro-network as in NI-U-Net++.
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Figure A3. The pairwise comparisons for U-Net, U-Net++, NI-U-Net, and proposed NI-U-Net++.

Appendix A.5 Additional Results of the Pre-Training Process

Table A2. The Dice score of U-Net, U-Net++, NI-U-Net, and NI-U-Net++.

Networks
Dice Score

Train Valid Test

U-Net 0.9158 0.9040 0.9044
U-Net++ 0.9574 0.9344 0.9352
NI-U-Net 0.9644 0.9313 0.9316

NI-U-Net++ 0.9588 0.9458 0.9469

Figure A4. The loss and accuracy curves of U-Net [14] using the synthetic dataset. The green “A” and “B” correspond to
the two highlights mentioned in Section 3.2. (a) Refers to the epoch-wised loss curves in the training and validation sets.
(b) Refers to the epoch-wised accuracy curves in the training and validation sets. The horizontal dash lines refer to the
references of final converge status.
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Figure A5. The loss and accuracy curves of U-Net++ [15] using the synthetic dataset. The green “A” and “B” correspond to
the two highlights mentioned in Section 3.2. (a) Refers to the epoch-wised loss curves in the training and validation sets.
(b) Refers to the epoch-wised accuracy curves in the training and validation sets. The horizontal dash lines refer to the
references of final converge status.

Figure A6. The loss and accuracy curves of NI-U-Net [57] using the synthetic dataset. The green “A” and “B” correspond to
the two highlights mentioned in Section 3.2. (a) Refers to the epoch-wised loss curves in the training and validation sets.
(b) Refers to the epoch-wised accuracy curves in the training and validation sets. The horizontal dash lines refer to the
references of final converge status.

 
Figure A7. The loss and accuracy curves of Chiodini2020 [44] using the synthetic dataset. (a) Refers to the epoch-wised loss
curves in the training and validation sets. (b) Refers to the epoch-wised accuracy curves in the training and validation sets.
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Figure A8. The loss and accuracy curves of Furlan2019 [43] using the synthetic dataset. (a) Refers to the epoch-wised loss
curves in the training and validation sets. (b) Refers to the epoch-wised accuracy curves in the training and validation sets.

Table A3 refers to the results of training NI-U-Net++ using different numbers of
synthetic images. This research chooses about 50% (7000 images) and 10% (1000 images)
as two experiment settings to evaluate the impact when the number of synthetic images
decreases. All results decrease when the images number decreases. The synthetic algorithm
aims to generate a large amount of valid data, so applying all available data is more fitted
to the target of this research.

Table A3. The quantitative results of NI-U-Net++ tested using a different number of synthetic images.

Number 1

(Images)

Loss Accuracy IoU Dice Score

Train Valid Test Train Valid Test Train Valid Test Train Valid Test

7000 0.0137 0.0189 0.0199 99.49% 99.39% 99.37% 0.9164 0.8919 0.8876 0.9564 0.9429 0.9405
1000 0.0273 0.0618 0.0580 99.53% 99.02% 99.03% 0.9175 0.8374 0.8389 0.9570 0.9115 0.9124

1 “Number” refers to the number of synthetic images used in corresponding experiment.

Appendix A.6 Additional Results of the Transfer-Training Process

Figure A9. The inference time record. The max, min, and mean inference time is 0.0364, 0.0307,
and 0.0294 s.
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Figure A10. Some examples of the real-life rover vision and corresponding predictions.
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Abstract: Soft robotics is becoming an emerging solution to many of the problems in robotics, such as
weight, cost and human interaction. In order to overcome such problems, bio-inspired designs have
introduced new actuators, links and architectures. However, the complexity of the required models
for control has increased dramatically and geometrical model approaches, widely used to model
rigid dynamics, are not enough to model these new hardware types. In this paper, different linear
and non-linear models will be used to model a soft neck consisting of a central soft link actuated
by three motor-driven tendons. By combining the force on the different tendons, the neck is able to
perform a motion similar to that of a human neck. In order to simplify the modeling, first a system
input–output redefinition is proposed, considering the neck pitch and roll angles as outputs and
the tendon lengths as inputs. Later, two identification strategies are selected and adapted to our
case: set membership, a data-driven, nonlinear and non-parametric identification strategy which
needs no input redefinition; and Recursive least-squares (RLS), a widely recognized identification
technique. The first method offers the possibility of modeling complex dynamics without specific
knowledge of its mathematical representation. The selection of this method was done considering its
possible extension to more complex dynamics and the fact that its impact in soft robotics is yet to be
studied according to the current literature. On the other hand, RLS shows the implication of using
a parametric and linear identification in a nonlinear plant, and also helps to evaluate the degree of
nonlinearity of the system by comparing the different performances. In addition to these methods, a
neural network identification is used for comparison purposes. The obtained results validate the
modeling approaches proposed.

Keywords: mathematical modeling of complex systems; non-linear models; soft robotics; soft robotic
neck; tendon-driven actuators

1. Introduction

Soft robotics has been gaining importance in the robotics research field. The intrinsic
compliance and adaptable properties of this hardware are pushing them into many areas.
The purpose of these technologies is to overcome some of the problems found in the
current robotic platforms. These include weight, cost, versatility and more importantly,
safe human-to-robot interaction.

Different soft robotics technologies have emerged. These include pneumatic muscles
with rigid links [1], pneumatic materials that deform according to their strain field [2],
robots with fully inflatable links [3], fully inflatable robots [4], plant-based structures [5]
and many other technologies [6,7]. In particular, we are interested in tendon-driven soft
robots, a bio-inspired model scheme, as those in [8–10]. However, the kinematic models,
unlike rigid ones, are not yet well-understood. Given the high non-linearity and physical
characteristics, several assumptions and numeric simplifications are considered to actuate.
Therefore, they are not as reliable and have lower versatility in comparison with their
counterpart, thus limiting their impact on robotics [11]. These drawbacks are stopping
soft robotics to enter fields such as industrial robotics or manufacturing. However, where
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precision is not mandatory or humans might apply proper correction to achieve the desired
goal, they have found a niche [12,13], such as rehabilitation and prosthetics.

In [8], the authors developed a mathematical model for the tendon-driven robotic
arm. In particular, the authors approximated the elasticity of the tendons as a mass-less
spring, given that their mass is many times smaller than the other parts (motors, gears,
and loads). This enables them, on one side, to neglect coupling effects over different links,
and also to assume rigid motions of the particular link to be modeled. Notice that even
though the motion of the tendons is aligned with the arm motion, obtaining such a model
is troublesome and requires further developments to increase the accuracy of the final
result. To overcome the modeling problem for control purposes, the authors in [10] used
reinforcement-learning to control the tendon-driven ACT hand synergies. This robotic
hand has 24 motor-driven tendons that mimic the human hand biomechanics. Therefore,
dynamic interaction with the hand skeleton results in redundant motions and other non-
linear characteristics of the hardware that should be considered if a mathematical model
is required. By using reinforcement learning, the authors are able to capture the desired
dynamics over a set of motions that derive into a control strategy over the 24 tendons in
a reduced state-space. However, as pointed out by [9], data-driven control algorithms
on tendon-based robots or soft robotics have not yet been explored, and model-based
control strategies are still preferred. Considering the previous statement, the authors in [9]
analyzed an autonomous learning algorithm to obtain the model of a tendon-driven leg
when different stiffness is used.

From the modeling perspective, [14] proposed a finite element model (FEM) for a
glove with pneumatic bending actuators. The authors worked in a two-dimensional
space, neglecting the dynamic energy from the model. In further research, a black-box
model identification was given by [15] for a fluidic actuator. This allows the authors to
introduce the shear deformation into the model, which in their previous work was not
considered. The maximum parametric variations reached 36%, which was compensated by
a back-stepping controller. In the present paper, black-box data-driven modeling will be
used. Therefore, the overall dynamics of the given neck will be considered and modeling
results will be compared with standard linear and non-linear modeling techniques, that is,
Recursive Least Square and Neural Networks. This provides an overview of alternative
modeling possibilities and their implications over a non-linear system as the tendon-
driven neck.

In [16], a geometrical model and a two-dimensional FEM model for a soft fluidic
actuator were studied. The geometrical model considered a uniform bending curvature
of the link, while the FEM model showed a linear trend on the link behaviour. A new
approach was proposed in [17] in order to obtain a pneumatic soft-arm 3D model, based
on a constant link’s bending curvature and neglecting the gravity or payload effects.
Another geometrical approach for modeling a soft link is presented in [18]. In this case,
the approached model neglects the effects of gravity or internal elastic forces. Regarding
tendon-based robots, in the hand exoskeleton given in [19,20], each finger is considered as
a three-link kinematic chain and all the joints are considered to be pure revolute. Friction
and cable guide deformation were neglected. As shown in the cases above, geometric
modeling requires several constraints and assumptions to reduce the model complexity,
which allow the designers to cope with the complex system mechanics. Nonetheless, the
black-box modeling approach will include the whole system dynamics, which led to the
proposed methods in this work.

Modeling of soft robotic links is of particular interest, given the coupled dynamics
that arise when actuating the robots. In this sense, different approaches are presented as
well. Geometrical approaches expose their limitations when the modeling space increases.
Therefore, sensor-based approaches are being used, although their results are limited to the
sensor’s range and capabilities. In [21], textile strain sensors are embedded into the robot
structure to calculate the link deflection state and position. A similar approach is presented
in [22,23]. In this last one, the authors describe the implementation of a soft hand where
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each finger uses an elastic joint with an embedded piezo-electric transducer to sense the
deflection of the joint. In this case, the curvature is given by the sensor but is assumed
to be continuous through the link. A different sensor technique for embedded deflection
modeling is presented in [24], where photo-sensing is used to determine the deflection angle
of the link. A 3D modeling approach is given in [25], where embedded cameras for self-
observing of the robot configuration are synchronized to obtain the final soft body (robot)
shape through learning algorithms. The named references imply additional hardware but
allow for rigid modeling based on sensor information. However, their effectiveness is
limited to the sensor’s accuracy and the validity of the hypothesis over the soft link, such
as continuous link curvature. Furthermore, to obtain the mathematical model, it is still
required to neglect certain dynamics, and in some cases, only the 2D motion of the soft link
is considered. In this work, the soft link is aimed to move in 3D and it is not desired to add
additional hardware to the system.

This work aims to characterize the 3D motion of a tendon-driven soft neck described
in [26]. An improved version of the initial version was later proposed in [27]. This new
design features a soft bendable spine that replaces the central spring. The replaced structure
decreases the overall weight and increases the system robustness. An inclination sensor
was also introduced on the top platform for extracting the current pitch and roll angles,
and enables feedback control.

Although the central structure introduced an already non-linear behaviour, as seen
in [27], the new material adds other non-linearity mechanics. Some previous works already
tackle system identification. Firstly, in [26] for control design, the study was limited
to actuators and ignored the dynamics of the link. The resulting theoretical model is
outside the standard modeling methods. As a consequence, additional methodology is
required to extract a simulation and control model for the platform. An initial identification
exploration on 2D was presented in [28]. In that work, which this paper is a continuation of,
we identified the soft link dynamics considering the actuators and the soft link. However,
only the front inclination was considered, neglecting at that time the interactions that occur
when all the soft neck degrees of freedom are used.

In this work, the proposed models are improved and extended to the entire robot
motion range. Set membership and Recursive least-squares identification methods are used
for modeling as in [28]. As the recursive least-squares method is only valid for linear plants,
the non-linear behavior will not be captured. The selected methods do not need hardware
modifications nor neglected dynamics. Therefore, physical effects, such as gravity, elasticity,
and plasticity will be considered by the obtained 3D models when possible. These models
are compared with a neural network model identification as ground comparison. As an
important contribution, no modeling technique selected relies on local deformation sensors,
and they do not require additional external hardware for possible neck control considered
in the future.

The remaining parts of this paper are organized as follows. In Section 2, the platform
to be identified is described. Sections 3 and 4 present the different methods used for
identification. In Section 5 the experimental procedures are described and Section 6 shows
the resulting models. Then, in Section 7, different tests are performed for validation and
comparison purposes. Finally, in Section 8, the main conclusions are discussed.

2. Soft Neck Description

The mechanism that enables soft neck operation is the central soft link, which acts as a
spine. It is made with bendable material and actuated with a parallel mechanism driven by
cables, which produce a tilt in the upper platform. Figure 1 shows the soft neck prototype
and its parts.

The neck is composed of a base, a mobile platform, a central soft link, tendons (cables),
and motors, as shown in Figure 1. All parts were built using a 3D printer, including the
soft link, which weighs 100 gr (excluding motors and hardware).
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Combining the actions of the three actuators, any position or orientation can be
reached inside the bounded space. As the robot workspace is three-dimensional, the final
rotation can be defined using three Euler angles. The Z-axis rotation (yaw) is neglected
since it cannot change due to the configuration of the link; therefore, two rotations around
the X- and Y-axes are enough to fully define the robot position and orientation. System
output will be defined through an X-axis rotation, roll(φ), and a Y-axis rotation, pitch (θ),
as shown in Figure 2.

Figure 1. Soft neck platform.

pitch( )roll( )

x'

y'

z'

Figure 2. Soft neck kinematics. Orientation and inclination variables [27].

According to [29,30], the soft neck is a hyper-redundant robot. Therefore, the term
degrees of freedom (DOF) is not applicable in the usual sense. Nevertheless, there is a
connection between the three tendon lengths and the neck’s final angular position.

The three tendon actuators are located at the base, each composed with a motor, gear,
encoder, and a driver, with the characteristics shown in Table 1.
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Table 1. Platform hardware specifications.

Driver
Technosoft iPOS4808 MX-CAN; 400 W, 12–50 Volt, 8 Amp (intelli-
gent motor driver)

Motor Maxon RE 16-118739; graphite brushes, 48 Volt, 4 Watt

Gear Maxon 134777 (24 : 1)

Encoder Maxon mr201937

There exists low-level control managed by the motors’ drivers, which satisfies all the
platform’s needs. For this reason, all system data are captured as an open-loop plan, with
the actuator position and velocity as input and the inclinations roll and pitch as output.

2.1. Geometric Simplification

The described plant input and output variables are coupled, defining a Multiple Inputs
Multiple Outputs (MIMO) system, which makes the system identification more difficult.
Fortunately, there is a way to simplify the system, decoupling these variables, allowing to
analyze its behavior through simpler Single-Input Single-Output (SISO) models. Using this
scheme, the inverse kinematics described in [31] will not be necessary, making the model
identification easier.

The angle combination produced by each actuator effect is a final rotation that can be
defined or measured by two angles. A more detailed analysis of the robot’s geometry will
show the connection between the inputs and these final angle outputs. Since the inputs
and outputs of the system are coupled in a MIMO system of three inputs and three outputs,
it is desirable to rearrange the original input scheme using a linear combination of them.
In this way, three new inputs will be obtained, having a direct action with respect to the
outputs. Note that the aim is not to simplify the system, but to study the effects of the
different inputs in the neck output variables. To simplify this operation, we will consider
the system in the resting position. In this state, the single effect of the A1 actuator (reducing
l1) results in a rotation aligned with the X-axis of the base frame (see Figure 2). This results
in an output angle directly related to the length of its tendon, and therefore, the motor
position. Given that motor angles can be negative, we will consider the neck’s rest position
(pitch = 0, roll = 0) as the initial zero value for all tendons, resulting in positive values
when tendon lengths increase, and negative otherwise. Considering just the first actuator
with the index number 1, a possible equation describing pitch angle θ in X is the following:

θ1 = f (P1) (1)

where θ1 is the angle contribution from the first actuator to the final pitch angle (θ), P1 is the
actuator input position, and f is a nonlinear function describing the relation between both.
Although it is considered that just P1 can change the angle θ1 as shown in Equation (1),
given the neck’s nonlinear nature, the other inputs may have a tiny effect on that angle, too,
but they are considered too small and will be neglected in this case. The other actuators’
effects (θ2, θ3) on the final angle θ are the following:

θ2 = cos(γ2) f (P2) (2)

θ3 = cos(γ3) f (P3) (3)

Given the proposed vertical robot setup, and using the same actuators, we can assume
that the functions f are similar. Nevertheless, a projection factor needs to be consid-
ered, which depends on the actuator’s relative angle (γ). We can generalize the previous
functions in the following equation:

θi = cos(γi) f (Pi) (4)
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Keeping in mind that we are not modeling the system but proposing an alternative
input–output scheme, we can consider these input angles additive. Again, it is not a model
simplification, but an input redefinition.

θ = θ1 + θ2 + θ3 = cos(γ11) f (P1) + cos(γ12) f (P2) + cos(γ13) f (P3) (5)

According to Figure 2, the three actuators are symmetrically arranged, and the angles
are γ11 = 0 deg, γ12 = 120 deg and γ13 = 240 deg. Therefore, Equation (5) results in:

θ = f (P1)− 0.5 f (P2)− 0.5 f (P3) = f (P1)− 0.5[ f (P2) + f (P3)]. (6)

This result shows how both A2 and A3 actuator effects on the angle pitch are divided
by two, with an opposite direction to actuator A1. This leads to the first result of this
approach. The pitch angle is defined by the length difference, being positive when P1 is
larger than 0.5(P2 + P3), and negative otherwise. In the case of P1 = P2 = P3, angle θ = 0,
leading to different robot compression states depending on the tendon lengths, form zero
(P1 = P2 = P3 = 0) to full compression ( P1 = P2 = P3 = Pmax). This feature could be used
to change the neck stiffness, although this is not discussed in this paper, where the soft link
length is considered constant.

Now, roll angle (φ) is defined as the rotation around the Y-axis. Using the previous
reasoning but projecting in the Y-axis (using sin(γ)):

φ = φ1 + φ2 + φ3 = sin(γ1) f (P1) + sin(γ2) f (P2) + sin(γ3) f (P3) (7)

In the case of γ1 = 0 deg, γ2 = 120 deg and γ3 = 240 deg, Equation (7) results in:

φ = 0.866 f (P2)− 0.866 f (P3) = 0.866[ f (P2)− f (P3)] (8)

Note that in this case, the value of the φ angle just depends on the difference between
P2 and P3, and that the A1 actuator has no effect. Again, the angle just depends on their
difference, and the compression is an average function of the tendon lengths. For the
case P1 = P2 = P3, angle φ = 0, leading to the same previous result regarding soft
link compression. Additionally, note that θ and φ angles depend on the tendon length
difference, and the compression (δ) depends on the tendon lengths’ average. Based on this,
we can define the new input variables θi, φi and δi as a linear combination of the motor
position inputs.

Using the results from Equations (6) and (8), and considering the link compression
input as the motor positions’ average, the following input redefinition is proposed:

θi = P1 − 0.5(P2 + P3) (9)

φi = 0.866(P2 − P3) (10)

δi =
P1 + P2 + P3

3
(11)

Using this input redefinition, we can decouple and simplify the system considering
φi as an input, which provides a change exclusively in the φ output angle. Therefore, a
nonlinear single-input single-output (SISO) system can be defined, having φi inputs and φ
outputs. Likewise, θi and δi inputs will affect only the output values of θ and δ, respectively,
defining another two SISO systems.

Based on this, the soft neck can be modeled as three decoupled SISO systems. The
transfer functions Gθ , Gφ, and Gδ will model the actual outputs (θ,φ,δ) as a function of
the new inputs (θi,φi,δi), defined by Equations (9)–(11). Given the simplifications we have
considered, the real behavior will be different in several aspects, like showing interference
between actuators and a nonlinear plant response. These effects will be discussed in the
Experiments section.
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Two different system identification methods are used. First, the set membership
method as described in [32] is used for nonlinear identification, and second, recursive
least-squares (RLS), as described in [33], is applied for different tilt configurations, which
will result in a linear system for each RLS identification performed. The evolution of these
systems, according to the inclination, will be studied.

In the case of RLS system identification, the new redefined inputs (θi, φi and li) were
considered instead of motor position inputs. Note that these are just the input redefinition,
and the output angles still depend on the system dynamics. Although f functions are
unknown, they are considered within the resulting models, although the nonlinear part
may be neglected depending on the identification method.

3. Set Membership Non-Linear Identification

This section briefly describes the Non-Linear Set Membership (NLSM) identification
method proposed in [32].

Consider a system that has a Nonlinear AutoRegressive with eXogenous input (NARX)
structure, as

y(k) = fo(ω(k)) + e(k) (12)

where ω(k) is the system’s regressor formed by past samples of the system inputs u1, u2
and the output y1, y2, as:

ω(k) = [yi(k− 1), . . . , yi(k− ny), ui(k− 1), . . . , ui(k− nu)]
′ (13)

ω(k) ∈ W ⊆ Rn, n = ∑
i

nyi + nui (14)

where e(k) represents the measurement noise and W is the function domain.
The NARX regressor is widely used in system identification considering its capacity

of representing nonlinear dynamics and developing estimation algorithms which are
computationally cost-efficient.

If fo is unknown, but a set of measurements of yi(k) and ω(k) are available for
k = 1, ..., N and considering that the noise magnitude is bounded by ε:

|e(k)| ≤ ε (15)

and no statistical assumption on its behavior is made. The goal is to estimate f̂ of fo, where
f̂ is the estimation of f .

Even though f is unknown, the following information is available:

fo ∈ F .
=
{

f ∈ C1(W) :
∥∥ f ′(ω)

∥∥ ≤ γ, ∀ω ∈ W
}

(16)

where f ′(ω) denotes the gradient of f (ω) and ‖x‖ is the Euclidean norm. Therefore, we
assume that the identified system is continuous on its first derivative and has maximum
growth of γ for all the regressors applied to the function of interest.

On the other hand, if there is a Feasible System Set (FSS), which is the set of all systems
in the space F which satisfies the following conditions:

FSS .
=

⎧⎪⎨⎪⎩
f ∈ F : |y(k)− f (ω(k))| ≤ ε,

and
f ∈ F : y(k)−y(k+1)

δT
≤ γ

⎫⎪⎬⎪⎭, k = 1, 2, . . . , N (17)

therefore, there always exists a non-empty FSS and fo ∈ FSS when both assumptions on
fo and e are true. Then, if we guarantee the validity of the conditions γ and ε over a set of
measurements generated by the system to be identified, we will find a FSS �= ∅. In [32], the
procedure to guarantee conditions γ and ε over a data set is presented. For the following
sections, prior assumptions are considered to be true.
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Given that the aim of the model is to find the output generated by the system for a
new input, it is necessary to distinguish the identification data set, k, and the new inputs x.
Hence, for a given input x ∈ W, the optimal NLSM estimate of fo(x) is:

fc(x) .
=

fu(x) + fl(x)
2

(18)

where:

fu(x) = min1<k<Ny(k) + ε + γ‖x−ω(k)‖ (19)

fl(x) = max1<k<Ny(k)− ε− γ‖x−ω(k)‖ (20)

As presented in [32],

• fu(x) and fl(x) are optimal upper and lower bounds for fo(x), respectively.
• fu(x) and fl(x) are Lipschitz-continuous on W; therefore, they belong to the FSS.
• fc(x) is an optimal approximation of fo(x) for any Lp(W) norm, with p ∈ [1, ∞], with

an optimality criterion as:

fopt = arg inf
f̂

sup
f∈FSS

∥∥∥ f − f̂
∥∥∥

p

The NLSM algorithm produces a non-linear, non-parametric model which is embed-
ded on the data set. That is, there is no explicit equation that represents the input–output
or physical variables relation.

For a new regressor value x ∈ Rn, the NLSM model output fc(x) is evaluated through
Algorithm 1.

Algorithm 1: Set membership algorithm.
FNLSM(x)
Set fu(x) = +∞
Set fl(x) = −∞
for k = 1 to N do

Calculate the distance between x and ω(k) as
Distance(k) = ‖x−ω(k)‖.
Obtain the upper bound on fo(x) guaranteed by ω(k) as the projection
Pu(k) = y(k) + ε + γ ∗ Distance(k).
Obtain the lower bound on fo(x) guaranteed by ω(k) as the projection
Pl(k) = y(k)− ε− γ ∗ Distance(k).
Choose the lowest upper bound
if Pu(k) ≤ fu(x) then

fu(x) = y(k) + ε + γ‖x−ω(k)‖ = Pu(k)
end
Choose the highest lower bound
if Pl(k) ≥ fl(x) then

fl(x) = y(k)− ε− γ‖x−ω(k)‖ = Pl(k)
end

end
Calculate the estimation
fc(x) = fu(x)+ fl(x)

2
return fc(x)

In order to obtain the FSS, as described in [32,34], it is possible to execute the Algorithm 1
over the identification data set, updating the variable γ whenever the positive or negative
projections fu(i), fl(i), over each data point ω(i) ∈ ω(k)∀k �= i produces a greater, fu(i) <
y(i), or lower, fl(i) > y(i), value.
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3.1. Non-Linear Set Membership Data Set Generation

In our specific problem, as described in Section 2, we have three motors that drive
three tendons to actuate over the soft link and provide the desired pitch-roll motion. As
described in Algorithm 1, to provide an estimation using Set Membership, we need to
construct the FSS for a defined regressor that contains enough information so that all the
identified system behaviors are contained in the FSS.

For this purpose, we define our regressor empirically since there are no standard
methodologies to do so. Therefore, for simplicity, we run several system identifications
using a neural networks MATLAB toolbox providing non-linear data-driven models for
different regressor sizes. Once the NN is trained, we assume that the best neural network
model uses the most informative regressor and corresponds to the original regressor
selection. Later, to improve the computational time, the regressor is reduced by running
different estimations modifying the number of elements in the regressor. In this way, less
operations are required for each of the estimated data [35]. The chosen regressor is:

ω(k) = [y(k− 1), u1(k− 2), u1(k− 3),

u2(k− 2), u2(k− 3),

u3(k− 2), u3(k− 3), (21)

M1(k− 3),

M2(k− 3), M3(k− 3)]

where ui(k) is the desired motor position for motor i at sample k, Mi(K) is the measured
motor position at discrete time k, and y is the measured output at sample k when an
estimator and control model is generated. Therefore, if noise or disturbances are detected
in the measured output, the model aligns its dynamics using this information with the
true model dynamics. On the other hand, if the required model is generated for prediction
and simulation, the signal in (22) will be replaced by the previous model estimations at
time k− j y(k− j). In this case, errors and disturbances detected at the output will not be
perceived by the model unless a closed-loop control action modifies the input components
of the regressor. In this case, if the model diverges from the real dynamics, they will not
align with each other. The model architectures are given in Figure 3.
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Figure 3. Model architectures. (a) An estimation and control model. (b) A prediction and
simulation model.

With the regressor being defined as in (22), we generate our FSS by applying a sum of
sinusoidals to each of the three motors such that the signals are not correlated and they
give us a wide spectrum of the neck behavior. We capture the real motor positions, desired
motor positions and, as output, the neck pitch and roll angles. Then, two separate models
are generated.
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The signal used for each motor MP(i) to create the FSS is described in Equation (22).
The values used for the specific motor are listed in Table 2.

MP(i) = (0.6sin(2sin(ω1t + φ1) + cos(ω1t + φ2))) ∗ . . .

∗ abs

[
3 + sin(ω2t) + sin(ω3t + φ3) + sin(ω1t− φ4) + . . .

· · ·+ sin(ω4t) + sin(ω5t + φ5) + sin(ω6t + φ6)
sin(ω7t + φ7)

2

] (22)

As it can be seen, the different signals are non-linear and have different frequencies and
phases. This provides a pseudo-random interaction and covers a wide range of operational
modes of the neck. The frequency spectrum that was chosen is coherent with the system
bandwidth, which is 4 (rad/s), generating soft, continuous, and human-like motion in
the axes of interest. By modifying the phase and mixing the minimum 0.25 (rad/s) and
maximum rad/s frequencies, we aim to explore in a single experiment a wide range of
motions providing sufficient information for the FSS. However, it is necessary to point out
that some system dynamics did not occur during the proposed study scenario, such as
the three tendons pulling at the same time with the same force, which keeps a static neck
position with different stiffness, as well as continuous single tendon activation, to name
some. Even if the proposed FSS does not cover the full system dynamics, the chosen signal
should cover the normal operational range for the soft neck.

Table 2. Values used for the identification data set creation.

Variable PositionM1 PositionM2 PositionM3

ω1 rad/s 1 1 1
φ1 rad 0 2.09 4.18

ω2 rad/s 0.25 0.25 0.25
φ2 rad 0 2.09 4.18

ω3 rad/s 1.5 1.5 1.5
φ3 rad 0.32 0.32 0.32

ω4 rad/s 2.56 2.56 2.56
φ4 rad 0.095 0.095 0.95

ω5 rad/s 1.75 1.75 1.75
φ5 rad 0.09 0.09 0.09

ω6 rad/s 1.66 1.66 1.66
φ6 rad 0.29 0.29 0.29

ω7 rad/s 4 4 4
φ7 rad 0.67 0.67 0.67

The identification and validation data sets are given in Figure 4, where 10,000 samples
were taken, 7000 for the FSS (Identification Data Set) and 3000 for the validation set.

As seen in the Figure, the rotational position of the tendon is maximum 6 rad. Having
a pulley diameter of 15 mm, each tendon has linear displacement of the tendon 7.5 mm/rad,
and therefore, a maximum linear displacement of ≈45 mm. This generates inclinations of
±20 deg for the pitch and [−20, 40] deg for the roll. This provides a wide dynamic range of
motion. In addition, the motion frequency was set to replicate a human-like motion which
is the region of interest.
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Figure 4. Input and output signals.

4. Recursive Least-Squares Linear Identification

Despite the nonlinear nature of the plant, a simple recursive least-squares (RLS)
identification was performed. On the one hand, it will show a qualitative estimation of the
system’s nonlinearity degree, and on the other hand, a linear model could be used to solve
the nonlinearity issues by means of robust or adaptive control strategies.

The RLS identification algorithm can be described using an ARX structure:

ŷ(t) = −a1y(t− 1)− ..− anay(t− na) + b1u(t− 1) + .. + bnbu(t− nb), (23)

with y(t) and u(t) being the plant output and input variables, with a matrix representation
as follows:

ŷ(t) = θφ′(t− 1) (24)

θ = [a1, .., ana, b1, .., bnb] (25)

φ(t− 1) = [−y(t− 1), ..,−y(t− na), u(t− 1), .., u(t− nb)] (26)

Increasing one time-index (ŷ(t + 1) = θφ′(t)), Equations (24)–(26) provide the output
prediction, based on the model parameters (θ), and the set of past inputs and outputs
(φ(t− 1)). Comparing the next actual system output with this predicted value results in
the prediction error:

ε(t) = y(t)− ŷ(t)⇒ ε(t + 1) = y(t + 1)− ŷ(t + 1) (27)

In order to minimize this error, different algorithms can be used. In the least-squares
case, the squared sum of all errors is the variable to be minimized. Since the parameters
that minimize the error produced by the least-squares solution can also be obtained from
the preceding parameters (recursively), the algorithm can be expressed using recursion, as
shown below:

θ̂(t + 1) = θ̂(t) + F(t + 1)φ(t)ε(t + 1) (28)

F(t + 1) = F(t)− F(t)φ′(t)φ(t)F(t)
1 + φ(t)F(t)φ′(t)

(29)

ε(t + 1) = y(t + 1)− θ̂(t)φ′(t) (30)
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These equations define the operations needed to find θ̂(t + 1) based on the previous
parameters and captured inputs and outputs. An improved method is described in [33] as
RLS with a constant forgetting factor (CFF-RLS). It will not be necessary at this point, as
the soft neck system identification will be done offline, but it can be used in the future, if
an adaptive scheme is proposed as a solution to the nonlinearity issues. See [33] or [36] for
a more detailed discussion about RLS and other identification methods.

Using the described inputs and outputs definition of Section 2, the same data captured
in the identification experiments were used in order to obtain a plant model. As the data
capture is based on the motor positions, we can find the equivalent input values using
Equations (9) and (10), and consider these inputs. The outputs will be the same as in the
other cases, the neck pitch and roll angles.

For example, Figure 5 shows part of the inputs and outputs considered for the pitch
and roll RLS identification.
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Figure 5. Examples of decoupled identification datasets. Redefined input targets compared to
measured angles for pitch (left), and roll (right).

A small delay can be observed in the data set example shown in that Figure. This
delay must be considered during the system identification process. The resulting transfer
functions corresponding to the pitch dynamics, Gθ(s), and roll dynamics, Gφ(s), obtained
using the RLS algorithm through the entire data set, are:

Gθ(s) = e−0.08s 27.691
(s + 5.293)

Gφ(s) = e−0.08s 25.424
(s + 4.938)

. (31)

The model unit input time responses are shown in Figure 6 for the described system
model. Note how both systems’ (Gθ(s), Gφ(s)) static gains are close to 5, showing a
stationary response above the unit input level, as expected from Figure 5.

Figure 6. Unit input time response for Gθ(s) (left) and Gφ(s) (right).
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Once the linear models of the soft neck decoupled system are determined, a new input
response simulation was performed using those models, together with a new data set for
validation and accuracy check. A partial plot of these results is shown in Figure 7 for the
pitch and roll angles.
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Figure 7. Validation example of the identified models for Gθ(s) (left) and Gφ(s) (right).

Note how although the linear model captures the system behavior quite well, there
are mismatches due to plant non-linearity. In order to deal with these problems, a robust
controller could be used in the future, since it will provide a constant behavior despite
plant parameter changes or non-linearities.

5. Experimental Setup

The main objective of this work was to extract a 3D model for the soft neck platform.
The selected identifications were done in an offline configuration, with an open-loop data
capture scheme. In this sense, a set of experiments has been designed for data capture.

As stated before, as we expected a correlation between the motor position and the
inclination of the top platform, the motors’ states are therefore considered as inputs, while
the measured sensor angles are used as system outputs. The captured data involve the
following inputs and outputs:

• Motor input position (rad)
• Motor current position (rad)
• Motor current velocity ( rad

s )
• Platform roll or model output (º)
• Platform pitch or model output (º)

Neck actuator motion was programmed to follow a composition of sinusoidal func-
tions, as described in Section 3.1. The captured motion describes human-like movement.
Input and output sets can be seen in Figure 4.

All models used the same data for modeling the system, enabling direct comparisons
of the models. Additional tests were also captured for validation purposes.

6. Model Results

This section presents the different model behaviors for the validation data. Figure 8
represents 30% of the data set described in Equation (22). All the results will be compared
to those obtained by a NLARX NN with two hidden layers and 25 neurons each. To train
the neural network, the 70% of the FSS data set described in Equation (22) was used.

As a form of comparison, the fitting value for the Normalized Root Mean Squared
Error (NRMSE) will be taken into consideration. This tool finds the difference between
the measured data and the model response as the sum of the squared individual errors
throughout the entire signal. Using this method, the large errors will have a bigger
quantitative penalization than small errors.
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Finally, to validate the results, three independent different tests will be conducted that
compare the methodologies used for static movement, dynamic movement, and normal
operation mode.

6.1. Set Membership

The set membership model was able to follow the system output with high accuracy
(see Table 3). However, in some peaks, especially for the pitch output, it failed to reach the
maximum value (an error of around 2 degrees) (see Figures 9 and 10). SM scores a high
fit for both pitch, 93.9794%, and roll, 96.8854%. The values reached by the model show
possible over-fitting to the training data. This means that the identification data set almost
explicitly contains the validation set.

6.2. Neural Network

The neural network used is an NLARX with two hidden layers of 25 neurons each.
The output for the validation can be found in Figures 9 and 10. Like the SM case, the
resulting fit value obtained exceeds expectations and some concerns of over-fitting arise.
The fitted values for pith and roll are 99.0162% and 99.2027%, respectively (see Table 3).
Similarly to the behavior of the SM case, the training data for the neural network covers
the validation data with high precision. Therefore, additional tests are required to properly
evaluate the model performance.

6.3. Recursive Least-Squares

The RLS model proposed in Section 4 was fed with the validation data in order to be
compared with both previous models. The model output can be seen in Figures 9 and 10.
RLS captured the overall behaviour of the neck within acceptable tolerance. The mismatch
observed is attributed to the plant non-linearity. The fit values are 78.0448% for pitch and
82.7217% for roll. An overall comparison of the results can be found in Table 3.
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Figure 8. Control signal for the validation test.
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Figure 9. Validation of the pitch output.
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Figure 10. Validation of the roll output.

Table 3. Fitness of models on the validation data.

Pitch Roll

SM 93.9794% 96.8854%
NN 99.0162% 99.2027%
RLS 78.0448% 82.7217%

7. Methods Comparison

With the models already trained and properly adjusted, three different tests in the
estimation configuration were conducted to validate proper behaviour of the systems and
compare the outputs for the different models.

7.1. Test 1: Step Inputs

This test consists of three separated step-waves with a duration of 8 seconds, each
independently activating the neck tendons, as shown in Figure 11. The aim of this test was
to validate the models’ capability of responding to a static input. Since the dataset for the
training and NN which corresponds to the FSS lacks individual tendon actuation, some
error in the models is expected. Figures 12 and 13 show the outputs.
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Figure 11. Test 1 input signal.
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Figure 12. Test 1 results for pitch.
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Figure 13. Test 1 results for roll.

Set membership scored 87.6260% in the NRMSE test for pitch and 79.3195% for
roll. NN followed the output better and scored 97.9574% for pitch and 98.5654% for roll.
The SM response did not settle at the appropriated inclination, lagging out before the
maximum inclinations were reached. As can be seen, the model does not reach the negative
inclinations properly. However, in Figure 12, the dynamics for negative and positive
inclinations are followed as desired. It is seen that the existing bias in the time windows
[3, 5] s follows the output dynamics. In the roll axis case, the same bias appears with the
negative inclination angles, while in the positive case, it stabilizes at time 17 s in the final
value. However, it does not properly capture that dynamic, neither. The maximum errors
for the NN appear at 8 and 16 seconds, when the signal is changed from one tendon to the
next; this is probably due to a lack of information in the data set. Meanwhile, RLS scored
79.9230% in pitch and 76.0284% in roll. This can be due to the fact that the initial conditions
do not match the real model ones.

7.2. Test 2: Sine Inputs

The next test feeds a more complex signal composed of a sine wave with increasing
frequency instead of a step signal, as shown in Figure 14. The test is conducted in order to
validate the models for simple dynamic movements. As mentioned before, these cases are
not explicitly captured by the FSS or training data. Figures 15 and 16 show the outputs.

The Set Membership followed the output of the system closer than in the previous test.
It scored 93.0012% for pitch and 93.8389% for roll, much closer to the validation results.
It is important to mention that the SM follows the dynamics and does not have the bias
error observed in Test 1. Therefore, the FSS properly captures the continuous dynamic
behavior, but it requires additional information to capture static behaviors, as required in
Test 1. This is true also for the NN model, which also improved. It scored 98.1058% in pitch
and 98.3087% in roll. The RLS roll output shows the disadvantages of this model. Due
to the decoupling of the signal, while the initial movement causes little movement on the
roll axis, RLS cannot process them and scores a worse fit than in the rest of the test. The fit
scores are 78.4813% in pitch and 48.5090% in roll.
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Figure 14. Test 2 input signal.
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Figure 15. Test 2 results for pitch.
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Figure 16. Test 2 results for roll.

7.3. Test 3: Neck Rotation

The final test combines multiple sine and cosine waves in order to create a rotatory
motion on the neck, Figure 17. This test simulates normal operation for the neck, where a
circular motion is described. Figures 18 and 19 show the outputs.
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Figure 17. Test 3 input signal.
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Figure 18. Test 3 results for pitch.
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Figure 19. Test 3 results for roll.

Table 4. Fitness on validation data.

Test 1 Test 2 Test 3

Pitch Roll Pitch Roll Pitch Roll

SM 87.6260% 79.3195% 93.0012% 93.8389% 90.2614% 96.7512%
NN 97.9574% 98.5654% 98.1058% 98.3087% 98.5191% 99.1767%
RLS 79.9230% 76.0284% 78.4813% 48.5090% 63.1412% 83.2230%

SM scored 90.2614% on pitch and 96.7512% on roll, while NN scored 98.5191% for
pitch and 99.1767% for roll. NN captures the dynamics of the neck both in pitch and roll.
SM also closely resembles the output for roll, but on pitch, lags behind the real value. RLS
also resembles the real output, but with an offset in pitch. The final scores for RLS are
63.1412% in pitch and 83.2230% in roll.

Table 4 shows a summary of all model scores for all previous tests.

7.4. Prediction and Simulation Configuration

In the previous Sections 7.1–7.3, we evaluated the performance for the NN and SM
models using the measured output in the model regressor. This configuration can be
used for control or estimation applications, to control the plant using the future predicted
behaviour. Alternatively, prediction control techniques are desirable. These models are
limited to short prediction horizons. On the contrary, if the model is aimed for simulation
or pure prediction over long horizons, parallel architecture has to be used as the one in
Figure 3. In that case, the model is fed with the previous estimations, and therefore, it
can model the whole system’s behavior. If the output is disturbed during simulation, the
model will not be aligned and will not provide information in this regard.

In order to evaluate the performance of the obtained NN and SM models as predictors,
we used Experiments 2 and 3 from Sections 7.2 and 7.3, respectively.

7.4.1. Neck Rotation

When these experiments are applied using the parallel architecture, we can see in
Figure 20 corresponding to the pitch that both models decrease in performance. However,
the dynamics are still well-captured by both models. In the SM case, the limit values are
not reached properly with an error of ≈5 deg for the negative picks and ≈3 deg for positive
ones. However, the overall dynamics are captured with a fit that marks 77%. For the
NN model, the fit marks 58%. As can be seen, there are important dynamic errors in the
negative sinusoidal cycle. Regarding the roll, as shown in Figure 21, both models properly
capture the dynamics with fits that mark 86.5% for the SM model and 87.5% for the NN
model. RLS results are unchanged, since no feedback is used in the regressor.
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Figure 20. Prediction configuration results for pitch in Test 3.

0 10 20 30 40 50 60
-20

-15

-10

-5

0

5

10

15

20

Figure 21. Prediction configuration results for roll in Test 3.

7.4.2. Sine Wave

Unlike the last results, in Section 7.4.1, as expected, they are not as clean as desired,
considering that the FSS lacks these behaviors and therefore, the predictor does not emulate
the given dynamics. As can be seen in Figures 22 and 23, the SM stays closer to the
measured values. However, there are important gain errors and the model dynamics do
not resemble the expected one, even if the results are better than those obtained by the
NN model. The final fit values in these cases were: for pitch, NN = 13.5% and SM = 60%;
for roll, NN = 60% and SM = 37%. These results confirm that in order to model static and
non-coupled behaviours, additional dynamic signals should be considered in the FSS so
that the identification data provide reliable information to increase the performance to the
one shown in the experiment of Section 7.4.1.
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Figure 22. Prediction configuration results for pitch in Test 2.
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Figure 23. Prediction configuration results for roll in Test 2.

8. Conclusions

In this work, an improved mathematical model for a robotic soft neck has been
presented. The whole soft-neck actuation range was modeled, resulting in a multi-input
multi-output (MIMO) system showing a total of three inputs and two outputs. In particular,
a nonlinear data-driven identification model using Set Membership, a linear model using
Recursive least-squares, and a Neural Network model have been developed and discussed
in this paper.

The outstanding results show that the proposed methods are suitable for estimation
and control purposes when measures from the output are available to align the models. As
shown, given the high level of correlation that the identification data set has over the NN
training and the FSS for the set membership, additional identification data are required to
use the methods as predictors over long prediction horizons, although results show that the
proposed models are viable in soft nonlinear dynamics with multiple inputs and outputs.

A shown advantage of the SM identification stands in the possibility of incorpo-
rating additional signal dependency, delays, and unknown dynamics through a richer
identification data set which derives from better and more complex modeling without
explicit knowledge of the system. Even though the computational time might be a future
consideration, there already exist approximation methods to overcome this drawback.

The accuracy difference found between the linear and nonlinear models suggests an
important plant non-linearity, as expected. This issue can lead to problems at the time of
defining a control strategy, although there are several options which will be explored in
upcoming studies.

From the control point of view, the self-aligning characteristic of the given methods
provide further knowledge on forecasting in short horizons, which is interesting for predic-
tive and robust control techniques. Besides, the linear model accuracy is good enough to
propose solutions like adaptive or robust control, which can provide excellent results. The
predictive models’ performance shown allows the use of the system for some applications.
However, it is limited to continuous mode operation, which yet limits its utility. To over-
come this issue, a more informative data set should be constructed that contains additional
system behaviors to the continuous operation mode.
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Abstract: Reliable bounding of a function’s range is essential for deterministic global optimization,
approximation, locating roots of nonlinear equations, and several other computational mathematics
areas. Despite years of extensive research in this direction, there is still room for improvement.
The traditional and compelling approach to this problem is interval analysis. We show that accounting
convexity/concavity can significantly tighten the bounds computed by interval analysis. To make
our approach applicable to a broad range of functions, we also develop the techniques for handling
nondifferentiable composite functions. Traditional ways to ensure the convexity fail in such cases.
Experimental evaluation showed the remarkable potential of the proposed methods.

Keywords: interval analysis; function approximation; global optimization; convexity evaluation;
overestimators; underestimators

1. Introduction

Reliable bounding of univariate functions is one of the primary techniques in global
optimization, i.e., finding the solution for the following problem:

f (x)→ min, x ∈ [a, b]. (1)

The problem (1) has many practical applications [1–6]. Besides solving problems
of one variable, univariate search serves as an auxiliary method in multivariate global
optimization. A promising optimization technique known as space-filling curves reduces
an optimization [7,8] or approximation [9] problem of multiple variables to a sequence
of univariate problems. Univariate optimization techniques are widely used in separable
programming [10], where an objective and constraints are sums of functions of one variable.
Many univariate optimization methods are directly extended to the multivariate case [11,12].

Univariate global optimization has been intensively studied last decades. The first
results date back to the early 1970s. Seminal works in this area [13–16] relied on the
Lipschitzian property of a function:

| f (x)− f (y)| ≤ L|x− y|, for any x, y ∈ [a, b]. (2)

In [14,15] the “saw-tooth cover” lower and upper bounding functions for Lips-
chitzian objectives were proposed. The lower (upper) bounding functions were defined as
maxi∈1,...,n f (xi)− L|x− xi| (mini∈1,...,n f (xi) + L|x− xi|), where L is a Lipschitz constant
and {x1, . . . , xn} is a set of function evaluation points. Since the functions are piecewise lin-
ear, their range can be easily computed. This makes such estimates attractive for bounding
an objective from below and/or above. Other approaches exploiting the property (2) were
studied in numerous papers [17–19]. In papers [20–22], the Lipschitzian first derivatives
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were used to facilitate the global search. Good surveys on Lipschitzian optimization can be
found in [7,23–25].

Interval analysis [26,27] is another powerful technique for global optimization. The goal
of interval analysis is to find the tightest enclosing interval for a range of a function. The left
end of the enclosing interval provides a lower bound for a function over an interval that
can be used to reduce the search space in global optimization methods. Most promising
approaches are based on interval arithmetic, and more advanced techniques based on
interval Taylor expansions [26,28]. Promising approaches based on combining Lipschitzian
optimization and interval analysis ideas were proposed in [29]. Efficient optimization
algorithms based on piecewise linear [30,31], piecewise convex [32], slopes techniques [33],
and DC-decomposition [34,35] should also be mentioned.

The approaches outlined above apply various methods to obtain bounds on a range
of a function. However, they do not analyze the convexity of the objective function.
Meanwhile, the convexity plays an essential role in global optimization. If the objective
is proved to be convex, then efficient local search techniques can be applied to locate its
minimum. For example, the univariate convexification technique developed in [36] even
sacrifices the dimensionality of the problem for convexity.

The convexity test [26] helps to reduce the search region by pruning areas where a
function is proved to be nonconvex. Usually, the convexity is checked by analyzing the
range of the second derivative. If this range lies above (below) zero, the function is convex
(concave). This approach works only for functions with continuous second derivatives.

Checking convexity is, in general, an NP-hard problem (see [37]) and references therein.
Approaches based on the symbolical proof and the numerical disproof of convexity are
described in [38]. In the context of convexity checking, it is necessary to mention the
disciplined convex programming [39,40], which also relies on a set of rules for proving the
convexity of the problem under consideration. However, authors limit their techniques to
proving the convexity of the entire mathematical programming problem for a subsequent
use of convex programming methods. As we show below, monotonicity, convexity and
concavity properties can also remarkably improve the accuracy of interval bounds when
applied to subexpression of the function’s algebraic representation.

The main contribution of our paper is the novel techniques for bounding the func-
tion’s range by accounting monotonicity, convexity or concavity of subexpressions of its
algebraic expression. This approach efficiently restricts the objective function’s range even
if the latter is not convex neither concave. We proved experimentally that the introduced
techniques can significantly reduce the bounds on the function’s range and remarkably
enhance the conventional interval global search procedures. A set of rules for deducing
monotonicity, concavity and convexity properties of a univariate function from its algebraic
expression is clearly and concisely formulated and proved. These rules complement the
traditional ways of establishing the properties of the objective function based on evaluating
its derivatives’ ranges.

Notation:

R — the set of real numbers;
Z — the set of integers;
N — the set of positive integers (natural numbers);
IR — the set of all intervals in R;
x = [x, x] — intervals are denoted with bold font;
R f ([a, b]) = {y ∈ R : y = f (x) for some x ∈ [a, b]} — the range of function
f : R→ R over interval [a, b];
f—an interval extension of a function f : R→ R, i.e., a mapping f : IR→ IR such that
R f ([a, b]) ⊆ f([a, b]) for any [a, b] ∈ IR, notice, there may be many different interval
extensions for a function f (x);
f (x)↗— f (x) is non-decreasing monotonic on R or an interval if additionally specified;
f (x)↘— f (x) is non-increasing monotonic on R or an interval if additionally specified.
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By elementary functions we mean commonly used mathematical functions, i.e., power
exponential, logarithmic and trigonometric functions. We distinguish smooth elementary
functions that have derivatives of any order in the domain of the definition and nonsmooth
functions, which are nondifferentiable at some points. The list of elementary functions
supported by our method is given in Table 1. Notice that other elementary functions can be
expressed as algebraic expressions over the functions listed in the table and thus omitted.
We consider only univariate functions in what follows. Thus, we do not mention it in each
statement. We restrict our study to the case of continuous functions.

Table 1. Supported elementary functions.

Type Smooth Non-Smooth

One variable xn, n
√

x, 1/x, ln(x), ex |x|
sin(x), arcsin(x), arctan(x)

Two variables x + y, x · y max(x, y), max(x, y)

The paper is organized as follows. Section 2 describes the deduction techniques to
evaluate the convexity/concavity of a function automatically. Then, in Section 3 it is shown
how this technique is used to bound the range of a function. Section 4 contains the experi-
mental results demonstrating the the proposed approach’s efficiency. Section 5 concludes
the paper and discusses possible future research directions.

2. Automatic Deduction of the Convexity and Concavity of a Function

2.1. Deducing Monotonicity

The monotonicity significantly helps in global optimization. If a function f (x) is monoton-
ically nondecreasing on a segment [a, b], then minx∈[a,b] f (x) = f (a), maxx∈[a,b] f (x) = f (b)
and the segment [a, b] can be eliminated from further consideration after updating the
record (best known solution so far). A similar statement is valid for a nonincreasing
function. This techniques is known as the monotonicity test [26,41,42]. Moreover, as it
is shown below, the monotonicity is crucial for evaluating the convexity/concavity of a
composite function.

The usual way to ensure the monotonicity of a differentiable univariate function f (x)
on an interval [a, b] is to compute an interval extension for its derivative [c, d] = f′([a, b]).
If c ≥ 0, then the function is nondecreasing monotonic on [a, b]. Similarly, if d ≤ 0, then the
function is nonincreasing monotonic on [a, b].

If a function is not differentiable, its monotonicity can still be evaluated using the rules
described below. The Proposition 1 lists rules for evaluating an expression’s monotonicity
composed with the simple arithmetic operations.

Proposition 1. The following rules hold:

1. if f (x)↗ on [a, b] then − f (x)↘ on [a, b];
2. if f (x)↘ on [a, b] then − f (x)↗ on [a, b];
3. if f (x)↗ and g(x)↗ on [a, b] then f (x) + g(x)↗ on [a, b];
4. if f (x)↗, f (x) ≥ 0 and g(x)↗, g(x) ≥ 0 on [a, b] then f (x) · g(x)↗ on [a, b];
5. if f (x)↗ and g(x)↗ on [a, b] then min( f (x), g(x))↗ on [a, b];
6. if f (x)↗ and g(x)↗ on [a, b] then max( f (x), g(x))↗ on [a, b].

The proof of Proposition 1 is obvious. The rules for evaluating the monotonicity of the
composition of functions are summarized in Proposition 2. The proof is intuitive and not
presented here.

Proposition 2. Let f (x) be a composition of univariate functions g(x) and h(x): f (x) = g(h(x)).
Then, the following four statements hold.

1. If h(x)↗ on [a, b], g(x)↗ on [c, d] and Rh([a, b]) ⊆ [c, d] then f (x)↗ on [a, b].
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2. If h(x)↘ on [a, b], g(x)↗ on [c, d] and Rh([a, b]) ⊆ [c, d] then f (x)↘ on [a, b].
3. If h(x)↗ on [a, b], g(x)↘ on [c, d], Rh([a, b]) ⊆ [c, d] then f (x)↘ on [a, b].
4. If h(x)↘ on [a, b], g(x)↘ on [c, d], Rh([a, b]) ⊆ [c, d] then f (x)↗ on [a, b].

The monotonicity of elementary univariate functions on a given interval can easily be
established as these functions’ behavior is well-known (Table 2).

Table 2. The monotonicity of elementary functions.

Function Increase Decrease

|x| [0, ∞) (−∞, 0]
x2n+1, n ∈ N, ex, (−∞, ∞) —

x2n, n ∈ N [0, ∞) (−∞, 0]
n
√

x [0, ∞) —
ln(x) (0, ∞) —
1/x — (−∞, 0) ∪ (0, ∞)

sin(x) [−π/2 + 2πk, π/2 + 2πk], k ∈ Z [π/2 + 2πk, 3π/2 + 2πk], k ∈ Z

arcsin(x) [−1, 1] —
arctan(x) (−∞, ∞) —

The monotonicity of a composite function defined by an arbitrary complex algebraic
expression can be evaluated automatically using Propositions 1 and 2 and the data from
the Tables 2. Let us consider an example.

Example 1. Evaluate the monotonicity of the function f (x) = max(3− x, 1/ ln(x + 1)), where
x ∈ [0.1, 3]. This function is nonsmooth: it can be easily shown that f (x) does not have derivatives
in two points on [0.1, 3]. Apply rules from Propositions 1 and 2:

x ↗ on [0.1, 3], 1 ↗ on [0.1, 3] ⇒ x + 1 ↗ on [0.1, 3],

x + 1 ↗ on [0.1, 3], ln(x)↗ on [1.1, 4] ⇒ ln(x + 1)↗ on [0.1, 3],

ln(x + 1)↗ on [0.1, 3], ln(x + 1) > 0 on [0.1, 3]⇒ 1/ ln(x + 1)↘ on [0.1, 3].

Thus, 1/ ln(x + 1) is nonincreasing monotonic on [0.1, 3]. In the same way, it can be
established that 3− x is nonincreasing monotonic on [0.1, 3]. From the Proposition 1, it follows
that f (x) = max(3− x, 1/ ln(x + 1)) is also nonincreasing monotonic on [0.1, 3].

It is worth noting that the rules outlined above help to prove the monotonicity of
nondifferentiable functions. However, for differentiable functions, the analysis of the
the range of the first derivative is a better way to establish monotonicity. For example,
a function f (x) = ex + sin(x) is monotonic on an interval [0, 2π]. Indeed, the range
[0, e2π + 1] of its first derivative f ′(x) = ex + cos(x) computed by the natural interval
expansion is non-negative. However, its monotonicty cannot be established by the outlined
rules since sin(x) is not monotonic on [0, 2π]. The general recommendation is to compute
the first derivative’s range when the function is smooth and use Propositions 1 and 2
otherwise.

Monotonicity itself plays a vital role in optimization. The following obviously valid
Proposition shows how the interval bounds can be computed for a monotonic function.

Proposition 3. Let f (x) be a monotonic function on an interval [a, b]. Then

min
x∈[a,b]

f (x) = min( f (a), f (b)),

max
x∈[a,b]

f (x) = max( f (a), f (b)).
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2.2. Deducing Convexity

First, we recall some well-known mathematical notions used in the rest of the paper.
A function f (x) is convex on an interval [a, b] if

f (λx1 + (1− λ)x2) ≤ λ f (x1) + (1− λ) f (x2). (3)

for any x1, x2, a ≤ x1 ≤ x2 ≤ b and any λ, 0 ≤ λ ≤ 1. A function f (x) is called concave on
the interval [a, b] if − f (x) is convex on [a, b].

Convexity plays an important role in optimization due to the following two obser-
vations. If a function is convex on some interval, then a minimum point of f (x) can be
efficiently found by well elaborated local search techniques [43,44]. If a function f (x) is
concave on [a, b], then minx∈[a,b] f (x) = min( f (a), f (b)).

If the function is two times differentiable, the convexity can be deduced from the
second derivative. If one can prove that f ′′(x) ≥ 0(≤ 0) on a segment [a, b], then f (x) is
convex (concave) on this segment. However, if the function is nonsmooth, the convexity
property should be computed in some other way. Even if f (x) is smooth, the accurate
bounding of its second derivative can be a complicated task, and the convexity test be-
comes difficult.

The conical combination and the maximum of two functions are known to preserve
convexity. The proof can be found in seminal books on convex analysis, e.g., [43]. For the
sake of completeness, we reproduce these rules in the following Proposition 4.

Proposition 4. Let f (x) and g(x) be convex functions on an interval [a, b]. Then, the following
statements hold:

1. f (x) + g(x) is convex on [a, b],
2. α f (x) is convex on [a, b] if α > 0,
3. max( f (x), g(x)) is convex on [a, b].

The product of two convex functions is not always a convex function. For example,
(x− 1)(x2 − 4) is not convex while both x− 1 and x2 − 4 are convex functions on R. In [45],
it is proved that if f and g are two positive convex functions defined on an interval [a, b],
then their product is convex provided that they are synchronous in the sense that

( f (x)− f (y))(g(x)− g(y)) ≥ 0

for all x, y ∈ I. However checking this general property automatically is difficult. Instead, we
propose the following sufficient condition that can be effectively evaluated.

Proposition 5. Let f (x) and g(x) be convex positive functions on an interval [a, b] such that f (x)
and g(x) are both nonincreasing or both nondecreasing. Then, the function h(x) = f (x)g(x) is
convex on [a, b].

Proof. Consider λ, 0 < λ < 1 and y = λa + (1− λ)b. Since f (x) and g(x) are convex,
we get

f (y) ≤ f (b) + λ( f (a)− f (b)),

g(y) ≤ g(b) + λ(g(a)− g(b)).

Since f (y) ≥ 0 and g(y) ≥ 0, we get

h(y) = f (y)g(y) ≤ q(λ),

where
q(λ) = ( f (b) + λ( f (a)− f (b)))(g(b) + λ(g(a)− g(b))))
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is a quadratic function. Since f (x) and g(x) are both nonincreasing or both nondecreas-
ing, we have that ( f (a)− f (b))(g(a)− g(b)) ≥ 0. Therefore q(λ) is convex. Note that
q(0) = h(b), q(1) = h(a). From convexity of q(λ), we obtain the following inequality:

q(λ) = q((1− λ) · 0 + λ · 1) ≤ (1− λ)q(0) + λq(1) = λh(a) + (1− λ)h(b).

This completes the proof.

Propositions 4 and 5 can be readily reformulated for concave functions. The following
Proposition gives rules for evaluating the convexity of a composite function.

Proposition 6. Let f (x) = g(h(x)) and there be intervals [a, b], [c, d] such thatRh([a, b]) ⊆ [c, d].
Then, the following holds:

1. g is convex and nondecreasing on [c, d], h is convex on [a, b], then f is convex on [a, b],
2. g is convex and nonincreasing on [c, d], h is concave on [a, b], then f is convex on [a, b],
3. g is concave and nondecreasing on [c, d], h is concave on [a, b], then f is concave on [a, b],
4. g is concave and nonincreasing on [c, d], h is convex on [a, b], then f is concave on [a, b].

The proof of the Proposition 6 can be found in numerous books for convex analysis,
e.g., [43].

Many elementary functions are convex/concave on a whole domain of the definition,
e.g., ex, ln x, xn for even natural n. For other functions, the intervals of concavity/convexity
can be efficiently established as these function’s behavior is well-known (Table 3).

Table 3. The convexity/concavity of elementary functions.

Function Convex Concave

|x|, x2n, n ∈ N, ex (−∞, ∞) —
x2n+1, n ∈ N, [0, ∞) (−∞, 0]

n
√

x — [0, ∞)
ln(x) — (0, ∞)
1/x (0, ∞) (−∞, 0)

sin(x) [−π + 2πk, 2πk], k ∈ Z [2πk, π + 2πk], k ∈ Z

arcsin(x) [0, 1] [−1, 0]
arctan(x) (−∞, 0] [0, ∞)

Propositions 4–6 enable an automated convexity deduction for composite functions,
as the following examples show.

Example 2. Consider the function f (x) = 2x + 2−x on the interval [−1, 1]. The function 2x is
convex on [−1, 1] and nondecreasing. The function −x is convex on [−1, 1]. According to the
Proposition 6 function, 2−x is convex. Since 2x is also convex, we conclude (Proposition 4) that
2x + 2−x is convex.

It is worth noting that the convexity can be proved by computing the interval bounds

for the second derivative in the considered example. Indeed, f ′′(x) = ln2(2)×2x +
ln2(2)

2x
is obviously positive on [−1, 1]. Since there are plenty of tools for automatic differentiation
and interval computations, the convexity can be proved automatically.

However, a convex function does not necessarily have derivatives in all points. More-
over, even if it is piecewise differentiable, locating the points where the function is not
continuously differentiable can be difficult. Fortunately, the theory outlined above effi-
ciently copes with such situations.
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Example 3. Consider the following function

f (x) = max(x, 2− sin(x)) + e−x

on an interval [0, π]. Since sin(x) is concave on [0, π], we conclude that 2− sin(x) is convex
on [0, π]. The convexity of e−x follows from the convexity of the linear function −x and the
Proposition 6. From the convexity of x, 2− sin(x), e−x and Proposition 4 we derive that f (x)
is convex.

Notice that automatic symbolic differentiation techniques cannot compute the derivative of
f (x) because it involves computing the intersection points of x and 2− sin(x) functions, which is
a rather complex problem.

3. Application to Bounding the Function’s Range

An obvious application of the proposed techniques is the convexity/concavity test [26]
that helps to eliminate the interval from the further consideration and reduce the number
of steps of branch-and-bound algorithms. Consider the following problem:

f (x)→ min, x ∈ [a, b]. (4)

If the objective f (x) is concave on [a, b], then the global minimum can be easily
computed as follows: f (x∗) = min( f (a), f (b)). If the concavity does not hold for the entire
search region, the test can be used in branch-and-bound, interval Newton or other global
minimization methods by applying it to subintervals of [a, b] processed by the algorithm.

However, if the objective is convex on [a, b], then any local minimum in [a, b] is a global
minimum and can be easily found by a local search procedure. Since any continuously
differentiable function is convex or concave on a sufficiently small interval, the convex-
ity/concavity test can tremendously reduce the number of algorithm’s steps by preventing
excessive branching.

Another situation commonly encountered in practice occurs when a subexpression
represents a convex/concave function while the entire function is not convex neither
concave. For example, the function 0.5− cos(x) is convex on interval [−π/2, π/2] while
(0.5 − cos(x))3 is not. In such cases, the interval cannot be discarded by the convex-
ity/concavity test. Nevertheless, the convexity and concavity can be used to compute
tight upper and lower bounds for the sub-expression yielding better bounds for the en-
tire function.

For computing upper and lower bounds, recall that a convex function graph al-
ways lies above any of its tangents. This property and the convexity definition yield the
Proposition 7.

Proposition 7. Let f (x) be a convex function on [a, b]. Then

f (x) ≤ f (x) ≤ f (x), for all x ∈ [a, b], (5)

where

f (x) = max
(

f (a) + f ′(a)(x− a), f (b) + f ′(b)(x− b)
)
,

f (x) = f (a) + ( f (b)− f (a))
x− a
b− a

.
(6)

Proof. First, prove that f (x) is an underestimator for f (x). For a function f (x) convex on
an interval [a, b] and a point t ∈ [a, b], the following inequality holds [43]:

f (x) ≥ f (t) + f ′(t)(x− t), for all x ∈ [a, b]. (7)
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Substituting t with a and b in (7), we get the following system of valid inequalities:

f (x) ≥ f (a) + f ′(a)(x− a), for all x ∈ [a, b],

f (x) ≥ f (b) + f ′(b)(x− b), for all x ∈ [a, b].
(8)

From (8), it directly follows that

f (x) ≥ max
(

f (a) + f ′(a)(x− a), f (b) + f ′(b)(x− b)
)
, for all x ∈ [a, b].

The right part is f (x) from (6).
Now prove that f (x) is the overestimator for f (x). Taking x1 = a, x2 = b, λ = b−x

b−a in
the definition of a convex function (3) we obtain:

f (x) ≤ b− x
b− a

f (a) +
(

1− b− x
b− a

)
f (b) =

(
1− x− a

b− a

)
f (a) +

x− a
b− a

f (b)

= f (a) + ( f (b)− f (a))
x− a
b− a

.

The rightmost part is f (x) from (6). This completes the proof.

Proposition 7 is illustrated in Figure 1. The figure shows the original function f (x)
(blue curve), its overestimator consisting of one green line segment and the underestimator
consisting of two connected line segments AC and CB marked with red. The estimators
are constructed by following (6).

Figure 1. The overestimator (green) and the underestimator (red) of a convex function f (x) on an
interval [a, b].

The similar proposition holds for concave functions.

Proposition 8. Let f (x) be a concave function over on [a, b]. Then

f (x) ≤ f (x) ≤ f (x), for all x ∈ [a, b], (9)

where

f (x) = f (a) + ( f (b)− f (a))
x− a
b− a

,

f (x) = min
(

f (a) + f ′(a)(x− a), f (b) + f ′(b)(x− b)
)
.

(10)

272



Mathematics 2021, 9, 134

Proof. This statement is a straightforward corollary of Proposition 7. Indeed, if f (x) is
concave then − f (x) is convex and one can apply Formula (6) to obtain its estimators.
After changing the sign and reversing the inequalities we get (10).

Fortunately, the minimum and maximum of estimators f (x) and f (x) can be found
analytically as stated by the following propositions.

Proposition 9. If a function f is convex on an interval [a, b] then

max
x∈[a,b]

f (x) = max( f (a), f (b)), (11)

min
x∈[a,b]

f (x) = f (a), if f ′(a) ≥ 0, (12)

min
x∈[a,b]

f (x) = f (b), if f ′(b) ≤ 0, (13)

min
x∈[a,b]

f (x) ≥ f ′(b) f (a)− f ′(a) f (b)
f ′(b)− f ′(a)

+ f ′(a) f ′(b)
b− a

f ′(b)− f ′(a)
(14)

otherwise.

Proof. Equation (11) is obviously valid. Denote α = f ′(a), β = f ′(b). Equation (12) follows
from the fact the function f (x) lies above its tangent f (a) + α(x − a), coincides with it
at x = a and the tangent is a monotonically nondecreasing function. In the same way,
Equation (13) is proved.

For the remaining case α < 0 < β the minimum of the underestimator is achieved at
the intersection point of lines defined by f (a) + α(x− a), f (b) + β(x− b) (point C in the
Figure 1). This point is the solution of the following equation:

f (a) + α(x− a) = f (b) + β(x− b).

Simple transformations yield:

f (a)− f (b) + βb− αa = x(β− α).

Since α �= β the minimum of the underestimator is achieved at the point

x =
f (a)− f (b) + βb− αa

β− α
.

Substituting this value to f (a) + α(x− a) we obtain:

min
x∈[a,b]

f (x) =
β f (a)− α f (b)

β− α
+ αβ

b− a
β− α

.

This concludes the proof.

Similarly, the validity of the following Proposition giving bounds for a concave
function is justified.

Proposition 10. If a function f is concave over an interval [a, b] then

min
x∈[a,b]

f (x) = min( f (a), f (b)), (15)

max
x∈[a,b]

f (x) = f (a), if f ′(a) ≤ 0, (16)

max
x∈[a,b]

f (x) = f (b), if f ′(b) ≥ 0, (17)
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max
x∈[a,b]

f (x) ≤ f ′(b) f (a)− f ′(a) f (b)
f ′(b)− f ′(a)

+ f ′(a) f ′(b)
b− a

f ′(b)− f ′(a)
(18)

otherwise.

Proof. This statement is a straightforward corollary of Proposition 9. Indeed, if f (x) is
concave then− f (x) is convex and one can apply Formulas (11)–(14) to obtain its estimators.
After changing the sign and reversing the inequalities, we get Formulas (15)–(18).

The bounds computed with the help of the Propositions 9 and 10 are often more
precise with respect to other bounds. Below we compare the ranges computed according
to Propositions 9 and 10 with the results of interval analysis techniques.

4. Numerical Experiments

In this section, we experimentally evaluate the proposed approach. First, in Section 4.1
the interval bounds and bounds computed with the proposed techniques are compared for
a set of functions. In Section 4.2, we study the impact of the accounting of the monotonicity
and convexity properties on global optimization algorithms’ performance.

4.1. Comparison with Interval Bounds

We selected two well-known [26,28] interval analysis techniques for computing the
range of a function. The first is the natural interval expansion that computes the inter-
val bounds of a function’s range by applying interval arithmetic rules according to the
function’s expression. The second approach is so-called first-order Taylor expansion:

R f ([a, b]) ⊆ f (c) + [a− c, b− c] · f′([a, b]), (19)

where c = (a + b)/2 and f′([a, b]) denotes the natural interval expansion for the derivative
of f (x). The detailed proof of (19) can be found in [26].

Example 4. Let f (x) = − cos (x) + e−x and a = 0, b = 1. The convexity of f (x) can easily be
established by applying evaluation rules introduced in the previous section:

1. cos(x) is concave on [0, 1],
2. − cos(x) is convex on [0, 1] (by definition),
3. x is concave on [0, 1],
4. −x is convex on [0, 1] (by definition),
5. e−x is convex on [0, 1] (by Proposition 6),
6. − cos (x) + e−x is convex on [0, 1] (by Proposition 4).

Applying (9), we get the following enclosing interval for f (x) on [0, 1]:

f ([0, 1]) ⊆ [−0.438, 0],

with the width 0.438. Natural interval expansion gives:

f ([0, 1]) ⊆ [−0.632, 0.46],

with the width 1.092 and the first order Taylor expansion produces

f ([0, 1]) ⊆ [−0.77, 0.23]

with the width 1.092. Thus, the interval computed with the proposed techniques is nearly 2.5 times
narrower than produced by the natural interval and Taylor expansions.

It is worth noting that the bounds provided by Propositions 9 and 10 can be computed
for functions that are not differentiable at a set of points. It suffices that a function has
its derivatives at the ends of the interval. The latter can be computed using the forward
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mode automatic differentiation [28], which is merely the application of differentiation rules at
a point.

Table 4 compares bounds computed with the interval analysis techniques and the
bounds computed by the proposed method for five convex functions. The convexity of
these functions can be easily deduced by the introduced convexity evaluation rules. For an
interval [a, b], three bounds are presented in the respective columns:

Natural—a bound computed by the natural interval expansion techniques,
Taylor—a bound computed by the 1st order Taylor expansion,
Convex—a bound computed according to Propositions 9 and 10.

Table 4. Comparison of natural interval expansion (Natural) Taylor expansion (Taylor) and bounds
produced by the proposed techniques (Convex).

No f(x) [a, b] Natural Taylor Convex

1 − cos (x) + e−x [0, 1] [−0.632, 0.46] [−0.77, 0.23] [−0.438, 0]
2 ex + e−x [−0.5, 0.5] [1.21, 3.29] [1.48, 2.52] [1.73, 2.26]
3 0.2x2 − sin (x) [0, π/2] [−1, 0.49] [−1.37, 0.2] [−0.92, 0]
4 2(x− 3)2 + e0.5x2

[1, 3] [1.65, 98.02] [−260.66, 279.44] [−0.92, 90.02]
5 (x− 4)2 + (x + 4)2 + e|x| [−2, 2] [9, 79.39] — [16.61, 47.39]

For all functions except No. 4, the bound produced by the proposed techniques contain
both intervals produced by interval techniques and significantly more tight. For function
number 4, the interval computed by the Convex method is narrower than the natural
interval expansion but does not enclose it. However, as neither of these intervals contains
each other, they can be intersected to obtain a better enclosing interval [1.65, 90.02]. The 5th
function is non-differentiable in x = 0. Thus the symbolic differentiation does not give a
meaningful result, and the Taylor expansion cannot be applied in this case. For that reason,
the respective cell is marked with “−”.

4.2. Impact on the Performance of Global Search

In Section 4.1, we observed that accounting convexity can significantly improve the
interval bounds. As expected, the application of these bounds entails reducing the number
of steps of the global search algorithm.

We implemented a standard branch-and-bound algorithm that uses the lower-bound
test to discard subintervals from the further search. The description of this algorithm can
be found elsewhere [26,41]. For completeness, we outline it here (Figure 2).
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Figure 2. The standard branch-and-bound algorithm.

The algorithm operates over a list L of intervals, initialized with the feasible set [a, b]
(line 04). The record point (incumbent solution) is initialized with the center of the interval
[a, b] (line 05). The main loop (lines 06—16) iterates until the list L is not empty. At each
iteration one of the intervals from this set is taken (line 07) and examined. First, the value
in the middle of this interval is computed, and if necessary, the record is updated (lines
08–11). The interval extension y = f(x) is computed at the line 12. The interval lying above
f (xr)− ε is discarded from the further search. Otherwise, it is partitioned into two smaller
intervals. The obtained intervals are added to the list L (line 14).

We consider three variants of computing the interval extension:

1. Natural—the natural interval expansion techniques,
2. Taylor—the 1-st order Taylor expansion,
3. Convex—the range is computed according to Propositions 3, 9 and 10.

The described methods can be applied in combination, when the intervals computed
by several methods are intersected to obtain the resulting range. We considered four
different combinations of the range bounding techniques to compute the enclosing interval
of the objective function:

1. Natural—pure natural interval expansion;
2. Natural + Convex—the natural interval expansion combined with the proposed techniques;
3. Natural + Taylor—the natural interval expansion combined with the first-order Tay-

lor expansion;
4. Natural + Taylor + Convex—the natural interval expansion combined with the first-

order Taylor expansion and the proposed techniques.

The convexity and the monotonicity are detected by analyzing the ranges of the
first/second derivatives in differentiable cases or by using the introduced evaluation rules
for the non-differentiable expressions.

Table 5 lists the set of test problems used in the experiments. For each problem,
the objective function ( f (x)), the interval ([a, b]), and the global optimum value ( f (x∗))
are presented. The first ten problems are taken from [29]. The objective functions in these
problems have both first and second derivatives.
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To demonstrate the applicability of the proposed automatic convexity deduction
techniques, we also have added four nondifferentiable problems. Test cases 11 and 12 were
proposed by us, and 13 and 14 were taken from [33].

Table 5. Test problems.

No f(x) [a, b] f (x∗)

1 (x− 1)2 +
(
−x2 + x

)2
[−10, 10] 0

2 24x4 − 142x3 + 303x2 − 276x + 3 [0, 3] 1
3 x4 − 12x3 + 47x2 − 60x− 20e−x [−1, 7] −32.781261
4 x4 − 10x3 + 35x2 − 50x + 24 [−10, 20] −1
5 −1.5 sin2 (x) + sin (x) cos (x) + 1.2 [0.2, 7] −0.451388
6 −x + sin (3x) + 1 [0.2, 7] −5.815675
7 x + sin (5x) [0.2, 7] −0.07759
8 − sin (5x) + cos (x) + 1 [0.2, 7] −0.952897
9 2 cos (x) + cos (2x) + 5 [0.2, 7] 3.5
10 2e−x sin (x) [0.2, 7] −0.027864
11 |x|+ |x− 4|+ |x + 4| [−8, 8] 8
12 (x− 4)2 + (x + 4)2 + e|x| [−4, 8] 33
13 |(x− 1)/4|+ |sin(π(1 + (x− 1)/4))|+ 1 [−10, 10] 1
14 (10|sin(x + 1)|+ 1)|x− 1|+ 1 [−10, 10] 1

The results of numerical experiments are summarized in Table 6. The cells contain
the number of steps performed by the branch-and-bound method. Columns correspond to
different ways for computing the range of the objective functions, and rows correspond
to test problems. The Taylor expansion cannot be applied to nondifferentiable problems
11–14, and the respective cells are blank.

Table 6. Testing results.

No Natural Natural + Convex Natural + Taylor Natural + Taylor + Convex

1 35 15 29 15
2 135,043 199 267 81
3 98,995 107 269 79
4 72,953 151 311 91
5 443 39 83 39
6 187 19 47 19
7 183 39 69 39
8 189 49 91 49
9 857 31 75 31

10 51 19 27 19
11 55 5 — —
12 579 23 — —
13 35 27 — —
14 125 125 — —

Experimental results demonstrate that the proposed techniques tremendously improve
the standard branch-and-bound algorithm’s performance that uses the natural interval
expansion for the majority of the test problems. The combination of the natural interval
expansion and the proposed method always outperform the combination of the natural
and the first-order Taylor interval expansion. The comparison of the last two columns of
Table 6 indicates that the Taylor expansion version of branch-and-bound can be further
improved when combined with the proposed techniques. However, for problems 1 and
5–10, the proposed method does not benefit from the Taylor expansion.
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5. Discussion

The standard way to ensure the convexity is to bound the range of the function’s sec-
ond derivative. However, this approach is only applicable to smooth functions. We defined
a set of rules that can efficiently handle nonsmooth functions. The algebraic representation
for the function, however, should be available.

It is worth noting that the proposed approach can be efficiently coded in modern
programming languages supporting the operator’s overloading techniques. To run the
experiments presented in Tables 4 and 6 we have implemented our approach in Python.
The elementary functions and operators were overloaded to support a particular data
type that carries monotonicity and convexity information and the range of the function.
The overloaded methods work according to the rules described in Section 2 and inter-
val arithmetic.

As we have shown above, evaluating convexity can improve interval bounds on the
function’s range and accelerate the global optimization algorithms. Moreover, the over- and
underestimators defined by the Propositions 7 and 8 enable efficient reduction techniques.
The reduction techniques are widely used to accelerate the search for a global minimum of
a function or a root of an equation.

We believe that the proposed approach has great potential as it can be extended to
various generalized notions of convexity, e.g., quasiconvexity [46]. Quasiconvex functions
possess the unimodality property, and thus recognizing the quasiconvexity (quasiconcavity)
can tremendously enhance global optimization algorithms.
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Abstract: The logistics industry can be considered as the economic lifeline of each country because of
its role in connecting production and business activities of enterprises and promoting socio-economic
development between regions and countries. However, the COVID-19 pandemic, which began at the
end of 2019, has seriously affected the global supply chain, causing heavy impacts on the logistics
service sector. In this study, the authors used the Malmquist productivity index to assess the impact
of the pandemic on logistics businesses in Vietnam. Moreover, the authors used a super-slack-based
model to find strategic alliance partners for enterprises. The authors also used the Grey forecasting
model to forecast the business situation for enterprises during the period 2021–2024, in order to
provide the leaders of these enterprises with a complete picture of their partners as a solid basis for
making decisions to implement alliances that will help logistics enterprises in Vietnam to develop
sustainably. The results have found that the alliance between LO7 and LO10 is the most optimal, as
this alliance can exploit freight in the opposite direction and reduce logistics costs, creating better
competitiveness for businesses.

Keywords: mathematical modelling; modelling in economics; impact of the COVID-19; logistics busi-
nesses

1. Introduction

According to the General Statistics Office of Vietnam’s logistics industry, in the first
10 months of 2020, 4513 transport and warehousing enterprises were newly established
(down 5.5% compared to 2019). A total of 2366 transport and warehousing enterprises
dissolved. Cargo transport reached 1.43 billion tons of goods, (down 7.5% compared to
2019) [1]. The COVID-19 pandemic had many negative effects on businesses, industries,
countries, and the whole world. Specifically, when the COVID-19 pandemic occurred,
infected workers had to take leaves of absence for treatment, which affected the production
and business situation of factories that were halted. In addition, the most impactful factor
is the social distancing orders of localities. This complicated the situation of transporting
goods and materials in factories, causing supply chain disruptions and breach of contracts
with partners, seriously affecting the logistics industry of countries.

The logistics chain involves sea transport, rail transport, water transport, and road
transport; and activities in transportation, loading, unloading, forwarding, and storage
(shown in Figure 1) [2]. If managers can come up with solutions to reduce these costs by
maximizing both directions of routes and improving the occupancy rate at warehouses,
it will help businesses improve results. Considering those problems, the questions are:
How does the COVID-19 pandemic affect the business situation of logistics enterprises in
Vietnam? The pandemic affects which areas in logistics activities? Are there any solutions
to help logistic businesses grow after the pandemic? Are there any cost-saving solutions for
logistics businesses? In this context, the authors realize that it is necessary to specifically
assess the impact of the pandemic on the business performance of logistics enterprises, and
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it is necessary to find solutions to limit the risks of the epidemic to all stakeholders. It is
necessary to research and propose solutions to help logistics enterprises in Vietnam restore
and stabilize their business situations, help businesses ensure reasonable growth, stabilize
jobs for employees, and create a foundation for rapid and sustainable economic growth.

Figure 1. Dual channel network structure in Logistics (Liu et al., 2020).

2. Materials and Methods

2.1. Overview of Vietnam’s Logistics

Vietnam’s logistics industry has been heavily affected by the pandemic in all forms of
transport: road, sea, rail, and especially air.

Road traffic: According to the Directorate for Roads of Vietnam, currently more than
1800 km of expressways are in operation; 16,000 km of roads and nearly 600,000 km of
national highways. The system of rural roads has been built, upgraded, and expanded [3].
This helps meet the needs of the freight transport of domestic and foreign enterprises,
promoting production and business development and, thereby, improving competitiveness
of the economy (proportion of road types shown in Figure 2) [4].

Figure 2. Proportion of road types in Vietnam (Vietnam Logistics Report 2020).

In Vietnam, domestic road freight transport still accounts for the highest proportion
of all modes of transport (76.8% in 2019) (weight of goods transported by road shown in
Figure 3). Meanwhile, the cost of transporting goods by road is still high, because about
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70–75% of vehicles carry only one-way goods; the high costs of road use and fuel increase
logistics costs dramatically [4].

 
Figure 3. Weight of goods transported by road (Million tons) (Vietnam Logistics Report 2020).

Railway transport: The railway system in Vietnam includes 7 main lines and 12 branch
lines with a total length of 3143 km, stretching across 34 provinces and cities. The railway
system includes 277 stations, including 3 types of gauges: 1000 mm gauge (85%), 1435 mm
gauge (6%), and cage gauges of 1000 mm and 1435 mm (accounting for 9%). The railway
density is about 7.9 km/1000 km2. Vietnam’s railway system was built a long time ago.
The infrastructure is outdated with no modern technology; the trains are loud and of low
service quality. Therefore, the proportion of passenger and freight transport by rail is lower
than that of other forms of transport (weight of goods transported by railway shown in
Figure 4) [4]. The railway industry has not kept up with the development of other modes
of transport. The railway industry focuses on exploiting short segments, from 800 km to
1200 km, and places where it has more advantages than sea routes [4].

 

Figure 4. Weight of goods transported by railway (thousand tons) (Vietnam Logistics Report, 2020).

Sea transport: With the advantage of geographical location, Vietnam is located on an
important sea route for continents and regions in the world. This favorable condition for
domestic and international transportation of goods has led to development of the ship-
ping industry to promote economic development. In 2019, the transport volume reached
49.2 million tons of goods (weight of goods transported by seaway shown in Figure 5);
43,150 ferry boats used seaports and inland waterways and average growth rate of goods
reached 204% (from July 2014 to 2019) [4].

Inland waterway transport: In 2019, inland waterway freight transport in Vietnam
reached 303.4 million tons with an increase of 5.6%. In the first 9 months of 2020, inland
waterway cargo transport reached 238.1 million tons with a decrease of 7.6% over the same
period in 2019 (weight of goods transported by inland waterways shown in Figure 6). As
of 2020, there are a total of 1786 VR-SB-class vehicles in operation, of which 839 are
cargo vehicles with a tonnage of 1,742,834 tons, accounting for 0.5% of inland waterway
vehicles [4].
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Figure 5. Weight of goods transported by seaway (million tons) (Vietnam Logistics Report 2020).

 
Figure 6. Weight of goods transported by inland waterways (million tons) (Vietnam Logistics Report 2020).

Air traffic: As of 2020, there are a total of 22 airports in Vietnam with civil aviation
operations, including 11 international airports and 11 domestic airports. According to
the Civil Aviation Authority of Vietnam, as of the first quarter of 2020, Vietnam has
235 registered civil aircraft and 32 helicopters [4].

Although air transport only accounts for a small part of the total volume of goods
transported in Vietnam (0.23%), it accounts for 25% of the total export value of the country
(weight of goods transported by airline shown in Figure 7) [4]. This is a feature that should
be taken into account when planning development. It is necessary to orient investment in
aviation infrastructure to increase the service capacity of airports and shorten the time for
cargo services.

 

Figure 7. Weight of goods transported by airline (thousand tons) (Vietnam Logistics Report 2020).

2.2. Literature Review

Data envelopment analysis (DEA) is a linear programming method for measuring the
performance of multiple industry players (DMUs) when a production process presents
a structure of multiple inputs and multiple outputs. DEA has been widely applied by
many scientists in many different scientific disciplines [5–8]. Chowdhury et al., (2011)
used the Malmquist productivity index to evaluate the performance of hospitals in Ontario
between 2003–2006 [9]. In that study, the authors did an in-depth analysis of the efficiency
of technical and technological investment in hospitals in Ontario. The researchers pointed
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out the limitations of technical and technology investment in these hospitals, and proposed
solutions to improve the efficiency of technology investment. Abbas et al., (2015) used the
Malmquist productivity index to evaluate and compare the performance of Islamic banks
and conventional commercial banks [10]. The results show that Islamic banks have higher
operational efficiency than conventional commercial banks. The reason is that, in Muslim
countries, Islamic banks are sponsored.

Bahrini et al., (2015) used the Malmquist productivity index to evaluate the perfor-
mance of 33 Islamic banks in 10 countries around the world for the period 2006–2011 [11].
The results show that Islamic banks were hit hard by the 2008 global financial crisis. In
that study, the researchers also proposed solutions to help Islamic commercial banks’ re-
covery and growth. Lee et al., (2017) used DEA models to evaluate the performance of 18
banks in Korea in three categories: National Bank, Regional Bank, and Special Bank [12].
The authors found that special banks have the highest business efficiency compared to
other types of banks. Wang et al., (2017) used DEA models to evaluate the performance
of infrastructure investment and development companies in Vietnam [13]. The authors
evaluated and selected good investors and suggested that the Vietnamese government
establish appropriate policies when selecting contractors for infrastructure investment
projects to achieve good results on time and on budget.

Grey system theory was introduced by Professor Julong Deng in 1982 [14]. Grey
prediction theory is a multidisciplinary forecasting science that has been applied in almost
all sciences. Since its introduction, it has been applied by scientific works around the
world [15–19]. Fan et al., (2018) used a Grey forecasting model to forecast natural gas
demand in China [20]. The results of that research helped the Chinese government to
develop and issue energy policies to ensure a stable supply of natural gas for production
and daily life. Nguyen (2020) used the super-slack-based model to select partners for
construction companies in Vietnam [21]. After selecting an alliance partner, the author used
two forecasting methods, the Grey forecasting model and ARIMA model, to forecast the
business situation of construction companies. Wang et al., (2021) used the Grey forecasting
model to predict the number of railway passengers by quarter (period 2020–2022) in China.
This result helps railway management companies create plans to meet the travel needs
of customers.

In this study, the Malmquist productivity index (MPI) is used to evaluate the business
performance of logistics enterprises in Vietnam from 2017 to 2020. The authors continue
to use the super-slack-based model to select optimal partners to enter strategic alliances
with businesses to help businesses recover and develop sustainably after the pandemic.
In addition, in this study, the authors used the Grey forecasting model simultaneously to
forecast and provide a post-pandemic picture of businesses participating in the alliance,
giving managers a solid basis when making decisions about implementing alliances.

2.3. Theoretical Fundamentals
2.3.1. Research Development

The authors found that the COVID-19 pandemic negatively impacted most businesses,
sectors, and industries in Vietnam’s economy [1]. In particular, the logistics industry was
most affected because localities and countries implemented social distancing orders to
limit the movement of people and goods. Therefore, the author realizes that it is necessary
to assess the impacts of the epidemic on logistics enterprises and propose solutions to
help businesses recover and develop. The research process is carried out by the authors
according to the steps shown in Figure 8 below:

After determining the research objectives, the authors selected enterprises to conduct the
research. These enterprises must use the same operations in the logistics industry, have simi-
larity of scale, and have appropriate geographical locations to ensure feasible transportation.

After selecting businesses that fulfill the conditions to carry out the research objectives,
the authors selected factors to analyze the business situations of logistics enterprises before
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and during the pandemic. Then, the authors checked the correlation of these factors to
ensure the appropriateness of the data included in analysis and processing.

Figure 8. Research process (Source: Researcher).

After examining the correlation between the factors used in the study, the authors used
the Malmquist productivity index to assess the impact of the pandemic on the business
situation of Vietnamese logistics enterprises for the period 2017–2020. Then, the authors
used a super-slack-based model to rank these enterprises, as a basis for choosing the optimal
alliance partner to improve business efficiency for logistics enterprises in the future.

After evaluating and ranking the logistics enterprises, the authors used the rankings
to make alliances for enterprises. Then, the authors used the Grey forecasting model (GFM)
to forecast the business situation of enterprises in the alliance. This forecast aims to provide
managers with a complete picture of their alliances as a solid basis for decision making to
enable sustainable development.

2.3.2. Research Methods
Malmquist Productivity Index

DEA is a linear programming method for measuring the effectiveness of multiple
decision-making units (DMUs) when a production process presents a structure of multiple
inputs and outputs. This method relies on the past business data of the enterprise to
construct the production boundary in the non-parametric plane (the production boundary).
In which, the Malmquist index (MI) evaluates the efficiency of a business at t1(x1

0, y1
0) and

t2(x2
0, y2

0). This efficiency is assessed through the catch-up (CU) and frontier-shift (FS)
indicators of that business [22].

CU =
Efficiency of t2(x2

0, y2
0) with respect to the period 2 frontier

Efficiency of t1(x1
0, y1

0) with respect to the period 1 frontier
(1)
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A specific example of evaluating the effectiveness of an element in the above model is
shown in Figure 9:

CU =
BD
BQ

× AP
AC

(2)

ϕ1 =
AC
AP

× AP
AE

=
AC
AE

=
Efficiency of (x1

0, y1
0) with respect to the period 1 frontier

Efficiency of (x1
0, y1

0) with respect to the period 2 frontier
(3)

ϕ2 =
BF
BQ

× BQ
BD

=
BF
BD

=
Efficiency of (x2

0, y2
0) with respect to the period 1 frontier

Efficiency of (x2
0, y2

0) with respect to the period 2 frontier
(4)

FS = ϕ =
√
ϕ1ϕ2 (5)

MI = CU× FS (6)

Figure 9. Catch-up (Le et al., 2020) [23].

The efficiency score of the DMU at point (x 0, y0
)t1 measured by frontier technology t2

as follows [22]:

δt2 (x 0, y0
)t1 ; (t 1 = 1, 2; t2 = 1, 2)

CU =
δ2 (x 0, y0)

2

δ1 (x 0, y0)
1

(7)

FS =

[
δ1 (x 0, y0

)1
δ2 (x 0, y0

)1 × δ1 (x 0, y0
)2

δ2 (x 0, y0
)2
] 1

2

(8)

MI = CU× FS =

[
δ1 (x 0, y0

)2
δ1 (x 0, y0

)1 × δ2 (x 0, y0
)2

δ2 (x 0, y0
)1
] 1

2

(9)

If :⎧⎪⎨⎪⎩
MI < 1 : The relative efficiency drops.
MI = 1 : The relative efficiency t1(x

1
0, y1

0) equivalent t2(x
2
0, y2

0).
MI > 1 : The relative efficiency increases from t1(x

1
0, y1

0) to t2(x
2
0, y2

0).

Super-Slack-Based Model

In 2001, Tone introduced the slack-based measure model to evaluate the production
and business efficiency of enterprises based on changes in production factors causing
changes in corporate profits. The introduction is described as follows [24,25]:

Minρ =

1− 1
m

m
∑

i=1

s−i
xik

1 + 1
s

s
∑

r=1

s+r
yrk

(10)
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Subject to :

xik =
n
∑

j=1;j �=k
λjxij − s−i (i = 1, 2, . . . , n) (11)

yrk =
n

∑
j=1;j �=k

λjyij − s+i (r = 1, 2, . . . , s) (12)

s− ≥ 0, s+ ≥ 0, λj ≥ 0 (j = 1, 2, . . . , n, j �= k
)

(13)

ρ shows the relative business performance of the enterprise. If 0 < ρ < 1, this reflects
that the enterprise is not operating efficiently. If ρ = 1, it reflects that the enterprise
is relatively efficient. However, there are many businesses in the same business field
that achieve relative efficiency. Therefore, to evaluate and rank these enterprises, Tone
introduced the super-slack-based model to evaluate the ranking of enterprises in the same
industry. The super-slack-based model is described as follows:

Minρ =

1
m

m
∑

i=1

xi
xik

1
s

s
∑

r=1

yr
yrk

(14)

Subject to :

x ≥
n
∑

j=1;j �=k
λjxij

(15)

y ≤
n

∑
j=1;j �=k

λjyj (16)

x ≥ xk; y ≤ yk (17)

λj ≥ 0 (j = 1, 2, . . . , n, j �= k
)

(18)

In which :⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

n : Denotes the number of DMUs.
m : Denotes the number of input indexes.
s : denotes the number of output indexes.
s+, s− : Are the output and the input relaxation variables.
λ : Denotes the weight vector.
xik, yrk : Denote the ith input and the rth output of the DMUk

Grey Forecasting Model

GFM was first introduced by Professor Julong Deng in 1982. GFM focuses on the
study of uncertain information systems and incomplete data sources in decision making.
Grey system theory can perform research with a small sample size data set. Therefore,
Grey system theory overcomes the inherent disadvantages of other forecasting methods.
The authors used Grey system theory to conduct this study. After being introduced and
published in the journal System & Control Letters, GFM has been successfully applied by
many scientists around the world in most fields of economy and society. The process of
calculating the GM (1, 1) model of GFM is shown in 6 steps in Figure 10 below:
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Figure 10. Forecasting process (Nguyen Han Khanh 2021) [26].

Correlation Coefficient and Error

As mentioned, the authors used 4 inputs and 2 outputs to assess the impact of the pan-
demic on the business situation of logistics companies in Vietnam in the period 2017–2020.
To test the correlation between factors, the authors used Pearson correlation coefficient (r).
Testing the correlation coefficient through (r) is the best method to measure the relationship
between factors used in the study because it is based on the covariance method. (r) is
calculated by following formula [27]:

r =

n
∑

i=1
(ai − a)(bi − b)[

n
∑

i=1
(ai − a)2 n

∑
i=1

(bi − b)
2
] 1

2
(19)

The authors used the GM (1, 1) model to forecast the business situation of logistic
enterprises in the period of 2021–2024. To evaluate the quality and fit of the GM (1, 1)
model used in this study, the authors used MAPE to calculate error. MAPE is calculated
according to the following formula [28]:

δ = 1
n

[
n
∑

i=1

∣∣∣Ai−Fi
Ai

∣∣∣× 100
]

;⎧⎪⎪⎨⎪⎪⎩
δ ≤ 10% : Excellent
10% < δ ≤ 20% : Good
20% < δ ≤ 50% : Qualified
δ > 50% : Unqualified

(20)

2.4. Data

The authors selected typical logistic enterprises that are suitable for this research
objective. Specifically, the enterprises must fulfill the following conditions: they are of
appropriate size; they have geographical concordance to exploit potential customers of
partners and save the cost of reverse traffic; and they must be in the same industry and field
of operation to optimize available infrastructure, technical support, and transportation
without having to invest in any additional equipment. Based on those conditions, the
authors selected enterprises summarized in Table 1 below [29].
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Table 1. List of LOs (Statistics 2021).

LOs Name of Companies

LO1 GMD corporation

LO2 HA transport & stevedoring

LO3 HT transport joint stock company

LO4 S & A freight international

LO5 DHMM transport joint stock company

LO6 TC warehousing joint stock company

LO7 TRA corporation

LO8 VIN joint stock company

LO9 VIN logistics joint stock company

LO10 VCS joint stock corporation

To assess the impact of the COVID-19 pandemic on the business situation of logistics
enterprises in Vietnam, the authors used four input factors and two output factors:

• Equity is the total net assets of the business; these assets are owned by shareholders.
• Total asset is the entire set of assets and valuable papers of an enterprise used for

production and business activities.
• Cost of goods sold includes cost of purchasing machinery, raw materials, cost of goods

production, labor cost, administrative expenses, etc.
• General and administrative expenses are expenses used to operate an enterprise’s activities.
• Net revenue is the amount earned by the business after all deductions have been deducted.
• Profit after tax is the amount obtained after taking total sales revenue minus all costs

of logistics services.

The indicators on Total Assets and Equity are the main items in the balance sheet.
These indicators show an overview of the assets situation of the enterprise. Based on these
indicators, it is possible to assess the business situation and the ability to use the capital of
the enterprise. Factors on the cost of goods sold; management costs; net revenue and profit
after tax are the main indicators in the income statement of an enterprise. These indicators
reflect the business results and development trends of the enterprise as a basis for making
strategic financial decisions. These financial indicators reflect the business situation of a
logistics enterprise. The data source is actual data on the business situation of enterprises in
the period 2017–2020. The data were collected through the website of the General Statistics
Office and are summarized in Tables 2–5 below [29].

3. Research Results

3.1. Check Correlation Coefficient

The correlation coefficient is a statistical quantity that measures the degree of correla-
tion between two factors. If the correlation coefficient has a value in the range [−1, 0), that
indicates the negative correlation between those two factors (that is, if this value increases,
the other value decreases, and vice versa). If the correlation coefficient has a value in the
range (0, 1], that indicates the positive correlation between the two factors (that is, the
value of one factor increases, the value of the other factor also increases and vice versa))
The correlation coefficient has a value of 0, indicating that the two factors are independent
of each other.

290



Mathematics 2021, 9, 1977

Table 2. Data of 10 LOs in 2017 (Statistics 2021).

LOs IN1 IN2 IN3 IN4 OU1 OU2

LO1 7,094,537 11,291,217 2,954,817 344,481 3,990,532 581,436

LO2 836,177 1,309,071 574,311 45,393 777,930 152,573

LO3 320,833 377,548 144,037 15,200 181,182 21,162

LO4 353,880 570,430 172,822 70,447 716,293 40,947

LO5 211,893 232,389 121,307 19,214 159,959 17,665

LO6 322,166 676,834 539,185 42,987 679,417 62,766

LO7 1,421,715 2,737,361 1,882,482 59,715 2,136,424 211,414

LO8 260,283 736,057 1,806,305 24,310 1,886,382 44,213

LO9 201,262 340,814 797,138 14,774 824,846 24,904

LO10 1,709,546 2,479,002 895,119 60,881 1,302,883 263,828

Table 3. Data of 10 LOs in 2018 (Statistics 2021).

LOs IN1 IN2 IN3 IN4 OU1 OU2

LO1 6,528,982 9,984,063 1,739,451 320,526 2,707,556 1,900,250

LO2 1,218,676 1,655,980 834,979 61,303 1,054,283 158,895

LO3 330,438 392,029 175,367 16,914 219,561 27,751

LO4 407,014 707,326 202,781 71,644 869,055 54,172

LO5 208,490 226,436 121,974 19,810 158,488 14,726

LO6 340,517 609,841 528,232 42,381 659,418 60,549

LO7 1,625,789 3,166,212 2,089,885 68,910 2,333,136 235,012

LO8 340,219 744,914 1,608,770 21,849 1,676,896 33,710

LO9 210,991 354,157 907,519 13,078 941,690 24,372

LO10 1,944,570 2,489,083 1,198,472 63,187 1,694,460 354,245

Table 4. Data of 10 LOs in 2019 (Statistics 2021).

LOs IN1 IN2 IN3 IN4 OU1 OU2

LO1 6,567,257 10,119,907 1,630,141 330,636 2,642,914 613,569

LO2 1,254,682 1,827,544 889,647 67,209 1,108,933 132,739

LO3 335,807 427,116 225,370 20,254 271,911 29,377

LO4 445,005 538,935 136,653 14,237 845,985 44,877

LO5 195,483 213,861 125,466 18,317 161,096 16,251

LO6 359,439 626,332 548,740 54,609 701,657 68,593

LO7 1,947,165 3,310,259 2,067,261 80,137 2,348,544 225,324

LO8 356,345 716,298 1,463,866 19,708 1,519,304 19,795

LO9 211,456 340,901 871,202 14,559 899,915 18,788

LO10 2,070,078 2,393,245 1,355,854 65,611 1,792,751 285,795
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Table 5. Data of 10 LOs in 2020 (Statistics 2021).

LOs IN1 IN2 IN3 IN4 OU1 OU2

LO1 6,594,929 9,834,544 1,656,082 341,474 2,605,666 440,476

LO2 1,335,797 2,094,551 952,285 67,886 1,191,667 146,598

LO3 338,248 418,484 237,067 24,904 282,084 26,660

LO4 482,381 702,041 171,784 19,294 1,203,173 82,333

LO5 200,204 220,371 134,019 19,509 170,252 17,861

LO6 356,895 652,319 601,216 57,627 768,721 78,060

LO7 2,346,510 3,919,585 3,111,468 98,228 3,421,254 321,629

LO8 355,180 917,042 2,420,329 24,450 2,471,666 8557

LO9 220,936 402,607 1,162,837 20,349 1,202,207 23,191

LO10 2,170,698 2,458,144 1,239,556 73,458 1,688,865 296,404

Based on the results obtained in Table 6, the values of correlation coefficients between
factors are all positive (+). This result reflects that the factors used in the study have a
positive relationship with each other (that is, when the input factors increase, the output
factors also increase accordingly). In particular, the values of the correlation coefficients in
this study are mostly greater than 0.5, showing that the factors have a strong correlation
with each other [25]. This result confirms that the factors used in the study satisfy the
correlation conditions to serve as a basis for research and analysis.

Table 6. Correlation coefficient (calculated by researcher).

IN1 IN2 IN3 IN4 OU1 OU2 IN1 IN2 IN3 IN4 OU1 OU2

2017 2018

IN1 1.0000 1.0000
IN2 0.9979 1.0000 0.9948 1.0000
IN3 0.7858 0.8175 1.0000 0.5549 0.6024 1.0000
IN4 0.9800 0.9793 0.7424 1.0000 0.9732 0.9734 0.4506 1.0000
OU1 0.8780 0.9022 0.9762 0.8546 1.0000 0.7591 0.7937 0.9340 0.6936 1.0000
OU2 0.9655 0.9652 0.7909 0.9183 0.8771 1.0000 0.9893 0.9835 0.4880 0.9829 0.7005 1.0000

2019 2020
IN1 1.0000 1.0000
IN2 0.9953 1.0000 0.9938 1.0000
IN3 0.5761 0.5944 1.0000 0.3875 0.4404 1.0000
IN4 0.9809 0.9866 0.5046 1.0000 0.9798 0.9832 0.3235 1.0000
OU1 0.7904 0.7977 0.9237 0.7164 1.0000 0.5850 0.6282 0.9349 0.5102 1.0000
OU2 0.9859 0.9717 0.6146 0.9500 0.8191 1.0000 0.9128 0.8955 0.4863 0.8391 0.6714 1.0000

3.2. Malmquist Productivity Index Results

The authors use the Malmquist productivity index to assess the impact of the COVID-
19 pandemic on the business situation of logistics enterprises in Vietnam in the period
2017–2020. The results are as shown in Table 7 and Figure 11 below.

Since the end of 2019, the COVID-19 pandemic has forced countries around the world
to apply measures to prevent the spread of the disease. These include restricting logistics
activities, including the export and import activities at borders. This has had a heavy
impact on logistics activities, disrupting supply chains and international trade flows. Many
businesses had to suspend operations, causing a backlog of goods in warehouses, factories,
and distribution centers, and reduced volume of goods in circulation. At the same time,
the storage costs of goods increased, especially goods in cold storage and fresh food. This
made the cost of transportation and logistics services more expensive.
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Table 7. Malmquist results (calculated by researcher).

Malmquist 2017 => 2018 2018 => 2019 2019 => 2020 Average

LO1 1.1643 0.7163 0.7235 0.8680
LO2 0.7853 0.8382 1.0542 0.8926
LO3 0.9747 0.9007 0.9371 0.9375
LO4 1.0368 1.5156 1.2058 1.2527
LO5 1.0256 1.1056 0.9853 1.0388
LO6 0.9705 1.0628 1.1078 1.0470
LO7 1.0054 0.9615 1.4105 1.1258
LO8 0.8538 0.9284 1.1514 0.9779
LO9 1.0732 0.9243 0.9857 0.9944

LO10 1.1240 1.0037 0.9866 1.0381
Average 1.0014 0.9957 1.0548 1.0173

Max 1.1643 1.5156 1.4105 1.2527
Min 0.7853 0.7163 0.7235 0.8680
SD 0.1149 0.2134 0.1824 0.1132

Figure 11. Malmquist results (source: researcher).

Research results show that logistics businesses operating in the field of transportation
have been heavily affected by the COVID-19 pandemic, so the business situation fluctuates
sharply. Specifically, Malmquist LO1 decreased from 1.1643 in the period 2017–2018 to
0.7235 in the period 2019–2020; Malmquist LO5 decreased from 1.0256 for 2017–2018 to
0.9853 for 2019–2020; Malmquist LO9 decreased from 1.0732 for the period 2017–2018 to
0.9857 for the period 2019–2020; Malmquist LO10 decreased from 1.1240 for 2017–2018 to
0.9866 for 2019–2020. However, there are a number of logistics enterprises still operating
effectively, including MalmquistLO4(2019–2020) = 1.2058; MalmquistLO6(2019–2020) = 1.1078;
MalmquistLO7(2019–2020) = 1.4105; MalmquistLO8(2019–2020) = 1.1514. Basic logistics service
businesses include the management of freight services, warehousing services, and logistics
network design. Therefore, depending on the line of each business, the level of impact
of the COVID-19 pandemic is different. According to the business profile, the above
businesses all have the following main areas: bonded warehouse services, container freight
station warehouses, cold storage, warehousing, loading and unloading, storage of import
and export goods and services, freight forwarding, customs clearance, shipping agents and
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cargo brokers. Some logistics enterprises have large warehouse systems, and a cold storage
system to store fresh food and special goods.

3.3. Super-Slacks-Based Model Results
3.3.1. Results before Alliance

In this study, the authors used the Super-SBM model to evaluate efficiency and rank
the logistics enterprises in Vietnam in the period of 2019–2020. The results show that, even
during the pandemic, there are still businesses that operate very effectively: RankLO4 = 1
(ScoreLO4 = 3.2525), RankLO9 = 2 (ScoreLO9 = 1.5320), RankLO8 = 3 (ScoreLO8 = 1.3031).
However, there are businesses that have been heavily affected by the COVID-19 pandemic,
so their operations are not effective: RankLO2 = 9 (ScoreLO2 = 0.5554); RankLO3 = 10
(ScoreLO3 = 0.4432).

The authors used the results in Table 8 and Figure 12 as a basis for selecting enterprises
to make alliances with other enterprises. If we choose businesses that have not achieved
business efficiency in this period (LO2, LO3), it is difficult to convince other businesses
to implement the alliance. Therefore, the authors have chosen LO10 (Vietnam container
shipping joint stock corporation) as a target enterprise to engage in negotiations with other
enterprises to implement alliances in order to realize strategic goals and support each
other for mutual development. The authors chose LO10 as the target enterprise. In 2020,
LO10 still had good business results: Rank LO10 = 5 (Score LO10 = 1.2242). LO10 in Hai
Phong city was established in 1985, specializing in logistics and container agency services,
shipping agents, warehouse business, yards, transport of import and export goods, cargo
projects, goods in transit, and so on. When participating in negotiations to form alliances
with other businesses, this enterprise will have many advantages and a high probability
of success.

3.3.2. Results after Alliance

After selecting LO10 as the target enterprise, the authors combined it with nine other
businesses to create virtual alliances. Then, the authors evaluated the business performance
of these alliances.

From the results in Table 9 and Figure 13, it is shown that, when implementing the
LO10 alliance with other enterprises, it can bring better business performance for those
enterprises. However, there are also alliances of LO10 with other businesses that do not
achieve better business performance. The authors divided enterprises into two groups of
alliances as follows:

Group 1: The alliances are not really suitable, as they have not brought good business
results (shown in Table 10). Specifically, those alliances are: LO9 + LO10; LO2 + LO10;
LO5 + LO10; LO3 + LO10. These alliances make businesses less efficient. Therefore, these
alliances are not recommended.

Group 2: These alliances bring good business results for enterprises (shown in Table 11).
Specifically, those alliances are: LO7 + LO10; LO1 + LO10; LO4 + LO10; LO8 + LO10; LO6 + LO10.
These alliances are therefore encouraged.

Among the above alliances, the alliance between LO7 and LO10 achieved the highest
business efficiency (RankLO7+LO10 = 4/19) (ScoreLO7+LO10 = 1.2060). LO7 (Transimex corpo-
ration transimex) in Ho Chi Minh City was established in 1983, specializing in import and
export goods transportation, bonded warehouse services, CFS warehouse, cold storage,
warehousing, loading and unloading, and storing goods. The location is convenient; so,
in the future, LO7 will become one of the most competitive enterprises in the market.
Moreover, the geographical advantage of these enterprises can help the parties save many
logistical costs (LO10 in the north, LO7 in the south). These two businesses have the
advantage of all forms of transportation.
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Table 8. Rank and score before alliances (calculated by researcher).

LOs Score Rank

LO1 1.1969 6

LO2 0.5554 9

LO3 0.4432 10

LO4 3.2525 1

LO5 1.0729 8

LO6 1.1042 7

LO7 1.2964 4

LO8 1.3031 3

LO9 1.5320 2

LO10 1.2242 5
Average 1.2981

Max 3.2525
Min 0.4432

St Dev 0.7646

Figure 12. Score efficiency of LOs before alliances (source: researcher).

By road: LO10 in Hai Phong City–LO7 in HCM City which is 1654.3 km apart (via
National Highway 1A).

Waterway: LO10 is near Hai Phong port; LO7 is near Cat Lai port in Ho Chi Minh City.
By air: LO10 is near Cat Bi airport, while LO7 is near Tan Son Nhat airport.
By railway: LO10 is near Hai Phong station, LO7 is near Saigon station.
Therefore, the alliance of LO10 and LO7 is very convenient regarding all forms of

transportation. These businesses can maximize each other’s advantages, forming a win–
win relationship.

According to statistics, logistics costs in Vietnam are still very high because about
70–75% of transport routes only carry one-way goods. When LO7 and LO10 create an
alliance, they can exploit freight in the opposite direction and save a lot of costs, such as
material costs, personnel costs, road and bridge costs, and the cost of vehicle wear and
tear. The alliance helps businesses access and share customers, increase revenue, and take
advantage of economies of scale. This alliance will increase the competitive advantage for
both parties. This is considered a reasonable tactic for LO7 and LO10 during this pandemic
period, and today’s rapidly changing era of science, technology, and engineering. When
implementing the alliance, businesses will solve difficult problems during and after the
pandemic, aiming for sustainable development together. As every business is a cell of
the economy, any business that survives and prospers will create a great impetus for the
national and world economy to recover and develop rapidly.
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Table 9. Performance ranking of virtual LOs (calculated by researcher).

DMU Score Rank

LO4 3.1323 1

LO9 1.5320 2

LO8 1.2891 3

LO7 + LO10 1.2060 4

LO1 + LO10 1.1506 5

LO4 + LO10 1.1447 6

LO6 1.1042 7

LO5 1.0729 8

LO8 + LO10 1.0569 9

LO6 + LO10 1.0098 10

LO7 1.0051 11

LO10 1.0019 12

LO1 1.0009 13

LO9 + LO10 0.8816 14

LO2 + LO10 0.8149 15

LO5 + LO10 0.7543 16

LO3 + LO10 0.7444 17

LO2 0.4930 18

LO3 0.4432 19

Figure 13. Score efficiency of virtual alliances (source: researcher).

Table 10. The alliances are not really suitable (calculated by researcher).

Virtual Alliance
Rank of LO

Objectives (1)
Rank of Virtual

Alliance (2)
Difference (1)–(2)

LO9 + LO10 12 14 (−2)

LO2 + LO10 12 15 (−3)

LO5 + LO10 12 16 (−4)

LO3 + LO10 12 17 (−5)
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Table 11. The good alliances (calculated by researcher).

Virtual Alliance
Rank of LO

Objectives (1)
Rank of Virtual

Alliance (2)
Difference (1)–(2)

LO7 + LO10 12 4 8

LO1 + LO10 12 5 7

LO4 + LO10 12 6 6

LO8 + LO10 12 9 3

LO6 + LO10 12 10 2

3.4. Grey Forecasting Results

In this study, the authors used the GM (1, 1) model to forecast the business situation
of two enterprises selected to implement a strategic alliance. This forecast result provides
a solid basis for managers to make decisions using a complete picture of the business
situation of partners in the period 2021–2024. The authors used the data of IN1 of LO7
to explain in detail the calculation steps of the forecast data of enterprises. The steps to
calculate the total forecast are performed as follows:

The statistics on IN1 of LO7 in the period 2017–2020 were used to build the original
value chain as follows:

X(0) = (1, 421, 715, 1, 625, 789, 1, 947, 165, 2, 346, 510)

The authors use the cumulative addition method to build the value chain of X(1) :⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

X(1)
(1)= X(0)

(1) = 1, 421, 715

X(1)
(2)= X(0)

(1) + X(0)
(2) = 3, 047, 504

X(1)
(3)= X(1)

(2) + X(0)
(3) = 4, 994, 669

X(1)
(4)= X(1)

(3) + X(0)
(4) = 7, 341, 179

X(1) = (1, 421, 715, 3, 047, 504, 4, 994, 669, 7, 341, 179)

The authors use the value chain of X(1) to calculate the mean Z(1):⎧⎪⎪⎨⎪⎪⎩
Z(1)
(2)= (1, 421, 715 + 3, 047, 504)× 0.5 = 2, 234, 609.5

Z(1)
(3)= (3, 047, 504 + 4, 994, 669)× 0.5 = 4, 021, 086.5

Z(1)
(4)= (4, 994, 669 + 7, 341, 179)× 0.5 = 6, 167, 924.0

After calculating the mean Z(1), the authors set up the following system of equations:⎧⎨⎩
3, 047, 504 + 2, 234, 609.5× a = b
4, 994, 669 + 4, 021, 086.5× a = b
7, 341, 179 + 6, 167, 924.0× a = b

From the values in the above system of equations, the authors set up the matrices and
find the coefficients a, b by the method of least squares:

B =

⎡⎣ −2, 234, 609.5 1
−4, 021, 086.5 1
−6, 167, 924.0 1

⎤⎦; YN =

⎡⎣ 3, 047, 504
4, 994, 669
7, 341, 179

⎤⎦;
[

a
b

]
= (B T B)(−1)BTYN =

[ −0.1833
1, 213, 958

]
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With the coefficients a, b, the authors built the equation of the GM (1, 1) model:

dx(1)
(k)

d(k)
− 0.1833x(1)

(k)= 1, 213, 958

The formula for calculating the forecast values is set up as follows:

X̂(1)
(k+1) = 8, 043, 514.77× e0.1833k − 6, 621, 799.77

Substituting the values of k in turn, the authors obtain the values of X̂(1)
(k+1) as in Table 12.

Table 12. Values of X̂(1)
(k+1).

k 0 1 2 3 4 5 6 7

X̂(1)
(k+1)

1,421,715 3,040,132.07 4,984,187.10 7,319,400.97 10,124,477.83 13,493,957.75 17,541,402.96 22,403,225.28

By the same calculation methods, the authors obtain forecast values that reflect the
business situation of logistics enterprises participating in the strategic alliance in the period
2021–2024, which are shown in Tables 13 and 14, below.

To ensure the reliability of the forecast results, the authors used MAPE to recheck
and the results are as follows: MAPELO7 = 3.96%; MAPELO10 = 2.06%. This result shows
that the predictive values have very high accuracy (<10%). The forecast results provide
managers of enterprises with an overview of the business situation of enterprises in the
period 2021–2024. Therefore, managers of enterprises can use the forecast results in this
study as a solid basis for making decisions about implementing alliances to bring high
results for the business and sustainable development.

The cumulative method is used to calculate the forecast values below:

X̂(0)
(1) = X(1)

(1) = 1, 421, 715

X̂(0)
(2) = X̂(1)

(2) − X̂(1)
(1) = 1, 618, 417.07

X̂(0)
(3) = X̂(1)

(3) − X̂(1)
(2) = 1, 944, 055.03

X̂(0)
(4) = X̂(1)

(4) − X̂(1)
(3) = 2, 335, 213.87

X̂(0)
(5) = X̂(1)

(5) − X̂(1)
(4) = 2, 805, 076.87

X̂(0)
(6) = X̂(1)

(6) − X̂(1)
(5) = 3, 369, 479.92

X̂(0)
(7) = X̂(1)

(7) − X̂(1)
(6) = 4, 047, 445.21

X̂(0)
(8) = X̂(1)

(8) − X̂(1)
(7) = 4, 861, 822.33

Table 13. Forecast results of LO7 (calculated by researcher).

Year IN1 IN2 IN3 IN4 OU1 OU2

2021 2,805,076.87 4,303,481.46 3,711,574.61 1,16,408.90 4,053,514.37 3,66,039.62

2022 3,369,479.92 4,808,990.52 4,654,061.51 1,39,347.27 5,023,131.95 4,37,167.59

2023 4,047,445.21 5,373,879.28 5,835,875.82 1,66,805.63 6,224,686.10 5,22,116.97

2024 4,861,822.33 6,005,122.78 7,317,790.39 1,99,674.67 7,713,657.04 6,23,573.51

298



Mathematics 2021, 9, 1977

Table 14. Forecast results of LO10 (calculated by researcher).

Year IN1 IN2 IN3 IN4 OU1 OU2

2021 1,719,878.32 1,304,769.41 78,465.61 256,273.93 2,415,700.90 2,297,303.85

2022 1,717,145.55 1,325,379.86 84,760.31 232,672.22 2,400,308.87 2,426,501.12

2023 1,714,417.13 1,346,315.89 91,559.99 211,244.13 2,385,014.91 2,562,964.27

2024 1,711,693.04 1,367,582.62 98,905.16 191,789.47 2,369,818.40 2,707,101.93

4. Conclusions

The COVID-19 pandemic has greatly affected the production and business situation of
enterprises around the world. Enterprises in different industries and of different sizes have
different levels of influence. In this study, the authors used the Malmquist productivity
index to assess the impact of the pandemic on logistics enterprises in Vietnam and the
super-slack-based model to evaluate the rankings for businesses in two steps before and
after alliance implementation. The rankings are used to choose the optimal alliances for
logistics enterprises in Vietnam. The alliances can help businesses save on transportation
costs, loading and unloading costs, storage costs, and labor costs, while helping businesses
increase revenue and profit. The alliances can help businesses promote their strengths and
create competitive advantages. In addition, the authors used the Grey forecasting model
to provide managers of enterprises with a complete picture of their partners’ business
situation in the period 2021–2024 as a solid basis for decision making.

5. Discussion

The research has some limitations, due to legal policies, environmental conditions,
and weather, which affect the business situation of logistics enterprises. In addition, the
business strategy of an enterprise also depends on the cultural characteristics, the owner’s
views on the development strategy and the resources of the enterprise. So, in practice, to
implement this alliance, it is necessary to closely consider combining the above factors.
In the future, it will be necessary to combine these factors with the models used in the
research to obtain more comprehensive results.
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Abstract: The problem of randomized maximum entropy estimation for the probability density
function of random model parameters with real data and measurement noises was formulated. This
estimation procedure maximizes an information entropy functional on a set of integral equalities
depending on the real data set. The technique of the Gâteaux derivatives is developed to solve
this problem in analytical form. The probability density function estimates depend on Lagrange
multipliers, which are obtained by balancing the model’s output with real data. A global theorem
for the implicit dependence of these Lagrange multipliers on the data sample’s length is established
using the rotation of homotopic vector fields. A theorem for the asymptotic efficiency of randomized
maximum entropy estimate in terms of stationary Lagrange multipliers is formulated and proved.
The proposed method is illustrated on the problem of forecasting of the evolution of the thermokarst
lake area in Western Siberia.

Keywords: randomized maximum entropy estimation; probability density functions; Lagrange
multipliers; Lyapunov-type problems; implicit function; rotation of vector field; asymptotic efficiency;
thermokarst lakes; forecasting

1. Introduction

Estimating the characteristics of models is a very popular and, at the same time, im-
portant problem of science. This problem arises in applications with unknown parameters,
which have to be estimated somehow using real data sets. In particular, such problems
have turned out to be fundamental in machine learning procedures [1–5]. The core of these
procedures is a parametrized model trained by statistically estimating the unknown param-
eters based on real data. Most of the econometric problems associated with reconstructing
functional relations and forecasting also reduce to estimating the model parameters; for
example, see [6,7].

The problems described above are solved using traditional mathematical statistics
methods, such as the maximum likelihood method and its derivatives, the method of
moments, Bayesian methods, and their numerous modifications [8,9].

Among the mathematical tools for parametric estimation mentioned, a special place is
occupied by entropy maximization methods for finite-dimensional probability distribu-
tions [10,11].

Consider a random variable x taking discrete values x1, . . . , xn with probabilities
p1, . . . , pn, respectively, and r functions f1(x), . . . , fr(x) of this variable with discrete values.
The discrete probability distribution function p(x) = {p1(x1), . . . , pn(xn)} is defined as
the solution of the problem

H(p) = −
n

∑
i=1

pi ln pi,
n

∑
i=1

pi fk(xi) ≤ qk, k = 1, . . . , r,

Mathematics 2021, 9, 548. https://doi.org/10.3390/math9050548 https://www.mdpi.com/journal/mathematics301
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where q1, . . . , qr are given constants.
If fk(xi) ≡ xk

i , then the system of equalities specifies constraints on the kth moments
of the discrete random variable x. In the case of equality constraints, some modifications
of this problem adapted to different applications were studied in [10–13]. Since this
problem is conditionally extremal, it can be solved using the Lagrange method, which
leads to a system of equations for Lagrange multipliers. The latter often turn out to be
substantially nonlinear functions, and hence, rather sophisticated techniques are needed
for their numerical calculation [14,15].

In the case of inequality constraints, this problem belongs to the class of mathematical
programming problems [16].

The entropy maximization principle is adopted to estimate the parameters of a priori dis-
tributions when constructing Bayesian estimates [17,18] or maximum likelihood estimates.

The parameters of probability distributions (continuous or discrete) can be estimated
using various mathematical statistics methods, including the method of entropy maxi-
mization. Their efficiency in hydrological problems was compared in [19]. Apparently,
the method of entropy maximization yields the best results in such problems due to the
structure of hydrological data.

The problem of estimating some model characteristics on real data was further de-
veloped in connection with the appearance of new machine learning methods, called
randomized machine learning (RML) [20]. They are based on models with random param-
eters, and it is necessary to estimate the probability density functions of these parameters.
The estimation algorithm (RML algorithm) is formulated in terms of functional entropy-
linear programming [21].

The original statement of this problem was to estimate probability density functions
(PDFs) in RML procedures. However, in recent times, a more general context has been
assumed—the method of maximizing entropy functionals for constructing estimates of
continuous probability density functions using real data (randomized maximum entropy
(RME) estimation).

In this paper, the general RME estimation problem is formulated; its solutions, numer-
ical algorithms, and the asymptotic properties of the solutions are studied. The theoret-
ical results are illustrated by an important application—estimating the evolution of the
thermokarst lake area in Western Siberia.

2. Statement of the RME Estimation Problem

Consider a scalar continuous function ϕ(x, θ) with parameters θ = {θ1, . . . , θn}. As-
sume that this function is a characteristic of an object’s model with an input x and an
output ŷ. Let x(r) = {x[1], . . . , x[r]} and y(r) = {y[1], . . . , y[r]} be given measurements
at time t = 1, . . . , r. Note that the latter measurements are obtained with random vector
errors ξ = {ξ[1], . . . , ξ[r]}, which are generally different for different time points.

Thus, after r measurements, the model and observations are described by the equations

ŷ = Γ(x(r), θ), (1)

v̂ = ŷ + ξ,

where the vector function Γ(x(r), θ) has the components ϕ(x[t], θ), where t = 1, . . . , r are
the time points; v̂ denotes the observed output of the model containing measurement
noises of the object’s output.

Let us introduce a series of assumptions necessary for further considerations.

• The random parameters are θ ∈ Θ ⊂ Rn, Θ = [θ−, θ+], where [•, •] is a vectorial
segment in the space Rn [22].

• The PDF P(θ) of the parameters is continuously differentiable on its support Θ.
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• The random noise is ξ ∈ Ξ ⊂ Rr, where

Ξ =
r⊗

t=1

Ξt, Ξt = [ξ−t , ξ+t ]. (2)

• The PDF Q(ξ) of the measurement noises is continuously differentiable on the support
Ξ and also has the multiplicative structure

Q(ξ) =
r

∏
t=1

Qt(ξ[t]). (3)

The estimation problem is stated as follows: Find the estimates of the PDFs P∗(θ) and
Q∗(ξ) that maximize the generalized information entropy functional

H[P(θ), Q(ξ)] = −
∫

Q
P(θ) ln P(θ)dθ −

r

∑
t=1

∫
Ξt

Qt(ξ[t]) ln Qt(ξ[t])⇒ max (4)

subject to
—the normalization conditions of the PDFs given by∫

Θ
P(θ)dθ = 1;

∫
Ξt

Qt(ξ[t])dξ[t] = 1, t = 1, . . . , r; (5)

and
—the empirical balance conditions

Φ[P(θ), Q(ξ)] = y(r), (6)

Φ[P(θ), Q(ξ)] = {Φ1[P(θ), Q(ξ)], . . . , Φr[P(θ), Q(ξ)]}
Φt[P(θ), Q(ξ)] =

∫
Θ

ϕ(x[t], θ)P(θ)dθ +
∫

Ξt
Qt(ξ[t])ξ[t]dξ[t], t = 1, . . . , r,

where y(r) = {y[1], . . . , y[r]} are the measured data on the object’s output. We will denote
the problems (4)–(6) as the RME estimate.

Problems (4)–(6) are of the Lyapunov type [23,24], as they have an integral functional
and also integral constraints.

3. Optimality Conditions

The optimality conditions in optimization problems of the Lyapunov type are for-
mulated in terms of Lagrange multipliers. In addition, the Gâteaux derivatives of the
problem’s functionals are used [25].

The Lagrange functional is defined by

L[P(θ), Q(ξ), μ, η, λ] = H[P(θ), Q(ξ)] + μ

(
1−
∫

Θ
P(θ)dθ

)
+

+
r

∑
t=1

ηt

(
1−
∫

Ξt
Qt(ξ[t])dξ[t]

)
+ (7)

+
r

∑
t=1

λt

(
y[t]−

∫
Θ

P(θ)ϕ(x[t], θ)dθ −
∫

Ξt
Qt(ξ[t])ξ[t]dξ[t]

)
.

Let us recall the technique for obtaining optimality conditions in terms of the Gâteaux
derivatives [26].
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The PDFs P(θ) and Qt(ξ[t]), (t = 1, . . . , r), are continuously differentiable, i.e., belong
to the class C1. Choosing arbitrary functions h(θ) and wt(ξ[t]), (t = 1, . . . , r), from this
class, we represent the PDFs as

P(θ) = P∗(θ) + αh(θ); Qt(ξ[t]) = Q∗
t (ξ[t]) + βtwi(ξ[t]), t = 1, . . . , r,

where the PDFs P∗(θ) and Q∗
t (ξ[t]) are the solutions of problems (4)–(6), and α and

β1, . . . , βr are parameters.
Next, we substitute the above representations of the PDFs into (7). If all functions

from C1 are assumed to be fixed, the Lagrange functional depends on the parameters α and
β1, . . . , βr. Then, the first-order optimality conditions for the functional (7) in terms of the
Gâteaux derivative take the form

dL
dα

∣∣∣∣
(α,β)=0

= 0,
∂L
∂βt

∣∣∣∣
(α,β)=0

= 0, t = 1, . . . , r.

These conditions lead to the following system of integral equations:∫
Θ

h(θ)Ω(θ)dθ = 0,
∫

Ξt
wt(ξ[t])Υt(ξ[t])dξ[t] = 0, t = 1, . . . , r,

which are satisfied for any functions h(θ) and w1(ξ[1]), . . . , wr(ξ[r]) from C1 if and only if

Ω(θ) = 0, Υt(ξ[t]) = 0, t = 1, . . . , r.

The optimality conditions for problems (4)–(6) are given by

Ω(θ) = ln P∗(θ) + 1− μ−
s

∑
t=1

λt ϕ(x[t], θ) = 0, (8)

Υt(ξ[t]) = ln Q∗
t (ξ[t]) + 1− ηt − λtξ[t] = 0, t = 1, . . . , r. (9)

Hence, the entropy-optimal PDFs of the model parameters and measurement noises
have the form

P∗(θ | y(r), x(r)) =
exp
(
−∑r

j=1 λj(y
(r), x(r))ϕ(x[j], θ)

)
P(λ(y(r), x(r))

,

Q∗
t (ξ[t] | y(r), x(r)) =

exp
(

λt(y(r), x(r))ξ[t]
)

Qt(λt(y(r), x(r))
, t = 1, . . . , r, (10)

where

P(λ(y(r), x(r)) =
∫

Θ
exp

(
−

r

∑
j=1

λj(y
(r), x(r))ϕ(x[j], θ)

)
dθ,

Qt(λt(y
(r), x(r)) =

∫
Ξt

exp
(

λt(y
(r), x(r))ξ[t]

)
dξ[t], t = 1, . . . , r. (11)

Due to equalities (10) and (11), the entropy-optimal PDFs are parametrized by the La-
grange multipliers λ1, . . . , λr, which represent the solutions of the empirical balance equations

G(λ(y(r), x(r)))

P(λ(y(r), x(r)))
+
Et(λt(y(r), x(r)))

Qt
(
λt(y(r), x(r))

) = y[t], t = 1, . . . , r, (12)
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where

G(λ(y(r), x(r))) =
∫

Θ
ϕ(x[t], θ) exp

(
−

r

∑
j=1

λj(y
(r), x(r))ϕ(x[j], θ)

)
dθ,

Et(λt(y
(r), x(r))) =

∫
Ξt

ξ[t] exp
(
−λt(y

(r), x(r))ξ[t]
)

dξ[t], t = 1, . . . , r. (13)

The solution λ∗(y(r), x(r)) of these equations depends on the sample (y(r), x(r)) used
for constructing the RME estimates of the PDFs.

4. Existence of an Implicit Function

The second term in the balance Equations (12) and (13) is the mean value of the noise
in each measurement t. The noises and their characteristics are often assumed to be equal
over the measurements:

ξ− ≤ ξ[t] ≤ ξ+, t = 1, . . . , r. (14)

Therefore, the mean value of the noise is given by

ξ̄ =
Et(λt(y(r), x(r)))

Qt
(
λt(y(r), x(r))

) , ξ− ≤ ξ̄ ≤ ξ+. (15)

The balance equations can be written as

Wt(λ | ỹ[t], x(r)) =
∫

Θ
(ϕ(x[t], θ)− ỹ[t]) exp

(
−

r

∑
j=1

λj(ỹ
(r), x(r))ϕ(x[j], θ)

)
dθ = 0,

t = 1, . . . , r, (16)

where
ỹ[t] = y[t]− ξ̄, ỹ(r) = {ỹ[1], . . . , ỹ[r]}. (17)

In the vector form, Equation (16) is described by

W(λ | ỹ(r), x(r)) = 0. (18)

Equation (21) defines an implicit function λ(ỹ(r), x(r)). The existence and properties
of this implicit function depend on the properties of the Jacobian matrix

Jλ(λ | ỹ(r), x(r)) =

[
∂Wt

∂λi
| (t, i) = 1, . . . , r

]
, (19)

which has the elements

∂Wt

∂λi
=
∫

Q
(ϕ(x[t], θ)− ỹ[t])ϕ(x[i], θ)

r

∑
j=1

exp

(
−

r

∑
j=1

λj ϕ(x[j], θ)

)
dθ. (20)

Theorem 1. Let the next conditions be valid (assume that):

• The function ϕ(x(r), θ) is continuous in all variables.
• For any (x(r), ỹ(r)) ∈ Rr × Rr,

det Jλ(λ | ỹ(r), x(r)) �= 0, (21)

lim
‖λ‖→∞

W(λ | ỹ(r), x(r)) = ±∞. (22)

Then, there exists a unique implicit function λ(ỹ(r), x(r), ) defined on Rr × Rr.
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Proof of Theorem 1. Due to the first assumption, the continuous function W(λ | ỹ(r), x(r))
induces the vector field Φ(ỹ(r) ,x(r))(λ) = W(λ | ỹ(r), x(r)) in the space Rr × Rr.

We choose an arbitrary vector u in Rr and define the vector field

Πu(λ) = Φ(ỹ(r) ,x(r))(λ)− u.

By condition (22), the field Πu(λ) with a fixed vector u has no zeros on the spheres
‖λ‖ = � of a sufficiently large radius �.

Hence, a rotation is well defined on the spheres ‖λ‖ = � of a sufficiently large radius
�. For details, see [27].

Consider the two vector fields

Πu(1) (λ) = Φ(ỹ(r) ,x(r))(λ)− u(1), Πu(2) (λ) = Φ(ỹ(r) ,x(r))(λ)− u(2).

These vector fields are homotopic on the spheres of a sufficiently large radius, i.e.,
the field

Ω(λ) = αΠu(1) (λ) + (1− α)Πu(2) (λ) = Φ(ỹ(r) ,x(r))(λ)− [αu(1) + (1− α)u(2)]

has no zeros on the spheres of a sufficiently large radius for any α ∈ [0, 1]. Homotopic
fields have identical rotations [27]:

γ(Πu(1) (λ)) = γ(Πu(2) (λ)).

The vector fields Πu(1) (λ) and Πu(2) (λ) are nondegenerate on the spheres of a suffi-
ciently large radius; in the ball ‖λ‖ ≤ �1 < �, however, each of them may have a number
of singular points. We denote by κ(u(1)) and κ(u(2)) the numbers of singular points of the
vector fields Πu(1) (λ) and Πu(2) (λ), respectively. As the vector fields are homotopic,

κ(u(1)) = κ(u(2)) = κ.

In view of (21), these singular points are isolated.
Now, let us utilize the index of a singular point introduced in [27]:

ind (λ0) = (−1)β(λ0),

where β(λ0) is the number of eigenvalues of the matrix Π′
u(λ

0) = Jλ(λ
0 | , ỹ(r), x(r)) with

the negative real part. By definition, the value of this index depends not on the magnitude
of β(λ0), but on its parity. Due to condition (21), all singular points have the same parity.
Really, Jλ(λ

0 | ỹ(r), x(r)) �= 0, and hence, for any ỹ(r), x(r) ∈ Rr × Rr, the eigenvalues of the
matrix Jλ(λ

0 | ỹ(r), x(r)) may move from the left half-plane to the right one in pairs only:
Real eigenvalues are transformed into pairs of complex–conjugate ones, passing through
the imaginary axis.

In view of this fact, the rotation of the homotopic fields (20) is given by

γ(Πu) = κ(−1)β,

where β is the number of eigenvalues of the matrix Π′
u(λ) for some singular point.

It remains to demonstrate that the vector field Πu(λ) has a unique singular point in
the ball ‖λ‖ ≤ �1 < �. Consider the equation

Πu(λ) = Φ(ỹ(r) ,x(r))(λ)− u = 0.

Assume that for each fixed pair (ỹ(r), x(r)), this equation has κ singular points, i.e., the
functions λ(1)(ỹ(r), x(r)), . . . , λ(κ)(ỹ(r), x(r)). Therefore, it defines a multivalued function
λ(ỹ(r), x(r)), whose κ branches are isolated (the latter property follows from the isolation of
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the singular points). Due to condition (21), each of the branches λ(i)(ỹ(r), x(r)) defines an
open set in the space Rr, and

κ⋃
i=1

λ(i)(ỹ(r), x(r)) = Rr.

This is possible if and only if κ = 1. Hence, for each pair (ỹ(r), x(r)) from Rr ×
Rr, there exists a unique function λ∗(ỹ(r), x(r)) for which the function W(λ | ỹ(r), x(r))
will vanish.

Theorem 2. Under the assumptions of Theorem 1, the function λ(ỹ(r), x(r)) is real analytical in
all variables.

Proof of Theorem 2. From (15), it follows that the function W(λ | ỹ(r), x(r)) is analytical
in all variables. Therefore, the left-hand side of Equation (15) can be expanded into the
generalized Taylor series [26], and the solution can be constructed in the form of the
generalized Taylor series as well. The power elements of this series are determined using a
recursive procedure.

5. Asymptotic Efficiency of RME Estimates

The RME estimate yields the entropy-optimal PDFs (10) for the arrays of input and
output data, each of size r. For the sake of convenience, consider the PDFs parametrized by
the exponential Lagrange multipliers z = exp(−λ). Then, equalities (10) take the form

P∗
(

θ, z(y(r), x(r))
)

=
∏r

j=1[zj(y
(r), x(r))]ϕ(x[j],θ)∫

Θ
∏r

j=1[zj(y(r), x(r))]ϕ(x[j],θ)dθ
,

Q∗
t (ξ[t], zt(y

(r), x(r))) =
[zt(y(r), x(r))]ξ[t]∫

Ξt

[zt(y(r), x(r))]ξ[t]dξ[t]
, t = 1, . . . , r. (23)

Consequently, the structure of the PDF significantly depends on the values of the
exponential Lagrange multipliers z, which, in turn, depend on the data arrays y(r) and x(r).

Definition 1. The estimates P∗(θ, z∗) and Q∗
t (ξ[t], z∗t ) are said to be asymptotically efficient if

lim
r→∞

P∗
(

θ, z(y(r), x(r))
)

= P∗(θ, z∗),

lim
r→∞

Q∗
t (ξ[t], zt(y

(r), x(r))) = Q∗
t (ξ[t], z∗t ), t = 1, . . . , r; (24)

where
z∗ = lim

r→∞
z(y(r), x(r)). (25)

Consider the empirical balance Equation (21), written in terms of the exponential
Lagrange multipliers:

Φt(z, ỹ(r), x(r)) =
∫

Θ

r

∏
j=1

[zj(ỹ
(r), x(r))]ϕ(x[j],θ)(ϕ(x[t], θ)− ỹ[t])dθ = 0, t = 1, . . . , r. (26)

As has been demonstrated above, Equation (26) defines an implicit analytical function
z = z(ỹ(r), x(r)) for (ỹ(r), x(r)) ∈ Rr × Rr.
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Differentiating the left- and right-hand sides of these equations with respect to ỹ(r)

and x(r) yields

∂z

∂ỹ(r)
= −

[
∂Φ
∂z

]−1 ∂Φ
∂ỹ(r)

, (27)

∂z

∂x(r)
= −

[
∂Φ
∂z

]−1 ∂Φ
∂x(r)

.

Then, passing to the norms and using the inequality for the norm of the product of
matrices [28], we obtain the equalities

0 ≤
∥∥∥∥ ∂z

∂ỹ(r)

∥∥∥∥ ≤
∥∥∥∥∥
[

∂Φ
∂z

]−1
∥∥∥∥∥
∥∥∥∥ ∂Φ

∂ỹ(r)

∥∥∥∥, (28)

0 ≤
∥∥∥∥ ∂z

∂x(r)

∥∥∥∥ ≤
∥∥∥∥∥
[

∂Φ
∂z

]−1
∥∥∥∥∥
∥∥∥∥ ∂Φ

∂x(r)

∥∥∥∥.

Both of the inequalities incorporate the norm of the inverse matrix
∥∥∥∥[ ∂Φ

∂z

]−1
∥∥∥∥.

Lemma 1. Let a square matrix A be nonsingular, i.e., det A �= 0. Then, there exists a constant
α > 1 such that

1
‖A‖ ≤ ‖A−1‖ ≤ α

‖A‖ . (29)

Proof of Lemma 1. Since the matrix A is nondegenerate, the elements a(−1)
ik of the inverse

matrix A−1 can be expressed in terms of the algebraic complement (adjunct) of the element
aki in the determinant of the matrix A [28]:

a(−1)
ik =

Aki
det A

, (k, i) = 1, . . . , r,

and they are bounded:
a(−1)

ik ≤ M < ∞, ‖A−1‖ < ∞.

Hence, there exists a constant α > 1 for which inequality (29) is satisfied.

Lemma 1 can be applied to the norm
∥∥∥∥[ ∂Φ

∂z

]−1
∥∥∥∥ of the inverse matrix. As a result,

(∥∥∥∥∂Φ
∂z

∥∥∥∥)−1
≤
∥∥∥∥∥
[

∂Φ
∂z

]−1
∥∥∥∥∥ ≤ α

(∥∥∥∥∂Φ
∂z

∥∥∥∥)−1
, (30)

where ∥∥∥∥∂Φ
∂z

∥∥∥∥ = r max
t,j

∣∣∣∣∣∂Φt

∂zj

∣∣∣∣∣. (31)

Lemma 2. Let
‖ ∂Φ

∂ỹ(r)
‖ ≤ � < ∞, ‖ ∂Φ

∂x(r)
‖ ≤ ω < ∞. (32)

Then,

lim
r→∞

‖ ∂z

∂ỹ(r)
‖ = lim

r→∞
‖ ∂z

∂x(r)
‖ = 0. (33)
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Proof of Lemma 2. According to (28), (31), and (32) we have:

‖ ∂z

∂ỹ(r)
‖ ≤ 1

r

(�

b

)
, ‖ ∂z

∂x̃(r)
‖ ≤ 1

r

(ω

b

)
,

where b = maxt,j

∣∣∣ ∂Φt
∂zj

∣∣∣.
Whence, it follows that for the sample length r → ∞, the norms of relevant Jacobians

tend to zero, and function z = z(ỹ(r), x(r)) tends to the vector z∗ (25).

6. Thermokarst Lake Area Evolution in Western Siberia: RME Estimation and Testing

Permafrost zones, which occupy a significant part of the Earth’s surface, are the locales
of thermokarst lakes, which accumulate greenhouse gases (methane and carbon dioxide).
These gases make a considerable contribution to global climate change.

The source data in studies of the evolution of thermokarst lake areas are acquired
through remote sensing of the Earth’s surface and ground measurements of meteorological
parameters [29,30].

The state of thermokarst lakes is characterized by their total area S[t] in a given
region, measured in hectares (ha), and the factors influencing thermokarst formations—the
average annual temperatures T[t], measured in Celsius (C◦), and the annual precipitation
R[t], measured in millimeters (mm), where t denotes the calendar year.

We used the remote sensing data and ground measurements of the meteorological
parameters for a region of Western Siberia between 65◦ N–70◦ N and 65◦ E–95◦ E that were
presented in [31]. We divided the available time series into two groups, which formed the
training collection L (t = 0, . . . , 24) and the testing collection T (t = 25, . . . , 35).

6.1. RME Estimation of Model Parameters and Measurement Noises

The temporal evolution of the lake area S[t] is described by the following dynamic
regression equation with two influencing factors, the average annual temperature T[t] and
the annual precipitation R[t]:

Ŝ[t] = a0 +
p

∑
k=1

akŜ[t− k] + a(p+1)T[t] + a(p+2)(R[t],

v̂[t] = Ŝ[t] + ξ[t]. (34)

The model parameters and measurement noises are assumed to be random and of the
interval type:

ak ∈ Ak = [a−k , a+k ], k = 0, dots, p + 2,

a = {a0, . . . , ap, ap+1, ap+2} ∈ A =
p+2⋃
k=0

Ak.

The probabilistic properties of the parameters are characterized by a PDF P(a).
The variable v̂[t] is the observed output of the model, and the values of the random

measurement noise ξ[t] at different time instants t may belong to different ranges:

ξ[t] ∈ Ξt = [ξ−[t], ξ+[t]], (35)

with a PDF Qt(ξ[t]), (t = 0, . . . , N), where N denotes the length of the observation inter-
val. The order p = 4 and the parameter ranges for the dynamic randomized regression
model (34) (see Table 1 below) were calculated based on real data using the empirical
correlation functions and the least-square estimates of the residual variances.
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Table 1. Parameter ranges for the model.

a a0 a1 a2 a3 a4 a5 a6

a− −0.50 −0.14 −0.49 −0.53 −0.44 0.46 0.19
a+ 0.07 0.52 0.20 0.19 0.19 1.14 0.88

For the training collection L, the model can be written in the vector–matrix form

Ŝ = Ŝa + a5T + a6R, (36)

v̂ = Ŝ + ξ,

with the matrix

Ŝ =

⎛⎜⎜⎝
1 Ŝ[3] · · · Ŝ[0]
1 Ŝ[4] · · · Ŝ[1]
· · · · · · · · · · · ·
1 Ŝ[23] · · · Ŝ[20]

⎞⎟⎟⎠ (37)

and the vectors Ŝ = [Ŝ[4], . . . , Ŝ[24]], T = [T[4], . . . , T[24]], R = [R[4], . . . , R[24]], and
v̂ = [v[4], . . . , v[24]]; ξ = [ξ[4], . . . , ξ[24]].

The RME estimation procedure yielded the following entropy-optimal PDFs of the
model parameters (36) and measurement noises:

P∗(a, λ) =
6

∏
k=0

exp(−qkak)

Pk(λ)
, Pk(λ) =

∫
A‖

exp(−qkak)dak,

q0 =
24

∑
t=4

λn, qk =
24

∑
t=p

λn S[t− k], k = 1, . . . , 4, (38)

q5 =
24

∑
t=4

λtT[t], q6 =
24

∑
t=p

λtR[t],

Q∗(ξ, λ̄) =
exp(−λ̄ ξ)

Q , Q =
∫

Ξ
exp(−λ̄ ξ)dξ, λ̄ =

q0

20
.

Note that S[t− k], T[t], and R[t] are the data from the collectionL. The two-dimensional
sections of the function P∗(a) and the function Q∗(ξ) are shown in Figure 1.

(a) Two-dimensional section of function P∗(a) (b) Function Q∗(ξ).
Figure 1. Two-dimensional section of the function P∗ and the function Q∗.

6.2. Testing

Testing was performed using the data from the collection T , which included the
lake area S[t], the average annual temperature T[t], and the annual precipitation R[t],
t = 25, . . . , 35. An ensemble of trajectories of the model’s observed output v[t] was
generated using Monte Carlo simulations and sampling of the entropy-optimal PDFs
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P∗(a), Q∗ξ on the testing interval. In addition, the trajectory of the empirical means v̄[t]
and the dimensions of the empirical standard deviation area were calculated.

The quality of RME estimation was characterized by the absolute and relative errors:

AbsErr =

√√√√ 35

∑
t=26

(S[t]− v̄[t])2 = 0.3446, (39)

RelErr =

√
∑35

t=26 (S[t]− v̄[t])2√
∑35

t=26 S2[t] +
√

∑35
t=26 v̄2[t]

= 0.0089. (40)

The generated ensemble of the trajectories is shown in Figure 2.

Figure 2. Ensemble of the trajectories (gray domain), the standard deviation area (dark gray domain),
the empirical mean trajectory, and the lake area data.

7. Discussion

Given an available data collection, the RME procedure allows estimation of the PDFs
of a model’s random parameters under measurement noises corresponding to the maxi-
mum uncertainty (maximum entropy). In addition, this procedure needs no assumptions
about the structure of the estimated PDFs or the statistical properties of the data and
measurement noises.

An entropy-optimal model can be simulated by sampling the PDFs to generate an
empirical ensemble of a model’s output trajectories and to calculate its empirical charac-
teristics (the mean and median trajectories, the standard deviation area, interquartile sets,
and others).

The RME procedure was illustrated with an example of the estimation of the parame-
ters of a linear regression model for the evolution of the thermokarst lake area in Western
Siberia. In this example, the procedure demonstrated a good estimation accuracy.

However, these positive features of the procedure were achieved with computational
costs. Despite their analytical structure, the RME estimates of the PDFs depend on Lagrange
multipliers, which are determined by solving the balance equations with the so-called inte-
gral components (the mathematical expectations of random parameters and measurement
noises). Calculating the values of multidimensional integrals may require appropriate
computing resources.
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8. Conclusions

The problem of randomized maximum entropy estimation of a probability density
function based on real available data has been formulated and solved. The developed esti-
mation algorithm (the RME algorithm) finds the conditional maximum of an information
entropy functional on a set of admissible probability density functions characterized by the
empirical balance equations for Lagrange multipliers. These equations define an implicit
dependence of the Lagrange multipliers on the data collection. The existence of such an
implicit function for any values in a data collection has been established. The function’s be-
havior for a data collection of a greater size has been studied, and the asymptotic efficiency
of the RME estimates has been proved.

The positive features of RME estimates have been illustrated with an example of esti-
mation and testing a linear dynamic regression model of the evolution of the thermokarst
lake area in Western Siberia with real data.
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Abstract: The paper is devoted to the guaranteeing estimation of parameters in the uncertain
stochastic nonlinear regression. The loss function is the conditional mean square of the estimation
error given the available observations. The distribution of regression parameters is partially unknown,
and the uncertainty is described by a subset of probability distributions with a known compact
domain. The essential feature is the usage of some additional constraints describing the conformity of
the uncertain distribution to the realized observation sample. The paper contains various examples
of the conformity indices. The estimation task is formulated as the minimax optimization problem,
which, in turn, is solved in terms of saddle points. The paper presents the characterization of both
the optimal estimator and the set of least favorable distributions. The saddle points are found via
the solution to a dual finite-dimensional optimization problem, which is simpler than the initial
minimax problem. The paper proposes a numerical mesh procedure of the solution to the dual
optimization problem. The interconnection between the least favorable distributions under the
conformity constraint, and their Pareto efficiency in the sense of a vector criterion is also indicated.
The influence of various conformity constraints on the estimation performance is demonstrated by
the illustrative numerical examples.

Keywords: mathematical modeling; estimation; minimax techniques; pareto optimization; regression
analysis; statistical uncertainty

1. Introduction

The problems of the heterogeneous parameter estimation in the regression under the
model uncertainty are considered intensively from the various points of view. The guar-
anteeing (or minimax) approach gives one of the most prospective tools to solve these
problems. For the proper formulation of an estimation problem in minimax terms one
usually needs:

• A description of the uncertainty set in the observation model;
• A class of the admissible estimators;
• An optimality criterion (a loss function) as a function of the argument pair “estimator–

uncertain parameter value”.

The problem is to find the estimator that minimizes the maximal losses over the whole
uncertainty set.

In the related literature, the parametric uncertainty set is specified either by geometric [1–7],
or by statistical [8–15] constraints. In the former case, the uncertain parameters are treated as non-
random but unknown ones lying within the fixed uncertainty set. In the latter case, the parameters
are supposed to be random with unknown distribution, and the uncertainty set is formed by all
the admissible distributions. In both cases, the guaranteeing estimation presumes a solution to
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a two-person game problem: the first player is “a statistician”, and the performer of the second,
“external” player role is dictated by the problem statement—it might be nature, another human or
device. Nevertheless, the guaranteeing approach suggests the unified prescription: finding the best
estimator under the worst behavior of the uncertainty. In practice, such a universality leads to a
loss of some prior information.

Let us explain this point by an example: the statistician knows that the source of the
uncertainty is nature. This means he/she “should bear in mind that nature, as a player, is
not aiming for a maximal win (that is, does not want us to suffer a maximal loss), and in
this sense, it is ‘impartial’ in the choice of strategies” [12]. Hence, in this case, the minimax
approach is too pessimistic and leads to cautious and coarse estimates. Even if we know the
second player is a human, this does not imply his/her “bad will” towards the statistician.
Hopefully, the second player has goal other than maximizing the loss of the statistician.
If the goal of the second player is known, one can change the estimation criterion and
transform the initial problem into a non-antagonistic game [16]. Otherwise, the statistician
can identify the goal indirectly, relying on the available observations. Hence, in the latter
case, it seems natural to introduce additional constraints to the uncertainty set, depending
on the realized observations.

The paper aims to present a solution to the minimax estimation problem under
additional constraints, which are determined by a conformity index of the uncertain
parameters to the available observations.

The paper is organized as follows. Section 2 contains the formal problem statement
with the conformity index based on the likelihood function. The section presents the
assumptions concerning the observation model, which guarantee the correctness of the
stated estimation problem and the existence of its solution. It also contains the comparison
of the problem with the recent investigations.

Section 3 provides the main result: the initial estimation problem is reformulated as
a game problem, which has a saddle point, defining the minimax estimator completely.
Moreover, the point is a solution to a dual finite-dimensional constrained optimization
problem, which is simpler than the initial minimax problem. The form of the minimax
estimator and properties of the least favorable distributions (LFD) is also included in
the section.

Section 4 is devoted to the analysis of the obtained results. First, a numerical algorithm
for the dual optimization problem solution is presented along with its accuracy charac-
terization. Second, some other conformity indices based on the empirical distribution
function (EDF) and sample mean are also introduced. Third, a new concept of the uncertain
distribution choice under a vector criterion is considered. The first criterion component,
being the loss function introduced in Section 2, describes the influence of the uncertainty on
the estimation quality. The second component is the conformity index, which characterizes
the accordance of the unknown distribution of γ and the realized observations Y = y. We
present an assertion that the LFD in the minimax estimation problem is Pareto-efficient in
the sense of the introduced vector criterion.

Section 5 presents the numerical examples, which illustrate the influence of various confor-
mity constraints on the estimation performance. Section 6 contains concluding remarks.

The following notations are used in this manuscript:

• B(S) is the Borel σ-algebra of the topological space S (is S is the whole space) or its
contraction to the set S (if S is a set of the topological space);

• col(A1, . . . , An) is a column vector formed by the ordinary or block components
A1, . . . , An;

• row(A1, . . . , An) is a row vector formed by the ordinary or block components A1, . . . , An;
• 〈a, b〉 is a scalar product of two finite-dimensional vectors;
• C(X ) is a set of all continuous real-valued functions with the domain X;
• ‖x‖ is the Euclidean norm of the vector x;
• PF{A} is the probability of the event A corresponding to the distribution F;
• EF{X} is a mathematical expectation of the random vector X with the distribution F;
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• conv(S) is a convex hull of the set S.

2. Statement of Problem

2.1. Formulation

Let us consider the following observation model:

Y = A(X, γ) + B(X, γ)V. (1)

Here:

• γ ∈ C ∈ B(Rm) is an unobservable random vector, having an unknown cumulative
distribution function (cdf) F;

• X ∈ Rn is a random unobservable vector with a known cdf Ψ(dx|γ) dependent on
the value of γ;

• Y ∈ Rk is a vector of observations;
• V ∈ Rk is a random vector of observation errors with the known probability density

function (pdf) φV(v);
• A(·) : C ×Rn → Rk is a nonrandom function characterizing the observation plant;
• B(·) : C ×Rn → Rk×k is a nonrandom function characterizing the observation error

intensity.

The observation model is defined on the family of the probability triplets {(Ω,F ,PF)}F∈F,
where:

• The outcome space Ω � C ×Rm ×Rk contains all admissible values of the compound
vector col(γ, X, V);

• σ-algebra is determined as F � B(C ×Rm ×Rk);
• The probability measures PF are determined as:

PF{γ ∈ dq, X ∈ dx, V ∈ dv} � Ψ(dx|q)F(dq)ϕV(v)dv. (2)

Using the generalized Bayes rule [17], it is easy to verify that the function:

L(y|q) �
∫
Rn
|det(B(q, x))|−1φV(B−1(q, x)(y− A(q, x)))Ψ(dx|q) (3)

is the conditional pdf of the observation Y given γ: PF{Y ∈ dy|γ = q} = L(y|q)dy.
Furthermore, the function:

L(y, F) �
∫
C
L(y|q)F(dq) (4)

defines the pdf of the observation Y under the assumption that the distribution law of γ
equals F:

L(y, F) =
PF{Y ∈ dy}

dy
=
∫
C
L(y|q)F(dq). (5)

Below in the paper we refer to the function L(y, F) as the sample conformity index based
on the likelihood function.

Our aim is to estimate the function h(γ, X) : C ×Rm → Rl of (γ, X), and the admissi-
ble estimators are the functions h(Y) : Rk → Rl of the available observations.

The loss function is a conditional mean square of estimate error given the available
observations:

J(h, F|y) � EF

{
‖h(γ, X)− h(Y)‖2|Y = y

}
, (6)

and the corresponding estimation criterion:

J∗(h|y) � sup
F∈FL

J(h, F|y) (7)
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characterizes the maximal loss for a fixed estimator h within the class FL of the uncertain
distributions of γ, for which L(y, F) � L.

The minimax estimation problem for the vector h is to find an estimator ĥ(·), such that:

ĥ(y) ∈ Argmin
h∈H

J∗(h|y), (8)

where H is a class of admissible estimators.

2.2. Necessary Assumptions Concerning Observation Model

To state the minimax estimation problem (8) properly and guarantee the existence of
its solution we have to make additional assumptions concerning the uncertainty of γ, the
observation model (1) and the estimated vector h:

(i) The set C is compact.
(ii) Let F be a family of all probability distributions with a support lying within the set C.

The set FL is itself a convex ∗–weakly compact [18] subset of F.
(iii) The constraint

L(y, F) � L (9)

holds for all F ∈ FL. The inequality (9) is called the conformity constraint of the level L
based on the likelihood function (or, shortly, likelihood constraint).

(iv) The set FL is nonempty.
(v) A(·, ·), B(·, ·), h(·, ·) ∈ C(C ×Rn).
(vi) pdf φV(v) > 0 for ∀v ∈ Rk; φV(v) ∈ C(Rk); the function Ψ(dx|q) is a regular version

of the conditional distribution for ∀ q ∈ C.
(vii) The observation noise is uniformly non-degenerate, i.e.,

min
(q,x)∈C×Rn

B(q, x)BT(q, x) � λ0 I > 0.

(viii) The inequalities ∫
Rk
‖v‖2φV(v)dv < ∞,

sup
q∈C

∫
Rn
‖A(q, x)‖2Ψ(dx|q) � KA < ∞,

sup
q∈C

∫
Rn
‖h(q, x)‖2Ψ(dx|q) � Kh < ∞

are true.
(ix) The set of admissible estimators H contains only the functions h(·) : Rk → Rl ,

for which:
sup
q∈C

∫
Rk
‖h(y)‖2L(y|q)dy < ∞. (10)

2.3. Argumentation

First, we discuss the sense of the assumptions in the subsection above.
Conditions (i)–(iv), describing the set FL, have the following interpretation.
The requirement for C to be compact (i.e., fulfillment of condition (i)) is standard

for the minimax estimation problems (see, e.g., [2,3]). In the case the prior information
about the vector γ limited by the knowledge of its domain C only, it is rather natural
to treat γ as a random vector with an unknown distribution F ∈ F. In practice we
often have some additional prior information concerning the moment characteristics
of γ, hence the entire uncertainty set F can be significantly reduced. If, for example,
μ(q) = col(μ1(q), . . . , μN(q)) : C → RN is a vector of convex moment functions, and
we know the vector μ � col(μ1, . . . , μN) ∈ RN of their upper bounds, then the set of ad-
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missible distributions takes the form
{

F ∈ F :
∫
C μj(q)F(dq) � μj, j = 1, N

}
. The ∗-weak

compactness and convexity can be easily verified for this subset. Further in the presenta-
tion, we do not stress the explicit form of the “total” constraints other than (9) forming the
subset FL: they should just guarantee the closure and convexity for FL. That is the sense of
condition (ii).

The conditional pdf L(y|q) (3) can also be treated as the likelihood function of the pa-
rameter γ, calculated at the point q given the observed sample Y = y. This likelihood value
reflects the relevance of the parameter value q to the realized observation y. By analogy,
the function L(y, F) can be considered as some generalization of the likelihood function
that evaluates the correspondence between the uncertain distribution F and the realized
observation y. The following lower and upper bounds for this value are obvious:

0 < L(y) � min
q∈C

L(y|q) � L(y, F) � max
q∈C

L(y|q) � L(y).

Below in the paper we suppose that the likelihood level L lies in [L(y),L(y)]. The
subset formed by constraint {F ∈ F :

∫
C L(y|q)F(dq) � L} is called a distribution subset

satisfying the likelihood conformity constraint of the level L. It is nonempty because it contains
at least all distributions with the support lying within the set {q ∈ C : L(y|q) � L}.

Adjusting the level L, we can vary the uncertainty set FL, choosing the distributions
F, which are more or less relevant to the realized observations Y = y. That is an essence
of condition (iii). Condition (iv) is obvious: all the constraints, defining the set FL, should
be feasible.

Condition (v) is technical: it provides correctness of a subsequent change of measure.
The condition is non-restricting because the broad class of the functions A, B and h can
be approximated by the continuous functions. Conditions (vi) and (vii) guarantee correct
utilization of the Fubini theorem and an abstract variant of the Bayes formula [19]. In
practice these conditions are usually valid. Condition (viii) guarantees finite variance for
both the observations and estimated vector independently of the distribution F.

Condition (ix) guarantees a finite variance of the estimate h(Y) independently of
F ∈ FL.

The solution to (8) is obvious in the case of the one-point set FL = {F}. This means
the distribution F of the parameter γ is known, and the initial problem is reduced to the
traditional optimal in the mean square sense (MS-optimal) estimation problem. The case of
the one-point set C = {q} is quite similar. In both cases the optimal estimator is completely
defined by the conditional expectation (CE): ĥ(y) = EF{h(γ, X)|Y = y} in the case of a
known distribution F, and ĥ(y) = E{q}{h(q, X)|Y = y} in the “one point” case.

In the general case of FL this result is inapplicable, because the CE EF{h(γ, X)|Y = y}
is a functional of the unknown distribution F.

The stated estimation problem has a transparent interpretation. First, under prior
uncertainty of the distribution F the replacement of the loss function (6) by guaranteeing
analog looks natural. Second, utilization of the CE in the criterion means that the desired
estimate should be calculated optimally for each observed sample. The criteria in the
form of the CE appear often in estimation and control problems [11,17,20–22]. Mostly,
the estimation is the preliminary stage in the solution to the optimization and/or con-
trol problem under incomplete information. The random disturbances/noises in such
observation systems represent:

• A result of natural (non-human) impacts;
• A randomized (or generalized) control [23,24], used in the dynamic system;
• A result of some uncontrollable (parasitic) input signals of “the external players”.

The impact of the two latter types is not necessarily the nonrandom functions of
available observations, but some “extra generated” random processes with distributions
dependent on the observations. This type of control is used in the areas of telecommuni-
cations [25,26], cellular networks [27], technical systems [28], etc. The proposed minimax
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criterion allows inhibiting the negative effect of the “additional randomness” in the external
signals (the third type of disturbances mentioned above) to the estimation quality.

The additional comprehension of the natural gaps, which are inherent to the mini-
max estimation paradigm, and the ways of their partial coverage can be revealed by the
following interpretation. It is well-known that in the case a minimax estimation problem
can be reduced to a two-person game with a saddle point, the minimax estimator is the
best one calculated for the LFD. The form of the LFD can be very strange and artificial.
Moreover, the conformity degree of the LFD to the realized observations can be too low.
Thus, the utilization of various sample conformity indices (particularly the ones based on
the likelihood function) admits all to describe this degree, restrict it from below, implicitly
reduce the distribution uncertainty set and exclude “exotic” variants of the LFDs.

Minimax estimation of the regression parameters is an investigation object in the
various settings. Mostly, the observation model is a linear function of the estimated param-
eters corrupted by an additive Gaussian noise. The optimality criterion is a mathematical
expectation of some loss function. In [29], the problem is solved by engaging the framework
of the fuzzy sets. The authors of [30,31] used the criterion other than the traditional mean
square one, and the estimated vector was random with the uncertain discrete distribution.
In [32], the Gaussian noises have an uncertain but bounded covariance matrix. The pa-
pers [33–35] are also devoted to the minimax Bayesian estimation in the regression under
various geometric and moment constraints of the estimated parameters. The criterion
functions are �p norms of the estimation errors.

The optimality criterion in the form of CE and the admissibility of nonlinear estimates
distinguish the proposed estimation problem from the recently considered ones [2,3,5–7,9].
A closely related problem considered in [11] has an essential difference. The uncertain
parameter in [11] was treated as unknown and nonrandom, and hence the initial minimax
problem could not be solved in terms of the saddle points. Moreover, the statistic uncer-
tainty in [11] gave no possibility to take into account any additional prior and posterior
information about the moment characteristics, conformity indices, etc. The paper [14] was
devoted to the particular case of the likelihood constraints only. An idea to use confidence
sets, calculated by the available statistical data, as the uncertainty sets of the distribution
moments was used in [36] for the conditionally-minimax prediction.

3. The Main Result

As is known, the CE is determined in a non-unique way, hence we should specify a
version of the CE so as to use it in further inferences. If the distribution F of the vector γ is
known, then the CE of an integrable random value h(γ, X) : C ×Rm → R can be calculated
by the abstract variant of the Bayes formula:

ĥF(y) =

∫
C×Rn h(q, x)|det(B(q, x))|−1φV(B−1(q, x)(y− A(q, x)))Ψ(dx|q)F(dq)∫
C×Rn |det(B(q′, x′))|−1φV(B−1(q′, x′)(y− A(q′, x′)))Ψ(dx′|q′)F(dq′)

, (11)

i.e., EF{h(γ, X)|Y = y} = ĥF(y) (11) PF − a.s. Below in the presentation we use the CE
version, defined by (11). It should also be noted that if ĥ(·) is the desired minimax estimator,
then the inclusion (8) must be satisfied point-wise for any sample y ∈ Rk.

Further in the paper the function:

J∗(F|y) � min
h∈H

J(h, F|y) = J(ĥF, F|Y) = ‖̂h‖2
F
(y)− ‖ĥF(y)‖2 (12)

is called the dual criterion for J∗ (7). All CEs in (12) are calculated by (11).
Using (3) for the calculation of L, the notation:

ν(q, x|y) � |det B(q, x)|−1φV(B(q, x)−1(y− A(q, x))), (13)
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and the CE version (11), the loss function (6) can be rewritten in the form:

J(h, F|y) =
∫
C×Rn ‖h(q, x)− h(y)‖2ν(q, x|y)Ψ(dx|y)F(dq)∫

C L(y|q′)F(dq′)
. (14)

As can be seen from (14), the function J(h, F|y) is neither convex nor concave in F,
which complicates the solution to the estimation problem (8). Moreover, the argument F
lies in the abstract infinite-dimensional space of the probability measures. Nevertheless,
the problem can be reduced to a standard finite-dimensional minimax problem with a
convex–concave criterion.

First, we introduce a new reference measure F′ and verify that the loss function (14)
represents a functional, which is linear in F′.

Let:

F′(F, dq|y) � L(y|q)F(dq)∫
C L(q′|y)F(dq′)

. (15)

Lemma 1. If conditions (i)–(ix) are satisfied, then the following assertions are true.

1. F′(F, dq|y) is a probability measure for ∀ y ∈ Rk, and F′(F, ·|y) ∼ F(·). The transformation
(15) is a bijection of F into itself, and its inversion F′′ has the form:

F′′(F′, dq|y) � L−1(y|q)F′(dq)∫
C L−1(q′|y)F′(dq′)

. (16)

2. The set F′L of all distributions obtained from FL by the transformation (15):

F′L � {F(·) : ∃ F ∈ FL, F(·) = F′(F, ·|y)} (17)

is convex and ∗-weakly closed.

The proof of Lemma 1 is given in Appendix A.
Applying the Fubini theorem and keeping in mind (11) and (15), we can rewrite the

loss function (14) in the form:

J(h, F|y) =
∫
C

∫
Rn ‖h(q,x)−h(y)‖2ν(q,x|y)Ψ(dx|y)

L(y|q) L(y|q)F(dq)∫
C L(q′|y)F(dq′)

=
∫
C

∫
Rn ‖h(q, x)− h(y)‖2ν(q, x|y)Ψ(dx|y)

L(y|q) F′(F, dq|y) = J(h, F′|y). (18)

To reduce the initial problem to some finite-dimensional equivalent, we also introduce
the vectors:

w(y|q) � col(w1(y|q), w2(y|q)) ∈ R�+1 :

w1(y|q) � EF

{
‖h(γ, X)‖2|Y = y, γ = q

}
=

∫
Rn
‖h(q, x)‖2ν(q, x)Ψ(dx|y)

L(y|q) ,

w2(y|q) � EF{h(γ, X)|Y = y, γ = q} =

∫
Rn

h(q, x)ν(q, x)Ψ(dx|y)
L(y|q) ;

(19)

w(F|y) � col(w1(F|y), w2(F|y)) ∈ R�+1 :

w1(F|y) � EF

{
‖h(γ, X)‖2|Y = y

}
=
∫
C

w1(y|q)F′(F, dq|y),

w2(F|y) � EF{h(γ, X)|Y = y} =
∫
C

w2(y|q)F′(F, dq|y),
(20)
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and their collections generated by the subsets C and FL:

W(C|y) � {w(y|q) : q ∈ C},
W(FL|y) � {w(F|y) : F ∈ FL}.

(21)

Here and below the notation H(y) also stands for the whole set of the estimate values
h ∈ H calculated for the fixed argument y.

The set W(FL|y) ∈ B(R�+1) is compact; moreover (see [37]), the inclusion W(FL|y) ⊆
conv(W(C|y)) holds.

On the set R� ×R�+1 we prepare the new loss function:

J(η, w) � w1 − 2〈η, w2〉+ ‖η‖2 = w1 − ‖w2‖2 + ‖η − w2‖2. (22)

It is easy to verify that the loss function (18) can be expressed via (22):

J(h, F|y) =
∫
C

J(h(y), w(y|q))F′(F, dq|y) = J(h(y), w(F|y)).

The corresponding guaranteeing criterion takes the form:

J∗(η|y) � sup
w∈W(FL |y)

J(η, w), (23)

and its dual can be determined as:

J∗(w) � min
η∈H(y)

J(η, w) = J(w2, w) = w1 − ‖w2‖2. (24)

The finite-dimensional minimax problem is to find:

ĥ(y) ∈ Argmin
η∈H(y)

J∗(η|y). (25)

From the definitions of W(FL|y), H(y) and criterion (23) it follows that the problem (25)
is equivalent to the initial minimax estimation problem (8):

min
h∈H

J∗(h|y) = min
η∈H(y)

J∗(η|y) � J (y), (26)

Argmin
h∈H

J∗(h|y)
∣∣∣
y
� {ĥ(y) : J∗(ĥ|y) = J (y)} = Argmin

η∈H(y)
J∗(η|y) (27)

for ∀ y ∈ Rk.
The following theorem characterizes the solution to the finite-dimensional minimax

problem in terms of a saddle point of the loss function J.

Theorem 1. For ∀ y ∈ Rk, the loss function J(η, w) (22) has the unique saddle point (ĥ(y), ŵ(y))
on the set H(y)×W(FL|y). The second block subvector ŵ(y) = col(ŵ1(y), ŵ2(y)) ∈W(FL|y)
of the saddle point is the unique solution to the finite-dimensional dual problem:

{ŵ(y)} = Argmax
w∈W(FL |y)

J∗(w), (28)

and ĥ(y) = ŵ2(y) is the second sub-vector of this optimum ŵ(y).

The proof of Theorem 1 is given in Appendix B.
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By the definition of W(FL|y), for any vector ŵ(y) there exists at least one distribution
F̂ such that:

ŵ1(y) = EF̂

{
‖h(γ, X)‖2|Y = y

}
, ŵ2(y) = EF̂{h(γ, X)|Y = y}. (29)

F̂ is an LFD, and the whole set of the distributions satisfying (29) is denoted by F̂L.
Theorem 1 allows to obtain a solution to the initial minimax estimation problem.

The result is formulated as:

Corollary 1. The estimator ŵ2(y) introduced in Theorem 1 is a solution to the minimax estimation
problem (8), i.e., ĥ(y) = ŵ2(y) point-wise. The set {(ĥ, F̂)}F̂∈F̂L

presents the saddle points of the

loss function J (6) on the set H× FL. The estimator ĥ(y) is invariant to the LFD choice: if F̂′ and
F̂′′ are different LFDs then EF̂′ {h(γ, X)|Y = y} = EF̂′′ {h(γ, X)|Y = y} = ŵ2(y).

The following assertion characterizes the key property of the LFD set F̂L.

Corollary 2. There exists a variant of the LFD F̂L ∈ F̂ concentrated at most at dim(W(FL|y))+ 1
points of the set C.

The proof of Corollary 2 is given in Appendix C.
The presence of the discrete version of LFD is a remarkable fact. Let us remind the

reader that initially, we suppose that the uncertain vector γ lies in the set C. The determin-
istic hypothesis concerning γ hopelessly obstructed the solution to the minimax estimation
problem. To overcome this obstacle we provide the randomness of γ: the vector keeps
constant during the individual observation experiment, and the stochastic nature of γ
appears from experiment to experiment only. The existence of a discrete LFD returns us
partially to the primordial situation. The point is that there exists a set of γ values that are
the most difficult for estimation. Tuning to these parameters we can obtain estimates of γ
with the guaranteed quality.

Theorem 1 and Corollary 1 simplify the solution to the initial problem (8), reducing
it to the maximization of the finite-dimensional quadratic function (28) over the convex
compact set.

4. Analysis and Extensions

4.1. Dual Problem: A Numerical Solution

To simplify presentation of the numerical algorithm of problem (28)’s solution, we
suppose that the uncertainty set FL takes the form FL = {F ∈ F : L � L}, i.e., it is
restricted by the conformity constraint only.

Let us consider the case C � {qj}j=1,M ⊂ Rm, which corresponds to the practical
problem of Bayesian classification [10,38]. Here the dual problem (28) has the form
ŵ(y) = Argmax

w∈conv(W(C|y))
J∗(w). Its solution can be represented as ŵ(y) = ∑M

j=1 P̂j(y)w(qj|y),

where P̂(y) � row(P̂1(y), . . . , P̂M(y)) is a solution to the standard quadratic programming
problem (QP problem):

P̂(y) ∈ Argmin
p1,...,pM�0:

∑M
j=1 pj=1

⎛⎝ M

∑
j=1

pjw1(qj|y)−
M

∑
j,j′=1

pj pj′ 〈w2(qj|y), w2(qj′ |y)〉

⎞⎠. (30)

Consequently, in the case of finite C the minimax estimation problem can be reduced
to the standard QP problem with well-investigated properties and advanced numerical pro-
cedures.

Utilization of the finite subsets C(·) instead of the original domain C allows to calculate
the “mesh” approximations for the solution to (8).
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Let:

• εn ↓ 0 be a decreasing nonrandom sequence characterizing the approximation accu-
racy;

• {C(εn)}n∈N: C(ε1) ⊆ C(ε2) ⊆ C(ε3) ⊆ . . . ⊆ C be a sequence of embedded subdivi-
sions;

•
ωε

1(y) � max
q1,q2∈C :
‖q1−q2‖<ε

|w1(q1|y)− w1(q2|y)|,

ωε
2(y) � max

q1,q2∈C :
‖q1−q2‖<ε

‖w2(q1|y)− w2(q2|y)‖
(31)

be modulus of continuity for w1(y|q) and w2(y|q).
The assertion below characterizes the divergence rate of the approximating solutions

to the initial minimax estimate.

Lemma 2. If {ŵ(n|y)}n∈N are corresponding solutions to the problems:

ŵn(y) = Argmax
w∈conv(W(C(εn)|y))

J∗(w)

then the following sequences are convergent as εn ↓ 0:

ŵn(y)→ ŵ(y),
J (y)− max

w∈conv(W(C(εn)|y))
J∗(w) � ωεn

1 (y) + K[ωεn
2 (y)]2 ↓ 0 (32)

with some constant 0 < K < ∞.

The proof of Lemma 2 is given in Appendix D.

4.2. The Least Favorable Distribution in the Light of the Pareto Efficiency

The minimax estimation problem under the conformity constraints is tightly inter-
connected with the choice of the distribution F̂ that is optimal in the sense of a vector-
valued criterion. On the one hand, the solution to the considered estimation problem
is grounded on the evaluation of the distribution F̂, maximizing the dual criterion (12):
I1(F|y) � J∗(F|y) → maxF. On the other hand, the distribution F should conform to the
realized sample Y = y, and the maximization of the conformity index leads to the following
optimization problem: I2(F|y) � L(y, F)→ maxF.

Obviously, the criteria I1 and I2 are conflicting; hence the proper choice of F requires
the application of the vector optimization techniques.

Let:

• F̂0 be a set of the LFDs in the estimation problem (8) without conformity constrains
(i.e., as L = 0);

• L̃(y) � maxF∈F̂0
L(y, F);

• M ∈ [L̃(y),L(y)] be an arbitrary fixed conformity level;
• ŵ(y) = Argmaxw∈W(FM |y) J∗(w) be a solution to the finite-dimensional dual problem;

• F̂M be the set of corresponding LFDs.

Lemma 3. Any least favorable distribution F̂M ∈ F̂M is Pareto-efficient with respect to the
vector-valued criterion (I1, I2).

The proof of Lemma 3 follows directly from the Germeyer theorem [16].
Consideration of the constrained minimax estimation problem in light of the optimiza-

tion by the vector criterion is somehow close to the one investigated in [31], where the

324



Mathematics 2021, 9, 1080

estimation quality is characterized by the �2 norm of the error, and the Shannon entropy is
characterized as a measure of the statistical uncertainty of the estimated vector.

4.3. Other Conformity Indices

First, we consider the conformity constraint (9) thoroughly. It admits the following
treatment. Let F̃ ∈ F be some reference distribution. The constraint L(y, F) � L(y, F̃)
is a specific case of (9); the feasible distributions F should be relevant to the available
observations Y = y no less than the reference distribution F̃ is. One more treatment is also
acceptable. Let q̃ ∈ C be some “guess” value of the uncertain parameter γ, and α > 0 be a
fixed value. The constraint:

L(y, F)
L(y|q̃) � α (33)

is a specific case of (9): it means that the likelihood ratio of any feasible distribution F to
the one-point distribution at q̃ should be no less that the level α. Obviously, the guess value
q̃ could be chosen from the maxima of the function L, i.e., q̃ ∈ Argmaxq∈C L(y|q), but cal-
culation of these maxima is itself a nontrivial problem of likelihood function maximization.
In Section 5 we use some modification of (33):

L(y, F)−minq∈Cn L(y|q)
maxq∈Cn L(y|q)−minq∈Cn L(y|q)

� r (34)

where Cn ⊆ C is a known subset, and r ∈ (0, 1) is a fixed parameter. This form is important,
because in the case of C = Cn it guarantees for the constraint (34) to be active in the
considered minimax optimization problem for each r ∈ (0, 1).

Furthermore, the proposed conformity index L(y, F) (9) is a non-unique numerical
characteristic that describes the interconnection between F and Y. For example, an alterna-
tive conformity index can be defined as

∫
C f (L(y|q))F(dq), where f (·) : R → R is some

continuous nondecreasing function. Another way to introduce this index is to set it as∫
S(y) L(y

′, F)dy′ = PF{Y ∈ S(y)}, i.e., as a probability that the observation Y lies in the

confidence set S(y) ∈ B(Rk).
For a particular case of the observation model (1) we can propose one more conformity

index that is based on the EDF. Let us consider the observation model with the “pure
uncertain” estimated parameter γ:

Yt = A(γ) + B(γ)Vt, t = 1, T. (35)

Here:

• YT � col(Y1, . . . , YT) are available observations;
• γ ∈ C ∈ Rm is a random vector with unknown distribution F;
• VT � col(V1, . . . , VT) are the observation errors that are i.i.d. centered normalized

random values with the pdf φV(v).

If the value γ is known, the observations {Yt}t=1,T can be considered as i.i.d. random
values, whose pdf is equal to φV(v) after some shifting and scaling. The EDF of the sample
{Yt}t=1,T has the form:

F∗T(y) �
1
T

T

∑
t=1

I(y−Yt). (36)

On the other hand, the cdf FY(y) of any observation Yt for a fixed distribution F can
be calculated as:

FY(y) �
∫ y

−∞

∫
C

φV

(
u− A(q)

B(q)

)
F(dq)du. (37)

The sample conformity index based on the EDF is the following value:
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M(YT , F) � ‖F∗T − FY‖∞ = sup
y∈R

|F∗T(y)− FY(y)|. (38)

The new uncertainty set FM describing all admissible distributions F satisfies condi-
tions (i), (ii) and (iv) above, but condition (iii) is replaced by the following one:

(x) the constraint
M(YT , F) � M (39)

This holds for all F ∈ FM and some fixed level M > 0. It is called the constraint based
on the EDF.

The proposed conformity index represents the well known Kolmogorov distance used
in the goodness-of-fit test. One also knows the asymptotic characterization of M(YT , F):

lim
T→∞

P

{
M(YT , F) <

x√
T

}
=

+∞

∑
−∞

(−1)je−2j2x2
.

Furthermore, the value M(YT , F) can be easily calculated, because the function F∗T is
piece-wise constant while FY is continuous:

M(YT , F) = max
1�t�T

max(|F∗T(Yt)− FY(Yt−)|, |F∗T(Yt)− FY(Yt)|),

and the cdf FY is calculated by (37).
The distribution set determined by (39) takes the form:{
F ∈ F : −M + F∗T(Yt) �

∫ Yt

−∞

∫
C

φV

(
u− A(q)

B(q)

)
F(dq)du � M + F∗T(Yt−), t = 1, T

}
. (40)

Using the variational series Y(T) � col(Y(1), . . . , Y(T)) of the sample YT , and recalling
F∗T(Y(t)) =

t
T , F∗T(Y(t)−) = t−1

T , (40) can be rewritten in the form:{
F ∈ F : −M +

t
T

�
∫ Y(t)

−∞

∫
C

φV

(
u− A(q)

B(q)

)
F(dq)du � M +

t− 1
T

, t = 1, T
}

. (41)

It can be seen that this set is a convex closed polyhedron, lying in F, with at most
2T facets. All assertions formulated in Section 3 are valid after replacing the uncertainty
set FL, generated by the likelihood function, by the set FM, generated by the EDF. More-
over, the mesh algorithm for the dual optimization problem solution, presented above in
Section 4.1, can also be applied to this case.

Let us consider the observation model (35) again. We can use the sample mean
Y � 1

T Yt as one more conformity index. Let us remind the reader that due to the model
property, the random parameter γ(ω) is constant for each sample YT . For rather large

T values, the central limit theorem allows to treat the normalized value
√

T(Y−A(γ))
|B(γ)| as

a standard Gaussian random one. We then fix a standard Gaussian quantile cα of the
confidence level α and exscind the subset:

Cα �
{

q ∈ C : Y − cα |B(γ)|√
T

� A(q) � Y + cα |B(γ)|√
T

}
⊆ C.

If Cα is compact then the set Fα of all probability distributions with the domain lying
in Cα is called the set of admissible distributions satisfying the sample mean conformity constraint
of the level α.

The comparison of the minimax estimates, calculated under various types of the
conformity constraints, is presented in the next section.
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5. Numerical Examples

5.1. Parameter Estimation in the Kalman Observation System

Let us consider the linear Gaussian discrete-time (Kalman) observation system:{
Xt = aXt−1 + bVt, t = 1, T, x0 ∼ N (0, P0),
Yt = cXt + f Wt, t = 0, T,

(42)

where:

• XT � col(X0, . . . , XT) is an unobservable state trajectory (the autoregression Xt is
supposed to be stable);

• YT � col(Y0, . . . , YT) are available observations;
• VT � col(V1, . . . , VT) and WT � col(W0, . . . , WT) are vectorizations of independent

standard Gaussian discrete-time white noises;
• P0, c and f are known parameters;
• γ � col(a, b) is an uncertain vector lying in the fixed rectangle C � [a, a]× [b, b].

Our goal is to calculate the proposed minimax estimates of the uncertain vector γ and
analyze their performance depending on the specific form of the loss function (6). To vary
the loss function we can either specify the estimated test signal h(·) or determine different
Euclidean weighted norms. We choose the second approach and define the following norm
‖ · ‖ξX ,ξγ

for the compound vector: Z � col(XT , γ):

‖Z‖ξX ,ξγ
�

√√√√ξ2
X

T

∑
t=1

X2
t + ξ2

γ(a2 + b2),

and the corresponding loss function takes the form:

JξX ,ξγ
(Z, F|YT) � EF

{
‖Z− Z(YT)‖2

ξX ,ξγ
|YT

}
. (43)

In the case ξγ = 1 and ξX = 0 we obtain “the traditional” case of the mean-square loss
conditional function J0,1(Z, F|YT) = EF

{
‖γ− γ(YT)‖2|YT

}
, and the estimation quality

of γ(·) is determined directly through the loss function. Using ξγ = 0 and ξX = 1 we
transform the loss function into J1,0(Z, F|YT) = EF

{
‖X − X(YT)‖2|YT

}
, and the estimation

of γ appears indirectly via the estimation of the state trajectory XT .
The minimax estimation is calculated by the numerical procedure introduced in

Section 4.1 with the uniform mesh Cha ,hb
of the uncertainty set C; ha and hb are correspond-

ing mesh steps along each coordinate.
We calculate the minimax estimate with the likelihood conformity constraint of the

form:
L(YT , F)−min(a,b)∈Cha ,hb

L(YT |(a, b))

max(a,b)∈Cha ,hb
L(YT |(a, b))−min(a,b)∈Cha ,hb

L(YT |(a, b))
� r,

where r ∈ (0, 1) is a confidence ratio.
We compare the proposed minimax estimate with some known alternatives.
The calculations have been executed with the following parameter values: C =

[−0.1; 0.1] × [0.1; 1], a = −0.1, b = 0.1, P0 = 0.5, c = 1, f = 0.5, T = 1000, ha = 0.01,
hb = 0.045. The choice of the parameters can be explained by the following facts. First,
the point (−0.1; 0.1) of actual parameter values belongs to the domain of the LFD for
both loss functions J0,1 and J1,0. This means the appearance of just the LFD for both cases.
Second, in spite of sufficient observation length, the signal-to-noise ratio is rather small,
which prevents high performance of the asymptotic estimation methods.

Figure 1 presents the evolution of the minimax estimates â0,1(r) and â1,0(r) of a drift
coefficient depending on the confidence ratio r ∈ (0, 1). The minimax estimates are
compared with;
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• The estimate aMS(YT) calculated by the moment/substitution method [12]:

aMS =
T

∑
t=1

yt−1yt

/
(

T

∑
t=1

y2
t − T f 2), b

MS
=

√√√√ 1
c2

(
1− (aMS)2

)
(

T

∑
t=1

y2
t − T f 2);

• The Bayesian estimate âF1(YT) (11) calculated under the assumption that prior distri-
bution F1 of γ is uniform over the whole uncertainty set C;

• The Bayesian estimate âF2(YT) (11) calculated under the assumption that the prior
distribution F2 of γ is uniform over the vertices of C;

• The estimate aEKF(YT) calculated by the extended Kalman filter (EKF) algorithm [39]
and subsequent residual processing;

• The maximum likelihood estimate (MLE) aMLE(YT) calculated by the expectation/maximization
algorithm (EM algorithm) [17].

Figure 2 contains a similar comparison of the diffusion coefficient estimates b̂0,1(r)
and b̂1,0(r).

 

 

MS ̂F1 ̂F2 EKF MLE ̂1 ,0( ) ̂0 ,1( )

Figure 1. Estimation of the drift coefficient a.
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Figure 2. Estimation of the diffusion coefficient b.
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The results of this experiment allow us to make the following conclusions.

1. Both minimax estimates (â0,1(r), b̂0,1(r)) and (â1,0(r), b̂1,0(r)) converge to the MLE

(aMLE, b
MLE

) as r → 1. Nevertheless, the rate of convergence depends on the specific
choice of the loss function (J0,1 or J1,0 in the considered case).

2. Both minimax estimates are more conservative than the MLE, because they take into
account a chance for other points of the LFD domain to be realized.

3. Under an appropriate choice of the confidence ratio r, both minimax estimates become
more accurate than other candidates, except for the MLE.

5.2. Parameter Estimation under Additive and Multiplicative Observation Noises

We consider the observations YT � col(Y1, . . . , YT):

Yt = aXt + Vt, t = 1, T. (44)

Here:

• a is an estimated value;
• XT � col(X1, . . . , XT) is a vector of the i.i.d. unobservable random values (multiplica-

tive noise): X1 ∼ R[0, 1];
• VT � col(V1, . . . , VT) is a vector of the i.i.d. unobservable random values (additive

noise): V1 ∼ N (0, σ).

We assume that the parameter a is random with unknown distribution, whose support
set lies within the known set C � [c1, c2]. The loss function has the form:

J(a, F|YT) = EF

{
‖a− a(YT)‖2|YT

}
.

In this example our goal is to compare the minimax estimates of the parameter a under
conformity constraint based either on the likelihood function or on the EDF.

The minimax estimations are calculated for the following parameter values: a = 2,
T = 20, C = [2, 3], σ = 0.1. We use the proposed numerical procedure under a uniform
mesh Ch of the set C with the step h = 0.005. The example has some features. First, the ob-
servation model contains both the additive (VT) and multiplicative (XT) heterogeneous
noises. Second, the available observed sample is not too long to provide the high quality
for the consistent estimates. Third, the exact value of a is equal 2; meanwhile under the
constraint absence there exists a discrete variant of the LFD with the finite support set
{2, 3}. This means that the LFD is realized only in the considered observation model.

The likelihood conformity constraint looks similar to the one from the previous
subsection:

L(YT , F)−minq∈Ch L(YT |q)
maxq∈Ch L(YT |q)−minq∈Ch L(YT |q)

� r, (45)

where r ∈ (0, 1) is a confidence ratio.
Figure 3 contains comparison of the minimax estimate â(r) with its actual value a,

the (consistent asymptotically Gaussian) M-estimate asub � 2
T ∑T

t=1 Yt, obtained by the
moment/substitution method [12] and the MLE aMLE.

Next, we investigate minimax posterior estimates under the conformity constraint
based on the EDF. The constraint is of the form:

maxF∈FCh
M(YT , F)−M(YT , F)

maxF∈FCh
M(YT , F)−minF∈FCh

M(YT , F)
� r, (46)

where r ∈ (0, 1) is some fixed confidence ratio, and FCh is a “mesh” approximation of the
set FC corresponding to the uniform “mesh” Ch. The form (46) of the conformity constraint
provides that it is active in the minimax optimization problem for any r ∈ (0, 1).
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Figure 3. Estimation of the coefficient a under conformity constraint based on the likelihood function.

Figure 4 contains:

• The EDF F∗Y(y) calculated by the sample YT ;

• The cdf’s Fq
Y(y) =

∫ y
−∞ φV

(
u−A(q)

B(q)

)
du of Y, corresponding to the one-point distribu-

tion concentrated at the point q (q = 2, 3);
• The cdf FY(y) FY(y) ∈ ArgminF∈FCh

M(YT , F), closest to the EDF F∗Y(y) within the

set FCh .

Note that F2
Y(y) is a cdf of Y corresponding to the actual value of a.
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Figure 4. The EDF of Y and different cdf’s of Y under various choices of a.

Figure 5 contains a comparison of the minimax estimate â(r) under the conformity
constraint, based on the EDF, with its actual value a, the moment/substitution estimate
asub and the MLE aMLE.

The results of this experiment allow us to make the following conclusions.

1. The minimax estimate â(r) under the conformity constraint, based on the EDF, does
not converge to the MLE aMLE as r → 1.

2. Under an appropriate choice of the confidence ratio r, the minimax estimate under
the EDF constraint becomes more accurate than other candidates, including the MLE.
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Figure 5. Estimation of the coefficient a under conformity constraint based on the EDF.

6. Conclusions

The paper contains the statement and solution to a new minimax estimation problem
for the uncertain stochastic regression parameters. The optimality criterion is the condi-
tional mean square of the estimation error given the realized observations. The class of
admissible estimators contains all (linear and nonlinear) statistics with finite variance. The a
priori information concerning the estimated vector is incomplete: the vector is random
and the part of its components lies in the known compact. The key feature of the consid-
ered problem is the presence of the additional constraints for the statistical uncertainty,
restricting from below the correspondence degree between the uncertainty and realized
observations. The paper presents various indices, characterizing this conformity via the
likelihood function, the EDF and the sample mean.

We propose a reduction of the initial optimization problem in the abstract infinite-
dimensional spaces to the standard finite-dimensional QP problem with convex constraints
along with an algorithm of its numerical realization and precision analysis.

The minimax estimation problem is solved in terms of the saddle points, i.e., besides
the estimators with the guaranteed quality, we have a description of the LFDs. First,
the investigation of the LFDs’ domains allowed us the detection of the uncertain parameter
values, which are the worst for the estimation. Second, the consideration of the performance
index pair “conformity index–guaranteed estimation quality” uncovered rather a new
conception of the parameter estimation under a vector optimality criterion. The paper
contains an assertion, which states that the LFDs are Pareto-optimal for the vector-valued
criterion above.

The paper focuses mostly on the conformity indices related to the likelihood function;
thus, it is obvious that the performance of the minimax estimate is compared with the
one of the MLE. In general, the MLE has several remarkable properties, in particular the
asymptotic minimaxity under some additional restrictions [12]. However, the estimate
is non-robust to the prior statistical uncertainty. The proposed minimax estimate can
be considered as a robustified version of the MLE, which is ready for application in the
cases of the short non-asymptotic samples or the violation of the conditions for the MLE
asymptotic minimaxity.

The conformity constraints are not exhausted by the likelihood function. In the paper,
we present other conformity indices based on the EDF and sample mean. We demonstrate
that the minimax estimates with the EDF conformity constraint are better than the MLE.
One of the points of the paper is that the flexible choice of the conformity indices and design
of the additional conformity constraints for each individual applied estimation problem
allows obtaining a tradeoff between the prior uncertainty and available observations.
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The reason to choose one or another conformity index depends not only on the condi-
tions of the specific practical estimation problem solved under the minimax settings. One
of the essential conditions is the possibility of its quick computation for the subsequent
verification of the conformity constraint. For example, calculation of the likelihood confor-
mity constraint (33) with the guess value L(y|q) = maxq L(y|q) tends to necessarily solve
the auxiliary maximization problem for the likelihood function, which is nontrivial itself.
Thus, the conformity indices based on the EDF or sample moments look more prospective
from the computational point of view.

The applicability of the proposed minimax estimate also depends on the presence
of the analytical formula of the estimates w(y|q), or the fast numerical algorithms of its
calculation. In turn, this possibility is a base for the subsequent effective solution to the QP
problem and specification of the LFD.

Finally, the key indicator affecting the estimate calculation process and its precision is
the number of the mesh nodes in the approximation C(εn) of the uncertainty set C. It is a
function of “the size of C / the mesh step εn” ratio and dimensionality m of C.

All of the factors above characterize the limits of possible applicability of the proposed
minimax estimation method for the solution to one or another practical problem.
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Abbreviations

The following abbreviations are used in this manuscript:

cdf cumulative distribution function
CE conditional expectation
EDF empirical distribution function
EKF extended Kalman filter
EM algorithm expectation/maximization algorithm
LFD least favorable distribution
MLE maximum likelihood estimate
MS-optimal optimal in the mean square sense
pdf probability density function
QP problem quadratic programming problem

Appendix A

Proof of Lemma 1. Conditions (v)—(viii) imply fulfillment of the inequalities:

L(y|q) � sup
x∈Rn

ν(q, x|y) � 1

λk/2
0

max
x∈Rn

φV(x) � M < ∞.

Furthermore, for ∀ ε (0 < ε < 1) there exists a compact set S(ε) ∈ B(Rn), such that∫
S(ε) Ψ(dx|q) � 1− ε, and by the Weierstrass theorem m(y) � min(q,x)∈C×S(ε) ν(q, x|y) >

0. Each measure F ∈ F can be associated with the measure μF(dq|y) � L(y|q)F(dq).
Obviously, μF � F, and μF is finite, i.e., 0 < m(y) �

∫
C μF(dq|y) � M < ∞. Hence,

∀ y ∈ Rk and ∀ F ∈ F. The measure F′(F, dq|y) (15) is probabilistic; moreover F′ � F.
The measure F′′(F′, dq|y) (16) is also a probabilistic one defined on (C,B(C)), F′′ � F,
and the denominator in (16) has the following lower and upper bounds:
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0 <
1
M

�
∫
C
L−1(y|q)F(dq) � 1

m(y)
< ∞.

From (15) and (16) it follows that F ∼ F′, and the corresponding measure transforma-
tions are mutually inverse, i.e., ∀ F ∈ F the identity F′′(F′(F)) ≡ F′(F′′(F)) ≡ F holds, and,
moreover, {F′(F) : F ∈ F} = {F′′(F) : F ∈ F} = F. Assertion (1) of Lemma 1 is proven.

The set F′L is ∗-weakly closed, because the set F′L is, and the function L(y|q) is non-
negative, continuous and bounded in q ∈ C.

Let F′1, F′2 ∈ F′L be two arbitrary distributions from F′L, and F′α � αF′1 + (1− α)F′2 be
its convex linear combination with a fixed parameter α ∈ [0, 1]. We should prove that
F′α ∈ F′L. By the definition of F′L there exist distributions F1, F2 ∈ FL such that F′1 = F′(F1)
and F′2 = F′(F2). Furthermore, for the convex combination Fβ = βF1 + (1− β)F2 with

β � αL(F2|y)
αL(F2|y) + (1− α)L(F1|y)

∈ [0, 1],

we can verify easily that F′α = F′(Fβ), i.e., F′α ∈ F′L. Assertion (2) of Lemma 1 is proven.

Appendix B

Proof of Theorem 1. The set H(y) = R� by condition (ix); thus it is convex and closed.
The set F′L is convex and ∗-weakly closed due to Lemma 1. From this fact and (20) it
follows that W(FL|y) is also a convex closed set. Moreover, it is bounded due to condition
(viii). The function J (22) is strictly convex in η and concave (affine) in w. These conditions
are sufficient for the existence of a saddle point [40]. It should be noted that both the set
H(y)×W(FL|y) and the saddle point (ĥ(y), ŵ(y)) depend on the observed sample y. For
the saddle point the following equalities are true:

J(ĥ(y), ŵ(y)) = min
η∈H(y)

max
w∈W(FL |y)

J(η, w) = max
w∈W(FL |y)

min
η∈H(y)

J(η, w) = max
w∈W(FL |y)

J∗(w),

i.e., ŵ(y) ∈ Argmax
w∈W(FL |y)

J∗(w).

Now we prove the uniqueness of the saddle point ŵ(y). Let w′(y) = col(w′
1(y), w′

2(y))
and w′′(y) = col(w′′

1 (y), w′′
2 (y)) be two different saddle points, and J (y) � J∗(w′(y)) =

J∗(w′′(y)) and w′′′(y) � αw′(y) + (1− α)w′′(y) be arbitrary convex combinations of the
chosen points (0 < α < 1). After elementary algebraic transformations we have:

J∗(w′′′(y)) = J (y) + α(1− α)‖w′(y)2 − w′′
2 (y)‖2 > J (y),

which contradicts our assumption that w′(y) and w′′(y) are two different solutions to the
finite-dimensional dual problem. Theorem 1 is proven.

Appendix C

Proof of Corollary 2. The set W(FL|y) ∈ B(R�+1) is compact, and W(FL|y) ⊆
conv(W(C|y)). By the Krein–Milman theorem [37], each point of the set W(FL|y)
can be represented as a convex combination at most of dim(W(FL|y)) + 1 extreme points
of the set W(FL|y).

Obviously, all extreme points of W(FL|y) belong to the set W(C|y). Hence, for the
point ŵ(y) which is a solution to the finite-dimensional dual problem (28), there exists
a finite set {qs(y)}s=1,S ⊆ C, 1 � S � dim(W(FL|y)) + 1 of parameters, and weights
{Ps(y)}s=1,S (Ps(y) � 0, ∑S

s=1 Ps(y) = 1) such that:

ŵ(y) =
S

∑
s=1

Ps(y)w(qs(y)|y). (A47)
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The parameters and weights define the reference measure (15) on the space (C,B(C)):

F̂′(dq|y) �
S

∑
s=1

Ps(y)δqs(y)(dq).

We can establish the initial measure by (16):

F̂(dq|y) = ∑S
s=1 L−1(qs(y)|y)Ps(y)δqs(y)(dq)

∑S
s′=1 L−1(qs′(y)|y)Ps′(y)

.

It is easy to verify that EF̂

{
‖h(γ, X)‖2|Y = y

}
= w1(y) and EF̂{h(γ, X)|Y = y} =

w2(y), i.e., F̂ is the required LFD. Corollary 2 is proven.

Appendix D

Proof of Lemma 2. Without loss of generality we suppose each εn-mesh contains at least
dim(W(F|y)) + 2 points. By Corollary 2 the solution to problem (28) can be represented in
form (A1). By the condition of Lemma 2 there exists a set {q̂s(εn|y)}s=1,S ⊆ C(εn), such
that max

1�s�S
‖q̂s(y)− qs(εn|y)‖ � εn. For the vector w(εn|y) � ∑S

s=1 P̂s(y)w(qs(εn|y)|y) the

inequalities

|ŵ1(y)− w1(εn|y)| �
S

∑
s=1

P̂s(y)|w1(q̂s(y)|y)− w1(qs(εn|y)|y)| � ω1(εn|y),

‖ŵ2(y)− w2(εn|y)‖ �
S

∑
s=1

P̂s(y)‖w1(q̂s(y)|y)− w1(qs(εn|y)|y)‖ � ω2(εn|y)

hold. Furthermore, the sequence of inequalities

max
w∈conv(W(C(εn)|y))

J∗(w) = J (y)− min
w∈conv(W(C(εn)|y))

(ŵ1(y)− w1 + ‖w2‖2 − ‖ŵ2(y)‖2) �

� J (y)−
[
|ŵ1(y)− w1(εn|y)|+ ‖ŵ2(y)− w2(εn|y)‖2 − 2〈ŵ2(y), ŵ2(y)− w2(εn|y)〉

]
�

� J (y)−
[

ω1(εn|y) +
(

ω2(εn|y) + 2
M

m(y)
Kh

)
ω2(εn|y)

]
proves the convergence maxw∈conv(W(C(εn)|y)) J∗(w) ↑ J (y) as εn ↓ 0.

Let ŵ(n|y) � ŵ(y) as εn ↓ 0. Then there exists a subsequence {εnk}nk∈N, such
that ŵ(nk|y) → w(y) �= ŵ(y). This means that J∗(ŵ(y)) = J∗(w(y)), which contradicts
the uniqueness of the solution to the finite-dimensional dual problem (28). Lemma 2 is
proven.

References

1. Calafiore, G.; El Ghaoui, L. Robust maximum likelihood estimation in the linear model. Automatica 2001, 37, 573–580. [CrossRef]
2. Kurzhanski, A.B.; Varaiya, P. Dynamics and Control of Trajectory Tubes; Birkhäuser: Basel, Switzerland, 2014.
3. Matasov, A. Estimators for Uncertain Dynamic Systems; Kluwer: Dortrecht, The Netherlands, 1998.
4. Borisov, A.V.; Pankov, A.R. Optimal filtering in stochastic discrete-time systems with unknown inputs. IEEE Trans. Autom.

Control 1994, 39, 2461–2464. [CrossRef]
5. Pankov, A.R.; Semenikhin, K.V. Minimax identification of a generalized uncertain stochastic linear model. Autom. Remote Control

1998, 59, 1632–1643.
6. Poor, V.; Looze, D. Minimax state estimation for linear stochastic systems with noise uncertainty. IEEE Trans. Autom. Control

1981, 26, 902–906. [CrossRef]
7. Soloviev, V. Towards the Theory of Minimax-Bayesian Estimation. Theory Probab. Its Appl. 2000, 44, 739–754. [CrossRef]
8. Blackwell, D.; Girshick, M. Theory of Games and Statistical Decisions; Wiley: New York, NY, USA, 1954.

334



Mathematics 2021, 9, 1080

9. Martin, C.; Mintz, M. Robust filtering and prediction for linear systems with uncertain dynamics: A game-theoretic approach.
IEEE Trans. Autom. Control 1983, 28, 888–896. [CrossRef]

10. Berger, J.O. Statistical Decision Theory and Bayesian Analysis; Springer: Berlin/Heidelberg, Germany, 1985.
11. Anan’ev, B. Minimax Estimation of Statistically Uncertain Systems Under the Choice of a Feedback Parameter. J. Math. Syst.

Estim. Control 1995, 5, 1–17.
12. Borovkov, A. Mathematical Statistics; Australia Gordon & Breach: Blackburn, Australia, 1998.
13. Epstein, L.; Ji, S. Ambiguous volatility, possibility and utility in continuous time. J. Math. Econ. 2014, 50, 269–282. [CrossRef]
14. Borisov, A.V. A posteriori minimax estimation with likelihood constraints. Autom. Remote Control 2012, 73, 1481–1497. [CrossRef]
15. Arkhipov, A.; Semenikhin, K. Minimax Linear Estimation with the Probability Criterion under Unimodal Noise and Bounded

Parameters. Autom. Remote Control 2020, 81, 1176–1191. [CrossRef]
16. Germeier, Y. Non-Antagonistic Games; Springer: New York, NY, USA, 1986.
17. Elliott, R.J.; Moore, J.B.; Aggoun, L. Hidden Markov Models: Estimation and Control; Springer: New York, NY, USA, 1995.
18. Yosida, K. Functional Analysis; Grundlehren der Mathematischen Wissenschaften; Springer: Berlin/Heidelberg, Germany, 2013.
19. Liptser, R.; Shiryaev, A. Statistics of Random Processes: I. General Theory; Springer: Berlin/Heidelberg, Germany, 2001.
20. Kats, I.; Kurzhanskii, A. Estimation in Multistep Systems. Proc. USSR Acad. Sci. 1975, 221, 535–538.
21. Petersen, I.R.; James, M.R.; Dupuis, P. Minimax optimal control of stochastic uncertain systems with relative entropy constraints.

IEEE Trans. Autom. Control 2000, 45, 398–412. [CrossRef]
22. Xie, L.; Ugrinovskii, V.A.; Petersen, I.R. Finite horizon robust state estimation for uncertain finite-alphabet hidden Markov

models with conditional relative entropy constraints. In Proceedings of the 2004 43rd IEEE Conference on Decision and Control
(CDC) (IEEE Cat. No.04CH37601), Nassau, Bahamas, 14–17 December 2004; Volume 4, pp. 4497–4502. [CrossRef]

23. El Karoui, N.; Jeanblanc Picque, M. Contrôle de processus de Markov. Séminaire Probab. Strasbg. 1988, 22, 508–541.
24. Lee, E.; Markus, L. Foundations of Optimal Control Theory; SIAM Series in Applied Mathematics; Wiley: Hoboken, NJ, USA, 1967.
25. Floyd, S.; Jacobson, V. Random early detection gateways for congestion avoidance. IEEE/ACM Trans. Netw. 1993, 1, 397–413.

[CrossRef]
26. Low, S.H.; Paganini, F.; Doyle, J.C. Internet congestion control. IEEE Control Syst. Mag. 2002, 22, 28–43. [CrossRef]
27. Altman, E.; Avrachenkov, K.; Menache, I.; Miller, G.; Prabhu, B.J.; Shwartz, A. Dynamic Discrete Power Control in Cellular

Networks. IEEE Trans. Autom. Control 2009, 54, 2328–2340. [CrossRef]
28. Perruquetti, W.; Barbot, J.P. Sliding Mode Control in Engineering; Marcel Dekker, Inc.: New York, NY, USA, 2002.
29. Arnold, B.F.; Stahlecker, P. Fuzzy prior information and minimax estimation in the linear regression model. Stat. Pap. 1997,

38, 377–391. [CrossRef]
30. Donoho, D.; Johnstone, I.; Stern, A.; Hoch, J. Does the maximum entropy method improve sensitivity? Proc. Natl. Acad. Sci. USA

1990, 87, 5066—5068. [CrossRef] [PubMed]
31. Donoho, D.L.; Johnstone, I.M.; Hoch, J.C.; Stern, A.S. Maximum Entropy and the Nearly Black Object. J. R. Stat. Society. Ser. B

1992, 54, 41–81. [CrossRef]
32. Pham, D.S.; Bui, H.H.; Venkatesh, S. Bayesian Minimax Estimation of the Normal Model with Incomplete Prior Covariance

Matrix Specification. IEEE Trans. Inf. Theory 2010, 56, 6433–6449. [CrossRef]
33. Donoho, D.L.; Johnstone, I.M. Minimax risk over lp-balls for lq-error. Probab. Theory Relat. Fields 1994, 99, 277–303. [CrossRef]
34. Donoho, D.L.; Johnstone, I.M. Minimax estimation via wavelet shrinkage. Ann. Stat. 1998, 26, 879–921. [CrossRef]
35. Donoho, D.L.; Johnstone, I.; Montanari, A. Accurate Prediction of Phase Transitions in Compressed Sensing via a Connection to

Minimax Denoising. IEEE Trans. Inf. Theory 2013, 59, 3396–3433. [CrossRef]
36. Bosov, A.; Borisov, A.; Semenikhin, K. Conditionally Minimax Prediction in Nonlinear Stochastic Systems. IFAC-PapersOnLine

2015, 48, 802–807. [CrossRef]
37. Kadets, V. A Course in Functional Analysis and Measure Theory; Springer: Berlin/Heidelberg, Germany, 2018.
38. Gelman, A.; Carlin, J.B.; Stern, H.S.; Rubin, D.B. Bayesian Data Analysis, 2nd ed.; Chapman and Hall/CRC: London, UK, 2004.
39. Anderson, B.; Moore, J. Optimal Filtering; Prentice-Hall: Upper Saddle River, NJ, USA, 1979.
40. Grabiner, J.; Balakrishnan, A. Applications of Mathematics: Applied Functional Analysis; Applications of Mathematics; Springer:

New York, NY, USA, 1981.

335





mathematics

Article

Study of Synergistic Effects in Complex Stochastic Systems

Gurami Tsitsiashvili

Citation: Tsitsiashvili, G. Study of

Synergistic Effects in Complex

Stochastic Systems. Mathematics 2021,

9, 1396. https://doi.org/10.3390/

math9121396

Academic Editors: Mikhail Posypkin,

Andrey Gorshenin, Vladimir Titarev

and Jaan Janno

Received: 23 March 2021

Accepted: 13 June 2021

Published: 16 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute for Applied Mathematics, Far Eastern Branch of Russian Academy Sciences, Radio Str. 7, IAM FEB RAS,
690041 Vladivostok, Russia; guram@iam.dvo.ru; Tel.: +89146932749

Abstract: In this paper, a method for detecting synergistic effects of the interaction of elements
in multi-element stochastic systems of separate redundancy, multi-server queuing, and statistical
estimates of nonlinear recurrent relations parameters has been developed. The detected effects
are quite strong and manifest themselves even with rough estimates. This allows studying them
with mathematical methods of relatively low complexity and thereby expand the set of possible
applications. These methods are based on special techniques of the structural analysis of multi-
element stochastic models in combination with majorant asymptotic estimates of their performance
indicators. They allow moving to more accurate and rather economical numerical calculations, as
they indicate in which direction it is most convenient to perform these calculations.
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1. Introduction

Questions of composition and decomposition in multi-element stochastic systems
are relevant for solving a number of problems. These include paralleling of algorithms
and programs, modeling of supercomputers, the Internet, computer networks, mobile
telephone communication systems, development of software packages for modeling catas-
trophic events in complex systems, design and improvement of technological and economic
processes, and so on.

The term “synergy” (the result of the interaction of many elements of the system)
originated in statistical physics, but recently it has been used by specialists from other
fields: economics, biology, engineering, etc. Furthermore, research in these areas no longer
leads to microscopic, but to phenomenological considerations. Here are some examples,
taken from science history and devoting the detection of synergistic effects in complex
systems, which have been obtained by famous researchers in their objective areas, using
observation and mathematical intuition.

The economist A. Smith investigated the transition from shop production to manufac-
turing on the example of the production of safety pins. In the workshop method, the pin
was made entirely by one master, performing all the operations sequentially. In manufac-
turing, each operation was performed by a separate master, which significantly increased
labor productivity.

The physiologist I.P. Pavlov discovered the conditioned reflex by detecting feedback
in the nervous system of the body. Stochastic feedback theory was developed by N. Wiener.
A detailed study of the conditioned reflex led to the creation by P.K. Anokhin of the
concept of a functional system that is urgently formed in the body when it is necessary to
achieve the desired result and quickly disintegrates after it is achieved. N. Wiener and P.K.
Anokhin collaborated in the development of this scientific direction, actively discussing
the possibilities of mathematical methods in this area.

The physicist E. Rutherford discovered the atomic nucleus and proposed to P.L.
Kapitsa to create an installation for the effect of a strong magnetic field on the atomic
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nucleus. Long-running installations were melted under the influence of a strong magnetic
field. P.L. Kapitsa constructed an installation that creates a strong magnetic field for a short
time, which turned out to be long enough for the processes occurring in the atomic nucleus.

Synergistic effects are a source of explicit dependencies between the characteristics of
the system against the background of sufficiently large random perturbations. To study
them, it was necessary to develop special techniques based on the structural analysis of
multi-element stochastic models in combination with majorant asymptotic estimates of
their performance indicators. This, in turn, required new techniques for working with
statistical data, as well as skills in using the limit theorems of probability theory and the
accompanying asymptotic expansions and estimates.

According to the author, many works on the analysis of complex multi-element
systems require at the initial stage the construction of simpler models that allow you to
determine the main performance indicators and the main parameters with which you
can influence these indicators. For this purpose, it is very convenient to build procedures
for comparing systems with different (alternative) structures to study their effectiveness
with a large number of elements, with a large load, etc. For this purpose, schemes and/or
modes of complex systems, computational algorithms, etc. can be used as objects of
comparison. At the same time, at the initial stage of the study, a reasonable proportion
should be observed between the accuracy of the calculations, which may be relatively small;
the complexity of the calculations, which also should not be large; and the significance
of the obtained results, which should be sufficiently large. Comparing systems with an
alternative structures allows us to take these requirements into account, as with an increase
in the number of elements, the differences between systems with an alternative structures
are quite large.

The first author’s works, devoted to the study of synergistic effects, are analytical
generalizations of the results of numerical and field experiments conducted by his col-
leagues in the modeling of telecommunications systems, container terminals, etc. In this
connection, it should be remembered that in hydrodynamics, nonlinear soliton waves were
also first discovered in the course of numerical experiments, and then their analytical theory
was constructed. The use of computational experiments allows to obtain more accurate
estimates of the synergistic effects. This can be used when working with models used in
the programs “digital economy”, “smart city”, when modeling remote modes of operation
that have become popular, on-line conferences, when using smart phones, etc. Currently,
new information technologies are rapidly entering our life and their research helps us to
adapt to them and to adapt these technologies themselves to the needs of potential users
(for example, the use of smart phones by aged users). Nevertheless, analytical research
helps to determine the direction of such research and to carry them out. In a sense, this
avoids very complex structural optimization problems, a significant part of which are NP
problems. Along with this, it becomes possible to use observations of complex systems,
which also contributes to the study of synergistic effects in them.

In this paper, the synergistic effect is understood as a significant change in the per-
formance indicators of a complex system when its structure changes, i.e., the connections
between its elements. The complexity issues play an important role in modern systems
analysis [1,2]. To reduce complexity, various techniques are used, among which the struc-
tural transformation of the system plays an important role [3,4]. This methodological
technique is closely linked to the issues of the stability of a complex system [5].

Such a statement of the problem can be the comparing the reliability of separate
and block reserving elements of a two-pole with unreliable edges [6]. This result is a
classic in the mathematical theory of reliability and its refinement or amplification can
be significant in itself. Note that the study of the reliability of two poles is widely used
in various theoretical and applied studies (see, for example, in [7–10], etc. However,
such a comparative analysis made in the monograph [6] of Barlow and Proshan did not
develop in subsequent works, while the synergistic effects identified in this paper were
very significant.
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The peculiarity of this task is the use of probabilistic models, which, at first glance,
complicate the task. This transition requires the selection of a new performance indicator—
the required amount of reserve, which reflects the content of the reservation procedure and
the novelty of the proposed approach. On the other hand, it is also necessary to construct
sufficiently weak (logarithmic) dependencies of the so-introduced indicator on a number
of the scheme elements. When selecting a new reserve efficiency indicator, its analogy with
probabilistic metrics [11] is used. Therefore, the results obtained in this section are new,
original, and significant.

Another problem considered in this paper and connected with synergistic effects
appeared at the ITMM 2018 and ITMM 2020 conferences, when discussing the multi-
server model of the RQ queuing system [12–14]. The Conference ITMM 2018 was held in
conjunction with 12th International Workshop on Retrial Queues (RQ) and Related Topics
with a wide representation of queuing theory researchers from Russia, India, Bulgaria,
the Netherlands, and other countries. A good source of recent works on this topic is a
collection of articles on RQ systems [15].

The RQ queuing system is a system in which a customer received in the presence of
busy servers is not rejected, but is sent to the so-called orbit, from where it is extracted in
accordance with some protocol for queuing, when one of the servers is released. A.N. Dudin
remarked that it is most often assumed Poisson input flow to such a system. However, this
requirement is not met because there is a dependence and even a long range dependence
between the random variables, characterizing numbers of arrived customers in disjoint time
intervals. Moreover, despite the large number of analytical results in which the distributions
in RQ systems are calculated in formula form, their use for numerical calculations is difficult
due to the high complexity of such calculations, especially for multi-server RQ systems.

The novelty of the proposed approach is that instead of a stationary distribution of
the process describing a multi-server RQ system, the probability of customers appearing
in the orbit of this system for a fixed period of time is investigated and the convergence
of this indicator to zero is established when the number of channels proportional to the
intensity of the input flow tends to infinity. Secondly, with an increase in the number of
servers, even in a system with a Poisson input flow and exponentially distributed service
times, the computational complexity of the problem of calculating the limit distribution in
an RQ system increases quite strongly.

Thus, a new problem arises for calculating the RQ queuing system with a large num-
ber of servers and a non-Poisson input flow. Using asymptotic theorems for multichannel
queuing systems, it is possible, on the contrary, to simplify the problem of analyzing RQ
systems. For this purpose, it is convenient to use limit theorems based on topological con-
cepts of convergence in the space of random processes defined on a finite time interval [16].
The significance of this approach lies in the broad scope of its application and in the ability
to circumvent the computational complexity of the problem by reducing it to the limit
theorems of probability theory.

A continuation of the study of multi-server queuing systems in this paper is the analy-
sis of a system with failures. This system arises when modeling modern data transmission
networks (of fifth generation), formulated by leading Russian specialists in the mathe-
matical theory of communication [17]. This task is quite important and leading Russian
specialists in modeling of transmission networks Samouylov K.E. and Gaidamaka Yu.V.
even organized a seminar with the author’s participation to find alternative approaches to
this problem solution with publishing of obtained results [18]. The solution to this prob-
lem is based on the recently installed a synergistic effect in multi-server queuing system
with failures, when the stationary probability of failure tends to zero as the number of
servers and proportionally the input flow intensity tend to infinity. Moreover, the obtained
asymptotic results were quite accurate.

This study is based on the classical Erlangian model of loss multi-server system (see,
for example, in [19,20]). Asymptotic behaviors of the blocking probability and parameters
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of the Equivalent Random Theory method was analyzed in [21] for the case when both the
number of servers and the input flow intensity tend to infinity.

However, the inclusion in this model of the assumption that load factor equals one,
the intensity of the input flow is proportional to the number of servers n, and the tendency
of n to infinity allowed us to establish that the probability of failure tends to zero also.
The exact asymptotic rate of this convergence is established. Moreover, when the load
factor is less than one, it is possible to construct an upper estimate of the rate of convergence
to zero in the form of a geometric progression. Therefore, the synergistic effect found in
this paper is very strong and so can be used in the design of data transmission systems of
the fifth generation.

The features of probabilistic models of complex systems discovered in this way can
also be used in the estimation of their parameters. In particular, in the deterministic model
of logistic growth [22] (which is very important and classical in mathematical biology),
the problem of estimating the growth parameter from inaccurate observations arises and
attracts specialists again and again. The solution of this problem by the method of least
squares leads to quite large errors. In this paper, the unknown growth parameter is
expressed in terms of the trajectory averages of the deterministic sequence of the model.
In turn, the trajectory averages are estimated from observations over a sufficiently long
period of time, which leads to the leveling of observation errors. These estimates are based
on the use of probabilistic metrics developed in [11] and are new.

Thus, the solution of the above problems of system analysis required a combination
of probabilistic and deterministic methods of system analysis, among which the methods
of studying the synergistic effects arising from the structural restructuring of a complex
system play a decisive role. The benefit of received results is to establish sufficiently strong
dependencies of performance indicators on changes in the system structure. This approach
opens up new opportunities in solving problems of structural optimization of stochastic
systems: queuing, reliability, etc.

2. Separate Redundancy in a Two-Pole System

Consider m sequentially connected and independently operating elements with a
failure-free probability of p, 0 < p < 1. The probability of failure-free operation of such
a chain is pm. Let us focus on two alternative ways to reserve this network. In the first
method, n independently functioning duplicates are connected in parallel (see Figure 1).

Figure 1. n-multiple block redundancy (top), split redundancy (bottom) of a chain of length m.

Reliability of the network obtained in this way is Hn(m) = 1 − (1 − pm)n. In the
second method, each element of the original chain is n-multiple reserved separately (see
Figure 1). Reliability of the newly formed network Hn(m) = (1− qn)m, q = 1− p.
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From the results of the monograph [6], it follows that Hn(m) ≥ Hn(m) (this inequality
is valid for any bipolar). However, this inequality gives only a qualitative idea of the
possibilities of separate reservation. To give a quantitative assessment, it is convenient to
move from the reliability function to the required amount of reserve.

For δ > 0, denote n∗(m, δ) = min(n : Hn(m) ≥ 1− δ), n∗(m, δ) = min(n : Hn(m) ≥
1− δ) the required volume of reserve, in which the reliability exceeds 1− δ. To calculate
the reliability of general type two-pole, it is necessary to solve an NP-complex problem.
However, to compare the different ways of reserving a chain of the length m, it is necessary
only to solve a few simple inequalities. Moreover, the results of this comparison are very
contrasting and the most interesting consideration of a separate reserve may be applied to
general type two-pole also. Let us denote [a] the integer part of the real number a.

Proposition 1. The following inequalities are met:

n∗(m, δ) ≥
[

1− δ

pm

]
+ 1, n∗(m, δ) ≤

[
ln(δ/m)

ln q

]
+ 1. (1)

Proof. Indeed, for all a, 0 < a < 1, the inequality holds

(1− a)m ≥ 1−ma, m = 1, 2, . . . , ⇒ Hn(m) = 1− (1− pm)n ≤ npm, ⇒

n∗(m, δ) ≥ min(n : npm ≥ 1− δ) = min
(

n : n ≥ 1− δ

pm

)
≥
[

1− δ

pm

]
+ 1,

so the first relation in Formula (1) takes place. In turn,

Hn(m, δ) ≥ (1− qn)m ≥ 1−mqn, ⇒ n∗(m, δ) ≤ min(n : mqn ≤ δ) ⇒

n∗(m, δ) ≤ min(n : ln m + n ln q ≤ ln δ) ≤
[

ln(δ/m)

ln q

]
+ 1.

Therefore, the second relation in Formula (1) is valid.
Table 1 demonstrates how much n∗(m, δ) is greater than n∗(m, δ).

Table 1. Meanings of n∗(m, δ), n∗(m, δ) for p = 0, 7, δ = 0, 1.

m 1 2 3 4 53 6 7 8 9 10 11 12 13 14 15

n∗(m, δ) 2 4 6 9 13 19 27 39 56 81 116 166 237 339 484

n∗(m, δ) 2 3 3 4 4 4 4 4 4 4 4 4 5 5 5

A comparison of these relations shows that for a large chain length of m, the split-
reservation scheme provides special advantages, as the lower bound, which grows as a
geometric progression, is replaced by the upper logarithmic bound. Note that the upper
estimate of the required reserve in the scheme of separate reservation of a sequential chain
is logarithmic in m and can be easily extended to the general case.

Indeed, consider a two-pole consisting of m independently operating edges with
probabilities of operation p1, . . . , pm ≥ 1− q, 0 < q < 1. Let us construct a two-pole in
which each edge of the original two-pole is a reserve of n identical elements and denote
Hn(p1, . . . , pm) the probability of the existence of a working path from the initial to the
final vertex in this two-pole.

Proposition 2. For the value n∗(p1, . . . , pm, δ), the relation is valid

n∗(p1, . . . , pm, δ) ≤
[

ln(δ/m)

ln q

]
+ 1.
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Proof. The proof of this statement is based on the inequality Hn(p1, . . . , pn) ≥ (1− (1−
p1)

n) · . . . · (1− (1− pm)n) ≥ (1− qn)m ≥ 1−mqn. This inequality follows from the fact
that the reliability of an arbitrary two-pole with m independently functioning elements
is not less than the reliability of a chain of m elements connected in series. Therefore, the
second inequality in the formula (1) is true also.

For an arbitrary two-pole, a logarithmic by m upper estimate of the value of the
required reserve in the separate reservation scheme is performed. Note that this result
is obtained using trivial inequalities and does not require calculating the reliability of
Hn(p1, . . . , pm), which in general is an NP-problem.

Indeed, if α1, . . . , αm are independent boolean random variables which describe states
of two-pole elements and boolean function A(α1, . . . , αm) describes a workability of two-
pole dependently on states of its elements then its reliability

HA(p1, . . . , pm) =
1

∑
α1,...,αm=0

A(α1, . . . , αm)
m

∏
j=1

p
αj
j , with p1

j = pj, p0
j = 1− pj, j = 1, . . . , m.

Calculation of the reliability H(p1, . . . , pm) formally requires performing of 2m arith-
metical operations.

Thus, a convenient choice of the reserve efficiency indicator in the form of the required
reserve volume solves two problems. It allows us to obtain a strong (logarithmic) depen-
dence of the chosen efficiency indicator on the number of edges of the two-pole m and
makes it possible to abandon the solution of the NP-problem of calculating the reliability
of the two-pole.

3. RQ-Queuing Systems with a Large Number of Servers

Consider an RQ-system, i.e., a queuing system, in which, if there is a free server,
the customer that has come to the system immediately begins to be served on it. If there are
no free servers, then the customer is sent to the orbit, from where it can return to the newly
released server in accordance with some protocol [12–14]. A good source for RQ systems
in recent years has been Conference ITMM 2018 in Tomsk, which was held in conjunction
with 12th International Workshop on Retrial Queues and Related Topics (WRQ 2018).

To solve this problem, we propose to use the theorem on the asymptotic behaviour of
an n-server queuing system for n → ∞. In this theorem, we prove that at T > 0 for n → ∞,
the probability Pn(T) that on the segment [0, T] in the system there will be customers going
into orbit tends to zero. Already in this result, the transition from the limit distribution to
the above probability is made. Moreover, this characteristic becomes a new indicator of
efficiency, which is convenient to use when analyzing a multichannel RQ queuing system.

Consider the series scheme in which the characteristics of n-server queuing systems
are defined by the parameter n → ∞, which characterizes an intensity of input flow
tending to infinity. Denote en(t) a number of input flow customers arriving before the
moment t, en(0) = 0. Assume that qn(t) is a number of busy servers in this system at the
moment t, qn(0) = 0, τj is the service time of j input flow customer and τj, j ≥ 1, is a
sequence of independent and identically distributed random variables (s.i.i.d.r.v.’s) with
the distribution function (d.f.) F(t) (F = 1− F), which has continuous and bounded by
f̄ > 0 density f (t). All results of this section are based on ([16], Chapter II, § 1, Theorem 1):

Theorem 1. Assume that the following conditions are true.

(1) For some a > 0 the equality Een(t) = nat, t ≥ 0, takes place.
(2) There is the function B(n) such that for A(n) = max(n1/2, B(n)) the limit relations take

place for n → ∞

B(n)
A(n)

→ B ≥ 0,
√

n
A(n)

→ K ≥ 0,
n

A(n)
→ ∞.

342



Mathematics 2021, 9, 1396

so that max(B, K) = 1).

(3) The sequence of random processes xn(t) =
en(t)− Een(t)

B(n)
for n → ∞ C-converges to the

centred Gaussian process z(t).

(4) Random process ζ(t) =
∫ t

0
F(t − u)dz(u) + KΘ(t), 0 ≤ t ≤ T, where Θ(t) is centred

Gaussian process independent with z(t), which has the covariance function R(t, t + u) =∫ t

0
F(v + u)F(v)adv and satisfies the relation P( sup

0≤t≤T
ζ(t) > L)→ 0, L → ∞.

(5) If the inequality ρ = aEτj < 1 is true then for any T > 0 we have the relation

P

(
sup

0≤t≤T
qn(t) ≥ n

)
→ 0, n → ∞.

Here, the concept of C-convergence used in Theorem 1 is defined as follows. Denote
by F1 the space of deterministic functions on the segment [0, T] with uniform metric ρ.
Designate by F the set of bounded functionals f defined on F1 and continuous in the
metric ρ : if z = z(t), z1 = z1(t), z2 = z2(t), . . . ∈ F1 and ρ(z, zn) → 0, n → ∞, then
f (zn) → f (z), n → ∞. Say that the sequence of random processes zn = zn(t), n ≥ 1,
C-converges to the random process z = z(t) if for any functional f ∈ F we have that
E f (zn)→ E f (z), n → ∞.

Deterministic input flow of customer groups. Let at times 1, 2, . . . in n-server RQ-
queuing system come groups of customers of the size of η1 ≥ 0, η2 ≥ 0, . . . , where η1, η2, . . .
– i.i.d.r.v.‘s with integer values, Eη1 = a, Var η1 < ∞. Define the input flow by the equality

en(t) =
[nt+ψ]

∑
k=1

ηk, t ≥ 0, where ψ – independent of ηk, k ≥ 1, τj, j ≥ 1, a random variable

with a uniform distribution on the segment [0, 1] ([d] is the integer part of the real number
d). Here and in two next models random variable ψ has uniform distribution to ensure the
proportionality t of the mathematical expectation Een(t).

Theorem 2. Suppose that, for some D > 0, almost certainly η1 < D and the inequality aEτ1 < 1
is true. Then for any T > 0 the relation Pn(T)→ 0, n → ∞, is valid.

Proof. In [23] it is proved that under the conditions of this theorem,

P

(
sup

0≤t≤T
qn(t) ≥ n

)
→ 0, n → ∞. (2)

Connecting this relation with the inequality Pn(T) ≤ P

(
sup

0≤t≤T
qn(t) ≥ n

)
, n ≥ 1, one

obtains the proof of the theorem.

Alternating input flow. Consider a n-server RQ-queuing system, assuming n =
n(N) → ∞, N → ∞. Let us define the input flow to this system using the following
construction. Following the works in [24,25], we define a continuous random flow defined
by ON and OFF periods. Let a sequence of i.i.d.r.v’s X0 ≥ 0, X1 ≥ 0, X2 ≥ 0, . . . consists
of lengths of ON-periods, the sequence of i.i.d.r.v.‘s Y0 ≥ 0, Y1 ≥ 0, Y2 ≥ 0, . . . consists
of the lengths of OFF-periods and these random sequences are independent. Denote
F1(t) = P(X1 < t), F2(t) = P(Y1 < t), t ≥ 0, and suppose that

F1(t) = t−α1 L1(t), F2(t) = t−α2 L2(t), 1 < α1 < α2 < 2,

where the function L1(t)→ l1 > 0, t → ∞, and L2(t) is a slowly varying function. Let b(t)
is the inverse of the function 1/F1(t) : b(1/F1(t)) = t.
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We introduce independent r.v.‘s B, X, Y, which are independent of Xn, Yn, n ≥ 1,
and Y0 with distributions

P(B=1) =
μ1

μ
, P(B=0) =

μ2

μ
, μ=μ1 + μ2, μ1 = EX1, μ2 = EY1,

P(X≤x) =
1

μ1

∫ x

0
F1(s)ds, P(Y≤x) =

1
μ2

∫ x

0
F2(s)ds.

Then, a random sequence

T0 = B(X + Y0) + (1− B)Y, Tn = T0 +
n

∑
i=1

(Xi + Yi), n ≥ 1,

generates an ON–OFF process

W(t) = BI[0,X)(t) +
∞

∑
n=0

I[Tn ,Tn+Xn+1)
(t), t ≥ 0

(here IA(t) is the indicator function of a random event t ∈ A). The random process W(t)
is binary: W(t) = 1, if t is contained in an ON-period, W(t) = 0, if t is contained in the
OFF-period and stationary, and EW(t) = μ1/μ = α.

Denote A(t) =
∫ t

0
W(s)ds, then EA(t) = αt, t ≥ 0. Let n = n(N) = NM(N),

M = M(N) = [Nγ], γ > 0, and random functions Am(t), m = 1, ..., M, are independent

copies of a random function A(t). We introduce the function en(t) =

[
M

∑
m=1

Am(Nt) + ψ

]
,

specifying the alternating input flow.

Theorem 3. If γ > α1 − 1 and αEτj < 1, then for any T > 0 the relation Pn(T) → 0, n → ∞,
is true.

The proof of Theorem 3 repeats the proof of Theorem 2 verbatim.

Erlangian input flow. Let En(t) a Poisson flow of customers with intensity nα. Define
the input flow to the n-server system described above by the equality

en(t) =
[

En(t)
r

+ ψ

]
, t ≥ 0,

where ψ is a random variable independent of ηk, k ≥ 1, τj, j ≥ 1, with a uniform
distribution on the segment [0, 1], and the fixed r takes natural values. It is obvious that
for any fixed ψ, 0 ≤ ψ ≤ 1, the moments of single jumps of the process en(t) form an
Erlangian flow. Here, the Erlangian flow is obtained from En(t) by allocation of moments
with numbers that are multiples of r.

Theorem 4. If αEτj < 1, then for any T > 0 the relation Pn(T)→ 0, n → ∞, holds.

Proof. In [26] it is proved that Formula (2) is valid under the conditions of the theorem.

Connecting it with inequality Pn(T) ≤ P

(
sup

0≤t≤T
qn(t) ≥ n

)
, one obtains the proof of the

theorem.

The choice of the probability Pn(T) as an efficiency indicator allows us to apply
the known theorems to the analysis of a multi server RQ-system with a fairly general
protocol for the transfer of customers from orbit to the vacated server almost without
additional consideration.
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4. Multiserver Loss Systems

Consider n-server queuing system M|M|n|0 with a Poisson input flow of intensity nλ
and exponentially distributed service times having intensity μ on all n servers, ρ = λ/μ.
This system can be considered as combining n single-server systems with input flow
intensities λ (see Figure 2).

Figure 2. n isolated M|M|1|0 systems (left), aggregated M|M|n|0 system (right). b̂n.

The number of customers in the system M|M|n|0 describes the process of death
and birth with the intensities of birth and death λn(k) = nλ, 0 ≤ k < n, μn(k) =
kμ, 0 < k ≤ n.

Let us denote Pn(ρ) the stationary probability of failure in the system An for a given ρ.
It is not difficult to establish that P1(1) = 1/2. However, the combined system An satisfies
new relation, which characterizes the synergistic effect of such a combination.

Theorem 5. The following limit ratio is true: Pn(1) ∼
√

2
πn

, n → ∞.

Proof. Let δ > 0, consider the function f (x) = 1− x− exp(−(1 + δ)x). The f (x) function
satisfying the condition: f (0) = 0, f (1) < 0, and such that the inequalities

f ′(x) > 0, 0 < x <
ln(1 + δ)

1 + δ
, f ′(x) < 0,

ln(1 + δ)

1 + δ
< x ≤ 1

hold. Therefore, on the half interval [0, 1) there exists a single x(δ), satisfying the condition
f (x(δ)) = 0 and such that the inequalities 1− x ≥ exp(−(1+ δ)x), 0 ≤ x ≤ x(δ) < 1 hold.
Let pn(k) = lim

t→∞
P(xn(t) = k), 0 ≤ k ≤ n, then in force [16] [Chapter 2, § 1]

pn(n− 1) = pn(n)
μ

λ

n
n

, pn(n− 2) = pn(n)
(μ

λ

)2 n(n− 1)
n2 , . . .

Therefore, the stationary blocking probability in virtue of the integral theorems of
recovery and the law of large numbers for the recovery process [1] [Chapter 9, § 4, 5]
satisfies the equality

Pn(ρ) = pn(n) =

(
n

∑
k=0

ρ−k
k−1

∏
j=0

(
1− j

n

))−1

, (3)

where ∏−1
j=0 equals 1. From Formula (3), we obtain the inequality

P−1
n (1) ≥ ∑

0≤k≤nx(δ)

k−1

∏
j=0

(
1− j

n

)
≥ ∑

0≤k≤nx(δ)

k−1

∏
j=0

exp(−(1 + δ)j/n) ≥

≥ ∑
1≤k≤nx(δ)

exp(−(1 + δ)k2/2n).
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This implies that

P−1
n (1) ≥

∫ nx(δ)

1
e−(1+δ)x2/2ndx =

√
n

1 + δ

∫ x(δ)
√

n(1+δ)√
1+δ

n

e−y2/2dy,

consequently

Pn(1)
√

n ≤ (1 + δ)

(∫ x(δ)
√

n(1+δ)√
1+δ

n

e−y2/2dy

)−1

→ (1 + δ)

√
2
π

, n → ∞.

and so lim sup
n→∞

Pn(1)
√

πn
2
≤ 1 + δ.

Using Formula (3) and the inequality 1− x ≤ exp(−x), 0 ≤ x ≤ 1, we obtain

P−1
n (1) ≤ ∑

1≤k≤n
e−k(k−1)/2n ≤ ∑

1≤k≤n
e−(k−1)2/2n ≤

∫ ∞

0
e−x2/2ndx,

thus it follows that 1 ≤ lim inf
n→∞

Pn(1)
√

πn
2

. Obtained above inequalities for upper and

lower limits lead to the statement of Theorem 5.

Remark 1. In aggregated M|M|n|0 system at ρ < 1 following relations are valid [18]:

e−n ln2 ρ/2

√
2

πn

√
ρ

8
� Pn(ρ) � (e−n ln2 ρ/2)(ρ−1)/ ln ρ

√
2

πn

√
ln ρ

ρ− 1
. (4)

And if ρ = ρ(n) = 1− n−γ, γ > 0, then Theorem 5 gives

1
2

√
1

πn
� Pn(ρ) �

√
2

πn
, γ ≥ 1

2
,

1
2

√
1

πn
� Pn(ρ) exp

(
n1−2γ

2

)
�
√

2
πn

, γ <
1
2

.

Similar results were obtained for Erlang‘s loss function in [27,28] but in a more com-
plex way.

Remark 2. In aggregated M|M|n|∞ system following relations are valid [29] for An—stationary
mean waiting time and Bn—stationary mean queue length:

(1) If ρ < 1, then for some c < ∞, q < 1 the relation holds An ≤ c qn, n ≥ 1.
(2) If ρ = 1− n−α, 0 < α < ∞, then for n → ∞

An →

⎧⎨⎩
0, α < 1,
1/μ, α = 1,
∞, α > 1.

Bn →
{

0, α < 1/2,
∞, α ≥ 1/2.

Suppose that we have m independently functioning nk-server queuing systems with
Poisson input flows of intensity λk, k = 1, . . . , m. In the k-th system, the customer of the
input flow is served exponentially distributed time simultaneously on ck channels with
intensity μk. Let lk = nk/ck be a natural number and the equality ρk = λk/(lkμk) = 1 holds.

We combine n copies of each of the nk-server systems under consideration, denoting
Pk

n stationary probability of failure in each of the combined systems, k = 1, . . . , m. Using
Theorem 5, it is not difficult to obtain the following limit relations
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P1
n ∼
√

2
πnl1

, . . . , Pm
n ∼

√
2

πnlm
, n → ∞.

This solution allows us to distribute the total number of n(n1 + . . . + nm) servers
between flows so that the failure probabilities of customers of different flows tend to
zero with the growth of a large parameter n. To solve this problem, one could use the
exact multiplicative formula obtained in [17], but this would lead to significantly more
complex calculations.

5. Parameter Estimation in the Logistics Growth Model

The recurrent model of logistic growth

x0 = a, xn+1 = bxn(1− xn), n = 0, 1, ..., (5)

where the parameters a, b satisfy the conditions 0 < a < 1, 1 < b < 4, attracts increased
attention from biologists and physicists. For this model, both practically and theoretically,
it is important to evaluate the parameter b based on inaccurate observations. Due to
the nonlinearity of the recurrence relation (5), the least squares method applied to the
estimation of the parameter b seems somewhat unnatural, which is confirmed by numerous
computational experiments that give quite large errors. It seems more natural to apply
such qualitative properties of the sequence, as the existence of its limit cycle or limit
distribution [30] depending on the value of b in combination with the method of probability
metrics [11].

Consider an additive model for introducing errors in observations yn = xn + εn, n =
1, . . . Here, εn, n = 1, . . . , is a sequence of i.i.d.r.v.’s having a distribution with mean zero
and variance σ2. We introduce the following notation

Xn =
n−1

∑
i=0

xi
n

, Yn =
n−1

∑
i=0

yi
n

, X′
n =

n−1

∑
i=0

x2
i

n
, Y′n =

n−1

∑
i=0

y2
i

n
.

Using the results of [30], it is possible to establish that for the deterministic sequence
xn, n = 1, . . . , with a given b there are limits

lim
n→∞

Xn = x lim
n→∞

X′
n = x2. (6)

Indeed, say that the sequence xn, n = 1, ..., has a limit cycle x(1), ..., x(q) of length

q ≥ 1, if lim
k→∞

xqk+j = x(j), j = 1, ..., q. Denote x =
1
q

q

∑
j=1

x(j), x2 =
1
q

q

∑
j=1

[x(j)]2, then we

have

XNq =
1

Nq

Nq

∑
i=1

xi → x, X′
Nq =

1
Nq

Nq

∑
i=1

x2
i → x2, N → ∞,

so Formula (6) is true in the case, when the sequence xn, n = 1, . . . , has limit cycle.
Let p(dx) be a probability measure on the σ-algebra of Lebesgue-measurable subsets of

the segment [0, 1]. Let us say that p(dx) is the limiting distribution of the sequence xn, n =

1, ..., if for any Lebesgue-measurable set C ⊆ [0, 1] the equality holds lim
n→∞

k(C, n)
n

=∫
C

p(dx) = p(C), where k(C, n) is the number of xi satisfying the inclusion xi ∈ C, i =

1, ..., n. Then, we define x =
∫ 1

0
xp(dx), x2 =

∫ 1

0
x2 p(dx) and prove Formula (6) as follows.
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Let us take an arbitrary δ > 0 and put m =

[
2
δ

]
+ 1, γ = δ

(
2 +
[

2
δ

])−1
. Divide the

half interval [0, 1) into disjoint segments

C1 =

[
0,

1
m

)
, C2 =

[
1
m

,
2
m

)
, . . . , Cm =

[
m− 1

m
, 1
)

.

Choose N(δ) so that for any n > N(δ) we have
[ k(Cj, n)

n

]
≤ γ, j = 1, . . . , m. It is

sufficiently simple to prove for n ≥ N(δ) the following inequalities

1
n
· ∑

xi∈Cj , i=1,...,n
xi ≤

j
m
·

k(Cj, n)
n

≤ j
m
(p(Cj) + γ) ≤

≤ γj
m

+
∫

Cj

(
x +

1
m

)
p(dx) =

γj
m

+
p(Cj)

m
+
∫

Cj

xp(dx).

Summing these inequalities by j = 1, ..., m, and using the equality for m we get for
n ≥ N(δ) the inequality

Xn ≤
γ(m + 1)

2
+

1
m

+ x = x + δ.

Analogously it is possible to obtain

1
n
· ∑

xi∈Cj , i=1,...,n
xi ≥

j− 1
m

·
k(Cj, n)

n
≥ j− 1

m
(p(Cj)− γ) ≥

≥
∫

Cj

(
x− 1

m

)
p(dx)− γ(j− 1)

m
=
∫

Cj

xp(dx)− 1
m
− γ(m− 1)

2
≥ x− δ,

consequently Xn → x, n → ∞. Similarly we have the relation X′
n → x2, n → ∞, so

Formula (6) is true in the case, when the sequence xn, n = 1, . . . , has limit distribution also.
Note that formally the limits x, x2 may depend on the initial state x0. However, in the

logistics growth model there is no such dependence.
We will evaluate the parameter b in two stages. First, we express b in terms of the path

averages: b = x/(x− x2). Using the ratio

EYn =
1
n

n−1

∑
i=0

E(xi + εi) = Xn → x,

EY′n =
1
n

n−1

∑
i=0

E(xi + εi)
2 =

1
n

n−1

∑
i=0

(x2
i + σ2) = X′

n + σ2 → x2 + σ2, n → ∞,

let us estimate the parameter b by the formula

bn =
EYn

EYn − (EY′n − σ2)
→ b, n → ∞.

As a result, the parameter b is evaluated by the formula b̂n =
Yn

Yn − (Y′n − σ2)
. The

convergence in probability b̂n → b, n → ∞, follows from the relations

VarYn =
1
n2

n−1

∑
i=0

Var(xi + εi) =
1
n2

n−1

∑
i=0

Varεi =
σ2

n
→ 0;
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VarY′n =
1
n2

n−1

∑
i=0

Var(xi + εi)
2 =

1
n2

n−1

∑
i=0

Var(2xiεi + ε2
i ) ≤

4
n
(4σ2 + σ4)→ 0, n → ∞.

The following is an illustrative example of estimating parameter b for a logistic growth
model. Calculations of b̂n were performed for the case x0 = 0.75; a = 0.5; b = 3 at
n = 1000 (see Figure 3). An additive model of introducing errors was considered under the
assumption that εi, i = 0, .., n− 1, have a uniform distribution on the segment [−1/4, 1/4].

Figure 3. Frequency histogram for b̂n.

This method can be applied to the estimation of the parameters of the Rikker model
(see, for example, in [22]). Here, the Rikker model is described by recurrent relation

x0 = 1, xn+1 = axn exp(−bxn), a, b > 0,

and observations are following: yn = xn exp(εn), where εn has normal distribution with
zero mean and known variation, n ≥ 0. Another application of described method is
the finite-difference approximation of the system of Lorentz differential equations (see,
for example, in [31]), etc.

6. Discussion

All the problems of system analysis considered in this paper are based on the choice
of changes in the structure of the system, the efficiency indicator, and the computational
algorithm with an assessment of its complexity. In some cases, it is possible to replace the
NP-problem with a fairly simple computational procedure, abandoning the high accuracy
of the resulting solution in favor of a significant change in the performance indicator.
Apparently, such problems require a certain proportion between the accuracy and efficiency
of the resulting solution.

The proposed approach to the study of synergistic effects in complex systems can
be applied to the construction of queuing systems with a large load and a small queue,
to backup systems with recovery, to insurance models and other stochastic systems. It
allows you to explore and find the main parameters in such popular technologies in applica-
tions as powder metallurgy, 3-D printing, fast mixing of fuel in engines, etc. The emphasis
on economical, but not highly accurate calculations, makes it possible at the initial stage
to correctly select the main parameters of the analyzed systems before performing more
detailed and accurate calculations. This property of the proposed approach to the analysis
of complex systems can be used in programs of digital economy, smart city, etc., when
at the initial stage of the study it is important to determine the main indicators of the
effectiveness of a complex system.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable to this article.

349



Mathematics 2021, 9, 1396

Acknowledgments: The author thanks Marina Osipova for her help in the design of the work.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Skrimizea, E.; Haniotou, H.; Parra, C. On the complexity turn in planning: An adaptive rationale to navigate spaces and times of
uncertainty. Plan. Theory 2019, 18, 122–142. [CrossRef]

2. Battiston, S.; Caldarelli, G.; May, R.; Roukny, T.; Stiglitz, J. The price of complexity in financial networks. Proc. Natl. Acad. Sci.
USA 2016, 113, 10031–10036. [CrossRef] [PubMed]

3. Majdandzic, A.; Braunstein, L.; Curme, C.; Vodenska, I.; Levy-Carciente, S.; Eugene, S.; Havlin, S. Multiple tipping points and
optimal repairing in interacting networks. Nat. Commun. 2016, 7, 1–10. [CrossRef] [PubMed]

4. Lever, J.; Leemput, I.; Weinans, E.; Quax, R.; Dakos, V.; Nes, E.; Bascompte, J.; Scheffer, M. Foreseeing the future of mutualistic
communities beyond collapse. Ecol. Lett. 2020, 23, 2–15. [CrossRef] [PubMed]

5. Limiao, Z.; Guanwen, Z.; Daqing, L.; Hai-Jun, H.; Eugene, S.; Shlomo, H. Scale-free resilience of real traffic jams. Proc. Natl. Acad.
Sci. USA 2019, 116, 8673–8678.

6. Barlow, R.; Proshan, F. Mathematical Theory of Reliability; John Wiley and Sons: New York, NY, USA, 1965.
7. Ryabinin, I.A. Reliability and Safety of Structurally Complex Systems; St. Petersburg University Press: Saint-Petersburg, Russia, 2007.

(In Russian)
8. Solojentsev, E.D. Scenario Logic and Probabilistic Management of Risk in Business and Engeneering; Springer: Berlin/Heidelberg,

Germany, 2004.
9. Gertsbakh, I. Statistical Reliability Theory; Marcel Dekker: New York, NY, USA, 1989.
10. Rocchi, P. Reliability Is A New Science. Gnedenko Was Right; Springer: Berlin/Heidelberg, Germany, 2017.
11. Zolotarev, V. Modern Theory of Summation of Random Variables; VSP: Utrecht, The Netherlands, 1997.
12. Dudin, A.; Nazarov, A. On a tandem queue with retrials and losses and state dependent arrival, service and retrial rates. Int. J.

Oper. Res. 2017, 29, 170–182. [CrossRef]
13. Artalejo, J.; Gomez-Corral, A. Retrial Queueing Systems. A Computational Approach; Springer: Berlin/Heidelberg, Germany, 2008.
14. Nazarov, A.; Moiseeva E. Investigation of the RQ-system MMPP|M|1 by the method of asymptotic analysis in the condition of a

large load. Izv. Tomsk. Polytech. Univ. 2013, 322, 19–23. (In Russian)
15. Information Technologies and Mathematical Modelling-Queueing Theory and Applications. In Proceedings of the 17th Interna-

tional Conference, ITMM 2018, Named After A.F. Terpugov, and 12th Workshop on Retrial Queues and Related Topics, WRQ
2018, Tomsk, Russia, 10–15 September 2018; Volume 912. Communications in Computer and Information Science Series.

16. Borovkov, A. Asymptotic Methods in Queueing Theory; John Wiley and Sons: New York, NY, USA, 1984.
17. Basharin, G.P.; Gaidamaka, Yu.V.; Samouylov, K.E. Mathematical Theory of Teletraffic and Its Applications to the Analysis of

Multiservice Communication of Next Generation Networks. Autom. Control. Comput. Sci. 2013, 47, 62–69. [CrossRef]
18. Tsitsiashvili, G.S.; Osipova, M.A.; Samoulov, K.E.; Gaidamaka, Y.V. Synergetic effects in multiserver loss systems. In Proceedings

of the VIII Moscow International Conference on Operations Research for the Centenary of Yu. B. Hermeyer at the Moscow State
University and the VC RAS, Moscow, Russia, 17–21 October 2016; Volume I, pp. 350–355.

19. Gnedenko, B.V.; Kovalenko, I.N. Introduction to Queuing Theory; Nauka: Moscow, Russia, 1966. (In Russian)
20. Ivchenko, G.I.; Kashtanov, V.A.; Kovalenko, I.N. Queuing Theory; Visshaya Shkola: Moscow, Russia, 1982. (In Russian)
21. Naumov, V.A. On the behavior of the parameters of the Equivalent Random Theory method at low load. In Numerical Methods

and Informatics; RUDN Publisher: Moscow, Russia, 1988. (In Russian)
22. Geritz, S.; Kisdi, E. On the mechanistic underpinning of discrete-time population models with complex dynamics. J. Theor. Biol.

2004, 228, 261–269. [CrossRef] [PubMed]
23. Tsitsiashvili, G.; Osipova M. Synergetic effects for number of busy servers in multiserver queuing systems. Commun. Comput. Inf.

Sci. Ser. 2015, 564, 404–414.
24. Heath, D.; Resnick, S.; Samorodnitsky, G. Heavy tails and long range dependence in on/off processes and associated fluid models.

Math. Oper. Res. 1998, 23, 145–165. [CrossRef]
25. Mikosch, T.; Resnick, S.; Rootzen, H. Stegeman A. Is network traffic approximated by stable Levy motion or fractional Brownian

motion? Ann. Appl. Probab. 2002, 12, 23–68. [CrossRef]
26. Tsitsiashvili, G.; Markova, N. Synergistic effects in a multi-channel queuing system with an Erlangian input flow. Bull. Pac. State

Univ. 2015, 4, 17–22. (In Russian)
27. Jagerman, D.L. Some Properties of the Erlang Loss Function. Bell Syst. Tech. J. 1974, 53, 525–551. [CrossRef]
28. Mitra, D.; Weiss, A. The Transient Behavior in Erlang’s Model for Large Trunk Groups and Various Traffic Conditions. Proc. 1988

Int. Teletraffic Congr. 1988, 26, 223. [CrossRef]
29. Tsitsiashvili, G.S.; Osipova, M.A. Phase Transitions in Multiserver Queuing Systems. Inf. Technol. Math. Model. Queueing Theory

Appl. 2016, 638, 341–353.
30. Sharkovskiy, A.; Sharkovskiy A.N. Difference Equations and Population Dynamics. Preprint 82.18; Institute of mathematics of the

Academy of Sciences of the Ukrainian SSR: Kiev, Ukraine, 1982. (In Russian)
31. Leonov, G.; Kuznetsov, N.; Korzhemanova, N.; Kusakin, D. Lyapunov dimension formula for the global attractor of the Lorenz

system. Commun. Nonlinear Sci. Numer. Simul. 2016, 41, 84–103. [CrossRef]

350



mathematics

Review

Review of the Latest Progress in Controllability of Stochastic
Linear Systems and Stochastic GE-Evolution Operator

Zhaoqiang Ge

Citation: Ge, Z. Review of the Latest

Progress in Controllability of

Stochastic Linear Systems and

Stochastic GE-Evolution Operator.

Mathematics 2021, 9, 3240. https://

doi.org/10.3390/math9243240

Academic Editors: Mikhail Posypkin,

Andrey Gorshenin and Vladimir

Titarev

Received: 15 November 2021

Accepted: 11 December 2021

Published: 14 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Mathematics and Statistics, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an 710049, China;
gezqjd@mail.xjtu.edu.cn

Abstract: According to the spatial dimension, equation type, and time sequence, the latest progress
in controllability of stochastic linear systems and some unsolved problems are introduced. Firstly, the
exact controllability of stochastic linear systems in finite dimensional spaces is discussed. Secondly,
the exact, exact null, approximate, approximate null, and partial approximate controllability of
stochastic linear systems in infinite dimensional spaces are considered. Thirdly, the exact, exact
null and impulse controllability of stochastic singular linear systems in finite dimensional spaces
are investigated. Fourthly, the exact and approximate controllability of stochastic singular linear
systems in infinite dimensional spaces are studied. At last, the controllability and observability for a
type of time-varying stochastic singular linear systems are studied by using stochastic GE-evolution
operator in the sense of mild solution in Banach spaces, some necessary and sufficient conditions
are obtained, the dual principle is proved to be true, an example is given to illustrate the validity
of the theoretical results obtained in this part, and a problem to be solved is introduced. The main
purpose of this paper is to facilitate readers to fully understand the latest research results concerning
the controllability of stochastic linear systems and the problems that need to be further studied, and
attract more scholars to engage in this research.

Keywords: controllability; observability; stochastic linear systems in finite and infinite dimensional
spaces; stochastic singular linear systems in finite and infinite dimensional spaces; semigroup;
evolution operator; GE-semigroup; GE-evolution operator; stochastic GE-evolution operator

1. Introduction

Since Kalman published the seminal paper [1], the controllability of stochastic systems
has become a central problem in the study of mathematical control theory, a large number
of academic papers have been published. For representative papers, see references [1–73].
However, even for the controllability of stochastic linear systems, there are still many
important problems to be solved. In this paper, we discuss the latest development of
controllability of stochastic linear systems and raise some unsolved issues. According to
the spatial dimension, equation type and time sequence, the rest of the paper is organized
as follows. In Section 2, the following contents are introduced concerning the controllability
of stochastic linear systems in finite dimensional spaces: (i) The Lp−exact controllability
and exact observability are discussed; (ii) The exact controllability by feedback controller is
considered; (iii) The exact controllability of the stochastic linear systems with memory is
investigated; (iv) Some theoretical results for these concepts are given and four important
problems to be solved are put forward. In Section 3, the controllability of stochastic
linear systems in infinite dimensional spaces is considered: (i) The null controllability
is investigated by using C0−semigroup in the sense of mild solution in Hilbert spaces;
(ii) The approximate controllability and approximate null controllability are discussed
by using C0−semigroup in the sense of mild solution in Hilbert spaces; (iii) The partial
approximate controllability is studied by using evolution operator in the sense of mild
solution in Hilbert spaces; (iv) According to these theories, three problems that need to be
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studied are raised. In Section 4, the controllability of stochastic singular linear systems in
finite dimensional spaces is dealt with: (i) The exact controllability is considered by using
Gramian matrix; (ii) The exact null controllability is studied by using Gramian matrix;
(iii) The impulse controllability and impulse observability are investigated in the sense of
impulse solution; (iv) A problem that needs to be discussed is put forward. In Section 5,
the controllability of stochastic singular linear systems in infinite dimensional spaces is
studied: (i) The exact controllability for a type of time invariant systems is considered
by using C0−semigroup in the sense of strong solution in Hilbert spaces; (ii) The exact
controllability and approximate controllability for a type of time invariant systems are
investigated by using GE-semigroup in the sense of mild solution in Banach and Hilbert
spaces, respectively; (iii) The exact controllability and approximate controllability for a type
of time-varying systems are dealt with by using GE-evolution operator in the sense of mild
solution in Hilbert spaces; (iv) The exact controllability and approximate controllability for
a type of time invariant systems are considered by using stochastic GE-evolution operator
in the sense of mild solution in Banach spaces; (v) The exact controllability, approximate
controllability, exact observability, and approximate observability for a type of time-varying
systems are studied by using stochastic GE-evolution operator in the sense of mild solution
in Banach spaces. Some necessary and sufficient conditions concerning these concepts
are obtained, the dual principle is proved to be true, an example is given to illustrate the
validity of the theoretical results obtained in this part, and a problem to be solved is raised.

The main idea of this paper is to introduce the latest progress for the controllability of
stochastic linear systems and the mathematical methods applied in this field, including
GE-semigroup, GE-evolution operator, stochastic GE-evolution operator and so on. The
main purpose of this paper is to facilitate readers to fully understand the latest research
results concerning the controllability of stochastic linear systems and the problems that
need to be further studied, and attract more scholars to engage in this research.

Notations. (Ω, F, {Ft}, P) is a complete probability space with filtration {Ft} satisfying
the usual condition (i.e., the filtration contains all P−null sets and is right continuous); all
processes are {Ft}−adapted; w(t) is a standard Wiener process defined on (Ω, F, {Ft}, P); E
denotes the mathematical expectation; Rn is the n−dimensional real Euclidean space with
the standard norm ‖ · ‖Rn , Rn×m is the space of all (n×m) real matrices; In ∈ Rn×n denotes
the identical matrix; T denotes the transpose of a vector or a matrix; H = Rn,Rn×m,

etc, and p ∈ [1, ∞); Lp([0, τ]; H) denotes the set of all functions f : [0, τ] → H sat-
isfying ‖ f (·)‖Lp([0,τ];H) = (

∫ τ
0 ‖ f (t)‖p

Hdt)1/p < ∞; L∞([0, τ]; H) denotes the subset of
Lp([0, τ]; H) whose element is essentially bounded; C([0, τ]; H) denotes the set of all func-
tions f : [0, τ] → H, which are continuous on [0, τ] in the sense of ‖ f (·)‖C([0,τ];H) =
maxt∈[0,τ]‖ f (t)‖H ; Lp(Ω, Ft, P, H) denotes the set of all random variables η ∈ H, such that
η is Ft−measurable and ‖η‖p = (E(‖η‖p

H))
1/p < +∞; Lp([0, τ], Ω, Ft, H) denotes the set of

all processes x(t) ∈ H such that ‖x(t)‖p < +∞, ∀t ∈ [0, τ]; Lp([0, τ], Ω, H) denotes the set
of all processes x(t) ∈ Lp([0, τ], Ω, Ft, H) such that E

∫ τ
0 ‖x(t)‖p

Hdτ < +∞; L∞([0, τ], Ω, H)

is the subset of L2([0, τ], Ω, H) where each element x(·) is essentially bounded; Let A
be a linear operator. dom(A), ker(A) and ran(A) denote its domain, kernel and range,
respectively; I denotes the identical operator. Other mathematical symbols involved in this
paper will be properly explained in the discussion.

2. Exact Controllability of Finite Dimensional Stochastic Linear Systems

In this section, we discuss the latest development of exact controllability of finite
dimensional stochastic linear systems.
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2.1. Lp-Exact Controllability

In 2017, Wang et al. consider the controllability of the following stochastic linear
differential equation in [59]:

dx(t) = [A(t)x(t) + B(t)u(t)]dt +
d

∑
k=1

[Ck(t)x(t) + Dk(t)u(t)]dwk(t), t ≥ 0, (1)

where A, Ck: [0, τ]×Ω → Rn×n and B, Dk: [0, τ]×Ω → Rn×m(k = 1, 2, · · · , d) are suitable
matrix-valued processes; x(t) is the state process valued in Rn and u(t) is the control pro-
cess valued in Rm; {wk(t): (k = 1, 2, · · · , d)} is a system of independent one-dimensional
standard Wiener processes, w(t) = (w1(t), · · · , wd(t)). We will denote system (1) by
[A(·), C(·); B(·), D(·)], with C(·) = (C1(·), · · · , Cd(·)) and D(·) = (D1(·), · · · , Dd(·)).

For the convenience of narration, the following notations and concepts are introduced.
Lp

F(Ω; Lq([0, τ]; H)) is the set of all processes x(·) valued in H, such that

‖x(·)‖Lp
F(Ω;Lq([0,τ];H)) = [E(

∫ τ

0
‖x(t)‖q

Hdt)p/q]1/p < ∞,

Lp
F(Ω; Lp([0, τ]; H)) = Lp

F([0, τ]; H), p ∈ [1, ∞].

Lp
F(Ω; C([0, τ]; H)) is the set of all processes x(·) valued in H, such that for almost

ω ∈ Ω, t → x(t, ω) is continuous and

‖x(·)‖Lp
F(Ω;C([0,τ];H)) = [E(supt∈[0,τ]‖x(t)‖p

H)]
1/p < ∞.

In the similar manner, one can define
L∞

F (Ω; L∞([0, τ]; H)) and L∞
F (Ω; C([0, τ]; H)).

Hypothesis 1. The Rn×n−valued processes A(·), Ck(·) satisfy

A(·), Ck(·) ∈ L∞
F (Ω; L∞([0, τ];Rn×n))(k = 1, · · · , d).

Hypothesis 2. For some μ ∈ (1, ∞] and σ ∈ (2, ∞], the following hold:

B(·) ∈ Lμ
F(Ω; L

2σ
σ+2 ([0, τ];Rn×m)), μ ∈ (1, ∞], σ ∈ (2, ∞),

B(·) ∈ Lμ
F(Ω; L2([0, τ];Rn×m)), μ ∈ (1, ∞], σ = ∞,

D1(·), · · · , Dd(·) ∈ Lμ
F(Ω; Lσ([0, τ];Rn×m)).

Now, we introduce the following definition.

Definition 1. (i) A process u(t)(t ∈ [0, τ]) is called a feasible control of system (1) if under
u(t), for any x0 ∈ Rn, system (1) admits a unique strong solution x(t) ∈ L1

F(Ω; C([0, τ];Rn))
satisfying x(0) = x0. The set of feasible controls is denoted by U[0, τ];

(ii) A control u(t) ∈ U[0, τ] is said to be Lp−feasible for system (1) if

p ≥ 1, B(·)u(·) ∈ Lp
F(Ω; L1([0, τ];Rn)), Dk(·)u(·) ∈ Lp

F(Ω; L2([0, τ];Rn×n))

holds true. The set of Lp−feasible controls is denoted by Up[0, τ];
(iii) System (1) is said to be Lp−exactly controllable by U[0, τ] on [0, τ], if for any

x0 ∈ Rn and ξ ∈ Lp(Ω, Fτ , P,Rn), there exists a u(·) ∈ U[0, τ] such that the solution
x(·) ∈ L1

F(Ω; C([0, τ];Rn)) of (1) with x(0) = x0 satisfies x(τ) = ξ.
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2.1.1. The Case D(·) = 0

In this case, we consider system [A(·), C(·); B(·), 0], i.e., the state equation is

dx(t) = [A(t)x(t) + B(t)u(t)]dt +
d

∑
k=1

Ck(t)x(t)dwk(t), t ≥ 0. (2)

Thus, the control u(·) does not appear in the diffusion. The Lp−exact controllability
of system (2) was discussed and the following results were obtained in [59].

Theorem 1 ([59]). Let Hypothesis 1 hold. Let

B(t)B(t)T ≥ δIn, t ∈ [0, τ], a.s.,

for some δ > 0. Then for any p > 1, system (2) is Lp−exactly controllable on [0, τ] by
Up− = ∩q∈(0,p)Uq[0, τ].

Theorem 2 ([59]). Let Hypothesis 1 hold. Suppose there exists a continuous differentiable function
f : [0, τ]→ Rn, ‖ f (t)‖Rn = 1, for all t ∈ [0, τ] such that f (t)T B(t) = 0. Additionally, let

Ck(·) ∈ L∞
F (Ω; C([0, τ];Rn×n)), 1 ≤ k ≤ d. (3)

Then for any p > 1, system (2) is not Lp−exactly controllable on [0, τ] by Up[0, τ].

Corollary 1 ([59]). Let Hypothesis 1 and (3) hold. Let B ∈ Rn×m.
(i) If for some p > 1, system [A(·), C(·); B, 0] is Lp−exactly controllable on [0, τ] by

Up[0, τ], then
rankB = n, (4)

where rankB denotes the rank of B;
(ii) If (4) holds, then for any p > 1, system [A(·), C(·); B, 0] is Lp−exactly controllable on

[0, τ] by Up−[0, τ].

The above result shows that the gap between condition (4) and the Lp−exact control-
lability of system [A(·), C(·); B, 0] (by Up[0, τ], or Up−[0, τ]) is very small.

2.1.2. The Case rankD(·) = n

In this case, we let d = 1, i.e., the Wiener process is one-dimensional. The case d > 1
can be discussed similarly. For system [A(·), C(·); B(·), D(·)], we assume the following:

D(t)D(t)T ≥ δIn, a.s., a.e.t ∈ [0, τ]. (5)

In this case, [D(t)D(t)T ]−1 exists and uniformly bounded. We define

Ã(t) = A(t)− B(t)D(t)T [D(t)D(t)T ]−1C(t),

B̃(t) = B(t){In − D(t)T [D(t)D(t)T ]−1D(t)}, D̃(t) = B(t)D(t)T [D(t)D(t)T ]−1,

and introduce the following controlled system:

dx(t) = [Ã(t)x(t) + B̃(t)v(t) + D̃(t)z(t)]dt + z(t)dw(t), t ∈ [0, τ], x(0) = x0, (6)

with x(t) being the state and (v(·), z(·)) being the control. For system (6), we need the
following set and definition:

Ũp[0, τ] = {v(τ) : B̃(τ)v(τ) ∈ Lp
F(Ω; L1([0, τ];Rn)).
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Definition 2. System (6) is said to be exactly null-controllable by

Ũp[0, τ]× Lp
F(Ω; L2([0, τ];Rn))

on the [0, τ], if for any x0 ∈ Rn, there exists a pair

(v(·), z(·)) ∈ Ũp[0, τ]× Lp
F(Ω; L2([0, τ];Rn)),

such that the solution x(·) to

dx(t) = [Ã(t)x(t) + B̃(t)v(t) + D̃(t)z(t)]dt + z(t)dw(t), t ∈ [0, τ],

x(0) = x0, x(τ) = ξ, (7)

under (v(τ), z(τ)) satisfies x(τ) = 0.

The following results were obtained in [59].

Theorem 3 ([59]). Let Hypothesis 1 and (5) hold. Suppose

Ã(t) ∈ L∞
F (Ω; L1+ε([0, τ];Rn×n)), D̃(t) ∈ L∞

F (Ω; L2([0, τ];Rn×n)),

where ε > 0 is a given constant. Then system (1) is Lp−exactly controllable on [0, τ] by Up[0, τ] if
and only if system (6) is Lp−exactly controllable on [0, τ] by Ũp[0, τ]× Lp

F(Ω; L2([0, τ];Rn)).

Theorem 4 ([59]). Let Hypothesis 1 and (5) hold. Suppose

Ã(t) ∈ L∞
F (Ω; L1+ε([0, τ];Rn×n)), B̃(t) ∈ Lmax{2,p}+ε

F (Ω; L2+ξ([0, τ];Rn×m)),

D̃(t) ∈ L∞
F (Ω; L2+ε([0, τ];Rn×n)), (8)

where ε > 0 is a given constant. Then the following are equivalent:
(i) System (6) is Lp−exactly controllable on [0, τ] by Ũp[0, τ]× Lp

F(Ω; L2([0, τ];Rn));
(ii) System (6) is exactly null-controllable on [0, τ] by Ũp[0, τ]× Lp

F(Ω; L2([0, τ];Rn));
(iii) Matrix G defined below is invertible:

G = E
∫ τ

0
Y(t)B̃(t)B̃(t)TY(t)Tdt, (9)

where Y(·) is the adapted solution to the following stochastic linear equation:

dY(t) = −Y(t)Ã(t)dt−Y(t)D̃(t)dw(t), t ≥ 0, Y(0) = In.

Theorem 5 ([59]). Let Hypothesis 1, (5), and (8) hold. Then system (1) is Lp−exactly controllable
on [0, τ] by Up[0, τ] if and only if G defined by (9) is invertible.

In the above, we have discussed the two extreme cases: either D(·) = 0 or rankD(·) = n.
The case in between remains open. Therefore, we have the following open problem.

Problem 1. If 0 < rankD(·) < n, what are the conditions under which system (1) can be
Lp−exactly controlled?

2.1.3. Duality and Observability Inequality

In this subsection, we introduce the dual principle for system (1). The following result
was obtained in [59].
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Theorem 6 ([59]). Let hypotheses 1 and 2 hold. Then system (1) is Lp−exactly controllable on
[0, τ] by Up,μ,σ[0, τ] if and only if there exists a δ > 0 such that the following, called an observability
inequality holds:

‖B(·)Ty(·) +
d

∑
k

Dk(·)zk(·)‖Up,μ,σ [0,τ]∗ ≥ δ‖η‖Lq(Ω,Fτ ,P,Rn), ∀η ∈ Lq(Ω, Fτ , P,Rn),

where

Up,μ,σ[0, τ] = L
μp

μ−p
F (Ω; L

2σ
σ−2 ([0, τ];Rm)), p ∈ [1, μ), μ ∈ (1, ∞], σ ∈ (2, ∞),

Up,μ,σ[0, τ] = Lp
F(Ω; L

2σ
σ−2 ([0, τ];Rm)), p ∈ [1, μ), μ = ∞, σ ∈ (2, ∞),

Up,μ,σ[0, τ] = L
μp

μ−p
F (Ω; L2([0, τ];Rm)), p ∈ [1, μ), μ ∈ [1, ∞], σ = ∞,

Up,μ,σ[0, τ] = Lp
F(Ω; L2([0, τ];Rm)), p ∈ [1, μ), μ = σ = ∞;

Up,μ,σ[0, τ]∗ denotes the adjoint space of Up,μ,σ[0, τ]; (y(·), z(·)) (with z(·) = (z1(·), · · · ,
zd(·))) is the unique adapted solution to the following system:

dy(t) = −[A(t)Ty(t) +
d

∑
k=1

Ck(t)Tzk(t)]dt +
d

∑
k=1

zk(t)dwk(t), t ∈ [0, τ], y(τ) = η. (10)

Now, we introduce the following definition which makes the name “observability
inequality” aforementioned meaningful.

Definition 3. Let Hypothesis 1 hold and (y(t), z(t)) be the adapted solution to system (10) with
η ∈ Lq(Ω, Fτ , P,Rn). (i) For the pair (B(·),D(·)) with B(·), Dk(·) ∈ L1

F([0, τ];Rn×m)(k =
1, 2, · · · , d) and D(·) = (D1(·), · · · , Dd(·)), the map

η → K∗η = B(·)Ty(·) +
d

∑
k

Dk(·)Tzk(·)

is called an Y[0, τ]−observer of (10) if K∗η ∈ Y[0, τ], ∀η ∈ Lq(Ω, Fτ , P,Rm), where Y[0, τ]
is a subspace of L1

F([0, τ];Rm). System (10), together with the observer of (10) is denoted by
[A(·)T , C(·)T ; B(·)T , D(·)T ];

(ii) Subsystem [A(·)T , C(·)T ; B(·)T , D(·)T ] is said to be Lq−exactly observable by Y[0, τ]
observations if from the observation K∗ ∈ Y[0, τ], the terminal value η ∈ Lq(Ω, Fτ , P,Rn) of
y(·) at τ can be uniquely determined, i.e., the map K∗ : Lq(Ω, Fτ , P,Rn) → Y[0, τ] admits a
bounded inverse.

With the above definition, the following result was obtained in [59]:

Theorem 7 ([59]). Let Hypotheses 1 and 2 hold true. Then, system (1) is Lp−exactly controllable
on [0, τ] by Up,μ,σ[0, τ] if and only if system [A(·)T , C(·)T ; B(·)T , D(·)T ] is Lp−exactly observable
by Up,μ,σ[0, τ]∗ observations.

2.2. Exact Controllability by Feedback Controller

In 2018, Barbu and Tubaro consider the exact controllability by feedback controller of
the following stochastic linear system in [60]:

dx(t) + A(t)x(t)dt = B(t)u(t)dt +
d

∑
k=1

Ckx(t)dwk(t), x(0) = x0, (11)
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with the final target x(τ) = ξ, where A(·), B(·) ∈ C([0, ∞);Rn×m); for some γ > 0,
B(t)B(t)T ≥ γ2 In, ∀t ∈ [0, ∞); Ck ∈ Rn×n;

x(·) ∈ L2([0, τ], Ω,Rn), u(·) ∈ L2([0, τ], Ω,Rm); x0, ξ ∈ Rn.

The problem we address here is the following.

Problem 2. Given x0, ξ ∈ Rn find an Ft−adapted feedback controller u = f (x) and
u ∈ L2([0, τ], Ω,Rm), such that the solution x(t) to system (11) satisfies x(0) = x0, x(τ) = ξ.

Let F ∈ C([0, τ];Rn×n) be the solution to equation

dF(t) =
d

∑
k=1

CkF(t)dwk(t), t ≥ 0, F(0) = In.

By the substitution x(t) = F(t)z(t) one transforms via Ito’s formula equation (see [60]
for details) (11) into stochastic differential equation

dz(t)
dt

+ F(t)−1 A(t)F(t)z(t) = F(t)−1B(t)u(t), z(0) = x0. (12)

In (12), we take as u the feedback controller

u(t) = −α̃sign(F(t)−1B(t))T(z(t)− zτ)), t ≥ 0, (13)

where α̃ ∈ L2(Ω, FT , P,R), zτ ∈ L2(Ω, FT , P,Rn) are given and zτ = F(τ)−1ξ; sign : Rn →
Rn is the multivalued mapping signy = y

‖y‖Rn
if y �= 0, signy = {β ∈ Rn : ‖β‖Rn ≤ 1} if

y = 0. Arguing as in the proof of Proposition 3.1 in [60], it follows that (12) has unique
absolutely continuous solution z(t). We note that if z(t) is an Ft−adapted solution to (12)
and (13) then x(t) = F(t)z(t) is the solution to closed loop system (11) with feedback control

u(t) = −α̃sign((F(t)−1B(t))T F(t)−1(x(t)− F(t)F(τ)−1x(τ))).

The following results were obtained in [60].

Theorem 8 ([60]). Let τ > 0, x0 ∈ Rn and ξ ∈ L2(Ω, Fτ , P,Rn) be arbitrary but fixed. Then
there is α̃ ∈ L2(Ω, FT , P,R), such that the controller (13) steers x0 in zτ , in time τ, with probabil-
ity one.

Remark 1. It should be noted that, under the assumption of the Theorem 8, the solution z(t) to (12)
is not adapted. Therefore, the solution x(t) = F(t)z(t) to system (11) is not Ft−adapted. Hence,
further research is needed on Problem 2.

Theorem 9 ([59]). Consider system (11) where A ∈ Rn×n, B ∈ Rn×m, 1 ≤ m ≤ n is time
independent and satisfy the Kalman rank condition rank[B, AB, · · · , An−1B] = n. Assume also
that d = 1, C1 = C and C2 = aC, C(Rn) ⊂ B(Rm) for some a ∈ R. Let τ > 0 and x0 ∈ Rn be
arbitrary but fixed. Then there is an Ft−adapted controller u ∈ L2([0, τ], Ω,Rm) which steers x0
in origin, in time τ, with probability one.

Remark 2. One might suspect that the controller u steering x0 in origin can be found in feedback
form but the problem is open.

See [60] (p. 22) for example of this part.
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2.3. Exact Controllability of Stochastic Differential Equation with Memory

In 2020, Wang and Zhou consider the exact controllability of the following controlled
stochastic linear differential equation with a memory in [61].

dx(t) = [A(t)x(t)dt + B(t)u(t) +
∫ t

0
M(t, s)x(s)ds]dt

+ [C(t)x(t) + D(t)u(t)]dw(t), t ≥ 0, (14)

where x(·), u(·) are the state variable, control variable which take values in Rn,Rm, re-
spectively; for any t, s ∈ [0, τ] with τ ∈ [0, ∞), A(t), M(t, s), C(t) ∈ Rn×n, and B(t), D(t) ∈
Rn×m; w(t) is 1-dimensional Wiener process. System (14) is denoted by [A(·), M(·, ·), C(·);
B(·), D(·)].

The following is definition of controllability for system (14).

Definition 4. For any τ0, τ(τ0 ≤ τ), the following system

dx(t) = [A(t)x(t)dt + B(t)u(t) +
∫ t

τ0

M(t, s)x(s)ds]dt

+ [C(t)x(t) + D(t)u(t)]dw(t), t ≥ 0, (15)

τ0 ∈ L2(Ω, Fτ0 , P,Rn), is called exactly controllable on [τ0, τ], if for any τ0 ∈ L2(Ω, Fτ0 , P,Rn),
τ ∈ L2(Ω, Fτ , P,Rn), there exists a control u(·) ∈ L2([τ0, τ], Ω,Rm), such that the solution
x(·, τ0, xτ0 , u(·)) to system (15) with initial condition x(τ0) = xτ0 satisfies x(τ, τ0, xτ0 , u(·)) = xτ

a.s.

Throughout this subsection, we introduce the following basic hypothesis:

A(·), C(·) ∈ L∞([0, τ], Ω,Rn×n), M(·, ·) ∈ L∞([0, τ]; L∞([0, τ], Ω,Rn×n)),

B(·), D(·) ∈ L∞([0, τ], Ω,Rn×m).

2.3.1. Time Invariant Systems

In this subsection, we discuss system (14) with time invariant matrices: i.e.,

[A(·), M(·, ·), C(·); B(·), D(·)] = [A, M, C; B, D].

To consider the exact controllability of system [A, M, C; B, D], we adopt the partial
controllability of controlled system as follows:

dx(t) = [A0(t)x(t)dt + B0(t)u(t)]dt + [A1(t)x(t)dt + B1(t)u(t)]dw(t), t ≥ 0. (16)

For fixed τ ≥ 0 and a matrix Q ∈ Rl×n, define Xτ = {ξ ∈ L2(Ω, Fτ , P,Rl) : ξ(ω) ∈
ran(Q)}.

Definition 5. Let a matrix Q ∈ Rl×n be given. System (16) is called Q−partially controllable on
[0, τ], if for any x0 ∈ Rn, ξ ∈ Xτ , there exists a u(·) ∈ L2([τ0, τ], Ω,Rm), such that the solution
x(·, x0, u(·)) to system (16) with the initial condition x(0) = x0 satisfies Qx(τ, x0, u(·)) = ξ a.s.

Setting

η(·) =
∫ .

0
x(s)ds, y(·) =

[
x1(·)
η(·)

]
, A0 =

[
A M
In 0

]
,

B0 =

[
B
0

]
, C0 =

[
C 0
0 0

]
, D0 =

[
B
0

]
,
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we can rewrite system [A, M, C; B, D] as follows:

dy(t) = [A0(t)y(t)dt + B0(t)u(t)]dt + [C0y(t)dt + D0u(t)]dw(t), t ≥ 0. (17)

The following results were obtained in [61].

Theorem 10 ([61]). System [A, M, C; B, D] is exactly controllable on [0, τ] with x(0) = x0 if and
only if system (17) is [In, 0]−partially controllable on [0, τ] with y(0) = [xT

0 , 0T ]T.

Theorem 11 ([61]). If system [A, M, C; B, D] is exactly controllable on [0, τ], then rankD = n.

In what follows, we tend to present a rank criterion ensuring system [A, M, C; B, D]′s
exact controllability. By Theorem 11, from now on, we suppose that rankD = n. Then,
there exists an invertible K ∈ Rm×m, such that DK = [In, 0]. Set

u(·) = K
[

u1(·)
u2(·)

]
+ Jy(·), BK = [B1, B2],

where B1∈ Rn×n, B2 ∈ Rn×(m−n), and J ∈ Rm×2n. Then, system (17) turns to

dy(t) = {[A0 +

[
BJ − B1([C, 0] + DJ)

0

]
]y(t)

+

[
B1
0

]
[u1(t) + ([C, 0] + DJ)y(t)] +

[
B2
0

]
u2(t)}dt

+

[
In
0

]
[u1(t) + ([C, 0] + DJ)y(t)]dw(t). (18)

Take

Ã0 = A0 +

[
BJ − B1([C, 0] + DJ)

0

]
, v(·) = u(·) + ([C, 0] + DJ)y(·).

Then, system (17) or (18) can be rewritten as

d
[

x(t)
η(t)

]
= [Ã0

[
x(t)
η(t)

]
+

[
B1
0

]
v(t) +

[
B2
0

]
u2(t)]dt

+

[
In
0

]
v(t)dw(t), t ≥ 0. (19)

In order to discuss the exact controllability of (19), we need to introduce the following
stochastic linear differential equation

d
[

x(t)
η(t)

]
= [Ã0

[
x(t)
η(t)

]
+

[
B1
0

]
v(t) +

[
B2
0

]
u2(t)]dt

+

[
In
0

]
v(t)dw(t), t ∈ [0, τ], x(τ) = 0, η(0) = 0. (20)

Let
L = −([0, In]e−ÃT

0 τ [0, In]
T)−1[0, In]e−ÃT

0 τ [In, 0]T ,

L0 = [In, LT ], B0 =

[
B2
0

]
, B̃0 =

[
B1 0
0 0

]
.

The determinant of a square matrix F will be denoted by detF.
The following result was obtained in [61].
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Theorem 12 ([61]). Suppose that for any u2(·) ∈ L2([0, τ], Ω,Rm−n) system (20) admits a
unique solution, and

det([0, In]e−ÃT
0 τ [0, In]

T) �= 0, ∀t ∈ [0, τ]

holds. Then system [A, M, C; B, D] is exactly controllable if, and only if, the following rank
condition holds:

rank[L0B0, L0 Ã0B0, L0B̃0B0, L0 Ã0B̄0B0, L0B̃0 Ã0B0, · · · ] = n.

2.3.2. Time Varying System

In this part, we discuss time varying stochastic linear system with memory terms, and
tend to to provide some criteria. In Section 2.3.1, we can present some criteria ensuring
system [A, M, C; B, D]′s exact controllability. However, for time variant systems even for
systems without memory terms, it is difficult to list those criteria. However, for some
special systems, we still can make a try.

Case I. M(t, s) = M1(t)M2(s), 0 ≤ s ≤ t ≤ τ, and

M1(·), M2(·) ∈ L∞([0, τ], Ω,Rn×n).

In this case, we can set

η(·) =
∫ .

0
M2(s)x(s)ds, y(·) =

[
x1(·)
η(·)

]
, A0(·) =

[
A(·) M1(·)

M2(·) 0

]
,

B0(·) =
[

B(·)
0

]
, C0(·) =

[
C(·) 0

0 0

]
, D0(·) =

[
B(·)

0

]
.

Hence, time varying system [A(·), M(·, ·), C(·); B(·), D(·)]′s exact controllability turns
to the [In, 0]−partial controllability of the following linear system without memory term:

dy(t) = [A0(t)y(t)dt + B0(t)u(t)]dt + [C0y(t) + D0u(t)]dw(t), t ≥ 0. (21)

The following result provides an equivalent condition ensuring system (21)’s [In, 0]−
partial controllability (see [61] (Theorem 3.1)).

Theorem 13 ([61]). Assume that M(t, s) = M1(t)M2(s), 0 ≤ s ≤ t ≤ τ. Then the following
two statements are equivalent:

(i) System (21) is [In, 0]−partially controllable on [0, τ];
(ii) There exists a positive c such that the following observability inequality holds

‖ξ‖L2(Ω,Fτ ,P,Rn) ≤ c‖B0(·)TY(·) + D0(·)TZ(·)‖L2([0,τ],Ω,Rm),

for all ξ ∈ L2([0, τ], Ω,Rn), and (Y(·), Z(·)) solve the following equation:

dY(t) = [A0(t)TY(t)dt + C0(t)TZ(t)]dt + Z(t)dw(t), t ∈ [0, τ], Y(τ) = [In, 0]Tξ.

Remark 3. Theorem 13 can be used to determine some stochastic system’s exact controllability
(see [61] (Example 3.2)).

Case II. M(t, s) = M(t− s), 0 ≤ s ≤ t ≤ τ, and M(τ) ∈ L∞([0, τ], Ω,Rn×n).
In this case, for the stochastic system [A(·), M(·, ·), C(·); B(·), D(·)], we can present

the following sufficient condition (see [61] (Proposition 3.4)).

Theorem 14 ([61]). Assume that M(t, s) = M(t− s), 0 ≤ s ≤ t ≤ τ, and

M(τ) ∈ L∞([0, τ], Ω,Rn×n).
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If system [A(·), M(·, ·), C(·); B(·), D(·)] is exactly controllable on [τ0, τ], for some τ0 ∈ (0, τ),
then system [A(·), M(·, ·), C(·); B(·), D(·)] is exactly controllable on [0, τ].

The applicable example of this part can be found in [61] (p. 9).
According to the above discussion, further research is needed on the following problems.

Problem 3. Find a u(·) ∈ L2([0, τ], Ω,Rm) in general case such that the system (14) is ex-
actly controllable.

Problem 4. How to discuss the Lp−exact controllability for system (14)?

3. Controllability of Infinite Dimensional Stochastic Linear Systems

In this section, we discuss the latest development of controllability of infinite dimen-
sional stochastic linear systems.

In 2001, Sirbu and Tessitore discussed the null controllability of the following general
infinite dimensional linear stochastic differential equation in [62]:

dx(t) = [Ax(t) + Bu(t)]dt +
∞

∑
k=1

Ckx(t)dw1,k(t) +
∞

∑
j=1

Dju(t)dw2,j(t), x(0) = x0, (22)

where x(·) is the state process valued in H, u(·) is the control process valued in H, A :
dom(A) ⊆ H → H is the infinitesimal generator of a C0−semigroup in H (the Hilbert
space with product < ·, · >), B ∈ B(H) (the space of all bounded linear operators on H);
Ck, Dk ∈ B(H) for each i ∈ N and

∞

∑
k=1

‖Ck‖2
B(H) < +∞,

∞

∑
k=1

‖Dk‖2
B(H) < +∞;

the countable set {w1,k, w2,j, k, j ∈ N} consists of independent standard Wiener processes
defined on the stochastic basis (Ω, F, {Ft}, P).

Given any Hilbert space H, We denote by C2([0, τ], Ω, Ft, H) the space of all ξ ∈
L2([0, τ], Ω, Ft, H) such that ξ has a modification in C([0, τ]; L2(Ω, F, P, H)), where

L2(Ω, F, P, H) = {x : x is F−adapted process valued in H with norm

(E(‖x‖2
H))

1/2 < +∞}.

As it is well known (see for instance [62]) for any initial data x0 ∈ L2(Ω, F0, P, H) and
any control u ∈ L2([0, τ], Ω, Ft, H) there exists a unique mild solution x ∈ C2([0, τ], Ω, Ft, H)
of (22). When needed, we will denote the mild solution of (22) by x(·, x0, u) (the definition
of mild solution is in the ordinary sense).

Definition 6. For τ > 0, the state system (22) is τ−null controllable if for each x0 ∈ L2(Ω, F0, P, H)
there exists u ∈ L2([0, τ], Ω, Ft, H) such that the solution x(τ, x0, u) = 0, P−almost surely. More-
over, the system is null controllable if it is τ−null controllable for each τ > 0.

We recall a classical result on linear quadratic games for Equation (22). By Σ+(H) we
denote the space of all self-adjoint, non-negative, bounded linear operators on H. Moreover,
if J ⊂ R+ is an interval (bounded or unbounded), we denote by Cs(J; Σ+(H)) the space of
all maps Q : J → Σ+(H), such that Q(·)v is continuous in H for every v ∈ H.

Definition 7. We say that Y ∈ Cs((0, ∞); Σ+(H)) is a mild solution of the Riccati equation

dY(t)
dt

= A∗Y(t) + Y(t)A−Y(t)B[I +
∞

∑
j=1

D∗
j Y(t)Dj]

−1B∗Y(t)
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+
∞

∑
j=1

C∗j Y(t)Cj + S, Y(0) = +∞ (23)

if
(i) For each δ ∈ (0,+∞), Y(·+ δ) is a mild solution of

dY(t)
dt

= A∗Y(t) + Y(t)A−Y(t)B[I +
∞

∑
j=1

D∗
j Y(t)Dj]

−1B∗Y(t)

+
∞

∑
j=1

C∗j Y(t)Cj + S, Y(0) = Y(δ) ∈ Σ+(H);

(ii) lim(t,z)→(0,v) < Y(t)z, z >= +∞ for all v ∈ H, v �= 0.

The following result was obtained in [62]:

Theorem 15 ([62]). The following conditions are equivalent:
(i) The Riccati Equation (23) has a mild solution;
(ii) The state system (22) is null controllable.

We assume that Ft = σ w1,k(s), w2,k(s), s ∈ [0, t], k ∈ N and introduce the following
backward stochastic differential equation:

dp(t) = −[A∗p(t) + +
∞

∑
k=1

C∗k q1,k(t)]dt +
∞

∑
k=1

q1,k(t)dw1,k(t)

+
∞

∑
j=1

q2,k(t)dw2,j(t), p(τ) = pτ .

The following duality approach was obtained in [62]:

Theorem 16 ([62]). The following statements are equivalent:
(i) System (1) is τ−null controllable;
(ii) There exists a constant Cτ > 0, such that for all pτ ∈ L2(Ω, Fτ , P, H) the following

observability relation holds:

‖p(0)‖2
L2(Ω,F0,P,H) ≤ CτE

∫ τ

0
‖B∗p(t) +

∞

∑
k=1

D∗
k q2,k(t)‖2

L2(Ω,Ft ,P,H)dt.

Remark 4. We can give the similar characterization for the exact controllability on the interval
[0, τ]. This is equivalent to the stronger observability inequality

‖p(τ)‖2
L2(Ω,Fτ ,P,H) ≤ CτE

∫ τ

0
‖B∗p(t) +

∞

∑
k=1

D∗
k q2,k(t)‖2

L2(Ω,Ft ,P,H)dt.

See [62] (p. 392) for the applicable example.

Problem 5. How about the controllability of the following system?

dx(t) = [A(t)x(t) + B(t)u(t)]dt +
∞

∑
k=1

Ck(t)x(t)dw1,k(t)

+
∞

∑
j=1

Dj(t)u(t)dw2,j(t), x(0) = x0,
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where A(t) : dom(A(t)) ⊆ H → H is the generator of an evolution operator in the Hilbert space
H, B(t) : dom(B(t)) ⊂ U → H is unbounded, U is a Hilbert space; Ck(t) ∈ P([0, τ], B(H)),
Dk(t) ∈ P([0, τ], B(U, H)), for each i ∈ N, P([0, τ], B(U, H)) = {C(·) ∈ B(U, H) : C(·)z is
continuous for every z ∈ U and sup0≤t≤τ‖C(t)‖B(U,H) < +∞}; and

∞

∑
k=1

sup0≤t≤τ‖Ck(t)‖2
B(H) < +∞,

∞

∑
k=1

sup0≤t≤τ‖Dk(t)‖2
B(U,H) < +∞,

B(U, H) denotes the set of all bounded linear operators from U to H; the countable set

{w1,k, w2,j, k, j ∈ N}

consists of independent standard Wiener processes defined on the stochastic basis (Ω, F, {Ft}, P).

In 2015, Shen et al. studied the exact null controllability, approximate controllability
and approximate null controllability of the following linear stochastic system in [63]:

dx(t) = [Ax(t) + Bu(t)]dt + Cx(t)dw(t), x(0) = x0, (24)

where x(t) is the state process valued in H, u(t) is the control process valued in U, x(0) =
x0 ∈ L2(Ω, F0, P, H), w(t) is a standard Wiener process valued in W, and A : D(A) ⊆
H → H is the infinitesimal generator of a C0−semigroup on H; B ∈ B(U, H), C ∈
B(H, B(W, H)); H, U, W are separable Hilbert spaces. System (24) admits a unique mild
solution x(t, x0, u) ∈ L2

F(Ω; C([0, τ]; H)).
We introduce the following backward stochastic system as our adjoint system to obtain

sufficient conditions.

dy(t) = −[A∗y(t) + C∗z(t)]dt + z(t)dw(t), y(τ) = η, (25)

where A∗, C∗ denote the adjoint operators of A, C, respectively.
For any η ∈ H, system (25) admits a unique mild solution (y(t), z(t)). In (25) y(t)

can be interpreted as an evolution process of the fair price, whereas z(t) as the related
consumption and portfolio process.

Remark 5. When C is unbounded, the situation will be more complex.

The closure of a set S will be denoted by S.

Definition 8. For τ > 0, system (24) is null controllable at τ if for each x0 ∈ L2(Ω, F0, P, H),
there exists u ∈ U such that x(τ, x0, u) = 0, P− a.s.

System (24) is approximately controllable at τ if for each x0 ∈ L2(Ω, F0, P, H), there exists
u ∈ U such that {x(τ, x0, u), u ∈ U} = L2(Ω, Fτ , P, H), P− a.s.

System (24) is approximately null controllable at τ if for each x0 ∈ L2(Ω, F0, P, H), there
exists u ∈ U such that x(τ, x0, u) can be arbitrarily close to 0, P− a.s.

The following results were obtained in [63].

Theorem 17 ([63]). System (24) is null controllable if, and only if, there exists a positive constant
c, such that

‖y(0)‖2
L2(Ω,F0,P,H) ≤ c

∫ τ

0
‖B∗y(s)‖2

L2(Ω,Fτ ,P,H)ds.

Theorem 18 ([63]). Let (y(t), z(t)) denote the solution of (25).
(i) System (24) is approximate controllable at τ if and only if for every (y(t), z(t)) such that

B∗y(t) = 0 we have (y(t), z(t)) = 0, t ∈ [0, τ], P− a.s.;
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(ii) System (24) is approximate null controllable at τ if, and only if, for every y(t) such that
B∗y(t) = 0 we have y(0) = 0, t ∈ [0, τ], P− a.s.;

The illustrative example can be found in [63] (p. 601).

Problem 6. If A, B, C are A(t), B(t), C(t), respectively, and A(t) : dom(A(t)) ⊆ H → H is the
generator of an evolution operator; B(t), C(t) are unbounded in (24), how about the controllability
of this system?

In 2019, Dou and Lu studied the partial approximate controllability for the following
system in [64]:

dy(t)− A(t)y(t)dt = (A1(t)y(t) + Bu(t))dt

+ A2(t)y(t)dw(t), t ∈ (0, τ], y(0) = y0, (26)

here A(t) is a linear operator on H, which generates strongly continuous evolution operator;
A1(t), A2(t) ∈ L∞([0, τ]; B(H)), B ∈ B(U, H); U, H are separable Hilbert spaces; u ∈
L2([0, τ], Ft, P, U), y0 ∈ H, w(t) is a one-dimensional standard Wiener process. In (26), y is
the state process valued in H and u is the control process valued in U. In what follows,
y(·, y0, u) denotes the mild solution to (26).

In order to discuss the partial approximate controllability of (26), we introduce the
following equations and concepts.

dz(t)− A(t)∗z(t)dt = −(A∗
1z(t) + A∗

2 Z(t))dt + Z(t)dw(t), t ∈ (0, τ], z(τ) = zτ , (27)

where the final datum zτ ∈ L2(Ω, Fτ , P, H).
In what follows, we denoted by (z,Z) the mild solution to (27) (the definition of mild

solution is in the ordinary sense).

Definition 9. We say that (27) fulfills the unique continuation property (UCP) with respect
to B∗ if z = Z = 0 in H for a.e. (t, ω) ∈ [0, τ] × Ω, provided that B∗z = 0 in U for a.e.
(t, ω) ∈ [0, τ]×Ω.

z̃(t) + A(t)∗ z̃(t) = −A1(t)∗ z̃(t), t ∈ [t0, τ], z̃(τ) = z̃τ , (28)

where the final dataz̃τ ∈ H and t0 ∈ [0, τ].

Definition 10. We say that (28) fulfills UCP if z̃ = 0 in H for a.e. t ∈ [t0, τ], provided that
B∗ z̃ = 0 for a.e. t ∈ [t0, τ].

Hypothesis 3. Solutions to (28) fulfill the UPC for any t0 ∈ [0, τ].

Denoted by hk(x) the kth Hermite polynomial (see [64]). For k ∈ N∪ {0}, let

Hk = span{hk(
∫ τ

0
l(t)dw(t)) : l ∈ L2([0, τ],R), ‖l‖L2([0,τ],R) = 1}.

We have that H0 = R, Hk and Hr are orthogonal subspaces of L2(Ω, Fτ , P,R) for
k �= r and

L2(Ω, Fτ , P,R) = ⊕∞
k=0Hk.

For k ∈ N ∪ {0}, denote by Hk(H) the closed subspace of L2(Ω, Fτ , P, H) generated
by H valued random variable of the form ∑r

j=1 ljvj(r ∈ N), lj ∈ Hk, and vj ∈ H. Let {ej}∞
j=1

be an orthonormal basis of H. It is easy to see that

Hk(H) = {
∞

∑
j=1

ljej : {lj}∞
j=1 ⊂ Hk, E

∞

∑
j=1

|lj|2 < +∞}.
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H0(H) = H, Hk(H) and Hr(H) are orthogonal subspaces of L2(Ω, Fτ , P, H) for k �= r and

L2(Ω, Fτ , P, H) = ⊕∞
k=0Hk(H).

Write
L2

m(Ω, Fτ , P, H) = ⊕m
k=0Hk(H).

Clearly L2
m(Ω, Fτ , P, H) is a closed subspace of L2(Ω, Fτ , P, H). Denote by Γm the

orthogonal projection from L2(Ω, Fτ , P, H) to L2
m(Ω, Fτ , P, H).

Definition 11. System (26) is said to be m−approximately controllable if for any ε > 0, y0 ∈ H
and y1 ∈ L2

m(Ω, Fτ , P, H), there is a control u ∈ L2([0, τ], Ω, U), such that the corresponding
mild solution fulfills that ‖Γm(y(τ, y0, u)− y1)‖L2(Ω,Fτ ,P,H) < ε.

The system (26) is said to be partially approximately controllable if it is m−approximately
controllable for all m ∈ N.

To study the above controllability problem, we need the following notion.

Definition 12. Equation (27) is said to fulfill the m-unique continuation property (m-UCP) if
z = Z = 0 in H for a.e. (t, ω) ∈ [0, τ]×Ω, provided that zτ ∈ L2

m(Ω, Fτ , P, H) and B∗z = 0 in
U for a.e. (t, ω) ∈ [0, τ]×Ω.

Equation (27) is said to fulfill the partial UCP if it fulfills m-UCP for all m ∈ N.

The following results were obtained in [64].

Theorem 19 ([64]). (i) System (26) is m-approximately controllable if and only if (27) fulfills the
m-UCP;

(ii) System (26) is partially approximately controllable if and only if (27) fulfills the par-
tial UCP.

Theorem 20 ([64]). Suppose that Hypothesis 3 holds. Then system (26) is partially approximate
controllable.

Problem 7. If B is B(t), and A1(t), B(t), A2(t) are unbounded in (26), how about the controlla-
bility of this system?

4. Controllability of Finite Dimensional Stochastic Singular Linear Systems

Stochastic singular linear systems are also called stochastic implicit systems, stochastic
differential algebraic systems, stochastic descriptor systems, stochastic degenerate sys-
tems, and stochastic generalized systems, etc. Controllability is the important concept for
stochastic singular linear systems. So far, however, few results have been obtained. In this
section, we discuss the latest development of controllability of finite dimensional stochastic
singular linear systems.

In 2013, Gashi and Pantelous studied the exact controllability of the following stochas-
tic singular linear system in [65,66].

Ldx(t) = [Mx(t) + Bu(t)]dt + [Cx(t) + Du(t)]dw(t), x(0 = x0), (29)

where L, M, C ∈ Rn×n, detL = 0; B, D ∈ Rn×m, x(t) is the state process valued in Rn, u(t) is
the state process valued in Rm, w(t) is a one-dimensional standard Wiener process, (L, M)
is regular, i.e., matrix pencil det(sL− M) is not identically zero (s ∈ R). Let us begin by
stating the definition of exact controllability.

Definition 13. System (29) is called exactly controllable at time τ if for any x0 ∈ Rn and
ξ ∈ L2(Ω, Fτ , P,Rn), there exists at least one admissible control u(·) ∈ L2([0, τ], Ω,Rm), such
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that the corresponding trajectory x(·) satisfies the initial condition x(0) = x0 and the terminal
condition x(τ) = ξ, a.s.

The following result was obtained in [65,66].

Theorem 21 ([65,66]). (i) A necessary condition for exact controllability of (29) is

rankK̃1 = n− σ; (30)

(ii) Let the condition (30) hold. A necessary and sufficient condition for exact controllability
of (29) is

rankGτ = n− σ.

Here, Gτ is the Gramian matrix defined as

Gτ = E
∫ τ

0
Φ(t)K̃12K̃T

12Φ(t)Tdt,

where Φ(t) is the unique solution to the matrix stochastic differential equation

dΦ(t) = −Φ(t)[Ñdt + K̃11dw(t)], Φ(0) = I.

For the detail see [65] (Theorem 4) and [65] (Theorem 2).
In 2015, Gashi and Pantelous studied the exact controllability of the stochastic singular

linear system (29) on the basis of [65,66] in [67], in which L is skew-symmetric and M is
symmetric. The following result was obtained in [67].

Theorem 22 ([67]). (i) A necessary condition for exact controllability of (29) is

rankK̃1 = n− q− 2p; (31)

(ii) Let the condition (31) hold. A necessary and sufficient condition for exact controllability of
(29) is

rankGτ = n− q− 2p.

Here, Gτ is the Gramian matrix defined as

Gτ = E
∫ τ

0
Φ(t)K̃12K̃T

12Φ(t)Tdt,

where Φ(t) is the unique solution to the matrix stochastic differential equation

dΦ(t) = −Φ(t)[Ñdt + K̃11dw(t)], Φ(0) = I.

For the detail see [67] (Theorem 5).
See [67] (p. 9) for practical example.
In 2021, Ge and Ge considered the exact null controllability of stochastic singular

linear system (29).
Here, we assume that there are a pair of nonsingular deterministic and constant matri-

ces P1, Q ∈ Rn×n such that the following condition is satisfied:

P1LQ =

[
In1 0
0 N

]
, P1MQ =

[
B1 0
0 In2

]
,

P1B =

[
C1
C2

]
, P1CQ =

[
D1 0
0 0

]
, P1D =

[
G1
0

]
, (32)
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where N ∈ Rn2×n2 denotes a nilpotent matrix with order h, i.e., h = min{k : k ≥ 1, Nk = 0};

B1, D1 ∈ Rn1×n1 , C1, G1 ∈ Rn1×m, C2 ∈ Rn2×m, and n1 + n2 = n. Let
[

x1
x2

]
= Q−1x,

system (29) is equivalent to

dx1(t) = (B1x1(t) + C1u(t))dt + (D1x1(t) + G1u(t))dw(t), x1(0) = x10, (33)

Ndx2(t) = x2(t)dt + C2u(t)dt, x2(0) = x20. (34)

Now, we consider the initial value problem (34). In the following, assume that the
solution to (33) is the strong solution in the ordinary sense and (34) admits the stochastic
Laplace transform (see [68]). Applying the stochastic Laplace transform to (34), we have

(sN − In2)X2(s) = Nx20 + C2U(s). (35)

Definition 14. (Impulse Solution) Suppose that x2(t) is the inverse stochastic Laplace transform
of X2(s) obtained from (35). Then, x2(t) is the impulse solution to (34) in the sense of the stochastic
Laplace transform, or simply, the impulse solution to (34). In this case, if x1(t) denotes the solution

to (33), then x(t) = Q
[

x1(t)
x2(t)

]
is called the impulse solution of Equation (29).

Let Φ(t) be the solution of system

dΦ(t) = (B1dt + D1dw(t))Φ(t), Φ(0) = In1 , (36)

Definition 15. (Exact Null Controllability) System (33) and (34) is said to be exactly null control-

lable on [0, τ] if for any
[

x10
x20

]
∈ Rn, there exists u ∈ L2([0, τ], Ω, Rm), such that (33) and (34)

has a unique solution
[

x1(t)
x2(t)

]
satisfying the initial condition

[
x1(0)
x2(0)

]
=

[
x10
x20

]
in addition

to the terminal condition
[

x1(τ)
x2(τ)

]
= 0.

It is obvious that if (33) and (34) is exactly null controllable, so is (33) and (34). In gen-
eral, if N �= 0, then (33) and (34) is not necessarily exactly null controllable. Consequently,
we assume that N = 0 in the following.

The following result was obtained in [68].

Theorem 23 ([68]). If G1 = 0, then the necessary condition for (33) to be exactly null controllable
on [0, τ] is that

E(
∫ τ

0
f 2(t)Φ−1(t)C1(Φ−1(t)C1)

Tdt) (37)

is invertible for any real valued polynomial f (t) not identical zero.

Let rankG1 = n1; let u(t) = M1

[
0

v(t)

]
, z(t) = D1x1(t), where M1 denotes an m×m

matrix, which satisfies G1M1 = [In1 0], and v(t) denotes an (m− n1)−dimension vector.
For the above u(t), system (33) and (34) is equivalent to

− dx1(t) = (F1x1(t) + F2z(t) + F3v(t))dt− z(t)dw(t), x1(0) = x10, (38)

x2(t) = −C2M1

[
0

v(t)

]
, t > 0, (39)

where

F1 = D1 − B1, F2 = −In1 , F3v(t) = −C1M1

[
0

v(t)

]
.
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Let Ψ(t) denote the solution of system

dΨ(t) = Ψ(t)(F1dt + F2dw(t)), Ψ(0) = In1 .

The following result was obtained in [68].

Theorem 24 ([68]). System (38) and (39) is exactly null controllable on [0, T] if, and only if,

E(
∫ τ

0
f 2(t)Ψ−1(t)F3(Ψ−1(t)F3)

Tdt)

is invertible for any real valued polynomial f (t) not identical to zero.

The practical example can be found in [68] (supplementary file).
In 2021, Ge considered the impulse controllability and impulse observability of the

following stochastic singular linear system in [69].

Adx(t) = Bx(t)dt + Cu(t)dt + Dx(t)dw(t), x(0) = x0, (40)

y(t) = Gx(t), (41)

where x(t) ∈ L2([0, τ], Ω,Rn) is the state vector, u(t) ∈ L2([0, τ], Ω,Rm) is the control
vector, w(t) is one dimensional standard Wiener process, x0 ∈ L2(Ω, F0, P,Rn) is a given
random variable, y(t) ∈ L2([0, τ], Ω,Rl) is the measurement output.

For a stochastic singular system, impulse terms may exist in the solution. In a practical
system, the impulse terms are generally undesirable because strong impulse behavior may
impede the working of the system or even damage the system. Therefore, the impulse
terms must be eliminated by imposing appropriate controls. In view of this fact, in this part,
the concepts of impulse controllability and impulse observability for stochastic singular
system (40) is considered.

In order to discusses the impulse controllability and impulse observability for stochastic
singular system (40), let us introduce the class Hn of all processes f (t) ∈ L2([0,+∞), Ω,Rn),
such that

(i) f (t) is mean square locally integrable;
(ii) There exist constants a ≥ 0 and M0 > 0 such that

(E‖ f (t)‖2
Rn)1/2 ≤ M0eat, t ≥ 0.

In the following, Ck(J, Ω,Rn) denotes the set of all k times continuously differ-
entiable stochastic processes x(t) ∈ L2(J, Ω,Rn), such that x(i)(t) ∈ L2(J, Ω,Rn)(i =
0, 1, · · · , k)(J = [0, τ]or[0,+∞); we assume that there are a pair of non-singular matrices
P1, Q ∈ Rn×n, such that the following condition is satisfied⎧⎪⎪⎨⎪⎪⎩

P1 AQ =

[
In1 0
0 N

]
, P1BQ =

[
B1 0
0 In2

]
,

P1C =

[
C1
C2

]
, P1DQ =

[
D1 0
0 0

]
, GQ = [G1 G2],

(42)

where N ∈ Rn2×n2 is a nilpotent, the index of nilpotency of N is denoted by h, i.e.,
h = min{k : k is a positive integer, k ≥ 1, Nk = 0}, B1 ∈ Rn1×n1 , C1 ∈ Rn1×m, C2 ∈
Rn2×m, D1 ∈ Rn1×n1 , G1 ∈ Rl×n1 , G2 ∈ Rl×n2 , n1 + n2 = n. Let

[
x1(t)
x2(t)

]
= Q−1x(t),

system (40) and (41) is equivalent to

dx1(t) = (B1x1(t) + C1u(t))dt + D1x1(t)dw(t), x1(0) = x10, (43)

y1(t) = G1x1(t), (44)
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Ndx2(t) = x2(t)dt + C2u2(t)dt, x2(0) = x20, (45)

y2(t) = G2x2(t). (46)

Let Φ(t) be the solution of system

dΦ(t) = (B1dt + D1dw(t))Φ(t), Φ(0) = In1 ,

the following results were obtained in [69]

Theorem 25 ([69]). If u ∈ L2([0, τ], Ω,Rm) is a bounded Borel measurable function, then sub-
system (43) has a unique solution on [0, τ] with any x10 ∈ L2(Ω, F0, P,Rn1), and the solution is
given by the stochastic process

x1(t) = Φ(t)x10 + Φ(t)
∫ t

0
Φ−1(s)C1u(s)ds. (47)

Theorem 26 ([69]). For any x20 ∈ L2(Ω, F0, P,Rn2), u ∈ Ch−1([0,+∞), Ω,Rm) and u(i) ∈
Hm(i = 0, 1, · · · , h− 1), subsystem (45) has a unique impulse solution, which is given by

x2(t) = −
h−1

∑
i=1

δ(i−1)(t)[Nix20 +
h−1

∑
k=i

NkC2u(k−i)(0)]−
h−1

∑
i=0

NiC2u(i)(t), (48)

where δ(t) is the Dirac function, δ(i−1)(t) is the (i− 1)th derivative of δ(t).

Theorem 27 ([69]). Assume that (40) and (41) is equivalent to (43)–(46),

u ∈ Ch−1([0,+∞), Ω,Rm)

is a bounded Borel measurable function, and u(i) ∈ Hm(i = 0, 1, · · · , h − 1). Then, for any
x0 ∈ L2(Ω, F0, P,Rn), system (40) has a unique impulse solution on [0, τ], which is given by

x(t) = Q
[

x1(t)
x2(t)

]
, (49)

where x1(t) and x2(t) are given by (47) and (48), respectively.

Definition 16. System (40) is called impulse controllable, if for any x0 ∈ L2(Ω, F0, P,Rn),
there exists a bounded Borel measurable function u ∈ Ch([0,+∞), Ω,Rm) and u(i) ∈ Hm(i =
0, 1, · · · , h − 1), such that the coefficient vectors of δ(i)(t), i = 0, 1, · · · , h − 2, in the solution
formula (49) are all zero.

The following results were obtained in [69].

Theorem 28 ([69]). System (40) is impulse controllable if, and only if, subsystem (45) is im-
pulse controllable.

Theorem 29 ([69]). Subsystem (45) is impulse controllable if and only if for any

x20 ∈ L2(Ω, F0, P,Rn2),

there exists a bounded Borel measurable function u ∈ Ch−1([0,+∞), Ω,Rm) and u(i) ∈ Hm(i =
0, 1, · · · , h− 1), such that

Nx20 +
h−2

∑
i=0

Ni+1C2u(i)(0) = 0.
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Theorem 30 ([69]). System (40) is impulse controllable if, and only if,

ran(N) = ran([NC2 · · · Nh−1C2]),

where ran(N) = {y : y = Nz, z ∈ L2(Ω, F0, P,Rn2)}, ran([NC2 · · · Nh−1C2]) = {y :
∃αk ∈ L2(Ω, F0, P,Rm), k = 1, 2, · · · , h− 1, y = ∑h−1

k=1 NkC2αk}.

Now, we discuss the impulse observability of system (40) and (41). Without loss of
generality, let u(t) ≡ 0.

Definition 17. System (40) and (41) with subsystem (43)–(46) is called impulse observable if,
y2(t)|t=0 = 0 implies x2(t)|t=0 = 0.

Impulse observability guarantees the ability to uniquely determine the impulse be-
havior in solution from information of the impulse behavior in output, and focuses on the
impulse terms that take infinite values in the solution.

The following results were obtained in [69].

Theorem 31 ([69]). Subsystem (43) and (44) is always impulse observable.

Theorem 32 ([69]). System (40) and (41) is impulse observable if, and only if, one of the following
conditions holds:

(i) Subsystem (45) and (46) is impulse observable;
(ii)

ker(

⎡⎢⎢⎢⎣
G2N
G2N2

...
G2Nh

⎤⎥⎥⎥⎦) = ker(N).

where ker(N) = {x : Nx = 0, x ∈ L2(Ω, F0, P, Rn2)},

ker(

⎡⎢⎢⎢⎣
G2N
G2N2

...
G2Nh

⎤⎥⎥⎥⎦) = {x :

⎡⎢⎢⎢⎣
G2N
G2N2

...
G2Nh

⎤⎥⎥⎥⎦x = 0, x ∈ L2(Ω, F0, P, Rn2)}.

For the impulse observability and impulse controllability, the so-called dual princi-
ple holds, which reveals the close relation between impulse observability and impulse
controllability.

In order to introduce the dual principle for system (40) and (41), let us first introduce
the dual system.

Definition 18. The following system{
ATdz(t) = BTz(t)dt + GTv(t)dt + DTz(t)dw(t),
w0(t) = CTz(t),

(50)

is called the dual system of the system (40) and (41).

The following dual principle was obtained in [69].

Theorem 33 ([69]). Let (50) be the dual system of system (40) and (41). Then, system (40) and
(41) is impulse observable (impulse controllable) if, and only if, its dual system (50) is impulse
controllable (impulse observable).
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An illustrative example is given in [69] (p. 908).
Furthermore, in 2021, Ge discussed the exact observability for a kind of stochastic

singular linear systems in the sense of impulse solution. Some necessary and sufficient
conditions were obtained. See [70] (Theorems 3.1 and 3.3) for details.

Problem 8. How to discuss the Lp−exact controllability for the following stochastic singular
linear system?

Ldx(t) = [A(t)x(t) + B(t)u(t)]dt +
d

∑
k=1

[Ck(t)x(t) + Dk(t)u(t)]dwk(t), t ≥ 0, x(0) = x0.

where L as defined in (29); A(t), B(t), Ck(t), Dk(t) as defined in (1).

5. Controllability of Infinite Dimensional Stochastic Singular Linear Systems

In this section the latest development of the controllability of infinite dimensional
stochastic singular linear systems is discussed by using the methods of C0−semigroup,
GE-semigroup, GE-evolution operator, and stochastic GE-evolution operator, respectively.
Some necessary and sufficient conditions concerning the controllability are introduced.

5.1. C0−Semigroup Method for a Class of Time Invariant Systems in Hilbert Spaces

In 2015, Liaskos et al. studied the exact controllability of the following stochastic
singular linear system by using the C0−semigroup method in the sense of strong solution
in Hilbert spaces in [71].

dLx(t) = [Mx(t) + Cu(t) + f (t)]dt + Bdw(t), t ∈ [0, τ], x(0) = ξ. (51)

In order to introduce the exact controllability, make the following assumptions
and preparations.

Let H, U, K be separable and infinite dimensional Hilbert spaces, x(t) be the state
process valued in H, u(t) be the control process valued in U, and w(t) be a U−valued
standard Wiener process in (51). The closure of an operator S will be denoted by S. We
use the notation S⊥ for the orthogonal complement of a set S and for the restriction of the
operator A to a linear subset S the symbol A|S. For the coefficients L, M, C, f , B, ξ involved
in (51), the following assumptions and definitions should be considered.
(A1) (i) L ∈ B(H), ker(L) �= {0}. (ii) ker(L) = ker(L).
(A2) (i) M : dom(M) ⊆ H → H is a linear, densely defined and closed operator.

(ii) For the linear subspace D = {x ∈ dom(M) : Mx + f (t) ∈ ran(L)}, we assume
that D ∩ ker(L) = {0} and P⊥1 D is dense in P⊥1 H, where P1, P⊥1 are the projections onto
ker(L) and (ker(L))⊥, respectively.
(A3) (i) The operator pencil λL− M : dom(M)→ H is of parabolic type, i.e., the restriction
of the pencil λL− M : D → ran(L) is invertible with a bounded inverse (λL− M)−1, for
all λ > ω, where ω is a negative real constant. This regularity on the pencil also implies
that M(D) = ran(L) and M|D : D → ran(L) is invertible with a bounded inverse M−1.

(ii) The bounded pseudo-resolvent operators R1(λ) = (λL− M)−1L : H → D and
R2(λ) = L(λL − M)−1 : ran(L) → L(D) satisfy ‖U(λ)‖B(H) ≤ c

λ−ω , for all λ > ω, 0 <
c < 1, where U(λ) stands for both R1(λ), R2(λ).
(A4) f ∈ L1([0, τ]; H) ∩ L2([0, τ], Ω, Ft, H), satisfying f (t) ∈ L(D), P− a.s., a.e. in [0, τ].
(A5) B : U → H is a linear operator with ran(B) ⊆ L(D), such that B ∈ B(U, H).
(A6) ξ is a D−valued random variable P− a, s., with ξ ∈ L2(Ω, F0, P, H).
(A7) C ∈ B(K, H), with ran(C) ⊆ L(D), such that for any u ∈ L2([0, τ], Ω, K), the stochastic
process Cu(t), t ∈ [0, τ] satisfies

E[
∫ τ

0

∫ t

0
‖(L⊥)−1M0S1(s− t)(L⊥)−1(Cu(s) + f (s))‖Hdsdt] < ∞,
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where L⊥ = L|P⊥1 H : P⊥1 H → Q⊥H, Q is the projection onto ker(L∗); M0 = M(P⊥1 |D)−1,

S1(t) is the C0-semigroup in the closed subspace P⊥1 H generated by the operator (L⊥)−1M0.

Definition 19. An H−valued stochastic process x(t), t ∈ [0, τ], is called a strong solution of the
initial value problem (51), if

(i) x ∈ D, P− a.s., a.e. in [0, τ] and x ∈ L1([0, τ]; H), P− a.s.
(ii) Lx, Mx ∈ L1([0, τ]; H), P− a.s.
(iii) Lx(t) = Lξ +

∫ t
0 [Mx(s) + Cu(t) + f (s)]ds + Bw(t), P− a.s., a.e. in [0, τ].

From the above, the controlled stochastic singular linear system (51) has a unique
strong solution xu(t), t ∈ [0, τ], which admits the form:

xu(t) = (P⊥1 |D)−1S1(t)P⊥1 ξ +
∫ t

0
(P⊥1 |D)−1S1(t− s)(L⊥)−1[Cu(s) + f (s)]ds

+
∫ t

0
(P⊥1 |D)−1S1(t− s)(L⊥)−1Bdw(s), t ∈ [0, τ]. (52)

Definition 20. Stochastic singular linear system (51) is called exactly controllable at time τ > 0,
if for any ξ which is D−valued random variable P− a.s., with ξ ∈ L2(Ω, F0, PH) and for any ξτ

which is also a D−valued random variable P− a.s., with ξ ∈ L2(Ω, Fτ , P, H), there exists at least
one control u ∈ L2([0, τ], Ω, K), such that the corresponding strong solution xu(t), which admits
the form of (52), satisfies the initial condition xu(0) = ξ and the terminal condition xu(τ) = ξτ .

The following result was obtain in [71].

Theorem 34 ([71]). Suppose that L⊥S1(t)v(t)− f (t) ∈ ran(C), P − a.s., a.e. in [0, τ]. Then
there exists at least one u ∈ L2([0, τ], Ω, K), such that the corresponding strong solution xu(t),
which admits the form of (52), satisfies the initial condition xu(0) = ξ and the terminal condition
xu(τ) = ξτ and hence stochastic singular linear system (51) is exactly controllable.

See [71] for the details of practical example.
In 2018, Liaskos et al. studied the exact controllability of the stochastic singular linear

system (51) by using the C0−semigroup method in the sense of strong solution in Hilbert
spaces in [72].

Suppose that (A1)–(A6) hold true, and

E[
∫ τ

0

∫ t

0
‖M0(L⊥)−1S2(s− t)(L⊥)−1(Cu(s) + f (s))‖Hdsdt] < ∞.

Then, the controlled stochastic singular linear system (51) has a unique strong solution
xu(t), t ∈ [0, τ], which admits the form:

xu(t) = (P⊥1 |D)−1(L⊥)−1S2(t)Lξ

+
∫ t

0
(P⊥1 |D)−1(L⊥)−1S2(t− s)[Cu(s) + f (s)]ds

+
∫ t

0
(P⊥1 |D)−1(L⊥)−1S2(t− s)Bdw(s), t ∈ [0, τ], (53)

where S2(t) is the C0−semigroup generated by the operator M0(L⊥)−1.
The following result was obtained in [72]:

Theorem 35 ([72]). Suppose that S2(t)v(t)− f (t) ∈ ran(C), P− a.s., a.e. in [0, τ]. Then, there
exists at least one u ∈ L2([0, τ], Ω, K), such that the corresponding strong solution xu(t), which
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admits the form of (53), satisfies the initial condition xu(0) = ξ and the terminal condition
xu(τ) = ξτ and hence stochastic singular linear system (51) is exactly controllable.

5.2. GE-Semigroup Method for a Class of Time Invariant Systems

In this subsection, we discuss the controllability of the following time invariant
stochastic singular linear system by using GE-semigroup in the sense of mild solution in
Banach and Hilbert spaces, respectively,

Adx(t) = Bx(t)dt + Cv(t)dt + Ddw(t), x(0) = x0, t ≥ 0, (54)

where x(t) is the state process valued in H, v(t) is the control process valued in U, w(t) is
the standard Wiener process on Z, x0 ∈ L2(Ω, F0, P, H) is a given random variable, H, U, Z
are Banach or Hilbert spaces; A ∈ B(H), C ∈ B(U, H), D ∈ B(Z, H), B : dom(B) ⊆ H → H
is a linear operator. This subsection is organized as follows. Firstly, the GE-semigroup is
introduced and the mild solution of (54) is obtained; Secondly, the controllability of (54) is
discussed in Banach spaces; Thirdly, the controllability of (54) is discussed in Hilbert spaces.

5.2.1. GE-Semigroup and Mild Solution of System (54)

In this part, the existence and uniqueness of the mild solution to system (54) are
considered by GE-semigroup theory.

Definition 21 ([73–77]). Suppose {U(t) : t ≥ 0} is one parameter family of bounded linear
operators in Banach space H, and A is a bounded linear operator. If

U(t + s) = U(t)AU(s), t, s ≥ 0,

then {U(t) : t ≥ 0} is called a GE-semigroup induced by A.
If the GE-semigroup U(t) satisfies

lim
t→0+

‖U(t)x−U(0)x‖H = 0,

for arbitrary x ∈ H, then it is called strongly continuous on H.

Lemma 1 ([73,74,76,77]). If GE-semigroup U(t) is strongly continuous on H, then there exist
M ≥ 1 and ω > 0, such that

‖U(t)‖L(H,H) ≤ Meωt, t ≥ 0,

i.e., U(t) is exponentially bounded.

Definition 22 ([75–77]). Suppose U(t) is strongly continuous GE-semigroup induced by A. If

Bx = lim
h→0+

AU(h)A− AU(0)A
h

x,

for every x ∈ D1, where

D1 = {x : x ∈ dom(B) ⊆ H, U(0)Ax = x, ∃ lim
h→0+

AU(h)A− AU(0)A
h

x},

then B is called a generator of GE-semigroup U(t) induced by A.

Now, we consider the initial value problem (54).
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Definition 23. If B is a generator of GE-semigroup U(t) induced by A, x0 ∈ L2(Ω, F0, P, D1),
and v(t) ∈ L2([0, b], Ω, U); Cv(t), Ddw(t) ∈ A(L2([0, b], Ω, D1)), the mild solution x(t, x0)
to (54) is defined by

x(t, x0) = U(t)Ax0 +
∫ t

0
U(t− τ)Cv(τ)dτ +

∫ t

0
U(t− τ)Ddw(τ). (55)

From the above knowledge, we have the following proposition.

Proposition 1 ([76,77]). If B is the generator of GE-semigroup U(t) induced by A, v(t) ∈
L2([0, b], Ω, U), x0 ∈ L2(Ω, F0, P, D1); Cv(t), Ddw(t) ∈ A(L2([0, b], Ω, D1)), and U(0) is a
definite operator, then there exists unique mild solution x(t, x0) to (54), which is given by (55).

In the following, we suppose that Proposition 1 holds true.

5.2.2. Controllability of System (54) in Banach Spaces

In this following, we discuss the exact (approximate) controllability of system (54) in
Banach spaces. Some necessary and sufficient conditions are given.

Definition 24. (a) Stochastic singular system (54) is said to be exactly controllable on [0, b], if for
all x0 ∈ L2(Ω, F0, P, D1), xb ∈ L2(Ω, Fb, P, D1), there exists v(t) ∈ L2([0, b], Ω, U), such that
the mild solution x(t, x0) to (54) satisfies x(T, x0) = xb;

(b) Stochastic singular system (54) is said to be approximately controllable on [0, b], if for any
state xb ∈ L2(Ω, Fb, P, D1), any initial state x0 ∈ L2(Ω, F0, P, D1), and any ε > 0, there exists a
v ∈ L2([0, b], Ω, U), such that the mild solution x(t, x0) satisfies

‖x(b, x0)− xb‖L2(Ω,FT1 ,P,D1)
< ε.

In order to discuss the controllability, we introduce the following concepts.
Banach space {v(t) ∈ U : Cv(t) ∈ A(D1)} is still denoted by U.
Controllability operator

Cb
0 : L2([0, b], Ω, U)→ L2(Ω, Fb, P, D1)

associated with system (54) is defined as

Cb
0v =

∫ b

0
U(b− τ)Cv(τ)dτ.

It is obvious that operator Cb
0 is a bounded linear operator, and its dual

Cb∗
0 : L2(Ω, Fb, P, (D1)

∗)→ L2([0, b], Ω, U∗)

is defined by
Cb∗

0 z∗ = C∗U∗(b− τ)E(z∗|Fτ).

where z∗ ∈ L2(Ω, Fb, P, (D1)
∗).

The following results were obtained in [76].

Theorem 36 ([76]). Stochastic singular system (54) is exactly controllable on [0, b] if, and only if,
ran(Cb

0) = L2(Ω, Fb, P, D1).

Theorem 37 ([76]). Assume that H and U are reflexive Banach spaces. Stochastic singular sys-
tem (54) is exactly controllable on [0, b] if, and only if, one of the following conditions hold:
(a) ‖Cb∗

0 z∗‖L2([0,b],Ω,U∗) ≥ γ‖z∗‖L2(Ω,Fb ,P,(D1)∗)
for some γ > 0 and all

z∗ ∈ L2(Ω, FT , P, (D1)
∗);
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(b) ker(Cb∗
0 ) = {0} and ran(Cb∗

0 ) is closed.

Theorem 38 ([76]). Stochastic singular system (54) is approximately controllable on [0, b] if, and
only if, ran(Cb

0) = L2(Ω, Fb, P, D1).

Theorem 39 ([76]). Stochastic singular system (54) is approximate controllable on [0, b] if, and
only if,

ker(Cb∗
0 ) = {0}.

See [76] (p. 908) for the illustrative example.

5.2.3. Controllability of System (54) in Hilbert Spaces

In this following, we discuss the exact (approximate) controllability of system (54) in
Hilbert spaces. Some necessary and sufficient conditions are given. In order to discuss the
controllability, we introduce the following operator.

Hilbert space {v(t) ∈ U : Cv(t) ∈ A(D1)} is still denoted by U.
Controllability Gramian operator Gb

c : L2(Ω, Fb, P, D1)→ L2(Ω, Fb, P, D1) in connec-
tion with stochastic descriptor linear system (54) is defined as

Gb
c z =

∫ b

0
S(b− t)CC∗S∗(b− t)E(z|Ft)dt.

The following results were obtained in [77].

Theorem 40 ([77]). The necessary and sufficient condition for the stochastic singular linear
system (54) to be exactly controllable on [0, b] is that one of the following conditions is true:
(a) < Gb

c z, z >L2(Ω,Fb ,P,D1)
≥ γ‖z‖2

L2(Ω,Fb ,P,D1)
for some γ > 0 and all z ∈ L2(Ω, Fb, P, D1);

(b) limλ→0+ ‖(λI + Gb
c )
−1 − (Gb

c )
−1‖B(L2(Ω,Fb ,P,D1)),L2(Ω,Fb ,P,D1))

= 0;
(c) limλ→0+ ‖λ(λI + Gb

c )
−1‖B(L2(Ω,Fb ,P,D1),L2(Ω,Fb ,P,D1))

= 0;
(d) ker(Cb∗

0 ) = {0} and ran(Cb∗
0 ) is closed.

Theorem 41 ([77]). The necessary and sufficient condition for the stochastic singular linear
system (54) to be approximately controllable on [0, b] is that one of the following conditions is true:
(a) < Gb

c z, z >L2(Ω,Fb ,P,D1)
> 0 for all z ∈ L2(Ω, Fb, P, D1), z �= 0;

(b) limλ→0+ < λ(λI + Gb
c )
−1x, z >L2(Ω,Fb ,P,D1)

= 0 for all x, z ∈ L2(Ω, Fb, P, D1);
(c) limλ→0+ ‖λ(λI + Gb

c )
−1z‖L2(Ω,Fb ,P,D1)

= 0 for all z ∈ L2(Ω, Fb, P, D1).

5.3. GE-Evolution Operator Method for a Class of Time-Varying Systems

In this subsection, we discuss the controllability of the following time varying stochas-
tic singular linear system by using GE-evolution operator in Hilbert spaces,

Adx(t) = B(t)x(t)dt + C(t)v(t)dt + D(t)dw(t), x(0) = x0, t ≥ 0, (56)

where A ∈ B(H) is a deterministic and constant operator, B(t) : dom(B(t)) ⊆ H → H is a
linear operator (possibly unbounded), B(t), C(t), D(t) are deterministic and time varying
operators; C(t) ∈ P([0, b], B(U, H)), D(t) ∈ P([0, b], B(Z, H)); x(t) is the state process
valued in H, v(t) is the control process in U, w(t) is the stand Wiener process valued
in Z, x0 ∈ L2(Ω, F0, P, H) is a given random variable, H, U, Z are Hilbert spaces. This
subsection is organized as follows. Firstly, the GE-evolution operator is introduced and
the mild solution of (56) is obtained; Secondly, the controllability of (56) is discussed by
GE-evolution operator in the sense of mild solution in Hilbert spaces.
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5.3.1. GE-Evolution Operator and Mild Solution of System (56)

In the following, we discuss mild solution of time varying stochastic singular sys-
tem (56) according to GE-evolution operator. First of all, we recall the GE-evolution operator,
and then the mild solution of (56) is given.

Definition 25 ([78–80]). Let Δ(b) = {(t, s) : 0 ≤ s ≤ t ≤ b}. U(t, s) : Δ(b) → B(H) is said
to be a GE-evolution operator induced by A on [0, b] if it has the following properties:
(a) U(t, s) = U(t, r)AU(r, s), 0 ≤ s ≤ r ≤ t ≤ b;
(b) U(s, s) = U0, 0 ≤ s ≤ b, where U0 is a definite operator independent of s;

GE-evolution operator U(t, s) is said to be strongly continuous on [0, b] if it has the follow-
ing property:
(c) U(·, s) is strongly continuous on [s, b] and U(t, ·) is strongly continuous on [0, t];

GE-evolution operator U(t, s) is said to be exponential bounded on [0, b] if it has the follow-
ing property:
(d) There exist M ≥ 1 and ω > 0, such that

‖U(t, s)‖B(H) ≤ Meω(t−s), 0 ≤ s ≤ t ≤ b.

Definition 26 ([78–80]). Assume that U(t, s) is a strongly continuous and exponential bounded
GE-evolution operator induced by A. If

B(t)x = lim
h→0+

AU(t + h, t)A− AU(t, t)A
h

x, t ∈ [0, b],

for every x ∈ D0(t), where

D0(t) = {x : x ∈ dom(B(t)) ⊆ H, U0 Ax = x,

∃ lim
h→0+

AU(t + h, t)A− AU(t, t)A
h

x, t ∈ [0, b]},

then B(t) is called a generator of GE-evolution operator U(t, s).

In the following, we always assume that B(t) is the generator of GE-evolution operator
U(t, s) induced by A and D0(t) = D0 is independent of t.

Now, we consider the initial value problem (56).

Definition 27. If x0 ∈ L2(Ω, F0, P, D0), v(t) ∈ L2([0, T], Ω, U); C(t)v(t), D(t)dw(t) ∈
A(L2([0, b], Ω, D0)), the mild solution x(t, x0) to (56) is defined by

x(t, x0) = U(t, 0)Ax0 +
∫ t

0
U(t, τ)C(τ)v(τ)dτ +

∫ t

0
U(t, τ)D(τ)dw(τ). (57)

Proposition 2 ([80]). There exists unique mild solution x(t, x0) to (56), which is given by (57),
if v(t) ∈ L2([0, b], Ω, U), x0 ∈ L2(Ω, F0, P, D0); C(t)v(t), D(t)dw(t) ∈ A(L2([0, b], Ω, D0)),
and (U0B(t))|D0 satisfies the following assumptions:
(P1) For t ∈ [0, b], (λI + (U0B(t))|D0)

−1 exists for all λ with Reλ ≤ 0 and there is a constant
M > 0, such that

‖(λI + (U0B(t))|D0)
−1‖B(H) ≤

M
|λ|+ 1

,

for all Reλ ≤ 0, t ∈ [0, b].
(P2) There exist constants L > 0 and 0 < α ≤ 1, such that

‖((U0B(t))|D0 − (U0B(s))|D0)((U0B(τ))|D0)
−1‖B(H) ≤ L|t− s|α,

for t, s, τ ∈ [0, b].
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In the following, we suppose that Proposition 2 holds true.

5.3.2. Controllability of System (56)

In this part, the exact controllability and approximate controllability of system (56) are
discussed by using GE-evolution operator in the sense of mild solution in Hilbert spaces.
In order to discuss the controllability, we introduce the following concepts.

Hilbert space {v(t) ∈ U : C(t)v(t) ∈ A(D0)} is still denoted by U.
Controllability operator CT

0 : L2([0, b], Ω, U) → L2(Ω, Fb, P, D0) and Controllability
Gramian Gb

c : L2(Ω, Fb, P, D0)→ L2(Ω, Fb, P, D0) associated with system (56) are defined as

Cb
0v =

∫ b

0
U(T, τ)C(τ)v(τ)dτ,

Gb
c z =

∫ b

0
U(b, τ)C(τ)C∗(τ)U∗(b, τ)E(z|Fτ)dτ,

respectively. It is obvious that operators Cb
0 and Gb

c are bounded linear operators, and
the dual

Cb∗
0 : L2(Ω, Fb, P, D0)→ L2([0, b], Ω, U)

of Cb
0 is defined by Cb∗

0 z = C∗(τ)U∗(b, τ)E(z|Fτ), where z ∈ L2(Ω, Fb, P, D0) and

Gb
c = Cb

0Cb∗
0 .

Definition 28. (a) Time varying stochastic singular system (56) is said to be exactly controllable on
[0, b], if for all x0 ∈ L2(Ω, F0, P, D0), xb ∈ L2(Ω, Fb, P, D0), there exists v(t) ∈ L2([0, b], Ω, U),
such that the mild solution x(t, x0) to (56) satisfies x(T, x0) = xb;

(b) Time varying stochastic singular system (56) is said to be approximately controllable on
[0, b], if for any state xb ∈ L2(Ω, Fb, P, D0), any initial state x0 ∈ L2(Ω, F0, P, D0), and any
ε > 0, there exists a v ∈ L2([0, b], Ω, U), such that the mild solution x(t, x0) to (56) satisfies

‖x(b, x0)− xb‖L2(Ω,Fb ,P,D0)
< ε.

The following results were obtained in [80].

Theorem 42 ([80]). The necessary and sufficient conditions for time-varying stochastic singular
system (56) to be exactly controllable on [0, b] are ranCb

0 = L2(Ω, Fb, P, D0).

Theorem 43 ([80]). Time varying stochastic singular system (56) is exactly controllable on [0, b]
if, and only if, one of the following conditions is true:
(a) < Gb

c z, z >L2(Ω,Fb ,P,D0)
≥ γ‖z‖2

L2(Ω,Fb ,P,D0)
for some γ > 0 and all

z ∈ L2(Ω, Fb, P, D0);

(b) limλ→0+ ‖(λI + GT
c )
−1 − (GT

c )
−1‖L(L2(Ω,Fb ,P,D0),L2(Ω,Fb ,P,D0))

= 0;
(c) limλ→0+ ‖λ(λI + GT

c )
−1‖L(L2(Ω,Fb ,P,D0),L2(Ω,Fb ,P,D0))

= 0;
(d) ‖Cb∗

0 z‖L2([0,b],Ω,U) ≥ γ‖z‖L2(Ω,Fb ,P,D0)
for some γ > 0 and all z ∈ L2(Ω, Fb, P, D0);

(e) ker(Cb∗
0 ) = {0} and ran(Cb∗

0 ) is closed.

Theorem 44 ([80]). The necessary and sufficient conditions for time varying stochastic singular
system (56) to be approximately controllable on [0, T] are that one of the following conditions is true:
(a) < Gb

c z, z >L2(Ω,Fb ,P,D0)
> 0 for all z ∈ L2(Ω, Fb, P, D0), z �= 0;

(b) limλ→0+ < λ(λI + GT
c )
−1x, z >L2(Ω,Fb ,P,D0)

= 0 for all x, z ∈ L2(Ω, Fb, P, D0);
(c) limλ→0+ ‖λ(λI + GT

c )
−1z‖L2(Ω,Fb ,P,D0)

= 0 for all z ∈ L2(Ω, Fb, P, D0);
(d) ker(Cb∗

0 ) = {0}.
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The details of applicable example can be found in [80].

5.4. Stochastic GE-Evolution Operator Method for a Class of Time Invariant Systems

In this subsection, we discuss the controllability of the following time varying stochas-
tic singular linear system by using stochastic GE-evolution operator in Banach spaces,

Adx(t) = Bx(t)dt + Cv(t)dt + Dx(t)dw(t), t ≥ 0, x(0) = x0, (58)

where x(t) is the state process valued in H, v(t) is the control process valued in U, w(t)
is the one-dimensional standard Wiener process, x0 ∈ L2(Ω, F0, P, H) is a given random
variable, H, U are Banach spaces; A, D ∈ B(H), C ∈ B(U, H), B : dom(B) ⊆ H → H is a
linear operator. The organization of this subsection is as follows. Firstly, the concept of
stochastic GE-evolution operator is introduced, and the mild solution to system (58) is given
by stochastic GE-evolution operator. Secondly, The exact controllability and approximate
controllability of (58) are discussed by stochastic GE-evolution operator in the sense of
mild solution in Banach spaces, respectively.

5.4.1. Stochastic GE-Evolution Operator and Mild Solution of System (58)

In the following, the stochastic GE-evolution operator is introduced, and the mild
solution of system (58) is give by stochastic GE-evolution operator.

Definition 29 ([81]). Let Δb = {(t, s) : 0 ≤ s ≤ t ≤ b}. A family of stochastic operators
{S(t, s) : (t, s) ∈ Δb} on H is said to be a stochastic GE-evolution operator induced by A on [0, b]
if it has the following properties:
(i) S : Δb ×Ω → B(H) is strongly measurable;
(ii) S(t, s) is strongly Ft−measurable for t ≥ s;
(iii) S(s, s) = S0, 0 ≤ s ≤ b, and S(t, r)AS(r, s) = S(t, s) for any 0 ≤ s ≤ r ≤ t ≤ b, where
S0 ∈ B(H) is a steady operator independent of s;
(iv) For any ξ ∈ H, (t, s)→ S(t, s)ξ is mean square continuous from ΔT into H.

In the following, we always suppose that B is a generator of GE-semigroup U(t)
induced by A.

Now, we consider the mild solution of stochastic singular linear system (58).

Definition 30. If v(t) ∈ L2([0, b], Ω, U), x0 ∈ L2(Ω, F0, P, D1), then the mild solution x(t, x0) ∈
L2([0, b], {Ft}, D1) to (58) is defined by

x(t, x0) = U(t)Ax0 +
∫ t

0
U(t− τ)Cv(τ)dτ +

∫ t

0
U(t− τ)Dx(τ, x0)dw(τ), (59)

where L2([0, b], {Ft}, D1) denotes the Banach space of all D1−valued processes x with norm

‖x‖L2([0,b],{Ft},D1)
= supt∈[0,b](E‖x(t)‖2

D1
)1/2 < +∞.

Lemma 2 ([81]). If v(t) ∈ L2([0, b], Ω, U), x0 ∈ L2(Ω, F0, P, D1);

Cv(t) ∈ A(L2([0, b], Ω, D1)),

then system (58) has a unique mild solution x(t, x0) ∈ L2([0, b], {Ft}, D1), which is given by (59).

Definition 31. We say that stochastic GE-evolution operator S(t, s) induced by A is related to the
linear homogeneous equation

Adx(t) = Bx(t)dt + Dx(t)dw(t), x(s) = x0, 0 ≤ s ≤ t ≤ b, (60)
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if x(t) = S(t, s)Ax0 is the mild solution to (60) with x(s) = S(s, s)Ax0 = x0 for arbitrary
x0 ∈ L2(Ω, F0, P, D1).

In the following, we suppose that there exists a stochastic GE-evolution operator
S(t, s) induced by A related to (60) and Lemma 2 holds true. Furthermore, we suppose that
the following estimates hold for any 0 ≤ s ≤ t ≤ b and ξ ∈ L2(Ω, Fs, P, D1) :

E
∫ t

s
‖S(r, s)ξ‖2

D1
dr ≤ c‖ξ‖2

L2(Ω,Fs ,P,D1)
;

supr∈[s,t]E‖S(r, s)ξ‖2
D1
≤ c‖ξ‖2

L2(Ω,Fs ,P,D1)
.

We can obtain the following theorem.

Theorem 45 ([81]). The mild solution x(t, x0) to (58) can be written in the form

x(t, x0) = S(t, 0)Ax0 +
∫ t

0
S(t, s)Cv(s)ds. (61)

5.4.2. Controllability of System (58)

In the following, we discuss the exact and approximate controllability of stochastic
singular linear system (58) by using stochastic GE-evolution operator theory, some criteria
are obtained. In order to discuss the controllability, we introduce the following concepts.

Banach space {v(t) ∈ U : Cv(t) ∈ A(D1)} is still denoted by U.
Controllability operator Cb

0 : L2([0, b], Ω, U) → L2(Ω, Fb, P, D1) associated with sys-
tem (58) is defined as

Cb
0v =

∫ b

0
S(T, τ)Cv(τ)dτ.

It is obvious that operator Cb
0 is a bounded linear operator, and the dual

Cb∗
0 : L2(Ω, Fb, P, D0)→ L2([0, b], Ω, U)

of Cb
0 is defined by Cb∗

0 z = C∗S∗(b, τ)E(z|Fτ), where z ∈ L2(Ω, Fb, P, D1).

Definition 32. (a) Stochastic singular linear system (58) is called to be exactly controllable on
[0, b], if for all x0 ∈ L2(Ω, F0, P, D1), xb ∈ L2(Ω, Fb, P, D1), there exists v(t) ∈ L2([0, b], Ω, U),
such that the mild solution x(t, x0) to stochastic singular linear system (58) which is given by (61)
satisfies x(T, x0) = xb;

(b) Stochastic singular linear system (58) is called to be approximately controllable on [0, b],
if for any state xb ∈ L2(Ω, Fb, P, D1), any initial state x0 ∈ L2(Ω, F0, P, D1), and any ε > 0,
existence v ∈ L2([0, b], Ω, U) makes that the mild solution x(t, x0) which is given by (61) satisfies

‖x(b, x0)− xb‖L2(Ω,Fb ,P,D1)
< ε.

The following results were obtained in [81].

Theorem 46 ([81]). Stochastic singular system (58) is exactly controllable on [0, b] if, and only if,
ran(Cb

0) = L2(Ω, Fb, P, D1).

Theorem 47 ([81]). Assume that H and U are reflexive Banach spaces. Stochastic singular system
(58) is exactly controllable on [0, b] if and only if one of the following conditions holds:
(a) ‖Cb∗

0 z∗‖L2([0,b],Ω,U∗) ≥ γ‖z∗‖L2(Ω,Fb ,P,(D1)∗)
for some γ > 0 and all

z∗ ∈ L2(Ω, Fb, P, (D1)
∗);

(b) ker(Cb∗
0 ) = {0} and ran(Cb∗

0 ) is closed.
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Theorem 48 ([81]). The necessary and sufficient condition for the stochastic singular linear system
(58) to be approximately controllable on [0, b] is ran(Cb

0) = L2(Ω, Fb, P, D1).

Theorem 49 ([81]). Stochastic singular systems (58) is approximate controllable on [0, b] if, and
only if, one of the following conditions holds:
(a) ‖Cb∗

0 z∗‖L2([0,b],Ω,U∗) > 0 for all z∗ ∈ L2(Ω, Fb, P, (D1)
∗), z∗ �= 0;

(b) ker(Cb∗
0 ) = {0}.

The practical example can be found in [81] if there is a need.

5.5. Stochastic GE-Evolution Operator Method for a Class of Time-Varying Systems

In this subsection, we study the controllability and observability of the following time
varying stochastic singular linear system by using stochastic GE-evolution operator in
Banach spaces,

O1dv(t) = O2(t)v(t)dt + O3(t)u(t)dt + O4(t)v(t)dw(t), t ≥ 0, v(0) = v0,

x(t) = O5(t)v(t), (62)

where v(t) is the state process valued in Y1, u(t) is the control process valued in Y2, w(t)
is the one-dimensional standard Wiener process, v0 ∈ L2(Ω, F0, P, Y1) is a given random
variable, x(t) is the output process valued in Y3, Y1, Y2, Y3 are Banach spaces;

O1 ∈ B(Y1), O3(t) ∈ P([0, T], B(Y2, Y1)), O4(t) ∈ P([0, b], B(Y1)),

O5(t) ∈ P([0, b], B(Y1, Y3)), O2(t) is a linear operator from dom(O2(t)) ⊆ Y1 to Y1; O1, O2(t),
O3(t), O4(t), O5(t) are deterministic and constant operators; This subsection is organized
as follows. Firstly, the mild solution of (62) is obtained by stochastic GE-evolution operator;
Secondly, the exact controllability of (62) is discussed by using stochastic GE-evolution
operator in the sense of mild solution in Banach spaces; Thirdly, the approximate con-
trollability of (62) is discussed by using stochastic GE-evolution operator in the sense of
mild solution in Banach spaces; Fourthly, the observability of (62) is studied, and the dual
principle is given; At last, we give an example to illustrate the validity of the theoretical
results obtained in this subsection.

5.5.1. Mild Solution of System (62)

In this part, we always suppose that O2(t) is a generator of GE-evolution operator
V(t, s) induced by O1 and

D = {v ∈ domO2(t) ⊆ Y1, V0O1v = v,

∃ lim
h→0+

O1V(t + h, t)O1 −O1V(t, t)O1

h
v, 0 ≤ t ≤ b}

is independent of t, 0 ≤ t ≤ b.
Now, we consider the mild solution of time varying stochastic singular linear

Equation (62).

Definition 33. If u(t) ∈ L2([0, b], Ω, Y2), v0 ∈ L2(Ω, F0, P, D), then the mild solution v(t, v0) ∈
L2([0, b], {Ft}, D) to time varying stochastic singular Equation (62) is defined by

v(t, v0) = V(t, 0)O1v0 +
∫ t

0
V(t, τ)O3(τ)u(τ)dτ +

∫ t

0
V(t, τ)O4(τ)v(τ, v0)dw(τ). (63)
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Lemma 3. Time varying stochastic singular Equation (62) has a unique mild solution, which is
given by (63), if u(t) ∈ L2([0, b], Ω, Y2), v0 ∈ L2(Ω, F0, P, D);

O3(t)u(t) ∈ O1(L2([0, b], Ω, D)),

and (V0O2(t))|D satisfies following assumptions:
(P1) For t ∈ [0, b], (λI + (V0O2(t))|D)−1 exists for all λ with Reλ ≤ 0 and there is a

constant M, such that

‖(λI + (V0O2(t))|D)−1‖B(Y1)
≤ M
|λ|+ 1

,

for all Reλ ≤ 0, t ∈ [0, b], where I denotes the identical operator on D, (V0O2(t))|D denotes the
restriction of V0O2(t) on D.

(P2) There exist constants L and 0 < α ≤ 1, such that

‖((V0O2(t))|D − (V0O2(s))|D)((V0O2(τ))|D)−1‖B(Y1)
≤ L|t− s|α,

for s, t, τ ∈ [0, b].

Proof. First of all, according to Theorem 6.1 of [82] (see P.150 of [82]), we have that
V(t, s)|O1(D) is a unique evolution operator induced by O1 with generator O2(t) on O1(D).
Let Y11 denote the space of all D valued processes ξ, such that

|ξ|Y11 = supt∈[0,b](E‖ξ(t)‖2
D)

1/2 < +∞.

For any ξ(t) ∈ Y11 define

P1(ξ)(t) = V(t, 0)O1v0 +
∫ t

0
V(t, s)O3(s)u(s)ds

+
∫ t

0
V(t, s)O4(s)ξ(s)dw(s), t ∈ [0, b],

and

P2(ξ)(t) =
∫ t

0
V(t, s)O4(s)ξ(s)dw(s), t ∈ [0, b].

Assume, see (d) of Definition 25, that ‖V(t, s)‖B(Y1)
≤ M1, 0 ≤ s ≤ t ≤ b, we have

|P2(ξ)|Y11 ≤ supt∈[0,b](E
∫ t

0
‖V(t, s)O4(s)ξ(s)‖2

Dds)1/2

≤ M1‖O4(s)‖P([0,b],B(Y1))
b1/2|ξ|Y11 , t ∈ [0, b].

Therefore, if b is sufficient small, P1 is a contraction and it is easy to see that its
unique fixed point can be identified as the mild solution to time varying stochastic singular
Equation (62). The case of general b can be handled in a standard way.

Theorem 50. Suppose that stochastic GE-evolution operator G(t, s) induced by O1 is related to
the linear homogeneous time varying stochastic singular equation

O1dv(t) = O2(t)v(t)dt + O4(t)v(t)dw(t), v(s) = v0, 0 ≤ s ≤ t ≤ b, (64)

Lemma 3 holds true, and the following estimates hold for any 0 ≤ s ≤ t ≤ b and ξ ∈
L2(Ω, Fs, P, D) :

E
∫ t

s
‖G(r, s)ξ‖2

Ddr ≤ c‖ξ‖2
L2(Ω,Fs ,P,D)

;

supr∈[s,t]E‖G(r, s)ξ‖2
D1
≤ c‖ξ‖2

L2(Ω,Fs ,P,D)
.
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Then, the mild solution v(t, v0) to time varying stochastic singular Equation (62) can be written in
the form

v(t, v0) = G(t, 0)O1v0 +
∫ t

0
G(t, s)O3(s)u(s)ds. (65)

Proof. Since G(t, 0)O1v0 and G(t, s)O3(s)u(s) are mild solutions of time varying stochastic
singular Equation (64) with v(0) = v0 and v(s) = G(s, s)O3(s)u(s), respectively, we
have that

G(t, 0)O1v0 = V(t, 0)O1v0 +
∫ t

0
V(t, τ)O4(τ)G(τ, 0)O1v0dw(τ),

G(t, s)O3(s)u(s) = V(t, s)O1G(s, s)O3(s)u(s) +
∫ t

s
V(t, τ)O4(τ)G(τ, s)O3(s)u(s)dw(τ)

= V(t, s)O3(s)u(s) +
∫ t

s
V(t, τ)O4(τ)G(τ, s)O3(s)u(s)dw(τ).

We have to prove that the process v(t, v0) in (65) is a solution to the integral Equation
(63). By the representation of v(τ, v0), we have∫ t

0
V(t, τ)O4(τ)v(τ, v0)dw(τ) =

∫ t

0
V(t, τ)O4(τ)G(τ, 0)O1v0dw(τ)

+
∫ t

0
V(t, τ)O4D(τ)(

∫ τ

0
G(τ, s)O3(s)u(s)ds)dw(τ)

= G(t, 0)O1v0 −V(t, 0)O1v0 +
∫ t

0
ds
∫ t

s
V(t, τ)O4(τ)G(τ, s)O3(s)u(s)dw(τ)

= G(t, 0)O1v0 −V(t, 0)O1v0 +
∫ t

0
[G(t, s)O3(s)u(s)−V(t, s)O1G(s, s)O3(s)u(s)]ds

= G(t, 0)O1v0 −V(t, 0)O1v0 +
∫ t

0
G(t, s)O3(s)u(s)ds−

∫ t

0
V(t, s)O3(s)u(s)ds,

where the stochastic Fubini theorem is given in Theorem 4.33 of [83]. Therefore,

v(t, v0) = G(t, 0)O1v0 +
∫ t

0
G(t, s)O3(s)u(s)ds

= V(t, 0)O1v0 +
∫ t

0
V(t, τ)O3(τ)u(τ)dτ +

∫ t

0
V(t, τ)O4(τ)v(τ, v0)dw(τ),

which proves (63).

In the following, we always assume that time varying stochastic singular Equation (62)
has a unique mild solution in the form of (65).

In order to obtain the criteria of controllability, the following concepts are introduced.
Banach space {u(t) ∈ Y2 : O3(t)u(t) ∈ O1(D)} is still denoted by Y2.
Controllability operator

Qb
C : L2([0, b], Ω, Y2)→ L2(Ω, Fb, P, D)

associated with time varying stochastic singular Equation (62) is defined as

Qb
Cu =

∫ T

0
G(T, τ)O3(τ)u(τ)dτ.

It is obvious that operator Qb
C is a bounded linear operator, and its dual

Qb∗
C : L2(Ω, Fb, P, (D)∗)→ L2([0, b], Ω, Y∗2 )
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is defined by
Qb∗

C y∗ = O∗
3(τ)G

∗(b, τ)E(y∗|Fτ).

where y∗ ∈ L2(Ω, Fb, P, (D)∗).

5.5.2. Exact Controllability of System (62)

In this part, we discuss the exact controllability of time varying stochastic singular
Equation (62) by stochastic GE-evolution operator theory, some criteria are obtained.

Definition 34. Time varying stochastic singular Equation (62) is called to be exactly controllable on
[0, b], if for all v0 ∈ L2(Ω, F0, P, D), vb ∈ L2(Ω, Fb, P, D), there exists u(t) ∈ L2([0, b], Ω, Y2),
such that the mild solution v(t, v0) to time varying stochastic singular Equation (62) satisfies
v(b, v0) = vb.

From the Definition 34, we can obtain the following theorem immediately.

Theorem 51. Time varying stochastic singular Equation (62) is exactly controllable on [0, b] if,
and only if, ran(Qb

C) = L2(Ω, Fb, P, D).

Theorem 52. Assume that Y1 and Y2 are reflexive Banach spaces. Time varying stochastic singular
Equation (62) is exactly controllable on [0, b] if, and only if, one of the following conditions holds:

(a) ‖Qb∗
C y∗‖L2([0,b],Ω,Y∗2 )

≥ γ‖y∗‖L2(Ω,Fb ,P,(D)∗) for some γ > 0 and all

y∗ ∈ L2(Ω, Fb, P, (D)∗);

(b) ker(Qb∗
C ) = {0} and ran(Qb∗

C ) is closed.

Proof. (a) ⇒ (b) Notice that (a) implies that Qb∗
C is injective. To prove that Qb∗

C has closed
range, assume that Qb∗

C y∗n is a Cauchy sequence in L2([0, b], Ω, Y∗2 ), then (a) implies that
y∗n is a Cauchy sequence in L2(Ω, Fb, P, (D)∗). Since Qb∗

C is a bounded linear operator, if
limn→+∞ y∗n = y∗, then limn→+∞ Qb∗

C y∗n = Qb∗
C y∗ and so Qb∗

C has closed range.
(b)⇒(a). (b) shows that Qb∗

C has an algebraic inverse with domain equal to ran(Qb∗
C ). Since

ran(Qb∗
C ) is closed, it is a Banach space under the norm of L2([0, b], Ω, Y∗2 ), i.e.,

‖u∗‖ran(Qb∗
C ) = ‖u∗‖L2([0,b],Ω,Y∗2 )

, u∗ ∈ ran(Qb∗
C ).

By Corollary A.3.50 of [84], we have that (Qb∗
C )−1 is bounded on this range, i.e., there

exists a γ > 0, such that

‖(Qb∗
C )−1u∗‖L2(Ω,Fb ,P,(D)∗) ≤

1
γ
‖u∗‖L2([0,b],Ω,Y∗2 )

,

for every u∗ ∈ ran(Qb∗
C ). Substituting u∗ = CT∗

0 y∗ proves (a).
It remains to show that (a) is equivalent to exact controllability of time varying

stochastic singular Equation (62).
Necessity. Assume that time varying stochastic singular Equation (62) is exactly

controllable. By Theorem 51, we have ran(Qb
C) = L2(Ω, Fb, P, D).

If Qb
C is a one to one operator, then (Qb

C)
−1 exists on L2(Ω, Fb, P, D). According to the

continuity of operator Qb
C we have that (Qb

C)
−1 is a closed operator. From the closed graph

theorem, we obtain that (Qb
C)
−1 is a bounded linear operator on L2(Ω, Fb, P, D), i.e.,

(Qb
C)
−1 ∈ B(L2(Ω, Fb, P, D), L2([0, b], Ω, Y2)).
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Therefore

((Qb
C)
−1)∗ ∈ B(L2([0, b], Ω, Y∗2 ), L2(Ω, Fb, P, (D)∗)).

This implies that there exists γb > 0, such that

‖((Qb
C)
−1)∗v∗‖L2(Ω,Fb ,P,(D)∗) ≤ γb‖v∗‖L2([0,b],Ω,Y∗2 )

. (66)

Assume y∗ ∈ L2(Ω, Fb, P, (D)∗), then

u∗ = Qb∗
C y∗ ∈ L2([0, b], Ω, Y∗2 ).

Therefore, for all y0 ∈ L2(Ω, Fb, P, D), we find that

< y0, ((Qb
C)
−1)∗u∗ >=< y0, ((Qb

C)
−1)∗Qb∗

C y∗ >

=< (QT
C)
−1y0, QT∗

C y∗ >=< y0, y∗ >,

where < y0, y∗ >= y∗(y0). From (66), we obtain that

‖y∗‖L2(Ω,Fb ,P,(D)∗) = sup‖y0‖L2(Ω,Fb ,P,D)
=1| < y0, y∗ > |

≤ ‖((Qb
C)
−1)∗u∗‖L2(Ω,Fb ,P,(D)∗)

≤ γb‖u∗‖L2([0,b],Ω,Y∗2 )
= γb‖Qb∗

C y∗‖L2([0,b],Ω,Y∗2 )
,

i.e.,

‖Qb∗
C y∗‖L2([0,b],Ω,Y∗2 )

≥ 1
γb
‖y∗‖2

L2(Ω,Fb ,P,(D)∗)

= γ‖y∗‖L2(Ω,Fb ,P,(D)∗),

where γ = 1
γb

. This implies that (a) holds.

If Qb
C is not a one to one operator, then

ker(Qb
C) = {u : u ∈ L2([0, b], Ω, Y2), Qb

Cu = 0} �= {0}.

A factor space is defined as follows

Y21 = L2([0, b], Ω, Y2)/ker(Qb
C) = {u1 : u1 = {u + u2 : u2 ∈ ker(Qb

C)}}.

For u1 ∈ Y21,
‖u1‖Y21 = infu2∈ker(Qb

C)
‖u + u2‖L2([0,b],Ω,Y2)

.

If we define operator

Qb
1 : Y21 → L2(Ω, Fb, P, D), Qb

1u1 = Qb
Cu,

then
Qb

1 ∈ B(Y21, L2(Ω, Fb, P, D)),

and Qb
1 is a bijective operator. It can be seen from the above proof that

‖Qb∗
1 y∗‖Y∗21

≥ γ‖y∗‖2
L2(Ω,Fb ,P,(D)∗).

According to the definition of Y21 and Qb
1, we obtain

‖Qb∗
1 y∗‖Y∗21

= ‖Qb∗
C y∗‖L2([0,b],Ω,Y∗2 )

.
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This implies that (a) holds.
Sufficiency. Assume (a). It is need to prove that if y ∈ L2(Ω, Fb, P, D), then y ∈ ranQb

C.
From

Qb
C ∈ B(L2([0, b], Ω, Y2), L2(Ω, Fb, P, D)),

we find that
Qb∗

C ∈ B(L2(Ω, Fb, P, (D)∗), L2([0, b], Ω, Y∗2 )).

For y ∈ L2(Ω, Fb, P, D), we can define a functional f on ranQb∗
C satisfying

f (Qb∗
C g∗) =< y, g∗ >, g∗ ∈ L2(Ω, Fb, P, (D)∗). (67)

This implies that f is linear for Qb∗
C g∗. According to (a), if

lim
n→∞

Qb∗
C g∗n = 0,

then
lim

n→∞
g∗n = 0,

and
lim

n→∞
f (Qb∗

C g∗n) = lim
n→∞

< y, g∗n >= 0.

Therefore, f is continuous linear functional on

ran(Qb∗
C ) ⊂ L2([0, b], Ω, Y∗2 ).

By Hahn–Banach theorem, we have that f can be extended as a continuous linear
functional on L2([0, b], Ω, Y∗2 ). According to Y∗∗2 = Y2, the existence of

u ∈ L2([0, b], Ω, Y2) = L2([0, b], Ω, Y∗∗2 )

makes
f (Qb∗

C g∗) =< u, Qb∗
C g∗ >, g∗ ∈ L2(Ω, Fb, P, (D)∗). (68)

According to (67) and (68), we obtain that for every g∗ ∈ L2(Ω, Fb, P, (D)∗),

< y, g∗ >=< Qb
Cu, g∗ > .

Hence y = Qb
Cu, i.e.,

ran(Qb
C) = L2(Ω, Fb, P, D).

From Theorem 51, time varying stochastic singular Equation (62) is exactly control-
lable.

5.5.3. Approximate Controllability of System (62)

In this section, we discuss the approximate controllability of time varying stochastic
singular Equation (62). Some necessary and sufficient conditions are obtained.

Definition 35. Time varying stochastic singular Equation (62) is called to be approximately
controllable on [0, b], if for any state vb ∈ L2(Ω, Fb, P, D), any initial state v0 ∈ L2(Ω, F0, P, D),
and any ε > 0, existence u ∈ L2([0, b], Ω, Y2) makes that the mild solution v(t, v0) to time varying
stochastic singular Equation (62) satisfies

‖v(b, v0)− vb‖L2(Ω,Fb ,P,D) < ε.
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It is obvious that the necessary and sufficient conditions for the time varying stochastic
singular Equation (62) to be approximately controllable on [0, b] are

ran(Qb
C) = L2(Ω, Fb, P, D). (69)

Theorem 53. Time varying stochastic singular Equation (62) is approximate controllable on [0, b]
if, and only if, one of the following conditions holds:

(a) ‖Qb∗
C y∗‖L2([0,b],Ω,Y∗2 )

> 0 for all y∗ ∈ L2(Ω, Fb, P, (D)∗), y∗ �= 0;

(b) ker(Qb∗
C ) = {0}.

Proof. It is obvious that (a) is equivalent to (b). We only need to prove that (b) is equivalent
to approximate controllability of time varying stochastic singular linear Equation (62).

If
ran(Qb

C) = L2(Ω, Fb, P, D), y∗ ∈ ker(Qb∗
C ),

i.e., Qb∗
C y∗ = 0, then

< u, Qb∗
C y∗ >=< Qb

Cu, y∗ >, u ∈ L2([0, b], Ω, Y2).

Since ran(Qb
C) = L2(Ω, Fb, P, D), we have

< y, y∗ >= 0, y ∈ L2(Ω, Fb, P, D).

Therefore, y∗ = 0, i.e., ker(Qb∗
C ) = {0}.

Conversely, if ker(Qb∗
C ) = {0} but

ran(Qb
C) �= L2(Ω, Fb, P, D),

then ran(Qb
C) is the proper subspace of L2(Ω, Fb, P, D). According to Hahn–Banach theo-

rem, there exists
y∗ ∈ L2(Ω, Fb, P, (D)∗), y∗ �= 0,

such that
< Qb

Cu, y∗ >= 0, u ∈ L2([0, b], Ω, Y2).

Thus < u, Qb∗
C y∗ >= 0, i.e., Qb∗

C y∗ = 0. By ker(Qb∗
C ) = {0}, we find that y∗ = 0. This

contradicts y∗ �= 0. Therefore,

ran(Qb
C) = L2(Ω, Fb, P, D).

Hence (69) is true if, and only if, (b) holds, i.e., time varying stochastic singular
Equation (62) is approximately controllable on [0, b] if, and only if, (b) holds.

5.5.4. Observability

Consider the following time varying stochastic singular equation

O1dv(t) = O2(t)v(t)dt + O4(t)v(t)dw(t), t ≥ 0, v(0) = v0, x(t) = O5(t)v(t), (70)

and its dual time varying stochastic singular equation

O∗
1 dv∗(t) = O∗

2(t)v
∗(t)dt + O∗

5(t)u
∗(t)dt + O∗

4(t)v
∗(t)dw(t), t ≥ 0, v∗(0) = v∗0. (71)

For the time varying stochastic singular Equation (70), the following concepts are defined.
The observability operator of time varying stochastic singular Equation (70) on [0, b]

is the continuous linear operator

QT
O : L2(Ω, Fb, P, D)→ L2([0, b], Ω, Y3)
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defined by Qb
Oy = O5(t)G(b, t)E(y|Ft), its dual operator

Qb∗
O : L2([0, b], Ω, Y∗3 )→ L2(Ω, Fb, P, (D)∗)

is defined by

Qb∗
O x∗ =

∫ b

0
G∗(b, t)O∗

5(t)x∗(t)dt.

Definition 36. Time varying stochastic singular Equation (70) is said to be exactly observable on
[0, b] if Qb

O is injective and its inverse is bounded on ran(Qb
O).

In the case of Definition 36, the state v0 can be uniquely and continuously constructed
from the knowledge of the output x(t) in L2([0, b], Ω, Y3).

Definition 37. Time varying stochastic singular Equation (70) is said to be approximately observ-
able on [0, b] if Qb

O is injective.

In the case of Definition 37, the state v0 can be uniquely constructed from the knowl-
edge of the output x(t) in L2([0, b], Ω, Y3).

We can obtain the following dual principle.

Theorem 54. Assume that Y1 and Y3 are reflexive. Time varying stochastic singular Equation (70)
is exactly (approximately) observable on [0, b] if, and only if, its dual time varying stochastic
singular Equation (71) is exactly (approximately) controllable on [0, b].

Proof. Here, we only prove the case of exact observability. Since

Qb∗
O x∗ =

∫ b

0
G∗(b, t)O∗

5(t)x∗(t)dt

happens to be the controllability operator Qb
C of time varying stochastic singular Equation (71),

so Qb∗
C = Qb

O.
If the time varying stochastic singular Equation (70) is exactly observable, then there

exists 1/γ > 0, such that

‖(Qb
O)

−1x‖L2(Ω,Fb ,P,D) ≤
1
γ
‖x‖L2([0,b],Ω,Y3)

,

for all x ∈ ran(Qb
O). This implies that

γ‖y‖L2(Ω,Fb ,P,D) = γ‖(Qb
O)

−1Qb
Oy‖L2(Ω,Fb ,P,D)

≤ ‖Qb
Oy‖L2([0,b],Ω,Y3)

= ‖Qb∗
C y‖L2([0,b],Ω,Y3)

,

where
y = (Qb

O)
−1x, y ∈ L2(Ω, Fb, P, D).

According to Theorem 52 (a), we have that (71) is exactly controllable.
Assume next that the time varying stochastic singular Equation (71) is exactly control-

lable. From Theorem 52 (b), we have that Qb
O is injective and has closed range. According

to closed graph theorem (Qb
O)

−1 is bounded on ranQT
O.

Theorems 52 and Definitions 36 and 37 yield the following conditions for observability
of time varying stochastic singular Equation (70).

Corollary 2. Time varying stochastic singular Equation (70) is exactly observable on [0, b] if, and
only if, one of the following conditions holds for some γ > 0 and for all y ∈ L2(Ω, Fb, P, D):
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(a) ‖Qb
Oy‖L2([0,b],Ω,Y3)

≥ γ‖y‖L2(Ω,Fb ,P,D);
(b) ker(Qb

O) = {0} and ran(Qb
O) is closed.

Corollary 3. Time varying stochastic singular Equation (70) is approximately observable on [0, b]
if, and only if, ker(Qb

O) = {0}.

5.5.5. An Illustrative Example

In this part, we give an example to illustrate the effectiveness of the obtained results.
According to [72], in input–output economics, many models were established to

describe the real economics. The economics Leontief dynamic input–output model can be
extended as an ordinary differential equation of the form:

O1
dv(t)

dt
= O2(t)v(t) + O3(t)u(t), x(t) = O5(t)v(t) (72)

in Banach space Y1, where O1 ∈ B(Y1) and O2(t) : dom(O2(t)) ⊆ Y1 → Y1 is a linear
and possibly unbounded operator, O3(t), O5(t) ∈ P([0, b], B(Y1)), while v(t) and u(t) are
state process and control process valued in Y1, respectively, for t ≥ 0. However, in reality,
there are many unpredicted parameters and different types of uncertainty that have not
been implemented in the mathematical modelling process of this equation. Nonetheless,
according to [85,86], we can consider a stochastic version of the singular Equation (72)
with the one-dimensional standard Wiener process w(t) used to model the uncertainties of
the form:

O1dv(t) = O2(t)v(t)dt + O3(t)u(t)dt + O4(t)v(t)dw(t), x(t) = O5(t)v(t), (73)

where O4(t) ∈ P([0, b], B(Y1)). This stochastic version of the input-output model is a time
varying stochastic singular equation in Banach space Y1 of the form (62).

We consider the following unforced time varying stochastic singular equation, i.e.,
u(t) = 0 in time varying stochastic singular Equation (73):

O1dv(t) = O2(t)v(t)dt + O4(t)v(t)dw(t), x(t) = O5(t)v(t). (74)

Time varying stochastic singular Equation (74) is the form of time varying stochastic singu-
lar linear Equation (70). In what follows, we will verify the effectiveness of Corollary 3.

If for some concrete engineering practice, the following data are taken in time varying
stochastic singular Equation (74):

O1 =

[
U1 0
0 0

]
, O2(t) =

[ −(2t + 1)U1 0
0 5(t2 + 1)U2

]
,

O4(t) =
[

(2t)1/2U1 0
0 3t2U2

]
, O5(t) =

[
7(t + 1)2U1 0

0 0

]
,

where U1, U2 are identical operators in Banach spaces Y11, Y12, respectively. Time varying
stochastic singular Equation (74) can be written as[

U1 0
0 0

][
dv1(t)
dv2(t)

]
=

[ −(2t + 1)U1 0
0 5(t2 + 1)U2

][
v1(t)dt
v2(t)dt

]

+

[
(2t)1/2U1 0

0 3t2U2

][
v1(t)
v2(t)

]
dw(t),

x(t) =
[

7(t + 1)2U1 0
0 0

][
v1(t)
v2(t)

]
, (75)
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where
[

v1(t)
v2(t)

]
∈ Y11 ⊕ Y12 = Y1. We can find that D = Y11. According to [87], we

can obtain

G(t, s) =

[
exp[− 3

2 t2 − t + 3
2 s2 + s +

∫ t
s (2r)1/2w(r)ds]U1 0

0 0

]
.

It is obvious that time varying stochastic singular Equation (75) satisfies the conditions

of Lemma 3. If
[

y
0

]
∈ L2(Ω, Fb, P, D), and

Qb
O

[
y
0

]
= O5(t)G(b, t)E(

[
y
0

]
|Ft) = 0, t ∈ [0, b],

then

O5(b)G(b, b)E(
[

y
0

]
|Fb) = 7(b + 1)2

[
y
0

]
= 0,

i.e., y = 0. This implies that ker(Qb
O) = {0}. Therefore time varying stochastic singular

Equation (75) is approximately observable by Corollary 3.
In this section, we have discussed the controllability of some types of stochastic

singular linear systems. However, the following problems still need to be studied.

Problem 9. How about the controllability of the following system?

Ldx(t) = [A(t)x(t) + B(t)u(t)]dt +
∞

∑
k=1

Ck(t)x(t)dw1,k(t)

+
∞

∑
j=1

Dj(t)u(t)dw2,j(t), x(0) = x0,

where L ∈ B(H) and ker(L) �= {0}, A(t) : dom(A(t)) ⊆ H → H is the generator of a
GE-evolution operator induced by L in the Hilbert (or Banach) space H, B(t) : dom(B(t)) ⊂
U → H is a linear operator, U is a Hilbert (or Banach) space; Ck(t) ∈ P([0, b], B(H)), Dk(t) ∈
P([0, b], B(U, H)), for each i ∈ N; and in Hilbert spaces,

∞

∑
k=1

sup0≤t≤b‖Ck(t)‖2
B(H) < +∞,

∞

∑
k=1

sup0≤t≤b‖Dk(t)‖2
B(U,H) < +∞;

in Banach spaces,

∞

∑
k=1

sup0≤t≤b‖Ck(t)‖B(H) < +∞,
∞

∑
k=1

sup0≤t≤b‖Dk(t)‖B(U,H) < +∞;

the countable set {w1,k, w2,j, k, j ∈ N} consists of independent standard Wiener processes defined
on the stochastic basis (Ω, F, {Ft}, P).

6. Conclusions

We have introduced the latest progress in controllability of stochastic linear systems
and put forward some problems that need to be further studied, which includes stochastic
linear systems in finite dimensional spaces, stochastic linear systems in infinite dimensional
spaces, stochastic singular linear systems in finite dimensional spaces, and stochastic
singular linear systems in infinite dimensional spaces. The controllability and observability
for a type of time-varying stochastic singular linear systems have been studied by using
stochastic GE-evolution operator in the sense of mild solution in Banach spaces, some
necessary and sufficient conditions have been obtained, the dual principle has been proved
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to be true, an example has been given to illustrate the validity of the theoretical results
obtained in this part. Readers can easily and comprehensively understand the latest
progress concerning the controllability of stochastic linear systems and further problems to
be solved. The next research direction is how to solve these problems.
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Abstract: The paper is concerned with the issues of modeling dynamic systems with interval pa-
rameters. In previous works, the authors proposed an adaptive interpolation algorithm for solving
interval problems; the essence of the algorithm is the dynamic construction of a piecewise polynomial
function that interpolates the solution of the problem with a given accuracy. The main problem of
applying the algorithm is related to the curse of dimension, i.e., exponential complexity relative
to the number of interval uncertainties in parameters. The main objective of this work is to apply
the previously proposed adaptive interpolation algorithm to dynamic systems with a large number
of interval parameters. In order to reduce the computational complexity of the algorithm, the au-
thors propose using adaptive sparse grids. This article introduces a novelty approach of applying
sparse grids to problems with interval uncertainties. The efficiency of the proposed approach has
been demonstrated on representative interval problems of nonlinear dynamics and computational
materials science.

Keywords: adaptive interpolation algorithm; interval ordinary differential equations (ODEs); sparse
grids; hierarchical basis; multidimensional interpolation; high dimensions; molecular dynamics
modeling

1. Introduction

Problems related to inaccurately specified data arise in many modern fields of science
and technology. When applied to non-stationary processes, they are often formulated
as dynamic systems with interval parameters. The result of solving such problems is an
interval estimate of the set of possible system states depending on the uncertainties in
the parameters. Basic methods of interval analysis are presented in books [1–5]. There
are known methods based on the representation of a set of solutions through geometric
primitives: parallelepipeds and ellipses [6,7], methods based on symbolic computation [8,9],
as well as stochastic methods [10], such as Monte-Carlo methods. Methods based on
classical interval arithmetic are subject to the so-called wrap effect [1], which manifests
itself in an unlimited increase in the width of the obtained interval estimates of solutions.
This effect arises due to the replacement of the exact form of the set of solutions by a
simpler form, and for iterative methods, the divergence of intervals’ boundaries is often
exponential. Existing methods that are not subject to this effect, or weakly susceptible to it,
often have exponential complexity with respect to the number of interval parameters. It
concerns symbolic methods operating in series, Monte-Carlo methods, and the adaptive
interpolation algorithm [11]. Therefore, there is a need for efficient approaches to reduce
the computational complexity of methods that are not affected by the wrapping effect.

While solving a considered class of problems, the main idea is to construct an explicit
dependence of the solution to the corresponding non-interval problem on the point values
of the interval parameters. If such dependence is available, finding an interval estimate
would be reduced to solving a certain number of constrained optimization problems for
explicitly given functions.
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Papers [11–14] describe the adaptive interpolation algorithm in detail. The essence
of the algorithm is the dynamic construction of a piecewise polynomial function that
interpolates the solution of the problem with a given accuracy. The theoretical basis of
the algorithm is given in References [11,12]. The algorithm has a number of essential
features: it is not subject to the wrapping effect [11]; efficiently parallelizes on GPUs;
able to simulate rigid systems [13]; determines the presence of bifurcations and chaos
in the system [14]. It has been tested on applied problems of chemical kinetics [13], gas
dynamics and celestial mechanics, and complex dynamics with bifurcations and chaos [14].
Nevertheless, there is some drawback. The algorithm uses multidimensional interpolation
on a regular grid, which requires (p + 1)d nodes, where p—a polynomial degree for each
dimension and d—the number of dimensions. With a large number of interval parameters,
the application of the algorithm becomes difficult. However, a typical situation is when the
degree of influence of different parameters and their combinations on a solution can differ
significantly; therefore, it naturally follows to use approaches that take into account these
features and, as a consequence, reduce the computational complexity.

Within the framework of modeling methods for dynamical systems with interval
parameters, it is worth noting the work [15], which describes a method based on the
polynomial approximation of the solution, which requires points in the sample less than
(p + 1)d. This method has been successfully applied to the problem of modeling a rotating
system with both random and interval variables [16]. This class of problems is significant
from an applied point of view.

The curse of dimension, that is, the exponential growth of the number of calculations,
is a critical problem. Typically, this situation arises when studying multidimensional
functions presented in the form of a black box. The general tactic for reducing compu-
tational complexity is to determine and take into account the features of the function
under consideration.

Sparse grids [17] are numerical methods for representing, integrating, or interpolating
multidimensional functions based on a hierarchical basis [18,19] and reducing the curse of
dimension. This approach was first presented by the Russian mathematician Smolyak in
1963. Classic sparse grids result from computational cost optimization for approximating
functions with bounded mixed derivatives [20]. This fact is important since it imposes
certain restrictions on the solution’s dependence on interval parameters. Interpolation
using sparse grids requires significantly fewer nodes than standard full grid interpolation.

There are many works devoted to sparse grids [21–24]. Reference [21] gives an initial
introduction to sparse grids and the technique of combining them. It provides a program
code in the Python programming language. In Reference [22], some parallelization issues
are considered; Reference [23] provides an overview of the foundations and applications of
sparse grids, with particular attention to the solution of partial differential equations.

The behavior of the solution to the ordinary differential equations (ODE) system can
differ significantly depending on the parameters and initial conditions. Adaptive grids can
drastically reduce computational costs by condensing nodes in regions with strong solution
dependence on parameters and rarefaction in areas with weak dependence. Besides such
adaptation, additional properties of the solution can be taken into account using sparse
grids. This approach is effective when the interpolated function has a weak dependence on
subsets of variables. For example, if the solution to an ODE system can be represented as a
linear combination of functions from certain subsets of parameters and initial conditions,
then it is sufficient to consider only the corresponding subsets and construct a grid only
from them. Sparse grids are especially effective in multidimensional problems and can
significantly reduce computational costs.

The main problem is the high computational costs when solving problems with
uncertainties. The main goal of this work is to apply the previously proposed adaptive
interpolation algorithm to the case of dynamical systems with a large number of interval
parameters. The novelty lies in the application of sparse grids to problems with interval
uncertainties, including problems of molecular dynamics.
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The research methodology is based on methods of mathematical modeling, computa-
tional mathematics, and differential calculus. The statement of the problem is formulated
in the form of the Cauchy problem for a system of ordinary differential equations with
interval parameters. The method is tested on a representative set of problems.

The following sections give a description of the adaptive interpolation algorithm on
sparse grids, present the results of testing the algorithm on a number of model problems of
nonlinear dynamics, and solve an important problem of computational materials science,
namely the determination of an interval stress tensor based on molecular dynamics model-
ing.

2. Algorithm for Adaptive Interpolation Using Sparse Grids

Dynamic systems with uncertainties in parameters arise in many practical areas.
Traditionally, interval problems for dynamic systems are formulated in the form of the
Cauchy problem for a system of ordinary differential equations (ODE) with interval initial
conditions or parameters. It is necessary to obtain an interval estimate of the solution based
on interval values of the parameters.

Consider the Cauchy problem with m interval initial conditions:⎧⎪⎪⎪⎨⎪⎪⎪⎩
dyi(t)

dt = fi(y1(t), y2(t), ..., yn(t)), 1 ≤ i ≤ n,
yi(t0) ∈

[
y0

i , y0
i

]
, 1 ≤ i ≤ m,

yi(t0) = y0
i , m + 1 ≤ i ≤ n,

t ∈ [t0, tN ].

(1)

Hereinafter, the underline denotes the lower bound of the interval, and the overline—
the upper bound of the interval.

If the ODE system is not autonomous or contains interval parameters, then fictitious
equations are added to the system so that it would take the form of system Equation (1).
A vector function f = ( f1, f2, ..., fn)

T meets all conditions ensuring the uniqueness and
existence of a solution for all yi(t0) ∈

[
y0

i , y0
i

]
, 1 ≤ i ≤ m.

The goal is, for each moment of time tk, to construct a piecewise polynomial vector
function Pk(y0

1, y0
2, ..., y0

m
)
, where yi(t0) ∈

[
y0

i , y0
i

]
, 1 ≤ i ≤ m, which interpolates the

dependence of the solution on the interval parameters with controlled accuracy. If the
function Pk is available, finding the interval estimate of the solution (finding the left and
right boundaries of the intervals) should be reduced to solving constrained optimization
problems for an explicitly given function.

Suppose that the solution to yk(y0
1, y0

2, ..., y0
m
)

is known at the moment of time tk,

where y0
i ∈
[
y0

i , y0
i

]
, 1 ≤ i ≤ m. An adaptive sparse grid is constructed for the set formed

by the interval initial conditions. Each grid point has a corresponding solution to the
noninterval system (1) at pointwise values of interval parameters that correspond to the
position of a node. To obtain an interval solution at the moment of time tk+1, the transfer of
all non-interval solutions contained in the grid nodes to the time layer (k + 1) is performed,
followed by the adaptation of the grid and the construction of an interpolation polynomial
Pk+1.

A short description of sparse grid interpolation according to the works [20,21] is
given below.

Consider the interpolation of a smooth function f (x) of one variable on the unit
interval [0, 1]. For the sake of simplicity, it is assumed that the function is equal to zero at
the boundary points: f (0) = f (1) = 0.

The interpolation is performed on a piecewise linear hierarchical basis using the
hat function:

ϕ(x) =
{

1− |x|, x ∈ [−1, 1]
0, otherwise

. (2)
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Define a set of grids Gl on a unit interval [0, 1], where l is the level that determines the
grid width hl = 2−l . The grid points xl, i are given as:

xl, i = i · hl , 0 ≤ i ≤ 2l .

Families of basis functions ϕl, i(x) are generated based on the obtained sets of points,
using the stretching and transfer of the hat Equation (2):

ϕl, i(x) = ϕ

(
x− i · hl

hl

)
. (3)

A nodal basis is formed for each given l of Equation (3). Here, the common piecewise
linear interpolation (Figure 1) is applied, and the corresponding polynomial is written
as follows:

P(x) =
2l−1

∑
i=1

al,i ϕl,i(x), al,i = f (xl,i). (4)

Figure 1. Interpolation on a nodal basis.

Let us make the transition to a hierarchical basis (Figure 2). The basis functions given
by Equation (3) is expressed with even level indices k in terms of the basis level functions
(k− 1):

ϕk,2i(x) = ϕk−1,i(x)− 1
2
(ϕk,2i−1(x) + ϕk,2i+1(x)), 1 ≤ i ≤ 2k−1 − 1.

In this case, the interpolation polynomial given by Equation (4) takes the follow-
ing form:

P(x) =
l

∑
k=1

2k−1

∑
i = 1,
i odd

ak,i ϕk,i(x), ak,i = f (xk,i)−
1
2
( f (xk,i−1) + f (xk,i+1)) (5)

Next, consider the multidimensional interpolation of a smooth function f (x1, x2, ..., xd)

using d—dimensional unit cube Ω = [0, 1]d, provided that f |∂Ω = 0. A multidimensional
basis is constructed by the direct product of hierarchical one-dimensional bases:

ϕl,i(x) =
d

∏
j=1

ϕlj , ij
(xj), 1 ≤ ij ≤ 2lj − 1, ij odd,
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where l = (l1, l2, ..., ld) are the levels of the corresponding one-dimensional grids, i =

(i1, i2, ..., id) is the basis function multi-index, x = (x1, x2, ..., xd). If
d
∑

j=1
lj ≤ n + d− 1, there

is a sparse grid of n level; if max
j=1,d

(
lj
)
≤ n, there exists a complete grid (Figure 3). The number

of nodes in a sparse grid is estimated as O
(

p(log2 p)d−1
)

, and the interpolation error is

estimated as O
(

h2
n(log2 p)d−1

)
; for a full grid the respective number of nodes is O

(
pd
)

,

and the error is O
(
h2

n
)
, where p = 2n − 1 is the number of nodes in each dimension [20].

Figure 2. Interpolation on a hierarchical basis.

Figure 3. Sparse grid of the third level: black dots—sparse grid; black and grey dots—full grid: (a) sets of points
corresponding to basis functions of the same level; (b) combining all points into one grid.
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The interpolation polynomial is written as follows:

P(x) = ∑
l,i

al,i ϕl,i(x), |l|1 ≤ n + d− 1, 1 ≤ ij ≤ 2lj − 1, ij odd (6)

where

al,i = ∑
Δ1,...,Δd

(
−1

2

) d
∑

j=1
|Δj |

f
(
xl1,i1+Δ1 , xl2,i2+Δ2 , ..., xld ,id+Δd

)
, −1 ≤ Δj ≤ 1, 1 ≤ j ≤ d. (7)

In the case when the interpolated function has a nonzero value at the boundary, the
one-dimensional basis is supplemented by two additional functions: ϕ0, 0(x) and ϕ0, 1(x)
(Figure 4). Two values are added to the polynomial given by Equation (5): a0,0 ϕ0,0(x) and
a0,1 ϕ0,1(x), where a0,0 = f (0), a0,1 = f (1). By analogy, for multidimensional interpolation,
it follows that if lj = 0, then ij = 0, 1 in Equation (6) and Δj = 0 in Equation (7). Allowance
for boundary values in the multidimensional case can be considered as the construction of
sparse grids for all faces of lower dimensions. Figure 5 shows a sparse grid, which takes
into account the boundary values.

Figure 4. Additional basis functions taking into account boundary values.

Figure 5. Sparse grid of the level n = 4, which takes into account boundary values.

In addition, there are adaptive sparse grids for which a general tree can be used
to perform structuring. Each vertex of the tree corresponds to a certain basis function
ϕl,i. If the value of the corresponding coefficient al,i/max( f (xl,i), 1) > ε, where ε is some
predetermined value, then each vertex creates 2d descendants, which correspond to the
basis functions of the next level. This process continues recursively until the values al,i at
all leaf vertices become less than ε. With this approach, it is important to make sure that
there is no duplication of vertices.

Consider some examples. Figure 6 shows several functions R2 → R and the resulting
adaptive grid, Figure 7 shows grids for functions R3 → R .
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Figure 6. Examples showing interpolation using functions of two variables. (a) Linear combination of univariate functions.
(b) Linear combination of univariate functions and a function of two variables x and y with a small coefficient. (c) Linear
combination of univariate and a function of two variables x and y.

Figure 7. Examples of grids for functions of three variables. (a) Linear combination of univariate functions. (b) Linear
combination of univariate functions and a function of two variables y and z. (c) Nonlinear function of three variables.

It can be seen from the figures that if the initial dependence is a linear combination
of functions determined by certain subgroups of variables, then the adaptive sparse grid
will become more dense not in the entire set (Figures 6c and 7c), but only in subsets of
lower dimension that correspond to these subgroups (Figures 6a and 7a,b). The subsets
for grid construction are determined by those subgroups of parameters, for which the
mixed derivatives are nonzero, and the grid density directly depends on the values of these
derivatives (Figure 6b,c).

To build a solution for the system given by Equation (1), the uncertainty area y0
i ∈[

y0
i , y0

i

]
, 1 ≤ i ≤ m is transformed with the help of displacement and stretching into a m-

dimensional unit cube. Taking into account that solving the problem requires interpolating
n functions at once (n is the number of phase variables of the system), Equations (6) and (7)
will take the following form:

Pk
(

y0
)
= ∑

l,i
ak

l,i ϕl,i

(
y0
)

,

where

ak
l,i = ∑

Δ1,...,Δm

(
−1

2

) m
∑

j=1
|Δj |

yk
(

y0
1, l1,i1+Δ1

, y0
2, l2,i2+Δ2

, ..., y0
m, lm ,im+Δm

)
, −1 ≤ Δj ≤ 1, 1 ≤ j ≤ m (8)

The vector norm ak
l,i (for example, the maximum one) can be used as a criterion for

adapting the grid.
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Construct an interpolation polynomial Pk+1(y0). All the solutions that participated in
the calculation of the coefficients given by Equation (8) are transferred to the (k + 1)-th time
layer using some numerical integration method, after which a new set of ak+1

l,i coefficients
is calculated and the adaptation of the grid is performed. When compacting the grid, the
addition of new basis functions occurs at the k-th time layer and the solutions involved in
computing the corresponding weight coefficients are transferred to the next layer.

The efficiency of the considered approach will be noticeable when many mixed deriva-

tives of the solution with respect to the parameters
∂Σαi yk(y0

1, y0
2,..., y0

m)
(∂y0

1)
α1(∂y0

2)
α2 ...(∂y0

m)
αm , max

1≤i≤m
αi ≤ 2,

y0
i ∈
[
y0

i , y0
i

]
, 1 ≤ i ≤ m are negligible or equal to zero. Particularly, this takes place, if

the solution to the ODE system can be represented as a linear combination of functions
determined by a certain subset of interval parameters.

Thus, the scope of application of the proposed approach is rather wide and includes
various dynamic systems. In the next section, it is demonstrated how the method is applied
to some representative problems.

3. Approbation of the Algorithm for Nonlinear Dynamics Problems

To characterize computational costs, a criterion is determined, which is equal to the
average number of integrated non-interval ODE systems at a time step in the computa-
tional process:

I =
1
N

N

∑
k=1

Ck,

where Ck is the number of nodes at the k step. A similar criterion exists for the classical
adaptive interpolation algorithm [11]. The I value is equivalent to the number of sampling
points from the original region of uncertainty.

To estimate the posterior interpolation error at the initial moment of time, ncheck points
are randomly generated:

yj
i(t0) = rand

[
y0

i , y0
i

]
, 1 ≤ i ≤ m, 1 ≤ j ≤ ncheck.

For the initial conditions obtained, with the help of a numerical integration method,
solutions are constructed at the final moment of time tN . The relative posterior global
estimate of the error is written as follows:

error = max
1 ≤ j ≤ ncheck,

1 ≤ i ≤ n

∣∣∣PN
i

(
yj

1(t0), yj
2(t0), ..., yj

m(t0)
)
− yj

i(tN)
∣∣∣

max
(∣∣∣yj

i(tN)
∣∣∣, 1
) .

Let us integrate several ODE interval systems using the described approach. The
calculation is performed for two values of ε = 10−3 and ε = 10−5 (ε imposes a restriction on
the values of the weight coefficients of the basic functions when constructing an adaptive
sparse grid). First, let us take into account an ordinary differential system with two interval
initial conditions, which describes a conservative oscillator:{

x′ = y, y′ = − sin(x),
x(0) = x0 ∈ [−1, 1], y(0) = y0 ∈ [0, 1], t ∈ [0, 25].

(9)

Figure 8 shows a set of solutions for the system given by Equation (9) at different
moments of time; it twists into a spiral structure during the integration. Figure 9 shows the
grid resulting from applying the algorithm. The points in these two figures correspond to
each other.
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Figure 8. The interval solution of system given by Equation (9) at different moments of time.

 
Figure 9. The grids obtained in the process of solving system given by Equation (9).

Table 1 shows a comparison of computational costs and error estimates for different
approaches. When set to a low precision (ε = 10−3), adaptive sparse grids work a little
faster than the classical adaptive interpolation algorithm, and twice as fast as conventional
sparse grids. However, for ε = 10−5, the classical algorithm wins due to the application
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of an interpolation polynomial of a high degree. The levels of the grids were adjusted to
obtain approximately the same error as in other approaches.

Table 1. Comparison of approaches for system given by Equation (9).

Methods
ε=10−3 ε=10−5

I error I error

full grid (level 6
and level 8) 4225 3.6× 10−3 66, 049 2.2× 10−4

sparse grid (level 7
and level 10) 1793 7.7× 10−3 36, 865 6.9× 10−5

adaptive sparse grid 689 6.6× 10−3 9455 1.1× 10−4

adaptive interpolation
algorithm, p = 2 3877 6.3× 10−3 52, 195 1.8× 10−4

adaptive interpolation
algorithm, p = 4 990 6.8× 10−3 4752 1.5× 10−4

Next, the Volterra-Lotka model with interval initial conditions and one interval coeffi-
cient is considered. The Cauchy problem in the case has the form:{

x′ = 4x− 5
4 xy− αx2, y′ = −2y + 1

2 xy− 1
20 y2,

x(0) = x0 ∈ [4, 5], y(0) = y0 ∈ [2.8, 3.2], t ∈ [0, 25],
(10)

where α ∈ [−0.05, 0.05].
This model describes predator–prey interactions. A feature of the system is the fact

that at α < 0 there is an unstable focus and the amplitude of fluctuations in the population
of species grows, and at α > 0 the focus is stable and the state of the system tends to be
stationary over time.

Figure 10 shows the set of solutions for the system at different points in time. The
following picture is clearly observed here: some part of the set converges to a point, which
corresponds to a stable focus, and another part of the set increases in its size, which
corresponds to an unstable focus. Figure 11 shows the resulting grid. Due to the fact
that uncertainty is present in the parameters, the set of solutions on the phase plane is
only a projection of the three-dimensional set onto the two-dimensional phase space. The
additional dimension corresponds to the interval parameter α.

Table 2 shows a comparison of the different approaches. Similar to the previous task,
adaptive sparse grids are effective with lower accuracy ε.

Table 2. Comparison of approaches on system given by Equation (10).

Methods
ε=10−3 ε=10−5

I error I error

full grid (level 4 and level 6) 4913 3.3× 10−3 274, 625 2.0× 10−4

sparse grid (level 3 and level 7) 705 2.4× 10−3 19, 713 4.3× 10−5

adaptive sparse grid 193 3.1× 10−3 3170 4.8× 10−5

adaptive interpolation
algorithm, p = 2 544 4.6× 10−3 48, 013 6.8× 10−5

adaptive interpolation
algorithm, p = 4 369 1.6× 10−3 3978 5.2× 10−5
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Figure 10. The interval solution of system given by Equation (10) at different times.

Figure 11. The grid obtained in the process of solving the system given by Equation (10).

Consider an ordinary differential system presenting the expanded Volterra-Lotka
model with three interval initial conditions and seven interval parameters:⎧⎨⎩

x′ = x(δ1 − y− εx),
y′ = −γ1y(δ2 − x + z)− ϕy2,
z′ = −γ2z(α− y),

∣∣∣∣∣∣
x(0), y(0), z(0), δ1, δ2, γ1, γ2 ∈ [1.0, 1.01],

ε, ϕ ∈ [−0.0005, 0.0005],
α ∈ [0.9, 0.91].

(11)

Figure 12 shows the dependences of the interval estimates of solutions on time.
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Figure 12. Time dependence of the upper and lower bounds for the solution of system given by Equation (11): (a) x(t); (b)
y(t); (c) z(t).

For a reasonable time, the solution was obtained using only adaptive sparse grids. For
ε = 10−3, the obtained result was I = 81, 566.1 and error = 1.2× 10−2.

Consider a model describing the motion of interacting bodies. The problem can be
formulated as a dynamic system with interval initial velocities. The system of ordinary
differential equations in dimensionless variables is as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
vx

i
)′

=
4
∑

j=1, j �=i
mj
(
xj − xi

)
r−3

i,j ,
(

vy
i

)′
=

4
∑

j=1, j �=i
mj
(
yj − yi

)
r−3

i,j ,
(
vz

i
)′

=
4
∑

j=1, j �=i
mj
(
zj − zi

)
r−3

i,j ,

x′ i = vx
i , y′ i = vy

i , z′ i = vz
i , 2 ≤ i ≤ 4,

x1(0) = y1(0) = z1(0) = vx
1(0) = vy

1(0) = vz
1(0) = 0,

x2,3(0) = ±1, y2,3(0) = z2,3(0) = 0, v2,3(0) =
(

0 ±v 0
)T

+ ΔvT
2,3,

y4(0) = 1, x4(0) = z4(0) = 0, v4(0) =
(

0 0 v
)T

+ ΔvT
4 ,

t ∈ [0.0, 0.02]

(12)

where ri,j =
√(

xj − xi
)2

+
(
yj − yi

)2
+
(
zj − zi

)2 is the distance between two bodies,
v = 316.23 is the initial velocity of bodies, m1 = 105, m2, 3, 4 = 10−5 are body masses,
Δv2, 3, 4 = ([−2, 2], [−2, 2], [−2, 2]) are the interval uncertainties in body velocities.

Figure 13 shows graphs for the dependence of the interval estimates of the 2nd
body coordinates and velocities on time. Similar to the previous problem, the solution
was calculated only using adaptive sparse grids. For ε = 10−3, the obtained result was
I = 133830.9 and error = 2.6× 10−2.

This system is demonstrative because the uncertainty in the speed of a particular body
mainly affects the position and speed of that particular body and has little effect on other
bodies. In this regard, the solution of the system will have a specific form, as most of the
mixed derivatives will be close to zero.

Note that the classical adaptive interpolation algorithm for systems given by
Equations (6) and (7) constructs sets of solutions with fewer integrations of the corre-
sponding non-interval ordinary differential systems since it uses nonlinear interpola-
tion. However, when the number of interval parameters increases (systems given by
Equations (8) and (9)), the use of adaptive sparse grids becomes more efficient. When
increasing the dimension of the problem, it is practically impossible to increase the degree
of the interpolation polynomial in the adaptive interpolation algorithm to obtain higher
accuracy due to the exponential growth of the number of nodes in the grid. Therefore, for
high dimensional-problems, it is suitable to use methods that have lower accuracy, but at
the same time allow reasonable computational costs; in particular, adaptive sparse grids.

The examples above demonstrate that by using sparse grids it is possible to simulate
dynamic systems with ten interval uncertainties in a reasonable time. When solving system
given by Equation (11), the equivalent number of sampling points was about 80 thousand,
and in the case of using classical interpolation with the degree of polynomial equal to 4, the
value would be of order 107. A lower estimate of the computational cost can be obtained. It
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follows from Equation (8) that the number of solved non-interval ODE systems cannot be
less than 3m. The upper estimate of the computational costs, in the general case, essentially
depends on the features of the ODE system being solved, in particular on the values of the
mixed derivatives of the solution with respect to the point values of the interval parameters.
For comparison, the classical adaptive interpolation algorithm requires at least (p + 1)m

points, and the method proposed in Reference [15] requires (m+p)!
m!p! points, where p is the

degree of the interpolation polynomial.

Figure 13. Time dependencies of upper and lower estimates of the 2nd body coordinates and velocities: (a) x2(t); (b) y2(t);
(c) z2(t); (d) vx

2(t); (e) vy
2(t); (f) vz

2(t).

4. Computation of an Interval Stress Tensor for Materials with a Covalent
Chemical Bond

Let us consider an applied problem of computational materials science, within the
framework of which the stresses arising during the deformation of an ideal crystal are
calculated [12]. Different angles are possible between the orientation of the crystal lattice
and the direction of stretching with a fixed stretch value. The stress tensor thus becomes
interval. This problem is solved using molecular dynamics simulation. The motion of
atoms is described by the classical equations of dynamics:{

ri
′ = vi,

vi
′ = 1

mi
Fi,

where ri is the radius vector of the atom with the number i, vi is its velocity, mi is its mass,
and Fi is the force acting on the atom, in this case Fi = −∇iE, where E is the total energy
of the system, and ∇i is the gradient along the position of the atom with the number i.
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In this problem, materials with a covalent interatomic bond are considered. The total
energy of interaction between atoms of such materials is well described using the Tersoff
potential [25]: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E = 1
2 ∑

i
∑
j �=i

Vij, Vij = fC
(
rij
)(

fR
(
rij
)
+ bij fA

(
rij
))

,

fC(r) =

⎧⎪⎨⎪⎩
1, r < R− D,

1
2

(
1− sin

(
π
2

r−R
D

))
, R− D ≤ r < R + D,

0, R + D ≤ r,
fR(r) = A exp(−λ1r), fA(r) = −B exp(−λ2r),

bij =
(

1 + βnςn
ij

)− 1
2n ,

ςij = ∑
k �=i,j

fC(rik)g
(

θijk

)
exp
(

λm
3
(
rij − rik

)m),

g(θ) = γ

(
1 + c2

d2 − c2

d2+(cos(θ)−cos(θ0))
2

)
,

where E is total system energy, Vij is the contribution to the interaction energy of atoms with
numbers i and j, rij is the distance between atoms with numbers i and j, fC(r) is a cut-off
function, fR(r) and fA(r) are the repulsion and attraction potentials, respectively, and R,
D, A, B, n, m, λ1, λ2, λ3, β, γ, c, d and cos(θ0) are potential parameters that are selected
in order to reproduce the properties of the simulated material. Methods of parametric
identification of the Tersoff potential parameters are considered in papers [26,27].

The initial positions of atoms and their number are determined by the structure of the
crystal lattice and the restriction on the minimum size of the simulated space is specified
by the structure of the potential.

Consider crystalline silicon as a typical material. The simulated sample is represented
by eight unit cells of a diamond crystal lattice making up a cube of 2× 2× 2 in size, with
periodic boundary conditions; each unit cell contains eight unique atoms (Figure 14), so a
total of 64 atoms are involved in the simulation. Initial speeds are considered to be zero.
The initial conditions for a dynamical system can be represented as follows:⎧⎪⎨⎪⎩

ri(0) =
(
(x, y, z)T + (dx, dy, dz)T

)
a, (x, y, z) ∈ Base, dx, dy, dz ∈ {0, 1}, vi(0) = (0, 0, 0)T ,

Base =
{

(0, 0, 0), (0, 0.5, 0.5), (0.5, 0, 0.5), (0.5, 0.5, 0), (0.75, 0.75, 0.75),
(0.75, 0.25, 0.25), (0.25, 0.75, 0.25), (0.25, 0.25, 0.75)

}
,

where a = 5.429× 10−10 m is the linear size of a unit cell of a silicon crystal.

Figure 14. Unit cell of a silicon crystal.
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To take into account deformation, 4 additional variables are introduced: one of them
reflects the elongation value, and three more are responsible for the angle between the
orientation of the lattice and the direction of stretching. In this case, the elongation is set
to be fixed, and the variables responsible for the rotation are taken as interval. Rotation is
generated evenly using quaternions [28].

The final system looks like this:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ri
′ = vi, vi

′ = − 1
2mi

∑
i

∑
j �=i
∇i
(

fC
(
rij
)(

fR
(
rij
)
+ bij fA

(
rij
)))

,

rij(s, μ1, μ2, μ3) = ‖S(s)R(μ1, μ2, μ3)rij‖,
S(s) = diag(1 + s, 1, 1),

R(μ1, μ2, μ3) =

⎛⎝ 1− 2
(
q2

2 + q2
3
)

2(q1q2 − q3q0) 2(q1q3 + q2q0)
2(q1q2 + q3q0) 1− 2

(
q2

1 + q2
3
)

2(q2q3 − q1q0)
2(q1q3 − q2q0) 2(q2q3 + q1q0) 1− 2

(
q2

1 + q2
2
)
⎞⎠,

(q0, q1, q2, q3) =
(√

1− μ1 sin(2πμ2),
√

1− μ1 cos(2πμ2),
√

μ1 sin(2πμ3),
√

μ1 sin(2πμ3)
)
,

t ∈
[
0, 10−12],

(13)

where m = 4.65× 10−26 kg is the mass of atoms, s = 0.1 is the relative elongation of the
sample, μ1 ∈ [0.1, 0.9], μ2 ∈ [0.1, 0.9], and μ3 ∈ [0.1, 0.9] are stretching direction param-
eters, R = 2.85 × 10−10 m, D = 0.15 × 10−10 m, A = 6.12 × 10−16 J, B = 1.81× 10−17 J,
c = 9.69, d = 2.35, n = 4.16, β = 0.132, λ1 = 3.36 × 1010 m−1, λ2 = 1.27 × 1010 m−1,
λ3 = 1.19× 1010 m−1, γ = 5.71, and cos(θ0) = −0.408 are the parameters of the potential.

Integration of the resulting ordinary differential system (13) was carried out using the
Verlet velocity method with a constant integration step of 10−15 s. As a result, the interval
stress tensor was obtained (values are given in Pascals):⎛⎝ [−1.58× 1010,−1.43× 1010] [−1.35× 109, 1.35× 109] [−1.35× 109, 1.35× 109]

[−1.35× 109, 1.35× 109] [−4.79× 109,−1.46× 109] [−1.42× 109, 1.42× 109]
[−1.35× 109, 1.35× 109] [−1.42× 109, 1.42× 109] [−4.79× 109,−1.46× 109]

⎞⎠
For ε = 10−2, the obtained result was I = 1079132.3 and error = 2× 10−1.
Note that the possibilities of the proposed approach are not limited to a specific type of

interatomic interaction potential in a material. The method can be applied to the simulation
of the stress–strain state of materials with various types of chemical bonds, including the
modeling of composite materials.

5. Discussion

In the previous sections, the proposed approach was tested on representative interval
problems of nonlinear dynamics and computational materials science. It is found that,
thanks to sparse grids, it is possible to integrate ODE systems with a large number of
interval uncertainties in a reasonable time. To estimate the computational costs, a criterion
was used that is equal to the equivalent number of sampling points from the original
uncertainty region.

Table 1 shows estimates of the computational costs for the ODE system given by
Equation (9) describing a conservative oscillator with two interval initial conditions for
two values ε. For ε = 10−3, the approach proposed in the paper works 1.5 to 5 times faster
than the classical adaptive interpolation algorithm.

Table 2 shows the computational costs when integrating the ODE system given by
Equation (10), describing the Lotka-Volterra model with two interval initial conditions
and one interval parameter. Here, for ε = 10−3, the use of adaptive sparse grids gives an
acceleration of 1.9− 2.8 times compared to the classical algorithm, and for ε = 10−5, the
acceleration is from 1.25 time to 15 time.

For ODE systems given by Equations (11) and (12), it was possible to obtain a solution
in a reasonable time only using the approach proposed in the paper since the number of
interval uncertainties is quite large. To solve system given by Equation (11), the equivalent
number of sampling points was about 80 thousand, and in the case of using the classical
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algorithm with a degree of polynomial 4, the value would be about 10 million. Thus, using
sparse grids in this problem gives an acceleration of at least 125 times.

The tables show that adaptive sparse grids work faster than regular sparse grids, and
even faster than full grids. This fact is in line with the theoretical foundations. The classical
adaptive interpolation algorithm in example (9) with two interval uncertainties showed
itself slightly better only when ε = 10−5 and p = 4. This is primarily due to the chosen
value of p. It is known that the greater the degree of the interpolation polynomial, the
faster the error decreases with increasing mesh density. Therefore, it seems promising to
use sparse grids on a nonlinear basis. We should also note the possibilities of applying
adaptive grids to ODE systems not only with interval uncertainties but also with stochastic
uncertainties, including applied nonlinear systems.

6. Conclusions

The adaptive interpolation algorithm allows simulating dynamic systems with interval
parameters. In the course of the algorithm operation, a regular grid is constructed in the
parameter space. The number of grid nodes depends exponentially on the number of
interval parameters, which limits the scope of the algorithm. A typical situation is when
the degree of influence of different parameters and their combinations on the solution
can differ significantly. This can be used in adaptive interpolation. The paper presents an
adaptive interpolation algorithm on sparse grids, which allows for reducing the exponential
complexity when solving multidimensional problems in parameter space. The efficiency
of the proposed approach has been demonstrated on representative interval problems of
nonlinear dynamics and computational materials science. It is shown that, for most variants,
adaptive sparse grids are more efficient than the classical adaptive interpolation algorithm
in terms of computational costs. With the suggested method, it was possible to solve
problems with up to 10 interval parameters in a reasonable amount of time. At the same
time, the classical algorithm of adaptive interpolation failed to do so. Taking into account
that an increase in the degree of the interpolation polynomial in the classical adaptive
interpolation algorithm leads to higher accuracy and lower computational costs, we can
outline the use of sparse grids with a nonlinear basis as a direction for further research.
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Abstract: Proton exchange membrane (PEM) fuel cell has recently attracted broad attention from many
researchers due to its cleanliness, high efficiency and soundless operation. The obtention of high-
performance output characteristics is required to overcome the market restrictions of the PEMFC
technologies. Therefore, the main aim of this work is to maintain the system operating point at an ad-
equate and efficient power stage with high-performance tracking. To this end, a model predictive
control (MPC) based on a global minimum cost function for a two-step horizon was designed and im-
plemented in a boost converter integrated with a fuel cell system. An experimental comparative
study has been investigated between the MPC and a PI controller to reveal the merits of the proposed
technique. Comparative results have indicated that a reduction of 15.65% and 86.9%, respectively,
in the overshoot and response time could be achieved using the suggested control structure.

Keywords: proton exchange membrane; proton electrolyte membrane; PEM; fuel cell; PEMFC; power
electronic converter; DC–DC boost converter; model predictive control; MPC

1. Introduction

Due to its abundance in the universe, hydrogen has become one of the most important
fuels for energy production. Hydrogen represents up to more than 75% of all normal
matter mass, and it accounts for over 90% of all atoms on earth [1]; it could be produced
by either simple methods, such as the electrolysis of water, or industrial methods using
steam reforming. The production cost of hydrogen is expected to fall by 50% by the middle
of this century, and that could pave the way for more sustainable sources of energy [2].
The latter has encouraged thousands of scientists and researchers to pursue research
in hydrogen cells.

A proton exchange membrane fuel cell (PEMFC), which uses hydrogen as the main fuel,
has recently attracted great attention due to its cleanliness, high efficiency, high power
density and quiet operation [3]. It can be used for a wide range of applications, including
automotive, stationary and portable power supplies [4–7]. For most of those applica-
tions, the PEMFC is usually used in conjunction with a DC–DC power converter that
generates highly regulated DC voltage for end-use. Therefore, the control design plays
the main role in a PEMFC power system, not only for performance improvement reasons
but also for safety operation.

During the last few years, many control algorithms have been designed for PEMFC
power systems; the pros and cons of the recently reported ones are listed in Table 1. Hence,
linear proportional integral (PI), proportional derivative (PD) and proportional integral
derivative (PID) have been, respectively, used by various research groups/researchers [8–10],
to keep the PEMFC operating at an appropriate power point. Although these controllers
are especially sensitive when they face a large load variation, results showed a gradual
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and smooth rise to the desired operating power point with an acceptable tracking perfor-
mance. To increase the robustness of the PID and obtain a better dynamic performance,
various research groups/researchers [11] have applied a fractional order proportional
integral derivative (FOPID) controller to a DC–DC four-switch buck-boost (FSBB) converter
used in a PEMFC power system. The obtained results have shown that the proposed
method achieved better performance in comparison with the integer-order and Two-
Zero/Three-Pole (TZTP) controller. Hence, an overall efficiency of 92%, more than the one
obtained with TZTP, can be retained using the FOPID. The performances of the PID have
also been improved by various research groups/researchers [12] via the application of the
slap swarm algorithm (PID-SSA). Comparative results with other methods, such as incre-
mental resistance algorithm (IRA), mine-blast algorithm (MBA), and grey wolf optimizer
(GWM), have indicated better performance of the proposed PID-SSA in terms of efficiency
and reliability. However, despite the massive work done on improving the performance
of the PID, it is still sensitive to cope with the non-linearity of the power converter, which
leads many researchers to focus on the non-linear algorithms.

Various research groups/researchers [13] have proposed fuzzy logic control (FLC)
to overcome the drawbacks of the conventional P&O, where the results have indicated a
chattering reduction of 78.6% and an improvement of 63% in the settling time. To improve
the performance of the FLC, various research groups/researchers [14] have proposed
particle swarm optimization (FLC-PSO). Comparative results with the FLC have demon-
strated the effectiveness of the FLC-PSO in reducing the overshoot from 65.833% to 63.115%
while ensuring high tracking efficiency (99.39%). However, despite the reduction of 2%,
an overshoot up to more than 63% is still undesirable. Reddy and Sudhakar [15] optimized
the FLC via an adaptive neuro-fuzzy inference system (ANFIS). Simulation and experimen-
tal results have indicated that an increase of 1.95% in the average DC link and a reduction
of 17.74% in the average time taken to reach the operating power point can be achieved
using the proposed ANFIS algorithm.

The artificial neural networks and meta-heuristic algorithms have also been used by vari-
ous research groups/researchers [16–19]. Hence, in comparison with FLC, efficiency improve-
ments and a faster response of 45% are obtained by various research groups/researchers [16]
via the application of the neural network algorithm (NNA). The latter was also proposed
by [17] to overcome the drawbacks of the P&O. The obtained results showed that a reduc-
tion of 86% and 74%, respectively, in power oscillations and settling time can be achieved.
In [18], a genetic algorithm (GA) was used to improve the power quality of the PV generator.
Results have demonstrated that in comparison with the conventional P&O and the incre-
mental conductance (IC), the proposed GA can achieve a reduction of 97% in the oscillations
of output power. Khanam et al. [19] made a comparative study among ant colony opti-
mization (ACO), particle swarm optimization (PSO), differential evolution (DE) and P&O.
Results have demonstrated the effectiveness of the ACO in terms of convergence time
over the other proposed methods. Hence, in comparison with P&O, a reduction of 90.61%
and 5.13% are, respectively, obtained via the application of ACO and PSO.

The application of the sliding mode control (SMC) for the PEMFC system was pro-
posed by various research groups/researchers [3,20,21]. To counteract the chattering
phenomenon of the SMC, integral fast terminal sliding mode control (IFTSMC), back-
stepping sliding mode control (BSMC), high-order sliding mode based on twisting (TA),
super-twisting (STA), prescribed convergence law (PCL) and quasi continue (QC) have
been, respectively, proposed by [21–26]. Results have demonstrated that high chattering
reductions such as 84% and 91% via the application of the QC and STA can be achieved
using the proposed algorithms.
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Table 1. Summary of the recently reported approaches used for the PEMFC power system.

Reference Year Controller Converter Features Drawbacks

Ref. [8]
Ref. [9]
Ref. [10]

2017
2014
2020

PI
PD
PID

Boost converter
-

Buck-boost
converter

- Less energy consumption.
- Simplicity of implementation
- Frequently used in the industry.
- Low computational requirements.

- Sensitive against large load variation.
- Inappropriate control parameters leads
to the system instability.
- Not proper for non-linear systems.
- Parameters setting is difficult.

Ref. [11] 2020 FOPID FSBB
- High robustness in comparison
with PID.
- Less energy consumption.

- Complex implementation.
- Abundant parameters are required to
be adjusted.

Ref. [12] 2021 SSA-PID Boost converter
- Reasonable execution time.
- Good convergence acceleration.
- Few parameters tuning.

- Suffers from premature convergence.
- Unsuccessful to achieve the near-global
solution.

Ref. [13] 2017 FLC Boost converter
- Uses simple mathematics.
- Simplicity of rules modifications.
- Simplicity of implementation.

- Stability is not guaranteed.
- The accuracy is not guaranteed since
the outputs are perceived as a guess.
- Necessity of human expertise.

Ref. [14] 2019 FLC-PSO Boost converter - Easy to implement.
- Few parameters to adjust.

- High implementation cost.
- complex calculation.
- Needs memory to update velocity.

Ref. [15] 2019 ANFIS Boost converter

- Capability of adaptation.
- Expert knowledge is not required.
- High convergence speed
and tracking accuracy in comparison
with FLC.

- Requires large data for training
and learning.
- Abundant parameters are required to
be adjusted.
- High computational cost.

Ref. [16]
Ref. [17]

2018
2018 NNA Interleaved boost

Boost converter

- Similar to human reasoning.
- No exact model is required
- Possibility application for feed
forward control.

- Needs an expert for a good initialization.
- Stability is not guaranteed.
- Abundant parameters are required to
be adjusted.

Ref. [18] 2018 GA Boost converter

- Easy to understand.
- Effective for noisy environments.
- Works well for mixed
discrete/continuous problem.
- Supports multi-objective
optimization.

- Sometimes inappropriate for real-time
applications.
- Needs an expert for the implementation.
- The objective function is hard to design.
- Computationally expensive.

Ref. [19] 2019
ACO
PSO
DE

Boost converter
- High convergence speed.
- High tracking accuracy.
- High efficiency.

- Complex calculation.
- High implementation cost.
- Optimization process is lengthy.

Ref. [3]
Ref. [20]
Ref. [21]

2017
2019
2019

SMC Boost converter

- High robustness.
- Simple structure.
- Easy parameter tuning.
- Wide operation range.

- Excessive chattering effect.
- Considerable energy consumption.
- Lack of robustness during
the reaching phase.

Ref. [22] 2021 IFTSMC Boost converter

- Robust to parameter uncertainties
and disturbances.
- Finite time convergence.
- Capable of reducing the chattering.
- High convergence speed.

- Requires the knowledge of the system
boundary uncertainties.
- Problem of intrinsic singularity.
- Convergence problem may occur when
the states are away from the equilibrium.

Ref. [23] 2018 BSMC Boost converter

- Stability is guaranteed.
- Popular technique for high-order
systems.
- Uncertainties could be handled.

- Complex design.
- Requires an exact mathematical model.
- Sensitive to parameter variation.
- Requires the measures of all the states.

Ref. [24]
Ref. [21]
Ref. [25]
Ref. [26]

2020
2019
2020
2020

TA
STA
PCL
QC

Boost converter

- Capability of chattering reduction.
- Robust to uncertainties
and disturbances.
- Finite time convergence.

- Complex design.
- Complex stability demonstration.
- Accuracy is not guaranteed.
- Unable to use for first-order systems.

Ref. [27]
Ref. [28,29]

Ref. [30]
Ref. [31]
Ref. [32]

2019
2019
2020
2020
2020

MPC

Buck converter
3-phase inverter

Two-level inverter
Boost converter

High-gain converter

- Offers multiple variables control.
- Prediction on upcoming disturbance.
-Upcoming control actions prediction.
- Peak load shifting capability.
- Enhanced energy saving.
- Enhanced transient response: peak,
rise and settling time reduction.

- Plant model is required.
- Requires specific background
knowledge of the method.
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Due to their significant benefits, predictive control methods have attracted the inten-
tion of many researches and they have been implemented in a wide range of applications,
including power converters, actuator faults, pharmaceuticals industry, chemical processes,
and induction motors [27–38]. Hence, in comparison with the conventional P&O algorithm,
an improvement of 10.52% in the overall PV system efficiency was achieved by various
research groups/researchers [27] via the application of the MPC technique.

In [28], an overall efficiency of 90% for a grid connected system was achieved by ap-
plying the MPC for a three-phase inverter, where the efficiency was approximately 98%
for the maximum power point tracking (MPPT) control method and 92% for the inverter.
A Lyapunov-function-based MPC was proposed by authors of [29], where the results
showed that the proposed control strategy maintains the active and reactive powers close
to the desired values with an error of less than 3%. Various research groups/researchers [30]
have proposed a combination of MPC with an extended Kalman filter (EKF) for a two-level
inverter. High performances in terms of robustness and potential noise rejection were
obtained. Successful MPP tracking with an efficiency of up to 98% was obtained by various
research groups/researchers [31]. In the latter, the MPC is proposed for a boost converter
used in a renewable energy system. Various research groups/researchers [32] have com-
pared the MPC with different algorithms, such as IncCond, hill climbing, PSO, and FLC.
Except for the design complexity, results have demonstrated that the proposed MPC has
succeeded over the other methods in terms of efficiency, steady-state oscillation, tracking
speed and accuracy.

In this work, an MPC based on a global minimum cost function for a two-step horizon
was designed and implemented in a boost converter integrated with a Heliocentric hy-
ExpertTM fuel cell FC-50W. The aim is to maintain the system operating point at an adequate
and efficient power stage with high-performance tracking. First, the experimental system,
including the fuel cell, the dSPACE, the converter and the programmable load, is explained.
Then, the proposed method is designed for a two-step horizon, wherein the cost function
is adopted based on the stack current. For investigation, the effectiveness of the proposed
method is revealed through a comparison study with a PI controller, which is tuned through
the Ziegler–Nichols technique. Finally, some conclusions and perspectives are pointed out.

2. Materials and Methods

2.1. Hardware Description

A general overview of the different components used on the experimental test bench
is provided in Figure 1, and the main components are described as follows:

• PEM FC50: The technical data of the PEM FC50 are described in Table 2. The fuel
stack is supplied by hydrogen through a metal hydride storage cylinder 60 SL, which
is connected to the manometer that decreases the pressure. The stack contains 10 cells
stacked in series and generates a rated power of 40 W.

• DC–DC boost converter: The power converter used in the test bench is constructed
by the TEP-192-Research Group of Huelva University. Unlike the commercial con-
verters, this boost converter offers a PWM control input where the controller could
be designed via the user. It is characterized by an IGBT transistor with an input
switching frequency equal to 20 kHz; the maximum input voltage and current are,
respectively, equal to 60 V and 30 A with an accuracy of 0.5%; while, the maximum
output voltage and current are around 250 V and 30 A.

• MicroLabBox dSPACE DS1202: The dSPACE-DS1202 is an effective device for fast
control systems due to its high performance when turning the theoretical design into a
real-time experiment. The device includes more than 100 various type of input/output
channels with a dual core processor and independent co-processor that manages
host PC communication. By adding the library of real-time implementation (RTI) in
a Simulink–Matlab interface, it allows the use of the basic toolboxes in order to config-
ure all the I/O sensors as well as the PWM signal required for controlling the system.
Then, a generated C code will be sent to the MicroLabBox by the RTI when compiling
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the Simulink model. Hence, a PWM pulse is produced using the converted code given
by the MicroLabBox. The control desk software is used for creating an interface with
the graphical user interface (GUI), which allows to visualize and observe the online
evolution of the obtained signals with clear figures that make the online evaluation
of the different parameter changes easier and faster.

• Electronic programmable load: The characteristics of the electronic programmable
load used in this work are described in Table 3. The experimental tests were carried
out under an abrupt change of the load resistance through an electronic programmable
load BK 8500B. The latter is used instead of the classical manual sliding resistive
load since the programmable device cloud provides considerable advantages such
as generating a list of resistance waveform sequence with speed, accurate values
and high resolution in real-time.

Figure 1. Overview of the experimental test bench.

Table 2. PEMFC technical data.

PEMFC Features Electrical Features

Type Heliocentris FC50 Operating Voltage 2.5–10 V
Cooling fans Operating Current 0–10 A

Fuel H2 Rated power 40 W
Dimensions 12 × 10.3 × 13.5 cm Maximum power 50 W

Weight 1150 g Open-circuit voltage 9 V

Hydrogen Flowmeter Hydrogen 15 bar Kit

Precision 0.8% of the the quantified
value Inlet pressure 1–15 bar

Measuring range 10–1000 sml/min Outlet pressure 0.6 ∓ 0.2 bar

Thermal Hydrogen 200 bar kit

Operating temperature 15–50 ºC H2 inlet pressure 200 bar
Max. start temperature 45 ºC H2 outlet pressure 1–15 bar

Fuel characteristics Hydrogen Detector

Recommended purity 5.0 (99.999%) Type of sensor H2 4%
Hydrogen input pressure 0.4–8 bar (5.8–11.6 psig) Measuring principle 3 electrode sensor

Hydrogen consumption Max. 700 sml/min (at 0 ºC,
1013 bar) Range 0–4%
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Table 3. Characteristics the electronic programmable load BK 8500B.

Parameter Range Accuracy Resolution

CR Mode Regulation

Input current ≥ FS 10%

Input Voltage ≥ FS 10%

0.1–10 Ω ∓ (1% + 0.3% FS) 0.001 Ω

10–99 Ω ∓ (1% + 0.3% FS) 0.01 Ω

100–999 Ω ∓ (1% + 0.3% FS) 0.1 Ω

1 k–4 kΩ ∓ (1% + 0.8% FS) 1 Ω

CV Mode Regulation
0.1–18 V ∓ (0.05% + 0.02% FS) 1 mV

0.1–120 V ∓ (0.05% + 0.025% FS) 10 mV

CC Mode Regulation
0–3 A ∓ (0.1% + 0.1% FS) 0.1 mA

0–30 A ∓ (0.2% + 0.15% FS) 1 mA

Current Measurement
0–3 A ∓ (0.1% + 0.1% FS) 0.1 mA

0–30 A ∓ (0.2% + 0.15% FS) 1 mA

Voltage Measurement
0–18 V ∓ (0.02% + 0.02% FS) 1 mV

0–120 V ∓ (0.05% + 0.025% FS) 10 mV

2.2. Control Design

The main feature of the model predictive control (MPC) is its capability to predict
the future behavior of the desired control variables [39]. In other words, it is an optimization
technique that computes the next control action by minimizing the cost function, which
is the difference between the predicted variable and the specified reference. The MPC is
also characterized by a straight-forward implementation, it has no issue with the stability,
and the quality of the response depends on the control design. In MPC, the future predicted
state path is called the prediction horizon. The latter is the number of samples Ts over which
a prediction of the plant states/outputs is evaluated. According to Figure 2, the future
values of output variables at the samples k + 1, k + 2, etc., are predicted using the dynamic
model of the process (X(k)) and current measurements. Furthermore, according to this
figure, it is noticed that the control actions are based on both future predictions and current
measurements. The manipulated control variables u(k) at the k-th sampling time are
computed such that the objective function J is minimized. These control variables will be
implemented as a control signal to the process.

Figure 2. Basic concept for model predictive control (MPC).

Figure 3 illustrates the scheme of the proposed MPC approach for power electronic
converters, where iL(k), Vstack(k) and Vout(k) are the measured variables used in the model
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to compute the predictions iL(k + 1) of the controlled variables. The model used for the pre-
diction is a discrete time state-space model, which can provide predictive capability
for the MPC controller [40]. The design of the MPC control for a high step-up power
electronic converter (boost converter) can be done using the following steps [39]:

• Modeling the power converter and determining its state-space model.
• Obtaining the discrete time state-space model that allows the prediction of the fu-

ture behavior.
• Defining the cost function J that represents the desired behavior of the system.
• Determining the MPC control law that minimizes the cost function J.

Figure 3. MPC scheme for power electronic converters.

According to [3], the equations of the boost converter for the open and close switch
case are, respectively, given in Equations (1)–(5), where the state-space model is presented
in Equation (5).

dIL
dt

(t) =
1
L
(Vstack(t)−Vout(t)) (1)

dVout

dt
(t) =

1
C
(IL(t)−Vout(t)) (2)

dIL
dt

(t) =
1
L
(Vstack(t)) (3)

dVout(t)
dt

=
1

RC
(−Vout(t)) (4)

[
dIL(t)

dt
dVout(t)

dt

]
=

[
0 −(1−D(t))

L
(1−D(t))

C − 1
RC

]
.
[

IL(t)
Vout(t)

]
+

[ 1
L
0

]
Vstack(t) (5)

According to [27,30,31], and by using the sampling time Ts, the discretized equations
of the boost converter can be given as (6) and (7) for the open switch case, and (8) and (9)
for the close switch case.

Open switch:

IL(k + 1) = IL(k)−
Ts

L
Vout(k) +

Ts

L
Vstack(k) (6)
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Vout(k + 1) = Vout(k)−
Ts

RC
Vout(k) +

Ts

C
IL(k) (7)

Close switch:
IL(k + 1) = IL(k) +

Ts

L
Vstack(k) (8)

Vout(k + 1) = Vout(k)−
Ts

RC
Vout(k) (9)

Using the descritized equations given in Equations (6)–(9), or by using the the for-
ward Euler approximation [41] given in Equation (10), the discrete-time state-space model
of the boost converter can be written as Equation (11):

x(k + 1) = (I + Ts A)x(k) + TsBd(k) (10)

[
IL(k + 1)

Vout(k + 1)

]
=

[
1 −(1− D(k)) Ts

L
(1− D(k)) Ts

C 1− Ts
RC

][
IL(k)

Vout(k)

]
+

[ Ts
L
0

]
Vstack(k) (11)

The control objective is to make the stack current IL(k) as close as possible to the refer-
ence current Ire f (k). This could be obtained by minimizing the cost function J, which is
defined as the error between the predicted value and the desired reference value. The ex-
pression of the cost function can be written as Equation (12). Hence, if the used prediction
horizon is equal to one h = 1, then once the values of the controlled variables are obtained
at the next sample time and for both switching states, s = 0 and s = 1, the cost function J
will be evaluated. The block scheme of the proposed MPC technique is shown in Figure 4.

Jn=0,1
s=n = |IL,s=n(k+1) − Ire f | (12)

Figure 4. Block scheme of the proposed MPC technique.
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By evaluating the cost function J for both states, it selects the one at which the next
predicted value is closer to the value of the desired reference current ire f . It should
be noted that the MPC approach has the capability of predicting the next n-samples
of the prediction horizon, which means that the cost function at the future n-step can be
calculated. The discrete-time system that provides the n-samples of the future prediction
horizon can be written as Equations (13) and (14).

IL(k + n + 1) = IL(k + n)− (1− D(k + n))
Ts

L
Vout(k + n) +

Ts

L
Vstack(k + n) (13)

Vout(k + n + 1) = (1− D(k + n))
Ts

C
IL(k + n) + (1− Ts

RC
)Vout(k + n) (14)

In this work, an MPC with a prediction horizon equal to two h = 2 is used. To this end,
the calculation of the controlled variable IL at time tk+2 is necessary. However, this could be
an easy task by using Equations (13) and (14). The process of the proposed MPC technique
with a prediction horizon h = 2 is depicted in Figure 5. According to this figure, to calculate
the value of the predicted controlled variable IL(k+2), the calculation of the system variables
at time tk+1 is required.

Figure 5. Schematic diagram of the proposed MPC process with a 2-step prediction horizon.

Figure 6 illustrates the operating principle of the proposed MPC technique. Hence,
by observing the system behavior for the future two-step horizon and by evaluating the cost
function at each step, it will be possible to select the best switching state at which the cost
function has the lowest value. All the possible sets of switching states that could be
evaluated for h = 2 are given in Equation (15).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(k+1) = 0 and S(k+2) = 0

S(k+1) = 0 and S(k+2) = 1

S(k+1) = 1 and S(k+2) = 0

S(k+1) = 1 and S(k+2) = 1

(15)
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Figure 6. Schematic diagram of the proposed MPC operating principle.

It should be noted that there are two strategies that could be used to calculate the pre-
dicted state X(k + 2):

• The first one is to evaluate the cost function at each step (sampling time). For in-
stance, by taking the example presented in Figure 6 where the performed switching
actions are indicated with the bold black line; at first, when the sampling time is tk,
the controller has to choose between S1 and S0, where the choice is based on the most
preferred switching condition that leads to minimizing the cost function J. Since S1
is selected in this example, it means that the predicted controlled variable IL,s=1(k+1)
that corresponds to S1 is the closest to the desired reference Ire f . Following the same
criterion for the two-step horizon at which the sampling time is tk+1, the controller
will decide between S11 and S10. Since S10 is selected, then, the cost function J10 is
performed and considered as the cost function of the previous step at the sampling
time tk+1. However, despite the simplicity of this strategy, it may fall in a local lower
cost function since the cost functions J01 and J11 that, respectively, correspond to
the switching states S01 and S11, were not evaluated.

• The second strategy is to evaluate the cost functions of all the sets of switching states
given in Equation (15), and finally, the lowest cost function is performed. The per-
formed switching actions using this method are indicated with the bold blue line.
The main feature of this method is its capability to calculate the global lower cost
function for the two-step horizon. Therefore, a new cost function for the two-step
prediction horizon is defined in Equation (16). The latter is composed of the error at
the sampling time tk+1 plus the error at the sampling time tk+2.

Jn=0,1&m=0,1
s=m = |IL,s=m(k+2) − Ire f |+ Js=n (16)

The evaluation of the four cost functions J00, J01, J10 and J11, for the two-step horizon
is presented in Figure 7. The combination with the lower cost function value for the two-
step prediction horizon is represented by the black color, where faded colors were used
for the combinations with higher cost function values. According to these combinations,
if the first method of prediction is used, the preferred cost function belongs to Combination
3 since S1 < S0 and S10 < S11. If we only consider the evaluation of the cost function
for the one-step (Equation (12)), the preferred cost function belongs to Combination 3 or
4 since S1 < S0. If we only consider the evaluation of the cost function for the two-step
(Jm=0,1

s=m ), the preferred cost function belongs to Combination 2 since S01 is lower than S00, S10
and S11. However, although this evaluation gives the same result as the proposed method
for the example presented in Figure 7, it may not be the most appropriate for other examples.
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Therefore, a combined cost function involving the two steps, as defined in Equation (16),
can provide the best switching condition for tracking the desired reference.

Figure 7. Schematic diagram of the switching condition combinations for the 2-step horizon and the evaluation of the
respective cost functions.

2.3. Performance Metrics Used

To achieve the best performance, the gains of the controller were obtained through
the minimization of the integral of the absolute error (IAE), which is given in Equation (17).
This helps to adjust the controller parameters through a decrement in the tracking error
in real-time.

IAE =
N

∑
i=1

|ei|Δt (17)

where ei is the tracking error and N is an observation data length time for the calculation.
Since the main objective of this research is the tracking performance enhancement,

not only was the IAE calculated but other types of metrics were also used to gather
accurate results. These were the root-mean-square-error (RMSE) and the relative root-
mean-square (RRMSE), which are reflected in Equations (18) and (19), respectively, where
ri is the reference along the i-th sample.

RMSE =

√√√√ 1
N

N

∑
i=1

(ei)2 (18)

RRMSE =

√√√√ N

∑
i=1

(ei)2/
N

∑
i=1

(ri)× 100% (19)

3. Results

Figure 8 tackles the response behavior of the stack current signal under the applica-
tion of the proposed MPC method and the classical PI control. To test the performance
of the controllers and their capability of counteracting the disturbance, load resistance
variation is applied at two times instances t1 = 25 s and t2 = 45 s. These times correspond,
respectively, to resistance rising from 20 to 50 Ω and decreasing from 50 to 20 Ω. The coeffi-
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cient parameters of the PI controller were tuned through the minimization of IAE, and they
are equal to 0.02 and 10 for the proportional and integral terms, respectively.

Figure 8. (a) Stack current signal; (b) stack current behavior when increasing the load resistance; (c) stack current behavior
when decreasing the load resistance; (d) steady state.

It is clear from the first load variation, depicted in Figure 8b, that the MPC approach
converges rapidly to the reference current with a response time equal to 1.3 s against
an important response value for the classical PI controller, which is around 6.8 s. It
should be noted that 0.12 s of the response time was caused by the delay time, which
occurred at the moment in which the load variation was applied. Hence, the proposed
MPC controller achieved a significant improvement in the convergence speed of almost
81%. On the other hand, the MPC presents a reduced undershoot equal to 1.73 A compared
with the conventional PI method, which is around 2.1 A. Consequently, the proposed
algorithm can effectively reduce the undershoot with an enhancement of 17.61% compared
with the PI controller.

The impact of reducing the load resistance on the response of the stack current is illus-
trated through Figure 8c. It is obviously clear from this figure that the PI controller takes a
significant time to reach the current reference with a response time equal to 7.25 s, while
only 0.51 s is obtained via the proposed MPC, which effectively outperforms the conver-
gence speed of the PI with 92.9%. According to this figure, it is noticed that the current
signal controlled via the proposed MPC made a delay time of 0.02 s. However, this
time is almost negligible, and it has no negative effect on the response time. Regarding
the overshoots, a significant one of almost 3.65 A is shown on the response behavior
of the conventional PI, while an improvement of around 13.69% on the overshoot is ob-
tained using the proposed MPC method.

Figure 9a–c illustrates, respectively, the real-time response of the PEMFC voltage,
power and duty cycle delivered by the classical PI and the proposed MPC approach.
The slight variation between the experimental test of the PI and MPC that appeared in a,b
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and c occurred due to the effect of the operating temperature on the membrane since it
is difficult to carry out two experiments at exactly the same temperature. It should be
noted that this variation did not appear in the graphs of the stack current (Figure 8) since
it is a controlled signal where both of the algorithms drive the stack current to operate at
the same reference current Ire f .

Figure 9. (a) PEMFC stack voltage signal; (b) PEMFC stack power; (c) duty cycle signal.

According to Figure 9a, the effectiveness of the proposed MPC algorithm over the con-
ventional PI appears to reduce the overshoots and undershoots of the stack voltage. Thus,
the PI controller presents a voltage value around 1.11 V and 1.33 V for the first and the sec-
ond load variation, respectively. On the other hand, the proposed MPC shows values
of 0.98 V and 1.46 V for the same load variations.

From Figure 9b, it can be seen that the proposed MPC method effectively tracks
the desired output power of the PEMFC with an almost negligible ripple around the steady
state. Moreover, in comparison with the conventional PI controller, the results show that
a reduction of 4.18 W and 3.73 W in the undershoot and overshoot are obtained for the first
and the second load variation, respectively.

The real-time responses of the output current, voltage and power for the DC–DC boost
converter are depicted in Figure 10a–c. The latter clearly shows the impact of the variable
load resistance on the response behavior of the output current and the output voltage
for the two controllers. Furthermore, the slow converging and high overshoots of the PI
controller in comparison with the proposed MPC are clearly presented in this figure.
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Figure 10. (a) DC–DC output current signal; (b) DC–DC output voltage signal; (c) DC–DC output power signal.

Finally, it is clearly demonstrated in the above results that the proposed MPC has
succeeded in overcoming the drawbacks of the conventional PI controller. Hence, a robust
and fast response, as well as better dynamic behavior when facing large load variation, are
obtained via the application of the proposed MPC method.

Performance Metrics Comparison

To obtain high control performance, the error signal should be reduced so as to im-
prove the tracking accuracy. Consequently, the IAE was minimized by tuning the cor-
responding gains, and therefore, the metrics in terms of error were determined during
a period of two load variations. Table 4 enlists the obtained values of the IAE, RMSE
and RRMSE for both controllers.

According to this table, the IAE revealed an expected improvement for the proposed
MPC where the conventional PI showed a value of 4.48 times higher than the proposed
controller. Regarding the RMSE, the reflection is similar for the same period. The MPC
yields an RMSE of 0.2068, whereas the PI downgraded the performance to 0.5085, which
implies a difference of 2.46 times. Finally, the RRMSE endures the previous trend where
the proposed MPC overcame the comparisons. Hence, the PI showed a value of 12.7%,
whereas the MPC diminished up to 5.17%, resembled by a 2.45-times difference.

Table 4. Comparison of the different metrics.

IAE RMSE RRMSE (%)

MPC PI MPC PI MPC PI
2.0607 9.2310 0.2068 0.5085 5.1705 12.7115
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4. Conclusions

The purpose of this paper was to improve the performance of the PEM fuel cell system
via the application of a predictive module controller (MPC). The proposed controller scheme
was designed based on a global minimum cost function for a two-step horizon in order
to enhance the efficiency and the convergence tracking speed of the power delivered
by the PEM fuel cell system.

A real-time implementation of the MPC method compared with a PI controller was
realized to reveal the advantages of this proposed approach, where the robustness was
tested via the application of large load variation through an advanced electronic variable
resistance device.

Experimental results have clearly demonstrated the effectiveness of the proposed
MPC method over the conventional PI controller. The latter showed an undershoot of 2.1 A,
an overshoot of 3.65 A, and a response time of 6.8 and 7.25 s, respectively, for the first
and second load variation. On the other hand, results of the proposed MPC showed
an undershoot of 1.73 A, an overshoot of 3.15 A, and a response time of 1.3 and 0.51 s,
respectively, for the same first and second load variation applied to the PI controller. Hence,
the controlled stack current signal has achieved significant improvement in the conver-
gence speed with an average value of 86.9% and a reduced overshoot around 15.65%.
Therefore, high tracking accuracy with a fast and robust response as well as global stability
of the closed-loop system are obtained via the application of the proposed MPC method.

Finally, the experimental results obtained in this work are quite encouraging, and they
pave the way for further advanced research in the performance improvement of PEM fuel
cell systems.
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Abbreviations

The following abbreviations are used in this manuscript:

PEM polymer electrolyte membrane
PEMFC polymer electrolyte membrane fuel cell
MPC model predictive control
PI proportional-integral
PD proportional derivative
PID proportional integral derivative
FOPID fractional order PID
FSBB four-switch buck-boost
TZTP two-zero/three-pole
PID-SSA PID based slap swarm algorithm
IRA incremental resistance algorithm
MBA mine-blast algorithm
GWM grey wolf optimizer
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P&O perturb and observe
FLC fuzzy logic control
FLC-PSO FLC based on particle swarm optimization
ANFIS adaptive neuro-fuzzy inference system
NNA neural network algorithm
GA genetic algorithm
IC incremental conductance
PSO particle swarm optimization
ACO ant colony optimization
DE differential evolution
SMC sliding mode control
IFTSMC integral fast terminal sliding mode control
BSMC back-stepping sliding mode control
TA twisting algorithm
STA super-twisting algorithm
PCL prescribed convergence law
QC quasi-continuous algorithm
MPPT maximum power point tracking
EKF extended Kalman filter
PWM pulse width modulation
IAE integral of the absolute error
RMSE root mean square error
RRMSE relative root mean square error
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