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Structure and Mechanical Properties of the NiTi Wire Joined by
Laser Welding
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Abstract: Joining wires made of NiTi alloys with shape memory effect and pseudoelasticity causes
many technical and structural problems. They result from unwanted phase interactions that occur
in high temperatures and negatively affect the characteristics of these materials. Such obstacles are
challenging in terms of welding. Hence, an attempt was made to join NiTi wires via an economical
and reliable basic laser welding technique which does not require complicated equipment and gas
protection. The parameters such as spot diameter and pulse time were constant and only the laser
power, calculated as a percentage of the total power, was optimized. The wires were parallelly
connected with overlapping seam welds 10 mm long. The welds were examined regarding their
microstructure, chemical and phase composition, reversible martensitic transformation, microhard-
ness, and pseudoelasticity. The obtained results showed that the joint was completed at the 12–14%
power. The weld revealed good quality with no voids or pores. As the laser power increased, the
microhardness rose from 282 (for 4%) to 321 (for 14%). The joint withstood the stress-inducing
reversible martensitic transformation. As the transformation was repeated cyclically, the stress value
decreased from 587 MPa (initial wire) to 507 MPa (for the 14% power welded wire).

Keywords: NiTi shape memory alloy; welding; microhardness; pseudoelasticity

1. Introduction

Due to their shape memory phenomena, NiTi alloys are known for numerous practical
applications [1]. Although almost 50 at.% of content is taken by nickel, the alloys reveal
good corrosion resistance. Therefore, they are commonly used for medical implants as well
as elements of medical instruments [2–5]. Modern medicine is consistently striving to use
less-invasive treatments. For instance, implants are introduced with guide wires through
veins, arteries, or urinary ducts which do not exceed a few millimeters in diameter [6,7].
Such procedures require the implant’s size and volume to match the available diameter
of the supply canal. That is why it is essential to reduce the size of NiTi implant elements
made of wires, rods, and tapes measuring below 1 mm in diameter. A good example are
stents made of wires or flat bars whose forming elements range from several hundred
micrometers to 0.8 mm [8–10].

In order to create a complex, three-dimensional structure of an implant, an appropriate
method of forming and connecting elements or their fragments is necessary. There are sev-
eral techniques of joining NiTi alloys, including: plasma welding [11], vacuum brazing [12],
resistance welding [13], tungsten inert gas [14], friction welding [15,16], microplasma arc
welding [15], capacitor discharge welding [15], explosive welding [16], ultrasonic weld-
ing [16], adhesives joining [16], and laser welding [15–21]. However, most of these methods
are used to join sheets, tubes, tapes, or strips. For thin wires, the laser welding is an
efficient, economical, and uncomplicated technique that can join particularly thin wires
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applied in medical procedures [20,22]. Thanks to this method, one can control the size of
the welded area on a micro-scale. Moreover, it is unnecessary to use fluxes, solvents, or
other additives. Therefore, the material is free from cytotoxic substances. In addition, at
high temperature locally generated by the laser beam, the welding process supports the
material’s sterilization.

Not much literature is devoted to joining thin wires made of NiTi alloy of less
than 0.5 mm in diameter. The papers reported the possibility of butt welding of NiTi
wires of 100 µm whose strain was 3% at a tension of 500 MPa [17]. In work [20], the
welding parameters for a 0.5 mm wire were optimized by selecting the power range of
54 W–72 W. The welding time was relatively long (85–115 ms), but the authors did not
analyze the influence of welding conditions on pseudoelasticity. Chan et al. [23] showed
the cycling repetition of pseudoelasticity for butt welded 0.5 mm wires whose maximum
strain was 4%. Another method of joining wires with a stitch parallel to the wire axis
was proposed in [19]. Two NiTi wires of 0.44 mm, intended for cardiac stents, were con-
nected parallelly. The microstructure, thermal transformation behavior, and the strength
of the obtained weld were analyzed, yet, again, no attempt was made to assess their
pseudoelasticity.

Therefore, in the presented work, we supplemented the reported results with the
study of cyclically generated pseudoelasticity in the parallelly connected thin NiTi wires.
We also revealed how the laser welding parameters, performed with a low-power device,
influenced the weld microstructure, related to the thermal reversibility of martensitic
transformation and microhardness. The tests were conducted on the elements made of
0.4 mm wires intended for cardiac surgeries.

2. Materials and Methods

The studies were carried out on a commercially available NiTi wire with a diameter
of 0.4 mm (Figure 1a). Two 45 mm long wires were bonded parallelly with the 10 mm
overlapping seam weld (Figure 1b). The welding was performed on a desktop jewelry
welding machine (PixoLaser OPT-JW100, Shenzhen City, China). In order to investigate
the influence of laser welding on the material’s characteristics, only one parameter was
customized—the power of the laser beam (Curr%). For convenience, it was calculated as a
percentage of the total laser power (100 W). The Curr equal to 4, 8, 10, 12, and 14% was
applied to obtain the overlapping seam weld. The other welding parameters were constant:
the laser beam’s cross-section was circular with the 0.1 mm spot diameter and the 0.4 ms
pulse duration.
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The welds’ microstructure was observed on their cross-sections using the digital mi-
croscope VHX-900F (KEYENCE, Osaka, Japan) and the scanning electron microscope (SEM)
JSM 4680 (JEOL, Tokyo, Japan). The SEM was operated at 20 kV and equipped with an
X-ray energy dispersive spectrometer (EDS). The 3 mm long samples were embedded
in graphite and polished with sandpaper. The final polishing was carried out with pol-
ishing pastes of 1µm gradation. The surface was etched in a H2O:HNO3:HF solution in
the 10:5:1 ratio.

The thermal behavior of the martensitic transformation was studied using the Mettler
Toledo DSC 1 (Greifensee, Switzerland) differential scanning calorimeter (DSC).

The structural examination was performed via X-ray diffraction patterns measured
with the X’Pert-PRO diffractometer (PANalytical, Almelo, the Netherlands) with
CuKα(1 and 2) radiation. The measurements were taken at room temperature using the
Bragg–Brentano geometry at the step-scan mode in an angular 2θ range: 10–140◦.
The ICCD-PDF4 (International Centre for Diffraction Data) database was used for phase
identification.

The micromechanical tests were performed with the Micro Combi Tester—MCT3
device (Anton Paar, Corcelles-Cormondrèche, Switzerland). The measurements complied
with the ISO 14577 standard. The Berkovich diamond indenter (B-V 83) was used with
the maximum load of 250 mN and a load/time of 30 s. The HVIT hardness (hardness
determined during indentation) was determined by the Oliver–Pharr method [24,25].

The tensile test to determine the shear strength of the weld was performed on the
universal testing machine Zwick 1435 Retroline (Zwick Roell, Ulm, Germany) equipped
with the 5 kN load cell. The measurements were carried out at room temperature, following
the ASTM F2516 standard due to the practical application of welded wires. The diagram of
the sample mounting and the acting force is shown in Figure 2.
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3. Results and Discussion
3.1. The Initial State of the Wire

In order to characterize the wire before welding, the detailed analyses of the mi-
crostructure and chemical composition were carried out on transverse and longitudinal
cross-sections. An example of microscopic observations is shown in Figure 3. The images
revealed the compact structure of the wire, free of discontinuities, pores, or micro/macro
cracks. However, there were numerous particles ranging from several tens of nanometers
to several micrometers in size (Figure 3). The average chemical composition of the matrix
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oscillated around the equiatomic one. A slight nickel predominance with the differences
in tenths of a percent was found, practically the same in both cross-sections (Table 1). The
chemical composition analysis of the particles showed that they contained almost twice as
much titanium as nickel—which is characteristic of the Ti2Ni equilibrium phase (Figure 4).
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Table 1. Average chemical composition (at.%) determined at the wires’ cross-section.

Alloying Element Perpendicular Longitudinal

Ti 49.7 ± 0.4 49.7 ± 0.4
Ni 50.3 ± 0.4 50.3 ± 0.4

Materials 2023, 16, x FOR PEER REVIEW 4 of 15 
 

 

  
(a) (b) 

Figure 3. Images of the wire’s cross-sections: (a) transverse (SEM-SE); (b) longitudinal (SEM-BS). 

  
(a) (b) 

Figure 4. SEM image of the transverse wire’s cross-sections with Ti2Ni particles (a) as well as the 
measured EDS spectra (b). 

Table 1. Average chemical composition (at.%) determined at the wires’ cross-section. 

Alloying Element Perpendicular Longitudinal 
Ti 49.7 ± 0.4 49.7 ± 0.4 
Ni 50.3 ± 0.4 50.3 ± 0.4 

The phase analysis of the measured diffraction pattern showed that the matrix con-
sisted of the β-NiTi intermetallic phase. Depending on the temperature, this phase can 
reveal a high-temperature B2-type or a low-temperature structure with the B19′ mono-
clinic martensite. In our study, the wire’s distribution of diffraction peaks and their in-
tensity corresponded only to the B2 structure (ICDD card no. 65-0917) (Figure 5). The 
parent phase present at room temperature met the requirements for pseudoelasticity [26]. 

Figure 4. SEM image of the transverse wire’s cross-sections with Ti2Ni particles (a) as well as the
measured EDS spectra (b).

The phase analysis of the measured diffraction pattern showed that the matrix con-
sisted of the β-NiTi intermetallic phase. Depending on the temperature, this phase can
reveal a high-temperature B2-type or a low-temperature structure with the B19′ monoclinic
martensite. In our study, the wire’s distribution of diffraction peaks and their intensity
corresponded only to the B2 structure (ICDD card no. 65-0917) (Figure 5). The parent phase
present at room temperature met the requirements for pseudoelasticity [26].
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3.2. Weld Characteristics

The applied welding parameters influenced the weld quality, shape, structure, phase,
and chemical composition—thus the mechanical properties. Depending on the laser power,
the weld is formed in the joined material as a one of the three types (Figure 6). The
insufficient laser power melted a too-small amount of the material and the weld did not
sufficiently fill the area between the connected wires (Figure 6a). On the contrary, too high
power led to the perforation of the connected wires and the weld itself (Figure 6c). The
optimally selected power formed the complete weld between the joined wires with the
cross-sectional shape shown in Figure 6b.
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Figure 6. Scheme of the formation of the weld cross-section depending on the applied laser power.

Due to the form of the welded material—a wire of 0.4 mm in diameter,—the parameters
such as pulse time and spot size were set as constants of 0.4 ms and 0.1 mm, respectively.
The laser power calculated as a percentage of the device’s maximum power was adopted as
a variable. A relatively small spot and a short pulse time of the laser beam made it possible
to remelt a small area and cool it quickly. The fast cooling process is beneficial for NiTi alloys,
as it preserves the high-temperature B2 phase at room temperature without decomposing
into equilibrium phases. In addition, the effect of alloy oxidation is reduced without
the need for additional shielding gas. However, the disadvantage of such parameters is
the poor mechanical characteristics of the weld. Hence, the formation of the appropriate
welding shape (Figure 6b) depended on the laser beam power.

Figure 7 shows how the laser power formed the weld bead. Based on the microscopic
images, using 3D modelling (Figure 7b), the weld’s cross-section was determined (Figure 7c).
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The results showed that welding with a laser power lower than 4% produced a small fusion
volume (Figure 7—part relating to 4%). On the contrary, the laser power above 16% formed
a welding crater. Consequently, the laser power above 50% caused the weld’s gradual,
power-dependent perforation. A completely different shape was obtained by applying the
8–14% power. The comparison showed that in that case the fusion profile was the closest to
the optimal one (Figure 6b). That is why the welds produced with the 4–14% laser power
were selected for further research.
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3.3. Martensitic Transformation in Welded Wires

The reversible martensitic transformation is a measurable effect confirming pseudoe-
lasticity. Its course was examined based on measured thermograms (DSC). The samples
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containing the area of 2–3 welded points were cut out for the tests. The measured ther-
mograms for the sample in the initial state and the welded wires were summarized in
Figure 8. The determined characteristic parameters of martensitic transformation are shown
in Table 2.
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Table 2. Transformation temperatures and enthalpies determined for the as-received wires as well as
the welded one.

Power [%] Ms [◦C] Mf [◦C] ∆H [J/g] As [◦C] Af [◦C] ∆H [J/g]

As-received 18.9 −4.9 3.39 0.3 20.6 2.85
4% 17.3 −1.8 0.9 −33.3 21.9 2.9
8% 22.3 0.2 1.84 −31.4 22.6 2.04

10% 21.6 1.6 1.58 −27.3 22.8 1.55
12% 20.3 −1.1 1.87 −36.9 21.01 2.07
14% 20.3 1.3 3.11 1.02 19.94 2.48

The occurrence of martensitic transformation and its reversibility is the most important
information coming from the thermal analysis. In the DSC cooling curves, there were ther-
mal peaks (Figure 8a) which corresponded to the peaks in the heating direction (Figure 8b).
They were broadened, as compared to the ones appearing in the solid material produced
via traditional casting. This phenomenon resulted from the grain refinement and/or the
increase in the density of structural defects—primarily dislocations. The dislocations are
characteristic for the wire production—particularly, while reducing the wire diameter. An
additional effect visible on the DSC curves was the multi-stage transformation depending
on the applied laser power. The DSC cooling curves showed deviations from the baseline
in the 55–75 ◦C range (indicated by arrows in Figure 8a), and in the−40 ◦C to−10 ◦C range
in the heating curves (indicated by arrows in Figure 8b). The similar thermal behavior was
observed for the laser-treated wire of 100 µm in thickness [27].

Considering the nature of the martensitic transformation, those two facts are not
related to each other. Let us first discuss the −40 ◦C to 10 ◦C range of heating curves.
They may result from the multi-stage martensitic transformation occurring through an
additional R-phase which changes the sequence B2↔B19′ to B2↔R↔B19′ [28]. During the
cooling process, the B2↔R transformation shows a very narrow temperature range of about
7–10 degrees when the difference between the peak maximum temperatures is measured.
This value is characteristic of the B2↔R sequence. In the B2↔B19′ transformation, the
necessary difference is 20–30 degrees and it depends on the nickel content. However, in the
DSC cooling curves, in the range from−10 ◦C to practically−100 ◦C, it was evident that the
curves deviated from the usual straight baseline. This may be caused by local stress fields
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associated with the higher density of dislocations and their clustering under an additional
heat treatment, e.g., laser [29]. Consequently, the areas which require cooling undergo a
martensitic transformation in different temperature ranges, broadening the thermal peak
by up to several dozen degrees. In the reverse transformation, the broad thermal peaks
occurred in the range of −40 ◦C to −10 ◦C. Increasing the beam power to 14% provided
enough energy to rebuild the material’s structure. As a result, the course of the martensitic
transformation was similar to the initial wire.

The deviations from the baseline occurring at higher temperatures (55–75 ◦C) had a
completely different character and origin (marked with arrows in Figure 8a). They were
not identified as peaks as they did not meet the mathematical criteria adopted to determine
the thermal peak. However, it is a fact that the DSC curves change their course in this
temperature range. As the delivered heat is proportional to the amount of transforming
material, it can be assumed that a small volume in the welded fusion area transforms in
this thermal range. Moreover, with the laser power (delivered energy) increase, the main
thermal peak enthalpy decreases. This phenomenon is confirmed by a different volume of
the material transforming in the discussed temperature range. In order to clarify this aspect,
microscopic observations were carried out, and the chemical composition was measured in
the weld areas.

The observations were performed on the transverse cross-sections of the welded
wires. The exemplary images for 4% and 14% power are shown in Figure 9. First, the
SEM observations confirmed the 3D modelling from the light microscope images. The
SEM images did not reveal the Ti2Ni particles in the fusion area, regardless of the applied
welding power. At the wire’s initial state, the Ti2Ni particles were evenly distributed
throughout the entire volume (Figures 3 and 4). In the fusion area, the precipitations
completely disappeared. This effect was visible in the enlarged image of the wire welded
with the 4% power—Figure 9a—an area marked as “B”. The Ti2Ni particles in the fusion
zone contained almost 7–10 at.% less titanium than the particles outside the heat-affected
zone. In contrast, the particles displayed a slightly bigger amount of nickel as they dissolved
in the weld center. However, the particles were depleted in titanium at the periphery of
the heat-affected zone. An example is the particle shown in Figure 9a—the enlarged area
marked with “A”, located in the heat-affected zone with the titanium content reduced to
61.2 at.%. As titanium passed into the weld area, its amount increased.

The fusion zone contained about 0.4 at.% higher amount of titanium than the rest
of the wires. It is a known fact that an increase of about 0.1 at.% Ti raises martensitic
transformation temperatures by about 10 ◦C. In contrast, an increase in the nickel content
by 0.1 at.% decreases the transformation temperatures by about 10 ◦C. The slightly higher
titanium content in the fusion zone caused the martensitic transformation. As a result, the
broadened maximum appeared in the DSC cooling curves in the 55–75 ◦C range (Figure 8a).
The comparison of the DSC cooling curves indicated the decreased titanium content in
the fusion zone, depending on the laser power. The chemical composition of the weld
matrix revealed the titanium content lowered to almost 49 at.% (Figure 9b—an area marked
as “C”). In addition, the higher the laser power (starting from 8%), the more carbon-
containing areas can be found. An example is shown in Figure 9b—the area marked “D”.
The inclusion particles contained almost three times more titanium than nickel and up to
55 at.% of carbon. Such inclusions were also observed by the authors [30], identifying them
as titanium carbides. Such a distribution of elements proved that the nickel content increase
up to 51 at.% caused the martensitic transformation at lower temperatures. It was visible in
the DSC heating curves in the −40 ◦C to −10 ◦C range. The Af temperature is the most
important factor regarding pseudoelasticity. The temperature analysis (Table 2) showed
that for the welded wires it was comparable to the temperature of the initial state changing
slightly in the 1.5 ◦C range. Therefore, it can be concluded that pseudoelasticity occurred
in the welded wires subjected to an external stress at room temperature.
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3.4. The Hardness of the Welded Area

Microhardness is the material’s resistance to local deformations caused by a mechanical
impact on a small area. In the case of the welded wires subjected to an external stress,
the microhardness test showed the possible stress concentration areas. The indentation
measurements were taken on the wire’s transverse cross-sections and the welded area.
The measurements were based on a relationship between the test force applied to the
sample—F [mN] and the h [µm] displacement. The results are presented in Figure 10 (the
as-received wire—Figure 10a, the 10% laser power sample—Figure 10b). To measure the
mechanical properties of the welds, the Vickers hardness HVIT was determined. The values
are summarized in Table 3.
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with the laser power of 10% (b).

Table 3. Average Vickers hardness in dependency on the applied laser power.

Laser Power
[%]

Vickers Hardness
HVIT

Remarks

0 381.9 ± 10.2 wire
4 282.4 ± 13.8 weld
8 302.1 ± 21.1 weld
10 304.6 ± 28.2 weld
12 310.8 ± 20.6 weld
14 321.4 ± 26.4 weld

The average microhardness determined for the wire before its welding indicated a
relatively high value of around 382. These values were characteristic of the B2 parent phase
identified in the welded wires. Generally, the B2 phase has a higher hardness than the B19′

martensite. For example, in the laser-treated NiTi alloy which comprised of about 80% B2
phase and 20% B19′ ′ martensite, the micro-hardness ranged from 325 to 340 [31]. Depending
on the welding parameters, in the NiTi wire welded to NiTiCu, the microhardness varied
from 210 to 260 [32]. Additionally, the hardness value depended on the nickel content in the
NiTi alloy. In work [33], the nickel content was 50.7 to 51.27 at.%. The alloy was eviscerated
via the laser bed fusion. As a result, the hardness varied from 372 to 724. The chemical
composition of the reported wires indicated that the hardness measurements were done for
the B2 parent phase. Increasing the nickel content above 50.5 at.% resulted in the Ni4Ti3
precipitates occurrence, which increased the alloy’s hardness.

The determined average microhardness for the wire in the initial state equalled 381,
which was slightly higher than the cited literature data. The reason behind this result
might be the Ti2Ni particles’ presence. Figure 11 shows the SEM image with an exemplary
indentation in the wire cross-section. The densely distributed Ti2Ni particles can be clearly
distinguished from the NiTi matrix. Their influence on the measurement cannot be avoided,
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as it is known that the increased density of dislocations and the decreasing grain size affect
mechanical properties. Such phenomena led to the reduction of the wire diameter and the
mechanical properties increase, e.g., hardness. In the fusion area, the Ti2Ni precipitates
which were characteristic of the wire microstructure in the initial state were not noted.
They appeared only sporadically on the edges of the weld. In the heat-affected zone, the
chemical composition differed in comparison to the internal part of the wires. The melting
process eliminated structural defects such as dislocations. Both facts contributed to the
lower microhardness. For the lowest welding power of 4%—the determined hardness
decreased to almost 282. However, increasing the welding power caused the microhardness
boost, and for 14%, it was 321. This trend was consistent with [31,32]. In our studies,
the microhardness increase took place due to inclusions—the (Ti,Ni)C phase containing
over 50 at.% of carbon. The particles formed clusters around the remelted weld bead
as the laser power increased. For the lower laser powers (e.g., 8%), the clusters were
observed only at the surface of the weld face. While increasing the welding power, the
clusters appeared throughout the entire welded volume, affecting the microhardness value
(Figure 10b). An exemplary microstructure of the indentation area free of inclusions is
shown in Figure 12a—marked as Point 1. The representative curve measured for this
indent refers to the red line marked in Figure 10b. Its shape and course are characteristic
of the remaining measured points, except for Point 3—a blue line in Figure 10b. The
microstructure observed for Point 3—Figure 12b—revealed a band of hard inclusions
containing the (Ti,Ni)C phase, particularly in the indented area. Consequently, the micro-
hardness determined for Point 3 was 360, which was comparable to the wire in the initial
state. Increasing the volume fraction of the carbide phase in the weld boosted its hardness.
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Figure 12. SEM-BS images of the indentations done in the fusion zone for Point 1 (a) and Point 3 in
the wires welded with the laser power of 10% (b).

3.5. Pseudoelastic Behaviour of the Welded Wires

In order to check pseudoelasticity of the wires, a tensile test was carried out. Prelimi-
nary studies showed that the martensitic transformation was completed at a strain lower
than 7.2% when the elastic deformation of martensite began. Hence, the experiments were
carried out to obtain a maximum elongation of 7% for the as-received wire and 6.8% for the
welded wires. The results are summarized in Figure 13. For each sample, five load/unload
cycles were measured, except for the wire welded at 4%. After starting the second cycle and
reaching the critical stress to trigger the martensitic transformation, the sample crashed,
which proved the fusion zone’s amount, size, and/or shape to be inadequate. The stresses
concentrated at the boundary of the heat-affected zone and the parent wires were high
enough to destroy the joint. After the first cycle, all the samples behaved similarly and the
residual plastic deformation appeared, as reported in the literature [23]. The loops were
closed in the remaining cycles, regardless of the applied welding power.

The critical stress to induce the martensitic transformation was calculated from the
load/unload curves. The results, depending on the applied laser power, are shown in
Figure 14. In the case of the forward martensitic transformation, the critical stress reached
the highest value of 587 MPa for the as-received wire. Similar results were obtained
by the authors in [20]. The cyclic load/unload repetition decreased the critical stress to
549 MPa for the fourth cycle, and for the fifth cycle it remained the same. This means that
after four cycles, the martensitic transformation began to stabilize. The samples welded
with the 4% and 8% powers revealed a similar strain of 524 MPa. The 10% and 12% welded
samples required 518 MPa to induce martensite. Welding with the 14% power significantly
reduced the critical stress value to 507 MPa, which was notably different from the wire’s
initial state. The fourth and fifth cycle load/unload gave similar results to the initial state
results, regardless of the applied welding power.
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In the case of the reverse transformation, for the as-received wire, the stress inducing
the martensitic transformation was the lowest and amounted to about 190 MPa. For the
welded wires (the laser power from 4% to 12%), the first cycle required about 265 MPa to
start the reverse transformation. For 14%, it was the lowest one—255 MPa. This means that
for the welded specimens, the wire began to return to its original shape at a higher stress.

Summing up the critical stresses required to initiate the martensitic transformation, the
value decreased by about 6% after five cycles, as compared to the first cycle. This may result
from structural changes in the welded area and the heat-affected zone. The spreading heat
acted locally as an annealing factor, decreasing the material’s density and/or clustering
structural defects. It is known that heat affects the wire structure reconstruction and the
grain growth after the production stage deformation.

4. Conclusions

The studies carried out on the welded wires, obtained with a simple laser apparatus
and a variable power parameter, revealed the valid dependency. The following conclusions
can be drawn from the research results:

• The applied laser beam power influenced the shape of the weld. The power ranged
from 12% to 14%, assuming the complete filling of the space between the welded wires
was achieved. However, the laser power above 14% caused the crater formation and
the perforation of the joint.

• The fusion zone received with the low laser powers (below 8%) was free of Ti2Ni
precipitations, present in the entire volume of the wire, except for the weld. However,
increasing the laser power caused turbulences of the liquid weld material, accommo-
dating inclusions of nickel titanium carbide into the weld.

• The weld microhardness was characteristic of the B2 parent phase and increased with
the higher laser power from 282 (4%) to 321 (14%). This tendency resulted from the
inclusions as the laser power increased.

• Welding affected the martensitic transformation course by lowering its enthalpy and
extending the temperature range it occurred in.

• The higher laser power lowered the critical stress needed to induce pseudoelasticity—from
570 MPa for the initial state of the wire to 507 MPa for the wire welded with the 14% power.

• For the wire in the initial state and the welded samples—regardless of the applied
welding power—the reversible martensitic transformation course stabilized after four
load/unload cycles. Moreover, as pseudoelasticity was cyclic, the critical stress was
reduced by 6–7%.
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Abstract: The authors have developed a micro-vibration actuator using filiform SMA wire electrically
driven by periodic electric current. While applying the SMA actuators to tactile displays, we discov-
ered a phenomenon that the deformation caused by a given stress to an SMA wire generated a change
in the electrical resistance. With this characteristic, the SMA wire works as a micro-force sensor with
high sensitivity, while generating micro-vibration. In this paper, the micro-force sensing ability of an
SMA transducer is described and discussed. Experiments are conducted by sliding the SMA sensor
on the surface of different objects with different speeds, and the sensing ability is evaluated to be
related with human tactile sensation.

Keywords: shape-memory alloy wire; force sensing; superelasticity; tactile sensor; human tactile
perception; texture sensing

1. Introduction

Virtual reality (VR) and augmented reality (AR) technologies have developed rapidly,
and are expected to be widely employed as the ‘second world’ in a variety of scenarios
such as the metaverse and new forms of entertainment and business communication.
These technologies provide realistic experiences mainly by controlling visual and auditory
information to be perceived by users’ various senses. The presentation of tactile sensation,
which is recognized by our skin, is an important technology to enhance perceptions of
reality in VR and AR worlds; however, such technologies are still in the research stage,
and no commercially-available devices and systems have been introduced so far. If tactile
senses could be controlled in a virtual world, users would be able to further enjoy highly
immersive games in entertainment fields and to extend the means of flexible communication
in various business opportunities. Tactile communication will also be able to open new
medical care in tele-medicine and tele-surgery. In order to create a system that controls
tactile senses, it will be necessary to quantitatively measure the tactile information. For
dealing with visual and auditory information, commonly-used devices such as cameras,
microphones and speakers are commercially available. However, no standard equipment
to record and display tactile information has been made available thus far.

Tactile sensing is expected to be utilized in various industries, and has been actively
studied so far. Typical sensors applicable in tactile sensing include capacitive sensors,
piezoresistive sensors, optical methods, and piezoelectric devices [1–3]. Capacitive tactile
sensors are designed to settle capacitors between two electrodes, so that the electrostatic ca-
pacity changes when force is applied and the distance between the electrodes changes [4,5].
The capacitive sensors have the advantages of high frequency response, precise load mea-
surement, and wide dynamic range, but they tend to be susceptible to external noise.
Piezoresistive sensors, on the other hand, are robust against electric noise, since they utilize
the piezoresistive effect [6,7]. However, they require a high-voltage power source for driv-
ing, and the frequency response is comparatively low. Optical tactile sensors are operated
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by converting a load into light intensity or refractive index [8,9]. They have the advantages
of high frequency response, precise load measurement, and wide dynamic range. However,
they are constructed with larger peripheral systems with optical sensors. Piezoelectric
tactile sensors are operated by converting a load into an electrical signal via a piezoelectric
element [10,11]. The sensors have the advantage of high frequency response, but their spa-
tial resolution is comparatively low. Other tactile sensing techniques using ultrasonic [12]
and acceleration [13] elements have also been proposed recently, but technical difficulties
such as high energy consumption and complex system structures have been reported when
considering practical applications.

A shape-memory alloy (SMA) is well-known as an alloy that remembers its original
shape. An SMA is able to memorize its shape as an original one in austenite phase at higher
temperature. The SMA changes the state from austenite to martensite upon cooling. It is
deformable by the application of external force in the martensite phase at lower temperature,
and returns to its preliminary-remembered shape when heated to transit into austenite
phase [14,15]. Shape-memory alloys are widely applied as thermo-mechanical actuators in
devices such as shape-memory springs, thermo-responsive valves and catheters, and highly
efficient energy converters in the biomedical [16,17], aerospace [18,19], automotive [20,21],
robotics [22,23] and construction fields [24,25], as well as human-machine interfaces [26,27].
Owing to the characteristics of their light weight, compact size and generatable force, the
SMA actuators are expected to be alternatives to conventional electronic actuators, electric
motors, and pneumatic and hydraulic actuators. Shape-memory alloys can also be utilized
as sensors and have been applied to temperature sensors [28,29], magnetic sensors [30,31],
and strain sensors [32,33]. Their transformation speed is, however, comparatively slow,
since the phase transformation between martensite phase and austenite phase is led by the
temperature, which is conducted by giving heat to the material body or radiating heat to
the surrounding environment.

A filiformed SMA wire with a diameter of 50–100 µm presents unique characteristics,
swiftly responding to temperature changes related to the martensite and austenite phases.
By applying weak current to an SMA wire, heat is generated by the internal electrical
resistance, and the wire instantly shrinks up to 5% lengthwise. When the current is stopped
and the temperature drops, it returns to its original length by heat radiating to the air.
The SMA wire is thin and flexible enough to be cooled down right after the current stops,
and it returns to the initial length as the temperature shifts from the austenite to the
martensite phase. This means that the contraction and return of the SMA wire can be
precisely controlled by a properly-prepared pulse current, and the phenomena is physically
recognized as micro-vibration, having different frequencies and amplitudes.

The authors have developed a micro-vibration actuator electrically driven by periodic
current, generated by a current control circuit for tactile displays. A vibration actuator is
composed of a 5 mm-long SMA wire with a diameter of 50 µm, and micro-vibration with an
amplitude of 1–2 µm is generated, which is perceived by the human body as various tactile
sensations in accordance with the different frequencies. We employ pulse-width modulated
(PWM) current to control the vibration mode of the SMA wire using a specially-designed
current controller. The pulse has an amplitude of H volts, a width of W msec and a period
of L msec. The duty ratio W/L determines the heating and cooling time of the SMA. The
value H × W, which is equivalent to the calories exchanged, determines the amplitude
of a vibration, and the vibration frequency is completely controlled by regulating L. The
deformation of an SMA wire in motion was recorded by using a high-speed camera, and
we verified that the SMA wire perfectly synchronized with the ON/OFF pulse current.

The authors have also discovered that the deformation caused by stress applied to
an SMA wire generates a change in the electrical resistance. With this characteristic, the
SMA wire works as a force sensor with high sensitivity, while generating micro-vibration.
We have developed a sensor structure to effectively conduct a given stress to an SMA
wire. In this paper, the micro-force-sensing ability of the SMA transducer is studied and
discussed. Experiments are conducted by sliding the SMA transducer on the surface of
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different objects with different speeds, and the sensing ability will be evaluated so as to be
related to human tactile sensations. The new transducer using SMA wires will be applied
to tactile displays and sensors to measure and record various tactile sensations, and also to
be effectively employed as physical feedback in VR and AR environments.

2. SMA Sensor and Tactile Sensing System
2.1. Physical Properties of SMAs

SMA has two typical physical properties related to body temperature and force: shape
memory effect and superelasticity [34], respectively, as shown in Figure 1.
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Figure 1. Physical properties of the deformation of an SMA.

The shape memory effect presented by the background colored in blue is observed
by exchanging heat in the body. An SMA in martensite is deformable by the application
of load, and the shape returns to its original form by receiving heat to transit to austenite.
The transition between martensite and austenite is reversible by the heat application to the
body or the heat radiation from the body.

The superelasticity, on the other hand, is the phenomenon observed in the austenite
phase as shown in the orange color. A loaded SMA in austenite deforms to transit to
martensite, which is called the stress-induced martensite phase, and the strain is released
by removing the load. This transformation exhibits the change of electrical resistance, and
especially the transformation between austenite and R-phase shows the quick response
in time.

2.2. Filiform SMAs for Micro-Vibration Actuators

The authors have developed a micro-vibration actuator using a filiformed SMA wire
electrically driven by pulsed current. Figure 2 shows a vibration actuator composed of a
5 mm-long SMA wire with a diameter of 0.05 mm. By applying weak current to the alloy,
the temperature rises to T2 due to the generated heat inside the wire body, and the alloy
shrinks up to 5% lengthwise relative to the original length. When the current stops and the
temperature drops to T1 due to the heat radiation, the alloy returns to its original length.
Figure 3 shows the temperature characteristics of the SMA wire employed in this study
having the specific temperatures T1 = 68 and T2 = 72 degrees Celsius [35].

19



Materials 2023, 16, 1016Materials 2023, 16, x FOR PEER REVIEW 4 of 11 
 

 

 
Figure 2. SMA vibration actuator. 

 

Figure 3. Temperature characteristics of SMA wire. 

The SMA wire is so thin that it rapidly cools after the current stops, and returns to its 
original length when the temperature shifts from T2 to T1. This means that the shrinkage 
and the return to initial length of the SMA wire can be controlled by the pulse current. By 
driving the SMA wire with properly-prepared pulse current, micro-vibration with an am-
plitude of several micrometers is generated, which is perceived by the human body as 
tactile sensation, although the vibration is invisible. We employ pulse-width modulated 
(PWM) current having different frequencies and duty ratios generated from a specially-
designed current controller to control the vibration mode of the SMA wire. Through our 
studies so far, we discovered that the vibration frequencies were controlled up to 1 kHz 
under duty ratios of approximately 2–20%. 

2.3. SMA Wires for Force Sensing 
Owing to the superelasticity, the deformation caused by a given tensile stress to an 

SMA wire generates the change of the electrical resistance. By measuring the resistance 
change, the amount of stress applied to a wire can be estimated. 

Figure 4 illustrates the sensor structure using an SMA wire, which consists of a 75 
μm (diameter) × 3 mm (length) SMA wire and a 1.5 mm (diameter) × 5 mm (length) round-
head pin made of stainless steel. The SMA wire used for the tactile sensor is BMF75 (Toki 
Corporation), and its physical properties are shown in Table 1. BMF75 is a one-way shape-
memory alloy, and is composed of Ti-Ni-Cu, which is characterized by stable self-expand-
ing properties. The tip of the pin is soldered at the middle of the SMA wire, so that force 
applied to the other end of the pin is efficiently conducted to the SMA wire, as shown in 
Figure 5. Two lead wires are connected to both ends of the SMA wire to measure the elec-
trical resistance by employing a specially-designed control circuit. The circuit provides 
weak electrical current to the SMA wire to keep the SMA in the austenite phase. When 
force is applied to the metal pin, tensile force is conducted to the wire to induce the stress-
induced martensite phase, which is measured as the change in the electrical resistance. 

  

Figure 2. SMA vibration actuator.

Materials 2023, 16, x FOR PEER REVIEW 4 of 11 
 

 

 
Figure 2. SMA vibration actuator. 

 

Figure 3. Temperature characteristics of SMA wire. 

The SMA wire is so thin that it rapidly cools after the current stops, and returns to its 
original length when the temperature shifts from T2 to T1. This means that the shrinkage 
and the return to initial length of the SMA wire can be controlled by the pulse current. By 
driving the SMA wire with properly-prepared pulse current, micro-vibration with an am-
plitude of several micrometers is generated, which is perceived by the human body as 
tactile sensation, although the vibration is invisible. We employ pulse-width modulated 
(PWM) current having different frequencies and duty ratios generated from a specially-
designed current controller to control the vibration mode of the SMA wire. Through our 
studies so far, we discovered that the vibration frequencies were controlled up to 1 kHz 
under duty ratios of approximately 2–20%. 

2.3. SMA Wires for Force Sensing 
Owing to the superelasticity, the deformation caused by a given tensile stress to an 

SMA wire generates the change of the electrical resistance. By measuring the resistance 
change, the amount of stress applied to a wire can be estimated. 

Figure 4 illustrates the sensor structure using an SMA wire, which consists of a 75 
μm (diameter) × 3 mm (length) SMA wire and a 1.5 mm (diameter) × 5 mm (length) round-
head pin made of stainless steel. The SMA wire used for the tactile sensor is BMF75 (Toki 
Corporation), and its physical properties are shown in Table 1. BMF75 is a one-way shape-
memory alloy, and is composed of Ti-Ni-Cu, which is characterized by stable self-expand-
ing properties. The tip of the pin is soldered at the middle of the SMA wire, so that force 
applied to the other end of the pin is efficiently conducted to the SMA wire, as shown in 
Figure 5. Two lead wires are connected to both ends of the SMA wire to measure the elec-
trical resistance by employing a specially-designed control circuit. The circuit provides 
weak electrical current to the SMA wire to keep the SMA in the austenite phase. When 
force is applied to the metal pin, tensile force is conducted to the wire to induce the stress-
induced martensite phase, which is measured as the change in the electrical resistance. 
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The SMA wire is so thin that it rapidly cools after the current stops, and returns to its
original length when the temperature shifts from T2 to T1. This means that the shrinkage
and the return to initial length of the SMA wire can be controlled by the pulse current.
By driving the SMA wire with properly-prepared pulse current, micro-vibration with an
amplitude of several micrometers is generated, which is perceived by the human body as
tactile sensation, although the vibration is invisible. We employ pulse-width modulated
(PWM) current having different frequencies and duty ratios generated from a specially-
designed current controller to control the vibration mode of the SMA wire. Through our
studies so far, we discovered that the vibration frequencies were controlled up to 1 kHz
under duty ratios of approximately 2–20%.

2.3. SMA Wires for Force Sensing

Owing to the superelasticity, the deformation caused by a given tensile stress to an
SMA wire generates the change of the electrical resistance. By measuring the resistance
change, the amount of stress applied to a wire can be estimated.

Figure 4 illustrates the sensor structure using an SMA wire, which consists of a 75 µm
(diameter) × 3 mm (length) SMA wire and a 1.5 mm (diameter) × 5 mm (length) round-
head pin made of stainless steel. The SMA wire used for the tactile sensor is BMF75
(Toki Corporation), and its physical properties are shown in Table 1. BMF75 is a one-way
shape-memory alloy, and is composed of Ti-Ni-Cu, which is characterized by stable self-
expanding properties. The tip of the pin is soldered at the middle of the SMA wire, so that
force applied to the other end of the pin is efficiently conducted to the SMA wire, as shown
in Figure 5. Two lead wires are connected to both ends of the SMA wire to measure the
electrical resistance by employing a specially-designed control circuit. The circuit provides
weak electrical current to the SMA wire to keep the SMA in the austenite phase. When force
is applied to the metal pin, tensile force is conducted to the wire to induce the stress-induced
martensite phase, which is measured as the change in the electrical resistance.

We also tested the fatigue of the SMA wire against tensile force, which was anticipated
due to the sensor structure. A 10 cm wire was prepared, and one end was fixed to a metal
frame. At the other end, weights were hung until the wire was cut off. We confirmed the
SMA wire was cut off at the weight of 1.3 kg, and the wire also properly worked after
applying a tensile force of 1 kg.
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Table 1. Physical properties of BMF75.

Physical Property Value

Standard diameter (µm) 75
Practical force produced (load) (gf) 35

Practical kinetic strain (%) 4.0
Standard drive current (mA) 140

Standard drive voltage (V/m) 35.4
Standard power (W/m) 4.63

Standard resistance (Ω/m) 236
Tensile strength (Kgf) 0.45

Weight (mg/m) 28
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2.4. Structure of SMA Tactile Sensing System

We have constructed a tactile sensing system, as shown in Figure 6. The system
consists of an SMA transducer mounted on a liner plotter (AxiDraw SE/A3), a transducer
control circuit, and a deep learning-based classifier. In this experiment, we consider a
situation where a human feels a tactile sensation of an object by sliding their fingertip on
the object surface. When we try to feel an object by hand, we may place our fingers on the
surface and stroke our hand with different pressures and speeds to properly understand
the textures. Different objects have different textures with various softness, roughness and
elasticity. To suitably perceive the textures, the touching pressure and the sliding speed
may be suitably adjusted to understand the different physical structures on the surface.

To realize the human-like recognition of tactile sensation, the SMA sensor is mounted
on a linear plotter to control the sliding speed, as shown in Figure 7. A weight of 100 g is
placed on the actuator so that the pressure can be applied while sliding the sensor on an
object surface. Since the SMA wire keeps its performance with the strain up to 1 kg, the
sensor works properly with a 100 g weight.

The resistance value of the SMA wire Rsma is measured by the following calculation:

Vout = 3.0· 10
10 + Rsma

(1)

using the circuit shown in Figure 8. Time-series data obtained by the sensing system is
given to a classifier using the Transformer [36,37].
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3. Preliminary Experiment

To find the sensing characteristics of the tactile transducer system, we firstly conducted
a preliminary experiment. Five materials having different textures, namely a rubber mat, a
plastic mesh, cotton fabric, a Velcro tape and a plastic sheet, were selected to test the sensing
ability of the sensor. The relationship of the texture features is shown in Figure 9. For
example, a rubber mat has a less bumpy surface with a periodic pattern, while by contrast,
a Velcro tape is made up of random and rough surfaces. All the materials were prepared
in a size of 30 cm × 40 cm, and were spread on a table. The SMA sensor unit mounted on
the linear plotter stroked each material from one end to the other at eight different speeds,
which were set at 1, 3, 5, 7.5, 10, 12.5, 15 and 20 cm/s. A weight of 100 g was placed on the
sensor for applying initial stress to the SMA wire.
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Figure 9. Selected five materials with different textures.

Sampling rate was set at 5000 Hz, and 50 stroking trials were conducted at each
speed for each material. Figure 10 shows the examples of sensing data in one second
obtained by changing the stroking speed. At each speed, different surfaces present different
signal features, having particular periods and amplitudes. By changing the sliding speed,
frequencies found in sensing data increase in accordance with the texture patterns and
sliding speed. A plastic sheet, for example, has a smooth surface with low friction, and the
obtained data have small amplitude without particular patterns. A plastic mesh, on the
other hand, has a clear periodic pattern, and in the obtained data, clear repeating patterns
are observed for all the different speeds.
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Figure 10. Examples of sensing data with different stroking speeds: (a) sliding speed 1 cm/s,
(b) sliding speed 3 cm/s, (c) sliding speed 5 cm/s, (d) sliding speed 7.5 cm/s, (e) sliding speed
10 cm/s, (f) sliding speed 12.5 cm/s, (g) sliding speed 15 cm/s, (h) sliding speed 20 cm/s.

4. Tactile Classification Using SMA Sensing System

In the preliminary experiment, we discovered that the SMA sensor was able to output
reasonable signals by the stroking actions on different material surfaces. Here, we con-
ducted tactile classification by using ten materials with different textures, including the five
materials used in the preliminary experiment. Figure 11 shows the pictures of the material
surfaces, which were a rubber mat, a plastic mesh, cotton fabric, a Velcro tape, a plastic
sheet, a sheet made of bamboo, a plastic-made tile, a plastic mat with small patterns, a
plastic mat with large patterns, and a leather sheet with studs.
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Figure 11. Ten materials for tactile classification experiment.

For each material, the sliding action was conducted for 2 s, which was repeated
50 times. Sensing data were obtained with a sampling rate of 5 kHz, and the data were then
down sampled into 100 Hz after the low-pass filtering. Data with a stroking-time duration
of 500 ms were fed to the classifier. A deep learning-based classifier using Transformer was
employed for the recognition of the materials. Eighty percent of the samples obtained from
each material at each speed were used for the network training, and the other 20% of the
samples were used for the validation.

Classification results at the sliding speed of 10 cm/s are summarized as a confusion
matrix in Figure 12. The horizontal axis of the confusion matrix is the predicted result for
each material obtained by the discriminator, and the vertical axis represents the correct
label for each material. The average recognition rate for the ten materials was 86.2%.
The materials with distinctive textures, such as the Velcro tape, bamboo sheet and plastic
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tile, presented high accuracy of 100%. On the other hand, the materials having similar
smoothness, such as the rubber mat and the two plastic mats, were confused with one
another. Since the diameter of the tactile pin is 1.5 mm, the size of the pin tip is smaller
than the texture patterns of the mats, as shown in Figure 13. When the pin tip contacted the
edge of the texture patterns, similar signals were output for those three materials, which
might have given greater effect to the classification.
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To avoid such misrecognition, we will consider the shape of the pin tip and the pin
material to improve the classification ability. The softness of human skin, together with the
structure of fingerprints, are considered to be important in how the perception of tactile
sensation is processed. By referring to the skin structure, our tactile sensor will be improved
in terms of how it conducts the physical stimuli to the SMA wire.

5. Conclusions

In this paper a tactile transducer using an SMA wire was introduced. We discovered
that the resistance change against the force application to an SMA wire was caused by
the superelasticity, and was given as the physical property to the tactile sensing. By
introducing the special structure employing a tactile pin, the physical stimuli obtained by
the sliding motion on a material surface was efficiently conducted to the SMA wire to cause
the resistance change. By examining the output signals, the characteristic patterns were
obtained from different material surfaces, in accordance with the stroking speed. We also
employed the deep learning-based classifier, and verified the classification performance
against ten different textures. An average of 86.2% recognition rate was achieved. However,
classification performance was slightly decreased among the materials that had similar
textures. We will further improve the shape of the tactile pin, together with the compositing
material of the pin.
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Abstract: In the present work, the possibility of manufacturing long-length TiNiHf rods with a
lowered Hf content and a high-temperature shape memory effect in the range of 120–160 ◦C was
studied. Initial ingots with 1.5, 3.0 and 5.0 at.% Hf were obtained by electron beam melting in a
copper water-cooled stream-type mold. The obtained ingots were rotary forged at the temperature
of 950 ◦C, with the relative strain from 5 to 10% per one pass. The obtained results revealed that
the ingots with 3.0 and 5.0 at.% Hf demonstrated insufficient technological plasticity, presumably
because of the excess precipitation of (Ti,Hf)2Ni-type particles. The premature destruction of ingots
during the deformation process does not allow obtaining high-quality long-length rods. A long-
length rod with a diameter of 3.5 mm and a length of 870 mm was produced by rotary forging
from the ingot with 1.5 at.% Hf. The obtained TiNiHf rod had relatively high values of mechanical
properties (a dislocation yield stress σy of 800 MPa, ultimate tensile strength σB of 1000 MPa, and
elongation to fracture δ of 24%), functional properties (a completely recoverable strain of 5%), and a
required finishing temperature of shape recovery of 125 ◦C in the as-forged state and of 155 ◦C after
post-deformation annealing at 550 ◦C for 2 h.

Keywords: shape memory alloys; rotary forging; structure; mechanical properties; NiTiHf

1. Introduction

Ti-Ni-based shape memory alloys (SMAs) are functional materials, actively used for
the manufacturing of various devices and construction elements for engineering or medical
applications [1–5]. Today, permanent technological development leads to the formation
of new special requirements for the operational characteristics of applied alloys [6–11].
For example, great attention and high demand are observed for Ti-Ni-based alloys with a
high-temperature shape memory effect.

Ternary high-temperature Ti-Ni-based SMAs (TiNiX), where X is a precious metal,
such as Pd, Pt, etc., or where X is Zr or Hf, are actively developed and studied [12–15].
However, the first group of alloys are too expensive due to the use of precious metals as
alloying elements, and the second group exhibits insufficient deformability. TiNiHf alloys
seem to be more attractive for wide practical application because they perform required
mechanical and functional properties in combination with relatively low cost and greater
stability of the operational characteristics as compared to TiNiZr alloys [15]. Therefore, to
date, numerous studies of TiNiHf alloys revealed the main features of the formation of their
structural state and properties [16–34]. Ternary TiNiHf alloys are usually divided into two
groups, one with increased Ni content and one with reduced Ni content, similarly to binary
TiNi SMAs. According to studies [16–20], alloys with low Ni content (less than 49.5 at.%)
have insufficient technological plasticity due to the precipitation of the (Ti, Hf)2Ni-type
phase. An increase in the Ni content leads to a decrease in the characteristic temperatures
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of martensitic transformations; therefore, in order to obtain a high-temperature state in
the alloy, the content of Hf also should be increased [16,21]. That leads to the increase in
the production cost and makes it difficult to obtain a temperature range of shape recovery
between 100 and 200 ◦C. For example, the most commonly applied Ti29.7Ni50.3Hf20 alloy
has the finishing temperature of shape recovery of about 300 ◦C or higher, in dependence
with the applied melting and deformation modes [16,17,19]. Binary TiNi near-equiatomic
or Ti-enriched alloys also do not provide such a temperature range of shape recovery. The
finishing temperature of the reverse MT in binary alloys hardly exceeds 110 ◦C. Additionally,
in Ni-rich TiNiHf alloys, the aging process is developed during thermal treatment in the
temperature range of 400–650 ◦C [23–28]. That allows precisely changing the combination
of properties but may affect the functional characteristics of applied devices during the
operation at higher temperatures. This factor must be considered during the development
of technological schemes for the production of various devices from TiNiHf SMAs. Another
problem, as was already mentioned, is the sufficiently low deformability of TiNiHf alloys.
Therefore, the problem of obtaining high-quality long-length rods from TiNiHf alloys with
low Ni and Hf contents and with a finishing temperature of shape recovery of about 150 ◦C
is unsolved.

The melting processes of TiNi-based SMAs from pure charge components are often
associated with some difficulties, such as an increased concentration of gas impurities due
to the high reactivity of pure titanium. For TiNiHf alloys, an increase in the concentration
of gas impurities, in particular oxygen, is especially critical because of an increase in the
concentration of embrittling (Ti, Hf)2Ni-type excess phases with a high concentration of Ti
and Hf, as well as HfO2 in alloys with a high concentration of Hf and Ni [16–20]. Therefore,
the application of finished Ti-Ni billets as a charge component for melting TiNiHf alloys
may decrease the concentration of gas impurities due to the absence of pure titanium
during the melting process. The application of this concept also expands the possibilities of
recycling TiNi binary alloys.

Based on the foregoing, the aim of the present work consisted in the production
of high-quality long-length rods from TiNiHf alloys with a reduced content of nickel
and hafnium, providing high mechanical and functional properties, in combination with
a finishing temperature of the reverse martensitic transformation of about 120–160 ◦C
through the application of finished Ti-Ni billets and high-purity hafnium wire during the
melting process and various modes of thermomechanical treatment.

2. Materials and Methods

A polished TiNi SMA rod with a diameter of 12 mm, manufactured by industrial
center MATEK SMA Ltd., Moscow, Russia and cold-worked hafnium wire with a diameter
of 2 mm, manufactured by E.A. Yudin Chemical and Metallurgical Plant, Novosibirsk,
Russia were chosen as the charge materials for the melting of TiNiHf initial ingots. The
chemical composition of the applied TiNi rod and Hf wire is shown in Tables 1 and 2,
respectively.

Table 1. Chemical composition of the TiNi SMA rod with a diameter of 12 mm, used as a charge
material for melting of TiNiHf initial ingots.

Ni,
wt.%

Ti,
wt.%

Impurities, wt.%

C O N H Other

55.15 Balance 0.035 0.030 0.002 0.001 <0.1
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Table 2. Chemical composition of the hafnium wire with a diameter of 2 mm, used as a charge
material for melting of TiNiHf initial ingots.

Hf,
wt.%

Impurities, wt.%

C O N H Si Fe Zr

Balance 0.008 0.020 <0.005 0.001 <0.005 0.030 0.58

Initial TiNiHf ingots were obtained by electron beam melting (EBM) in a furnace with
a power of 60 kW at a vacuum of 1× 10−5 in a copper water-cooled stream-type crystallizer.
The dimensions, weight, and chemical composition of the obtained ingots are shown in
Table 3.

Table 3. Chemical composition of the melted TiNiHf ingots.

No. Dimensions,
mm

Weight, g

Composition (without Impurities)

wt.% at.%

Ti Ni Hf Ti Ni Hf

1 11 × 16 × 162 102 42.9 52.7 4.4 49.0 49.5 1.5

2 10 × 15 × 230 160 40.4 49.6 10.0 48.5 48.5 3.0

3 11 × 17 × 200 168 38.2 47.0 14.8 47.5 47.5 5.0

After melting, the ingots were homogenized at 1000 ◦C for 1 h in a vacuum and rotary
forged at the temperature of 950 ◦C, with a relative strain from 5 to 10% per one pass. After
RF, post-deformation annealing (PDA) at 550 ◦C for 2 h was applied. The microstructure
was studied using a UNION optical microscope and the scanning electron microscope (SEM)
Scios (Thermo Fisher Scientific, Waltham, MA, USA) at an accelerating voltage of 10 kV.
The investigation of the chemical composition by energy dispersive X-ray spectroscopy
(EDS) was carried out using the EDX system from EDAX. The study of the temperatures of
forward (Ms, Mf) and reverse (As, Af) martensitic transformations (MTs) was carried out
using a Mettler Toledo differential scanning calorimeter in the cooling-heating cycle at a
rate of 10 K/min in the temperature range from minus 40 to 200 ◦C. The phase composition
was studied using a Dron-3 X-ray diffractometer in CuKα radiation in the 2Θ angle range
from 20 to 80◦ at room temperature. The Vickers hardness measurements were carried
out at room temperature using a LECOM 400-A tester under a load of 1 N. The mechan-
ical properties were determined at room temperature by uniaxial tensile tests using the
universal tensile machine INSTRON 3382, with a deformation rate of 2 mm/min. The
following mechanical parameters were determined: critical stress for martensite reorienta-
tion (transformation yield stress) σcr, dislocation yield stress σy, ultimate tensile strength
σB, and elongation to failure δ. The measurement of functional properties, such as total
completely recoverable strain (Ert) and the temperature range of shape recovery (TRSR),
was carried out using the thermomechanical method by deformation in bending. The
bending of preliminary cut samples with the size of 0.4 × 0.6 × 20 mm was conducted at
room temperature around mandrels with various diameters. The deformation value was
determined based on the following relationship: E= d/(D + d), where d is the diameter
of the sample, and D is the diameter of the mandrel. The shape recovery rate (SRR) was
determined as a ratio of recovered strain to induced strain, Ert/Ei*100% [35]. After the
strain induction, the sample was heated in oil to implement the shape memory effect and
determine the Ert and TRSR.
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3. Results and Discussion
3.1. The Features of the Manufacturing Process of Initial Ingots and Long-Length Rods from
TiNiHf Alloys

Initial ingots were produced by EBM. EBM has a number of advantages in comparison
to induction and electric arc melting, including the effective purification of metals from gas
and metallic impurities; the absence of defects of shrinkage origin in ingots because of the
possibility of a smooth change in the power of the electron beam and complete filling of the
shrinkage cavity; and the possibility of using charge materials in any form. The shape of
the obtained ingots in a stream-type mold allows applying subsequent thermomechanical
treatment immediately after melting, without additional mechanical operations. Images of
the obtained ingots are shown in Figure 1.

Materials 2023, 16, x FOR PEER REVIEW 4 of 13 
 

 

thermomechanical treatment immediately after melting, without additional mechanical 
operations. Images of the obtained ingots are shown in Figure 1. 

 
Figure 1. Images of TiNiHf initial ingots obtained by electron beam melting in a copper water-cooled 
stream-type mold: 1.5 at.% of Hf (a), 3.0 at.% of Hf (b), and 5.0 at.% of Hf (c). 

Albeit hot rotary forging, the most favorable forming technique for the processing of 
hard-to-deform metallic materials [36], was applied to produce long-length rods from in-
itial ingots, only the first ingot with 1.5 at.% HF was successfully forged to a diameter of 
3.5 mm and a length of 870 mm. Ingots with 3.0 and 5.0 at.% Hf were destructed (Figure 
2) during the first few passes because of insufficient technological plasticity, presumably 
because of the increase in the amount of (Ti,Hf)2Ni-type brittle phase with the decrease in 
Ni content. The premature destruction of ingots during the process of rotary forging does 
not allow obtaining high-quality long-length rods. Therefore, further investigation of me-
chanical and functional properties, except the temperature range of martensitic transfor-
mations, was carried out only for the TiNiHf rod with 1.5. at.% of Hf. 

 
Figure 2. Image of TiNiHf sample with 3.0 at.% Hf after several passes of rotary forging. 

3.2. Microstructural and Phase Analysis 
The X-ray diffractograms of TiNiHf rods with a diameter of 3.5 mm in the as-forged 

state and after additional PDA at 550 °C for 2 h are shown in Figure 3. 

Figure 1. Images of TiNiHf initial ingots obtained by electron beam melting in a copper water-cooled
stream-type mold: 1.5 at.% of Hf (a), 3.0 at.% of Hf (b), and 5.0 at.% of Hf (c).

Albeit hot rotary forging, the most favorable forming technique for the processing of
hard-to-deform metallic materials [36], was applied to produce long-length rods from initial
ingots, only the first ingot with 1.5 at.% HF was successfully forged to a diameter of 3.5 mm
and a length of 870 mm. Ingots with 3.0 and 5.0 at.% Hf were destructed (Figure 2) during
the first few passes because of insufficient technological plasticity, presumably because of
the increase in the amount of (Ti,Hf)2Ni-type brittle phase with the decrease in Ni content.
The premature destruction of ingots during the process of rotary forging does not allow
obtaining high-quality long-length rods. Therefore, further investigation of mechanical and
functional properties, except the temperature range of martensitic transformations, was
carried out only for the TiNiHf rod with 1.5. at.% of Hf.
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3.2. Microstructural and Phase Analysis

The X-ray diffractograms of TiNiHf rods with a diameter of 3.5 mm in the as-forged
state and after additional PDA at 550 ◦C for 2 h are shown in Figure 3.
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Figure 3. X-ray diffractograms of TiNiHf SMA rods with a diameter of 3.5 mm after RF and
RF + PDA 550 ◦C for 2 h.

The obtained results revealed that after rotary forging the studied TiNiHf alloys at
room temperature, the main phase was B19′-martensite, and some amount of B2-austenite
phase is also presented. X-ray lines corresponding to the (Ti,Hf)2Ni-type particles of excess
phase were clearly observed. PDA at 550 ◦C for 2 h led to the narrowing of X-ray line peaks,
indicating the decrease in the density of structural defects and accompanied by a slight
increase in the proportion of the B2-austenite phase, and some increase in the intensity of
the 110B2 line can be observed. The phase composition, however, was practically the same
as after RF.

Analyses of the microstructure revealed that after rotary forging, a dynamically re-
crystallized structure with an average grain size in the range of 20–30 microns and a huge
number of precipitated (Ti,Hf)2Ni-type particles was formed in the sample (Figure 4a).
Post-deformation annealing did not lead to changes in the structure, noticeable by light
microscopy (Figure 4b).
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Figure 4. Microstructure of the TiNiHf SMA rods with a diameter of 3.5 mm after RF (a) and
RF + PDA 550 ◦C for 2 h (b). Light optical microscopy.

The SEM images, obtained after RF and RF + PDA, are shown in Figure 5. The
black rounded and elongated inclusions are associated with the (Ti,Hf)2Ni-type phase
based on the results of the EDS analysis (Figure 5). The definition of structural elements
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and grain/subgrain boundaries is complicated due to the martensitic state of the studied
rods at room temperature. The difference in the structural state with the application of
PDA was not determined by the SEM, just like after light microscopy. The elemental
maps, shown in Figure 6a, indicate the elemental distribution of Ni, Ti and Hf in the
obtained rods. Elemental EDS mapping revealed the practically homogeneous distribution
of elements, albeit indicating small Ti-rich and Ni-poor areas, presumably corresponding
to the (Ti,Hf)2Ni-type particles. The elemental maps, taken with higher resolutions in order
to study the elemental distribution along the precipitates and their surrounding matrix,
confirm this presumption (Figure 6b).
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3.3. Temperature Ranges of Martensitic Transformations

The results of differential scanning calorimetry are presented in Figure 7.
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Based on the analysis of the obtained calorimetric curves, summary Table 4 was
compiled with the characteristic temperatures of the forward and reverse MTs for the
samples of the TiNiHf system.

Table 4. Characteristic temperatures of forward and reverse MTs of TiNiHf initial ingots in as-cast
state and after annealing at 1000 ◦C for 1 h.

Hf Content Annealing Ms,
◦C

Mp,
◦C

Mf,
◦C

As,
◦C

Ap,
◦C

Af,
◦C

As − Af,
◦C

Ms −Mf,
◦C

1.5 at.% Hf - 54 28 −12 32 62 79 46 66

1.5 at.% Hf +1000 ◦C, 1 h 45 38 27 52 70 79 26 18

3.0 at.% Hf - 71 60 40 71 107 114 43 31

3.0 at.% Hf +1000 ◦C, 1 h 78 70 53 99 117 121 22 25

5.0 at.% Hf - 71 55 35 76 110 123 47 36

5.0 at.% Hf +1000 ◦C, 1 h 80 62 47 86 120 126 40 33

The results of the MT study showed that an increase in the Hf content in the initial cast
state led to an increase in the finishing temperature of reverse MT Af, from 79 ◦C with an Hf
content of 4.4 wt.%, up to 126 ◦C with 14.8 wt.%. The temperature range of the forward MT
also shifted towards higher temperatures with the increase in Hf content. Homogenization
annealing at 1000 ◦C for 1 h led to a noticeable narrowing of the hysteresis of MT due to an
increase in the homogeneity of the structural state, and did not lead to the noticeable shift
of the temperature range of the reverse MT. The DSC curves of TiNiHf alloy rods after RF
and PDA are shown in Figure 8.
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Figure 8. Calorimetric curves of the TiNiHf rods after RF (a) and RF + PDA at 550 ◦C for 2 h (b).

Based on the analysis of the obtained calorimetric curves, summary Table 5 was
compiled with the characteristic temperatures of the forward and reverse MTs for the
samples of the TiNiHf system.

Table 5. Characteristic temperatures of forward and reverse MTs of TiNiHf rods after RF and
RF + PDA at 550 ◦C for 2 h.

TMT TR1
s , ◦C TR1

p , ◦C TR1
f , ◦C Ms, ◦C Mp, ◦C Mf, ◦C TR2

s , ◦C TR2
p , ◦C TR2

f , ◦C As, ◦C Ap, ◦C Af, ◦C
Ms/TR1

s
−Af, ◦C

Ms/TR2
s

−Mf, ◦C

RF - - - 67 54 36 - - - 76 99 113 37 31

RF
+ 550 ◦C, 2 h 70 57 - - 45 35 75 89 - - 102 116 25 44

The obtained results showed that RF led to a noticeable increase in the finishing tem-
perature of reverse MT Af as compared to the cast state, from 79 to 113 ◦C. The application of
PDA led to the change in the sequence of the forward and reverse MTs: the transformations
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proceeded through the intermediate R-phase, while after RF, the transformations proceeded
in one stage. The change in the stages of MT can be associated with the influence of static
aging processes that develop during annealing and, as a consequence, an increase in the
density of structure defects due to the precipitation of the Ti3Ni4 excess phase (H-phase).
This result also showed that the Ni content in the sample was higher than was suggested
(more than 50.2 at.%). In this case, there was no noticeable change in the characteristic
temperatures of the forward and reverse MTs after PDA.

3.4. Temperature Ranges of Martensitic Transformations

The mechanical properties of TiNiHf SMA rods are shown in Table 6. Representative
stress–strain diagrams are shown in Figure 9.

Table 6. Mechanical properties of TiNiHf rods after RF and RF + PDA at 550 ◦C for 2 h.

TMT σcr,
MPa

σy,
MPa

∆σ,
MPa

σB,
MPa

δ,
% HV

RF 214 800 586 1000 24 210
RF + 550 ◦C, 2 h 202 840 638 990 29 215
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Figure 9. Representative stress–strain diagrams of TiNiHf rods after RF and RF + PDA at 550 ◦C for
2 h.

The obtained rods showed high strength characteristics: σy = 800 MPa, σB = 1000 MPa
after RF and σy = 840 MPa, σB = 990 MPa after PDA at 550 ◦C for 2 h, and, simultaneously,
sufficiently high ductility: δ = 24% after RF and 29% after PDA. Results of the Vickers
hardness test revealed that after RF, the value of hardness was 210 HV. The application of
PDA did not noticeably change the hardness value.

The results of determining the temperature range of shape recovery (TRSR) after strain
inducing are shown in Table 7. A comparison of the temperature range of the reverse
martensitic transformation obtained by DSC (Table 5) and TRSR (Table 7) reveals that
strain inducing led to an increase in the temperature of starting and finishing the reverse
martensitic transformation.
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Table 7. Total completely recoverable strain and TRSR of TiNiHf rods after RF, RF + PDA at 550 ◦C
for 2 h, and RF + PDA at 1000 ◦C for 1 h.

TMT Induced Strain, % Total Completely Recoverable Strain, % SRR, % TRSR, ◦C

RF 2.0 2.0 100 65–125

RF 6.0 5.0 83 100–155

RF + 550 ◦C, 2 h 2.0 2.0 100 110–155

RF + 550 ◦C, 2 h 6.0 4.0 67 70–180

RF + 1000 ◦C, 1 h 6.0 4.0 67 120–155

Based on the presented results, it can be concluded that after RF, the finishing tempera-
ture of shape recovery after 2% of induced strain was 125 ◦C. A induced strain of 6% led to
an increase in the Af temperature to 155 ◦C. The SRR, after 6% of induced strain, was 83%,
as the value of total completely recoverable strain was 5%. PDA at a temperature of 550 ◦C
for 2 h allowed increasing Af to 180 ◦C, while the SRR decreased to 67%. The difference
between RF and RF + PDA states consisted in the development of the softening processes
during PDA and corresponding increase in TRSR. PDA at a temperature of 1000 ◦ C for 1 h
did not lead to a noticeable change in the Af temperature in comparison to the hot-forged
state, while the SRR also decreased to 67%.

4. Conclusions

The study of the possibility of the production of long-length rods from TiNiHf alloys,
with a lowered Hf content and a high-temperature shape memory effect in the range of
120–160 ◦C, was performed in the present work. The following conclusions can be drawn:

1. Initial ingots with 1.5, 3.0 and 5.0 at.% Hf were successfully obtained by electron beam
melting from Ti-Ni billets and pure Hf wire, used as raw materials.

2. Ingots with 3.0 and 5.0 at.% Hf demonstrated insufficient technological plasticity,
presumably because of the excess precipitation of (Ti,Hf)2Ni-type particles with the
decrease in Ni content. The premature destruction of ingots during the process of
rotary forging does not allow obtaining high-quality long-length rods.

3. A good-quality rod with a diameter of 3.5 mm and a length of 870 mm was obtained
from the ingot with 1.5 at.% Hf. The obtained TiNiHf rod had relatively high values of
mechanical properties: a dislocation yield stress of 800 MPa, ultimate tensile strength
of 1000 MPa, and elongation to fracture of 24%.

4. The obtained rods provided the required values of functional properties: a completely
recoverable strain of 5%, and a finishing temperature of shape recovery after 2% of
induced strain of 125 ◦C in the as-forged state and of 155 ◦C after post-deformation
annealing at 550 ◦C for 2 h.
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Abstract: The effect of a promising method of performing a thermomechanical treatment which provides
the nanocrystalline structure formation in bulk NiTi shape memory alloy samples and a corresponding
improvement to their properties was studied in the present work. The bi-axial severe plastic deformation
of Ti-50.7at.%Ni alloy was carried out on the MaxStrain module of the Gleeble system at 350 and 330 ◦C
with accumulated true strains of e = 6.6–9.5. The obtained structure and its mechanical and functional
properties and martensitic transformations were studied using DSC, X-ray diffractometry, and TEM. A
nanocrystalline structure with a grain/subgrain size of below 80 nm was formed in bulk nickel-enriched
NiTi alloy after the MaxStrain deformation at 330 ◦C with e = 9.5. The application of MaxStrain leads
to the formation of a nanocrystalline structure that is characterized by the appearance of a nano-sized
grains and subgrains with equiaxed and elongated shapes and a high free dislocation density. After the
MaxStrain deformation at 330 ◦C with e = 9.5 was performed, the completely nanocrystalline structure
with the grain/subgrain size of below 80 nm was formed in bulk nickel-enriched NiTi alloy for the first
time. The resulting structure provides a total recoverable strain of 12%, which exceeds the highest values
that have been reported for bulk nickel-enriched NiTi samples.

Keywords: shape memory alloys; NiTi; severe plastic deformation; nanostructured materials

1. Introduction

One of the most rapidly developing fields of the modern materials science is associated
with the smart functional materials with a shape memory effect (SME). NiTi alloys are
the most frequently used smart functional materials with the best functional properties
compared to all of the shape memory alloys (SMA). Consequently, NiTi SMA are widely
applied in the aircraft industry, mechanical engineering, and particularly in medicine [1–3].
The most significant medical products manufactured from NiTi SMA are vascular stents,
clips of various designs, and devices for orthodontics, etc. [4,5] They are commonly pro-
duced from NiTi SMA containing more than 50.5 at.% Ni, which provides shape recovery
at body temperature [5–7]. The improvement of the functional characteristics of NiTi SMA
will improve the reliability and durability of applied devices, and it will also contribute to
the design of new ones. Thus, it is a relevant technological and scientific task that requires
additional research.

The mechanical and functional properties of NiTi SMA are structure sensitive and
depend on the modes of the thermomechanical treatment (TMT) applied for the production
of the alloy. Conventional manufacturing technologies of NiTi SMA usually include hot
deformation by rolling or forging at recrystallization temperatures and above. Elevated
deformation temperatures lead to the formation of the recrystallized structure with a size
of about 25–30 microns and a relatively low values of the completely recoverable strain of
4% and lower [8,9].
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Severe plastic deformation (SPD) is one of the most commonly applied methods of per-
forming a thermomechanical treatment, allowing one to obtain a true nanocrystalline struc-
ture (NCS) in NiTi SMA and considerably improve their operational characteristics [10–13].
However, an NCS can only be obtained in thin NiTi samples after multi-pass cold rolling or
high-pressure torsion and subsequent post-deformation annealing (PDA) [10,14]. Therefore,
the further development of SPD methods is focused on the search for new deformation
modes for manufacturing bulk NiTi samples with NCS [6–8].

In our previous studies, the true nanocrystalline structure was formed for the first time
in severely deformed bulk NiTi SMA. The application of bi-axial SPD on the MaxStrain (MS)
module for the processing of equiatomic Ti-50.0at.% Ni resulted in the development of a
mixed nanocrystalline structure, with the average size of the grain/subgrains being 55 nm,
and a very high completely recoverable strain of 9% [15–17]. The present work continues the
previous studies, and it is focused on the investigation of the effect of bi-axial deformation
on the structural phase state and properties of bulk nickel-enriched NiTi SMA. In these
alloys, deformation in the temperature range of dynamic polygonization is accompanied
by dynamic strain aging with the precipitation of Ni4Ti3 particles, which cannot occur in
non-aging equiatomic NiTi SMA, and it has a great impact on the structure’s formation
and properties [18–21]. The precipitated particles restrict the grain growth, however,
they can lead to earlier sample destruction compared to that of equiatomic alloy and the
accumulation of a lowered value of true strain. Thus, the aim of this work is to continue
studying the effect of bi-axial MS deformation on the structure and properties of NiTi SMA,
focusing on the nickel-enriched alloy.

2. Materials and Methods

Hot-rolled nickel-enriched NiTi (50.7 at.% Ni) SMA plates, with a height of 15 mm, were
chosen as the study material. The hot-rolled NiTi rod was subjected to a reference treatment
(RT), consisting of annealing at 900 ◦C for 30 min and subsequent cooling in water.

Then, from the reference-treated NiTi plate, samples with a grip zone of 15 × 15 × 150 mm3

and a central bulk deformable zone of 10 × 10 × 11 mm3 were cut using an electric discharge
machine (Figure 1). For the precise control of the temperature change in the deformable zone
during the deformation process, a technological channel for the thermocouple was drilled, as is
shown in Figure 1.
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Bi-axial MS deformation was performed using the Gleeble HDS-V40 physical simulation
system. During the MS deformation, the central zone of the specimen was deformed by
a compression between two strikers with the rotation of the sample by 90◦ around its
longitudinal axis after each strike. The heating of the deformation zone was supplied by
the electric current.

42



Materials 2023, 16, 511

In the present study, the following regimes of MS deformation were applied: the
deformation cycle was repeated for 10 or 14 times at 350 and 330 ◦C at an anvil speed
of 0.5 mm/s. Accumulated true strains were calculated as the sum of the logarithmic
strains for each compression, and these equaled e = 6.6 and 9.5.

The samples used for the analyses of the obtained structural phase state and its
mechanical and functional properties were cut using the electrical discharge machine.
Characteristic temperatures of martensitic transformations (MT) were measured using
the Mettler-Toledo Differential scanning calorimeter, DSC-3 with a cooling–heating rate
of 10 K/min in the temperature range from −100 to +100 ◦C. The structure was studied
using a D8 Advance X-ray diffractometer, a VEGA 3 TESCAN Scanning electron microscope
(SEM), and a JEM-2100 Transmission electron microscope (TEM). The samples for the
structure analysis were cut from the sample in the direction that was perpendicular to the
last compression.

The total recoverable strain εrt was determined by employing a thermomechanical
method using a bending mode for strain involving cold water (the R-phase state). The size
of the sample was 0.5 × 0.5 × 10 mm3. The method consists of the following sequence
of operations: consecutively increasing the induced strain; determining the value of the
residual strain after unloading and the difference between the induced strain and residual
strain (elasticity and superelasticity effect); heating it to above the As temperature for the
strain recovery; indicating the values of residual strain and recovered strain (shape memory
effect) [9]. The total recoverable strain εrt is defined when the residual strain is 0%, and
consequently, the shape recovery rate is 100%. The mechanical properties were estimated
by the Vickers hardness measurements using the LECOM 400-A hardness tester at room
temperature under 1N load for 10 s.

3. Results and Discussion
3.1. MS Deformation

The images of the sample and the scheme of MaxStrain deformation are shown in
Figure 1. While MS deformation is biaxial, a certain part of a metal flows out from the
deformation zone to the specimen head after each compression due to a large plastic strain
component. Reducing the volume of the deformable material makes it difficult to build
accurate stress–strain curves, and therefore, we focused on the strain force. During the first
compression, the sample was reduced to a height of 7 mm (e = 0.36). After the next passes,
the reduced height was greater than the previous one was by 0.1–0.2 mm (e = 0.6–0.7) in
order to ensure uniform strain distribution. The final height of the sample with e = 9.5 was
5.5 mm.

The maximum deformation force increased from 160 to 180 kN as the temperature
decreased from 350 to 330 ◦C. During the deformation of the equiatomic NiTi SMA, these
values were 15–20 kN lower, which could have been caused both by a change in the phase
composition of the alloy and by dispersion hardening associated with the precipitation of
the Ni4Ti3 phase particles.

At a temperature of 350 ◦C, the NiTi SMA had good deformability, which allowed
it to accumulate the required values of a true strain. The decrease in the deformation
temperature to 330 ◦C was accompanied by an appearance of cracks at the point of transition
from the deformed zone to the grip one (Figure 2). Cracks appeared during the last
compression at e = 9.5, thus, a further increase in the value of accumulated strain at a given
temperature was essentially achieved.

The analysis of a fracture reveals a lot of pits of different sizes and depths on the fracture
surface (Figure 2). This surface structure is explained by the fact that when the maximum
hardened states are reached in local volumes, microvoids appear in areas that are obstacles
to continuous deformation. As the stress increases, the microvoids grow and merge, leading
to complete destruction, with the formation pits at the fracture, which are interconnected by
bridges. Such a pitted microstructure is characteristic of a ductile fracture.
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Figure 2. Scanning electron microscopy image of the NiTi SMA sample in the place of destruction
after deformation at 330 ◦C with e = 9.5.

Thus, the critical mode of MS deformation can be defined as deformation at 330 ◦C
with e = 9.5. In an equiatomic alloy, the fracture occurred at 250 ◦C with e = 11, which can
be explained by the absence of precipitates of the hardening Ni4Ti3 phase.

3.2. XRD Study

The representative X-ray diffraction patterns of NiTi SMA after the RT and MS defor-
mation, which were obtained at room temperature, are shown in Figure 3a.
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The X-ray analysis reveals the B2-austenite line and a certain amount of Ti2Ni phase
(see {511}Ti2Ni line) at room temperature after the RT. Deformation leads to an increase
in the characteristic temperatures of martensitic transformation and the corresponding
appearance of the intermediate R-phase at room temperature. This increase is proven by
the results of DSC.

The measurements of the X-ray line width of B2-austenite Bhkl (full width at half
maximum (FWHM)) allow us to estimate changes in the crystal lattice’s defectiveness. MS
deformation is accompanied by a dramatic increase in the B110 line FWHM, which indicates
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a significant increase in the degree of the lattice’s defectiveness and the appearance of the
R-phase (Figure 3b). The R-phase may contribute to the line broadening, but considering
the observed changes, this contribution can be omitted.

3.3. TEM Study

In the studied alloy, after the RT, the average size of the austenite grains is about
25–30 microns. To study the structure and phase composition of the NiTi alloy, the TEM
images were obtained after MS deformation with accumulated strains of e = 6.6 and 9.5
at 350 and 330 ◦C, respectively. In the temperature range of 300–500 ◦C, the dynamic
polygonization processes must develop in the nickel-enriched NiTi SMA, as was shown
in [18].

The bright and dark field TEM images reveal that MS deformation at 350 ◦C leads to
the formation of a nanocrystalline structure that is characterized by the appearance of a
nano-sized grains and subgrains (50–100 nm in transverse direction) with equiaxed and
elongated shapes of about 1011 cm−2 and a high free dislocation density (Figure 4). The
cellular substructure and submicron-sized areas with a uniform distribution of dislocations
can be observed as well. It can be consequently concluded that the dynamic recovery
and polygonization processes in nickel-enriched NiTi SMA in the same thermomechanical
conditions are less developed compared to those of an equiatomic NiTi alloy. This can be
explained by the retarding effect of the finely dispersed Ni4Ti3 phase particles that were
precipitated during dynamic strain aging [19,20].
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Figure 4. Structure of NiTi alloy after reference treatment, light optical microscopy (a), after MS deforma-
tion at 350 ◦C, e = 6.6 (b), and 330 ◦C, e = 9.5 (c); both of them involved transmission electron microscopy.
Left, bright-field images; center, dark-field images; right, selected area electron diffraction patterns.

After the analysis of the SAED pattern, only the reflexes of B2-austenite and weak
reflexes of the R-phase were determined. The observed parallel plates are crystals of the
R-phase, which are formed upon cooling after MS deformation. The TEM study does not
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reliably reveal the reflexes or images of the Ni4Ti3 phase due to there being a very high
degree of lattice defectiveness and extremely small Ni4Ti3 particle sizes.

MS deformation at 330 ◦C, e = 9.5, also leads to the formation of the nanograined/
nanosubgrained structure in combination with a highly dislocated substructure (Figure 4b).
The dislocation density in this case is visually higher than it is after the MS deformation at
350 ◦C; the grains/subgrains are more equiaxed and smaller. Thus, under MS deformation
at 330 and 350 ◦C, the processes of dislocations redistribution are limited due to the retard-
ing effect of the Ni4Ti3 phase particles, and the nanograined/nanosubgrained structure is
less developed than it is in the non-aging NiTi alloy [16,17].

3.4. DSC Study

The results of the DSC show that after the RT, one-stage B2 ↔ B19′ forward and
reverse MTs proceed, which are indicating by a single calorimetric peak on the calorimetric
curves (Figure 1). The obtained characteristic temperatures of the MT are presented in
Table 1: Ms, Mf and As, Af are start and finish temperatures of the forward and reverse
MTs; TR—starting temperature of B2→R MT; Mp; Ap—peak temperatures of forward and
reverse MTs. The increase in the strain leads to the appearance of a two-stage B2→R→B19′

transformation, which is indicated by the broadening and multiplication of the peaks in
both of the MTs (Figure 5; Table 1).

Table 1. Characteristic temperatures of martensitic transformation of NiTi SMA.

Treatment Mf, ◦C Mp,◦C Ms, ◦C TR,◦C As, ◦C Ap,◦C Af, ◦C

Reference −32 −17 −4 - −20 −13 1

T = 350 ◦C, e = 6.6 <−100 −70 −40 45 −26 −10 42

T = 350 ◦C, e = 9.5 <−100 −68 −32 45 −22 −8 35

T = 330 ◦C, e = 9.5 <−100 −70 −35 49 −23 −8 41
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The strain hardening in combination with the strain aging has the highest influence
on the MT sequence and temperatures during the MS deformation. The formation of
B19′-martensite is inhibited by the strain hardening which also facilitates the formation
of the R-phase from B2-austenite. The dynamic precipitation of Ni4Ti3 phase particles
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indicates, indirectly, significant shifts in the temperature range of the forward martensitic
transformation which are below minus 100 ◦C and cannot be explained only by the defor-
mation hardening. The formation of the Ni4Ti3 phase particles, because of the strain aging,
also inhibits the R-phase formation. The increase in the strain rate from 6.6 to 9.5 at 350 ◦C
does not significantly change the calorimetric peak positions.

3.5. Functional Properties and Hardness

The strain hardening of the alloys induced by MS deformation increases the Vickers
hardness and the total completely recoverable strain εrt, which is a main functional property
of SMA (Table 2). The higher the resistance is to plastic deformation, the higher the strain
is that can be induced without involving a dislocation slip and then recovered by shape
memory mechanisms, such as thermoelastic MT and martensite reorientation [22].

Table 2. Hardness and total maximum completely recoverable strain of NiTi SMA.

Treatment HV1 εrt

Reference 242 ± 4 4.0 ± 0.3
T = 350 ◦C, e = 6.6 325 ± 7 10.9 ± 0.3
T = 350 ◦C, e = 9.5 341 ± 7 11.7 ± 0.3
T = 330 ◦C, e = 9.5 362 ± 6 12.0 ± 0.3

The MS deformation is accompanied by significant increase in hardness compared
to that which occurs during the RT (Table 2). This trend continues with an increase in
the accumulated strain and a decrease in the deformation temperature. We note that
the hardness of the previously studied equiatomic alloy is lower compared to that of the
Ti-50.7at.%Ni alloy by 15–30 HV under the same MS deformation conditions [18]. This
result may be caused by different deformation mechanisms involved in the indentation
process. In the nickel-enriched NiTi SMA, indentation is performed at room temperature,
i.e., which is far above the AS temperature, and recovery upon unloading includes the
elastic and superelastic strain components, whereas the equiatomic alloy indented below
Mf undergoes only elastic recovery upon unloading [22].

The calorimetric study of the Ti-50.7at.%Ni alloy shows that MS deformation leads to
the change in the MT sequence, which proceeds through the intermediate R-phase, and
the significant extension of the R-phase(Table 1). Therefore, during εrt measurement, the
strain induction starts in the R-phase state. Such a strain-inducing condition allows it to
reaching maximum values of the recoverable strain compared to that of the strain-inducing
condition in the B19′-martensite state because of the difference between the critical stress for
B19′-martensite formation in the R-phase (transformation yield stress) and the reorientation
stress of thermal B19′-martensite.

The εrt value consists of three components: elastic strain and superelastic strain, which
recover upon unloading, and the recovery strain of the shape memory effect, which recovers
while heating it above Af. The results of the εrt measurement for Ti-50.7at.%Ni alloy are
shown in Table 2. After all of the studied regimes of the MS deformation were conducted,
the εrt was 11–12%, which is comparable with the highest value obtained in previous
studies [13,17,22], and it is much higher compared to that of the RT.

The total recoverable strain’s tendency to increase with an increase in the accumulated
strains and decrease in the MS deformation temperatures correlates with the increase
in the hardness, which indicates an increase in the MS deformation hardening (Table 2).
This tendency has also been observed earlier for the equiatomic NiTi alloy [13,16–18].
The increase in hardness is accompanied by the increase in the dislocation yield stress.
Therefore, the difference between the dislocation and transformation yield stresses increases
as the accumulated strain increases and the deformation temperature decreases. This leads
to the later involvement of the irrecoverable dislocation slip in the deformation process,
and consequentially, an improvement of the shape recovery characteristics [17,22].
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4. Conclusions

The severe plastic deformation of the nickel-enriched Ti-50.7at.%Ni shape memory
alloy was carried out for the first time using the MaxStrain (MS) mode at temperatures of
350 and 330 ◦C with accumulated true strains of e = 6.6 and 9.5, respectively. The critical
regime of MS deformation accompanied by the destruction of a sample was defined as
T = 330 ◦C, with e = 9.5. As a result of MS deformation, a nanocrystalline structure with a
high dislocation density and an average grain/subgrain size that was below 100 nm was
formed, providing a significant increase in the total completely recoverable strain of the
nickel-enriched NiTi SMA of up to 12% compared to 4% which occurred after the reference
treatment. Traces of the Ni4Ti3 phase particles were not observed directly by the TEM
and X-ray studies because of their extremely fine size, which were presumably less than
5 nm. However, a dynamic deformation-induced precipitation of Ni4Ti3 phase particles
was indicated indirectly by the DSC results. After the MS deformation at 330 and 350 ◦C of
nickel-enriched NiTi alloys, the processes of dynamic recovery and polygonization, includ-
ing dislocation redistribution and subgrains formation, were limited due to the retarding
effect of the Ni4Ti3 phase particles, and the nanograined/nanosubgrained structure was
less developed compared to that of the near-equiatomic NiTi alloys.
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Abstract: Severe plastic deformation via high-ratio differential speed rolling (HRDSR) was applied
to the Ni-rich Ti-50.8Ni alloy. Application of HRDSR and a short annealing time of 5 min at 873 K
leads to the production of a partially recrystallized microstructure with a small grain size of 5.1 µm.
During the aging process for the annealed HRDSR sample at 523 K for 16 h, a high density of Ni3Ti4
particles was uniformly precipitated over the matrix, resulting in the formation of an R phase as
the major phase at room temperature. The aged HRDSR sample exhibits excellent superelasticity
and superelastic cyclability. This achievement can be attributed to an increase in strength through
effective grain refinement and particle strengthening by Ni3Ti4 and a decrease in the critical stress for
stress-induced martensite (B19′) due to the presence of the R-phase instead of B2 as a major phase at
room temperature. The currently proposed method for using HRDSR and post-deformation heat
treatment allows for the production of Ni-rich NiTi alloys with excellent superelasticity in sheet form.

Keywords: shape memory; superelasticity; aging; severe plastic deformation; grain refinement;
superelastic cyclability

1. Introduction

Ni-rich NiTi alloys containing more than 50.6 at.% nickel exhibit superior superelas-
ticity [1,2]. Superelasticity occurs at temperatures above the austenite finish temperature
(Af) upon loading, and a stress hysteresis forms in the tensile or compressive stress–strain
curve due to phase transformation during loading and unloading [1,2]. Superelasticity
of NiTi alloys has been extensively studied for applications in biomedical and engineer-
ing fields [1,3–5]. However, control of the superelastic properties of Ni-rich NiTi alloys
is difficult because the characteristics of the phase transformation sensitively vary with
small changes in microstructure and composition [2]. The shape memory functions of
Ni-rich NiTi alloys are known to be greatly affected by aging due to the formation of
Ni4Ti3 precipitates [6–8]. After aging, the martensite start temperature (Ms) and austenite
finish temperature (Af) tend to increase with increasing aging time due to Ni depletion
of the matrix by precipitation of the Ni4Ti3 phase [9]. Thus, aging is an effective way of
controlling the superelastic characteristics of Ni-rich NiTi alloys. Grain size also greatly
affects the transformation stress, transformation strain and hysteresis loop area of Ni-rich
NiTi alloys [10–13]. From a mechanical viewpoint, hardening by Ni4Ti3 precipitates and
grain-size reduction in Ni-rich NiTi alloys can increase the critical stress for the occurrence
of slip, which is beneficial for achieving good superelasticity. This is because if the critical
stress for slip is low, there is a high chance of slip by dislocations during loading.

Recently, interest in superelasticity originating from multistep phase transformation
has increased [14–16]. During the multistep transformation process, an intermediate
phase, the R-phase with a rhombohedral crystal structure that grows mainly on the {111}
plane of B2 austenite, is formed, showing a two-step change for the phase structure:
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B2→ R→ B19′ [15,16] or a three-step change for the phase structure: B2 → R1, B2 →
R2, R1/R2 → B19′ [7] upon cooling. The R-phase transformation can be introduced
depending on the thermomechanical treatment conditions [7,14–16]. During cooling, R
is formed before the formation of B19′ because B19′ is thermodynamically preferred,
but the R phase is kinetically advantageous, having low activation energy [17]. As the
B2 to R phase transformation accompanies a significantly smaller transformation strain
(less than 1% [16–18]) compared to the B2 to B19′ phase transformation (approximately
8–10% [17,19,20]), this characteristic is useful for small amplitude but higher frequency
actuator and damping applications [21].

Heavy plastic deformation or severe plastic deformation (SPD) has been demonstrated
to be effective in the grain refinement of NiTi alloys [22–30]. To date, many studies have
been conducted to investigate the effect of grain size on superelastic properties [28–30].
Malard et al. [28] and Delville et al. [29] showed that a Ni-rich NiTi alloy, which has
been cold worked and then annealed by a pulsed electric current, is highly resistant to
dislocation slip at grain sizes < 100 nm, while that with fully recrystallized microstructures
and grain sizes exceeding 200 nm is prone to dislocation slip. The authors showed that
grain refinement to the grain size <100 nm renders the alloy have superior superelasticity.
Tong et al. [30] applied equal channel angular pressing (ECAP) to a Ni-rich NiTi alloy with
subsequent annealing at 573–873 K. The sample with a grain size of 0.3 µm exhibited the
best superelasticity and cycling stability.

Superelasticity of NiTi alloys is not often determined by a single microstructural factor
but by a combined effect involving the grain size, Ni4Ti3 precipitate, texture and dislocation
density. The combined effect of grain-size reduction by SPD and aging on the superelasticity
of Ni-rich NiTi alloys has been relatively rarely studied. In this work, a Ni-rich NiTi alloy
was processed by high-ratio differential speed rolling (HRDSR), which is a severe plastic
deformation method applicable for materials in sheet form [22,31], and aging was applied
to the deformed samples. The effects of grain size, dislocation density, texture and Ni4Ti3
precipitates on phase transformation and superelastic behavior were examined.

2. Experimental Procedures

Ti-50.8% at. Ni alloy plates with 3 mm × 2.6 mm × 100 mm were purchased from
SMA Co., Ltd (Seoul, Republic of Korea). The purchased plate was heat-treated at 1023 K
for 15 min to relieve any residual stress. This sample will be referred to as the as-received
(AR) sample. For applying severe plastic deformation at cryogenic temperatures, which
is known to be more effective in microstructural refinement compared to SPD at room
temperature [22,32], the AR sample was immersed into liquid nitrogen for 10 min, removed
from the liquid nitrogen bath and then immediately subjected to differential speed rolling
with a speed ratio of 2:1 between the upper and lower rolls. After two passes, the thickness
was reduced to a value of 1.55 mm, corresponding to a thickness reduction of 40%. This
sample will be hereafter referred to as the HRDSR sample. The AR and HRDSR samples
were annealed for 5 min and 120 min at a temperature of 873 K, respectively, in an argon
atmosphere. Some of the annealed AR and HRDSR samples were aged for 16 h at 523 K in
an argon atmosphere.

To evaluate the superelastic properties of the AR, HRDSR, annealed AR, annealed
HRDSR, aged AR and aged HRDSR samples, a cyclic test through tensile loading–unloading
was performed. A 6% strain was applied at a test temperature of 298 K.

The microstructure of the samples was observed using field emission scanning electron
microscopy (BSE of FE-SEM (SU-5000, Hitachi, Tokyo, Japan), field emission transmission
electron microscopy (FE-TEM (JEM 2001 F, 200 keV, JEOL, Tokyo, Japan) and electron
backscattering diffraction (EBSD) analysis (Velocity Super, EDAX, Mahwah, United States).
For the FE-TEM observation, samples were jet polished with a solution composed of 60%
methyl alcohol (CH3OH), 30% glycerin (C3H8O3) and 10% nitric acid (HNO3) and then ion
milled. For the EBSD observation, the sample with a transverse cross section along the RD
was mechanically ground using SiC paper and polished using 3 µm and 1 µm diamond
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suspensions and OP-S suspensions in order. EBSD data were analyzed with a step size of
0.2 µm using TSL-OIM analysis software, excluding data with a confidence index value
of 0.1 or less. The average grain size was determined with a grain tolerance angle of 5◦,
and the fraction of recrystallized grains was determined using the grain orientation spread
(GOS) method. The GOS of a recrystallized grain was assumed to be less than 2◦.

A differential scanning calorimeter, DSC (DSC 200 F3 Maia, NETZSCH, Selb, Ger-
many), was used in the temperature range of 123 K to 373 K at a heating and cooling rate of
5 K/min to determine the phase transformation temperature.

High-resolution X-ray diffraction (HR-XRD, SmartLab, Rigaku, Tokyo, Japan) with
a CuKa (λ = 1.5412 Å) target was used for phase identification of the deformed and heat-
treated samples at scan angles ranging from 35 to 80 degrees.

3. Results
3.1. Initial Material

Figure 1a–f show the EBSD inverse pole figure (IPF), grain boundary (GB) and kernel
average misorientation (KAM) maps for the AR and HRDSR samples. The grain size of
the AR sample is 10.9 µm. The microstructure of the AR sample is composed of equiaxed
grains, some of which contain dislocation substructure. The HRDSR sample shows a
heavily deformed microstructure. The fraction of low-angle grain boundaries is as high as
0.86. The <110>//NDB2 texture in the austenite phase of the AR sample is retained after
deformation by HRDSR.
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Figure 1. The inverse pole figure, KAM and GB maps for the (a–c) as-received (AR) and (d–f) HRDSR
samples. In the GB map, low-angle boundaries (2–5◦) are in red, intermediate angle boundaries
(5–15◦) are in green and high-angle boundaries (>15◦) are in blue.

Figure 2a shows the DSC results for the AR and HRDSR samples. The phase transfor-
mation temperatures determined from the DSC curves are summarized in Table 1. The AR
sample exhibits a two-stage phase transformation (B2 austenite→ R-martensite→ B19′

martensite) upon cooling. The R-phase peak is relatively small and broad compared to
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the B19′ peak. Upon heating, the peak associated with the R-phase does not appear, and
only a single phase transformation from B19′ to B2 is observed. This type of asymmetric
R-phase transformation is known to occur when B19′ is energetically preferred over R at
all temperatures, but R-phase formation has a lower kinetic barrier upon cooling [33]. The
HRDSR sample does not show any phase transformation during heating and cooling, indi-
cating that the introduction of a high dislocation density by SPD suppresses the martensitic
transformation upon cooling.

Table 1. DSC test results for the AR and HRDSR samples before and after various heat treatments.

Samples
Transformation Temperature (K)

Cooling Heating
Rs Rf Ms Mf Rs Rf As Af

As-purchased 246.7 227.3 262.1 277.7
AR 268.9 229.3 207.7 187.3 - - 245.9 257.5

annealed at 873 K for � �
5 min - - 236.1 204.7 - - 245.4 264.4

120 min - - 215.6 208.2 - - 236.2 258.4
5 min + aged at 523 K 313.5 303.5 189.2 136.2 253.8 267.4 311.1 318.3

120 min + aged at 523 K 309.4 304.2 189.3 159.3 253.3 265.1 310.7 313.7
HRDSR - - - - - - - -

annealed at 873 K for � �
5 min - - 274.7 181 - - 218.5 267.6

120 min - - 217.7 195.8 - - 238.8 256
5 min + aged at 523 K 310.2 303.5 189.9 137.4 249.6 260.6 308.9 313.9

120 min + aged at 523 K 322.3 308.4 210.6 187.8 264.9 273.8 314.5 319.6
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Figure 2b shows the XRD curves for the AR and HRDSR samples, respectively. For
both samples, only the B2 austenite phase is identified, which agrees with the prediction
from the DSC result. Compared to the AR sample, the HRDSR sample has considerably
broader peaks, indicating that the dislocation density and the ratio of amorphous and
nanosized grains are greatly increased after SPD by HRDSR.
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3.2. Materials Processed by HRDSR
3.2.1. Microstructures

Figure 3a–h shows the EBSD inverse pole figure maps for the annealed and aged
AR and HRDSR samples. The grain size and fraction of recrystallized grains determined
based on the EBSD data are plotted in Figure 4a,b, respectively. The grain size is increased
with annealing time. For the AR sample, the grain size is increased from 10.9 to 13.9 µm
after annealing for 120 min. For the HRDSR sample, the grain sizes after annealing for
5 min and 120 min are 5.1 µm and 8.7 µm, respectively. During the subsequent aging
process, noticeable grain growth occurs in the AR and HRDSR samples annealed for 5 min,
while limited grain growth occurs in the AR and HRDSR samples annealed for 120 min.
The fraction of recrystallized grains in the AR sample increases from 0.33 to 0.43 and 0.78
after annealing for 5 and 120 min, respectively. For the HRDSR sample, the fraction of
recrystallized grains dramatically increases after 5 min of annealing (from 0.03 to 0.68)
and is further increased to 0.78 after annealing for 120 min. Inverse pole figures, given as
insets, show that the <110>//NDB2 texture component in the AR sample is retained after
annealing and aging. For the HRDSR sample, after annealing, a new texture component
(<111>//ND)B2 develops, supporting the occurrence of recrystallization during the heat
treatment, and this texture component retains after aging. For the aged AR and HRDSR
samples, the fraction of recrystallized grains decreases (rather than increases) after aging
(except for the AR sample annealed for 5 min), and this decrease is most pronounced in
the HRDSR sample annealed for 5 min. This unexpected result is most likely due to the
precipitation of Ni4Ti3 particles that creates coherency strain fields surrounding them and
induces the formation of R-phase around the particles within grain interiors, leading to
an increase in GOS to a value of over 2◦ in the recrystallized grains obtained during the
annealing process. This will be discussed later.
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Figure 3. The IPF maps for the AR samples (a) annealed for 5 min at 873 K, (b) annealed for 5 min at
873 K and then aged at 523 K for 16 h, (c) annealed for 120 min at 873 K, (d) annealed for 120 min at
873 K and then aged at 523 K for 16 h. The IPF maps for the HRDSR samples (e) annealed for 5 min
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3.2.2. Phase Transformation Temperatures

Figure 5a–c shows the DSC results for the annealed and aged AR and HRDSR samples.
The phase transformation temperatures determined from the DSC curve are summarized in
Table 1. The HRDSR sample, which does not show the austenite–martensite transformation
peak upon cooling (Figure 2a), shows a small and broad austenite–martensite transfor-
mation peak after annealing for 5 min (Figure 5a). The B2→B19′ transformation becomes
more obvious after prolonged annealing for 120 min. This observation indicates that the
increased degree of recrystallization promotes the B2–B19′ transformation because the
density of dislocations is further decreased with increasing amount of recrystallization.
After aging, two-stage transformations occur in both the AR and HRDSR samples. Two-
stage transformation occurs upon cooling as well as heating in both alloys. This type of
symmetric R-phase transformation is known to occur when there is a temperature window
in which R is thermodynamically favored over both B2 and B19′ [33]. The peaks for the
B2→ R and R→ B2 transformations in all the aged samples are located at approximately
300 K and 315 K upon cooling and heating, respectively. It is noted from the DSC curves
that the transformation temperatures for B2 → R and R → B2 are less sensitive to the
microstructure compared to the transformation temperatures for R→B19′ and B19′ → R.
Figure 5c shows the magnified DSC curves for the aged AR and HRDSR samples during
cooling in the temperature range between 220 and 300 K. Unlike the aged AR samples,
small peaks appear in the aged HRDSR samples. This result suggests the possibility of the
occurrence of B2→ R2 transformation in the aged HRDSR samples. It was claimed that the
phase transformation of B2→ R1 occurs due to the generation of Ni4Ti3 near high-energy
grain boundaries, and B2→ R2 phase transformation occurs when the dislocation networks
existing inside the grains act as nucleation sites for Ni4Ti3 precipitation [6,7].

3.2.3. Precipitates

Figure 6a,b shows the XRD curves for the annealed and aged AR and HRDSR samples.
Only the B2 austenite phase is observed in both the annealed AR and HRDSR samples.
After aging treatment, R-phase peaks can be observed, which is clearly evidenced by a
splitting of the (1 1 0) austenitic peak [7] in both the AR and HRDSRed samples, indicating
that the microstructures of the aged AR and HRDSR samples are composed of a mixture of
B2 and R phases at room temperature, in agreement with the result expected from the DSC
curves at 298 K.
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Figure 6. The XRD curves for the (a) AR and (b) HRDSR samples after annealing or annealing
plus aging. Identification of phases was made based on the data from JCPDF cards (01−076−3614,
01−076−7519 and 01−076−4263).

Figure 7a–h shows the KAM maps for the annealed and aged AR and HRDSR samples,
and Figure 8 shows a plot of their average KAM values. The KAM value indicates the
average misorientation value between the measurement point and its surrounding points,
which indicates the local strain [34]. Therefore, the density of geometrically necessary
dislocations, which are necessary for preserving lattice continuity, increases with the KAM
value [35]. The KAM value decreases after annealing for 5 min in both the AR and HRDSR
samples, but a more significant decrease occurs in the HRDSR sample, which is due to
the occurrence of recrystallization in the HRDSR sample. A large increase in KAM after
aging occurs in the HRDSR sample annealed for 5 min; however, the KAM value does
not change much after aging of the AR sample annealed for 5 min. The large increase
in the KAM value over the matrix of the HRDSR sample after aging can be attributed to
precipitation of a large amount of Ni4Ti3 particles during aging, which occurs because the
large grain boundary areas and dislocation substructure within interiors of small partially
recrystallized grains provide the preferred sites for nucleation of Ni4Ti3 particles and fast
atomic diffusion paths. The formation of the Ni4Ti3 precipitates promotes the formation of
the R phase by impeding the B2→B19′ transformation, but as Ni4Ti3 creates high-strain
energy, the nucleation and growth of R preferentially occur near the grain boundary and
dislocation substructure where the nucleation barrier for the R phase is low [36]. The
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fraction of low-angle grain boundaries of the HRDSR sample (annealed for 5 min) has
increased from 0.23 to 0.75 after aging, and this is most likely due to the creation of many
interfaces between the R and B2 phases. For the HRDSR sample annealed for 120 min, the
increase in the average KAM value after aging is relatively small, and the large KAM values
are confined to near grain boundaries. This results because the grain boundary area and
the density of dislocation substructure largely decreased during the long-time annealing of
120 min.
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Figure 7. The KAM maps for the AR samples (a) annealed for 5 min at 873 K, (b) annealed for 5 min
at 873 K and then aged at 523 K for 16 h, (c) annealed for 120 min at 873 K, (d) annealed for 120 min at
873 K and then aged at 523 K for 16 h. The IPF maps for the HRDSR samples (e) annealed for 5 min
at 873 K, (f) annealed for 5 min at 873 K and then aged at 523 K for 16 h, (g) annealed for 120 min at
873 K, (h) annealed for 120 min at 873 K and then aged at 523 K for 16 h.
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Figure 9a,b shows TEM micrographs for the aged HRDSR samples (after annealing
for 5 min). It is evident that Ni4Ti3 with a typical lenticular shape is nucleated within
grain interiors as well as near grain boundaries. The R-phase is often observed near Ni4Ti3
phases, supporting that Ni4Ti3 phase promotes the occurrence of the R phase. Figure 9c
shows a TEM micrograph of the aged HRDSR sample (after annealing for 120 min). It
is noted that the size of the Ni4Ti3 precipitate is larger than that observed for the aged
HRDSR sample (after annealing for 5 min). Figure 9d shows an SEM micrograph of the
aged HRDSR sample (after annealing for 120 min), where most of the Ni4Ti3 particles are
observed to nucleate and grow near grain boundaries. At the same SEM magnification, it is
hard to find Ni4Ti3 particles in the matrix of the aged HRDRS sample (after annealing for
5 min) (not shown here), indicating that Ni4Ti3 precipitate particles in the aged HRDRS
sample (after annealing for 5 min) are much smaller than those in the aged HRDRS sample
(after annealing for 120 min).
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Figure 9. The TEM micrographs for the aged HRDSR sample (after annealing for 5 min): (a) near
grain boundaries and (b) grain interior. The (c) TEM and (d) SEM micrographs for the aged HRDSR
sample (after annealing for 120 min). The regions marked by yellow and red circles represent the
regions where B2+R phases and B2+Ni4Ti3 phases are identified to exist, respectively.

3.2.4. Texture

The superelastic strain of NiTi alloys depends on the crystal orientation. Miyazaki
et al. [37] showed that [233]B2, [111]B2 and [011]B2 have high superelastic strains of 10.7%,
9.8% and 8.4% in a single crystal [3,37,38]. Figure 10 shows the [233]B2//RD, [111]B2//RD,
and [011]B2//RD texture components mapped on the EBSD-generated microstructures
of the AR and HRDSR samples and Figure 11 shows the total fractions of grains with
the three texture components in the AR and HRDSR samples. The calculated fractions
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for the annealed and aged AR and HRDSR samples range between 0.4 and 0.6, but the
HRDSR samples have lower fractions than the AR samples. This result implies that from
a texture viewpoint, the HRDSR samples do not have an advantage in achieving better
superelasticity compared to the AR samples.
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Figure 10. The [233]B2//RD, [111]B2//RD and [011]B2//RD texture components mapped on the
EBSD-generated microstructures of the AR samples (a) annealed for 5 min at 873 K and (b) annealed
for 5 min at 873 K and then aged at 523 K for 16 h, and the HRDSR samples (c) annealed for 5 min at
873 K and (d) annealed for 5 min at 873 K and then aged at 523 K for 16 h.

3.2.5. Mechanical Properties

Figure 12a,b shows the Vickers hardness measurement results obtained for the AR
and HRDSR samples after annealing and aging. For the AR sample, after annealing
for 5 min, the hardness is slightly decreased to 259.1 Hv due to the annealing effect.
However, upon subsequent aging, the hardness is increased to 280–288 Hv. The HRDSR
sample shows a Hv of 354, which is significantly higher than that for the AR sample
(266.8 Hv). After annealing for 5 min, the hardness is largely decreased to 251 Hv due
to the occurrence of recrystallization. Upon subsequent aging, however, the hardness is
increased to 327.2–342.9 Hv, which is much higher than that obtained for the AR sample
aged under the same conditions. The hardness of the HRDSR sample annealed for 120 min
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also increases after aging, but the obtained hardness is notably lower than that of the aged
HRDSR sample (after annealing for 5 min).
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and [011]B2//RD texture components for the AR and HRDSR samples after annealing or annealing
plus aging.
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Figure 12. The Vickers hardness of the (a) AR and (b) HRDSR samples after annealing or annealing
plus aging.

Figure 13a–f shows the cyclic tensile test results for the annealed AR and HRDSR
samples up to 6%. The measured residual strains are plotted as a function of the number of
cycles in Figure 14. For both the annealed AR and HRDSR materials, B19′ is expected to
be directly induced from B2 during loading. For the AR sample, annealing treatment for
5 min reduces the residual strain from 3.25% to 1.4% in the first cycle, indicating a positive
effect of annealing on superelasticity. As the number of cycles increases, the residual
strain increases and then tends to become saturated after many cycles. For the HRDSR
sample, fracture occurs before reaching a strain of 6% due to a significant deterioration
of ductility after heavy plastic deformation, which is typical in many SPD-processed
metals [2]. After annealing for 5 min and 120 min, the residual strain after the first cycle
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is approximately 2% and fracture occurs after 4~6 cycles. There is a notable difference
between the annealed AR and HRDSR samples in terms of the critical stress for stress-
induced martensitic transformation: the critical stresses of the annealed AR samples are
lower than those for the annealed HRDSR samples (357.0–375.1 MPa vs. 433.0–437.0 MPa).
This difference can be attributed to the grain-size effect on critical stresses for stress-
induced martensitic transformation because, as the grain size becomes smaller, the barrier
for martensitic transformation is expected to become higher [11].
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Figure 13. Superelastic cyclic tests up to the strain of 6% for (a) the AR sample, (b) the AR sample
annealed at 873 K for 5 min, (c) the AR sample annealed at 873 K for 120 min, (d) the HRDSR sample,
(e) the HRDSR sample annealed at 873 K for 5 min and (f) the HRDSR sample annealed at 873 K for
120 min.
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Figure 15a–d shows the cyclic tensile test results for the aged AR and HRDSR samples
up to 6%. The measured residual strains are plotted as a function of the number of cycles
in Figure 14. A significant improvement in superelasticity is observed in both materials
compared to the cases when only annealing is applied. Unlike the annealed materials with
the B2 phase, the aged materials contain a mixture of B2 and R phases, and the amount
of R is expected to be largest in the aged HRDSR sample (after annealing for 5 min). The
slope for elastic deformation of the aged HRDSR sample (after annealing for 5 min) is
apparently lower than that of the aged HRDSR samples (after annealing for 120 min) as
well as the aged AR samples. This is because the elastic modulus of the R phase is lower
than that of B2 (20 [16] vs. 60–70 GPa [39]) such that the elastic modulus of the aged
HRDSR sample (after annealing for 5 min) with the R-phase as a major phase is relatively
low. For the aged HRDSR sample (after annealing for 5 min), where B19′ is expected to
be stress induced from R rather than B2 during loading and that B19′ reverts to R during
unloading, the residual strain remains virtually zero after many cycles. This result indicates
that the aged HRDSR sample (after annealing for 5 min) exhibits excellent superelasticity
and cyclic stability. For the aged HRDSR sample (after annealing for 120 min), where
B19′ is expected to be stress induced from B2 during loading, the residual strain is larger
than that for the aged HRDSR sample (after annealing for 5 min) from the first cycle and
with repeated cycling, the residual strain continues to increase and then saturates beyond
five cycles. Compared to the aged HRDSR samples, the aged AR samples exhibit poorer
superelasticity and cyclability. It is worthwhile to note that the aged HRDSR sample (after
annealing for 5 min) exhibits incremental variation in stress at plateau during repeated
superelastic loading and unloading, while the other samples show a flat stress plateau.
Wang et al. [40] also observed the incremental stress variation during superelastic loading
in the swaged NiTi and attributed this phenomenon to the heterogeneous microstructure of
the swaged sample (mixed with high- and low-angle grain boundaries) where martensitic
transformation occurs first at high-angle grain boundaries and then later at low-angle
grain boundaries. The microstructure of the aged HRDSR sample (after annealing for
5 min) also consists of many high-angle grain boundaries and dislocation substructures in
grain interiors.
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Figure 15. Superelastic cyclic tests up to the strain of 6% for (a) the aged AR sample (after annealing
at 873 K for 5 min), (b) the aged AR sample (after annealing at 873 K for 120 min), (c) the aged HRDSR
sample (after annealing at 873 K for 5 min) and (d) the aged HRDSR sample (after annealing at 873 K
for 120 min).

From Figure 15a–d, it is also recognized that the aged HRDSR sample (after annealing
for 5 min) shows the lowest critical stress for martensitic transformation among the four
aged samples, even though it has the smallest grain size. This is most likely because the
barrier for transformation from R to B19′ is smaller than that for transformation from B2 to
B19′ [17]. The aged HRDSRed sample (after annealing for 5 min) also exhibits the smallest
hysteresis (low dissipation energy).

4. Discussion

As the aged HRDSR samples do not have a favorable texture compared to the aged
AR samples, the superior superelasticity of the former should originate from their mi-
crostructures. Tong et al. [41] proposed that the difference between the yield strength of
B2 and the critical stress for the phase martensitic transformation (∆σ) is related to the
recovery strain, which is equal to the applied strain minus the residual strain. Here, the
yield stresses for the annealed and aged AR and HRDSR samples were estimated based
on their Vickers hardness data using the relation of σy = 3.03Hv [42], where σy is the yield
stress (MPa) and Hv is the Vickers hardness (kg/mm2). Figure 16a shows the ∆σ calculated
using the σy values calculated from the Hv data and the critical stresses for the martensitic
transformation measured from the tensile tests in Figures 13 and 15. The aged HRDSRed
sample (after annealing for 5 min) exhibits the largest ∆σ. This is because the critical stress
for phase transformation from R to B19′ is lower than that from B2 to B19′ and the yield
strength is high due to effective grain refinement and particle strengthening.

Figure 16b shows the relationship between ∆σ and residual strain. There is a trend
that as ∆σ increases, the residual strain decreases. This result suggests that the HRDSR
technique can greatly enhance the superelasticity of Ni-rich NiTi alloys by increasing the
strength (against slip) through effective grain refinement and aging and by decreasing the
critical stress for stress-induced martensite (by having the R phase as a major phase prior
to loading). Reduction of the dislocation density by annealing is important because the
presence of a high dislocation density disturbs the phase transformation from B2←→B19′

or R←→B19′ and reduces the cyclic number. However, when the dislocation density or
dislocation substructure is reduced too much through long-term annealing, the nucleation
sites for Ni3Ti4 precipitates can be greatly reduced, leading to a decrease in the yield
strength and an increase in the critical stress for stress-induced martensite by decreasing
the volume fraction of the R-phase at room temperature under unstressed condition.
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5. Conclusions

The combined effect of grain-size reduction by SPD and aging on the superelasticity
of Ni-rich NiTi alloy was studied, and the following results were obtained:
1. Severe plastic deformation by HRDSR and subsequent short-term annealing for 5 min

at 873 K produces a partically recrystallized microstructure with a small grain size of
5.1 µm.

2. During the aging of the annealed HRDSR sample at 523 K for 16 h, a high density
of Ni3Ti4 particles is densely and uniformly precipitated over the matrix, resulting
in the formation of an R phase as the major phase at room temperature. For a long
annealing time before aging, the dislocation substructure within the grain interiors
is diminished, and the grain boundary area decreases, such that the precipitation of
Ni3Ti4 during aging is small, and their distribution is inhomogeneous.

3. The difference between the yield strength and critical stress for the stress-induced
martensitic transformation (∆σ) is found to be closely related to the superelastic strain.
As ∆σ increases, the superelastic strain increases.

4. Superelasticity and cyclability of a Ni-rich NiTi alloy can be enhanced by increasing
the strength through effective grain refinement via SPD plus annealing and aging for
precipitation of Ni3Ti4 and by decreasing the critical stress for stress-induced marten-
site through incorporation of the R-phase as a major phase at room temperature.
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Abstract: One of the modern methods for enhancing the efficiency of photovoltaic (PV) systems is
implementing a solar tracking mechanism in order to redirect PV modules toward the sun throughout
the day. However, the use of solar trackers increases the system’s electrical consumption, hindering
its net generated energy. In this study, a novel self-tracking solar-driven PV system is proposed. The
smart solar-driven thermomechanical actuator takes advantage of a solar heat collector (SHC) device,
in the form of a parabolic trough solar concentrator (PTC), and smart shape memory alloy (SMA) to
produce effective mechanical energy for solar tracking applications from sun rays. Furthermore, a
thermal–optical analysis is presented to evaluate the performance of the solar concentrator for the
simulated weather condition of Dammam City, Saudi Arabia. The numerical results of the thermal
and optical analyses show the promising feasibility of the proposed system in which SMA springs
with an activation temperature between 31.09 ◦C and 45.15 ◦C can be utilized for the self-tracking
operations. The work presented adds to the body of knowledge an advanced SMA-based SHC
device for solar-based self-actuation systems, which enables further expansions within modern and
advanced solar thermal applications.

Keywords: thermomechanical; shape memory alloy; actuator; solar heat collector; thermal analysis;
optical analysis; self-actuation; solar tracker; solar concentrator

1. Introduction

Continuous developments within modern and efficient technology solutions for inno-
vative solar energy applications have attracted many researchers. Similarly, energy-related
companies and manufacturers are significant players in continuously exploring alterna-
tive eco-friendly energy sources through the focus on sustainability and environmental
conservation [1,2]. Environmental impact is essential for sustainable development, and
its influence is enhanced by the pervasive use of fossil fuels and a lack of environmental
protection [1]. Solar photovoltaic (PV) has become the principal source of electricity in
several economies, where PV systems contribute significantly to total power production
along with other sources, such as fossil fuels and nuclear power [3,4].

Constant investigations are being evaluated to improve the productivity and efficiency
of the PV industry; correlation between systems’ operational structures and economic,
social, and environmental aspects of renewable energy are investigated [5,6]. Solar cells are
one type of modern technology that allows access to a clean and safe energy source since
they convert solar radiation into electrical energy. Recently, the developments of effective
PV tracking systems over fixed photovoltaic systems have improved the system’s overall
efficiency [7].

Teng et al. [8] studied the highest power exchange of a PV tracking system, and
maximum power transmission and better solar cell efficiency were achieved with a simple
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control circuit to match the impedance of the system’s components, enabling maximum
power transmission between solar cells. Additionally, Osman, et al. [9] have studied the
effect of different solar tracking systems on the performance of conventional PV modules.
Their paper reveals that the dual and single trackers lead to a net energy increase compared
to a fixed module—up to 29% and 19%, respectively. Moreover, the paper concluded that
solar tracking systems utilize about 17% of the electrical production to run the actuators
and the control system. On the other hand, Hariri et al. [10] investigated single-axis
solar tracking mechanisms, in which a PV panel is moved along one axis to align it
perpendicularly towards the sun’s beams throughout the day using sensor and azimuth-
based methods. Experimental results showed that the sensor and azimuth-based tracking
systems improved overall net energy production by about 12.68% and 7.7%, respectively.
In short, most current tracking systems investigate active tracking methods that depend
mainly on electrical energy, so overall energy generation remains hindered due to the
tracker’s consumption.

Furthermore, shape memory alloy (SMA)-based actuators have been widely used in
various areas, including robotic, automotive, aerospace, biomedical, and energy applica-
tions, because of their unique thermomechanical and shape memory effect (SME) properties.
Whenever an external force deforms the SMA, it can return to its original state once heated
above its activation temperature [11]. For instance, Catoor et al. [12] studied the relation-
ship between temperature, displacement, and response speed. The result showed that the
speed response and displacement change when there is an increase in the temperature.
Moreover, this opens the door for more innovative and novel mechanism designs. For
example, an SMA-based device has been used to enhance the aerodynamic performance
of vehicles [13], generate constant force [14], power non-explosive reusable lock release
mechanisms, and actuate light grippers [15,16]. Furthermore, SMAs have good chemical
and physical properties and biocompatibility [17,18]. Hence, engineers and researchers
across the globe show high interest in the unique properties of SMA, especially regarding
developed thermomechanical energy, which it provides at a lower cost. Therefore, fur-
ther innovations, designs, and systems have been proposed to integrate SMA as a smart
actuation source [19,20]. Integrating the SMA within certain disciplines, such as robotic
and biomedical, allows for further simplification on the design for SMA-based systems, in
which it reduces the system’s volume and weight significantly, offering compact structures
and systems [21].

An SMA actuator that uses temperature as a source of activation could be activated
via joule heating or an external heating/cooling source, either passive or active [22]. In
this study, heat transferred from the sun is the primary heating source for activating the
SMA-based actuator. A solar heat collector (SHC) will be used to improve the absorb
thermal energy provided by the sun. The SHC is a device used to collect the thermal energy
supplied by the sun, which is stored and carried away by the flowing fluid [23]. SHCs
have been used in various applications, such as domestic heating/cooling devices, storage
devices, and water desalination [24–26]. Furthermore, some criteria when designing
an SHC include the environmental criteria standards, cost-effectiveness, and technical
aspects [26–28]. Moreover, the efficiency of the SHC device can vary depending on the
design, the fluid inside the SHC, and the material of the collector and the absorber [1,29].
Some SHC devices utilize mirrors or reflecting materials to increase the heat and the solar
power for a small volume so the energy can be converted into heat and then used to
generate electricity. Additionally, parabolic trough collector (PTC) technology is one of
the most widely used thermal power technologies among other concentrated solar power
(CSP) technologies [30]. For example, the Dubai Noor project, the most considerable solar
power project established globally, contains 950 MW hybrid projects, composed of 250 MW
photovoltaic and 700 MW parabolic trough power technology [31]. Due to massive land use,
maintenance, and installation costs, the PTC technology has vital high and intensive capital
costs. Such a complicated heating system increases the potential for the system’s failure
due to the massive temperature gradient on the receiver. The mirror heats the bottom side
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of the receiver by focusing the highly concentrated radiation intensity. In contrast, only
direct solar radiation heats the top side, making the receiver’s bottom side heated more
than the top side; this uneven temperature on the receiver’s outer surface causes high
thermal stresses on the receiver side [30–32]. The temperature variance is considered the
primary cause of failure, such as breakage of the receiver’s glass envelope, vacuum leakage
or bending within the structure, hence causing optical losses due to the misplacement of the
absorber tube from the optimal focal area. Moreover, when the receiver becomes damaged
frequently and affects other components, the plant’s cost will also be affected. Therefore,
with regards to the receiver’s price and reliability, it should be able to function efficiently
and work reliably and economically [30–33].

In a recent research effort presented by some of the authors, a solar-driven thermo-
mechanical actuator have been proposed [1,34,35]. The proposed actuator has shown a
thermal to mechanical conversion efficiency of about 19.15%, where the actuator produces
about 150 N and 130 mm [34,35]. Additionally, the authors have studied the thermal
profile in the studied are of Dammam, Kingdom of Saudi Arabia (KSA) details and found
that the actuator would properly operates throughout the year and does not require any
maintenance routine [1].

Optimizing the parabolic trough collector is a significant step; researchers simulate
and model the system to investigate the system’s effect and thermal performance before
construction. There is a unique approach to overcoming the problem of interception rate
and optical efficiency. The first method is to absorb more sun rays on the absorber tube
using a larger diameter [36]. This is employed, for example, by Abengoa Company (Seville,
Spain), where an extensive commercial concentrator with an absorber tube of 80 mm
and 8.2 m aperture width is constructed. This system has been used in the Dubai Noor
project, resulting in a lower price of 7.3 cents/kWh [31]. On the other hand, an alternative
method is to add another reflector layer inside the glass cover on the receiver tube. The
secondary reflector is used to reflect the sun rays to enhance the factor of interception when
a large aperture is used with a small absorber tube [37]. Additionally, the third method is
changing the absorber’s shape; hence, by adding a secondary reflector, the study made by
Gong et al. [38] displayed an optical efficiency of less than 75%. Therefore, a semicircular
receiver tube with a solar radiation flux distribution is used on the circular receiver tube
model to intercept more sun rays. A PTC used a semicircular receiver tube with an 80◦

half-rim angle and 8 m aperture width with an optical efficiency of about 79.2%.
On the other hand, the integration of thermomechanical alloy, in the shape of an SMA

actuator, into self-actuation and tracking mechanisms via utilizing mainly solar energy to
enhance the overall performance of PV systems has not been addressed. Therefore, in recent
research efforts presented by the authors, a solar-driven thermomechanical actuator has
been proposed [1,34,35]. The proposed actuator has shown a thermal-to-mechanical conver-
sion efficiency of about 19.15%, and the actuator produces about 150 N and 130 mm [34,35].
Additionally, the authors have studied the thermal profile in the studied area of Dammam,
Kingdom of Saudi Arabia (KSA), where it was found that the actuator would adequately
operate throughout the year and requires no maintenance routine [1]. Therefore, this study
aims to add to the body of scientific knowledge an innovative methodology for a technology
solution of a novel thermomechanical SMA actuator targeting solar-based self-tracking
PV applications.

2. Materials and Methods
2.1. Overview

The proposed research study focuses on a thermomechanical SMA actuator’s thermal
and optical performances. The thermomechanical SMA actuator has three primary ele-
ments: SMA springs, SHC, and PTC. These three elements significantly impact the actuator
and, therefore, were analyzed and studied. The SHC and the PTC are placed in the actuator
to increase the temperature of the SMA springs, while the activation temperature of the
SMA springs is the crucial factor in the actuation mechanism. To ensure the temperature
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inside the SHC reaches the activation temperature of the SMA, a comprehensive study was
proposed using computational fluid dynamics (CFD) simulation software version 5.6.

2.2. SMA Actuator Conceptual Design

The proposed research aimed to design and simulate an SMA solar-driven thermome-
chanical actuator. The configuration for the main parts of the proposed design is illustrated
in Figure 1. The actuator is a piston-based linear actuator in which several SMA springs
are arranged horizontally inside a SHC with a movable rod to ensure the linearity of the
piston movement. The design utilizes the SME in the SMA springs by absorbing the heat
and the intensive radiation reflected by PTC into the SHC. At sunrise, the SHC absorbs the
solar radiation from the sun in addition to the reflected radiation from the PTC. The solar
radiation collected through the sun and the PTC in the enclosed SHC leads to a greenhouse
effect inside the SHC, raising its inner temperature, which allows the SMA springs to reach
the activation temperature that triggers their SME. On the other hand, as the SMA springs
lose thermal energy, the springs’ temperature drops, and the bias load stretches the SMA
springs back to their original shape.
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Figure 1. Conceptual design of the solar-driven SMA thermomechanical actuator.

The solar-driven thermomechanical SMA-based actuator is a passive actuator that
activates using solar thermal energy given by the sun. In addition, the actuator has two
actuation phases based on the SMA states—the activation and deactivation phases—as
shown in Figure 2. The activation phase occurs when the SMA springs gain thermal
energy that has been absorbed via the SHC, causing the movement of the piston; this
movement allows the system to lift the bias load. Conversely, when the SMA springs lose
thermal energy, they deactivate, and the bias load stretches the SMA springs back to their
original shape.
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The designed actuator has three main limitations, which are environmental, mechani-
cal, and thermal, and these factors can affect the feasibility of the proposed design. The
environmental limitations are environment-dependent constraints, such as ambient tem-
perature, cloudiness, and solar irradiance. Mechanical limitations include the mechanical
properties of the available SMA, such as the allowable strain and the produced force. Re-
garding thermal limitations, the constraints of the SMA include activation temperature,
deactivation temperature, and thermal endurance. All of the limitations mentioned have
an effect on the performance and feasibility of the design.

2.3. SMA Solar Self-Tracker Conceptual Design

The proposed solution integrates two identical SMA-based, actuators allowing the
system to orient the PV module into three different positions, as shown in Figure 3. During
sunrise, the PV module will be oriented at an angle, casting shade on both SMA-based
actuators. Both actuators will be deactivated since the internal SHC temperature is lower
than the activation temperature of the SMA. During noon, one of the actuators will be
exposed to the sun’s radiation, allowing the internal temperature to reach the activation
temperature of the SMA. The other one will be shaded, causing the PV to be fixed hori-
zontally. Lastly, at sunset, both SMA-based actuators will be exposed to solar radiation,
activating both actuators and allowing the PV to tilt at an angle.
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In order to ensure that the design of the thermal SMA actuator is aligned and func-
tional, a three-dimensional (3D) model has been developed using computer-aided design
(CAD) software. The thermal SMA actuator consists of seven main parts, including SMA
springs, SHC, piston, PTC, bias load, rod, and stand holders, as highlighted in Figure 4.
One end of the SMA springs is connected to the cover of the SHC, and the other end is
connected to the piston to assure the linear movement of the actuator. The piston is attached
to the rod, while the rod is set inside a linear ball bearing. Three linear ball bearings are
attached inside the cover and the stand holders’ holes to minimize friction and guide the
linear motion along a single axis. The SHC is responsible for absorbing the thermal heat
from the sun, the PTC, and the surroundings, subsequently raising the temperature inside
the actuator significantly above the ambient temperature. The PTC is placed to increase the
thermal energy absorbed by the bottom side of the SHC by reflecting the sun’s rays.
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2.4. Analytical Thermal Model

The thermomechanical SMA actuator is designed to be a solar-driven actuator, and
temperature is a significant key in this process. To understand the spatial variation of the
temperature gradient, a simplified study for the thermal circuits is provided to highlight
the heat transfer process flows under one-dimensional (1D) and steady-state conditions.
As illustrated in Figure 5, the temperature inside the thermomechanical SMA actuator
increases as the SHC absorbs the solar energy from the sun, the ambient weather, and the
rays reflected through the PTC.
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The SMA’s temperature can be obtained by analyzing the thermal circuit illustrated in
Figure 5. Equation (1) is the general formula for the heat and transfer process, in which
varying thermal resistance is applied depending on the heat transfer process, as shown in
Equations (2)–(4) [1,34,35].

q =
∆ T
R

(1)

Rcond =
L
K

(2)
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Rconv =
1

hconv
(3)

Rrad =
1

hrad
(4)

where q represents the amount of heat transferred per unit length [W/m2], ∆T is the
temperature difference in [K], while R represents the thermal heat transfer resistance in
[K/W], and the thermal resistance for conductive, convective, and radiative varies for
Rcond, Rconv, and Rrad in [K/W]. L is the length in [m], K is the thermal conductivity in
[W/m × K], hconv is the convective heat transfer coefficient in [W/m2 × K], and hrad is the
radiative heat transfer coefficient in [W/m2 × K].

The acrylic plate of the SHC absorbs the thermal heat coming from the direct sun
rays, the reflected rays through the PTC, and the ambient weather in the form of radiation
and as a convection heat transfer process, as described in Equation (5). Furthermore, the
acrylic plate will release the heat as conduction, convection, and radiation, as shown in
Equation (6). In addition, the SMA springs will gain heat through radiation and convection
while losing some heat throughout conduction, convection, and radiation, as shown in
Equations (7) and (8). To complete the cycle, the other acrylic plate will gain the extracted
heat coming from the SMA, as shown in Equation (9). At the same time, the plate will
lose thermal heat in the form of conduction, convection, and radiation, as demonstrated in
Equation (10).

qin,1 =
Tamb − TA1in

1
hconvin

+ 1
hradin,1

(5)

qout,1 =
TA1in − TA1out

L1
K1

+
TA1out − Tair,1

1
hconvout,1

+ 1
hradout,1

(6)

qin,2 =
Tair,1 − TSMAin

1
hconvin,2

+ 1
hradin,2

(7)

qout,2 =
TSMAin − TSMAout

L2
K2

+
TSMAout − Tair,2

1
hconvout,2

+ 1
hradout,2

(8)

qin,3 =
Tair,2 − TA2in

1
hconvin,3

+ 1
hradin,3

(9)

qout,3 =
TA2in − TA2out

L3
K3

+
TA2out − Tamb

1
hconvout,3

+ 1
hradout,3

(10)

where T is the temperature and h is the heat transfer coefficient. The subscript represents
the medium and the heat transfer process based on Figure 5. The aim is to obtain the SMA
temperature, which could be simplified—since the SMA springs are noticeably thin, it can
be assumed that the inlet temperature of the SMA springs (TSMAin ) is equal to the outer
temperature of the SMA springs (TSMAout ).

The outlet and the inlet heat transfer for the SMA springs have been equalized, forming
Equation (11). Furthermore, the thermal process is shortened in the form of resistances, as
shown throughout Equations (12)–(14), which simplify Equation (11) into (15). In order to
obtain the SMA temperature, Equation (15) must be solved in terms of the TSMA, as shown
in Equation (16).

Tair,1 − TSMAin
1

hconvin,2
+ 1

hradin,2

=
TSMAin − TSMAout

L2
K2

+
TSMAout − Tair,2

1
hconvout,2

+ 1
hradout,2

(11)
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R1 =
1

hconvin,2

+
1

hradin,2

(12)

R2 =
L2

K2
(13)

R3 =
1

hconvout,2

+
1

hradout,2

(14)

Tair1 − TSMAin

R1
=

TSMAin − TSMAout

R2
+

TSMAout − Tair,2

R3
(15)

TSMA =
Tair,1 × R3 + Tair,2 × R1

R1 + R3
(16)

Equation (16) is the simple form, and to expand it, the resistances (R1, R2, and R3)
could be resubstituted, while the Tair,1 and Tair,2 could be evaluated in terms of the acrylic
and the ambient temperature.

2.5. D Thermal Numerical Study Setup

The offered thermomechanical SMA actuator contains complex thermal processes
involving numerous inputs influencing the system’s thermal behavior. Therefore, a
simulation-based thermal study has been conducted to understand and optimize the
thermal behavior inside the SHC, aiming to reach the activation temperature of the SMA
springs inside the SHC. To start the numerical study, the CAD model of the main parts of
the thermomechanical SMA actuator was imported into the CFD simulation software, as
shown in Figure 6. Moreover, the simulation-based study was specified to the CFD software
to be performed using the actual weather conditions of the city of Dammam (26.433◦ N
49.8◦ E), KSA.
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Two physical interfaces have been chosen to run the study, including the heat and
transfer in solids and the surface-to-surface radiation physics interfaces. The study was
performed in a time-dependent mode since the aim is to accurately understand the thermal
behavior inside the SHC with respect to the studied area. Additionally, the material is
assigned to be acrylic plastic for the side of the SHC, while the fluid inside is air. The ther-
modynamic properties of the actuator material, such as density, heat capacity at constant
pressure, and thermal conductivity, are defined in Table 1. The ambient weather conditions
are defined as being the same as the weather conditions of Dammam City, KSA using the
meteorological data from ASHRAE 2017 that is available in the CFD software.
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Table 1. Properties of acrylic plastic used for the SHC.

Property Value Unit

Heat capacity at constant pressure 1470 J/(Kg·K)
Density 1190 Kg/m3

Thermal conductivity 0.18 W/(m·K)

To integrate the CAD model with multiphysics interfacing solution tools, a set of
thermal physics must be optimized, such as the heat transfer in solids and surface-to-
surface radiation. The heat transfer in solids studies the heat flux due to the convection heat
transfer process on the outside surface of the SHC. The convection heat process considers
the change in temperature outside the SHC surface due to the ambient temperature while
considering the plate surface of the SHC. The initial value conditions for the multiphysics
solver are defined as the ambient temperature given in the meteorological data in Dammam
City. The fluid inside the thermomechanical SMA actuator is defined as air, and all the
properties are functions of the initial value condition and the ideal gas properties. The
actuator has a triangular shape, and different optimization is needed for the oriented plates.
The horizontal upper plate is exposed to external natural convection, as shown in Figure 7a.
The other two sides of the SHC are also exposed to external natural conviction but with an
inclined surface, as shown in Figure 7b.
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In addition, the PTC and the SHC have been mainly considered in the surface-to-
surface radiation tools. The source of the radiative heat transfer process is mainly the
sun, while the SHC side is defined as a blackbody. The initial values for the weather
conditions for the Surface-to-surface radiation are set to be the ambient weather conditions.
The external radiation source is the sun, with solar irradiance defined as the clear sky
at noon. To resemble the mirror effect to the PTC, a diffusion mirror which will work
as a mirror absorbing all the radiative coming and then radiating back in all directions
has been defined. Both heat transfer in solids and surface-to-surface will be coupled in
the multiphysics interface tools with a time-dependent study to investigate the thermal
behavior of the actuator with the effect of the PTC. To obtain an accurate result, a physics-
controlled fine mesh sequence has been applied to the thermomechanical SMA actuator, as
shown in Figure 8.
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3. Results

The results in this section highlight the thermal analysis of the SHC, including the
temperature gradient, midpoint temperature, and temperature profile for different shapes.
In addition, the thermal performance of the SHC has been improved based on multiple
comparisons of several parameters, such as reflector presence, the shape of the SHC,
dimensional optimization, and orientation. The comparisons carried out help to enhance
the overall thermal performance of the SHC to ensure its compatibility with the intended
application. It should be noted that all comparison simulations were run in the same period
(1 July 2022).

3.1. Effect of Introducing a PTC on the Thermomechanical Actuator’s Thermal Behavior

In this division, the outcomes of adding a PTC to the system on the performance of the
SHC are explored. Multiple comparisons are carried out to explore the feasibility of using a
reflector, including inward heat flux variation on the lower surface of the SHC in different
conditions. The amount of inward heat flux through the lower surface of the triangular
SHC is shown in Figure 9. In the morning, when the sun rises from the east, the eastern
side of the SHC surface will gain high heat flux, while the western side will be shaded,
causing significantly lower inward heat flux, as illustrated in Figure 9a. At noon, the sun
is perpendicular to the SHC; the upper surface casts shade, preventing the heat flux from
reaching the bottom side of the SHC, as shown in Figure 9b. In Figure 9c, we can note an
increase in the inward heat flux on the western side while shadows are projected on the
eastern side, causing a lower inward heat flux.
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To navigate the enhancement by adding the PTC, the same simulation has been
conducted to study the inward heat flux on the lower surface of the SHC when adding
the PTC. Figure 10 is a 2D surface plot illustrating the inward heat flux distribution on
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the projected lower surface area of the triangular SHC during the day. The surface plot
facilitates investigation into how adding a reflector affects the performance of the SHC by
redirecting the sun rays to the lower surface of the SHC during the day. For example, in the
morning, the eastern side projects shadow onto the western side of the SHC, but the PTC
compensates for this by reflecting the sun radiation, allowing the lower surface to receive
higher heat flux and increase the coverage area, as shown in Figure 10a. By comparing
Figures 9b and 10b, we can see the significant improvement the PTC provides.
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Figure 10. Surface plot of the inward heat flux through the projected area of the lower surface of the
triangular SHC with a reflector at (a) 9:00; (b) 12:00; and (c) 15:00 on 1 July 2022.

Figure 11 demonstrates the variation in the amount of inward heat flux through the
lower surface of the triangular SHC throughout the day and the effect of using a PTC. We
can note that the contribution of the PTC not only increases the heat flux coverage but
also highly increases the intensive heat flux on the lower surface throughout the day, as
illustrated in Figure 11. In the morning, the body of the PTC casts shadows, reducing the
solar radiation on the lower surface of the SHC for a period. Furthermore, at noon, the
SHC without the PTC does not received any heat flux; this is incomparable to the SHC with
the PTC, which almost reaches 130 [W/m2]. It is evident in the plot that using a reflector
increases the inward heat flux, which means increasing the temperature inside the SHC,
which enables the SMA springs to reach this specified activation temperature. It can be
concluded by the analysis of the revealed data that the addition of a reflector increases SHC
compatibility with the application aimed.
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3.2. Thermal Behavior of a Triangular SHC in Comparison to a Circular SHC

This section evaluates the thermal behavior of different SHC to compare circular and
triangular shapes. This evaluation enables better judgment of which shape to optimize the
SHC functionality and feasibility for the application of a passive solar tracking system.
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One of the parameters from which the shaping capability of the SHC can be determined
is the temperature gradient across the SHC. The temperature gradient across the SHC works
as an indicator that the temperature is distributed evenly, allowing the temperature to
reach the activation temperature along the SMA springs. Figure 12 shows a 3D plot of
the different shapes’ temperature gradients. The outcome of the figure showed little to no
difference between the different shapes in both temperature gradient and thermal behavior.
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Another parameter that must be evaluated is the ability to increase the temperature
inside the SHC. Moreover, the temperature inside must be maintained above the SMA
activation temperature during the daytime. Therefore, the distributed SMA springs (shown
previously in Figure 4) have been integrated into a single point (midpoint). For simplicity,
the midpoint is assumed to be the SMA temperature. In Figure 13 the midpoint temperature
of both the circular and triangular-shaped SHCs are plotted. Both shapes increase the inside
temperature 30 ◦C above the ambient temperature, reaching 74 ◦C. Furthermore, the two
shapes maintained a midpoint temperature above the SMA activation temperature for
longer. Moreover, the plot showed a similar outcome to Figure 12, in which minimum
to no difference was indicated, except in Figure 13, where the outcome was dependent
purely on the temperature of a single point (midpoint). The maximum, minimum, and
average temperatures of the circular SHC were 74.01 ◦C, 29.77 ◦C, and 50.58 ◦C, respectively.
Moreover, the maximum, minimum, and average temperatures of the triangular SHC were
74.69 ◦C, 29.84 ◦C, and 50.69 ◦C, respectively. The minimum differences in the temperatures
were slightly inclined toward the triangular-shaped SHC; therefore, the triangular SHC is
preferred due to the simplicity of manufacturing.

3.3. Optimization of the Geometrical Parameters of the Reflector

To ensure the optimum performance of the utilized reflector for increasing the tempera-
ture of the solar-driven thermomechanical SMA actuator, two main geometrical parameters
are considered. The parameters conserved to optimize the designed reflector are the aper-
ture width and the focal length. These parameters affect the performance of the PTC, which
affects the system’s performance as a whole. The first parameter is the aperture width of the
reflector, where a variety of aperture widths were simulated to discover how the aperture
width affects the midpoint temperature of the SHC. The second parameter was the focal
length between the reflector and the SHC, where multiple focal lengths were simulated.
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The simulation was conducted by fixing the focal length and varying the aperture
widths ranging from 300 mm to 400 mm to ensure the optimum from which the SHC
reaches the highest temperature. The temperature variation of the SHC depending on
aperture widths is demonstrated in Figure 14. Although the different aperture widths
have the advantage of increasing the temperature depending on the time of the day, the
temperature difference is minor, concluding that the aperture width can be neglected in the
range mentioned.
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Figure 14. Midpoint temperature for triangular SHC for different values of aperture width.

In order to optimize the focal length, the aperture width was initially fixed, while
multiple focal lengths were evaluated to ensure the optimized design of the system. The
midpoint temperature inside the SHC is plotted in Figure 15 under different focal lengths
ranging from 80 mm to 180 mm. The results of the plotted data showed that the focal length
significantly affects the midpoint temperature inside the SHC. For example, the maximum
midpoint temperature at noon was 76.25 ◦C at a focal length of 80 mm, while the minimum
midpoint temperature at noon was 65.44 ◦C at a focal length of 180 mm. Although the
maximum midpoint temperature at noon was at a focal length of 80 mm, it was noted that
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a smoother temperature curve with the second highest temperature at noon was at a focal
length of 100 mm with a temperature of 74.17 ◦C, which makes it the optimal option.
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3.4. SHC Orientation’s Effect on the Thermal Behavior

The orientation of the SHC is essential to its temperature profile, which is why a
simulation of the temperature profile under different orientations is carried out. In Figure 16
the temperature profile at the center line of the SHC is plotted for both the north–south
axis and the east–west axis. It can be noted that the temperature profile inside the SHC
varies depending on the orientation at 09:00 and 15:00; however, the temperature profile is
similar at noon. The difference in the temperature profile depending on the orientation is
due to the sun’s direction at different times of the day. Although the east–west-oriented
SHC has a higher maximum temperature in Figure 16a,c, the maximum temperature at
noon is higher in the north–south-oriented SHC as seen in Figure 16b. In addition, the
temperature profile is more evenly distributed for the north–south orientation. Therefore, it
could be concluded from the outcome of the simulation that the north–south is more fitted
for the application intended since it provides a well-distributed temperature profile inside
the SHC throughout the day.
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3.5. One-Year Midpoint Temperature Variation in the Optimized SHC

In order to ensure the capability of the designed system through a single year, a
simulation to compute the midpoint temperature inside the SHC was carried out. The
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computed midpoint temperature results of the simulation performed for a year are mapped
in Figure 17. According to the simulation, the highest and lowest points of the maximum
midpoint temperature line were 75.00 ◦C and 45.15 ◦C, respectively. In contrast, the highest
and lowest points of the minimum midpoint temperature line were 31.09 ◦C and 10.89 ◦C,
respectively. Moreover, the average midpoint temperature inside the SHC throughout the
year was 39.46 ◦C. Therefore, it was concluded that any SMA springs with an activation
temperature varying between 31.09 ◦C and 45.15 ◦C—in addition to being able to withstand
a temperature of 75.00 ◦C without becoming plastically deformed or damaged—can be used
in the designed SHC under Dammam City’s weather conditions. Additionally, the yearly
temperature profile has shown a close similarity to previous efforts by Hariri, et al. [34];
however, the temperature profile of the proposed system is higher due to the utilization of
such reflectors.
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4. Conclusions

The presented article is a thermal–optical evaluation of an optimized trough solar
concentrator for advanced solar-tracking applications using shape memory alloy. The
main element determining the feasibility of the solar concentrator is the temperature of the
SHC, from which the thermal energy would be transferred into the SMA, which would
convert the heat to mechanical energy. Multiple numerical simulations were carried out to
optimize the design of the SHC. The outcomes of the tests performed proved the capability
of the optimized design of the SHC, and the outcomes of the simulations were summarized
as follows:

• The performance of the SHC is best with the presence of a reflector with an aperture
width between 300 and 400 mm and a focal length of 100 mm.

• The SHC is better oriented on the north–south axis since this orientation provides a
well-distributed temperature profile inside the SHC.

• SMA springs with an activation temperature varying between 31.09 ◦C and 45.15 ◦C,
in addition to being able to withstand a temperature of 75.00 ◦C without becoming
plastically deformed or damaged, are applicable.

• The outcomes from the numerical simulation prove the feasibility of the design for the
intended application.
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The presented outcomes show the feasibility of innovative technology of an actuation
method that drives a passive advanced solar tracker. The proposed solar tracking system is
solar-driven via the utilization of an SMA-based actuator, and it is the first of its kind. Future
work on the proposed system may include thermal evaluation of the system under weather
conditions in different areas to test the system’s feasibility accordingly. In addition, future
work may include further experimental analysis of the system and comparisons between
the experimental and numerical data. Additional future work may include the shadow
analysis of the PV module to ensure the optimal arrangement of the actuation mechanism.
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Abbreviations

PV Photovoltaic
SMA Shape memory alloy
SME Shape memory effect
SHC Solar heat collector
PTC Parabolic trough collector
CSP Concentrated solar power
KSA Kingdom of Saudi Arabia
3D Three-dimensional
1D One-dimensional
CFD Computational fluid dynamics
Symbols
q Amount of heat transferred [W/m2]
T Temperature [◦C]
R Thermal resistance [◦C/W]
L Length [m]
K Thermal conductivity [W/m × K]
h Heat transfer coefficient [W/m2 × K]
Subscript
cond Conduction heat transfer process
conv Convection heat transfer process
rad Radiation heat transfer process
in Input
out Output
A Acrylic
amb Ambient
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Abstract: This research aims to present a state-of-the-art cleaning technology solution that effectively
overcomes the dust accumulation issue for conventional photovoltaic systems. Although continuous
innovations and advanced developments within renewable energy technologies have shown steady
improvements over the past years, the dust accumulation issue remains one of the main factors
hindering their efficiency and degradation rate. By harvesting abundant solar thermal energy, the
presented self-cleaning system uses a unique thermomechanical property of Shape Memory Alloys to
operate a solar-based thermomechanical actuator. Therefore, this study carries out different numerical
and experimental validation tests to highlight the promising practicability of the developed self-
cleaning system from thermal and mechanical perspectives. The results showed that the system has a
life expectancy of over 20 years, which is closely equivalent to the life expectancy of conventional
photovoltaic modules while operating under actual weather conditions in Dammam city. Additionally,
the thermal to mechanical energy conversion efficiency reached 19.15% while providing average
cleaning effectiveness of about 95%. The presented outcomes of this study add to the body of
knowledge an innovative methodology for a unique solar-based self-cleaning system aimed toward
smart and modern photovoltaic applications.

Keywords: photovoltaic energy; dust accumulation; PV efficiency; thermomechanical; shape memory
alloys; PV cleaning system; passive system; soiling effect

1. Introduction

The world’s awareness of renewable energy’s importance and advantages arises as
the destructive impact of fossil fuels becomes a severe environmental issue. Harming fossil
fuels to the environment includes global warming and greenhouse emissions, affecting
the overall environmental quality. The Kingdom of Saudi Arabia (KSA) has taken serious
steps intending to shift toward renewable energy as an alternative to conventional energy
production methods, including fossil fuels, and aspires to achieve a 50% dependence on
renewable energy by 2050 [1–3]. Although many renewable energy sources are available,
solar PV energy shines the most. The abundant amount of energy provided via the sun is
estimated to be 8000 times higher than the global energy consumption [4–6]. However, the
efficiency of PV modules is a critical concern since the conventional PV modules’ efficiency
can be affected by many factors; one of the main factors is the dust accumulation issue
(DAI) [4,5]. The DAI is especially critical in areas with high dust intensity, such as the
Middle East and North Africa (MENA).

The soiling effect is one of the main obstacles for PV systems, especially for areas
with excessive dust accumulation rates, such as the MENA region, since such regions
have high dust intensity. There are many factors affecting dust accumulation; a study by
GHOLAMI et al. [7] showed that humidity, adhesion force, rain rate, the cover glass of
the panel, wind speed and direction, and gravity affect the dust accumulation over a solar
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panel. Many research efforts have highlighted the significant reduction in efficiency due
to soiling on PV modules [8,9] since soiling develops a layer on the outer surface of the
PV module’s glass, reducing the light transmissivity [10]. Furthermore, the soiling layer
developed on the glass’ outer surface leads to degradation effects which shorten the life
span of the solar panels [10,11]. Kazem et al. [12] have demonstrated the effect of dust
accumulation on the power of PV modules, where power loss due to soiling effects of up
to 80% per month and 1% per day were recorded. In addition, the study suggested using
some cleaning methods to eliminate the soiling effect.

In Farrokhi Derakhshandeh et al. [13] review, different cleaning systems for solar
panels were compared. Although the review studied different active and passive solar
cleaning systems, none of the studied passive cleaning systems can be achieved without
human intersection. Deb and Brahmbhatt [14] reviewed and compared multiple studies
on cleaning solar panels and proposed an automated water-free cleaning method using
cleaning brushes. The cleaning system proposed showed a cleaning efficiency of about
9.05% and an effective cleaning efficiency considering the cost of the cleaning system of
6.31%. Alghamdi et al. [15] made three mechanical cleaning systems platforms to study the
feasibility of each system in the Middle East region, where rainfall is lacking. The three
platforms were an air-jet, vibrator, combination of the previous, and waterjet based. The
results showed that waterjet cleaning increased the output power by about 27% and was
considered the most efficient cleaning method in the experiment, while module vibration
and air-jet reduced the soling in such a less practical matter. Alnaser et al. [16] experimented
by comparing the performance of artificial cleaning with natural cleaning. Two sets of
eight PV modules were used in the experiment, where the first set represented artificial
cleaning while the second set represented natural cleaning. The experiment found that
the first set produced an electrical power of about 1.06 KWh more than the producer’s
expected power, representing a 16% increase from the expected power. On the other hand,
the second set produced an electrical power of 0.97 KWh, which is 5% more than the
producer’s anticipation. In 15 months, the production of dirty PV modules is expected to
be 9% less than that of clean PV modules. Yadav et al. [17] proposed an automated cleaning
system using rubber wipers powered by a direct current servo motor. The experimental
outcome of the proposed system’s cleaning efficiency was recorded as 97.8%.

Cleaning frequency can differ in each country depending on the climate and energy
cost [18]. The optimal cleaning frequency is about 25 days; for tropical regions, the cleaning
frequency is less than 10 days [19]. In order to determine the optimal cleaning frequency,
the overall cleaning cost must be investigated, which depends on the climate conditions,
water consumption, and electrical usage [20].

In 1932, Shape Memory Alloys (SMA) was discovered, which is a type of smart
material with the property to regain a programmed shape after exposure to heat called
the Shape Memory Effect (SME) [21,22]. Several alloys have SME, each with distinctive
characteristics, including activation temperature and yield strength. Various materials are
used to make different SMAs, such as Cu-Zn-Al, Cu-Al-Ni, Au-Cd, and TiNi-Ag [23,24].
The most used type of SMA is Nickel-Titanium alloy, also known as NiTiNOL, due to
its wide range of activation temperature and low price. SMA has multiple applications
in various fields, including aerospace, biomedical, robotics, aeronautics, and engineer-
ing [25–27]. The utilization of SMA in multiple applications requires the ability to control
the alloys as needed, which is possible through various techniques [28,29]. The wide
range of characteristics and ability to manipulate the SMA has led to various innovative
applications. QADER et al. [30] reviewed how different parameters such as stress, strain,
and temperature affect SMA behavior. The review compared typical material and dif-
ferent SMA deformation under different stresses and strains. Additionally, the review
compares steal and NiTiNOL SMA strain recovery percent and the differences in the
materials’ elasticity. In addition, the review reveals how SMA behavior changes under
various temperatures. Another review by Farber et al. [31] discusses the manufacturing
of NiTiNOL using 3D printing techniques. The review shows how the Nickel/Titanium
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ratio affects the SMA’s activation temperature and shape memory effect. Such reviews
facilitate a better understanding of SMA, helping further studies to better implement
SMA in various applications spatially as actuators. In addition, a recent exciting study
has discussed advanced technology to obtain shape memory alloy thin layer utilizing
pulsed laser deposition (PLD) process [32].

Multiple studies and reviews discuss the utilization of SMA in actuation techniques
for different applications. A review by Yuan et al. [33] shows different SMA-based rotary
actuators’ designs. The actuators mentioned in the review were categorized depending
on two features movement continuity and whether the motion is single rotation direction
or bi-directional rotation. Depending on the freedom and continuity of motion and other
actuator attributes, the actuation mechanism’s application differs. A review by Costanza
and Tata [34] discusses the recent utilization of SMA in aerospace and aeronautics. The
review shows that SMA reduces noise, increases thrust, and optimizes the efficiency of wing
morphing and propulsion system. As for SMA applications in aerospace, the review shows
that SMA is used for “isolating the micro-vibrations, for low-shock release devices, and
self-deployable solar sails.” All of these studies demonstrate how SMA is being recognized
for actuation applications in various fields.

SMA actuators can be activated via joule heating, external/internal passive, or forced
heating [35]. Likewise, the offered method to activate the SMA-based actuator in this
paper is via solar heat collector (SHC). SHC is a unique heat exchanger device that absorbs
the natural sun rays as thermal energy input, converting it into another useful form of
energy [36,37]. Solar thermal energy is more efficient than solar photovoltaic energy
by about 77% [2,38,39], and many researchers have suggested different technologies to
enhance its thermal efficiency [40]. SHC applications are varied, including industrial
heating or cooling, energy storage systems, and water desalination systems [41,42]. SHCs
have different types based on various categories, where they can be divided based on their
designed shape, derived method, and the utilized fluid [36,43]. Additionally, multiple
materials are used to construct the SHC absorber, such as aluminum and copper [36,40,44].
At the same time, multiple fluids are also used inside the SHC, such as water, nanofluids,
and air [1,45]. Designing the SHC is a critical step in any thermal energy system, where three
main criteria should be considered: technical, cost, and environmental consecrations [46].
The technical aspect focuses on the efficiency of the SHC. In contrast, the cost aspect
estimates the system’s overall cost, while the environmental aspect predicts the effect of
the SHC on the environment [2,47,48].

In the literature and previous studies, minimum research discussed the utilization of
the natural sun rays to run thermomechanical or SMA-based actuators; however, previous
research efforts by the authors have highlighted its applicability. Osman and Hariri [2]
presented a detailed thermal study for a novel thermomechanical actuator. The results
conclude that the system can operate under the actual weather condition of the studied area.
Similarly, Almadani et al. [1] offered a mechanical study for a similar thermomechanical
actuator. The output force and displacement of the actuator showed significant advantages,
which revealed its great feasibility as a solar-based actuator.

This research effort aims to offer a novel design of a PV cleaning system for DAI
that utilizes the unique property of SMA. Additionally, the paper presents different
feasibility tests for the suggested technology solution, including numerical and practical
experiments. The study is unique in its approach since the proposed PV cleaning system
uses the available sun rays to operate in an innovative mechanism while eliminating
human intervention and electrical storage configurations. Furthermore, the study offers
a unique technology solution to overcome a critical issue within the renewable energy
field, which increases the encouragement toward the transition to green, smart, and clean
cities across the globe.
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2. Materials and Methods

The proposed PV cleaning system contains three main parts: the cleaning spindle,
gear mechanism, and thermomechanical SMA actuator assembly, as shown in Figure 1.
For the working principle of the proposed design, the thermomechanical SMA actuator
transforms thermal energy into mechanical energy in the form of a linear motion. Then,
linear movement is converted into rotational movement through a gear mechanism, thus,
allowing the cleaning spindle to slide over the PV module’s surface, which helps remove
the accumulated dust particles. Therefore, this section discusses the conceptual design
of the thermomechanical actuator and highlights the evaluated numerical thermal study
applied. After that, it presents the development of the thermomechanical cleaning system
and the evaluated mechanical assessment tests.

Figure 1. Conceptual design model of the cleaning system.

2.1. Conceptual Designs of the Thermomechanical Actuators

The SMA-based actuator uses the sun’s thermal energy to give a smart movement
and produces considerable force via the actuator. The actuator is typically deactivated
at night-time while activated during the daytime using the sun’s rays and when it gains
sufficient thermal energy from the sun, as shown in Figure 2. Therefore, the SHC supplied
heat to the actuator continuously throughout the day in order to give the spring-based
NiTiNOL actuator enough thermal activation energy. The actuator continues receiving solar
radiation even after reaching the desired activation temperature, which becomes essential to
ensure adequate activation temperature throughout the year since temperatures of ambient
and actuator vary significantly. On the contrary, the actuator is typically deactivated at
night-time due to the absence of the sun’s rays. The primary purpose of using a bias-load is
to retain the NiTiNOL springs to their initial shape at night-time, thus, completing a single
cycle daily.
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Figure 2. Basic conceptual procedures of the thermomechanical solar-based linear actuator.

The proposed thermomechanical SMA piston-based actuator consists of five main
components: SHC, piston, rod, bias-load, and NiTiNOL springs. On the other hand, the
actuation mechanism includes five main phases, wherein the first phase, the NiTiNOL
springs, are under the austenite starting temperature (As) and extended while the bias load
is at the home position. Secondly, the NiTiNOL springs absorb adequate heat to reach (As)
and start contracting to pull the bias load. In the third phase, the NiTiNOL springs arrive at
the austenite final temperature (Af), allowing them to reach the maximum deflection under
the applied load. Fourthly, the NiTiNOL springs dissipate the heat causing the spring to
reach martensite start temperature (Ms) and extend as the bias load pulls the piston. In the
final phase, the NiTiNOL springs are in the (Mf), letting the springs return to the original
extended shape. Multiple Computer-Aided Designs (CAD) of SHCs devices were designed
and evaluated to optimize the design with the aim of completing one actuation cycle per
day throughout the year. As the heat collectors change in size and shape, all components
inside the heat collector change accordingly. Therefore, the first actuator design (actuator A)
has a glass cylindrical heat collector, as shown in Figure 3a. The Second actuator design
(actuator B) has a glass-covered aluminum isosceles trapezoid prism heat collector, as
shown in Figure 3b. The third actuator design (actuator C) combines glass and aluminum
for the equilateral triangle prism heat collectors, as shown in Figure 3c.

Figure 3. Overview of developed CAD models for (a) actuator A, (b) actuator B, and (c) actuator C.

2.2. Numerical Study Setup of the Thermomechanical Actuators

Since the proposed system is entirely dependent on thermal energy to operate,
a thermal investigation of the system becomes crucial. Therefore, a time-dependent
three-dimensional (3D) thermal simulation study has been conducted for the proposed
designs under the weather conditions of Dammam city, KSA using Computational Fluid
Dynamics (CFD) software version 5.6. The three developed designs were imported to CFD
software, where different studies have been conducted, and their results are presented in
upcoming Section 3. Various boundary conditions were applied, knowing that the SHC
gains thermal energy via the sun’s radiation and convection heat transfer processes. Due
to the SHC design, the applied amount of heat is transferred to the NiTiNOL springs
by the radiation and convection heat transfer processes. Therefore, the stated boundary
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conditions were applied as heat flux, located at different locations depending on the state
heat transfer process. In addition, an external heat source that represents the actual sun
rays of Dammam city was also included in the thermal studies as boundary conditions.
Additionally, the initial conditions have been chosen to simulate the actual weather
conditions of the studied area. Eventually, fine mesh and time steps for each designed
model and iteration were adopted.

2.3. Development of a State-of-the-Art PV Cleaning System

The proposed solar-driven smart PV modules cleaning system offers a novel solution
to the dust accumulation dilemma, which varies depending on the weather and the location
in which PV modules are installed. The design criteria of the smart cleaning system are
meant to be portable, concise, and easy to install in order to facilitate the integration into
existing solar arrays. The novel smart cleaning system consists of four main components:
the thermomechanical SMA actuator, power transmission mechanism, cleaning spindle,
and PV connectors. The mechanism used to transmit power from the thermomechanical
SMA actuator into the cleaning spindle is a rack and pinion mechanism, where the rack is
connected to the thermomechanical SMA actuator’s rod mounted into the PV module’s
frame by a PV connector. In addition, the pinion is attached to a PV connector and mounted
into the PV module’s frame. As for the cleaning spindle, the spindle is mounted into the
pinion using the cleaning spindle holder. Figure 4 represents all components within the
smart cleaning system.

Figure 4. Detailed CAD model of the PV cleaning system based on (a) Actuator A, (b) Actuator B,
and (c) Actuator C.

The force transmission unit has been designed according to the desired performance of
the smart cleaning system, where a 150 mm linear motion is converted into a 90◦ rotational
motion. In order to do so, a rack and pinion force transmission mechanism is designed and
fabricated, where the linear travel distance of the rack is known and is used to calculate the
required pinion circular pitch diameter (Dp) as in Equation (1).

S = θ ∗ r (1)

where, S is the travel distance of the linear actuator, θ is the rotation angle of the cleaning
spindle, and r is the radius of the pinion gear that is also equal to Dp. Multiple design
iterations were computed to determine the optimized design and number of teeth (T1)
required for the pinion gear to achieve the desired motion for the intended cleaning system.
For that, T1 is computed as shown in Equations (2)–(5), respectively, where Pd is the pitch
diameter, m is the number of module, aw is the addendum, and dw is the dedendum of the
gear mechanism.

Pd =
T1

Dp
(2)
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m =
Dp

T1
(3)

aw = m (4)

dw = 1.2m (5)

The following design condition shown in Equation (6) was considered for selecting T1
of the pinion gear to avoid potential interference and validate the design [49].

T1 ≥
2aw

1
T2

Pd√
1 + 1

T2

(
1
T2

+ 2
)

sin2 ϕ− 1
(6)

where, T2 value is set to be quarter of T1 since the required gear rotation is 90◦. In
addition, ϕ is the pressure angle with a value of 20◦. Furthermore, the coverage area of
the cleaning system is another critical design element for the feasibility of the cleaning
system. Since most solar systems consist of multiple PV solar arrays, the cleaning system
was designed to meet the needs of more than a single PV module. This was achieved by
adequate arrangements of the actuator’s installed location, as seen in Figure 5. Since the
designed actuation mechanism is installed on the outer frame of the PV module, this adds
several advantages from a practical perspective. This includes improved accessibility and
placement of the PV cleaning assembly as well as implementations of actuator arrangements
for multiple PV arrays, even for already existing PV farms.

Figure 5. (a) Arbitrary CAD example of dusty PV modules string, and (b) coverage area of multiple
actuator arrangements used for cleaning.

The fabrication of the thermomechanical actuator involves various steps, as shown in
Figure 6. It consists of two aluminum surfaces, an acrylic sheet, a piston, a springs’ plate,
and a rod. In order to fabricate all different parts, several rapid manufacturing techniques
were used, including laser cutting and 3D printing. In addition, an aluminum sheet was
utilized to support the actuator’s structure against the axial forces that can cause bending
or buckling of the actuator’s structure. It also acts as a reflecting element of the applied
solar rays, which helps increase the temperature within the actuator.
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Figure 6. Implemented rapid prototyping techniques with (a) 3D printer, (b) laser cutting machine,
and (c) fully assembled actuator.

In order to test the cleaning effectiveness of the smart cleaning system, indoor experi-
ments have been carried out, where a heat source, in the form of a hot air gun, was applied
to activate the actuation mechanism efficiently. Thus, it allows rotating the cleaning spindle
over the PV module’s top surface, which removes the accumulated dust particles. Different
amounts of dust were placed over the PV module, as seen in Figure 7, to investigate the
cleaning effectiveness versus dust densities.

Figure 7. A prepared uncleaned PV module for the cleaning effectiveness test.
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2.4. Mechanical Assessment Setup of the Thermomechanical Actuator

This section discusses elements of all assessment platforms, including the developed
mechanical model, electrical components, software setup, and experimental criteria. In
order to carry out the tests for both the NiTiNOL springs and the actuator, two assessment
platforms were built. The first test platform, seen in Figure 8a, was designed to test the
generated force and displacement of the NiTiNOL springs. An active-controlled system,
in the form of a gain scheduling proportional–integral–derivative (PID) controller, was
implemented to quantitatively study the SMA spring-based actuator’s life expectancy.
In addition, assessment tests of both displacement and force produced by the actuator’s
assembly versus temperature inside the actuator were studied, as seen in Figure 8b.

Figure 8. Mechanical models of the assessment platforms for the (a) SMA spring, and (b) actuator’s
assembly tests.

The two designed assessment platforms utilized various sensors to measure all pa-
rameters connected to a microcontroller for data collection. An accurate rotary encoder
of 2000 pulses per revolution was utilized to measure the displacement produced by the
actuator. In addition, a precise load cell was used for measuring the generated force, while
a temperature, model LM35, was used for the temperature data. All these sensors were
calibrated and programmed; a designed gain-scheduling PID controller was integrated
to test the NiTiNOL springs’ life expectancy. Figure 9a shows the overall block diagram
of the PID-based controller, while Figure 9b represents the flow chart diagram of the
developed system.

It can be observed that each experimental test has its experimental procedure. For
instance, the first assessment platform of the NiTiNOL spring force test has one side
of the spring connected to the load cell while the other side was connected to a fixed
hook. As the applied current passes through the spring via the Joule heating effect,
heat is developed within the SMA spring, producing a recovery force. Similarly, the
load cell was replaced with the rotary encoder to measure the produced motion for the
displacement test. On the other hand, the applied tests for the actuation mechanism of
the complete actuator assembly were performed with the replacement of the NiTiNOL
spring with the actuator while reading the temperature inside the actuator using a
temperature sensor.
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Figure 9. (a) Block diagram of the process gain scheduling PID controlled system, and (b) flow chart
diagram of the controller working principle.

3. Results and Discussion

The proposed self-operating solar-driven PV cleaning system offers a novel solution to
the dust accumulation dilemma, which varies depending on the weather and the location
in which PV modules are installed. Therefore, different tests were performed to validate
its functionality, and their results are presented in this section. First, Section 3.1 discusses
the structural analysis of the designed solar-based actuator, while Section 3.2 highlights
the thermal analysis of the thermomechanical system. In addition, Section 3.3 presents the
dynamic analysis of the generated forces and displacement of the actuator, while Section 3.4
highlights the overall performance of the self-cleaning PV system.

3.1. Structural Analysis of the Thermomechanical Actuator

All main parts were simulated under the expected applied load to ensure the mechan-
ical feasibility of the designed smart cleaning system. Several structural Finite Element
Analysis (FEA) tests were made to avoid failure or fracture within the system’s components.
The FEA results have predicted locations of critical regions where expected maximum de-
formations or stresses might occur. For instance, Figure 10 demonstrates an example of the
maximum stresses expected under an applied load of 150 N, where the yield strength of the
chosen materials (acrylic: 4.5 × 107 N/m2, ABS: 3.9 × 107 N/m2). Therefore, calculations
for the factor of safety of all parts within the actuator assembly were computed as seen
in Table 1. It can be seen that the safety factor for all parts is above one for a maximum
expected load of 150 N.

Figure 10. Maximum stresses developed within rack and pinion gear arrangement.
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Table 1. FEA results of all developed parts within the mechanical system.

Part Displacement (mm) Strain Stress (N/m2) Factor of Safety

Actuator A Holder 2.92 5.67 × 10−3 1.7 × 107 2.29
Actuator B Holder 4.12 8.12× 10−3 2.73 × 107 1.43
Actuator C Holder 5.1 1.02 × 10−2 3.09 × 107 1.26

Pinion 2.08 × 10−2 3.77 × 10−4 1.35 × 106 33.33
Rack 5.52 × 10−2 6.47 × 10−4 2.31 × 106 19.5

Spindle holder 1.09 × 10−1 7.88 × 10−4 2.76 × 106 1.41

3.2. Thermal Behavior of the Thermomechanical Actuator

Another fundamental analysis for the design of the thermomechanical actuator is
the thermal performance of the designed SHC, which includes the thermal distribution
and profile throughout the year. Figure 11 presents an example of a 1-day temperature
distribution of the designed SHC of actuator B at different day times. It is evident in
Figure 11a that the temperature on the east side (− y-axis) has received the highest
temperature of about 52 ◦C due to the sun’s location in the morning. Alternatively, the
temperature distribution inside the SHC is identical through the SHC length at the zenith
time and when the sun is vertically toward the system, as shown in Figure 11b. It can
be noticed that the maximum temperature of about 81 ◦C within the SHC was obtained
during the zenith period. On the other hand, the west direction (+ y-axis) absorbs the
most heat after noontime with a maximum temperature above 65 ◦C, as seen in Figure 11c.
Lastly, the temperature distribution at late night times is shown in Figure 11d, reaching
its minimum values during the day as expected.

Furthermore, an extended quantitative analysis of temperature profiles for the de-
signed SHC devices under actual weather conditions has been studied for an entire year.
This allows verifying the functionality of the proposed actuators as standalone smart ther-
momechanical devices. As a result, the yearly temperature profiles for the three designed
actuators mentioned earlier were computed, as shown in Figure 12. It can be seen that
the optimized design was found to be actuator C, which shows the highest temperature
profile and, most importantly, variation throughout the year. Overall, the obtained results
show the ability of each SHC to increase the temperature, where actuators C, B, and A were
the most efficient, respectively. The optimized design of actuator C increases the internal
temperature by almost double the ambient temperature of the studied region. However,
actuator B increases the temperature by about 70%, while Actuator A only increases the
temperature by about 5%. The effect of the ambient temperature profile can also be seen in
governing the temperature inside all designed SHCs; additionally, obtained results from
this graph show that the deactivation levels are almost similar throughout the year, which
is bounded by the ambient temperature during the evening time.

In addition, Table 2 shows statistically averaged data for the temperature profile
inside the SHC over one year. These results have also concluded that actuator C has
the highest maximum, range, and standard deviation, while actuator B has the highest
mean and median values; additionally, actuator A has the lower average temperature.
Hence, the highlighted statistical outcome supports that actuator C is the most efficient
and adequate actuator for the studied area since it has the highest range and standard
deviation values.

The daily temperature variation is the mathematical difference between the highest
and the lowest temperature of the SHC in a single day. This analytical data is crucial as it
directly infers about the possible activating and deactivating ranges for the SMA-based
actuator. It indeed permits daily activation and deactivation of the actuation mechanism
due to the extensive range of temperature spans for substantial daily temperature variation.
Moreover, Figure 13 shows the histogram plot of the daily temperature variation for the
three proposed actuators. Actuators A, B, and C recorded an average daily temperature
variation of 14.62, 19.83, and 33.65 ◦C, respectively. Therefore, it has been found through the
conducted analysis that the optimized actuator, actuator C, is the most suitable actuator for

97



Materials 2022, 15, 5704

the intended self-cleaning application, where it recorded an average temperature variation
of 130.16% and 69.69% compared to actuators A and B, respectively.

Figure 11. Example of 1-day temperature distributions for the designed SHC through (a) morning,
(b) zenith, (c) afternoon, and (d) night periods.

The proposed PV cleaning system depends entirely on the thermal energy delivered
to the SMA springs by solar radiation. An activation temperature lines term has been
introduced here, which shows the temperature at which the SMA springs are anticipated
to activate in particular months. Figure 14 presents these activation temperature lines
for the proposed three actuators. The graph indicates that actuators A and B require a
minimum of two activation temperature lines; hence, two sets of SMA springs are needed to
operate independently throughout the year. In addition, actuators A and B have dedicated
temperature activation lines for warm weather and another for cold weather. The fact that
both actuators require two activation temperature lines led to the understanding that each
of these actuators would need at least two maintenance routines per year for practical
implementation. On the other hand, actuator C requires a single activation temperature
line throughout the year in which minimum yearly maintenance routine is needed for
its operation.
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Figure 12. Temperature profiles inside the SHC over an entire year.

Figure 13. Histogram plot for the daily temperature variation of the three actuator designs.
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Table 2. Statistical data for the temperature inside the SHC over one year.

Actuator A (◦C) Actuator B (◦C) Actuator C (◦C)

Max 49.61 62.1 68.35
Min 13.58 13.5 11.2

Mean 31.03 39.7 35.05
Median 31.2 40 32.2
Range 36.03 48.5 57.15

Standard Deviation 9.34 10.8 15.16

Figure 14. Activation temperature lines for the proposed three actuators.

The comprehensive thermal studies for the different actuator designs concluded that
actuator C is effective for the self-cleaning application. This valuable finding is supported
by the outcomes of the conducted numerical study, where this actuator design has the
most extensive daily temperature variation and can function throughout the year without
needing maintenance.

3.3. Dynamic Appraisal of the Thermomechanical Actuator

Since the thermal investigation successfully identified an adequate design, the me-
chanical performance of this novel thermomechanical actuator is also considered. This
section highlights multiple tests conducted to ensure the feasibility of utilizing the thermo-
mechanical SMA solar-driven actuator as the actuation mechanism for the cleaning system
from a mechanical energy perspective. The experimental tests evaluated the life expectancy
of the NiTiNOL springs integrated into the actuation mechanism. They also assessed the
actuation mechanism’s force and displacement.

In order to carry out an expedited life expectancy test for the NiTiNOL spring actuator,
a gain-scheduling PID controller with an anti-windup mechanism was implemented for
the active actuation mechanism. In addition, multiple commands were used to ensure the
controller’s usability, such as step, square, staircase, and sinusoidal command signals, as
shown in Figure 15. the responses show the great accuracy of the controlled system, which
enables further investigation of the expected life expectancy test.
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Figure 15. Gain scheduling PID controller’s Response to (a) step, (b) square-wave, (c) staircase, and
(d) sinusoidal-wave command signals.

For the life expectancy test, a long-duration square wave command signal was se-
lected to rapidly simulate the force and displacement responses of the NiTiNOL spring
in response to an applied heat source. Figure 16 shows, for instance, an example of the
square wave used in both the displacement and force life expectancy tests. The NiTiNOL
spring actuator used in the test handled over 7900 cycles of varying force between 2.95 N
and 11.8 N, corresponding to about 20% and 80% of the maximum expected force. As
for the displacement test, the total number of cycles ran was over 9200 cycles of varying
displacement of 30 mm and 50 mm, corresponding to about 40% and 70% of the maximum
displacement of the NiTiNOL spring. It can be concluded from the results of the life
expectancy tests that the operation of the self-cleaning system daily can last over 20 years
in service, which is approximately the life expectancy of conventional PV modules. The
fact that the life expectancy of the actuator is closely similar to that of a conventional PV
module shows the compatibility of the introduced self-cleaning mechanism and the PV
module for the actual implementation of smart solar applications.
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Figure 16. Long-duration displacement response of a square wave command signal.

Consequently, the force and displacement of the full-scale actuation mechanism were
also tested to ensure that it can act as the actuation mechanism for the cleaning system.
Figure 17 shows the hysteresis behavior of force, displacement, and a combined-case plots
for the actuator. The carried-out results of the force test showed that the maximum pushing
force was about 152.3 N at a temperature of 70.5 ◦C, while the maximum pulling force
was 151.1 N. It can be found that a maximum bidirectional force of about 150 N can be
produced. As for the maximum displacement, a stroke of about 127 mm at a temperature of
70.4 ◦C was recorded. Both force and displacement responses were plotted vs. temperature
to extract the hysteresis behavior of the actuator, in which the mechanical work of the
actuation mechanism was estimated of about 22.5 J.

The overall results of the dynamic appraisal have shown that the NiTiNOL springs
used to convert the thermal energy into mechanical energy have a life expectancy of
over 20 years, matching the life expectance of conventional PV modules. Additionally,
experimental tests for the dynamic performance of the actuator showed that a bidirectional
force over 150 N and a displacement of 127 mm could be produced, which achieves the
desired design criteria for cleaning PV system.

102



Materials 2022, 15, 5704

Figure 17. Displacement and force vs. temperature (hysteresis behavior).

3.4. Testing of the PV Cleaning System

The smart cleaning system has been manufactured and evaluated for a single full-scale
PV module of 250 W, as seen in Figure 18. Multiple indoor experiments were carried out
to test the effectiveness of the smart cleaning system, where a heat source of an applied
hot air device was applied to the fabricated thermomechanical actuator. As a result, it was
found that the generated movement of the actuation mechanism enabled the rotation of the
cleaning spindle over the PV module surface to remove the accumulated dust particles as
designed successfully.

Figure 18. Actual setup for the smart PV cleaning system.
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Furthermore, different amounts of dust were placed over the PV module to study the
cleaning effectiveness based on different dust densities. The cleaning effectiveness test
showed a promising result, as seen in Figure 19a, compared to the cleaning effectiveness of
various cleaning methods mentioned in the literature. The average cleaning effectiveness of
the cleaning system under different dust densities was computed from the data highlighted
in Figure 19b to be 95.14%. As presented in the figure, the dust density over a PV module
increases and the cleaning effectiveness increases, showing a direct correlation. The direct
relation between the dust density and the cleaning effectiveness led to the conclusion that
the cleaning method presented is more effective after sandstorms because additional dust
particles accumulate over the surface of PV modules during such environmental and harsh
weather conditions. Thus, periodic cleaning of PV modules leads to continuous power
generation and minimum power losses due to dust particles accumulating over the surface,
which is dominant in high dust density regions such as the MENA region.

Figure 19. The cleaning effectiveness of the presented SMA-driven cleaning method under differ-
ent dust densities, where (a) the actual performance of the self-cleaning operations, and (b) the
quantitative outcome of the cleaning effectiveness percentages versus dust densities.

The outcomes show that the developed actuation mechanism can function through-
out the year with minimum maintenance process for its operation. Additionally, the
similar expected life expectancy of the SMA-based cleaning actuator compared to conven-
tional PV modules adds enormous benefits for its real-life implementation with modern
PV applications.

4. Conclusions

To conclude, the presented paper discusses the design and fabrication of a novel
passive autonomous smart cleaning system to solve the dust accumulation issue facing PV
systems around the globe, particularly in the MENA region. Multiple tests were conducted,
including thermal analysis of different designs of a thermomechanical SMA actuator, its
mechanical assessment, and cleaning effectiveness of the proposed innovative self-cleaning
solution, which assure the promising feasibility and real-life applicability. It can be briefly
summarized that this study presents:

• Solar-powered and effective PV cleaning systems are a first-of-its-kind novel approach
to overcome the dust accumulation issue facing PV systems.

• Thermal analysis results prove that the standalone cleaning system can operate under
actual weather conditions in the MENA region, Dammam city.

• The optimized design of the developed SHC shows a minimum maintenance routine
required for a continuous full-year operation.

• A solar-based bidirectional actuator with a stroke of about 126 mm and maximum push
and pull forces of about 152.3 N and 151.1 N, respectively, were successfully achieved.

• The actuator’s thermal to mechanical conversion efficiency was recorded to be 19.15%,
whereas the self-cleaning system has average cleaning effectiveness of 95%.
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Future work could consider further thermal analyses of the novel cleaning system
for several areas with different weather conditions to assess the feasibility of the design
in different environments and worldwide. Furthermore, outdoor experiments are recom-
mended to evaluate the designed cleaning system under real-world conditions. Lastly,
a comprehensive energy comparison between a naturally cleaned PV module and a PV
module equipped with the self-cleaning system is encouraged for further assessment and
cost analysis.
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Abstract: The present study shows a comparison between two sintering processes, microwave and
conventional sintering, for the manufacture of NiTi porous specimens starting from powder mixtures
of nickel and titanium hydrogenation–dehydrogenation (HDH) milled by mechanical alloying for
a short time (25 min). The samples were sintered at 850 ◦C for 15 min and 120 min, respectively.
Both samples exhibited porosity, and the pore size results are within the range of the human bone.
The NiTi intermetallic compound (B2, R-phase, and B19′) was detected in both sintered samples
through X-ray diffraction (XRD) and electron backscattering diffraction (EBSD) on scanning electron
microscopic (SEM). Two-step phase transformation occurred in both sintering processes with cooling
and heating, the latter occurring with an overlap of the peaks, according to the differential scanning
calorimetry (DSC) results. From scanning electron microscopy/electron backscatter diffraction, the
R-phase and B2/B19′ were detected in microwave and conventional sintering, respectively. The
instrumented ultramicrohardness results show the highest elastic work values for the conventionally
sintered sample. It was observed throughout this investigation that using mechanical alloying (MA)
powders enabled, in both sintering processes, good results, such as intermetallic formation and
densification in the range for biomedical applications.

Keywords: shape memory alloys; mechanical alloying and milling; microwave processing; mechani-
cal properties; powder metallurgy

1. Introduction

Technological advancements push research in the search for new materials and prop-
erties. So-called “intelligent” or “smart” materials are of great industrial interest because
of their wide application due to their properties. In the class of intelligent materials, NiTi
alloys stand out for their properties, of which their shape memory effect (SME) and su-
perelasticity (SE) confer a singular value for these alloys [1,2]. NiTi alloys are most widely
applied in the aerospace and automotive industries and in the manufacture of biomedical
equipment and microdevices [3–6]. These alloys exhibit three phases in the matrix: the B2
austenite phase, the B19′ martensite phase, and the intermediate premartensitic R-phase.
The austenitic phase has a polygonal/equiaxed grain microstructural appearance. In con-
trast, the martensitic phases, B19′ and R-phase, show a triangular morphology (composed
of primary and secondary plates) and “herring-bone” appearance, respectively, where
several martensitic phase nuclei originate and grow within each austenitic phase grain [7].
The phases present at room temperature depend on the composition of the alloy. The
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control, cost reduction, impurity reduction, and the feasibility of achieving mechanical 
properties in ranges of values such as those resulting from conventional metallurgical 
processes [11]. Mechanical alloying (MA) is an interesting powder metallurgy technique, 
involving repeated welding, fracturing, and rewelding of the powder particles. This 
technique allows homogeneous materials from the mixture of two or more elements or 
compounds [11–13]. Conventional sintering (CS) is the simplest form of sintering NiTi 
alloys. It is relatively inexpensive but usually requires a very long time. However, the 
main disadvantages of this method are associated with the formation of oxides and other 
secondary phases in the solid state, which alters the stoichiometric composition of the 
alloy, affecting the phase transformation temperature [7,14]. Microwave sintering (MW) 
is a recent method used for the densification of powders, resulting in bulk samples. Its 
advantages include high heating rates coupled with a low sintering time and reduced 
energy consumption compared to conventional sintering [15–18]. The synthesis of porous 
NiTi alloys is relevant for the manufacture of biomaterials for bone-replacement implants 
due to their properties, including low density, tissue in-growth ability (securing a firm 
fixation to the implants), and SME and SE [3,15,16]. It is complicated to evaluate the 
mechanical behavior of NiTi shape memory alloys (SMAs) due to their asymmetric 
transformation behavior [19,20]. Usually, the SME and SE are evaluated by conventional 
tests, for example, the uniaxial tensile, point bending, and compression tests [19–22]. 
However, asymmetric behavior is influenced by the grain size (nanoscale, microscale, and 
macroscale) and the nature of the stress–strain applied [19,20]. The authors of [23] propose 
that martensitic variants (MVs) are directly associated with asymmetric behavior. 

The prime novelty of this research is the short milling time (25 min) in the mechanical 
alloying process of NiTi alloys, which provided the formation of a lamellar structure. The 
formation of this lamellar structure in such a short time has never been reported in the 
open literature for NiTi alloys processed by mechanical alloying. Additionally, in the two 
sintering processes subsequently evaluated, microwave and conventional sintering, the 
structure made the formation of a NiTi matrix possible, which was evaluated for its 
densification, microstructural effect, and micromechanical behavior under 
ultramicrohardness. 

2. Materials and Methods 
The raw materials used in this study were as follows: The nickel powder (median 

particle size ≈ 2 µm), supplied by JB Química (São Paulo/SP, Brazil), was obtained by oxi-
reduction and had a near-spherical morphology. The titanium powder (particle size < 
150.0 µm), donated by BRATS (São Paulo/SP, Brazil), was produced by the 
hydrogenation–dehydrogenation process (HDH) and had an irregular morphology. 
Figure 1 shows the schematic diagram of the process adopted in the present study. 
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B19′) [7,8].
Bulk NiTi alloy production can occur via different routes that can be divided into

two large groups: melting and powder metallurgy. Contamination issues during the
melting processes can arise because of titanium’s high reactivity with oxygen and carbon,
resulting in the formation of oxides (Ti4Ni2O) and carbides (TiC) in the liquid state, and
the formation of oxides (Ti2O) in the solid state. This can be considered a relevant problem
because additional phases change the functional properties of NiTi alloys [9,10].

In the case of the powder metallurgy route, there are many advantages compared to
the melting processes, namely the possibility of large-scale association within dimension
control, cost reduction, impurity reduction, and the feasibility of achieving mechanical
properties in ranges of values such as those resulting from conventional metallurgical
processes [11]. Mechanical alloying (MA) is an interesting powder metallurgy technique,
involving repeated welding, fracturing, and rewelding of the powder particles. This
technique allows homogeneous materials from the mixture of two or more elements or
compounds [11–13]. Conventional sintering (CS) is the simplest form of sintering NiTi
alloys. It is relatively inexpensive but usually requires a very long time. However, the
main disadvantages of this method are associated with the formation of oxides and other
secondary phases in the solid state, which alters the stoichiometric composition of the
alloy, affecting the phase transformation temperature [7,14]. Microwave sintering (MW) is
a recent method used for the densification of powders, resulting in bulk samples. Its ad-
vantages include high heating rates coupled with a low sintering time and reduced energy
consumption compared to conventional sintering [15–18]. The synthesis of porous NiTi
alloys is relevant for the manufacture of biomaterials for bone-replacement implants due to
their properties, including low density, tissue in-growth ability (securing a firm fixation
to the implants), and SME and SE [3,15,16]. It is complicated to evaluate the mechanical
behavior of NiTi shape memory alloys (SMAs) due to their asymmetric transformation
behavior [19,20]. Usually, the SME and SE are evaluated by conventional tests, for example,
the uniaxial tensile, point bending, and compression tests [19–22]. However, asymmetric
behavior is influenced by the grain size (nanoscale, microscale, and macroscale) and the
nature of the stress–strain applied [19,20]. The authors of [23] propose that martensitic
variants (MVs) are directly associated with asymmetric behavior.

The prime novelty of this research is the short milling time (25 min) in the mechanical
alloying process of NiTi alloys, which provided the formation of a lamellar structure. The
formation of this lamellar structure in such a short time has never been reported in the open
literature for NiTi alloys processed by mechanical alloying. Additionally, in the two sinter-
ing processes subsequently evaluated, microwave and conventional sintering, the structure
made the formation of a NiTi matrix possible, which was evaluated for its densification,
microstructural effect, and micromechanical behavior under ultramicrohardness.

2. Materials and Methods

The raw materials used in this study were as follows: The nickel powder (median particle
size ≈ 2 µm), supplied by JB Química (São Paulo/SP, Brazil), was obtained by oxi-reduction
and had a near-spherical morphology. The titanium powder (particle size < 150.0 µm), do-
nated by BRATS (São Paulo/SP, Brazil), was produced by the hydrogenation–dehydrogenation
process (HDH) and had an irregular morphology. Figure 1 shows the schematic diagram of
the process adopted in the present study.

The powders were mixed to obtain equiatomic NiTi single-phase alloy and milled in a
planetary ball mill PM400 (Retsch, Haan, Germany) at 300 rpm for 25 min (after each 5 min
of milling, the process was interrupted for 3 min to cool the vials). These experiments were
carried out under an argon atmosphere at room temperature and using stainless steel vials
(250 mL) and balls (balls with a diameter of 15 mm). The powder milling charge was 18 g,
and the ball/powder weight ratio was 20:1.
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Figure 1. Schematic of the adopted mechanical alloying and sintering processes.

After milling, the samples were cold-pressed into green pellets (∅ 8 mm × 14 mm),
using a uniaxial pressure of 53 MPa for 60 s, and then vacuum encapsulated in a quartz
tube for the realization of the sintering. Microwave (MW) sintering was performed at a
target temperature of 850 ◦C for 15 min and a rate of 50 ◦C/min in an MW oven from
Microwave Research & Applications, Inc. (Carol Stream, IL, USA), operating at 2.45 GHz
with a power of 1 kW. The temperature was measured by a platinum-shielded S-type
thermocouple. Conventional sintering (CS) was performed in a muffle furnace, a Quimis
model, for 120 min at the same temperature and heating rate. The conventional sintered
samples were then quenched in water at room temperature.

The specimen’s density and porosity were measured by the Archimedes method,
based on standard ABNT NBR 16661:2017. The pore size examinations were carried out
using optical microscopy (Olympus, Tokyo, Japan). The average porosity was measured
using five optical micrographs taken from the cross-sections of the sintered samples.

Differential thermal analysis (DTA) was performed on the MA-processed powders
for 25 min (SETARAM, Provence-Alpes-Cote d′Azur, France). The heating/cooling cycles
comprised a temperature range from 22 to 1050 ◦C (heating/cooling rates of 10 K·min−1)
under an argon atmosphere.

Differential scanning calorimetry (DSC) was carried out under a DSC-60 (Shimadzu,
Kyoto, Japan) fitted with a LN2 cooling attachment and inert gas (N2) atmosphere. The
heating/cooling cycles had temperatures of 150 ◦C and −150 ◦C (heating/cooling rate of
10 K·min−1), and the phase transformation temperatures extracted from the DSC curves
were obtained by the tangent method.

X-ray diffraction (XRD) patterns were recorded in a diffractometer (PANalytical,
Worcestershire, UK) with a cobalt anode, operated at 40 kV and 40 mA. Scanning electron
microscopy (SEM) analysis was performed using a scanning electronic microscope (SEM)
(FEI, Hillsboro, OR, USA) with secondary electron (ETD), backscattered electron (BSE), and
electron backscattered diffraction (EBSD) detectors.

Instrumented ultramicrohardness analysis was conducted with a Berkovich indenter
(Shimadzu DUH-211S, Kyoto, Japan) using the load–unload cycle method and two different
maximum load levels: 1.0 gf/9.81 mN and 20.0 gf/196.1 mN. In each sample, ten tests were
performed from the longitudinal cross-section of the sintered samples along the
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The XRD, SEM/EBSD, and instrumented ultramicrohardness specimens, after being
cut by a precision cutting machine, were prepared by conventional mechanical grinding
followed by electrochemical polishing at room temperature using an electrolyte of H2SO4
(20%) and CH3OH (80%) at 30 V. To reveal the phases, the samples were immersed for 60 s
in the following etching solution: 50 mL glycerin (C3H8O3), 18 mL concentrated acetic acid
(C2H4O2), 20 mL concentrated nitric acid (HNO3), and 16 mL concentrated hydrofluoric
acid (HF).

3. Results
3.1. Mechanical Alloying

The starting morphology of the powders is shown in Figure 2. After the MA process,
a lamellar structure was formed, as shown in Figure 2c. The presence of this structure
can promote increases in the diffusion processes [24–26]. This was a remarkable result;
lamellar structure has only been observed in the literature for milling times ranging from 4
to 180 h [27–29]. However, even with long times, it is not guaranteed to obtain a lamellar
structure because there are other process parameters that must be controlled, as has been
observed in [24,28,30].
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Figure 2. SEM morphology of the elementary powders: (a) nickel and (b) titanium. (c) Micrography
of the MA-processed powders. (d) XRD patterns of the starting powders and the MA-processed
powders. (e) DTA heating curve of MA-processed powders.

Figure 2d presents the XRD patterns of the starting powders and MA-processed
powders. This analysis reveals that no intermetallic phase was detected and only peaks
from the nickel and titanium initial powders were recorded. It is worth mentioning that
XRD has a detection limit that depends on the equipment [31–33], meaning that if any
intermetallic phase is formed below the detection limit, it will not be significant in the face
of the detected elements.

The DTA curve is shown in Figure 2e, where the effect of the MA-process was analyzed.
The curve shows only one peak, corresponding to the reactions between the nickel and
titanium to the formation of the intermetallic compound of the Ni-Ti system. As each
powder particle contained nickel and titanium in the form of a lamellar structure, the
reaction was slow and had low energy. As a consequence, the DTA peak has low intensity

112



Materials 2022, 15, 5506

and is very broad [34]. The temperature of the peak (Tp) was determined to be 468.4 ◦C
(Figure 2e), it should be noted that in a mixture as it is (without MA), this reaction occurs
at a higher temperature (±950 ◦C) and with much higher intensity [35]. This temperature
differs significantly from the previous results reported in the literature, as it is lower than
those obtained for milling times of 4–20 h [29,35,36].

3.2. Sintering Characterization

Table 1 summarizes the density, porosity, and pore size values obtained for the MW
and CS samples. For comparison purposes, Table 1 also shows some results found in the
literature [16,37].

Table 1. Density, porosity, and pore size values of the porous NiTi alloys prepared by MW and CS,
and from the literature results.

Sample Density (g/cm3) Porosity (%) Pore Size (µm)

MW 3.31 ± 0.02 51.3 ± 0.29 120 ± 13.84
CS 3.76 ± 0.06 58.2 ± 0.98 155 ± 13.01

* −200 mesh — 51.9 ± 1.21 97 ± 3.51
* −120 mesh — 51.5 ± 1.08 149 ± 7.30
* −60 mesh — 50.1 ± 0.95 238 ± 7.10
* −45 mesh — 52.9 ± 1.13 294 ± 9.95

** 0 wt.% 5.10 ± 0.20 22.0 ± 0.31 ≈26 ± 2.76
** 10 wt.% 3.64 ± 0.02 42.0 ± 0.59 ≈120 ± 5.52
** 20 wt.% 3.20 ± 0.02 51.0 ± 0.59 ≈151 ± 5.10
** 30 wt.% 2.40 ± 0.60 64.0 ± 1.18 ≈178 ± 2.50

*, ** Results from [16] and [37], respectively.

According to the literature, human bone shows a density of 1.8–2.1 g/cm3, the ideal
porosity is in the range of 30–90% and the optimal pore size is between 100 µm and
500 µm [16,38,39]. Thus, the MW and CS samples prepared in the present study exhibited
porosity and pore size values within the range of the human bone but higher densities.
However, the values obtained for the CS sample are higher than the ones obtained for the
MW sample.

The MW sample showed values close to those found in the literature for porous NiTi
alloys also prepared by MW sintering [16,37] (Table 1). However, ref. [16] used a pore size
controller (sieved pure NH4HCO3) and tested different mesh pore sizes. In that study, the
porosity results were similar for all samples independently of the initial mesh of the pore
size controller. The pore size values obtained in the present study are higher than the ones
obtained for the sample sieved to 200 mesh by [16] but smaller than the others.

The authors of [37] used different concentrations of NH4HCO3 while keeping the
mesh size at 250 (Table 1). When comparing the MW sample sintered in the present study,
similar density and pore size values were observed for the sample with 20 wt.% NH4HCO3
(Table 1). However, when compared to the sample without pore size controllers (0 wt.%) of
reference [16], it is seen that the density is smaller (3.31 ± 0.02 g/cm3 vs. 5.1 ± 0.20 g/cm3)
while the porosity (51.3 ± 0.29% vs. 22 ± 0.31%) and the pore size (120 ± 13.84 µm vs.
26 ± 2.76 µm) are higher. It is evident that the MA processing promoted alterations in these
properties. The formation of the lamellar structure (Figure 2c) provided the acceleration of
the diffusion process during sintering and more uniform porous specimens, as has been
previously investigated in literature [40,41].

The DSC curves are shown in Figure 3. The dashed line represents the phase present
at room temperature (20.0 ◦C). In the DSC curve of the MW sample (Figure 3a), during
heating, a two-stage martensitic transformation (B2→ R→ B19′) was observed. During
the cooling, as has been noted, an overlap of the DSC peaks was observed with two-step
transformations (B2→ R→ B19′) [7,13,42–46]. Regarding the CS sample of the DSC curve,
(Figure 3b), equal behavior was also noted.
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Figure 3. DSC curves showing the phase transformations for (a) MW and (b) CS samples. Dot line:
room temperature (20 ◦C).

The transformation temperatures and enthalpy of the MW and CS samples are listed in
Table 2. The Rs and Af temperatures were above room temperature (20 ◦C) in both sintering
processes. During the cooling and heating, a significant variation in the transformation
temperatures was not identified, as they did not surpass one degree Celsius during both
sintering processes.

Table 2. Phase transformation temperatures in degrees Celsius and enthalpy of MW and CS samples.
“-” Not detected; “*” undefined.

Sample

Cooling

B2→ R B2→ B19′ R→ B19′

Rs Rp Rf M′s M′p M′f Ms Mp Mf

CS 25.6 20.7 17.8 - - - 11.7 7.4 2.9
MW 24.9 19.9 17.7 - - - 11.5 7.4 3.4

Sample

Heating

B19′→ R B19′→ B2 R→ B2

R′
s R′

p R′
f A′

s A′
p A′

f As Ap Af

CS 25.8 * * * * * * * 58.3
MW 27.4 * * * * * * * 57.6

Enthalpy (mJ/g)

Sample First Peak on Cooling Second Peak on
Cooling First Peak on Heating Second Peak on Heating

CS 1.329 0.856 11.891
MW 0.279 0.769 11.164

* It was not possible to accurately determine the transformation temperatures due to overlapping peaks.

Few studies have observed similar behavior. For example, in [37], two-step martensitic
transformations in microwave sintering were identified, and compared to this study, the
variations in the Rs and Af temperatures were approximately 8 ◦C lower. However, ref. [47]
observed a multi-step transformation during the heating and a two-step transformation
during the cooling, in the temperature range of 850 to 1000 ◦C/1 h (variation of 50 ◦C).
Those authors mixed powders by MA for 3 h.

An increase in enthalpy in the CS sample was observed when compared to the MW
sample at both peaks of the cooling and heating curves. As is known, the enthalpy changes
as a function of the nickel atomic content [48], and the presence of TiNi3 in the MW sample
is the reason for the low values of enthalpy.
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The XRD patterns of the MW and CS samples are shown in Figure 4. The NiTi phases
(B2, R-phase, and B19′) were identified in both samples (Figure 4a), although the R-phase
in the CS sample only had one peak with overlap for B2 (1 0 0). In addition to the NiTi
phases, TiNi3 was also recorded in the MW sample (Figure 4a), and Ti2Ni and Ti3Ni4 in the
CS sample (Figure 4b). The XRD results show that the MW sample had more peaks for the
R-phase and B19′. In contrast, the CS sample had more for B2 and B19′. These results are
not exactly what was expected from the DSC results.
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Figure 4. XRD patterns (a) MW and (b) CS sample.

Nevertheless, these results are an improvement when compared to those of other
studies related to the MW sintering of NiTi alloys. For example, in reference [15], the
formation of NiTi intermetallic phases was not observed after MW sintering at 850 ◦C and
950 ◦C of the cold-pressed powders blended in a rotating mixer. The justification for such
behavior can possibly be associated with the MA process that, as mentioned previously,
led to the formation of a lamellar structure, (Figure 2c), which can promote an increase in
the diffusion processes. In the CS sample, in addition to the NiTi phase, only Ti2Ni and
precipitated Ti3Ni4 were recorded as secondary phases. This result could be associated
with the high sintering time of CS (120 min vs. 15 min).

MA enabled the modification of the diffusion process that occurs in the MW and CS
processes by promoting the formation of the B2, R-phase, and B19′ phases and by avoiding
the formation of a second phase in the CS sample (TiNi3) and MW sample (Ti2Ni and Ti4Ni3).
In the literature, it is reported that intermetallic TiNi3 and Ti2Ni form when pure nickel
and titanium powder mixtures are submitted to conventionally sintered samples [7,10].

SEM micrographs of the MW and CS sintered samples before etching are shown in
Figure 5a,b. It can be observed that the MW sample (Figure 5a) shows more uniform
pores compared to the CS sample (Figure 5b). Considering the short milling time and the
relatively low sintering temperature, the obtained results are truly relevant compared to
those in the literature [15,47].

115



Materials 2022, 15, 5506
Materials 2022, 15, x FOR PEER REVIEW 10 of 15 
 

 

 

Figure 5. SEM micrographs of the sample porous NiTi: (a) MW sample and (b) CS sample before 

etching. (c–f) After etching to reveal the possible phases. MW sample indicated by arrows 1 and 2: 

(c) general aspect and (d) magnification from arrow 1; CS sample: (e) general aspect and (f) magni-

fication from the square, showing the martensitic phase, indicated by the arrows. 

The EBSD results are shown in Figure 6. In the image quality (IQ) map, a different 

microstructure between the MW (Figure 6a) and CS samples (Figure 6b) can be observed. 

Nevertheless, for the MW sample (Figure 6a), there is a possibility of a signal mixture of 

the R-phase variants multiple grains formed within a given austenite grain. The phase 

map results show that the MW sample (Figure 6c) had a higher amount of R-phase and 

the CS sample (Figure 6d) had a higher amount of B2 and B19′. These results are consistent 

with those observed in the XRD analysis. 

Figure 5. SEM micrographs of the sample porous NiTi: (a) MW sample and (b) CS sample before
etching. (c–f) After etching to reveal the possible phases. MW sample indicated by arrows 1
and 2: (c) general aspect and (d) magnification from arrow 1; CS sample: (e) general aspect and
(f) magnification from the square, showing the martensitic phase, indicated by the arrows.

After metallographic etching, the previous B2 boundaries were identified in both
sintered samples (Figure 5c–f), as highlighted in the green squares. In a single B2 grain, a
significant amount of the B19′ and R-phase could be formed, preserving the previous B2
boundary [7,49–53]. In addition, the B19′ was also identified in the CS sample (Figure 5f).
These results corroborate the XRD analyses (Figure 4).

The EBSD results are shown in Figure 6. In the image quality (IQ) map, a different
microstructure between the MW (Figure 6a) and CS samples (Figure 6b) can be observed.
Nevertheless, for the MW sample (Figure 6a), there is a possibility of a signal mixture of the
R-phase variants multiple grains formed within a given austenite grain. The phase map
results show that the MW sample (Figure 6c) had a higher amount of R-phase and the CS
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sample (Figure 6d) had a higher amount of B2 and B19′. These results are consistent with
those observed in the XRD analysis.
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Figure 6. The image quality (IQ) map: (a) MW and (b) CS sample. EBSD phase maps + IQ map:
(c) MW sample with the R-phase in green, B2 in red, B19′ in blue, and TiNi3 in cyan; (d) CS sample
with B2 in red, B19′ in blue, Ti3Ni4 in cyan, and Ti2Ni in yellow.

The force vs. depth curves (loading and unloading) of the MW and CS sintered
samples are shown in Figure 7. Generically, the curves exhibit heterogeneous behavior.
However, one curve of the MW sample, highlighted in Figure 7a, displays a significant
elastic return (until 0.02 µm), which indicate a possible SE effect. This result is supported
by the XRD (Figure 4) and SEM (Figure 5) analyses, which showed B2 presence. However,
the non-complete return possibly indicates that the pressure exerted by the load maximum
reached the plastic deformation region by screw dislocations, as noted in the study of [54],
who proved stress-induced martensitic transformation during a nanoindentation test of
NiTi alloys (superelastic). Nevertheless, each of these measures mechanically requests a
small number of grains for the indentation and deformed volume around it, and with this,
each curve can translate the mechanical behavior in the function of the crystallographic
orientation of these grains [54,55]. In addition, the nature of the strain–stress applied has
influence on the asymmetric transformation behavior [19,20].
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Figure 7. Force vs. depth (loading and unloading curves). (a,b) MW sample and (c,d) CS sample;
maximum forces of 1.0 gf/9.81 mN and 20.0 gf/196.1 mN, respectively.

The results of the total work, elastic work, and plastic work, shown in Figure 8, indicate
that the higher average and maximum force values were obtained for the CS sample. This
is consistent with what was expected from the XRD and EBSD analyses, in which a B2
majority was recorded.
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4. Conclusions

The comparative sintering study starting from MA powders milled for 25 min allowed
us to conclude that:

- The density value obtained for the MW sintered sample (3.31± 0.02 g/cm3) was closer
to human bone (1.8–2.1 g/cm3) than the density value obtained for the CS (3.76 ± 0.06
g/cm3). The results of porosity and pore size for both processes exhibited results
within the range of human bone;
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- When compared to CS, the overall results obtained from combining MA and MW
sintering were very promising, as it allowed for the formation of intermetallic NiTi
(B2, R-phase, and B19′) in a very short time and the formation of homogeneous pores;

- Two-step transformations were detected on the heating and cooling curves for both
sintering processes, with an overlapping peak on the cooling curves, probably due
to the presence of a second phase and the intermediate premartensitic R-phase. No
significant differences in the transformation temperatures were detected between the
sintering methods;

- The EBSD results show that the MW sample had a higher amount of R-phase and the
CS sample had higher amounts of B2 and B19′;

- Through instrumented ultramicrohardness analysis, heterogeneous behavior could
be identified based on the curves of both samples, as expected. In MW’s curves, one
curve was observed with a significant elastic return. The CS sample showed the
highest values of elastic work compared to the MW sample at both maximum forces.
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Abstract: Actuators using Shape Memory Alloy (SMA) springs could operate in different mechanical
systems requiring geometric flexibility and high performance. The aim of the present study is to
highlight the potential of these actuators, using their dimensional variations resulting from the phase
transformations of NiTi springs (SMA) to make the movements of the system’s mobile components
reversible. This reversibility is due to thermal-induced martensitic transformation of NiTi springs.
The transformation promotes the extended and retracted of the springs as the phase changing
(martensite–austenite) creates movement in part of the system. Therefore, the phase transition
temperatures of NiTi, evaluated by differential scanning calorimetry (DSC), are required to control
the dimensional variation of the spring. The influence of the number of springs in the system, as well
as how impacts on the reaction time were evaluated. The different numbers of springs (two, four,
and six) and the interspaces between them made it possible to control the time and the final angle
attained in the mobile part of the system. Mechanical resistance, maximum angle, and the system’s
reaction time using different NiTi springs highlight the role of the actuators. Fused Deposition
Modelling (FDM)/Material Extrusion (MEX) or Selective Laser Sintering (SLS) was selected for
shaping the composite matrix system. A new prototype was designed and developed to conduct
tests that established the relationship between the recoverable deformation of the matrix suitable for
the application as well as the number and distribution of the actuators.

Keywords: actuator; aircraft systems wing; shape memory alloy; NiTi spring; additive manufacturing

1. Introduction

Aircraft system wing design must satisfy a specific range of flight conditions. Insertion
of actuators made from smart materials such as shape memory alloys may overcome the
present limitations. Researchers are currently developing new solutions to modify wing
design using smart actuators [1]. Mabe J. et al. developed an aircraft system that includes
devices that function depending on the performance of an alloy with shape memory [2,3].
The challenge in this approach is to design a structure strong and flexible enough to alter
the angle of inclination suitable for the application envisaged. Phase transformations of
shape memory alloys (SMAs) can be used to detect variations around them and respond
to external stimuli instantly. SMAs have significant recoverable deformation capability
and actuating function when SMA structures are submitted to cyclic loading [4,5]. Among
the SMAs, NiTi is the most studied due to its specific properties—superelasticity and
shape memory effect [6,7]. The change of properties in shape memory alloys (SMAs) can
be detected by martensitic transformation. Stress-induced martensite (SIM) promotes
superelasticity, and thermal-induced martensitic transformation (TIM) develops the shape
memory effect. Therefore, martensitic transformation in NiTi alloys presents both thermal
and mechanical hysteresis. Ni content can control the properties. Ni-rich and equiatomic
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NiTi alloys display the superelastic effect at room temperature and above and Ti-rich NiTi
alloys display the shape memory effect above room temperature [8,9]. When the material
is cooled from the austenite (A) domain, the martensite (M) starts at Ms temperature. The
transformation from austenite to martensite is referred to as direct transformation and
finishes at martensite Mf temperature. When the material is cooled from the austenite
(A) domain, the martensite starts its formation at Ms and the martensite finishes at Mf
temperature. On the other hand, when phase M is heated, the austenite phase starts to form
at As temperature. This transformation finishes when the Af temperature is reached. When
the material is deformed up to 10% in the martensitic domain, it can retain the deformation,
as long as the martensitic stability temperature range is preserved. However, the material
starts recovering the original shape when it is heated above As temperature. When Af is
achieved, the shape is recovered by the shape memory effect [5,10].

Different applications of NiTi have contributed to developing new concepts of actua-
tors. The widespread use of NiTi is due to its fatigue behavior and mechanical strength.
Depending on the customized application, NiTi is furnished commercially in several forms:
spring, wire, thin films, powder particles, and nanoparticles [11]. Many research activities
stem from actuator processing, involving NiTi-based materials, especially wire and spring
units to construct linear and rotary actuators [12,13]. The typical straight-drawn wire of
commercial NiTi has a maximum recovery strain limit of ~4%. A maximum linear strain of
~20% can be achieved using coiled NiTi wires by successively tuning their shape memory
properties in the linear coil prototype [14,15], which is the driving force for the movement
exerted by the spring on the prototype parts, according to the specified properties of the
spring (Figure 1).
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Figure 1. The geometrical design of a NiTi coil spring, thickness (d), outer diameter (D), length (L),
number of active coils (n), and initial pitch angle (α).

The linear actuators activated by shape memory alloys with integrated stroke control
are commonly designed and manufactured. The extended and retracted of the actuator are
performed by the Joule effect, which can possibly determine the angle to perform in the
prototype. One of the main functions of this kind of system applied in the prototype is the
possibility to modulate the extension and retraction just by acting on the corresponding
SMA springs by heat-induced from an electrical current. As the voltage applied is changed,
the extended or retracted springs can be activated in order to set the desired position and
overcome the limits of the standard configuration SMA spring [16–18]. The aim of this
study is to analyze in detail how spring actuators (NiTi) affect the angle of inclination of
the composite prototype as a function of the number and distance between the springs.
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2. Experimental Procedure

A prototype of the actuator developed to control aircraft system wings constituted by
support (nylon) with the incorporation of SMA actuator springs is shown in Figure 2a. The
dimensions of the prototype are 130 mm in length and 60 mm in width (Figure 2b). Six
SMAs springs (diameter of wire 0.63 mm) were inserted in support specially developed to
accomplish the objective to accommodate each one (Figure 2c). Two tiny grooves are cut
along the length of the prototype to adjust an SMA wire (on each side) used as an electrical
conductor; each SMA spring has contact with the SMA wire (Figure 2c). In the electrical
circuit, the current goes through the system of springs to actuate in two, four, six, or eight
SMA springs simultaneously. The distance between springs is 10 mm. This system placed
in the wings provides control of the structure through different angles. Figure 2d shows
the aircraft wing with the actuator.
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In this study, the support of prototype production was performed from the CAD
project to Material Extrusion (MEX)* and Selective Laser Sintering (SLS). The materials
used in each part (support and springs) of the prototype were tested, evaluated, and
selected according to their properties.

2.1. Material
2.1.1. Spring and Wire

There are several ways to create an electromechanical actuator system. In the present
study, the application of the NiTi springs was the solution selected. Therefore, an overview
of the properties of springs must be provided. In this case the shape memory alloy NiTi
springs (SAES Group-Tensile Spring) have shape memory effect. The dimensions of each
spring are, as follows: outer diameter (D) = 6.0 mm, thickness (d) = 0.63 mm, average
typical force = 2.0 N and number of turns in the coil (n) = 7 (Figure 1).

The spring has a martensitic phase at room temperature (25 ◦C), as shown by the
Differential Scanning Calorimetry (DSC) curve (Figure 3). Tests were carried out at
temperatures ranging from −100 ◦C to 100 ◦C under a controlled heating/cooling rate
of 10 ◦C/min. Before analysis by DSC, the specimens were cut and chemically etched
(10%HF + 45%HNO3 + 45% H2O (vol.%)) to remove oxides, as well as the layer deformed
by the cutting operation (final mass: ~17 mg). The phase transformation temperatures are:
As = 51 ◦C and Af = 69 ◦C; Rs = 58 ◦C; Rf = 46 ◦C, Ms = −3 ◦C; Mf = −42 ◦C. A superelastic
NiTi wire (Fort Wayne Metals) with a diameter of 0.5 mm was selected to be used as an
electric conductor making contact between the springs, with Af = 27.9 ◦C [19–22].
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Figure 3. DSC curve of NiTi spring.

A Shimadzu Autograph AG-X Universal Tester Machine equipped with a 5 kN load
cell was used to test the tensile behavior of the NiTi springs and wires. The SMA spring was
connected to the machine using a hook (Figure 4). Then, tensile tests under displacement
control at room temperature (25 ◦C) were performed. After reaching the predefined length
(22.0 mm) in the design of the prototype, the displacement was stopped and complete
heating/cooling cycles were carried out on the spring. Firstly, the springs were heated
(>Af temperature) and then cooled to room temperature (RT) for ten (S10), twenty (S20),
and thirty (S30) seconds, in order to simulate the real action of the spring and measure the
resistance force imposed by the spring in the test (15 cycles by spring test).
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2.1.2. Support

The selection of the material to produce the support resulted from a comparison
of Polylactic Acid (PLA), Acrylonitrile Butadiene Styrene (ABS), and Polyamide (PA).
The polymeric filament materials PLA (PRIMAVALUE™) and ABS (PRIMASELECT™)
are from the supplier PrimaCreator and have 1.75 mm in diameter. Three-dimensional
Systems furnished the polymeric powder (Nylon (PA12)) (DuraForm® ProX® PA). Table 1
summarizes the polymeric material properties selected.

Table 1. Temperature, fracture toughness, and Young’s modulus of PLA, ABS, and PA12 (CES
2013 Edupack).

Material Service
Temperature (◦C)

Fracture
Toughness
(MPa.m1/2)

Young’s
Modulus (GPa)

Tensile
Strength (MPa)

PLA 45–55 0.70–1.10 3.45–3.83 48.0–60.0

ABS 62–77 1.90–2.10 2.00–2.90 30.0–50.0

PA12 90–130 3.32–3.66 1.33–1.65 58.5–71.5

The mechanical behavior of the spring support was evaluated by three-point bending
and tensile tests (room temperature). The PLA and ABS specimens submitted to three-point
bending tests were produced by MEX and the Nylon specimen was manufactured by
Selective Laser Sintering (SLS), both with dimensions of 60 × 10 × 2 mm3. Three-point
bending tests were carried out according to ASTM D790-10, using a Shimadzu Autograph
AG-X Universal Tester Machine equipped with a 5 kN load cell, and the TRAPEZIUM X
software for data processing, at a displacement rate of 2 mm/min and gauge length of
32 mm.

The specimens submitted to the tensile tests had the geometry shown in Figure 5 with
dimensions of 100 × 10 × 2 mm3. The tensile tests were performed according to ASTM D
3039, using a Shimadzu Autograph AG-X Universal Tester Machine equipped with a 5 kN
load cell, and the TRAPEZIUM X software for data processing, at a load rate of 5 mm/min
and a gauge length of 62 mm.

Materials 2022, 15, x FOR PEER REVIEW 5 of 10 
 

 

2.1.2. Support 
The selection of the material to produce the support resulted from a comparison of 

Polylactic Acid (PLA), Acrylonitrile Butadiene Styrene (ABS), and Polyamide (PA). The 
polymeric filament materials PLA (PRIMAVALUE™) and ABS (PRIMASELECT™) are 
from the supplier PrimaCreator and have 1.75 mm in diameter. Three-dimensional Sys-
tems furnished the polymeric powder (Nylon (PA12)) (DuraForm® ProX® PA). Table 1 
summarizes the polymeric material properties selected. 

Table 1. Temperature, fracture toughness, and Young’s modulus of PLA, ABS, and PA12 (CES 2013 
Edupack). 

Material 
Service 

Temperature 
(°C) 

Fracture Toughness 
(MPa.m1/2) 

Young’s Modulus 
(GPa) 

Tensile Strength 
(MPa) 

PLA 45–55 0.70–1.10 3.45–3.83 48.0–60.0 
ABS 62–77 1.90–2.10 2.00–2.90 30.0–50.0 
PA12 90–130 3.32–3.66 1.33–1.65 58.5–71.5 

The mechanical behavior of the spring support was evaluated by three-point bending 
and tensile tests (room temperature). The PLA and ABS specimens submitted to three-
point bending tests were produced by MEX and the Nylon specimen was manufactured 
by Selective Laser Sintering (SLS), both with dimensions of 60 × 10 × 2 mm3. Three-point 
bending tests were carried out according to ASTM D790-10, using a Shimadzu Autograph 
AG-X Universal Tester Machine equipped with a 5 kN load cell, and the TRAPEZIUM X 
software for data processing, at a displacement rate of 2 mm/min and gauge length of 32 
mm. 

The specimens submitted to the tensile tests had the geometry shown in Figure 5 with 
dimensions of 100 × 10 × 2 mm3. The tensile tests were performed according to ASTM D 
3039, using a Shimadzu Autograph AG-X Universal Tester Machine equipped with a 5 
kN load cell, and the TRAPEZIUM X software for data processing, at a load rate of 5 
mm/min and a gauge length of 62 mm. 

 
Figure 5. Geometry and dimensions of the specimens for tensile tests. 

A prototype was developed using one spring (Figure 6a,b) for the thermal resistance 
test. In this test, a 9 V DC serial was applied at the springs to evaluate the operating tem-
perature in contact with different materials during ten cycles. The integrity of the poly-
meric support of the prototype was visually evaluated, and showed no softening or dam-
aging. 

  

Figure 5. Geometry and dimensions of the specimens for tensile tests.

A prototype was developed using one spring (Figure 6a,b) for the thermal resistance
test. In this test, a 9 V DC serial was applied at the springs to evaluate the operating
temperature in contact with different materials during ten cycles. The integrity of the
polymeric support of the prototype was visually evaluated, and showed no softening
or damaging.
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2.2. Prototypes Fabrication

Two additive manufacturing techniques were selected, to produce the support for
the prototype (Figure 2a, MEX and SLS). The dimensions of the support were constant
and independent of the number of springs. The MEX parameters were infill density of
40%, gyroid fill patterns for layers, 2 perimeters layers, fill scan pattern angle of 45◦,
printing speed rate of 50 mm/s, 0.2 mm of layer height, and a printing surface temperature
of 215 ◦C. The equipment used was a Prusa MK3S 3D Printing. The second additive
manufacturing technology was supported by a 3D Systems ProX® SLS 6100 3D Printer,
where the parameters were as follows: chamber temperature 169 ◦C, warm-up rate from
room temperature 1 ◦C min−1, laser power contour 18W, laser power infilling 60W, laser
scan linear speed 237.5 mms−1, scan spacing 0.25 mm, layer height 0.1 mm.

The functional characteristics of NiTi springs were studied as actuators in the proto-
types in this particular system (Figure 2d). The phase transition temperature of the NiTi
spring was attained by a serial connection circuit and a 9 V DC power supply, which can
induce the spring to achieve a temperature of between 50 ◦C and 90 ◦C. The extended and
retracted spring times, with and without induced cooling, and the final angle of inclination
reached by the prototype, were measured. The number of springs was changed to evaluate
the angle of inclination and the number of springs needed; these variations was tested
using two, four, and six springs. In order to guarantee a uniform current, a superelastic
NiTi wire makes the electric contact between the springs.

3. Results and Discussion
3.1. Prototype Details
3.1.1. Actuator

The results of the NiTi spring tensile tests (Figure 7) highlight the maximum force
achieved in the S10, S20 and S30 cycles (heating and cooling cycle times), which corresponds
to 10 s, 20 s and 30 s, respectively. This represents the transformation from martensite
to austenite through heating. When the spring was subjected to cycles of 10 s (S10), the
average force reached was 2.1 N. In longer cycles, the average force reached increased
proportionally with time, and was 2.2 N for cycles of 20 s (S20), and 2.3 N in cycles of 30 s
(S30) (Table 2).

Table 2. Maximum force function of the thermal cycle (NiTi springs).

Cycle Heating/Cooling Maximum Force (N)

S10 2.1

S20 2.2

S30 2.3
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Figure 7. Force vs. time of the thermal cycle of the NiTi spring (tensile test) (10 s (S10), 20 s (S20), and
30 s (S30)).

3.1.2. Support

The visual analyses of the effects of the thermal resistance test using one NiTi spring
reveal a significant problem with the PLA after one cycle (Figure 8a) and with the ABS
after a few cycles (Figure 8b). When in direct contact with the NiTi spring during heating,
imperfections, damage, and some deformation occur at the contact points. These make
it impossible to use these materials for supports that work at thermal cycles above the
phase transformation temperature of NiTi springs (Af = 69 ◦C). The PLA shows a service
temperature from 45 to 55 ◦C and ABS between 62–77 ◦C, which supports the observation
of damage. For the degradation temperature when comparing PLA and ABS, the latter one
support higher temperatures than the PLA. Using dynamic mechanical analysis (DMA),
K. Arunprasath et.al. (2021) observed that a decrease in the degree of crystallinity of both
materials (PLA and ABS) increases their strength.
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Figure 8. Visual aspect after thermal resistance tests on the supports (one spring): (a) PLA; (b) ABS;
(c) PA12.

The maximum effective displacement of the actuator support, and consequently
of the system, leaded to modify its design creating a zone where it could easily bend
without breaking.

3.2. Prototype Tests

After the selection of the prototype materials, the supports for the prototypes in PA12
were manufactured by Selective Laser Sintering (SLS), and the NiTi springs were assembled
to the supports (Figure 9).
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The characterization test values for the prototype are summarized in Table 3. The
highest angle of inclination of the prototype (Figure 10) was attained for the highest
number of springs tested (6). It is possible to vary the angle reached and the extended
spring according to the number of springs in the prototype. The retracted time with cooling
induction was considerably shorter than without cooling. Figure 11 highlights the linear
relationships between the angle of inclination value of the prototype and opening time
versus the number of SMA springs.
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Table 3. Extended and retracted time with and without induced cooling and maximum angle
of inclination.

Number of
Springs Extended Time (s)

Retracted Time
with Induced

Cooling-Air (s)

Retracted Time
without Induced
Cooling-Air (s)

Maximum
Angle (◦)

2 ~19 20–35 75–90 10–12

4 ~23 20–35 75–90 18–23

6 ~25 20–35 75–90 25–30
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Nevertheless, it would be interesting to evaluate the prototype’s behavior for different
distances between the springs and a more significant number of springs.
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the number of NiTi springs (black) in PA12 support.

4. Conclusions

The linear actuation stroke of NiTi (SMA) wire actuators is improved significantly
by converting them into coil spring structures (spring). The present study contributes to
establishing the main characteristics of a prototype constituted by spring actuators based
on NiTi (SMA) with unique thermo-mechanical performances for wing aircraft system.
A PA (nylon) support produced by additive manufacturing was selected because it is
strong enough for the forces applied and resistant to the temperatures developed during
the application.

The main characteristics for the industrial application of NiTi actuators are as follows:

− The maximum inclination angle of the support is a linear function of the number
of springs;

− Cooling of the prototype has significant importance regarding prototype recovery time;
− The maximum inclination angle of the prototype is a linear function of the temperature

imposed on the spring.
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Abstract: The thermoelastic martensitic transformation and its reverse transformation of the Cu-Al-Mn
cryogenic shape memory alloy, both with and without compressive stress, has been dynamically in
situ observed. During the process of thermoelastic martensitic transformation, martensite nucleates
and gradually grow up as they cool, and shrink to disappearance as they heat. The order of martensite
disappearance is just opposite to that of their formation. Observations of the self-accommodation
of martensite variants, which were carried out by using a low temperature metallographic in situ
observation apparatus, showed that the variants could interact with each other. The results of in situ
synchrotron radiation X-ray and metallographic observation also suggested there were some residual
austenites, even if the temperature was below Mf, which means the martensitic transformation
could not be 100% accomplished. The external compressive stress would promote the preferential
formation of martensite with some orientation, and also hinder the formation of martensite with
other nonequivalent directions. The possible mechanism of the martensitic reverse transformation
is discussed.

Keywords: cryogenic shape memory alloys; compressive stress; cryogenic metallography; in situ
observation; residual austenite; synchrotron radiation

1. Introduction

Thermoelastic martensitic transformation and its reverse transformation are the root
of the shape memory effect (SME) and a unique part of martensitic transformation research.
Shape memory alloy (SMA) based on SME has been widely used in many areas. Cu-based
SMA, for example, has been widely used in intelligent valves, connectors, dampers and
seismic attenuation due to its SME and high damping properties [1–3]. It also has the great
potential of being used in cryogenic sealing because of its pseudoelasticity, which is also
based on the thermoelastic martensite [4–6].

SME is now generally well understood and generally considered to be associated with
the reversibility of the martensitic transformation, that is, the thermoelastic martensitic
transformation. As early as 1938, Greninger and Mooradian first discovered the phe-
nomenon of martensite growth and disappearance with temperature fall and rise in the
Cu-Zn alloy during their investigation of copper alloys (copper–zinc and copper–tin) [7].
Then, in about 1949, Kurdjumov and Khandros named this reversible transformation as
“thermoelastic martensitic transformation” after a detailed study of thermoelasticity in
Cu-Zn and Cu-Al-Ni alloys [1,8].
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Many aspects of thermoelastic martensitic transformation have been studied in de-
tail [9], including the associated crystallographic behavior [10], the thermodynamics [11,12],
the effects of chemical composition [13–16] and post-heat treatment [3,17–22]. A notable
phenomenon in the thermoelastic martensitic transformation of SMA is that an austenite
phase grain can transform to different martensitic variants during the martensitic transfor-
mation [23], but all the martensite variants have to transform to the same original austenite
phase grain instead of forming different austenite phase grains during the revise transfor-
mation. This phenomenon is very important because it is the basis of SME. Otsuka and
Shimizu [24] discussed the effects of ordering on the crystallographic reversibility of the
martensitic transformation and concluded that the complete reversibility of the martensitic
transformation is characteristic of ordered alloys. However, they also note that the fcc-to-fct
(face-centered-tetragonal) transformation is an “exception”. Bhattacharya et al. [25] provide
an explanation for the reversibility on the basis of the symmetry change during the transfor-
mation. They show, through rigorous mathematical theory and numerical simulation, that
irreversibility is inevitable in a “reconstructive” phase transformation, but not in a “weak”
martensitic transformation, in which the symmetry group of both the parent and product
phases are included in a common finite symmetry group (which includes symmetry break-
ing). Our previous work shows that there are always some residual austenites, even if the
temperature is lower than Mf and the last formed martensite on cooling firstly disappeared
on heating, through a low temperature metallographic in situ observation in a Cu-Al-Mn
alloy [26]. However, so far, there is still much work remaining to understanding the effects
of external compressive stress on the process of martensitic transformation and its reverse
transformation. The direct observation and detailed knowledge of the reverse thermoe-
lastic martensitic transformation of SMA are essential for the mechanism of thermoelastic
martensitic transformation and the proper understanding of SME.

In this paper, a Cu-Al-Mn cryogenic SMA (martensitic transformation start tempera-
ture, Ms, is as low as about 100 K) was prepared. The thermoelastic martensitic transfor-
mation and its reverse transformation of the alloy have been observed in situ with and
without compressive stress. The possible mechanism of martensitic reverse transformation
is also discussed.

2. Experimental Procedure

The material analyzed in this study was a Cu-Al-Mn cryogenic SMA. The chemical
composition and Ms point are listed in Table 1. The Cu-Al-Mn alloy was melted in a vacuum
induction furnace with high purity Cu, Al and Mn [26]. The bulk specimen with a size of
20 mm × 15 mm × 5 mm was cut from the sample by wire cutting, and then heat treated by
water quenching after holding at 900 ◦C for 10 min. The Ms measurement was performed
using a PPMS-9 (Quantum Design, China). The Ms and martensitic transformation finish
temperature (Mf) are shown in Figure 1. Ms is about 108 K and Mf is about 80 K.

Table 1. Chemical composition and Ms point of the sample.

Composition (wt.%) Ms (K)

Cu Al Mn
76.8 12.5 10.7 108
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Figure 1. The Ms temperature of Cu-Al-Mn shape memory alloys.

The working schematic diagram of the low temperature metallographic in situ obser-
vation instrument with deformation excitation unit is shown in Figure 2. The deformation-
adjusting device on one side of the instrument can apply compressive stress to the sample,
as shown in Figure 3. The schematic diagram is shown in Figure 3a–c. The sample was
an ordinary metallographic one with maximum size of 20 mm × 20 mm × 8 mm. Cooling
medium was liquid nitrogen. The temperature control accuracy was ±2 K, the minimum
temperature could be reduced to 77 K, and the cooling rate was 45 K/min. The phase trans-
formation process of the Cu-Al-Mn cryogenic SMA with and without compress stress could
be observed through the quartz glass window of this instrument. In situ XRD experiments
were carried out at the beamline 4B9A in Beijing Synchrotron Radiation Facilities (BSRF).
Two XRD patterns were, respectively, collected at 293 K and 77 K under low-vacuum
conditions (0.1 Pa) with an incident X-ray wavelength of 1.54 Å. The data collection time
for the low temperature XRD pattern was about 2 h.

Figure 2. In situ observation apparatus of cryogenic metallographic with deformation excitation unit.
(a) the pipe connecting the sample table and the liquid nitrogen tank, through which liquid nitrogen
is introduced into the sample stage (b) sample stage with deformation excitation unit and (c) the
metallographic microscope is equipped with micro image processing system (MIPs).
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Figure 3. A schematic diagram of the area of observation with external stress. (a) Schematic diagram
of observation window of copper sample table; (b) the picture of area of observation and (c) schematic
diagram of compressive stress.

3. Experimental Results
3.1. Thermoelastic Martensitic Transformation and Reverse Transformation without
Compressive Stress

The cryogenic metallographic images of the surface of the Cu-Al-Mn alloy with
the change of the temperature are shown in Figure 4. The martensitic transformation
process during cooling is shown in images 1–5 in Figure 4, and the reverse martensitic
transformation process during heating is shown in images 6–10 in Figure 4; no loading
pressure was applied to the sample when cooling and heating.

Figure 4. In situ observation of the thermoelastic martensitic transformation (1–5) and reverse
transformation (6–10) without compressive stress. ‘A’ is austenite and ‘M’ is martensite.

The original sample surface is smooth, as shown in image Figure 4(1), which is
at the fully complete β1 phase at 293 K. As the temperature decreases, the martensite
variants with mark of “a”, “b”, “c”, “d” and “e” gradually appear on the sample surface,
in the order of “a”→ “b”→ “c”→ “d”→ “e”, as shown in the images 2–5 of Figure 4.
The martensites with different orientations grow continuously in their length and width
directions. These preferentially grown martensite strips can interact with other oriented
martensites subsequently formed. When the temperature was reduced to 77 K, and was
held for a while, it was shown that there were still a few regions which remained in their
original austenite phases and would not translate into martensites, as indicated by a ellipse
mark in image 5 of Figure 4, and in the larger version of this figure.

As shown in images 6–10 of Figure 4, the martensitic variants of five orientations
faded away and the sample surface returned to its original smoothness once again. The
order of martensite disappearance is “e”→ “d”→ “c”→ “b”→ “a”, which is just opposite
to the order of their formation.
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3.2. Thermoelastic Martensitic Transformation and Reverse Transformation with
Compressive Stress

The thermoelastic martensitic transformation during cooling and reverse transforma-
tion process during heating with compressive stress are shown in images 1–5 of Figure 5
and images 6–10 of Figure 5, respectively. The compressive stress was applied to the same
sample as shown in Figure 4, and the schematic diagram is shown in Figure 3b,c. The
martensitic transformation process under compressive stress was observed in the same
field of view and with same experimental parameters as shown in Figure 4, and the other
experimental parameters were also same as those in Figure 4.

Figure 5. In situ observation of the thermoelastic martensitic transformation (1–5) and reverse
transformation (6–10) with compressive stress. ‘A’ is austenite and ‘M’ is martensite.

As the temperature decreases, a martensite variant with a new orientation marked
with “f” formed firstly, while the martensite with the orientation of “e” did not appear
under the external compressive stress. The number of martensitic variants with orientations
“a”, “b”, “c” and “d” decreased. The temperature corresponding to the initial appearance
of the martensitic variants with each orientation also decreased. The order of appearance
also changed to be “f”→ “b”→ “a”→ “c”→ “d”.

As shown in images 6–10 of Figure 5, the martensitic variants of five orientations
(“f”,“b”, “a”, “c”, “d”) faded away, and the sample surface returned to its original smooth-
ness again. The order of disappearance was “d”→ “c”→ “a”→ “b”→ “f”, which is also
just opposite to the order of their formation. It is noted that the number of martensites with
compressive stress was smaller than that without compressive stress.

3.3. Synchrotron Radiation X-ray Diffraction

Figure 6 shows the synchrotron radiation X-ray diffraction spectrum of the same
sample area of the Cu-Al-Mn alloy at 293 K and 77 K. As shown in Figure 6a, the parent
phase of the Cu-Al-Mn cryogenic SMA at room temperature is AlCu2Mn phase, which is
the DO3 structure. Figure 6b shows that there are

(
108

)
, (020),

(
122

)
,
(
128

)
, (1216), (2020)

and (3218) diffraction peaks in the XRD pattern, which are unique to the M18R structure of
martensite, and (200), (220) and (422) diffraction peaks of parent phase with DO3 structures.
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Figure 6. Synchrotron radiation X-ray diffraction spectrum of Cu-Al-Mn alloy at 293 K (a) and 77 K (b).

According to the martensitic transformation temperature measurement results shown
in Figure 1, the martensitic transformation should be completed at 77 K. However, the
diffraction peaks of the parent/austenite phase are still there, as shown in Figure 6b,
when the temperature is lower than Mf, which indicates that some parent/austenite phase
remains in the sample after the martensitic transformation. The results of Figure 6b are
consistent with the metallographic observation results of Figures 4 and 5.

4. Discussion

During the process of thermoelastic martensitic transformation in SMA, it is assumed
that there is a crystallographic relationship, “F”, between the martensite and the austenite:
(h1k1l1)M//(h2k2l2)P, [u1v1w1]M//[u2v2w2]P. Based on this relationship, some martensites
with crystallographically equivalent directions can be formed, which are named martensite
variants. An austenite “A” with a certain crystallographic orientation would transform
into many martensites, M1, M2, M3, . . . Mn, during cooling. Here, we assumed that Mn is
the last martensite during this transformation process. Then, all these martensites, M1, M2,
M3, . . . Mn, have to reverse to the same austenite “A” following the inverse relationship of
relationship F, with the shape restoration of the SMA sample.

A question naturally arises. The martensite Mn may transform into any austenite Ai
which has the crystallographically equivalent direction according to the relationship, “F”,
during the reverse transformation process. However, the other austenite Ai may not keep
the equivalence relation with the other martensite variants Mi. This means that not all of
the martensite variants transform into the same Ai following the relationship “F”. Another
Aj must be formed, and the original shape of the materials cannot be restored. However, the
restoration of the original shape of the materials (the parent phase) can always be observed
in the experiment. It is suggested that the austenite can transform into different martensite
variants during thermoelastic martensitic transformation, but all the martensite variants
have to transform to the same original austenite during the reverse transformation. This is
a kind of “asymmetry”. It is further speculated that the transformation from austenite to
martensite cannot be completed to 100%, as a little parental austenite phase will remain.
This is consistent with the current in situ experimental observations.

From the perspective of thermodynamics, the asymmetry between the transformation
from austenite to martensite and its reverse transformation is possible. A Gibbs free energy
change of a system upon the martensite transformation may be written as [27]:

∆GP→M = ∆GP→M
c + ∆GP→M

i + ∆GP→M
e (1)

where ∆GP→M
c is a chemical energy term (with a negative value, the driving force for the

transformation), ∆GP→M
i is an interface energy term (with a positive value, the resistance

for the transformation) and ∆GP→M
e is an elastic strain energy term around the martensite
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(with a positive value, the resistance for the transformation). As a shear transformation,
the martensitic transformation requires the adaptive deformation of austenite adjacent to
martensite, which will produce an elastic strain energy ∆GP→M

e . This elastic strain energy
is the main resistance of the martensitic transformation as the low interface energy of the
coherent interface between the martensite and the parent phase. During the martensitic
transformation, the formation of multiple martensite variants can reduce the elastic strain
energy by a self-coordinating effect.

During the reverse transformation, a Gibbs free energy change may be defined as
Formula (2). If the reverse transformation is the growth process of residual austenites,
this transformation process is the reverse shear process of the phase interface reverse
migration (the disappearance order of variants in reverse transformation is opposite to that
in martensitic transformation, which is the result of the reverse shear process). Martensitic
transformation is a process of accumulating strain in the austenite phase, so the reverse
transformation is a process of eliminating strain. This leads to an essential difference
between Formula (2) and Formula (1); that is, the elastic strain energy term in Formula (2)
will become negative and become the driving force of the phase transition. However, if
the austenite phase is formed by nucleation in the martensite phase, this driving force
is missing. Therefore, the growth of residual austenites has a driving force advantage
over the nucleation of the austenite phase in the reverse transformation, which can also
explain why it always changes back to the original austenite phase grain through the
reverse transformation.

∆GM→P = ∆GM→P
c + ∆GM→P

i + ∆GM→P
e (2)

Therefore, it is speculated that the growth of residual austenites will dominate the
reverse transformation. Different martensitic variants transform into the original austenite
grain, and in turn, the shape of the alloys is restored.

The direction of compressive stress applied to the Cu-Al-Mn SMA in this experiment
is shown in Figure 3b. The relationship of the external stress (F) and the shear stress (S) in
the martensite habit plane can be expressed as [28]:

S = F· sin(θ)· cos(α) (3)

The schematic diagram of force analysis is also shown in Figure 3c. The stress S will
provide part of the driving force for the martensite transformation, which promotes the
preferential formation of martensite with this orientation (such as f orientation here). While
in the other nonequivalent direction, the compressive stress could hinder the formation
of martensite, which will make the martensite variants with orientations of “a”, “b”, “c”
and “d” appear later or even not appear (such as “e” orientation). With constant applied
stress and heating, the order of disappearance of the thermoelastic martensitic variants in
the inverse phase transition is just opposite to the order of their formation during in the
martensitic phase transition. It is suggested that constant external stresses do not affect the
release of the strain energy stored in the martensitic phase transition.

5. Conclusions

The thermoelastic martensitic transformation and its reverse transformation of the
Cu-Al-Mn cryogenic SMA with and without compressive stress were dynamically in situ
observed by using a self-designed cryogenic metallographic device. Some thermoelastic
martensitic transformation rules were summarized. The size and number of martensites
gradually increase up with the decrease of temperature, while they decrease with the
increase of temperature, with and without the compressive stress. Different martensite
variants grow continuously in the length and width directions. These preferentially grown
martensite strips can interact with other oriented martensites subsequently formed. The
order of martensite disappearance is just opposite to that of their formation. In the process
of thermoelastic martensite transformation, even when the temperature is lower than Mf,
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there are still some austenites which are not completely transformed into martensites. It
means that the transformation from austenite to martensite was not completed to 100%. It is
speculated that the martensite transformation of SMA would follow two stages, nucleation
and growth, but its reverse transformation can occur only by the growth of residual
austenites. If the reverse transformation can only occur by the growth of residual austenites,
this can also explain why the deformed SMA remembers its original shape. The external
compressive stress would change the appearance order of martensite variants, could induce
new martensite variant and reduce some original martensite variants. Compared with the
case without compressive stress, the growth of the original martensite variants could be
restrained by the new stress field.
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Grgurić, T.H.; Vrsalović, L.; Gojić, M.
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Abstract: This paper discusses the effect of different heat treatment procedures on the microstructural
characteristics, damping capacities, and mechanical properties of CuAlNi shape memory alloys
(SMA). The investigation was performed on samples in the as-cast state and heat treated states
(solution annealing at 885 ◦C/60′/H2O and after tempering at 300 ◦C/60′/H2O). The microstructure
of the samples was examined by light microscopy (LM) and scanning electron microscopy (SEM)
equipped with a device for energy dispersive spectrometry (EDS) analysis. Light and scanning
electron microscopy showed martensitic microstructure in all investigated samples. However, the
changes in microstructure due to heat treatment by the presence of two types of martensite phases (β1′

and γ1′ ) influenced alloy damping and mechanical properties by enhancing alloy damping character-
istics. Heat treatment procedure reduced the alloys’ mechanical properties and increased hardness of
the alloy. Fractographic analysis of the alloy showed a transgranular type of fracture in samples after
casting. After solution annealing, two types of fracture mechanisms can be noticed, transgranular
and intergranular, while in tempered samples, mostly an intergranular type of fracture exists.

Keywords: shape memory alloys; heat treatment; microstructure; damping capacity; tensile
strength; hardness

1. Introduction

The main goal of the application of materials with high damping capacity is a reduction
in mechanical vibrations by energy dissipation. For this type of application, materials must
also have good mechanical strength, and good electrical and thermal conductivities [1].
However, the damping capacity of shape memory alloys (SMAs) is far greater than that of
standard materials [2].

The functional properties of shape memory alloys are influenced by thermoelastic
martensitic transformation, which operates in a certain temperature range, depending on
the alloy’s chemical composition [3]. These functional properties are affected by the mobile
nature of the interfaces (twin boundaries, austenite/martensite (A/M) phase boundaries,
different martensite variants) as well as the type of material, grain size, and defects in the
structure [4,5].

Copper based SMAs are of interest for investigation due to their high thermal sta-
bility. Moreover, they exhibit good damping due to their unique martensitic transition
characteristics [3,6].

Depending on alloy composition, applied stress, or temperature, the CuAlNi alloy can
transform into different types of martensitic phase, γ1′ (2H), β1′ (18R1), and α1′ (6R). There is
a change in martensitic phase due to the variation in compositions (Cu-(11-14)Al-(3-4.5)Ni,
wt.%) from the β-β1′ transformation to the β-γ1′ by aging in the austenite phase [2]. Due to
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susceptibility to microstructural changes by aging, damping properties are also likely to
substantially change [3,7].

The damping capacity, which consists of transferring one form of energy into another
(the dissipation of mechanical energy into heat) is a valuable property that characterizes
almost all materials including shape memory materials. In shape memory alloys, damping
capacity is related to changes during martensitic transformation. The interfaces between
A/M phases or between the different variants of martensite influence alloy damping
capacity as well as twin boundaries inside the martensitic phase. Although the martensitic
transformation has the most significant impact on the functional properties of alloys,
other microstructural defects such as dislocations, vacancies, etc. can cause significant
changes [8,9].

Hysteresis observed in pseudoelasticity is one of the energy dissipation manifesta-
tions [8]. According to the results of Wu et al. [10], in Cu-xZn-11Al (x = 7.0, 7.5, 8.0, 8.5, and
9.0 wt.%), a higher amount of martensite is transformed during martensite transformation,
so the alloy exhibits a higher amount of energy dissipation due to higher hysteresis.

For shape memory alloys, it also depends on the difference between the operating and
transformation temperatures. In general, three damping regimes can be distinguished in
SMAs: (a) in the austenitic phase, the damping capacity is small; (b) an increase in damping
capacity for operating below Mf temperature; and (c) the damping capacity reaches its
maximum by stress induced martensite [2].

In recent research [11–13], the focus was primarily on phase field modeling and
the simulation of martensite transformation and structural defect interaction under the
thermal loading or martensite reorientation and de-twinning process. It can be seen that the
evolution of microstructural constituents helps to understand microstructural mechanisms
and their overall effect on the optimum performances of alloys. Li et al. [12] explained that
not only does the twinning affect alloy damping, but also the reorientation in the martensite
microstructure itself.

The aim of this study was to investigate how the changes in microstructure affected by
heat treatment procedures influence the Cu-12.8 Al-4.1 Ni shape memory alloy damping
and mechanical properties.

2. Materials and Methods

The sample of Cu-12.8 Al-4.1 Ni (wt.%) shape memory alloy was prepared in a
vacuum induction furnace by the vertical continuous casting technique. The obtained
8 mm diameter rods were mechanically prepared for different stages of investigation.
Dimensions of the investigated samples were ø 8 mm × 10 mm. One sample was left in
the as-cast state and two samples were subjected to the heat treatment procedure. First,
solution annealing was performed at 885 ◦C with a retention time of 60 min following water
quenching. After solution annealing, one sample was subjected to tempering at 300 ◦C for
60 min following water quenching. The samples for microstructural observation were cut
off in the shape of a cylinder, placed in conductive mass, ground, polished, and etched
by the procedure explained in our previous work [14]. In order to reveal microstructural
constituents, microstructural analysis after etching was performed using a light microscope
(LM) OLYMPUS GX 51 with a digital camera and scanning electron microscope TESCAN
VEGA TS 5136 MM (SEM) equipped with energy dispersive spectrometry (EDS). Fracture
surface morphology was investigated using a scanning electron microscope JEOL JSM 5610
at several different magnifications.

For grain size measurements, the linear intercept procedure was used according to
ASTM-E112-13 on optical micrographs at a magnification of 100×. The method involves an
actual count of the number of grain boundary intersections by a test line, per unit length
of test line. The average value of grain size in the as-cast state sample was calculated
according to 512 counted intersections.

Phase transformation temperatures and the alloy’s ability for damping capacity were
tested using the dynamic mechanical analysis technique on a TA Instruments device,
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DMA 983, at a constant frequency of 1 Hz with amplitude of 0.5 mm and at a heating rate
of 2 ◦C min−1.

Investigations of mechanical properties were carried out on universal tensile testing
machine (Zwick/Roell Z050). Samples were mechanically prepared by turning at the
dimensions shown in Figure 1. Tensile testing was performed on three samples for each
state at room temperature with a tensile testing rate of 0.001 mm s−1.
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3. Results and Discussion

In order to explain the damping capacity and mechanical properties of the investigated
alloy, it is extremely important to examine how process parameters (casting, heat treatment)
affect the microstructural characteristics of the alloy.

3.1. Microstructural Analysis of CuAlNi Shape Memory Alloy

The results of the light and scanning electron microscopy are presented in Figures 2 and 3,
respectively. The martensitic microstructure was clearly visible in all of the samples, even
in the as-cast state sample (Figures 2a and 3a). Often, during solidification of Cu-based
SMAs, a residual austenitic phase or brittle γ2 phase (Cu9Al4 phase) can be found, which
strongly influences an alloy’s functional properties in the as-cast state [4]. Hence, the
heat treatment procedure cannot be avoided to improve the alloy’s properties. The heat
treatment process by solution annealing the CuAlNi SMA was carried out to achieve a
fully martensitic microstructure. In addition to the formation of the martensitic phase
from the initial austenitic (β) phase, there was a change in grain size that depends on the
conditions of the heat treatment process (heat treatment temperature, retention time at
certain temperature, and the choice of cooling medium).

Changes in the CuAlNi alloy microstructure vary depending on the heat treatment
process [15]. In Figure 2b,c, we see the martensitic microstructure after solution annealing
and tempering. In the micrographs obtained by light microscopy, it can be observed that
during solution annealing and tempering, the grain size increased within the microstructure
compared to the as-cast state sample. Grain size is an extremely important characteristic of
the microstructure because other mechanical and functional properties of the alloy depend
on it. The disadvantage of shape memory alloys is the coarse-grained microstructure, which
negatively affects the behavior of the alloy. Grain size in the as-cast state was 158.76 µm
(average value). Average value of the grain size in the as-cast state was obtained by the
linear intercept procedure through 512 measurements of line intercepting points. ASTM
grain size (G) was 2.02 and the number of grains per unit area (NA) was 31.62 grains per
square millimeter.

In addition, the grain sizes changed from the edge toward the middle of the rod
because of solidification (i.e., directed heat dissipation where the rod is in contact with the
crystallizer, small grains appear). After solution annealing and tempering, larger uniform
grains in the microstructure could be observed, even in the order of 1 mm (Figure 2b,c).
Kök et al. [16] investigated the thermal stability of the quaternary CuAlNiTa alloy and
concluded that the heat treatment procedure enhanced grain size. Furthermore, Xi et al. [13]
performed a phase field study of the grain size effect on the thermomechanical behavior of
a NiTi shape memory alloy thin film and concluded that the grain size had an inhibiting
effect on the temperature induced martensitic transformation.
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The martensitic microstructure was confirmed on all samples and by scanning electron
microscopy (Figure 3). Different orientations of martensite needles within a single grain can
be explained by the nucleation of groups of martensitic needles at numerous sites within
the grain and the creation of a local stress within the grain that allows for the formation of
multiple groups of differently oriented needles. Martensite originated primarily as needle
martensite. In some samples, after solution annealing and tempering (Figure 3b,c), the
V-shape of martensite could be observed. The morphology of the resulting martensitic
microstructure was a typical self-accommodating zig-zag morphology, which is primarily
characteristic of β1′ martensite in CuAlNi shape memory alloys [17,18].

It has also been confirmed in the literature [18,19] that different variants are charac-
teristic of self-accommodating martensite in CuAlNi alloys and that these are most often
the two types of heat-induced martensite (β1′ and γ1′ (18R and 2H)) that coexist in the
microstructure. The β1′ martensite appears as lath type martensite with thin plates (needle-
like morphology) and γ1′ is thicker with plate-like morphology (coarse variants) [5]. It has
been reported that the γ1′ martensite with a 2H structure in the CuZnAl alloy has abundant
movable twins [10].
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3.2. Results of Dynamic-Mechanical Analysis

Dynamic-mechanical analysis (DMA) is a technique of the thermal analysis of materials
by which we can monitor the response of materials to cyclic loading during the controlled
heating of materials at different temperature, time, frequency, stress, atmosphere, or a
combination of these parameters. The sinusoidal cyclic stress of the material results in
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deformations that change sinusoidally with time at the same frequency [20]. The storage
modulus (E’) is related to the properties of the elastic component and is proportional to
the stored energy, which is returned as mechanical energy during periodic deformation.
The stress component bound to the viscous component is determined by the size of the loss
modulus (E”) proportional to the lost mechanical energy in the form of heat. The phase
shift angle is given by the ratio of the loss module (E”) and the storage module (E’) and is a
measure of the energy loss in the material due to viscous friction [21].

The results of the dynamic-mechanical analysis measurements are shown in Figures 4–6.
The storage modulus (E’), loss modulus (E”), and mechanical damping parameter (tan δ)
are shown as a function of temperature during heating.
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Dynamic-mechanical analysis showed the dependence of the tangent of the phase
shift angle, which is a measure of the energy loss in the material (tan δ), the storage
modulus (E’), and the loss modulus (E”) with temperature. The DMA spectra of the
investigated samples indicated that the highest temperature of austenitic transformation
(As = 220 ◦C, Af = 250 ◦C) was in the samples in the as-cast state, which is in accordance
with the obtained results of the differential scanning calorimetry reported in our previous
work [22]. Temperatures of As and Af were higher than the DSC results (As = 179 ◦C,
Af = 212 ◦C), which is a common measurement difference between the two techniques
(DSC and DMA), reported in the research by Graczykowski et al. [23]. The maximum
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intensity of the loss modulus (E”) and the change in the storage modulus (E’) indicated a
slightly lower austenitic transformation temperature in the solution annealed and tempered
alloy and the lowest temperature in the solution annealed alloy at 885 ◦C/60′/H2O. The
values of the storage modulus were highest in the martensitic structure of the as-cast alloy
and decreased with the obtained heat treatment procedure, which correlated with the tests
of the mechanical properties and tensile strength (Figure 7, Table 1). The lowest values of
tan δ and E” could be observed in the sample in the as-cast state. The phase shift angle
tan δ increased for the solution annealed and tempered state, and it can be concluded that
the energy loss ability in the material was higher for the samples after solution annealing
and tempering. In addition, the loss modulus (E”) increased for the solution annealed state
sample, and was slightly lower for the tempered state sample. Since heat treatment leads
to changes in the microstructure, it can be concluded that the newly formed intermediate
boundaries of martensite (β1′ and γ1′ martensite) favorably affect the ability for damping
of the CuAlNi shape memory alloy. Ursanu et al. investigated CuAlMn shape memory
alloys by DMA and discovered that after heat treatment process by aging above 300 ◦C,
the alloy’s damping capacity decreased due to formations of brittle γ2 precipitates, which
restricted the mobility of the martensite interfaces [24].
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Table 1. Mechanical properties of the CuAlNi alloy after casting and heat treatment.

Sample Tensile Strength, MPa Elongation, % Hardness, HV1

L
(as-cast state) 475.5 ± 9.3 4.78 ± 0.28 344.0 ± 18.4

K-2
(885 ◦C/60′/H2O) 367.5 ± 48.8 2.72 ± 0.46 480.0 ± 25.0

K-2-4
(885 ◦C/60′/H2O +
300 ◦C/60′/H2O)

241.7 ± 11.9 1.36 ± 0.18 483.0 ± 14.4

The difference in tan δ values between the solution annealed and tempered state was
also noticed by Suresh and Ramamurty [3] (80% higher tan δ in the solution annealed
sample). Damping capacity of the shape memory alloys can be significantly altered by
an artificial aging process. Shape memory alloys have a high damping capacity due to
the ability to move the austenite/martensite interface during the phase transformation.
However, it is difficult to move the interfacial boundary due to the precipitation of the
low-temperature γ2 phase and unfavorable influence on alloy damping capacity [3].
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Chang [25] investigated the damping capacity by dynamic mechanical analysis on a
Cu-X% Al-4% Ni (X = 13.0–14.1 wt.%) SMA. He found that an alloy with 14% Al, thanks to
the high concentration of moving twins interfaces in γ1′ (2H) martensite, satisfied the appli-
cation in which the vibration damping property is required under isothermal conditions.

3.3. Results of Mechanical Properties of the CuAlNi Shape Memory Alloy

The investigated CuAlNi shape memory alloy showed satisfactory results of stress,
strain, and hardness in the as-cast state (Table 1, Figure 7). With heat treatment proce-
dure, the values of tensile strength and strain decreased, while the hardness increased
significantly. The reason for such behavior can be explained by changes in the obtained
microstructure and grain size. Although the mechanical properties notably decreased after
heat treatment, the development of favorable martensite phases produced better damping
properties. Two types of martensite can be found in this alloy, β1′ and γ1′ , respectively [26].
Appearance of γ1′ martensite improves the damping capacity of the alloy due to movement
of twin boundaries in the martensite phase and higher hysteresis in comparison to β1′

martensite [3]. Improvement in the mechanical properties can also be achieved by grain
refinement procedures (microalloying or rapid solidification techniques) in order to affect
or limit the movement of internal dislocations in the alloy [27].

Significant changes in fracture mechanism could be noted by SEM fractography anal-
ysis, Figure 8. In the as-cast state, a mainly transgranular type of fracture could be seen
including areas with small and shallow dimples, assuming that certain plasticity in the
sample had appeared. After solution annealing, the appearance of the intergranular type
of fracture was visible, and after tempering at 300 ◦C/60′/H2O, an almost completely
intergranular type of fracture appeared. The degradation of fracture mechanisms, or shift
from a transgranular type of fracture to intergranular type after heat treatment, can be
explained by the alloy’s high elastic anisotropy [28,29] and large grain size [30]. Stress level
concentration is high at large grain boundaries and nucleation of the cracks appears specifi-
cally in these places due to low cohesion. It was shown that because of the low ductility of
the CuAlNi SMA, cracking of the samples occurred even during elastic deformation. This
investigation is in accordance with the results that Pushin et al. [31] obtained in the studies
of different NiTi-based and Cu-based shape memory alloys by confirming that large grains
in the NiTi alloy revealed brittle fracture as well as classic brittle fracture along the grain
boundaries in the investigated CuAlNi SMA.
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4. Conclusions

An investigation of the microstructural and dynamic-mechanical properties of the
CuAlNi shape memory alloy was carried out. From the detailed analysis, the following
conclusions can be drawn:

• Microstructural analysis by light microscopy and scanning electron microscopy re-
vealed the martensitic phase in the as-cast, solution annealed, and tempered state
samples. The appearance of two types of martensite phases (β1′ and γ1′ ) was noted.

• Dynamic-mechanical analysis showed a higher damping capacity for samples after
solution annealing and tempering. The newly formed interfacial boundaries of marten-
site (β1′ and γ1′ martensite) favorably affected the damping properties of the CuAlNi
shape memory alloy.

• Results of the mechanical properties showed degradation of stress, strain, and hard-
ness in the heat treated states due to large grain size, which appeared after the heat
treatment process.

• Fractographic analysis showed a transgranular type of fracture in the as-cast state
sample, transgranular and intergranular type of fracture in the solution annealing
state, and mostly intergranular type of fracture in the tempered state sample. It can be
concluded that the brittleness of the alloy arose from this heat treatment process.
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28. Ivanić, I.; Gojić, M.; Kožuh, S.; Kosec, B. Microstructural analysis of CuAlNiMn shape-memory alloy before and after the tensile
testing. Mater. Tehnol. 2014, 48, 713–718.

29. Sutou, Y.; Omori, T.; Kainuma, R.; Ono, N.; Ishida, K. Enhancement of superelasticity in Cu-Al-Mn-Ni shape-memory alloys by
texture control. Metall. Mater. Trans. A 2002, 33, 2817–2824. [CrossRef]

30. Sari, U. Influences of 2.5 wt% Mn addition on the microstructure and mechanical properties of Cu-Al-Ni shape memory alloys.
Metall. Mater. 2010, 17, 192–198.

31. Pushin, V.; Kuranova, N.; Marchenkova, E.; Pushin, A. Design and Development of Ti–Ni, Ni–Mn–Ga and Cu–Al–Ni-Based
Alloys with High and Low Temperature Shape Memory Effects. Materials 2019, 12, 2616. [CrossRef]

151





materials

Article

Optimized Neural Network Prediction Model of Shape Memory
Alloy and Its Application for Structural Vibration Control

Meng Zhan 1,*, Junsheng Liu 2, Deli Wang 3, Xiuyun Chen 1, Lizhen Zhang 1 and Sheliang Wang 4

Citation: Zhan, M.; Liu, J.; Wang, D.;

Chen, X.; Zhang, L.; Wang, S.

Optimized Neural Network

Prediction Model of Shape Memory

Alloy and Its Application for

Structural Vibration Control.

Materials 2021, 14, 6593.

https://doi.org/10.3390/

ma14216593

Academic Editors: Salvatore Saputo

and Radim Kocich

Received: 13 September 2021

Accepted: 27 October 2021

Published: 2 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Construction Engineering, HuangHuai University, No. 76 Kaiyuan RD., Zhumadian 463000, China;
Cxy0396@126.com (X.C.); zhenzhen_5255@sina.com (L.Z.)

2 Shaanxi Institute of Building Science, No. 272 Huancheng RD., Xi’an 710082, China; jsliu1973@163.com
3 Taizhou Urban and Rural Planning and Design Institute, No. 465 Shifu RD., Taizhou 318000, China;

wangdeli2012@sina.com
4 College of Civil Engineering, Xi’an University of Architecture and Technology, No. 13 Yanta RD.,

Xi’an 710055, China; sheliangw@163.com
* Correspondence: zhanyi313@163.com

Abstract: The traditional mathematical model of shape memory alloy (SMA) is complicated and
difficult to program in numerical analysis. The artificial neural network is a nonlinear modeling
method which does not depend on the mathematical model and avoids the inevitable error in the
traditional modeling method. In this paper, an optimized neural network prediction model of shape
memory alloy and its application for structural vibration control are discussed. The superelastic
properties of austenitic SMA wires were tested by experiments. The material property test data
were taken as the training samples of the BP neural network, and a prediction model optimized
by the genetic algorithm was established. By using the improved genetic algorithm, the position
and quantity of the SMA wires were optimized in a three-storey spatial structure, and the dynamic
response analysis of the optimal arrangement was carried out. The results show that, compared
with the unoptimized neural network prediction model of SMA, the optimized prediction model
is in better agreement with the test curve and has higher stability, it can well reflect the effect of
loading rate on the superelastic properties of SMA, and is a high precision rate-dependent dynamic
prediction model. Moreover, the BP network constitutive model is simple to use and convenient
for dynamic simulation analysis of an SMA passive control structure. The controlled structure with
optimized SMA wires can inhibit the structural seismic responses more effectively. However, it is not
the case that the more SMA wires, the better the shock absorption effect. When SMA wires exceed
a certain number, the vibration reduction effect gradually decreases. Therefore, the seismic effect
can be reduced economically and effectively only when the number and location of SMA wires are
properly configured. When four SMA wires are arranged, the acceptable shock absorption effect is
obtained, and the sum of the structural storey drift can be reduced by 44.51%.

Keywords: SMA; prediction model; BP neural network; genetic algorithm; seismic response

1. Introduction

Shape memory alloy (SMA) is a novel functional material, which not only has two
unique properties of shape memory and super elasticity, but also has the advantages of high
damping, fatigue, and corrosion resistance [1–3]. Therefore, SMA has been widely used in
the field of civil engineering for reinforcement and vibration control [4–6]. Dehghani and
Aslani developed hooked-end pseudoelastic shape memory alloy fibres (PSMAF) which
can provide re-centring and crack-closing behaviour in cementitious composites [7]. Reza-
pour et al. investigated the effects of SMA post-tensioning reinforcements on originally
unreinforced masonry walls using Abaqus soft [8]. Siddiquee et al. evaluated the seismic
performance of concrete frame buildings reinforced with superelastic SMA rebar in terms
of the collapse margin ratio, and the results are compared with that of a reinforced concrete
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structure with regular steel rebar only [9]. Schranz et al. studied the effectiveness of two dif-
ferent prestressed strengthening methods for flexural behavior of concrete members using
ribbed Fe-SMA bars [10]. Peng et al. proposed a shape memory alloy cable-double friction
pendulum bearing which combines a double friction pendulum bearing with superelastic
SMA cables [11]. Based on the pseudoelasticity of SMA and the electrodeformation of
piezoelectric transition ceramic, Zhan et al. designed a novel SMA/PZT composite control
device and investigated its energy dissipation performance and neural network constitutive
model [12]. In addition, some researchers discussed the control of shape memory alloy
actuator using PID controller and pulse width modulation [13–16].

The constitutive model of SMA material is the basis of theoretical analysis and experi-
mental study for properties of SMA [17,18]. A series of constitutive models of SMA have
been established based on material experiments. Falk established a theoretical constitutive
model of a single crystal based on Landau’s theory, but it only applies to single crystal and
only considers the shearing motion of crystal [19]. Abeyartane and Knowle proposed a one-
dimensional constitutive model of SMA material by using the thermodynamic bar theory
and combining the Helmholzt free energy principle and the expression of thermodynamic
relation, but this model did not consider the redirection of stress-induced martensite varia-
tion under non-proportional load [20]. Boyd and Lagoudas presented a meso-mechanical
constitutive model based on meso-mechanics and thermodynamics, but this model is too
complex to be applied in engineering [21]. Based on the constitutive relationship between
thermodynamics and kinetics, Brinson proposed a phenomenological constitutive model
with the characteristics of plasticity theory, which is the most widely used constitutive
model of SMA [22]. Liu et al. explored a macroscopic phenomenological constitutive
model involving strain amplitude and loading rate by introducing an internal variable
evolution equation, considering the difference of characteristic parameters during the
positive/reverse transformation of martensite and the hardening properties of martensite
under large strain amplitudes [23]. Based on the Landau theory of phase transitions, Du
et al. proposed a differential model to describe the hysteresis of magnetic shape memory
alloys caused by magnetic field induced martensite reorientation [24]. However, for shape
memory alloy, there are many factors affecting its constitutive model, so it is impossible to
establish an accurate mathematical model to express the influence of all various factors on
it, and it can only be simplified and approximated artificially. The artificial neural network
does not need to achieve the precise constitutive relation of the material, but only needs to
consider the influencing factors and expected objectives, and it avoids the inevitable error
in the traditional modeling method and provides a new way to establish the accurate SMA
constitutive model. Lee and Lee used a multi-layer perceptron neural network to forecast
the resilience of SMA [25]. Ren et al. used a radial basis function network to forecast
the hysteresis behavior of SMA at the same strain amplitude with the number of cycles,
loading information, and strain value as the input of neurons [26]. However, the change of
initial weight/threshold of neurons has a great influence on the prediction results of the
artificial neural network, so the initial weight/threshold should be optimized in the neural
network to improve the accuracy and stability.

The damping effect of the SMA damper on an engineering structure is mainly deter-
mined by its own performance, installation position, and layout number [27,28]. Even if its
damping force is large and the shock absorption effect is good, the ideal damping effect may
not be achieved if the installation position and number are inappropriate [29–31]. Therefore,
in order to achieve the efficiency and economy of the SMA control system, it is necessary to
optimize the installation position and quantity of SMA wires in the engineering application.
By idealizing the hysteretic curve of SMA damper and the transient tangent stiffness matrix
of structure, Mulay and Shmerling presented a simplified nonlinear equation model to
design SMA dampers in three-dimensional asymmetric plane structures [32]. Pang et al.
proposed a novel seismic risk-based optimization design method of SMA restrained sliding
bearings in highway bridges suffered from near-fault ground motions via the particle
swarm optimization [33]. Zhan et al. discussed the optimal arrangement of SMA piezo-
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electric composite dampers in a space truss structure using the adaptive immune memory
cloning algorithm with the performance indicator based on the modal controllable degree
as antigen-antibody affinity function [34].

This paper explored a novel SMA prediction model considering loading rate and
loading history via a back-propagation (BP) neural network optimized by the genetic
algorithm (GA). SMA wires were selected to control the dynamics response of a three-
storey spatial structure, and the application of artificial neural network to SMA constitutive
model and the damping effect of SMA wires on the seismic response of spatial structure
are discussed. Firstly, the sum of lateral inter-story displacement is taken as the control
objective, the optimization of the number and position of SMA wires is carried out by
applying the improved genetic algorithm. Then, the Newmark-β method is employed to
accomplish the seismic response control analysis of the spatial structure with an optimal
allocation of SMA wires via MATLAB soft.

2. SMA Wire Mechanical Performance Test
2.1. Test Loading Scheme

The chemical composition of the austenitic SMA wire used in the test is Ti-51%atNi [35,36]
with diameters 0.5, 0.8, 1.0, and 1.2 mm. Phase transition temperature: Martensite finish
temperature Mf is −42 ◦C; Martensite start temperature Ms is −38 ◦C; Austenite start
temperature As is −6 ◦C; Austenite finish temperature Af is −2 ◦C. Taiwan Hongda
HT-2402 computer servo-controlled material testing machine is used in Material Science
Laboratory of Xi’an University of Technology. The axial force is measured by the force
sensor that comes with the testing machine, and the axial deformation is measured by the
displacement extensometer. The gauge length is 33.5 mm, and all data are automatically
collected by computer.

This test mainly considers the influence of the number of loading cycles, strain am-
plitude, loading rate, and material diameter on the stress–strain curve, energy dissipation
capacity, equivalent damping ratio, and equivalent secant modulus of austenitic SMA wire.
In this experiment, the loading rate was 10 mm/min, 30 mm/min, 60 m/min, 90 mm/min,
and the strain amplitude was 3%, 6%, and 8%. To ensure the accuracy of the test, a pre-
tension of 10~30 MPa is applied to the SMA wire before each working condition starts to
work so that the SMA wire can be straightened and tightened. To eliminate the influence of
the test piece length on SMA, the length of the test piece used is 300 mm with an effective
length of 100 mm. In each cycle, only when the SMA wire strain reaches the amplitude
strain, loading stops, and when the axial force of the SMA wire was less than 5N, unloading
stops. Loading cycle was 30 cycles in each working condition.

2.2. Test Results and Analysis

The stress of four points (σa, σb, σc, σd) is used to replace the critical stress of SMA
transformation, as shown in Figure 1. The starting point of the stress–strain curve platform
of the loading section is taken as point a. The point where the slope of the loading section
curve is significantly increased after the loading platform is taken as point b. The point
where the stress–strain drops start to deviate from the linear relation is taken as point c.
The point where the stress and strain begin to decrease at the end is taken as point d.
Substituting the above-mentioned points for the phase transition critical point of austenite
SMA, although there is a certain error between the characteristic point stress and the true
phase transition stress of SMA, the phase transition process of SMA can still be reflected.
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Figure 1. Characteristic points of austenite SMA constitutive curve.

The mechanical performance indicators are defined as follows: ∆W represents the
energy consumption value of the SMA wire in a single cycle, that is, the graphic area
enclosed by the stress–strain curve; Ks represents the equivalent secant stiffness of a single
cycle; δ represents the equivalent damping ratio of a single cycle.

Ks =
σmax − σmin

εmax − εmin
(1)

δ =
∆W

2πKsε2 (2)

where σmax (εmax) and σmin (εmin) respectively represent the maximum stress (strain) and
minimum stress (strain) of each cycle, and ε is the amplitude strain.

According to the experimental results, the effects of cyclic loading, strain amplitude,
loading rate and material diameter on the mechanical properties of austenitic SMA wire
are analyzed.

(1) The effect of cyclic loading on the mechanical properties of superelasticity. The stress–
strain curve with a diameter of 1.0 mm, a loading rate of 10 mm/min, and a strain
amplitude of 3% is shown in Figure 2, and the parameters are shown in Table 1. It
can be seen that, with the increase of the number of cycles, the cumulative residual
deformation of the austenitic SMA wire gradually increases, but the residual defor-
mation of the single cycle gradually becomes smaller, and stabilizes after 15 cycles,
and the residual strain is zero. With the increase in the number of cycles of loading,
the performance of austenitic SMA wire gradually stabilizes, the stress–strain curve
gradually becomes smooth, the energy dissipation capacity and equivalent damping
ratio of the SMA wire gradually decrease, and the equivalent secant stiffness slightly
decreased, but stabilized after 15 loading/unloading cycles. The number of cycles
has a great influence on the mechanical properties of austenitic SMA wire. In actual
engineering applications, in order to obtain stable superelastic properties, the SMA
wire must be cyclically loaded in advance, and it usually takes about 20 cycles.
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Figure 2. Stress-strain curve of austenite SMA wire with different cycles.

Table 1. Mechanical properties of SMA wires with different cycles.

Cycles σa
(MPa)

σb
(MPa)

σc
(MPa)

σd
(MPa)

∆W
(MJ.m−3)

ζa
(%)

Ks
(GPa)

1 604.79 604.79 273.75 178.25 6.84 6.11 19.78
2 560.23 572.96 254.65 171.89 6.19 5.81 18.84
3 541.13 560.23 241.92 171.89 5.80 5.44 18.82
5 515.66 541.13 241.92 165.52 5.48 5.18 18.72

10 483.83 509.30 222.82 159.15 5.04 4.76 18.71
15 464.73 496.56 222.82 159.15 4.77 4.48 18.81
20 439.27 483.83 216.45 152.79 4.60 4.37 18.62
25 432.90 477.46 216.45 152.79 4.46 4.18 18.88
30 432.90 477.46 216.45 152.79 4.44 4.16 18.85

(2) The effect of strain amplitude on the mechanical properties of superelasticity. A
stress–strain curve with a diameter of 1.0 mm, a loading rate of 10 mm/min, and a
strain amplitude of 3% is shown in Figure 3, and the parameters are shown in Table 2.
As the strain amplitude of SMA wire increases, the cumulative residual deformation
gradually increases. When the strain amplitude is small, the austenitic SMA wire
is basically in the elastic stage, and the elastic modulus is approximately 450 MPa
after stabilization. When the strain amplitude exceeds 1%, the SMA wire will un-
dergo martensitic transformation and austenite transformation, showing super-elastic
performance, and the greater the strain amplitude, the better its super-elastic perfor-
mance, and the greater the energy dissipation capacity. The strain amplitude is the
most significant factor affecting the energy dissipation capacity of SMA wires. When
the strain amplitude increases from 3% to 8%, the single-turn energy consumption
of the SMA wire increases from 4.46 MJ·m−3 to 20.76 MJ·m−3, which increases the
energy consumption by 3.65 times. As the strain amplitude increases, the damping
ratio gradually increases, the equivalent secant stiffness gradually decreases, and the
energy consumption capacity continues to increase.
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Figure 3. Stress-strain curve of austenite SMA wire with different strain amplitudes.

Table 2. Mechanical properties of SMA wires with different strain amplitudes.

Strain Amplitudes σa
(MPa)

σb
(MPa)

σc
(MPa)

σd
(MPa)

∆W
(MJ.m−3)

ζa
(%)

Ks
(GPa)

3% 432.90 496.56 260.65 120.96 4.46 4.18 18.88
6% 420.17 509.30 254.65 101.86 12.70 6.09 9.21
8% 432.90 515.66 254.65 70.03 20.76 6.60 7.81

(3) The effect of loading rate on the mechanical properties of superelasticity. The stress–
strain curve of the 30th cycle with a diameter of 1.0 mm, and a strain amplitude of 6%
is shown in Figure 4, and the parameters are shown in Table 3. As the loading rate
increases, the single-cycle energy consumption of the austenitic SMA wire gradually
decreases, and the shape of the stress–strain curve changes significantly. In the phase
of unloading, the initial stress of the change increases significantly. The stress–strain
shape gradually transitions from a rectangle and a diamond to a trapezoid and a
narrower triangle. The area enclosed by the hysteresis curve gradually decreases.
The equivalent damping ratio and equivalent stiffness generally show a decreasing
trend and energy consumption gradually decreases. This is mainly because the heat
generated during the loading process of the SMA wire causes the temperature rise of
the SMA specimen, which reduces its own energy consumption.
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Figure 4. Stress-strain curve of austenite SMA wire with different loading rates.
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Table 3. Mechanical properties of SMA wires with different loading rates.

Loading Rates σa
(MPa)

σb
(MPa)

σc
(MPa)

σd
(MPa)

∆W
(MJ.m−3)

ζa
(%)

Ks
(GPa)

10 mm/min 420.17 509.30 254.65 101.86 12.70 6.09 9.21
30 mm/min 426.54 515.36 280.11 107.59 12.31 6.25 8.70
60 mm/min 420.17 502.93 326.04 109.86 11.93 6.15 8.58
90 mm/min 420.17 502.93 331.94 118.23 10.52 5.34 8.71

(4) The effect of diameters on the mechanical properties of superelasticity. The stress–
strain curve of the 30th cycle with a loading ratio of 90 mm, and a strain amplitude of
6% is shown in Figure 5, and the parameters are shown in Table 4. As the diameter of
the material increases, the stress–strain curve of the SMA wire tends to be smooth, but
the number of cycles required to reach stability increases, and the cumulative residual
deformation presents a gradually increasing trend. The stress of each characteristic
point of SMA wire decreases with the increase of the material diameter. As the
diameter of the material increases, the energy dissipation capacity and equivalent
damping ratio show a significant decrease. This is mainly due to the increase in the
diameter of the material, and the heat generated during the loading process cannot
be dissipated in time, causing the specimen temperature to increase, which reduces
the energy consumption of SMA wire. The equivalent stiffness is less affected by
the diameter, and the change is not obvious. Therefore, in engineering applications,
SMA wires with appropriate diameters should be selected for the passive control of
seismic response.
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Figure 5. Stress-strain curve of austenite SMA wire with different diameters.

Table 4. Mechanical properties of SMA wires with different diameters.

Diameters σa
(MPa)

σb
(MPa)

σc
(MPa)

σd
(MPa)

∆W
(MJ.m−3)

ζa
(%)

Ks
(GPa)

0.5 mm 483.83 585.69 331.04 203.72 12.43 6.49 8.47
0.8 mm 447.62 527.20 358.10 139.26 12.22 6.01 8.99
1.0 mm 420.17 502.93 331.94 118.23 10.52 5.34 8.71
1.2 mm 349.26 464.20 247.57 70.74 9.63 5.00 8.52

3. BP Neural Network Model Optimized by GA

The BP neural network is a multi-layer feedforward network composed of input
layer, hidden layer, and output layer [37,38]. The initial weights/thresholds are randomly
selected by system that are different between different each training. Therefore, the final
weights/thresholds and models of the neural network obtained after training are different,
especially when the training data are small. It is possible that the two neural network
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models are completely different, so the generalization ability of neural network is poor.
When the training data are sufficient and extensive, although the difference between the
neural network models after training is small, the training convergence speed will be too
low. Using the genetic algorithm to search for the best initial weight/threshold value in
the entire range of weight/threshold value, the error of BP neural network after training
under the best initial weight/threshold value can be minimized. In this way, the difference
of the BP neural network after training due to different initial weights/thresholds can be
avoided, and the problem of network oscillation and non-convergence caused by improper
initial weights/threshold values can also be prevented [39,40]. The process of optimizing
the initial weight/threshold of the BP neural network by GA is shown in Figure 6.
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3.1. Structure of BP Neural Network

(1) Number of neurons in the input layer: When the diameter of the SMA wire is constant,
the SMA constitutive relationship after stable performance is mainly affected by the
loading rate and loading history. Therefore, the following variables can be determined
as the input neurons of the BP neural network:

x1 = v, x2 = σt−2, x3 = εt−2, x4 = σt−1, x5 = εt−1, x6 = εt (3)

where v is the loading rate of the SMA wire, σi and εi represent the stress and strain at
time I, respectively.

(2) Number of neurons in the output layer: The variable required by the SMA constitutive
model is the stress σ t at time t, so y = σt is determined as the output neuron of the BP
neural network.
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(3) Number of neurons in the hidden layer: The number of neurons in the hidden layer
is a complex problem to be solved in the BP neural network. Currently, estimation
methods [12] are usually used to determine the number of neurons in the hidden
layer, and that is taken as 20.

(4) Neuron activation function: The activation function of the hidden layer neuron of
the BP neural network is selected as logsig, and the activation function of the output
layer neuron is selected as purelin.

3.2. Training Sample Collection and Processing

First, the training data is collected based on the test data of SMA wires. Since the
SMA wire with a diameter of 1.0 mm is selected for structural vibration control, the neural
network constitutive model for SMA with a diameter of 1.0 mm should be established.
There are 48 working conditions in the SMA material property test, among which there
are 12 working conditions with a diameter of 1.0 mm, and 4 of them are selected as the
inspection data, respectively: 1© The diameter is 1.0 mm, the loading rate is 10 mm/min,
and the strain amplitude is 6%; 2© The diameter is 1.0 mm, the loading rate is 30 mm/min,
and the strain amplitude is 6%; 3© The diameter is 1.0 mm, the loading rate is 60 mm/min,
and the strain amplitude is 6%; 4© The diameter is 1.0 mm, the loading rate is 90 mm/min,
and the strain amplitude is 6%. The remaining 8 working conditions are for training data.

Then, the training data is normalized to obtain the samples required for training the
BP neural network. Since the hidden layer neurons use the sigmoid activation function that
is a saturation zone near the function value 0 and 1, and the function value changes very
slowly, the normalization process can prevent the input data from entering the saturated
region due to excessive absolute value.

3.3. Optimization Parameters of GA

The initial weight/threshold value of the unoptimized BP neural network is randomly
assigned by the system, and that of the optimized BP neural network is determined by GA.
According to the BP neural network structure, the weights to be determined in the BP neural
network are 6 × 20 + 20 × 1 = 140, and there are 20 + 1 = 21 thresholds to be determined.
The variables of GA are weights and thresholds, so the total number of variables is 161.
Since the weight/threshold value can be any real number, in order to improve the accuracy
and efficiency of the genetic algorithm, real-valued coding is used, and the chromosome
length of the genetic algorithm is 140 + 21 = 161. The objective function is the sum of
squared errors between the expected output and the actual output obtained from the
input of the training sample. Other parameters of GA: the initial population number is 40;
the random traversal sampling selection function is used, and the generation gap is 0.9;
the intermediate recombination crossover operator is selected; the real-valued mutation
operator is used, and the mutation probability is 0.01; the maximum genetic algebra is 50.

3.4. Simulation Results and Analysis

The first step is to create a BP neural network model of austenite SMA, and a BP
neural network model optimized by GA. MATLAB2013b neural network toolbox and gatbx
toolbox are used to write simulation program code. The data of the last cycle of the test
condition are used as the training sample of BP neural network. The training function is
selected as trainlm, the maximum number of training times is 1000, the target error is 10−5,
and the learning rate is 0.1. The topological structure of BP neural network can be obtained
by running the program as shown in Figure 7, and the validation performance chart is
shown in Figure 8.
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Figure 8. Validation Performance Chart.

The second step is to compare the accuracy of unoptimized and optimized BP neural
network models. Four groups of normalized inspection data are input into the unoptimized
BP neural network and the optimized BP neural network in sequence, and the expected
output is obtained respectively. The accuracy of the two constitutive models is obtained by
comparing expected output with the actual output and error analysis.

Figure 9 is a comparison diagram of the BP neural network prediction curve and the
experimental curve at the diameter of 1.0 mm, loading rate of 90 mm/min, and strain
amplitude of 6%. It can be seen that, after each training, the BP neural network prediction
curve without GA optimization has a large fluctuation range due to the randomness of
the initial weight/threshold, but that optimized by GA is in good agreement with the
test curve, avoiding the difference of the model obtained from each run of the BP neural
network, and it is a constitutive model of SMA with good stability and high accuracy.
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Figure 9. Comparison of BP network prediction curve and test curve (a) unoptimized BP network and (b) optimized
BP network.
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Since the network structure of the unoptimized BP neural network is different each
time, the unoptimized BP neural network with better prediction results is selected for
comparison with the optimized BP neural network. Figure 10 shows the comparison and
error of the test curve with the unoptimized and optimized neural network prediction
curve under different loading rates when the diameter is 1.0 mm and the loading amplitude
is 6%. The average absolute percentage error EP and EGP of the prediction results of the
two BP neural network models at the loading rate of 90 mm/min are:

EP =
1
n

n

∑
i=1

|Yi −YPi|
Yi

= 2.72% (4)

EGP =
1
n

n

∑
i=1

|Yi −YGPi|
Yi

= 2.13% (5)
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The linear coefficient of correlation γP and γGP of two prediction results are:

γP =
∑n

i=1
(
Yi −Y

)(
YPi −YP

)
√

∑n
i=1
(
Yi −Y

)2·∑n
i=1
(
YPi −YP

)2
= 0.9983 (6)

163



Materials 2021, 14, 6593

γGP =
∑n

i=1
(
Yi −Y

)(
YGPi −YGP

)
√

∑n
i=1
(
Yi −Y

)2·∑n
i=1
(
YGPi −YGP

)2
= 0.9995 (7)

The root mean square error σP and σGP of two prediction results are:

σP =

√
∑n

i=1(Yi −YPi)
2

n
= 9.76 (8)

σGP =

√
∑n

i=1(Yi −YGPi)
2

n
= 5.43 (9)

where Yi and Y are the sample and mean stress measured in the experiment, YPi and YP
are the sample and mean stress predicted by the BP neural network model, and YGPi and
YGP are the sample and mean stress predicted by the BP neural network model optimized
by GA.

The analysis shows that: (a) With the change of SMA wire loading rate, the optimized
BP neural network model can track the force behavior of SMA well, and the average
absolute percentage error is 2.13%, the linear coefficient of correlation is 0.9995 and the
root mean square error is 5.43. This shows that the neural network constitutive model
based on GA optimization can well describe the change of SMA superelastic performance
with loading rate, better predict the superelastic restoring force of SMA under repeated
loading, and is a good rate-dependent dynamic constitutive model. (b) Although the
unoptimized BP constitutive curve with better prediction effect is compared with the BP
constitutive curve optimized by GA, the accuracy of the optimized model is still higher
than that of the unoptimized model. The error distribution of BP constitutive curve
optimized by GA and the experimental constitutive curve is relatively concentrated. Only
the error of individual sample points is far from 0, and the absolute maximum error is
smaller than that of the unoptimized BP network. The error distribution between the
unoptimized neural network curve and the experimental curve is relatively scattered.
More importantly, the optimal initial weight/threshold value obtained by optimization
replaces the random value assigned by the system, so that the BP neural network has
a fixed optimal initial weight/threshold value, avoiding the difference of the BP neural
network after each training.

4. Optimization Control of Spatial Structure with SMA Wires
4.1. Dynamic Equation of SMA Passive Control System

According to the basic theory of structural dynamics [41,42], the motion equation of a
structure equipped with an austenitic SMA passive control system under seismic excitation
can be expressed as:

M
..
x + C

.
x + Kx = −MI

..
xg + u (10)

where
..
xg is the acceleration of ground motion under seismic excitation; M, K, and C are the

mass matrix, stiffness matrix and damping matrix of the structure, respectively;
..
x,

.
x, and x

are the acceleration, velocity and displacement column vector of the structure relative to
the ground; I is the unit column vector; u is the passive control force column vector of the
SMA wires acting on the structural nodes.

u =
{

u1
T , u2

T · · · un
T
}T

(11)

{
ui = ∑j

{
Fij· cos θij

}
εij > 0

ui = 0 εij ≤ 0
(12)

Fij = σij·Aij (13)
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where ui is the control force column vector of SMA wire acting on the structure node i;
θij represents the direction cosine column vector of the j-th SMA wire connected to the
structural node i and the coordinate axes X, Y, and Z; Fij represents the tension of the
j-th SMA wire connected to the structural node i; σij, εij, and Aij refer to the tensile stress,
tensile strain and cross-sectional area of the j-th SMA wire connected to the structural
node i.

MATLAB is used to compile the Newmark-β method calculation program to analyze
the dynamic time history of the space model structure with the SMA passive control system.
The simulation time step interval is very small, and the earthquake action is also very small
in the first two-time steps, that is, the force of the SMA wire is very small in the initial stage.
Therefore, it is approximately considered that in the first two-time steps of the earthquake,
the σij and εij of all SMA wires are 0, and the structure is in an uncontrolled state. Stress
σij at any time later can be obtained via SMA BP network constitutive model optimized
by GA. The vibration velocity at time t, the stress and strain at time t − 1 and t − 2, and
the strain at time t are input into the optimized BP network constitutive model. Then, the
stress of the SMA wire at time t can be obtained. Among them, the strain εij (t) of SMA
wire at any time can be obtained from the lateral displacement difference of the nodes at
both ends of the SMA wire, and the strain of the oblique SMA wire arranged in the XY
plane of the structure can be obtained by the following formula:





εij(t) = εkj(t) =

√
h2+(w+sk(t)−si(t))

2−
√

h2+w2
√

h2+w2 sk(t)− si(t) > 0

εij(t) = εkj(t) =
√

h2+w2−
√

h2+(w+sk(t)−si(t))
2

√
h2+w2 sk(t)− si(t) ≤ 0

(14)

where h and w are the layer height and single-span span of the structure respectively;
when the angle between the j-th SMA wire and the positive X direction is less than 90◦,
Sk (t) refers to the lateral horizontal displacement of the k-th structural node connected
to the upper end of the SMA wire, Si (t) refers to the lateral horizontal displacement of
the i-th structural node connected to the lower end of the SMA wire. When the angle
between the j-th SMA wire and the positive X direction is greater than 90◦, Sk (t) refers to
the lateral horizontal displacement of the k-th structural node connected to the lower end
of the SMA wire, and Si (t) refers to the lateral horizontal displacement of the i-th structural
node connected to the upper end of the SMA wire.

The structural dynamic time history analysis program is compiled to solve the seismic
response of the structure. First, the genetic algorithm is employed to optimize the BP neural
network constitutive model of SMA wire and the “save” command is used to save the
optimized BP neural network model in the form of data structure. Then, the Newmark-β
algorithm program is written to solve the dynamic Equation (10), in which the control force
u can be obtained by calling the BP neural network model optimized by GA.

4.2. Optimization Criteria

The sum of the lateral displacements of the structure is taken as the optimized objective
function, that is, the optimization criterion is

J = ∑
i
|∆i| = ∑

i
|Si − Si−1| (15)

Si =
∑j Sij

∑j j
(16)

where J is the objective function value; |∆i| represents the absolute lateral displacement of
the i-th layer; Si represents the storey drift of the i-th layer, and it is the average of the lateral
displacement of all nodes of the i-th layer; Sij denotes the absolute lateral displacement
of the node j of the i-th layer. The smaller the objective function value J, the smaller the
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dynamic response of the structure, and the better the control effect of the corresponding
SMA wire arrangement on the structure. Based on the basic principles of GA, the following
fitness function can be designed:

Fit =
1
J
=

1
∑i|Si − Si−1|

(17)

this fitness function meets the design requirements of single value, continuous, non-
negative, and maximization. The larger the fitness value corresponding to GA individual,
the smaller the objective function value, and the better the corresponding SMA configura-
tion scheme.

4.3. Optimization Control and Analysis of Spatial Structure

The spatial model structure is 2 spans along the X direction with each span of 500 mm
in length, and along the Z direction is 1 span, the length is 600 mm, the height is 3 layers,
and the height of each layer is 500 mm. In order to facilitate the installation and connection
of the SMA wire, each layer of 6 nodes has an additional weight of 1 kg, and there are spiral
holes for fixing the SMA wire. All rods are Q235 round steel pipes with an outer diameter
of 10 mm and a wall thickness of 1 mm. The elastic modulus is 206 GPa, the Poisson’s ratio
is 0.3, and the density is 7.85 × 103 kg/m3. The following assumptions are made in the
analysis of structural seismic response: (a) All masses are concentrated at the nodes of each
floor; (b) The initial working temperature of SMA wire is constant in its cross section and
length direction.

As the vertical and horizontal SMA wires in the XY plane and the SMA wires in the YZ
plane have little shock absorption effect on the structure under the action of the horizontal
earthquake in the X direction. The SMA wires at these positions are not considered here.
Only the diagonal SMA wires in the XY plane are considered, so the node numbers of the
spatial model structure and the possible positions of the SMA wires are shown in Figure 11.
The positions of the red lines in the figure represent all the possible positions of the SMA
wires with a total number of 24.
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Figure 11. Possible locations of austenitic SMA wires and structural node numbers.

The operating parameters of GA are set as follows: real-valued coding is used, the
initial population size is 40, the maximum number of generations is 50, and the crossover
probability is 0.8. When the generation required to maintain the optimal individual un-
changed does not exceeds 5, the mutation probability Pm is 0.05. When the generation
required to maintain the optimal individual unchanged exceeds 20, the mutation probabil-
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ity GPm is 0.2. When the optimal individual does not change and the required generation
is between 5 and 20, the mutation probability is taken by linear interpolation between Pm
and GPm.

The El Centro wave with the duration of 20 s, the interval of 0.02 s, and the peak
acceleration amplitude of 200 gal is selected as the seismic excitation of the spatial structure
along the X direction. In the structure, 2, 4, 6, 8, 12, 16, 20, and 24 SMA wires are arranged for
optimizing the position. The change of the objective function value with the evolutionary
generation is shown in Figure 12. Table 5 presents the optimal positions of different
numbers of SMA wires in the spatial structure, the value of the objective function, and the
corresponding shock absorption effects.

Table 5. Optimal results of austenite SMA wires with different amounts.

Number of SMA Wires Position Optimization Result Objective Function Value (mm) Suppression Ratio (%)

0 (non-control) / 48.3 /
2 4, 15 33.7 30.23
4 4, 6, 12, 14 26.8 44.51
6 2, 6, 7, 13, 14, 20 23.5 51.35
8 4, 7, 8, 13, 14, 15, 21, 24 21.6 55.28

12 2, 8, 9, 10, 11, 13
14, 15, 19, 20, 22, 23 21.2 56.11

16 2, 3, 4, 5, 9, 10, 11, 12, 13
14, 15, 16, 17, 19, 21, 24 22.8 52.80

20 1, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14
15, 16, 17, 19, 20, 21, 22, 23, 24 26.3 45.55

24 All 27.1 43.89

It can be seen from the optimization results that with the increase of genetic evolution
generations, the optimal value of the objective function gradually decreases, and the
average value of the objective function basically shows a gradually decreasing trend,
which indicates that the optimal value and the average value are in a gradual convergence.
During the process, the value of the objective function changes less and less. The optimized
arrangement of the SMA wire has a better suppression effect on the seismic response of the
space structure, but it is not that the more the number of SMA wires installed, the better
the shock absorption effect. When the number of the SMA wire exceeds a certain number,
the shock absorption effect decreases. When 4 austenitic SMA wires are arranged, the
SMA wire layout optimized by GA can reduce the storey drift of the structure by 44.51%.
Therefore, for the consideration of damping efficiency and economy, 4 SMA wires are
selected to passively control the structure. The optimized layout is shown in Figure 13a,
and the shaking table test model is shown in Figure 13b.

Using node 24, node 18, and node 12 to analyze the acceleration response and dis-
placement response of the structure with and without control, the peak response is shown
in Tables 6 and 7, and the time history curve of storey drift response and interlayer ac-
celeration response is shown in Figure 14. It can be seen that the simulation results are
in good agreement with the test results, which supports the rationality and feasibility of
MATLAB simulation model for the seismic response analysis of space structure with SMA
wires based on BP neural network. Meanwhile, the suppression effect of displacement
response is more obvious than that of the acceleration response, the bottom layer has the
best damping effect, the storey drift reduction rate is 52.98%, and the interlayer acceleration
reduction rate is 25.89%.
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Table 6. Peak storey drift and corresponding suppression rates under optimal and uncontrolled conditions.

Floor
Non-Control (mm) Optimal Placement Suppression Rate for

Simulation Result (%)Simulation Result Test Result Simulation Result Test Result

1 23.052 25.182 10.838 13.431 52.98
2 16.352 15.258 8.702 9.287 46.78
3 8.910 7.641 7.236 6.484 18.79

Table 7. Peak interlayer acceleration and corresponding suppression rates under optimal and uncontrolled conditions.

Floor
Non-Control (m/s2) Optimal Placement (m/s2) Suppression Rate for

Simulation Result (%)Simulation Result Test Result Simulation Result Test Result

1 4.734 4.407 3.508 3.116 25.89
2 4.028 3.696 3.153 2.519 21.73
3 2.517 1.719 2.068 1.423 17.83
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Figure 14. Time history curves of seismic response of spatial model structure with and without control, (a) storey drift of
first floor, (b) interlayer acceleration of first floor, (c) storey drift of third floor, (d) interlayer acceleration of third floor.

5. Conclusions

(1) The mechanical tests of SMA wires show that with the increase of the number of cycles,
the performance of SMA wires gradually stabilized, the stress–strain curve gradually
becomes smooth, the accumulated residual deformation increases gradually, but the
residual deformation of single cycle gradually decreases. After 15 cycles, the stress–
strain curve tends to be stable, and the residual strain of single cycle is basically 0.
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With the increase of strain amplitude, the energy dissipation capacity of SMA wires
increases obviously. With the increase of loading rate and diameter, the energy
dissipation capacity of SMA wires decreases, but not obviously. The strain amplitude
is the most prominent factor affecting the energy dissipation capacity of SMA wires.

(2) Taking the material test data of SMA wires as the training sample and test sample
of the BP neural network, the BP neural network prediction model optimized by
genetic algorithm is established. The simulation results show that the prediction
curve of optimized BP neural network is in good agreement with the test curve, and
the average absolute percentage error is only 2.13%, the linear coefficient of correlation
is 0.9995, and the root mean square error is 5.43. Thus, the model can well reflect
the effect of loading velocity on the superelastic properties of SMA wires and is a
velocity-dependent dynamic constitutive model with high precision for SMA.

(3) Since the initial weight/threshold is determined by the genetic algorithm, the opti-
mized BP neural network avoids the difference of the prediction model in each run
and reduces the phenomenon of network oscillation and non-convergence caused
by the improper value of weight/threshold. Compared with the unoptimized BP
neural network, it can predict the hysteretic behavior of SMA with better stability and
higher accuracy.

(4) The BP neural network optimized by GA was employed to trace the stress–strain
curve, and the optimization analysis of the SMA wires in a spatial structure model
was carried out under the different seismic excitation. The simulation results are in
good agreement with the test results, which supports the rationality and feasibility
of MATLAB simulation model for the seismic response analysis of space structure
with SMA wires based on BP neural network. Moreover, the results also show that
the SMA wires after optimization can effectively reduce the seismic response of
the structure, but it is not the case that the more SMA wires, the better the shock
absorption effect. When the number of SMA wires exceeds a certain number, the
vibration reduction effect gradually decreases. Therefore, the damping effect can be
obtained economically and effectively only when the number and location of SMA
wires are properly configured. When four SMA wires are arranged, a satisfactory
control effect can be gained, the reduction rate of the sum of storey drift can reach
44.51%, and the reduction rate of storey drift and acceleration response at first storey
are 52.98% and 25.89% respectively.
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Citation: Rączka, W.; Konieczny, J.;

Sibielak, M. Modelling of SMA

Vibration Systems in an AVA

Example. Materials 2021, 14, 5905.

https://doi.org/10.3390/ma14195905

Academic Editor: Salvatore Saputo

Received: 9 August 2021

Accepted: 1 October 2021

Published: 8 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Process Control, AGH University of Science and Technology, Al. Mickiewicza 30,
30-059 Krakow, Poland; koniejar@agh.edu.pl (J.K.); sibielak@agh.edu.pl (M.S.)
* Correspondence: waldemar.raczka@agh.edu.pl

Abstract: Vibration suppression, as well as its generation, is a common subject of scientific investi-
gations. More and more often, but still rarely, shape memory alloys (SMAs) are used in vibrating
systems, despite the fact that SMA springs have many advantages. This is due to the difficulty of the
mathematical description and the considerable effortfulness of analysing and synthesising vibrating
systems. The article shows the analysis of vibrating systems in which spring elements made of SMAs
are used. The modelling and analysis method of vibrating systems is shown in the example of a
vibrating system with a dynamic vibration absorber (DVA), which uses springs made of a shape
memory alloy. The formulated mathematical model of a 2-DOF system with a controlled spring,
mounted in DVA suspension, uses the viscoelastic model of the SMA spring. For the object, a control
system was synthesised. Finally, model tests with and without a controller were carried out. The
characteristics of the vibrations’ transmissibility functions for both systems were determined. It was
shown that the developed DVA can tune to frequency excitation changes of up to ±10%.

Keywords: modelling; vibration; shape memory alloys

1. Introduction

Due to its advantages, SMAs are materials that are increasingly used in many areas of
our life. They are widely used in engineering, as various types of actuators, connecting ele-
ments, clamps and springs, and in medicine to create, e.g., stents, occluders, artificial heart
valves, dental burs and many others. There are many applications using all effects that oc-
cur in SMAs (one-way, two-way shape memory or pseudoelasticity) in medicine, aerospace
and general engineering. In this paper, we focus on SMA applications in vibrating systems
and problems with their modelling. As these are materials with complex temperature- and
stress-induced phase transformations depending on many factors, their usage is preceded
by more or less labourious calculations using various types of mathematical models. De-
pending on the phenomenon we want to analyse, macroscopic, mesoscopic or microscopic
models are used. Khandelwal and Buravalla in [1] made a valued review of various types
of models developed, among others, by Birman [2], Bernardini and Pence in [3] and Paiva
and Savi [4], Smith [5] and Lagoudas [6], Achenbach [7], Müller [8], Seelecke [9–11] and
many others. They mainly focused on continuum models to describe phenomena that
occur in SMAs. The second group of models describing SMAs is input-output models
describing SMAs as a black box. These models usually describe the hysteresis phenomenon
that occurs in SMAs. Such models are useful when the macroscopic effects of phenomena
occurring in SMAs are the thing we are interested in the most. There are two main models
of this type: Preisach [12–14] and Duhem–Madelung models [5]. These models describe the
hysteresis phenomenon and are applicative in the description of one-dimensional SMA ob-
jects with lumped parameters. Both of them are usually used to obtain the time responses
of the SMA object. However, if we want to get the object’s response in the frequency
domain, they are very labourious because each point of the chart should be determined
separately. It is not easy to use these input-output models in frequency analyses, similar to
the phenomenological models too. Thus, such analyses, due to their labour consumption,
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are rarely carried out; however, they are the fundamental tool in the design of vibrating
systems such as vibration reduction systems or generators.

Vibration Systems with SMA Modelling

The need of a SMA description in vibrating systems concerns many authors. The
problem with the description of the vibrating system concerns authors in [15]. They
describe the 1-DOF system with a SMA spring modelled by the constitutive model. They
obtain time responses of the object. Moreover, Seelecke in [9] considers the 1-DOF with
the constitutive model and obtained time courses as well as very valuable phase diagrams.
The very interesting problem of energy dissipation in SMAs is described in work by [11].
Dissipative properties of SMAs can be applied in reduction systems. In this paper, the
authors analysed the problem using a constitutive model as well. In all these works, the
authors did not demonstrate frequency characteristics because they are difficult to obtain
using constitutive models as mentioned above.

In the case of vibration reduction systems, their primary purpose is to minimise
acceleration or displacement amplitudes [16–20]. Sometimes the goal is a reduction in
monoharmonic vibrations. They can be caused by external excitation or result from object
properties, structure, etc., such as natural frequency. Special active vibration reduction
systems can mitigate such excitations. Sibielak et al. in [21–23] proposed one of the most
interesting solutions. The authors developed a controller to reduce selected monoharmonic
excitations to a requested level. Another well-known method is using DVA for the vibration
mitigation of monoharmonic excitation. DVAs are designed for a single frequency of
disturbance. The effectiveness of vibration reduction is most significant when damping
in the absorber’s system is zero. In such a case, the vibration reduction bandwidth is the
narrowest. When the frequency of disturbance changes, additional damping broadens the
frequency bandwidth of the absorber’s operation instead of its effectiveness. Therefore,
controlled absorbers are an alternative method to compensate for the influence of the
changes in the frequency of disturbance vibrations. Such absorbers are adjusted to the
actual disturbance frequency by modifying parameters such as the suspension spring
stiffness, the damping coefficient or mass. Such a controlled DVA is named the adaptive
vibration absorber (AVA).

Springs with controllable stiffness are constructed, e.g., from materials with a change-
able Young’s modulus; often, this is SMA. The change in the stiffness of a SMA element is
related to the modification of Young’s modulus caused by external factors such as heat or
magnetic energy [24–27]. SMAs are materials in which a phase transition occurs, caused by
supplied heat energy and/or external stress. Springs with a controllable stiffness coefficient
are used in various vibration applications such as DVAs, AVAs [28,29], the resonant sieving
screen [30] and others [31,32]. Generally, spring elements made of SMAs can be used in
active, semi-active or passive systems [33]. Because active elements are made of SMAs
and are characterised by considerable time constants amounting to 1 s or more, their use
in active reduction systems is limited to very low-frequency vibrations. Therefore, they
are more frequently used in semi-active, adaptive systems as elements with controllable
parameters. In such cases, changes in their properties, such as stiffness and damping, could
be relatively slow against frequency. In such a case, using springs with controlled stiffness
in a DVA or AVA is an excellent idea, which is considered in few papers. For example,
Williams et al. [34] used the SMA spring to control the suspension stiffness of an AVA.
They built a physical model of such an absorber and performed its laboratory tests. They
labouriously determined the frequency characteristics of the AVA for various temperatures,
including the characteristics of the AVA with a "manually" tuned absorber. Then, in [35],
Williams et al. formulated a mathematical model of the SMA spring absorber. In the
model, SMA spring parameters are determined based on laboratory tests and tabulated.
In the paper [36], Williams et al. proposed a controller for an AVA and performed its
time characteristics. The authors presented the time characteristics because obtaining the
frequency characteristics using constitutive models is very labour-intensive and therefore
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not used. This is the fundamental problem in designing and analysing vibration systems
using SMAs, both those that generate vibrations or those that reduce them. The same
problem occurs in the synthesis and analysis of control systems with actuators made of
SMAs.

The development of a SMA modelling method to facilitate the frequency analysis was
the primary motivation behind developing the viscoelastic SMA model described in [27].
The model of the SMA spring was formulated on the basis of the analysis of the spring static
characteristics [27]. It was observed that such a spring has significant damping. Hence,
it was hypothesised that the spring reaction force can be described by the Formula (1).
The spring is made of NiTi (Ni 48%, Ti 46%, Cu 6% and C 0.05%). The characteristic
temperatures of the alloy are Ms = 45 ◦C, M f = 30 ◦C, As = 50 ◦C, A f = 70 ◦C. The
spring tests showed that its characteristic not only depends on the temperature but also
varies depending on the frequency of excitation [27]. It turned out that the coefficients k
and c of the spring depend not only on the temperature but also on the frequency, which
can be seen in Figures 1 and 2. These figures show the values of the spring coefficients
k and c as a function of the frequency for selected temperatures. We can see that with a
higher frequency, the stiffness rate and damping coefficients decrease. This phenomenon is
examined by Piedboeuf et al. [37], Guher et al. [38] and Karakalas et al. [39] too. Formula (1)
is a SMA spring model described in [27]. The model is written in the form (2) after taking
into account (3) and (4). The values of the determination methods of the coefficients and
the approximating functions (3) and (4) are presented in the article, [27].

F = kz + c
.
z (1)

where:
F = k(T, ω)z + c(ω)

.
z (2)

where:
k(T, ω)—SMA spring stiffness rate function,
c(ω)—SMA spring damping function,
F—SMA spring reaction force,
z—SMA spring deflection,
T—SMA spring temperature,
ω—frequency of excitation.
The stiffness rate function k(T, ω) is explained using the following formula:

k(T, ω) = a1 + a2ω + a3ω2 + a4T (3)

where the coefficients a1, a2 and a3 are determined using the least-squares method and
equal: a1 = 70, 952, a2 = −213.01, a3 = −5.214, a4 = 1148.8.

The damping function c(ω) is approximated using the following formula.

c(ω) = b1 + b2
1
ω

(4)

where the coefficients b1, b2, b3 and b4 are determined using the least-squares method and
equal: b1 = −1.91, b2 = 17, 100.

This viscoelastic model of SMAs, widely described in the article [27], enables the
frequency analysis of vibrating systems with spring elements made of SMAs.

In this paper, the use of the model is shown in the example of the controlled AVA
vibration absorber. Since the viscoelastic model of the SMA spring was used to formulate
the mathematical model of the absorber, it was possible to perform a frequency analysis of
both the passive and active systems. The results of the system tests are presented below
in a graphic form. An AVA with a controlled spring made of a SMA was proposed due
to the fact that the properties of the SMA spring can be controlled by controlling only its
temperature. Thanks to this, the resonant frequency of the absorber can be easily controlled.
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Figure 2. The spring rate k as a function frequency for selected temperatures.

2. Materials and Methods

The mathematical model (5), (6) of the AVA with a controlled dynamic damper was
formulated based on its diagram shown in Figure 3. The absorber in the form of a mass
m2 = 12 kg is suspended by a SMA spring and protects the main mass m1 = 25 kg. The
SMA spring is represented by two elements, a controlled spring k2 and a controlled damper
c2 connected in parallel. The protected mass m1 is excited by the kinematic excitation
zw = Asin (ωt). For the sake of the notation simplification, the symbols z1 = z1(t) and
Z1 = Z1(s) were adopted.

k1(zw − z1) + c1
( .
zw −

.
z1
)
= m1

..
z1 + k2(z1 − z2) + c2

( .
z1 −

.
z2
)

(5)

k2(z1 − z2) + c2
( .
z1 −

.
z2
)
= m2

..
z2 (6)

The SMA spring was described using a viscoelastic model with variable parameters
(2), (3), (4) and is described above. After a Laplace transformation of the system of
Equations (5) and (6), we obtained:

k1(Zw − Z1) + c1(Zw − Z1)s = m1Z1s2 + k2(Z1 − Z2) + c2(Z1 − Z2)s (7)

k2(Z1 − Z2) + c2(Z1 − Z2)s = m2Z2s2 (8)
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Figure 3. Calculation diagram of the vibration reduction system.

Equations (7) and (8) were written in matrix form:

Ax = Bu (9)

where:

A =

[ (−m1s2 − c1s− k1 − k2 − c2s
)

(k2 + c2s)
(k2 + c2s) −

(
m2s2 + c2s + k2

)
]

(10)

B =

[ −(k1 + sc1)
0

]
(11)

x =

[
z1
z2

]
(12)

u = zw (13)

To solve the system of Equation (9), we calculate determinants. The Formula (14) gives
the principal determinant of A:

det(A) =
(

m1s2 + c1s + k1 + k2 + c2s
)(

m2s2 + c2s + k2

)
− (k2 + c2s)2 (14)

Determinant Az1 is written in the form:

det(Az1) = zw(k1 + c1s)
(

m2s2 + c2s + k2

)
(15)

Determinant Az2 is written in the form:

det(Az2) = zw(k1 + c1s)(k2 + c2s) (16)

The transfer function Gz1zw for input zw and output z1 is:

Gz1zw(s) =
(k1 + c1s)

(
m2s2 + c2s + k2

)

(m1s2 + c1s + k1 + k2 + c2s)(m2s2 + c2s + k2)− (k2 + c2s)2 (17)

The transfer function Gz2zw for input zw and output z2 is:

Gz2zw(s) =
(k1 + c1s)(k2 + c2s)

(m1s2 + c1s + k1 + k2 + c2s)(m2s2 + c2s + k2)− (k2 + c2s)2 (18)

The transfer function Gz2z1 for input z1 and output z2 is:

Gz2z1(s) =
(k2 + c2s)

(m2s2 + c2s + k2)
(19)
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Thus, the spectral transmittances of such an object for input displacement zw and
output displacements z1 and z2 are given by Equations (20) and (21), respectively.

Gz1zw(jω) =
−m2c1 jω3−P1ω2+P2 jω+k1k2

m1m2ω4−(m2c1+Mc2)jω3−( P1+Mk2)ω2+P2 jω+k1k2
(20)

Gz2zw(jω) =
−c1c2ω2 + P2 jω + k1k2

m1m2ω4 − (m2c1 + Mc2)jω3 − ( P1 + Mk2)ω2 + P2 jω + k1k2
(21)

where:
M = m2 + m1,
P1 = m2k1 + c1c2,
P2 = c1k2 + k1c2.
The spectral transmittance of the absorber for the input z1 protected the mass displace-

ment, and the output z2 damper displacement is given by the Equation (22).

Gz2z1(jω) =
(c2 jω + k2)

(−m2ω2 + c2 jω + k2)
(22)

3. Results

Figure 4 shows the vibration transmissibility function of the absorber with the mass
m2 described by the transfer function (22) as a function of the frequency of the displacement
signal z1 and the temperature of the SMA spring. The resonance frequency of the absorber
increases with an increasing temperature from 11.1 Hz in the temperature 25 ◦C up to
14.5 Hz in the temperature 80 ◦C. It is a result of SMA spring features described by
Equations (3) and (4). Thus, by controlling the spring temperature, we control the resonant
frequency of the absorber in the range 11.1 Hz to 14.5 Hz. This means that by changing
only the temperature of the SMA spring, we can tune the absorber to the frequency of
disturbance zw. Then, Figure 5 shows the phase shift between the displacements z1 and z2
for the absorber. Figures 6 and 7 show the vibration transmissibility functions and phase
shifts of the absorber for selected temperatures (25 ◦C, 60 ◦C, 80 ◦C).

Figures 8–11 show similar graphs for the protected mass m1. In turn, Figures 12–15
show the vibration transmissibility functions and the phase shifts between the displace-
ments zw and z2 for the entire 2-DOF system described by the transmittance Gz2zw.
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Figure 4. Vibration transmissibility function of the absorber as a function of frequency and tempera-
ture, the transfer function Gz2z1.
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Figure 6. Vibration transmissibility functions of the absorber as a function of frequency for selected
temperatures 25 ◦C, 60 ◦C, 80 ◦C, the transfer function Gz2z1.
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Figure 7. The absorber phase shifts as a function of frequency for selected temperatures 25 ◦C, 60 ◦C,
80 ◦C, the transfer function Gz2z1.

179



Materials 2021, 14, 5905

Materials 2021, 14, 5905 84 of 138 
 

 

   </mrow> 

  <annotation encoding='MathType-MTEF'>MathType@MTEF@5@5@+= 

  feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn 

  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 

  4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVCI8FfYJH8 

  YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=J 

  Hqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaaca 

  qabeaadaqaaqaafaGcbaaeaaaaaaaaa8qacaWGhbWdamaaBaaaleaa 

  peGaamOEaiaaikdacaWG6bGaaGymaaWdaeqaaaaa@43D2@ 

  </annotation> 

 </semantics> 

</math> 

<!-- MathType@End@5@5@ --> 

. 
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Figure 8. Vibration transmissibility function of disturbance zw to the protected mass m1 as a function
of frequency and temperature, the transfer function Gz1zw.
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Figure 9. The phase shift of protected mass as a function of frequency and temperature, the transfer
function Gz1zw.
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Figure 10. Vibration transmissibility functions of disturbance zw to the protected mass m1 as a
function of frequency for selected temperatures 25 ◦C, 60 ◦C, 80 ◦C, the transfer function Gz1zw.
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Figure 13. Protect mass phase shift between displacements zw and z2 as a function of frequency and
temperature, the transfer function Gz2zw.
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Figure 14. Vibration transmissibility functions of disturbance zw to the absorber mass m2 as a function
of frequency for selected temperatures 25 ◦C, 60 ◦C, 80 ◦C, the transfer function Gz2zw.
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Figure 15. Absorber phase shift functions between displacements zw and z2 as a function of frequency
for selected temperatures 25 ◦C, 60 ◦C, 80 ◦C, the transfer function Gz2zw.

Figure 12 shows the vibration transmissibility function of the system described by
the transfer function (21), with the input zw, the displacement of excitation and the output
z2 and the displacement of the mass of the absorber m2. Figure 12 shows the significant
change in the resonant frequency of the absorber due to the change in the stiffness and
damping of the SMA spring caused by the change in its temperature. Then, Figure 16
shows the change in the natural frequency of the absorber (solid line) as a function of the
spring temperature within the allowable range. The value of the natural frequency fn of the
dynamic damper can be calculated from the Formula (23). For comparison, in the figure,
the change in the resonance frequency fr of the absorber as a function of the temperature is
shown too.

fn = 2π
a2 +

√
a22 + 4(m− a3)(a1 + a4T)

2(m− a3)
(23)
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Figure 16. Chart of the natural frequency fn (solid line) and the resonance frequency fr (dashed line).

The ability to change the resonant frequency of the absorber enables it to be adjusted
to the changing frequency of the disturbance zw. Such tuning is rational if it is performed
automatically. For this purpose, the control system shown in Figure 17 was proposed.
The goal of the control system is to adjust the resonant frequency of the absorber to the
disturbance frequency zw. In this case, the control system uses the fact that the resonant
frequency of the absorber can be estimated with the natural frequency, and the phase shift
ϕz2z1 between the displacement z1 and the displacement z2 is −90◦. For this reason, it
was decided that the feedback signal would be the cosine of the phase shift angle ϕz2z1.
This signal is estimated in the "phase detector" block based on the Formula (25). In this
case, the estimation error for the observation time To being multiple periods of forced
oscillation is equal to zero. In general, the estimation error of the estimate is always
inversely proportional to the observation time To.
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Figure 17. Control system block scheme.

In this example, it was assumed that the nominal natural frequency of the absorber
is fno = 12.9 Hz, and is equal to the nominal frequency of disturbance zw. A circle in
Figure 16 marks this value. This frequency is obtained in the SMA spring temperature
Tn = 52.5 ◦C in the considered AVA. In this case, for an operating spring temperature range
of 25 ◦C to 80 ◦C, the damper operating frequency range is 11.1 Hz to 14.5 Hz. The natural
frequency can therefore be varied by more than ±10% from its nominal value fno.

After the above consideration, the nonlinear controller was proposed in the form:

T = sat(K·cos(ϕz2z1)) (24)
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where:

sat(v) =





80 f or v > 80
v

25 f or v < 25
(25)

cos(ϕz2z1) =
1
To

∫ t
t−To

zw(τ)z2(τ)dτ
√

1
To

∫ t
t−To

z2
2(τ)dτ

√
1
To

∫ t
t−To

z2
1(τ)dτ

(26)

Equation (26) follows directly from the definition of the dot product (27) between
vectors in the functional space L2([0, T], R).

〈v, w〉 = 1
T

∫ T

0
v(τ)w(τ)dτ (27)

The norm in the vector space L2([0, T], R) generated by this dot product is expressed
by the following formula:

||v|| =
√
〈v, v〉 (28)

In this case, the cosine of the angle ϕ between the two vectors v and w is expressed
as follows:

cos(ϕ) =
〈v, w〉
||v||·||w || (29)

If vectors v and w are harmonic functions of the same frequency, and the time T is
a multiple of the period, then the angle ϕ corresponds to the phase shift angle between
these functions.

Spectral transmittances of the 2-DOF with the controller are given by Formulas (20)–
(22) and (30), (31) formulas describing the SMA spring.

k2(T, ω) = a1 + a2ω + a3ω2 + a4sat(Kcos(ϕz2z1)) (30)

c2(ω) = b1 + b2
1
ω

(31)

The frequency response functions of the 2-DOF system with the controller for K = 50
are presented in Figures 18–20. The frequency characteristics of the closed system in the
figures are marked in black. An analysis of these figures shows that the control system
protects the mass m1 the best. The reduction in mass m1 vibrations (z1) is better in a broader
range than in controlled systems. Thanks to changing its parameters, the controlled system
can tune to the disturbance and, therefore, reduce vibration better.

Materials 2021, 14, 5905 130 of 138 
 

 

  Hqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaaca 
  qabeaadaqaaqaafaGcbaaeaaaaaaaaa8qacaWG6bWdamaaBaaaleaa 
  peGaaGymaaWdaeqaaaaa@414B@ 
  </annotation> 
 </semantics> 
</math> 
<!-- MathType@End@5@5@ --> 
) is better in a broader range than in controlled systems. Thanks to changing its pa-

rameters, the controlled system can tune to the disturbance and, therefore, reduce vibra-
tion better. 
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Figure 18. Vibration transmissibility functions of the passive absorber for selected temperatures of
25 ◦C, 60 ◦C, 80 ◦C and the controlled absorber (black). The transfer function Gz2z1 describes the object.
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Figure 19. Vibration transmissibility functions of disturbance <!-- MathType@Transla-
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Figure 19. Vibration transmissibility functions of disturbance zw to the protected mass m1 of the
passive absorber for selected temperatures of 25 ◦C, 60 ◦C, 80 ◦C and the controlled absorber (black).
The transfer function Gz1zw describes the object.
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Figure 20. Vibration transmissibility functions of disturbance zw to the mass m2 of the passive
absorber for selected temperatures of 25 ◦C, 60 ◦C, 80 ◦C and the controlled absorber (black). The
transfer function Gz2zw describes the object.

4. Conclusions

The paper presents the developed mathematical model of the AVA system using
a viscoelastic model of the SMA spring. The developed mathematical model enables
numerical simulations in the frequency domains. The AVA was only an example of the
application of this viscous model because, thanks to the use of the SMA spring, the AVA
system can be tuned in real-time to the changing frequency of the disturbance in order to
minimise the vibrations of the protected mass. As one can see, the viscous model enables
the effective analysis of vibrating systems equipped with the SMA spring elements. Its
characteristics can be easily determined using standard analytical methods. The results of
the simulation tests of the model in the form of frequency characteristics are easy to obtain.
Therefore, the work on the synthesis of the system is practical.

Additionally, it was shown that control systems can also be efficiently synthesised. For
this purpose, a nonlinear control system was proposed and modelled. The tests of the AVA
working in open and closed systems showed that thanks to the use of a controlled SMA
spring, it is possible to perform an AVA which adjusts itself to the disturbance frequency
on an ongoing basis, and it is better than passive systems because it operates in the broader
frequency range.

185



Materials 2021, 14, 5905

Author Contributions: Conceptualization, W.R. and J.K.; methodology, M.S.; software, W.R.; vali-
dation, W.R., M.S. and J.K.; formal analysis, J.K. and M.S.; investigation, W.R.; resources, J.K.; data
curation, M.S.; writing—original draft preparation, W.R.; writing—review and editing, W.R., J.K.,
M.S.; visualization, W.R.; supervision, J.K.; project administration, W.R.; funding acquisition, W.R.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded from national funds for science in the years 2009–2012 as the
research projects No. N N502 266137 and from national funds for science in the years 2002–2005 as
research project No. 4T07A 04129.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Khandelwal, A.; Buravalla, V. Models for Shape Memory Alloy Behavior: An overview of modelling approaches. Int. J. Struct.

Chang. Solids 2009, 1, 111–148.
2. Birman, V. Review of Mechanics of Shape Memory Alloy Structures. Appl. Mech. Rev. 1997, 50, 629–645. [CrossRef]
3. Schwartz, M.; Wiley, J. Encyclopedia of Smart Materials Volume 1 and Volume 2; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2002;

Volume 1, ISBN 0471177806.
4. Paiva, A.; Savi, M.A. An overview of constitutive models for shape memory alloys. Math. Probl. Eng. 2006, 2006, 1–30. [CrossRef]
5. Smith, R.C. Smart Material Systems; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2005;

ISBN 978-0-89871-583-5.
6. Lagoudas, D.C. Shape Memory Alloys. Modeling and Engineering Applications; Springer US: Boston, MA, USA, 2008; Volume 1,

ISBN 978-0-387-47684-1.
7. Achenbach, M.; Muller, I. Simulation of material behaviour, of alloys with shape memory. Arch. Mech. Mech. 1985, 37, 573–585.
8. Achenbach, M.; Atanackovic, T.; Müller, I. A model for memory alloys in plane strain. Int. J. Solids Struct. 1986, 22, 171–193.

[CrossRef]
9. Seelecke, S. Modeling the dynamic behavior of shape memory alloys. Int. J. Non. Linear. Mech. 2002, 37, 1363–1374. [CrossRef]
10. Heintze, O.; Seelecke, S. A coupled thermomechanical model for shape memory alloys—From single crystal to polycrystal. Mater.

Sci. Eng. A 2008, 481–482, 389–394. [CrossRef]
11. Naso, D.; Seelecke, S. Passivity Analysis and Port-Hamiltonian Formulation of the Müller-Achenbach-Seelecke Model for Shape

Memory Alloys: The Isothermal Case. IFAC-PapersOnLine 2018, 51, 713–718. [CrossRef]
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Abstract: Owing to the world population aging, biomedical materials, such as shape memory alloys
(SMAs) have attracted much attention. The biocompatible Ti–Au–Ta SMAs, which also possess high
X–ray contrast for the applications like guidewire utilized in surgery, were studied in this work. The
alloys were successfully prepared by physical metallurgy techniques and the phase constituents,
microstructures, chemical compositions, shape memory effect (SME), and superelasticity (SE) of
the Ti–Au–Ta SMAs were also examined. The functionalities, such as SME, were revealed by the
introduction of the third element Ta; in addition, obvious improvements of the alloy performances
of the ternary Ti–Au–Ta alloys were confirmed while compared with that of the binary Ti–Au alloy.
The Ti3Au intermetallic compound was both found crystallographically and metallographically in
the Ti–4 at.% Au–30 at.% Ta alloy. The strength of the alloy was promoted by the precipitates of the
Ti3Au intermetallic compound. The effects of the Ti3Au precipitates on the mechanical properties,
SME, and SE were also investigated in this work. Slight shape recovery was found in the Ti–4 at.%
Au–20 at.% Ta alloy during unloading of an externally applied stress.

Keywords: biomedical materials; intermetallic compound; shape memory alloys; shape memory
effect; Ti–Au–Ta

1. Introduction

Shape memory alloys (SMAs) have attracted much attention in the biomedical and
biomaterials communities due to their functionalities, such as shape memory effect (SME)
and superelastic (SE) behavior, which could be manipulated by controlling their operation
temperature and externally applied stress [1–3]. Since the Ni–Ti (Nitinol) alloy was utilized
as SMA stent, a commercial breakthrough was made in 1990s; thereafter, SMAs have
been developed and widely accepted by the public [4]. However, a high potential of Ni
hypersensitivity to the human body in the Nitinol impedes its applicability [5,6]; therefore,
a substitution possessing biocompatibility for the Nitinol is urgently needed. The Ti–based
alloys in their β–phase have been reported to perform good SME and SE [7,8]; in addition,
Ti is known as a biocompatible metal [9,10]. Therefore, biocompatible β–Ti–based SMAs
were chosen in this study for the applications in biomedical materials.

For manipulation of the performance of the β–Ti alloy, gold (Au) was selected in
this study for the following reasons. First, from the biological point of view, Au is also
known as a metal with excellent biocompatibility [11]. Second, Au meets the essential
requirement of the high X–ray contrast [12] for the applications in the medical devices,
such as a guidewire for surgery. Third, from the chemical point of view, Au possesses
excellent corrosion resistance in the human body fluid [13,14]. Based on the aforementioned
prerequisites, Au is a potential candidate to enhance the properties of the β–Ti SMAs
towards biomedical applications; therefore, the binary Ti–Au–based alloy was chosen in
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this work. It is necessary to mention that the near–eutectoid Ti–4 at.% Au–based alloy
was designated in this study since the relatively low temperature at the eutectoid reaction
facilitates the preparation of the SMAs.

Regardless of the above–mentioned promising characteristics of the binary Ti–Au–
based alloy, Plichta et al. reported that the massive transformation took place during
cooling in the near–eutectoid Ti–4 at.% Au alloy, resulting in the formation of the α–massive
martensite [15,16]. Here, the massive transformation indicates the phase transformation
of β→ αm (where αm suggests the α–massive martensite). The αm phase exhibits neither
SME nor SE; thus, for revealing the functionality, such as SME and SE, a β–stabilizer,
tantalum (Ta), was introduced into the near–eutectoid Ti–4 at.% Au–based alloy to stabilize
the parent β–phase at operation temperature (i.e., body temperature).

Tantalum, which is known as a β–stabilizer, was chosen in this study for the manipula-
tion of the functionalities of the Ti–Au–based SMA by tuning its martensite transformation
start temperature (Ms) [8]. According to the binary Ti–Ta phase diagram, regardless of
the addition amount of Ta to Ti, a solid solution (i.e., isomorphous) is formed through
the entire concentration range [17]. The aforementioned α–massive martensite, which
performs neither SME nor SE, could be suppressed by the Ta addition and could be trans-
formed into the functional parent β–phase and/or α′ ′–martensite phase [18–20]. Besides
the purpose for revealing the functionalities, Ta, which is also a heavy element, could
also contribute high X–ray contrast for the medical devices, such as guidewires [21,22].
Furthermore, concerning the biocompatibility to the human body, the Ta element, which is
also considered as a promising candidate [23–25], shows high biocompatibility. Based on
the aforementioned advantages of the Ta element, it was thus chosen as the third element
for the manipulation of the Ti–Au–based SMAs in this work towards the applications
of biomaterials.

For the binary Ti–Au SMAs, most of the researches focused on the near–Ti50Au50 alloys
for the applications of high temperature SMAs [26–28]. In the case of the near–eutectoid Ti–
Au alloy (i.e., Au concentration at approximately 4.2 at.% (or 15.3 wt.% Au)), the literature is
relatively limited. As previously mentioned, Plichta et al. studied the α–massive martensite
generated from the massive transformation around the near–eutectoid Ti–Au alloys [15,16].
Kikuchi et al. screened the elastic moduli of the Ti–Au alloys and other alloys from 5 wt.%
to 30 wt.% addition amounts for the applications of biomedical materials, such as dental
materials [29]. Concerning the binary Ti–Ta SMAs, Buenconsejo et al. claimed that the
Ti–Ta–based alloys could be a good candidate for the applications of SMAs [30]. Ikeda et al.
studied the effect of Ta addition concentration on phase constitution and the behaviors
of the binary Ti–Ta alloys after aging treatment [31]. Some of the high–order Ti–Ta–based
alloys have also been studied [32–34]. However, the ternary Ti–Au–Ta alloys, which are
potential SMAs for the applications of the medical devices and biomaterials have not been
investigated. This study thus investigated the unexplored effects of the Ta addition on the
phase constituents, phase transformation, mechanical properties, shape memory effect,
and superelasticity of the binary Ti–Au–based SMAs.

In this study, it was found that with the addition of the Ta element to the near–
eutectoid Ti–Au alloy, the functionless α–massive martensite was successfully transformed
into the functional β–parent phase. The intermetallic compound Ti3Au was formed while
Ta addition amount was concentrated up to 30 at.%. Having the precipitation of the
intermetallic Ti3Au compound, positive effect to the strength of the alloys were achieved.
This work is a preliminary study of the Ti–Au–Ta–based SMAs and this ternary system is
now still studying by our research group. More results concerning the Ti–Au–Ta–based
alloys and their high–order systems will be published in the future.

2. Materials and Methods

Titanium sponges (Ti, purity = 98%), Gold plates (Au, purity > 99.9%), and Tantalum
flakes (Ta, purity > 99.9%) were used as the starting materials for the preparations of the Ti–
Au–Ta ingots. The purification of the Ti sponges could be found in our previous study [35].
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Alloys with compositions of the Ti–4 at.% Au–20 at.% Ta and the Ti–4 at.% Au–30 at.%
Ta in a total weight of eight grams were fabricated by conventional physical metallurgy
techniques. In this article, these alloys are abbreviated to Ti–4Au–20Ta and Ti–4Au–30Ta,
respectively, unless otherwise mentioned. The constituent elements were manufactured
under an Ar–1 vol.% H2 atmosphere by an arc–melting system, which is equipped with a
non–consumable W electrode. The ingots were re–melted seven times and were flipped up-
side down prior to each re–melting to affirm the chemical homogeneity of the composition
in the entire ingot. The arc–melted ingots are denoted as “as–melted” specimens.

Followed by an arc–melting, the as–melted ingots were cleaned, wrapped by Ti films,
vacuum sealed into quartz tubes, and homogenized at 1273 K for 7.2 ks under pure Ar at-
mosphere for further composition homogenization after arc–melting process. The homoge-
nized ingots were then quenched into iced–water for the termination of the homogenization
treatment and the homogenized specimens were identified by “as–HT” specimens.

The as–HT specimens were then cold–rolled into thin films at room temperature (RT;
i.e., 295 ± 3 K) via the cold–rolling machine equipped with a double–deck roll. The alloys
were cold–rolled until a reduction in thickness of 98% was achieved. For that alloy, which
cannot be cold rolled up to reduction in thickness of 98%, process–annealing at 1273 K
for 1.8 ks was conducted followed by the identical cold–rolling procedure at RT until the
reduction in thickness of 98% was obtained. On the other hand, for that alloy, which
cannot be cold rolled owing to its low cold workability, was hot–rolled at 1173 K until the
reduction in thickness of 98%. The thinned down specimens were named as “as–rolled”
alloys. Specimens with specific shapes and dimensions were cut off from the as–rolled
alloys for the following analysis and measurements.

The specimens with certain shapes, which were prepared from the as–rolled alloys,
were then cleaned, wrapped into Ti films, vacuum sealed into quartz tubes, and solution–
treated (ST) at 1273 K for 1.8 ks under the atmosphere of pure Ar. Afterward, speci-
mens were quenched into iced–water for the termination of the solution–treatment. The
solution–treated specimens were thus named as “ST” specimens. An illustration for the
aforementioned thermomechanical processes in detail could be found in our previous
articles [35,36].

The ST specimens were cleaned, grinded by emery papers with different meshes, and
polished by the 1 µm diamond paste to obtain fine surface finish prior to the analysis of
phase identification. A θ–2θ X–ray diffraction (XRD) measurement was carried out at RT
under ambient for the determination of phase constituents. Tube current and voltage were
at 40 mA and 45 kV while the Cu Kα radiation (λ = 1.5405 Å) was used as the X–ray source.
The scan range was from 20◦ to 120◦ with a scan rate at approximately 2◦/min. A standard
Si plate was used for the correction of the external system error.

Microstructure observations and chemical composition analysis were carried out by
the field–emission scanning electron microscopy (FE–SEM) along with an energy dispersive
X–ray spectrometry (EDS) at RT at an electron beam voltage of 30 kV. Similar to the
X–ray diffraction measurements, prior to the microstructure observation and chemical
composition analysis, the specimens were cleaned, mechanically grinded by emery papers,
and polished by diamond paste with a diameter of 1 µm to obtain fine surface finish for
the analysis.

In addition to the aforementioned fundamental characterizations, examinations of the
functionalities, such as shape memory effect, were also carried out by the test of bending defor-
mation followed by a heating process by a cigar lighter, which reached temperatures higher than
1000 K. Specimens with a dimension of 0.2 mm (thickness) × 2 mm (width) × 20 mm (width),
were obtained from the above–mentioned ST specimens. The specimens were firstly sub-
jected a 5% surface strain, which was made by bending the specimens with a round bar
with a diameter of 6 mm. The surface strain made to the specimens could be calculated
by following the equation of ε = [h/(2r)], where ε is surface strain, h is thickness of the
specimen, and r is curvature radius, respectively. The shape recovery rates of the specimens
were determined by recognizing and calculating the shape difference in the optical photos,
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which were taken at the (i) after bending deformation and (ii) upon heating stages. The
bending tests and calculations for shape recovery rates were carried out for three times for
ensuring the accuracy and also for calculations of average shape recovery rates. An image
processing software, ImageJ, was used for certifying the average shape recovery rates.

For the evaluations of the mechanical properties, two different tensile tests were
carried out by a universal testing machine of Shimadzu AG1kN Autograph. Specimens,
which were in a dimension of 0.2 mm (thickness) × 2 mm (width) × 10 mm (width),
possessed a dog–bone structure. The tensile tests were carried out at RT under ambient in
two different manners: (1) the continuous tensile test and (2) the cyclic loading–unloading
tensile tests. A video extensometer, which was attached to the universal testing machine,
was used for the accurate measurement of shape deformation strain for both tensile tests. In
the case of the continuous tensile test, the specimens were subjected to a continuous tensile
stress until their fractures. On the other hand, in the case of the cyclic loading–unloading
tensile tests, specimens were repeatedly subjected to a 1% strain per cycle until the 10th
cycle or the fractures of the specimens. All the specimens were subjected to a strain rate of
8.3 × 10−4 s−1 and the stress loading direction was parallel to the rolling direction (RD) of
the alloys.

3. Results and Discussion
3.1. Cold Workability

In the case of the Ti–4Au–20Ta specimen, it could be cold rolled up at RT to the
reduction in thickness of 70% in the first cold–rolling. Followed by the first cold–rolling,
process–annealing was carried out at 1273 K for 1.8 ks. Second, cold–rolling was thereafter
conducted until the reduction in thickness reached 98%. The final thickness of the specimen
after cold–rolling was at approximately 0.2 mm. On the other hand, in the case of the
Ti–4Au–30Ta specimen, it was found that the alloy, which showed low workability, cracked
at the first pass of the cold–rolling process. Hot–rolling was therefore executed at 1173 K
instead for thinning down the specimen until the reduction in thickness reached 98%.
The differences in the cold workability of these two alloys are explained by the phase
constituents and microstructure observations in both Sections 3.2 and 3.3.

3.2. Phase Identification

The X–ray diffraction patterns of the (a) Ti–4Au–20Ta alloy and the (b) Ti–4Au–30Ta
alloy at RT under ambient are shown in Figure 1. Put simply, the parent β–phase was
found in the (a) Ti–4Au–20Ta alloy indicating a single β–phase of this alloy. On the other
hand, in addition to the parent β–phase, a compound with a crystal structure of A15 was
also found in the (b) Ti–4Au–30Ta alloy. According to the literature [37,38], the compound
possessing A15 crystal structure corresponds to the intermetallic compound of Ti3Au. More
analysis concerning the Ti3Au with an A15 crystal structure are shown in Section 3.3 via
microstructure observations and chemical composition analysis.

It was reported that in the binary Ti–4Au specimen the apparent phase of the α′ ′–
martensite or the α–massive martensite (αm), which were generated from the martensitic
transformation or the massive transformation, were found [15,16]. Different from the
binary Ti–4Au specimen, it is obvious that the parent β–phase was successfully stabilized
via the introduction of the Ta element as the third element. These results observed in this
study were also in a good agreement with literature [39,40].

On the other hand, according to the literature, the intermetallic compound of Ti3Au,
which is a brittle phase and is often found in the Ti–Au–based alloys [35,38,41,42], could
deteriorate the cold workability of the specimens. Therefore, in Section 3.1, the specimen
of the Ti–4Au–30Ta alloy, which could not be cold–rolled at RT, could be attributed to the
embrittlement brought from the Ti3Au precipitates. Hence, the cold workability agreed
well with the phase constituents observed by the X–ray diffraction patterns (Figure 1)
and the literatures [35,38,41,42]. More details of the Ti3Au precipitates concerning its
microstructure are shown in Section 3.3.
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Figure 1. The X–ray diffraction patterns of the (a) Ti–4Au–20Ta alloy and the (b) Ti–4Au–30Ta alloy
at RT under ambient.

3.3. Microstructure Observations and Elemental Mappings

Figure 2a,b show the SEM images of the Ti–4Au–20Ta alloy and the Ti–4Au–30Ta
alloy, respectively. In addition, the elemental mapping results of the (c) Ti, (d) Au, and
(e) Ta elements in the Ti–4Au–30Ta alloy are also shown in Figure 2. The observed region
of the elemental mappings is surrounded by the dashed lines in the SEM image of the
Ti–4Au–30Ta alloy (Figure 2b).

In the SEM images, only single phase was observed in the Ti–4Au–20Ta alloy (Figure 2a)
and this result is in accordance with its X–ray diffraction pattern (Figure 1a), where merely
the β–parent phase was found. On the other hand, it is clear that some precipitates in bright
contrast were discerned in the Ti–4Au–30Ta alloy (Figure 2b). The size of the oval–shaped
precipitates was approximately 1–3 µm and the volume fraction of the precipitates was
about 5%. It is also worth mentioning that the microstructure of the precipitates was found
very similar with those in the literature [38]. More details concerning the precipitates in the
Ti–4Au–30Ta alloy are explained by the elemental mapping results in the following.

The elemental mapping results of the precipitates were further carried out and are
shown in Figure 2c–e. Bright contrast suggests high concentration while dark contrast
indicates low concentration. It was found that, in the case of Ti element, there was no
obvious concentration difference between the matrix and the precipitates (Figure 2c). On
the other hand, the precipitates were high in Au (Figure 2d) and low in Ta (Figure 2e).
Given that the Ti3Au phase was determined by the X–ray diffraction pattern of the Ti–4Au–
30Ta alloy (Figure 1b) and the literature [35,38,41,42], it thus could be concluded that the
precipitates in bright contrast could be corresponded to the Ti3Au phase. In addition, it was
reported that the Ti3Au phase is a line compound [37]; therefore, the solubility of Ta was
extremely low (i.e., dark contrast) to the Ti3Au intermetallic compound. A good agreement
was reached among the X–ray diffraction observations (Figure 1), SEM images (Figure 2b),
elemental mapping results (Figure 2c–e), and also the literature [35,37,38,41,42].

Based on the aforementioned results, the addition of Ta as the third element promoted
the precipitation of Ti3Au intermetallic compound since the overall chemical composition
in terms of the binary Ti–Au system shifted to the Au–rich side [37] while Ta was introduced
into the binary Ti–Au system. Therefore, obvious precipitates of the oval–shaped Ti3Au
intermetallic compound with a bright contrast were observed in the Ti–4Au–30Ta alloy
(Figure 1b–e).
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analyzed regime of the (b) Ti–4Au–30Ta alloy is surrounded by a dashed square.

3.4. Bending Test

Results of the bending tests are shown in Figure 3. In Figure 3, column (i) indicates
the specimens after bending deformation (stage i) while column (ii) suggests the shape
recovery of the specimens upon heating (stage ii). Judging from the optical images, an
obvious shape recovery was found in the Ti–4Au–20Ta alloy (Figure 3a); on the contrary,
the shape recovery rate of the Ti–4Au–30Ta alloy (Figure 3b) was relatively faint. The shape
recovery rates of (a) the Ti–4Au–20Ta alloy and (b) the Ti–4Au–30Ta alloy were determined
to be 10% and 30%, respectively. Since the apparent phase of the (a) Ti–4Au–20Ta alloy
was determined to be the single parent β–phase via the X–ray diffraction observation
(Figure 1a) and the microstructure observation (Figure 2a), it thus could be deduced that
the shape recovery behavior of the Ti–4Au–20Ta alloy was brought by the stress–induced
martensite transformation (SIMT) during bending deformation (stage i) and followed by
its backward transformation upon heating (stage ii).
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Figure 3. Bending tests of the (a) Ti–4Au–20Ta alloy and the (b) Ti–4Au–30Ta alloy for the examina-
tions of the shape memory effect and shape recovery rates. Stage (i) corresponds to after bending
deformation while stage (ii) indicates shape recovery upon heating process.

Similar to the (a) Ti–4Au–20Ta alloy, the apparent phase of the (b) Ti–4Au–30Ta alloy
was also the parent β–phase before deformation; however, precipitates of Ti3Au compound
was also found in the Ti–4Au–30Ta alloy (Figures 1b and 2b–e). The deteriorated shape
recovery rate of the (b) Ti–4Au–30Ta alloy could be attributed to the suppression of the
phase transformation by the Ti3Au precipitates during bending deformation and shape
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recovery. These results are in accordance with those in the literature [38]. In addition to the
inhibition of the phase transformation by the Ti3Au precipitates, the relatively low shape
recovery rates (i.e., 10% and 30%) of these two alloys could also be ascribed to the plastic
deformation, which was introduced into the alloys during bending deformation.

3.5. Continuous Tensile Tests

Stress–strain (SS; σ–ε) curves of the (a) Ti–4Au–20Ta alloy and the (b) Ti–4Au–30Ta
alloy by the continuous tensile tests are shown in Figure 4. The cross symbols at the end
of the SS curves suggest the fractures of the specimens. The strain until fracture of the
(a) Ti–4Au–20Ta alloy was at approximately 17%, which was almost twice larger than that
of the (b) Ti–4Au–30Ta alloy (i.e., deformation strain at approximately 9%), showed high
elongation. The different ductility of these two alloys could be elaborated through the
following reasons.

Materials 2021, 14, x FOR PEER REVIEW 7 of 13 
 

 

Similar to the (a) Ti–4Au–20Ta alloy, the apparent phase of the (b) Ti–4Au–30Ta alloy 
was also the parent β–phase before deformation; however, precipitates of Ti3Au com-
pound was also found in the Ti–4Au–30Ta alloy (Figure 1(b) and Figure 2(b)–(e)). The 
deteriorated shape recovery rate of the (b) Ti–4Au–30Ta alloy could be attributed to the 
suppression of the phase transformation by the Ti3Au precipitates during bending defor-
mation and shape recovery. These results are in accordance with those in the literature 
[38]. In addition to the inhibition of the phase transformation by the Ti3Au precipitates, 
the relatively low shape recovery rates (i.e., 10% and 30%) of these two alloys could also 
be ascribed to the plastic deformation, which was introduced into the alloys during bend-
ing deformation. 

3.5. Continuous Tensile Tests 
Stress–strain (SS; σ–ε) curves of the (a) Ti–4Au–20Ta alloy and the (b) Ti–4Au–30Ta 

alloy by the continuous tensile tests are shown in Figure 4. The cross symbols at the end 
of the SS curves suggest the fractures of the specimens. The strain until fracture of the (a) 
Ti–4Au–20Ta alloy was at approximately 17%, which was almost twice larger than that of 
the (b) Ti–4Au–30Ta alloy (i.e., deformation strain at approximately 9%), showed high 
elongation. The different ductility of these two alloys could be elaborated through the 
following reasons. 

 
Figure 4. Stress–strain (SS) curves of the (a) Ti–4Au–20Ta alloy and the (b) Ti–4Au–30Ta alloy via 
the continuous tensile tests. The cross symbols at the end of the curves suggest fractures of the 
specimens. A stress plateau in the (a) Ti–4Au–20Ta alloy was indicated by the vertical dashed lines 
and the horizontal solid arrows. 

Firstly, it was worth noticing that in the (a) Ti–4Au–20Ta alloy, there is a clear stress 
plateau, which is indicated by the vertical dashed lines and the solid horizontal line with 
arrows. Given that the apparent phase of the (a) Ti–4Au–20Ta alloy is the parent β–phase 
at the testing temperature (i.e., RT) (Figure 1(a)), the stress plateau could be attributed to 
the stress–induced martensitic transformation (SIMT) [38,41,43]. The first yielding could 
be attributed to the onset of the SIMT, while the second yielding could be ascribed to the 
commencement of the plastic deformation [38,41,43]. On the other hand, almost no stress 
plateau was found in the case of the (b) Ti–4Au–30Ta alloy. Therefore, the relatively high 
elongation of the (a) Ti–4Au–20Ta alloy could be ascribed to the SIMT. It is also worth 
mentioning that the SIMT found in the Ti–4Au–20Ta alloy in Figure 4(a) corresponds well 
with the result of the bending test in section 3.4. While the Ti–4Au–30Ta alloy, which had 
a lower shape recovery rate upon heating (Figure 3b), showed almost no stress plateau in 
Figure 4b. 
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Firstly, it was worth noticing that in the (a) Ti–4Au–20Ta alloy, there is a clear stress
plateau, which is indicated by the vertical dashed lines and the solid horizontal line with
arrows. Given that the apparent phase of the (a) Ti–4Au–20Ta alloy is the parent β–phase
at the testing temperature (i.e., RT) (Figure 1a), the stress plateau could be attributed to
the stress–induced martensitic transformation (SIMT) [38,41,43]. The first yielding could
be attributed to the onset of the SIMT, while the second yielding could be ascribed to the
commencement of the plastic deformation [38,41,43]. On the other hand, almost no stress
plateau was found in the case of the (b) Ti–4Au–30Ta alloy. Therefore, the relatively high
elongation of the (a) Ti–4Au–20Ta alloy could be ascribed to the SIMT. It is also worth
mentioning that the SIMT found in the Ti–4Au–20Ta alloy in Figure 4a corresponds well
with the result of the bending test in Section 3.4. While the Ti–4Au–30Ta alloy, which had a
lower shape recovery rate upon heating (Figure 3b), showed almost no stress plateau in
Figure 4b.

Secondly, the Ti3Au intermetallic compound, which was merely found in the (b) Ti–
4Au–30Ta alloy (Figures 1b and 2b–e), is known as a brittle phase [44]. The ductility of the
(b) Ti–4Au–30Ta alloy was thus deteriorated by the formation of the Ti3Au precipitates. On
the contrary, the (a) Ti–4Au–20Ta alloy showed relatively high deformation strain before
fracture since no brittle Ti3Au precipitates were found in this alloy (Figures 1a and 2a).
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To sum up, the relatively high elongation of the (a) Ti–4Au–20Ta alloy could be
attributed to the occurrence of SIMT and lack of Ti3Au precipitates. On the other hand, the
relatively low elongation of the (b) Ti–4Au–30Ta alloy was due to the Ti3Au precipitates
and almost free of SIMT during deformation.

However, reverse to the ductility, comparatively high strength was observed in the
(b) Ti–4Au–30Ta alloy than that of the (a) Ti–4Au–20Ta alloy in the continuous tensile tests
(Figure 4). It was found that the ultimate tensile strength (UTS) was at approximately
737 MPa for the (b) Ti–4Au–30Ta alloy and at approximately 600 MPa for the (a) Ti–4Au–
20Ta alloy. This could be simply explained by the precipitation–hardening effect brought
from the precipitates of the Ti3Au compound and also the solution–hardening effect
brought by the Ta addition as the third element.

3.6. Functional Mapping

A functional mapping, which reveals (a) yielding stress (black squares), (b) ultimate
tensile strength (UTS) (red circles), and (c) fracture strain (blue triangles) as a function
of Ta concentration in the alloys, is shown as Figure 5. It is necessary to mention that
for the purposes of completeness and comparison, the binary Ti–4Au alloy was cited
from our preliminary research [35] and plotted in Figure 5. It is obvious that both the
(a) yielding stress and the (b) UTS increased monotonically with Ta addition concentra-
tion. Similar to the explanation in Section 3.5, this enhancement in strength could be
attributed to the solid–solution strengthening effect of the introduction of Ta element and
the precipitation hardening effect caused by the Ti3Au precipitates. Slip of dislocation
(i.e., plastic deformation) was inhibited by the introduction of the Ta impurity and the
Ti3Au precipitates. Opposite to the strength, fracture strain (Figure 5c) of the specimens
decreased with the introduction of Ta concentration due to the precipitation of the brittle
Ti3Au intermetallic compound.
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3.7. Cyclic Loading–Unloading Tensile Tests

The cyclic loading–unloading tests of the (a) Ti–4Au–20Ta alloy and the (b) Ti–4Au–
30Ta alloy are shown in Figure 6. Overall, it was found that the (a) Ti–4Au–20Ta alloy which
exhibited slight pseudoelasticity (PE), showed slight shape recovery during unloading.
While the (b) Ti–4Au–30Ta alloy showed almost no shape recovery during unloading in
the cyclic loading–unloading tests at RT. Therefore, it could be deduced that the austenite
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transformation start temperature (As) is higher than the operation temperature (i.e., RT). In
addition, the vanished shape recovery in the (b) Ti–4Au–30Ta alloy could be ascribed to
the inhibition of the Ti3Au precipitates. On the other hand, the slight shape recovery in
the (a) Ti–4Au–20Ta alloy could be attributed to the pseudoelasticity via the reorientation
of martensitic variants, which is commonly observed in the martensite phase [45–47].
Moreover, similar to the results from the continuous tensile tests (Figure 4) in Section 3.5,
the (b) Ti–4Au–30Ta alloy showed improved strength than that of the (a) Ti–4Au–20Ta alloy.
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Figure 6. Cyclic loading–unloading tensile tests of the (a) Ti–4Au–20Ta alloy and the (b) Ti–4Au–30Ta
alloy at RT under ambient.

For further analysis of the pseudoelasticity, every cycle in the Ti–4Au–20Ta alloy was
detached and the stress for SIMT (i.e., first–yielding stress), which is shown in Figure 7a,
was read from every cycle of the cyclic loading–unloading tensile test (Figure 6a). During
the cyclic tensile test, dislocations, which increased the internal stress, was introduced into
the specimen. The martensite phase was stabilized by the elevated internal stress; as a
result, the external stress for the SIMT (σSIMT) was reduced accordingly (Figure 7a). This
phenomenon was in good agreement with that in the literature [41].

The ninth cycle in the cyclic loading–unloading tensile test of the Ti–4Au–20Ta speci-
men is also shown in Figure 7b. It is obvious that during unloading of externally applied
stress, there was a slight shape recovery, which is at approximately 0.5%, was brought
from the pseudoelasticity. The shape recovery originated from the pseudoelasticity was
determined by reading strain difference between the overall recovery strain after fully
unloading and the strain produced by the elastic shape recovery. Further explanations for
the specific terms are shown and explained by the illustration in Figure 7d.
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On the other hand, almost no shape recovery was found in the Ti–4Au–30Ta alloy
(Figure 7c) during unloading of the externally applied stress. The aforementioned Ti–
4Au–20Ta alloy and Ti–4Au–30Ta alloy results are in good accordance with those in the
bending tests (Figure 3) and the continuous tensile tests (Figure 4). An illustration for
the explanations of the specific terms are shown in Figure 7d. In Figure 7d, εA indicates
the total applied strain, εE suggests the elastic shape recovery strain, εPE corresponds to
shape recovery strain brought by pseudoelasticity, and εR represents the remaining strain
after unloading.

This study worked on the Ti–4Au–20Ta alloy and Ti–4Au–30Ta alloy for the prelimi-
nary screening of the Ti–Au–Ta–based shape memory alloys. Some of the Ti–Au–based
studies have already been carried out by our research group [35,36,38,41,43] while some of
the Ti–Au–based studies are now under investigations and preparations. Further results
concerning the Ti–Au–based shape memory alloys will be published in the future by our
research group.

4. Conclusions

For the biomedical applications in this work, the Ti–4Au–20Ta and the Ti–4Au–30Ta
alloys were prepared by physical metallurgy techniques and their phase constituents,
composition analysis, mechanical behaviors, and functional properties, such as shape
memory effect (SME) and pseudoelasticity (PE), have been studied. The important findings
are listed in the following points.

1. The single parent β–phase was found in the Ti–4Au–20Ta alloy while the parent
β–phase along with the precipitates of the Ti3Au intermetallic compound in a volume
fraction of approximate 5% was observed in the Ti–4Au–30Ta alloy.

2. The Ti–4Au–20Ta alloy showed about 30% shape recovery upon heating in the bending
tests while only 10% shape recovery was found in the Ti–4Au–30Ta alloy due to
the inhibition of phase transformation between austenite and martensite from the
Ti3Au precipitates.

3. An obvious two–stage yielding, which corresponds to the stress for the stress–induced
martensite transformation (SIMT) and the stress for plastic deformation, was found in

198



Materials 2021, 14, 5810

the Ti–4Au–20Ta alloy. On the other hand, no obvious two–stage yielding was found
in the Ti–4Au–30Ta alloy due to the inhibition of SIMT from the Ti3Au intermetallic
compound.

4. In the continuous tensile test, the strength of the Ti–4Au–30Ta alloy was higher than
that of the Ti–4Au–20Ta alloy due to the truth of the solid–solution hardening effect
from the Ta addition as the third element and the precipitation hardening effect from
the Ti3Au intermetallic compound. On the contrary, better elongation was found in
the Ti–4Au–20Ta alloy than that of the Ti–4Au–30Ta alloy owing to the SIMT and no
precipitation of Ti3Au compound.

5. Slight pseudoelasticity at approximately 0.5% was found in the Ti–4Au–20Ta alloy
showing slight shape recovery after unloading of externally applied stress while
almost no shape recovery was found in the Ti–4Au–30Ta alloy due to the inhibition
of Ti3Au precipitates. These results are in accordance with the bending tests and the
continuous tensile tests.
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Abstract: The rate dependence of thermo-mechanical responses of superelastic NiTi with different
imposed strain rates after cycling from 1 to 50 cycles under applied 10−5s−1, 10−4s−1 and 10−3s−1

strain rates, immersion for 3 h and ageing has been investigated. The loaded and unloaded as-received
NiTi alloy under an imposed strain of 7.1% have shown an increase in the residual deformation
at zero stress with an increase in strain rates. It has been found that after 13 cycles and hydrogen
charging, the amount of absorbed hydrogen (291 mass ppm) was sufficient to cause the embrittlement
of the tensile loaded NiTi alloy with 10−5s−1. However, no premature fracture has been detected
for the imposed strain rates of 10−4s−1 and 10−3s−1. Nevertheless, after 18 cycles and immersion
for 3 h, the fracture has occurred in the plateau of the austenite martensite transformation during
loading with 10−4s−1. Despite the higher quantity of absorbed hydrogen, the loaded specimen with a
higher imposed strain rate of 10−3s−1 has kept its superelasticity behaviour, even after 20 cycles. We
attribute such a behaviour to the interaction between the travelling distance during the growth of the
martensitic domains while introducing the martensite phase and the amount of diffused hydrogen.

Keywords: shape memory alloys; superelastic; hydrogen; cyclic loading; martensite variants

1. Introduction

NiTi Shape Memory Alloys (SMAs) have been employed on a large scale within vari-
ous engineering applications such as Micro-Electro-Mechanical Systems (MEMS), aerospace
structures [1,2], and biomedical applications [3,4]. The success of these applications hinges
on their capability of having an excellent combination of several properties, including
superelasticity, corrosion resistance, and biocompatibility. Moreover, due to its larger flexi-
bility, the equiatomic superelastic NiTi archwire turns to be one integral part of orthodontic
treatment because of exerting a relatively constant force in the range of tooth movement.
However, the NiTi alloy is found to be very sensitive to the hydrogen diffusion caused
by adding fluoride to prophylactic agents and toothpaste in the oral cavity [5–7]. In fact,
the diffusion of hydrogen is a main environmental cause for premature fractures of the
superelastic NiTi alloys [8,9].

We have shown, after immersion, that the NiTi alloy fractures in a brittle manner for
different strain rates [10,11] and for varied immersion time [12,13]. In fact, at room temper-
ature and after immersion in a 0.9% NaCl aqueous solution, while utilizing a varied current
density of 5, 10, and 20 A/m2 from 2 to 24 h, embrittlement takes place after ageing at room
temperature rather than immediately after hydrogen charging. This behaviour suggests
that when hydrogen diffuses to an entire alloy, not concentrated just close to the surface, it
can most likely obstruct the stress-induced martensite phase (B19 phase). Ogawa et al. [14]
showed by Thermal Desorption Analysis (TDA); i.e., in case the diffused hydrogen ex-
ceeded 50–200 mass ppm, that the mechanical SMA characteristics could change, hence
the appearance of premature failure. The superelastic NiTi archwire embrittlement, after
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hydrogen-absorption, was greatly linked to the transformation of stress-induced austenite-
martensite [15]. This behaviour was attributed to the accumulation of hydrogen atoms,
preferentially within regions that contain continual deficiencies, because of being trapped
by retained martensite plates and dislocations, forming an obstacle which would cause
fracture when the martensite domains were forced to pass across these boundaries [11]. In
several studies [16,17], permanent defects could be obtained by cyclic deformation. In [18],
the authors indicated that the pseudo-elastic hysteresis loops would decrease as the number
of cycles increased and the strain hardening slope grew. B. Kockar et al. [19] mentioned that
the main reason for the cyclic instability of the NiTi SMAs’ pseudoelastic response was the
local plastic accommodation of incompatibility between the B2 parent phase and the B19
phase during transformation. The authors in [20] indicated that during thermomechanical
cycling, the variant interfaces would move backward and forward, while transformation-
induced defects such as dislocations would build up and obstruct any interface mobility in
the subsequent cycles. As a result, accumulations of retained martensite domains and local
residual stresses would eventually affect the macroscopic superelastic behaviour of the
NiTi alloy. In addition, we note that the effect of the strain rate on the cyclic deformations
of superelastic NiTi alloys was studied by some experimental connotations [21–23]. It was
found that rate dependence mainly resulted from the interaction between internal heat
production (due to the mechanic dissipation and transformation latent heat) as well as
the heat exchange with the external environment. Moreover, during cycling, the higher
the strain rate the bigger the number of martensite domains in the austenite-martensite
transformation.

Therefore, as the NiTi archwires are subjected to varied mechanical cycling before
insertion in the oral cavity, this study aims to determine the hydrogen effect on tensile
tests of the superelastic NiTi alloy under different imposed strain rates. The effect of the
residual deformation after cycling with 10−5s−1, 10−4s−1 and 10−3s−1 before immersion
and tensile testing will be discussed.

2. Experimental Procedure

A commercial superelastic Ni-Ti (50.9 (at.%) Ni–49.1 (at.%) Ti, from Forestdent Co.), is
used in this study. We obtained the heat treatment material’s transformation temperature
from the differential scanning calorimetry test at a scan rate of 10 ◦C/min. The start and fin-
ish temperatures of the martensite transformation (Ms and Mf) are equal to −8 and−26 ◦C,
respectively; and the start and finish temperatures of the austenite transformation (As
and Af) are equal to −11 ◦C and −4 ◦C, respectively. The initial Young’s modulus of
the austenite and martensite phases were, respectively, 24 GPa and 12 GPa. During the
mechanical tensile tests, we used rectangular specimens that had a gage length of 20 mm
and across-sectional dimension of 0.64 × 0.43 mm2.

Cyclic tensile tests, from 1 to 50, and a uniaxial tensile test at room temperature were
carried out on a standard Instron screw-driven mechanical testing 5566-type machine
(Figure 1a). With the aim of studying the loading rate influence up on the NiTi archwire’s
superelastic behaviour, we utilized the10−5s−1, 10−4s−1 and 10−3s−1 strain rates. The
imposed strain of 7.1% was performed for the applied cyclic tensile test. In order to run
the test, 30 mm was cut from the commercial superelastic NiTi archwire (Figure 1b) and
clamped between the bottom and top flat grips of the Instron machine (5 mm distance)
(Figure 1c). The strain was measured as across-head overall displacement in addition to
a 20 mm initial gauge length. A brand-new specimen was used after each monotonic or
cyclic test.
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Figure 1. Loading protocol of the monotonic and cyclic loading: (a) Schematic representation of the Instron tensile machine,
(b) used part of the as-received alloy, and (c) clamping method of the NiTi archwire.

Specimens’ hydrogen charging was done through the immersion in a 0.9% NaCl
solution. This was also performed for 3 h at room temperature at a 10 A/m2 current
density. A Direct-Current (DC) power supply was used for immersion, as shown in
Figure 2. Circular platinum and the NiTi archwire were based on the 0.9% NaCl solution
as the anode and the cathode, respectively. The current density controlled the generated
gaseous hydrogen on the surface of the sample. Before immersion, samples were polished
with a No. 600-grit SiC paper. After that, it was ultrasonically washed for 5 min in acetone.
To homogeneously distribute the diffused hydrogen after immersion, we would age the
specimens for one day in air at room temperature [24,25].

Figure 2. (a) Scheme of hydrogen charging (b) setup by electrolysis.

After immersion for 3 h and ultrasonic cleaning with acetone for 5 min, the amount
of desorbed hydrogen was measured by TDA through the use of a gas chromatograph.
This latter was actually calibrated under 10−6 Pa of vacuum with a standard mixture of
argon gases and hydrogen. Moreover, we employ the high-purity argon as a carrier gas.
TDA was performed on a 20 mm NiTi alloy total length. The sampling time of the carrier
gas to the gas chromatograph was 5-min intervals at a heating rate of 100 ◦C/h. All TDA
examinations were carried out after 24 h hydrogen charging. The total amount of hydrogen
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within the specimen was determined to be the sum of desorbed hydrogen within peaks
of a hydrogen desorption rate [26,27]. At least two analyses have been done for each
cyclic condition, and the experimental errors of the absorbed-hydrogen amount have been
estimated between 5% and 10%.

3. Results and Discussion

The non-charged and charged specimens’ tensile stress–stain curves for 3 h with the
current density of 10 A/m2 besides annealing for 24 hat room temperature are shown
in Figure 3. For strain rates of a non-charged hydrogen specimen between 10−5 and
10−3s−1, the elastic loading of an austenite parent phase is observed, which is followed by
“a plateau” during the austenite-martensite transformation. After that, there follows the
elastic deformation of a martensite phase until fracture. It can be seen that the martensite
start stress goes up from about 430 MPa to 460 as well as 490 MPa for a strain rate of
10−5s−1 to 10−4s−1 and 10−3s−1, respectively. On the other hand, for the 10−3s−1 strain
rate, the strain hardening effect of the austenite-martensite transformation goes up.

Figure 3. Typical engineering stress–strain curves of superelastic Ni-Ti alloy immersed for 3 h and
aged for 24 h at different strain rates of 10−5s−1, 10−4s−1 and 10−5s−1 and as-received at 10−5s−1.

The strain rate dependency appears in a clear way during the austenite martensite
transformation with the growth of the “plateau” slope. After that, it increases in the marten-
site start stress. Such a rise could be interpreted by the material’s viscoelastic behaviour,
and this is because of the friction between the martensite interface variants as well as the
strain rate dependency that is actually caused by a thermomechanical NiTibehaviour due
to the fact that the austenite-martensite transformation was exothermic [28,29]. Indeed,
when the strain rate goes up, an internal heat production is as fast as the strain rate and the
latent heat of the specimen is confined in the alloy. Consequently, a quantity of heat cannot
be transferred outside of the NiTi alloy since the conduct time is shorter. This enhancement
in temperature leads to a rise in the necessary applied load for inducing the martensite
phase (Figure 4). Thus, both the amount of the required stress inducing the martensite and
the slope of the austenite-martensite transformation will increase [17,30,31].
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Figure 4. Simplified NiTi phase diagram showing the increase in the martensite starting stress from
σ1 to σ2 when the temperature goes up from T1 to T2, respectively.

After 4 h of immersion with a 10 A/m2 current density, Figure 3 illustrates a typical
tensile curve for the applied 10−5s−1 strain rate. This result shows that the material has
conserved its superelastic behaviour and that there has not been any fracture detected.
However, compared to the non-immersed alloy in the 0.9% NaCl solution, the NiTi archwire
indicates arise in the martensite start stress of about 10 MPa. This phenomenon is attributed
to the solid-solution hardening during hydrogen charging [18–32].

Figure 5a depicts the tested specimen’s stress–strain curves for 50 cycles at the lowest
10−5s−1 strain rate under an imposed strain of 7.1%. This latter represents the end of
the plateau of the austenite-martensite transformation of the as-received NiTi archwire
(Figure 3). The result highlights that the slope of the austenite-martensite transformation
increases in a progressive manner during cycling. On the other hand, the martensite
start transformation decreases with the growth of the loading and unloading cycles. This
martensite start stress decreases from approximately 430 MPa at cycle 1 to about 310 MPa
at cycle20. We can attribute this reduction to the introduction of dislocations and to the
residual martensite phase during cycling, which is the main cause for establishing the resid-
ual stress [20,33]. Therefore, this residual stress assists the stress-induced transformation
during the next loading by enabling martensite bands to activate at a lower macroscopic
stress. Cyclic loading and unloading with imposed 10−4s−1 and 10−3s−1 strain rates are
represented by Figure 5b,c, respectively. It is clear that the slope of the austenite martensite
transformation plateau increases steadily with the number of cycles, besides raising the
imposed strain rate. In addition, after 10−4s−1 and 10−3s−1 of imposed strain rates, the
aforementioned yield stress falls approximately by 80 MPa and 110 MPa, respectively, after
20 cycles of loading and unloading. These results show that the internal residual stress
becomes more significant with the increase in the imposed strain rate.

Figure 6 depicts the residual strain evolution as a function of the number of cycles
for the three various strain rates. This residual strain is significant in the first cycles and
goes up progressively according to the number of cycles. Thus, after 20 cycles, for the
imposed strain rate of 10−3s−1, the residual deformation at zero stress is almost double
of the value obtained with 10−5s−1. According to these results, we can deduce that there
is an interaction between the decrease in the martensite start stress and the increment
or increase in the residual strain at zero stress, and that there is an imposed strain rate
during cycling. The interaction between the critical stress for introducing the martensite
and the increase in the residual strain at zero stress was studied previously [20]. In
fact, during thermo-mechanical cycling, the phase boundaries propagate forward and
backward [34]. Throughout this reversible transformation, defects such as dislocations will

207



Materials 2021, 14, 4772

form and act as an obstacle for the interface movement for the next cycles. Nevertheless,
Chu K et al. [35] showed that during the fatigue tests of NiTi micropillars, the nanosized
residual martensite domains, which were in fact blocked by the dislocations, could decrease
in a considerable way the overall transformation stress throughout a generated remanent
stress and the direct variant increase, and that was without overcoming the martensite
nucleation obstacle. Similarly, Kan Q. et al. [36] studied the effect of the strain rates
upon loading or unloading the SMA NiTi alloy. They found that the residual strain was
accumulated by raising the number of cycles and strain rates. Indeed, after 20 cycles, the
residual strain was about 2.04% for a 3.3 10−4s−1 strain rate and it reached 4.2% with
3.3 10−2s−1. In addition, they found that the NiTi SMAs’ super-elasticity degradation after
cycling was caused by interacting between the dislocation slipping and the martensitic
transformation. Moreover, they concluded that the super-elastic NiTi SMAs’ dislocation
slipping could be generated through a high local stress close to the austenite-martensite
interfaces. This was in general during the repeated martensitic transformation as well as
during its reverse [37–39]. Consequently, during the cyclic deformation, the dislocation
density and then the internal stress of NiTi SMAs went up rapidly.

Figure 5. Typical strain cycling curve after 50 cycles for deformed specimen until 7.1%, at imposed strain rate of (a) 10−5s−1,
(b) 10−4s−1 and (c) 10−3s−1, showing reduction in phase-transformation yield stress and increase in residual strain.
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Figure 6. Evolution of residual strain at zero stress as a function of number of cycles for cyclic
deformed specimen with 7.1% strain after different imposed strain rates of 10−5s−1, 10−4s−1 and
10−3s−1 (represents the fitting curve).

In our case, a decrease in the martensite start stress and an increase in the residual
strain at zero stress can be explained by the rise in the dislocation density and then the
internal stress, which acts as an obstacle for the growth of the martensite bands and the
nucleation of new variants. In addition, during the reverse transformation, some of the
martensite bands can be pinned by dislocations and remain untransformed after unload-
ing [36,40]. During the NiTi specimen’s cyclic deformation, the temperature variation is
based upon interacting between the heat conduct and the internal heat production. This can
greatly depend on the strain rate. In the condition that the strain rate is low, the convected
and conducted heat transfer is quicker than the heat production, and this is because of the
latent heat and inelastic dissipation. When a strain rate is high, the inelastic-dissipation
and latentheat production is quicker than the heat transfer. As the critical stress of the
introducing martensite increases linearly with the rising test temperature [24], the required
driving force of dislocation slipping will become higher, and then the density of dislocation
will build up [34]. As a result, the increase in the residual stress with the strain rates is due
to the higher density of dislocation. Additionally, the bigger the number of cycles, the more
accentuated the internal stress and the retained martensite by dislocation will be. This is
done by raising the dislocation density after the reverse transformation.

The amounts of absorbed hydrogen by the NiTi superelastic alloy obtained by TDA
after 3 h of immersion of hydrogen charging within the 0.9% NaCl solution under an
imposed current density of 10 A/m2 at room temperature are illustrated in Figure 7. This
quantity of diffused hydrogen is calculated by subtracting the amount of pre-dissolved
hydrogen in the as-received NiTi archwire (8 mass ppm). Before mechanical testing and
after 3 h of immersion, the as-received specimen shows approximately 96 mass ppm. The
maximum peak of desorption is obtained at about 244 ◦C. Moreover, a shoulder of the
desorption peak appears at about 142 ◦C. The TDA after loading and unloading from 1
to 20 cycles with 10−5s−1 and 10−4s−1 of the imposed strain rate and hydrogen charging
is represented in Figure 7a,b, respectively. We can see that after one cycle and immersion,
the amount of absorbed hydrogen is about 187 mass ppm with the lower strain rate, and it

209



Materials 2021, 14, 4772

grows up to 301 mass ppm after cycling with an imposed deformation of 10−4s−1. Besides,
the diffused hydrogen into the NiTi archwire increases progressively with the number
of cycles of loading and unloading at the imposed strain of 7.1%. After 20 cycles and
3 h of electrolytic charging in 0.9% NaCl solution for the lower strain rate, this value is
about 319 mass ppm, and it becomes 456 mass ppm at 10−4s−1. We can notice that for
both strain rates, the primary peak temperature of hydrogen is in the rage of 270–300 ◦C,
which is quite higher than the as-received and charged by hydrogen specimen. According
to Yokoyama et al. [41], this behaviour is due to the fact that the hydrogen states can vary
from a parent phase to a martensite one. Additionally, it is remarkable that the shoulder of
the desorption peaks, between 145 and 175 ◦C, is higher than the as-received and charged
specimen. Concerning the imposed 10−3s−1 strain rate, the quantity of absorbed hydrogen
after one cycle and immersion can be about 411 mass ppm (Figure 7c). This value is almost
double of the one obtained with an imposed strain rate of 10−5s−1 and four times higher
than the as-received and hydrogen-charged alloy. In addition, after 20 cycles, we notice that
the quantity of hydrogen is about 587 mass ppm, which is almost double of the measured
value with the lower strain rate obtained after the same number of cycles. Similar to the
results obtained with 10−5s−1 and 10−4s−1, the maximum absorbed peak remains in the
same range of temperature, from 270 to 300 ◦C, hence the similarity between hydrogen
states and/or trapping. However, a shoulder of the desorption peak is affected by the
imposed strain rate. Indeed, this peak is increased and appears in the range 200–230 ◦C.
T. Shimada et al. [42] indicated that the shoulder of the hydrogen desorption peak of a
superelastic NiTi alloy was lower than that for the specimen charged with an applied stress
of 600 MPa. The authors concluded that this phenomenon was due to the formation of
the martensite phase under the applied stress where the diffusion distance and hydrogen
trapping sites were different from the parent phase. On the other hand, an increase in the
shoulder would be in fact detected for the NiTi alloy, which was charged by hydrogen
in the martensite phase presence and under a static applied strain [43]. The authors
mentioned that the diffused hydrogen tended to form unstable states. After a dynamic
cyclic tensile test, carried out under the stress plateau region, the unstable hydrogen states
would accumulate, leading to a hydrogen desorption peak shoulder [8]. The latter would
increase by raising the strain rate as well as the number of deformation cycles.

The evolution of the mean value of the amount of absorbed hydrogen as a function
of cycles number at different imposed strain rates, i.e., 10−3s−1, 10−4s−1, and 10−5s−1,
is depicted in Figure 8, respectively. It is seen that there is a direct relation between the
amount of absorbed hydrogen, the imposed strain rate, and the number of cycles. Moreover,
this behaviour is in coherence with the residual strain evolution at zero stress as a function
of the number of cycles observed in Figure 6. In fact, as explained previously, the increase
in the residual deformation with the strain rate and the number of cycles is caused by the
rise in the internal stress due to the density of dislocations and to the pinned martensite
by dislocations after unloading. The dislocations and the retained martensite represent a
preferential site for hydrogen diffusion rather than the parent phase. In fact, the diffusion
of hydrogen contributes to the stress relaxation of the infinite dislocation strain at the core.
Additionally, the amount and diffusion rate of hydrogen are higher in the martensite phase
in comparison with those in the austenite phase [41]. Consequently, we can deduce that
the amount of absorbed hydrogen goes up with the increase in the residual strain at zero
stress, since the density of the dislocation and the quantity of the retained martensite grow
after each cycle.

Figure 9a shows the NiTi archwire’s stress strain behaviour for the three quasi-static
strain rates after 13 cycles with a strain rate of 10−5s−1 and immersion for 3 h at room
temperature. It can be seen that for a lower strain rate of 10−5s−1, the NiTi alloy is
embrittled by hydrogen charging. Indeed, the failure stress is detected in the plateau of
the martensite start stress; whereas, the tested 10−4s−1 and 10−3s−1 NiTi archwires, for the
same charging and ageing conditions, present a superelastic behaviour. We notice only an
increase in the critical stress for martensite start stress by 50 MPa and 70 MPa, respectively,
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compared to the cycled specimen for 13 cycles without immersion. It is important to
mention that the tested specimen with different strain rates after 13 cycles with 10−4s−1

and 10−3s−1 and immersion does not show any embrittlement during the tensile tests with
different strain rates. The TDA after 13 cycles and immersion with the current density of
10 A/m2 at different imposed strain rates is represented in Figure 9b. Despite the important
amount of absorbed hydrogen of 411 and 543 mass ppm, it is clear that the mechanical
behaviour of the NiTi alloy is not remarkably affected during the tensile tests with10−4s−1

and 10−3s−1. After 18 cycles of loading and unloading with 10−3s−1 of the imposed
strain rate and hydrogen charging and aging for one day, the tensile test with 10−5s−1

and 10−4s−1 shows an embrittlement in the Luder-like plateau of the austenite martensite
transformation, as depicted in Figure 10a. Nevertheless, the tensile tested NiTi archwire
with a higher imposed strain rate of 10−3s−1 (corresponding to the shorter time) conserves
its superelasticity. This specimen presents a higher martensite start stress and in addition
to the lower total strain compared to the non-charged ones. Figure 10a illustrates the TDA
after 18 cycles at 10−3s−1 and hydrogen charging in comparison with loaded specimens
at 10−5s−1 after 13 cycles, where the first embrittlement has happened. It can be seen
that the amount of absorbed hydrogen after 18 cycles at 10−3s−1 (584 mass ppm) is almost
twice the one cycled with 10−5s−1 (291 mass ppm), and no fracture has been detected
yet (Figure 10b). Table 1 summarizes the results obtained forall performed experimental
conditions. It is important to mention that the experimental results obtained after 20 cycles
are similar to the ones given with 18 cycles. Accordingly, the hydrogen quantity may not
be the only principal factor while considering in particular the studied superelastic NiTi
alloy’s hydrogen embrittlement mechanism.

Figure 7. Hydrogen thermal desorption curves for specimens immersed for 3 h and aged for 24 h
at room temperature after 13 cycles with imposed deformation of (a) 10−5s−1, (b) 10−4s−1 and
(c) 10−3s−1, showing an increase in the amount of absorbed hydrogen with stain rates.
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Figure 8. Amount of absorbed hydrogen vs. number of cycles of loaded and unloaded specimens at
imposed 10−5s−1, 10−4s−1, and 10−3s−1 strain rates and hydrogen charging for 3 h (represents the
fitting curve).

Figure 9. (a) Tensile curve at 10−5s−1 showing fracture after 13 cycles with imposed strain rate of 10−5s−1, and (b) amount
of absorbed hydrogen after the same number of cycles at 10−5s−1, 10−4s−1, and 10−3s−1.

The strain rate response of the superelastic NiTi alloy can be explained based on
a thermo-mechanical phenomenon [44,45]. For a low applied strain rate (10−5s−1 and
10−4s−1), once the first variants are generated, the austenite-martensite interfaces move
slowly enough in order to enable the latent transformation to be transferred quickly outside.
Temperature change in the specimen is eliminated and the transformation is considered
under an isothermal process. Consequently, the flat Luder-like plateau of the austenite
martensite transformation results from the growth of a few number of martensite bands,
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not the nucleation of new martensite variants. In a high strain rate of 10−3s−1, the latent
heat cannot be timely convected to the environment since the martensite variants are forced
to propagate at a somewhat higher velocity. For the domain-front growth, the domain-
fronts’ localized self-heating raises the stress [46], which becomes more important than
the untransformed parent zone’s domain-nucleation stress. Therefore, during the phase
transformation, the variation in the average sample temperature is significant. The slope of
the stress–strain curve goes up and new domains nucleate to fulfill the applied strain, with
the continuously changing temperature.

Figure 10. (a) Tensile curves obtained after 18 cycles and immersion for 3 h showing the embrittlement of loaded specimen
with imposed strain rates of 10−5s−1 and 10−4s−1 and superelastic behaviour of loaded specimens with 10−3s−1, and (b)
comparison between critical amount of absorbed hydrogen causing fracture at 10−5s−1 and quantity of absorbed hydrogen
after 18 cycles with 10−3s−1 and immersion.

Table 1. Summary of conducted tensile tests at different strain rates after immersion and cycling with 10−5s−1, 10−4s−1 and
10−3s−1.

Cyclic Strain Rate

Nbre of Cycles 13 Cycles 18 Cycles

Absorbed
Hydrogen

(Mass ppm)

Tensile
Strain Rate Fracture

Absorbed
Hydrogen

(Mass ppm)

Tensile
Strain Rate Fracture

10−5s−1 291

10−5s−1

F 313

10−5s−1 F

10−4s−1 10−4s−1

10−3s−1 10−3s−1

10−4s−1 411

10−5s−1

F 436

10−5s−1 F

10−4s−1 10−4s−1

10−3s−1 10−3s−1

10−3s−1 543

10−5s−1

F 584

10−5s−1 F

10−4s−1 10−4s−1 F

10−3s−1 10−3s−1

F: Fracture.
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The maximum number of martensite variants nmax (or the minimum domain spacing)
increases as a function of the strain rate. In fact, the maximal number of martensite domains
nmax and as well as the strain rate

.
ε canbe fitted into a power-law relationship [47,48]:

nmax = c
( .
ε
)x, (1)

where the fitting coefficient x is an exponent factor that is around 0.5, and c is a
fitting coefficient.

Hao Yu et al. [49] showed that during a high strain rate, the precipitation of Ni4Ti3
is found to increase the NiTi yield strength, which is caused by the impediment of Ni4Ti3
precipitation to dislocation motion and leading to an increase in the martensite phase
nucleation at the interface between the precipitation and the B2 matrix. This indicates
that during the tensile tests with the same applied strain rate, the number of martensite
variants, obtained in the plateau of austenite martensite transformation, should increase
with the imposed strain rate during cycling.

The sensitivity to the strain rate after cycling at different strain rates and after hy-
drogen charging for 3 h and ageing at room temperature appears to be as follows. After
13 cycles with a 10−5s−1 strain rate of, the 291 mass ppm of absorbed hydrogen seems to
represent the critical amount to cause fracture during the austenite martensite plateau.
Indeed, during tensile loading with 10−5s−1, a few martensite variants tend to grow during
the austenite-martensite transformation plateau, since the latent transformation heat is
transferred rapidly to ambient media. However, this growth is hindered by the trapped
hydrogen into the retained martensite bands and the local dislocation stress field near the
austenite-martensite interfaces and this actually happens during the repeated martensitic
transformation as well as during its reverse. Thus, the growth of martensite bands cannot
overcome the obstacle induced by hydrogen. It is important to point out that during
tensile loading with 10−5s−1, the number of martensite variants growing in the plateau
for austenite martensite transformation obtained after 13 cycles with an imposed strain
rate of 10−4s−1 and 10−3s−1 should be more important than after cycling with 10−5s−1,
since we have more local stress near the austenite-martensite interfaces [50]. However,
an embrittlement occurs. Thus, it is assumed that the amount of absorbed hydrogen of
543 mass ppm is sufficient to act as an obstacle for the short travelling distance of marten-
site bands to cause fracture. This points out that there is a competition between the number
of martensite variants and the amount of absorbed hydrogen to cause fracture.

With an imposed 10−3s−1 strain rate, after 18 cycles, a premature fracture is detected
for a loaded tensile NiTi alloy with both 10−5s−1 and 10−4s−1 strain rates. The correspond-
ing amount of absorbed hydrogen, after 3 h of immersion, is about 584 mass ppm, which is
considered as the critical value causing earlier fracture during the monotonic tensile test
with a 10−4s−1 strain rate. The delay of embrittlement with 10−4s−1 can be related to a
competition between the number of martensite bands in the austenite martensite plateau
and the quantity of absorbed hydrogen. In fact, after13 cycles, the number of nucleated
variants is higher than 10−5s−1. Consequently, the amount of absorbed hydrogen is not
enough to act as an obstacle for the variant growth caused by 10−4s−1, since the travelled
distance is less important than the one obtained with 10−5s−1. However, after 18 cycles,
despite the increase in nucleated bands, and due to (i) the multiplication of local stress near
the austenite-martensite interfaces after cycling with 10−3s−1 and (ii) the higher applied
strain rate during tensile test, the quantity of absorbed hydrogen seems to be sufficient to
act as an obstacle for varied growth in the quasi-flat plateau. This explanation seems to
be in coherence with the obtained superelastic behaviour after 18 cycles and the tensile
test with a higher imposed strain rate. In this case, the time for transferring the latent heat
is highly restricted, causing the nucleation of a large number of martensite bands with
small domain spacing between them. As a result, the travelled distance of these martensite
bands will be very limited and the amount of absorbed hydrogen will have no effect.
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4. Conclusions

We have investigated in this study the effects of the strain rate response after hydrogen
charging for 3 h and ageing for one day on pre-cycled superelastic NiTi archwires. Cycling
from 1 to 50 loading and unloading at 10−5s−1, 10−4s−1, and 10−3s−1 has been carried
out to generate a gradual rise in the residual strain at zero stress. Moreover, cycling,
which is characterized by an increase in the density of dislocation and retained martensite
after unloading, represents a preferential site for hydrogen diffusion during immersion.
After hydrogen charging with 191 mass ppm of absorbed hydrogen, an embrittlement
occurs for the low applied tensile strain rate. In addition, this fracture happens only
with a higher quantity of absorbed hydrogen (584 mass ppm) with a 10−4s−1 imposed
strain rate, and no embrittlement will be detected for the higher strain rate of 10−3s−1.
We attribute this behaviour to the interaction between the travelled distance during the
increase in martensite bands and the amount of absorbed hydrogen during the step of
austenite-martensite transformation.

Funding: The author would like to extend his appreciation to the Deanship of Scientific Research
at King Khalid University, Saudi Arabia for finding this work through the Reseach Group Program
under grant no. RGP.1/14/42.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The author declare no conflict of interest.

References
1. Kang, G.; Kan, Q.; Yu, C.; Song, D.; Liu, Y. Whole-life transformation ratchetting and fatigue of super-elastic NiTi Alloy under

uniaxial stress-controlled cyclic loading. Mater. Sci. Eng. 2012, 2, 28–234. [CrossRef]
2. Hartl, D.J.; Lagoudas, D.C. Aerospace applications of shape memory alloys, Proceedings of the Institution of Mechanical

Engineers. Part G J. Aerosp. Eng. 2007, 221, 535–552.
3. AFathallah, A.; THassine, T.; FGamaoun, F.; Wali, M. Three-Dimensional Coupling Between Orthodontic Bone Remodeling and

Superelastic 4 Behavior of a NiTi Wire applied for initial alignment. J. Orofac. Orthop. 2021, 82, 2.
4. Elkhal Letaief, W.; Fathallah, A.; Hassine, T.; Gamaoun, T. Finite-Element Analysis of Hydrogen Effects on Superelastic NiTi

Shape Memory Alloys: Orthodontic Application. J. Intell. Mater. Syst. Struct. 2018, 29, 3188–3198. [CrossRef]
5. Sarraj, R.; Elkhal Letaief, W.; Hassine, T.; Gamaoun, F. Modeling of rate dependency of mechanical behavior of superelastic NiTi

alloy under cyclic loading. Int. J. Adv. Manuf. Technol. 2019, 9–12, 2715–2724. [CrossRef]
6. Sarraj, R.; Elkhal Letaief, W.; Hassine, T.; Gamaoun, F.; El Ouni, M.H. Modeling of Hydrogen Difusion Towards a NiTi Arch Wire

Under Cyclic Loading. Met. Mater. Int. 2021, 27, 413–424. [CrossRef]
7. Elkhal Letaief, W.; Hassine, T.; Gamaoun, F.; Sarraj, R.; Kahla, N.B. Coupled Diffusion-Mechanical Model of NiTi Alloys

Accounting for Hydrogen Diffusion and Ageing. Int. J. Appl. Mech. 2020, 12, 4. [CrossRef]
8. Yokoyama, K.; Tomita, M.; Sakai, J. Hydrogen embrittlement behavior induced by dynamic martensite transformation of

Ni-Tisuperelastic alloy. Acta Mater. 2009, 57, 1875–1885. [CrossRef]
9. Sarraj, R.; Hassine, T.; Gamaoun, F. Mechanical behavior of NiTi arc wires under pseudoelastic cycling and cathodically hydrogen

charging. Mater. Res. Express 2018, 1, 015704. [CrossRef]
10. Elkhal Letaief, W.; Hassine, T.; Gamaoun, T. Rate Dependency During Relaxation of Superelastic Orthodontic NiTi Alloys After

Hydrogen Charging. Shape Mem. Superelasticity 2016, 2, 121–127. [CrossRef]
11. Gamaoun, F.; Hassine, T.; Bouraoui, T. Strain rate response of a Ni-Ti shape memory alloy after hydrogen charging. Philos. Mag.

Lett. 2014, 94, 30–36. [CrossRef]
12. Gamaoun, F.; Ltaief, M.; Bouraoui, T.; Ben Zineb, T. Effect of hydrogen on the tensile strength of aged Ni-Ti superelastic

alloy. J. Intell. Mater. Syst. Struct. 2011, 22, 2053–2059. [CrossRef]
13. Elkhal Letaief, W.; Hassine, T.; Gamaoun, T. In situ stress relaxation mechanism of a superelastic NiTi shape memory alloy under

hydrogen charging. Philos. Mag. Lett. 2017, 97, 50–57. [CrossRef]
14. Ogawa, T.; Yokoyama, K.; Asaoka, K.; Sakai, J. Effects of moisture and dissolved oxygen in methanol and ethanol solutions

containing hydrochloric acid on hydrogen absorption and desorption behaviors of Ni-Ti superelastic alloy. Mater. Sci. Eng. A
2005, 422, 218–226. [CrossRef]

215



Materials 2021, 14, 4772

15. Yokoyama, K.; Eguchi, T.; Asaoka, K.; Nagumo, M. Effect of constituent phase of Ni-Ti shape memory alloy on susceptibility to
hydrogen embrittlement. Mater. Sci. Eng. A 2004, 374, 177–183. [CrossRef]

16. Gamaoun, F.; Skhiri, I.; Bouraoui, T. Effect of the Residual Deformation on the Mechanical Behavior of the Ni-Ti Alloy Charged
by Hydrogen. Adv. Mater. Res. 2011, 324, 181–184. [CrossRef]

17. Sarraj, R.; Kessentini, A.; Hassine, T.; Algahtani, A.; Gamaoun, F. Hydrogen Effect on the Cyclic Behavior of the SuperelasticNi-
TiArchwire. Metals 2019, 9, 316. [CrossRef]

18. Gamaoun, F.; Skhiri, I.; Bouraoui, T.; Ben Zineb, T. Hydrogen effect on the austenite–martensite transformation of the cycled Ni-Ti
alloy. J. Intell. Mater. Syst. Struct. 2014, 25, 980–988. [CrossRef]

19. Kockar, B.; Karaman, I.; Kim, J.I.; Chumlyakov, Y.I.; Sharp, J.; Yu, C.-J.M. Thermomechanical cyclic response of an ultrafine-grained
NiTi shape memory alloy. Acta Mater. 2008, 56, 3630–3646. [CrossRef]

20. Miyazaki, S.; Imai, T.; Igo, Y.; Otsuka, K. Effect of Cyclic Deformation on the Pseudoelasticity Characteristics of Ti-Ni Alloys.
Metall. Trans. A 1986, 17A, 115–120.

21. Nemat-Nasser, S.; Guo, W.G. Superelastic and cyclic response of NiTi SMA at various strain rates and temperatures. Mech. Mater.
2006, 38, 463–474. [CrossRef]

22. Morin, C.; Moumni, Z.; Zaki, W. Thermomechanical coupling in shape memory alloys under cyclic loadings: Experimental
analysis and constitutive modeling. Int. J. Plast. 2011, 27, 1959–1980. [CrossRef]

23. Morin, C.; Moumni, Z.; Zaki, W. A constitutive model for shape memory alloys accounting for thermomechanical coupling. Int. J.
Plast. 2014, 27, 748–767. [CrossRef]

24. Gamaoun, F.; Hassine, T. Ageing Effect and Rate Dependency of a NiTi Shape Memory Alloy after Hydrogen Charging. J. Alloy.
Compd. 2014, 615, 680–683. [CrossRef]

25. Elkhal Letaief, W.; Hassine, T.; Gamaoun, T. A coupled model between hydrogen diffusion and mechanical behavior of superelastic
NiTi alloys. Smart Mater. Struct. 2017, 26, 075001. [CrossRef]

26. Takai, K.; Watanuki, R. Hydrogen in trapping states innocuous to environmental degradation of high-strength steels. ISIJ Int.
2003, 43, 520–526. [CrossRef]

27. Merzlikin, S.V.; Borodin, S.; Vogel, D.; Rohwerder, M. Ultra high vacuum high precision low background setup with temperature
control for thermal desorption mass spectroscopy (TDA-MS) of hydrogen in metals. Talanta 2015, 136, 108–113. [CrossRef]

28. Grandi, D.; Maraldi, M.; Molari, L. A macroscale phase-field model for shape memory alloys with non-isothermal effects:
Influence of strain rate and environmental conditions on the mechanical response. Acta Mater. 2012, 60, 179–191. [CrossRef]

29. Chao, Y.; Guozheng, K.; Qianhua, K.; Yilin, Z. Rate-dependent cyclic deformation of super-elastic NiTi shape memory alloy:
Thermo-mechanical coupled and physical mechanism-based constitutive model. Int. J. Plast. 2015, 72, 60–90.

30. Shaw, J.A. Simulations of localized thermo-mechanical behavior in a NiTi shape memory alloy. Int. J. Plast. 2000, 16,
541–562. [CrossRef]

31. Schlosser, P.; Louche, H.; Favier, D.; Orgéas, L. Image processing to estimate the heat sources related to phase transformations
during tensile tests of NiTi tubes. Strain 2007, 43, 260–271. [CrossRef]

32. Elkhal Letaief, W.; Hassine, T.; Gamaoun, T. Tensile behaviour of superelastic NiTi alloys charged with hydrogen under applied
strain. Mater. Sci. Technol. 2017, 33, 1533–1538. [CrossRef]

33. Tang, W.; Sandstrom, R. Analysis of the influence of cycling on NiTi shape memory alloy properties. Mater. Des. 1993, 14,
103–113. [CrossRef]

34. Xie, X.; Kan, Q.; Kang, G.; Lu, F.; Chen, K. Observation on rate-dependent cyclic transformation domain of super-elastic NiTi
shape memory alloy. Mater. Sci. Eng. A 2016, 671, 32–47. [CrossRef]

35. Chu, K.; Sun, Q. Reducing functional fatigue, transition stress and hysteresis of NiTi micropillars by one-step overstressed plastic
deformation. Scr. Mater. 2021, 201, 113958. [CrossRef]

36. Kan, Q.; Yu, C.; Kang, G.; Li, J.; Yan, W. Experimental observations on rate-dependent cyclic deformation of super-elastic NiTi
shapememory alloy. Mech. Mater. 2016, 97, 48–58. [CrossRef]

37. Hamilton, R.F.; Sehitoglu, H.; Chumlyakov, Y.; Maier, H.J. Stress dependence of the hysteresis in single crystal NiTi alloys. Acta
Mater. 2004, 52, 3383–3402. [CrossRef]

38. Norfleet, D.M.; Sarosi, P.M.; Manchiraju, S.; Wagner, M.X.; Uchic, M.D.; Anderson, P.M.; Mills, M.J. Transformation-induced
plasticity during pseudoelastic deformation in Ni-Ti microcrystals. Acta Mater. 2009, 57, 3549–3561. [CrossRef]

39. Simon, T.; Kröger, A.; Somsen, C.; Dlouhy, A.; Eggeler, G. On the multiplication of dislocations during martensitic transformations
in NiTi. Acta Mater. 2010, 58, 1850–1860. [CrossRef]

40. Yawny, A.; Sade, M.; Eggeler, G. Pseudoelastic cycling of ultra-fine grained NiTi shape-memory wires. Z. Met. 2005, 96,
608–618. [CrossRef]

41. Yokoyama, K.; Ogawa, T.; Takashima, K.; Asaoka, K.; Sakai, J. Hydrogen embrittlement of Ni-Tisuperelastic alloy aged at room
temperature after hydrogen charging. Mater. Sci. Eng. A 2007, 466, 106–113. [CrossRef]

42. Shimada, K.; Yokoyama, K.; Sakai, J. Improved fracture properties of Ni-Tisuperelastic alloy under sustained tensile load in
physiologic al saline solution containing hydrogen peroxide by hydrogen charging. J. Alloy. Compd. 2018, 752, 1–7. [CrossRef]

43. Yokoyama, K.; Tomita, M.; Asaoka, K.; Sakai, J. Hydrogen absorption and thermal desorption in NiTi superelasticsubjected to
tensile straining test with hydrogen charging. Scr. Mater. 2007, 57, 393–396. [CrossRef]

216



Materials 2021, 14, 4772

44. Zhang, X.; Feng, P.; He, Y.; Yu, T.; Sun, Q. Experimental study on rate dependence of macroscopic domain and stress hysteresis in
NiTi shape memory alloys trips. Int. J. Mech. Sci. 2010, 52, 1660–1670. [CrossRef]

45. Elibol, C.; Wagner, M.F.-X. Strain rate effects on the localization of the stress-induced martensitic transformation in pseudoelastic
NiTi under uniaxial tension, compression and compression–shear. Mater. Sci. Eng. A 2015, 643, 194–202. [CrossRef]

46. Leo, P.H.; Shield, T.W.; Bruno, O.P. Transient heat transfer effects on the pseudoelasticbehavior of shape-memory wires. Acta
Metall. Mater. 1993, 41, 2477–2485. [CrossRef]

47. He, Y.J.; Sun, Q.P. Rate-dependent domain spacing in a stretched NiTi strip. Int. J. Solids Struct. 2010, 47, 2775–2783. [CrossRef]
48. Iadicola, M.A.; Shaw, J.A. Rate and thermal sensitivities of unstable transformation behavior in a shape memory alloy. Int. J. Plast.

2004, 20, 577–605. [CrossRef]
49. Yu, H.; Qiu, Y.; Marcus, L. Young, Influence of Ni4Ti3 precipitate on pseudoelasticity of austenitic NiTi shape memory alloys

deformed at high strain rate. Mater. Sci. Eng. A 2021, 804, 140753. [CrossRef]
50. Fan, G.; Otsuka, K.; Ren, X.; Yin, F. Twofold role of dislocations in the relaxation behavior of Ti–Ni martensite. Acta Mater. 2008,

56, 632–641. [CrossRef]

217





materials

Communication

On the Decrease in Transformation Stress in a Bicrystal
Cu-Al-Mn Shape-Memory Alloy during Cyclic
Compressive Deformation

Tung-Huan Su 1, Nian-Hu Lu 2, Chih-Hsuan Chen 2,3,* and Chuin-Shan Chen 1,3,*

Citation: Su, T.-H.; Lu, N.-H.; Chen,

C.-H.; Chen, C.-S. On the Decrease in

Transformation Stress in a Bicrystal

Cu-Al-Mn Shape-Memory Alloy

during Cyclic Compressive

Deformation. Materials 2021, 14, 4439.

https://doi.org/10.3390/ma14164439

Academic Editor: Francesco

Iacoviello

Received: 9 July 2021

Accepted: 5 August 2021

Published: 8 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Civil Engineering, Civil Engineering Department Building, National Taiwan University,
Room 205, No.1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan; caedbwind95@caece.net

2 Department of Mechanical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road,
Taipei 10617, Taiwan; f06522712@ntu.edu.tw

3 Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road,
Taipei 10617, Taiwan

* Correspondence: chchen23@ntu.edu.tw (C.-H.C.); dchen@ntu.edu.tw (C.-S.C.)

Abstract: The evolution of the inhomogeneous distribution of the transformation stress (σs) and strain
fields with an increasing number of cycles in two differently orientated grains is investigated for the
first time using a combined technique of digital image correlation and data-driven identification.
The theoretical transformation strains (εT) of these two grains with crystal orientations [5 3 26]β and
[6 5 11]β along the loading direction are 10.1% and 7.1%, respectively. The grain with lower εT has a
higher σs initially and a faster decrease in σs compared with the grain with higher εT. The results show
that the grains with higher σs might trigger more dislocations during the martensite transformation,
and thus result in greater residual strain and a larger decrease in σs during subsequent cycles. Grain
boundary kinking in bicrystal induces an additional decrease in transformation stress. We conclude
that a grain with crystal orientation that has high transformation strain and low transformation stress
(with respect to loading direction) will exhibit stable transformation stress, and thus lead to higher
functional performance in Cu-based shape memory alloys.

Keywords: full-field stress and strain measurements; shape memory alloys; digital image correlation;
data-driven identification; superelasticity; functional fatigue

1. Introduction

Superelastic shape-memory alloys (SMAs) are functional materials capable of sus-
taining a large recoverable deformation strain as a result of a stress-induced martensitic
transformation (MT) between austenite and martensite. Among SMAs, Cu-Al-Mn SMAs
possess superior features such as low cost, high cold workability, and large transformation
strain compared with TiNi-based SMAs [1]. They are considered to be suitable candidate
materials for a variety of applications ranging from civil engineering to the space industry,
in which the SMAs are subjected to cyclic loading. However, the issue of SMA fatigue
and fracture is challenging because fatigue problems in Cu-Al-based SMAs are mainly
attributed to the constraints of grain boundaries during MT and its resulting plastic defor-
mation [2]. Several studies have extensively investigated the prevention of intergranular
fracture problems caused by high elastic anisotropy in the Cu-Al-Mn alloys with the aim
of enhancing the superelasticity of polycrystalline Cu-based shape memory alloys [3–5].
Therefore, treatments of the microstructure designed to increase grain size, such as the
introduction of texture and the reduction of triple junctions, significantly improve the
functional performance of Cu-Al-Mn SMAs [6–8].

Recently, Cu-Al-Mn single crystals with excellent superelasticity have been fabricated
using abnormal grain growth (AGG) induced by a cyclic heat treatment [9,10]. These
AGG methods also enable the preparation of large bicrystal samples for mechanical tests,
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providing insight into the inhomogeneous MT phenomenon and the elastocaloric effect
of the sample under compression [11]. The experimental results [11] demonstrate the
generation of microcracks at the grain and twin boundaries of the bicrystal Cu-Al-Mn
sample under cyclic compression. Although compressive deformation is preferred as
a deformation mode to delay the fatigue fracture of metallic materials [12,13], much
less is known about the compressive fatigue behavior of Cu-Al-Mn SMAs during cyclic
phase transformation.

Based on the above-mentioned motivations and the knowledge of large differences
in superelasticity properties of the bicrystal Cu-Al-Mn sample [11], it was expected that
such differences in superelasticity properties would cause functional instability of the
Cu-based bicrsytal sample during cyclic compressive deformation. As Cu-Al-Mn SMAs
are regarded as potential candidates of functional materials, the correlations between strain
field and transformation stress, and the evolutions of stress and strain distributions during
cyclic superelastic deformation, are critical factors for the compressive fatigue behavior
of Cu-Al-Mn SMAs. In this study, we investigated the cyclic compressive behavior of the
superelasticity of macro-scale Cu-Al-Mn bicrystals using the digital image correlation (DIC)
technique and the data-driven identification (DDI) method. Both methods are used to
determine the distributions of transformation stress and strain in the bicrystal and near
the grain boundary. Based on the full-field measurement results, the correlations between
the decrease in transformation stress, accumulation of residual strain, and martensite
transformation are determined.

2. Materials and Methods

Figure 1 illustrates the methods employed to characterize the cyclic behavior of
the superelasticity of bicrystal Cu-Al-Mn SMAs. The strain and stress fields of a Cu-Al-
Mn shape-memory bicrystal were measured using the DIC technique and DDI method,
respectively. In this work, we used the same Cu-Al-Mn bicrystal sample prepared in
our previous study [11], with dimensions of 8 mm × 4.2 mm × 4.2 mm. Please note
that the specimen was subjected to five compression–unloading tests with a maximum
global deformation strain from 1% to 5% in 1% increments for each test (see Figure 1 in
the previous study [11]). It was found that some plastic deformation occurred when the
global deformation strain was higher than 4%. In this work, we further conducted twenty
compression–unloading tests using the same Cu-Al-Mn bicrystal sample, which has already
undergone the five compression–unloading tests mentioned above. The grain boundary
within the sample is indicated by a dashed line in Figure 1. The crystal orientations of both
grains were determined via electron backscatter diffraction (EBSD, Oxford Instruments,
Abingdon, UK), as shown in the inset of Figure 2a. The thermal analyses of the sample were
conducted in a differential scanning calorimeter (DSC, DSC 25, TA Instrument, New Castle,
DE, USA) with cooling and heating rates of 10 ◦C/min. The microstructures were observed
by transmission electron microscope (TEM, FEI Tecnai™ G2 F30, Hillsboro, OR, USA)
operated at 300 kV. The sample was mechanically ground to a thickness of about 70 µm and
then electropolished at −40 ◦C using HNO3 and CH3OH (2:8 in volume). The preparation
procedures for the bicrystal Cu-Al-Mn sample were detailed in the literature [11].

The cyclic compression–unloading test was performed under the strain-controlled
mode using a universal tester with a 50 kN load cell (AG-IS 50 KN, Shimadzu, Japan). The
strain rate used in the compression–unloading test was about 2.4 × 10−3 s−1 such that
experiments can be considered as quasi-static. Each compression cycle took about 120 s.
A speckle pattern was applied on the observed surface (i.e., area of interest, AOI) of the
specimen using black and white sprays. The pattern was used for in situ strain tracing
and ex post strain field analysis. The deformation strain of the specimen was measured
with a virtual strain gauge by optical DIC (VIC-Gauge 3D, Correlated Solutions, Irmo,
SC, USA). Three deformation strains (i.e., global gauge strain εg as shown in Figure 1
and the local strain gauges at the top and bottom grains εt and εb as shown in inset of
Figure 2b) were measured using the virtual strain gauge technique. Notably, regardless of
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the residual strain, a 5% strain (relative to each unloaded state) was applied to the sample
during each compression cycle. During the compression test, images of the deformed
sample were taken at a rate of 5 Hz using two cameras. Around 600 snapshots were taken
for each compression cycle. Because the imaging rate (5 s−1) is higher than the strain
rate (2.4 × 10−3 s−1), the deformation behavior of the material can be captured. These
snapshots were analyzed ex post in the VIC 3D 8 software to obtain the strain distribution
at the surface of the specimen, as shown in the full-field strain measurement in Figure 1.
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Figure 1. The digital image correlation (DIC) technique and data-driven identification (DDI) method were employed to
measure the strain and stress distributions, respectively, at the surface of the specimen to characterize the cyclic behavior
of the superelasticity of the bicrystal Cu-Al-Mn SMAs. The cyclic compression–unloading test was performed under the
strain-controlled mode. The strain fields in the area of interest (AOI) can be obtained using the DIC technique. Based on the
experimentally determined strain fields, the stress fields in the AOI can be computed using the DDI method. Finally, three
parameters (i.e., transformation stress (σs), residual strain (εr), and transformation strain (εtr)) can be computed from the
stress–strain responses.

Based upon the measured results (i.e., DIC data items) of the strain fields and the
applied loads from the full-field strain measurement, the equilibrated stress distribution at
the surface of the specimen can be numerically computed using the DDI method [14–16]
under a finite-element framework without the use of constitutive modeling, as illustrated
in the full-field stress measurement in Figure 1. For a given set of compression–unloading
cycle data, the DDI method uses the governing equations (i.e., stress equilibrium equations)
to compute the mechanical stresses at the surface of the specimen. Then, the method is
used to identify a database of material states that samples the mechanical stress–strain
pairs of material to satisfy the criterion of minimum distance between mechanical stress–
strain pairs and material database. Mathematically, this process can be formulated as
a constrained minimization problem, which was originally proposed in [14]. The DDI
method was validated with synthetic data for linear and non-linear elasticity [14] and was
further applied experimentally using real experimental data (i.e., DIC measurements) for
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elastomer sheet [15] and Cu-Al-Mn shape memory alloy single crystal [16]. In the DDI
method, the only governing equations used to determine the stress components are the
stress equilibrium equations. Thus, the bias introduced by the choice and the calibration
of a constitutive model was removed. Further details about the full-field stress and strain
measurements can be found in the literature [15,16].
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Figure 2. (a) Geometry of the bicrystal Cu-Al-Mn SMA. The loading directions of the top and bottom grains are shown in
the inverse pole figure. (b) Average stress–strain curves of the top grain (εt), bottom grain (εb), and the entire specimen (εg).
The bicrystal sample was loaded to a gauge strain (εg) of 5% during cyclic deformation. Local virtual strain gauges εt and εb

were used to measure the average strains in the top and bottom grains, respectively (inset of (b)).

The mechanically admissible stress–strain pairs, obtained from the full-field stress and
strain measurements shown in Figure 1, are stored at each element and are considered to
represent the mechanical state (σe, εe), as shown in the stress–strain responses in Figure 1.
Using a linear regression analysis of these mechanical states in both the elastic and plateau
regions, the distribution of MT stress σs can be obtained from the intersection of the two
linear stress–strain curves, as illustrated by the stress–strain responses shown in Figure 1.
The residual strain εr and transformation strain εtr can be obtained readily, as shown in the
stress–strain responses of Figure 1.

3. Results

Figure 2a shows the crystal orientations of the top and bottom grains along the
loading direction (LD), as determined using EBSD, which were along [5326]β and [6511]β,
respectively. The theoretical transformation strain (εT) of the transition from the β phase to
6M martensite during compression was calculated based on the Wechsler–Liebermann–
Read theory [8,11,17]. The values of εT were 10.1% and 7.1% for the top and bottom grains,
respectively. Note that the compressive transformation strain of these grains significantly
differed in the loading direction.

Figure 2b shows the compressive stress–strain curves of both grains when a gauge
strain (εg) of 5% was applied, which covered the entire specimen during deformation, as
illustrated in Figure 1. Local virtual strain gauges εt and εb were used to measure the
average strains in the top and bottom grains, respectively (inset of Figure 2b). It can be
seen that the stress-induced martensitic transformation (SIMT) of the top grain (blue lines)
occurred at transformation stresses of 306 MPa and 297 MPa for the first and twentieth
cycles, respectively. By contrast, for the bottom grain (red lines), the transformation stresses
of the first and twentieth compression cycles were 398 MPa and 292 MPa, respectively.
Both grains exhibited different cyclic behaviors on average, including the decrease in
transformation stress, accumulation of irrecoverable strain, and the transformation strain
(see Table 1). As shown in Table 1, the properties (i.e., σs, εr, and εtr) of the total curve are
between those of the top and bottom grains, which were reported in [11]. Please note that
the total stress–strain curve is denoted as “Average” in first column of Table 1. According
to the results of residual strain εr (sixth column of Table 1), it was found that the plastic
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deformation of the entire specimen was mainly contributed from the bottom grain. In
short, combinations of crystal orientation in bicrystal SMAs will result in varied mechanical
properties of the entire specimen.

Table 1. Loading direction (LD), theoretical transformation strain (εT), transformation stress (σs), residual strain (εr), and
transformation strain (εtr) of the top grain, bottom grain, and the entire specimen (average) for the first and twentieth
compression cycles. Three parameters (i.e., σs, and εtr) were computed from the stress–strain curves of the top grain, bottom
grain, and the entire specimen (average) shown in Figure 2b.

Loading
Direction

Theoretical
Transformation

Strain
(%)

Number of
Cycles

Transformation
Stress
(MPa)

Residual
Strain

(%)

Transformation
Strain

(%)

Top [5 3 26] 10.1
1st 306 0.12 5.7

20th 297 0.77 5.1

Bottom [6 5 11] 7.1
1st 398 0.14 2.0

20th 292 2.17 3.9

Average − − 1st 313 0.24 3.5
20th 290 1.78 4.0

Figure 3a shows the evolution of the axial strain field εyy while loading toward
and unloading away from a gauge strain εg of 5% during the first, tenth, and twentieth
compression–unloading cycles. The transformation stress fields are shown in Figure 3b,
which illustrates the distribution of transformation stress in the specimen. As shown in
the first compression cycle, the top grain underwent most of the deformation during the
loading process. By contrast, the bottom grain began its partial MT after an εg of 3%. The
difference in transformation behavior between the top grain and the bottom grain can be
ascribed to differences in the MT stresses required to trigger MT, as shown in Figure 3b.
The transformation stress of the top grain was approximately 325 MPa, which was less
than that of the bottom grain (approximately 400 MPa), indicating that the top grain was
more likely to begin MT earlier until the loading force was high enough to initiate MT
in the bottom grain. The transformation stresses of both grains near the grain boundary
(indicated by white dashed lines) were smaller than those further away from the grain
boundary, as shown in Figure 3b, indicating that the stress state around the grain boundary
promoted MT at a lower stress level.

Before the beginning of the tenth compression cycle, some regions in the bottom grain
had residual strain. At the tenth deformation, the top grain experienced less deformation
relative to the first cycle, whereas the bottom grain began to exhibit increased deformation.
As shown in Figure 3b, at the tenth cycle, the transformation stress of the upper part of the
bottom grain (near the grain boundary) decreased, bringing the values closer to those of
the top grain. This decrease in transformation stress resulted in an increase in regions in
which the MT could be triggered in the bottom grain, leading to increased transformation
strain in the bottom grain.

At the beginning of the twentieth compression cycle, the band of residual strain at
the bottom grain extended, and more residual strain remained. Furthermore, during the
loading process, the upper part of the bottom grain showed a level of transformation stress
closer to that of the top grain, as shown in Figure 3b. According to Figure 3b, the decrease
in transformation stress in the bottom grain was initiated around the grain boundary and
then propagated to the lower part of the bottom grain.
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cycles 1 and 20, shown in the plot in Figure 3b.

By comparing the evolution of the strain distributions during the cyclic deformation,
it can be deduced that the region exhibiting a decrease in transformation stress was highly
correlated with the region undergoing MT. In the first compression test, the MT band in the
bottom grain was clearly identified. During cyclic deformation, the MT in the bottom grain
mainly originated from this band, and the residual strain in this region accumulated. This
band, which was associated with accumulated permanent deformation, also experienced
a more severe decrease in transformation stress than that of the top grain, as shown in
Figure 3c, which reveals the decrement in transformation stress after twenty cycles. Because
the transformation stress in the top and bottom grains (near the grain boundary) became
similar after cyclic deformation, a concurrent MT occurred in the later cycles in these grains,
leading to a significantly different deformation behavior from that of the first cycle.

To further investigate the relationships between transformation stress (σs) and residual
strain (εr), the local axial stress–stain responses (σyy, εyy) at probing points A, B, and C
(Figure 3b) are shown in Figure 4a. The evolutions of the transformation stresses and the
accumulations of residual strains at these points are shown in Figure 4b,c. Point A was
set in the top grain, and points B and C in the bottom grain were placed in the regions
that underwent full MT and partial MT, respectively. At point A in the top grain, a stable
transformation stress was observed after twenty compression cycles. By contrast, varied
mechanical responses in terms of transformation stress and accumulation of irrecoverable
strain were observed for points B and C in the bottom grain. The transformation stress
and residual strain at these three points were quantified and are presented in Figure 4b,c,
respectively. Figure 4b shows a comparison of different grain orientations (points A and B).
The transformation stress at point A was observed to have slight decreasing behavior, while
at point B, the decrease in transformation stress was more significant (i.e., from 400 MPa to
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311 MPa). The results also show that, for points having the same grain orientation (points B
and C), point B, which undergoes more MT (i.e., higher transformation strain, εtr), exhibits
faster decreasing behavior than point C, as determined from the stress–strain curve in
Figure 4a. In other words, in a single grain, a region that underwent more MT (i.e., high
εtr) experienced a greater decrease in transformation stress. Notably, after twenty cycles,
the transformation stresses at points A and B became nearly equal, as shown in Figure 4b,
which resulted in more MT in the bottom grain.

Considering the loading cycles, a region that underwent more MT in the bottom grain
also caused a faster accumulation of unrecoverable strain, as shown in Figure 4c. An εr of
4% at point B was observed after twenty compression cycles, roughly four times greater
when compared with the accumulation at point C. For point A, an εr of 0.5% was observed,
which is the minimum strain among these points owing to its lower transformation stress.
In different grains, the grain requiring a higher stress to induce MT (the bottom grain)
showed a larger residual strain and faster decrease in transformation stress. In addition, in
the same grain (the bottom grain), the regions with more MT accumulated more residual
strain and exhibited a clear decrease in transformation stress.
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4. Discussion

The difference in transformation stress between the two crystal grains is attributed
to the difference of their crystal orientations. According to [18], the habit planes of Cu-
Al-Mn martensite are {0.16 −0.72 −0.68} and the shear directions are <0.14 −0.65 0.74>.
With these transformation systems, the maximum Schmid factor of the two grains with
orientations [5 3 26]β (top grain) and [6 5 11]β (bottom grain) is determined to be 0.49
and 0.32, respectively. As the Schmid factor of the bottom grain is smaller than that of
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the top grain, larger stress is needed to trigger MT in the bottom grain. Therefore, the
transformation stress of the bottom grain (398 MPa) is larger than that of the top grain
(306 MPa), as shown in Figure 2b and Table 1.

The previous results (Figure 3) show that the decrease in transformation stress in a
bicrystal Cu-Al-Mn SMA under a strain-controlled cyclic compression–unloading test was
affected by the accumulation of residual strain. These macroscopic residual strains are
mainly a result of dislocation slips in the austenite phase [19–24] and accumulated residual
martensite phase owing to an incomplete reverse MT [19,25,26]. These dislocation slips,
which can be triggered separately during forward and reverse MTs [27], are fostered by
localized stress fields between austenite–martensite interfaces during forward and reverse
MTs [20,28–30]. Such dislocation slips and residual martensite can also cause mesoscopic
residual stress fields within the specimen [31]. Therefore, the mesoscopic residual stress
field, which is of the same type as the applied stress, assists in the nucleation of martensite
variants [19], and thus leads to a significant reduction in the macroscopic transformation
stress required to trigger MT during subsequent cycles [32–36].

In order to provide clear evidence, the bottom grain was cut from the bicrystal sample
for thermal analysis. As shown in Figure 5a, after 20 cyclic deformations, the first heat
curve shows that the reverse MT occurred at about 140.1 ◦C. The sample was then cooled to
−140 ◦C (Step 2), and a forward MT was identified at −87.7 ◦C. During the second heating
(Step 3), the reverse transformation occurred at −69.7 ◦C, instead of the 140.1 ◦C in the
first heating curve. This feature indicated that the martensite was stabilized during the
cyclic compressions. The stabilized martensite needed a higher temperature to transform
back to austenite, as shown in the first heating curve. In the successive cooling and heating,
the martensite was thermally induced and thus was not stabilized, causing the reverse
transformation temperature to be restored to its normal value (−69.7 ◦C). The feature of
martensite being stabilized after deformation was also reported in other Cu-based [37] and
TiNi-based SMAs [38].
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Figure 5. (a) Thermal analysis of the bottom grain after 20 compression cycles. (b,c) TEM bright field images of the bottom
grain, which show the formation of dislocations and residual martensite after cyclic compression, respectively.

TEM analyses were performed on the bottom grain after cyclic compression. Figure 5b
shows the TEM bright-field image of the bottom grain, in which entangled dislocations can
be observed. Figure 5c shows large amounts of residual martensite in the bottom grain,
indicating that martensite was stabilized at room temperature by dislocations after cyclic
deformation. The TEM observations confirmed that the residual strain is caused by the
dislocation and residual martensite formed during cyclic deformation.

As shown in Figure 2b, the higher transformation stress in the bottom grain generates
more dislocations in the austenite phase and more residual martensite during the forward
and reverse MT. Both mechanisms lead to plasticity formed mainly in the bottom grain.
Both the dislocation and stabilized martensite can cause mesoscopic residual stress fields
within the specimen. Such residual stress assisted the nucleation of martensite variants
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and thus led to a significant reduction in the macroscopic transformation stress required to
trigger MT during subsequent cycles. On the other hand, the top grain exhibited smaller
residual strain owing to its smaller transformation stress, and thus its transformation
stress remained stable. In addition, in the bottom grain, the decreasing behavior varied
significantly between regions undergoing different levels of transformation strain (points B
and C). As shown in Figure 3c or Figure 4b, point B experienced more MT and associated
residual strain compared with point C. Consequently, point B exhibited a larger decrease in
transformation stress than point C. These results support the hypothesis that the mesoscopic
stress field caused by dislocations or residual martensite assisted MT.

In this study, the horizontal strain fields εxx at the surface of the specimen were
examined to investigate the deformation in the vicinity of the grain boundary. Figure 6a
shows the evolution of εxx during loading toward and unloading away from a gauge strain
εg of 5% for the first, tenth, and twentieth compression–unloading cycles. As shown in
the unloaded state (εg = 0.2%) of the first compression cycle, the bottom grain exhibits an
accumulation of residual εxx near the grain boundary (highlighted in the red rectangle),
while the remaining part of the grain boundary shows relatively less residual εxx. In the
tenth and twentieth cycles, this accumulation of residual εxx in the red rectangle kept
increasing and expanding toward the remaining part of the grain boundary. Note that,
in the right half-part of the grain boundary, the bottom grain accumulated more residual
εxx than the top grain. These differences in the accumulation of residual εxx or strain
incompatibility in the vicinity of the grain boundary in a bicrystal reveal the relative
movement between the top grain and bottom grain.
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avg
xx in the regions (R2-R1 and R4-R3) with respect to the number of cycles.

These values are computed from the strain fields multiplied by transformation matrix based on the angle between loading
direction and normal direction of the grain boundary (inset of (b)).

To further investigate incompatibility conditions of the grain boundary, we quantified
the average incompatibility strain ∆ε

avg
xx near the grain boundary. The definition of ∆ε

avg
xx

is the average εxx in the selected region of the bottom grain minus the average εxx in the
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selected region of the top grain. As shown in inset of Figure 6b, we selected four regions
near the grain boundary (R1, R2, R3, and R4) and paired the regions (i.e., R2–R1 and R4–R3)
to compute their evolution of ∆ε

avg
xx regarding the selected compression–unloading cycles,

C1, C10, and C20. In Figure 6b, the average incompatibility strain ∆ε
avg
xx in the region R4–R3

increased from 0.07% to 1.51%, while the ∆ε
avg
xx in the region R2–R1 increased from 0.05%

to 0.67%. These results show that the incompatibility of the grain boundary in the region
R4–R3 is more severe than that in the region R2–R1. Such a difference between these two
regions can be ascribed to the angle between the loading direction and normal direction
of the grain boundary. As can be seen in the inset of Figure 6b, the grain boundary in
the region R4-R3 deviates from the horizontal plane by approximately 22.5 degrees. This
variation in the direction of grain boundary will introduce the major axial deformation
εyy as an extra component of tangential movement to the inclined grain boundary (see the
right half-part of the grain boundary during the loading process in Figure 3a). Hence, the
regions near the inclined grain boundary will experience not only larger axial deformation
(Figure 3a), but also larger relative movement (Figure 6a) compared with the regions near
the flat grain boundary. Consequently, a significant difference in average incompatibility
strain ∆ε

avg
xx between the two regions (i.e., R2–R1 and R4–R3) occurs, as shown in Figure 6b.

Additionally, as reported in the previous work [11], the top and bottom grains underwent
outward and inward out-of-plane deformations during compression–unloading cycles.
This out-of-plane motion was considered for causing generation of microcracks. In this
study, we found that the incompatibility along the x direction of the bicrystal Cu-Al-Mn
sample under cyclic compression could be another mechanism for formation of microc-
rack at the grain boundary. Thus, even though compressive deformation is considered
a preferred deformation mode to delay fatigue fracture of metallic materials [12,13], the
out-of-plane motion and relative deformation near the grain boundary along the x direction
in a bicrystal Cu-Al-Mn sample may cause cracking and even fracture in Cu-Al-Mn SMAs.

With the aid of the full-field stress and strain measurements (i.e., DIC and DDI
techniques) for revealing strain and transformation stress fields, it was found that grain
boundary kinking plays an important role in the decrease in transformation stress near
the grain boundary in the bicrystal Cu-Al-Mn sample. As can be seen in Figure 3a, during
the loading process, because the right half-part of the grain boundary underwent more
MT than the other part of the grain boundary, more residual strain remained near the
right half-part of the grain boundary at the end of the cycle (εg = 0.2% in Figure 3a). As
mentioned above, residual strain causes the decrease in transformation stress. Hence, this
additional residual strain near the kink grain boundary will induce an extra decrease in
transformation stress. As can be seen in Figure 3c, the transformation stress near the right
half-part of the grain boundary degraded faster than other part of the grain boundary.
Thus, we concluded that the grain boundary kinking in bicrystal induces an additional
decrease in transformation stress.

Furthermore, during the strain-controlled cyclic loading (5% strain for each cycle), the
transformation stress of the bottom grain gradually decreased to the values close to those
of the top grain (Figure 3b,c). Hence, the bottom grain gradually had more MT, and thus
a larger εtr than in its first cycle, as shown in Figure 3a. This explains why the average
εtr in the bottom grain increased with the increasing numbers of deformation cycles, as
shown in Figure 2b and Table 1. By contrast, because the bottom grain contributed more
deformation, the MT and the associated strain contributed by the top grain decreased when
the deformation cycles increased, as shown in Figure 2b or Figure 3a. Hence, the average
εtr in the top grain decreased with the increasing number of deformation cycles, as shown
in Table 1. Therefore, the initially inhomogeneous deformation behavior in the bicrystal
sample became slightly more homogeneous after twenty cyclic compressive deformations,
as shown in Figure 3a.

The full-field stress and strain measurements provide a promising technique for
measuring stress–strain responses in SMAs. This new method offers not only insights into
cyclic superelastic deformation, but also the compressive fatigue behavior of Cu-Al-Mn
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SMAs. With this method, several future research directions could be considered, including
the influence of misorientation between two grains on its mechanical properties, the effect
of grain boundary geometry on the grain boundary strength [39–41], and the shape memory
recoverability between two grains in a bicrystal sample. Furthermore, a direct connection
between macroscopic shape memory effects and stress and strain states at the materials’
grains could also be elucidated in the future.

5. Conclusions

In summary, this study investigated the distribution of transformation stress and
strain fields in a bicrystal Cu-Al-Mn sample under cyclic compression. The decrease in
transformation stress in both grains correlated with the accumulation of residual strain.
The accumulation of residual strain depends on factors such as grain orientation along the
loading directions, transformation strain, and grain boundaries. These experimental results
and analyses demonstrated that dislocation slip and residual martensite were triggered
more easily when a higher transformation stress was required to trigger MT, thus resulting
in greater residual strain and a larger decrease in transformation stress. The decreasing
behavior at the grain boundary was related to strain incompatibility and the angle between
loading direction and the normal direction of grain boundary. Consequently, microstruc-
tures with low-angle grain boundaries or single crystals, which exhibit more homogenous
deformation behaviors and less restrictions from grain boundaries, will demonstrate higher
functional stability and thus longer lifetimes during their cyclic service lives.
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