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Application of Genetics and Genomics in Livestock Production

Heather Burrow 1,* and Michael Goddard 2,3,*

1 Faculty of Science, Agriculture, Business and Law, University of New England,
Armidale, NSW 2351, Australia
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3 Agriculture and Food, University of Melbourne, Parkville, VIC 3011, Australia
* Correspondence: heather.burrow@une.edu.au (H.B.); mike.goddard@agriculture.vic.gov.au (M.G.)

1. The Value of Genetics and Genomics in Improving the Productivity and
Profitability of Livestock Enterprises

The delivery of genomic sequences for most livestock species over the past 10–15 years
has generated the potential to revolutionize livestock production globally, by providing
farmers with the ability to match individual animals to the requirements of rapidly changing
climates, production systems and markets. The technology which has had the greatest
impact to date is genomic selection [1]. Genomic selection uses information from a large
number of genetic markers or single nucleotide polymorphisms (SNPs) in conjunction with
measurements (phenotypes) of important traits in livestock and plants to estimate breeding
values, without requiring precise knowledge of where specific genes are located in the
genome. Since the principles of genomic selection were initially proposed in 2001, genomic
selection has been widely adopted in animal and plant breeding programs globally because
of its ability to improve selection accuracy, reduce phenotyping and generation intervals
and increase genetic gains. It has transformed the livestock and plant industries, as well
as delivered human health diagnostic applications, adding billions of dollars and strong
social and environmental benefits, particularly across the world’s higher income countries.

However, genomic selection also requires improvements to the discovery of causal
variations and genomic selection methodologies, greater efforts to overcome limitations
associated with lack of essential phenotypes for expensive or difficult-to-measure traits,
and the ongoing challenges with implementing genomic selection by smallholder livestock
farmers in low–middle income countries. This Special Issue examines some of these issues
to identify successes and ongoing limitations that must be overcome to achieve practical
applications and social, economic and environmental benefits for all livestock producers in
the future.

2. Review Process

All articles published in this Special Issue “Application of Genetics and Genomics in
Livestock Production” underwent peer review by independent subject matter experts in
the fields of livestock genetics and genomics.

3. Application of Genetics and Genomics to Livestock Production: Summary
of Articles

3.1. Discovery of Causal Variations for Economically Important Traits

Most of the economically important traits of livestock are complex or quantitative traits
under the control of hundreds or thousands of variants in the DNA sequence of individual
animals, as well as environmental factors. Identification of these causal variants would be
advantageous for genomic prediction and to understand the physiology and evolution of
important traits. It would also be advantageous for genome editing. However, because
the effect size of such causal variants is small and they are in linkage disequilibrium with
other DNA variants, they are also very difficult to identify. Meuwissen et al. [2] therefore

Agriculture 2023, 13, 386. https://doi.org/10.3390/agriculture13020386 https://www.mdpi.com/journal/agriculture
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reviewed the literature to evaluate eight types of evidence needed to identify causal variants.
They concluded that large and diverse samples of animals, accurate genotypes, multiple
phenotypes, annotation of genomic sites, comparisons across species, comparisons across
the genome, the physiological role of candidate genes and experimental mutation of the
candidate genomic site would all be needed in order to discover the causal variations for
the most economically important traits in livestock.

3.2. Improving Genomic Prediction Methodologies

In this Special Issue, a number of papers examined options aimed at improving
genomic prediction methodologies. McEwin et al. [3] examined the selection of the best
livestock candidates for high-density genotyping, with the aim of improving the accuracy
of imputing high-density genotypes from low-density SNP panels. They recommended the
use of relationship matrix data already available in routine BLUP and GBLUP analyses as
the starting point to obtain accurate sequence information.

Keele et al. [4] examined the use of pooling animals with extreme phenotypes to
improve the accuracy of genetic predictions and provide genetic evaluations for novel traits
at relatively low cost by exploiting large amounts of low-cost phenotypic data from animals
in the commercial sector without pedigree information.

Koivula et al. [5] acknowledged that, while genomic selection is widely used in dairy
cattle breeding, single-step models are rarely used in national dairy cattle evaluations.
Hence, they compared methods to build genomic and pedigree relationship matrices that
satisfied theoretical assumptions and overcome incompatibility issues.

Three additional papers [6–8] utilized a range of new and different ‘omics’ approaches
(e.g., functional genomics, transcriptomics, proteomics, and metabolomics) that target
specific genes to better understand gene regulation and function, and potentially, in the
future, to improve genomic predictions. Zhang et al. [9] detected positive selection and
introgression by runs of homozygosity in cattle.

3.3. Overcoming Limitations to Phenotypes for Expensive or Difficult-to-Measure Traits

Genomic selection is particularly useful for traits that are difficult to measure early in
the animal’s life. However, it can be difficult to set up a reference population for these traits.
This is particularly true for expensive, late-in-life or difficult-to-measure traits such as the
reproductive performance of breeding animals or traits reflecting an animal’s resistance or
tolerance to environmental stresses and diseases.

In this Special Issue, Bennett et al. [10] examined the potential for using genomic
information to measure bull prolificacy in multiple-sire breeding herds. They found that
the use of easy-to-measure traits such as bull age class and scrotal circumference accounted
for less than 5% of the variation, whereas simulated estimation of prolificacy by pooling
the DNA of calves was accurate and the addition of pooled cow DNA or actual genotypes
both increased the accuracy further.

Facy et al. [11] also examined alternative approaches to measuring cow reproductive
performance that might enable measurement to occur in a much shorter timeframe than
waiting many years before sufficient records of calving are available for use in genetic
improvement programs. They found that genetic correlations between days to calving for
first and mature cow joinings was moderate to high, though correlations across lactating
and non-lactating cows were close to zero. They recommended that for multi-parous cows,
lactating and non-lactating days to calving should be treated as separate traits, with the
traits most likely to maximize genetic gain being first joining days to calving, second joining
days to calving and lactating mature cow days to calving.

3.4. Implementing Genomic Selection Programs

Following the development of genomic selection in 2001 [1] and the very rapid de-
crease in costs of genotyping since then, genomic selection has now been implemented
across a wide range of livestock and plant species. Hence, Banks [12] undertook a survey
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of organizations involved in genetic improvement across species, countries and roles both
public and private. While there were differences across organizations in what were con-
sidered the most significant outcomes to date, both an increase in accuracy of breeding
values underpinning faster genetic gains and a re-balancing of genetic change to include
real progress in the difficult-to-measure traits were widely observed. Across organizations,
key learnings included the increased importance of investment in phenotyping and oppor-
tunities to evolve business models to engage directly with a wider range of stakeholders,
leading to significant increases in agricultural productivity, profitability and sustainability.

However, significant challenges still remain with the implementation of genomic
selection amongst smallholder livestock farmers in low–middle income countries. One of
the challenges is the impact of genotype–environment interactions across vastly different
production systems. Hence, Wahinya et al. [13] examined a range of breeding strategies
relevant to the progeny testing of dairy bulls across low-, medium- and high-production
systems in Kenya, using both phenotypic and genomic information. They found that
the optimal breeding strategy was to progeny test bulls within their separate production
systems using a combination of both phenotypic and genomic information.

A major consideration of genetic improvement programs in many low–middle income
countries is the need to not only achieve genetic gains but also to conserve local indigenous
livestock breeds. Widyas et al. [14] reviewed literature relevant to breeding beef cattle
grazed in tropical environments, particularly in Indonesia, with the aim of identifying new
breeding opportunities for cattle owned by Indonesian smallholder farmers while also
conserving unique local breeds. The review indicated that, despite the implementation of
extensive crossbreeding programs over several decades in Indonesia, no discernable genetic
improvement had been achieved. A single within-breed selection program focused on live
weight whilst ignoring all other productive and adaptive traits. The authors found that it
was unlikely that smallholder farmers could effectively manage crossbreeding programs
due to the management complexities required. However, establishing reference populations
of local cattle breeds or composites and using genomic selection to genetically improve
herds should be feasible, particularly if international collaborations could be established to
allow data-pooling across countries.

Finally, Burrow et al. [15] examined a wide range of ongoing challenges that limit
the implementation of genomic selection in low–middle income countries. They included:
the difficulties and expenses of effective phenotyping; the complex funding arrangements
for a limited number of essential reference populations in only a handful of countries;
the questions around the long-term sustainability of those livestock resource populations;
the lack of on-farm, laboratory and computing infrastructure; and the lack of researchers,
extension officers and others with appropriate expertise to implement these programs. They
proposed a range of possible solutions to these challenges and suggested an operational
framework to enable new resource populations to be established and genomic selection to
be implemented in low–middle income countries.

Author Contributions: Conceptualization, original draft preparation, review and editing; H.B. and
M.G. All authors have read and agreed to the published version of the manuscript.
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Abstract: Many of the important traits of livestock are complex or quantitative traits controlled
by thousands of variants in the DNA sequence of individual animals and environmental factors.
Identification of these causal variants would be advantageous for genomic prediction, to understand
the physiology and evolution of important traits and for genome editing. However, it is difficult to
identify these causal variants because their effects are small and they are in linkage disequilibrium
with other DNA variants. Nevertheless, it should be possible to identify probable causal variants
for complex traits just as we do for simple traits provided we compensate for the small effect size
with larger sample size. In this review we consider eight types of evidence needed to identify causal
variants. Large and diverse samples of animals, accurate genotypes, multiple phenotypes, annotation
of genomic sites, comparisons across species, comparisons across the genome, the physiological role
of candidate genes and experimental mutation of the candidate genomic site.

Keywords: genomic prediction; causal variants; linkage disequilibrium; quantitative trait loci

1. Introduction

Most of the traits that are important in livestock and crops are quantitative or complex
traits. Great improvement in these traits has been accomplished by selecting animals or
plants based on their phenotype and that of their relatives. In the last decade the rate
of genetic improvement has been increased by genomic selection or genomic prediction
(GP) [1]. The purpose of this review is to consider the value of knowledge about casual
variants (CVs) in genomic selection for complex traits in livestock. Three key aspects are
considered: is it worthwhile, how might we identify them and the success to date.

2. What Are the Advantages of Identifying Causal Variants?

We consider four possible benefits: more accurate GP, knowledge of the physiology
of the trait, knowledge of the evolution of the genomic sites controlling the trait, and to
provide targets for gene-editing.

More accurate genomic prediction. Genomic prediction (GP) is the prediction of breed-
ing value from genotypes at genetic markers, such as single nucleotide polymorphisms
(SNP) scattered throughout the genome. A training population recorded for the trait and
genotyped for the markers is used to estimate a prediction equation that takes marker
genotypes as input and outputs estimated breeding values. This prediction equation can
then be used to improve the prediction of breeding value in selection candidates.

The prediction equation is typically linear in the marker genotypes, like a multiple
regression equation, and it is tempting to interpret the regression coefficient of a marker
as the effect of that marker on the trait. However, this is incorrect. The markers usually
do not cause variation in the trait but are in linkage disequilibrium (LD) with the genetic

Agriculture 2022, 12, 1713. https://doi.org/10.3390/agriculture12101713 https://www.mdpi.com/journal/agriculture
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variants that do cause variation in the trait. GP works because the markers are sufficiently
dense so that the genotypes at most casual variants can be predicted from the genotypes at
the markers.

The accuracy of GP might be improved by using causal variants in 3 ways: capturing
more of the genetic variance, estimating marker effects more accurately and avoiding the
reduction in accuracy due to recombination causing changes in LD pattern.

A panel of markers may not perfectly predict the genotypes at all causal variants.
For instance, causal variants that have a low allele frequency cannot be in high LD with
markers that have a high minor allele frequency [2]. Consequently the markers do not track
all the genetic variance and do not use all of it in their prediction. In human genetics the
genetic variance explained by SNPs is typically 1/3 to 2/3 of the genetic variance estimated
from pedigree analysis e.g., [3,4]. In livestock, when the model includes a genetic effect
following the markers and one following the pedigree relationship, the latter explains
1–50% of the total genetic variance [5–7]. The proportion explained by the markers varies
with the diversity of the population: if it includes multiple breeds then denser markers
are needed to capture all the causal variants. This model, with both an effect explained
by markers and one following pedigree, is also used in large scale estimation of breeding
values and again with 10–50% of the variance assumed to follow the pedigree relationship.
If the markers explain a fraction r2 of the genetic variance, the maximum accuracy of a
prediction based on these markers is r.

This maximum accuracy is not achieved in practice because the marker effects are
not estimated with perfect accuracy. The accuracy depends on the ‘effective number of
chromosome segments’ (Me) segregating in the population [8–10]. This number is low in
most livestock breeds because they have a low recent effective population size ([11–13]. For
instance, in Holsteins Me has been estimated at around 3000 to 7000 [9,10]). If the number
of causal variants was much less than the number of effective chromosomal segments,
we expect that their effects could be estimated more accurately than those of the markers
leading to more accurate GP Estimated Breeding Values (EBVs) [14]. Evidence suggests the
number of causal variants is >4000 for most traits, so the accuracy of their estimated effects
might be slightly greater than that of markers in a single breed analysis. However, in a
more diverse population, such as a mixture of breeds, the number of effective chromosomal
segments is larger and so the advantage of using causal variants might be higher [14].

The accuracy of GP is eroded if the LD in the target population is different to that in
the training population. For instance, LD changes over time due to recombination and
it differs between parts of a population if the population is not panmictic. Consequently,
prediction accuracy is not robust over time and space.

These predictions of accuracy using causal variants are largely borne out by simulation
studies [14,15]. However, simulation studies may not simulate the real world. We cannot
test the advantage of using causal variants in real data because we do not know what they
are. The best we can do at present is to test methods that attempt to find large sets of
markers closer to the causal variants than those on the panels normally used [16–18].

In real data, several studies have demonstrated an increase in the accuracy of genomic
prediction through use of selected sequence variants that were identified as being close
to causal variants e.g., [19–24]. These studies generally found the advantage of adding
sequence variants to marker panels was most apparent for mixed breed reference popula-
tions and/or for prediction into different breeds or crossbreds. That is, the predictions held
their accuracy better in animals less related to the training populations, compared to using
markers from a standard panel.

This indicates that there is indeed an advantage in the real world for attempting
to identify causal variants, or markers closer to CV, to improve robustness of genomic
prediction for individuals less closely related to training populations. The major challenge
is the large number of causal variants that need to be identified across the wide range of
economically important complex traits.
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Knowledge of the physiology, gene editing and evolution of the trait. Knowing how
a change in DNA sequence affects a complex trait such as milk yield is of great scientific
interest. The first step might be to identify the gene through which the mutation acts. If
the markers are dense enough it may be possible to guess the gene from a marker that is
associated with the trait. However, knowledge of the causal variant would help discover
the gene and the way in which the causal variant affects it (e.g., by changing the protein
sequence or regulation of expression). In human medicine, knowledge of the gene without
the causal variant may be enough to suggest a drug target to treat a disease. This could
also be the case in livestock diseases. Knowledge of the gene and the causal variant may be
used as targets for gene-editing [25].

The large-scale use of gene-editing for genetic improvement requires a large panel of
target sites with causal effects [26]. For gene-editing purposes, it may however suffice to
know the gene and whether it needs to be up-regulated or down-regulated, or whether it’s
functionality needs to be reduced or enhanced. I.e., it may not require knowing the causal
variant, although this would be of great help. Also, narrowing the causal variants down to
a set of approximately 10 potentially causative variants would be helpful for gene-editing,
where all 10 variants could be edited and tested for their effects.

It is also of scientific interest to know how the mutations affecting complex traits evolve.
For instance, does domestication lead to fixation of mutants that would be deleterious in
the wild or does it involve a change in allele frequencies at many loci? This cannot be
studied unless we know the causal variant because a marker in LD with the causal variant
may not share the same evolutionary history.

3. Why Is It Hard to Identify Causal Variants?

Success to date for unequivocally identifying causal mutations for complex traits
in livestock is limited and has generally been restricted to variants that have relatively
large effects e.g., [27–30]. However, large databases of livestock sequences (e.g., 1000 Bull
Genomes Project and SheepGenomesDB [31,32]) have enabled imputation to sequence of
many thousands of animals with phenotypes. As a result, there are a growing number of
published studies that have used imputed whole-genome sequence to identify putative
causal variants.

However, it is still difficult to identify causal variants because they are in LD with
other DNA variants and their effects are usually small. If two variants are in complete
LD it is impossible to tell from genetic data which is responsible for an effect on a trait.
Even if the LD is not complete, if the effect is small, enormous sample size is needed to be
confident which is causal and which is associated with the trait due to LD.

Other evidence, discussed below, such as that a mutation alters the activity of a
protein, may help build a case that it is causal. However, the ‘gold standard’ proof that a
mutation affects the trait, is to make a transgenic individual and show that the phenotype
is recapitulated. This is seldom practical in livestock and never in humans, although
gene-edited tissue-cultures may reveal some evidence.

4. Evidence for Causality

Since it is usually not possible to achieve the gold standard proof that a variant is
causal, we attempt to mount enough evidence that a variant is most likely causal [33].

A common starting point to identify causal variants for complex traits is to undertake
a genome wide association study. The data that is collected for the training population
in GP is the same as the data used in a genome wide association study (GWAS) to map
the causal variants to a part of the genome. However, high precision mapping requires
higher marker-density than GP, preferably sequence genotypes, and this may be achieved
by imputation of the missing high-density genotypes. Bayesian GP methods that allow
some markers to have no effect on the trait can also be used to map causal variants and to
describe the genetic architecture of the trait [34–36]. If all sequence variants are included in
the data, then the analysis can potentially identify the causal variants. An output of such
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analyses is the probability that a variant is included in the model. If all sequence variants
are available in the data then a sequence variant that has a probability of 100% to affect the
trait is supposedly causal. In human genetics this process is called fine scale mapping and
is usually applied to a segment of the genome in which it is believed a causal variant exists.
This seldom leads to a single causal variant but more likely to a set of variants which is
believed with 90% probability to include the causal variant. Even this conclusion may be
wrong if the true causal variant is not included in the analysis. This is likely for classes of
causal variants that are difficult to genotype and impute such as structural variants.

To build the case that a variant is causal there are 8 types of data which are helpful—
larger sample size, use of actual instead of imputed genotypes, other traits which map to
the same location, annotation of genomic sites, comparisons across species, comparisons
between parts of the genome, genes with a known role in the physiology of the trait and
experimental mutation of the site.

4.1. Increase Sample Size and Diversity

Obviously increasing sample size increases power to distinguish between variants that
are not in complete LD. Increasing the genetic diversity of the sample (e.g., by using multiple
breeds) decreases the LD and so increases the probability of distinguishing between sites
in LD and causal effects. An approach to increase sample size, now gaining popularity
in livestock, is a meta-GWAS that combines the summary statistics from a number of
individual GWAS studies e.g., [37–39]. The major advantage of this approach in addition to
increasing power and diversity, is that it alleviates the difficulties associated with sharing
raw data across groups and countries.

Despite large sample size, a SNP other than the CV may be more significant than
the CV due to sampling error. Consider a region with a single CV and compare the CV
with a SNP that is in LD with the CV. What is the probability that the SNP is more highly
significant than the CV? Let bCV = the estimated effect of the CV and bSNP = the estimated
effect of the SNP. Then bCV − bSNP ~N(b(1 − r),(1 − r) s2/(Npq)) where b = true effect of
the CV, r = the LD i.e., the correlation between the CV and the SNP, s = standard deviation
of the residuals, N = sample size, p and q = 1 − p are the allele frequencies at both the CV
and the SNP, which are assumed to be the same. Therefore, the probability that bSNP > bCV
is the probability that x~N(0,1) > tsqrt(1 − r) where t = bsqrt(Npq)/s is a t statistic for the
true effect of the CV.

Table 1 shows how this probability varies with the LD between the SNP and CV (r)
and the true t-value for the CV (t). For instance, if a CV explains 0.0001 of the phenotypic
variance and we have a sample size N = 100,000 then the E(t) = sqrt(10). (If the CV explains
0.01 of the phenotypic variance but N = 1000, then E(t) is also sqrt(10)). From the table
if t = 3 and r = 0.94, the probability that the SNP is more significant than the CV is 0.23.
This probability is the probability that a single SNP is more significant than the CV. If
this probability = P then the probability that one of n conditionally independent SNPs
(conditional on their correlation to the CV) is more significant than the CV = 1 − (1 − P)n.
This probability is high if r is close to 1 and n is high. The number of conditionally
independent SNPs may be seen as an effective number of SNPs that are in high LD with
the CV, which may be smaller than the actual number of SNPs that are in high LD with the
CV, especially when these SNPs are incorporated in LD blocks.

In a Bayesian analysis the choice of variant as the putative CV depends on the posterior
probability which in turn depends on the likelihood and the prior probability (π). The
difference in log(likelihood) between a CV and a SNP in LD with it is:

log(πCV/πSNP) + 0.5 × t2 × (1 − r)2 (1)

Thus if t is small and r approaches 1, the choice of the variant as the putative CV
depends on the priors. The use of prior information that identifies potential CVs (see
section ‘Annotation of genomic sites’) may thus be important in Bayesian analyses.
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After a Bayesian analysis is conducted and reveals a quantitative trait locus (QTL)
region, we can calculate the difference in posterior probability (PP) between the putative
CV, i.e., the highest PP in the QTL region and the second highest PP. This reveals the (log)
odds ratio of the putative CV being the true CV versus the second highest PP pointing to
the CV. Also, it is possible to identify a set of SNPs that collectively give a PP > 0.9 as a 90%
confidence set that is likely to contain the CV.

Table 1. The probability that a SNP in LD with the CV is more significant than the CV. (t = true t-value
for the CV, r = LD correlation between CV and SNP).

t r 0.5 0.75 0.875 0.9375 0.96875 0.984375 0.992188 0.996094

1 0.23975 0.308538 0.361837 0.401294 0.429842 0.450262 0.464784 0.475082
2 0.07865 0.158655 0.23975 0.308538 0.361837 0.401294 0.429842 0.450262
3 0.016947 0.066807 0.144422 0.226627 0.297942 0.35383 0.395441 0.425634
4 0.002339 0.02275 0.07865 0.158655 0.23975 0.308538 0.361837 0.401294
5 0.000203 0.00621 0.03855 0.10565 0.18838 0.265986 0.329266 0.37733
6 1.1 × 10−5 0.00135 0.016947 0.066807 0.144422 0.226627 0.297942 0.35383
7 3.72 × 10−7 0.000233 0.006664 0.040059 0.107962 0.190787 0.268051 0.330874
8 7.71 × 10−9 3.17 × 10−5 0.002339 0.02275 0.07865 0.158655 0.23975 0.308538

4.2. Use of Actual Instead of Imputed Genotypes

Imputed genotypes may show reduced trait-associations due to imputation inaccura-
cies. The latter implies that a causal variant, whose genotypes are imputed, may show a
lower GWAS signal than another site that is merely in LD with the causal site [40]. It is thus
suggested to use accurate, actual genotypes instead of imputed genotypes when trying to
distinguish between causal and LD sites.

4.3. Multiple Trait Analysis

If a variant affects multiple traits then multi-trait analysis increases power in a similar
way to increasing sample size (For different approaches to multi-trait analysis see [41,42]).
This is particularly useful if the causal variant has a large effect on one of the traits. For
instance, [43] found that a small effect on milk yield was associated with a large effect on
milk phosphorus concentration and this locus had a large effect on the expression of the
gene SLC37A1.

One class of traits which may be useful is the expression of genes that can be measured
using RNA sequencing. Variants affecting gene expression are called expression QTL
(eQTL). An allele of an eQTL may affect the expression of a gene on the same chromosome
(cis eQTL) or the expression of the gene from both homologous chromosomes (trans eQTL).
cis eQTL are located close (usually <1 mb) to the gene they regulate and typically have
large effects on the expression of the gene. cis eQTL can be mapped with a smaller sample
size than most QTL because they have large effects. However, moderate sample sizes are
still needed. For instance, 1000 individuals measured for a cis eQTL that explains 10% of
phenotypic variance in expression of the gene, gives the same power as 100,000 individuals
for a QTL explaining 0.1% of the phenotypic variance in a quantitative trait. Considerations
for eQTL studies are which tissue and timepoint on which to measure gene expression.
Trans eQTL, which affect the expression on genes on other chromosomes typically have
smaller effects than cis eQTL.

4.4. Annotation of Genomic Sites

Genomic sites are annotated in several ways and this can be helpful in evaluating the
likelihood of causality. For instance, sites can be coding or non-coding and within coding,
they may be synonymous or non-synonymous. We assume that non-synonymous coding
sites are more likely to affect a trait than other sites but this may not be correct. Two of
the best-known variants affecting milk production in dairy cattle are thought to be coding
variants in DGAT1 and GHR [44,45].
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While there is considerable annotation now available for genic regions in livestock,
there is still relatively little known about the function of intergenic sites. In human genetics,
the ENCODE and Roadmap projects have provided publicly available resources listing
functional regions in the human genome [46,47]. The Functional Annotation of Animal
Genomes (FAANG) global collaboration aims to provide a similar resource for livestock [48]
Many of these annotations are based on assays that identify parts of the genome with a
function such as open chromatin, histone marks, transcription factor binding sites. Using a
small number of individuals and often multiple tissues, these types of annotation identify
very localised regions genome-wide that have an influence on gene expression. The anno-
tations can be specific to tissues, developmental stages, rearing conditions, or the disease
status of the animal. Although there have been some attempts to lift over such annotations
from the human genome this has not generally provided high enough resolution [49].

As described here the annotation of genomic sites does not rely on genetic variation
in them and so does not suffer from LD in the way that analysis of genetic differences in
a trait does. Also, it means that it is only necessary to assay a small number of animals.
However, there are a great many of these sites in the genome and it is not clear which if any
of them would affect a particular trait of interest. Neither is it obvious how genetic variants
within the region might affect their function. For instance, Chipseq assays for methylation
‘tags’ on histones are thought to identify genome regions of 200–1000 bp that are enhancers
and promoters influencing gene expression. A SNP that lies within such a region might
affect the function of the enhancer or promoter but it might have no effect on that function.
We can compare animals with different genotypes at this SNP and determine whether or
not the genotype affects the assay result. If it does affect the assay, the SNP may also affect
the expression of the gene and hence economically important phenotypes. However, this
requires relatively larger sample sizes and if there are multiple SNPs in LD it may still be
difficult to tell which is causal. That is, this is a genetic analysis of a new trait defined by an
assay for a function in the DNA. In this respect it is similar to expression QTL which are
polymorphisms that affect gene expression. Ideally, we would like to combine an assay
that identifies a specific region of the genome as functional with genetic evidence that a
polymorphism in that region affects its function.

Although functional annotations are not trait specific, they have been shown to be
enriched for putative causal variants discovered from trait specific GWAS [22,49–51]. There-
fore, when considered jointly with the effect of genetic variants on specific traits, these
annotations are a valuable tool towards identifying causal variants. Below we consider
how to appropriately weight this information.

4.5. Comparisons across Species

If the same allele is conserved at a site across many species it must be subject to
selection and therefore must have some function. Such conserved sites are enriched among
sites affecting complex traits [16].

4.6. Comparisons across the Genome

If there is a phenotype that varies across the genome it is possible to learn the DNA
sequence associated with the phenotype. For instance, assays can detect regions of open
chromatin by their hypersensitivity to DNase (DHS regions). By comparing DNA sequences
under DHS regions with those not under DHS regions you can identify sequences that
lead to these sites and variations in the sequence that cause an increase or decrease in
the probability of such a region [52]. This process identifies sites that affect a molecular
phenotype and it does so without the confusion caused by LD. However, there is no proof
that these sites affect a phenotype in which we are interested.
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4.7. Genes with a Role in the Physiology

If a mutation is proposed to affect a complex trait through a given gene it adds to
the evidence if that gene has a known role in the trait. This was the case for the two milk
production QTL affecting the protein coding sequence of DGAT1 and GHR.

4.8. Experimental Mutation of the Site

Only rarely will we make a transgenic animal to prove that a genomic variant is
causal for the trait of interest. However, we can test transformed cell lines for a molecular
phenotype such as gene expression. This has been done for a single proposed mutation
(e.g., DGAT1) but can now be done for thousands of sites in massively parallel reporter
assays [53] The effect of a regulatory variant may be tissue specific so it may be necessary
to have cell lines from multiple tissue types.

5. Combining Information from Different Sources

Given many sources of information which might predict which sites are likely to
have an effect on phenotype, it is beneficial to construct a multiple regression equation
to predict the probability that a site affects phenotype. The method called Bayes RC is a
Bayesian method in which genetic markers can be classified according to the annotations
they have [35]. Then the probability that each class of markers is associated with the
trait is estimated. Potentially a multiple regression equation could be used instead of
a classification.

A common method in human genetics is stratified LD score regression [54]. This uses
the chi-square statistic for each marker in a single SNP regression analysis of GWAS data.
This measures the variance of the trait associated with the marker which may also indicate
the proportion of similar markers that have a non-zero effect on the trait. In a single SNP
regression GWAS, the apparent effect of the SNP is due to the SNP itself and all those in
LD with it. Therefore, in LD score regression the independent variable is the sum of LD r2

between the focal SNP and all surrounding SNPs. In stratified LD score regression separate
LD scores are calculated for each annotation of the surrounding SNPs.

Another method is to define different genomic relationship matrices among all the in-
dividuals for each category of genetic markers [16,55]. For instance, a genomic relationship
matrix (GRM) based on coding SNPs and one based on random SNPs. Then it is possible
to estimate the genetic variance associated with each type of GRM thus indicating which
annotations identify markers causing the most variance in a complex trait.

Xiang et al. [16] illustrate some of these approaches. They developed a score (called
FAETH) for polymorphic sites in cattle based on a number of annotations and combined
this with multi-trait genetic analysis to find approximately 50,000 SNPs that were more
likely to be causal or close to causal variants. A SNP chip containing these SNPs gave
higher accuracy of genomic EBVs than previous SNP panels.

6. Creditable Sets Instead of Single Causal Variants

The focus in this review is on complex or quantitative traits but the same problems
occur in identifying the mutation causing phenotypes that can be caused by a single
mutation such as many genetic abnormalities. The effect size in this case is large, so the
sample size needed is smaller but the problem of LD between a causal variant and other
variants is the same. Perhaps these mutations are easier to identify than those for complex
traits because they are often coding mutations. However, almost never is the transgenic
animal made to confirm we have identified the correct mutation. Therefore, we should
be able to build an equally strong case that we have identified the causal mutation for a
complex trait as we do for Mendelian traits provided we increase sample size. Despite this,
success in identifying variants affecting complex traits has been low.

In some chromosomal regions, mutations at several sites may cause similar effects,
e.g., due to affecting the expression of a gene, or reducing the functionality of a gene’s
transcript. For instance, in the DGAT1 region, next to the known site, other sites may
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have similar trait effects. In such cases, attempts to find ‘the’ causal mutation will at best
result in the discovery of the biggest of the mutations, but the conclusion that herewith ‘the’
mutation is found is wrong.

In view of the latter, and the difficulty in finding ‘the’ causative mutation (if it exists),
a useful aim for a GWAS study may be find a set of e.g., 10 potential causal variants for
every QTL. The latter will affect our aims for the detection of causal variants:

• Accuracy of GP: all 10 variants will be in very high LD with the causative mutation, and
the LD is not expected to change markedly with genetic distances, i.e., the reduction in
GP accuracy of having a set of 10 potential instead of 1 causal variant will be limited.
Genotyping costs will be increased, but genotyping costs are generally small.

• Knowing the gene that affects the trait without knowing the causal variant will be
useful for the study of the trait physiology but not as useful as also knowing the
causal variant.

• The same holds for the evolution of the sites.
• A set of 10 potential causal variants will enhance the costs of the initial stages of a

gene-editing program, where the effect of the gene-edit on the trait is tested. This stage
will require 10 such tests instead of 1. However, if the causal variant is not amongst the
set of 10 potential causative variants, the gene-editing program will not be successful.

It seems that the accuracy of GP and the gene-editing results are little affected by
having a set of 10 potential instead of 1 causal variant, as long as the actual true causal
variant is amongst these 10. However, the study of the trait physiology and site evolution
will be compromised.

7. The Future

We have argued above that it would be beneficial to identify the genomic variants
causing variation in quantitative traits. Although success to date is limited, we believe that
the opportunity exists for greater success in the near future by combining the approaches
discussed above. Increasing sample size is being achieved through the commercial use
of GP but this could be accelerated by international collaboration to build larger and
more diverse data sets. International collaboration is already contributing to annotation
of livestock genomes, for instance, through FAANG and livestock GTEx. Two further
improvements are now within reach—identification of structural variants and massively
parallel reporter assays (MPRA). Most current genotype data is on SNPs but it is likely
that causal variants include structural variants. Using short read sequencing it has been
hard to call genotypes at structural variants but the use of long read sequencing should
improve this situation. MPRA test the effect of specific mutations uncomplicated by LD
but they require a phenotype that can be measured in vitro such as gene expression. An
approach which has been underutilized is discovering functional genome sequences by
comparing parts of the genome [56]. This requires a phenotype that is associated with a
specific location in the genome, for instance, the height of ChiPseq peaks. By comparing
the sequence under Chipseq peaks, it is possible to discover the sites that determine where
these functional elements occur. This leads to identification of causal variants without
complication from LD but does not directly target phenotypes that can only be observed
on whole animals.
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Abstract: Imputation can be used to obtain a large number of high-density genotypes at the cost
of procuring low-density panels. Accurate imputation requires a well-formed reference popula-
tion of high-density genotypes to enable statistical inference. Five methods were compared using
commercial Wagyu genotype data to identify individuals to produce a “well-formed” reference
population. Two methods utilised a relationship matrix (MCG and MCA), two of which utilised a
haplotype block library (AHAP2 and IWS), and the last selected high influential sires with greater
than 10 progeny (PROG). The efficacy of the methods was assessed based on the total proportion of
genetic variance accounted for and the number of haplotypes captured, as well as practical consid-
erations in implementing these methods. Concordance was high between the MCG and MCA and
between AHAP2 and IWS but was low between these groupings. PROG-selected animals were most
similar to MCA. MCG accounted for the greatest proportion of genetic variance in the population
(35%, while the other methods accounted for approximately 30%) and the greatest number of unique
haplotypes when a frequency threshold was applied. MCG was also relatively simple to implement,
although modifications need to be made to account for DNA availability when running over a whole
population. Of the methods compared, MCG is the recommended starting point for an ongoing
sequencing project.

Keywords: high density genotyping; imputation; sequencing; reference population

1. Introduction

Genomic selection [1] has been rapidly adopted by many breeding sectors following
its successful introduction to the dairy industry. This is due to realised gains in prediction
accuracy of genomic estimated breeding values that have increased the response to selection
for key economic traits as greater proportions of genetic variation are explained and
generation intervals are decreased [2–4].

In genomic selection, a sufficiently dense single nucleotide polymorphism (SNP) panel
that covers the entire genome is utilised with the expectation that all quantitative trait loci
(QTL) are in linkage disequilibrium with at least one SNP. This allows the prediction of QTL
effects across the population over generations. For traits with few underlying QTL, lower
density SNP panels may be sufficient to capture these effects, assuming close proximity
of at least one SNP. However, where there are many underlying QTL, denser SNP panels
may be required [2]. This is often the requirement for many traits in cattle breeding, such
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as fertility, where no QTL of major effect has been found, unlike milk fat percentage in
Dairy [5]. Denser SNP panels have been shown to increase breeding value accuracy [6,7].
If there are many QTL of minor effect contributing to variation in a desired trait, a large
number of phenotypic records will be required to achieve reasonable estimation accuracies
relative to trait heritability [8].

With the size of the reference population clearly having an impact on the accuracy of
genomic prediction in the target population, there is a clear need to identify cost-effective
methods to procure more phenotypes. One solution would be to capitalise on the large
numbers of phenotypes available in commercial herds using genotyping to replace often
incomplete/missing pedigree data. However, this solution would be accompanied by high
genotyping costs, which usually only nucleus herds have means for.

In 2010, the Illumina BovineHD chip became available with 777,962 SNPs, and now
whole-genome sequencing is the new frontier [9,10]. However, the high price of sequencing
and HD chips is a barrier to their application across large numbers of animals. Imputation
can add value here. By investing in a good reference population of dense genotypes,
imputation can then utilise cheaper, less dense SNP panels, which reduces the overall cost
of genotyping while capitalising on high-density results. Given this, the key question is
which animals should be densely genotyped to form the best reference set for imputation
of sparsely genotyped animals? An ideal approach would be to select founder animals of
the population, but the availability of this option is limited depending on population age
(are the founders still alive/have DNA stored, i.e., semen). A second approach would be to
select influential animals with large numbers of effective progeny. However, this may bias
certain high-performing family groups by selecting relatives from a few family lines.

This work details the results and observations of an actual field trial to select candidates
that represent the Australian Wagyu population for whole-genome sequencing to facilitate
imputation to sequence for BLUP prediction. Four methods have been compared to just
selecting highly influential sires herein that were expected to achieve high imputation
accuracy to higher density/sequence arrays [11,12]. Strategies were compared that fall
under two categories; (1) strategies that utilise relationship matrix data already available
in routine BLUP and GBLUP analyses, and (2) Strategies that take a more bioinformatics
approach based on population haplotype frequency. Measures of how efficiently animals
were selected and similarities between animals selected are discussed as well as practical
implications.

2. Materials and Methods

In total, five methods were trialed and compared to identify candidates for whole-
genome sequencing in an Australian Wagyu population. Assuming a sequencing budget
of $100,000 and sequencing per animal costing $1000, 100 animals were selected from
each method. The first two methods are denoted the MCA and MCG method, respec-
tively [11]. Candidates are selected for whole-genome sequencing through these methods
by minimising the genetic variation of the target population relative to the selected can-
didates, improving imputation accuracy. The MCA method utilises (Wrights) numerator
relationship matrix (A) such that;

A11* = A11 − A12A22
−1A21 (1)

where the 1 subscript denotes the set of target animals and 2 subscript denotes the set
of animals selected to be sequenced. The diagonal elements of A11* are the residual
variances that are expected to remain if sequence data were to be obtained from the selected
individuals and used to predict/impute genotypes of the target set. Animals were selected
using an iterative process which is described in full by [11]. Briefly, all animals start in the
target set. The aim is to minimise trace (A11*), each animal is tested to see who reduces
trace (A11*) the most, resulting in selected candidate i. After selecting animal i, the entire
relationship matrix is made conditional on the genotype of that animal, then the process
starts again, looking for the next animal that most reduces trace (A11*) until the desired
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number of candidates are selected. An Australian Full-Blood Wagyu pedigree comprised
of 10,549 individuals with a depth of up to 9 generations from the current generation
was utilised to construct A through the R package pedigreemm [13]. For the animals in
the pedigree that were genotyped (see below), the average number of great-grandparents
recorded in the pedigree was 7.3 with a median value of 8, indicating a high level of
pedigree completeness.

The second method utilises a genomic relationship matrix (G) in place of A, denoted
the MCG method. Utilising genotype information on 5334 individuals genotyped with
30 K GGP-LD (Neogen: GeneSeek Operations) or Bovine VersaSNP 50 K (Weatherbys
Scientific) chips, G was constructed as per VanRaden’s first method [14]. Animals that
were genotyped on the 50 K platform were imputed to 30 K using the 11,484 SNPs that
overlapped between the chips. This decision was made due to the significantly larger
reference population available on the 30 K chip (4940 vs. 394). Fimpute 2.2 [15] was used to
perform the imputation. After, SNPs were kept that had a minor allele frequency greater
than or equal to 0.05, retaining 21,094 SNPs for GRM construction. All genotyped animals
were present in the pedigree resulting in an overlap of 5334 animals between the numerator
(A) and genomic (G) relationship matrices.

The third and fourth methods were described by [12] and referred to as AHAP2 ([12]
modified the AHAP method presented by [16]) and the inverse weight selection method
(IWS). Both methods require the construction of a haplotype “block” library. This library
was constructed utilising the 5334 post imputation genotypes to construct G, using FindHap
v3 (http://aipl.arsusda.gov/software/findhap/; accessed on 21 May 2020). Program
settings included 4 iterations at 3 haplotype block widths (50, 75 and 100 SNPs). Only the
100 SNP wide blocks were retained for analysis. Haplotype blocks, which by definition
are non-overlapping, were assigned a unique ID and their frequency in the dataset was
calculated. It was assumed that haplotype frequencies in this population are reflective of
the Australian Wagyu industry. In total, 339,824 unique haplotypes were identified with a
mean haplotype frequency of 0.07% and a minimum and maximum haplotype frequency
of 0.005 and 0.28%, respectively.

The distribution of haplotype frequencies on the log scale (Figure 1) clearly indicated
a skewed distribution towards lower frequencies. Due to exponential increases in hap-
lotype counts at lower frequencies, haplotypes with a frequency lower than 0.1% were
excluded from consideration. This brought the total number of haplotypes under consider-
ation for sampling down to 20,854 of which 588 had a haplotype frequency ≤5% (Common),
3666 had a frequency≥1% but <5% (Uncommon) and 16,600 had a haplotype frequency ≥0.1%
but <1% (Rare). A haplotype frequency threshold of 0.1% was chosen to allow for 1 in
1000 error in genotype calls.

Figure 1. Distribution of haplotype block frequency (log scale) of 339,824 blocks, 100 SNPs in width,
estimated from a population of 5334 genotyped Australian Wagyu.
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Both the AHAP2 and IWS methods were designed to maximise the haplotype coverage
from the population while minimising the redundancy of haplotype sampling. Both
methods choose candidates to maximise the number of haplotypes sampled per dollar
invested in sequencing, achieved through a weighting system, however, two separate
approaches are used to achieve this.

The AHAP2 method, which is an iterative modification on the AHAP method de-
scribed by [16], utilises the following equation;

Sample weight = ∑NHAP
i=1

fi if i = homozygous.

The frequency of the haplotype in the population is defined by fi as determined
by FindHap, and NHAP is the total number of haplotypes under consideration. Only
haplotypes that are homozygous within a potential candidate are counted towards the
weighting for selection. All individuals in the imputed genotype set were considered as
potential candidates. After calculating the weight for all individuals, the individual with
the highest weighting is selected as the sequencing priority. Once a candidate is chosen,
all homozygous haplotypes that this candidate contained are removed from consideration
for all remaining samples. Sample weights are then recalculated and the next sequencing
candidate is selected until the desired number of candidates (n = 100) are sampled.

In reverse to the AHAP2 method, the IWS method preferentially selects candidates
that carry rare frequency haplotypes. Ref. [12] developed an inverted parabolic function
that calculated sequencing priority (weighting) under the following equation;

Sample weight = ∑NHAP
i=1

f2
i −2fi+1 if i = homozygous.

As fi approaches 0, the haplotypes score approaches 1, increasing the weighting. More
frequent haplotypes give an increasingly smaller weighting to the sample.

The final method is a more traditional approach that selects animals based on influence
in pedigree. This was to assess a previous attempt to genotype animals that “describe” the
population. Previously, 166 Full-Blood Wagyu animals were genotyped on the Illumina
770 K platform. These animals were selected as influential due to having greater than
10 progeny nationwide (PROG), with effective progeny numbers of 1 to 437, mean = 47, in
the pedigreed population described herein. One hundred of the 166 animals were randomly
chosen for comparison against the other methods were appropriate.

3. Results

3.1. Overlap between Chosen Candidates

The MCA and MCG methods had a high degree of similarity between them, with MCA
selecting 70/100 individuals (Table 1) that were selected by MCG. A strong positive rank
correlation of 0.82 (Figure 2) demonstrates high-rank concordance between the animals
selected in common between the two methods. As MCA contains animals that are not
available in MCG, a modified version of the MCA method was run (data not shown) where
only the 5334 genotyped animals could be chosen but still relative to the whole pedigreed
population, i.e., genotyped animals were selected based on their relationship to all animals
in the pedigree. This produced similar results, with 73 animals being selected in common
between MCA modified and MCG.

There was little overlap between the relationship matrices’ methods and the haplotype
methods AHAP2 and IWS (Table 1). For example, the specific animals themselves selected
by IWS are all progeny or grand-progeny of those selected by MCG and/or MCA. There
was a moderate similarity between animals selected by IWS and AHAP2. Differences are
due to different emphasis weights on rare versus common haplotypes. It is important to
reiterate that all methods used the same starting population of 5334 genotyped animals
where appropriate (i.e., MCA utilised a much bigger pedigreed population). Additionally,
all genotyped animals were in the pedigree.
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Table 1. The degree of overlap, i.e., the number of animals selected in common, between the MCA,
MCG, IWS, AHAP2, and PROG A methods. The number of animals sampled by each method is
displayed on the diagonal.

MCA MCG IWS AHAP2 PROG

MCA 100
MCG 70 100
IWS 5 7 100

AHAP2 2 4 61 100
PROG 80 78 7 4

A PROG in this instance refers to the full list of 166 Full-Blood Wagyu animals genotyped on the Illumina 770 K
platform and the overlap between these 166 animals and selected candidates from other methods.

Figure 2. A plot of ranks of candidates selected for whole-genome sequencing using the MCA or
MCG methods, respectively.

The animals selected by these four methods were then compared to the full list of
166 animals genotyped on 770 K due to being identified as influential sires (PROG). The
MCA and MCG methods are most similar, in regards to animals selected, to this influential
sire methodology, with an overlap of 80 and 78 animals, respectively (Table 1). As expected,
this resulted in a lower overlap with IWS and AHAP2 methods.

3.2. Percentage of Genetic Variance Explained

The MCG method accounted for more genetic variance (34.6%) when 100 animals
were selected compared to 30% when the MCA method was used. The first 20 selected
candidates accounted for 19 and 21% of the genetic variance for the MCG and MCA method,
respectively, with each additional animal thereafter contributing less information (Figure 3).
Where the number of selected candidates was low, MCA outperformed the MCG method
until approximately 30 candidates where MCG became superior. IWS was superior to
AHAP2, accounting for 23.3% of the genetic variance compared to 22.9% when selecting
100 candidates, although both methods accounted for significantly less genetic variance
compared to methods utilising a relationship matrix. For PROG, the mean percentage of
genetic variance accounted for when randomly sampling 100 of the most influential sires
for 5 replicates was 29.6% (SD = 0.40, data not shown), equivalent to the MCA method.
MCA modified, where only genotyped animals are available for selection relative to the
whole pedigree, account for 29.3% of the genetic variance, giving very similar results to
MCA.
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Figure 3. Diagonal values of A* representing the percentage of genetic variance explained for each
additional selected candidate for whole-genome sequencing using the MCG method (top) or MCA
method (bottom). The IWS and AHAP2 methods are presented as singular dots where 100 animals
have been sampled.

3.3. Number of Unique Haplotypes Accounted for

Haplotype blocks were categorised into common, uncommon and rare classifications
based on frequency in the population. The number of haplotypes accounted for within
each group was then assessed for three methods (Table 2). All methods were able to
account for the 588 unique common haplotypes in the population and a similar number of
uncommon haplotypes; approximately 3500 haplotypes out of the 3666 in the population.
The three methods begin to clearly separate where rare haplotypes are considered. MCG
accounted for 8175 rare haplotypes followed by IWS and AHAP2 with 6492 and 5137,
respectively. This resulted in MCG accounting for the highest total number of haplotypes
(12,320) compared to IWS and AHAP2.

Table 2. Number of unique haplotypes accounted for when 100 animals are selected as whole-genome
sequencing candidates using varying methods that utilise a relationship matrix (MCA/MCG) or
haplotype library (IWS/AHAP2), respectively.

Method
Common Uncommon Rare

Total≥5% 1%–<5% 0.1%–<1%

MCA A - - - -
MCG 588 3557 8175 12,320
IWS 588 3507 6492 10,587

AHAP2 588 3524 5137 9249
Max # B 588 3666 16,600 20,854

A As not all MCA selected animals were genotyped, the number of unique haplotypes accounted for cannot be
estimated. B Max # denotes the maximum number of haplotypes in each category that can be sampled.

4. Discussion

4.1. Comparison of Relationship Matrix Methods

The methods which utilised a relationship matrix, MCA and MCG, had very high
concordance between them in regard to specific candidates selected (Table 1). The rank cor-
relation reported of 0.82 (Figure 2) is a stronger relationship than previously reported [11].
One explanation is that Wagyu are known to already have a very small effective population
size; 43.4 in Australia [17], with only a small number of animals serving as the founder
population for Australia’s herd today. Given this, the MCG and MCA method are more
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likely to select identical candidates than the population in the original study, which was a
Norwegian pig population pedigree with simulated genotype data [11].

MCA performed better where the number of selected candidates was low (Figure 3).
This is likely due to the MCA method having access to the full pedigree of 10,549 individuals
with a depth of up to 9 generations, whereas only 5334 of these animals were available
for selection under MCG. There are some population structure implications in the data
behind this. The pedigree includes deeper information on original “imported” founder
animals in the population and a larger number of descendants, whereas MCG only includes
genotypes on these founders and a subset of their descendants. The additional depth and
breadth of pedigree appears advantageous to better inform selection decisions of early
selected candidates. MCG appeared robust as the genomic relationships were able to
compensate for the lack of pedigree depth after a certain number of selected candidates
due to more detailed relationship information regarding Mendelian sampling. When only
the genotyped animals could be selected as candidates (MCA modified), it performed
extremely similarly to MCA on a whole. This supports the conclusion that the pedigree
used in constructing A is not adding any information above and beyond what G captures.
MCG also demonstrates a steady increase in genetic variance accounted for as the number
of candidates approaches 100 whereas MCA begins to level off. This can again be attributed
to more variation being able to be discerned through genomic relationships, which can
better describe animals, particularly where relationships would be traditionally low (zero)
in A and between full-sibs. MCG is also advantageous to MCA in that it can be run
without concern for completeness of pedigree, assuming individuals in the population
under consideration can be genotyped.

4.2. Comparison of Haplotype Block Methods

The methods which utilised 100 SNP wide haplotype blocks, IWS and AHAP2, had
moderate concordance between the animals selected with 61/100 animals in common. In
contrast, concordance between these methods and candidates selected by MCA and MCG
was poor (Table 1). An analysis of the pedigree reveals the specific animals themselves
selected by IWS, in particular, are all progeny or grand-progeny of those selected by
MCG/MCA. This makes sense as only homozygous haplotypes are considered in the
calculation of the weighting. Influential haplotypes being targeted (those accounted for by
MCA/MCG) must be passed on across generations through paternal and maternal lines to
be selected by IWS, and to a lesser degree, the AHAP2 method.

While MCG accounted for the greatest number of haplotypes with a frequency of 0.1%
or greater (12,320, Table 2), it did not account for the greatest number of haplotypes overall
when counting haplotypes below this frequency. Candidates selected using the cut-off
restrictions were compared to the unrestricted raw data to get a view of the incidental
rare haplotypes that were sampled in passing. IWS, AHAP2 and MCG accounted for an
additional 9842, 7221 and 2631 haplotypes respectively below a frequency of 0.1% resulting
in grand-totals of 20,429, 16,470 and 14,951 haplotypes sampled out of 339,824 respectively.
Given this metric, IWS was the best where total number of haplotypes are concerned.
Results from [12] are consistent with those above, with IWS demonstrating it accounted for
the greatest number of haplotypes while selecting the least number of candidates compared
to AHAP2. Additionally, given a set number of candidates, IWS accounted for more
haplotypes than AHAP2, which is a more comparable metric to the study herein.

A study on simulated dairy data performed by [18] demonstrated similar findings to
the study herein, with IWS accounting for a greater proportion of unique haplotypes (when
all incidental haplotypes are included) than a method analogous to MCG. In addition,
the overlap of selected candidates was very low between these methods across varying
selection densities (50 to 1200 individuals). However, IWS did not outperform MCG in
terms of genetic variance accounted for (Figure 3). Initial thoughts in this study were that
the more haplotypes accounted for, the greater the degree of genetic variance explained, but
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Figure 3 demonstrates that is clearly not the case. There could be a couple of explanations
for this.

The IWS method is intentionally selecting animals that are more distantly related to
others by preferentially selecting rare haplotypes. Animals that are homozygous for a rare
haplotype had to receive one copy from each of the paternal and maternal lines, which
to occur suggests the paternal and maternal lines were already likely related, i.e., IWS
selects animals from the ends of different family branches rather than the bulk of the whole
family tree. Additionally, given the haplotype blocks used aren’t representative of “actual”
haplotypes segregating in the population, they are merely chunks of SNPs in 100 SNP wide
blocks; selection of individuals where these true haplotypes are essentially broken up could
explain a loss in genetic variance accounted for. In contrast, the GRM utilises all SNPs
and it can capture the similarity of true haplotypes between individuals in its estimation
of relationships. Implementing the IWS and AHAP2 methods utilising a true haplotype
library warrants further investigation.

Another point for consideration is that, while it could be expected that more haplotypes
in the reference would yield higher imputation accuracies, IWS preferentially selected
haplotypes with a low frequency. Ref. [19] demonstrated using initial data from the
1000 bulls genome project that the accuracy of imputed calls was high for SNPs with a MAF
> 0.1 while it decreased rapidly for rarer variant sites. Ref. [18] demonstrated this nicely,
showing imputation accuracy of specific variants increases with MAF bin. Additionally, [18]
showed that reference populations selected by IWS were more effective at achieving high
imputation accuracies for low MAF SNPs than other methods compared, but this advantage
lessened with increasing reference population size.

As high-density genotyping and sequencing costs decrease, it would be more feasible
to target lower frequency haplotypes by sequencing additional candidates to improve
their accuracy of imputation. Methods, such as those proposed by [20,21] that allocate
sequencing resources to specific haplotypes rather than individuals, would be suitable for
this purpose, in fact, they propose an adjustment to IWS to allow for this. The benefit of
the method proposed by [21] is that it assembles high-coverage sequence data through
the accumulation of low coverage information over genome segments that are shared
with many other individuals. This prevents these “census” haplotypes from being “over-
sequenced” so that sequencing resources can then be allocated towards key-rare variants,
for example. This method has been shown to achieve high imputation accuracies through
hybrid peeling in deep pedigreed populations [22].

4.3. Practical Considerations

While the haplotype block methods appeared promising, their performance was infe-
rior to relationship matrix-based methods given the metrics measured herein. One-hundred
animals selected under MCG accounted for the most genetic variance and accounted for
the greatest number of haplotypes (above a frequency of 0.1%). One key assumption was
made here; both the MCA and MCG methods assumed that all potential candidates had
DNA readily available. This is not always the case in a commercial pedigree. Both methods
could easily be modified to account for DNA availability, i.e., the animal is still alive or has
blood/semen/hair in storage. The animal that is selected, within an iteration, is logically
that which reduces the residual genetic variance of the target population, i.e., Diag(A11

*),
the most. Multiplying each candidate’s impact on the residual by a vector of 0 (no DNA
available) or 1 (DNA available) ensures only candidates with DNA are chosen. This also
prevents bias when selecting sequence candidates to form the reference if you were just to
remove animals with no DNA from the analysis altogether. MCA clearly outperformed
MCG where the number of samples selected was low and this could reflect a scenario where
the sequencing budget is low. A strong depth of pedigree proved advantageous to the GRM,
where the number of selected candidates is low. To capitalise on the depth of pedigree
while utilising the detail of genomic relationships, an H matrix could be constructed, as is
done for single-step GBLUP [23,24] with parameters set around DNA availability. Similar
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modifications could be made to the haplotype methods to account for DNA availability,
though it is more likely that only potential candidates are included when running these
methods. An important consideration is that MCA assumes a relatively high pedigree
completeness to be effective. Naturally, animals not included in the pedigree cannot their
genetic contribution to the population identified. Where pedigree is widely incomplete, the
MCG method would be best using genomic relationships to replace those estimated from
pedigree.

The relationship matrix methods also have one key advantage over haplotype methods
when being applied within a breeding program. That is, they utilise data that is routinely
constructed within a genetic evaluation program and are therefore simple and relatively
quick to implement. This is compared to constructing haplotype libraries where cut-off
decisions around haplotype inclusion must be made. This decision can impact the final
animals that are selected for HD genotyping or sequencing. For example, the cut-off used
for IWS by [12] was 4%, whereas it was 0.1% herein. In addition, the examples provided
in this discussion assume selection within one population of animals and do not deeply
discuss implications of across breed or crossbred populations.

The common method of selecting highly influential sires (PROG) performed equally
as well as the MCA method and is clearly still a useful, cheap and easy method to select
animals for high density genotyping. However, clear pitfalls of the method are that highly
influential bulls tend to have highly influential sons and so on. While not explicitly outlined
herein, immediate family links (siblings, progeny) do exist between the 166 influential
animals, and this is only partially captured in Table 1 due to a lack of complete overlap
between the methods. It is, therefore, necessary to adjust for kinship, genetic contribution,
etc. Whether this is done ad hoc or using more scientific methods as in [11], this added
complexity detracts from its usefulness, especially as the other four methods compared
herein actively remove this laborious activity.

5. Conclusions

Selection using the MCG is highly recommended as a starting point for an ongoing
sequencing project. Then the best method depends on the use case for the future set of
sequences. If the aim is to select sequence candidates to allow for the overall imputation of
the population, then it is better to select animals carrying common haplotypes in the first
instance. If the resulting sequences from the selected animals are to be used for variant
discovery or annotation of deleterious variants, animals carrying novel information should
be selected.
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Abstract: Pooling animals with extreme phenotypes can improve the accuracy of genetic evaluation
or provide genetic evaluation for novel traits at relatively low cost by exploiting large amounts
of low-cost phenotypic data from animals in the commercial sector without pedigree (data from
commercial ranches, feedlots, stocker grazing or processing plants). The average contribution of
each animal to a pool is inversely proportional to the number of animals in the pool or pool size. We
constructed pools with variable planned contributions from each animal to approximate errors with
different numbers of animals per pool. We estimate pool construction error based on combining liver
tissue, from pulverized frozen tissue mass from multiple animals, into eight sub-pools containing
four animals with planned proportionality (1:2:3:4) by mass. Sub-pools were then extracted for
DNA and genotyped using a commercial array. The extracted DNA from the sub-pools was used to
form super pools based on DNA concentration as measured by spectrophotometry with planned
contribution of sub-pools of 1:2:3:4. We estimate technical error by comparing estimated animal
contribution using sub-samples of single nucleotide polymorphism (SNP). Overall, pool construction
error increased with planned contribution of individual animals. Technical error in estimating animal
contributions decreased with the number of SNP used.

Keywords: DNA pooling; genomic relationship; genomic prediction

1. Introduction

Large scale genotyping using high-density arrays or next-generation sequencing tech-
niques has revolutionized genetic prediction and identification of causal chromosomal
regions through genome-wide association studies (GWAS). Furthermore, apportioning
genetic variation to chromosomal regions (a goal of GWAS and an estimation of regional
heritability using best linear unbiased prediction using a regional genomic relationship ma-
trix and restricted maximum likelihood estimation of variance components) can improve
genome prediction accuracy [1]. Genetic prediction accuracy is improved by increased vari-
ance in regional genomic relationships and higher, more consistent linkage disequilibrium
between observed SNP and unknown or unobserved quantitative trait loci compared to
the whole genome. Hence, GWAS and genome prediction are complimentary activities.
However, effective implementation of genomic prediction or high-powered GWAS for
complex and/or low heritability traits may require thousands of animals with phenotypes
and genotypes. Individually genotyping seedstock populations is cost effective when
the cost is spread among large suites of routinely recorded traits. However, individually
genotyping can be prohibitively expensive when collecting novel traits on commercial
animals, without recorded pedigree, for which only one trait is recorded.

DNA pooling can be an effective tool to reduce genotyping cost, and it captures
greater than 80% of the power of individual genotyping in GWAS [2]. If costs of collecting
phenotypes are much lower than genotyping costs, DNA pooling can reduce experimental
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costs by 90%. Our group has established the utility of GWAS using DNA pooling for novel
complex traits such as fertility and disease resistance [3–5].

In addition to GWAS, early efforts have been proposed to apply pooling results to
genomic prediction. Marker predictions from high and low phenotype groups could be
used to accurately rank candidates for selection [6]. An alternative strategy could be
the estimation of genomic relationships between pools and candidates for selection; for
instance, genomic relationships could be used to derive estimated breeding values for sires
of multiple-sire progeny in pools of extreme phenotypes [7]. Both techniques involve ge-
nomic prediction of animals that are known to have close relationships with animals in the
pool. Commercial data capture is complicated by the fact that whole genome relationships
between commercial cattle (source of data) and seedstock animals (selection candidates)
are more distant and less variable compared to relationships between animals with data
and animals being selected within the seedstock sector. The effectiveness of using SNP chip
data from pools for genomic prediction depends on the signal to noise ratio, with the signal
being allele frequency differences or haplotype frequency differences between pools of ani-
mals with extreme phenotypes, and noise being pooling errors. Greater genetic differences
occur when the trait has higher heritability or when phenotypes are more extreme. Pooling
errors include pool construction error and technical error. Pool construction error includes
weighing error, errors in measuring or recording DNA concentration, incomplete sample
mixing, pipetting error, variation in DNA content of the tissue, variation in DNA extraction
efficiency, and DNA fragmentation. In this study, technical error is defined as variation
in estimates of sub-pool, animal, or haplotype contributions among replicate arrays for
identical pools (same animals in same proportions). However, replicate arrays were not
run in this study because technical error can be estimated at a lower cost as the variance in
estimated animal contribution among sub-samples of SNP, sampled without replacement.
This is the approach that we took. Technical error depends on variation in in allelic ratio
(Y/X) for intensity within genotype for each SNP and the number of SNP; specifically,
we estimate pooling allele frequency using the same formula that Illumina uses, Illumina
θ = 2 * tan−1(Y/X)/π [8], for calling genotypes and detecting copy number variation (or
structural variants). The number of animals in the pool is inversely proportional to the
average contribution from each animal; hence, we deliberately varied the contribution from
each animal to approximate the influence of each pool’s size on error without spending a
lot of money genotyping individual animals. In this way, we can approximate error for
pool sizes of 100 with only 16 animals. Our objectives were to evaluate pool construction,
technical error, and the influence of factors that affect these errors, such as number of SNP
and planned representation of animals within the pool.

2. Materials and Methods

Animal samples utilized in this study were recovered from abattoirs. Therefore, no
Institutional and Animal Care and Use approval was obtained.

Sample pooling strategy: Pools comprising many animals are more economical be-
cause the cost of genotyping a pool is spread over more animals. Pools with many animals
have small contributions from each animal. To approximate variable numbers of animals
per pool at a reasonable cost, we selected an experimental design with variable contribu-
tions from individual animals. Liver tissue samples were obtained from a set of 50 Holstein
steers with severely abscessed livers and 50 Holstein steers with no liver abscesses in
close chain proximity from a commercial abattoir. From these pairs of matched samples,
16 samples from abscessed and 16 samples from non-abscessed animals were randomly
selected. There were no common animals between the two phenotypes; however, there
were likely steers with abscessed livers that were related to animals with non-abscessed
livers. Disease status (abscessed and non-abscessed livers) was used as a basis for dividing
samples in this experiment into biological replicates.

Four sub-pools were created for each liver phenotype (abscessed/non-abscessed). A
sub-pool was comprised of four different liver tissue samples in parts of 1:2:3:4 (each part
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was 0.1 g) and placed in a 10 mL tube for the designated sub-pool with 2 mL phosphate
buffered saline for homogenization. Each liver tissue sample only contributed to one
sub-pool (4 sub-pools × 4 samples/sub-pool = 16 samples total per phenotype). Isolation
of DNA from each sub-pool was performed by a standard phenol/chloroform extraction
protocol. Two super pools were then derived from the extracted DNA of the sub-pools in
two different arrangements, with the four sub-pools again representing parts of 1:2:3:4. As
shown in Figure 1, four different sub-pools and two different super pools were formed,
as previously described, for each liver phenotype. Thus, the planned representation of
16 individual animals are in Tables A1 and A2 based on the design presented in Figure 1.
Individual DNA from the 32 animals used in the liver tissue pools was extracted using
the QiAamp DNA Mini Kit following the manufacturer’s instructions (Qiagen, Santa
Clarita, CA, USA). All individual DNA samples and pools were then mixed, by placing
individual samples on a rotator, and quantified by the DeNovix DS-11 FX+ Spectropho-
tometer/Fluorometer (DeNovix Inc., Wilmington, DE, USA) using 2 μL of sample and
the dsDNA photometric setting. Quality of the DNA was evaluated for all individual
samples and pools using gel electrophoresis to ensure that a high molecular weight DNA
was present and intact.

Figure 1. Graphical representation of the designed relative proportions of liver tissue from individual
animals used to form sub-pools and DNA proportions used to form super pools. This design was
replicated across two different liver phenotypes, abscessed and normal, to use a total of 32 ani-
mal samples. Planned contributions of animals to sub-pools ranged for 10 to 40 % and animal
contributions to super pools ranged from 1 to 16 % (Table A2).

Our experimental design resulted in pools with a broad range of sample contributions
ranging from 1 to 40% (Figure 1; Tables A1 and A2). Furthermore, there was planned
proportionality in sample representation that was constant between sub-pools and super
pools, allowing us to evaluate the stability of proportionality estimates at different dilu-
tions. Discrepancy from proportionality would indicate instability of pool composition,
changes in real animal proportions over time, or technical error. Realized or observed
animal contributions were estimated from Illumina θ [8]. Illumina θ for super pools and
sub-pools was computed by 2 * tan−1(Y/X)/π where X is the red intensity identifying
the ‘A’ allele and Y is the green intensity representing the ‘B’ allele, using the Illumina
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AB nomenclature [8]. We term pooling error sources as ‘pool construction’ (estimated
DNA quantity does not match planned quantity), ‘technical error’ (caused by variation
in Illumina θ within genotype or pools with the same animal representation or replicated
arrays of the same pool construction), and error in estimating animal contributions. All
32 animals, eight sub-pools, and four super pools were genotyped using the Illumina
BovineHD array (Illumina, Inc., San Diego, CA, USA) by Neogen Corporation (Lincoln,
NE, USA).

Statistical analysis: For each sub-pool and super pool, we estimated the contribution
of each of the 32 animals in the eight sub-pools (four animals that contribute to each
sub-pool) and four super pools (16 animals in each) using quadratic programming to
minimize the residual sums of squares, subject to the constraints that the estimated animal
contributions were positive and summed to 1, using the solve.QP() within contributed
package quadprog in R [9,10] with Illumina θ for super pool or sub-pool as the dependent
variable and genotype (number of copies of B allele)/2 as the independent variable.

Theoretically, pool construction error should be greater for larger planned animal
contributions compared to smaller planned animal contributions based on the Dirichlet
distribution, which is commonly assumed for the probabilities underlying the multino-
mial distribution. We tested for equality of variance in pool construction error among
groups of planned contributions using a Levene type test, which is robust to deviations
from normality [11] using the levene test function in R [10]. There were four unique
values among animal contributions to sub-pools and nine unique values among animal
contributions to super pools. The Levene test requires greater replication within planned
contribution level than our experiment allowed to achieve adequate power to detect dif-
ferences in pool construction variance. In our analysis, we clustered similarly planned
comparisons to overcome the small number of replicates within planned comparison
level (Table A3) and looked at sensitivity to the level of granularity or aggregation to
evaluate the robustness of our results. We used default parameters with the exception
of correction.method = “zero.correction”, kruskal.test = TRUE, bootstrap = TRUE, and
num.bootstrap = 100,000, which implemented a bootstrap rank-based (Kruskal-Wallis)
modified robust Brown-Forsythe Levene-type test based on the absolute deviations from
the median with modified structural zero removal method and correction factor.

We evaluated technical error as influenced by the number of SNP by subsampling all
777,962 SNP without replacement, computing animal contributions for each subsample,
estimating the standard deviation for each animal across subsample, and averaging the
result across sub-pools and super pools within the number of subsamples. The number of
subsamples and SNP per subsample are in Table 1.

Table 1. Standard deviation among technical errors for animals contributions estimated by bootstrap-
ping sub-samples of SNP; sampled without replacement 1.

Number of SNP Samples Number of SNP per Sample Mean SD

3000 259 0.01960
2000 388 0.01610
1000 777 0.01140
100 7779 0.00360
50 15,559 0.00260
40 19,449 0.00230
30 25,932 0.00190
20 38,898 0.00160
10 77,962 0.00110

5 155,592 0.00069
1 Standard deviation among SNP samples averaged over 4 super pools and 8 sub-pools.

To evaluate the consistency of proportionality between sub-pools and super pools, we
regressed animal contribution to the super pool on animal contribution to the sub-pool.
If the r2 from this analysis is high, then there is a strong proportionality between animal
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contributions to sub-pools and super pools, and the estimated contribution of each animal
is not affected much by being diluted in a pool of additional animals.

We estimated haplotypes without pedigree using Beagle version 5.2 [12] and hap-ibd
version 1.0 [13] to identify shared identity by descent segments among the 32 liver samples
plus hapmap animals [14].

Breed composition of the 32 liver samples was estimated using a multiple regression
method [15], with the exception that we constrained the breed contributions to sum to 1
and be ≥ 0 using quadratic programming [10], and the breed SNP frequency reference data
were derived from BovineHD 770 k data for multiple diverse breeds [14].

3. Results

The raw data produced in this study have been uploaded to Ag Data Commons (see
Data Availability Statement).

3.1. Pool Construction Error

Pool construction error was 6.3-times greater when creating super pools from extracted
sub-pools based on DNA concentration measurements compared to creating sub-pools
from individual animals based on liver tissue mass (p < 0.045); variance for forming
super pools from sub-pools was 0.0163 compared to 0.0026 when forming sub-pools from
individual animals.

Pool construction error variation increased with the level of planned animal contribu-
tion, both within and between super pools and sub-pools (Figure 2; Table 2). Variation in
pool construction error increased with larger planned contributions. Equality of variances
was rejected for course and intermediate granularity (p < 0.0154; Table 2). At the finest level
of granularity possible, equality of variance among distinct planned contributions was
not rejected (p = 0.121), demonstrating the need to cluster planned contributions into bins
to achieve sufficient replication within the bin of similar planned contributions to detect
differences in variance. Significant results for rejecting equality of variance occurred for five
levels of granularity, supporting the hypothesis that increasing variance with increasing
planned contribution was not simply a function of lucky placement of bin boundaries.

Table 2. Testing equality of variance for pool construction error; granularity of tests.

Number of Levels of Granularity

Pool Type Planned Contribution n 1 2 3 4 5 6

Super pool 0.01 4 1 1 1 1 1
Super pool 0.02 8 1 1 1 1 1
Super pool 0.03 8 1 1 1 1 2
Super pool 0.04 12 1 1 2 2 2
Super pool 0.06 8 1 2 2 2 3
Super pool 0.08 8 1 2 2 3 3
Super pool 0.09 4 2 2 3 3 4
Sub-pool 0.10 8 2 2 3 3 4

Super pool 0.12 8 2 3 3 4 4
Super pool 0.16 4 2 3 3 4 5
Sub-pool 0.20 8 2 3 4 5 5
Sub-pool 0.30 8 2 3 4 5 6
Sub-pool 0.40 8 2 3 4 5 6
p-value 0.0012 0.0056 0.0054 0.0098 0.0154

1 n is the number of planned contributions per distinct value for super pools or sub-pools. The sum of the n
column is 96 which is the total number of planned comparisons in all 4 super pools and 8 sub-pools.
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Figure 2. Pool construction errors are deviations of observed animal contributions from planned
contributions for super and sub-pools. The solid black line depicts where observed and planned
animal contributions are equal. Observed animal contributions were estimated by quadratic pro-
gramming [9] minimizing error sums of squares subject to animal contributions summing to 1 and
animal contributions ≥0. In legends, sub-pools or super pools starting with A or N are from cattle
with liver abscess or normal livers, respectively.

3.2. Technical Error

In this section we characterize where technical error originates at the individual SNP
level and evaluate the impact of individual SNP variation in Illumina θ on multiple SNP
estimates of animal contribution to a pool. Mean Illumina θ was obtained from approx-
imately 500 cattle of diverse ancestry by Illumina [16]. Technical error at the individual
SNP level varied both within and between SNP, and the between SNP differences were
consistent with differences in mean Illumina θ for heterozygotes [17] (Figure 3).

Technical error of estimated animal contributions for random samples of SNP de-
creased with increasing numbers of SNP per sample (Table 2).

3.3. Proportionality of Animal Contributions Conserved with Dilution

Estimated animal contributions to super pools were proportional to the contribution
of the same animal to the sub-pool even though any given animal was diluted to different
extents in the two super pools they were in (each animal was in one sub-pool and two
super pools); linear regression of the super pool observed contribution on the sub-pool
observed contribution yielded r2 = 0.99 for super pool abscess 1, 0.98 for super pool abscess
2, 0.96 for super pool normal 1 and 0.99 for super pool normal 2.

3.4. Identity by Descent Sharing

Haplotypes within animals in sub-pools or super pools share identity by descent (IBD)
with at least one animal not in a sub-pool or super pool for 85 to 95% of their genome. Each
haplotype within each sub-pool was checked for shared IBD with 1492 haplotypes outside
the sub-pool; two haplotypes for each of the 746 animals, comprising 718 animals from [14],
32 animals from the current study, minus four animals in each sub-pool. Each haplotype
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within each super pool was checked for shared IBD with 1468 haplotypes outside the
super pool; two haplotypes for each of the 734 animals, comprising 718 animals from [14],
32 animals from the current study minus 16 animals in each super pool.

To further evaluate the structure of our population, we estimated breed composition
of the liver samples using a regression analysis similar to [15], with the exception that we
used BovineHD 770k data from [14]. One animal was a mix of Holstein and Jersey, four
were crossbred beef females, and 27 were purebred Holstein. Hence, our assumption prior
to analysis that all 32 animals were Holstein steers proved to be incorrect.

Figure 3. Technical error expressed as deviations of observed pooling allele frequency from allele
frequency. All vertical and horizontal coordinates in this figure range from 0 to 1. Pooling allele
frequency was estimated as Illumina θ = 2 * tan−1(Y/X)/π in this study where Y/X is the allelic
ratio for green/red intensity for both pools and individuals. Considering pooling allele frequency
for individuals is not ridiculous, because individuals are technically a pool of two haplotypes
with equal representation. Technical error varies within and between SNP, and we present four
examples, (a–d). (a) Pooling allele frequency was low compared to allele frequency for both pools
and heterozygotes which was consistent with low mean Illumina θ for heterozygotes (depicted A/B
in figure legend. (b) Pooling allele frequency and mean heterozygote Illumina θ were high compared
to allele frequency. (c,d) Pooling allele frequency and mean heterozygote Illumina θ were similar to
allele frequency.

4. Discussion

Pool construction error increased with planned animal contribution (p ≤ 0.0154),
which implies that pool construction error decreases with an increasing numbers of animals
equally represented in a pool, because planned contribution is the reciprocal of the number
of animals equally represented. Based on these results, we recommend more animals per
pool, as also supported by previous literature [18].

Technical error in animal contributions decreases as more SNP are used to estimate
animal contribution, which is consistent with the Central Limit Theorem coming into play
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and reducing technical error in estimating animal contributions as more SNP are included in
the computation. An implication of this result is that we can accurately estimate haplotype
contributions within a chromosomal region if there are adequate numbers of SNP within
the region.

The four animals in each sub-pool are each represented in two super pools at two
different dilutions. The proportion of the animals in the sub-pool were strongly correlated
with the proportion in the two super pools regardless of the dilution; furthermore, the
two dilutions in the super pools were strongly correlated. This finding suggests that pools
of animals with extreme phenotypes from different breeds can be combined into larger
pools to save money. Similarly, pools of animals with extreme phenotypes from different
seasons, pens within a feedlot, feedlots, and pastures can be combined. Commercial feedlot
cattle being collected from a packing plant are generally comprised of multiple breeds
and crossbreeds, and phenotypically extreme animals in a particular pen of animals is
likely to contain more than one breed; indeed, in most circumstances we do not know the
breed makeup when we are processing the samples into pools. The phenotypic extremes
of animals within a particular pen may not comprise of very many animals. For example,
the top 5% of 200 animals in a pen is only 10 animals. Combining animals with extreme
phenotypes from 10 pens to make one pool of 100 animals results in a savings of 90%
relative to genotyping 10 pools with 10 animals each.

Although not typically thought of this way, the number of copies of a B allele for an
individual divided by two is the allele frequency of two haplotypes in the individual, one
of maternal and the other of paternal origin. When we regress Illumina θ for a pool of
genotypes for individuals, we are estimating the representation of pools of two haplotypes
in a larger pool context. If phenotypically extreme animals in the pool share chromosomal
regions IBD with other animals not in the pool, then the distribution of haplotypes of
animals not in the pool can be accurately estimated, and those haplotype contributions
can be used to inform the estimated breeding value of other animals with shared IBD
through the IBD sharing. Using 718 animals from 18 diverse breeds, we found that all
32 animals in our pools each shared between 85 and 95 % of their genomes in IBD with
at least one reference haplotype from 746 or 734 animals not in the pool representing
multiple diverse breeds. This demonstrates that reference haplotypes from approximately
750 diverse animals (1500 haplotypes) is sufficient to cover IBD for 85 to 95% of the genome
for a purebred Holstein or crossbred beef animal; it all hinges on whether the haplotypes
in the pool are covered by reference haplotypes, and they were in this case. It is unknown
whether the high coverage in this case was due to a small sample of Holstein haplotypes or
due to fairly large haplotype segments being ubiquitous across populations as a result of
historical natural and artificial selection or random drift [19,20].

5. Conclusions

Pool construction error decreases as more animals are incorporated into the pool;
hence, pools with more equally represented animals would be expected to have less
pool construction error, that is, the actual contribution would be closer to the planned
contribution compared to pools with fewer animals. Technical error decreases as more
SNP are used to estimate haplotype contributions. Similar proportionality of animal
contribution estimates in the sub-pool and after dilution to the super pool indicates that
animals with extreme phenotypes of different breeds can be mixed into larger pools to
save cost without much loss of information. Pools of phenotypically extreme animals can
inform genetic evaluation if there is IBD sharing between animals in the pool and selection
candidates outside the pool; hence, population distant IBD ensures the relevance of pools
of phenotypically extreme animals for the purpose of genetic evaluation.
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Appendix A

Planned sub-pool contributions to super pools are in Table A1 as depicted in Figure 1.
This design is replicated with sub-pools of animal with liver abscess or normal livers.

Table A1. Sub-pool contributions to super pools.

Super Pools

Sub-Pool 1 2

1 0.1 0.3
2 0.2 0.4
3 0.3 0.1
4 0.4 0.2

Planned animal contributions to super pools and sub-pools are in Table A2 for animals
with abscessed on normal livers based on Figure 1. The same design was applied to each
phenotype (abscessed or normal livers) with a different set of animals for each phenotype.

Table A2. Animal contributions to super pools and sub-pools.

Sub-Pools Super Pools

Animal 1 2 3 4 1 2

1 0.1 0.0 0.0 0.0 0.01 0.03
2 0.2 0.0 0.0 0.0 0.02 0.06
3 0.3 0.0 0.0 0.0 0.03 0.09
4 0.4 0.0 0.0 0.0 0.04 0.12
5 0.0 0.1 0.0 0.0 0.02 0.04
6 0.0 0.2 0.0 0.0 0.04 0.08
7 0.0 0.3 0.0 0.0 0.06 0.12
8 0.0 0.4 0.0 0.0 0.08 0.16
9 0.0 0.0 0.1 0.0 0.03 0.01
10 0.0 0.0 0.2 0.0 0.06 0.02
11 0.0 0.0 0.3 0.0 0.09 0.03
12 0.0 0.0 0.4 0.0 0.12 0.04
13 0.0 0.0 0.0 0.1 0.04 0.02
14 0.0 0.0 0.0 0.2 0.08 0.04
15 0.0 0.0 0.0 0.3 0.12 0.06
16 0.0 0.0 0.0 0.4 0.16 0.08
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Boundaries separating bins for planned contributions to enable testing for equality
of variance among levels of planned contributions are int Table A3. Granularity increases
with number of bins. The maximum number of bins would be the number of unique values
for planned contributions.

Table A3. Boundaries between bins for planned contribution bins.

Number of Bins

Item 1 2 3 4 5 6

Boundary 0.010 0.010 0.010 0.010 0.010
Label 1 1 1 1 1
Boundary 0.082 0.045 0.035 0.035 0.025
Label 2 2 2 2 2
Boundary 0.400 0.110 0.085 0.065 0.045
Label 3 3 3 3
Boundary 0.400 0.165 0.110 0.085
Label 4 4 4
Boundary 0.400 0.165 0.125
Label 5 5
Boundary 0.40 0.25
Label 6
Boundary 0.400

1 Items are either boundaries between bins or labels for bins.
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Abstract: Genomic selection is widely used in dairy cattle breeding, but still, single-step models
are rarely used in national dairy cattle evaluations. New computing methods have allowed the
utilization of very large genomic data sets. However, an unsolved model problem is how to build
genomic- (G) and pedigree- (A22) relationship matrices that satisfy the theoretical assumptions
about the same scale and equal base populations. Incompatibility issues have also been observed
in the manner in which the genetic groups are included in the model. In this study, we compared
three approaches for accounting for missing pedigree information: (1) GT_H used the full Quaas
and Pollak (QP) transformation for the genetic groups, including both the pedigree-based and
the genomic-relationship matrices, (2) GT_A22 used the partial QP transformation that omitted
QP transformation in G−1, and (3) GT_MF used the metafounder approach. In addition to the
genomic models, (4) an official animal model with a unknown parent groups (UPG) from the QP
transformation and (5) an animal model with the metafounder approach were used for comparison.
These models were tested with Nordic Holstein test-day production data and models. The test-day
data included 8.5 million cows with a total of 173.7 million records and 10.9 million animals in the
pedigree, and there were 274,145 genotyped animals. All models used VanRaden method 1 in G and
had a 30% residual polygenic proportion (RPG). The G matrices in GT_H and GT_A22 were scaled
to have an average diagonal equal to that of A22. Comparisons between the models were based on
Mendelian sampling terms and forward prediction validation using linear regression with solutions
from the full- and reduced-data evaluations. Models GT_H and GT_A22 gave very similar results in
terms of overprediction. The MF approach showed the lowest bias.

Keywords: ssGBLUP; ssGTBLUP; genomic evaluation; single-step; Holstein; genetic groups; metafounder

1. Introduction

Meuwissen et al. [1] introduced the genome-wide marker-assisted prediction model
called genomic selection. Many alternative prediction models have been developed to use
genomic selection in dairy cattle breeding [2]. Theoretically, the best model is single-step
genomic BLUP (ssGBLUP) when phenotypes are available from both genotyped and non-
genotyped individuals. The single-step approach offers a unified method for the analysis of
all animals simultaneously [3,4]. Even though a decade has passed since the introduction
of ssGBLUP, it is still not widely implemented in national dairy cattle evaluations.

Practical implementation of ssGBLUP has encountered different computational and
modeling challenges. Some of the computational challenges related to very large genomic
data sets can be overcome by using an alternative expression of the inverse genomic-
relationship matrix or a model equivalent to ssGBLUP [1,5,6]. However, an unsolved
modeling problem is how to build genomic- (G) and pedigree- (A22) relationship matrices
that satisfy the theoretical assumptions about the same scale and equal base populations [7].
Several methods were proposed that make G and A22 compatible. For example, base-
population allele frequencies (AF) are used [8], and elements of G are scaled and centered
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to have, on average, the same diagonal and off-diagonal elements as in A22 [7,9]. Similar
incompatibility issues were observed when genetic groups were included in the model [10].

Genetic groups can be included in a model as regression coefficients when the group
proportions of an individual are traced to groups of unknown parents in the pedigree [11].
When the number of genetic groups is small, it is easy to explicitly include such groups
in the model. However, this may lead to significant memory and computational costs
especially in complicated models having many genetic groups [10]. A computationally
more efficient approach with such models is to re-express genetic groups as unknown
parent groups (UPG) resulting from the Quaas and Pollak (QP) transformation [12,13].
After the QP transformation, the genetic groups, by regression, are replaced by UPGs that
extend the inverse-relationship matrix of all animals A−1 in the mixed-model equations
(MME) of the pedigree-based animal model.

The ssGBLUP uses relationship matrix H, which includes both pedigree-based and
genomic-based relationship matrix information. UPGs can be accounted for in many ways
in the MME of ssGBLUP. If UPGs are included in A−1 but not accounted for in A22

−1 and
G−1, severe convergence problems may arise, suggesting an incorrect model [14]. In many
cases, this problem can be solved by properly accounting for genetic groups. The full
QP transformation as described in [14,15] includes UPGs in A−1, A22

−1, and G−1 in the
MMEs of the single-step models. However, there is an alternative approach where the
contributions of G−1 are ignored in the QP transformation, or the altered QP H inverse is
used [16–18]. Ignoring G−1 in the QP transformation can be justified by considering that
the G matrix contains all the information, whereas the pedigree information to build the A

matrix is incomplete and requires a UPG.
An alternative to the genetic groups is the use of metafounders (MF). The MF approach

proposed by Legarra et al. [19] attempts to make the A−1 and A22
−1 matrices compatible

with the G matrix. The MF approach is based on the idea of using an allele frequency
(AF) equal to 0.5 for all the markers when calculating the G matrix [7]. The unknown
parents are replaced by MF or pseudo-individuals with relationships and self-relationships
that augment the A matrix. The MFs are like UPGs but allow a related base- population
or populations with nonzero inbreeding coefficients, e.g., as in [19,20]. The relationships
within and between the MFs are modeled by a Γ matrix, which is used in forming the
pedigree-based relationship matrix (AΓ).

When MFs are defined as the same as the genetic groups, the large number of UPGs
that are common in the breeding-value prediction models of dairy cattle can make the
estimation of the Γ matrix challenging [21]. Because the estimation of the Γ matrix re-
quires the base-population AF, the large number of UPGs increases the chances that a
UPG is associated with some rare allele genotypes, which can make the base-population
AF estimate very uncertain. Thus, instead of estimating the base-population AF for all
UPGs, a well-estimated Γ submatrix can be extended to a full Γ matrix using a covariance
function, [22] as suggested by Kudinov et al. [23].

The aim of this study was to test different options to handle genetic groups in single-
step models with the Nordic Holstein test-day (TD) data. We applied three different single-
step TD models: (1) UPG by full QP transformation (GT_H), (2) UPGs in A−1 and A22

−1 or
partial QP (GT_A22), and (3) the MF approach (GT_MF). In addition to the genomic models,
(4) an official pedigree-based animal model with a UPG by QP transformation and (5) a
pedigree-based animal model with the metafounder approach were run for comparison.

2. Materials and Methods

2.1. Data

We used the official Nordic Holstein (HOL) milk production evaluation data obtained
from the Nordic Cattle Genetic Evaluation (NAV). The data included TD records of milk,
fat, and protein production from Denmark (DNK), Finland (FIN), and Sweden (SWE). The
TD data included 8.8 million cows with a total of 173.7 million test-day records and a total
of 447.5 million observations. The pedigree file had 10.9 million animals.
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There were 274,145 genotyped animals, of which 75,802 were genotyped bulls (also
including Holstein bulls from the EuroGenomics genotype exchange (EuroGenomics, 2020)
and young bull calves), and 198,343 genotyped cows and heifers. Until 2019, bulls were
genotyped using the BovineLD Bead Chip (Illumina, San Diego, CA, USA) (25% of all
genotyped) and cows with the Eurogenomics custom LD chip (51% of all genotyped). Since
2019, all animals have been genotyped using the Eurogenomics EG MD chip (24% of all
genotyped) [24]. After applying editing criteria for a minor allele frequency of 0.01 and
a locus average GenCall score of 0.60, a total of 46,342 SNP markers on the 29 bovine
autosomes were chosen for the analyses, and all the genotypes were imputed to this density.
Genotype imputation was carried out using a family-and-population-based approach
implemented in the FImpute program [25].

2.2. Models

Instead of the original ssGBLUP model using the H matrix, we used the ssGTBLUP
approach in the computations. The ssGTBLUP approach allows the key computations
involving the G−1 matrix to be replaced by efficient multiplications with a Woodbury
matrix identity [26]. Thus, a dense T matrix of size m by n is used instead of the dense
G−1 matrix of size n by n, where n is the number of genotyped animals and m is the
number of SNP markers. Three different single-step models named GT_H, GT_A22, and
MF were used in the comparisons. In all models, the genomic-relationship matrix was as in
VanRaden method 1 and included 30% residual polygenic proportion (RPG) and an AF of
0.5 for all markers. Earlier studies indicated that 30% RPG reduces the inflation of genomic
evaluations more than models with smaller or larger RPGs (unpublished data). In the GT_H
model, full QP transformation of genetic groups for A−1 and A22

−1 and G−1 was used.
The computations by ssGTBLUP were described in Koivula et al. [15]. In GT_A22, the QP
transformation was applied to A−1 and A22

−1. The QP part for A22 can be completed with
an equivalent sparse formulation by reading the pedigree and including UPGs in the A22 as
described in Koivula et al. [15]. In GT_MF, the metafounder approach was used. In addition
to the single-step models, an animal model with UPGs by QP transformation (EBV) and
an animal model with metafounders (EBV_MF) were used for comparison and to observe
the changes in predictions due to genomic information only. The pedigree inbreeding
coefficients were accounted for in A−1 and A22

−1, and in GT_MF, inbreeding coefficients
were accounted for in corresponding inverse matrices AΓ and A22

Γ. The G matrices in
GT_H and GT_A22 were scaled to have an average diagonal equal to the pedigree-based
relationship matrix of the genotyped animals (A22).

Genetic groups and MFs were defined by the same logic. First, we defined fewer
genetic groups than in the original NAV evaluation. The new groups were based on
4 breed groups (Holstein, red dairy cattle, Jersey, and ‘other breeds’) and 5 country-of-
origin groups within the Holstein group (HOLDNK, HOLSWE, HOLFIN, HOLother, and
HOLred). Second, each of these nine sources was further grouped by birth year decade
and by selection path when appropriate. Thus, the original 446 groups were reduced to
176. These groups were considered random UPGs with variances equal to the genetic
(co)variance in GT_H, GT _A22, and EBV. The 176 groups were used as metafounders in
GT_MF and EBV_MF.

The MF approach needs a covariance matrix for the metafounders, i.e., the Γ matrix.
The MF self-relationship matrix Γ was defined using a covariance function (CF) model [22].
The Γ0 matrix of nine base MFs used values from [21]. In the 176 groups, a breed-specific
linear time trend of a decade was assumed in the self-relationships, which were estimated
using the base Γ0 matrix in the CF model. The known regression coefficients and design
matrices in the CF model allow describing Γ matrices of any size, such as for our 176 groups,
Γ176 = Φ176KΦ176

′. We chose heuristic values for K based on expectations from numerous
descriptive analyses. For more formal analyses, see Kudinov et al. [23]. After solving
the Γ176-matrix, we computed the Γ-matrix-compliant inbreeding coefficients needed for
the computations involving the inverses AΓ and A22

Γ when solving MMEs. As the MF
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approach changes the relationship structure, Legarra et al. [19] derived a correction factor
to be used to change the unrelated base-population-variance components to related base-
population components. For our derived Γ matrix, the correction factor was close to one.
Therefore, the same genetic-variance components were used in all models.

The study used the Nordic multiple-trait, reduced-rank, random regression TD model
from the routine genetic evaluations for milk, fat, and protein in Finland, Sweden, and
Denmark (a detailed description of the model can be found in Lidauer et al. [27]). Pro-
duction records from the first three lactations are considered as nine different traits, with
each having its own lactation curve. Therefore, the model had 27 traits in total: 3 countries,
3 yield traits, and 3 lactations. In this-reduced rank random regression TD model, each
animal received 15 solutions to the random regression effects in the same way as in the
official NAV evaluations. The TD-model solutions of genetic random regression coefficients
were used to compile the total yields for milk, protein, and fat for the 305 d lactation [27]
where the first, second, and third lactations had weights of 0.3, 0.25, and 0.45, respectively.

Comparison of models was based on forward prediction validation with solutions
from the full- and the reduced-data evaluations. The reduced data were extracted from
the full data by removing the last four years of observations from the full data. The linear
regression validation (LR) method [28] was used for validation. The LR method compares
predictions based on reduced and full data, which results in estimates of accuracy and bias.
Candidate animals in the validation were selected according to their effective daughter
contributions (EDC). Danish, Finnish, and Swedish (DFS) Holstein bulls born between
the years 2010 and 2016 and having their EBV based on an EDC ≥ 3.0 (corresponding
to roughly 20 daughters) in the full-data set but an EDC of zero in the reduced-data set
were defined as candidate bulls. This resulted in 524 candidate bulls for validation. The
EDCs were calculated using the Interbull-EDC method tailored for the animal model by
the ApaX99-program [29] for all bulls in the pedigree using both the full and the reduced
data sets.

All MMEs of the TD models were solved by MiX99 software [30], which uses pre-
conditioned conjugate gradient (PCG) iteration. The main computational cost in every
iteration of the PCG method was due to the MME coefficient matrix times a vector product,
where the most time-consuming computations were due to genomic information. To save
memory and computing time, the inverse of the A22 matrix was not computed in advance,
but instead, the computations used the method by Strandén et al. [31], which is based on
sparse submatrices of A−1 by pedigree information. The PCG method was assumed to
be converged when Cr < 10−7, where Cr is defined as a Euclidean norm of the difference
between the right-hand side (RHS) of the MME and the one predicted by the current
solutions relative to the norm of RHS.

3. Results and Discussion

Average diagonal elements of the A22, A22
Γ176, and G by birth year of genotyped

animals are presented in Figure 1. The use of the Γ176 matrix lifted the diagonal elements
of the A22 matrix close to those of the G matrix. Average inbreeding coefficients in A22
and G were 0.05 and 0.34, respectively. The difference is close to those reported earlier by
VanRaden et al. [32] and Kudinov et al. [21]. The average inbreeding coefficient increased
to 0.29 in A22

Γ176.
Wall clock times for preprocessing and solving MMEs are given in Table 1. The

preprocessing, i.e., the computing time and the peak memory used in the construction
of the T matrix for the G−1 matrix computations, did not differ considerably between
the single-step models. For the MF model, there was an additional step of building the
self-relationship matrix Γ. However, this step only marginally increased the total time.
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Figure 1. Average diagonal elements of the pedigree-relationship matrix of the genotyped animals
(A22), the genomic-relationship matrix constructed assuming that all allele frequencies were 0.5 (G),
and the pedigree-relationship matrix of the genotyped animals augmented by Γ176 (A22

Γ176) presented
by the birth year of the animal.

The number of PCG iterations to solve (G)EBV was 1227 for the animal model (EBV)
and 1264 for the animal model with metafounders (EBV_MF). The total solving time to
calculate EBV_MF was longer than for the animal model with UPGs by the QP transfor-
mation. Of the single-step models, GT_H with full QP needed 1019 iteration rounds for
convergence, GT_A22 with QP only in A−1 and A22 needed 1051 iteration rounds, and
GT_MF with metafounders needed 1307 iteration rounds. Thus, the MF model required
more iterations. However, because the time per iteration round in the GT_MF model was
less than that in the GT_H and GT_A22 models, the total computing time by GT_MF was
lowest among the single-step models. Compared with the pedigree-based animal models,
the single-step models required about 40–50% more time to calculate the solutions using
the PCG iteration.

Table 1. Computing time (wall clock time in hours) and peak memory use (in GB) for an animal
model with UPGs (EBV), an animal model with metafounders (EBV_MF), and different single-step
models. The single-step models had unknown parent groups (UPG) with full QP (GT_H), UPGs with
partial QP (GT_A22), and metafounders (GT_MF). Convergence was assumed when Cr < 10−7 (the
norm of relative error in predicted RHS of MME).

EBV EBV_MF GT_H GT_A22 GT_MF

Building T matrix time (h) 23 20 20
Peak memory GB 208 207 207

Solving
Iterations 1227 1264 1019 1051 1307

Seconds/PCG round 101 125 173 178 125
Time (h) 34 44 49 52 45

Peak memory GB 14.9 15.0 114.5 114.3 114.5
Total computing time (h) 34 44 72 72 65

Table 2 illustrates the LR-validation results from the different models for 524 DFS
Holstein validation bulls. The level differences in the (G)EBV predictions were corrected
by standardizing the (G)EBV so that the mean (G)EBV for cows born in 2007 was the
same in all models. The b0 column in Table 1 shows the mean difference (in kg) between
the full- and reduced-data (G)EBV evaluations. This illustrates the realized bias. GT_MF
showed a slightly smaller difference than the UPG models. The regression coefficients (b1)
showed the same trend as b0. The largest b1, i.e., the smallest overdispersion, was observed
for GT_MF for all traits. Although there were no large differences in the coefficients of
correlation (R2) between the models, GT_MF had the highest R2 values. The R2 from
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the LR validation can be interpreted as a reciprocal of the increase in reliability from the
reduced-data evaluations to the full-data evaluations. Thus, the results indicate that, both
in terms of bias and reliability, the MF model was slightly better than the other models.
This conclusion is similar to that of other studies where the use of the MF model improved
the single-step evaluations, e.g., [17,18]. Similarly, the MF approach seems to give better
b1 and R2 values than the UPG model for the animal model without genomic information.
Our results indicate that when the QP transformation is used, GT_H is as practical an
alternative as GT_A22. This result is different from the results from other studies [16,18],
where GT_A22, which was called altered H-inverse, had better predictive abilities than the
full QP model GT_H.

Table 2. Bull linear regression validation (number of bulls = 524) results. Regression coefficients (b1)
and coefficients of correlation (R2) from the models. The b0 = mean (Full_(G)EBV—reduced_(G)EBV).
The different models are an animal model with UPGs (EBV), an animal model with metafounders
(EBV_MF), and different single-step models. The single-step models used UPGs with full QP (GT_H),
UPGs with partial QP (GT_A22), and metafounders (GT_MF).

Model b0 b1 R2

Milk

EBV −101.7 0.84 0.32
EBV_MF −141.36 0.89 0.35

GT_H −319.8 0.87 0.67
GT_A22 −315.2 0.87 0.67
GT_MF −272.3 0.89 0.68

Protein

EBV 0.80 0.74 0.24
EBV_MF 0.58 0.82 0.27

GT_H −11.10 0.81 0.63
GT_A22 −10.99 0.81 0.62
GT_MF −9.71 0.83 0.64

Fat

EBV −2.18 0.73 0.23
EBV_MF −2.24 0.80 0.26

GT_H −16.16 0.82 0.64
GT_A22 −15.61 0.81 0.63
GT_MF −14.67 0.85 0.65

In a genomic-selection program, the genomic pre-selection of bull calves [9,32] conflicts
with the usual assumptions in the pedigree-based evaluations, which do not use genomic
information. The pre-selected bulls are no longer a random sample of the progeny of their
parents. This leads to an inflated mean for Mendelian sampling (MS) terms for these bulls
and to a violation of normal assumptions in the pedigree-based animal model. Additionally,
the MS term for the genotyped animals is likely to be different from zero with selective
genotyping. In contrast, MS is expected to be zero when genotyping involves all young
animals or is random.

Genomic selection allows selecting animals with superior MS. Consequently, the mean
GEBV of all candidate animals is lower than for selected animals and their progeny [33]. The
selected animals with many genotyped progenies are also more likely to have MS greater
than zero [34]. The larger MS has an impact on genetic trends when animals are selected
based on genomic information, especially if the selection happens before phenotypes are
recorded [35].

Figure 2 shows the mean MS of genotyped bulls by birth year for protein using the
reduced-data GEBV. Means are for DFS bulls and include all genotyped young bulls, those
without daughters, and those that never entered AI service. In the reduced-data model, the
bulls born after 2011 only have genomic information. There were no significant differences
in the mean MS terms between the single-step models. The figure shows that for the
youngest age classes, the difference is about 4 kg for different single-step models, whereas
in both animal models, the MS term is zero, as expected. Before the start of genomic
selection, the mean MS terms were quite stable. The mean MS was presumably below zero
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because of the overprediction of bull dam EBVs. After genomic selection began to take
effect, the mean MS also started to increase. In animal models, both approaches seem to
give zero MS for the youngest age classes, but in the older bulls, the MS term in EBV_MF
was not as negative as in the other models.

 

Figure 2. Mendelian sampling term means for protein for all genotyped DFS bulls by birth year
calculated from (G)EBV from the reduced data. The different models are animal model (EBV), animal
model with metafounders (EBV_MF), and three different single-step models by ssGTBLUP. The
single-step models had unknown parent groups (UPG) with full QP (GT_H), UPGs with partial QP
(GT_A22), and metafounders (GT_MF).

Figure 3 shows the genetic trend and yearly SD of protein (G)EBV for DFS Holstein
bulls. Solid lines are from the full-data runs and dashed lines from the reduced-data runs.
Except for the lower trend for animal-model EBVs, the trends from the single-step models
were quite similar. However, for the MF model in the reduced-data set, the trend was
slightly lower than in the other single-step models, indicating lower overprediction in the
MF model compared with the UPG models. The same can be observed in estimates of b0 in
Table 2. The genetic trends in the official animal model (EBV) and the animal model using
the MF approach (MF_EBV) were similar, as were their SD trends.

Based on all our comparisons, it seems that the traditional genetic group model and the
MF model are both feasible options for handling genetic groups in single-step evaluations.
The single-step MF model can be a more sophisticated way to combine pedigree and
genomic information than the traditional single-step model with UPGs because genomic
information affects both the genomic- and the pedigree-based relationship matrices in the
MF model. Moreover, it seems that the MF model does not increase the trend of young,
genotyped animals as much as the UPG-based single-step methods. The MF model also
gives marginally better validation results compared with the other models. However, the
current MF approach might still require some further development in building the Γ matrix.
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Figure 3. (A) Genetic trends for protein (G)EBV (kg) for the bulls presented by birth year averages.
(B) SD for protein (G)EBVs (kg) by birth year. The different models are animal model (EBV), animal
model with metafounders (EBV_MF), and three different single-step models by ssGTBLUP. The single-
step model had UPGs with full QP (GT_H), UPGs with partial QP (GT_A22), and metafounders
(GT_MF). Solid lines are means and SDs for full-data trends, and dashed lines are for reduced-
data trends.

4. Conclusions

Both the traditional UPG models and the MF approach can be implemented efficiently
in single-step models with large genomic data sets. In our study, the MF approach had
a lower bias than the UPG models. Moreover, when the QP transformation was used to
arrive at a UPG model, the results from the full QP transformation were similar to the
partial QP transformation in which the G−1 contributions were not included in the UPG
computations. The mean MS by birth year was positive for the genotyped bulls during
the last decade according to the single-step models but close to zero in the pedigree-based
animal model. Selective genotyping can explain some of the positive mean MS values, but
the most recent years need further investigation.
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Abstract: The bursa of Fabricius (BF) is a target organ for various pathogenic microorganisms;
however, the genes that regulate BF development and decline have not been fully characterized.
Therefore, in this study, histological sections of the BF were obtained from black-boned chickens at
7 (N7), 42 (N42), 90 (N90) and 120 days (N120) of age, and the differential expression and expression
trends of the BF at different stages were analyzed by transcriptome analysis. The results showed
that the growth of the BF progressively matured with age, followed by gradual shrinkage and disap-
pearance. Transcriptome differential analysis revealed 5914, 5513, 4575, 577, 530 and 66 differentially
expressed genes (DEG) in six different comparison groups: N7 vs. N42, N7 vs. N90, N7 vs. N120,
N42 vs. N90, N42 vs. N120 and N90 vs. N120, respectively. Moreover, we performed transcriptomic
analysis of the time series of BF development and identified the corresponding stages of biological
process enrichment. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) was used
to validate the expression of the 16 DEGs during bursal growth and development. These results
were consistent with the transcriptome results, indicating that they reflect the expression of the BF
during growth and development and that these genes reflect the characteristics of the BF at different
times of development and decline. These findings reflect the characteristics of the BF at different
time intervals.

Keywords: bursa of Fabricius; development; degradation; chicken; transcriptomic analysis

1. Introduction

The bursa is the central organ of humoral immunity in birds and is a target organ for
a variety of pathogenic microorganisms. The bursa is a unique immune tissue in birds
that secretes immune cells (B lymphocytes) to produce specific antibodies and complete
a specific immune response. In most poultry production, the bursa is mainly affected by
immune diseases (e.g., Infectious Bursal Disease (IBD), Malignant Disease (MD), Avian
Leukemia, etc.), resulting in a decrease in the immune status of the bird, which may even
lead to the death of the bird as a result of the immune disease [1,2]. The BF was first
discovered in 1621 by Italian anatomist Hieronymus Fabricius [3,4]. For a long time, it
was thought that the BF was an organ associated with reproduction, until 1956, when
Glick [5] discovered that it is a gut-associated lymphoid tissue with immune functions.
As a primary immune organ, the BF provides the microenvironment necessary for the
development and maturation of B cells in birds [6]. In both humans and mice, B-cell
development occurs in the bone marrow. Bird B-cells develop in the BF, a unique organ
located dorsal to the cloaca in birds [7] that is critical to early B-lymphocyte proliferation
and differentiation [8–10]. Additionally, the BF contains a variety of polypeptides that
improve both innate and acquired immune responses. The body’s immunological response
is a requirement for normal BF growth [11].

The BF originates from hematopoietic stem cells [12], appears in the embryo, develops
at a young age, reaches a peak of development at sexual maturity and then gradually
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degenerates until it disappear [13]. For example, in chickens, at approximately 8 day after
embryonic development, the BF forms and B cells colonize it. Approximately 1 week after
emergence, the medulla of the BF begins to proliferate. Until approximately 30 day of
age, lymphocytes begin to transfer in large numbers to the peripheral lymphoid organs to
perform their immune functions. The growth of the BF reaches its peak at approximately
60 day of age, and the adult BF is atrophied and the lymphocytes in the follicular medulla
are largely empty at 130 day of age. In contrast to the biological process of growth and
maturation followed by organ failure in many organisms, the BF naturally atrophies after
maturation in the absence of pathology until it disappears. It is thought that BF degen-
eration is related to the apoptosis of lymphocytes and secretion of hormones after sexual
maturation in birds [14]. To date, the molecular mechanisms underlying BF degeneration
are poorly understood.

Most current research on the BF has focused on the relationship between avian diseases,
attack toxins, and organs at the phenological and molecular levels, along with a small
number of studies on the BF morphology. However, the immune function of the BF is
closely related to its structural development, and apoptosis of the BF leads to the destruction
of immune function and causes immune deficiency in the animal, which is detrimental to
the economic efficiency and healthy development of poultry farming. Therefore, in order
to fill the gaps in previous studies on the molecular mechanisms of BF degeneration, we
performed transcriptomic analyses of the early developmental period (N7), the middle
developmental period (N42), the peak developmental period, the early degeneration period
(N90) and the late degeneration period (N120) of BFs to determine the changes in gene
expression during the differentiation to atrophy of BF. The degenerative process of BF was
dissected from a structural developmental perspective, and the unique developmental
degenerative mechanisms of BFs were elucidated.

2. Materials and Methods

2.1. Ethics Statement

All samples were collected in accordance with the guidelines proposed by the China
Council on Animal Care and Ministry of Agriculture of the People’s Republic of China. The
study was approved by the Institutional Animal Care and Use Committee and the School
of Animal Experiments Ethics Committee (license number: SYXK [Su] IACUC 2012–0029)
of Yangzhou University.

2.2. Sampling

Jiuyuan Black chickens were obtained from the Laboratory of Poultry Genetic Re-
sources Evaluation and Germplasm Utilization at Yangzhou University. All test individuals
were hatched and raised under the same conditions. The chickens were sacrificed at 7, 42,
90 or 120 d by severing the jugular vein after anesthesia and were bled out for 5 min before
dissection. The BFs were quickly isolated, washed twice with fresh ice-cold phosphate-
buffered saline (PBS) and cut in half along the sagittal plane. One-half was fixed in 4%
paraformaldehyde and the other was stored in liquid nitrogen.

2.3. Histological Observation

After fixation in a 4% paraformaldehyde solution for 24 h at room temperature, the
BFs were trimmed, dehydrated with alcohol and embedded in paraffin. Then, 5 mm serial
sections were prepared and stained with hematoxylin and eosin. Sections were mounted
with neutral balsam and histopathological changes were observed and photographed under
a Nikon Eclipse 90i microscope (Nikon, Tokyo, Japan).

2.4. RNA Extraction, cDNA Library Preparation and RNA Sequencing (RNA-Seq)

The total RNA was extracted using the RNAprep Pure Tissue Kit (TianGen, Beijing,
China), according to the manufacturer’s protocol. RNA degradation and contamination
were visualized on 1% agarose gels, RNA purity was checked using a NanoPhotometer
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spectrophotometer (Implen, Munich, Germany) and concentrations were determined using
the Qubit RNA Assay Kit in a Qubit 2.0 Fluorometer (Life Technologies, Shanghai, China).
The total RNA was depleted of ribosomal RNA (rRNA) using the Epicentre Ribo-Zero rRNA
Removal Kit (Epicentre, Madison, WI, USA), and fragmented, purified and sequenced using
the Illumina HiSeq system (Illumina, Inc., San Diego, CA, USA). Briefly, the mRNA was
fragmented and strand cDNA synthesis was primed with random hexamers. After second-
strand cDNA synthesis, the transcripts were poly A-tailed for ligation of the sequencing
adaptors. The library fragments were size-selected for cDNA fragments 150–200 bp in
length, and the pool of cDNA libraries was sequenced by paired-end sequencing on the
Illumina HiSeq sequencer (Illumina, San Diego, CA, USA).

2.5. Bioinformatics Analysis

Bioinformatics analysis was performed on the OmicShare platform, a free online
platform for data analysis (https://www.omicshare.com/tools, accessed on 11 May 2022).
Raw reads were processed using Trimmomatic software. Reads containing poly-N and
low-quality reads were removed to obtain clean reads. The clean reads were mapped to
the Gallus gallus genome GRCg6a (https://asia.ensembl.org/Gallus_gallus/Info/Index,
accessed on 11 April 2022) using HISAT2 (version: 2.0.2-beta, Baltimore, MD, USA) soft-
ware [15]. Transcript abundances were determined using the fragments per kilobase of
transcript per million mapped reads (FPKM) values, and genes with FPKM values ≥ 0.1
were retained for further analysis. Differentially expressed genes (DEG) were identified
using DESeq2 (version: 3.15, http://www.bioconductor.org/packages/release/bioc/html/
DESeq2.html, accessed on 19 April 2022) [16]. Values of p < 0.05 and log2 (fold change) > 1.5
were set as the thresholds for significantly differential expression levels. Hierarchical cluster
analysis of the DEGs was performed to explore gene expression patterns.

2.6. Gene Expression Pattern Analysis

The Mfuzz R package was used to apply the fuzzy c-means algorithm to profile
rhythmic genes according to their expression patterns [17]. The average FPKM (fragments
per kilobase per million) value for each gene at different time points was clustered using
the Mfuzz package. After standardization, each gene was assigned to a unique cluster
according to its membership value. Additionally, ImpulseDE2, which is a Bioconductor R
package specifically designed for time series data, was employed in the case-only mode
to discern steadily increasing or decreasing expression trajectories from transiently up- or
downregulated genes (false discovery rate-adjusted p < 0.01) [18].

2.7. Functional Annotation

Gene Ontology (GO) enrichment analysis of DEGs was implemented using clusterPro-
filer 4.0, in which gene length bias was corrected [19]. GO terms with corrected p-values
less than 0.05 were considered significantly enriched among the DEGs. Additionally, we
used KOBAS software to test the statistical enrichment of DEGs in KEGG pathways [20].
The OmicShare platform was also used for REACTOME enrichment.

2.8. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

The total RNA was isolated using the RNAprep Pure Tissue Kit (TianGen, Beijing,
China), according to the manufacturer’s protocol. For quantification of gene expression,
qRT-PCR was conducted using One-step RT-qPCR kit (TianGen, Beijing, China). The
relative mRNA expression was quantified using the 2−ΔΔCT method. Beta-actin was used
as an internal control. All experiments were repeated thrice. The primers used for qRT-PCR
are listed in Table S1.
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2.9. Statistical Analysis

Data are expressed as the mean ± standard error (SE). Significance was determined
using one-way analysis of variance (ANOVA), as implemented in SPSS (version: 25, New
York, NY, USA) software. Differences were considered statistically significant at p < 0.05.

3. Results

3.1. Histomorphological Changes in the BF at Different Developmental Times

To determine the changes during BF development, histological observations were
performed at 7, 42, 90 and 120 d. The results show that the BFs at 7 d displayed thin and
empty reticular submucosa (Figure 1a). The number of smooth muscle cells in the muscle
layer was lower, the serosa was thinner, the volume of the lymph nodes was significantly
increased and the cells were closely arranged. At 42 d, the follicular cortex was obvious, the
boundary between the cortex and medulla was clear, and the medulla was well developed
and filled with lymphocytes (Figure 1b). At 90 d, the lymphoid follicles of the BFs were
trapped in the interstitium, the medullary lymphocytes decreased in number and the
cortical cell walls were dense (Figure 1c). At 120 d, the lymphoid follicles of the BFs
were trapped in the interstitium, and the medullary lymphocytes had almost disappeared
completely. Significant fibrosis was observed in the foam component (Figure 1d).

 

Figure 1. Histomorphological image of a BF at 4 different stages: 7 d (a), 42 d (b), 90 d (c) and
120 d (d). Magnification = 200×.

3.2. Sequencing Quality Analysis

To ensure the quality and reliability of the data analysis, the raw data were first filtered,
and then the reads with joints, reads containing N and low-quality reads were removed.
After filtering the original data, the sequencing error rate and GC content distribution were
determined. A total of 487,181,964 clean reads were obtained, accounting for 99.5% of the
raw reads. The data are summarized in Table S2. In the 12 samples, the proportion of
high-quality reads to original reads was greater than 97%, with 72.7 Gb of high-quality
reads, and the GC content per sample was greater than 49.81%. Thus, the reads obtained
were of high quality. High-quality reads with a quality score of Q20 exceeded 97.48%,
and those with Q30 exceeded 93.86%. These data revealed the sequencing quality of the
transcriptome. High-quality reads (high Q20 percentage) were selected from the 12 samples.
After quality control, clean reads were compared with the Gallus gallus genome GRCg6a.
HISAT2 (version: 2.0.2-beta, MD, USA) software was used to compare clean reads quickly
and accurately with the reference genome to obtain the locational information of the reads
on the reference genome. To calculate the respective mapping rates of read1 and read2, the
total read number was calculated as the sum of read1 and read2, which are shown as clean
reads in Table S2. A comparison between the samples and reference genomes is also shown
in Table S2.
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3.3. Identification and Functional Annotation of Differentially Expressed Genes (DEGs) during
BF Development

To determine the changes in gene expression during BF development, we compara-
tively analyzed the expression levels of genes at different developmental stages. A total
of 7605 DEGs were identified in six different comparison groups (N7 vs. N42, N7 vs.
N90, N7 vs. N120, N42 vs. N90, N42 vs. N120, N90 vs. N120). According to the results,
the number of DEGs tended to decrease as the BF developed. The numbers of DEGs for
N7 vs. N42, N90 and N120 were 5914 (3293 upregulated genes and 2621 downregulated
genes), 5513 (2852 and 2661) and 4575 (3004 and 1753), respectively (Figure 2a–c, Table S3).
The results of Upset (Figure 2g) showed that N7 and the other three time points shared
3375 DEGs, while the number of DEGs for N42 vs. N90 and N120 was 530 (178 upreg-
ulated and 352 downregulated genes) and 577 (343 and 234), respectively (Figure 2d,e,
Table S3). Moreover, 31 of these co-differentially expressed genes were in the N42, N90
and N120 comparison groups. Finally, we identified 66 DEGs (46 upregulated genes and
20 downregulated genes) in the N90 and N120 comparison groups (Figure 2f, Table S3). In
all comparison groups, only one DEG showed differential expression between all compari-
son groups (Figure 2g).

 

Figure 2. Volcano plot of differentially expressed genes (DEG) identified by comparison groups.
(a) D7 vs. D42; (b) D7 vs. D90, (c) D7 vs. D120, (d) D42 vs. D90, (e) D42 vs. D120, and (f) D90 vs. D120.
“Up” and “Down” indicate that the expression levels of the DEGs were significantly (FDR p < 0.05 and
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|log2FoldChange| > 1) higher and lower in the different comparison groups, respectively. “Nosig” in-
dicates that the expression levels of the genes are not significantly different in the different comparison
groups; (g) UpSet plot of the differentially expressed genes (DEGs) of RNA-Seq.

3.4. Functional Analysis of DEGs Using the GO Database

To investigate the functional associations of common DEGs, we performed GO
database analysis using the R clusterProfiler package. In the comparison group of N7
and the other three time points separately, we found that the cell cycle, chromosome,
supramolecular complex and chromosomal region were significantly enriched (Figure 3a–c,
Table S4). Thus, we suggest that at N7, BFs develop and the rapid development of lym-
phocytes during this period results in the formation of a complete BF structure. In the
comparison groups of N42, N90 and N120, the terms extracellular region, response to
endogenous stimulus and extracellular space were significantly enriched, respectively
(Figure 3d,e, Table S4). Additionally, in the N90 and N120 comparison groups, we found
that DEGs were significantly enriched in cell surface, external side of plasma membrane,
extracellular region, extracellular region part, extracellular space, lipase inhibitor activity,
phospholipase inhibitor activity, specific granule and other terms (Figure 3f, Table S4).

 

Figure 3. Dot plot of DEGs enriched by the GO database. (a) Dot plot of DEGs in the N7 vs. N42
comparison group; (b) dot plot of DEGs in the N7 vs. N90 comparison group; (c) dot plot of DEGs
in the N7 vs. N120 comparison group; (d) dot plot of DEGs in the N42 vs. N90 comparison group;
(e) dot plot of DEGs in the N42 and N120 comparison group; and (f) dot plot of DEGs in the N90 vs.
N120 comparison group.

3.5. Functional Analysis of DEGs Using the Kyoto Encyclopedia of Genes and Genomes
(KEGG) Database

To elucidate the pathways and metabolic pathways involved in DEGs in each com-
parator group, clusterProfiler was used for KEGG enrichment. Enrichment results based
on DEGs in the N7 and three other time point comparison groups showed that the cell
cycle, cellular senescence, focal adhesion, MAPK signaling pathway, AGE-RAGE signaling
pathway in diabetic complications, C-type lectin receptor signaling pathway and VEGF
signaling pathway were significantly enriched in tissue development-related pathways
(Figure 4a–c, Table S5). The differential genes N42, N90 and N120 were mainly enriched in
the relaxin signaling, cell adhesion molecules, ECM–receptor interaction, hematopoietic cell
lineage and other pathways (Figure 4d,e, Table S5). In addition, differential genes for N90
and N120 were significantly enriched in the rheumatoid arthritis, epithelial cell signaling
in Helicobacter pylori infection, NF-kappa B signaling, phagosome and phospholipase D
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signaling pathways (Figure 4f, Table S5). The IL-8, IGH and LBP, which are included in the
NF-kappa B signaling pathway, show upregulation in the later stages of bursal development.

 

Figure 4. Dot plots of DEGs enriched by KEGG. (a) Dot plot of DEGs in the N7 vs. N42 comparison
group; (b) dot plot of DEGs in the N7 vs. N90 comparison group; (c) dot plot of DEGs in the
N7 vs. N120 comparison group; (d) dot plot of DEGs in the N42 vs. N90 comparison group; (e) dot
plot of DEGs in the N42 vs. N120 comparison group; (f) dot plot of DEGs in the N90 vs. N120
comparison group.

3.6. Functional Analysis of DEGs Using the REACTOME Pathway

REACTOME enrichment analysis of the up- and downregulated DEGs from the N7
and the other three time point comparison groups revealed that the enriched pathways
were largely consistent with GO, with most of the upregulated genes involved in mitotic
prometaphase, mitotic metaphase and anaphase, resolution of sister chromatid cohesion
and other cell and tissue development-related pathways (Figure 5a–c, Table S6). The
DEGs identified in N42, N90 and N120 were mainly enriched in the extracellular matrix
organization, metabolism of angiotensinogen to angiotensins, activation of matrix metallo-
proteinases, degradation of the extracellular matrix and release of endostatin-like peptides
pathways (Figure 5d,e, Table S6). The DEGs identified by N90 and N120 were enriched in
the lactoferrin scavenges iron ions. BPI binds lipopolysaccharides (LPS) on the bacterial
surface, complement factor H binds to C3b, factor H displaces Bb in the Cb:Bb complex
and complement factor H binds to surface-bound C3b pathways. Factor H binds to the
host cell surface and other immune system-related pathways (Figure 5f, Table S6).

3.7. Gene Expression during Different BF Development Stages

To investigate the gene expression patterns during BF development, we performed
c-means clustering analysis for 24,357 expressed genes and generated 20 co-expression
clusters. Genes in the same cluster showed similar expression patterns. The genes in
clusters 1, 10, 3 and 6 were highly expressed at only one of the four developmental stages,
indicating that they might have specific functions at the corresponding stages (Figure 6a).
Moreover, to understand the kinetics of gene expression during BF development, we used
the ImpulseDE2 model to identify the differential expression of all expressed genes at the
four time points. This model produced results similar to the differential gene identification;
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the BFs tended to be similar over time, indicating that they were relatively more stable
during the later stages of development (Figure 6b).

 

Figure 5. Circular plot of DEGs enriched by REACTOME database analysis. (a) Circular plot of
DEGs in the N7 vs. N42 comparison group; (b) circular plot of DEGs in the N7 vs. N90 comparison
group; (c) circular plot of DEGs in the N7 vs. N120 comparison group; (d) circular plot of DEGs in
the N42 vs. N90 comparison group; (e) circular plot of DEGs in the N42 vs. N120 comparison group;
(f) circular plot for DEGs in the N90 vs. N120 comparison group.
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Figure 6. Transcriptome-wide time series cluster of DEGs. (a) Cluster analysis of DEGs based on
Mfuzz. (b) The dynamic changes in RNA sequencing (RNA-seq) are sequentially correlated.
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3.8. Validation of DEGs by QRT-PCR

To validate the accuracy of RNA-seq, we selected RT-PCR for 16 genes, of which
SPP1 [21–23], CTNNB1 [24], BMF [25,26], IL10 [27,28], TUBB3 [29], TUBA8 [30], TUBA3E [31],
LMNB2 [32,33], MYL9 [34,35], LITAF [36], CDH11 [37,38], MYBL1 [39] and TRAIL [40,41]
were shown to be significantly associated with cell proliferation and apoptosis. In addition,
BF2, B2M and BF1 are important members of the MHC, which has been shown to be sig-
nificantly associated with the immune competence of the organism [42–44]. The qRT-PCR
and RNA-seq results were consistent (Figure 7). Although the measured gene expression
patterns differed slightly from those obtained from transcriptome analysis, the trends were
essentially the same.

Figure 7. Expression levels of immune genes verified by both quantitative real-time polymerase
chain reaction (qRT-PCR) and RNA sequencing (RNA-seq).

4. Discussion

Understanding physiological changes in the development of the BF is an important
step in exploring its developmental process. In a previous study, the medullary lympho-
cytes of the BFs were largely empty at 4.5 months [13]. The results of this experiment
were in accordance with this; the medullary lymphocytes of the BFs were largely empty
at 120 d of age. In this study, observations of BF tissue at 7, 42, 90 and 120 d revealed the
developmental state of the BF at the four time points.

RNA-seq allows the rapid exploration of key genes associated with specific phenotypes
or important biological processes [45–48]. Therefore, RNA-seq was used in this study to
identify a large number of DEGs that play an important role in the regulation of cell
development during BF formation. The extracellular matrix (ECM) pathway plays an
important role in tissue and organ morphogenesis and in the maintenance of cellular
and tissue structure and function. The interaction of substances in the ECM signaling
pathway leads to the direct or indirect control of cellular activity [49,50]. Moreover, the
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MAPK signaling pathway plays an important role in B-cell development [51–54], along
with the Wnt signaling pathway [55]. Genes in the Wnt signaling pathway, including
Wnt protein, Frizzled (Fzd) receptor and lymphatic enhancer factor (LEF), have been
found to be highly expressed in the progenitor cells of B cells [56–58]. Additionally, Fzd-9
knockout mice exhibited a significant reduction in B cells [59]. In this study, the DEGs
of the transcriptome by time series revealed that the key signaling pathways involved
in cell growth, development and adhesion, such as the Wnt signaling pathway, MAPK
signaling pathway and ECM receptor interaction, were significantly enriched. In addition,
the category of cell cycle was significant enriched in the early stage of BF development. The
previous study showed that the relationship between cell cycle processes and development
is complex and characterized by interdependence. At the level of the individual cell,
this interrelationship has an impact on pattern formation and cell morphogenesis. At
the supracellular level, this interrelationship affects hyphal tissue function and organ
growth. In general, developmental signals not only guide cell cycle progression, but
also set the framework for cell cycle regulation by identifying cell type-specific cell cycle
patterns [60]. At the same time, the enrichment of differentially expressed genes showed
that the category of NF-kappa B pathway was significantly enriched in the later stages of
bursal development, a result that suggests that the NF-kappa B pathway plays an important
role in the degenerative stage of bursal development. Analysis of the genes in the NF-kappa
B pathway revealed that IL-8 [61,62], IGH and LBP [63–65] showed upregulated expression
in the later stages. In addition, the key cell cycle pathway related to development [66]
was significantly enriched in the comparison group at N7 compared to other time points,
demonstrating that the development of the BF predominantly occurs early in the bursa.

Interestingly, the expression levels of some genes, including SPP1, BMP, IL10, TUBB3
and MYL9, also appear to be different between the four BF development stages. Among
the DEGs, SPP1, which is a secreted protein, may mediate the expression of interferon and
interleukin-12 [67,68]. Moreover, SPP1, also known as early type 1 T lymphocyte activating
protein (ETA-1), may be involved in early BF development through the Toll-like receptor
signaling pathway [69,70]. Furthermore, we found that the MHC superfamily members
B2M, BF2 and BF1 are also differentially expressed during BF development; however, the
exact role they play in BF development requires further study.

The degeneration of the BF is gradually initiated after sexual maturation in birds and
is caused by the mature differentiation of B lymphocytes in the BF. SPP1, a gene involved
in early BF development, is mainly involved in BF development through the Toll-like
receptor signaling pathway [71,72]. It is involved in the regulation of BF development by
mediating the expression of interferon and interleukin-12 [73]. In this study, SPP1 was also
found to be involved in BF development, mainly through the Toll-like receptor signaling
pathway in the early stage of BF development. In addition, the BMF gene, a member of the
Bcl-2 family, is an important regulatory factor. The protein includes a BH3-only structural
domain, which binds to and releases the anti-apoptotic proteins Bax and Bak, which in turn
activate apoptosis [74]. In this study, we found that the expression of BMF continued to
increase as the developmental time progressed, and BMF may induce apoptosis in BF cells
by participating in the biological process of anoikis.

In conclusion, in this study, we observed the tissue structure of the BF at different
developmental stages at the tissue level and found that the growth of the BF showed
a process of gradual shrinkage after continued maturation with increasing age. Second,
transcriptomic analysis of the time sequences identified a series of genes associated with the
development and decline of the BF. However, the specific regulatory mechanisms require
further research, and this study lays the foundation for the development and decline of the
BF. Overall, this study elucidates the regulatory role of differential genes throughout the
process of BF development and atrophy and provides a theoretical basis for selecting more
immunocompetent birds through molecular breeding.
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Abstract: Circular RNAs (circRNAs) are capable of finely modulating gene expression at transcrip-
tional and post-transcriptional levels; however, their characters in dermal papilla cells (DPCs)—the
signaling center of hair follicle—are still obscure. Herein, we established a comprehensive atlas of
circRNAs in DPCs and their skin counterparts—dermal fibroblasts (DFs)—from cashmere goats. In
terms of the results, a sum of 3706 circRNAs were bioinformatically identified. Subsequent analysis
suggested that the detected transcripts exhibited several prominent genomic features, including exons
as their main sources. Compared with DFs, 76 circRNAs significantly displayed higher abundances in
goat DPCs, with 45 transcripts markedly exhibiting adverse trends (p < 0.05). Furthermore, potential
roles and underlying molecular mechanisms of circRNAs in goat DPCs were speculated through
constructing their possible regulatory networks with mRNAs and microRNAs (miRNAs). We found
that the circRNAs may serve as miRNA sponges to alleviate three hair growth-related functional
genes (HOXC8, RSPO1, and CCBE1) of DPCs from miRNAs-imposed post-transcriptional modulation,
further facilitating two critical processes (HOXC8 and RSPO1: hair follicle stem cell activation; CCBE1:
follicular angiogenesis) closely involved in hair growth. In addition, we also speculated that two
intron-derived circRNAs (chi_circ_0005569 and chi_circ_0005570) possibly affect the expression of
their host gene CCBE1 at a transcriptional level in the nucleus. The above results demonstrated that
circRNAs are abundantly expressed in goat DPCs, and certain circRNAs are potential participators in
hair growth via the effects on the levels of related functional genes. Our study offers a preliminary
clue for researchers hoping to untangle the roles of non-coding RNAs in hair growth.

Keywords: circRNAs; DPCs; cashmere goats; HOXC8; RSPO1; CCBE1

1. Introduction

Dermal papilla cells (DPCs) are a group of specialized fibroblasts located at the base
of the hair follicle (HF), the mini-organ responsible for the continuous production of mam-
malian hair in the skin [1]. Previous studies have validated that the DPCs are the signaling
center of the HF and determine the growth of hair via modulating several key biological
processes in hair growth [2,3]. Meanwhile, a few reports have demonstrated that such
a unique capacity of DPCs is decided by the intrinsic expressions of signature genes in
the cells. For example, the initial step of hair growth—activation of hair follicle stem cells
(HFSCs)—is under the genetic control of Hoxc8 and RSPO1 [4,5], whose overexpression
results in precious HF development and hair overgrowth. In addition, follicular angio-
genesis, a critical event closely related to active hair growth, is stimulated by several
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potent angiogenic factors (e.g., VEGF) highly expressed in DPCs [6–8]. Although these
studies highlighted the functional importance of the related genes in hair biology, how
their expressions are precisely regulated remains as yet unknown.

In recent years, a class of enclosed non-coding RNAs called circular RNAs (circRNAs)
gradually emerged as important participators in a wide array of biological processes,
including organogenesis [9], pathogenesis [10], and carcinogenesis [11]. At the same time,
extensive studies have found that circRNAs exert a regulatory character on the expressions
of the protein-coding genes at transcriptional and post-transcriptional levels, through a
series of unique molecular mechanisms [12,13]. Functioning as competing endogenous
RNAs (ceRNAs) to bind the microRNAs (miRNAs) and modulate the activity of the cognate
miRNAs and their target mRNAs is one of the widely accepted approaches. Therefore,
the utilization of the ceRNAs theory to deduce the functionality of circRNAs, and the
subsequent experimental verification of the proposed hypothesis are the common methods
in the livestock field of study. In fiber-producing animals, such as goats and sheep, several
studies have shown that the differentially expressed circRNAs in skin tissues are closely
related to HF formation [14,15], and key fiber traits (e.g., fineness and quality) [16,17].
Acting as ceRNAs to finely regulate the levels of mRNAs through the circRNAs–miRNA–
mRNAs axis seems to be the molecular basis of circRNAs in the above processes. Apart
from validating the relationships, some of the researchers have also explored the roles of
circRNAs hair biology, using in vitro cellular models. In goats, the promotive effect of
circRNA-1926 on directing the committed differentiation of HFSCs towards the follicular
cells via titrating miR-148a/b-3p to alleviate their inhibitory roles on the target gene,
CDK19, was observed [18]. In addition to acting as ceRNAs, some of the circRNAs have
been demonstrated as adjusting the gene expression via modulating the gene transcription
in the nucleus [19,20], or competing with mRNAs for transcript alternative splicing in
the cytosol [21]. Although mounting evidence suggests that the circRNAs should be
unneglected players in modulating the gene expression and functionality of DPCs, their
information currently remains scare.

In the present study, we established a genome-wide profile of circRNAs expressed in
goat DPCs and screened the functional circRNAs via comparing the transcriptomes between
goat DPCs and DFs. We also reported that circRNAs might affect the expression of the
signature genes of DPCs at transcriptional and post-transcriptional levels, highlighting the
possible characteristics of circRNAs in key events (i.e., HFSCs’ activation and angiogenesis)
in hair biology. Our study shines new light on a deeper exploration of the roles of non-
coding RNAs in hair biology.

2. Materials and Methods

2.1. Animals and Cell Culture

Three healthy female Shanbei white cashmere goats (~2 years old, ~35 kg weight)
with independent genetic lineage background were selected from a private farm located
in Yangling District, Shannxi, China (34◦28′ N and 108◦07′ E). The rearing and manage-
ment of the animals were performed under the recommended guidelines provided by
the regional standard (DB61/T 584-2013). The skin samples harvested from the lateral
backsides on cashmere goats were used for the cell lines’ acquisition. The primary culture
of the dermal papilla cells (DPCs) was obtained using a canonical microdissection-based
method [22]. At the same time, an explants-based protocol was adopted to acquire goat
dermal fibroblasts (DFs) from the skin samples [23]. All of the cells were maintained in a
sterile incubator at 37 ◦C temperature, 100% humidity, and 5% CO2/95% air atmosphere.
A conventional DMEM/F12, with the addition of 10% FBS (v/v), 100 UI/mL penicillin,
and 100 μg/mL streptomycin, was chosen as the culture medium. At the fourth pas-
sage, the cell samples from three lines of DPCs and DFs were collected and subjected to
downstream analysis. All of the reagents used in the present study were purchased from
Sigma-Aldrich (Shanghai, China). The entire experimental procedure was approved and
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supervised by the Animal Care Commission of Northwest A and F University under the
forced guideline (2013-31101684).

2.2. Sequencing Library Construction and Reference Genome Mapping

The total RNA extraction was implemented according to the classic Trizol-based RNA
extraction method. The RNA degradation and contamination were monitored on 1%
agarose gels, and their purity was checked using the NanoPhotometer® spectrophotometer
(IMP LEN, CA, USA). Furthermore, the RNA concentration was measured using a Qubit ®

RNA Assay Kit in a Qubit ®2.0 Fluorometer (Life Technologies, CA, USA), and the RNA
integrity was assessed using the RNA Nano 6000 Assay Kit of the Bioanalyzer 2100 system
(Agilent Technologies, CA, USA). After the extraction and quality examination of the total
RNA from all of the samples, 5 μg RNA from each sample was used for sequencing the
library construction. In brief, the ribosomal RNA (rRNA) was eliminated by the Epicentre
Ribo-zero™ rRNA Removal Kit (Epicentre, WI, USA) and the sequencing libraries were
generated using the rRNA-depleted RNA by NEBNext® Ultra™ Directional RNA Library
Prep Kit for Illumina® (NEB, USA), following the manufacturer’s recommendations. In
addition, the products were purified (AMPure XP system) and the library quality was
assessed on the Bioanalyzer 2100 system. Finally, all of the libraries were sequenced on the
Illumina HiSeq 4000 platform and 150 bp paired-end reads were generated.

Thereafter, a series of quality control procedures, including the removal of the invalid
reads and evaluation of the Q20 index of clean reads, were carried out, according to pipeline
established by Novogene, as reported in a previous study [24]. Further, the clean reads
were mapped and aligned to the representative goat reference genome (Code: ARS1),
using Bowtie 2 [25]. The mapped reads were selected to identify the existence and relative
expression of the mRNAs as we already reported in published literature [26]; meanwhile,
the reads unmapped to the goat reference genome were chosen for the subsequent circRNAs’
identification. In addition, the construction of the sequencing libraries for the miRNAs and
the subsequent bioinformatic analysis were executed, as stated before [26].

2.3. CircRNAs Identification

The two mainstream programs find_circ and CIRI2 were picked to predict the existence
of the circular RNAs (circRNAs) in both of the cell types, according to their respective
bioinformatic algorithms [27,28]. To overcome the problem that a high false-positive
probability of circRNAs’ detection exists, the transcripts detected by both pieces of software
were deemed as reliable circular candidates.

2.4. Normalization of circRNAs Abundance and Differential Expression Analysis

The raw circRNAs counts were first normalized using standard TPM (transcripts per
million clean reads) as in the following equation: normalized expression level = (read counts
per 1,000,000 reads)/libsize (libsize is the sum of circRNAs counts). Principal component
analysis (PCA) and cluster dendrogram construction were performed using FactoMineR
2.4 [29] and Cluster 2.1.2 [30] R packages, respectively. The differential expression analysis
of the circRNAs between the two sample sets was performed, using DESeq R package
(1.10.1), which provides statistical routines for determining the differential expression in
digital gene expression data, using a model based on the negative binomial distribution [31].
The transcripts with a p value <0.05 determined by the DESeq tool were thought of as
differentially expressed.

2.5. Gene Ontology and KEGG Enrichment Analysis

The gene ontology (GO) enrichment for the host genes of the differentially expressed
circRNAs was carried out using the GOseq R package, in which the gene length bias was
corrected [32]. The GO terms with a corrected p value < 0.05 were deemed as significantly
enriched by the genes. The KEGG pathway enrichment analysis of the host genes was
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performed, using a web server called KOBAS 3.0 [33]. The results were visualized by
ggplot2 package.

2.6. Prediction of miRNA Binding Sites on circRNAs and mRNAs

MiRanda-3.3a was used to predict the target sites for the miRNA binding on the linear
3′ untranslated regions and the overall segments of mRNAs and circRNAs [34], respectively.

2.7. CircRNAs-miRNAs-mRNAs Interplay Network Construction

The interplay network among the circRNAs, miRNAs, and mRNAs was constructed
according to the miRNAs target sites prediction on mRNAs and circRNAs. The theory
of competing endogenous RNAs (ceRNAs), in which the circRNAs compete with the
mRNAs for miRNAs binding, to ensure the stability of the mRNAs, was used to infer the
mutual regulatory relationships [35]. R package ggalluvial 0.12.3 was used to generate the
Sankey graphics.

3. Results

3.1. Bioinformatic Identification and Genomic Feature Characterization of Circular RNAs

To deeply explore the potential roles of the circRNAs in hair growth, we utilized
transcriptomic data generated in our experiment and performed a series of bioinformatic
analysis to predict the functioning pathways of circRNAs specifically expressed by the goat
DPCs. As shown in Figure 1, Step 1 and part of the work of Step 2 (i.e., the analysis of the
mRNAs and miRNAs) were finished for a previous study, and the remaining work belongs
to the present study.

 

Figure 1. Workflow of present study. Cell cultivation and profiling of miRNAs and mRNAs were
finished in a previous study [26].

Through combining the prediction results of find_circ and CIRI2, a total of 3706 circular
RNAs (circRNAs) were bioinformatically identified (Figure 2a). Among these transcripts,
94.6% of them originated from the exons of coding genes; only a small proportion derived
from the introns (3.78%) and intergenic regions (1.62%) (Figure 2b). Next, we found that
all of the types of the circRNAs share a similar length distribution, in which the majority
of them are less than 600 nt. Moreover, the average lengths of the exonic, intronic, and
intergenic circRNAs are 280, 266, and 253 nt, respectively (Figure 2c). We also discovered
that most of the circRNAs were made up of one–four genomic segments, and the percentage
of the circRNAs containing two segments ranked first for exonic and intronic transcripts
(Figure 2d). In addition, we demonstrated that the average length of the circRNAs visually
increased along with more of the segments (Figure 2e). Meanwhile, the average length per
segment was inversely related to the component counts (Figure 2f). Finally, we demon-
strated that 62% of the coding genes only produced one circularized transcript, but the
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minority of the genes were more prolific than that. For instance, the genes generating two
and three circRNAs accounted for 22% and 8% of the total genes, respectively (Figure 2g).
The above findings suggested that the presently detected circRNAs from the DPCs and
DFs possess outstanding genomic features, which could be utilized to judge the fidelity of
the circRNAs. The detailed sequence information of all of the transcripts is provided in
Table S1 (Supplementary Materials).

 

Figure 2. Genomic feature characterization of circular RNAs from goat DPCs and DFs. (a) The
counts of circRNAs detected by both tools; (b) The proportion of each type of circRNAs; (c) The
length distribution and average length of circRNAs; (d) Component counts distribution of circRNAs;
(e,f) The spliced length and average length of circRNAs with different component counts; (g) The
percentage of genes producing one or more circRNAs.

3.2. Global Expression Pattern and Differential Expression Analysis of circRNAs

As shown by the boxplots in Figure 3a, the TPM values of all of the transcripts in the six
samples displayed a similar distribution mode, suggesting that the circRNAs’ transcripts of
all of the cells shared a nearly identical expression pattern at a global level. Next, we found
a significant segregation of the samples at the first dimension on PCA figure (Figure 3b).
This result is in high accordance with the sample clustering analysis, in which the cellular
samples clustered into two independent clades (Figure 3c). Altogether, these findings
hinted that the expression of some of the transcripts were highly cell-type-dependent.
Subsequently, we identified a sum of 121 differentially expressed circRNAs between two of
the sample sets (p < 0.05), including 76 upregulated and 45 downregulated in the DPCs
when the DFs were set as controls (Figure 3d,e). We listed the top 20 of the differentially
expressed circRNAs ranked with a p value in Table 1, and found that a group of transcripts
(e.g., chi_circ_0001124 and chi_circ_0005862) were exclusively expressed in one cell type.
Furthermore, we also found that the three ciRNAs (e.g., chi_circ_0005569) and the three in-
tergenic region-generated circRNAs (e.g., chi_circ_0000835) displayed distinct abundances
between the DPCs and DFs (Table 2). Collectively, the above results indicated that the DPCs
and DFs possessed a featured transcriptional profile and the signature transcripts might
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underpin their functional heterogeneity. Overall, the expression levels and the differential
expression analysis result are provided in Table S2 (Supplementary Materials).

 

Figure 3. Global expression pattern and differential expression analysis of circRNAs. (a) Box-plot
showing the distribution pattern of circRNAs based on normalized abundances; (b,c) Principal
component analysis (PCA) and cluster dendrogram analysis of samples based on TPM values of each
transcript; (d,e) Volcano plot and heatmap showing relative expression levels and statistical signifi-
cances of circRNAs between goat DPCs and DFs. p < 0.05 was thought of as statistically significant.

Table 1. Top 20 differentially expressed circRNAs between goat DPCs and DFs ranked by statistical
significance.

CircRNAs ID DPCs TPM DFs TPM log2 (FC) p Value Host Genes

chi_circ_0001237 27.66 2.60 3.19 5.83 × 10−7 EPDR1
chi_circ_0001124 10.42 0 5.06 0.00018033 RBM33
chi_circ_0005517 77.94 33.43 1.20 0.00019107 MTCL1
chi_circ_0005255 9.48 0 4.93 0.00029672 ADAMTS9
chi_circ_0003390 36.68 12.84 1.46 0.00044071 FNDC3A
chi_circ_0002616 8.49 0 4.78 0.00052082 SMOC2
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Table 1. Cont.

CircRNAs ID DPCs TPM DFs TPM log2 (FC) p Value Host Genes

chi_circ_0005862 0 7.36 −4.65 0.00091454 HTRA1
chi_circ_0002154 5.49 19.05 −1.76 0.0013659 PLIN2
chi_circ_0004069 0.67 8.68 −3.27 0.0022086 ENAH
chi_circ_0003353 0 5.74 −4.33 0.0025604 CDK8
chi_circ_0005056 56.58 106.67 −0.91 0.0025953 CEMIP
chi_circ_0004639 0.00 5.69 −4.32 0.0025977 APPBP2
chi_circ_0005733 5.61 0 4.15 0.0041094 FGFR2
chi_circ_0003643 35.55 16.39 1.12 0.0041723 TASP1
chi_circ_0001957 9.21 0.94 2.81 0.0041946 DPYSL3
chi_circ_0003371 0 5.05 −4.11 0.0048414 DCLK1
chi_circ_0004078 5.29 0 4.05 0.0053418 KIF26B
chi_circ_0002817 3.91 13.87 −1.75 0.006652 PTGDR
chi_circ_0003391 21.04 8.06 1.35 0.0067238 FNDC3A
chi_circ_0000379 4.27 14.53 −1.70 0.0068278 ZMAT3

Note: DPCs, dermal papilla cells; DFs, dermal fibroblasts; circRNAs, circular RNAs; TPM, transcripts per million
clean reads; FC, fold change.

Table 2. Differentially expressed ciRNAs and intergenic region-generated circRNAs between goat
DPCs and DFs.

CircRNAs ID DPCs_TPM DFs_TPM log2 (FC) p Value Host Gene

CiRNAs
chi_circ_0005569 4.95 0 3.95 0.0070649 CCBE1
chi_circ_0003704 2.93 0 3.04 0.049869 ZFAND1
chi_circ_0005570 48.90 24.95 0.95 0.012148 CCBE1

Intergenic region-derived circRNAs
chi_circ_0000835 8.21 0 3.30 0.034524 NA
chi_circ_0004524 129.36 11.39 2.95 0.0098427 NA
chi_circ_0006241 19.51 34.13 −0.80 0.032297 NA

Note: CiRNAs, cNote: CiRNAs, circular intronic RNAs; NA, not available.

3.3. Relationship of circRNAs Expression with Their Host Genes

To determine the relationship between the expression levels of the circRNAs with
their host genes, we correlated their relative abundances between the cell types and the
performed statistical analysis. As shown by the heatmap in Figure 4a, the trend of the
circRNAs expression pattern is not strictly consistent with that of the mRNAs. Notably,
the fold changes of the two host genes, ZMYM6 and RPS6KC1, both display inverse
modes with the relative abundances of the circRNAs derived from them. In addition, the
statistical results using Pearson’s correlation analysis indicated that the relative levels of the
circRNAs and mRNAs are correlated at a medium level (Figure 4b: R = 0.41; p = 3.9 × 10−5),
suggesting that no more than a weak association exists. Furthermore, we summarized the
expression status of the circRNAs and their host genes between DPCs and DFs (Table S2,
Supplementary Materials), and found that more than half of the differentially expressed
circRNAs derive from genes with equal abundances in DPCs and DFs. At the same
time, less than 50% percent of the differentially expressed transcripts showed similar
expression patterns with that of their host genes. In addition, the abundances of a small
percentage of the circRNAs showed reverse trends compared to their host genes. These
results demonstrated that the physiological and cellular functions of circRNAs may not
strictly depend on the expression status of their host genes.
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Figure 4. Relationship of circRNAs expression with their host genes and functional enrichment.
(a) Heatmaps showing the relative abundances of circRNAs and corresponding mRNAs; (b) Pearson’s
correlation analysis of the relative level of circRNAs and their host genes; (c,d) KEGG pathways and
gene ontology (GO) items enriched by host genes.

3.4. Functional Enrichment Analysis of the Host Genes

A total of 104 host genes were used as input for the functional enrichment analy-
sis. As shown in Figure 4c, several signaling pathways, including Lysine degradation,
MAPK signaling pathway, small-cell lung cancer, and four other signaling pathways were
significantly enriched (p < 0.05). The GO analysis results showed that 76 of the items
were significantly enriched, most of which belonged to the molecular function (MF) and
biological process (BP) categories (Figure 4d). The most significantly enriched GO items in
MF comprised ion binding (GO: 0043167), kinase activity (GO: 0016301), and others. At the
same time, several cell cycle-related items, including the G2/M transition of mitotic cell
cycle (GO: 0000086) and the regulation of the G2/M transition of the mitotic cell cycle (GO:
0010389) were significantly highlighted in BP. Detailed information is provided in Table S3
(Supplementary Materials).

3.5. Screening of circRNAs Acting as ceRNAs and Their Regulatory Relationships with Functional
Genes in Goat DPCs

To infer the possible characteristics of the circRNAs in cells, we screened the circRNAs
acting as ceRNAs and constructed the regulatory relationships of the circRNAs with miR-
NAs and mRNAs. As a result, a total of 48,676 circRNAs–miRNA–mRNAs interactive lines
were bioinformatically identified (Table S4, Supplementary Materials). In our previous
study, we defined the core signatures of the goat DPCs through a comparative transcrip-
tomic analysis of the goat DPCs and DPCs [26]. Among the signature genes, HOXC8
and RSPO1 were shown to govern the activation of the hair follicle stem cells, the most
critical path of the DPCs in controlling hair growth [4,5]. Thus, we filtered the circRNAs
functioning as ceRNAs to modulate the transcripts’ abundances of HOXC8 and RSPO1,
and exhibited the corresponding relationship between the three types of transcripts. As
suggested by the heatmap in Figure 5a, the circRNAs’ candidates and the genes showed
reverse expression patterns compared to the trends of the miRNAs between the samples,
which fitted the theoretical basis of the ceRNAs [35]. Furthermore, we demonstrated that
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the circRNAs might indirectly adjust the transcript abundances of the mRNAs via sponging
miRNAs (Figure 5b). For example, the adverse effect of the miRNA-145 on the HOXC8
mRNA abundance or translation could be specifically ameliorated by a set of circRNAs,
including chi-circ_0001956, and others (Figure 4b). Moreover, the inhibitive actions of
novel_624 and other six miRNAs on RSPO1 mRNAs may be eased by cognate circRNAs,
such as chi_circ_0004422 via chi_circ_0004422-novel_624-RSPO1 interacting line. These
results implied that the circRNAs possibly participate in hair-follicle-stem cells vitalization
via finely adjusting the expressions of the pivotal genes in DPCs.

Figure 5. CircRNAs acting as ceRNAs in regulating the abundances of coding genes. (a) Heatmap
showing the relative expression of transcripts between two cell samples; (b) Sankey graph showing
the relationship between circRNAs, miRNAs, and coding genes (HOXC8 and RSPO1); (c) Heatmap
showing the relative levels of intronic circRNAs (i.e., chi_circ_0005569 and chi_circ_0005570) and
other transcripts between goat DPCs and DFs; (d) Sankey graph showing the interactive lines of
circRNAs, miRNAs, and CCBE1.

In addition, we observed the elevated abundances of the two intron-derived circRNAs
chi_circ_0005569 and chi_circ_0005570 in goat DPCs compared to DFs (Figure 5c). Previous
studies reported that their host genes CCBE1 were involved in tissue angiogenesis [36],
a critical physiological process related to hair follicle development. At the same time,
several findings pointed out that intronic circRNAs mostly reside in the nucleus and
regulate the transcriptions of their host genes in cis [19,20]. Based on the facts of the above
studies, we reasonably reckoned that the two ciRNAs possibly execute similar roles on their
parental gene. Moreover, we also found that two intergenic segment-formed circRNAs
chi_circ_0000835 and chi_circ_0004524 possess binding sites for the miRNAs, targeting
the matured CCBE1 transcripts (Figure 5d), suggesting their strong potential in enhancing
CCBE1 transcript stability or protein output. The above results suggested that the circRNAs
might take part in modulating the follicular angiogenesis process via acting as ceRNAs or
transcriptional regulators.
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4. Discussion

Serving as the signaling center of HF, DPCs are essential for a wide range of develop-
mental events during the entire phase of hair growth [1,2]. Previous studies have identified
a group of DPCs’ signature genes involved in key events (e.g., HFSCs’ activation) in HF
growth [4,5]; however, how the expressions of the genes are regulated at transcriptional or
translational level still remains elusive. In recent years, circRNAs gradually emerged as the
key participators in various physiological and pathological processes via the regulating
gene transcription, decoying miRNAs and other functioning mechanisms [12]. Meanwhile,
the potential functions of the circRNAs in key aspects of hair biology (i.e., HF development
and fiber traits) have been proposed, even though most of these studies were carried out at
the tissue level [14–17]. Our present study points out that the circRNAs might participate
in the pivotal events of hair growth via affecting the abundances of related functional genes
in DPCs. We established a comprehensive genome-wide profile of circular transcripts in
goat DPCs and DFs, and constructed the modulatory relationships between the circRNAs
and coding genes.

We demonstrated that the presently identified circRNAs possess several prominent
features regarding their sources, length, and other sequence characteristics. These ge-
nomic properties are highly consistent with the circular transcripts found in the tissues of
goats [37], sheep [38], humans [39], and yaks [40]. The phenomenon not only validates the
fidelity of our circRNAs identification, but also fits the evolutionary conservation of the
biogenesis and functioning mechanisms of the circRNAs. In addition, we also found that
DPCs and DFs possess a distinct transcriptional profile and the expressions of the circRNAs
are highly cell-context dependent. Numerous studies have confirmed that the specific
expressions of the transcripts is the hallmark and indicator of their special functionality in
cells or tissues [12,13]. For example, circTshz2-1, a uniquely expressed transcript in differ-
entiated adipocytes, exerts a promotive effect on mouse adipogenesis via upregulating the
genes critical for lipid accumulation [10]. Similarly, the significant upregulation of circRNA-
0100 expression positively drives the committed differentiation of HFSCs towards their
progenies in cashmere goats [41]. Thus, it is reasonably to speculate that these differentially
expressed circRNAs should perform functions of importance related to the characters of
these cells in tissue development.

Next, we demonstrated that the expressions of the circRNAs are not tightly coupled to
the levels of linear transcripts of their host genes. This discovery is in high accordance with
the results found in the tissues of other animals [19,42]. Previous studies validated that
both the circRNAs and mRNAs are alternative splicing products of primary mRNAs [21],
confirming that a mutually competitive relationship exists during their biogenesis. This
also partially explains why the expressions of a subset of circRNAs are independent of
their linear isoforms in the present and other studies. Researchers have often performed
GO and KEGG enrichment analysis of the host genes to reckon the functionalities of the
circRNAs [37,40,43]. In human adipocytes, the targeted knockdown of linear or circular
transcripts of the gene-Arhgap5 obviously caused adverse trends in the abundance of the
genes that determine adipogenesis [10]. A similar case occurs with circSMARCA5, which
decreases the expression level of its parental gene via exclusively binding to the gene locus
and pausing transcription in breast cancer tissue [44]. The above cases implied that the
linear and circular isoforms of a gene can exert opposite effects on the same biological
processes. However, our results imply that the enriched terms (e.g., MAPK signaling
pathway and cell cycle-related terms) frequently appear in transcriptomic studies involving
hair growth and reflect the differences in cellular identity of the cells [45,46]. We highly
recommend that additional precautions should be taken when the bioinformatic deduction
of the potential roles of circRNAs using functional enrichment of their host genes occurs.

Finally, we observed that the circRNAs might serve as ceRNAs, and constructed
the interaction network of circRNAs–miRNAs–mRNAs, in which we highlighted the
modulatory roles of circRNAs on genes (e.g., HOXC8, RSPO1, and CCBE1) concerning
two key events in hair growth. Functioning as sponges that bind miRNAs and thus prevent
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them from binding and suppressing their target mRNAs is one of the most important and
extensively explored approaches through which the circRNAs exert their functionalities.
A large quantity of related circRNAs have been identified in the skin tissues of goats and
sheep, and some of the circRNAs have been experimentally authenticated [15–17]. The
circRNAs–miRNAs–mRNAs axis was gradually recognized as a pivotal avenue through
which the circRNAs exert their important roles in several aspects of hair biology.

For example, the circRNA-1926–miR-148a/b-3p–CDK19 axis was exhibited to par-
ticipate in the goat HFSCs’ activation [18]. In the present study, we proposed that the
circRNAs might participate in the regulation of the signature genes of goat DPCs in the
same manner. HOXC8 and RSPO1 have been verified as the key drivers in the DPCs-
stimulated activation of HFSCs and the subsequent hair regrowth via vitalization of the
Wnt signaling pathway [4,5]. Therefore, it is possible that an interactive axis, such as chi-
circ_0001956–miRNA-145–HOXC8 could perform regulatory roles of crucial importance in
HFSCs’ activation via the post-transcriptional modification of genes involved.

In addition, we also discovered that the abundances of two intron-derived circR-
NAs chi_circ_0005569 and chi_circ_0005570 are consistent with that of their host gene
CCBE1. A few studies have demonstrated that circRNAs are capable of regulating gene
transcription via interacting with RNA Pol II, or transcription factors [19,20]. Notably, an
intronic circRNA named ci-ankrd52 could drive its host gene expression via locating at
the genomic sites of transcription and interacting with the transcriptional machinery [20].
Thus, it is possible that the expression of CCBE1 is under the transcriptional control of
intronic circRNAs, derived from itself. CCBE1 encodes an extracellular matrix protein that
implicates angiogenesis [36], which is a physiological process closely associated with active
hair growth [7]. A decreased mRNA level of CCBE1 was associated with the impaired
hair growth-stimulatory capacity of DPCs under the treatment of dihydrotestosterone; the
hormone causes undesired androgenic alopecia [47]. Therefore, the two intronic circRNAs
perhaps exert regulatory characteristics in follicular angiogenesis via an adjustment of the
abundances of CCBE1 in goat DPCs. Moreover, we also found that some circRNAs might
serve as ceRNAs to modulate the expression of CCBE1, further confirming the complexity
of gene expression regulation at transcriptional and translational levels.

5. Conclusions

In present study, we established a comprehensive global profile of circRNAs in goat
DPCs and DFs. Through comparative analysis, we identified a group of circRNAs specifi-
cally expressed in each cell type. Further, we predicted the potential roles of circRNAs in
DPCs via constructing their regulatory relationships with the genes involved in key events
in hair growth. The validation of such relationships will provide new insight into how the
functionality of DPCs is maintained by circRNAs through regulating the gene expression
at transcriptional and translational levels.
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Abbreviation
DPCs dermal papilla cells
DFs dermal fibroblasts
HOXC8 homeobox C8
RSPO1 R-spondin 1
CCBE1 collagen and calcium-binding EGF domains 1
PTEN phosphatase and tensin homolog
CDK19 cyclin-dependent kinase 19
Arhgap5 Rho GTPase activating protein 5
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Abstract: OTU deubiquitinase 7A (OTUD7A) can suppress inflammation signaling pathways, but
it is unclear whether the gene can inhibit inflammation in goose fatty liver. In order to investigate
the functions of OTUD7A and identify the genes and pathways subjected to the regulation of
OTUD7A in the formation of goose fatty liver, we conducted transcriptomic analysis of cells, which
revealed several genes related to inflammation and immunity that were significantly differentially
expressed after OTUD7A overexpression. Moreover, the expression of interferon-induced protein
with tetratricopeptide repeats 5 (IFIT5), tumor necrosis factor ligand superfamily member 8 (TNFSF8),
sterile alpha motif domain-containing protein 9 (SAMD9), radical S-adenosyl methionine domain-
containing protein 2 (RSAD2), interferon-induced GTP-binding protein Mx1 (MX1), and interferon-
induced guanylate binding protein 1-like (GBP1) was inhibited by OTUD7A overexpression but
induced by OTUD7A knockdown with small interfering RNA in goose hepatocytes. Furthermore, the
mRNA expression of IFIT5, TNFSF8, SAMD9, RSAD2, MX1, and GBP1 was downregulated, whereas
OTUD7A expression was upregulated in goose fatty liver after 12 days of overfeeding. In contrast,
the expression patterns of these genes showed nearly the opposite trend after 24 days of overfeeding.
Taken together, these findings indicate that OTUD7A regulates the expression of inflammation- and
immune-related genes in the development of goose fatty liver.

Keywords: OTUD7A; goose; inflammation; immune; nonalcoholic fatty liver disease

1. Introduction

Some fish and birds are able to pre-deposit large amounts of fat in the liver for use
during migration, and then the liver can return to its normal state without any obvious
pathological symptoms. Geese, as the offspring of migratory birds, also have this character-
istic. In agricultural production, this ability of geese is often used for fatty liver production.
As a well-known liver-producing species, the fatty liver (typically composed of approxi-
mately 60% fat) of Landes geese can reach an 8–10-fold higher weight than the normal liver
in a short period through overfeeding [1]. The changes that occur in goose fatty liver are
physiological, with no overt injury or pathological symptoms [2,3]. Recent work indicates
that the pro-inflammatory factor is suppressed in goose fatty liver vs. normal liver [4].
However, nonalcoholic fatty liver disease (NAFLD) in humans and mammals is frequently
accompanied by inflammation [5,6]. Human NAFLD is prone to developing from simple
steatosis to nonalcoholic steatohepatitis (NASH), cirrhosis, and even liver cancer, posing a
serious threat to human health [7]. In addition, the incidence of fatty liver in livestock and
poultry has also increased due to improved feed nutrition levels, reduced animal activity,
and increased environmental stress in modern intensive livestock production, thereby
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bringing economic losses to livestock production [8]. The differences between geese and
other animals suggest that the goose liver utilizes a protection mechanism, although the un-
derlying mechanisms remain unclear. Studies of this mechanism may provide information
for developing approaches for preventing or treating NAFLD-associated complications in
humans and economically important animals.

A previous study demonstrated that inflammation is important in the progression
from simple steatosis to NASH [9]. The hepatic inflammatory response plays an important
role in insulin resistance, oxidative stress, and endoplasmic reticulum stress. Inflammation
can interact with insulin resistance, and inflammatory factors can interfere with insulin
signaling pathways and deepen the degree of insulin resistance, leading to a further
decrease in insulin sensitivity in liver cells. On the other hand, inflammation causes the
activation of Kupffer cells and stellate cells in the liver, and induces the development of liver
fibrosis and cirrhosis [10]. Therefore, inflammation has been widely studied as a possible
target for NASH therapy. The nuclear factor κB (NF-κB) signaling pathway is activated in
human and animal NAFLD models, and the pathway is a key pro-inflammatory signaling
pathway leading to the progression of NAFLD to NASH [5,6]. Inhibition of the NF-κB
pathway has been reported to reduce the expression of inflammatory factors in the liver
and alleviate the progression of NAFLD [11].

The results of our preliminary transcriptomic analysis showed that a number of
deubiquitinating enzymes, including ovarian tumor deubiquitinase 7A (OTUD7A), were
significantly altered at the transcriptional level in the livers of overfed geese compared to
controls, suggesting that deubiquitinating modifications are involved in the formation of
fatty liver in geese. OTUD7A, also known as cellular zinc-finger anti-NF-κB 2, is a member
of the ovarian tumor deubiquitinase family [12,13]. OTUD7A promotes deubiquitination of
its target proteins, including tumor necrosis factor receptor-associated factor 6 (TRAF6) [13],
thus suppressing the NF-κB signaling pathway. Thus, we speculated that OTUD7A could
inhibit inflammation. However, the functions of OTUD7A in the development of NAFLD
are unclear. Therefore, we investigated the function of OTUD7A, and identified genes and
pathways involved in regulating OTUD7A, using goose fatty liver as a model.

2. Materials and Methods

2.1. Animal Experiment

Thirty-two healthy 63-day-old male Landes geese were selected and randomly as-
signed to a control group and an overfeeding group (16 geese per group). Geese in the
control group were provided water and feed ad libitum, whereas the geese in the over-
feeding treatment were overfed using previously described procedures and diets [14]. In
brief, geese in the overfeeding group were subjected to 1 week of pre-overfeeding, followed
by 24 days of overfeeding. During the period of pre-overfeeding, the feed intake was
gradually increased from 100 g to 300 g per day. For formal overfeeding, the daily feed
intake was 500 g for three meals per day in the first 5 days, followed by 1200 g for 5 meals
per day in the remaining time. The feed used in this study was cooked maize (maize
boiled for 5 min) supplemented with 1% plant oil and 1% salt. All geese were raised in
cages. At 81 and 93 days of age, six geese per treatment were randomly selected and fasted
overnight with free access to water; in the next morning (at 82 and 94 days of age), the
geese were weighed and killed with an electrolethaler. After the geese were exsanguinated,
the liver samples were collected and stored at −80 ◦C. All animal protocols were approved
by the Institutional Animal Ethics Committee of Yangzhou University, with permission
number 202103309.

2.2. Preparation of Goose Primary Hepatocytes

Hepatocytes were isolated from Landes goose embryos after 23 days of incubation [2].
Specifically, the goose embryo was removed from the egg and placed in a pre-sterilized tray.
The abdominal quills were gently removed and the embryo was sterilized with 75% alcohol.
The liver was quickly harvested, immersed in PBS, and rinsed 2–3 times. The chopped liver
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was transferred to a Petri dish and digested with 0.1% type IV collagenase (Worthington
Biochemical Corporation, Lakewood, NJ, USA) at 37 ◦C for 25 min. Subsequently, an
equal volume of pre-warmed complete medium that consisted of Dulbecco′s modified
Eagle’s medium (DMEM Gibco, Grand Island, NY, USA), 0.02 mL/L epidermal growth
factor (PeproTech, London, UK), 100 IU/mL penicillin (Sigma-Aldrich, St. Louis, MO,
USA), 10% fetal bovine serum (Gibco, USA), and 100 mg/mL streptomycin (Sigma-Aldrich,
St. Louis, MO, USA) was added to terminate the digestion. The hepatocyte suspension
was obtained by filtering through a 220-mesh sterile nylon mesh to remove large tissue
clumps and cell clusters. After treating the cells with erythrocyte lysate (Solarbio Co., Ltd.,
Beijing, China), complete medium was added to the hepatocytes to form a new hepatocyte
suspension. The cells were inoculated into 12-well plates at a density of 1 × 106/well and
transferred to a 37 ◦C incubator with 5% CO2. The medium was renewed after the first 6 h
of incubation, and then every 24 h during subsequent incubation.

2.3. Overexpression of Goose OTUD7A

The pcDNA3.1(+) vector containing the goose OTUD7A coding sequence (CDS) and
the empty vector were designed, isolated, and purified from Shanghai GenePharma Co.,
Ltd. (Shanghai, China). The CDS of OTUD7A was found to be 2808 base pairs. The
OTUD7A sequence fragment was obtained by PCR; the fragment was digested separately
using enzymatic digestion from the pcDNA3.1 vector, and the product was purified and
ligated. The ligated products were transformed into bacterial receptor cells, and the clones
grown were first identified by enzymatic cleavage to demonstrate that the target gene
had been connected to the target vector. The positive clones were then sequenced and
analyzed for comparison, and those that were correct were considered to be successful.
The recombinant vector was extracted via ultrapure extraction to obtain the pcDNA3.1-
OTUD7A vector. Goose primary hepatocytes that were transformed with empty vectors
were taken as controls (control treatment), and the OTUD7A CDS vector was used for
overexpression. The vectors were transfected using Lipofectamine 2000 (Biosharp, Hefei,
China) according to the instructions of the manufacturer. Six replicates were used for each
treatment. After 6 h of transfection, the culture medium was changed from Opti-MEM
(Thermo Fisher Scientific, Waltham, MA, USA) to complete medium. Cells were harvested
after 24 h of culture.

2.4. Transcriptome Analysis

The samples of the control treatment and OTUD7A overexpression were subjected
to RNA sequencing analysis. Briefly, mRNA was purified from total RNA using poly-T
oligo-attached magnetic beads (Sigma-Aldrich, St. Louis, MO, USA), after which frag-
mentation was performed. RNA degradation and contamination were monitored on 1%
agarose gels. The RNA purity was checked using a spectrophotometer (IMPLEN, Westlake
Village, CA, USA), and the integrity was assessed using the RNA Nano 6000 Assay Kit
of the Bioanalyzer 2100 system (Agilent Technologies, Santa Clara, CA, USA). A total of
1 μg of RNA per sample was used as input material for cDNA library preparation. The
libraries were generated using the NEBNext® UltraTM RNA Library Prep Kit for Illumina®

(NEB, Ipswich, MA, USA), following the manufacturer’s recommendations. After library
construction, initial quantification was carried out using a Qubit 2.0 Fluorometer (Thermo
Fisher Scientific, Waltham, MA, USA). The insert size of the library was then measured
using an 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). When the insert
size met expectations, real-time quantitative PCR (RT-qPCR) was performed to accurately
quantify the effective library concentration (effective library concentration should be higher
than 2 ng/μL) in order to ensure library quality. Eight cell lanes were used for each
cDNA library.

The clustering of the index-coded samples was performed on a cBot Cluster Gen-
eration System using the TruSeq PE Cluster Kit v3-cBot-HS (Illumina), according to the
manufacturer’s instructions. After cluster generation, the library preparations were se-
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quenced on an Illumina NovaSeq platform (San Diego, CA, USA) using four fluorescently
labelled dNTP, DNA polymerase, and splice primers, and 150 bp paired-end reads were
generated. Raw data (raw reads) of FASTQ format were firstly processed through in-
house Perl scripts. In this step, clean data (clean reads) were obtained by removing
reads containing adapters, reads containing poly-N, and low-quality reads from raw data.
The average clean base (clean reads × 150 bp) was 8.19 G. At the same time, the Q20,
Q30, and GC content of the clean data were calculated. All of the downstream analyses
were based on the clean data, with high quality; the reference genome was Anser cyg-
noides domesticus (assembly AnsCyg_PRJNA183603_v1.0, https://www.ncbi.nlm.nih.
gov/genome/?term=Anser+cygnoides+domesticus, accessed on 28 November 2021). The
reads per kilobase million (FPKM) of each gene were calculated based on the length of
the gene and the reads count mapped to the gene. Differential expression analysis of
two groups was performed using the DESeq2 R package (Bioconductor, version 1.16.1,
http://www.bioconductor.org/about/, accessed on 28 November 2021). The resulting
p-values were adjusted using the Benjamini–Hochberg approach for controlling the false
discovery rate. The differentially expressed genes (DEGs) were defined as genes with a
fold change of treatment over control >2 or <0.5, and p-value < 0.05. In addition, the clus-
terProfiler R package (Bioconductor, version 3.4.4, http://www.bioconductor.org/about/,
accessed on 28 November 2021) was used to test the statistical enrichment of differential
expression genes in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways.

2.5. RNA Interference Assay

The small interfering RNA (siRNA) was designed to target the goose OTUD7A CDS,
and was generated by Shanghai GenePharma Co., Ltd. (Shanghai, China). The siR-
NAs were separately transfected into the primary hepatocytes (prepared as described
in Section 3.2), and cultured in serum-free and antibiotic-free Opti-MEM (Thermo Fisher
Scientific, Waltham, MA, USA) using Lipofectamine 2000 (Biosharp). Briefly, 5 μL of Lipo-
fectamine 2000 was added to 95 μL of Opti-MEM and incubated at room temperature for
5 min to prepare solution A, whereas 5 μL of siRNA or negative control was added to
95 μL of Opti-MEM to prepare solution B. Subsequently, 200 μL of the liquid was added
to each well after solutions A and B were mixed and incubated at room temperature for
23 min. The Opti-MEM was replaced with complete culture medium after transfection,
and the transfection time was 6 h. The siRNA dose was 100 nM. Scrambled siRNA was
taken as a negative control. Six replicates were used for the negative control and RNA
interference groups. The best siRNA was selected based on its ability to suppress OTUD7A
expression (Supplementary Figure S2). After evaluation, the sense strand sequence of the
chosen siRNA was 5′-GCGUGUACAGUGAAGAUUUTT-3′, while the antisense strand
sequence was 5′-AAAUCUUCACUGUACACGCTT-3′.

2.6. Gene Expression Analysis

Total RNA from liver samples and primary hepatocytes that were transformed with
an empty vector or OTUD7A CDS vector, or with scrambled siRNA or siRNA targeting
OTUD7A, was obtained using TRIzol reagent (TaKaRa Biotechnology, Shiga, Japan). The
quality and quantity of mRNA were assessed using a NanoDrop 1000 spectrophotometer
(Thermo Scientific, Wilmington, DE, USA). A total of 600 ng of RNA per sample was reverse-
transcribed into cDNA using PrimeScript RT Master Mix kits (TaKaRa Biotechnology, Shiga,
Japan). Real-time PCR was performed using an ABI 7500 real-time quantitative PCR (RT-
qPCR) system (Applied Biosystems, Foster City, CA, USA) using SYBR® Premix Ex TaqTM

kits (Takara Biotechnology Co., Ltd., Dalian, China). The reactions were as follows: 95 ◦C
for 30 s, followed by 40 cycles of 95 ◦C for 5 s and 60 ◦C for 30 s, then 95 ◦C for 15 s,
60 ◦C for 60 s, and 95 ◦C for 15 s. Two technical replicates were made for each sample.
The primers used are listed in Table 1. Relative quantification methods were used, and
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was chosen as the reference gene.
The fold change level of mRNA was analyzed using the 2−ΔΔCT method [15].
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Table 1. Primer sequences for real-time quantitative PCR analysis.

Gene 1 GenBank Number Primer Sequence (5′ to 3′) Product Size

OTUD7A XM_013177443.1
F: CAGACTTTGTTCGGTCCACA

236R: AGCAATGTCATCCTGCCTCT

MPAO XM_013199765.1
F: TCCGACATGCAGTCCTTGTA

201R: AACCTTGTTGCCGTAGTTGG

IFIT5 XM_013194152.1
F: CCTTGAAGAAGTCCCTGCTG

194R: ATTTTCCAGGGCTTCCTTGT

IL23R XM_013193090.1
F: CTGATGGGCTCCAACATCTC

161R: CTGTAGGGCAGCCTGAAGTC

TNFSF8 XM_013182840.1
F: AGGCTTGGAGCCACTAACAA

201R: GGTCGGGACATTCTGTAGGA

SAMD9 XM_013187038.1
F: CTCTCGCACAAATGGCACTA

157R: AGCTTTTGCAGCTCCAATGT

RSAD2 XM_013172803.1
F: GAGAGCGGTGGTTCAAGAAG

238R: TTGAGTGCCATGATCTGCTC

MX1 XM_013181384.1
F: TGGAGCAAGTAAACGCCTCT

216R: TTCAGGCACTGGTAGGCTTT

GBP1 XM_013170751.1
F: GAGCAGGAGAGAGAGGCTGA

190R: TGTTCTTCTCGGAGCCACTT

GAPDH XM_013199522.1
F: GCCATCAATGATCCCTTCAT

155R: CTGGGGTCACGCTCCTG
1 OTUD7A: ovarian tumor deubiquitinase 7A; MPAO: membrane primary amine oxidase; IFIT5: interferon-
induced protein with tetratricopeptide repeats 5; IL23R: interleukin-23 receptor; TNFSF8: tumor necrosis fac-
tor ligand superfamily member 8; SAMD9: sterile alpha motif domain-containing protein 9; RSAD2: radical
S-adenosyl methionine domain-containing protein 2; GBP1: interferon-induced guanylate binding protein 1-like;
MX1: interferon-induced GTP-binding protein Mx1.

2.7. Statistical Analysis

The data were confirmed for normal distribution using the Shapiro–Wilk test. Signif-
icance was determined using Student’s t-test for pairwise comparisons, and considered
significant at p < 0.05.

3. Results

3.1. Genes and Pathways Affected by OTUD7A

RNA sequencing analysis of the transcriptomes of goose hepatocytes transfected
with the OTUD7A overexpression vector vs. empty vector (as control) revealed 34 DEGs
(19 upregulated and 15 downregulated) (Supplementary Figure S1). The upregulated and
downregulated genes are shown in Tables 2 and 3, respectively. The enriched KEGG
pathways were “cytokine–cytokine receptor interaction”, “tropane, piperidine, and pyri-
dine alkaloid biosynthesis”, “isoquinoline alkaloid biosynthesis”, “Janus kinase-signal
transducer and activator of transcription (JAK-STAT) signaling pathway”, and “PI3K-Akt
signaling pathway” (Figure 1). RT-qPCR analysis of nine DEGs was performed to confirm
the results of transcriptome analysis. Consistently, the expression of OTUD7A, membrane
primary amine oxidase (MPAO), and interleukin-23 receptor (IL23R) was markedly induced
by OTUD7A overexpression, whereas that of interferon-induced protein with tetratricopep-
tide repeats 5 (IFIT5), TNF ligand superfamily member 8 (TNFSF8), sterile alpha motif
domain-containing protein 9 (SAMD9), radical S-adenosyl methionine domain-containing
protein 2 (RSAD2), interferon-induced GTP-binding protein Mx1 (MX1), and interferon-
induced guanylate binding protein 1-like (GBP1) was significantly inhibited (p < 0.05,
Figure 2).

These findings were validated in a knockdown assay in goose primary hepatocytes
with siRNA against goose OTUD7A. Compared with the controls, the mRNA expression of
MPAO, IFIT5, TNFSF8, SAMD9, RSAD2, MX1, and GBP1 was significantly increased by
OTUD7A siRNA, whereas the IL23R expression was decreased (p < 0.05, Figure 3).
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Figure 1. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the control and ovarian tu-
mor deubiquitinase 7A (OTUD7A) overexpression groups in goose hepatocytes. Primary hepatocytes
were isolated from goose embryos after 23 days of incubation. The cells transfected with the empty
pcDNA3.1(+) vector were used as controls, while those transfected with pcDNA3.1(+) containing
the OTUD7A coding sequence were used for overexpression. Differentially expressed genes (DEGs)
were identified using DESeq2 R software. The DEGs were selected based on genes showing a fold
change in OTUD7A overexpression compared to the control group of >2 or <0.5, and p-value < 0.05.
The clusterProfiler R package was used to statistically analyze the enrichment of the DEGs in the
KEGG pathways.

Figure 2. Validation of differentially expressed genes of the control and ovarian tumor deubiquitinase
7A (OTUD7A) overexpression groups in goose hepatocytes; * p < 0.05. Data are shown as the
mean ± SEM of six replicates for each treatment. MPAO: membrane primary amine oxidase; MX1:
interferon-induced GTP-binding protein Mx1; IL23R: interleukin-23 receptor; IFIT5: interferon-
induced protein with tetratricopeptide repeats 5; TNFSF8: tumor necrosis factor ligand superfamily
member 8; RSAD2: radical S-adenosyl methionine domain-containing protein 2; GBP1: interferon-
induced guanylate binding protein 1-like; SAMD9: sterile alpha motif domain-containing protein 9.
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Table 2. The upregulated genes in hepatocytes transfected with pcDNA3.1(+) containing goose OTU
deubiquitinase 7A CDS and an empty vector.

Name Description p-Value Fold Change

SNCG Gamma-synuclein isoform 0.019 2.11
GPRIN2 G protein-regulated inducer of neurite outgrowth 2 isoform 0.039 2.29

NMU Neuromedin-U isoform 0.004 7.86
OTUD7A OTU domain-containing protein 7A <0.001 134.69

LOC106034831 CMRF35-like molecule 3 isoform 0.018 4.68
ARHGAP28 Rho GTPase-activating protein 28 isoform 0.040 2.10

SH3BP1 SH3 domain-binding protein 1 0.040 2.82
MEST Mesoderm-specific transcript homolog protein, partial 0.045 2.75

PROCR Endothelial protein C receptor 0.004 2.61
CLMP CXADR-like membrane protein 0.012 2.40

KLHDC8A Kelch domain-containing protein 8A 0.047 3.32
MYL10 Myosin regulatory light chain 2B, cardiac muscle isoform 0.019 2.07
IL23R Interleukin-23 receptor 0.017 2.14

LOC106045877 Alpha-1,3-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase C-like 0.042 2.06
ACE Angiotensin-converting enzyme 0.002 2.05

TMEM114 Transmembrane protein 114 0.004 3.64
PPP1R27 Protein phosphatase 1 regulatory subunit 27 0.05 2.99

MPAO Membrane primary amine oxidase 0.045 2.03
LOC106048707 Uncharacterized protein LOC106048707 isoform 0.045 4.52

Table 3. The downregulated genes in hepatocytes transfected with pcDNA3.1(+) containing goose
OTU deubiquitinase 7A CDS and an empty vector.

Name Description p-Value Fold Change

IFIT5 Interferon-induced protein with tetratricopeptide repeats 5 <0.001 0.42
OTOGL Otogelin-like protein 0.045 0.45

LOC106030637 Interleukin-7-like 0.022 0.17
RSAD2 Radical S-adenosyl methionine domain-containing protein 2 <0.001 0.48
DDX60 Probable ATP-dependent RNA helicase DDX60 isoform <0.001 0.42

MX1 Interferon-induced GTP-binding protein Mx1 <0.001 0.47
NCAM2 Neural cell adhesion molecule 2 isoform 0.007 0.27
TNFSF8 Tumor necrosis factor ligand superfamily member 8 0.041 0.35
PIH1D3 Protein PIH1D3 0.035 0.39

LOC106038693 Low-affinity vacuolar monovalent cation antiporter 0.043 0.08
SAMD9 Sterile alpha motif domain-containing protein 9 <0.001 0.45

LOC106040189 Arylacetamide deacetylase-like 4 0.010 0.42
LOC106041938 Placenta-specific gene 8 protein-like isoform <0.001 0.44

B3GNT7 UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 7 <0.001 0.36
GBP1 Interferon-induced guanylate-binding protein 1 <0.001 0.45

Figure 3. Effects of transfection with siRNA targeting ovarian tumor deubiquitinase 7A (OTUD7A)
on the expression of downstream genes in goose primary hepatocytes. Scrambled siRNA was used
as a control; * p < 0.05. Six replicates were evaluated for each treatment. Data are shown as the
mean ± SEM.
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3.2. Expression of OTUD7A and Its Downstream Genes

The expression of OTUD7A, MPAO, and IL23R was upregulated, whereas that of IFIT5,
TNFSF8, SAMD9, RSAD2, MX1, and GBP1 was downregulated at day 12 of overfeeding
(p < 0.05, Figure 4A). However, the OTUD7A and MPAO expression was downregulated in
goose fatty liver, whereas that of IL23R, IFIT5, SAMD9, MX1, and GBP1 was upregulated
on day 24 of overfeeding (p < 0.05, Figure 4B).

Figure 4. Effects of overfeeding on expression of downstream genes. Control group denotes geese that
were fed normally; overfed group denotes geese subjected to 12 (A) and 24 days (B) of overfeeding;
* p < 0.05. Samples in the control group on day 12 of overfeeding were used as calibrators for all
groups. Six replicates were evaluated for each treatment. Data are shown as the mean ± SEM.

4. Discussion

The pathogenesis of NAFLD is still unclear. Previous studies have indicated that
inflammatory responses play important roles in NAFLD, and inflammation is considered to
be a marker of progression from simple steatosis to NASH [5,16,17]. Inflammation not only
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aggravates insulin resistance, but also causes hepatic stellate cell activation, and induces
liver fibrosis and cirrhosis [10,18]. The NF-κB pathway—a major inflammatory signaling
pathway—is activated in patients with NAFLD and in animal models [5,6]. Activation
of the NF-κB pathway can promote transcription of downstream inflammatory response
genes, resulting in an increase in inflammatory factor production and release. Inflammatory
factors can successively reactivate NF-κB, creating positive feedback regulation that leads
to further amplification of the initial inflammatory signal [19]. In addition, NF-κB activation
can activate pro-apoptotic proteins on mitochondria, such as BAX, leading to apoptosis of
hepatocytes and further exacerbating the inflammatory response [20]. Reducing inflam-
matory factor expression in the liver can alleviate NAFLD development [11]; therefore,
inflammation has received considerable attention as a possible target for NAFLD therapy.

As an excellent waterfowl product, goose fatty liver can be used as both a high-grade
food and a unique model for NAFLD research. Our preliminary research has identi-
fied some characteristics that are different from mammalian NAFLD, such as elevated
fatty acid desaturase, increased expression of lipocalin receptor genes, increased expres-
sion of mitochondria-related genes, and downregulated expression of complement genes
and pro-inflammatory factors in goose fatty liver [2–4,21]. These results suggest the ex-
istence of certain mechanisms in the formation of goose fatty liver that can resist the
occurrence and development of inflammation. Some studies suggest that deubiquitinating
enzymes are involved in protecting against inflammation in NAFLD. Ubiquitin-specific
protease 18—a member of the deubiquitinating enzyme family—is downregulated in the
livers of obese mice [22]. Similarly, USP4 protects against the inflammatory response, as
USP4 depletion was shown to exacerbate inflammation in mice with high-fat-diet-induced
NAFLD, and USP4 may suppress activation of the downstream NF-κB pathway [23].
Mevissen et al. [12] found that OTUD7A is a potential tumor suppressor, and can regu-
late multiple signaling pathways. Another study indicated that OTUD7A inhibits the
NF-κB pathway through deubiquitination of TRAF6 protein in HepG2 cells [10]. Therefore,
OTUD7A may be involved in the development of fatty liver.

In this study, transcriptome sequencing analysis showed that a total of 19 genes were
upregulated and 15 genes were downregulated in the OTUD7A overexpression group
compared to controls. The DEGs were mainly enriched in cytokine–cytokine receptor
interaction; tropane, piperidine, and pyridine alkaloid biosynthesis; isoquinoline alkaloid
biosynthesis, the JAK-STAT signaling pathway; and the PI3K-Akt signaling pathway. Fur-
ther analysis showed that numerous DEGs affected by OTUD7A were related to inflamma-
tion, as their mRNA expression was subject to OTUD7A overexpression or suppression by
siRNA against OTUD7A, which is similar to the OTUD7A subfamily that can regulate some
inflammation-related genes [24,25]. Our findings also support the hypothesis that OTUD7A
can regulate the NF-κB pathway via deubiquitination of TRAF6. Pro-inflammatory fac-
tors can activate the inflammatory cascade response and increase the expression of genes
such as IL-6 and inducible nitric oxide synthase, causing inflammatory responses and
tissue damage in the body. During the formation of mammalian NAFLD, the levels of
pro-inflammatory factors are usually significantly elevated [18,26]. These results suggest
that OTUD7A may be associated with the inhibition of inflammatory responses in goose
fatty liver—at least in the mid-overfeeding period.

Interestingly, cytokine–cytokine receptor interactions, which are important for the
maintenance and regulatory functions of multicellular organisms [27], were among the
enriched KEGG pathways in the OTUD7A assay. Tumor necrosis factor superfamily
(TNFSF) is a cytokine secreted by immune cells. The interaction between TNFSF and tumor
necrosis factor receptor is involved in regulating cell growth, immune response, apoptosis,
and inflammatory response [28]. The TNFSF8 protein can activate the NF-κB pathway by
binding to its receptor, TNFRSF8, thereby mediating the secretion of IL-2, IL-6, TNF-α,
and other cytokines [29]. The expression of TNFSF8 was downregulated by OTUD7A
overexpression in primary goose hepatocytes, as well as in goose fatty liver after 12 days of
overfeeding, whereas the expression of TNFSF8 was increased after OTUD7A suppression
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in primary goose hepatocytes, suggesting that TNFSF8 is regulated by OTUD7A in goose
hepatocytes through the cytokine receptor interaction pathway.

The JAK-STAT pathway, as a downstream pathway of cytokine receptors, was also
enriched according to the transcriptomic analysis of goose primary hepatocytes overexpress-
ing OTUD7A. Several cytokines, including interferons, can modulate intracellular signaling
by activating the JAK-STAT pathway [30]. Upon the binding of cytokines to their cognate
receptors, STATs can modulate the expression of their target genes and participate in inflam-
mation [31,32]. Enrichment of DEGs in the JAK-STAT signaling pathway resulting from
OTUD7A overexpression suggests that OTUD7A regulates inflammation through the JAK-
STAT signaling pathway in goose hepatocytes. The IFIT family, as interferon-induced genes,
participate in the immune response [33]. Previous studies indicated that IFIT5 promotes
NF-κB activation and synergizes NF-κB-mediated gene expression, whereas knockdown
of IFIT5 inhibits NF-κB pathway activation and downstream gene expression [34,35]. Our
data indicate that IFIT5 expression was significantly decreased by OTUD7A overexpression,
but was induced by OTUD7A knockdown in primary goose hepatocytes. Downregula-
tion of IFIT5 was accompanied by upregulation of OTUD7A on day 12 of overfeeding,
whereas upregulation of IFIT5 was accompanied by downregulation of OTUD7A on day
24 of overfeeding, which is consistent with the results of the cell research. Thus, OTUD7A
may regulate IFIT5 expression in the goose fatty liver. In addition, previous studies have
suggested that SAMD9 is a downstream target of inflammatory cytokines [36,37], and
may function as an anti-inflammatory factor [38]; it is also associated with the immune
response [39]. Our data indicate that SAMD9, like IFIT5, is regulated by OTUD7A.

Moreover, many studies have indicated that innate immune response is connected
with inflammation in NAFLD/NASH, thereby promoting the development of fibrosis,
cirrhosis, and carcinogenesis. The results from our study showed that OTUD7A regu-
lates the expression of some immune-related genes—for example, IL23R—in goose fatty
liver. IL23R mediates the stimulation of T cells, natural killer cells, and possibly certain
macrophage/myeloid cells—likely through the JAK-STAT pathway [40]. In addition, the
mRNA expression of RSAD2, MX1, and GBP1 was downregulated by OTUD7A overex-
pression, but upregulated by OTUD7A knockdown. These results suggest that RSAD2,
MX1, and GBP1 are downstream of OTUD7A. RSAD2, also known as viperin, is an impor-
tant component of innate immunity [41]. MX1 is also a vital antiviral protein during the
innate immune response [42,43]. Some studies have shown that GBP1 can be induced by
IFN-α, IFN-β, IFN-γ, and inflammatory cytokines [44,45]. GBP1 expression is increased
in inflammatory skin diseases, and the gene is a cellular activation marker characterizing
the inflammatory cytokine-activated phenotype of cells [46]. As immune-related genes,
IL23R, RSAD2, MX1, and GBP1 were regulated by OTUD7A, suggesting that OTUD7A can
regulate immune response in liver physiology and pathology.

Additionally, KEGG results suggested that the DEGs were related to tropane, piperi-
dine, pyridine, and isoquinoline alkaloid biosynthesis following OTUD7A overexpression;
for example, MPAO, which participates in the metabolism of alkaloid biosynthesis, was
upregulated by OTUD7A overexpression in goose primary hepatocytes. Consistently,
upregulation of MPAO was accompanied by upregulation of OTUD7A on day 12 of over-
feeding, whereas the downregulation of MPAO was accompanied by downregulation
of OTUD7A on day 24 of overfeeding. Therefore, OTUD7A may participate in alkaloid
biosynthesis in the goose fatty liver. Bour et al. [47] found that MPAO expression was in-
creased in the adipose tissue, suggesting that it is involved in adipogenesis. Fat metabolism
is very active in the formation of goose fatty liver [3]; thus, MPAO may be involved in
lipid metabolism in the goose fatty liver. Further research is required in order to confirm
this hypothesis.

5. Conclusions

Transcriptome sequencing analysis showed that OTUD7A is involved in the develop-
ment of goose fatty liver, mainly through cytokine–cytokine receptor interaction; tropane,
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piperidine, and pyridine alkaloid biosynthesis; isoquinoline alkaloid bio-synthesis; the
JAK-STAT signaling pathway, and the PI3K-Akt signaling pathway. In addition, OTUD7A
may regulate the expression of inflammation- and immune-related genes such as TNFSF8,
IFIT5, IL23R, RSAD2, MX1, and GBP1 in the goose fatty liver.
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Abstract: Complex evolutionary processes, such as positive selection and introgression can be
characterized by in-depth assessment of sequence variation on a whole-genome scale. Here, we
demonstrate the combined effects of positive selection and adaptive introgression on genomes,
resulting in observed hotspots of runs of homozygosity (ROH) haplotypes on the modern bovine
(Bos taurus) genome. We first confirm that these observed ROH hotspot haplotypes are results of
positive selection. The haplotypes under selection, including genes of biological interest, such as
PLAG1, KIT, CYP19A1 and TSHB, were known to be associated with productive traits in modern
Bos taurus cattle breeds. Among the haplotypes under selection, we demonstrate that the CYP19A1
haplotype under selection was associated with milk yield, a trait under strong recent selection,
demonstrating a likely cause of the selective sweep. We further deduce that selection on haplotypes
containing KIT variants affecting coat color occurred approximately 250 generations ago. The study
on the genealogies and phylogenies of these haplotypes identifies that the introgression events of the
RERE and REG3G haplotypes happened from Bos indicus to Bos taurus. With the aid of sequencing
data and evolutionary analyses, we here report introgression events in the formation of the current
bovine genome.

Keywords: positive selection; adaptive introgression; runs of homozygosity; haplotype; cattle

1. Introduction

Whole-genome sequencing technology and genomic tools provide opportunities to inves-
tigate and understand the interplay between complex evolutionary processes, such as positive
selection, introgression and inbreeding [1–3]. Using genome-wide or genomic region-specific
analyses with single base pair resolution, an in-depth understanding of the selective processes
shaping patterns of genetic variation in a population can be achieved [4–6]. Among these
complex processes, positive selection has played a very important role in changing genomes
through adaptation driven by frequency changes of favorable alleles in the modern population.
Strong selection on favorable alleles often happens in response to environmental changes or
diseases. An example of the former is the selection at the lactase locus in humans for the ability
to digest milk [7]. In farm animals, strong drivers of adaptation include domestication and
recent strong artificial selection for desired phenotypes. Signatures of selection in the genome
can be detected through high levels of linkage disequilibrium resulting in extended haplotypes,
deviations of allele frequencies from the neutral model and reduced local heterozygosity [8,9].
However, the process of positive selection has its own complexity as it interacts with other
evolutionary processes, resulting in distinct patterns of genetic variation. Thus far, there is
a poor understanding of the interaction between different complex evolutionary processes
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on the observed genomic phenomenon for haplotypes on a genome-wide scale, such as the
distribution of homozygosity [10]. Here, we study the impact of selection resulting in ge-
nomic homozygous haplotypes, known as runs of homozygosity (ROH), in connection to the
candidate target regions for positive selection and adaptive introgression.

Domestic cattle is an appealing model to study the effects of demography and positive
selection on their genomes resulting in extreme patterns of ROH distribution, because of the
known selection history, detailed records and controlled environments. Since domestication
from wild aurochs ~10,000 years ago [11–13], the bovine genome has been heavily shaped
by intensive artificial selection. Selection has been especially strong during the most recent
60 years [14,15], resulting in a significant improvement in milk and meat production as
well as changes in disease resistance [1,16,17]. The extreme use of the genetically best sires
has left many and clear signals of selection in the cattle genome. It provides opportunities
for detecting haplotypes not only under strong positive selection, but also resulting from
introgression from other species. These important haplotypes have largely contributed to
the improvement of the modern taurine cattle breeds. Evidence already shows that there
is pervasive introgression aiding in domestication and adaptation in the Bos species [18].
Hence, these unique conditions make the genome of domestic cattle an excellent model
to study how long-term intensive positive selection together with introgression shapes
their genomes.

This study used large-scale genome sequencing data from domestic cattle as a model
to demonstrate that positive selection can cause uniform ROH haplotype patterns at the
population level. We first characterized and compared the distribution of polymorphisms
with single-base resolution to quantify genetic diversity in different breeds. We next ex-
amined the effects of positive selection on the distribution of ROH in the current domestic
cattle population. Based on the length distribution of ROH in the population, we inferred
the time-scale of positive selection on specific ROH haplotypes in the population. Finally,
we identified introgression events from Bos indicus to Bos taurus by examining the phyloge-
netics of ROH hotspot haplotypes under positive selection. Overall, we utilized the bovine
genome as an excellent and unique model system to demonstrate the effects of demog-
raphy and positive selection in shaping the occurrence and distribution of ROH in cattle
genomes, and provide important and novel insights in inferring genomic footprints from
demographic history and positive selection using ROH as a tool from large-scale genomes.

We confirmed these candidate regions under selection using other statistics, such
as the integrated haplotype score (iHS), and its interplay with demography, shaping the
genomes of modern species.

2. Materials and Methods

2.1. Sequencing and SNP Discovery

A total of 684 bulls with high genetic contributions to the current cattle populations,
including 267 Holstein, 102 Fleckvieh, 89 Angus, 34 Jersey, 30 Simmental, 29 Brown Swiss,
26 Charolais, 25 Hereford, 25 Gelbvieh, 17 Finnish Ayrshire, 16 Swedish Red, 15 Danish
Red and 9 Belgium Blue, were obtained from the 1000 Bull Genomes Project’s Run4 [19].
Among these, the Danish Red cattle are from the Old Danish Red cattle population [20], and
Principal Component analysis (PCA) showed that Simmental and Fleckvieh are separated
as different breeds (unpublished results). Animals were selected following the same
criteria as Boitard et al. [21]. Sequences of Bos indicus, Gaur, Bison, Wisent, Banteng
and Gayal individuals were downloaded from NCBI (for accession numbers, see Data
Availability) [5,18].

Sequence reads from sequenced individuals were aligned to the cattle reference
genome assembly UMD3.1 [22] using bwa [23]. Duplicate reads were marked using sam-
tools [24]. Local realignment and quality recalibration was performed using the Genome
Analysis Toolkit (GATK) [25] following the Human 1000 Genome guidelines, incorporating
information from dbSNP [26]. Subsequently, variants were called using HaplotypeCaller
from GATK [25] and annotated using information from dbSNP [26]. Only variants with
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PHRED scores above 100 were kept and indels were excluded from further analyses. Nu-
cleotide diversity was calculated using a sliding window of 10 kbp over the whole genome
in all sequenced individuals, following Bosse et al. [27]. We corrected the SNP counts per
10 kbp bin for the number of bases within each 10 kbp bin proportionally to 10,000 covered
bases, i.e., bases with coverage between half and twice the average genome coverage. The
correction factor was calculated as DP/bin size, where DP = coverage in bp/bin.

2.2. Runs of Homozygosity

ROH were identified on all autosomes of the sequenced individuals using the method
developed by Bosse et al. [27]. We set the threshold to declare an ROH as an SNP count
maximum of 0.25 times the genome coverage in a window of 10 kbp. Detected ROH were
classified into three size categories: (1) short ROH smaller than 100 kbp (size class S);
(2) medium ROH between 0.1 and 5 Mbp (size class M); and (3) long ROH longer than
5 Mbp (size class L). For each breed analyzed, the number of ROH in each individual was
plotted against the total sum of lengths of the ROH detected in that individual. The number
of individuals within each breed and across all breeds sharing an ROH in a sliding window
of 100 kb were counted across the whole genome (i.e., ROH hotspot score). Genomic
regions where the fraction of individuals sharing an ROH exceeded the 99th percentile of
the empirical distribution were defined as ROH hotspots.

2.3. QTL Enrichment

Quantitative trait loci (QTLs) in cattle were extracted from the Animal QTL Database [28].
QTLs on the X chromosome or without locations were excluded. QTLs without references
in the Animal QTL Database were excluded [28]. The remaining QTLs were then classified
from the Animal QTL Database into six groups by the type of associated trait, i.e., milk,
reproduction, production, health, meat and carcass, and exterior traits. The QTLs located
within detected ROH hotspots were identified. When two QTLs were found to have the
same exact genomic interval or to be in the same associated trait group, they were counted
as one QTL. To test whether the enrichment of QTLs in the candidate ROH hotspots was
random or not, a permutation test was applied where ROH hotspot regions are simulated
in each permutation. Briefly, candidate ROH hotspot regions were randomly distributed
across the whole genome 10,000 times. Relative proportion and length of ROH hotspot
regions were kept constant to preserve their correlation structure. Next, we repeated trait
group assignment of QTLs located within the permuted ROH hotspot regions and computed
the number of QTLs in each of the six trait groups. The distribution of numbers of QTLs
observed in the permutated ROH hotspot regions was treated as the null distribution, from
which we computed the significance levels of the number of QTLs observed in the real data.
Moreover, genes located in the candidate ROH hotspots were annotated to the Ensembl Genes
89 Database using BioMart [29] and GO enrichment analysis was performed. The PANTHER
classification system [30] was used to identify over-represented biological process-related
GO terms. We used the human one-to-one orthologues for all cattle genes, because human
genes are annotated more comprehensively. Significance levels were adjusted based on
the Benjamini and Hochberg correction [31] for multiple comparisons, implemented in the
PANTHER classification system (FDR < 0.05). Finally, the haplotype structure of ROH hotspots
was examined among different breeds and species using haplostrips (version 1.1) [32], and
phylogenetic trees of genomic sequences in ROH hotspots were constructed using Neighbor-
Joining and bootstrapping methods, implemented in MEGA (version X) [33].

2.4. Detection of Selection Signatures

The Integrated Extended Haplotype Homozygosity (EHH) and Integrated Haplotype
Score (iHS) statistics [8], as well as the posterior probabilities from the hidden Markov
model (HMM) [21], were calculated and obtained within Holstein, Fleckvieh and Angus
populations with relatively large sample size. The integrated EHH is a metric to identify
genomic regions of excess haplotype homozygosity. It measures the excess of homozygosity
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due to identity by descent around an ancestral or derived allele of interest [8]. Consequently,
an SNP at a very high allele frequency with strong and long-range LD and thus excessive
integrated EHH scores indicates recent positive selection that has rapidly brought the
haplotype close to fixation in a population. The iHS test identifies chromosome segments
where the derived allele occurs at unusually high frequencies, indicating hitchhiking with
a selectively favored variant. Unlike the EHH, it requires the definition of ancestral alleles.
Integrated EHH statistics, hence, identify genomic regions under selection which have
been fixed or are close to fixation, while iHS has high power to identify haplotypes under
selection which have not yet been fixed [8]. The posterior probabilities from HMM are a
measure of hard-sweep within breed and reported in [21], and were transformed in the
following way: log10(p/(1-p)), where p is the posterior probability following [21].

Since the ancestral state of SNPs is usually used for detecting selection, for the dbSNPs
from the sequence data, we inferred the ancestral alleles in Bos taurus using the method of
Rocha et al. [34], in which the variants in dbSNPs were compared with sheep, water buffalo
and yak. In this study, the allele was assigned as ancestral if it was observed at least twice
in either sheep, water buffalo or yak. In total, there were 4,839,909 dbSNPs with inferred
ancestral states and this information was used to estimate the integrated EHH and iHS
scores. Finally, we calculated both the correlations between the integrated EHH scores and
the number of individuals sharing an ROH, and the correlations between the iHS scores and
the number of individuals sharing an ROH in a window of 100 kb for Holstein, Fleckvieh
and Angus populations. The p values of correlations were calculated to determine whether
they were significantly different from 0 using the R (http://www.r-project.org/, accessed
20 May 2019) cor and cor.test functions.

2.5. Association Mapping of Haplotypes from the ROH Hotspot Containing the CYP19A1 Gene

Due to its role in mammary gland development [35], we hypothesized that there is a
phenotypic effect of the ROH hotspot containing CYP19A1. To test the phenotypic effect,
we implemented a haplotype-based mixed linear model test for the effect of haplotypes on
milk yield in ROH hotspot haplotypes containing CYP19A1 variants. A total number of
5,199 Holstein individuals with HD genotypes were used to test the haplotype association
with de-regressed proofs (DRP) of milk yield. The genotypes from gene CYP19A1 were
extracted and phased using Beagle [36]. The following haplotype-based mixed linear model
was used: y = 1μ + Za + h1 + h2 + e, where y was a vector of phenotypes (milk yield);
1 was a vector of ones; μ was the intercept; a was a vector of random polygenic effects
following a multivariate normal distributed as a ~ N(0,Aσ2

a ); A was the pedigree-based
additive relationship matrix; σ2

a was the polygenic variance; h1 and h2 were vectors of
random haplotype effects, assumed to follow hi~N(0,Iσ2

h ); Z was an incidence matrix,
relating phenotypes to the corresponding random polygenic effects; e was the vector of
random individual error terms, where e~N(0, Iσ2

e); I was an identity matrix; and σ2
h and σ2

e
were the variance of haplotype effects and error variance, respectively. We quantified the
significance of the haplotype substitution effect by using the likelihood ratio test, comparing
the full haplotype-based association mixed linear model with a null model with mean,
polygenic effect and random error term, but without haplotype effects.

3. Results

3.1. The Distribution of ROH on Genomes Shaped by Demography

Runs of homozygosity on autosomes were determined for the sequenced cattle indi-
viduals from different breeds with a high genetic contribution to the current domestic cattle
populations. The samples were grouped based on their breed origin, with Holstein, Jersey,
Brown Swiss, Ayrshire Finnish Red, Swedish Red and Danish Red being dairy breeds,
Angus, Charolais, Hereford, Gelbvieh and Belgium Blue being beef breeds and Fleckvieh
and Simmental being dual-purpose breeds. There was an average number of 1221 ROH
per genome, with an average size of 202 kbp across all individuals. The mean number and
size of ROH varied from breed to breed, which reflects the different population histories
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and levels of inbreeding in these populations (Figure 1). The highest mean ROH size of
460 kbp was observed in the Danish Red population, while the lowest mean ROH size of
106 kbp was observed in the Swedish Red population. The highest average number of
2199 ROH was found in Jersey and the lowest average number of 641 ROH was observed
in Charolais. On average, across all the populations, 9.39% of the genome was contained in
ROH, ranging from 3.59% in Swedish Red cattle to 22.4% in Danish Red cattle, in which the
proportion of ROH in the genome is defined as the ROH length divided by the total length
of the cattle genome. The proportion of ROH is relatively moderate for Hereford, Jersey
and Angus compared with Swedish Red and Danish Red. ROH segments were grouped
into three classes (S, M, L) by length. S ROH were the most abundant in number, followed
by M ROH and L ROH segments. Clusters of S ROH, i.e., many individuals with ROH
at a site, indicate sites of low haplotype diversity, which may result from past or ongoing
selection. However, the average total length of S ROH segments across the genome was
small compared to the total length of M ROH segments. M ROH were fewer in number,
but their average total length across the genome was longest among S, M and L ROH.

Figure 1. Cont.
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Figure 1. General statistics of ROH distribution in sequenced populations. (A) The proportion of the
genome in ROH, the average ROH size and the number of ROH segments in the genome. (B) The
number of ROH segments classified as short (S; red), medium (M; green) and long (L; blue) ROH.
(C) The sum length of ROH segments classified as short (S), medium (M) and long (L) ROH.

To reveal the demographic history of the sequenced populations, we plotted the
numbers of ROH against the sum lengths of ROH (Figure 2). Out of 13 cattle breeds,
Angus, Jersey, Ayrshire Finnish Red and Simmental showed a medium number of ROH
and medium total length in ROH, with most points locating in the middle of the plot
(Figure 2). Fleckvieh, Charolais, Brow Swiss and Swedish Red had most points in the lower
left corner of the plot, indicating a small number of ROH with a small sum of total ROH
length. Danish Red was an extreme case, with a small number of ROH and large total ROH
length. For the Holstein population, no clear patterns were observed. Instead, the ROH
distribution between Holstein individuals was characterized by large variation, with a few
Holstein individuals from the Netherlands showing extreme levels of inbreeding.

3.2. Effect of Positive Selection on ROH Occurrence

The correlations between ROH occurrence and selection signatures were firstly cal-
culated by using integrated EHH, iHS and HMM tests, and ROH hotspot scores for the
breeds with large sample size (i.e., Holstein, Angus, and Fleckvieh). Generally, we ob-
served significantly high, positive correlations between the integrated EHH scores for the
ancestral and the derived alleles and ROH hotspot scores (Figure S1) (0.54, 0.56 and 0.34 for
ancestral alleles for Holstein, Angus and Fleckvieh; 0.47, 0.42 and 0.25 for derived alleles
for Holstein, Angus and Fleckvieh, p < 0.01). Similarly, a significantly positive correlation
was observed between the transformed posterior probabilities from HMM tests detecting
hard sweeps [21] and the ROH hotspot scores on the genome (Figure S2) (0.20 and 0.23 for
Holstein and Angus, p < 0.01). In contrast, much smaller, but still significant, correlations
were observed between the proportion of SNPs with |iHS| > 2 and ROH hotspot scores in
a window of 100 kbp (Figure S3) (0.07, 0.05 and 0.14 for Holstein, Angus and Fleckvieh,
p < 0.01). Compared with selective sweeps detected from integrated EHH, HMM and iHS
tests, a large proportion of the ROH hotspots were validated as candidate regions under
positive selection in either Holstein, Angus or Fleckvieh (Tables S1–S3). For example, the
integrated EHH test identified selective sweeps around ROH hotspots including the genes
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TSHB, RERE and CTNNA1. We confirmed the hypothesis that ROH hotspot scores can be
used to detect candidate regions under positive selection.

Figure 2. The number of ROH plotted against the sum of ROH in sequenced populations. The x axis
shows the total length of ROH in bp. The y axis shows the total number of ROH in the genome. Each
dot represents one individual.

We next examined the effect of positive selection on ROH occurrence in a genome-wide
scale. Several ROH hotspots were observed in the genome (Figure 3). In total, 31 ROH
hotspots were identified across the whole genome and a number of annotated genes were
located in these ROH hotspots (Table S4). The most pronounced ROH hotspots were
observed on chromosomes 7 and 16. They contained the genes RERE and CTNNA1, which
were previously found to be under positive selection [37]. The genes CAV1 and TSHB,
which are related to mammary gland development, were also located in ROH hotspots,
while CAV1 and TSHB have not previously been found to be associated with selective
sweeps. Other genes in ROH hotspots, such as PLAG1 and KIT, were associated with
well-known signatures of selection [38,39]. Genes such as CYP19A1, CHCHD7, CLSTN1
and SLC25A33 in ROH hotspots were previously identified as candidate genes in hard
selective sweep regions in cattle using sequencing data [21]. The GO enrichment analysis
of genes located in ROH hotspots revealed a significant over-representation of GO terms
related to cellular component organization, including the cellular process and cellular
component organization or biogenesis (FDR < 3.35 × 10−2). Moreover, enriched QTLs were
identified in these ROH hotspots. However, only QTLs associated with health-related traits
were significantly enriched in the ROH hotspot regions (p < 0.01).
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Figure 3. The ROH hotspot scores across all the sequenced individuals. The x axis shows the
chromosome location on the 29 bovine autosomes. The y axis shows the number of animals with an
ROH at this position (i.e., ROH hotspot scores). The total number of animals examined was 684. Each
dot represents the count in windows of 100 kb.

We further deduced the time-scale of selection of the ROH hotspot candidates under
positive selection based on the length of the ROH hotspots (Figure 4). The ROH hotspot
around the KIT gene was selected to infer the time-scale of selection due to the role of the
KIT gene in the coloring pattern in cattle [40]. The mean length of ROH around KIT was
988 kbp (N = 362). The length (in unit of 100 kbp) of ROH around the KIT gene fitted a
chi-squared distribution with 8.2 degrees of freedom corresponding to a mean of 820 kbp.
The expected length of shared ROH in the population is 2/Tc, where Tc is the length of
ROH haplotypes in Morgan. Therefore, this haplotype seems to have become a target of
selection on the order of 250 generations ago.

Figure 4. The distribution of ROH hotspot haplotype length in the KIT gene. The x axis is the length
of ROH in units of 100 kbp. The red curve indicates the density function for a chi-squared distribution
with parameter of degrees of freedom of 8.2 fitted to the distribution of lengths of ROH.

3.3. Phylogenies and Genealogies in ROH Hotspots

We examined the phylogenies and genealogies of haplotype structures in ROH hotspot
regions, comparing between different cattle breeds and species including Zebu (Bos indicus),
Gaur (Bos gaurus), Bison (Bison bison), Wisent (Bison bonasus), Banteng (Bos javanicus) and
Gayal (Bos frontalis). Comparison of Bos taurus genealogies revealed the striking difference
between a tree topology with shallow branches for a random haplotype and a tree topology
with a very deep branch for a haplotype under selection (Figure 5). Patterns were especially
pronounced for the ROH hotspot containing the RERE gene, a selection signature in most
Bos taurus breeds (Figures 5A and S5). The genealogy in a non-ROH hotspot is shown
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for comparison (Figure 5B). The difference in genealogies around RERE compared to the
non-ROH region is quite striking. In the ROH hotspot region, the majority of animals,
independent of breed origin, clustered within one group of very closely related haplotypes.
A few distantly related and rare haplotypes segregate in some Bos taurus breeds. In order
to trace the origin of the haplotypes under selection, we examined the haplotype structure
across species close to Bos taurus (Figure 6). Some of the haplotypes in the group dominant
in Bos taurus RERE were found to be identical to haplotypes observed in Bos indicus, but
very different from the haplotypes of Gaur, Bison, Wisent, Banteng and Gayal, as well as
the alternative haplotypes in Bos taurus. This suggests that an introgression event happened
in the RERE haplotype from Bos indicus to Bos taurus.

Figure 5. Cont.
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Figure 5. Haplotype structure and genealogies of haplotypes containing RERE variants located in
ROH hotspots in different Bos taurus populations. (A) The structure and genealogies of haplotypes
containing RERE gene. (B) The haplotype structure and genealogies in a non-ROH hotspot (chromo-
some 7:21,100,000–21,180,000 bp). The two alleles at each bi-allelic SNP are shown as black or white
lines. Haplotypes are clustered based on based on the Manhattan distance, bringing together similar
haplotypes and ordered by decreasing similarity. Breed association is indicated by the dendrogram
on the left side.

3.4. Effect of Haplotype in the ROH Hotspot around the CYP19A1 Gene on Milk Yield

The phenotypic effect of an ROH hotspot potentially under positive selection was
examined. We tested the effects of haplotypes in an ROH hotspot containing the CYP19A1
gene on milk yield using 5,199 Holstein individuals under the hypothesis of the important
biological role of CYP19A1 in mammary gland development [35]. Four different haplotypes
were observed. Haplotypes had significant substitution effects for milk yield in Holstein
(p < 0.05) (Table 1). Interestingly, we observed a frequency of 94% of the selectively favored
haplotype, with an effect of 0.629 in the Holstein population, while the frequency of the
alternative homozygous haplotype with an effect of −0.846 was 5%. This suggested that
this selectively favored haplotype with a positive effect on milk yield is under positive
selection and nearly fixed in the Holstein population.
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Figure 6. Haplotype structure and phylogenies of haplotypes from an ROH hotspot region containing
the RERE gene for Bos taurus (Holstein, Angus and Fleckvieh), Zebu (Bos indicus), Gaur, Bison,
Banteng, Wisent and Gayal. (A) Left panel: the phylogeny of RERE haplotypes. Haplotypes are
clustered based on based on the Manhattan distance, bringing together similar haplotypes and
ordered by decreasing similarity. Right panel: the haplotype structure around the RERE gene.
Colored blocks indicate the origin of haplotypes. The two alleles at each bi-allelic SNP are shown
as black or white lines. (B) Left panel: the genealogy of SLC25A51 haplotypes. Right panel: the
haplotype structure around the SLC25A51 gene. Colored blocks indicate the origin of haplotypes.
The two alleles at each bi-allelic SNP are shown as black or white lines.
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Table 1. Haplotype effects from CYP19A1 locus on milk yield in Holstein population. * refers to
p value < 0.05.

Haplotype Effect Size Standard Error Significance (p Value) of Substitution Effects between Haplotypes

11,111 0.629 0.730

0.010 *
12,111 0.135 0.984
22,211 0.081 0.971
22,222 −0.846 0.740

4. Discussion

Signatures of positive selection and demographic history in domestic cattle can be
studied by examining ROH hotspot scores in their genomes. This makes domestic cattle an
excellent model to demonstrate the interplay between positive selection and demography.
Studies have shown that the distribution and burden of ROH is highly related to the
current or previous population sizes [41,42]. It is expected that there are more and longer
ROH segments distributed in populations with non-random mating, while in admixed
populations, the number of ROH is reduced and ROH remain short due to the introgression
of different haplotypes. Bottlenecks result from increased numbers of short ROH [43,44].
On the other hand, mating of close relatives increases the number of long ROH, while the
variance of sum of length of ROH increases [45,46].

Different demographic histories result in the diverse locations of points when plotting
the number of ROH and the sum lengths of ROH (Figure 2). In most breeds, we see that
most of the animals roughly lie on a line. The slope of this line reflects the average length
of ROH. A steep slope corresponds to a short average ROH length, while a shallow slope
reflects a long average ROH length. The shorter the average ROH, the longer ago we find
their origin. Out of 13 cattle breeds in this study, Angus and Jersey have relatively small
populations and have experienced bottlenecks, as indicated by the high fraction of the
genome in ROH. Nonetheless, even in Jersey, we find individuals with a very low level
of ROH. Fleckvieh, Charolais, Brown Swiss and Swedish Red show very low amounts of
ROH. This is consistent with recent admixture in the sequenced individuals [1]. Danish Red
exhibits a very shallow line corresponding to very long ROH combined with a very large
fraction of the genome in ROH. This reflects a pattern of strong recent inbreeding in Danish
Red. In most populations, we see individuals with a low amount of ROH in terms of both
total sum and number of ROH, except in Danish Red and Belgian Blue. This probably
reflects an absence of admixture in these two breeds. Brown Swiss, Jersey and Hereford
contain individuals to the right of the slope, which is evidence of consanguinity among
their parents. The Holstein population looks heterogeneous. Points cluster on two lines,
one steep and one shallow, reflecting the population structure, with subpopulations being
characterized by different ROH patterns and different amounts of inbreeding. However,
there are many individuals with points in between the two slopes. Finnish Ayrshire and
Simmental probably had larger population sizes in the past, as shown by a steep slope and
moderate total length of ROH. The distribution of ROH numbers and lengths illustrates
the demographic diversity among cattle breeds.

We observed an abundance of short and medium-sized ROH in cattle genomes in
different breeds (Figures 1 and 2). The high occurrence of ROH sites among individuals
may be the result of intensive artificial selection, nowadays performed by animal breeders.
Selection enacted in the population results in a less diverse haplotype distribution, and
thereby more non-randomly distributed ROH in cattle populations are observed. Genomic
regions located in an ROH region might be a result of close inbreeding and skewed haplo-
type spectra [47]. We confirmed the effect of positive selection on most of the ROH hotspots
by examining the integrated EHH scores, iHS scores and the posterior probabilities from
HMM tests for hard selective sweeps, and correlating them with ROH hotspot scores in
these genomic regions. As a whole, these tests confirmed genes PLAG1, KIT, RERE, CAV1,
TSHB, CYO19A1, CHCHD7, CLSTN1 and SLC25A33 as likely targets of selection in ROH

104



Agriculture 2022, 12, 844

hotspots. Among these genes, RERE plays an important role in development and in cell
survival [48], and histone methyl transferases in regulating gene expression [49], so the dif-
ferent haplotypes in Bos taurus populations in gene RERE might cause different expression
levels associated with production or disease. CTNNA1 may play a role in disease suscep-
tibility [50]. CAV1 could regulate the release of milk from the mammary gland during
lactation and progress the mammary gland to a mature structure [35], while TSHB was
found to be associated with milk fat percentage [51,52]. PLAG1 is associated with calving
ease and stature, while KIT is associated with coat color patterning and pigmentation in
cattle [40,53].

These results suggest that the occurrence of ROH hotspots is highly positively associ-
ated with selective sweeps close to fixation due to the high prevalence of the ROH hotspot
haplotypes, but less so with ongoing selection. The relatively lower correlation between
integrated EHH scores and ROH hotspot scores in the Fleckvieh population compared with
the Holstein population suggests a difference in selection, such as selection intensity, in
Holstein compared with the Fleckvieh population. To correlate the ROH hotspots with
phenotypes, we performed a QTL enrichment analysis and we observed a significant enrich-
ment of health-related QTLs in ROH hotspots in bovine genomes. This suggests that ROH
hotspot regions in cattle are more associated with health-related traits. Furthermore, an
overrepresentation of GO terms related to cellular component organization was observed.
It implies that the different haplotypes in genes located in ROH hotspots might result in an
abnormality within a specific cell component, thereby causing a disease [54,55]. However,
it is noticeable that the ROH hotspot regions are probably more related to selective sweeps
close to fixation through positive selection. Hence, SNPs located in ROH hotspots are no
longer segregating in the populations and are therefore difficult to detect in a QTL mapping
study. CYP19A1 plays a biological role in female gonad development, mammary gland
development and the development of male sexual characteristics [35]. The widespread
occurrence of ROH around CYP19A1 agrees with strong artificial selection on the milk- or
fertility-related traits in dairy cattle.

We examined and reported the time-scale of positive selection, phylogenies and
genealogies and phenotypic effects in one ROH hotspot. The time-scale of selection in
ROH hotspots can be inferred by examining the length distribution of ROH hotspots across
individuals. The mean length of ROH from the common ancestor is inversely proportional
to the number of generations since the most recent common ancestor giving rise to the
ROH [56]. Thereby, we are able to deduce an approximate selection time-scale based
on the length distribution of the ROH across individuals. The haplotype containing KIT
variants was used as an example to demonstrate the time-scale in an ROH hotspot. The
selection acting on the haplotype containing KIT variants seems to have started around
250 generations or 1250 years ago, assuming a generation interval of 5 years. Haplotypes
containing KIT variants are associated with the color patterns. This suggests an onset of
selection around the 7th century CE.

Our observed result suggests a possible introgression from Bos indicus to Bos taurus
for a haplotype of the ROH hotspot region containing the RERE gene (Figure 6), where we
identified that the RERE haplotype of Bos indicus is identical to a haplotype in Bos taurus.
A second potential introgression event from Bos indicus to Bos taurus was detected for the
ROH hotspot containing the REG3G gene (Figure S4). Gene REG3G is associated with the
immune response to pathogens and bacteria by stimulating toll-like receptors (TLRs) [57],
suggesting that this possible introgression, followed by subsequent selection, improved the
fitness and disease resistance in Bos taurus. The widespread distribution of nearly identical
haplotypes in Bos taurus demonstrates that this haplotype has been under recent intensive
selection in Bos taurus. The introgressed haplotype is highly represented in several cattle
breeds; thus, it is a strong indication of adaptive introgression. However, very different
haplotypes are still present in some Bos taurus breeds. This supports that the direction of
introgression is from Bos indicus to Bos taurus—and not vice versa. Finally, we observed
that an ROH hotspot containing CYP19A1 was associated with a signal of positive selection.
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Haplotypes in this region were associated with effects on milk yield. This provides a likely
explanation for the selective force creating the selection signature.

5. Conclusions

Our study demonstrates that the formation and distribution of ROH in bovine popula-
tions is highly influenced by demography and positive selection. We illustrate that strong
positive selection strongly shapes the occurrence of ROH and, for the first time, show the
phylogenies in ROH hotspots, timing of selection on ROH hotspots and the phenotypic
haplotype effects of ROH hotspots under strong selection in bovine populations. These
ROH hotspots are very likely to significantly influence the fitness and economic traits of
individuals in the population. We demonstrate that ROH hotspots are positively corre-
lated with selective sweeps close to fixation. This highlights the importance of positive
selection on shaping ROH distributions across individuals. Moreover, it sheds light on
the importance of including effects of positive selection when estimating inbreeding from
ROH using whole-genome sequence data. We provide an example with strong evidence
of a significant association between ROH haplotypes under positive selection and milk
yield in cattle populations, strongly supporting our findings. Furthermore, we show ROH
as a tool to study the effects of demography, introgression and positive selection in the
bovine population; however, it is generally applicable for any species. We highlight the
importance of effects of positive selection and demography on shaping ROH localization
on genomes in a domestic population under strong artificial selection for long time.
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Abstract: Phenotypes are necessary for genomic evaluations and management. Sometimes genomics
can be used to measure phenotypes when other methods are difficult or expensive. Prolificacy of
bulls used in multiple-bull pastures for commercial beef production is an example. A retrospective
study of 79 bulls aged 2 and older used 141 times in 4–5 pastures across 4 years was used to
estimate repeatability from variance components. Traits available before each season’s use were
tested for predictive ability. Sires were matched to calves using individual genotypes and evaluating
exclusions. A lower-cost method of measuring prolificacy was simulated for five pastures using the
bulls’ genotypes and pooled genotypes to estimate average allele frequencies of calves and of cows.
Repeatability of prolificacy was 0.62 ± 0.09. A combination of age-class and scrotal circumference
accounted for less than 5% of variation. Simulated estimation of prolificacy by pooling DNA of
calves was accurate. Adding pooling of cow DNA or actual genotypes both increased accuracy about
the same. Knowing a bull’s prior prolificacy would help predict future prolificacy for management
purposes and could be used in genomic evaluations and research with coordination of breeders and
commercial beef producers.

Keywords: DNA pooling; parentage; reproduction

1. Introduction

The conceptual linking of genome to phenome is fundamental to animal improvement.
Current genetic evaluation systems utilize many genotypes and associated phenotypes to
accelerate improvement. Beyond the genome-to-phenome paradigm, some phenotypes
used for management or inputs to genetic evaluation, particularly those notoriously diffi-
cult to be measured, may be best estimated by genomics. Bull prolificacy in multiple-bull
pastures is one of those phenotypes.

Efficient use of bulls for mating cows in commercial beef production involves both
the number of bulls maintained and pregnancy rates of the cows. Maintaining fewer bulls
reduces costs, and greater pregnancy rates increase calves born. However, maintaining
and using too few bulls can lower pregnancy rates. Using multiple bulls in breeding
pastures is one technique used to simplify some aspects of management and may increase
pregnancy rates without increasing the number of bulls [1]. Microsatellite and SNP markers
have allowed calves resulting from multiple-bull breeding pastures to be matched to
their sire [2–5] and fill in the sire-side of their pedigrees. Knowing calves’ sires allows
evaluating bulls for prolificacy—their ability to sire calves in a multiple-bull pasture
situation. Behavioral, physical, or other fertility factors may cause some bulls to sire more
or fewer calves [2,6,7]. Cattle breeders could use a bull’s predicted prolificacy to help
decide whether to keep, cull, or use the bull in a different way if predictions were accurate.
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Genomic markers allow matching sires to calves, but the cost of genotyping all com-
mercial calves may not be economical if prolificacy is the only use of the genotypes. The
method of pooling DNA to estimate genomic differences between groups with different
phenotypes is being studied for use in genomic association and prediction [8–11]. Another
potential use is to estimate the number of calves for sires by pooling DNA from all calves,
i.e., using DNA pooling to estimate phenotypic prolificacy differences.

One objective of this study is to estimate the repeatability of Bos taurus bull prolificacy
across years in a temperate climate when used in multiple-bull breeding pastures and
identify whether some bull traits could predict prolificacy before use. Another objective is
to evaluate the potential for using the DNA pooling method to estimate prolificacy of bulls
used in multiple-bull pastures at a lower cost.

2. Materials and Methods

2.1. Real Data

This retrospective study used 4 years of multiple-bull pasture breeding (2012 to 2015)
and subsequent calving data (2013 to 2016). Cattle populations were purebred Angus and
advanced generation composites MARC I, MARC II, and MARC III [12]. Only bulls and
cows aged 2 and older at the time of breeding were included in data analyzed. In addition,
only bulls passing breeding soundness exams for physical and semen traits were used in
breeding pastures. A few bulls were removed for injury or other reasons and were replaced
by different bulls unless it was late in the breeding season. Any bull not in the breeding
pasture for at least 90% of the breeding season was eliminated from analyses. In 2012, some
older cows in each of the 3 composite populations were synchronized and bred by AI 15 d
after younger cows entered breeding pastures. The synchronized cows entered the same
breeding pastures younger cows were in 9 d after AI and 39 d before the end of pasture
breeding. Calves sired by AI were eliminated from data, but those sired by the pasture
bulls were retained for analysis. Pastures and cow and bull assignments are described in
Table 1. Assuming half of AI cows were open after timed AI, the average assigned open
cows per bull was 23.6.

Table 1. Natural service assignments of bulls and cows and resulting calves.

Calf Birth
Year

Population Pasture Bulls
Assigned, N

Bulls
Analyzed 1, N

Cows
Assigned, N

Cow Age,
Year

Natural
Service, d

Calves
Born, N

Sire
Known, N

2013

MARC I A 8 6 157 3.92 63 140 138
66 2 7.45 39 57 57

MARC II B 7 5 130 3.24 63 115 110
86 2 7.20 39 75 69

MARC III C 6 6 65 3.06 63 43 42
165 2 6.39 39 150 148

Angus D 10 10 246 4.77 63 227 227

2014

MARC I E 6 6 156 4.08 63 146 144
F 3 2 62 8.42 63 49 48

MARC II G 9 9 214 5.05 63 180 178
MARC III H 10 9 245 5.37 63 201 201

Angus I 11 11 267 4.97 63 226 225

2015

MARC I J 9 9 222 5.52 63 182 182
MARC II K 9 7 212 5.13 61 179 161
MARC III L 11 11 251 4.97 62 195 194

Angus M 11 10 256 5.21 60 235 210

2016

MARC I N 9 9 221 5.31 49 198 198
MARC II O 9 9 203 5.04 49 168 165
MARC III P 6 6 126 3.07 49 110 109

Q 5 5 102 6.32 49 90 90
Angus R 11 11 251 5.14 49 214 213

1 Bulls that were removed, or their replacements, were not used in analyses unless they were in the breeding pasture for at least 90% of the
natural service period. 2 Older cows were synchronized and artificially inseminated 15 d after younger cows began natural service mating
and entered the breeding pastures 9 d later for the remaining 39 d of natural service.

The patterns of bull usage in the edited data are shown in Table 2. Included were
79 unique bulls with 141 breeding opportunities, ranging from 38 bulls with one oppor-
tunity each to 4 bulls used each of the 4 years. Across years there were 27, 37, 37, and 40
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breeding opportunities for calf years 2013, 2014, 2015, and 2016, respectively. Forty-one
bulls had an average of 2.5 breeding opportunities, and 38 bulls had a single opportunity.

Table 2. Patterns of edited bull usage by calf birth year.

No. Bulls 2013 2014 2015 2016

4 1 1 1 1
7 1 1 1 0
1 1 0 1 1
5 0 1 1 1
7 1 1 0 0
6 0 1 1 0
11 0 0 1 1
8 1 0 0 0
8 0 1 0 0
3 0 0 1 0
19 0 0 0 1

Sires and calves were genotyped with 4 genotyping panels across 4 years. Two were
low-density panels based on parentage markers [13] using the Bovine Parentage Panel
(Eureka Genomics, Hercules, CA, USA) or implemented with TruSeq DNA technology
(Illumina Inc., San Diego, CA, USA). Two were higher density panels with more than
50,000 SNP consisting of parentage, linkage, and functional SNP (BovineSNP50, Illumina
Inc., San Diego, CA; GeneSeek Genomic Profiler F250, Neogen, Lansing, MI, USA). A
higher proportion of calves born in early years were genotyped with only parentage panels.
Most calves born in 2016 and all but 3 bulls (1 Angus, 1 MARC I, and 1 MARC II) were
genotyped with GeneSeek Genomic Profiler F250.

A set of parentage SNP [13] in common across the 4 genotyping panels was identified.
These SNP were used to identify sires based on exclusions [4]. Additional steps were
taken to try to resolve some ambiguous sire identifications, including expanding exclusions
to additional SNP if available, calculating the genotypic correlations between a calf and
potential sires [14], and re-genotyping some animals. Calves genotyped with higher
density panels (48.8%) were matched with sires genotyped with high density (33.8%)
or only parentage (15.0%) genotyped with parentage panels were matched with sires
genotyped with high density (15.6%) or only parentage (35.6%). Most genotyped calves
were matched to a single sire, but several MARC II calves born in 2013 and 2015 and some
Angus calves born in 2015 were not genotyped. Sires of 3 calves with <100 genotypes also
were not identified.

The distribution of number-of-calves per bull opportunity (bull within pasture and
year) was skewed (Table 3) as has been observed in other studies of sire prolificacy. The
median and mode of the distribution is 18 with values from 0 to 57. A square root transfor-
mation was applied to the data before analysis.

Table 3. Distribution of number of calves (CalfN) by bull within pasture and year.

CalfN No. Observations

0 3
1 to 7 18

8 to 14 31
15 to 21 35
22 to 28 21
29 to 35 12
36 to 42 13
43 to 49 4
50 to 56 3

57 1
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Repeatability was estimated from the variance components for random effects for
between bull (bull) and within bull across years and pastures (e) as σ2

bull ×
(
σ2

bull + σ2
e
)−1.

Variance components were estimated using PROC GLIMMIX (SAS Institute Inc., Cary,
NC, USA) from the model Cal f N0.5

i,j,k = μ + Yi + Pj(Yi) + bullk + ei,j,k, where Cal f N0.5
i,j,k is

number of calves sired by bull k in pasture j (Pj) nested within year i (Yi). Additional fixed
categorical or continuous factors were individually added to this base model to test for
possible explanatory variables for bull prolificacy. Based on results of individual variables,
bull age category and scrotal circumference were added to the base model for testing jointly.
All reported statistical probabilities are based on data transformed by square root, but
reported means and regression coefficients of explanatory variables are from analyses of
untransformed data.

2.2. Simulating Errors in Pooling Allele Frequency

The concept of using pooled calf DNA to estimate bulls’ prolificacies was tested by
simulating DNA pooling of actual genotypes of calves born in 2016 and genotyped with
the Genomic Profiler F250 and sired by bulls genotyped with the same panel. Five pastures
(N, O, P, Q, and R; Table 1) with 189,165, 76, 89, and 198 calves and 9, 9, 5, 5, and 10 bulls,
respectively, were used after removing bulls and calves without Genomic Profiler F250
genotypes. Simulations used 14,190 autosomal SNP common to both BovineSNP50 and
GeneSeek Genomic Profiler F250 panels.

Simulation of pooling was a function of the actual allele frequencies for the calves
in a pasture as well as pool construction and technical errors. Pool construction error
or random unintended differences in the contribution of individual calves to the pool
can result from incorrect DNA measurement or quantification; pipetting error; or cross
contamination between pools, or between pools and individual animals. Technical error
is the result of variation in the ratio of X (red dye intensity) to Y (green dye intensity) for
samples with the same allele frequency (replicated pools) or the same genotype (replicated
individuals or individuals of the same genotype). Standard deviations for pool construction
error and technical error were estimated from replicated pools in earlier studies that
have the same real or underlying allele frequency as if the animals in the pool had been
individually genotyped [15,16]. Pooling allele frequency was estimated as the average
of genotypes (copies of B allele) weighted by the random calf contribution divided by
2. Pool construction error was simulated as a Dirichlet distribution with SD = 0.0024
equivalent to using symmetric shape (alpha) parameter of 20 when pool size is 92. The
Dirichlet distribution is parameterized by a shape parameter, alpha, for each calf in the
pool. For example, for a pool size of 150 calves the parameterization included a vector of
150 elements all having the same value of 20. The magnitude of alpha determines how
peaked the distribution of calf contributions is. Alpha = 10 would have less peaked and
more variable animal contributions than alpha = 20. Simulated technical error was drawn
from a normal distribution with a mean of zero and SD of 0.07.

Estimating the number of calves sired by a bull can be improved by knowing average
genotype frequencies of the dams. Three levels of average dam allele frequency information
were compared: (1) none, (2) a simulated, pooled estimate of allele frequencies from
the 94.5% of dams with genotypes, and (3) average allele frequencies of the dams with
genotypes. Quadratic programming [17] to compute sire contributions while both not
adjusting and adjusting for dam pooling allele frequency is included in an R script that is
part of the Supplemental Files.

When dam information was not included in the quadratic programming analysis,
dam allele frequencies were proportional to the residual after subtracting predicted sire
allele frequencies from calf pooling allele frequency (r2 ~0.8; data not shown). Adding dam
frequencies would be expected to improve the accuracy of sire solutions at an additional
cost of sampling cows and genotyping pools. Three levels of average dam allele frequency
information were compared: (1) none, (2) pooled estimate of allele frequencies from
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the 94.5% of dams with genotypes with simulated pool construction and technical error
incorporated, and (3) allele frequencies of the dams with genotypes.

3. Results

3.1. Repeatability Estimates

Estimated repeatability of bull prolificacy was 0.62 ± 0.09, and the SD of untrans-
formed calf N was 13.6 (Table 4). The data used to estimate repeatability are in supple-
mentary materials (Table S1) Previous numbers of calves from bulls used in multiple-bull
pastures as 2-year-olds and older are good predictors of future numbers of calves. This
result is consistent with or greater than other studies based on data from various pasture
situations with different numbers of bulls and cows assigned to pastures, usually for fewer
years and including yearling bulls [2,5]. It is also consistent with several studies observing
bulls’ rankings across years [18,19].

Table 4. Estimated repeatability of bull prolificacy and component variances.

Estimate Value 1 SE

Between bull 1.72 0.45
Within bull 1.05 0.21

Repeatability 0.62 0.09
1 Variances of square roots of number of calves per bull within pasture and year. Estimated variances of
untransformed numbers are 114.72 (between) and 70.43 (within).

3.2. Explanatory Variables

A bull’s life history and measurements made before entering the breeding pasture may
explain some difference in bull prolificacy. Several retrospective variables were individually
added to the statistical model for repeatability. Life history variables for bulls were (1) dam
was 2 years old, (2) previously used for breeding as a yearling, (3) used for breeding any
prior season, and (4) breeding age was >2. Bull measurements made during breeding
soundness exams before each breeding season were included, such as bull weight and
scrotal circumference.

None of the life history traits or bull measurements were significant when added
individually to the model (Table 5). However, some measurements and life-history traits
were partially confounded, especially bull measurements and breeding age. A model
including breeding age category (2 years old vs. older than 2) and scrotal circumference
measurement (at breeding soundness exam) resulted in significant effects for both. At the
same scrotal circumference, bulls older than 2 years sired 6.33 more calves. At the same
age classification, a 1.0 cm increase in scrotal circumference was associated with a decrease
of 1.56 calves, possibly because only bulls that had scrotal circumferences greater than
breeding soundness standards were used. The addition of these two variables accounted
for less than 5% of variation in prolificacy and did not change estimated repeatability.
The ability of individual bull measurements and life-history traits to predict prolificacy is
limited compared to knowing a bull’s earlier prolificacy results, when available.

Table 5. Patterns of edited bull usage by calf birth year.

Contrasts and Regression Coefficients Value, N 1 SE 1 P 2

Dam was 2-year-old 2.46 3.93 0.32
Previously used as yearling 5.25 3.12 0.11

Previously used, any age 3.64 2.51 0.18
Breeding age older than 2 years 3.79 2.66 0.16
Breeding exam weight, N/kg −0.005 0.015 0.79

Breeding scrotal circumference, N/cm −1.04 0.59 0.11
Values from adding 2 variates simultaneously

Scrotal circumference, N/cm −1.56 0.63 0.03
Breeding age older than 2 years 6.33 2.80 0.02

1 Values reported are calf number per bull per season. 2 Probabilities were based on analysis of calf N0.5.
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3.3. Estimated Prolificacy

Genotypes of calves, dams and sires used to simulate pooling and estimate sire
contributions are in supplementary materials (Tables S2–S6 for the 5 pastures N, O, P,
Q, and R, respectively). Results of simulated pooling of calf DNA samples (Table 6;
Figure 1) suggest that the concept of pooling to estimate prolificacy is valid. The accuracy
of predicting actual proportions of calves is moderate to high regardless of whether cow
allele frequencies are unknown, estimated by pooling, or known. Allele frequencies of
dams estimated by pooling did increase accuracy and consistency across different pastures.
There was little difference in either accuracy or consistency when allele frequencies of dams
were estimated by individual cow or pooled genotyping.

Table 6. Intercept, slope and r2 from regressing pooling estimates of sire progeny proportions on
known proportions 100 simulated replicates using 14,190 autosomal.

Dam Genotypes Pasture Intercept SE Slope SE r2 SD

None N −0.006 0.009 0.553 0.077 0.879 0.011
O −0.003 0.015 0.529 0.133 0.692 0.012
P −0.007 0.011 0.536 0.046 0.977 0.014
Q −0.007 0.013 0.537 0.063 0.956 0.009
R 0.005 0.008 0.452 0.069 0.842 0.013

Pooled N 0.002 0.003 0.486 0.025 0.980 0.004
O −0.002 0.005 0.516 0.043 0.950 0.004
P −0.000 0.005 0.502 0.021 0.994 0.006
Q 0.006 0.008 0.471 0.043 0.971 0.006
R −0.000 0.002 0.501 0.020 0.987 0.004

Individual N 0.002 0.003 0.487 0.023 0.983 0.003
O −0.003 0.005 0.522 0.041 0.956 0.004
P 0.001 0.005 0.494 0.022 0.993 0.007
Q .0005 0.009 0.476 0.043 0.973 0.006
R 0.000 0.002 0.499 0.017 0.990 0.003

Figure 1. Pooling estimates of sire progeny numbers for 2016 calf crop by known progeny numbers
using 14,190 SNP. Dam allele frequencies were assumed unknown for this graph. Error bars are lack
of fit SD between pooling sire progeny number and known progeny number. Symbols in the legend
identify different pastures.
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4. Discussion

A predicted number of calves should be useful for making management decisions
about the number of bulls maintained and used. However, we are not aware of experi-
mental evidence for making those management decisions. It seems likely that bulls that
previously sired no or few calves should not subsequently be used in multiple-bull pastures.
It is possible that these bulls would sire more calves in single-bull pastures or by AI, but
culling them would also be a reasonable management strategy. Whether fewer bulls could
be used in multiple-bull pastures if one-quarter of them are predicted to be above average
(based on prior usage) and three-quarters are average (based on no prior information) is
unknown. Any management strategy using predicted prolificacy would need to account
for risks of injury, becoming unsound, or death before or during breeding. The estimated
repeatability only applies to bulls 2 and older that passed breeding soundness exams prior
to the breeding season and completed at least 90% of the breeding season.

Although not significant, prolificacy tended to increase from 2 through about 5 years of
age in pastures with mixed-age bulls [5]. Our results showed a significant increase in prolifi-
cacy of bulls older than 2 compared with 2-year-olds when adjusted for scrotal circumference.

Scrotal circumference of older bulls measured in breeding soundness exams before
breeding has shown little to moderate positive correlation with bull prolificacy in multiple-
bull pastures. Results tended to be greater when breeding soundness exams were not
rigorously applied [3,18]. Scrotal circumference breeding value was found to have some
predictive ability across 2-year-old and older bulls [5].

Scrotal circumference combined with age had significant but small effects on prolifi-
cacy in this study. Life-history traits related to previous breeding experience had positive
values, but a larger experiment would be needed to conclusively determine any trait effects
of that size. Breeding exam live weights showed no indication of effects on prolificacy.

Pooling DNA can potentially reduce costs of accurately estimating bull prolificacy,
essentially using genomics to measure phenotype if bull prolificacy is the only information
desired by a cattle producer. A basic implementation of this method begins by individually
sampling DNA from all bulls used in a multiple-sire pasture and maintaining correspon-
dence between each sample and each bull. Blood from all calves would be individually
sampled. Calf blood samples would need to be maintained individually but samples would
not need to be connected to individual calves. For higher accuracy, cows assigned to a
breeding pasture would need to be sampled sometime from pre-breeding through weaning
if the cows were maintained as a group through that period. Like the calf samples, cow
blood samples do not need to maintain connection with the individual cows. To make deci-
sions on bull management in time for the current breeding season, samples would need to
be collected well before breeding, likely at birth. Research has found that bulls siring large
numbers of calves early in the calving period tended to sire more calves throughout [5,19].
This seems to be one likely approach for obtaining a prolificacy estimate early enough to
be useful for the breeding season immediately following calving. This study has a few
limitations with regards to relevance to commercial production. First, F1 crossbred dams
are important in the commercial beef cattle sector. F1 dams might reduce precision of
estimating sire contributions because alleles that are not inherited in calves would be part
of dam allele frequencies but not part of calves. This is more complicated if dams are F1.
We do not know how important this is currently. Second, pool construction and technical
errors were simulated in the current study. The distribution of these errors may be different
than real pooling data. We are planning future studies to rectify this limitation.

Once samples are collected, a genomics service provider would need to extract and
separately pool calf DNA and cow DNA. Other ways of constructing pools are possible [16].
Then, the individual bull samples and each pool would need to be genotyped with a
moderate-to-high density panel. A service provider would need to estimate prolificacy
from the genotypes. This approach to estimating prolificacy may facilitate additional
research on factors affecting bull prolificacy using industry cooperators.
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Other benefits from a pooled sample of calves are possible but would require ad-
ditional technical support and industry coordination. It should be possible to estimate
average breed composition from pooled alleles, predicted heterosis from differences be-
tween weighted sire allele frequencies and pooled cow allele frequencies, and average
performance levels from those two inputs. Estimated performance might be enhanced
through genomic prediction of commercial bulls based on their individual genotypes.
This could be useful for marketing calves or managing them through the feedlot or as
breeding heifers. Estimated bull prolificacy could be used as phenotypic data for genomic
evaluation with information transfer to breeding value prediction organizations based
on careful documentation of commercial bulls, their use in pastures, and their genotypes.
Claims-based marketing programs could be verified for things such as breed composition
or genetic potential based on markers associated with large effects for carcass traits, e.g.,
beef tenderness [20] or carcass leanness [21]. A pool including heifers could be genetically
evaluated for reproductive traits, e.g., pubertal age, antral follicle count, and heifer preg-
nancy rate [22,23], and for common genetic disorders [24] or disease susceptibility to avoid
inappropriate matings.

5. Conclusions

The repeatability of bull prolificacy in multi-bull breeding pastures is high. Bull
prolificacy is accurately estimated using DNA pools of calves and genotyping the calves at
a lower cost compared to individually genotyping. Genotyping pools of dams improves
the accuracy of estimating bull prolificacy which requires samples of dams.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/agriculture11070603/s1, Table S1: Data used for repeatability estimates, Table S2: Genotypes
of calves, bulls and dams in Pasture N, Table S3: Genotypes of calves, bulls and dams in Pasture
O, Table S4: Genotypes of calves, bulls and dams in Pasture P, Table S5: Genotypes of calves, sires
and dams in Pasture Q, Table S6: Genotypes of calves, sires and dams in Pasture R, quadratic
ProgramSireProportions. R: An R script to estimate sire proportions.
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Abstract: Female fertility is essential to any beef breeding program. However, little genetic gain
has been made due to long generation intervals and low levels of phenotyping. Days to calving
(DC) is a fertility trait that may provide genetic gain and lead to an increased weaning rate. Genetic
parameters and correlations were estimated and compared for DC across multiple joinings (first,
second and third+) and lactation status (lactating and non-lactating) for a tropical composite cattle
population where cattle were first mated as yearlings. The genetic correlation between first joining
DC and mature joining DC (third+) was moderate–high (0.55–0.83). DC was uncorrelated between
multiparous lactating and non-lactating cows (rG = −0.10). Mature joining DC was more strongly
correlated with second joining lactating DC (0.41–0.69) than with second joining non-lactating DC
(−0.14 to −0.16). Thus, first joining DC, second joining DC and mature joining DC should be treated
as different traits to maximise genetic gain. Further, for multi-parous cows, lactating and non-lactating
DC should be treated as different traits. Three traits were developed to report back to the breeding
programs to maximise genetic gain: the first joining days to calving, the second joining days to
calving lactating and mature days to calving lactating.

Keywords: cattle; fertility; heritability; genetic evaluation; variance components; index selection

1. Introduction

Fertility traits are often treated with low priority in beef breeding programs worldwide,
as many female fertility traits have a low heritability, are difficult to measure and the long
generation interval of cattle dissuade phenotype recording [1]. Despite this, in Northern
Australia female reproductive performance has been identified as a major economic issue
in beef production [1,2]. An Australian beef industry study reported that an increase in
weaning rate of 5% for tropically adapted cattle would lead to a 20% increase in average
annual net profit, identifying fertility as a key performance driver in northern production
systems [2].

In Northern Australia, low reproductive performance tends to be a consequence of late
puberty attainment in heifers and extended post-partum anoestrous periods in cows [3,4];
these issues are particularly predominant in lactating first-calf heifers [5]. Cattle are required
to adapt to the extreme heat, disease, pests, varying nutrition qualities and quantities
as well as be reproductively successful [3–5]. These factors highlight the difficultly in
improving reproductive performance in Northern Australia; however, ignoring fertility
traits is extremely detrimental to any breeding program [6–8].

Days to calving is defined as the number of days from the start of joining (the day the
bull goes into the same paddock) to subsequent calving, as described by Meyer et al. [9].
Days to calving is a trait that can be measured multiple times over a cow’s lifetime (each
joining) and evaluated as a repeated measure trait [10]. A joining includes any cow given
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an opportunity to conceive over a period from the bull-in date to the bull-out date. Days
to calving is often treated as a repeated trait; however, due to the complexity of the trait,
earlier in life joining’s should possibly be evaluated separately to mature joinings due to
different biological mechanisms.

Days to calving is a potential female fertility trait that can be measured to account
for the attainment of puberty and extended post-partum anoestrous periods. Days to
calving is a composite trait that is associated with age of puberty in heifers, measuring
dam effects such as post-partum anoestrus, conception rate, gestation length and how
early they conceive [11,12]. Days to calving has previously been reported to have a high
correlation with lifetime weaning rate in both Bos taurus taurus and Bos taurus indicus breeds,
an essential economic driver in breeding programs [1,13]. Incorporating days to calving in a
breeding program has the potential to improve female fertility while maintaining adaption
to the harsh environment of Northern Australia.

The present study investigates days to calving to enable the greatest genetic gain in
breeding programs. This was done through testing different penalty values placed on
non-pregnant cows, investigating the effect of joining and lactation status (lactating and
non-lactating) and finally using selection index theory was to evaluate the best way to
report days to calving to breeding programs. The study models the days to calving traits
to estimate variance components, breeding values, response to selection and genetic and
phenotypic correlations.

2. Materials and Methods

2.1. Breeding Program

Popplewell Composites, a bull breeding program focused on breeding composite
bulls adapted to the semi-arid tropics in Northern Australia, provided the dataset. This
breeding program is predominantly situated in southeast Queensland, with bulls sold
across Northern Australia. The breeding program started in 2008 and involved four main
breeds: Angus, Senepol, Africander and Brahman, to produce four composite products,
Transition, Pathfinder, Eureka and Indiplus. Popplewell composites use the four composite
products to change existing cow bases in commercial herds from their original breeds (often
high content Brahmans) into composite herds of a consistent breed type. The main objective
of Popplewell composites is to increase weaning rate through retained heterosis and intense
selection pressure for reduced age at puberty and post-partum anoestrus interval. In
addition, there is an emphasis on good growth, carcass traits and naturally polled red cattle
that are well adapted for tropical environments such as Northern Australia.

2.2. Genotype Data

Genotype data were provided from 2613 composite cattle. Genotyping was conducted
over the breeding program’s duration, resulting in multiple SNP chips being used (Illumina
777k, Illumina GGPLD V3 30K, Illumina GGPLD V4 30K, Illumina ICB 50K and Weatherby’s
Scientific Versa50K). A total of 10,830 SNPs overlapped on all SNP chips. All genotypes
were imputed from the common SNPs to GGPLD30K (27,755 SNPs) using FImpute 2.1 [14].
The genotype data were then filtered, and all SNPs with <1% minor allele frequency and
duplicate animals were removed. After filtering, there were 2609 animals and 27,638 SNPs
for constructing the genomic relationship matrix (GRM; see below). The GRM was built
using VanRaden’s first method [15].

The heterozygosity fraction (Het) was calculated on imputed data, as the proportion
(%) of heterozygous SNPs for each individual animal. Heterozygosity fraction is an indi-
cator of heterosis, which is especially important in a composite population. All models
included the heterozygosity fraction as a co-variate to account for heterozygosity when
estimating breeding values [16].
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2.3. Phenotype Data

Days to calving is the time from the day the bull goes in with the cow to the day the
cow gives birth [9]. Days to calving includes every joining for a cow over its lifetime, thus
providing multiple records. Days to calving was estimated using the bull-in date, bull-out
date (i.e., in the same paddock as cow), pregnancy test results (fetal age) and calf date of
birth. Typically, days to calving is treated as one trait, including all joinings; however, the
dataset used herein routinely evaluates heifer (first joining) days to calving separately from
all other joinings.

There were 2242 days to calving records from 903 unique animals. Of the 903 unique
animals, there was 366 animals that had a first, second and third joining. The number
of records and summary statistics at each joining are presented (Table 1). The cattle are
first joined at 12–15 months of age (12 months earlier than most tropically adapted cattle
programs), with subsequent joinings every year. Pregnancy results represent if the cow got
pregnant during the joining period; however, lactation status represents if the cow weaned
a calf during the mating period.

Table 1. Summary (min, max, mean, SD) of adjusted 1 days to calving over joinings.

Joining
Number

Total No.
of Cows

No. of
Lactating

Cows

No of
Non-Lactating

Cows

No. of
Empty 2

Cows

No. of
Pregnant

Cows

3 Min
days

4 Max
days

Mean
Days

5 SD
Days

1 649 - - 214 435 269 409 340.0 38.0
2 6 636 326 287 472 164 271 406 335.0 38.5
3 494 406 88 325 169 260 409 343.6 38.0
4 249 225 24 166 83 272 400 340.8 36.9

5+ 214 197 17 166 48 283 400 332.2 34.4
1 Adjusted phenotypes have a penalty of 31 days added for empty cows. 2 Empty cows refers to non-pregnant
cows. 3 Min is the minimum. 4 Max is the maximum. 5 SD is the standard deviation. 6 There are 23 animals with
no lactation status for second joining.

Correcting days to calving values by adding a constant penalty (21 days = 1 oestrus
cycle) to cows that have not calved is standard practice [10]. However, a longer period
was used herein to allow for low-quality sub-tropical pasture as the breeder felt it was too
“generous” to assume open heifers and cows would have conceived in a single additional
cycle. Those animals that did not conceive during the joining period received an adjusted
value of 32 days (1.5 oestrus cycles) added to the maximum value of the animals joining
management group. This penalty assumes they would have conceived in the next cycle and
a half if given the opportunity. The impact of the penalty was tested herein, with several
different penalty values investigated. These values were no-penalty, 21, 32, 43, 63 and
252 days. The breeding values, variance components, heritability and heterozygosity
coefficient slope were estimated and compared.

Contemporary groups were defined as management groups plus birth groups. Through-
out their lifetime, management groups were recorded. The birth group was defined by
year and time of birth, early (1 June to the 4 September, 75% of cattle), mid (5 September to
the 30 November, 6% of cattle) and late (1 December to the end of calving season, 19% of
cattle). Breed group was partially confounded with contemporary group.

2.4. Genomic Model

A linear mixed model to estimate breeding values can be written as,

y = Xβ + Zaua + Zrur + e

where y is the vector of phenotypic values for days to calving; β represents fixed effects
with the design matrix X; the fixed effects included in all models are contemporary group,
joining number, lactation status, days to calving management group and heterozygosity
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fraction (fit as a linear co-variate); Za is the design matrix for additive effects ua, with
ua ∼ N

(
0, σ2

AGA
)
; Zr is the design matrix for the repeated environmental effects ur and e

is the residual effects.
The genomic relationship matrix (GRM) is calculated as follows [15]:

GA =
ZZ′

2 ∑m
i=1 piqi

where the matrix Z has dimensions of nxm, n is the number of individuals and m is the
number of markers. Matrix Z has the elements zij for the jth individual at the ith marker is,

zij =

⎧⎨
⎩
(2 − 2pi)
(1 − 2pi)
−2pi

f or Genotypes

⎧⎨
⎩

AA
AB
BB

and pi is the allele frequency of the most frequent (major) allele at Marker i, and qi = 1 − pi.

2.5. Days to Calving Models

Days to calving was modelled to estimate the variance components, heritability, re-
peatability and best linear unbiased predictions (BLUPs) or estimated breeding values
(EBVs). Overall days to calving (DC) was run as a repeatability model to adjust for multiple
records on the same cow over different years. Two models (Table 2) were fitted in RStudio
version 4.1.1 [17] using the package ASReml-R v4 [18]. A description of each model are
listed in Table 2. Days post-partum (DPP) was calculated as the number of days between
bull-in date and last calf date of birth, and it was included in the model to be compared
within the contemporary group.

Table 2. Description of models run for days to calving.

Model Description Fixed Random 1

Model_1
Overall days to calving, with a
separate variance component

for five joining categories

Join management
group, heterozygosity

fraction and
Contemporary

group:DPP

diag(Joining
Number):vm(ID,

GRM)

Model_2

Overall days to calving, fitted
models with a separate

variance component for each
joining but estimation of the

correlation between two
joining at a time (due to

computational limitations)
with a total of 15 components

Join management
group, heterozygosity

fraction and
Contemporary

group:DPP

us(Joining
Number):vm(ID,

GRM)

1 describes ASReml-R model terms, diag() = diagonal variance model, vm() = known variance structure allows
the use of either a relationship or inverse relationship matrix, us() = unstructured general covariance matrix.

The differences and similarities between the joining numbers was explored. Two mod-
els were run, Model_1 to estimate separate variance components for each joining, assuming
joining numbers were uncorrelated with each other and Model_2 to estimate separate
variance components between each joining number and estimate the correlation between
each joining number. In Model_2 the correlation between joining numbers were estimated
two at a time due to computational limitations. These models were used to calculate the
genetic correlation between joining numbers.

As, by definition, maiden joinings can only have a non-lactating lactation status,
a further analysis was run with second joining onwards (DC2+), splitting up lactating
(DC2+_Wet) and non-lactating (DC2+_Dry) cattle to estimate the genetic correlation be-
tween lactating status. The fixed and random effects for these models are listed in Table 3.
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Table 3. Description of the fixed effects included first joining days to calving (DC1), second joining
days to calving (DC2) and mature joining days to calving (DC3+).

Trait Description
Number of

Records

Number of
Contemporary

Groups
Fixed Effects Random Effects

DC1 First joining days to calving 649 45
Birth group, Join

group, Dam age, Het,
contemporary group

GRM

DC2 Second joining days to calving with
all records (wet 1 and dry 2) 636 54

Birth group, Dam age,
Het, contemporary

group:DPP:Lactation
Status

GRM

DC2_Dry Second joining days to calving with
dry 2 records only 287 44

Birth group, Dam age,
Het, contemporary

group:DPP
GRM

DC2_Wet Second joining days to calving with
wet 1 records only 326 45

Birth group, Dam age,
Het, contemporary

group:DPP
GRM

DC2+

Days to calving that include records
from the second joining, third

joining, fourth joining and joining
five + with both wet 1 and

dry 2 records

1534 213

Joining number, Het,
contemporary

group:DPP:Lactation
Status

GRM, ID

DC2+_Dry

Days to calving that include records
from the second joining, third

joining, fourth joining and joining
five + with dry 2 records only

431 82
Joining number, Het,

contemporary
group:DPP

GRM, ID

DC2+_Wet

Days to calving that include records
from the second joining, third

joining, fourth joining and joining
five + with wet 1 records only

1103 189
Joining number, Het,

contemporary
group:DPP

GRM, ID

DC3+

Days to calving that include records
from the third joining, fourth

joining and joining five + with both
wet 1 and dry 2 records

898 162

Joining number, Het,
contemporary

group:DPP:Lactation
Status

GRM, ID

DC3+_Wet

Days to calving that include records
from the third joining, fourth

joining and joining five + with wet 1

records only

796 143
Joining number, Het,

contemporary
group:DPP

GRM, ID

DC
All days to calving records,
including both wet 1 and

dry 2 records
2242 270

Joining number, join
group, Hey,

contemporary
group:DPP

GRM, ID

ID is the unique animal tag, GRM is the genomic relationship matrix. 1 Wet refers to lactating cows. 2 Dry refers
to non-lactating cows.

2.6. Univariate Models

Further univariate models were run based on the results from the above Days to
calving models; these included first joining days to calving (DC1), second joining days
to calving (DC2) and mature joinings (J3+) days to calving (DC3+). These models were
further split into lactating (wet) and non-lactating (dry) for DC2, DC2+ and DC3+. Variance
components, heritability and estimated breeding values were estimated for all traits. The
fixed and random effects are listed in Table 3, and the GRM was included as a random
effect for all models. For repeatability models, a unique animal tag (ID) was fit alongside
the genomic relationship matrix as a random term to account for multiple records on the
same animals, estimating the repeatable environmental variance in addition to the residual.
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2.7. Response to Selection

A simple breeding objective of five consecutive pregnancies was assumed and se-
lection index theory used to test what trait combination would maximise response. The
index followed standard selection index theory [19,20], and three matrices were calculated
(P, G, C). The P matrix is a square matrix of phenotypic (co)variances among the traits
used as selection criteria, in this instance each individual joining was used. The G matrix
consists of genetic (co)variances between the selection criteria and breeding objective. The
C matrix is a square matrix with genetic (co)variance among the traits in the breeding
objective. The selection index for three different scenarios were calculated (Table 4). The
(co)variance estimates for each index were estimated as a univariate model (index one),
bivariate model (index two) and tri-variate model (index three).

Table 4. Description of the different scenarios used in the index (description in Table 3).

Index One Index Two Index Three

DC
DC1 DC1

DC2+_Wet DC2_Wet
DC3+_Wet

The standard deviation of the breeding objective was calculated by,

σH =
√

a′Ca

where a is a vector of five economic weights, in these calculations the weighting used was
dependent on weaning rate over five joinings. For example, in Index three the DC1 value
was 0.2, the DC2_Wet value was 0.2, and the DC3+ value was 0.6 for a, representing how
many calves can be produced in each trait, with the aim for five calves from five joinings.

A vector of index weights (b) was calculated by,

b = P−1Ga

The standard deviation of the index was calculated by,

σI =
√

b′Pb

The accuracy of selection was calculated by,

rI,H =
σI
σH

The selection response was calculated for each trait reported. The response was calcu-
lated in two ways, first for the individual traits by the additive genetic standard deviation
multiplied by accuracy (σA

√
h2), which is equivalent to the accuracy based on a single

measure. Second for the index values, the standard deviation of the breeding objective
multiplied by the accuracy of selection (σHrI,H). The response calculations are over one
generation with an assumed selection intensity of one and with units of days/generation.

2.8. Multi-Variate Models

Multi-variate models were run between the different days to calving traits to estimate
genetic and phenotypic correlation. DC2 and DC3+ were further partitioned into lactating
and non-lactating. An average DC3+ (DC3+_Ave) was used to estimate phenotypic correla-
tions between DC3+ and other days to calving traits. The mixed model for bivariate is now
written as,

y = X∗b + Z∗
aua + Zrur + e
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where y = (y′
1, y′

2)
′, is the combined vector of data between two traits; b =

(
b′1, b′2

)′ is the
2m x 1 vector of fixed effect with X∗ = I2 ⊗ X the associated design matrix; ua =

(
u′

1, u′
2
)′

is the 2n x 1 vector of random effects with Z∗
a = I2 ⊗ Z the associated design matrix, Zr is

the design matrix for the repeated environmental effects ur and e = (e′1, e′2)
′ the vector of

residual variance, where ′ is the transpose. The variance components estimates from this
multi-variate an additive genetic variance (σ2

A1, σ2
A2) for each trait, an additive covariance

between two traits
(
σ2

A12
)
, one repeatability variance (σ2

R), a separate residual variances
(σ2

ε1, σ2
ε2) for each trait and the correlation between residual variances (σ2

ε12). All bivariate
models were fitted for all traits utilising a genomic relationship matrix with heritability,
genetic and phenotypic correlations estimated.

3. Results

3.1. Effect of Changing the Penalty Value of Days to Calving

Varying penalty values were assessed for DC1 and DC2+ to determine how the penalty
value affected the variance components, breeding values and heritability. For DC1, the
heritability increased by including the non-pregnant animals across all the penalty values
used. The variance components and the absolute heterozygosity coefficients increased as
the penalty increased; however, there was little change in the heritability, which is a ratio
of variances (Table 5). A one percent increase in heterozygosity results in fewer days to
calving, therefore a negative heterozygosity fraction is advantageous.

Table 5. Variance Components, heritability and heterozygosity (het) coefficient of DC1 with different
penalty values with standard error in parenthesis.

Model Number of Records Additive Variance Residual Variance Heritability
Het Coefficient

(Day/%)

No penalty 435 25.9 (44) 394 (47) 0.06 (0.10) −0.29
21 Days 634 195 (95) 827 (86) 0.19 (0.09) −1.59
32 Days 634 257 (121) 1049 (110) 0.20 (0.09) −1.90
43 Days 634 309 (150) 1290 (136) 0.19 (0.09) −2.16
63 Days 634 446 (221) 1903 (201) 0.19 (0.09) −2.73
252 Days 634 2693 (1552) 141,213 (1457) 0.16 (0.09) −7.93

Similar results were observed for DC2+; as the penalty value increased, total variance
and the absolute heterozygosity coefficient increased. When no penalty was applied,
the heritability was 0.17, compared with 0.09 when a 21-day penalty was applied. The
heritability for DC2+ seems to have a direct scale effect, resulting in slight decreases as
the penalty value increases (Table 6). The correlation between the BLUPs was high (>0.99;
data not shown) for both DC1 and DC2+ for the different penalty values, indicating no
re-ranking of the animals.

Table 6. Variance Components, heritability and heterozygosity (Het) coefficient of DC2+ (including
J2) with different penalty values with standard error in parenthesis.

Model
Number
Records

Additive
Variance

Repeatability
Variance

Residual
Variance

Heritability
Het Coefficient

(Day/%)

No penalty 1122 78 (31) 53 (30) 318 (23) 0.17 (0.06) −0.62
21 Days 1550 81 (30) 0 1 783 (37) 0.09 (0.03) −1.81
32 Days 1550 86 (36) 0 1 998 (46) 0.08 (0.03) −2.05
43 Days 1550 92 (48) 0 1 1227 (68) 0.07 (0.04) −2.26
63 Days 1550 106 (65) 0 1 1810 (99) 0.06 (0.03) −2.71
252 Days 1550 371 (333) 0 1 13,267 (584) 0.03 (0.02) −6.87

1 Converged to zero.
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3.2. Variance Components and Genetic Correlation of the Different Joining Number

When estimating the variance for each joining separately (Model 1), the first joining
had the largest variance of 563 days squared and joining 5+ had the lowest variance of
104 days squared (Table 7). The estimated genetic variance decreased with joining number.

Table 7. Genetic variance component of each joining for Model_1 model with standard error
in parenthesis.

Joining Number Variance

1 563 (107)
2 280 (79)
3 215 (77)
4 125 (98)

5+ 104 (104)

Model_2 (Table 2) was run to estimate the genetic correlation and covariances between
joinings with an unstructured covariance matrix. There were many variance components
(15), estimated with large standard errors. The correlation between J1 and J2 was −0.12,
which is extremely low (Table 8). However, correlations between J1 and J3, J4 and J5+ were
higher at 0.73, 0.36 and 0.64, respectively. The correlation between J2 and J3 was low (0.22),
and the correlation between J2 and J4 and J5+ was negative, with values of −0.11 and −0.64,
respectively. The correlations between J3, J4 and J5+ were all high, except for J3 and J5,
which was −0.03 correlation. The correlation matrix was not positive definite, possibly due
to the lower number of records for J4 and J5+. The large standard errors on the estimates of
correlations were due to the lower number of records in the older ages (4 and 5+). Based
on the high correlation between later joining, the decision was made to combine and treat
them as a single trait (DC3+), reducing standard error and maximise response to selection.

Table 8. Correlation matrix for days to calving with genetic correlation below for each joining number
with standard error in parenthesis.

1 2 3 4 5+

1 1
2 −0.12 (0.19) 1
3 0.73 (0.17) 0.22 (0.25) 1
4 0.36 (0.35) −0.11 (0.39) 0.79 (0.37) 1

5+ 0.64 (0.39) −0.64 (0.54) −0.03 (0.61) 0.99 (0.62) 1

3.3. Days to Calving Separated by Lactation Status

A further analysis was run, splitting days to calving into individual traits based on
lactation status for cows on their second and subsequent lactations. There were 1103 records
for DC2+_Wet and 431 records for DC2+_Dry. The heritability of DC2+_Dry and DC2+_Wet
which are mature joining from joining 2 onward and non-lactating and lactating individuals
respectively had similar heritability estimates of 0.22 and 0.17 (Table 9). The residual
variance was smaller for DC2+_Wet at (537 days squared) then DC2_Dry (775 days squared).
The repeatability of DC2+_Dry could not be estimated as non-lactating cows were not
retained for more than two joinings, whereas DC2+_Wet had a repeatability estimate of 0.37.
The genetic correlation between DC2+_Dry and DC2+_Wet was −0.10. The correlation
between BLUPs was 0.32 (Figure 1). As expected, the animals with phenotypes re-ranked
more than those animals without phenotypes (Figure 1).
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Table 9. Variance components, heritability and heterozygosity coefficient of days to calving (J2+) split
into lactation status (lactating/non-lactating) with standard errors in parenthesis.

Models
Number of

Records
Additive
Variance

Repeatability
Variance

Residual
Variance

Heritability Repeatability 1 Het
Coefficient

Response to
Selection

DC2+_Dry 431 217 (90) NA 775 (88) 0.22 (0.09) 0 −2.38 6.92
DC2+_Wet 1103 144 (53) 166 (58) 538 (42) 0.17 (0.06) 0.37 (0.07) −2.80 4.92

1 Repeatability is the additive and repeatable variance divided by the total variance.

Figure 1. Plot of DC2+_Dry breeding values and DC2+_Wet breeding values.

3.4. Univariate Models of Days to Calving

The heritability for the seven different days to calving traits is presented (Table 10).
DC1 had a heritability of 0.20, DC2 had a heritability of 0.18, and DC3+ had a heritability
of 0.25. The repeatability for DC3+ is 0.34. DC1 and DC2 do not have repeated records, so
they cannot have a repeatability estimate. The heterozygosity coefficient was the lowest
for DC2 (−1.07 days/%), with DC3+ having the highest (−4.13 days/%) and the DC1
heterozygosity coefficient being −1.90 days/%. DC1 had the highest residual variance of
1049.22 days2 and a total variance of 1306.74 days2. Further models were run with lactating
and non-lactating cattle being separated. DC2_Dry heritability 0.22, which is similar to
DC2. However, DC2_Wet had a higher heritability (0.39). Conversely, the heterozygosity
coefficient in DC2_Dry was higher at −2.40 days/%, whereas DC2_Wet was −0.97 days/%.
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Table 10. Variance components, repeatability, heritability and heterozygosity (Het) coefficient of days
to calving traits with standard error in parenthesis.

Traits Number
Repeatability

Variance
Additive
Variance

Residual
Variance

Repeatability Heritability
Het

Coefficient

Response to
Selection

(Days/Gen)

DC 2184 87 (43) 124 (43) 811 (38) 0.20 (0.05) 0.12 (0.04) −2.45 4.0
DC1 634 - 257 (122) 1049 (110) - 0.20 (0.09) −1.90 7.2
DC2 621 - 192 (90) 886 (89) - 0.18 (0.08) −1.07 5.8

DC2_Wet 326 - 353 (180) 551 (143) - 0.39 (0.12) −0.97 11.8
DC2_Dry 287 - 211 (124) 736 (117) - 0.22 (0.18) −2.40 6.8
DC3+ 929 101 (73) 264 (78) 714 (56) 0.34 (0.08) 0.25 (0.06) −4.13 8.1

DC3+_Wet 841 159 (68) 150 (64) 539 (47) 0.36 (0.08) 0.17 (0.08) −3.68 5.0

3.5. Response to Selection

The response to selection was calculated for each day to calving trait. The response
was highest for second joining days to calving lactating (DC2_wet) at 11.84 days/generation
(Table 10), indicating that selection for DC2_Wet in a breeding program will have the biggest
impact compared with every other trait. The second highest response was for joining one
days to calving (DC1) of 7.21 days/generation (Table 10). The lowest response to selection
was for days to calving including all joinings (DC) of 4.00 days/generation. The response
to selection for DC3+ was 8.13 days/generation, and DC3+_Wet was 5.03 days/generation
(Table 10). The response for DC2+_Wet was 4.92 days/generation, which was lower than
DC3+_Wet (Table 9).

Three selection indexes were calculated for three different scenarios (Table 4) using
index selection theory. The variance components used for Index one are the DC variance
components in Table 10; index two used variance components in Table 11 and index three
used variance components in Table 12. Index three had the highest accuracy and response
to selection indicating this would be the best scenario to use (Table 13).

Table 11. Variance components estimates used to calculate Index two.

DC1 DC2+_Wet

DC1 279 -
DC2+_Wet 115 156

Table 12. Variance components estimates used to calculate Index three.

DC1 DC2_Wet DC3+_Wet

DC1 332 - -
DC2_Wet 27 366 -

DC3+_Wet 244 169 250

Table 13. Index values were calculated for three different scenarios using index theory, including
breeding objective, the variance of the index, accuracy and response to selection. The response units
are days per generation.

Index One Index Two Index Three

Standard deviation of the breeding objective 11.7 12.2 14.8
Standard deviation of the index 5.9 6.4 9.5

Accuracy 0.50 0.52 0.64
Response to selection (days/generation) 2.97 3.32 6.08

Index scenarios are described in Table 4. Variance components used for index calculations can be found in Table 10
for index one, Table 11 for index two and Table 12 for index three.
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The effect of additional records was investigated (Figure 2), demonstrating that more
records increases accuracy. Using the indexes, showed that treating days to calving as three
traits (DC1, DC2_Wet and DC3_Wet) results in the greatest response of 6.08 (index three),
with little difference between response for index one and index two (Table 13).

Figure 2. Effects of addition records on the standard deviation of the index. See Table 4 for a
description of the index scenarios.

3.6. Bivariate Models for Days to Calving

The genetic correlation between DC1 and DC2 was only −0.06, whereas DC1 had a
much higher genetic correlation with DC3+ of 0.83 (Table 14). However, when DC2 was
split based on lactation status (lactating or non-lactating), there was a stronger positive
correlation of 0.13 between DC1 and DC2_Dry. Conversely, DC2_Wet and DC1 had a large
negative genetic correlation of −0.42. Similar changes in genetic correlation occurred when
DC3+ was spilt based on lactation status, with the genetic correlation being reduced for DC1
and DC3+_Wet to 0.65. There were insufficient DC3+_Dry records to be able to estimate any
genetic correlations. The genetic correlation between DC2 and DC3+ was −0.17. However,
when DC2 was split by lactation status, the genetic correlation between DC2_Dry and
DC3+ was −0.16, but the genetic correlation was much higher for DC2_Wet at 0.41. The
genetic correlation was further increased for DC2_Wet and DC3+_Wet at 0.69. An average
of DC3+ was used to calculate phenotypic correlations; the trends were similar to genetic
correlations (Table 14). The standard errors for the correlation in the bivariate analysis
ranged from 0.20 to 0.48 (Table 14), despite that large standard errors for some DC traits
particular between DC1 and DC2_Dry, of the important traits which are DC1, DC2_Wet
and DC3+_Wet the standard errors are comparable to previous studies estimates [1,21,22].
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Table 14. Correlations between days to calving traits. Genetic correlations below and phenotypic
correlations above the diagonal with standard errors in parenthesis.

DC1 DC2 DC2_Dry DC2_Wet DC3+ DC3+_Wet DC3+_Ave DC3+_Ave_Wet

DC1 - −0.22
(0.07)

−0.33
(0.11)

−0.04
(0.10) NA NA 0.34

(0.06)
0.31

(0.06)

DC2
−0.06
(0.33) - NA NA NA NA −0.17

(0.06)
−0.03
(0.07)

DC2_Dry
0.13

(0.48) NA - NA NA NA −0.28
(0.07)

−0.23
(0.08)

DC2_Wet
−0.42
(0.37) NA NA - NA NA 0.07

(0.10)
0.19

(0.10)

DC3+
0.83

(0.20)
−0.04
(0.24)

−0.16
(0.25)

0.41
(0.29) - NA NA NA

DC3+_Wet
0.66

(0.26)
−0.16
(0.27)

−0.14
(0.26)

0.69
(0.33) NA - NA NA

DC3+_Ave
0.57

(0.29)
0.27

(0.32)
−0.10
(0.37)

0.70
(0.34) NA NA - NA

DC3+_Ave_Wet
0.32

(0.36)
0.46

(0.32)
0.32

(0.40)
0.55

(0.35) NA NA NA -

3.7. Days to Calving Correlations between Final Traits (Tri-Variate Model)

A final model was run between the traits recommended for breeding programs as a
tri-variate model between the final three traits: DC1, DC2_Wet and DC3+_Wet. The genetic
correlation between DC1 and DC3+_Wet was 0.85 (Table 15), which is higher than when
it was modelled as a bivariate (0.66, Table 14). Similarly, the genetic correlation between
DC1 and DC2_Wet in the multi-variate was 0.08 (Table 15), in contrast to the bivariate
model (−0.42, Table 14). The genetic correlation between DC2_Wet and DC3+_Wet was
0.56 (Table 15), similar to the bivariate analysis (Table 14). The heritability estimates for the
multi-variate analysis were 0.25, 0.40 and 0.30 for DC1, DC2_Wet and DC3+, respectively
(Table 15). All heritability estimates from the multi-variate analysis were higher than the
univariate analysis (Table 10). A comparison between BLUPs was made between the three
traits (DC1, DC2_Wet and DC3+_Wet) and DC (days to calving, including all joinings)
(Figure 3). The correlation between DC1 and DC2_Wet BLUPs, was 0.04, indicating that
these two traits are uncorrelated and do not have any impact on each other. The correlation
between DC1 and DC3+_Wet BLUPs was 0.18, indicating significant re-ranking among the
two traits. The correlation between BLUPs was higher between DC1 and DC at 0.55, with
the plot showing much less re-ranking than DC3+_Wet BLUPs. The correlation between
DC2_Wet and DC3+_Wet was 0.70, with minimal re-ranking of the BLUPs. DC2_Wet had a
lower correlation with DC of 0.55, indicating more re-ranking of animals than DC3+_Wet.
Finally, the highest correlation was between DC3+_Wet and DC BLUPs at 0.81, implying
the lowest amount of re-ranking between traits.

Table 15. Correlation matrix of days to calving traits to be utilised in a breeding program run as a
tri-variate. Genetic correlations (below) and heritability estimates (diagonal) with standard error
in parenthesis.

DC1 DC2_Wet DC3+_Wet

DC1 0.25 (0.09)
DC2_Wet 0.08 (0.27) 0.40 (0.17)

DC3+_Wet 0.85 (0.18) 0.56 (0.25) 0.30 (0.06)
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Figure 3. Correlation and plot matrix of breeding values of the final three traits of days to calving
that were included in index three and the overall days to calving (DC). Above the diagonal is the plot
of breeding values and below is the correlation of those breeding values.

4. Discussion

4.1. Heritability of Days to Calving

A primary breeding objective of Popplewell Composites is to increase lifetime weaning
rate. However, it is a complex trait to measure because, by definition, it is only obtained at
the end of a cow’s breeding life. Days to calving is a good indicator of lifetime weaning rate
as it is genetically correlated with lifetime weaning rate and is heritable [1,9,13,23]. Days to
calving is a female fertility measure that combines effects such as the age of puberty for
first joining, conception rate, how early they conceive in the joining period and gestation
length. Female fertility traits are expensive and difficult to measure, and challenging to
include in breeding programs due to bias caused by culling cattle that do not conceive. In
the breeding program described herein, the strategy is that cattle are expected to wean two
calves within the first three matings; those failing to do so are culled from the herd, any
further subsequent matings cows are culled if they fail to wean a calf. These culling methods
result in missing data as there are many cows without lifetime weaning rate records.

Previous studies in the use of days to calving as a fertility trait proxy, commonly treat
days to calving as a single trait including all joinings as a repeated measure. This is the
first publication separating both the effect of joining number and lactation status on days
to calving. Separating days to calving based on joining number and lactation status into
different traits was shown to increase genetic gain over the repeated days to calving trait.
The heritability was 0.20, 0.18 and 0.25 for first joining days to calving, second joining
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days to calving and mature days to calving, respectively (Table 10). It should be noted
that mature days to calving includes joining 3, 4 and 5+. This was determined by the
genetic correlation calculated from a model that includes a separate variance component
for each joining but estimation of the correlation between two joining at a time (Model_2),
correlations with the first two joinings were the lowest and joining 3, 4 and 5+ generally had
high correlations and combining them reduced the standard error (Table 8). The heritability
estimated for traits that separated out first and second joining were higher than the overall
days to calving (0.12), demonstrating in this Tropical Composite population that separating
joining number will increase the amount of additive variance estimated and reducing bias.

Further analysis was done separating non-lactating cattle; the heritability estimate
for these traits was 0.39 for second joining days to calving lactating and 0.17 mature days
to calving lactating (Table 9). There is an increase in heritability estimates when days to
calving is treated as multiple traits compared with an overall repeatable trait (DC, 0.12), this
will allow for greater genetic gain. These increases of heritability indicate modelling across
joining number and lactation status is improved and allows for more genetic improvement
in a breeding program. These improvements are particularly important to a breeding
program for a low heritable and hard to measure trait of high economic value.

4.2. Heifer Days to Calving

The heritability estimate of heifer days to calving (DC1) herein (0.20, Table 10) was
similar to those reported by Johnston et al. [1], who estimated the heritability of first joining
days to calving to be 0.13 in Tropical Composites and 0.22 in Brahmans. Slightly lower
heritability was estimated in Angus cattle at 0.10 [13] and Brahman cattle at 0.09 [24]. In
this study, cattle were first joined at 12–15 months; however, in other studies with tropically
adapted cattle, heifers were not joined until 24–28 months. Further, Brahman cattle reach
puberty at a later age than tropical composites [2,25], further explaining the difference
in heritability estimates reported by Johnston et al. [1]. The genetic correlation could
explain the higher heritability estimates of DC1 with the age of puberty. Johnston et al. [21]
found a genetic correlation between age of puberty and DC1 to be 0.79 in Brahmans, with
Johnston et al. [21] estimating a much lower correlation found in tropical composites (0.10);
however, this is likely due to the age of puberty difference between the two breed types.
The high correlation in Brahmans indicates that DC1 and the age of puberty influencing
each other which results from similar biological mechanisms. Johnston et al. [1] also
estimated the genetic correlation between DC1 and lifetime weaning rate, which was
−0.54 in Brahmans and −0.57 in Tropical Composites. These genetic correlations indicate
that DC1 are genetically positively associated with each other. Heifer days to calving is
an important trait in the breeding program that is both heritable and positively associated
with the age of puberty and lifetime weaning rate.

4.3. Second Joining Days to Calving

Second joining days to calving (DC2) heritability estimates (0.18, Table 10) were similar
to those reported by Johnston et al. [1], at 0.17 in Tropical composites and 0.20 in Brahmans.
Lower heritability estimates were reported in Angus to be 0.11 [13] and in Brahmans to
be 0.15 [24]. The difference in the heritability estimates could be due to breed and age
differences. A further model was run for DC2, separating lactating and non-lactating
cattle. The heritability estimate of second joining days to calving lactating (DC2_Wet) much
higher (0.39) than for DC2 when dry cows were included (Table 10, 0.18). A previous study
separated DC2 lactating cows, and the heritability estimates were 0.49 in Brahman and
0.35 in Tropical composites which is similar to results herein for DC2_Wet. [1]. It should
be noted that Johnston et al. [1] reported heifers that were not joined until 24–28 months,
whereas in this study, heifers were joined at 12–15 months. This increase in heritability
when only lactating cattle were included indicates that days to calving should be analysed
separately for lactating and non-lactating cattle. Johnston et al. [1] also concluded that
heritability estimates for all female fertility traits associated with the second joining were
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higher in lactating cows than in all cows. Indicating that more genetic progress can be
made when only lactating animals are included in female fertility traits.

The difference between DC2_Wet and DC2_Dry heritability representing lactating and
non-lactating estimates respectively could be due to post-partum anoestrus from either
the threshold energy balance effect or the suckling effect that occurs in Bos taurus indicus
cattle [26,27]. This post-partum effect prevents the cattle from cycling while lactating,
with a previous study stating that in Droughtmaster cattle weaning was required to break
anoestrus [28]. Lactating cattle combine growth and lactation in their second joining, which
imposes greater energy requirements compared with non-lactating cattle in their second
joining. These energy requirements are often not fulfilled when cows graze low-quality
pastures, such as in Northern Australia and have a greater detrimental effect on post-
partum reproduction in first lactation cows [29]. Johnston et al. [1] estimated the genetic
correlation between days to calving second joining and lactation anoestrous interval to be
0.70 in Brahmans and 0.67 in Tropical composites. These high genetic correlations indicate
that similar genes control both days to calving second joining and lactation anoestrus
interval. Further, Johnston et al. [1] estimated genetic correlations between second joining
days to calving and lifetime weaning rate to be −0.96 in Brahmans and −0.76 in Tropical
composites. The high genetic correlations indicate that second joining days to calving is a
good indicator of lifetime fertility.

4.4. Difference between Lactating and Non-Lactating Cows in Days to Calving

Lactating cows will often lose more body condition than non-lactation cows due to
the energy cost of lactation and the low digestibility of tropical pasture [30,31]. Neville [31]
calculated that lactating beef cattle require 38–41% more energy for maintenance compared
to non-lactating. In addition to the extra energy requirements, in Bos taurus indicus cattle,
an additional post-partum anoestrus effect is associated with suckling or the close presence
of offspring [26,27]. Consequently, a model was fitted for days to calving for the animals
second joining onwards that treated days to calving in lactating and non-lactating cows as
separate traits. There was a low negative correlation (−0.10) between wet and non-lactating
cows, demonstrating that lactating and non-lactating days to calving records are genetically
different, and they were, therefore, analysed as separate traits. The low correlations could
be driven by post-partum anoestrus. The post-partum anoestrus effect could be due to the
calf’s suckling effect and the threshold of energy balance.

Energy balance is important in lactating cattle and can affect their post-partum
anoestrus interval, causing the genetic difference between lactating and non-lactating
days to calving. Therefore, lactating cows that keep getting back into calf (lower days to
calving records) also have a lower threshold energy balance meaning they start cycling
earlier than the lactating cows that struggle to get pregnant (larger days to calving records).
Wolcott et al. [32] found in tropical composite cows at their second joining, lactating cows
had significantly lower weight and body condition than non-lactating cows. Therefore,
lactating and non-lactating cows, particularly in their second joining, have different re-
quirements affecting post-partum anoestrus, re-enforcing the importance of treating them
as different traits. In addition to the energy threshold balance, a suckling effect also con-
tributes to post-partum anoestrus in Bos indicus cattle [26,27]. As this composite population
includes Bos taurus indicus cattle, post-partum anoestrus could be due both to energy bal-
ance and a suckling effect, causing lactating days to calving to be genetically different from
non-lactating days to calving.

Cattle with longer post-partum anoestrus intervals spend longer periods not cycling,
including when they are lactating, which results in the cattle not conceiving in the joining
period. These cattle will then become non-lactating in the next joining season. However,
the most profitable system is those with more cows lactating yearly. Post-partum anoestrus
was highly heritable, with estimates ranging from 0.42–0.51 in Brahmans and 0.26–0.63 in
tropical composites [1,33]. It has been reported to have a high genetic correlation with
days to calving [33]. This demonstrates that the genetic difference between lactating and

135



Agriculture 2023, 13, 37

non-lactating cattle could be due to the post-partum anoestrus interval, providing further
evidence that days to calving should be treated as separate traits for lactating (wet) and
non-lactating (dry).

It is important to also look at the effect of the breeding values and the ranking of
individual animals. A breeding value comparison between DC2+_Dry and DC2+Wet
(Figure 1, r = 0.32), showed significant re-ranking of animals. These re-ranking of animals
provide further evidence that lactating and non-lactating days to calving should be treated
as separate traits, with lactating days to calving the main trait of interest.

Most breeding programs aim to improve the lifetime weaning rate, meaning more
calves on the ground. Therefore, lactating days to calving is important in improving the
breeding objective, representing lactating cows getting back into calf. Despite lactating days
to calving being important, non-lactating days to calving does not provide information that
would help improve the breeding objective. Treating lactating and non-lactating cows as
two distinct traits would benefit the producer as the most profitable system will be those
with more cows lactating yearly.

4.5. Genetic and Phenotypic Correlation for Days to Calving
4.5.1. DC1 and DC2 Correlations

The genetic and phenotypic correlation between DC1 and DC2 was −0.06 and −0.22,
respectively (Table 14). Johnston et al. [1] estimated the genetic correlation between joining
one and two for days to calving to be 0.55; however, these were mated at 24–28 months
of age and will have different growth requirements compared to the current study. Here,
further analysis was conducted by splitting DC2 based on lactation status (lactating/non-
lactating). DC2_Dry had a positive low (0.13) genetic correlation and a negative phenotypic
correlation with DC1 (Table 14). In contrast, DC2_Wet had a moderate negative genetic
correlation of −0.42 and a phenotypic correlation of −0.04 (Table 14). There are two reasons
for these genetic correlations, post-partum anoestrous in lactating cows and age of puberty
in heifers. The genetic correlation between DC1 and DC2_Wet indicates that DC1 is both a
measure of fertility and puberty whereas DC2_Wet is a measure of fertility and post-partum
anoestrus. The genetic correlation estimates between DC1 and DC2 (including DC2_Wet
and DC2_Dry) would suggest that treating them as distinct traits is essential.

4.5.2. DC1 and DC3+ Correlations

The genetic correlation between DC1 and DC3+_Wet was 0.65 (Table 14); thus, genetic
gain in one trait would result in genetic gains in the other. As DC1 is an early in-life trait,
selecting for DC1 would allow for genetic improvement in DC3+_Wet earlier, increasing
the overall production of the breeding program. Indicating that DC1 is a good indicator
of lifetime female fertility. The high genetic correlation could be caused by two factors,
post-partum anoestrus in mature cows or the age of puberty in heifers [1,26,27]. Post-
partum anoestrus has a greater effect on primiparous cows than in mature cows; hence, the
genetic correlation is more favourable between DC1 and DC3+_Wet than with DC1 and
DC2_Wet [29]. The genetic and phenotypic correlations would indicate that DC1 is a good
indicator for DC3+_Wet and allows for selection earlier in life.

4.5.3. DC2 and DC3+ Correlations

The genetic correlation between DC2 and DC3+ was low and negative (Table 14);
similar correlations were found between DC2_Dry with DC3+ and DC3+_Wet. These low
negative correlations indicate that second joining non-lactating animals would not improve
DC3+ and, therefore, are not a good measurement of lifetime fertility. Second joining
non-lactating animals had lower days to calving values in the second joining compared
with DC3+; this could be due to the effect of post-partum anoestrus. Therefore, DC2_Dry is
not a good indicator of mature (joining three onwards) days to calving and thus cannot
be used to increase genetic gain. Furthermore, DC2_Dry is not a trait of interest in the
breeding program as the most profitable system is those with more lactating cows yearly.
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A different trend was found in DC2_Wet, which was moderate to highly genetically cor-
related with DC3+ (0.41) and DC3+_Wet (0.69) (Table 14). The higher correlations between
second joining lactating days to calving and mature joining traits indicate that DC2_Wet is
a good representation of how an animal will perform over its lifetime. Wolcott et al. [32]
found that cattle, particularly in their second joining, have different requirements due to
post-partum anoestrus, which could explain the genetic correlation between DC2_Wet
and DC3+_Wet. The genetic correlations estimated between DC2_Wet and DC3+_Wet
indicate they are highly correlated; however, they should be treated as separate traits. This
would enable early selection while improving lifetime fertility and maximising genetic gain.
However, DC2_Dry and DC3+_Dry should be excluded from the analysis and values not
be reported back to the breeder as these are not the traits of interest as it is more profitable
to have more lactating cows every year.

4.6. Recommended Days to Calving Traits

Response to selection was calculated for each individual trait. The response to selection
was calculated over one generation with a selection intensity of one. The trait that with
the most negligible response to selection was the overall days to calving trait (Table 10),
indicating that this is the least desirable days to calving trait. The trait with the smallest
response to selection is the trait that will make the least amount of genetic gain. As the
overall days to calving trait had the lowest response to selection, separating traits based on
lactation status and joining number will increase genetic gain. Days to calving is a complex
trait combining many different biological effects so consideration is needed for modelling
this trait to maximise response to selection. Selection indexes are important to consider
when developing traits as they will account for genetic correlations and how one trait will
affect the other.

Three different indexes were calculated based on three different scenarios (Table 4).
Index three (which included DC1, DC2_Wet and DC3+_Wet) had the greatest response of
6.08 days/generation, indicating that it is the best scenario or the scenario that will make
the most genetic gain in this population. Index two (which included DC1, DC2+_Wet)
had the second highest response to selection (3.32 days/generation); this demonstrates
that separating the first joining will improve genetic gain. Unsurprisingly, the index
with the lowest response to selection was index one or treating days to calving as one
trait, further demonstrating that it is important to treat days to calving as separate traits
based on lactation and joining to maximise genetic gain and productivity of the breeding
program. These response calculations need to be taken into consideration when making
recommendations on the breeding program.

Considering index theory and heritability estimates, treating days to calving as three
separate traits (DC1, DC2_Wet and DC3+_Wet) compared to just one days to calving trait
will result in the greatest genetic gain in this population (Table 13). A further multi-variate
model was fitted with DC1, DC2_Wet and DC3+_Wet. The multi-variate model resulted
in a different genetic correlation compared with the bivariate model between DC1 and
DC2_Wet (Table 15). The heritability of these traits was 0.25, 0.40 and 0.30 from DC1,
DC2_Wet and DC3+_Wet (Table 15). The genetic correlation between these traits also
indicates that they should be treated as separate traits. Despite these results, treating days
to calving as two traits still resulted in increased genetic gain compared with treating it
as a single trait (Figure 2); therefore, if the dataset is small, it is recommended to use DC1
and DC2+_Wet to potentially reduce the amount of error. Implementing the separation of
days to calving as three traits in this population will enable greater genetic improvement in
female fertility, resulting in higher production.

4.7. Heterosis Effect on Days to Calving

Heterosis is the phenomenon that occurs when two genetically different breeds are
crossed and produce offspring that outperforms the midpoint of their parents [34,35]. Het-
erosis tends to have a bigger impact on traits that are lowly heritable such as fertility [34,36].
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Retained heterosis, is essential to the breeding program as composite breeding exploits
heterosis without further crossing different breeds [34]. Herein heterosis as estimated from
heterozygosity had a positive effect on fertility traits by decreasing days to calving in all
models (−0.97 to −4.13 days/%, Table 10). It has been reported that heterozygosity fraction
is positively and linearly related to cow fertility and lifetime productivity and can be used to
optimise heterosis in a composite population [34,37]. The biggest impact of heterozygosity
was on DC3+ where a 1% increase was associated with a 4.31 reduction in days to calving.
Early in life days to calving measurements, DC1 and DC2 both had lower heterozygosity
coefficient −1.90 and −1.07 days per percent increase in heterosis, respectively (Table 10).
DC3+ having the highest heterosis coefficient could be due to the higher number of records
(957) compared to DC1 and DC2 (648 and 636, respectively). Heterosis can increase the
weight of calf weaned per cow exposed by 50% or more in Bos taurus taurus and Bos taurus
indicus crosses, increasing the production of the breeding program [38]. Therefore, utilising
heterozygosity coefficient estimates should improve the breeding program’s overall fertility
in composite populations.

4.8. Comparison of the Penalty Value

The penalty value commonly used for days to calving is to add 21 days to the largest
value in the join group [10]. However, due to the breed type of these composite cattle
and their environment, 32 days was used as the penalty value. An additional analy-
sis was conducted to see the effects of changing the penalty value on the days to calv-
ing model. DC1 and DC2+ models were run using no penalty value, 21, 32, 43, 63 and
252 days. In both DC1 and DC2+, not using a penalty value affected the heritability estimate
(Tables 5 and 6). DC1 with no penalty has a lower heritability compared to using any
penalty value; this could be due to the smaller number of records. However, DC2+ with
no penalty had a larger heritability compared to using any penalty value. This demon-
strates the importance of including all joining data, as it will affect heritability estimates.
Despite this, when a penalty value was applied to cows that were not pregnant (empty
cows), there was little difference in the heritability estimate no matter the value for both
DC1 and DC2+; however, there seemed to be a scaling effect due to the penalty value
(Tables 5 and 6). Furthermore, the BLUPs between the models were all highly correlated
(>0.90). These results demonstrate that the penalty value chosen does not affect the heri-
tability and BLUPs; therefore, the value chosen for the penalty is a matter of convenience.

5. Conclusions

Days to calving is a trait used for genetic improvement of weaning rate and calving
time. For the breeding objective of minimising days to calving in five joinings, in this
population it is essential to estimate breeding values for three component traits: first joining
(heifer) days to calving, second joining days to calving lactating and mature days to calving
lactating. The results for heterozygosity fraction supported this. Selecting these three traits
will allow for greater genetic gain in fertility, thus increasing production. As a commercial
dataset was used, most estimates have large standard errors and further investigation using
a larger dataset are required to support the results herein for further use in the industry.
Despite the large standard errors, the results are comparable with published literature. It
is important to use a penalty value for cows that are not pregnant as it allows for more
complete records; however, the actual value of the penalty added does not affect heritability
or BLUP estimates. As this is the first-time days to calving has been modelled this way
and a commercial dataset was used, further study is required to confirm the genetic and
phenotypic correlations between days to calving (separated into three traits, DC1, DC2_Wet
and DC3+_Wet), particularly in other breeds. The relationship with production and days to
calving traits should be investigated in composite breeds to allow for no detrimental effects.
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Evolution of Genetics Organisations’ Strategies through the
Implementation of Genomic Selection: Learnings and Prospects
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Abstract: Since its initial description in 2001, and with falling costs of genotyping, genomic selection
has been implemented in a wide range of species. Theory predicts that the genomic selection approach
to genetic improvement offers scope both for faster progress and the opportunity to make change
in traits formerly less tractable to selection (hard-to-measure traits). This paper reports a survey
of organisations involved in genetic improvement, across species, countries, and roles both public
and private. While there are differences across organisations in what have been the most significant
outcomes to date, both the increased accuracy of breeding values that underpins potentially faster
progress, and the re-balancing of genetic change to include real progress in the hard-to-measure
traits, have been widely observed. Across organisations, learnings have included the increasing
importance of investment in phenotyping, and opportunities to evolve business models to engage
more directly with a wider range of stakeholders. Genomic selection can be considered a more
modular approach to genetic improvement, and its simplicity and effectiveness can transform both
genetic improvement and the effectiveness of multi-disciplinary approaches to improving livestock
and plant production, enabling potentially very significant increases in agricultural productivity,
profitability and sustainability.

Keywords: genomic selection; implementation; strategy

1. Introduction

The core tools, or knowledge domains, deployed in all agriculture are genetics, nutri-
tion, and management (including health considerations). To a large extent, Research and
Development (R&D) and implementation have largely tended to proceed within these do-
mains, albeit with often-stated goals of integration. The domains draw on separate types of
knowledge, and this fact, coupled with limitations in scale and complexity of experimental
design (reflecting the fact that R&D depends on investment of scarce funds) has tended
to maintain the separation. Recent significant development in one area of measurement
or data capture has transformed one of the three domains, and has begun to change how
R&D can and does address the three domains and their integration. That development is
the introduction of techniques for “reading” the genetic makeup of individuals–known
as genotyping.

This paper explores how genotyping has been utilized from two perspectives: firstly,
within the domain of genetics, and secondly, the way in which technology is changing how
agricultural R&D is done, and what scope it can address. The introduction briefly describes
the activity of genetics R&D and implementation, then outlines how potential applications
of genotyping have been investigated, and the general principles of deployment. The
central approach of this paper is then outlined: through structured interview with a range
of practitioners of genetic improvement, common themes emerging through deployment
in a range of species and for a range of goals are identified together with how strategies
for genetic improvement are evolving. The paper then draws on the insights from those
interviews and published results to consider how deployment of genotyping is changing
agricultural R&D and its implementation.
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The starting point for this approach is the genetics domain. In simple terms genetics in
relation to agriculture is concerned with two effects: how choice of animals or plants from
which to breed affects current performance, and how that choice affects performance in
subsequent generations–this latter usually termed genetic improvement. Both choices (they
can be applied in a single combined decision process) depend on identifying individuals
with more favourable genetic make-up for some goal or goals. This simple description
captures the “algorithm” of genetic improvement:

• define the goal–what aspects of performance or traits are important, and how we wish
the change any or all of them: referred to as defining the breeding objective

• identify the individuals with superior genetic makeup for the breeding objective (i.e.,
for the traits in the objective): referred to as predicting breeding value

• selecting the individuals with superior genetic makeup and mating them in an optimal
way to produce progeny

Harris and Newman [1] provide a comprehensive expansion of this algorithm.
While defining the breeding objective is the starting point of this approach, the second

step has occupied the bulk of technical attention during the development of the theory and
practice of genetic improvement over the last 7–8 decades. Individuals’ genetic makeup, or
merit, can be estimated from using two types of “clues” [for the description “clues”, Brian
Kinghorn, pers. comm.]–the relationships amongst them, based on known pedigree, and
their individual performance, or phenotype, for traits of interest. Prior to 2001, the two
significant developments in the theory of estimating genetic merit were selection index [2]
and best linear unbiased prediction, or BLUP [3]. Both methods use phenotypic data, and
where known, pedigree. BLUP offered advantages over selection index in accounting for
genetic change through time, enabling use of heterogeneous data (both in phenotypes
available per individual, and in pedigree relationships), and given appropriate relationship
structure, unbiased estimation across multiple breeding units (such as flocks or herds, but
extending to countries). BLUP methods were introduced into breeding programs in most
livestock species in western countries from the 1980s, assisted by the increasing availability
and price attractiveness of large-scale computing. Almost from the start of implementation,
rates of genetic progress as estimated from the data increased in all species where BLUP
methods were implemented (this is not to imply that progress had not been made prior to
use of BLUP methods, but that it accelerated markedly).

The power of selection index and BLUP approaches were enhanced by the develop-
ment of methods for utilisation of DNA data (genotypes), marked by the publication of
the concept of genomic selection [4]. It is no exaggeration to say that this paper marks
the start of a new, in some ways revolutionary phase in genetic improvement. Such de-
scription can be unfortunate where reality does not match “hype”, but the method has
indeed transformed approaches to genetic improvement wherever applied. Meuwissen
et al. [4] outlined the basic logic of the approach; Goddard and Hayes [5] provide clear
explanation of the application. The present paper does not go into technical detail, but a
brief description of the basic elements, and summary of aspects of the research that has
grown from the initial paper, will underpin the focus here.

Genomic selection depends on the ability to “read” the DNA of organisms–identifying
the nucleotides present in an animal at known locations in the genome. The locations being
read are referred to as Single Nucleotide Polymorphisms (or SNPs), and the ability to read
SNP genotypes has grown exponentially in the last two decades, measured as the price per
SNP. The “reads” at each SNP location together comprise the genotype of the individual,
and genotype maps now routinely include tens of thousands of SNPs, up to full DNA
base sequence.

The second essential requirement for genomic selection is a sample of individuals
from the population of interest that have been genotyped, and on which some measure
or assessment of performance has been collected. The measure may be a trait(s) mea-
sured on the individual itself (its phenotype) or trait(s) measured on known relatives of
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the individuals–for example, progeny groups. This group of measured and genotyped
individuals is known as the genomic reference population.

With a genomic reference population established, it then becomes possible to genotype
other members of the population, and look for similarity between their genotypes and those
of the genomic reference population, and from that similarity infer the value of the genes of
those individuals. To make the point very clear: the genomic reference is individuals with
both known genotypes and measured phenotypes, and the remainder on the population
(non-reference) can then be evaluated genetically from their genotype alone.

The size, and to a lesser extent the design, of the genomic reference population, is
crucial in determining the accuracy with which genetic merit can be estimated for animals
without phenotypes. This topic will be returned to later, but the key points in relation to
that accuracy were covered by Goddard and Hayes [5]:

- accuracy of estimation of genetic merit (or breeding value) increases with increasing
size of the reference population, but with diminishing returns to scale,

- accuracy of estimation of genetic merit (breeding value) is higher for traits with
higher heritability,

- accuracy is affected by the level of relatedness of individuals within the reference
population and between the reference population and the rest of the population–higher
relatedness enabling higher accuracy, and

- the reference population needs to be maintained in terms of its relatedness to the cur-
rent active population–for a population undergoing selection, the accuracy available
from the reference population declines over time [6,7] (noting that drift and mutation
will also contribute to reduction in relatedness over time).
Meuwissen et al. [8] set out the two opportunities presented by genomic selection:

- the accuracy of prediction of genetic merit that is possible, including for individuals
with and without phenotypes, with tincreased accuracy providing scope for more
rapid genetic improvement, and

- the decoupling of measurement and selection. This provides two sorts of opportunities:

� to evaluate large numbers of individuals at the price of genotyping alone
� to evaluate selection candidates for traits that cannot be measured on live ani-

mals or, or can only be measured some time after selection would ideally occur

Together these opportunities mean that genomic selection can be deployed to achieve
faster genetic change in individual traits, genetic change in more traits simultaneously, or
the two together, and enable screening of commercial populations to allocate individuals to
their most appropriate management regimes and/or target markets.

At the time of the original paper [4], genotyping was not yet cheap enough for
widespread implementation of genomic selection. Through the 2000s and beyond about
2008, this began to change rapidly, with the earliest wide-scale applications in dairy cattle.
A major attraction there was in using genomic selection to evaluate young bulls, potentially
replacing the longer and more expensive progeny testing systems that had been the basis
of dairy cattle genetic improvement since the mid-1950s. Shaeffer [9] highlighted the poten-
tial cost-savings (92%) and increases in rate of progress (doubling) available, and almost
immediately, dairy cattle breeding programs in the developed world switched to genomic
selection. Since then, applications in other species has grown rapidly.

The concept of genomic selection has been termed a paradigm shift [8]. “Paradigm
shift” refers primarily to the decoupling of trait recording and selection. The impact of the
concept on the research community is evident in a Google count for the term “genomic
selection”—163 million hits at 20 April 2022, compared to 2.4 million hits for BLUP at
the same date. Similarly, the original paper now has nearly 5000 citations, compared to
1676 citations for the Henderson paper outlining BLUP [3]. These comparisons are not
intended to imply relative merit–simply the level of engagement that genomic selection
has generated.

This paper explores how a sample of practitioners have implemented genomic se-
lection, what has been learnt to date, and how breeding strategies have evolved. A brief
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overview of areas of research and development around genomics and in particular genomic
selection is provided as background or context for focus on implementation.

Firstly, there have been a number of useful collections of articles discussing genomic
selection, with that in Animal Frontiers (6(1), 2016) providing an excellent starting point. Re-
cent proceedings of the World Congress of Genetics Applied to Livestock Production [10,11]
extend the coverage enormously–over 1600 papers across two conferences, with a high
proportion in some way utilizing or addressing genomics. An excellent review of the
status of genomic selection covering a range of theoretical and implementation issues
is Misztal et al. [12], and Verbyla et al. [13] provides an excellent outline of the steps in-
volved in implementation of genomic selection at commercial scale, including the R&D
and application phases.

Secondly, areas of research and publication include:

- Methods and tools for analysis of genomic data, both for genomic selection and more
broadly for exploration of the genomic architecture of traits

- Theoretical and more recently experimental investigation of changes at the gene or
SNP level under genomic selection

- Theory and tools for use of genomic data jointly for selection and management of
genetic variation

- Design of genomic reference populations on both within- and across-population basis
(where population can be breed, region or country of origin)

- Pre- and post-implementation scoping and reporting of implementation in a wide range
of species, including animals (terrestrial and aquatic), plants, insects, and microorganisms

- Traits, and methods of phenotyping, including production (both output and input),
product quality, health- and disease-related, metabolic, and behavioural traits

- and Evaluation of breeding programs for effectiveness and economic efficiency, in-
cluding for economically and/or environmentally challenging situations

Thirdly, and of relevance to the broader agriculture context within which genomic
selection is practiced and genomic methods are used in research, studies of genotype-by-
environment interaction, and more broadly of how genetic and non-genetic (e.g., nutritional,
or management) choices work together in value chains, e.g., [14]. These latter reflect a
paradigm shift additional to that noted by Meuwissen et al. [8]: as genotyping becomes
more and more cost-effective, and as genomic reference populations are built using a mix of
specific-purpose populations and field data, genotyping can describe the genetic makeup
of recorded populations where there are identifiable environmental or treatment differ-
ences, which enables greatly increased scale in experiments in fields where traditionally
experimental size has often been limited.

2. Materials and Methods

The foregoing is intended as a general introduction to genomic selection. Of potential
interest both to practitioners across species, and to a wider, non-geneticist audience, are
the questions:

- how has genomic selection been implemented in practice?
- with what results so far and what impacts on how genetic improvement is being practiced?

A survey was conducted to help address questions related to genomic selection that
are of interest to plant and animal breeders as well as to a wider, non-geneticist audience.

The broad questions were examined via structured interviews with a diverse sample
of practitioners. Twenty-three different organisations are represented, and all interviewees
provided a mix of written and verbal response to the following questions. The organisations
were chosen to represent four broad roles within genetic improvement, and from the
author’s experience of publication by the organisations. They reflect a range of species and
countries, but to be clear, all have implemented genomic selection to some extent.

144



Agriculture 2022, 12, 1524

For the Results and Discussion, the interviewees have been grouped. The grouping
outlined is somewhat arbitrary, but reflects diversity in two dimensions of enterprises or
organisations involved in genetic improvement:

- Whether single enterprise or business, or including or servicing multiple enterprises
or businesses. For example, an individual beef cattle stud is likely to be smaller in
economic scale (e.g., turnover) than a breeding company, even though the number of
animals (females) in the breeding population being managed may be similar. A breed
association will provide some set of services to multiple such enterprises.

- Whether directly involved in collecting data and/or making selection decisions, or
providing services supporting such decisions. Breeders and breeding companies (or
programs) are directly involved in such decisions, whereas breed associations and
national genetic evaluation systems provide supporting services for those decisions.

This grouping does not map precisely to economic scale or scale of breeding program.
For example, an individual beef cattle stud is likely to be smaller in economic scale (e.g.,
turnover) than a breeding company, even though the number of animals (females) in the
breeding population being managed may be similar. A breed association will provide some
set of services to multiple such enterprises, but may be no bigger, or even smaller, than
some of its member businesses (studs).

The full listing of interviewees within groups, with links, is included in Appendix B.
The interviewees are only sampled from two of the four possible cells within this 2-

dimensional matrix. The breeding company/project group includes both private and public
sector organisations, and as will become apparent, there is a trend for breed associations and
national evaluation systems to make direct investments into at least data collection–within
this simple classification, a role of the decision makers.

The questions included in the survey were:

1. What level of adoption or utilisation of genomic selection, i.e., genotyping for pre-
diction of genetic merit, has been reached in your organisation –perhaps simplest
answered as what proportion of selection candidates are genotyped, and in the case
of a multi-stakeholder situation, what proportion of breeders or producers are geno-
typing some or all candidates for selection?

2. Has your organisation assisted with the uptake of genotyping–for instance via contri-
bution to the cost of genotyping?

3. Has your organisation reviewed or changed breeding goals or indexes either as part
of a planned process of implementation of genomic selection, or simultaneous with it?

a. If so, has there been an increase in the number of traits being evaluated?

4. Has your organisation invested (or co-invested) in any specialised or designed pheno-
typing projects, either with members or separately?

5. Does your organisation provide any incentives for phenotyping, whether broadly or
for specific traits?

6. Within the population you or your members work with, is there any evidence of
changes of parameters of the response equation, such as:

a. Reduction in average age of sires
b. Increase in use of elite males and/or females via Artificial Insemination (AI)

and Embryo Transfer (ET), partly or completely focussed on genotyped animals
c. Increase in average accuracy of selection (in a general sense, this could reflect

the average accuracy of genomic BVs in animals in the population)
d. Increase(s) in rate of genetic progress, whether for some individual traits and/or

overall merit index
e. Changes in direction or rate of change in particular traits (an example I will

be discussing is that of eating quality (EQ) in terminal sire sheep in Australia–
where previously the genetic trend was unfavourable, driven by genetic corre-
lations between EQ and traits contributing to efficiency of lean tissue growth
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(Lean Meat Yield or LMY), but now the availability of genomic predictions for
EQ as well as for LMY has resulted in reversal of the genetic trend for EQ

7. Can you comment on whether, and if possible to what extent, your organisation has
drawn on government or industry funds in any aspect of the introduction of genomic
selection? Additionally, if you have, do you anticipate that continuing into the future?

8. Has your organisation changed its strategy as a result of or in response to, the intro-
duction of genomic selection? If possible, can you briefly describe the key changes
underway?

Interviewees were contacted directly by the author. It was made clear that no confi-
dential information was being sought, and that no evaluation or comparison of responses,
in the sense of an organization performing in some way better or worse than others, was
intended. Interviewees had opportunity to review the manuscript prior to submission.

Interviews were conducted by teleconference, but were not recorded electronically–
rather, notes of the discussion were taken by the author. These notes have been distilled to
generate the material reported here.

3. Results and Discussion

For this section, the interviewees have been grouped as outlined in Materials and
Methods. Responses to the questions are summarized by the four groups as defined in
Table 1. Direct comment or quotation from individual interviewees is minimal here, but
key points from discussion are included.

1. What level of adoption or utilisation of genomic selection, i.e., genotyping for pre-
diction of genetic merit, has been reached in your organisation–perhaps simplest
answered as what proportion of selection candidates are genotyped, and in the case
of a multi-stakeholder situation, what proportion of breeders or producers are geno-
typing some or all candidates for selection?

Table 1. Classification of Interviewees.

Single Enterprise Multiple Enterprise

Decision maker Breeders
Breeding Companies/projects

Decision support Breed associations
National evaluation

Breeders: The beef breeders interviewed are all now genotyping 100% of young
animals prior to selection, with the genotypes submitted for genetic evaluation via the
BREEDPLAN system [15]. This level was not arrived at immediately genotyping became
available: in all cases, some initial trialling was conducted allowing comparison of genomi-
cally enhanced estimates of genetic merit (EBVs in beef cattle in Australia) with standard
BLUP EBVs [16].

The sheep breeders interviewed are genotyping lower proportions of their annual drop
of candidates than beef breeders, likely reflecting the higher relative price of genotyping in
sheep compared to cattle (prices for genotyping are similar per animal, but the sale value
of rams is approximately one fifth that of beef bulls). However, the breeders interviewed
indicated that the proportion of their flock being genotyped is rising and likely to continue
to do so.

Breeding Companies: All breeding companies interviewed are genotyping 100% of
candidates, with the exception of Tree Breeding Australia, where the reference population is
being built through extensive genotyping across generations and evaluation of the potential
utility of genomic information. As with the breeders, companies did not necessarily move
to 100% genotyping of candidates immediately the technology became available–some
research and development or learning process was involved. As will be discussed later, this
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in some cases included evaluation of different genotyping platforms and even development
of custom genotyping assays or chips.

Breed associations: In the beef breeds interviewed, genotyping has reached high levels
across their membership–broadly around 67–90% in young animals. While this information
was not sought directly, there was an overall impression that adoption of genotyping was
higher among larger breeders (i.e., in terms of numbers of animals and hence economic
scale) within the breeds.

National evaluation systems: Observations varied between species and to an extent
country. In dairy cattle, 100% of male candidates (i.e., young bulls) are now genotyped.
Genotyping in females has grown more slowly, but an increasing proportion of “com-
mercial” heifers–animals not automatically assumed to be likely to be dams of bulls–are
being genotyped, reflecting increases in accuracy of genomic breeding values and the
resulting increasing utility of such information in supporting management decisions. In
beef and sheep, adoption varies widely between breeds in the countries represented, with
a tendency for adoption to be higher and faster in breeds that have been more active users
of science-based breeding methods and technologies.

Overall, adoption of genotyping for genomic selection has been quite rapid after initial
trialing and research: not as dramatically as in dairy cattle, but rapid in terms of technology
adoption in agriculture [17].

2. Has your organisation assisted with the uptake of genotyping–for instance via contri-
bution to the cost of genotyping?

This question is really only relevant for breed associations and genetic evaluation sys-
tems. None of the breeds surveyed have offered any financial assistance with genotyping at
the individual animal level, but all had negotiated pricing arrangements for their members
with the genotyping providers.

In general, this was also the case with breeding companies and genetic evaluation
systems, but a very important contribution has been made in almost all cases (breeds,
breeding companies and genetic evaluation systems) via co-investment with breeders, and
with industry and/or government, in R&D. Such R&D in broad terms has been aimed
at establishing proof-of-concept while simultaneously building genomic reference data,
and the assistance in most cases included subsidization of the cost of genotyping for
breeders involved.

Extending this point, all the breeders (beef and sheep) interviewed had participated in
such R&D, and their data has contributed to the relevant reference populations.

This R&D phase continues where new traits are under development: for example in
Australian beef and sheep, large industry and government co-investment in phenotyping
for methane output is underway, and similarly in the Australian dairy industry for fertility
phenotypes via the GINFO project [18].

The challenge of maintaining appropriate levels of phenotyping, including for new
traits, has become a significant strategic challenge for all the types of business consulted
here, and approaches to meeting the challenge are under development [19].

3. Has your organisation reviewed or changed breeding goals or indexes either as part
of a planned process of implementation of genomic selection, or simultaneous with it?

a. If so, has there been an increase in the number of traits being evaluated?

This question was included to address the proposition that genomic selection would
enable more effective selection for hard-to-measure traits, which in turn could lead to
adjustment of breeding goals. Across the interviewees, no organization has specifically
reviewed or changed breeding goals as part of a planned process of implementation of
genomic selection, but in essentially all cases, that implementation has lead to new thinking
regarding objectives and what traits could be important:

Breeders: Observations included an increased focus on some traits reflecting greater
accuracy in EBVs for those traits, a desire to have more traits included in genomic evalu-
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ation, and that review of breeding goal(s) and indexes was enhanced by the increase in
accuracy of EBVs for some traits, leading to greater focus on them.

Breed Associations: Similarly, among the breeds interviewed, two noted that review of
breeding goals and indexes was occurring simultaneous with implementation of genomic
selection, and that the implementation was increasing breed focus on collecting sufficient
numbers of phenotypes to support useful genomic breeding values. The other noted that
while the reviewing of breeding goals and indexes is a regular activity, implementation
of genomic selection has encouraged consideration of formally including traits in the
breeding goal that had previously been considered “important but too difficult to do
anything about”.

Breeding Companies: In general, implementation of genomic selection has allowed
companies to shift emphasis in their breeding indexes more towards the balance implied
by an already-defined breeding goal–in particular, to place more selection emphasis on
hard-to-measure and/or low heritability traits. This is broadly similar to the observations
for breeders and breeds, but noting that all the companies interviewed had formally
defined breeding objectives that included traits not previously under strong selection
pressure because of lack of data and/or low heritability. Although not a documented or
objective reaction from those interviewed, there was a sense in the discussions that this
re-balancing of selection pressure was something of a pleasant surprise–in essence, that
genomic selection was in fact providing a benefit proposed theoretically, but not definitively
proven anywhere prior to the implementation process.

National evaluation systems: The first observation for this group is that in almost call
cases, some new traits were added to the routine evaluations as R&D generated sufficient
phenotypes to enable genomic prediction. This in turn has led either to increased interest
in or focus on hard-to-measure traits, informed simultaneous reviews of breeding goals
or indexes, and/or stimulated revision of goals and indexes to explicitly incorporate new
traits. An example of the latter is that Sheep Genetics now offers indexes that include Lean
Meat Yield and Eating Quality breeding values, which have only become available via R&D
and depend on genomic prediction for animals in ram-breeding flocks [Andrew Swan,
pers. comm.] [20].

Extending this point, the changes–either rebalancing and/or introduction of new
traits–have stimulated development of new extension tools and programs. These tools and
programs have covered both new traits or indexes, as well as tools focused on genomic
pedigree at the breed or across-breed level.

A more general observation relevant to this question is that in all four types of organi-
zation, implementation of genomic selection has stimulated more attention to the meaning
and composition of breeding goals, and to the realization that expansion of breeding goals
and introduction of new traits can be a conceptually simple and logical process. As this
attention and realization grow, it seems likely to underpin quite considerable re-thinking
of breeding goals, especially to include traits previously ignored as being too difficult to
do anything about, and to incorporate traits relevant to more recent considerations, such
as emissions and welfare-related traits [18,21]. To varying degrees, this is being actioned
via more formal forward planning of R&D into potential traits and into phenotyping
strategies, and into thinking much more deeply about the implications of, for example,
more rapid change in fitness traits. This is somewhat analogous to new appreciation of
the effectiveness of selection for disease resistance [22,23]–understanding that change in
previously difficult traits can be much more effective than was thought should encourage
broad and imaginative thinking about what a particular breeding program can realistically
aim to achieve.

4. Has your organisation invested (or co-invested) in any specialised or designed pheno-
typing projects, either with members or separately?

Breeders: All breeders interviewed had participated in industry R&D programs in-
volving collection of existing and/or new phenotypes, and genotyping. This invariably
involved additional investment by the breeders, either via additional spending on recording
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equipment, additional labour, and/or investment in genotyping animals that would not
otherwise have been genotyped. All such R&D programs involved some level of industry
and/or government investment.

Breed Associations: As with the breeders, the breeds interviewed had all partici-
pated in industry R&D programs, including making significant financial investments from
breed funds.

Breeding Companies: Similarly, the breeding companies surveyed have all invested
in specific phenotyping projects, but the level of external co-investment (from industry
and/or government) varied considerably. There is a trend to investment in phenotypes
being informed by definition of the breeding goals, and therefore evolving as the breeding
goals evolve (see point 3 above).

National evaluation systems: All the evaluation systems consulted have either initiated
and/or participated in specific phenotyping projects, usually for a combination of existing
and novel traits, moving to focus on novel traits as the value proposition for genomic
selection for existing traits has become established.

There has been no single approach to the design of such projects, although some focus
on ensuring involvement of higher genetic merit animals or breeding units is evident [24].

5. Does your organisation provide any incentives for phenotyping, whether broadly or
for specific traits?

Breeders: This question is not relevant to breeders as individuals.
Breed Associations: All breeds interviewed have taken initial steps to encouraging

phenotyping, either related to specific traits, or as some reduction in charges for enrolling
animals into genetic evaluation. One breed has started offering incentives for submission
of phenotypes for traits not currently well-recorded.

Discussions indicated that strategies in relation to this issue are likely to evolve [18].
Breeding Companies: This question is not directly relevant to breeding companies,

except where the company has contractual agreements with suppliers of data, where the
contractual arrangements will reflect the value of the data itself.

National evaluation systems: Incentives for phenotyping have been offered (provided)
by national systems in a range of ways, including assistance with the cost of genotyping
animals in particular priority herds or flocks, and similarly but for herds or flocks meeting
recording level or quality standards, discounts on standard evaluation charges in return for
defined levels of phenotyping.

The incentives provided through these mechanisms have in most cases overlapped
with, or been a component of, R&D programs, but several organizations have or are
considering moving to incorporating such incentives in their normal charging schedules
[e.g., CDCB, Appendix A].

6. Within the population you or your members work with, is there any evidence of
changes of parameters of the response equation (with possible examples listed):

There was considerable diversity in responses and discussions on this question, not so
much in terms of whether changes in parameters contributing to rate of genetic progress
had occurred or been observed, as in what those changes were. In part this likely reflects
the way the question was posed, with sub-questions relating to different parameters, in
addition to any variation reflecting the different natures of the organizations interviewed.
Recognizing this diversity, some overview points are presented first, before reporting on
the responses of the different organization types.

Firstly, all interviewees commented on increases in accuracy of breeding values–mostly
in relation to young animals, but also for traits for which breeding values previously had
only low accuracy. An interesting example of the latter is adult traits in sheep–weight
and wool production of females. As interest grows in controlling maintenance costs of
breeding females in extensively managed species, ability to restrict increases in adult
weight while simultaneously increasing early life growth rate (for slaughter progeny)
becomes increasingly important. To date, limited recording of adult weights has meant that
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these have simply increased as a correlated response to selection for early growth. This
is a specific example of a more general issue of traits that for whatever reason have not
been extensively recorded. Genetic evaluation of such traits (i.e., to generate estimates
of genetic merit) has previously had low accuracy, limiting breeders’ capacity to manage
them genetically.

Secondly, and to varying extents, breeders are now making greater use of younger
animals, reflecting increased accuracy of estimates of genetic merit for such animals. This
has been most dramatic in dairy cattle breeding, where genomic selection has essen-
tially replaced progeny testing schemes [9], but was commented on to some extent by
all interviewees.

Thirdly, increases in either rate of genetic progress and/or rebalancing of genetic
change across traits were most strongly noted in organisations with what seems reason-
able to interpret as the strongest pre-existing focus on genetic improvement and breeding
program design. For example, breeding companies with well-established and formally
designed breeding programs (formally in the sense that detailed analysis of design op-
tions, including all steps in the breeding program design “algorithm” [1] most readily
reported significant increases in either of these aspects. This was not so clear in the exam-
ples for beef and sheep, or for beef breeds, partly reflecting variation amongst breeders
with multi-member organizations in their utilisation of genetic improvement methods
and technologies.

Breeders: None of the beef or sheep breeders interviewed reported dramatic changes
in rate of genetic progress, but did report what are likely early or leading indicators of
significant acceleration: increased accuracy of breeding values in young animals including
for hard-to-measure traits, and increased use of younger animals in reproductive programs
(i.e., using Embryo Transfer on selected females). As confidence in genomic breeding values
continues to build for these breeders, it seems likely that increased use of younger animals
coupled with increases in accuracy across breeding goal traits will be reflected in significant
acceleration of genetic progress.

Breed Associations: The general observation here was that to date there has been
no “across the breed” increase in rate of genetic progress, but that early signs of change
are apparent, and that there have been significant genetic changes in some specific traits
introduced with the implementation of genomic selection. Retallick et al. [25] report
examples of this for welfare-related traits in Angus cattle in the USA.

All breeds interviewed commented on increased extension effort through recent years,
aimed at encouraging more effective use of genetic information amongst their members:
this focus has coincided with the implementation of genomic selection.

Breeding Companies: Where the company interviewed had fully implemented ge-
nomic selection (as compared to being still in the process of trialing it), substantial increases
in the rate of progress both overall and in hard-to-measure traits have been observed.

National evaluation systems: In broad terms, observations for the national evaluation
systems reflect those for the other three interview groups: substantial acceleration reflecting
reduced generation interval in dairy, considerable variation amongst breeders in the respec-
tive species–particularly beef, and increased response most noticeable in hard-to-measure
traits. Examples of the latter which mirror the point noted above re welfare traits in US
Angus, include:

- the dramatic change in genetic trend for traits related to meat eating quality in sheep
in Australia [20], reversing previous unfavorable correlated responses to selection for
growth and carcass leanness,

- the equally dramatic reversal of genetic trends for fertility in dairy cattle, which while
not solely due to implementation of genomic selection, have been enhanced by it [Paul
Van Raden, Andrew Cromie, Matt Shaffer–pers. comm.]

7. Can you comment on whether, and if possible to what extent, your organisation has
drawn on government or industry funds in any aspect of the introduction of genomic
selection? Additionally, if you have, do you anticipate that continuing into the future?
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Responses were consistent across the four groups: to varying extents, all had partici-
pated in (or initiated) R&D projects focused on trialing aspects of genomic selection, and
receiving industry and/or government R&D funding. Typically, such funding assisted
with genotyping costs, development of analysis tools and data analysis. As evaluation of
the technologies moved beyond the “proof of concept” phase, external assistance has in-
creasingly focused on assisting with phenotyping of novel traits, such as methane emission
levels [Sam Clark and Julius van der Werf, pers. comm.], and organizations fund more
routine phenotyping and genotyping from internal sources.

All organizations indicated that where industry and/or government R&D funding is
available, for instance to assist with development of novel traits, it would be applied for.

8. Has your organisation changed its strategy as a result of or in response to, the
introduction of genomic selection? If possible, can you briefly describe the key
changes underway?

Responses to this question were richly diverse, and to convey this rich diversity as
fully as possible, individual comments and observations are presented below, without
identifying the individual source.

Breeders:

- Greater use of young sires, more data capture from multipliers, and development of
new traits

- Having greater scope to control direction is invigorating, and we have developed better
understand of both the technology and our choices, leading to increased confidence in
what we are aiming for and doing

- There is greater urgency to identify traits that need to be recorded and included
in the evaluation

- We are reviewing our business structure aiming to get the best out of the technology
- We are developing new product lines–and can do so rapidly with genomics; and

moving to having a genotype-only multiplier tier in our business
- We are focusing more on potential new traits, especially around easy care attributes

and fertility

Breed Associations:

- Genomic selection has bought strategies related to genetic improvement more to the
fore across our breed, and we are seeing increased engagement with our R&D pro-
grams; building strong Board understanding and support has been critical, expanding
our range of collaborative R&D and strengthening our relationships with genotyping
providers have been key strategic initiatives

- Minimizing costs of entry to genetic evaluation, in order to encourage participation–
and phenotyping–has been an important initiative; and being open to data from a
wider range of sources or partners have been important

- Managing the genomic pipeline has been critical, in parallel with faster development
of new traits, increasing frequency of evaluations, being actively involved in chip
design, and actively initiating R&D (rather than waiting for it to emerge from the R&D
community) have all been significant strategic developments for our organization–
aiming to lead rather than follow

Breeding Companies:

- We’re now working with multipliers to increase accuracy of data collection for traits
that can be recorded in that tier, and investing in new phenotyping, such as individual
feed intake

- There has been a redirection of funds internally towards phenotyping, including
phenotyping in end-users’ operations; defining our phenotyping strategy–what data
to collect, and how to collect it most efficiently, is now central

- Big changes are happening in our breeding program–making much more use of
existing phenotypes, and this is stimulating re-defining our breeding direction; the
innovation cycle is accelerating
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- We’re investing heavily in evaluating the technology, but we anticipate significant
increase in our investments in phenotyping and genotyping

- Genotyping in the commercial level is being increased, this is changing our relationship
with those stakeholders

- Our overall strategy has not changed, but we have identified new R&D

National Evaluation Systems:

- We are seeing increased use of sexed semen since the introduction of genomics, with
producers making assigning females to different roles (breeding replacements, or
breeding cross-bred progeny) based on their genetic merit

- Genotyping is helping increase engagement across the whole population, as well as
bringing new opportunities such as breeding for reduced methane

- Investment in new high-value phenotypes is now clearly part of our R&D strategy,
and the partnership with breeds becomes more important

- We are thinking more and more about “where will data come from in the future?”,
and are becoming more strategically engaged in managing data–what traits, ensuring
quality of data

- Data from research projects is now potentially shared with industry, and we are
developing new evaluations based on research data

- In the breeding programs where breeders have a role in design, there is heavier use of
young males

A number of the observations made in response to this question repeat responses to
earlier questions, and so it is possible to draw out some consistent messages, at two levels:

- firstly, relating to elements of the response equation

R = i. rIT.sigma(T)/L

where:

R is response to selection
i is standardized selection differentia
rIT is the correlation between the index on which selection is based on the breeding
objective
T is the breeding objective
L is the generation interval

Changes in accuracy are typically the first effect of implementing genomic selection,
and such changes increase the ratio rIT/L. rIT is accuracy itself, but L changes (reduces, at
least potentially) because individuals can be evaluated earlier in life

Changes in accuracy also impact the direction of selection–which is captured by
rIT.Sigma(T)–via increases in accuracy for previously hard-to-measure traits–observed as
an opportunity to “re-balance” selection and genetic change.

Together, these changes underpin the opportunity to increase both the rate of genetic
change and its value.

- Secondly, relating to overall strategy, a number of themes are clear:

� phenotyping becomes a central concern: what traits to collect data on, how to
collect the data (i.e., what individuals, what equipment, what data sources),
and how to fund the phenotyping effort.

� What opportunities are most significant for an individual organization to
some extent depends on their pre-existing breeding program design. In broad
terms, the first opportunity grasped seems to be to make more use of younger
individuals, followed by the opportunity to re-balance selection.

� All organisations had participated in, or initiated, an R&D phase aimed pre-
dominantly at validation–discovering how genomics works and what actual
changes are seen. However, importantly, this phase seems to have been rela-
tively short, at least as purely for validation: quite rapidly, new genotyping
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and phenotyping effort becomes simply building gemomic reference data, and
in most cases, expanding the traits being recorded. Extending this point, the
organisations had essentially moved to having a continuing “R&D core” in
their operations.

� This last point in turn connects with further strategic changes: funding the
phenotyping becomes a core business challenge, including to what extent or-
ganisations draw on or partner with industry or government funding; and,
new data sources and hence potentially new business relationships are consid-
ered. This is most obvious in initiatives to capture more data from outside the
breeding nucleus (for example, making use of data collected in the multiplier
or even commercial tiers), and formalizing contractual relationships to support
this.

� A number of the organizations interviewed were beginning to evaluate oppor-
tunities to increase scale of leveraging from the nucleus–mainly via changed
involvement with multipliers, exploiting the ease and in some cases lower cost
of genomic evaluation.

� A number of organisations reported use of approaches to managing inbreed-
ing via some form of implementation of Optimal Contributions theory, and
several stressed that such was an essential component of implementation of
genomic selection. Reflecting the more precise knowledge of relationships
available using genomic information, such information can inform design of
the sampling for reference phenotyping and genotyping, and the mating design
used in the nucleus [Mark Henryon, Anders Vernesen, Klara Verbyla, Brian
Kinghorn—pers. comm.].

- Finally, while this was not a direct question, it was clear that in some instances,
implementation of genomic selection benefited from and also stimulated synergies
with other areas of R&D. A familiar example (to the author) is the interaction between
meat science and genetics in the Australian sheepmeat industry R&D–meat science
assisted with identification and definition of priority traits to collect phenotypes on,
genetic analyses underpinned by genomic information shed new light on variation
and co-variation in different aspects of meat quality and eating quality, and the
joint focus helped raise industry awareness of opportunities for wide-scale change
in product quality and offerings at the consumer level [26]. It seems likely that
such synergies will grow–the need to capture the most useful phenotypes to enable
appropriately balanced selection, will stimulate new interactions, with the growing
interest in emissions reduction and in disease resistance being obvious areas for such
interactions [22].

The last observation based on the interviews, responses, and insights, is that all these
organisations seemed energized and stimulated by the involvement in implementation
of genomic selection: they were getting new insights into what is possible, new ways of
thinking about all aspects of their operations, new relationships and partnerships, and a
very real sense of excitement at the prospect of faster and more valuable genetic progress.

What about impact?
No questions were asked in any interview about economic evaluation, and no attempt

is made here to either review or estimate economic impacts. Ex-ante studies exist, e.g., [27],
but a telling indicator of confidence in impact, or at least in success, is that all interviewees
were increasing investment in phenotyping, and usually in genotyping, and in increas-
ing scale (of the breeding program and/or commercial production) too. Faster genetic
improvement with more comprehensively defined breeding goals should by definition
deliver increased value from breeding programs. Analyses of economic impact, at least for
programs involving any industry or public funding, can be expected in the coming years.

What about numerically smaller breeds, or less affluent industries or countries?
All the organisations interviewed here are operating in wealthy countries, and as

has been reported, usually with some level of industry and/or government investment
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in at least R&D stages of the implementation of genomic selection. In addition, they
either operate in industries based on large populations of animals (or plants), or have
built such populations themselves through commercial growth (as an example, the US
Angus breeding sector evaluates over 600,000 new animals per year, providing bulls to a
commercial sector of several million animals [Kelli Retallick and Steve Miller, pers comm.].

Scale–both financial and numerical–is important because:

- Phenotyping and genotyping, to generate and maintain the genomic reference popula-
tion, cost money

- One of the attractions of genomic selection is that such evaluation effort can be focused
on a relatively small number of individuals per year (there is no precise formulation
to define the number, but around 1–2000 new individuals recorded and genotyped
per year will provide a strong basis for selection)

If either funds are extremely limited, and/or the total population is not much larger
than the number needed to build a useful genomic reference, possible responses include:

- Organizing the breeding program to exploit the additional accuracy generated by
knowledge of the genomic relationships, and aim to grow commercial scale based on
faster and more valuable genetic progress. This requires a level of “whole population”
coordination, to generate maximum value from the program

- Developing medium- or longer-term investment relationships with government
and/or benevolent investors–drawing on justification from the scale and distribution
of benefits that would not otherwise accrue to the wider farming population.

These challenges and possible responses are not in fact unique to the implementation
of genomic selection–they apply equally to use of any breeding program where perfor-
mance recording is required (i.e., all breeding programs). What is different is that genomic
selection makes more obvious both the investment required and the significance of captur-
ing returns at commercial scale to leverage that investment. Marshall et al. [28] provide
some examples of implementation of genomic selection in African livestock, and comment
on these challenges.

Wider implications–speculations
The focus of this paper has been on how organisations have implemented genomic

selection and what they have learned and changed in doing so. At the same time, it is clear
from the responses that the organisations are not interning to return to “pre-genomics”–
if anything, as noted above, there is likely to be growth in scale of operation. This can
reasonably be interpreted as reflecting increased effectiveness in genetic improvement,
and indeed, a number of the interviewees reported quantified increases in rate and value
of progress.

Even allowing that this sample of organisations are among lead users of genetic
improvement technologies and methods, there seems no reason to doubt that genomic se-
lection will be increasingly implemented to enhance existing genetic improvement schemes
across species and countries, notwithstanding that it involves increased, or at least re-
directed, investment and the requirement for systems to handle genomic data. What might
this mean for R&D generally, and for agriculture more broadly?

Regarding R&D, the point made above about synergies with other disciplines can be
generalized: the core R&D activity of genomic selection is the measurement of large num-
bers of individuals for traits of interest, with experimental design embedded via the combi-
nation of knowledge of relationships (via pedigree, whether genomic or not) and of fixed
effects (such as location, time, prevailing conditions etc). Genomic reference populations
also need to be maintained or refreshed through time, with new phenotyping. Therefore,
genomic reference populations provide an excellent platform for diverse research:

- They are by design reflective of the genetic variation in the population of interest, and
so any finding is “validated” for that population, and for the medium-term future
(in comparison with doing experiments on samples that reflect current commercial
generations but previous genetic generations)
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- Adding treatments–comparisons of diet or drug regime, for example–can be done in
a balanced manner, at whatever scale is affordable, which effectively leverages the
overhead costs of the program across more R&D outcomes

- Additionally, by automatically including both a “genetic” and a “non-genetic” dimen-
sion, they assist researchers and industry to better appreciate the joint influence of
these two dimensions on what can be achieved in terms of performance, including
obviously the extent of any genetics-by-environment and/or genetics-by-management
interactions.

More generally, the acceleration of genetic progress under genomic selection will
inevitably stimulate growth of thinking in two dimensions:

- Firstly, industry and the broader community will come to see genetic improvement as
a more powerful, or more precisely rapid, means of change than has been generally
appreciated. Despite the fact that changes under selection have been dramatic over
periods of one or more decades, e.g., [29], and can mean continuous productivity or
profitability improvement that more than matches the cost-price squeeze [30], genetic
improvement is still widely spoken of as slow and steady, with the note that it is
cumulative added as a generally misunderstood “add-on”. However, when the facts
of what can be achieved become more widely appreciated, there seems no reason
that focus will not increasingly be paid to how much to invest in phenotyping, which
is the fuel of genomic selection. The transformation of dairy breeding–completely
reversing previous trends for fertility, the impact of selection for disease resistance
in several species [22], and the dramatic increase in scale already apparent in some
industries [Matt McDonagh, pers. comm.], signal a technology with rapid, immediate
and valuable effect.

- A specific example is the appreciation that genetic improvement can contribute to
reduced emissions in agriculture, and can do so without requiring a permanent
treatment cost (of some mitigant) at the animal level [31].

- Secondly, the appreciation that essentially any problem can be tackled provided appro-
priate phenotyping is in place, coupled with the “naturalness” of change via genomic
selection, could significantly improve confidence that challenges of sustainable food
production with minimal undesirable side-effects can be overcome. This will stimulate
more thinking about the true, or complete, breeding goals–expanding beyond simply
producing more of the main product(s) to much more “holistic” goals incorporat-
ing product, product quality, reduction in disease, reduced environmental footprint,
etc. [32], consistent with the more comprehensive approach to valuing changes that
has been labelled “Doughnut Economics” [33].

Rational optimism about what can be done to produce more food (and other animal
and plant products), of higher quality and health-supporting standard, with less environ-
mental impact can make a real contribution to humanity actually tackling these challenges
with a sense of hope.

4. Conclusions

Genomic selection has been implemented in an increasing number of situations since
it was first described, building on continuing research into genotyping tools, traits, and
methods of utilizing genomic information in breeding. The growing implementation
provides practical support for or validation of the benefits proposed for the technology,
which centre around opportunity for faster genetic progress, particularly in traits previously
difficult to improve (the “hard-to-measure” traits).

The organisations interviewed here reflect a diversity of species, country, scale and
position and role within a market economy. Differences are reported in the path to
implementation–mainly in rapidity of adoption (in dairy for example, transition to genomic
selection was almost instant in some countries) and in the process of evaluation, whether
private, public or a mixture.
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Despite this diversity, the interviewees report successful implementation in a range
of situations, including increased accuracy of estimates of genetic merit, increased rates
of genetic progress, and/or growing adoption. At the same time, a number made clear
that that such changes were not solely due to implementation of genomic selection, the
implementation being simultaneous with other R&D and/or extension activities, which
contributed to the changes. Where pre-existing breeding program design was advanced,
implementation of genomic selection did accelerate progress, essentially making better use
of and adjusting the existing breeding program design.

Other themes that emerge, and which reflect opportunities available essentially any-
where, include:

- Increased accuracy of selection (noted above) and the ability to re-balance selection,
both contribute to the opportunity to make genetic progress more valuable–both
in terms of speed but also in economic value of each unit of change. (In terms of
the response equation, this simply means that either i/L and/or riT.sigmaT can be
increased, the first ratio expressing speed of change, and the second more the direction
and value of change).

- New challenges emerge, or become more obvious:

� definition of breeding goals becomes even more important both because ge-
nomic selection offers the “opportunity” to move faster in the wrong direction,
and at the same time offers scope to improve traits previously intractable
to selection

� investment in phenotyping becomes more obviously the underlying rate-
limiting parameter, in turn highlighting any challenges in return on investment
for breeders or other stakeholders, and potentially requiring new investment
relationships, particularly in extensive, multi-stakeholder industries

- Synergies with other disciplines: genomic selection leverages data, and so the more
data that is relevant to income and cost in the species production system the better–
meaning that drawing on knowledge of a range of disciplines will almost invariably
increase value creation.

- The significance of the observation that genomic selection decouples recording from
selection takes time to be appreciated, but is profound. As that appreciation grows,
the opportunities in terms of both what can be changed through genetic improvement,
and the rate at which those traits can be changed, are very clearly re-energising and
engender a sense of excitement about opportunities. Genetic improvement can be
seen more and more clearly as a “design” enterprise [34], design in the sense of being
able to think expansively about what changes are possible.

Overall, the success of implementation, coupled with the appreciation of the scope
for genetic improvement, and the recognition that genomic selection is technically benign–
it simply increases the effectiveness of the “breed the best to the best” approach which
has underpinned agriculture for millennia, together generate a more positive outlook on
agriculture–much can be done to make the best and most valuable use of scarce resources,
and can be done with much more effective consideration of direct and indirect consequences
(direct and correlated responses), as long as we think carefully about what changes we
want to make.
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Appendix A

The fee schedule for the Council of Dairy Cattle Breeding can be accessed at https://
redmine.uscdcb.com/attachments/download/13496/CDCB-Fee-Schedule-Update-06-22-
2021.pdf (accessed on 20 April 2022).

In the context of this paper, the important point to note is that fees are adjusted for
persons or organisations supplying defined phenotypic data on animals.

Appendix B

The individuals interviewed for this paper, and the relevant web links are here grouped
as in the body of the paper.

Breeders
Ian Locke, Wirruna Poll Herefords https://wirruna.com/
Tom Gubbins, Te Mania Angus https://www.temaniaangus.com/
Lucinda Corrigan, Rennylea Angus https://www.rennylea.com.au/
Alf Collins, CBV Brahmans https://cbv.com.au/
Mark Mortimer, CentrePlus Merinos https://www.centreplus.com.au/
Tom Bull, Lambpro https://www.lambpro.com.au/
John Keiller, Cashmore-Oaklea https://www.cashmoreoaklea.com.au/
Breed Associations:
Andrew Byrne and Peter Parnell, Angus
Australia

https://www.angusaustralia.com.au/

Kelli Retallick and Steve Miller (now AGBU),
Angus Genetics Inc.

https://www.angus.org/agi

Matt McDonagh, Australian Wagyu
Association

https://www.wagyu.org.au/

Breeding Companies or Projects:
Anders Vernesen and Mark Henryon, Danish
Agriculture nd Food Council–re Danbred

https://danbred.com/about-us/

Pieter Knap, PIC https://www.pic.com/
Matthew Cleveland, ABS Global https://www.absglobal.com/
Lewis Rands, Peter Kube and Klara Verbyla, re
SALTAS

https://tassalgroup.com.au/our-planet/our-
operations/

Rachel Hawken, Cobb-Vantress https://www.cobb-vantress.com/
Tony McRae, Tree Breeding Australia http://www.treebreeding.com/

Wallace Cowling, Faba bean breeding
https://research.aciar.gov.au/
rapidcookingbeans/news/brio-news-release

National evaluation centres and organisations:
Andrew Cromie, Irish Cattle Breeding
Federation

https://www.icbf.com/

Laurent Journaux, INRAE and IDELE–now
GenEval

https://www.geneval.fr/english

Hamish Chandler, Meat and Livestock
Australia

www.mla.com.au

Joao Durr, Council on Dairy Cattle Breeding https://www.uscdcb.com/
Mark Thallman, USDA Meat Animal Research
Center

U.S. Meat Animal Research Center: USDA ARS

Matt Shaffer, DataGene https://datagene.com.au/
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Abstract: Genotype by environment interaction influences the effectiveness of dairy cattle breeding
programs in developing countries. This study aimed to investigate the optimization of dairy cattle
breeding programs for three different environments within Kenya. Multi-trait selection index theory
was applied using deterministic simulation in SelAction software to determine the optimum strategy
that would maximize genetic response for dairy cattle under low, medium, and high production
systems. Four different breeding strategies were simulated: a single production system breeding
program with progeny testing bulls in the high production system environment (HIGH); one joint
breeding program with progeny testing bulls in three environments (JOINT); three environment-
specific breeding programs each with testing of bulls within each environment (IND); and three
environment-specific breeding programs each with testing of bulls within each environment using
both phenotypic and genomic information (IND-GS). Breeding strategies were evaluated for the
whole industry based on the predicted genetic response weighted by the relative size of each environ-
ment. The effect of increasing the size of the nucleus was also evaluated for all four strategies using
500, 1500, 2500, and 3000 cows in the nucleus. Correlated responses in the low and medium produc-
tion systems when using a HIGH strategy were 18% and 3% lower, respectively, compared to direct
responses achieved by progeny testing within each production system. The JOINT strategy with one
joint breeding program with bull testing within the three production systems produced the highest
response among the strategies using phenotypes only. The IND-GS strategy using phenotypic and ge-
nomic information produced extra responses compared to a similar strategy (IND) using phenotypes
only, mainly due to a lower generation interval. Going forward, the dairy industry in Kenya would
benefit from a breeding strategy involving progeny testing bulls within each production system.

Keywords: genotype by environment; breeding strategies; selection index; response

1. Introduction

Animal breeders are often challenged to carry out selection in the presence of genotype
by environmental interaction (GxE). GxE affects sire and dam rankings among environ-
ments, consequently impacting on selection across environments and the optimal design of
breeding programs [1]. GxE is also important among the dairy industries in developing
countries where, to a large extent, genetic improvement relies on imported semen and
herds vary in terms of input and output [2]. Often, the breeding goals of local dairy farmers
and the breeding organizations that control semen supply are not always well aligned,
ultimately affecting the rate of genetic progress in semen importing countries [3–6]. In this
situation, local breeding programs involving genetic evaluation and progeny testing of
sires within the country are advisable.

An effective genetic improvement program is lacking in Kenya due to various con-
straints, including small herd size, inadequate animal performance and pedigree recording,
organizational challenges, and a lack of standardized methods of genetic evaluation [5,7]. A
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functional local breeding scheme would provide motivation to achieve higher participation
of dairy farmers in pedigree and performance recording [8]. This would also facilitate
farmers to select their breeding stock and produce replacement stock through a genetic
evaluation within production systems. A breeding program with large-scale farms as
the nucleus has been recommended as a solution to the small herd sizes, recording, and
organizational challenges in Kenya [8,9]. However, this strategy could result in biased
selection as is suggested by Wahinya [2], and Ombura [10], due to the fact that the large-
scale farms are intensive with high input and output production systems. Under intensive
systems, the scaling effect due to the spread in breeding values influences sire and index
rankings [11]. Wahinya [2], recommended selection among animals evaluated within the
target production systems as an alternative to the current selection based on intensive
production systems. To maximize the overall gains, three strategies including: selection in
one environment, selection within each environment, and selection on an index combining
information in each environment were evaluated to determine the optimum strategy. These
strategies have been applied in different studies to optimize dairy cattle breeding programs
for different environments while accounting for GxE [1,12–15]. The local dairy cattle breed-
ing program in Kenya has not been optimized for the different environments with genotype
by environment interaction. Genomic information is not considered in the current national
selection scheme and the potential of a multiple-trait genomic index to optimize genetic
improvement for multiple environments with the presence of GxE in Kenya is not known.

Using selection index theory, different strategies based on sire proving can be evaluated
to identify an optimum strategy to maximize the overall genetic gain in the three production
systems. A deterministic simulation was therefore used in this study to evaluate and
recommend an optimum dairy cattle breeding strategy to maximize the overall genetic
gain for low, medium and high dairy production systems in Kenya.

2. Materials and Methods

2.1. Breeding Objective

A single dairy cattle breeding program with three production systems represented in the
overall breeding objective was simulated to optimize genetic gain. The production systems
were defined as low, medium, and high production systems, categorized based on milk yield
occurring within a standard lactation [2]. The low, medium, and high production systems
differ in terms of inputs and outputs as detailed in Wahinya [16]. Genetic improvement
was defined by the selection of six traits including milk yield (MY, kg) which was the total
milk yield in a lactation, butterfat yield (FY, kg), the total butterfat yield in a lactation, age
at first calving (AFC, days), the age in days at the time of first calving, calving interval (CI,
days), the time interval between subsequent calving events, mature weight (MWT, kg), the
live weight at maturity, and survival rate (SR) which is the average probability of an animal
to survive between lactations. The economic importance of these traits has been shown by
Wahinya [16]. Revenue from dairy cattle is mainly derived from milk and the sale of animals.
Fat yield influences the energy requirements, thus the amount of feed required. Fertility traits,
including age at first calving and calving intervals have an influence on the days in milk and
the number of calves for replacement or sale in the productive lifetime of a cow. Cull for age
cows and cull heifers are also marketed based on their live weight. Cow survival between
lactations is of economic importance in the tropics where disease and significant mortality
rates are a constraint [17]. These traits were chosen to account for the current situation in
Kenya, characterized by minimal recording within the dairy industry. To account for G x E,
each trait was considered as a different trait in the three production systems.

2.2. Population Structure

The population consisted of a nucleus where elite dams and sires are selected and used
as parents for the next generation of selection candidates. All dams in the nucleus were
assumed to have phenotypes to provide information for genetic evaluation of the selection
candidates. The nucleus consisted of three populations including dams in low, medium,
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and high production systems. To evaluate the effect of different nucleus sizes, we simulated
nucleus populations with 500, 1500, 2500 and 5000 dams, of which the performances were
recorded annually in each of the three production systems. Two-hundred and nineteen test
bulls were assumed across the three production systems.

The population consisted of overlapping generations. Dams and test bulls were spread
across eight age classes. Annually, 10 bulls and 300 cows (100 in each production system)
were selected to produce the next generation. Each of the 10 selected bulls was progeny
tested with 5, 10, 15, and 30 daughters per year. The daughters were considered to attain
sexual maturity in their second year and therefore their first offspring were born in the third
year (36 months) with a lifetime period of eight years (up to the sixth lactation). Therefore,
progeny information was available when the bulls were five years and above. A 50:50 sex
ratio was assumed for calves at birth while the calving rates were assumed to be 0.67, 0.74,
and 0.77 under the low, medium, and high production systems, respectively. The survival
rates under low (0.90), medium (0.93), and high (0.94) production systems were used to
calculate the number of dams available for selection at different age classes up to eight
years. The commercial population was assumed to have non-recorded dams and it relied
on the sires selected in the nucleus for genetic improvement.

2.3. Breeding Strategies

Sires and dams were selected annually by truncation selection using multi-trait index se-
lection. Progeny and existing sires and dams were used as selection candidates to produce the
next selection of candidates. Candidates were considered for selection after all the information
needed for selection decisions was available. In the simulation, we assumed an animal model
for genetic evaluation considering all the genetic relationships. Male selection candidates
were evaluated based on their half-sib sisters, daughters and dams information while females
were evaluated on their own performance records, half-sib sisters and parent’s information.
To reduce bull maintenance cost and loss of selection candidates due to involuntary culling,
we assumed a situation where semen was collected and stored. Bulls were therefore culled
after two years. Genetic evaluation and selection of male and female candidates was varied to
represent different selection strategies. We considered several strategies to maximize genetic
gain in the overall objective with three production systems.

The breeding program aimed to maximize genetic gain in the overall objective (ΔH)
with genetic gains in each of the three production systems:

ΔH = ΔHLow + ΔHMedium + ΔHHigh

where ΔHLow, ΔHMedium and, ΔHHigh are the genetic gains in the low, medium, and high
production systems, respectively. The proportions of cows in the low (0.30), medium (0.33),
and high (0.37) production systems in Wahinya [2], were used to weight the gains in the
respective production systems for the population size. The breeding goal (Hi) within each
(Low, Medium, and High) breeding program was defined as:

Hi = v’a

where v’ and a are vectors with economic weights and true breeding values for the six
traits in the breeding objective under the ith production system: low, medium, and high
production systems, respectively. Four different breeding strategies were simulated in this
study: (1) one breeding program with progeny testing all bulls in the high production
system only (HIGH), (2) one joint breeding program with progeny testing all bulls in each
of three environments (JOINT), (3) and three environment-specific breeding programs
(sub-programs) each with testing of bulls only within each environment (IND). A fourth
strategy similar to IND was simulated to evaluate the effect of genomic information on
genetic improvement (IND-GS).

HIGH strategy consisted of one breeding program with progeny testing of bulls in the
high production system. The aim was to improve the breeding objective with the six traits in
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the high production system. Selection of candidate sires was therefore based on the selection
index under the high production system. The economic weights for the traits under the low
and medium production system were therefore set to zero. The low and medium production
systems obtained a correlated response from selection in the high production system.

JOINT strategy consisted of one breeding program with progeny testing of all test
bulls in the three production systems. The aim was to improve the breeding objective with
eighteen traits representing the six traits in all three production systems simultaneously.
Economic weights specific for each production system were obtained from Wahinya [16].

IND strategy consisted three separate breeding sub-programs, one for each production
system. Test bulls were progeny tested and selected within their sub-program of origin.
The aim was to improve the breeding objective with six traits within each breeding program
separately. The number of test bulls used in each production system was equated to the
relative proportion of the population of cows under each production system multiplied by
the total number of test bulls. Proportions of 0.30, 0.33, and 0.37 were assumed for the low,
medium, and high production systems, respectively [2].

IND-GS strategy was similar to IND. The only difference was that phenotypic and
genomic information were used to select males and females. The breeding objective
therefore had twelve traits, one extra trait for each of the six traits in the IND strategy to
represent the genomic information. All dams within the three production systems were
assumed to be genotyped and phenotyped to form the reference population.

2.4. Prediction of Genetic Gain

Response to selection was predicted by deterministic simulation based on selection
index theory using the SelAction software. SelAction predicts genetic gains at equilibrium
accounting for overlapping generations, a build-up of pedigree information [18], and
reduction of genetic variance due to selection [19]. Further details about the features and
the theoretical background of the software are described in Rutten [20]. Selection was
simulated by truncation with overlapping generations, while the annual genetic gain due
to selection was estimated as in Ducrocq and Quaas [21]. Genomic selection was simulated
by adding an extra trait to represent the marker information [22,23]. Marker information
was modelled using a trait with a heritability of 0.999, correlated to each trait. The genetic
correlation between the marker and each trait was the accuracy of genomic EBV (rgĝ). The
accuracy of genomic information depends on the size of the reference population (np), the
effective number of loci for which the effects have to be estimated (nG), and the correlation
between the true breeding value of a genotyped individual with its phenotypic record (r).
This was calculated as [22,24]:

rgĝ =

√
λr2

λr2 + 1

where λ = np/nG, np is the number of individuals in the reference population with both
phenotypic records and genotypic information and nG depends on the historical effective
population size (NE) and was estimated as nG = 2NEL, where L is the size of the genome in
Morgan. Since individuals in the reference population are genotyped and phenotyped, r is
equal to the square root of heritability of the trait and therefore, r2 = h2. The environmental
correlation between the marker information and the original trait was set to zero based
on the assumption that genotypes can be observed without error, the marker information
is fully heritable and has no residual variance [23]. Genetic and phenotypic correlations(

rQ̂1Q̂2

)
between the genomic EBVs were calculated as in Dekkers [22].

Table 1 shows the assumed genetic and phenotypic standard deviations, economic
weights, heritabilities, genetic, and phenotypic correlations for traits under the low, medium
and high production systems. The estimated accuracy of the genomic information for the
breeding objective traits with different reference populations under the low, medium, and
high production systems is shown in Table 2.
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Table 2. Accuracies of genomic information for the breeding objective traits depending on the size of
the reference populations under the low, medium and high production systems.

System
Reference

Population

Trait 1

MY FY AFC CI MWT SR

Low

500 0.10 0.08 0.12 0.06 0.11 0.03
1500 0.18 0.13 0.20 0.10 0.18 0.06
2500 0.23 0.17 0.25 0.13 0.23 0.07
5000 0.31 0.24 0.34 0.18 0.32 0.10

Medium

500 0.12 0.10 0.12 0.04 0.10 0.03
1500 0.20 0.18 0.20 0.07 0.18 0.06
2500 0.26 0.23 0.26 0.09 0.23 0.07
5000 0.35 0.31 0.35 0.13 0.32 0.10

High

500 0.12 0.12 0.05 0.05 0.10 0.03
1500 0.20 0.20 0.09 0.08 0.18 0.06
2500 0.25 0.25 0.12 0.10 0.23 0.07
5000 0.34 0.34 0.16 0.14 0.32 0.10

1 MY—lactation milk yield (kg); FY—butterfat yield (kg); AFC—age-at-first calving (days); CI—calving interval
(days); MWT—mature weight (kg); SR—cow survival (%).

3. Results

3.1. Response to Selection

The responses to selection per year under the low, medium, and high production
systems for each of the different breeding strategies for six traits assuming a nucleus with
500 dams are shown in Table 3. A positive response was predicted for lactation milk yield
(5.37 to 19.49 kg), lactation fat yield (0.12 to 0.78 kg), mature weight (0.02 to 0.05 kg), and
survival rate (0.002 to 0.004%) within all breeding strategies and production systems. Age
at first calving (−0.03 to −1.53 days) under all production systems and calving interval
(−0.18 to −0.41 days) under the low production system had negative responses, which is
desirable according to their economic weight. Responses in lactation milk yield, fat yield,
mature weight, and survival rate increased across production systems with the level of
production. There was no clear trend for the fertility traits (age at first calving and calving
interval). Relying on one breeding program based on the high production system (HIGH)
generated less responses under the low and medium production systems compared to
the strategies based on evaluating bulls and cows within each of the production systems.
The JOINT strategy with one joint breeding program with bull testing within the three
production systems had the highest responses observed for most of the traits under all
production systems. The IND-GS strategy involving the use of genomic information to test
bulls within each of the production systems had slightly higher responses compared to a
similar strategy that did not use genomic information (IND).

Table 3. Response to selection per year for six traits under the low, medium, and high production
systems: total economic gain within each system and overall gain with four selection strategies and a
nucleus with 500 dams.

Traits 1
HIGH2 JOINT 2 IND 2 IND-GS 2

Low Medium High Low Medium High Low Medium High Low Medium High

MY 5.37 9.44 14.26 8.48 14.53 19.49 6.48 10.60 13.39 6.59 11.45 13.69
FY 0.20 0.48 0.61 0.25 0.67 0.78 0.12 0.36 0.58 0.12 0.39 0.59

AFC −0.33 −0.36 −0.07 −1.15 −0.46 −0.03 −1.51 −0.28 −0.07 −1.53 −0.25 −0.07
CI −0.17 0.05 0.08 −0.41 0.02 0.15 −0.18 0.09 0.08 −0.18 0.11 0.08

MWT 0.01 0.02 0.03 0.03 0.04 0.05 0.02 0.02 0.03 0.02 0.02 0.03
SR 0.002 0.002 0.002 0.004 0.004 0.004 0.002 0.002 0.002 0.002 0.002 0.002

166



Agriculture 2022, 12, 1274

Table 3. Cont.

Traits 1
HIGH2 JOINT 2 IND 2 IND-GS 2

Low Medium High Low Medium High Low Medium High Low Medium High

TEG 1

(KES) 141.57 194.41 304.28 240.35 305.38 402.49 166.92 200.04 285.93 169.67 214.92 292.13

OG 1

(KES) 640.25 948.22 652.89 676.72

1 MY—lactation milk yield (kg); FY—lactation fat yield (kg); AFC—age at first calving (days); CI—calving
interval (days); MWT—mature weight (kg); SR—survival rate (%). 2 HIGH—one production system breeding
program with bull testing in High environment only; JOINT—one joint breeding program with bull testing in
three environments; IND—three environment-specific breeding programs each with testing of bulls within each
environment; IND-GS—three environment-specific breeding programs each with testing of bulls within each
environment using genomic information; TEG—total economic gain; OG—overall objective gain.

3.2. Effect of Nucleus Size and Number of Progeny per Sire on Response

The effects of increasing the size of the nucleus from 500 to 5000 in response to
selection are shown in Figure 1. Response for all the traits under the three production
systems increased (−1.74 to 2.65 phenotypic standard deviations) for all strategies with an
increase in the size of nucleus. However, the rate of increase in response is not linear.

Figure 1. Comparison of response to selection per year as a proportion of the phenotypic standard
deviations expressed as a percentage under the low, medium and high production systems with
different strategies. MY—lactation milk yield (kg); FY—lactation fat yield (kg); CI—calving interval
(days); MWT—mature weight (kg); SR—survival rate (%). HIGH—one production system breeding
program with bull testing in one environment; JOINT—one joint breeding program with bull testing
in three environments; IND—three environment-specific breeding programs each with testing of
bulls within each environment; IND-GS—three environment-specific breeding programs each with
testing of bulls within each environment using genomic information.
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4. Discussion

A joint breeding program with bull testing within each of the three production systems
(JOINT) produced the highest response among all the three strategies using progeny testing
due to higher accuracy of the index and higher variance of the overall breeding objective.
The response predicted under the low and medium production systems from selection
in the high production system (HIGH) is lower compared to other strategies where bull
testing is carried out within each of the three production systems (Table 3). The JOINT
strategy is a favorable strategy compared to having separate breeding programs. The extent
to which the three production systems would select the same sire(s) is dependent on the
genetic correlations between the breeding objectives of the three production systems. The
correlations between the breeding objectives under the low and medium, low and high,
and medium and high production systems are 0.79, 0.66, and 0.77, respectively [16]. A
strategy where bulls are tested within each of the production systems would help selection
of more robust animals to maintain diversity without necessarily developing specialized
lines. This would also lead to an increase in the effective population size [31].

Genomic selection has greatly transformed animal breeding and significantly impacted
dairy cattle genetic improvement, especially in developed countries. This has widened
the gap between countries implementing genomic selection and semen importing coun-
tries [32]. Several studies have recommended the potential of a genomic selection scheme
to provide a higher rate of genetic improvement for small-sized nucleus breeding programs
in developing countries [33–35]. Combining phenotypic and genomic information had a
minimal effect on the response compared with the use of progeny phenotype only (Table 3).
This shows that genomic selection cannot compete with traditional selection when the
number of phenotypic records is limited, unless in a situation where the generation interval
is significantly reduced by using genomic selection only [23,33]. The reduction of the gener-
ation interval, however, comes at a cost of reduced accuracies. The accuracies of genomic
breeding values predicted in this study could be low due to the low to moderate heri-
tabilities (Table 2) for the traits used in this study [36], and the small reference population.
Regardless of this, genomic selection schemes are still attractive and could be beneficial for
multi-trait selection with limited phenotypic records considering that traditional breeding
schemes still need many phenotypes and long generation intervals for progeny testing.
This is shown in Wahinya [37], where using correlated genomic information lead to a
higher overall economic response compared to progeny testing for a nucleus with 5000
dams. Correlated genomic information could not be implemented in this study due to a
limitation of number of traits in SelAction software. Genomic information could also be
used for parentage assignment and breed composition determination, which is particularly
beneficial to enhance the pedigree for genetic evaluation [35,38].

The dairy industry in Kenya would benefit from a higher response achieved by
increasing the size of the nucleus. A large nucleus allows a higher selection intensity, young
bulls can also be evaluated with more daughters, and it also minimizes inbreeding. A
large nucleus would also help to address the structural weakness of the current breeding
program due to a few herds contributing breeding males [39]. To create a larger nucleus it
would require a considerable effort to persuade many herds to participate by providing
pedigree and performance records to the recording organization. This has been a constant
challenge in the developing dairy industries where pedigree and performance recording
is already minimal and erratic. One of the main reasons linked to this is the failure of
the recording scheme to meet the farmer’s expectations and to offer noticeable returns [7].
Nevertheless, in practice, farmers still need records within their herds to make management
decisions. As shown in this study, the current performance recording herds can be used
to drive genetic gain for the commercial herds and the national dairy herd. This however,
requires an efficient way to evaluate animal performance including as much information
provided by the farmers [2]. A platform that is conspicuously missing for the current
performance recording system also needs to be developed to provide feedback and quality
information. Good examples can be learnt from other developed dairy industries that have
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applied digital strategies and education to provide quality information and tools for better
herd improvement decisions.

5. Conclusions

This study shows that a strategy based on bull testing within production systems
would be more beneficial compared to bull testing solely in high production environments.
A higher rate of genetic improvement would also be achieved by increasing the size of the
nucleus and the number of progeny per sire. A selection strategy using genomic information
is promising with a large reference population. Application of these recommendations will
be difficult but possible with the right level of investment, backed by innovative solutions,
digital strategies, and education to encourage pedigree, and performance recording in
developing countries.
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Abstract: This paper reviews the literature relevant to the breeding of cattle grazed in tropical
environments and particularly Indonesia. The aim is to identify new breeding opportunities for
cattle owned by Indonesia’s smallholder farmers, whilst also conserving unique local cattle beef
breeds. Crossbreeding has been practiced extensively in Indonesia, but to date there have been no
well-designed programs, resulting in many mixed-breed animals and no ability to determine their
genetic composition, productive capabilities or adaptation to environmental stressors. An example
of within-breed selection of Bali cattle based on measured live weight has similarly disregarded
other productive and adaptive traits. It is unlikely that smallholder farmers could manage effective
crossbreeding programs due to the complexities of management required. However, a tropically
adapted composite breed(s) could perhaps be developed and improved using within-breed selection.
Establishing reference population(s) of local breeds or composites and using within-breed selection
to genetically improve those herds may be feasible, particularly if international collaborations can
be established to allow data-pooling across countries. The use of genomic information and a strong
focus on all economically important traits in practical breeding objectives is critical to enable genetic
improvement and conservation of unique Indonesian cattle breeds.

Keywords: beef cattle; tropical environments; crossbreeding; within-breed selection; genomic selection;
productive traits; resistance to environmental stressors; reference populations; breed conservation

1. Introduction

About 120 million Indonesians, or ~11% of the country’s total population, live on less
than USD2 per day, with another ~40% of Indonesia’s population vulnerable to falling into
poverty as their income hovers marginally above the national poverty line. The agricultural
sector employs two thirds of Indonesia’s poor and hence, it represents a vitally important
component of Indonesia’s economy.

Demand for beef in Indonesia has been increasing due to growth in population and
household income. However, demand has been outstripping supply, and the self-sufficiency
ratio at a national level has hovered around 65% over the past 10 years, requiring 30–40%
of beef to be met by imports, mainly live cattle and frozen beef from overseas [1].

About 6.5 million smallholder farmers living in rural areas across Indonesia produce
~90% of the beef produced in Indonesia, while the remaining ~10% of beef production is
delivered by a small number of commercial farmers (<1% of all beef farmers) and large beef
cattle companies concentrated primarily in Java [2]. A very strong opportunity, therefore,
exists to strengthen Indonesia’s beef sector, to improve the productivity and profitability of
smallholder beef farmers and to also improve the livelihoods of Indonesia’s rural poor.
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Beef cattle production in Indonesia is increasing through ongoing improvements of
cattle health and growth and reproduction rates and reducing cattle death rates through
improved cattle management (for example, the use of forage tree legumes in intensive
and extensive cattle production systems) [3–9]. Genetic improvement of the existing
cattle population would also be a very feasible opportunity if effective options to identify
genetically superior breeding cattle could be developed and implemented [2].

This paper, therefore, undertakes a review of the scientific literature relevant to genetic
improvement programs in tropical environments with a specific aim of identifying the best
opportunity or opportunities to genetically improve beef cattle in Indonesia. It examines the
value of existing crossbreeding and within-breed selection programs in Indonesia as well
as the potential role of new genomic (DNA-based) tools to improve on-farm productivity
and business profitability. An additional aim in designing new breeding programs for
Indonesia must be the conservation of indigenous cattle genetic resources where their
ongoing viability may be endangered. Hence, the review also considers their conservation,
with the aim of making recommendations on the best option(s) available for smallholder
cattle farmers in Indonesia in the foreseeable future.

2. Indonesian Beef Production and Marketing Systems

Knowledge of specific beef production and marketing systems is required for the de-
sign of relevant breeding objectives underpinning effective genetic improvement programs.
In Indonesia, smallholder farmers use a wide range of crop residues and by-products
to feed and manage cattle through intensive or extensive production systems. Intensive
systems, typical of areas where availability of grazing land is scarce, use stalls to house the
cattle and cut-and-carry feeding systems, primarily to fatten sale cattle. Under extensive
systems, cattle are free-grazing. Extensive systems apply only where greater land areas
exist (e.g., eastern Indonesia) and are generally used for breeding and growing young cattle
prior to the sale for fattening.

Extensive research in eastern Indonesia shows that cattle numbers, beef production, re-
production and farm profitability can all be significantly increased for cow-calf systems and
cattle fattening operations that are closely integrated with dryland farming systems [3,5–9].
In those regions, Bali cattle (Bos javanicus) are most often used by smallholder farmers,
although some crossbred animals of unknown breed composition and bred using artificial
insemination (AI) are used for fattening. In Central Java and other areas of Indonesia, where
cattle grazing under palm oil plantations is strongly encouraged by the Government of
Indonesia [10], crossbred cattle are preferred by the farmers although the economic yield is
similar to that of local cattle. This is because crossbred cattle are taller and cattle traders buy
cattle primarily on the basis of their visual appearance, with larger body-framed animals
(regardless of weight) attracting higher prices [11,12].

Cattle purchased by traders across Indonesia are subsequently slaughtered at local
butcher shops and abattoirs, for purchase by consumers through local wet markets. How-
ever, ongoing research in Indonesia shows that very strong potential exists to establish new
beef markets for Indonesian cattle slaughtered in modern commercial abattoirs that will
reward smallholder farmers for the value of the product they deliver to consumers through
large supermarkets, hospitality venues and tourist hotels across Indonesia [Dahlanuddin
et al., University of Mataram, unpublished].

Although the sale of cattle through local traders is currently the main outlet for
cattle from smallholder farmers, it is suggested that in the future, well-designed genetic
improvement programs should target the specifications provided by these potential new
markets as part of their breeding objective.

3. The Need for Cattle That Are Well Adapted to Tropical Beef Production Systems

Indonesia is a tropical country with an innately harsh environment. This means
that Indonesian cattle are routinely exposed to numerous environmental stressors such
as ecto-parasites (cattle ticks; horn-, buffalo- and screw-worm flies; other biting insects),
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endo-parasites (gastro-intestinal helminths or worms), seasonally poor nutrition, high heat
and humidity and diseases that are often transmitted by the parasites, with such exposure
likely to increase significantly due to climate change over coming years. Each of these
stressors has the potential to seriously impact the survival, growth and reproduction of the
cattle. The impact of each stressor on production and animal welfare is often multiplicative
rather than additive, particularly when animals are already undergoing physiological stress
such as lactation, e.g., [13–16]. Under Indonesia’s cattle production systems, it is generally
not possible to control these stressors through cattle management strategies due to lack of
access to treatments (either due to their high cost and/or non-availability in Indonesia) or
the unwillingness of the Indonesian farmers to use them, often for cultural reasons. Even if
intervention strategies were feasible, the treatments per sé often cause their own problems.
For example, chemical treatments to control parasites generate concern about residues
in beef products. As well, the parasites acquire resistance to the chemical treatments,
creating additional parasite-control problems [17]. In intensive feedlot systems, high heat
and humidity, even in the absence of other stressors, can become critically important for
both production and animal welfare reasons. In such cases, management interventions
may be possible, but they are difficult and/or expensive to implement, particularly in
poorly adapted cattle. Hence, the best method of reducing the impacts of these stressors
to improve productivity and animal welfare is to breed cattle that are productive in their
presence, without the need for managerial interventions. In Indonesia, this means using
cattle that are very well adapted to the harsh tropical environments, usually because they
or their ancestors have evolved in those climates.

Differences in the performance of cattle breeds reared in tropical climates are often
masked by the effects of environmental stressors on productive attributes [18,19]. In
particular, British and European breeds perform differently in both temperate and tropical
environments, with the European breeds growing faster to a larger mature size than British
breeds when the feed supply is unlimited, but because of their larger breed size, they
also take longer to conceive and calve than the British breeds. In tropical environments
when feed is limited or of poor quality, the European breeds perform more poorly than the
British breeds.

Hence, as summarized by [18] and adapted by [20], for most purposes in tropical envi-
ronments, cattle breeds can be categorized into general breed types or groupings including:

• Bos taurus (British/European breeds that evolved in cooler British and European
climates, e.g., Angus, Hereford/Limousin, Simmental);

• Bos indicus (breeds that evolved on the Indian sub-continent, e.g., Ongole, Brahman, Nelore);
• Tropically adapted taurine breeds (southern African Sanga, e.g., Afrikaner, Mashona;

West African humpless, e.g., N’dama; and Criollo breeds of Latin America and the
Caribbean, e.g., Romosinuano);

• Tropically adapted Bos indicus × Bos taurus composite breeds (e.g., Santa Gertrudis,
Braford, Charbray);

• Tropically adapted taurine × British/Continental composite breeds (e.g., Bonsmara,
Belmont Red, Senepol);

• East African zebu breeds (e.g., Boran); and
• The first cross (F1) between Bos indicus and Bos taurus, which has attributes that are

different from other breed types, particularly in harsher environments.

Additionally, and of direct relevance to Indonesia, Bos javanicus (Bali cattle) and
Bos banteng (Banteng cattle) are believed to have each evolved from Bos bibos ancestors,
but independently of these other breed types [21]. Bali cattle are hypothesized to have
differences in their Y chromosomes relative to other species of cattle [22]. They can be
crossed with Bos taurus and Bos indicus, though the male offspring are hypothesized to
be infertile [23].

Comparative rankings of some of the different breed types for different characteristics
in temperate and tropical environments based on [18] and adapted by [20] are shown in
Table 1. Because of the paucity of direct breed-type comparisons from most tropical and
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sub-tropical areas, the rankings in these regions are largely based on results from Belmont
Research Station and from associated research programs in northern Australian beef in-
dustry herds [18,20]. Comparisons in temperate areas are largely derived from the Meat
Animal Research Center in Nebraska, USA and related studies in warmer environments
such as Florida, USA [18,20]. There are no known direct breed comparisons between Bos
javanicus (Bali cattle) and the other breed types, so the rankings in Table 1 are inferred from
breed performance summarized by [21].

Table 1. Comparative rankings of different breed types for productive traits in temperate and
tropical environments and for adaptation to some stressors of tropical environments [18,20] (the
higher the number, the better the performance for the trait, and the greater the resistance to
environmental stressors).

Breed Type
Bos taurus Adapted Bos

taurus Bos indicus F1 Brahman
× British

Bos javanicus
(Bali) f

British g European e,g Sanga g Indian g African g Indonesian

Temperate a

Growth 4 5 3 3 2 4 3
Fertility 5 4 4 3 4 5 4

Tropical a

Growth 2 2 3 4 2 4 3
Fertility 2 2 5 3 4 5 5
Mature size 4 5 3 4 3 4 3
Meat quality b 5 4 5 3 4 4 unknown

Resistance to environmental stressors
Cattle ticks c 1 1 4 5 5 4 4
Worms d 3 3 3 5 4 4 unknown
Eye disease 2 3 3 5 4 4 unknown
Heat 2 2 5 5 5 5 5
Drought 2 1 5 5 5 4 5

a A temperate environment is assumed to be one free of environmental stressors, while tropical environment
rankings apply where all environmental stressors are operating. Hence, while a score of, for example, 5 for fertility
in a tropical environment indicates that breed type would have the highest fertility in that environment, the actual
level of fertility may be less than the actual level of fertility for breeds reared in a temperate area, due to the effect
of environmental stressors that reduce reproductive performance. b Principally meat tenderness. c Rhipicephalus
(boophilus) microplus. d Specifically Oesophagostomum, Haemonchus, Trichostrongylus and Cooperia spp. e Data from
purebred European breeds are not available in tropical environments and responses are predicted from the CSIRO
Rockhampton crossbreeding data. f No direct comparisons available, so rankings should be regarded as indicative
only. g British breeds include for example Hereford, Angus and Shorthorn; European breeds include for example
Charolais, Simmental and Limousin; Sanga breeds include for example Afrikaner, Mashona and Ndama; Bos
indicus—Indian breeds include for example Ongole, Brahman and Nelore; Bos indicus—African breeds include for
example Boran.

The comparative rankings shown in Table 1 suggest that potentially the best breeds
for use in Indonesian cattle production systems are likely to include the tropically adapted
taurine breeds and Bos javanicus (as either pure breeds or composites that retain sufficient
levels of resistance to environmental stressors) or crossbreeding programs that focus on
combining both productive and adaptive traits.

4. Indonesian Cattle Breeds

As the second largest biodiversity, Indonesia possesses a collection of native and local
cattle breeds. These types of cattle have in the past been considered to be less efficient [24]
and less productive [25] relative to the imported genetically improved Bos taurus (taurine)
breeds. However, the perceptions of those earlier studies are not based on scientifically
valid breed comparisons under tropical production systems. Hence, recommendations
about the use of imported genetically improved Bos taurus (other than in well-designed
crossbreeding programs based on tropically adapted cow breeds) are unlikely to be valid
under Indonesian beef production environments.
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The most common local breeds farmed by beef producers in Indonesia are Bali (Bos
javanicus), Peranakan Ongole Grade (PO, Bos indicus) and Madura cattle, an ancient stabi-
lized cross possibly based on combinations of Bos bibos, Bos indicus and Bos taurus, but with
the breeds of origin yet to be accurately determined.

To date, no well-designed studies have been undertaken to actually determine whether
the perceived low productivity in local cattle is due to poor management and inadequate
nutrition (that will impact to an even greater degree on the poorly adapted taurine breeds
being introduced to Indonesia), or because they are yet to undergo any well-designed
genetic improvement programs, or both.

4.1. Bali Cattle (Bos javanicus)

Bali cattle (Bos javanicus) are native Indonesian cattle, believed to have possibly origi-
nated from wild Banteng and domesticated on Bali island [26,27]. Based on archaeological
data from Indonesia there is no evidence that cattle were introduced in Java or Bali before
the advent of Hinduism, suggesting that Bali cattle have been domesticated for less than
2000 years [28]. This helps explain why the physical characteristics of domestic Bali cattle
are so similar to those of the wild Banteng (Figure 1). Bali cattle are visibly smaller relative
to Bos indicus or Bos taurus breeds, but they are inferred to be more robust than the Bos
taurus breeds in coping with stressors of harsh tropical environments and poor-quality feed
(Table 1). Several reports document their good reproductive performance [21,27,29], though
it should also be noted these reports are not based on scientifically valid direct comparisons
with other breeds of cattle. Bali cattle are also reportedly highly resistant to infections by
ticks and tick-borne diseases, but highly susceptible to Jembrana disease [30,31]. Jembrana
is a disease with symptoms similar to Malignant Catarrhal Fever (MCF), capable of in-
fecting cattle, buffalo, swine and sheep. In Bali cattle, the most visible clinical symptoms
include high fever and severe diarrhea, which can lead to death [32]. Unfortunately, none
of these reports on the performance of Bali cattle is based on well-designed experimental
comparisons of their performance relative to other breeds, so the need for genuine breed
comparisons remains for future research.

Figure 1. Images of Bali (Bos javanicus) breed animals: (A) Bali bull at final weight prior to slaughter;
and (B) Bali cow and calf.

Nowadays, Bali cattle populations are spread across the Indonesian archipelago,
mainly in the islands of Bali, Sumatra, Kalimantan, Java and East and West Nusa Tenggara.
In Bali, they are managed in intensive and semi-intensive systems, whilst in Sumatra and
Kalimantan they mostly integrated with palm oil plantations. In East and West Nusa
Tenggara they are reared on a mix of intensive (cut-and-carry, stall-based) and extensive
pasture systems [29].

Although Bali cattle are smaller than other Bos indicus and Bos taurus breeds, and even
though there are no results from well-designed breed comparisons yet available, it can be
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interpreted that Bos javanicus cattle are well adapted and productive in Indonesia’s tropical
beef production systems. Additionally, because they are a unique species of cattle they
warrant ongoing conservation. Ideally in the near future, the genome of these cattle will
be sequenced for the first time, to allow a better understanding of their unique attributes
relative to other Bos spp. (e.g., Bos indicus, Bos taurus), as well as to assist in the design of
within-breed selection programs to enhance their conservation. We are currently exploring
opportunities through Indonesian and international agencies to secure funding to sequence
the unique Indonesian cattle breeds and enable this comparison.

4.2. Ongole Grade Cattle (PO)

Peranakan Ongole cattle (PO) are derived from Ongole or Sumba Ongole [33]. Towards
the end of the 19th century, several Indian Bos indicus breeds were imported into Indonesia
for use as dual-purpose, draught/beef animals, with the Ongole (known elsewhere as
Nelore) deemed the most suitable [28]. Hence, around 1914 all purebred Ongole cattle in
Indonesia were sent to the Island of Sumba, where they were managed as a purebred herd,
with the herd gradually expanding and purebred Ongole bulls subsequently exported from
Sumba to other Indonesian islands to be used for crossbreeding purposes [28]. Ongole
cattle are a specific breed from within the Bos indicus species, though a recent study [34]
found that Bos javanicus contributes about 6–7% of the average breed composition of PO
cattle. PO cattle are now mainly found in the island of Java (90%), with the remainder
located in Lampung, South Sumatra, North Sumatra, Central Sulawesi and North Sulawesi
provinces [35]. PO cattle were developed for draught purposes. Hence, they are large with
strong bodies (Figure 2) as well as being docile and tolerant to heat and other environmental
stressors [27], though again there are no scientifically valid comparisons relative to other
cattle breeds.

Figure 2. Images of Ongole grade (Bos indicus) breed animals: (A) Ongole bulls in a traditional
Indonesian cattle market; and (B) Ongole cow and calf.

The characteristics of productive and reproductive traits of PO cattle are summarized
in Table 2, but as with the performance of Bali cattle, the results are not based on scientifi-
cally valid comparisons of performance relative to other breeds managed under the same
production conditions.
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Table 2. Productive and reproductive characteristics of Ongole grade (PO) cattle (Note these figures
are not based on scientifically valid breed comparisons, so such comparisons can only be inferred
from the different studies).

Trait Number of Animals Mean ± sd Production System [Reference]

Birth weight (kg) 59
309

30.91 ± 1.97
31.09 ± 5.31

Govt. facility, Kendal, Central Java [36]
Farmers, Kebumen, Central Java [37]

Weaning weight (kg)
59

165
1819

110.10 ± 11.20
102.10 ± 12.19

98.87 ± 1.97

Govt. facility, Kendal, Central Java [36]
Govt. facility, Grati, East Java [38]
Farm, Tanjungsari, Lampung [39]

Yearling weight (kg) 165 127.30 ± 0.27 Govt facility, Grati, East Java [38]

First mating (month) 1407
35

23.06 ± 0.93
22–28

Farmers, Kebumen, Central Java [40]
Govt facility, Ciamis, West Java [41]

First calving (month) 1407 32.46 ± 0.90 Farmers, Kebumen, Central Java [40]
Post-partum mating (month) 1407 4.37 ± 0.64 Farmers, Kebumen, Central Java [40]

Service per conception

103
1407

55
60

2.38 ± 0.86
1.97 ± 0.20

2.11
1.18 ± 0.39

Farmers, Tuban, East Java [42]
Farmers, Kebumen, Central Java [40]
Govt facility, Ciamis, West Java [43]
Farmers, Lamongan, East Java [44]

Calving interval 103
55

16.94 ± 2.19
15.39 ± 2.43

Farmers, Tuban, East Java [42]
Govt facility, Ciamis, West Java [43]

PO cattle are mostly kept by smallholder farmers in Java under low-input/low-output
production systems, with low average daily gains of around 0.25 kg/day [45]. However,
under a controlled research environment with fermented sorghum based feed, the average
daily gain of PO cattle ranged from 0.8 to 0.9 kg/day [46], while Ongole cattle directly
imported from Sumba and reared under grain-based feed in the same research centre based
on a diet of 12.5% crude protein yielded an average daily gain of 0.94 kg/day [47].

Over recent decades the main genetic improvement strategy for PO cattle has focused
on upgrading the breed to Brahman or Brahman cross [27], using Brahman semen to
inseminate the existing PO females. As both PO and Brahman are Bos indicus breeds,
the practice in Indonesia has been to name the resulting crossbred progeny as Brahman
crosses. If the female crossbreds are subsequently inseminated again with Brahman semen,
the progeny closely resemble the Brahman breed and hence, locally, they are known
as Brahman.

Over the last two decades there has also been a marked change in the purpose of this
breed, with an important use of the Ongole breed now being as dams in crossbreeding
programs with exotic breeds such as Simmental and Limousin, using imported semen and
AI. The F1 crossbreds derived from this type of cross have proven to be highly productive
in both tropical and temperate environments, because the very great genetic diversity
between Bos indicus and Bos taurus ensures heterosis or hybrid vigour is maximized (Table 1).
However, careful consideration needs to be given to how the F1 crossbreds are subsequently
used in breeding programs because of the strong possibility they will be joined with an
inappropriate third breed, resulting in progeny that are poorly adapted to the stressors of
tropical environments.

Based on the performance of PO cattle inferred from Table 2 (albeit in the absence of
scientifically valid breed comparisons), their productive and reproductive characteristics
suggest their performance does not differ markedly from other Bos indicus breeds. This in
turn suggests that conservation of the PO as a pure breed may not be justified, particularly
when it is considered the breed has been genetically improved through well-designed and
commercially focused breeding programs in Brazil (where it is known as Nelore) over many
generations. Rather, their best use may be as a dam breed in well-designed crossbreeding
programs or in formation of composite breed(s) that specifically match the requirements of
cattle production systems in Indonesia, as described in more detail in subsequent sections
of this paper.
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4.3. Madura Cattle

Madura cattle were initially believed to be derived from ancient crossbreeding of Bali
and/or the wild ox Bos bibos and zebu cattle either in Madura or in Java, with the cross-
breeding believed to have occurred ~1500 years ago when Indian culture was introduced
to Indonesia [48]. In 1977, those authors [48] suggested that phenotypic evidence indicated
Madura cattle could have been derived from three-way crosses between Bos bibos spp., Bos
indicus and Bos taurus types. This theory has received substantial support from [49] based
on the geographical distribution of bovine haemoglobin beta (Hbb) alleles in Southeast
Asian cattle. That study on the genetic components of Indonesian cattle confirmed the
mitochondrial DNA of Madura cattle was a mix of zebu (Bos indicus) and Banteng, while
the Y chromosome contained traces of zebu and Bos taurus breeds [26]. A three-way cross
that excluded Bali cattle may also explain why Madura bulls do not appear to suffer the
same fertility problems as are believed to occur for crosses between Bali cattle and Bos
taurus or Bos indicus [23].

Hence, Madura cattle are a unique, stabilized composite of different Bos spp., with
the precise composition of Bos spp. still to be determined. Determination of the specific
breed composition will best be achieved through use of genomic sequence information, as
suggested in a later section of this paper.

Madura cattle are small- to medium-sized animals, with very homogenous but unique
characteristics [28]. Full details of their characteristics are provided by [48,49]. They are
reported to be one of the best draught cattle breeds and are very well adapted to the
local conditions and traditional management systems of Indonesia [50], though again, the
reports are not based on scientifically valid breed comparisons. Madura cattle are now
distributed in East Java, Kalimantan, Sulawesi and East and West Nusa Tenggara Islands in
Indonesia [51] and are popular for their perceived good beef quality and their ability to
grow under harsh tropical environments [52], although another report suggests Madura
cows only produce sufficient milk for their calves to grow slowly [28]. They are also reputed
to be more resistant to Jembrana disease than Bali cattle [53]. Hence, they are very well
accepted in Indonesia’s dryland farming systems, particularly with regard to what are
perceived to be higher growth and reproduction rates relative to Bali cattle [50].

Other than the common Madura cattle that have no cultural function (and where no sustained
genetic improvement has occurred), there are two types of Madura cattle, namely Sonok and
Karapan. Karapan is a bull racing event where Madura bulls are used. Sonok is also a cultural
event, but where female Madura cattle are used in conformation contests (Figure 3).

Past selection within both the Sonok and Karapan lines has therefore been based
on attributes that improve the ability of the animals to compete in these cultural events.
Karapan cattle are characterized for their strength, agility and aggressiveness. By contrast,
female Sonok cattle are judged by conformation traits, such as height at their withers,
colour, body conformation, body condition, health and harmonious walking in a pair [50].
Bulls in the Sonok population must be descendants from cows that participate in Sonok
contests. They are selected on phenotype, especially body conformation and some “beauty”
standards (coat colour, horn shape, eye shape, etc.). Cows that perform well in Sonok
contests and their male descendants are very popular for breeding purposes.

Hence, these two traditional festivals became the means for traditional selection and
conservation of Madura cattle, and that may continue into the future unless the farmers
are encouraged to change their breeding objectives to focus on profitability traits to service
commercial beef markets. Caution should be taken though regarding these traditional
breeding practices. As animal records are non-existent and the demand for superior males
for breeding purposes is very high, there are reasons to be suspicious that the inbreeding
level may be high. An unpublished study by Prastowo and Widyas in 2018 on the SRY genes
of 18 Sonok bulls showed those genes can be narrowed down to just three haplotype groups.
The productive and reproductive characteristics of Madura cattle are shown in Table 3.
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Table 3. Productive and reproductive characteristics of Madura cattle (note these studies are not
based on scientifically valid breed comparisons).

Trait Mean ± s.d. Number of Animals Breed (Type) Reference

16.89 ± 2.86 60 Madura [53]
Birth weight (kg) 16.25 ± 2.37 77 Madura male [54]

17.08 ± 2.40 60 Madura female [54]

90.32 ± 3.42 186 Madura [55]
Weaning weight (kg) 97 ± 13.77 84 Madura [56]

151.58 ± 36.98 24 Madura (Sonok) female [57]

122.17 ± 6.15 186 Madura [55]
Yearling weight (kg) 120 ± 10.86 84 Madura [56]

247.55 ± 40.48 11 Madura (Sonok) female [57]

Mature weight (kg)
294.3 ± 43.0
279.1 ± 89.0
392.3 ± 60.4

30
30
37

Madura (Karapan) female
Madura female

Madura (Sonok) female

[54]
[54]
[54]

198.5 ± 0.81 59 Madura [52]
First mating (month) 22.63 39 Madura (Karapan) [58]

23.40 ± 4.17 291 Madura (Sonok) [59]

First calving (month) 29.96 ± 0.81 59 Madura [52]
33.92 ± 3.88 291 Madura (Sonok) [59]

3.44 ± 0.17 59 Madura [52]
Post partum mating (month) 2.57 39 Madura (Karapan) [58]

3.40 25 Madura (Sonok) [58]

1.48 ± 0.09 59 Madura [52]
1.47 39 Madura (Karapan) [58]

1.59 ± 0.3 291 Madura (Sonok) [59]

Open Days (day) 5.53 ± 0.65 291 Madura (Sonok) [59]

Currently there is insufficient information to determine whether conservation of
the Madura breed as a pure breed is warranted because, depending on the genomic
composition of the breed, it may be possible to regenerate the breed through crossbreeding.
However, if the breed can be demonstrated scientifically to be more resistant to Jembrana
disease [51], and have better growth and reproductive performance than Bali cattle [48],
then conservation and selection of the breed based on existing populations would be much
more useful than attempting to regenerate the breed.

Ongoing use of the breed also depends on whether future uses of the Madura breed
are primarily commercially market-driven (where objectively measured traits in the breed-
ing objectives are important and hence, their performance relative to other cattle breeds
must be a strong consideration) or whether future breeding programs remain focused
on traditional or cultural uses of the breed. The breeding objectives for these different
uses of the cattle differ substantially, so if future breeding programs remain focused on
cultural uses, then conservation of the breed would be justified due to the lengthy history
of genetic improvement within the breed based on selection for cultural attributes, with
perhaps a ‘desired gains’ approach being used to derive economic weightings for these
cultural attributes in future (see Section 6.1 for further discussion of different types of
breeding objectives).
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Figure 3. Images of Madura breed animals: (A) Madura bull–these bulls are typically selected for
their strength, agility and aggressiveness to participate in Karapan cultural events; (B) Madura cows
and calf; (C) Madura bulls participating in a Karapan contest; and (D) Madura cows used in Sonok
cultural events, where they are traditionally selected on their conformation traits as well as their
ability to walk harmoniously as a pair in these Sonok events.

Additional information about the Madura’s breed composition through genomic
analyses and ideally, additional phenotypic information of the Madura relative to the
performance of other cattle breeds in well designed, controlled experiments would assist in
decisions about the need to conserve the breed.

4.4. Challenges to Improving These Indonesian Cattle Breeds

Indonesia has established initiatives aimed at conservation and genetic improvement
of Indonesian local cattle but those initiatives are unable to operate as needed to ensure
genetic improvement is focused on both cattle productivity and adaptation. By way of
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example, the Bali cattle breeding centre located on the island of Bali conducts progeny
tests to identify the “best” sires within the population [60]. Proven bulls from the breeding
centres are then sold to AI centres, with semen from the bulls sold to farms across Indonesia.
However, such progeny tests only rank the bull candidates based on the growth perfor-
mance of their offspring, completely ignoring other economically important attributes in
the offspring such as reproductive performance, beef quality and resistance or tolerance to
environmental stressors. Together with an Indonesian law that forbids the importation of
any cattle to Bali to ensure “pure” Bali cattle are conserved on Bali Island, the export of the
best genetic resources from Bali each year (via semen sales from the AI centre to all areas of
Indonesia) may have actually decreased the genetic merit of Bali cattle. By contrast, in the
extensive production systems of Indonesia’s palm oil plantations, Bali cattle are allowed to
roam and mate naturally, with no formal breeding program applied and mating amongst
relatives being common, potentially resulting in high levels of inbreeding.

The island of Madura is also subjected to the same law that forbids the importation
of cattle to the island. However, unlike Bali, there is no facility responsible for breeding
Madura cattle. Rather, cultural events have been primarily responsible for stimulating
smallholder farmers to select female cattle based on body conformation, appearance and
behavior and bulls on their strength and aggressiveness. Such selection was undertaken
traditionally with no formal knowledge of animal breeding, though farmers are aware of
the drawbacks of inbreeding even though that cannot be avoided completely due to limited
population size. The use of visual appraisal to select breeding cattle has improved the
cultural value of cattle, particularly in the Sonok population [61], with their productive per-
formance generally regarded as comparable to their respective crossbred populations [50].

Hence, to improve the productivity and adaptation of cattle herds across Indonesia, well
designed genetic improvement programs (crossbreeding and/or within-breed selection) need
to be implemented, with a strong focus on economically important productive, adaptive and
fitness traits and consideration also given to conservation of unique cattle breeds through
development of practical breeding objectives, as suggested by [62] Nielsen et al. (2014).

5. Achieving Genetic Improvement by Crossbreeding

Crossbreeding has been widely used to improve livestock productivity in many coun-
tries to capture the advantages of heterosis or hybrid vigour resulting from crossing geneti-
cally diverse breeds [2,25]. Key reasons for crossbreeding include [63]:

• Generation of direct heterosis or hybrid vigor, measured as the extra performance of
the crossbreds relative to their parental breeds. The percentage increase in performance
ranges from 0–10% for growth traits and 5–25% for fertility traits [64], but the effect of
heterosis on the total production system can be greater than this, as effects accumulate
over traits e.g., [65]:

• The averaging of breed effects, to breed an animal of intermediate size to fit a particular
management cycle or market demand and could involve either regular systems of
crossing or the creation of composite breeds e.g., [65];

• Maternal heterosis where crossbred cows exhibit considerable heterosis in their ability
to rear fast-growing, viable offspring;

• Sire-dam complementation, where the crossbreeding system aims to use breeding
cows of small to intermediate mature size (though not so small for dystocia to be
a problem) as well as being fertile. When a large terminal sire breed is used over a
smaller dam, the proportion of available feed directed to growing animals is increased
for the benefit of the entire production system, particularly where breeding occurs
through AI; and

• Breed complementarity whereby breeds used for the crossbreeding program are specif-
ically selected so the strengths of one breed are used to complement or mask the
weaknesses of another breed.

The advantages of crossbreeding are greatest in tropical beef production systems
because of the need to use breed types with greater diversity (e.g., B. indicus × B. taurus)
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to achieve adaptation in the offspring. This in turn maximizes the amount of heterosis in
the cross [15,16,51,66,67]. However well-designed crossbreeding programs that reliably
deliver improvements in productivity (other than the first crosses between unrelated breeds)
are also very difficult to implement by most farmers globally due to the need to avoid
reductions of heterosis (also known as recombination loss) in second and subsequent
generation crossbreeds. This is particularly true in Indonesia, where sustainability of
crossbreeding programs is frequently challenged by constraints such as poor adaptation of
the crossbred progeny to the local environment or lack of logistical support [25]. Even in
advanced countries with very large herds and sophisticated infrastructure, cattle breeders
find it difficult to ensure segregation of bulls of one breed from cows of another to ensure
appropriate crossbreeding. Hence, in those cases they have often preferred to develop
stabilized composite breeds comprising appropriate admixtures of the different breed types.

In the following discussions on options for crossbreeding using Indonesia’s cattle
breeds, we acknowledge a considerable wealth of crossbreeding knowledge exists from
other tropical areas of the world such as South and Central America, southern USA and
northern Australia. However, we have elected not to present data from those studies
because of the vastly different production systems, the significantly greater expertise and
skills of the farmers in those different regions and their increased access to technologies for
measurement and data capture relative to those of smallholder farmers in Indonesia.

To examine the feasibility of various crossbreeding programs in Indonesia’s small-
holder farming systems, Table 4 provides a brief examination of some selected crossbreeding
designs and makes recommendations around which types of programs might be successful
in Indonesia. In crossbreeding theory, there are many additional combinations of different
cattle breeds, but at a practical level, none of the more complex systems is feasible for
smallholder farmers in Indonesia and hence, they are deliberately excluded from Table 4.

Table 4. Examples of simple crossbreeding designs and the feasibility (as assessed by the authors) of
managing them by Indonesia’s smallholder beef farmers [25].

Crossbreeding System and Key Features Feasibility of Implementation in Indonesia

F1 cross: bulls of Breed A (e.g., Bos indicus) are joined to cows of
unrelated Breed B (e.g., Bos taurus) to generate F1 progeny (AB). F1 AB
progeny are then either sold or joined to a third unrelated breed as
described in the next cross

Generating F1 crosses between unrelated breeds using AI is feasible (see
discussion below) but selling all F1 females will cause problems for
smallholder farmers unless they can purchase new purebred Breed B
heifers to retain sufficient, productive females in their herds. If the F1
females are used for breeding, then it is essential they be joined to a
well-adapted, unrelated third breed of bull to ensure their progeny are
sufficiently well adapted to environmental stressors

Backcross: F1 AB females are backcrossed to a bull of either Breed A or
breed B, generating progeny that are 25% Breed A, 75% Breed B or vice
versa. In subsequent joinings, 75% Breed B females are joined to
purebred Breed A bulls, generating progeny that are 62.5% Breed A,
37.5% Breed B or vice versa

The major problem with a backcross program in Indonesia is that, in
addition to some loss of heterosis in the F2 et seq. progeny, almost
inevitably some progeny in F2 et seq. generations (i.e. those comprising
62.5% Bos taurus) will lack the resistance to environmental stressors
required to ensure their productivity in smallholder farming systems

Terminal three-breed cross: bulls of an unrelated Breed C (e.g., Bos
javanicus) are joined with F1 female AB progeny to generate progeny
comprising 25% Breed A, 25% Breed B and 50% Breed C

If issues associated with retaining a productive breeding herd described
above can be overcome, then a 3-breed cross is expected to be as
productive as the F1 AB cross, However all 3-breed cross progeny
would need to be sold or used to form a composite breed. This means
that, as with the F1 cross above, smallholder farmers would need to
purchase replacement females to maintain the size of their breeding
herds. Such a system is unlikely to be feasible amongst smallholder
farmers in Indonesia

Formation of composites or stabilized crossbreeds: an alternative to
the 3-breed cross described above could be to inter-se mate bulls and
females having the same (or additional) breeds in their genetic
composition e.g., join F1 Breed A × B bulls with F1 Breed C × Breed D
females to produce F2 progeny with 25% of each of Breeds A, B, C and
D and then continue to inter-sé join the 25% A × B × C × D progeny
over subsequent generations

Providing the progeny of these crosses were sufficiently resistant to the
stressors of tropical climate, development and maintenance of a
composite breed in this type of design would capture the benefits of
heterosis and the system could be managed in a relatively
straightforward way by smallholder farmers. Ideally, a progeny test
program could be introduced in Indonesia to identify genetically
superior animals in such a stabilized composite breed (see later section
in this paper). And if the third unrelated breed type included a
representative breed(s) from the tropically adapted taurine breeds
(Table 1), then expected recombination losses due to epistasis would be
significantly reduced relative to F2 et seq. crosses between Bos indicus ×
Bos taurus
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The Indonesian government initiated crossbreeding programs based on AI and im-
ported semen in the early 1980s [51]. Although those programs have continued to be
supported by a number of government incentives since then, significant improvements
in the productivity of beef herds in the country are yet to be demonstrated [2], probably
because F2 et seq. generation crossbred progeny experienced recombination losses due to
the difficulties in maintaining appropriate crosses of the different parental breeds in small-
holder farmer herds. Some successes in improving individual animal productivity were
achieved, but there has been no widespread impact on increasing cattle growth rates or the
national cattle population through the improved reproductive performance of crossbred
females [51], with no economic benefits at the farm level and no observable improvement
in the adaptation of the crossbred offspring to the environmental stressors [51].

The lack of control of these Indonesian crossbreeding programs at the farm level has
led to the emergence of unidentified mixed breeds of cattle [65]. Without good knowledge
of the composition of these cattle in terms of ‘adapted’ versus ‘productive’ genetics, it
has not been possible to achieve the primary aim of crossbreeding in Indonesia i.e., to
maximize animal productivity without compromising cattle adaptation to the tropical
environment [19]. Furthermore, these poorly designed crossbreeding programs may have
jeopardized the ongoing conservation of unique local cattle genetic resources, which need
to be retained to maintain biodiversity.

Some examples of simple crossbreeding systems based on Bali and Madura cattle
in Indonesia are summarized below to allow recommendations to be made on the future
directions of genetic improvement of cattle herds in Indonesia (either through crossbreeding
and/or within-breed selection–see later sections of this paper.)

Crossbreeding has occurred between Bos javanicus (Bali) and Bos taurus or Bos indicus
breeds outside Bali Island. The crossbred progeny had improved growth performance
relative to pure Bali cattle [68–71], but field observations reported the male progeny had
reproductive problems. Another problem was related to high mortality rate of calves under
extensive production systems [29]. Causes of these high mortality rates have not been
identified but field reports from oil palm plantations suggest that female Bali cattle have
poor mothering abilities as they often left their new-born calves under those extensive
production systems, thereby contributing to the high calf mortality rates. Previous studies
also showed a decline of population size and genetic quality of Bali cattle represented by a
decrease of growth-related traits (such as body size and weight) over generations [27,72].

Table 5 reports results of crossbreeding experiments based on progeny of Bali females
and F1 crosses with Simmental, Limousin, Brahman and PO bulls. The crossbreeding
results are derived from independent experiments in AI centres in Papua and Nusa Teng-
gara provinces, while the exotic breed purebred data are derived from other AI centres.
Hence the results are not directly comparable across experiments and should therefore be
interpreted with care. The F1 crossbred progeny were heavier at weaning (standardized to
205 days) and yearling ages, had higher average daily gains from the age of 7 to 12 months
and they had larger body measurements compared to purebred Bali progeny. Table 5 was
derived from [71] and compares economically important traits in beef cattle from different
studies. It was aimed to give an initial awareness that crossbreeding using Bali cattle
as dams to genetically improve their productivity requires greater consideration. It was
concluded that the benefits of hybrid vigor or heterosis just for these growth traits were
maximized due to the genetic diversity of the parental breeds [71].
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Table 5. Growth performance of the progeny of purebred Bali cows and F1 crosses with unrelated
sire breeds.

Breed
Weaning

Weight (Kg)
Yearling

Weight (Kg)

Average Daily
Gain 1

(Kg/day)

Body Measurement (cm) 2

Wither Height Body Length Chest Girth

Bali (in Bali) 85.61 ± 14.30 1 135.09 ± 24.22 1 0.36 ± 0.24 107 ± 7.58 112.6 ± 11.67 149.2 ± 8.64

Simmental 235.50 430.00 - - - -

Limousin 225.00 394.50 - - - -

Brahman 223.50 372.00 - - - -

PO 102.13 134.30 - - - -

F1 Simmental × Bali 131.61 179.21 0.26 ± 0.12 119.8 ± 4.76 123 ± 2.55 155.2 ± 14.15

105.65 ± 5.27 3 200.43 ± 21.52 3

121.67 ± 16.18 4 230.98 ± 30.23 4

F1 Limousin × Bali 128.75 176.80 0.38 ± 0.06 119.2 ± 2.95 120.4 ± 10.04 153.6 ± 3.85

F1 Brahman × Bali 115.90 157.60 0.45 ± 0.21 120.71 ± 4.31 127.43 ± 13.21 163 ± 12.9

F1 PO × Bali 111.66 148.25 0.41 ± 0.25 120.4 ± 3.36 124 ± 7.04 339.2 ± 43.61

1 [71]; 2 [70]; 3 [68] in lowland; 4 [68] in highland.

In contrast to growth traits for male progeny in Table 5, the female F1 Bali crossbreds
had poorer reproductive performance than their purebred Bali contemporaries. A similar
occurrence of infertility was reported in other groups of male crossbred offspring [73]. The
reproductive performance of F1 Bali × Simmental and F1 Bali × Limousin females is worse
compared to similar groups of purebred Bali female cattle that were reared by smallholder
farmers with similar production systems but not in the same contemporary group as the
crossbred females (Table 6). The crossbreds had longer days open and increased calving
intervals, lower pregnancy and calving rates, and higher pre-weaning mortality rates,
resulting in the crossbreds having lower overall reproductive efficiency compared to pure-
bred Bali females reared by smallholder farmers with similar production systems. These
results are atypical of most crossbreeding studies elsewhere, where generally the greatest
heterosis is achieved in traits with the lowest heritabilities, such as female reproductive
performance, meaning that F1 crossbreds usually out-perform either of the parental breeds.
Reasons for these results in Indonesia could be due to the need for significantly greater
feed inputs in the much larger crossbred females. In beef cattle production systems, female
reproductive performance is a key trait and considered to be the most important factor
economically [74], especially for smallholder farmer cow-calf production systems. Poor
reproductive performance of breeding cows results in major economic losses, due to the
additional expenses needed for feed, labor, breeding and animal health costs as well as the
costs of calf losses [74].

It is possible that chromosome number imbalance from crossing of Bali cattle (Bos
javanicus) with Bos taurus and Bos indicus species may have resulted in infertility of the
female crosses, not only in males as suggested by [23]. However, it should also be noted that
the reproductive performance of all breeds in this table are higher than the reproductive
performance reported by most studies undertaken in extensive tropical pastoral production
systems elsewhere in the world, suggesting that genetic aberrations are unlikely to be the
reason for this lower performance of the crossbreds. It is possible the high reproduction
rates simply reflect the low numbers of animals owned by smallholder farmers and hence,
improved management of individual breeding cows is not only feasible but also very likely.
Although the studies are not directly comparable, based on these results and the high
economic weighting of reproductive performance in most cow-calf breeding objectives,
smallholder farmers would likely improve the productivity and profitability of their herds
by continuing to breed purebred cattle rather than trying to manage complex crossbreeding
programs with exotic large European bull breeds.
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Table 6. Reproductive data performance of Bali and F1 crossbred females, where the purebred cows
were reared by smallholder farmers in similar production environments (a).

Reproductive
Performance

Bali F1 Bali × Simmental F1 Bali × Limousin

Days open (days) 81 ± 10 125 ± 23 -
Calving interval (days) 363 ± 20 412 ± 36 387

Pregnancy rate (%) 94.2 ± 3.8 78.9 ± 5.3 -
Calving rate (%) 88.5 ± 4.1 76.3 ± 6.3 75

Pre-weaning mortality (%) 8.7 ± 0.4 17.2 ± 1.2 5.6
Observation year 2015 2015 2019

Reference [69] [68] [75]
(a) It should be noted that the purebred cows were not managed in the same contemporary groups as the crossbred
cows, which in turn were recorded in independent studies. The numbers of progeny per sire are not available due
to the lack of calving records across all three studies. Females ranged in age from 4 to 8 years but the study did not
differentiate performance across the different ages and nor was age at first calving recorded (an important variable
that may favour purebred Bali cattle because the F1 crossbreds would have greater nutritional requirements than
Bali cattle over their lifetime and those needs are unlikely to be achieved under smallholder farmer systems. A
lack of sufficient nutrition during the dry season is also believed to be responsible for the high pre-weaning calf
mortality rates of F1 Bali × Simmental cows.

In a different study, several genes such as GH, FSHR, BMP15 were reportedly involved
with reproductive function in Bali cattle, but the correlations between those genetic vari-
ations and reproductive performance were low [76] suggesting they are unlikely to be
having a major impact on female reproductive performance. It is not known whether those
variations may also be associated with reproductive performance in Bali crossbred cattle.
Further studies based on genomic information from Bos javanicus and other cattle species
is warranted to determine the role of genetics in reproductive performance of these types
of cattle.

With regards to Madura cattle, the Government of Indonesia also recommended
genetic improvement by crossbreeding with Bos taurus breeds such as Limousin [11]. The
aim of such crossbreeding was to produce offspring with larger and heavier body sizes
with higher selling prices, but which retained the preferred Maduranese traits such as dark
red coat color. Table 7 shows the physical characteristics of F1 Madura × Limousin females.
However, the crossbreeding study was poorly designed and uncontrolled in practice [27]
and hence, there is concern the uncontrolled crossbreeding will threaten the conservation of
Madura cattle genetic resources due to the lack of adaptation of the crossbred animals [11].

Table 7. Physical characteristics of Madura × Limousin cows based on different observational studies
from Madura Island comparing sub-populations of Madura cattle (Sonok, Karapan, non-selected
Madura and Limousin × Madura). Results from the different studies reported in this table are not
directly comparable and hence, caution should be taken when interpreting the results.

Physical Characteristics Mean ± sd Reference

Age (year) 4.5 ± 0.2 [50]
>4.0 [52]

Body weight (kg) 400.1 ± 92.6 [50]
406.6 ± 28.8 [52]

Height at the withers (cm) 125.7 ± 6.2 [50]
126.0 ± 1.9 [52]

Body condition score 3.8 ± 0.7 [50]

The Value of Crossbreeding to Genetically Improve Indonesia’s Cattle Herds

Based on this review of crossbreeding studies using Indonesia’s cattle breeds, it is
clear there are no comprehensive and well-designed crossbreeding studies undertaken to
enable valid comparisons of different cattle breeds and crossbreeds and to measure the
extent of heterosis and recombination loss under Indonesian beef production systems. Well-

185



Agriculture 2022, 12, 1566

designed crossbreeding studies are still required to enable scientifically valid conclusions
to be drawn about the role of crossbreeding in Indonesia, although it is unlikely that
Indonesia’s smallholder cattle farmers would be able to effectively manage the complexities
of those types of studies. Additionally, in crossbreeding studies undertaken in Indonesia to
date, there has been no distinction between different generations of crossbreeds, other than
where progeny are known to be F1 generation because they are bred using AI over cows of
known pure breeds. The distinction between crossbred generations is critically important
because of differences in the amount of heterosis and recombination loss in the different
generations and crosses between different species, where the amount of both heterosis and
recombination loss varies significantly depending on the generation and parental breeds
used to generate the crosses.

Since the introduction of crossbreeding programs based on imported semen, it appears
that most semen used in Indonesia has been derived from large European breeds such as
Simmental and Limousin. Based on what is known of species performance (Table 1), these
European sire breeds are not a logical choice for use in Indonesia’s tropical production
systems, firstly because of their known calving difficulties even when joined to the same
cow breeds (meaning that dystocia can be anticipated as a problem if they are joined to the
smaller Indonesian cow breeds) and secondly, because of their need for larger quantities of
feed and poorer adaptation to tropical environments than other potential sire breeds.

It is therefore recommended that future crossbreeding programs be specifically de-
signed around breeding objectives focused on high productivity and high adaptation
to environmental stressors, to meet emerging commercial market requirements for high
quality beef, unless cultural factors are expected to continue to be important as is likely
in the case of Madura cattle. Under that scenario, the best option for the Madura breed
would be to concentrate on within-breed selection, specifically focusing on the important
cultural attributes.

6. Achieving Genetic Improvement by Within-Breed Selection

As described previously, the main beef cattle genetic improvement strategy imple-
mented by smallholder cattle farmers in Indonesia to date has been crossbreeding. However,
that strategy has not delivered the expected results, partly due to lack of consideration of
appropriate breeding objectives that indicate cattle in Indonesia need to be both highly
productive and very well adapted to the stressors of tropical environments. In the absence
of well-defined breeding objectives, poor choices were made about the use of sire breeds
in those programs, resulting in the generally poor performance of the crossbred progeny.
Even with the development of appropriate breeding objectives and improved breed choices,
it is not clear from the previous section that smallholder cattle farmers in Indonesia would
be able to manage the many complexities of designed crossbreeding programs to enable
them to achieve effective genetic improvement of their herds.

Due to the complex management requirements of crossbreeding systems, the opportu-
nity to achieve genetic improvement using within-breed selection needs to be evaluated
because genetic improvement has very significant potential to improve the productivity,
profitability and adaptability of Indonesia’s cattle herds.

To date, two substantially different approaches have been taken to genetically improve
Indonesian cattle herds using within-breed selection. The most successful approach has
been the improvement of the Madura breed for cultural purposes, where use of visual
selection successfully improved cows’ body conformation, appearance and behaviour and
bulls’ strength and aggressiveness. However, it is not clear whether there is an ongoing
need to continue visually improving these cattle for cultural reasons or whether more
commercially-oriented breeding objectives are likely to become more relevant in future.
The second within-breed selection approach used in Indonesia is the ongoing use of progeny
tests to select Bali bulls, but based only on the growth performance of their offspring while
completely ignoring other economically important traits such as reproductive performance,
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beef quality and adaptation to environmental stressors [60], some of which are known to
be negatively genetically correlated in other breeds of cattle.

It therefore appears that commercially-relevant, market-driven breeding objectives
and effective within-breed selection services to enable selection of cattle based on those
breeding objectives will need to be evaluated, and their feasibility determined, prior to
establishing new systems from the beginning, if within-breed genetic improvement is to
effectively achieve ongoing genetic improvement of cattle herds in Indonesia.

As described by [77], traditional genetic improvement programs based on measuring
large numbers of pedigree-recorded animals in well-defined cohort groups for the full range
of economically important productive and adaptive traits is generally impossible for small-
holder farmers and particularly those in tropical environments such as in Indonesia, where
environmental stressors encountered by the cattle significantly compound the difficulties
of implementation. Even the Bali breed progeny test program described earlier in this
paper can only obtain accurate pedigrees for, at most, 3 generations because the program is
not undertaken in a sustainable way. The system used by that program evaluates 3–5 bull
candidates in one year, with the candidates identified based on mass selection of growth
traits. The bulls are then mated to multiple females to produce multiple offspring, with the
progeny test then being used to rank the bulls on the growth performance of the offspring.
For subsequent years, the same system is applied but without any genetic linkages created
across the different years.

However, the opportunity now exists to use genomic data in conjunction with the
use of digital information and communication technologies to develop new opportunities
to improve the rates of cattle genetic gains by characterizing indigenous and crossbred
animals for use in conservation, crossbreeding and within-breed selection programs, to
improve economically important traits. Use of genomic information is costly, but keeping
large numbers of animals over many generations to obtain accurate pedigrees and genetic
parameters is also very costly with regards to both financial and time investments and is
also generally not feasible for smallholder cattle farmers in Indonesia.

6.1. Developing Breeding Objectives for Indonesia’s Cattle Smallholder Farmers

Breeding objectives define the ”ideal” animals that a farmer wants to breed, with
breeding objectives applying to both crossbreeding and within-breed selection programs.
Generally, breeding objectives are defined by identifying the traits affecting the profit of the
cattle business, as well as the importance of each trait to that profit. A breeding objective
is specific to a particular market or group of similar markets, meaning it is important to
understand the market requirements. Depending on the target market, some traits have
greater importance than others (for example, live weights early in life as an indication of
live weight at sale). However, the breeding objective also needs to consider factors that
might promote or detract from achieving those important goals (for example, if cattle in
Indonesia are not well adapted to the environmental stressors that are endemic in Indonesia,
they will not grow to market weights as expected, a case in point being the overall failure
of crossbreeding programs in Indonesia to achieve their potential highlighted in an earlier
section of this paper.

In terms of the genetics of the traits, some traits are highly heritable or readily passed
on from one generation to another and so greater progress towards breeding objectives
can be achieved by targeting traits that are highly heritable (although there is also good
evidence that strong genetic progress can be made by focusing on traits such as cow annual
weaning rates that are lowly heritable). Greatest progress towards achieving the breeding
objective will be achieved by focusing on traits of economic importance rather than traits
associated with the personal preference of the breeder.

In the case of Madura cattle used for Sonok and Karapan festivals, where cultural
or traditional attributes are important, an economic weighting could be derived based
on the value of those cultural or traditional attributes to the sale price of the cattle, as
well as potentially to the value of the cattle to the communities based on income from the
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festivals. Regardless of the traits included in the breeding objective, it will be important for
the farmer to record the desired animal traits impacting on enterprise profitability and to
estimate the relevant importance of each of those traits. From there, the economic impact
of changing each important trait can be calculated from both financial and production data.

A sequential procedure to enable development of beef cattle breeding objectives is
presented by [78] and includes four phases: (1) specify the breeding, production and
marketing system; (2) identify the sources of business income and expenses; (3) determine
the biological traits influencing the income and expenses; and (4) derive the economic
value of each trait, which those authors recommended be based on discounted gene flow
method. However, there are a number of alternative approaches such as simple profit
equations, bio-economic models simulating the whole production system or use of desired
gains approaches (for example with cultural or traditional attributes in Madura cattle)
in combination with profit equations or bio-economic models (to adjust for undesirable
genetic changes) that could be used [62]. Additional studies provide examples of the
different applications of breeding objectives in both beef cattle cross- and straight-breeding
programs [62,78–80].

Amongst smallholder cattle farmers in Indonesia, it will therefore be important that
they not only focus on optimizing cattle productivity, but their production systems should
also account for all traits related to productivity (growth, reproduction, product quality),
adaptability (resistance or tolerance to environmental stressors), sustainability (animal
health and welfare) [19,25,81–83] and even cultural and traditional attributes where they
are economically important.

6.2. Requirements for Within-Breed Selection Programs for Indonesia’s Smallholder Beef Farmers

Conducting a within-breed genetic improvement program for smallholder farmers in
Indonesia is not straightforward. However, there is clear evidence from many countries
that within-breed selection for a range of economically important productive and adaptive
traits in the breeding objective has resulted in permanent genetic improvement of those
traits, directly benefiting not only the pure breeds under selection, but also animals in
crossbreeding and composite development programs. This is particularly true with the use
of genomic (DNA based) information [84,85] in the breeding programs.

Although many successes have been reported in the past, conventional genetic im-
provement programs that rely on measurement of large numbers of pedigree-recorded
animals in well-defined and controlled cohort groups is time consuming, laborious, fi-
nancially costly and in Indonesia, probably too complex for smallholder cattle farmers to
manage. However, recent major advances in genomic technology (summarized by [77]), in
conjunction with the use of new digital information and communication technologies that
allow automated or semi-automated data collection, are now enabling very significant new
opportunities to improve the productivity of livestock industries in countries like Indonesia
through the use of genomic selection, which uses genome-wide genetic markers to estimate
the genetic merit of individual animals [86–88].

Within Indonesia, there is a consortium of researchers from several universities and
Indonesian government agencies with interests in conserving and genetically improving
Indonesia’s unique livestock breeds. Strong support and willingness to engage have also
been expressed by potential international collaborators and funding agencies. Hence, a
primary purpose of this paper is to demonstrate that possible solutions to implementing
genetic improvement programs for smallholder cattle farmers do exist. The major require-
ments for setting up new within-breed selection program(s) in Indonesia are therefore
briefly summarized below.

• Accurately recorded phenotypes: The main limitation to genomic and traditional within-
breed selection in extensively managed livestock such as beef cattle is the difficulty
and expense of measuring animals in appropriately sized contemporary groups for
the full range of economically important productive and adaptive traits. Unless the
genetic improvement programs are adequate in terms of contemporary group size
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and structure, the measurements will not enable useful predictions of genetic merit.
A related paper [77] provides a detailed description of the phenotypes that should
ideally be included in cattle breeding objectives and the feasibility of recording them
in smallholder farmer herds in low-middle income countries. As indicated by [77],
measurement of most phenotypes required for genetic improvement programs in
smallholder herds is generally not feasible. Hence, those authors recommended
establishing reference populations that are genetically linked, but managed separately,
to smallholder cattle herds. The feasibility of setting up reference populations for this
purpose in Indonesia is explored further below.

• Genetic parameters for all traits in breeding objectives: As indicated in an earlier section of
this review, the only known within-breed selection program to focus on improvement
of an objective trait in Indonesia is that undertaken for Bali cattle and based only on
cattle growth. Heritabilities for live weights at different ages and genetic correlations
between them are reported by [89–91]. However, there are no known genetic parame-
ters for other traits for beef cattle reared under Indonesian production systems. There
are, though, many reports from the scientific literature providing heritabilities and
genetic correlations between most economically important traits, though the estimates
based on adaptive traits and new traits (e.g., carcass and beef quality, efficiency of
feed utilization, methane emissions) are more limited than those derived for growth
and reproductive performance. Hence, the best approach to establish within-breed
selection programs for use in Indonesia would be to initially use published estimates
from other tropical and sub-tropical environments, with the aim of ultimately estimat-
ing relevant parameters from Indonesia’s cattle herds in future. This approach would
enable within-breed selection programs for the full range of economically important
traits to commence, once the other challenges to establishing such programs have
been overcome. A positive aspect of such an approach is that benefits would accrue
not only to within-breed genetic improvement, but also to crossbred populations, as
reported by [84].

• Data analyses and estimation of genomic breeding values: The previously-mentioned re-
lated paper [77] also provides a detailed description of optimal models for predicting
genomic estimated breeding values (GEBVs) and the value of genomic data in replac-
ing recorded pedigree information. It additionally compares the positive and negative
aspects of different approaches (BayesR, GBLUP) to estimating GEBVs, as applied
specifically to genetic improvement programs for low-middle income countries, as
well as describing the benefits of imputing full sequence information from lower
density Single Nucleotide Polymorphism (SNP) panels.

• Establishing infrastructure and human capacity building: As outlined by [77], two prob-
lems of major significance to genetic evaluation systems for smallholder farmers in
low-middle income countries are: (i) the lack of infrastructure required to under-
take on-farm management and phenotyping of animals, laboratory testing of animal
samples, data capture and storage and lack of computing facilities and appropriate
software programs; and (ii) lack of human capacity, particularly in areas of techno-
logical capability and data analysis and interpretation. As those authors describe,
new developments in the use of information and communication technologies are
starting to address the issues of on-farm management and phenotyping of animals,
whilst the development of livestock reference populations and formation of interna-
tional collaborations currently hold greatest promise of addressing the remainder of
these challenges.

• Possibility of establishing cattle reference populations in Indonesia: The related paper [77]
also provides detailed descriptions of the role and value of livestock reference popu-
lations that have been established in multiple developed and developing countries
globally, specifically to overcome the difficulty and expense of obtaining accurate
phenotypes in large and well-designed cohort groups. The value of forming such
reference populations in Indonesia would be increased considerably if they could
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also be combined with international collaborations to enable sharing of computing
platforms, data storage, analytical software, joint data analyses and human capacity
development in all aspects of genetic improvement programs as also described by [77].
To date though, there are currently no known reference populations for smallholder
beef cattle in any low-middle income country, primarily due to lack of the significant
funding required for their establishment and the significant length of time required
to achieve genetic improvement in those herds, which have an average generation
interval of 4–6 years [77]. For Indonesia to establish such populations, this would
mean not only identifying new sources of funding to support establishment of such
populations, but potentially an even greater challenge in securing sufficiently large
areas of suitable cattle grazing land in such a highly urbanized country to enable
adequate numbers of beef cattle to be managed and recorded within well-designed
cohort groups. The land area challenge and potential solutions will be examined in
greater detail as part of a design phase, assuming the new sources of funding can
be achieved.

• Could international collaborations help overcome these challenges?: As described in de-
tail by [77] and summarized previously in this paper, international collaborations
with genetic evaluation providers servicing smallholder farmers in other countries
in tropical areas would help Indonesia overcome most of the challenges currently
facing Indonesia. Additional benefits from international collaborations would include
the need for fewer animals with recorded phenotypes and for less common cattle
breeds (e.g., Bali and Madura cattle) where data are very limited, as evidenced by
recent cross-country studies where pooled data were used to accurately estimate
GEBVs for tick resistance in African and Australian breeds of cattle with limited data.
The exceptional challenges that would remain for Indonesia are perhaps the most
challenging though, as they are based on the need for new funding to help establish
and maintain the resource populations over perhaps 10–20 years and access to the
areas of land on which those populations would need to be managed. However, if
the resource populations were able to be established, it is anticipated that, after the
initial 10–20 years of operation, new business models would be implemented to allow
farmers and other beef value chain participants who benefit directly from the genetic
improvement to assume control and ongoing funding of the populations, as is now
starting to occur in other countries.

7. The Critical Role of Genomic Information in Designing and Implementing New
Beef Cattle Genetic Improvement Programs in Indonesia

As summarized by [77], potentially the greatest opportunity to significantly improve
the productivity of all livestock industries in low-middle income countries in tropical
environments is through the use of genomic information, with recent significant advances
in genomic technologies greatly improving that potential. However, we also note that
the value of genomic information for livestock breeding depends on the availability and
quality of essential phenotypes for the full range of economically important productive and
adaptive traits important in tropical environments.

Given the relatively poor success of earlier cattle breeding programs in Indonesia as
summarized in this review, it is suggested the best way to design new cattle breeding pro-
grams (within-breed selection, formation of composites, crossbreeding programs and/or
conservation of unique cattle breeds) would be for Indonesian researchers to establish
international collaborations and work with those collaborators to develop the opportu-
nities provided by genomic technologies and to simultaneously develop the capacity of
Indonesian researchers in the use of those technologies.

In our view, this would best begin with sequencing the genomes of Bali (Bos javanicus),
Madura and PO breeds, and comparing their sequences directly with the genomic sequence
of Bos taurus and Bos indicus breeds. This would ideally be undertaken in collaboration
with researchers involved in the 1000 Bull Genomes project [92]. Thereafter, lower density
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SNP panels would be used for ongoing genotyping of animals recorded in those breeding
programs. Results from such comparisons would:

• Determine whether the Indonesian breeds are unique and hence, require conservation
as pure breeds;

• Definitively confirm the breed composition of Madura and PO cattle, thereby assisting
in decisions about how best to use those cattle in future genetic improvement programs
targeting productivity of Indonesian cattle herds;

• Confirm whether chromosome imbalance will potentially cause problems with cross-
breeding of Bos javanicus with Bos indicus or Bos taurus;

• Assist in the design of within-breed selection, crossbreeding and conservation pro-
grams for these breeds; and

• Provide the basic information needed for ongoing studies to identify genes or genomic
regions in those cattle breeds that account for large proportions of genetic variation in
economically important traits.

Thereafter, the international collaborations established by Indonesian researchers
would potentially also assist in the design and implementation of new breeding programs,
particularly if it was possible to establish the proposed reference populations to measure
and manage the cattle herds required to achieve the targeted genetic improvement (with
smallholder beef farmers using AI and semen from proven genetically superior sire to
achieve improvement in their own herds).

Once established, those reference populations would routinely use low-density, low-
cost SNP panels and imputation to full sequence to provide genomic data (including
pedigree information) for all animals in the reference populations. The genomic information,
combined with measured phenotypes, would then be used to estimate GEBVs for every
animal in the population and allow the effective design of within-breed selection programs
that also prevent the rapid and large increases in inbreeding that are occurring in some
cattle populations in Indonesia due to small population sizes.

Genomic information would also allow the design of crossbreeding programs based
on precise knowledge of the breed composition of all animals to be used in the programs,
thereby ensuring breeding females are joined to appropriate bulls in order to generate
well adapted and productive crossbred progeny. This approach has been successfully
used in controlled crossbreeding programs by smallholder dairy farmers in Africa and
India [93–96].

In the relatively short-term future, the use of genomic (and other “-omics”) information
also has the potential to reduce and possibly replace the requirements for some difficult-
or expensive-to-record phenotypes that currently represent a major constraint to effective
implementation of genetic improvement programs in low-middle income countries. The
greatest limitation to achieving this is the current lack of accurately-recorded phenotypes
for those difficult- or expensive-to-record traits, against which the genomic information
can be tested.

8. Conclusions

To respond to Indonesia’s increasing need for greater supplies of beef, as well as to im-
prove the productivity and profitability of Indonesia’s smallholder cattle farmers, sustainable
utilization and genetic improvement of Indonesia’s local cattle are vitally important.

Based on this review of the literature relevant to Indonesia’s smallholder beef breeding
programs, it appears that to date, all crossbreeding and within-breed selection programs
implemented in Indonesia (except for the visual selection for cultural attributes amongst
Madura cattle) have not achieved the levels of genetic improvement that were initially
targeted. Previous crossbreeding programs appear to have failed primarily through poor
design of the programs as well as the complexity of management required for such pro-
grams, beyond the skill levels of smallholder farmers. The sole within-breed selection
program based on objective measurements was restricted just to selection of bulls based
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on live weights, whilst ignoring other productive and adaptive traits known from the
published literature to be genetically correlated (sometimes negatively).

Hence, to achieve the permanent genetic improvement required to improve the pro-
ductivity and profitability of Indonesia’s smallholder farmer cattle herds, and to achieve
conservation of Indonesia’s unique cattle breeds, the opportunity now exists to develop
and implement entirely new breeding programs.

Regardless of how the local cattle breeds are utilized, genetic improvement programs
with well-formulated breeding goals should be designed and implemented to improve the
ongoing productivity and profitability of smallholder farmer herds, as well as to conserve
unique Indonesian genetic resources.
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Abstract: Genomic selection has transformed animal and plant breeding in advanced economies
globally, resulting in economic, social and environmental benefits worth billions of dollars annually.
Although genomic selection offers great potential in low- to middle-income countries because detailed
pedigrees are not required to estimate breeding values with useful accuracy, the difficulty of effective
phenotype recording, complex funding arrangements for a limited number of essential reference
populations in only a handful of countries, questions around the sustainability of those livestock-
resource populations, lack of on-farm, laboratory and computing infrastructure and lack of human
capacity remain barriers to implementation. This paper examines those challenges and explores
opportunities to mitigate or reduce the problems, with the aim of enabling smallholder livestock-
keepers and their associated value chains in low- to middle-income countries to also benefit directly
from genomic selection.

Keywords: genomic selection; smallholder farmers; beef and dairy cattle; sheep and goats; phenotypes;
reference populations; capacity-building; value of genomic information

1. Introduction

Although major differences exist between the productivity and available resources of
livestock producers in advanced and low- to middle-income countries (LMICs), several
very significant challenges need to be overcome by all farmers, regardless of their location,
if they are to capture the new opportunities that already exist and continue to emerge.

The world’s population is expected to increase from 7 billion people in 2011 to
9 or 10 billion by 2050, with most of that growth occurring in Africa and Asia [1]. The
incomes of many people in LMICs are now increasing and, with rising incomes, the de-
mand for meat and dairy products is also growing [2]. To achieve food security by 2050,
livestock enterprise and industry efficiency, as measured by total factor productivity, needs
to increase by 2.0–2.5% per annum. This is the equivalent of doubling outputs from con-
stant resource inputs through to 2050 [3]. Due to the pressures on agriculture in developed
countries, a significant proportion of that increased production must occur in the regions of
greatest need, i.e., in Africa and Asia. This increased demand for food is leading to greater
competition for inputs such as land, water, grain and labor, driving up the cost of livestock
production. Climate change is adding to this challenge [4], requiring animals that are
productive under hotter and drier climates and, in the tropics and sub-tropics, requiring
animals that can tolerate significant increases in ecto- and endo-parasitic burdens and
vector-borne diseases. There is therefore an urgent need to greatly increase the productivity
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of livestock herds and flocks while using less grain and water; the animals must also
simultaneously tolerate more extreme climates and disease stressors and farmers must
reduce their animals’ greenhouse gas (GHG) emissions. An added beneficial outcome of
improving production efficiency is that emissions intensity decreased for most livestock
species globally between 2000 and 2018 because of increased production efficiency [5].
The same authors also showed that improving production efficiency, particularly in coun-
tries within Asia and Africa, has much greater mitigation effects than removing livestock
products from global human diets [5], thereby retaining the human health and nutritional
benefits of consuming livestock products in those regions.

The opportunities to significantly improve the productivity of livestock systems are
greatest for extensive or pastoral production systems in tropical and sub-tropical environ-
ments, including those in Africa and Asia. These systems employ land resources with few
alternative uses, including urbanization. In addition, they capitalize on the strengths of ru-
minants, which utilize low-quality pastures that are not suitable for humans or monogastric
livestock species. The pastoral livestock industries are also far less likely than the intensive
livestock industries to face inequitable demands about their production systems from
urban populations, as has occurred over recent years in the intensive livestock industries.

To double outputs from the same resource base, as required for global food security
by 2050, livestock farmers in the tropics and sub-tropics will need to adopt new, cost-
effective, and transformational technologies for use with animals that are already well
adapted to their production environments. Traditional technologies that deliver incre-
mental changes will assist in improving productivity, in the same way they have in the
past. By way of example, one study demonstrated that through the use of long-established
technologies, such as animal breeding and animal nutrition, US dairy farmers now require
21% fewer cows, 23% less feed, 65% less water and 90% less land to produce 1 billion kg
of milk than they did in 1944, with a 57% reduction in methane emissions and simul-
taneous large reductions in waste [6]. However, these traditional technologies are no
longer sufficient by themselves to deliver the major increases in productivity that are
now required.

Potentially, the greatest opportunity to significantly improve the productivity of
livestock industries in LMICs in tropical and sub-tropical environments to 2050 is via the
use of genomic (DNA-based) information through genomic selection, using genome-wide
genetic markers to estimate the genetic merit of individual animals [7]. Recent significant
advances in genomic technologies that support this recommendation include:

• The very rapidly reducing costs of full genome sequencing [8];
• The momentous reductions in the time taken to sequence an entire genome, down

from close to 13 years for the first human genome sequence [9] to a full sequence now
being achieved in a single day [10], and with potential in the near future to achieve
full genome sequencing on the same day in the field rather than at laboratory sites;

• The ability to accurately impute whole-genome sequence data from lower-density,
lower-cost single nucleotide polymorphism (SNP) panels [11–14];

• The potential to use whole-genome sequence data to discover the mutations causing
variations among animals and, in turn, using that knowledge of functional mutations
to improve the accuracy of breeding value predictions [15];

• Resolution of the “missing heritability” problem [16], proving that genomic selection
approaches account for significant proportions of the genetic variation for economi-
cally important complex traits;

• Vastly improved computational capacity that is now allowing the cost-effective storage
and processing of petabyte (1012 bytes)-scales of data [17];

• The ability to use pooled DNA samples from groups of animals to identify the average
genetic merit at low cost [18], thereby enabling the development of new, cost-effective
management applications based on genomic information; and

• The increased ability to capture essential individual animal performance data (pheno-
types) through the use of automated or semi-automated electronic data capture methods.
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Traditional genetic improvement programs, based on measuring large numbers of
pedigree-recorded animals in well-defined cohort groups for the full range of economically
important productive and adaptive traits, is generally not possible for smallholder farmers
in LMICs. Now, the opportunity to use genomic data, in conjunction with the use of
information and communication technologies, offers significant new opportunities to
increase the rates of genetic gain by characterizing indigenous and crossbred animals
for use in conservation, crossbreeding and within-breed selection programs, to improve
economically important traits. Other technologies, such as genome editing, coupled
with emerging reproductive technologies that enable rapid multiplication and decreased
dependency on cold chains for the delivery of improved genetics, will potentially transform
livestock breeding even further as causal mutations are found [19].

To date, there has been limited use of genomic technologies in grazing livestock in
LMICs, due to several major challenges inhibiting their use. The following sections examine
those challenges and identify opportunities to mitigate or remove them for the ruminant
livestock species that predominate in those regions, i.e., beef and dairy cattle, sheep, and
goats. Even though this paper focuses on the application of genomic selection in LMICs, no
attempt is made to evaluate the ongoing refinement of the genomic selection methodology
or the increasingly sophisticated demands on the computational capacity required to drive
the method, because those challenges continue to be addressed more rapidly than the
alternative constraints facing the use of genomic selection in LMICs.

2. The Need for Accurate Phenotyping and Record-Keeping

In both advanced economies and LMICs, the main limitation to genomic (and tradi-
tional) selection in extensively managed livestock is the difficulty and expense of measuring
animals in appropriately sized contemporary groups for the full range of economically im-
portant productive and adaptive traits. As discussed by [20], technology may in the future
provide the means of measuring animals, but it cannot replace the statistical imperative
that, for these measurements to be beneficial for genetic improvement programs, contem-
porary groups of appropriate structure and sufficient size are required. Unless the design
is adequate in terms of contemporary group size and structure, the measurements will not
provide useful predictions of genetic merit. This applies to traditional genetic improvement
programs as well as those capturing beneficial traits through genomic selection.

As suggested in Table 1, the measurement of most phenotypes required for genetic
improvement programs in smallholder herds and flocks is generally not feasible in the
field. Where measurement is feasible, there is an additional requirement that accurate
records be maintained at the level of individual animals. Such record-keeping is often an
additional challenge for smallholder farmers, mainly because platforms that can effectively
collate and make sense of such highly fragmented data are lacking. This recording has
been assisted in the past by animal breeding research projects, such as those described
by [21]. However, with the short-term nature and eventual closure of many of those types
of projects, the data capture has generally been discontinued by the smallholder farmers.
More recent research projects such as the African Dairy Genetic Gains (ADGG), BAIF
India and community-based breeding programs (CBBP) in Ethiopia and Malawi are now
adapting digital tools, such as mobile phones and tablets, to capture performance data for
easy-to-measure traits such as milk yield, body condition score and artificial insemination
records [21].

By way of example in the ADGG project, milk yield, heart girth (for predicting body
weight), and body condition score are collected monthly using software based on the Open
Data Kit (ODK) that is installed on tablets and mobile phones, employing the services
of performance-recording agents. In addition, iCow (http://www.icow.co.ke/, accessed
15 November 2021), a technological platform owned by a private company, Green Dreams,
a partner in the ADGG, has provided feedback information to farmers for herd management
through text messages and web-based training. This performance data has enabled the
genomic prediction and selection of first-rate young bulls for breeding in Tanzania [30]. The
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main challenges of the data-capture system are the high cost of employing performance-
recording agents and poor internet connectivity to upload the data. The most obvious
data issues relate to inconsistencies in the dates for various animal events, such as birth,
calving, and milking dates. This leads to a large number of animals being rejected from
any meaningful genetic analysis.

Table 1. Phenotypes that should ideally be included in livestock-breeding objectives and the feasibility of recording them in
smallholder herds and flocks in low- to middle-income countries.

Phenotype and Purpose Options to Measure Key Traits for Use in Genetic Improvement Programs in Smallholder Livestock Populations

Product Quantity and Quality

Animal live weights and weight gains for the
genetic evaluation of potential meat quantity
in meat-producing animals and to provide
assessments of animal nutrition and the effect
of environmental stressors and/or endemic
diseases on individuals and groups of meat
and dairy animals

Except for farmers directly engaged in well-funded genetic improvement research programs, a lack of
animal-handling infrastructure and access to scales generally means that records of individual animal weights and
weight gains are not feasible in smallholder herds/flocks. This is particularly true for meat animals. Future
infrastructure development may enable remote walk-over weighing or similar options for measurements, although
[22] concluded that current walk-over weighing systems did not justify the investment needed in individual animal
electronic identification. An alternative approach is for farmers to measure the animal’s circumference and length as
an indicator of body weight, but this would also require access to appropriate handling facilities to enable accurate
tape placement and length and height measurements. The accuracy of these assessments is reasonable in
well-designed cohorts of the same breed of animals, but it varies markedly across breeds and animal size. Hence, in
situations where animal breed composition is unclear, as is often the case in smallholder herds and flocks, this is not
a reliable measurement for use in genetic evaluation [23]. Predictions from images based on deep learning may
become available in the near future.

Milk volume as the primary product for dairy
animals and a maternal trait for meat animals

Measuring milk volume is relatively straightforward in dairy animals in smallholder herds and flocks but is not
feasible in meat-producing animals, other than indirectly through the offspring’s weaning weights.

Meat (e.g., tenderness, flavor, juiciness) and
milk quality (e.g., protein concentration, fat
content, etc.) attributes

Although sensor-based meat quality assessment systems exist, they are not readily available and given the meat
evaluation and pricing systems, such assessments may not provide value for money, except where animals from
smallholder flocks and herds are sold through commercial value chains to meet market quality specifications. In
those cases, the processor or retailer purchasing the carcasses or milk should be able to provide the phenotypes
required. However, quality-based value chains are currently scarce in most LMICs.

Live animal fat depth, eye muscle area, etc., in
meat animals

Subjective assessments of fat coverage or body condition scores are feasible but the value of doing so for genetic
improvement programs in the absence of other measures, such as weights, is not high.

Efficiency of feed utilization, particularly
while animals are grazing on pasture

While this phenotype represents the best opportunity to improve the amount of feed required by an animal to
maintain its body weight, it is still not feasible to record even in sophisticated breeding programs in high-income
countries, except when animals are fed grain-based diets in pens or assessments are made on monoculture
crops/pastures. Those measures are unable to account for animals’ diet selections and browsing behaviors, both of
which impact feed utilization at pasture.

Female reproduction (most measures of male reproduction are not generally feasible in smallholder herds and flocks)

Age at first estrus

Smallholder farmers can be trained to recognize the signs of the first estrus in female animals that are closely
monitored and the use of digital cow calendar reminder systems enable subsequent signs to be easily and accurately
timed and recognized. However, as the signs vary across animals, the records are unlikely to be sufficiently accurate
for genetic improvement programs. Another option could be to use solar-powered sensor networks to remotely
capture livestock data, such as estrus and pregnancy status, using animal ear- or neck tags
(https://www.allflex.global/product/heatimepro/, accessed 15 November 2021), but to justify the expense, this
type of data would need to be captured in relatively large herds or flocks.

Date of calving/lambing, age of first
calving/lambing and inter-calving/lambing
period

In closely managed smallholder herds and flocks, recording the date of calving/lambing of individual dams is
feasible, though not currently routinely practiced except through research programs. Knowledge of this date
enables the calculation of the age of first calving/lambing and inter-calving/lambing periods.

Pregnancy rate

If smallholder farmers have cost-effective access to veterinary services, pregnancy testing may be a feasible option
for some. Use of estrus detection ear tags (see “Age at first estrus” section above) may also provide a useful
indicator of pregnancy status if the tags are also used during the breeding season by indicating which females do
not return to estrus.

Weaning rate and offspring mortality rate
If smallholder farmers practice calf/lamb weaning and the calves/lambs are routinely individually identified to
their dams, it may be feasible for annual weaning rates (and, hence, annual offspring mortality rates) to be
calculated if the number of females mated in the previous breeding season is also recorded.

Adaptive traits

Resistance to ecto- and endo-parasites

As summarized by [24], “resistance” in this context refers to both the ability of the individual host to resist infection
or control the parasite lifecycle (resistance) and also where an individual host may be infected by a parasite but
suffer little or no harm (tolerance). These terms are used interchangeably here. An in-depth discussion of the ability
of cattle to resist a wide range of individual parasites is given in [24], but measuring an individual animal’s
resistance to any of those parasites in advanced and low- to medium-income economies is not generally feasible due
to both the intermittent nature of parasite infestations and the difficulty of measurement.

Resistance to endemic diseases transmitted by
parasites

Measurement of disease resistance under pastoral conditions is generally very difficult, even in advanced
economies. The simple presence/absence of disease can be subjectively assessed by a skilled recorder when the
animals are observed during routine handling procedures. However, infrequent observation of animals means that
incidence of disease generally goes unrecorded, except where animal deaths occur and a diagnosis giving the cause
of death is possible.

Tolerance to heat stress

Traditionally, heat stress has been recorded using repeated measurements of the rectal temperature of animals under
conditions of heat stress [25,26] or through subjective coat scores of animals during the summer months [27].
Increasingly, however, tolerance to heat stress is being assessed through the use of temperature–humidity indices
based on the automatic meteorological recording of ambient temperatures and humidity in local regions [28,29].
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Another consideration is how such record-keeping can be made sustainable beyond
the life of the associated research projects, while recognizing that the farmers who provided
the records remain the owners of that data beyond the life of the projects. This is an
issue that needs to be directly addressed by each of those projects. ADGG has been
examining several business model options for the sustainability of the record-capture
system; these include piloting mobile phone-based systems for direct data capture from
farmers through monthly alerts, engaging government officials in the respective country
to encourage their involvement, and exploring private company participation. Currently,
direct farmer-incentivized systems are being tested in Kenya as a possible long-term
solution to this challenge.

Even where measurement is feasible, it is likely that many smallholder herds and flocks
are unable to generate within-herd genetic linkages through the use of multiple sires to
generate contemporary groups, meaning that the contemporary group design requirements
also present significant challenges. For this reason, the most feasible option for smallholder
herds and flocks to participate in genetic improvement programs is likely to be through
the use of specifically designed reference, resource or nucleus populations aimed at the
identification of genetically superior sires for subsequent use in smallholder herds and
flocks. However, such reference populations need to be managed under conditions that
are as similar to the smallholder and pastoral systems as possible. Past attempts, where
government research centers were used, have generally failed.

3. The Role of Reference Populations

Over many decades, the dairy cattle industries in high-income countries have con-
ducted successful genetic improvement programs using a model where individual dairy
herds contributed pedigree and performance records (and more recently, genomic infor-
mation) to national and international genetic evaluation schemes. These types of schemes
have generally not been feasible for other livestock species, such as beef cattle and meat-
and wool-yielding sheep and goats, which have traditionally focused on visual appraisal
as an indicator of performance in the absence of objective, routinely recorded performance
data, such as the daily milk volumes that exist in the dairy industries.

For this reason, an alternative approach was developed for use in those species, where
large livestock populations were specifically designed and established to accurately manage
and record animals, particularly for difficult- or expensive-to-measure phenotypes, within
well-designed contemporary groups to capture data for the traits of interest. As part of the
design of these populations, great effort was expended to generate strong genetic linkages
within and across contemporary groups of animals and across herds and flocks being
evaluated, whether by the exchange of specific bulls and rams or by the use of specified
AI sires in reference herds and flocks. To achieve the levels of accuracy required for these
difficult- or expensive-to-measure traits, very large animal resource populations that have
been accurately recorded for the particular trait are needed [8]. These populations are
known as reference, resource, or nucleus populations and, to date, have all been established
as part of large and well-funded research projects.

The first beef cattle and then sheep reference populations established in Australia
were needed because, at the time of their establishment, there were no breed associations
or breeding companies interested in or able to undertake genetic improvement based on
objective performance data (cf. the traditional visual appraisal approaches common at that
time) and particularly for hard- or expensive-to-record traits. Examples of such populations
in beef cattle in Australia are described by [31] for growth, feed efficiency and carcass
and beef quality, and by [32,33] for the full range of productive and adaptive traits in the
breeding objective. More recent examples include the “Repronomics®” project [34] that
builds on the populations described in [32,33], and the more recent Northern Genomics
project [35]. The Northern Genomics Project works with 54 collaborating herds across
northern Australia (including those farmed in some very challenging environments), with
26,000 heifers and cows now genotyped and trait-recorded [35]. The collaborators and
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associated veterinarians collect data on cohorts of heifers in well-defined, and in some
cases very large, contemporary groups. In most cases, the herds are mixed-breed, cross-
breed or tropical composites (these composites being admixtures of three or four breed
types, i.e., Bos indicus, tropically adapted Bos taurus, temperate Bos taurus—British and
temperate Bos taurus—European, with many of the composites having ancestry from 6 or
more individual breeds, as described in detail by [31,32]). The traits include heifer puberty
(based on ultrasound scans to determine if the heifers have cycled or not), weight, height,
and body condition score at approximately 600 days, whether they are pregnant or not
four months after calving (a re-breed trait), farmer-scored temperament, tick score and
buffalo fly lesion score. All traits, except heifer puberty and being pregnant or not four
months after calving, are farmer-recorded following some minimal training on field days.
Breed composition and Bos indicus percentage, derived from SNP marker predictions, were
used in the models used to derive SNP prediction equations for the traits. The project
has estimated genomic heritabilities that are similar to those produced from pedigree-
recorded herds and has also validated useful accuracies of genomic estimated breeding
values (GEBV) across breeds and composites [35]. The project clearly demonstrates that
useful GEBV can be produced from data collected in commercial herds. However, a clear
difference between these herds and those in LMICs is in contemporary group size and, as
indicated above, this is really the key challenge when using data from smallholder herds
in LMICs.

An additional study in the USA developed specific populations to record resis-
tance/susceptibility to bovine respiratory disease in beef and dairy cattle [36]. Similar
populations designed to capture data for a range of productive attributes in meat- and
wool-yielding sheep in Australia are described by [37,38]. International efforts have been
expended in creating an international resource population of dairy cows for feed intake
records, collected in research herds [39].

Similar populations have been established more recently for smallholder dairy farmers
in countries in sub-Saharan Africa and India through externally funded, highly participa-
tory research programs, such as the ADGG project. These programs use information and
communication technologies (ICT) to digitally capture and submit data that are sufficiently
large for use in genetic evaluation [40,41]. In ADGG, the dairy cattle population designated
for monthly monitoring and data capture involves animals located in sites from six regions
of Tanzania and Ethiopia, covering the major agro-ecological zones in those countries.
Therefore, genomic predictions based on the ADGG data can be used to select genetically
superior animals for use across their respective countries.

In India, the BAIF Development Research Foundation has set up an excellent smartphone-
based herd recording system for use by farmers and specialized milk recorders [42]. The
availability of high-quality data has resulted in GEBV with moderate accuracy (~0.45) for
some breed/cross-breed groupings of Indian dairy cattle [42].

Alternative CBBP have been established specifically for indigenous breeds of sheep
and goats in Latin America, Africa and Asia, primarily supported by national governments
in conjunction with local organizations. The implementation of CBBP combines genetic
improvement programs with infrastructure, community and market development. Exam-
ples of CBBP in local sheep and goat breeds across several LMICs are described by [43–48].
Guidelines for establishing CBBP focused on small ruminants are provided by [49].

There are currently no known resource populations for smallholder beef cattle, pri-
marily due to a lack of the significant funding necessary for their establishment and the
significant length of time required to achieve genetic improvement in those herds, which
have an average generation interval of 4–6 years. An attempt was made to establish linkages
with populations in South Africa through the government-funded “Beef Genomics Project”
that services commercial seedstock herds [50]. However, even in those seedstock herds in
South Africa, challenges remain when recording the more difficult or expensive-to-measure
phenotypes [50]. However, the existence of that population may, in the future, provide
opportunities for smallholder beef farmers across Africa and potentially elsewhere to link
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with it, to drive genetic improvement programs in their own regions. This opportunity is
discussed further in subsequent sections of this paper.

Opportunities to maximize the accuracy of genomic selection using multi-breed refer-
ence populations and multi-omic data are provided by [51], while another report provides
guidelines to minimize the loss of genetic diversity through the use of reference popu-
lations [52]. The issue of loss of genetic diversity is of critical concern, particularly as it
relates to the indigenous livestock breeds of many LMICs.

While the existence of these resource populations is currently providing significant
opportunities for smallholder dairy cattle, sheep, and goats in a small number of LMICs, the
greatest challenge is their sustainability on a longer-term basis. In high-income countries,
the existing resource populations are in the process of being migrated from research funding
to a variety of co-investment models; this will ultimately result in a model that is funded
by the beneficiaries of that genetic improvement. A similar transition will ultimately be
required for the small number of existing resource populations in LMICs, but how and
when that will be achieved is still not clear. Meanwhile, the vast majority of LMICs have
no access to the resources needed to even establish suitable resource populations to target
the very significant economic, social and environmental benefits derived from the genomic
selection of livestock in advanced economies.

4. Data Analyses and Estimation of Genomic Breeding Values

The basic model of best linear unbiased prediction (BLUP) evaluations [53] is:

Y~mean + contemporary group + fixed effects + animal + e (1)

where “animal” is a random effect ~ N(0,A σA), A is a relationship derived from pedigree
and σA is the additive genetic variance. The contemporary group is commonly also fitted
as a random effect and e always is a random effect. Fixed effects depend on traits, for
example, lactation number in dairy cattle or kill-day in beef-quality traits.

In a genomic evaluation, the second model is very similar, the only difference being
N(0,G σG), with G being the genomic relationship among animals constructed from the
SNP genotypes [54]. The animal solutions from BLUP in a genomic model are usually
referred to as GEBV and the model itself, GBLUP.

A third model for evaluations combines both information from animals with pedigrees
and phenotypes, but no genotypes, and animals with pedigrees, phenotypes and geno-
types, in a “single-step approach” [55]. In this approach, an H relationship describes the
relationship among animals and replaces the A in the first model, i.e., animal ~N(0,H σH).
The H includes the elements of A for non-genotyped animals and elements of G combined
with A for genotyped animals. This model has been implemented very successfully in
several developed countries for dairy cattle, dairy goats, and pigs [56].

A major problem in the genetic analysis of data from smallholder systems is usually
the lack of pedigree information. For instance, the genomic prediction in data from
Tanzania [30] has been based on model two described above; this involved 1906 genotyped
cows. However, only 226 cows of those cows had either both or only one parent known; this
clearly underlines the importance of the availability of genotypic information in enabling
prediction of the genetic merit in smallholder systems, as the pedigree relationships are
clearly inadequately recorded.

However, under the ADGG program, the combined use of the genotypic and pedigree
information that is increasingly becoming available provides hope for a better future. The
use of the genomic matrix, derived from SNP information, to infer relationships among
animals, and the application of model three, as described above, has enabled the estimation
of genetic parameters and genomic prediction in smallholder systems [30,40].

In general, the methods currently used for genomic prediction in smallholder dairy
systems include GBLUP, single-step procedures and various Bayesian methods (see [30] for
a detailed review). However, most of the genomic prediction systems are based largely on
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females and small datasets, making it very difficult to adequately define separate reference
and validation populations.

Consequently, most studies have used cross-validation approaches rather than for-
ward validation [30]. However, some studies have applied forward validation or both
validation approaches [30,57,58]. The validation accuracies are mostly of low to medium
value (0.21 to 0.60) for milk yield, backfat thickness and rear eye area [58–60], but some high
estimates (0.71 to 0.83) have been reported for bodyweight and other beef traits [61,62].

The complexities of recording accurate pedigrees in LMICs make implementing either
the single-step model, or even the original pedigree-based model, rather unattractive
and, as described above, makes the pure genomic model really attractive. For the routine
production of GEBV, an alternative to the GBLUP model may be useful. A model can be
fitted that estimates SNP effects directly. For example, BayesR [63] fits the model thus:

Y~mean + contemporary group + fixed effects + Zg + e (2)

where g = vector of SNP effects, and g ∼ N
(

0, Iσ2
i

)
with four possibilities for σ2

i ={
0, 0.0001 ∗ σ2

g, 0.001∗σ2
g, 0.01∗σ2

g

}
, where σ2

g is the genetic variance of the trait. Each

SNP is from one of four possible normal distributions: N(0, 0 ∗ σ2
g), N(0, 0.0001 ∗ σ2

g),
N(0, 0.001 ∗ σ2

g) and N(0, 0.01 ∗ σ2
g). Four distributions are used so the marker effects can

be moderate to large (e.g., in the case of DGAT1), small, very small or zero. Z is the animal
x-marker genotype matrix.

It has been demonstrated that BayesR results in a higher accuracy of GEBV compared
to GBLUP in multi-breed populations when high-density markers are used [64].

A major advantage of the BayesR approach for LMICs is that GEBV for new selection
candidates can be run very quickly and with limited computing power. GEBV for these
new candidates (i.e., young sires not in the reference population) can be calculated as
GEBV = Zg_hat, which takes seconds or, at worst, minutes to compute on a laptop with a
reasonable random-access memory (RAM). The g_hat, estimated from running the BayesR
with Gibbs sampling, for example [63], can be run on a high-performance laptop with a
much larger RAM, or a high-performance computer as large numbers of new reference
animals become available, for example once or twice per year. The g_hat can then be passed
onto the evaluation centers for rapid routine evaluations.

The reference populations to derive the g_hat can include data from multiple countries,
as demonstrated by [65], in order to expand the reference population and, therefore, make
GEBV more accurate.

In theory, the highest possible marker density should be used in genomic evaluations,
particularly in multi-breed populations, as this allows the SNP with the highest linkage
disequilibrium (LD) with the actual mutations to be used in the predictions, and this LD
should persist against breeding. The ultimate solution would be to use whole-genome
sequencing in the predictions, as this would allow the actual causative mutation to be used
in the prediction equation, rather than to rely on LD with a random SNP. One problem is
that it is still too expensive to sequence the whole genome of all animals in the reference
set. An alternative is to impute the reference set from their low-density markers (e.g., 50 k)
up to the whole-genome sequence using the 1000 bull genomes database [66].

The outcome from using these imputed genotypes would, however, be an enormous
prediction equation—for example, 43 million SNP long! The practical alternative that
has been adopted in industry is to use an SNP panel with a relatively small number of
putative causal mutations identified from sequence data (in genome-wide association
studies (GWAS), for example) plus the standard panel of high-density SNP (e.g., the
bovine HD array). This is much more computationally tractable and, in many cases, gives
better accuracy than full sequence data [67]. Furthermore, including genome annotation
information to focus on those regions more likely to harbor causal mutations can increase
the accuracy of genomic predictions using sequence data [68].
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It has become increasingly clear that pooling data across regions and countries is ben-
eficial for increasing the accuracy of genomic predictions. Hence, one critical consideration
during the design phase of any breeding program is the need for consistent trait definitions
across the countries planning to share data, to ensure that animals in multiple populations
are recorded for the same trait(s). Alternatively, where resource populations are being
developed, they need to be large enough to allow an estimation of genetic correlations
with indicator traits, if consistent recording of the same trait(s) cannot be achieved across
all populations. Regardless, estimating these genomic correlations and genotypes by envi-
ronment interactions becomes more straightforward with genomic information, as what is
required is observations of the traits/environments on common chromosome segments,
rather than the sires’ progeny [69,70].

5. Infrastructure and Human Capacity

Two problems of major significance to smallholder farmers in LMICS are: (i) the
lack of infrastructure required to undertake the on-farm management and phenotyping of
animals, laboratory testing of animal samples, data capture and storage, and lack of com-
puting facilities, etc.; and (ii) lack of human capacity, particularly in areas of technological
capability, data analysis and interpretation.

The issue of data capture and storage is starting to be addressed through the use
of portable devices that do not require on-site internet connection (e.g., mobile phones,
tablets). However, in the absence of research projects that can assist with infrastructure
development, many of these issues remain as significant challenges to the implementation
of livestock genetic improvement programs in these countries, since it is unclear how
business models might develop for data-recording in most LMICs. One opportunity that
is currently being explored in conjunction with ADGG is the possibility of developing a
web interface that would enable data from livestock resource populations from countries
and industries not currently serviced by ADGG to be uploaded to the ADGG platform,
and then undertake genomic prediction using the pipeline developed by ADGG at the
International Livestock Research Institute in Nairobi. If that opportunity could be achieved,
that would mean other livestock industries and countries would not need to develop their
own separate software or pipeline, thereby generating some efficiencies.

The recent launch of the African Animal Breeders’ Network (AABN—http://
animalbreeding-africa.org/, accessed 15 November 2021) is in direct response to the
second issue relating to the lack of human capacity, with the aim of strengthening collabo-
ration among academia, industry, farmers’ organizations, the public sector, philanthropic
organizations, and development agencies to drive the development and implementation
of genetic improvement programs across the African continent. Professional develop-
ment and capacity-building across all sectors of the livestock genetic improvement chain,
from smallholder farmers to service providers and academics, are key pillars of AABN.
Similar networks will be required in LMICs in other areas of the world, such as Asia, the
Pacific, Central America and the Caribbean, to build capacity among livestock keepers
and service providers in those areas.

6. The Value of National and International Collaborations

One key learning from the successes of genomic selection in the livestock industries in
advanced economies is that strong and effective multi-organizational, multi-disciplinary,
and, often, multi-national partnerships are key to their success. Such partnerships need to
be inclusive of all sectors of the animal breeding chain, from farmers through to the service
providers and researchers who provide decision-making recommendations to farmers and
continue to improve the technologies being used in the processes. Such processes are likely
to be even more critical for genetic improvement programs in LMICs, where generating
sufficient animal data independently is unlikely to be feasible for decades to come. This
need for effective partnerships is behind the establishment of the AABN, referred to in the
previous section. Its usefulness can also be demonstrated using a recent example presented
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by [59], where genomic breeding values for a very difficult- and expensive-to-measure
trait (cattle resistance to ticks) were successfully estimated in relatively small numbers
of beef cattle in unrelated cattle breeds in South Africa (Nguni) and Australia (Tropical
Composites comprising different admixtures of four breed types and at least six individual
breeds) through the use of larger phenotyped populations of Angus, Hereford, Braford
and Brangus cattle in Brazil where, in effect, the Brazilian herds became effective reference
populations for cattle in South Africa and Australia. This suggests that a very viable
solution for genetic improvement programs in LMICs would be to formally link resource
populations and genetic evaluations in LMICs with livestock-breeding programs in more
advanced economies, to enable the effective implementation of genomic selection across
all countries. This type of collaboration may have the added benefit of perhaps, partially,
overcoming the lack of laboratory infrastructure that is a common constraint in LMICs.

7. The Ability of Genomic Information to Mitigate These Challenges

As outlined in earlier sections of this paper, the availability of genomic information
is now providing exciting new opportunities to identify genetically superior animals in
smallholder herds and flocks in LMICs and, based on well-documented evidence from
advanced economies, to simultaneously deliver very significant economic, social and
environmental benefits to those smallholder farmers and the communities and countries
where they live.

The major benefit of genomic selection derives from the ability of genomic information
to replace the need for pedigree recording and, specifically, generating genetic linkages
within and across herds and flocks that record the same phenotypes. Another important
benefit from the use of genomic information is that fewer animals are required using
genomic selection approaches to achieve accurate GEBVs relative to traditional genetic
improvement programs because the chromosome segments that are shared among the
breeds now provide genomic linkages across the different populations. This will be
particularly important if data from smaller reference populations in LMICs can in the future
be combined for analysis with data from larger reference populations in more advanced
economies, as occurred in the example given by [59]. The use of genomic information also
enhances decision-making in crossbreeding programs by providing accurate information
on the breed composition of individual animals and, in doing so, also provides a mechanism
for identifying indigenous breeds that require conservation.

In the future, there is good potential for genomic information to replace an animal’s
phenotype, not only through the identification of causal mutations and regions of the
genome impacting on particular traits but also through the use of new “-omics” tech-
nologies, such as functional genomics, gene expression, transcriptomics, proteomics and
metabolomics. This will most likely occur initially for difficult- or expensive-to-measure
traits with very high economic impacts, with these new technologies delivering simpler
and more cost-effective diagnostic tests for both animal management and genetic improve-
ment purposes. In that scenario, instead of data being primarily recorded for management
purposes, it may in the future be more useful to imagine data being collected specifically
for genetic improvement in nucleus farms (either centrally or distributed). As such, these
“phenotype farms” would have a requirement to generate genomically improved genetic
material for distribution to smallholder farmers in LMICs.

8. Future Opportunities

In addition to the new or adapted uses of genomic information described above,
several new opportunities will become available over the coming years to assist smallholder
farmers to capture some of the well-documented and very significant economic, social and
environmental benefits of genomic selection that are already achieved by livestock farmers
in advanced economies. These opportunities include the increasing use and availability
of digital and possibly automated data capture through, for example, spatial technologies
such as high-resolution satellite imaging and unmanned aerial vehicles (drones), or by
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using solar-powered sensor networks to remotely capture livestock data, such as live
weights, estrus or pregnancy status using animal ear- or neck tags. These technologies will
allow the real-time tracking of animals and animal products, providing new phenotypes for
genetic improvement programs as well as improving efficiencies and data collection across
the entire supply chain. The opportunity to effectively capture and analyze “big data”,
including publicly available information such as geographical location and meteorological
information, will also allow new levels of insight and development of decision support
tools, such as apps for the use of farmers in both advanced economies and LMICs.

Potentially, the greatest opportunity for smallholder farmers to capture the benefits
of genomic selection over the coming years will, however, be through expansion of the
very small number of existing livestock resource populations and the development of
new populations in other LMICs and other livestock industries not currently serviced by
the existing genetic improvement platforms in those regions. Linking those existing and
new resource populations through collaborations with livestock populations in advanced
economies, as outlined in Section 6, will also generate strong benefits for LMICs.

An operational framework to establish new resource populations could be along the
lines of the following:

• Resource populations could be formed at relevant new regional (e.g., national or
possibly even multi-national) levels within livestock species, with those populations
being managed overall with input from the smallholder farmers contributing the
animals, but with the responsibility for technical areas (phenotyping, genotyping, data
upload, etc.) being the remit of technicians with appropriate training;

• Initial funding would be required to cover the costs of designing the populations (to
ensure local relevance) and establishing them, for phenotyping the animals for the
full range of economically important traits for each of the species, and for genotyping
them, although only selected animals would require the use of higher-density (and
thus more expensive) SNP panels;

• Designing the resource populations should be undertaken in direct collaboration
with established resource populations in other countries with similar environmental
systems, to ensure compatibility of the populations for the future pooling of data for
genetic evaluation purposes—in LMICs, this generally means collaborations with
other resource populations that operate in tropical or sub-tropical environments;

• However, due to the assumed use of genomic information, the design of the new
populations does not need to specifically generate genetic linkages across the different
populations, nor is there a need to restrict the design to animals of the same breed, as
demonstrated by [65];

• Capture of data from the new resource populations would be achieved electronically
in the field using mobile devices and subsequently uploaded to the data platform
when internet coverage is available;

• Assuming that the opportunity described in Section 5 can be realized, a web inter-
face would be built to enable the ADGG portal to capture the data from the new
resource populations, thereby avoiding the need for the new populations to develop
separate software and pipelines. That portal would also provide appropriate ana-
lytical models to enable multiple-country genetic evaluations within species, with
data ownership continuing to be retained by the farmers who own the livestock being
evaluated. It would also become the permanent repository for data collected through
those new populations, beyond the life of any research projects that initially fund
the data collection, thereby overcoming another of the challenges raised earlier in
this manuscript;

• Many of the countries lacking existing resource populations do have trained animal
geneticists with an interest in having greater involvement in data analysis. Ongoing
capacity-building of those and other interested people through the AABN (also de-
scribed in Section 5) would ensure that the analytical models are directly relevant to
the countries or regions where they are employed;
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• The animal geneticists identified to manage the new resource populations and to
undertake the genetic evaluations would be encouraged to directly collaborate with
researchers in other countries, to undertake cross-country genetic evaluations that
generate value for farmers across all collaborating countries;

• In countries where artificial breeding centers do not exist, such centers would be
established either by governments or the private sector to collect germplasm from
animals proven to be genetically superior, with the germplasm (most likely semen)
being made available to smallholder farmers, thereby enabling genetic improvement
of their herds/flocks;

• Over time, the beneficiaries of the genetic improvement program would be expected
to contribute to the ongoing costs of maintaining the genetic improvement programs,
as is now occurring in Australia to sustain the earlier research-funded populations
(e.g., livestock producers paying to have their own sires evaluated through the resource
populations, by contributions to the costs of the resource populations or even, in some
cases, establishing populations in their own herds or flocks);

• Establishing new resource populations using these guidelines would enable small-
holder farmers to directly capture the benefits of genetic improvement through the
use of genetically superior breeding animals but without the need to understand the
complexities or overcome the major challenges of new technologies (e.g., hardware
incompatibility; complexity; language barriers; lack of electricity, computers, internet
access, etc.) that have proven to be major barriers to adoption in LMICs, as described
by [71].

However, the expansion of existing resource populations and the development of new
populations is entirely dependent on the availability of new funding for this purpose, and
where that funding will come from is not at all clear. A recent presentation [72] comparing
the public acceptance of biotechnologies, such as genetic engineering and gene editing with
genomic selection, highlighted this major difficulty, indicating: “There are glaring disparities
when it comes to the implementation of genomic selection in the developing world . . . it is expensive
to develop large populations of genotyped, phenotyped animals. It is not a scale-neutral technology,
advantaging large breeds and genetic providers over small ones. Such inequality concerns would
derail a genetic engineering application, yet these concerns are rarely even discussed as it relates to
genomic selection . . . ”.

Therefore, perhaps the greatest opportunity to secure the proven and very significant
economic, social and environmental benefits of genomic selection for smallholder farmers in
LMICs is to attempt to engage a range of government, non-government and philanthropic
organizations to give priority to improving the rates of genetic gain in livestock farmed by
smallholders in those countries.
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