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Medical data plays an essential role in several applications in the medical field. Medi-
cal data can be raw data, signals, images, and several observations. The processing and
analysis of the data lead to inferring many vital points that help in diagnosis, treatment,
progression, and decision-making. Various research handles the medical data in many
aspects, such as improving time forecasting models using machine learning for future pan-
demic applications based on COVID-19 data 2020–2022. The validated proposed method
outperformed existing models in both accuracy and efficiency. The authors highlighted
the significance of machine learning techniques in predicting the spread of pandemics,
in which the proposed model can be exploited for future pandemic applications. The
study emphasizes the importance of accurate forecasting models in managing pandemics
and highlights the limitations of traditional statistical models in capturing the complex
dynamics of pandemics. The designed model overcomes limitations and is considered a
standalone public health system [1]. However, it requires the employment of deep learning
to extract deep features from white blood cells to classify them into different categories [2].
The optimized entropy-controlled deep features are utilized to build a prominent model
that performs success over all existing models in various terms of sensitivity, specificity,
and accuracy [2]. The medical data can be transformed using algorithms such as features
transformation to predict blood glucose in type 1 diabetes mellitus patients. H. Butt et al. [3]
proposed technique outperforms existing accuracy, sensitivity, and specificity methods.
They also discussed the potential implications of the proposed technique for improving
the management of T1DM and developing more accurate and efficient medical diagnostic
tools. Valuable insights were also provided into the current state of research in the field
and identified potential avenues for future research [3]. Moreover, using deep learning
with medical images improves the detection of H. pylori atrophic gastritis. Apart from
that, Yasmeen Yacoob et al. [4] proposed a deep learning-based approach for detecting
atrophic gastritis caused by Helicobacter pylori (H. pylori) infection. The proposed method
utilizes an enhanced convolutional neural network (CNN) learner to extract features from
endoscopic images of the gastric mucosa and classify them into normal or abnormal cate-
gories. The proposed method aims to improve the accuracy of existing detection methods
and reduce the need for invasive diagnostic procedures such as biopsy. They explore
the impact of accurate detection of H. pylori-related atrophic gastritis for preventing and
treating gastric cancer, a common complication of chronic H. pylori infection. The proposed
method is evaluated using a dataset of endoscopic images from patients with H. pylori
infection. It is compared with other state-of-the-art methods for atrophic gastritis detection.
The results show that the proposed method outperforms existing methods in accuracy,
sensitivity, and specificity [4].
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ECG signals can be represented as images using various transformation techniques.
A. Zyout et al. employed a combination of wavelet and Hilbert–Huang transforms to
extract relevant features from ECG signals and apply a support vector machine (SVM)
classifier to diagnose them. They evaluate the proposed method on a publicly available
MIT–BIH arrhythmia database and compare the results with existing ECG wave recognition
methods. The proposed method achieved an overall accuracy of 99.25% in recognizing
ECG waves, significantly higher than the existing methods. The authors further analyze
the performance of the proposed method in identifying individual ECG waves, such as
P-waves, QRS complexes, and T-waves. The results show that the proposed method
achieves high accuracy in recognizing all the ECG waves, with an average accuracy of
99.4% for P-waves, 99.9% for QRS complexes, and 99.6% for T-waves. The high accuracy
achieved in recognizing individual ECG waves is crucial for diagnosing and treating
specific cardiac conditions [5]. On the other hand, A. Almulihi et al. [6] proposed an
ensemble learning approach based on a hybrid deep learning model for early heart disease
prediction. The authors combine a CNN and a long short-term memory (LSTM) network
to capture both spatial and temporal features of electrocardiogram (ECG) signals. The
proposed method is evaluated on the publicly available PTB diagnostic ECG database and
compared with existing ECG-based heart disease prediction models. The results show that
the proposed hybrid deep learning model outperforms existing models concerning the
accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve
(AUC-ROC). The proposed model achieves an accuracy of 95.96%, a sensitivity of 95.85%,
a specificity of 96.07%, and an AUC-ROC of 0.9909, which are significantly higher than
the existing models. Their proposed method has the potential for clinical use in the early
diagnosis and treatment of heart disease [6].

The protein sequence data are exploited to detect COVID-19 and influenza viruses.
M. Erten et al. used a hamlet-pattern-based method to extract features from the protein
sequences and then apply an SVM classifier for detection. The proposed model is evaluated
on several datasets, including the SARS-CoV-2, influenza virus, and non-viral protein
datasets. The proposed model achieves an accuracy of 99.61% and an AUC-ROC of 1.00
in detecting the COVID-19 virus and an accuracy of 99.66% and an AUC-ROC of 1.00 in
detecting the influenza virus. The model also shows high specificity in detecting viral
proteins, with a specificity of 99.99% for COVID-19 and 99.96% for influenza viruses. The
proposed model can be used in clinical settings for early detection and diagnosis of COVID-
19 and influenza viruses [7]. However, the genomic and tabular data with recurrent neural
networks are employed to predict type-2 diabetes. P. N. Srinivasu et al. [8] proposed the
RNN model utilizing DNA sequence (as genetic data) and tabular data, such as patient
characteristics and medical history. The evaluation is performed on a dataset of patients
with and without type-2 diabetes, and the results show that it outperforms other state-
of-the-art models in terms of accuracy, sensitivity, specificity, and AUC-ROC. The model
achieves an accuracy of 88.1%, a sensitivity of 84.8%, and a specificity of 91.4% in predicting
the risk of type-2 diabetes. The AUC-ROC score of the proposed model is 0.935, indicating
a high discriminative power in distinguishing between patients with and without type-2
diabetes. The results indicated that the proposed model is effective in clinical settings for
type-2 diabetes, either early prediction or early prevention [8].

A. Dairi et al. [9] proposed an anomaly detection method for recognizing mental tasks
using EEG signals. The authors exploited a deep learning model to detect normal and
abnormal brain patterns during mental activities. The evaluation of the proposed model
is performed on a publicly available EEG dataset, which achieved an overall accuracy
of 98.31% above traditional classification methods. The proposed model is robust to any
variation in noise levels and signal strength. This study suggests that the proposed method
could be a practical tool for real-time recognition of mental tasks, potentially enabling
applications, such as brain–computer interfaces for controlling external devices with mental
commands [9]. Further, the medical data can be used for risk mortality prediction. More-
over, K. Nakamura et al. [10] proposed a deep learning model for predicting the risk of
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mortality due to heart failure. The authors utilized a time-varying covariate approach to
account for changes in patient health over time, which leads to enhanced accuracy. The eval-
uation is performed on a large real-world heart failure dataset. The outperforming C-index
is 0.741. Here, the model undergoes various conditions to demonstrate its robustness for
various input features. It shows that the inclusion of time-varying covariates significantly
improved the accuracy of the predictions. The proposed model could be valuable for
clinical decision-making concerning heart failure patient management. It enables clinicians
to identify high-risk patients and develop targeted treatment plans. The study suggests that
deep learning algorithms can potentially improve risk stratification and decision-making
in clinical practice for heart failure patients [10].

On the other hand, some researchers detect atrial fibrillation episodes based on 3D
algebraic relationships between cardiac intervals. N. W. Qammar et al. [11] proposed a
strategy based on the 3D phase space of the cardiac intervals and their algebraic relation-
ships, which are modeled by the Grassmann manifold. The evaluation is carried out on
250 electrocardiogram (ECG) recordings with varying lengths and compared with two
state-of-the-art methods for AF detection. The results show that the proposed method
outperformed the two state-of-the-art methods in sensitivity, specificity, accuracy, and F1
score. The model is robust against noise and baseline drift, achieving a sensitivity of 97.56%,
specificity of 99.15%, accuracy of 98.97%, and F1-score of 0.9804, which are higher than the
two state-of-the-art methods. Their approach can be utilized for the early detection of AF
episodes, leading to timely interventions and preventing complications associated with
AF [11].

The use of medical data to enhance the accuracy of breast cancer diagnosis is widely
recognized, as breast cancer remains the most prevalent cancer among women globally. For
example, M. Yusoff et al. [12] systematically analyzed 25 papers published from 2018 to 2020
and evaluated their methods and performance metrics. The results showed that CNNs were
the most used deep learning approach for breast cancer classification, followed by ensemble
methods and recurrent neural networks (RNNs). The review also identified various data
types used for classification, such as mammography images, histopathology images, and
gene expression profiles. The evaluation uses different metrics, such as accuracy, sensitivity,
specificity, F1-score, and area under the curve (AUC). The average accuracy of the reviewed
methods ranged from 70% to 99%, with most achieving accuracy above 90%. The study
also highlighted limitations and challenges in the reviewed papers, such as limited sample
sizes, lack of standardized datasets, and difficulty interpreting deep learning models’
decision-making process. In conclusion, the article provides a comprehensive overview
of the current state of deep learning methods in breast cancer classification and identifies
potential areas for future research [12].

Funding: This research received no external funding.

Conflicts of Interest: The writers certify they have no conflicting interest in this research.
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Detection of Atrial Fibrillation Episodes based on 3D Algebraic
Relationships between Cardiac Intervals

Naseha Wafa Qammar 1, Vaiva Šiaučiūnaitė 1, Vytautas Zabiela 2, Alfonsas Vainoras 2,* and Minvydas Ragulskis 1
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2 Cardiology Institute, The Lithuanian University of Health Sciences, Mickeviciaus g.9,
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Abstract: In this study, the notion of perfect matrices of Lagrange differences is employed to detect
atrial fibrillation episodes based on three ECG parameters (JT interval, QRS interval, RR interval). The
case study comprised 8 healthy individuals and 7 unhealthy individuals, and the mean and standard
deviation of age was 65.84 ± 1.4 years, height was 1.75 ± 0.12 m, and weight was 79.4 ± 0.9 kg.
Initially, it was demonstrated that the sensitivity of algebraic relationships between cardiac intervals
increases when the dimension of the perfect matrices of Lagrange differences is extended from
two to three. The baseline dataset was established using statistical algorithms for classification by
means of the developed decision support system. The classification helps to determine whether the
new incoming candidate has indications of atrial fibrillation or not. The application of probability
distribution graphs and semi-gauge indicator techniques aided in visualizing the categorization of
the new candidates. Though the study’s data are limited, this work provides a strong foundation for
(1) validating the sensitivity of the perfect matrices of Lagrange differences, (2) establishing a robust
baseline dataset for supervised classification, and (3) classifying new incoming candidates within
the classification framework. From a clinical standpoint, the developed approach assists in the early
detection of atrial fibrillation in an individual.

Keywords: atrial fibrillation; perfect matrix of Lagrange differences; statistical indicator; decision
support system

1. Introduction

1.1. Existing Diagnostics Techniques for Atrial Fibrillation

Atrial fibrillation (AF) is linked to an increased risk of cardiovascular events such as
cardiovascular mortality, major cardiovascular events, heart failure, ischemic heart disease,
sudden cardiac death, and stroke [1,2]. Numerous symptoms, such as fatigue, palpitations,
shortness of breath, and chest pain, are experienced by AF patients. Some patients have
no symptoms, which is known as asymptomatic or “silent” AF. Asymptomatic AF has
serious clinical consequences. Patients with undiagnosed AF may develop life-threatening
thromboembolic complications or tachycardia-mediated cardiomyopathy [3,4]. People
with AF disorders often have no symptoms or vague signs because AF is frequently
intermittent. This combination consequently makes detection and diagnosis challenging.
Most of the time, AF is not noticeable until a person experiences a serious health issue
and seeks therapy [2]. One of the key tactics for enhancing AF identification and possibly
lowering AF-related stroke, mortality, and healthcare expenditures is screening for AF [4].
The rhythm disturbance’s frequent silence makes it difficult to detect AF early, which
is a serious concern. The so-called asymptomatic AF is unknown to patients in around
one-third of those who have this arrhythmia. Much earlier detection of the arrhythmia
may enable the prompt introduction of medicines to protect patients not only from the
consequences of the arrhythmia, but also from the progression of AF from a treatable illness
into an untreatable issue [5].

Diagnostics 2022, 12, 2919. https://doi.org/10.3390/diagnostics12122919 https://www.mdpi.com/journal/diagnostics
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There are various heart health monitoring tools available on the market, such as
AliveCor [2], that show promise, particularly for patients with intermittent AF. However,
this equipment is expensive and unable to identify those with AF condition symptoms.
Today, a variety of methods, including Single Lead, Holter Monitoring, Mobile Telemetry
Monitoring, and Implantable Loop Recorders, are available for use in AF detection outside
of the hospital setting. Spot single-lead ECG monitors, such as the AliveCor, need the
patient to identify symptoms, document them, and discuss them with their clinician [2].
It can be concluded that current heart health monitoring methods are either excessive or
call for specialized, pricey equipment that must be used in conjunction with substantial
signal processing to produce better quality findings. People with known or potential
cardiovascular problems must have access to a low-cost heart health monitoring system
in order to lower the expense of medical examinations, lessen their worry, and receive
timely care.

The electrocardiogram (ECG) visual examination is the gold standard for identifying
AF. An ECG is required to identify AF; nevertheless, an erratic pulse can increase the
suspicion that it may be present [6,7]. A 12-lead ECG can be used to confirm the presence
of AF, a frequent persistent arrhythmia that is frequently asymptomatic [2]. In addition
to the severe irregularity of the RR interval, P waves vanish and are replaced by irregular
fibrillation waves (f waves) of various sizes and forms [8,9].

1.2. Perfect Matrices of Lagrange Differences as a Method for ECG Signal Analysis

ECG signals have been examined over time to detect and examine various cardiovascu-
lar diseases [9]. Before delving into the analysis techniques of the ECG signal, it is important
to recall that the ECG signal is a complex signal in its behavior [10,11]. The complexity
explicates how the various ECG parameters [12] have significant variation between them,
which is caused by various physiological and pathological factors, so therefore, no definite
mathematical model can characterize the relationship between ECG parameters, even for a
specific individual [11,13].

There is always an attempt to analyze the ECG signal in such a way that the data
with the vast bulk of the extraction of clinically relevant features are available, which
contain all the important information of the original ECG signal and thus operate as the
signal’s substitute for further analysis. Several computational approaches including deep
learning methods, such as feature extraction and dimensionality reduction, are well known
for conducting the analysis of ECG. These techniques are helpful for increasing clinical
research by gaining a better understanding of medical challenges [14,15]. Feature extraction
technique can occur in the frequency domain, time domain, or frequency–time domain
analysis [16]. Noujaim et al. [17–19] propose that the behavior of the cardiovascular system
is “fractal-like”, attempting to retain adaptive variability demonstrating non-linearity in
the cardiovascular system rather than stability. As a result, it makes more sense to seek a
solution to dynamic processes that are complicated in nature [11]. A range of well-known
nonlinear analytic techniques for analyzing ECG data have been used due to their robust-
ness. For instance, reconstructed phase space analysis [20], Lyapunov exponents [21,22],
correlation dimension [23–25], detrended fluctuation analysis (DFA) [26], recurrence plot
and Poincaré plots [27], and possibly additional nonlinear analytic approaches for ECG
analysis are becoming increasingly popular.

It is essential to surpass the boundaries of conventional nonlinear computation tech-
niques to determine potentially accurate, faster, and more reliable solutions for the analysis
of the ECG parameter. The idea of the perfect matrices of Lagrange differences has been
proposed and proved for the different nonlinear time series analysis applications in several
studies [10,11,28]. One of the objectives of this paper is to show that the expansion of the
matrix dimension does result in the increased sensitivity of the algebraic relationships
between cardiac intervals, which provides a more accurate platform for the early detection
of atrial fibrillation. First, the architecture of the third-order perfect matrices of Lagrange
differences is introduced. Then, the sensitivity of the proposed architecture is demonstrated
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by comparing the proposed architecture to the second-order perfect matrices of Lagrange
differences used in previous studies. The rest of the structure of the paper is as follows. The
notion of the perfect matrices of Lagrange differences is explained (this part is basically a
recall from the work [10,11] and is hence named “Preliminary Synopsis”). The perfect matri-
ces of Lagrange differences are used to explain how to interpret the relationships between
the three cardiac intervals (JT interval, QRS interval, RR interval). It is demonstrated (and
validated) that the expansion of the dimension of the matrix serves as an accurate platform
for assessing the ECG signal. Subsequently, using the one sigma rule, statistical operations
are performed on the dataset to establish an observation window for the classification
purposes. In addition to the statistical analysis, it is shown how the generated probability
index and the semi-gauge representation help to serve as the decision support instrument
for the detection of early AF episodes.

2. Methods

2.1. The Description of the Experimental Setup

The three cardiac intervals, (i) JT interval, (ii) QRS interval, and (iii) RR interval, are
registered as three time series, as shown in Figure 2. The ECG signal is recorded under the
“No Load” condition, which indicates that the participants did not exercise or perform any
stress tests while the ECG recordings were registered.

2.2. Participants

Participants in this study were divided into two groups: healthy and unhealthy
individuals. It is worth mentioning that the ECG data collected for both groups showed
a proclivity for atrial fibrillation (AF). Antiarrhythmic medication was not reported to be
used by either group of subjects; therefore, the cohorts were divided and categorized as
healthy or unhealthy. The cohort of healthy individuals comprised 8 people, whereas the
cohort of unhealthy individuals comprised 7 people. The mean and standard deviation
of age was 65.84 ± 1.4 years; of height, 1.75 ± 0.12 m; and of weight, 79.4 ± 0.9 kg. For
purposes of confidentiality, the candidates’ names were labeled as H1–H8, which indicate
healthy candidates, and UH1-UH7, which denote unhealthy candidates (see Tables 3–6).

2.3. Ethics Statement

The research met all applicable standards for the ethics of experimentation in ac-
cordance with the Declaration of Helsinki as reflected in prior approval by the Regional
Biomedical Research Ethics Committee of the Lithuanian University of Health Sciences
(ID No. BE-2-4, 17 March 2016). The permit to perform biomedical investigation was
granted by the LUHS Bioethics Committee (see the Institutional Review Board Statement).
Participants provided written informed consent prior to the experiment.

2.4. The Description of the Proposed Algorithm
2.4.1. Preliminary Synopsis

Let us begin by presenting a brief overview of the three cardiac intervals examined in
this study (JT interval, QRS interval, and RR interval). Figure 2 depicts a time series of the
three cardiac intervals for one of the candidates. In Figure 2, the x-axis represents the time
in minutes, whereas the y-axis represents the time series recorded for the each of the three
cardiac intervals. Let us denote each of these three time series as x = (x1, x2, x3, · · · · · · , xi),
y = (y1, y2, y3, · · · · · · , yi), and z = (z1, z2, z3, · · · · · · , zi), where i is the total number of
heartbeats recorded throughout the experiment.

The key concept, notion, and underlying conditions for the generation of 2-by-2
perfect matrices of Lagrange differences and the corresponding algebraic relationship have
been previously thoroughly explained and verified [10,11,28]. Furthermore, the fact that
derivatives tend to amplify noise, as well as the implications of reasonable mathematical
manipulations for the extraction of the most relevant information from the ECG signal,
have already been addressed in [10,11,28] and will not be explained in this work. What
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makes this research distinct from previous approaches is that (1) the order of the matrices
is increased, thus enhancing the sensitivity of the proposed algorithm, and (2) the idea of
employing this method for early detection of AF from a cohort of healthy and unhealthy
individuals. The next section discusses the architecture of the 3-by-3 perfect matrices of
Lagrange differences and then reflects on its potential sensitivity.

2.4.2. The Architecture of Third-Order Square Matrices of Lagrange Differences

The definition of 2-by-2 perfect matrices of Lagrange differences is given in [10,11,28].
Each element of the matrix can be either a zeroth-order difference or a first-order difference.
The following conditions must hold true for the matrix in order be a perfect matrix of
Lagrange differences [10,11,28]:

1. All elements of the matrix must be different.
2. Zeroth-order differences are located on the main diagonal.
3. First-order differences are located on the secondary diagonal.
4. The matrix is balanced with respect to time (the sum of all time lags is equal to zero).
5. The matrix is balanced with respect to lexicographic variables (the number of different

symbols must be the same).

Let us assume that index n denotes the current moment and δ represents the time lag (δεN).
Then, the structure of the 2-by-2 perfect matrix of Lagrange differences reads [10,11,28]:[

xn xn+δ − yn+δ

xn−δ − yn−δ yn

]
(1)

The schematic representation of this 2-by-2 perfect matrix of Lagrange differences
can be illustrated by the diagram in Figure 1. The diagonal elements of the matrix are
shown in circles. The first-order Lagrange differences are depicted by arrows connecting
respective elements.

Figure 1. A schematic diagram illustrating the architecture of 2-by-2 and 3-by-3 perfect matrices of
Lagrange differences. Zeroth-order differences (the diagonal elements of the matrices) are depicted
in circles. First-order differences are depicted by arrows connecting respective elements.

Let us consider the three different time series x, y, and z (Table 1) also shown in
Figure 2. The architecture of the 3-by-3 matrix can be naturally expanded by scaling the
structure of Equation (2).⎡⎣ xn yn+δ − xn+δ zn+δ − xn+δ

yn−δ − xn−δ yn zn+δ − yn+δ

zn−δ − xn−δ zn−δ − yn−δ zn

⎤⎦ (2)

8
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Table 1. The nine different elements of the time series x, y, and z with current, time-backward, and
time-forward indexes.

xn−δ xn xn+δ

yn−δ yn yn+δ

zn−δ zn zn+δ

Figure 2. The three recorded cardiac intervals are plotted as time series (the time is in minutes):
(a) the RR interval; (b) the JT interval; (c) the QRS interval.

It can be observed that all requirements for perfect matrices of Lagrange differences
hold true for Equation (2). Therefore, the matrix defined by Equation (2) is also a perfect
matrix of Lagrange differences. The schematic representation of the 3-by-3 perfect matrix of
Lagrange differences is depicted in Figure 1. Again, the diagonal elements (the zeroth-order
Lagrange differences) are shown in circles; all first-order Lagrange differences are depicted
by arrows connecting respective elements.

The algebraic relationship between two cardiac intervals (sequences x and y) is defined
by a mapping function F : R(2∗2) → R1 , which transforms each perfect matrix of Lagrange
differences to a scalar variable. Different mapping functions are used in [10,11,28] (the
discriminant of the matrix, the modulus of the maximal eigenvalue of the matrix, the norm
of the matrix). The same mapping function F : R(3∗3) → R1 should be defined for the
3-by-3 perfect matrix of Lagrange differences. The norm of the matrix is set at the mapping
function in all further computations. Internal and external smoothing of the mapped
scalar algebraic relationship between cardiac intervals are executed after the mapping
procedure [28]; the same radiuses of internal and external smoothing are adapted from [28].

2.4.3. The Sensitivity of the Proposed Algorithm

After illustrating the structure of the 3-by-3 perfect matrices of Lagrange differences,
the sensitivity of the proposed architecture is explored. To this end, one of the candidates
from the cohort of individuals is employed as an example. The ECG signal is recorded
for the candidate (Figure 2). Initially, all computations are performed with 2-by-2 perfect
matrices of Lagrange differences, as described in Section 2. The algebraic relationship
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between JT and QRS intervals is shown in Figure 3a; the algebraic relationship between JT
and RR intervals is shown in Figure 3b; the algebraic relationship between QRS and RR
intervals is shown in Figure 3c.

Figure 3. The sensitivity of 3-by-3 matrices vs 2-by-2 matrices is demonstrated for one of the
candidates. The x-axis denotes the time in minutes. The y-axis demonstrates the algebraic relationship
for the 2-by-2 (a–c) and 3-by-3 (d) matrix combination for the cardiac intervals JT, QRS, RR. (a) The
2-by-2 matrix algebraic relation is computed for the combination of cardiac intervals JT, QRS. (b) The
2-by-2 matrix algebraic relation is computed for the combination of cardiac intervals JT, RR. (c) The
2-by-2 matrix algebraic relationship is computed for the cardiac intervals QRS, RR. (d) The 3-by-3
matrix algebraic relationship is computed for the combination of cardiac intervals JT, QRS, RR.

These computations are repeated with all recorded cardiac intervals (JT, QRS, RR
intervals). Three scalar time series are mapped into a sequence of 3-by-3 matrices, as shown
in Figure 1. It is to be noted that the order of the parameter also has an important role
in defining the sensitivity of the proposed algorithm. The order of the parameters in this
study is fixed with JT interval as x, QRS interval as y, and RR interval as z (see Section 3
for more details). Once the three parameters are according to the proposed architecture,
they are evaluated by using computational techniques discussed above. (1) The recorded
time series are mapped into the trajectory matrices. (2) With the mapping (F ) technique,
the trajectory of the matrices is transformed into a scalar time series (F : R(3∗3) → R1) .
As noted previously, the mapping function F is defined as the norm of the 3-by-3 perfect
matrix of Lagrange differences. Finally, the internal and external smoothing techniques are
applied to smooth the mapped scalar sequence.

The sensitivity of the algebraic relationship revealed by the 2-by-2 and 3-by-3 perfect
matrices of Lagrange differences is measured by the variability (the variance) of the scalar
mapped signal depicted in Figure 3. The algebraic relationship between JT and QRS inter-
vals yields the variance value of 0.0218 (Figure 3a). Analogously, the JT–RR relationship
yields 0.0059 (Figure 3b); the QRS–RR relationship yields 0.0186 (Figure 3c). The 3-by-3
algebraic relationship between JT, QRS, and RR intervals yields the variance value of 0.0244
(Figure 3d). This increase in the sensitivity of the algebraic relationship can be explained by
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the following reasoning. Only two of four terms represented differences in the structure of
a 2-by-2 perfect matrix of Lagrange differences. However, six of nine terms represented
differences in the structure of a 3-by-3 perfect matrix of Lagrange differences. As men-
tioned previously, the differences better reflect the changes in the inter-connected system
represented by related synchronized cardiac intervals representing every consecutive heart
contraction. Moreover, the information fed into the algorithm is much larger (three cardiac
intervals instead of two). Therefore, a higher sensitivity of the 3-by-3 matrix architecture is
not surprising.

The values of the variances obtained from the second- and third-order perfect matrices
of Lagrange differences are tabulated in Table 2. With the comparison between the variance
values for both second- and third-order matrices, the sensitivity of the proposed algorithm
is highly exhibited by the 3-by-3 perfect matrices of Lagrange differences. The results
tabulated in Table 2 and shown in Figure 3 confirm the hypothesis of this study. Before we
delve into the results and discussions, we review the number of computations performed
on our dataset to determine (1) which combination patterns exhibit more sensitivity from
the 3-by-3 perfect matrices of Lagrange differences and (2) which combination patterns
produced the most likely statistical outcomes for the statistical computations.

Table 2. The comparison between the sensitivity of 2-by-2 and 3-by-3 matrices. The variance value
for each of the combination is tabulated for one of the candidates (see also Figure 2).

Candidate

Variance Values

Combination of
JT–QRS Interval

Combination of JT–RR
Interval

Combination of
QRS–RR Interval

Combination of
JT–QRS–RR Interval

0.0218 0.0059 0.0186 0.0244

2.4.4. Trials Computed upon the Dataset with Different Combination Patterns

This section explores different combinations of the parameters to determine which
combination is more sensitive in characterizing the algebraic relationship between the
parameters and which statistical parameters should be chosen for the subsequent compu-
tations. With the number of vectors as three, k = 3, the possible number of combinations
that could be made is 2k = 23 = 8. The computations are performed on all the possible
combinations (i.e., 2k = 23); a few of them are highlighted in Tables 3–6. As mentioned
before, the computations were conducted with two main objectives: (1) by altering the
parameters’ order, it is intended to assess the sensitivity of the proposed algorithm, and
(2) to look for the most suitable statistical analysis parameter for further computations,
whether it is variance (σ2), mean (σ), median (x ∼), or standard deviation (σx). In Table 3,
the computational techniques are performed for the combination parameters (QRS interval,
RR interval, and JT interval). First, the variance (σ2), mean (σ), median (x ∼), and standard
deviation (σx) are computed for the sequence representing the algebraic relationship be-
tween cardiac intervals (see Table 3). To obtain more statistically significant results, the one
sigma rule is applied to the smoothed sequence for the cohort of both healthy and unhealthy
people. Note that the one sigma rule approach applied here must not be confused with the
one sigma rule used subsequently in the study for the variance data. At this point in the
study, the goal of employing the one sigma rule is to identify the variability in the algebraic
relationship between the various combinations of parameters. In addition, the one sigma
rule is applied to the median and standard deviation of the smoothed algebraic sequence,
but later in the study, the one sigma rule will be applied to the variance data when the
statistical manipulations and computer-generated procedures are applied to it.
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As the implication of the one sigma rule, the upper boundary (x ∼H +σH) and lower
boundary (x ∼H −σH) are defined. Subsequently, the areas (A) above and below the
boundaries are computed. With the boundaries defined, statistical conditions are applied
to the smoothed sequence. If the smooth sequence is greater than the upper limit, then the
area above the upper limit is computed, and if the smoothed sequence is less than the lower
limit, the area below the lower limit is computed. The final outcome of the overall area
computed is denoted by A (see Tables 3–5). It makes sense to conduct computational trials
to determine the extent of the variability that exists while defining the algebraic relationship
between the three parameters. For the combination (QRS interval, RR interval, JT interval),
we do see the variability, as shown by the statistical outcomes tabulated in Table 3. The
same statistical techniques have been performed for the other three sequences (RR interval,
JT interval, and QRS interval; JT interval, RR interval, and QRS interval; JT interval, QRS
interval, and RR interval—see Tables 4–6). It is worth noting that while variability exists
in all of these combinations, upon close inspection of the statistical data, it is particularly
significant for the parameter combination of JT interval, QRS interval, and RR interval (see
Tables 3–6).

Furthermore, upon the comprehensive review of the mean (σ), median (x ∼), and
standard deviation (σx) data for the cohort of healthy and unhealthy individuals, it is
revealed that the variance (σ2) data are considerably distinctive and sensitive in their
conclusions for both cohorts in all combinations (see Tables 3–6) and can be utilized to
generate a reliable baseline dataset for the classification, which can then be used to classify
new incoming candidates. Therefore, the variance (σ2) data are chosen for generating
the Gaussian distribution graphs and producing the baseline dataset. In the next section,
the discussion on the statistical analysis techniques and the subsequent outcomes are
elaborated in detail.

2.4.5. The Development of the Decision Support System

Following the sensitivity assessment of the 3-by-3 matrices based on the variance
values (highlighted and underlined in Table 6), the statistical computations are performed
for the cohort of healthy and unhealthy individuals. The retrieved knowledge from the
algebraic relationship is employed to conduct the statistical analysis. For example, the
variance values are used to perform the statistical analysis for further computations. The
variance values will be employed to estimate the Gaussian distribution plot for both
cohorts (see Figure 4). The distribution will help to determine how evenly the data are
distributed along the x-axis. Since the distribution graph will assist in establishing the
foundations for classification, the one sigma rule is applied to the Gaussian distribution plot
for classification (see Figure 5a). The data fitted to the classification serve as the foundation
for classifying the new incoming individual in order to determine whether he/she falls
into the category of a healthy or unhealthy individual based on the classification rules
established in Table 7. To strengthen the visualization of classification of the new candidate,
a graphical representation of the probability distribution graph is proposed, followed by
a gauge representation with coloring indication for generating the warning system. If
an incoming person within the classification demonstrates either healthy or unhealthy
behavior, the classification approach will single out the individual according to his/her
ECG registering, and the warning gauge will provide a graphical depiction via a color on
the gauge that might be green, yellow, or red (based on the individual’s behavior). For
example, if a person enters the classification and exhibits the behavior of a healthy person,
the gauge arrow will point towards the green color, indicating that the incoming person is
healthy. On the other hand, if the incoming person indicates that he/she falls even slightly
towards the unhealthy category, the indication gauge arrow will point towards yellow,
which means that the incoming person may have indications of atrial fibrillation based on
his/her ECG registering. Finally, if the approaching individual falls far towards the right
of the distribution graph, it strongly indicates that the incoming person has a higher risk

14



Diagnostics 2022, 12, 2919

of having atrial fibrillation episodes and will be indicated by the color red. Each of these
scenarios are discussed more extensively in Section 3.

Table 7. Classification rules specified for the new incoming candidate into the variation interval.

Condition 1 Condition 2 Condition 3

If C ≤ μh − σh C ≥ μuh + σuh μuh − σuh ≤ C ≤ μh + σh
Then, indicator is IND = 0 IND = 1 IND = C−(μuh−σuh)

(μh+σh)−(μuh−σuh)

Figure 4. The distribution of individuals in each cohort is approximated by the Gaussian distribut-ion.
(a) The Gaussian distribution plot computed for the cohort of healthy individuals. (b) The Gaussian
distribution plot computed for the cohort of unhealthy individuals.
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Figure 5. (a) The construction of the variation interval between the mean of the healthy distribution
minus the standard deviation of the healthy distribution, and the mean of the unhealthy distribution
plus the standard deviation of the unhealthy distribution. The variation interval is indicated by a
double arrow and is used for the classification of a new incoming candidate. (b) The decision support
system is depicted as a probability distribution plot with a candidate’s likelihood (0.22) of having AF,
indicated by an asterisk sign.

3. Results and Discussion

First, the sensitivity of the proposed architecture is analyzed to assess the three ECG
parameters (JT interval, QRS interval, RR interval). As said earlier, the dataset comprises a
cohort of eight healthy individuals and seven unhealthy individuals. For each candidate,
the ECG signal is presented as a time series and is characterized as scalar vectors; x, y, and
z. According to the architecture shown in Figure 1 and tabulated in Table 1, each of these
scalar vectors is passed through the routine of perfect matrices of Lagrange differences. In
other words, the three scalar vectors are transferred onto a trajectory of matrices. Figure 3
depicts the algebraic relationship between the vectors x, y, and z for one of the candidates,
but the computations were performed for the entire cohort of 15 people (see Table 6).

The matrix trajectory for each individual in the cohort is translated into a scalar time
series using the norm of the matrix, where mapping is represented as F : R(3∗3) → R1 .
Finally, the signal is smoothed using internal and external smoothing techniques. The entire
computation resulted in the final smooth singular scalar vector, which contains most of the
original signal’s information. Table 6 illustrates the outcomes of the matrix’s sensitivity
analysis (as mentioned in Section 2.4.3, our attention is entirely focused on the variance
data for both cohorts). Up to this point, mathematical computations are performed for each
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individual in the cohort in order to determine the algebraic relationship between the JT,
QRS, and RR intervals according to the architecture proposed earlier. In the next section,
the statistical computational techniques are discussed in detail.

3.1. Performing the Statistical Analysis

The statistical analysis is performed on the variance dataset presented Table 6. To be-
gin with, the Anderson–Darling goodness-of-fit hypothesis test is conducted to determine
whether the data values for the healthy and unhealthy individuals are of a normal distri-
bution. Once the Anderson–Darling goodness-of-fit hypothesis test confirms the normal
distribution of the dataset, the estimates of the mean (mu), standard deviation (sigma), and
95% confidence intervals are determined using the computer-generated built-in algorithms.
Finally, the distribution graphs are created using the machine-provided probability density
function. In Figure 4, the x-axis represents the distributed data (which are variance values
produced from the proposed matrix architecture) for the cohort of healthy and unhealthy
individual, whereas the y-axis shows the probability density of the dataset. To distinguish
between the healthy and unhealthy cohorts, different color schemes are employed, such as
blue for healthy individuals and red for unhealthy people. In the next section, the criterion
for generating the observation interval is employed, which is used to classify the new
incoming individual.

3.2. Generation of the Variation Interval

Figure 4 indicates that the distribution has an optimal fit for the cohort of healthy and
unhealthy individuals. The observation interval is defined for classification purposes. The
one sigma rule is applied on the normally distributed data shown in Figure 4. For this,
the variation interval’s boundaries must first be defined. The boundaries are indicated as
right μuh + σuh and left μh − σh ends of the interval. This is indicated in Figure 5a by a
double arrow linking the two boundaries. The new entrants into the observation window
will be classified using this variation interval. After defining the observation interval, it
is essential to build the probability distribution graphical representation and develop the
semi-gauge indication tool. A set of statistical conditions is required for this purpose, as
shown in Table 7. Before defining the conditions, a few variables must be defined. For
example, the new candidate is denoted by C, and the variable IND (indicator) is introduced
to represent the new person’s location within the variation interval. The indices “h” and
“uh” denote healthy individuals and unhealthy individuals, respectively. The right side of
the variation interval is denoted as μuh + σuh and the left end is denoted as μh − σh. The
location of the new arriving candidate may be identified by the asterisk sign located along
the x-axis depending on its ECG registration (see Figure 5). The conditions defined for the
classification of the new incoming candidate are discussed below.

3.2.1. Condition 1

If the incoming candidate’s ECG registering value is less than or equal to the left
side of the variation interval, which is denoted as C ≤ μh − σh (see Table 7), the indicator
(IND) will be zero, and the person will fall towards the left side of the variation interval,
indicating that he/she is a healthy candidate.

3.2.2. Condition 2

If the incoming candidate’s ECG registering value is larger than or equal to the right
side of the variation interval, which is referred to as C ≥ μuh + σuh (see Table 7), then the
person will fall towards the right side of the variation interval, indicating that he/she is a
unhealthy candidate.
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3.2.3. Condition 3

If the incoming candidate’s value falls between the variation interval, which is codified
as uh − σh ≤ C ≤ μuh + σuh (see Table 7), the arriving candidate C falls in between the
variation interval.

Because the effect of atrial fibrillation is not expressed during ECG registration, the
distribution function is wide and the standard deviation is high. This implies that the
subjects may have experienced asymptomatic atrial fibrillation. There could have been
some “silent” AF candidates even among the healthy people. As a result, we created an
algorithm that could aid in their classification.

To supplement the visual representation, we incorporate a semi-gauge indication
tool for designing a warning system. This is accomplished by adopting a color scheme
that is solely dependent on the conditions specified in Table 7. Depending on the ECG
registering of the new candidate within the variation interval, the gauge arrow will point
towards either green, yellow, or red (see Figures 6d and 7d). In the next section, the two test
applicants are analyzed to determine where their ECG recordings fall after classification
within the variation interval.

 

(d) 

Figure 6. Test candidate #1. (a) The algebraic relation is shown for the combination of JT, RR, and
QRS intervals. (b) The classification of the candidate is marked with an asterisk indicator. (c) The
decision support system recommends the probability of the AF equal to 0.07. (d) The semi-gauge
representation is exhibited for the candidate with the arrow of the gauge pointing towards green,
indicating that the person is classified as a healthy individual.
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(d) 

Figure 7. Test candidate #2. (a) The algebraic relation is shown for the combination of JT, QRS, and
RR intervals. (b) The classification of the candidate is marked with an asterisk indicator. (c) The
decision support system recommends the probability of the AF equal to 0.54. (d) The semi-gauge
representation is exhibited for the candidate with the arrow of the gauge pointing towards yellow,
indicating that the person is classified as an unhealthy individual.

3.3. First Test Candidate

Figure 6 depicts the example of one of the test candidates. In Figure 6a, the x-axis
represents the time (minutes) and the y-axis represents the algebraic relationship between
the three parameters (JT interval, QRS interval, RR interval). The computational techniques
resulted in a variance value of 0.0018, as shown in Figure 6a. The resulting variance
value is subjected to the classification conditions described in Table 7, and it is noted that
the candidate appears to fall on the left side C ≤ μh − σh of the variation interval. The
location of the test candidate is indicated by the asterisk sign in Figure 6b. Furthermore,
when the candidate’s value is passed through the routine of the probability distribution
graph, it is found that the candidate had the lowest likelihood (0.07) of having an atrial
fibrillation prediction, as this can be seen in Figure 6c. In Figure 6c, the x-axis represents
the variance values, and the y-axis represents the probability (0–1). Finally, by using a
semi-gauge visualization tool, the color indication scheme is used to indicate where the
gauge’s arrow points out. It can be seen that arrow direction is towards the green, indicating
that the individual is healthy (see Figure 6d). In the next section, we look at another test
candidate’s scenario.
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3.4. Second Test Candidate

Figure 7 illustrates the example of another test candidate subjected to the proposed
techniques described in the previous sections. In Figure 7a, the x-axis represents the time
in minutes, and the y-axis shows the algebraic relationship between the parameters (JT
interval, QRS interval, and RR interval). The mathematical computations generated a
variance value of 0.0040 after passing through the proposed algorithm. When the variance
value is compared to the data in Table 7, it is noticed that the test applicant falls into the
category of healthy individuals. However, when the variance value is subjected to the
classification conditions, it appears that the person is falling towards the extreme right
C ≥ μuh + σuh of the observation interval (see Table 7). The probability distribution
graphical representation revealed that the test candidate has a likelihood of 0.54 to have
the indication atrial fibrillation, indicated by the asterisk sign (Figure 7c). To demonstrate
the severity of the warning, the semi-gauge arrow directed towards the yellow indicates
the risk that the individual has an indication of having atrial fibrillation (see Figure 7d).

In the examples of test candidates presented above, it is seen that the candidates
initially exhibit the behavior of being a healthy individual, but when their ECG recordings
are passed through the entire computation techniques proposed, it is discovered that one
of the candidates, despite having a normal ECG, may have indications of atrial fibrillation.
As mentioned in the introduction section, some people may not exhibit symptoms of AF,
which is known as asymptomatic or “silent” AF and has major clinical repercussions. This
was discovered to be the case for our study’s second test candidate.

AF is a pathology, and the identification of an arrhythmia on an ECG is necessary for
the diagnosis. Unfortunately, prompt diagnosis of PV might be challenging due to the brief
arrhythmic paroxysms and frequent asymptomatic state. To distinguish between paroxys-
mal and persistent AF in the ECG, signal-averaged parameters were not used when looking
for unhealthy and healthy people. Electrocardiography signal-averaged parameters and
changes in their relationships between AF patients and healthy people were used to identify
significant ECG parameters. Due to the fact that this electrocardiography technology is
being used to analyze ECG parameters in patients with AF for the first time, there is no way
to compare the study’s findings to those of previous investigations. Bright ECGs were seen
throughout the examination, but after more research using this methodology, the trends
in the disparities between the parameters and their links suggest that the signal-averaged
electrocardiography parameters may be useful for screening in patients with risk factors for
stroke, for whom a more thorough examination for asymptomatic AF is appropriate. The
surface electrocardiogram (ECG) is the primary tool used for the clinical diagnosis of atrial
fibrillation (AF), and AF is distinguished by the absence of a P wave due to the electrical
activity being disorganized. The RR interval, which reflects the ventricular interbeat, was
proposed as a significant biomarker for AF detection, despite the P wave’s relatively low
amplitude and challenging baseline that make its detection difficult [29]. Several publica-
tions investigate how the complexity of RR intervals changes as different cardiovascular
disorders progress [30,31]. A suitable level of RR interval fluctuations within an organism
denotes both healthy function and natural self-regulatory flexibility or resilience. JT interval
and myocardial metabolic rate are related (when heart activity is the highest, JT interval is
the shortest, and vice versa). The JT range, which is divided into the JTa interval (from point
J to the peak of the T wave) and the Te interval, regulates certain electrophysiological events
(from the T wave peak to the end of T) [32]. ECG leads with a shorter JT interval, showing
earlier repolarization and quicker metabolic changes in particular cardiac areas. The JT in-
terval was found to be the more significant indicator of AF risk than the QT interval, which
has been linked to the development of AF. This suggests that ventricular repolarization
rather than ventricular depolarization is a better predictor of future AF events (e.g., QRS
duration). As previous reports have mainly concentrated on the AF risk associated with
the entire QT interval, which includes components of both ventricular depolarization and
repolarization, the results of this analysis offer significant insight into the pathophysiology
of AF [29]. The interventricular synchronization aspects of the QRS duration parameter
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may be linked to the intrinsic regulatory system of the heart. The QRS complex, which is a
component of the heart’s regulatory system, depicts the spreading of depolarization inside
the ventricle and the synchronization of the spreading of depolarization between ventricles.
Slower conduction is visible in the heart ventricle in the larger QRS complex. In normal
conditions, the duration of the QRS complex can range from 80 to 120 ms. This index
is sensitive to changes in sympathetic and parasympathetic nervous system tone. This
parameter could be observed shortening in a healthy heart during sympathetic activation,
as well as during load. It is prolonged in some heart diseases, such as ischemic heart disease.
Patients with prolonged QRS had a higher prevalence of AF, according to the authors of a
cross-sectional study involving 25,000 people with left ventricular dysfunction [29]. The
majority of methods employed by physicians rely on the analysis of discrete values such
as heart rate, blood pressure, or the duration of a single cardiac interval. Comparing ECG
features in relation to one another can provide more clinical data, which is oftentimes more
insightful than evaluating features alone.

4. Limitations

The current research had some limitations. For instance, the study sample was rather
modest to start with. In order to evaluate atrial shape and potential connections with
P-wave ECG parameters, participants were not subjected to cardiac imaging. Additionally,
it makes sense to assess the dynamics of ECG parameter and interface values in addition to
their instantaneous values when assessing each subject as a separate complex system.

5. Conclusions

In this novel work, it is hypothesized, demonstrated, and proved that increasing the
dimensions of the perfect matrices of Lagrange differences from two to three enhances
the sensitivity of the proposed architecture and provides sufficient grounds for analyzing
the algebraic relationship between the ECG parameters. The idea of perfect matrices of
Lagrange differences is exploited to determine the early detection of atrial fibrillation
episodes using the ECG parameters JT, QRS, and RR. The computations were carried out
on 8 healthy individuals and 7 unhealthy individuals. Despite the modest sample size, the
analysis of this study showed solid evidence for defining the algebraic relationship between
the parameters. Moreover, several mathematical computational tests were conducted to
determine if the mean, median standard deviation, or variance could be employed for
classification, and we identified that the variance parameter stood out the most. We
decided to choose the variance as a computing tool for generating a baseline dataset.
The observation window was then built using the one sigma rule. Furthermore, a set of
conditions was also developed based on machine learning techniques to classify the new
arriving candidate inside the variation interval. The idea for probability distribution graphs
is proposed to indicate whether the new incoming person has the least or greatest likelihood
of developing atrial fibrillation symptoms. In addition, a semi-gauge indicator tool was
developed in order to construct a warning system based on the classification conditions. We
evaluated two test candidates, both of whom initially displayed the behavior of a healthy
individual, but when categorized using the classification, it was discovered that one of the
test candidates stood out as having an indication of atrial fibrillation.

6. Future Work

Since the proposed method is sensitive to describing the algebraic relationship between
the ECG parameters, changing the parameters’ order may provide significantly different
results. As a result, different ECG parameter combinations are encouraged for further
research and experimentation. Nonetheless, this work has the potential to establish a
reliable foundation for future research investigating ECG parameters using 3-by-3 perfect
matrices of Lagrange differences. As the sample size of the proposed study was modest
to begin with, it is encouraged to expand the sample size of the experiment and perform
the computations.
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Abstract: Heart failure (HF) is challenging public medical and healthcare systems. This study aimed
to develop and validate a novel deep learning-based prognostic model to predict the risk of all-cause
mortality for patients with HF. We also compared the performance of the proposed model with
those of classical deep learning- and traditional statistical-based models. The present study enrolled
730 patients with HF hospitalized at Toho University Ohashi Medical Center between April 2016 and
March 2020. A recurrent neural network-based model (RNNSurv) involving time-varying covariates
was developed and validated. The proposed RNNSurv showed better prediction performance
than those of a deep feed-forward neural network-based model (referred as “DeepSurv”) and a
multivariate Cox proportional hazard model in view of discrimination (C-index: 0.839 vs. 0.755
vs. 0.762, respectively), calibration (better fit with a 45-degree line), and ability of risk stratification,
especially identifying patients with high risk of mortality. The proposed RNNSurv demonstrated
an improved prediction performance in consideration of temporal information from time-varying
covariates that could assist clinical decision-making. Additionally, this study found that significant
risk and protective factors of mortality were specific to risk levels, highlighting the demand for an
individual-specific clinical strategy instead of a uniform one for all patients.

Keywords: deep learning; heart failure; mortality; risk prediction; time-varying covariates

1. Introduction

Heart failure (HF) has been significantly associated with mortality, especially among
those older than 65 years [1,2]. Japan has a “super-aged” society, and the number of
patients with HF was estimated to reach 1.3 million by 2030 [3]. Although a better survival
prognosis in Japan than that in Europe had been observed, the length of hospital stays in
Japan was approximately three times that in western countries [4]. Simultaneously, HF
was a leading cause of hospitalization in Japan, bringing a heavy economic burden to
society [5]. Considering these facts, a prognostic prediction model is expected to inform
patients and their families about the course of the disease and guide physicians to more
optimal treatment and management strategies such as allocation of medical resources in
consideration of survival prognosis.

The multivariate Cox proportional hazard (CPH) model [6] is the most frequently used
statistical-based method for risk prediction, but its performance is somewhat limited by
the linearity of the functional form assumed in the partial hazard (exponential) part [7,8].
By contrast, deep learning-based prediction models can fit and learn more complicated (e.g.,
non-linearity by activation function) relationships between covariates and outcomes. A fully
connected (FC) neural network-based survival prediction model, referred to “DeepSurv”,
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has been proposed by Katzman et al. [9]. It achieved better prediction performances
than the CPH model for cancer survival [10] and cardiovascular risk [8], and displayed a
workable performance on early triage of critically ill patients with COVID-19 [11].

Despite the widespread use of the CPH model and performance improvement achieved
by DeepSurv, the two models only consider invariant covariates but have no ability to learn
from time-varying covariates. Although a time-varying CPH model has been proposed
to take time-varying covariates into consideration [12], this model deals with the time-
dependent issue by simply considering the hazard at time t depending on the value of the
time-varying covariate at that time but the regression effect or the weight of the covariate
being constant or invariant. In essence, it is similar to a traditional CPH model. Therefore,
the model cannot capture the temporal relationship implied in time-varying covariates.
Furthermore, the time-varying CPH model requires the dataset to be pre-processed into a
so-called “long” format, where each duration is represented in a start and stop view, which
is monotonous. In this study, a recurrent neural network (RNN)-based model, referred to as
“RNNSurv”, was developed and temporally validated. Temporal validation (or narrow val-
idation) was defined by Moons et al. as follows: “External validation may use participant
data collected by the same investigators, typically using the same predictor and outcome
definitions and measurements, but sampled from a later period” [13]. The proposed model
could learn temporal features from time-varying covariates and fit nonlinear relationship
to predict risk of all-cause mortality for patients with HF. RNNSurv demonstrated better
performance than CPH and DeepSurv in terms of discrimination, calibration, and ability of
risk stratification, especially identifying the patients with high risk of mortality. Patients’
characteristics varied by risk level in view of the stratified risk groups (high risk and other
(or low risk)). This study also suggested that significant risk and protective factors of
mortality were required to be discussed specific to risk levels.

2. Materials and Methods

2.1. Study Design and Data Collection

The protocol for this retrospective study was prepared in accordance with the Declara-
tion of Helsinki, and the study was approved by the Institutional Review Board and Ethics
Committee of Ohashi Medical Center, School of Medicine, Toho University (No. H19031).

The data collection was the same as that explained in a previous study [14]. Medical
records of patients with HF hospitalized at Toho University Ohashi Medical Center between
April 2016 and March 2019 were reviewed by cardiovascular specialists, constituting a
development dataset. Then, an independent validation dataset was built from patients
admitted during the period of one year later. HF was diagnosed based on the following
information in the medical records: clinical syndromes consisting of dyspnea, malaise,
edema, or decreased exercise capacity due to the loss of compensation of cardiac pump
function, secondary to structural or functional abnormalities of the heart [15].

Patient characteristics, laboratory data, and echocardiographic data were manually
extracted from electronic medical records by a hired data collection staff. In addition, diag-
nosis procedure combination (DPC) data were also added to build a high-quality database
in this study. DPC is made up of unified patient clinical information in Japan, patient infor-
mation including disease name, surgical procedure, various stage classifications, medical
expenses, and patients’ medical practice is converted into electronic data, and medical
insurance services such as claims are provided in Japan based on this DPC [16]. After veri-
fying consistency between DPC data and medical records data, the database for this study
was created. The database construction flow is shown in Supplementary Figure S1 and
details of patients information are summarized in Supplementary Table S1.

Figure 1 shows the flowchart of the proposed prognostic prediction system. It mainly
consists of predictors’ selection, model development and validation, evaluation from
discrimination, calibration, overall aspects [17], and risk stratification.
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Figure 1. Overview of the proposed prognostic prediction system.

2.2. Outcome Definition

The endpoint was evaluated as all-cause mortality including both cardiovascular
and non-cardiovascular mortality. Cardiovascular mortality was defined as death due to
acute myocardial infarction, sudden cardiac death, HF, stroke, cardiovascular procedures,
cardiovascular hemorrhage, and other cardiovascular deaths that could not be attributed
to non-cardiac causes. Non-cardiovascular mortality was defined as any death that was not
thought to be the result of a cardiovascular cause, such as infection and/or malignancy.
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2.3. Preprocessing and Statistical Analysis

Candidate predictors were identified by preprocessing and statistical analysis, as pre-
viously described [18]. First, covariates that were missing in more than 20% of patients were
excluded. As multiple imputation needs to be trained and is hard to converge with a rela-
tively small sample size but a high dimension of variables, in addition, after checking the
missing distribution, the missingness distribution seems balanced between death and sur-
vival groups as illustrated in Supplementary Table S2, and the continuous and categorical
covariates with missing data were imputed using the simple imputation method [19]. Then,
covariates significantly associated with mortality were identified by the univariate CPH
model and least absolute shrinkage and selection operator regression [20] together. Multi-
collinearity was assessed and excluded by Pearson’s correlation coefficient between pairs of
continuous variables (setting 0.60 as a threshold) as was performed by Mesquita et al. [21].
Thereafter, the remaining covariates were identified as candidate predictors, where con-
tinuous predictors were Z-score standardized [22] when inputting to models. Available
covariates were presented as mean ± standard deviation or frequency (percentage) in
view of the covariates’ type. For group comparison, a two-tailed, unpaired Student’s t-test
was used to assess the difference of continuous covariates with normal distribution, and a
Mann–Whitney test was employed for skewed continuous covariates, where normality
was tested using the Shapiro–Wilk test. Categorical data were compared using Pearson’s
Chi-square test or Fisher’s exact test, as appropriate. A p value < 0.05 was considered
statistically significant. Data preprocessing was performed using Python (Python Software
Foundation, Beaverton, OR, USA; version 3.7.7), and statistical analysis was conducted
using R (R Foundation for Statistical Computing, Vienna, Austria; version x64 3.6.0).

2.4. Model Development and Validation

The proposed RNNSurv’s input includes two categories of candidate predictors: in-
variant (collected once) and time-varying (collected at both admission and discharge) with
different input strategies. RNNSurv consists of two branches as shown in Supplementary
Figure S2. The first is an RNN layer with inputs of time-step dynamic predictors (at admis-
sion and discharge). The second branch is an FC layer with inputs of invariant predictors.
Each FC layer connects with a ReLu activation function and batch normalization, and is
trained with a dropout strategy to reduce the risk of overfitting. Then, outputs of the
two branches are concentrated as a vector and input to the output layer. The detailed
parameters of the RNNSurv are illustrated in Supplementary Table S3 after trial and error.
RNNSurv was trained with an Adam optimizer, a learning rate of 0.05, and a training batch
size of 64. Early termination was activated if the loss function did not decrease after 20 con-
secutive epochs; otherwise, the training process continued to 1000 epochs. The model was
developed and internally validated by a 10-fold cross validation strategy on a development
dataset, which consisted of data from patients admitted between 7 April 2016 and 17 March
2019. Simultaneously, back-elimination was employed to further improve performance and
to reduce required predictors. In detail, the candidate predictor that had the greatest nega-
tive impact on testing performance (C-index) was deleted, and the process was repeated
until no further predictor deletion would improve testing performance. After the model
was developed, it was validated on an independent dataset, of which data were obtained
in the same way as the development dataset but collected from patients admitted between
20 March 2019 and 16 March 2020. The detailed development and validation processes are
shown in Figure 2.
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Figure 2. Overview of model development and validation.

In addition, a DeepSurv model [9] and a multivariate CPH model [6] were also
developed and temporally validated for performance comparison. To avoid overfitting,
the DeepSurv model employed a shallow structure with two FC layers. The first FC layer
was followed by a ReLU activation function and batch normalization and trained using
the dropout strategy as shown in Supplementary Figure S3. Its training configurations
were the same as those of RNNSurv. The CPH model employed a penalty with 0.05 to
the size of the coefficients during regression. This improved the stability of estimates and
avoided convergence failure. The initial inputs, i.e., the candidate predictors obtained
above, of the three models were the same. Because the DeepSurv and CPH models cannot
capture temporal features by themselves, a covariate separately measured at admission
and discharge would be regarded as two independent predictors. For example, heart rate
(HR) was measured at both admission (HR_A) and discharge (HR_D), resulting in two
predictors: HR_A and HR_D for DeepSurv and CPH. However, as RNNSurv could capture
temporal information among time steps, it would regard the HR as one predictor but with
two time steps (admission and discharge). After back-elimination, the optimal predictor
sets may vary with models due to differences in algorithms.

2.5. Performance Evaluation

Discrimination performance of models was evaluated using Harrell’s C-index [23] and
cumulative/dynamic time-dependent area under the receiver operating characteristic curve
(AUC) [24]. Higher C-index and time-dependent AUC values indicate better discrimination.
Calibration was evaluated at 1 and 2 years during follow-up using a calibration plot [25]
and a Hosmer–Lemeshow test simultaneously. If the calibration plot lies on a 45-degree
line, the calibration performance is perfect. Furthermore, the Brier score [26] was used
for overall performance evaluation, where a score closer to 0 indicates better performance.
Apart from the abovementioned measures, the models’ prediction performance was further
evaluated in view of their risk stratification ability. The 20% of patients with lower predicted
survival probabilities were considered at high risk of mortality [8]. Then, survival curves
of high-risk and the other 80% patients (non-high-risk or low-risk) were checked using a
Kaplan–Meier estimator and a log-rank test.

3. Results

3.1. Characteristics of Patients and Candidate Predictors

In total, 562 patients were included in the development dataset. The average age was
78 years and 45.7% of them were female. During follow-up of 30.9 ± 13.7 months, 81 (14.4%)
patients died. Patients who died were older, with more prior hospital admissions, had a
heavier burden on independence in daily life for the elderly with cognitive impairment
(IDL) and activities of daily living (ADL), and were more likely to have chronic kidney
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disease (estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73 m2), compared
with patients who survived, as illustrated in Supplementary Table S1. The validation
dataset included 168 patients of whom 28 (16.7%) patients died. Most characteristics were
comparable between patients in the development and validation datasets, but patients in
the validation dataset had lower body mass index (BMI), CHA2DS2-VASc score, and right
ventricular systolic pressure (RVSP). The mortality between the development and validation
datasets had no significant difference (14.4% vs. 16.7%, respectively, p = 0.551). The detailed
comparison is illustrated in Supplementary Table S4.

After candidate predictor selection, age, length of stay, prior admission times, is-
chemic heart disease (IHD), New York Heart Association (NYHA) at discharge, frailty
class, CHADS2, left ventricular ejection fraction (LVEF), mitral regurgitation (MR), tri-
cuspid regurgitation (TR), RVSP, angiotensin-converting enzyme inhibitor/angiotensin
receptor blocker (ACEi/ARB), NT-proB-type natriuretic peptide (NT-proBNP), hemoglobin
(HGB), and time-varying covariates including eGFR, systolic blood pressure (SBP), diastolic
blood pressure (DBP), HR, and low ADL were identified as initial candidate predictors for
all-cause mortality, as illustrated in Supplementary Table S5.

3.2. Discrimination Evaluation

Candidate predictors were used to build initial models (RNNSurv, DeepSurv, and CPH).
After back-elimination, the final predictors and C-index were obtained, as illustrated in
Table 1. Models were internally validated by 10-fold cross validation and then tempo-
rally validated. Once the final used predictors were determined by back-elimination,
models were trained on all of the data of the development dataset and then validated
on the validation dataset. In 10-fold cross validation, the proposed RNNSurv achieved a
0.807 ± 0.057 (mean ± standard derivation) testing C-index on the development dataset
and a C-index of 0.809 ± 0.022 on the validation dataset, whereas those of the DeepSurv
model were 0.783 ± 0.066 and 0.762 ± 0.022, respectively, and those of the CPH model were
0.754 ± 0.069 and 0.764 ± 0.002, respectively. An ANOVA test with the Tukey method con-
firmed that the C-index of RNNSurv was significantly different from that of CPH and
DeepSurv (RNNSurv vs. DeepSurv: p < 0.001; RNNSurv vs. CPH: p < 0.001). When
RNNSurv, DeepSurv, and CPH were trained on all of the data of the development dataset,
the validation C-indexes were 0.839, 0.755, and 0.764, respectively. In terms of predictors,
the three models perform both generalizability and specificity. For example, all three
models take age, length of stay, NT-proBNP, etc., as the predictors; while some predictors
are model-specific, such as TR and IDL.

Table 1. C-index and predictors of models.

Model
Model Development
(10-Fold Cross Validation)

Validation All of the Data Predictors

RNNSurv Train: 0.820 ± 0.022
Test: 0.807 ± 0.057

0.809 ± 0.022
(RNNSuev vs. DeepSurv:
p value < 0.001;
(RNNSuev vs. CPH:
p value < 0.001;)

Development: 0.890
Validation: 0.839

Invariant predictors:
Age, length of stay, IHD, NYHA at discharge,
frailty, LVEF, TR, ACEi/ARB, NT-proBNP, HGB;
Time-varying predictors:
eGFR, SBP, DBP, HR, low ADL

DeepSurv Train: 0.818 ± 0.033
Test: 0.783 ± 0.066 0.762 ± 0.022 Development: 0.872

Validation: 0.755

Age, length of stay, IHD, LVEF, RVSP, HGB,
ACEi/ARB, IDL, NT-proBNP,
(NYHA, eGFR, SBP, DBP, HR, low ADL)
at discharge

CPH Train: 0.768 ± 0.010
Test: 0.754 ± 0.069 0.764 ± 0.002 Development: 0.767

Validation: 0.762
Length of stay, IDL, ACEi/ARB, NT-proBNP,
(NYHA, eGFR, SBP, low ADL) at discharge

In addition to the C-index, the time-dependent AUCs of every 3 months are visualized
in Figure 3. The upper boundary was set at 4 years for the development dataset and
2 years for the validation dataset to avoid high censoring rates at later follow-up times.
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The proposed model outperformed DeepSurv and CPH on both the development (Figure 3a)
and validation datasets (Figure 3b).

(a) (b)

Figure 3. Time-dependent AUCs of models on development dataset (a) and validation dataset (b).

3.3. Calibration Evaluation

The calibration plots of the three models are shown in Figure 4. All three models fit well
to a 45-degree line on the development dataset, indicating almost perfect calibration ability.
On the validation dataset, the calibration plot of the proposed model seemed better than
those of the other models. However, the three models showed a worse calibration ability on
the validation dataset than the development dataset and the reason for this phenomenon
has been explained by Park et al. [17]—if the sample size is small, few individuals will be
included in subgroups. In this case, calibration analysis in view of the calibration plot and
the statistical test are not robust or powerful enough.

(a) (b)

Figure 4. Cont.
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(c) (d)

(e) (f)

Figure 4. Calibration evaluation of RNNSurve (a,b), DeepSurve (c,d), and CPH model (e,f).

3.4. Overall Evaluation

The Brier score of the proposed model was smaller than those of DeepSurv and CPH
on both the development and the validation datasets, as shown in Figure 5, indicating a
better overall performance. In detail, the mean ± standard deviation of Brier scores of
RNNSurv, DeepSurv, and CPH were 0.054 ± 0.017, 0.066 ± 0.020, and 0.080 ± 0.025 on the
development dataset, and 0.099 ± 0.039, 0.107 ± 0.039, and 0.112 ± 0.040 on the validation
dataset, respectively.

(a) (b)

Figure 5. Brier scores of models on development dataset (a) and validation dataset (b).
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3.5. Risk Stratification

The prediction performance was further evaluated in view of the ability of risk stratifi-
cation. Kaplan–Meier survival curves of high-risk and other (non-high-risk or low-risk)
patients stratified by the three models are visualized in Figure 6. Compared with DeepSurv
(Figure 6c,d) and CPH (Figure 6e,f), the survival curves of high-risk patients stratified by
the proposed RNNSurv (Figure 6a,b) had more obvious differences from other patients on
both the development and validation datasets, indicating a better ability of risk stratifica-
tion. Mortality in the high-risk patient group and other or low-risk patient group stratified
by RNNSurv had a significant difference (51.8% vs. 5.1%, p < 0.001 on the development
dataset; 48.5% vs. 8.9%, p < 0.001 on the validation dataset). Patients with high risk of
all-cause mortality were older, were more often female, had a heavier burden on their
medical history in terms of IHD and vascular disease (VD), had a longer length of stay and
severe HF symptoms assessed by NYHA and heavier burden on daily activities, and were
more likely to have chronic kidney diseases compared with low-risk patients. Details are
illustrated in Supplementary Table S6.

(a) (b)

(c) (d)

(e) (f)

Figure 6. Risk stratification by the RNNSurve (a,b), DeepSurve (c,d), and CPH (e,f) models.
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Additionally, significant risk and protective factors varied across all patients and high-
risk patients only. Based on the results of univariate CPH analysis, in the patient group
with a high risk of all-cause mortality, NYHA class (hazard ratio: 1.73 (95%CI 1.21–2.46),
p = 0.002), low ADL (hazard ratio: 2.38 (95%CI 1.29–4.37), p = 0.005), creatinine (hazard ratio:
1.12 (95%CI 1.03–1.22), p = 0.011), and HR (hazard ratio: 1.02 (95%CI 1.00–1.03), p = 0.049)
were significant risk factors, while protective factors were female (hazard ratio: 0.53 (95%CI
0.31–0.88), p = 0.015), direct oral anticoagulants/Warfarin usage (DOACWFuse) (hazard
ratio: 0.47 (95%CI 0.27–0.83), p = 0.009), SBP (hazard ratio: 0.98 (95%CI 0.96–0.99), p < 0.001),
and DBP (hazard ratio: 0.97 (95%CI 0.95–0.998), p = 0.031) (see Supplementary Table S7).
However, in addition to the above significant factors, age (hazard ratio: 1.04 (95%CI
1.02–1.06), p < 0.001), CHA2DS2-VASc (hazard ratio: 1.15 (95%CI 1.02–1.30), p = 0.024),
eGFR (hazard ratio: 0.98 (95%CI 0.96–0.99) at admission, p < 0.001; 0.96 (95%CI 0.94–0.97)
at discharge, p < 0.001), etc., were also significantly associated with mortality in all patient
groups (Supplementary Table S5).

4. Discussion

In this study, an RNN-based prognostic prediction model for patients with HF was
developed and temporally validated. This model can consider time-varying covariates,
which imply the course of disease (improving or worsening), and learn temporal informa-
tion from these covariates for decision-making, while DeepSurv and CPH have no such
ability. The proposed model achieved better prediction performance than DeepSurv and
CPH in view of discrimination, calibration, and ability of risk stratification.

The multivariate CPH model is the most-used survival model to fit the relationship
between patients’ covariates and outcomes [27]. However, its prediction ability may be
limited by linear assumptions. Recently, Bazoukis et al. concluded that machine learning
methods were important and effective for diagnosis, management, and prediction of out-
comes in HF patients [28]. In addition, instead of expensive imaging measurement, Liu et al.
reported a cheap method to estimate LVEF achieved by machine learning algorithms [29].
Coincidentally, a modern CPH feed-forward deep neural network model (DeepSurv) was
proposed as an alternative method for survival or risk prediction [8,9]. The neural network-
based model could learn and capture more complex and abstract features and feature
combinations from input covariates by nonlinear activation functions in layers. Both CPH
and DeepSurv assume that covariates or predictors are invariant. However, some covari-
ates are time-varying due to treatments such as polypharmacy in real-world situations,
which are informative and reflect the course of disease. These temporal features should be
considered in prediction models. Conversely, the proposed RNN-based prediction model
could “remember” previous information and use it for current decision-making; therefore,
it naturally accepts and considers time-varying predictors by serially learning.

The proposed model identifies and uses predictors that are easily obtained by routine
examination and are measured at admission and discharge. Most of these predictors are
previously reported prognostic markers. Specifically, age, NYHA, LVEF, ACEi/ARB, HGB,
and SBP were previously identified as predictors in the Seattle Heart Failure Model to
predict 1-, 2-, and 3-year survival rates for patients with HF [30]. NT-proBNP was used
as one of the predictors for clinical outcomes in patients with HFrEF [31]. Although eGFR
was widely reported as strongly associated with outcome in HF, few studies used it as a
predictor [32]. In our study, eGFR was identified as a predictor.

The proposed model has a considerable ability of risk stratification, especially in identi-
fying patients who have high risk of mortality. Patients with high risk of all-cause mortality
are much older. As reported by Gustafsson et al., elderly patients hospitalized with HF had
a very critical prognosis [33]. NYHA classification is generally used to estimate HF symp-
toms, and it was reported to be a significant predictor of all-cause mortality [34]. In our
study, NYHA was identified as a predictor of all-cause mortality as well, and a greater
proportion of patients with high risk of all-cause mortality had high NYHA (e.g., NYHA III,
IV). Shamagian et al. defined patients with eGFR < 30 mL/min/1.73 m2 as having severe
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renal failure, which was reported to be a strong predictor of mortality, and these patients
had significantly poor survival rates [35]. In our study, eGFR was a significant predictor
for all-cause mortality. The proportion of patients with eGFR < 30 mL/min/1.73 m2 in
the high-risk group was about two or three times that of the non-high-risk group. It was
reported that higher NT-proBNP levels were associated with higher incidences of all-cause
mortality [36], which is consistent with our study. Dunlay et al. reported that mortality
increased with increasing ADL difficulty [37] and low admission ADL was reported to be
associated with cardiovascular mortality [38]. In this study, low ADL was a predictor for
all-cause mortality and patients with high risk of all-cause mortality more often had low
ADL at both admission and discharge. A systematic review and meta-analysis conducted
by Lakhan et al. concluded that high C-reactive protein (CRP) was significantly associated
with an increased risk of all-cause mortality and sometimes related to a greater risk of
long-term adverse cardiovascular outcomes for patients with HF with preserved ejection
fraction [39]. In this study with mixed cases, patients with high risk of all-cause mortality
had significantly higher CRP than patients in the low-risk group.

Notably, significant risk and protective factors affecting survival or mortality are
risk level-specific. Therefore, risk stratification or identifying patients at high risk are
crucial to guide precision medicine and clinical strategies such as individually management
and treatment. Based on the possible survival duration or probability of mortality after
discharge, it is helpful in determining if or when the prevention treatment for high-risk
patients should be introduced and determining if an early discharge could be conducted for
low-risk patients to save costs and medical resources. Moreover, covariate value collected
at discharge is more likely to perform a significant risk or protective effect on prognosis
than the one collected at admission, indicating that covariates collected at discharge are
more strongly associated with prognostic outcomes than ones collected at admission, and
should be given more attention.

Limitations of the presented study are noted as follows. First, the proposed model
was developed on a single-center dataset. Although a temporal validation, which is
considered intermediate between internal and external validation, was conducted based on
the TRIPOD report [13], an external validation is needed, such as conducting the validation
on multiple centers and populations for further performance confirmation. Second, some
predictors used in previously developed prediction models were not recorded, such as
lymphocyte counts, uric acid, and sodium levels, which were used in the Seattle Heart
Failure Model; therefore, performance comparison with these models is limited. Third,
some covariates have missing data in varying proportions (>20%), limiting their inclusion in
this study and prediction ability. Finally, the confirmation of event and survival information
were determined by DPC data and medical records only, and thus it is possible that the
event after discharge has not been fully confirmed or captured.

5. Conclusions

The proposed RNN-based risk prediction model for patients with HF demonstrated
better performance than conventional statistical-based (CPH) and classical deep learning-
based (DeepSurv) models. The model considers and accepts time-varying covariates,
and in this way, it captures temporal information existing in a real-world situation. Risk
and protective factors that are significantly associated with mortality are specific to risk
levels, highlighting the demand for individual-specific clinical strategy instead of a uniform
one-for-all strategy.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics12122947/s1, Table S1. Characteristics of Patients
with Heart Failure for Model Development; Table S2. Comparison of Covariate Missing between
Death and Survival Patient groups in Development Dataset; Table S3. Parameters of RNNSurv; Table
S4. Comparison Between Patients in Development and Validation Datasets; Table S5. Candidate
Predictors for All-cause Mortality; Table S6. Comparison Between High- and Low-Risk Patients
Stratified by RNNSurv for All-Cause Mortality; Table S7. Univariate analysis for High-risk group (All-
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cause Mortality); Figure S1. Database construction flowchart; Figure S2. Structure of the proposed
RNNSurv; Figure S3. Structure of DeepSurv.
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Abstract: This paper introduces an unsupervised deep learning-driven scheme for mental tasks’
recognition using EEG signals. To this end, the Multichannel Wiener filter was first applied to
EEG signals as an artifact removal algorithm to achieve robust recognition. Then, a quadratic time-
frequency distribution (QTFD) was applied to extract effective time-frequency signal representation
of the EEG signals and catch the EEG signals’ spectral variations over time to improve the recognition
of mental tasks. The QTFD time-frequency features are employed as input for the proposed deep
belief network (DBN)-driven Isolation Forest (iF) scheme to classify the EEG signals. Indeed, a single
DBN-based iF detector is constructed based on each class’s training data, with the class’s samples
as inliers and all other samples as anomalies (i.e., one-vs.-rest). The DBN is considered to learn
pertinent information without assumptions on the data distribution, and the iF scheme is used for
data discrimination. This approach is assessed using experimental data comprising five mental tasks
from a publicly available database from the Graz University of Technology. Compared to the DBN-
based Elliptical Envelope, Local Outlier Factor, and state-of-the-art EEG-based classification methods,
the proposed DBN-based iF detector offers superior discrimination performance of mental tasks.

Keywords: deep learning; motor imagery; Isolation Forest; anomaly detection; EEG signals classification

1. Introduction

The brain–computer interface (BCI) is a recent manner of communication where it
allows translating oscillatory Electro Encephalogram (EEG) patterns into action [1]. BCI
technology has proven very successful in the scientific community, since it allows the
command of several devices, such as a computer, from the assisted control of the human
brain [2]. It is based on the electrical brain activities of disabled patients who have lost their
mobility autonomy [3]. In other words, several motivations can be highlighted for designing
an MI-based system. Suppose one considers only the case of motor-impaired people. In
that case, MI-based task recognition can solve several daily problems, such as a text-entry
system, making a phone call, and wheel-chair control, especially if the recognition system
has certain reliability and robustness in real time. In a more advanced stage, MI-based
systems for BCI applications can be much more important if communication between two
or more patients can be established via the MI-based system. It is worth noting that many
researchers and engineers have developed several methods and systems for EEG signals
classification during the last few years [4,5]. However, there are still several unsolved
problems in motor imagery (MI)-based tasks recognition [6]. Essentially, transforming
thoughts into actions via BCI remains challenging because recorded EEG signals are highly
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affected by background noise and different artifacts, including eye blinking, cardiac activity,
and the state of stress of the patient.

Various approaches have been proposed for MI tasks classification in the last few
years. For instance, the authors in [3] applied tunable-Q wavelet transform (TQWT) on
EEG signals for extracting time-frequency features, and the Least-squares Support Vector
Machine (LSSVM) algorithm was applied for separating between right-hand and right-foot
MI tasks. In another work, the same research team subsequently [6] proposed the use
of Analytic Intrinsic Mode Functions (AIMFs) based on Empirical Mode Decomposition
(EMD) and Hilbert transform for the EEG signal feature extraction module. To this end,
several attributes have been generated, such as peak value and spectral moment of power
spectral density, and the raw moment of the first derivative of instantaneous frequency.
These features are then considered inputs to the LSSVM classifier with radial basis function
as kernel function, where an overall accuracy of 97.56% was obtained. The study in [7] pro-
posed optimal allocation features to discriminate the operative information from EEG data
with a minimum possible rate of variability. The classification stage was performed using
Naive Bayes and LS-SVM algorithms, obtaining an accurate detection percentage of 96.36%
and 96.62%, respectively. The authors in [8] presented an EEG de-noising phase using a non-
linear filter based on the Multi-Scale Principal Component Analysis (MSPCA) technique.
Diverse attributes were generated by the application of Empirical Mode Decomposition
(EMD), discrete wavelet transform (DWT), and wavelet packet decomposition (WPD). In
the classification stage, a k-nearest neighbor algorithm was applied to separate between two
classes, namely right hand and foot, where a correct recognition rate of 92.8% was obtained
according to their experimental results. Authors in [9] designed sliding window techniques
to improve the binary classification of motor imagery, where features are extracted via
Common spatial pattern (CSP), and the classification is conducted using linear discriminant
analysis (LDA). They have used the BCI Competition IV-2a data dataset, which is publicly
available, and demonstrated satisfactory classification performance of this approach by
reaching an accuracy of around 80%. In [10], a combined approach merging an improved
group least absolute shrinkage and selection operator (LASSO) is proposed for EEG signals
spatial smoothing, features selection, and classification. It has been demonstrated that this
approach can enhance the performance of BCI systems. In [11], a combination of cross-
correlation and discrete wavelet transform (DWT) has been employed in feature generation
and selection procedures to classify MI-based EEG signals. After that, the classification
task was conducted by the application of five different methods, namely: multilayer per-
ceptron neural network (MLP), probabilistic neural network (PNN), logistic regression
(LR), kernelized logistic regression (KLR), and LS-SVM. In [12], an approach based on
machine learning and feature selection techniques is considered for motor imagery EEG
signal classification on the internet of medical things environment. To this end, actual
feature sets are obtained from BCI Competition-II Dataset-III motor-imagery EEG signal
using the Adaptive Auto-regressive approach. Then, an innovative fuzzified extension
of the discernibility matrix is employed for feature selection. Results demonstrated that
when used with SVM and Ensemble variants of classifiers, this feature selection procedure
outperformed other commonly used approaches.

In recent years, there has been a growing interest in designing efficient techniques
for EEG-based classification of motor imagery tasks exploiting machine learning and
deep learning models. However, most of these techniques are developed in a supervised
learning procedure where labeling information is needed. Essentially, this work focuses on
developing a flexible and unsupervised data-driven approach to effectively identify mental
tasks based on EEG signals. Here, we addressed the multiclass mental tasks classification as
an anomaly detection problem employing an unsupervised deep learning model. Overall,
the contributions of this study are recapitulated as follows.

• This work presents a deep learning-based anomaly detection strategy to enhance men-
tal tasks recognition by EEG data. This strategy comprises several stages, i.e., artifacts
removal, extraction of time-frequency features of EEG signals, anomaly detection, and
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classes discrimination. Specifically, the EEG signals are first filtered using the Multi-
channel Wiener filter (MWF) to remove artifacts and achieve robust recognition. We
adopted a quadratic time-frequency distribution (QTFD) for extracting high-resolution
time-frequency signal representation of the EEG signals. The employment of a QTFD
technique is expected to improve the recognition of mental tasks by capturing the EEG
signals’ spectral variations over time. The extracted time-frequency features are inputs
to the proposed unsupervised deep learning-based approach for classifying the EEG
signals. Indeed, this study treated multiclass classification as a multiple-binary dis-
crimination problem. Specifically, this approach combines the desirable characteristics
of both a deep belief network (DBN) and an isolation forest (IF) technique for separat-
ing mental tasks based on the time-frequency features of EEG signals. Crucially, this
technique profits from the greedy learning characteristics of the DBN for extracting
pertinent information from the QTFD features and the capacity of the IF detector to
sense outliers. The IF algorithm’s key characteristic is its ability to reveal anomalies
without using distance or density metrics. This enables eliminating computational
costs related to distance computation in all distance-driven and density-driven mod-
els. In addition, the iF detector can handle large-sized datasets with many irrelevant
features [13]. Indeed, a single DBN-based IF detector is constructed based on training
data in the targeted class, i.e., the samples in such class are considered inliers, and
all remaining samples are considered anomalies (i.e., one-vs.-rest). We evaluated the
efficacy of this technique through experimental data comprising five mental tasks:
mental word association, mental subtraction, spatial navigation, right-hand motor
imagery, and feet motor imagery, from a publicly available database from the Institute
for Knowledge Discovery, Graz University of Technology, Austria. Thus, to separate
the five mental tasks by EEG signals, by using one-vs.-rest method, we constructed
five DBN-IF detectors.

• Furthermore, the discrimination capabilities of the DBN-IF scheme have been com-
pared with those of DBN-based Local Outlier Factor (LOF) and Elliptical Envelope
(EE) anomaly detection methods. As we know, DBN-based LOF and EE methods have
not previously been used for EEG-based mental tasks identification. The essence of
LOF is based on the idea of local anomalies [14], while the EE senses anomalies by
fitting an ellipse around the data utilizing the Minimum Covariance Determinant [15].
We assessed the performance of the investigated technique using four commonly used
statistical scores. Results revealed that the proposed DBN-IF approach dominates the
other investigated approaches.

• In addition, the results of the DBN-IF approach are compared with the state-of-the-art
techniques; the results demonstrated the proposed approach’s outperformance in
improving the separation of metal tasks based on EEG signals.

The remainder of this paper is organized as follows. Section 3 briefly describes the
preliminary materials, including the MWF artifact removal technique, the QTFD features
extractor, the DBN model, and the iF anomaly detector. Section 3 presents the proposed
approach to distinguish between the five mental tasks. In Section 4, we present the used
data and the obtained results. Finally, we offer conclusions in Section 5.

2. Related Works

Mental tasks recognition based on EEG signals is a challenging problem in EEG sig-
nal processing and analysis. Recently, deep learning models are employed to enhance
medical applications in academia and industry due to their ability of extracting pertinent
features of high dimensional data [16]. They demonstrated promising performance in
various applications, including COVID-19 infection detection [17], Parkinson’s disease
detection [18]. Various studies have investigated deep learning techniques for EEG clas-
sification problems in recent years. For instance, in [19], Bashivan et al. proposed a new
representation of EEG classification problematic, where raw EEG signals are transformed
into a sequence of topology multi-spectral images or frames. Inspired by the representation
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of images and videos classification using deep learning techniques, the authors applied
a deep recurrent convolutional network (CNN) for classifying the transformed images.
However, it remains challenging to preserve EEG signals’ spatial, spectral, and temporal
structure after transforming them into 2D images. The study in [20] applied Extreme
Learning Machine (ELM) to discriminate five mental tasks based on EEG signals. Results
demonstrated that ELM obtained similar classification performance in terms of accuracy
as SVMs and Backpropagation Neural Network (BPNN) classifiers. However, it has less
training time compared to SVMs and BPNN. Furthermore, it has been demonstrated that
smoothing the classifiers’ outputs enhances their discrimination accuracies. In [21], two
approaches based on deep convolutional neural networks and deep residual learning are
applied for the EEG classification of driver mental states. Data from a driving simulation
platform is used to verify the effectiveness of these classifiers. Results based on intra- and
inter-subject demonstrated that the two models achieved good classification performance
and outperformed the LSTM- and SVM-driven classifiers. However, this study focused
only on a binary classification to predict driver fatigue. In kuremoto2019mental, Kuremoto
et al. proposed hybrid machine learning methods for EEG-based mental task recognition by
combining SVM and neural networks (e.g., MLP, CNN, and stacked auto-encoder (SAE)),
as well as the mixed SAE+MLP, CNN+MLP models. Results revealed the superior classifi-
cation accuracy of the hybrid models than the traditional methods (i.e., MLP, SVM, and
CNN). However, the inputs considered by these models consist of the raw EEG signals;
other input alternatives can be considered for improvements, such as the preprocessed data
by wavelet transform or Fourier transform. In [22], Opalka et al. adopted a Multi-Channel
Convolutional Neural Networks architecture for EEG mental tasks classification. Results
based on data from V from BCI Competition III demonstrated the superior classification
performance of this approach with an accuracy of around 70%, surpassing alternative
methods (i.e., AlexNet, VGG-16, and Cecotti’s multi-channel NN).

In [23], time-frequency features and location information are first extracted from MI
EEG signals, and the short-time Fourier transform (STFT) method was then applied to
proceed into a 2D image representation. In the classification phase, CNN with only 1D
convolutional and one max-pooling layer was combined with stacked autoencoders (SAE),
obtaining a correct recognition rate of 90.0%. In [24], a classification framework using a
long short-term memory (LSTM) with one dimension-aggregate approximation as a feature
extractor was proposed to classify EEG motor imagery tasks. This approach employs a
softmax layer for predicting the probability of every class. Classification results based on
public BCI competition data demonstrated that the LSTM-based approach outperformed
the state-of-the-arts approaches using no other deep networks by obtaining an averaged
accuracy of 75.28%. In [25], a hybrid approach called frequential deep belief network
(FDBN) is designed to deal with Motor imagery classification problems by combining a
fast Fourier transform (FFT), and wavelet package decomposition (WPD) are combined
with a deep belief neural network (DBN). At first, FFT and WPD are applied to obtain
frequency domain representations of EEG signals, and their output features are used to
train the DBN model. Here, a softmax layer is adopted to perform the classification task.
In [26], a hierarchical flow convolutional neural network (HF-CNN) model is introduced to
classify forearm movements using electroencephalogram (EEG) signals. This approach has
been assessed using experimental and BNCI Horizon 2020 datasets and demonstrated a
moderate classification performance. This study helps develop a brain-controlled robotic
arm system to perform high-level tasks. Authors in [27] proposed a Graph-based CNN
network combined with an attention model for motor imagery classification. Specifically,
the positioning information of EEG nodes is first represented by a graph structure, and
then the CNN with attention is applied to learn EEG features. They showed that the EEG
graph with more nodes significantly enhances the overall performance. Authors in [28]
present a motor imagery tasks’ EEG signals classification using CNN in the brain–BCI
system. Essentially, the CNN model is employed to classify the right hand and right foot
MI-task using EEG signals. To this end, the CNN moded is trained with transformed EEG
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signals into images via time-frequency approaches, namely short-time Fourier transform
(STFT) and continuous wavelet transform (CWT). Results revealed that the classification
performance achieved by using CWT was significantly better than that obtained via the
STFT approach. In another study [29], a classification of hand movements framework based
on EEG signals is introduced using a deep attention-based LSTM network. Importantly,
the attention-based LSTM is trained using time and frequency domain features extracted
from the EEG signals. However, this approach is based on the use of hand-crafted features.

3. Materials and Methods

The general framework of the proposed EEG-based mental tasks recognition is schemat-
ically illustrated in Figure 1. This framework consists of five main steps: data acquisition,
artifacts removal through MWF, time-frequency representation of the EEG signals using
QTFD, feature extraction via the DBN model, and mental tasks recognition based on the IF
anomaly detection scheme.

Figure 1. Schematic representation of the general deep learning framework for EEG-based metal
tasks discrimination.

3.1. EEG Artifacts Removal Using Multi-Channel Wienner Filter

The collected EEG signals are usually tinted with glitches or spikes due to sudden
changes in skin-electrode contact impedance. Specifically, this situation is often produced
by the movement of the subject head, resulting in the shift of electrodes around. This
movement artifact presents a very large magnitude peak that impacts a single channel or
a few adjacent channels. The morphology of this kind of artifacts (with focused spatial
and sparse temporal structure appearing only once in a few channels in the recording) can
differ significantly compared to eye blinks artifacts, which are redundant for a subject.

This study gives EEG signals input to an MWF algorithm for EEG artifacts’ removal.
The MWF algorithm is known for its efficiency using both hybrid and actual EEG data,
since it can eliminate a wide range of artifacts with more satisfactory performance than
current existing techniques [30]. Notably, the main idea behind MWF is that a low-rank
approximation replaces the artifact covariance matrix via the generalized eigenvalue de-
composition [30]. The employment of MWF as an artifact removal technique was strongly
motivated by the fact that the MWF is not limited to a specific kind of artifact, and it is
robust and generic for various types of EEG artifacts (other artifacts than eye blink or
muscle artifacts such as movement artifact) [30]. Figure 2 provides an illustration of some
examples of EEG signals before and after artifacts’ removal using the MWF algorithm.
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Figure 2. Illustration of EEG signals before and after artifacts’ removal.

3.2. Time-Frequency Representation of EEG Data via a QTFD

After obtaining relevant EEG signals by removing artifacts, they are used as input
to time-frequency features through quadratic time-frequency distributions (QTFDs). This
study uses QTFD to extract time-frequency components due to its capacity to catch the EEG
signals’ spectral variations over time. In particular, the EEG signals could be represented
using a QTFD by discriminant features that could improve the recognition ratio of distinct
emotional classes. Moreover, the QTFD has been efficiently implemented to characterize
EEG signals in several fields, including decoding motor imagery tasks [31]. The main
idea behind using QTFD components is to consider the nonlinearity aspect in mapping
EEG signals; moreover, QTFDs are invariant to the time-frequency shift, which can avoid
some limitations encountered using other time-frequency analysis techniques, such as
Scale-invariant feature transform or Wavelet Transform [31]. In order to calculate the QTFD
components of EEG signals, a sliding window is used to split the EEG signal of each channel
into a set of EEG segments.

For each EEG segment, the QTFD-based time-frequency representations are based on
the Hilbert transform and Wigner–Ville distribution [32]. Given the time evolution EEG
segment (real-valued signal) s(t), the QTFD components are computed, as follows:

a(t) = s(t) + jHT (s(t)), (1)

where a(t) and HT represent the Hilbert transform and the analytic signal, respectively.
The Wigner–Ville distribution (WVD) of the signal a(t) is then computed as follows:

WVDa(t, f ) =
∫ ∞

−∞
a(t +

τ

2
)a∗(t − τ

2
)e−j2πτ f ∂τ, (2)

where τ and a∗(t) represent the parameter of the centered formulation and the complex
conjugate of a(t), respectively. Finally, to obtain QTFD, we simply convolve the computed
WVDa(t, f ) with a time-frequency kernel K(t, f ).

�a(t, f ) =
∫ ∞

−∞

∫ ∞

−∞
WVDa(φ, τ)K(φ, τ)e−j2π f τ−j2πtφ∂τ∂φ, (3)

where �a(t, f ) represents the QTFD of a(t). In the recognition cases, exponential time-
frequency kernel is generally used to moderate the aspect of the cross-terms and keep a
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satisfactory resolution in both the time- and frequency-domain. In the present case, the
exponential kernel is expressed as:

K(t, f ) = exp
(
− t2 f 2

α2

)
. (4)

Here, α represents the parameter controlling the suppression of the cross-terms. In other
words, the exponential kernel tends to eliminate the interference, which is away from the
origin. The QTFD based on the exponential kernel is called the Choi-Williams distribution
(CWD). More details and explanations about the QTFD or CWD extraction process can
be found in [31]. To be more explicit and provide more details concerning QTFD feature
extraction, Figure 3a,b illustrates two examples of the Choi-Williams decomposition. For
instance, in Figure 3a, the examined EEG signal is given in the bottom panel, the response
in the frequency domain is shown in the right panel, and its corresponding spectrum is
displayed in the left panel.

Figure 3. A practical example of Choi-Williams decomposition (QTFD) of EEG signal.

The extracted QTFD-based time-frequency features will be used as input by the
proposed deep learning-based anomaly detection approach to discriminate between the
various mental tasks.

3.3. Deep Belief Network (DBN)

DBNs are probabilistic generative models designed by stacked restricted Boltzmann
machines (RBMs). RBMs are a powerful tool for extracting and representing data adopted
in machine learning [33] (see Figure 4a). As schematized in Figure 4a, RBM is a variant of
the conventional Boltzmann Machine (BM), which removes all connections in the same
layer, and only the connections between visible and hidden layers are preserved [33].
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Figure 4. Schematic illustration of (a) RBM and (b) DBN models.

RBMs are energy-driven models and were employed as generative models for different
kinds of data [34], including text, speech, and images. The energy of join structure is
expressed [35]:

Energy(v, h) = −
m

∑
i=1

n

∑
j=1

Wijvihj,−
m

∑
i=1

bivi −
n

∑
j=1

cjhj, (5)

where Wij represents the element of W which connects the the ith visible variable vi to the
jth hidden variable hj, b and c denote the parameters of the model.

Then, the underlying Boltzmann distribution can be computed as [36]:

P(v, h) =
exp(−Energy(v, h))

∑v ∑h exp(−Energy(v, h))
=

∏ij eWijvihj ∏i ebivi ∏j eajhj

∑v ∑h exp(−Energy(v, h))
, (6)

Since only v is observed, the hidden variables h are marginalized.

P(v) = ∑
h

e−Energy(v,h)

∑v ∑h exp(−Energy(v, h))
, (7)

where P(v) refers to the probability allocated by the mode to a visible vector v. As there is
no connection between the nodes at the same layer (Since the intra-connections are absent
at both layers), the corresponding conditional probabilities are:

P(v|h) = ∏
i

p(vi|h), and P(h|v) = ∏
j

p(hj|v). (8)

For binary data, equations in (8) can be reformulated as:

P(vi = 1|h) = σ(∑
j

Wijhj + ci), (9)

P(hj = 1|v) = σ(∑
i

Wijvi + bj), (10)

where σ(.) denotes the logistic function and σ(x) = (1 + exp(−x))−1.
DBNs are built up by stacking RBMs (Figure 4b) and trained in an unsupervised

manner for extracting pertinent features from the input data. They proved to be effective in
uncovering layer-by-layer complex nonlinearity. In [35], a fast learning strategy for DBN
was introduced, where the joint distribution between observed vector x and � hidden layers
hk is obtained as [34],

P(x, h1, . . . , hl) = (
�−2

∏
k=0

P(hk|hk+1))P(h�−1, h�), (11)
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where x = h0 and P(hk|hk+1) is a visible given hidden conditional distribution in an
RBM associated with level k of the DBN, and P(h�−1, h�) is the joint distribution in the
top-level RBM.

Basically, including more layers in the DBN enhances modeling power. The accuracy
of the energy expression could be improved by incorporating more additional layers into
the DBN model [34]. However, little is earned by employing more than three hidden layers
in practice. For instance, in this study, we stacked two RBMs (Figure 4b) to construct our
DBN model without any labeling information.

3.4. Isolation Forest Approach

The Isolation Forest is a promising anomaly detection algorithm primarily introduced
by Lui in 2008 [13] and enhanced thereafter in 2011 [37]. It is constructed using unlabeled
data, making it suitable for practice applications. The principal idea of the IF algorithm
consists in identifying anomalies by the isolation of potential outliers from the data [37]. It
is inspired based on the Random Forest, which consists of an ensemble of decision trees
built in the training step [38]. Visually, Figure 5 depicts the basic construction of the IF,
which consists in constructing an ensemble of trees for a given data. Importantly, the
iF algorithm recursively divides the data by constructing an ensemble of trees until all
samples are separated. Note that anomalies are recognized by a short average path length
on the trees [13].

Figure 5. Illustration of anomaly detection using the Isolation Forest technique.

Implementing the iF-based anomaly detection approach demands only two parameters
specified: the number of trees and the size of sub-samples used for the splitting operations
to build the forest. In [13], it has been demonstrated that the detection performance of the
iF approach can converge quickly based on a small number of trees, and it only needs a
small sub-sampling size to reach high detection accuracy. In the iF approach, anomalies in
a dataset can be detected by analyzing the path lengths for the anomaly data points, with
the splitting process being short, which mean that anomalies require few splits in isolation
Trees to be isolated [39]. Furthermore, the anomaly score is computed from the mean path
length across all the isolation trees in the forest.

Two parameters are to be fixed in implementing the iF algorithm: the number of
trees and the size of sub-samples employed for the splitting procedure to construct the
forest [13]. Anomalies can be detected using the iF approach by investigating the path
lengths for the anomaly data points. Anomalies are distinguished by a short splitting
process in isolation Trees to be isolated [39]. The iF algorithm calculates the anomaly score
to decide the presence of anomalies based on the mean path length across all the isolation
trees in the forest.
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Let us consider l(d) the path length of a given data point d, and D a dataset constituted
of N data samples. In the IF approach, log(N) is the minimum depth of a used decision
tree, and N − 1 is the maximum depth. The anomaly score, A, is computed as follows [13]:

A(d, N) = 2
−

E
[
l(d)
]

α(N) , (12)

where E
[
l(d)
]

is the expected path length of a given data point d from a collection of
isolation trees, and α(N) is the average path length, given as [13]:

α(N) = 2λ(N − 1)− 2(N − 1)
N

, (13)

where λ(i) denotes the harmonic number, which could be computed as:

λ(y) = ln(y) + ε, (14)

with ε denotes the Euler Constant, i.e., ε = 0.5772156649.
In summary, we obtain the anomaly score of d, A(d, N) using iTree from the training

data of N samples, and the range of A(d, N) is within [0, 1]. Note that the anomaly score is
oppositely proportional to the path length. Anomaly detection is accomplished, as below.⎧⎪⎨⎪⎩

an anomaly if A(d, N) is close to 1
Normal instance if A(d, N) is close to 0
Uncertain decision if A(d, N) is close to 0.5

(15)

4. Deep-Learning-Driven Mental Tasks Detector

This study addresses the problem of EEG-based mental tasks classification as multiple
anomaly detection channels. Specifically, a hybrid deep generative model is used to model
one given class in which its data are regarded as a normal observation, and the data from
other classes are abnormal. Here, we first extract time-frequency features of the cleaned
EEG data via the QTFD approach. Then, we applied the DBN-based iF detector to identify
the mental tasks from the QTFD features of EEG signals, as illustrated in Figure 6. The
primary goal for the DBN-iF approach is to identify the mental task from time-frequency
features of the EEG signals.

As illustrated in Figure 6, for each class Ci, we implemented a DBN-based iF approach
in an unsupervised manner to identify whether the mental task is from this class or not.
Essentially, the ith DBN-iF detector is constructed using only the data of the ith class, Ci.
Indeed, for a given class Ci, we trained the DBN in an unsupervised manner using only
the data of the Ci class is used for the training. This step generates a compact features
space for Ci, which will be used to train a dedicated isolation forest in order to isolate
abnormal observations, which are the data points that belong to the other classes, and to
keep the observed data points that are normal observation belonging to the current class
Ci. Of course, the 1-vs-all procedure constructs k DBN-iF detectors to separate mental
tasks by EEG signals. DBN is composed of a stacked RBM , where each RBM is trained
separately in an unsupervised way; this approach is also called greedy layer-wise. This
step permits to construct in the hierarchical process a reduced features space containing
pertinent information that represents a given class Ci.
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Figure 6. Schematic overview of the proposed DBN-iF approach for mental tasks’ identification using
EEG signals.

This work’s central idea consists of constructing a DBN-based deep learning model
for each EEG signals-based mental task. DBN aims to learn the probability distribution of
the underlining training data. DBN is composed of a stacked RBM, where each RBM is
trained separately in an unsupervised way; this procedure is also called greedy layer-wise
learning. This step permits construction in the hierarchical process a reduced features space
containing pertinent information that represents the data of a given class Ci. The training is
performed by estimating the log-likelihood gradient based on the Gibbs Sampling method,
Markov Chain Monte Carlo (MCMC) method. The output of unsupervised greedy layer-
wise learning is indeed a new compact space constituted of relevant features that effectively
represent the mapping of training data points into a latent space L, which is used to feed
the iF detector.

The iF approach is applied to the extracted features from the DBN model for EEG-
based mental tasks recognition. In other words, the iF scheme is employed to discriminate
a given observation as an anomaly if the EGG signal does not belong to target class Ci by
assigning a high anomaly score (close to one). Otherwise, it assigns a low anomaly score
(close to zero) if the EGG signal shares the same features as the target class Ci. In summary,
the DBN-iF is designed for identifying each class separately without any data labeling.

Five statistical scores are computed in this study to compare the studied techniques:
Recall, Precision, F1-Score, Accuracy, and Area under curve (AUC) [40]. For binary detec-
tion, the number of true positives (TP), false positives (FP), false negatives (FN), and true
negatives (TN) are used to calculate the statistical scores.

Accuracy =
TP + TN

TP + FP + TN + FN
. (16)

Recall =
TP

TP + FN
. (17)

Precision =
TP

TP + FP
. (18)

F1 − Score = 2
Precision.Recall

Precision + Recall
=

2TP
2TP + FP + FN

. (19)

5. Results and Discussion

5.1. Data Description

This part is dedicated to evaluating the efficacy of the presented technique in rec-
ognizing different classes; experiments are conducted via actual data from the Institute
for Knowledge Discovery. The EEG signals are recorded by nine different patients with
disabilities (spinal cord injury and stroke) on distinct sessions. Nine patients completed a
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specific experimental paradigm, including five mental tasks (MT): mental word association
(condition WORD), spatial navigation (NAV), mental subtraction (SUB), feet motor imagery
(FEET), and right-hand motor imagery (HAND. See [41] for more details.

The experiment protocol was carried out over several days, where for each day, a single
subject session (involved eight runs resulting in 40 trials) is recorded. Each experimental
run contained 25 cues with five different mental tasks. Cues (indicating different classes)
were put in random ranking to allow a fair evaluation. EEG signals were then acquired
from 30 electrodes positioned on the scalp according to the international 10–20 protocol.
This protocol was developed to maintain standardized testing methods ensuring that a
patient’s study outcomes could be reproduced and effectively analyzed and compared
to previously obtained results in the literature [42]. The locations of electrode contained
channels AFz, F7, F3, Fz, F4, F8, FC3, FCz, FC4, T3, C3, Cz, C4, T4, CP3, CPz, CP4, P7, P5,
P3, P1, Pz, P2, P4, P6, P8, PO3, PO4, O1, and O2. Channels corresponding to reference and
ground have been placed at the left and right mastoid. For better representativeness, an
overview of the experimental protocol is given in Figure 7. The acquisition was carried out
using the g.tec GAMMAsys system, g.USBamp biosignal amplifiers and g.LADYbird active
electrodes (Guger Technologies, Graz, Austria).

Figure 7. Description of data acquisition procedure.

After the acquisition phase, several processing operations were applied to the EEG
signals: bandpass filter 0.5–100 Hz (notch filter at 50 Hz) and sampling stage at a rate of
256 Hz. The period of a single imagery experiment consists of ten seconds. In the beginning,
a cross is shown on the screen, and participants are requested to relax and fixate the cross
in order to avoid eye motions. A beep is given after three seconds to bring the participant’s
attention. The cue revealing the asked imagery task, one out of five graphical symbols, was
shown between the time interval t = 3 s and t = 4.25 s. Then, a second beep was conducted
at time t = 10 s, and the fixation-cross was removed, indicating the trial’s end. Before the
subsequent trial, a variable break (intertrial interval, ITI) stayed around 2.5 s and 3.5 s.
Participants are requested to escape moving during the imagery period and avoid moving
and blinking within the ITI. A blank screen is displayed for four seconds in the beginning
and end of the experiment. For more details about this data, refer to [41].

5.2. Experiments and Settings

The proposed approach aims to build a discriminate method able to distinguish and
classify EEG signal of a give motion. This section is dedicated to assessing the performance
of the proposed detector in discriminating five distinct mental tasks based on EEG signals,
namely mental word association, mental subtraction, spatial navigation, right-hand motor
imagery, and feet motor imagery. After removing artifacts from EEG signals using the MWF
procedure, QTFD is applied to generate a high-resolution time-frequency representation
of the EEG signals and catch the EEG signals’ spectral variations over time. After that,
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the extracted QTFD features are used as input to the proposed approach for EEG signals
classification. The study aims to build an unsupervised discriminate method able to
distinguish and classify EEG signals of a given motion—specifically; there are five classes
(five distinct mental tasks), namely mental word association, mental subtraction, spatial
navigation, right-hand motor imagery, and feet motor imagery. The proposed approach
addresses the problem of classification as a multi anomaly detection problem.

The dataset used consists of five classes, and we create a sub-set composed of only
data points of a given class (target). Further, the training dataset is composed of 80%, a
sub-set of the target class, and 20% will be used for the testing. Moreover, we create a
testing data set composed of two parts 20% of the remaining data of the target class (as
a normal observation: inliers), and we selected randomly 20% from the other classes (as
abnormal or anomalies: outliers) to construct a testing dataset containing an amount of
data of all classes. We repeat this procedure (testing) for all classes. This paper integrates a
DBN model for feature extraction and an IF approach to recognize a given EEG signal class.
In other words, we design a DBN-based IF detector for each class. This study is conducted
using an ordinary PC with CPU i7 and 12Go RAM based on Ubuntu 20. The investigated
methods are implemented using Python. Specifically, TensorFlow 2.3 and Keras 2.3 are
used to implement the DBN, and Scikit-learn 1.1. to perform the detection via the Isolation
Forest algorithm.

In the training phase, we fine-tune the parameters of the proposed approach using
the training data via the grid search procedure. Specifically, the DBN model training
employs a greedy layer-wise training procedure. The selected DBN model comprises three
layers (30, 15, 5) hidden units, i.e., two stacked RBMs. Here, we adopted the following
hyper-parameters: the number of Gibbs steps performed is 5, the learning rate used is 0.001,
the number of epochs during the training is 1000 with a batch size of 250. Essentially, we
train each RBM first in an unsupervised way, and then the IF detector will be applied to
the output of the DBN model. The values of IF parameters are chosen in training so that
the number of false alarms is reduced. The IF model constructs multiple isolation trees;
in our study, we used N = 150 the number of trees and the size of the sub-samples 256.
We compare the computed iF-driven anomaly score to a detection threshold of 0.5. If the
calculated anomaly score overpass 0.5, it is a confirmed anomaly; otherwise, it is considered
a normal observation. However, a special case may occur when the anomaly score is equal
to 0.5 or close to 0.5, and this situation is considered an uncommon normal observation.

In this study, we considered two other commonly used anomaly detection schemes,
namely Elliptical Envelope (EE) [43] , and Local Outlier Factor (LOF) [14]. Specifically, we
compare the performance of the proposed DBN-based IF approach with that of DBN-based
DCF and LOF methods. Similar to the DBN-IF, in DBN-EE and DBN-LOF, the EE and
LOF detectors are applied to the extracted features from DBN to distinguish and classify
the EEG signal of a given motion. We construct a model using training data based on
unsupervised learning for each EEG signal class. In the LOF approach, the anomaly score
is calculated for each data point by calculating the local divergence of the density of a given
sample in comparison to its neighbors. Here, the number of neighbors in LOF is 35. On the
other hand, the EE approach fits an ellipse around the data utilizing a minimum covariance
determinant (MCD). In this experiment, the proportion of points to be enclosed in support
of the raw MCD estimation is 0.9.

5.3. Discussion and Analysis

Now, we applied the trained DBN-iF model to the testing data to identify five distinct
mental tasks based on EEG signals. As discussed above, we addressed this multiclass
classification problem as multiple binary anomaly detection problems. Note that features
characterizing the other classes are viewed as anomalies or outliers by the DBN-iF detector,
and features from the targeted class are considered normal and should not be flagged
as an outlier during the testing phase. Indeed, a single DBN-iF detector is constructed
based on training data of each class, with the samples of that class as inlier and all other
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samples as anomalies (i.e., one-vs.-rest). Detection results of the DBN-iF are summarized in
Table 1. The column class in Table 1 represents the target class, meaning that the training
data contains only the data of this class, while the column Others denotes the remaining
classes where their data are used for the testing to evaluate the performance of the instances
of the hybrid model used fro the target class. Table 1 reveals the high capacity of the
DBN-iF in identifying data from the first class (WORD) from other classes (SUB, NAV,
HAND, and FEET) by obtaining a high ACU values of AUC2 = 0.9779 , AUC3 = 0.9870,
AUC4 = 0.9902, and AUC5 = 0.9840. This means that the DBN-iF detector can efficiently
recognize the first task from other tasks in other classes. Furthermore, results in Table 1
show that class 2 detection performance is very high, where the average AUC is 0.9918 for
all classes. The averaged AUC values achieved by the DBN-iF detector for the third, fourth,
and fifth classes are 0.9895, 0.9685, and 0.99, respectively. It can be observed from this
first experiment that the DBN-iF approach provided satisfactory identification of mental
tasks by EEG signals. The obtained high performance demonstrates the efficiency of the
amalgamation of the deep learning model, DBN, with the Isolation Forest detector in
recognizing mental tasks (e.g., motor imagery, calculation, reading) based on EEG signals.
This could be attributed to different factors, including (i) the extended capacity of the QTFD
in extracting spectral variations of the EEG signals, (ii) the flexibility of robustness of the
DBN to approximate the data distribution of the underlining EEG signal class through
creating a latent space that represents much better the original data (EEG signal) separately,
and (iii) the sensitivity of the iF scheme in detecting anomalies through branching paths.
In addition, this approach focuses on each class separately, making it easy to be separated
from other classes.

Table 1. DBN-driven iF identification results.

CLASS OTHERS Accuracy Precision F1-Score AUC

1 2 0.9779 0.9666 0.9781 0.9779
1 3 0.9870 0.9841 0.9870 0.9870
1 4 0.9902 0.9905 0.9902 0.9902
1 5 0.9840 0.9782 0.9840 0.9840

2 1 0.9918 0.9936 0.9918 0.9918
2 3 0.9912 0.9925 0.9912 0.9912
2 4 0.9924 0.9948 0.9924 0.9924
2 5 0.9920 0.9941 0.9920 0.9920

3 1 0.9917 0.9934 0.9917 0.9917
3 2 0.9867 0.9836 0.9867 0.9867
3 4 0.9909 0.9918 0.9908 0.9909
3 5 0.9892 0.9883 0.9892 0.9892

4 1 0.9806 0.9716 0.9808 0.9806
4 2 0.9593 0.9327 0.9605 0.9593
4 3 0.9762 0.9636 0.9766 0.9762
4 5 0.9580 0.9304 0.9593 0.9580

5 1 0.9910 0.9921 0.9910 0.9910
5 2 0.9881 0.9862 0.9881 0.9881
5 3 0.9899 0.9898 0.9899 0.9899
5 4 0.9917 0.9934 0.9917 0.9917

This study compared three different outlier detection models for mental task identifi-
cation by EEG signals: DBN-based iF, LOF, and EE schemes. Results of DBN-based LOF
and EE schemes are listed in Tables 2 and 3. From Table 2, we observe that the DBN-LOF
scheme recognized classes 3 and 5 with high accuracy with an average AUC score of 0.9689
and 0.9768, respectively. However, it achieved relatively moderate identification of metal
tasks related to classes: 1, 2, and 4 with the average AUC of 0.9208, 0.9382, and 0.9120,
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respectively. Results in Table 3 indicate that EE performance was high for classes : 3 and 5
with an AUC average great than 0.95, while it is lower than 0.9 with 0.8908, 0.8889, and
0.8429 for classes 1, 2, and 4, respectively. Of course, from Tables 2 and 3 we can assume
that DBN-LOF scheme outperformed the DBN-EE scheme.

Table 2. DBN-driven LOF identification results.

CLASS OTHERS Accuracy Precision F1-Score AUC

1 2 0.9083 0.8498 0.9154 0.9083
1 3 0.9172 0.8628 0.9229 0.9172
1 4 0.9779 0.9647 0.9782 0.9779
1 5 0.8799 0.8103 0.8920 0.8799

2 1 0.8983 0.8345 0.9072 0.8983
2 3 0.9321 0.8847 0.9360 0.9321
2 4 0.9621 0.9346 0.9632 0.9621
2 5 0.9604 0.9317 0.9617 0.9604

3 1 0.9607 0.9313 0.9620 0.9607
3 2 0.9588 0.9279 0.9602 0.9588
3 4 0.9951 0.9955 0.9951 0.9951
3 5 0.9611 0.9320 0.9623 0.9611

4 1 0.9050 0.8463 0.9124 0.9050
4 2 0.8979 0.8363 0.9065 0.8979
4 3 0.9383 0.8975 0.9413 0.9383
4 5 0.9070 0.8492 0.9141 0.9070

5 1 0.9478 0.9107 0.9501 0.9478
5 2 0.9866 0.9805 0.9867 0.9866
5 3 0.9850 0.9774 0.9851 0.9850
5 4 0.9876 0.9823 0.9876 0.9876

Table 3. DBN-driven EE identification results.

CLASS OTHERS Accuracy Precision F1-Score AUC

1 2 0.9187 0.8664 0.9241 0.9187
1 3 0.8995 0.8383 0.9078 0.8995
1 4 0.9015 0.8411 0.9095 0.9015
1 5 0.8436 0.7659 0.8636 0.8436

2 1 0.7846 0.7017 0.8213 0.7846
2 3 0.9122 0.8567 0.9185 0.9122
2 4 0.9421 0.9035 0.9447 0.9421
2 5 0.9168 0.8637 0.9225 0.9168

3 1 0.9606 0.9350 0.9617 0.9606
3 2 0.9716 0.9550 0.9722 0.9716
3 4 0.9905 0.9912 0.9905 0.9905
3 5 0.9718 0.9553 0.9723 0.9718

4 1 0.9172 0.8643 0.9228 0.9172
4 2 0.7579 0.6762 0.8035 0.7579
4 3 0.9134 0.8585 0.9195 0.9134
4 5 0.7833 0.7004 0.8204 0.7832
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Table 3. Cont.

CLASS OTHERS Accuracy Precision F1-Score AUC

5 1 0.9126 0.8574 0.9189 0.9126
5 2 0.9769 0.9648 0.9772 0.9769
5 3 0.9790 0.9687 0.9792 0.9790
5 4 0.9705 0.9528 0.9710 0.9705

Table 4 shows the aggregated AUC obtained by three investigated approaches: DBN-iF,
DBN-LOF, and DBN-EE. Figure 8 displays the barplot of averaged AUC to visually aid the
comparison of achieved results by the three considered schemes. Figure 9 illustrates the
aggregated results of those shown in Table 4.

Table 4. Overall detection results of all anomaly detection methods.

CLASS iF LOF EE

1 0.9848 0.9208 0.8908
2 0.9919 0.9382 0.8889
3 0.9896 0.9689 0.9736
4 0.9685 0.9120 0.8429
5 0.9902 0.9768 0.9597

Figure 8. AUC obtained per detector for each EEG signal class.

Figure 9. Averaged AUC obtained per anomaly detector for all EEG signal classes.

It would appear, based on results in Table 4 Figure 8 that DBN-iF would be the best
model for mental task recognition based on EEG signals. It dominates the other models
(DBN-LOF and DBN-EE) by better identifying mental tasks from the acquired EEG signals.
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5.4. Comparison with the State-of-the-Art

Lastly, to measure the real contribution of the present work, comparisons with some
existing and recent systems conducted on EEG classification datasets are reported in
Table 5. Several powerful classifiers are invoked, namely: least squares support vector
machine [3,6], convolutional neural networks and stacked autoencoders [23], KNN [8],
logistic regression [11], and LR KLR, MLP, PNN, and LS-SVM [7]. From Table 5, the results
demonstrate the outperformance of the proposed approach over classifying EEG signals
by the state-of-the-art approaches, even in critical scenarios. The proposed approach
dominates the other methods mainly because of its capability to recognize each class
individually and approximate the data distribution by the generation of latent space, which
is suitable in the representation of original data.

In the case of the logistic regression formalism [11] (applied alone or kernalised LR),
one can observe some misclassification cases, which impacted the recognition rate (lower
than 95%). In [23], a CNN-SAE combination has been used. One can mention the presence
of numerous misclassification cases, which affects the accuracy presenting the lowest
classification accuracy (90%). This could be explained by CNN formalism being more
adapted for image or matrix classification (data in 2D form) than signal classification
(EEG samples). Importantly, transforming EEG signals from 1D to 2D to obtain matrix
representation can cause the loss of some pertinent information. In [3,6,7,11], an LS-
SVM combination formalism has been used as a recognition algorithm, which achieved a
relatively high accuracy of around 96%. Even if SVMs formalism is based on geometric
aspect, where the samples’ separation is established on the sparse solution via structural
risk minimization, the DBN classification has outperformed the LS-SVM combinations. In
summary, all of these observations confirm that the DBN formalism is more adapted to
EEG signals’ classification than several existing methods.

Table 5. Comparison of the proposed method with existing methods.

Paper The Used Features Approach Accuracy (%)

[6] EMD LS-SVM 97.56
[3] TQWT LS-SVM 96.89

[23] STFT and electrode location information CNN-SAE 90
[8] MSPCA, DWT and WPD KNN 92.8

[11] cross-correlation and DWT coefficients LR 92.3
KLR 94.3
MLP 94.9
PNN 92.9

LS-SVM 96.1
[7] Optimal allocation features LS-SVM 96.62

Naive Bayes 96.36
[44] EEG-inception (time-series signals) with data augmentation CNN 88.58
[45] Semantic, intrinsic, and user-specific features (with data augmentation) multi-scale CNN 93.74

This study QTFD DBN-iF 98.5

6. Conclusions

This study introduced an unsupervised deep learning-based strategy for discriminat-
ing the mental tasks of EEG signals. Essentially, multiclass classification is handled as an
anomaly detection problem without using labeled data (i.e., fully unsupervised). After
removing artifacts from EEG signals, a time-frequency representation of the EEG signals is
obtained using the QTFD and used as input of the designed detector to improve mental
tasks’ recognition. The iF anomaly detection scheme is applied to the features extracted by
the DBN model for separating mental tasks from the EEG signals. This approach is assessed
on publicly available benchmark EEG datasets comprising five classes. We compared the
DBN-iF approach with two other unsupervised detection approaches, DBN-based EE and
LOF. Results demonstrated that the DBN-iF delivers superior discrimination performance
of mental tasks by EEG Signals and dominates the investigated methods, DBN-CDE and
DBN-LOF. It has demonstrated that merging the DBN deep learning model with anomaly
detection methods presents a promising strategy to mitigate challenges in EEG-based
mental tasks’ recognition.
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Despite the encouraging results for MI-based tasks recognition obtained using the
EEG-based mental tasks recognition via a deep learning-driven anomaly detector approach,
this work raises some directions of improvement that merit consideration from researchers
for future work. In particular, the extended recognition of EEG signals is to perform tasks
and establish possible communication between several patients via BCI applications.

In terms of methodology, this study demonstrated that the proposed DBN-driven
Isolation Forest approach achieved satisfactory discrimination results. However, the DBN
model does not consider feature selection, and the considerable amount of irrelevant data
in high-dimensional data can constrain its performance. Therefore, we plan to develop
an improved DBN model that focuses only on relevant features by integrating attention
mechanisms within the DBN model; the attention mechanism allows the model to focus on
essential features [46].

On the other hand, the Isolation Forest algorithm is computationally efficient and has
proven effective in anomaly detection. However, its final anomaly score depends on the
contamination parameter provided during the training stage. This implies that we need to
have an idea of what percentage of the training data is anomalous beforehand to obtain
a better prediction. In addition, it has the disadvantage of sensing local anomaly points,
which influences the algorithm’s precision [47]. As an alternative, we plan in future work
to develop deep model-driven statistical monitoring schemes by merging the capacity of
generative deep learning models, such as generative adversarial networks (GANs) [48]
and variational autoencoders (VAE) [49], to find low-dimensional summaries that will be
monitored by statistical monitoring charts, such as the generalized likelihood ratio (GLR)
test [50].
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Abstract: The development of genomic technology for smart diagnosis and therapies for various
diseases has lately been the most demanding area for computer-aided diagnostic and treatment
research. Exponential breakthroughs in artificial intelligence and machine intelligence technologies
could pave the way for identifying challenges afflicting the healthcare industry. Genomics is paving
the way for predicting future illnesses, including cancer, Alzheimer’s disease, and diabetes. Machine
learning advancements have expedited the pace of biomedical informatics research and inspired
new branches of computational biology. Furthermore, knowing gene relationships has resulted in
developing more accurate models that can effectively detect patterns in vast volumes of data, making
classification models important in various domains. Recurrent Neural Network models have a mem-
ory that allows them to quickly remember knowledge from previous cycles and process genetic data.
The present work focuses on type 2 diabetes prediction using gene sequences derived from genomic
DNA fragments through automated feature selection and feature extraction procedures for matching
gene patterns with training data. The suggested model was tested using tabular data to predict type
2 diabetes based on several parameters. The performance of neural networks incorporating Recurrent
Neural Network (RNN) components, Long Short-Term Memory (LSTM), and Gated Recurrent Units
(GRU) was tested in this research. The model’s efficiency is assessed using the evaluation metrics
such as Sensitivity, Specificity, Accuracy, F1-Score, and Mathews Correlation Coefficient (MCC). The
suggested technique predicted future illnesses with fair Accuracy. Furthermore, our research showed
that the suggested model could be used in real-world scenarios and that input risk variables from an
end-user Android application could be kept and evaluated on a secure remote server.

Keywords: deep learning; PIMA dataset; Type-2 diabetes; Recurrent Neural Networks; weight optimization

1. Introduction

Diabetes is a metabolic disorder influenced by high blood sugar levels due to insuf-
ficient insulin release or synthesis. Diabetes was predicted to affect 285 million people
globally in 2010. According to the disease’s current development pace, this figure will
increase to 552 million by 2030. One in every ten people is projected to have diabetes by
2040 [1]. Diabetes is becoming more prevalent because of individual habits, divergent
lifestyles, and living standards. Thus, researching how to effectively and promptly identify
and treat diabetes is worthwhile. Diabetes is diagnosed based on genomic patterns. It will
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result in a more accurate and precise outcome and assist in adhering to better habits that
are less likely to result in diabetes shortly. Very effective identification of an illness allows
individuals with future illnesses to slow or postpone the disease’s development and enjoy
better overall health. Machine learning techniques fall into two categories: screening future
illnesses and diagnosing an abnormality [2]. Based on current and prior medical conditions,
forward prediction techniques can anticipate diabetes before it occurs [3,4].

Type 2 diabetes (T2D), formerly called non-insulin-dependent diabetes) is a category
of metabolic disorders distinguished through hyperglycemia, resulting in abnormalities in
insulin production or insulin function. Lifestyle behaviors, including food habits, exercise,
and dietary choices, may significantly affect its development. T2D is the type of disease
known for decreasing the life span and reducing the standard of living. The illness may be
controlled with lifestyle modification and pharmaceutical management. Thus, it is essential
to have early diagnosis and treatment of T2D to help patients avoid life-threatening con-
sequences. Many research studies have been conducted on medical diagnoses to predict
illness and forecast the future with considerable efficiency accurately. Generally, most
diseases are triggered by a combination of two or more gene patterns. Recognition of the
combinational gene sequence by rigorous analysis of the reference genes of the healthy per-
son with the samples that are trained genes acquired from the diseased. Deoxyribonucleic
Acid (DNA) is significant for cell growth and is generally a hereditary component in each
cell of an organism. As stated by A. Arshad and Y. D. Khan [5], DNA is coded through
chemical bases adenine (A), guanine (G), cytosine (C), and thymine (T) that form up a cell
which is unique for almost all human beings. Analysis of DNA molecular compositions
of human genes is immensely used to predict illnesses associated with ancestors. The
genomics study would assist in changing the lifestyle of an individual, which results in
a lower risk of the disease in the future. DNA analysis can assist in the prediction of a
disease that is caused by a mutation of the DNA. Biomedical engineering has recognized
an enormous gene data set that could help predict various conditions. The Neural Network
approach can identify gene patterns that harm cells of a human body with a high possibility
of illness-causing patterns through the proposed mechanism. By incorporating Neural
Networks, approaches would have high Accuracy for illness prediction with reasonably
acceptable computational latency.

The advancement that has taken place in Genome-Wide Association Studies (GWAS)
holds tremendous information related to various gene patterns associated with divergent
illnesses that are complex and challenging to perform reductive analysis from a single locus,
as stated by Cho Ys [6] and Coron [7]. The evolution of GWAS has focused on integrating
data related to multi-locus across the gene that would assist in predicting complex illnesses
in advance. Polygenic Risk Scores (PRS) were proposed by Duncan L. et al. [8] for risk
analysis using the sum of the weight of each risk-associated locus of genomic sequence
obtained from the corresponding evidence. These weights are assessed from the regression
coefficient associated with each locus. These combined genetics features and correlation
matrices would significantly assist the entire field of genomics study [9]. These studies on
analyzing the genomic data and the tabular datasets such as PIMA would largely assist in
analyzing the future illness had paved the motivation for the current study, and the role of
various neural network components in the performance of the deep learning models are
evaluated [10,11].

The current study is primarily motivated by the research challenges in handling
genomic data and the pattern recognition for precisely identifying future illnesses. The
genomic data comprises more extensive DNA sequences, which requires tremendous
computational efforts to assess the disease’s probability. Earlier assessment of the future
illness would assist the individual in safeguarding themselves from such disease through
better living standards. Moreover, the current study has also focused on evaluating the
performances of various recurrent neural network models such as RNN, GRU, and LSTM
in disease prediction. Performances evaluation metrics such as the confusion matrix
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for Sensitivity, Specificity, F1-Score, and Mathews Correlation Coefficient measures are
considered in the current study.

The recurrent neural network components such as RNN, GRU, and LSTM are efficient
in learning from past experiments and can simultaneously process a sequence of inputs and
outputs, which is a kind of sequence-to-sequence network that is exceptionally efficient in
handling genomic data. The RNN-based neural network may represent a set of records such
that each pattern is thought to rely on preceding ones. The Hidden State, which remembers
certain information about a sequence, is the core and most essential aspect of RNN. LSTM
feeds genetic sequences into a network and makes assumptions based on the sequence
data’s discrete time steps. It can learn long-term dependencies, which is notably valuable
for sequence prediction issues. GRU uses less memory and is comparatively faster than the
RNN and LSTM models. But can effectively work with smaller sequences. GRU employs
fewer training parameters, requires less memory, executes quicker, and learns faster than
LSTM, although LSTM is much more accurate on more extended sequence datasets.

The main contributions of this work are as follows:

• The reference gene sequence is analyzed against the trained genomic data for possible
gene pattern matching. As well, the further correlation between the reference gene
and gene pattern associated with diabetes is assessed.

• The probabilistic estimations are performed by the softmax layer towards the future
illness based on the gene correlation. Additionally, based on the probabilities, the risk
factor outcome is yielded.

• The proposed RNN model is evaluated over the tabular patient data such as PIMA for
risk analysis, where the auxiliary memory components such as GRU and LSTM are
integrated for better prediction performance.

• The feature selection and weight optimizations are performed over the features of the
PIMA dataset for better prediction outcomes.

• The outcome of the present study is being evaluated against conventional classification
techniques such as Decision Tree, J48, K Nearest Neighborhood, Logistic Regression,
Naive Bayes, Random Forest, and Support Vector Machine.

The entire paper is arranged as follows. The paper’s first section introduces the
proposed approach and the Genomic domain. Section 2 presents the literature review
of existing studies focusing on various disease prediction techniques using genomic and
tabular data. Section 3 presents the methodology of the proposed model where various
aspects such as background work of the domain that highlights data collection, data
preprocessing, feature extraction strategies, and RNN with various memory components
are presented. Section 4 presents the result and discussion. Section 5 presents the conclusion
and future scope of the proposed model.

2. Literature Review

2.1. ML Models for Smart Diagnosis of Type-2 Diabetes

Machine Learning is the most emerging technology for addressing inevitable problems
in various domains. Machine Learning through supervised, semi-supervised approaches, or
weakly supervised approaches, is used with data from various sources, including medical
records and information obtained from wearable gadgets, to forecast an illness. In either of
these approaches, sickness cannot be predicted much earlier, and the patient cannot get rid
of the illness by changing his or her lifestyle in a short period. The polygenic scores-based
approach is among the most predominantly used strategies for the earlier prediction of an
illness. The Polygenic Score approach has been tremendously evaluated before it is used in
clinical trials. It is also used in illness screening mechanisms, as in the study of So et al. [12].
The current research and the genomic analysis could change lifestyles and reduce illnesses
such as heart attack, cardiovascular diseases, cancer, and Alzheimer’s disease. The process
of polygenic risk score involves two significant phases: discovery and validation. The
Discovery Phase identifies risks through a statistical association test using either linear or
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Logistic Regression. The later phase validates approximations performed in the earlier
stage for extracting information related to Single Nucleotide Polymorphism (SNP).

Deep learning (DL) [13,14] is the field of Machine Learning that is extensively used in
predicting type-2 disease by processing the blood glucose level and spectrogram images
generated from the blood glucose levels. Moreover, the DL models could also be used
with tabular datasets such as PIMA for the prediction of diabetes. Every layer in the
DL model reflects a degree of acquired information. The layer closest to the input layer
reflects low-level data elements, whereas the layer closest to the output layer shows a
higher degree of discrimination with more concise notions. Deep learning generally needs
more data for precise classification and also needs tremendous computational resources
for processing [15]. The major limitation of the deep learning models is that the decision
mechanism is not interpretable, which limits the trustworthiness of the models.

Clustering is one of the most predominantly performed operations with un-supervisory
approaches using dimensionality reduction approaches such as Singular Value Decom-
position (SVD) [16], Principle Component Analysis (PCA) stated by Konishi T. et al. [17],
Apriori stated by S. Mallik et al. [18]. Dynamic thresholding-based FP-Growth was stated
by Mallik S. et al. [19] for treating unusual illnesses and certain types of diseases with
unknown variations with different symptoms. However, most of these approaches do not
label the output data, as the provided input does not have any labels. The Accuracy of
the un-supervisory method is a significant concern as classes are not marked. In some
instances, the proposed algorithm might end up misinterpretation. A classification-based
illness prediction is a supervisory approach that includes various mechanisms such as
Linear and Polynomial Regression, Decision Tree, Random Forest, and many other sys-
tems, including the Support Vector Machine (SVM) used by Huang S. et al. [20], K-Nearest
Neighbour used by Parry R. et al. [21], and Logistic Regression approach that exhibits
better efficiency in terms of accuracy and precision other classification models. Supervisory
approaches exhibit optimal performance for known cases. The Accuracy of the prediction
outcome is directly proportional to the training set size, which needs many computational
efforts. However, in some cases, the approach diverges due to excessive training.

Random Forest is a rapid implementation approach using the Ranger package in the R
tool described by Wright and Ziegler [22], which is used to predict future illness from tabu-
lar data such as PIMA. Artificial Neural Networks based on illness prediction mechanisms,
as discussed by Anifat O. et al. [23] and Mantzaris D. et al. [24] involve a more profound ar-
chitecture that includes input and output layers alongside multiple hidden layers to process
records iteratively, moving data among layers that would minimize the loss function and
acquaint weights and biases of each layer. Various ensemble approaches, such as random
forest and boosting, have been experimented with as alternatives to machine learning
approaches for predicting future illness. Exponential research has been conducted using
either of those approaches with real-time and simulated data. The ensemble approaches
work faster for classification when compared to the conventional classification models.
However, either of the models ends up with non-additive issues. The resultant effect in the
forward direction of the layers would determine the predictive analysis, and the backward
pass would assess the standard error among the prediction made and the ground facts.

2.2. Deep Learning for Type-2 Diabetes

The Deep Learning (DL) model implements the framework that infers target gene
expression obtained from the expression of landmark genes. Utilizing 111,000 individual
gene patterns over a Gene expression Omnibus2, Deep Neural Network-based Gene Analy-
sis model (D-GEX) trained a feedforward neural network through three hidden layers. DL
models outperform linear Regression in summarizing expression levels of over 21,000 hu-
man genes based on a collection of landmark genes with about 1000 sequences. Although
the DL model is more accurate than conventional classification models, performance is not
adequate in the healthcare domain, where the design of DL models needs to be improved.
The deepVariant model outperforms all other recent neural network models [25]. Deep-
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Variant generalizes its training samples by utilizing various human genome expressions as
train and test datasets.

Additionally, when training with human gene expressions and evaluating with a
mouse genomic expressions dataset, DeepVariant obtained Accuracy that outperformed
training with mouse data. DeepFIGV is a deep learning algorithm that uses DNA sequences
to predict locus-specific signals from epigenetic tests. DeepFIGV quantifies epigenetic vari-
ance by employing several investigations with similar cell patterns and experiments [26]. It
combines the entire gene sequence to provide a customized genetic line for each person.
The Gene Co-Expression model is a differential network analysis model extensively used
in gene data analysis to identify gene sequence similarities and topologies [27]. This model
considers two classes of the gene through which the classification model is implemented.
However, the Gene Co-Expression model has to deal with comparatively larger features
than the size of the data and the non-linearity of the network architecture, where dependen-
cies would make it difficult to trust the model’s predictions. Reinforcement Learning (RL)
based intelligent systems such as Q-Learning, State Action Reward State Action (SARSA),
Deep Deterministic Policy Gradient (DDPG), and Deep Q Network (DQN), as stated by
Travnik Jaden B. et al. [28] are the most suitable for handling healthcare to better forecast a
future illness with minimal training of the algorithm recovers. The underlying technology
remains the same with minimal training. The algorithm is mechanized to learn from its
previous experiences.

Various studies have been presented to predict future illness through existing patient
data using machine learning algorithms. Predicting future illness has become a demanding
topic in healthcare [29]. Several studies have used machine intelligence techniques to
analyze the Pima Indian Diabetes Dataset. C. Yue [30] has investigated various hybrid
approaches, including Neural Networks, integrated Quantum Particle Swarm Optimization
(QPSO), and Weighted Least Square (WLS) Support Vector Machine (SVM) for diabetes
prediction, with the WLS-SVM hybrid model showing a classification accuracy of 82.18%.
However, the hybridization model needs considerable effort in the evaluation process. In
addition, the SVM model is not suitable for working with larger data [31]. Moreover, the
SVM model underperforms if the number of attributes for every data point exceeds the
training samples. The combinational models for diabetes prediction using Cross-validation
and Self-Organizing Maps (SOM) have achieved an accuracy of 78.4% [32,33]. SOM can rely
on the associated weights of neurons for precise classification. Inappropriate assignment of
initial weights may impact the model’s performance. A C4.5 technique [34] has been used
to analyze the PIMA dataset, attaining an Accuracy of 71.1%. The model works through the
entropy value associated with the feature vector. The conventional classification models
exhibit poor performance when working with distinct feature vectors [35].

A fuzzy entropy approach for feature selection for a similarity classifier has been
evaluated against various medical datasets, such as Pima–Indian diabetes, exhibiting an
accuracy of 75.29% [36]. A fuzzy model primarily depends on the membership evaluation
that requires considerable effort. Non-linearity in evaluating the model will limit the
model’s performance [37]. Genetic Algorithm (GA) with Radial Basis Function Neural
Network (RBF NN) has been used in the evaluation process of diabetes data, exhibiting
an accuracy of 77.39% over the testing dataset [38]. Moreover, for artificial evolutionary
algorithms such as GA, the most prohibitive and restricting element is frequently repeated
fitness function assessment for complex gene patterns. Hybridization of models with GA
would need more computational efforts than neural networks alone. Various cutting-edge
technologies for the classification and prediction of type-2 diabetes are presented in Table 1.
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Table 1. Various existing models for diabetes prediction.

Approach Type of Data Applicability Limitations

polygenic scores-based
approach

[12]
Genomic Data

Used in the evaluation of clinical
trials and illness screening

mechanisms

The polygenic score approach needs
larger samples and tremendous

training for considerable Accuracy.

Singular Value
Decomposition

[13]

Genomic Data
Tabular Data

The image they are
used

They are used in ranking the feature
set and compression of the data

through the least-square fitting. Gene
sequences are ranked based on the

probability of illness.

SVD is not an algorithm designed to
perform; it is a matrix decomposition
mechanism. They are various neural
ranking models that perform much

better than SVD.

Principle Component
Analysis [14]

Genomic Data
Tabular Data

PCA technique is extensively used in
gene analysis to discover the regional

and ethnic patterns of genetic
variation.

The independent gene expressions
are less interpretable, and

information loss is possible if the
number of components is carefully

chosen.

Gene Co-Expression
model

[27]
Genomic Data

The Gene Co-Expression model
analyzes the genomic data’s insights

through similarity assessment of
expressions and topologies.

The Gene Co-Expression model may
not deal with larger features than the

data size and non-linearity in the
network architecture.

Reinforcement
approaches (SARSA,

DDPG, DQN)
[28]

Genomic Data
Tabular Data
Image Data

The reinforcement learning models
are widely used in studies where the

states in the problem are
deterministic and in situations where

control over the environment is
needed. RL models are proven to

exhibit better non-linearity in gene
analysis.

Adding excessive amounts of
reinforcement learning may result in
an overflow of states, which might

reduce the effectiveness of the
findings. As well, RL models are

data-hungry.

Decision Tree
[39]

Tabular Data
Image Data

Using Decision Trees, the efforts to
preprocess data can be reduced as
normalization and scaling are not

required, and missing values will not
influence the model’s outcome.

DT models consume more time to
train the model, and more effort is

desired.

J48
[40]

Tabular Data
Image Data

J48 is a decision tree that can handle
outliers effectively and robustly in

non-linear problems.

J48 model is less stable, and noisy
data compromises the efficiency of

the data.

K Nearest Neighbor
[41]

Tabular Data
Image Data

The K Nearest Neighbor model does
not need prior training for classifying

the class data. It requires lesser
computational efforts and a faster

resultant outcome.

The KNN model fails to work with a
larger dataset and high-dimensional

data. The feature scaling phase is
crucial for an optimal classification
level, which requires considerable

effort.

Logistic Regression
[42]

Tabular Data
Image Data

Logistic Regression is the very
predominantly used classification
technique. The model efficiently
classifies the data based on the

likelihood and the association among
the data items. The model can sustain

the overfitting and underfitting
issues.

The challenging part of the Logistic
Regression is linear separatable and

often leads to overfitting when
observations are fewer concerning the

feature set size.

Naive Bayes
[43]

Tabular Data
Image Data

Naive Bayes algorithms perform well
for multi-class classification models

with minimal training.

NB assumes all the feature vectors as
mutually independent components in
the classification process. NB may not

perform better in evaluating the
problems with the interdependent

feature set.

Random Forest
[44]

Tabular Data
Image Data

Random Forest models perform
bagging for classification. RF models

efficiently reduce the over-fitting
issue and can handle the missing
effectively. Moreover, the feature

scaling task need not be performed.

RF models need tremendous training,
and frequent hyperparameter tuning
is required for considerable Accuracy.
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Table 1. Cont.

Approach Type of Data Applicability Limitations

Support Vector
Machine

[45]

Tabular Data
Image Data

Support Vector Machine is efficient in
handling thigh-dimensional and

efficient memory handling capability.

SVM is inappropriate for working
with a larger dataset with a larger

feature set. The outcome of the SVM
model is largely dependent on the

objective function. Too many support
vectors will be generated when

choosing a larger kernel, which might
impact the model’s training process.

Genetic Algorithm
[46]

Genomic Data
Tabular DataImage

Data

A genetic algorithm is an
evolutionary algorithm that uses

probabilistic transaction rules, and
non-linearity in the searching process

would yield better model accuracy.
As well, can effectively handle the

larger search space.

The genetic algorithm has susceptible
to local maxima and minima and
similarly to global maxima and

minima. That might result in poor
prediction performances.

All the mentioned models rely on tabular datasets such as PIMA and ECG signals [47]
in classifying the records with possible diabetic illnesses. The current study considers that
genomic data yields a better patient-centric outcome than tabular data.

2.3. Genomics for Type 2 Diabetes

Many research studies have been carried out on genetic-based illness prediction.
Incorporating machine learning approaches with genetic-based illness prediction could
result in an accurate outcome. This has intensified the role of Artificial Intelligence (AI)
in healthcare. It has been estimated that approximately $36 billion will be invested in AI
by 2025 [48]. Deep genomics through machine learning approaches has outperformed
accuracy in predicting and diagnosing illnesses such as cancer with minimal inclusion
of radiologists. It is desired to have sufficient biological knowledge to understand how
genetics can help us predict various conditions and analyze each chromosome to identify
the disease-causing gene. Pre-existing research studies have focused on genomics and gene
interaction patterns of various persistent illnesses such as Alzheimer’s, multiple cancers,
and Parkinson’s.

Many aspects need to be considered in the predictive analysis of an illness, as a gene
mutation might lead to two or three diseases. The main challenge when handling genomic
data for illness prediction is that the prototypical microarray image consists of fewer
records. In contrast, the number of fields concerning genres could result in a few lakhs
that might misinterpret the data with a significant false-positive ratio. Enhanced Gene-Set
analysis can be deployed to extract and analyze genes resulting in soaring throughput
on molecular assessments. Gene-Set analysis, as stated by Mooney M. A. and Wilmot
B. [49] and Mathur R. et al. [50], is also referred to as pathway analysis, is meticulous
in aggregating gene-sets with identical properties or sequences per the reference’s gene
trained or presented in the disease’s knowledge base. Genome-wide association studies
(GWAS) have demonstrated that many disease-causing genes are related to human diseases.
GWAS has also provided polygenic characteristics of diseases. Figure 1 presents a block of
GWAS in disease prediction. There are many steps during a gene-set analysis. They are
shown below as Steps 1 through Step 6:

Step 1: Preliminary genome-wide analysis and data preprocessing;
Step 2: Identifying gene-set definitions whose patterns have to be recognized;
Step 3: Processing genomic data such as filtering and identifying gene patterns;
Step 4: Identify gene set analysis models, such as identifying the statistical hypothesis;
Step 5: Assessing the statistical magnitude;
Step 6: Report summarization and visualization.
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Figure 1. Gene analysis-based disease perdition framework.

Gene data include metadata about the information associated with type 2 diabetes,
consisting of alleles, MegaBase, and Single nucleotide polymorphisms. An allele is a word
that denotes a particular gene sequence copy associated with a specific context. A mutation
might be considered one of two or more varieties of a particular gene. Most individuals have
SNPs. However, some variants are more prevalent than others in particular populations. A
single DNA-building unit, the nucleotide, is found at tens of thousands of different sites
on the human genome. In genetics, a MegaBase is a unit of length representing a genomic
region’s length. MegaBase is used to determine the distance between two genes. Values
of these gene features mentioned above are considered when evaluating the possibility of
feature disease.

A highly dense genotyping collection is considered for coverage throughout the whole
genome, such as covering common and uncommon variations in the genome. These gene
sequences contain many single-nucleotide polymorphisms (SNP) that can significantly
improve the capture of low-frequency variations, which is advantageous to users of other
genome-wide collections. Gene sequences that hold a higher possibility of T2D in the future
are listed in Table 2. Disease-corresponding gene sequences are cross-validated against
individual data for forecasting the likelihood of the disease.

Table 2. Genomic information associated with Type 2 diabetes.

Gene Data
Type 2

Diabetes
Fasting Glucose Alleles SNP Megabase

GLS2 � G/A rs2657879 55.2
P2RX2 � A/G rs10747083 131.6
WARS � G/T rs3783347 99.9
BCAR1 � T/G rs7202877 73.8

ANKRD55 � G/A rs459193 55.8
TLE1 � G/A rs2796441 83.5

KLHDC5 � C/T rs10842994 27.9
ANK1 � C/T rs516946 41.6
ZMIZ1 � A/G rs12571751 80.6
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3. Methodology

This study is focused on predicting future illnesses such as type-2 diabetes from
genomic and tabular data. Genomic data are analyzed for possible gene expression highly
likely to be affected by type-2 diabetes. Tabular data from the PIMA dataset with various
features are also explored through the proposed RNN model by identifying the feature
vector’s pivotal features. The proposed model relies on the Deep Neural Networks (DNN)
framework for analyzing the genomic data, making the precise assessment of possible
future illnesses with better Accuracy than the conventional pattern-matching techniques.
DNN is a probabilistic measure that would summarize the possible illness outcome that
would better assist in decision-making by the physicians. The working procedure and
implementation details are discussed in the current section. The models are trained from
the available gene base from scratch initially, and at the later stages, the model learns from
the experimental outcomes.

3.1. Recurrent Neural Network Model for Type 2 Diabetes Forecasting Based on Genomic Data

Predictions of future illness can be performed through Convolutional Neural Networks
(CNN), as stated by Leevy J.L. et al. [51] and Yadav S.S. and Jadhav S. M. [52] using
Recurrent Neural Network (RNN) module-based architecture described by SivaSai J.G.
et al. [53]. CNN model consists of many intermediate nodes connected. Each node is
significant in delivering the output following the anticipated outcome. RNN is robust
in handling variable-length input sequences with the help of internal auxiliary memory
modules [54]. The detailed architecture along with the implementation procedure for the
proposed approach, is presented in this section.

With the proposed approach, gene patterns are analyzed against pre-trained sequences
of genes that cause the disease. For the effective implementation of illness prediction,
the recurrent neural network component is incorporated with gene set analysis, which
could minimize the false positive ratio. The Recurrent neural network model is a layered
architecture approach where each layer works independently. The output of the previous
phase is fed as the input for the next phase. Recurrent neural networks can transform
individualistic components into contingent components by adjusting each layer’s weight
and bias by minimizing the number of parameters to be considered and reducing the
complexity of memorizing the previous layer’s output. The responsibility of each layer is
presented in this section, along with the working procedure of the proposed model.

3.1.1. Data Collection and Processing

Gene-related data were acquired from the open-access comprehensive miRbase-18.0 R
dataset with human gene sequences of 10,094 records labeled and annotated [55,56]. In the
present experimental study, 303 samples were considered for the training and validation of
the model at 70:30 proportion, respectively. Generally, gene sequences are 84 nucleotides in
length, ranging from 43 nucleotides to 154 nucleotides.

The data acquired from online repositories must be processed following the model’s
outcome. The information is organized in tables to be further refined to predict gene
sequence better, including aligning the region of interest in genomic patterns. Gene se-
quences could be expressed as a grid in which each location corresponds to a single-hot
vector containing letters A, C, G, and T. Gene expression is indeed a matrix containing
absolute values, each such element representing the pattern that is an integral part of the
gene in a particular environment, such as a cell. Spatial information is often described as a
three-dimensional array, with two dimensions representing the entity’s actual location and
a third dimension representing colors or genes. Typically, texts are defined as a one-hot
matrix for each token entering a stable database. While most cells have the same genome,
individual genes are expressed at highly variable amounts in variable tissues and cells in
response to various treatments and settings. Such degrees of gene expression could be
quantified by measuring levels of mRNA transcripts. In such context, comparison of gene
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expression of patients with the illness to that in healthy cohorts (without the disease of
interest) and different link genes with the diseases underlying biological systems.

3.1.2. Feature Selection

When analyzing gene data for illness prediction, features are significant in obtaining
an accurate and precise outcome. Feature selection is one of the vital phases of the proposed
approach. The feature selection process performed during the training step would have a
noticeable contribution to the dimensionality reduction of gene data, including discarding
irrelevant data and recognizing vital records in the dataset. The proposed approach’s per-
formance depends on the feature selection mechanism in the present work. It is significant
in identifying the diseased gene from the extracted genomic information for the human
body. Minimum Redundancy Maximum Relevance (mRMR), as stated by Zena M. Hira
and Duncan F. Gillies [57] and M. B. Shirzad and M. R. Keyvanpour [58], was used for
feature selection and extraction of microarray data in the current study.

The minimum Redundancy Maximum Relevance (mRMR) approach maximizes the
relevancy of components concerning the genomic information and minimizes the number
of corresponding classes. mRMR-based feature selection technique that favors features that
have a strong correlation with class but a low correlation among themselves. In the feature
extraction process, divergent statistical metrics are considered, including Mutual Informa-
tion (MI), which assesses the entropy of a random variable concerning other variables in
the corresponding class. The mRMR approach can also be used with both continuous and
discrete variables. The amount of MI among features is used to calculate redundancy. If
the value of MI is substantial, it indicates a significant degree of data redundancy among
the two characteristics, i.e., redundancies. A lower redundancy measure value suggests
more effective feature selection criteria. The purpose of redundancy is to locate the feature
with the lowest MI value among all features. According to the premise that the lower
the value of information redundancy across features, the more helpful it is to activity
categorization, which may be stated by decreasing MI among features [59]. The following
equation determines the gene that is not redundant for a set of features β(x ∈ {1, 2, . . . f})

Mr =
1

|f|2 ∑α,β∈C MI(α,β) (1)

In the above Equation (1), the discrete variable MI is the Mutual Information, variables
α and β represent genes, and |f| represents the number of features in class C. The maxi-
mum relevance concerning the target class is determined through the following equation:

R =
1
|f| ∑α∈C MI(γ,α) (2)

In the above Equation (2), the variable γ is the class label for discrete variables. F-
Statistics for assessing the mean of two classes are significantly divergent for determining
the maximum relevance among corresponding genes and the class label. The minimal
redundancy that approximates the correlation of the complementary gene pairs in the class
is approximated as shown in Equations (3) and (4)

R =
1
|f| ∑α∈C Fs(α,γ) (3)

Mr =
1

|f|2 ∑α,β∈C x(α,β) (4)
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The mutual information among the two gene sequences let them be p and q, and if
some gene-sequence of p is there in the gene sequence q. The MI for the gene sequences is
assessed using the generic formula for mutual information, as shown in Equation (5).

MI(p; q) = ∑p,q f (p, q)log
f (p, q)

f (p), f (q)
(5)

The Pymrmre package helps work with the mRMR method by employing an ensemble
mechanism to further investigate the feature map and construct a more robust feature set.
Figure 2 represents the feature selection mechanism for selecting the optimal features for
gene-data analysis.

Figure 2. Diagram representing the mRMR Features selection technique.

3.1.3. Layered Architecture of RNN-Based Prediction Model

There are multiple layers in the proposed RNN model. Each plays a vital role in
performing the predictive analysis of the illness, according to Carrara, F., Elias [60], and
Che et al. [61]. The RNN model has kernels that work on inputs to create a feature map
to detect referee patterns in the corresponding input sequence. The outermost layers
would be the input and output layers. There are many other intermediate layers, including
the Convolutional, max-pooling, Flattening, fully connected, and softmax layers. The
outermost layer captures the gene sequences that must be validated against the training
set. The inner Convolutional layers are used to handle complex patterns. Each of those
Convolutional layers also decomposes gene sequences.

The pooling layer acts as the interface between two convolution layers. Its focus is on
minimizing the number of parameters required for processing the data, thereby handling
overfitting. The pooling layer is responsible for reducing the spatial size of the model so
that the model is computationally feasible. The max-pooling layer would result in the
statistical outcome of decomposing the input to the minor extent possible and performing
components’ filtering. Members that hold the maximum values are processed to the further
stage. The rest of the components are left unprocessed. To flatten the layer associated with
the conversion process of the data obtained from the previous layer, it is necessary to create
a one-dimensional array of gene data that contain data to be fed to the next layer. The
convolutional result is flattened to compress the outcome of convolutional layers into a
single lengthy feature vector. The final classification model is termed a fully connected
layer. It is linked to the output. The fully connected layer does have connections to all
nodes in the layer. It is feasible to learn all nonlinear combinations of various complex
patterns. The reasonability of this layer is to obtain the probability of the gene causing
the abnormality. The fully connected layers comprise two significant layers. The first
fully connected layer gets the input data from parameter analysis and labels the input
GENE sequence for accurate prediction through weights. The fully connected output layer
approximates probabilities of illness-causing genes from gene sequences [62].

In addition, the Softmax layer expands the concept into something similar to a multi-
class environment. Specifically, in a multi-class classification issue such as disease predic-
tions, Softmax gives decimal probability to each class. The sum of all such probabilities
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associated with each category is equivalent to 1.0 in the long run when dealing with decimal
probability. Figure 3 presents the layered approach of RNN used in the prediction model.

Figure 3. Layered architecture diagram of the RNN model.

Convolution is an operation that transforms a function into an output component; it is
a technique that follows a certain sequence and involves intertwining two different informa-
tion sources. Every single Convolutional Neural Network starts with a Convolutional Layer
as its very first layer. The input is subjected to a convolutional operation in convolutional
layers, and the output is then passed on to the next layer. A convolution reduces the values
of all the pixels included within its receptive field to one. ReLU activation function is used
with the Convolution layer. When using ReLU, all of the negative pixels are converted
to 0 via an element-wise procedure. The result is a corrected feature map, which adds
non-linearity to the network.

• After the Convolutional layer, the pooling layer is often applied. The pooling layer’s
purpose is to minimize the volume of the input matrix for subsequent layers. In the
current study, the MaxPooling function is used in the current study.

• A flattening operation transforms data into a one-dimensional array to be used in
a subsequent layer. This is conducted so that CNN’s output may be sent to a fully
connected network.

• A neural network is a collection of non-linear, mutually dependent functions. Neurons
are the building blocks of every single function (or a perceptron). The neuron uses a
weights matrix as a fully connected layer to apply a transformation matrix to the input
vector. The result is then subjected to a non-linear transformation via a non-linear
input signal s as shown in Equation (6).

fc = f
(
∑p

i=1 ωckai + ωc0

)
(6)

• One way to represent a set of numbers as probabilities are to use the Softmax math-
ematical function, which multiplies all the values in a set by the scale at which they
appear in the vector. The likelihood of belonging to each class is calculated using the
outcome of the softmax algorithm.

3.1.4. RNN Component Structure

A recurrent Neural Network, also known as a back-feeding neural network, is a
more robust alternative to conventional feedforward neural networks as it does not need
an internal auxiliary memory. As the outcome of a current input relies on the previous
calculation, RNN is recurrent. After the outcome has been produced, copying and sending
the output into the recurrent network is known as “back-feeding.” The decision-making
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process analyses what it has learned from the prior information and applies it to the
present situation. Using the gene patterns present in the sequence, RNN may extract the
correlated patterns that result in type-2 diabetes. The same could be employed in analyzing
variable-length gene data for the probability of being affected by type 2 diabetes.

An RNN can evaluate any sequences, irrespective of length, iteratively through its
transition function over the state vector Oi. At iteration i, state activation may be calculated
as a function of the input sequence character Zi and the prior state vector Ni−1 transformed
into the Ri in the current state cell. The tan h is the activation function associated with
each cell. In RNN, the vanishing gradient issue is considered the most crucial challenge.
More extensive sequences need an activation function such as tan h with a high second
derivative that can maintain the gradient over iterations. Mathematical notations for each
RNN module are presented in Equations (7)–(11).

Ni = σN(xi) (7)

σN(xi) = σN(αNzi + βNRi−1 + bN) (8)

gi = σg(xt) (9)

σg(xt) = σg
(
WgNi + bN

)
(10)

Oi = tan h
(
WgOi−1 + Wg−1Zi

)
(11)

In Equations (7)–(11), the variable Ri denotes the input vector of size (1 × x), the
variable Zi. The input for the RNN cell denotes the input vector of length (1 × x). Vari-
ables α and β denote the parameter matrix associated with pivotal features. The bias is
represented by bN. Variables σN and σg denote the activation function in the RNN cell.
Variable Wg and Wg−1 denote weights associated with the cell in the current and previous
state. The RNN cell structure is presented in Figure 4, where the output of the previous
component is fed as the input for the upcoming component in the RNN cell.

Figure 4. Image representing the RNN cell structure.

In the RNN model, the tan h denotes the Activation function, which implements a
non-linearity that negates maximum activation values, creating a negative activation −1.
The softmax layer deliberates probabilities that will assist in determining the possibility of
future illness from the provided input genomic data.

3.1.5. GRU Component Structure

GRU’s component in neural networks is used to address the degradation issue and
create a feasible deeper layout for better Accuracy that can retain lengthy semantic patterns
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without calibrating model parameters [63]. The GRU component consists of the update gate
and the reset gate. The update gate regulates the inflow of data to the memory component.
The reset gate regulates data flowing out of the memory component, GRU. The gating
unit controls the data flow inside rather than having a separate memory component to
perform the task. The unit consists of two activation functions: σ and tan h. The output
of the current units is identified by cst becomes the input for next unit as cst−1 over the
time t. The variable αt is assumed as the input training data and βt is the corresponding
output generated by the activation functions Γr and Γu that denotes the reset gate and the
update gate, respectively. The value of Γu lies in between 0 and 1. When its values are
close to 0, more data from the previous states are retained. The range of the variable Γr lies
in between −1 and 1. When the value is close to −1, it implies that more previous data are
ignored. The GRU can be shown mathematically through Equations (12)–(15).

Γu = σ(ωu[cst−1, αt] + biasu) (12)

Γr = σ(ωr[cst−1, αt] + biasr) (13)

ĉst = tan h(ωcs[Γr × cst−1, αt] + biascs) (14)

cst = (1 − Γu)× cst−1 + Γu × ĉst (15)

From Equations (12)–(15), variables ωu, ωr, and ωcs designate weights associated
with training the update gate, reset gate, and candidate activation, respectively. Similarly,
variables biasu, biasr, and biascs designate the bias associated with the update gate, reset
gate, and candidate activation, respectively. Figure 5 presents the architecture of the
GRU module.

Figure 5. Image representing the GRU cell structure.

3.1.6. LSTM Component Structure

LSTM component is often used in recurrent neural network designs for pattern estima-
tion issues in the sequential data over divergent time scales. Memory cells handle memory
components in an abstract LSTM layer module, including an input and output gate, a
forgetting gate, and a window connection [64,65]. Associated weights are comparable to
those that change during a model’s training process to regulate input and hidden states. Ac-
tivation functions for the LSTM component are explained with Equations (16)–(20). States
are identified through variable St with a hidden state vector identified by ϑt concerning the
time t over the input it.

Input Gate (ρt) = σ
(
itωiρ + γt−1ωγρ0 + pst−1ωpsρ + biasρ

)
(16)

Output Gate (ot) = σ
(
itωio + γt−1ωγo + pstωpso + biaso

)
(17)

Forget Gate (χt) = σ
(
itωiχ + γt−1ωγχ + pstωpsχ + biasχ

)
(18)

Cell State Gate (pst) = χt·pst−1 + ρt· tan γ
(
itωips + γt−1ωγps + biasps

)
(19)

LSTM Output(γt) = ot· tan γ (pst−1) (20)
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From Equations (16)–(20), variables ωiρ, ωio, ωiχ, and ωips designate weights asso-
ciated with the input, output, forget, and cell state gates, respectively. In addition, ωγρ,
ωγo, and ωγχ designate weights associated with the hidden layer. Similarly, variables biasρ,
biaso, biasχ, and biasps designate the bias component associated with the input gate, output
gate, forget gate, and cell state gate, respectively. The architecture of the LSTM component
is presented in Figure 6.

Figure 6. Image representing the LSTM cell structure.

3.1.7. Working Procedure of the Proposed Approach

The working procedure presents the sequence of tasks performed for future illness
prediction, including tasks ranging from initial data acquisition to final assumptions of the
future illness.

Step 1: Acquire gene data from the annotated miRbase data set;
Step 2: Data are preprocessed to remove the outlier data and fill out acquired data gaps;
Step 3: Data is converted into 1D data, followed by aligning of genomic patterns;
Step 4: Data is categorized into a training set (80% of the data) and a testing set (20% of

the data);
Step 5: Patterns are labeled based on sequence patterns of various illnesses. Moreover,

weights are assigned in the later phases according to the correlation between the
input sequence and the trained gene pattern;

Step 6: When a new GENE sequence is fed as input for testing the algorithm, features are
extracted through the mRMR approach that is pivotal in the prediction process;

Step 7: The cumulative weight is evaluated from assigned weights based on the correlation
of gene sequences between the input and the trained set;

Step 8: Based on the approximated weight of the gene sequence, the probability of a future
illness is assessed;

Step 9: Final assumptions are made based on probabilistic approximations.

3.2. RNN Model for Illness Prediction from Tabular Data (PIMA Dataset)

The possibility of being affected by a chronic disease such as type-2 diabetes is analyzed
from the tabular data with various features such as Stabilized Glucose, age, High-Density
Lipoproteins (HDL) Ratio, Total Cholesterol, First Systolic Blood Pressure, Second Diastolic
Blood Pressure, body mass, the height of individual, gender, and many other things.
Significant features are selected, weights are adjusted in favor of pivotal features, and
prediction is performed based on the feature vector. The significance of these features in
the evaluation process has been discussed in earlier studies on a similar feature vector
for type 2 diabetes [66–68]. Ranks associated with each of these features are presented in
Table 3, shown below.
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Table 3. Feature set associated with Type 2 diabetes.

Feature Data_Type Min_Value Max_Value Information Gain Mean Rank

Glucose (mg/dL) Integer 0 199 0.2497 3
Pregnancies Integer 0 17 ~ ~

Age Integer 21 81 0.0761 3.17
Heart Rate Integer 7.67

Waist Integer ~ ~ 0.0356 9.5
Pulse Pressure Integer ~ 12.33

Insulin (mm U/mL) Integer 0 846 ~ 13.33
Hypertension

(Blood Pressure) (mm Hg) Integer 0 122 0.0304 (bp1), 0
(bp2) 15

BMI (weight) (kg/m2) Real 0 67.1 ~ ~
Diabetes Pedigree Function Real 0.08 2.42 ~ ~

Skin thickness (mm) Real 0 99 ~ ~

3.2.1. Feature Weight Initialization

Features are essentially important for analyzing the possibility of diabetes disease.
Weights associated with features and corresponding layers are updated over iterations [69].
When the feature is significant, it will cascade forward via hidden nodes, showing greater
influence over output nodes. Thus, weighting such a significant feature is important. The
feature that contributes more to the prediction process will be given considerable weightage
for further processing. After training, the feature weight is obtained from the trained neural
network, as shown in Equation (21).

Iw = ∑p−1
i=0 ∑q−1

j=0

∣∣∣ωi,j ×ωj,k

∣∣∣ (21)

From Equation (21), the variable Iw is the initial weight assigned to the feature
vector, ωi,j denotes the network weight between the input node i through hidden node j.
Similarly, the variable ωj,k denotes weights of the hidden node j through output node k. The
summation covers all potential forwarding routes between input node i and output nodes.
For a few less significant features in the evaluation process, their weights are adjusted
so that the sum of approximated weights of less significant features is equivalent to the
total number of features. Associated weights for less significant features are given through
Equation (22).

ωlsf =
1
n ∑n−1

i=0 ωlsf (22)

From Equation (22), the variable ωlsf designates less significant weights, and the
variable n designates the number of features in the considered problem. In the current
context, the value of n is 8 from the Pima dataset.

3.2.2. Weight Optimization

Weights associated with features must be optimized regularly for better performance of
the model. These weights are optimized concerning the loss function and model parameters
associated with each parameter in the training dataset [70,71]. In the current study, the
input-target pair (i, j) and the

{(
ip, jp
)

, 0 ≤ p ≤ n
}

denote the training set. The validation
set is associated with the model for fine-tuning the model’s performance using the set{

i′p, j
′
p), 0 ≤ p ≤ m

}
, where the size of m is much smaller than the size of records in n.

The RNN model is denoted by 	(p, θ). The associated loss function will be L
(
j′, j
)

which is
desired to be minimal, where j′ = 	(i, θ). The expected loss associated with the training
set is determined through the variable Tl as shown in Equation (23).

Tl =
1
n ∑n−1

p=0 L
(
j′, j
)

(23)
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Tl =
1
n ∑n−1

p=0 fp(θ) where L
(
j′, j
)
= fp(θ) (24)

In Equation (24), the function fp (θ) is the loss function concerning data ip. Weights asso-
ciated with parameters are optimized to minimize the weighted loss through Equation (25).

O(θ)w = θ′ ∑n−1
p=0 ωpfp(θ) (25)

The value of the variable ωp is not known at the initial iteration. The value
{
ωp
}n−1

p=0
is tuned by training hyperparameters. The validation dataset could result in fine-tuning the
value of ω to reduce the weighted loss of the prediction model, as shown in Equation (26).

ω′ =
min
ω,ω′

1
m ∑m−1

p=0 f′p(θ × ω) (26)

To reduce negative training loss that could result in an unstable model, The value
associated with the weight ω ≥ 0 for all parameters p.

3.3. Dataset Description

The Pima Indian Dataset is used in the current study to predict Type-2 diabetes. It
is part of the UCI machine learning repository maintained by the National Institute of
Diabetes, Digestive, and Kidney Diseases. The dataset consists of eight columns repre-
senting parameters of Pregnancy, Glucose, Blood Pressure, Skin Thickness, Insulin, Body
mass index (BMI), Diabetes Pedigree, and age. The PID dataset consists of a single output
class with a binary value indicating whether or not an individual has diabetes. The dataset
consists of 768 cases (500 non-diabetics and 268 diabetics) [72,73]. The Pima dataset is
considered in the current study as it is widely used for comparing the performances of
techniques. The dataset is partitioned as training and testing in a ratio of 70:30, with an
initial learning rate of 0.0002, and it is observed that the model has

3.4. Implementation Environments

The computer is equipped with an Intel(R) Core i7(11th Gen) 4.70 GHz processor and
16 GB of main memory running over a 64-bit Windows 10 environment. The proposed
RNN model for gene analysis is implemented over Kaggle, an online platform for executing
such frameworks [74]. Python version 3.6.6, also widely known as the anaconda, is used in
the implementation. Tensor Flow version 2.4.1, along with various libraries such as NumPy,
pandas, matplotlib, seaborn, and sklearn, are used in the implementation process of the
proposed model.

4. Results and Discussion

The proposed model has been evaluated on genomic data and the tabular data by
using the same feature engineering mechanism and the layered approach for predicting the
type-2 diabetes. The proposed RNN-based type-2 diabetes is evaluated against genomic
and tabular data from the PIMA Indian dataset independently and the evaluations are
presented independently in the current section. The model was evaluated against two
datasets concerning various evaluation metrics such as sensitivity, specificity, Accuracy,
and F1 score. The classification efficiency of the proposed model was assessed using true
positive (TuP, the number of times that the model accurately predicted the gene with
a high possibility of diabetes correctly), true negative (TuN, identifying the gene with
less possibility of diabetes precisely), false positive (FsP, misinterpreting the gene with
the high possibility of diabetes as low possibility of diabetes), and false negative (FsN,
misinterpreting the low diabetes gene as a high possibility of illness). The sensitivity
metric determines the ratio of how many were accurately recognized as positive samples
out of how many were truly positive samples in the complete dataset. The specificity
measure determines the ratio of how many were recognized as negative samples out
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of how many among the samples are truly negative from the complete dataset. The
Accuracy measures the correctly predicted True positives and Negative samples against the
overall sample in the complete dataset. The harmonic mean of sensitivity and specificity
measures are determined as the F1 score. MCC is the best single-value classification score
for summarizing the confusion matrix. The formulas for the aforementioned metrics are
presented through Equations (27)–(32) [75].

senstivity(recall) =
TuP

(TuP + FsN)
(27)

Speci f icity =
TuN

(TuN + FsP)
(28)

Accuracy =
TuP + TuN

(TuP + FsP + TuN + FsN)
(29)

Precision =
Tup

(TuP + FsP)
(30)

F1-score = 2 × (precision × recall)
(precision + recall)

(31)

mcc =
(TuP × TuN)− (FsP × FsN)√

(TuP + FsP)(TuP + FsN)(TuN + FsP)(TuN + FsN)
(32)

It is a far more appropriate statistical rate that yields a good score only if the prediction
performed well among all the assumptions in the confusion matrix. The current section
presents results about the experimental outcome of both genomic and tabular data with
adequate analysis concerning existing models.

4.1. Experimental Outcome of Genomic Data

The performance of the proposed RNN model for predicting type 2 diabetes was
analyzed using performance evaluation metrics such as sensitivity, specificity, F1 score,
Mathews correlation Coefficient, and accuracy measures [76]. The above-discussed metrics
are assessed through true positive, true negative, false positive, and false negative values
approximating experimental outcomes. The dataset is split into a training set and a valida-
tion set at a ratio of 70:30. In the following graph, as shown in Figure 7, it is clear that data
values are skewed toward data instances, indicating that no diabetes exists. The percentage
of available data records of non-diabetic patients (or those who do not have diabetes) is
almost double that of diabetic patients.

Correlation coefficients among data points as input gene data are analyzed using
linear bivariate Pearson correlation coefficient (PCC). The correlation coefficient between
two samples of gene expression is expressed as PCC. Correlation coefficient with a com-
mon confidence interval and covariance, the relationship among them is the ratio of the
covariance of two variables and the product of their standard deviations. This gives a
numeric representation of the covariance with an outcome between −1 and 1. Only a linear
correlation between variables can be considered, even using the metric. Also, the metric
does not represent several relationships or correlations. Figure 8 shows a two-dimensional
heat map of data records.

Training and validation performances of the proposed model were evaluated using
hyperparameters such as train and testing scores. The training score determined how
perfectly the algorithm could generalize across its training samples. The testing score
determined how well the model could accurately correlate the known gene sequence
among individual records. An exceptionally high training score combined with a low-
test result indicates overfitting. When the training score is quite low, and the test score
is low, it indicates an underfitting. Performances of the proposed model concerning
hyperparameters are presented in Figure 9.
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Figure 7. A scatter plot shows relationships among data points in input records.

Figure 8. A heat map was generated from the gene dataset.
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Figure 9. A graph showing training and testing scores of the proposed model.

From graphs on the training and test scores, it can be depicted that the performance is
reasonably fair in making the classifications precisely as there is no considerable deviation
among either of the scores. In the current context, the gene expressions are classified as
sequences with a high possibility of affecting type 2 diabetes and sequences with a low
possibility of type 2 diabetes. The Decision Boundary is shown in a Scatter Plot, with every
data point visualized on the data scatter plot and characteristics represented by x- and
y-axes. The Decision Boundary forms a boundary for dividing data points into regions and
their classes. Categories of gene sequences with high and low possibilities of developing
diabetes are shown in Figure 10.

Figure 10. A graph showing the decision boundaries of two classes of records.

The confusion matrix would assist in analyzing the performance of the proposed
model in analyzing future illness. The evaluated samples, i.e., TuP, TuN, FsP and FnP are
shown in the confusion matrix in Figure 11, and the corresponding performance evaluation
metrics are shown in Table 4.

Table 4. Performance evaluation metric and estimated values.

Metric Estimated Value

Sensitivity 83.66
Specificity 49.38
Precision 75.73
Accuracy 71.79

Mathew’s correlation Coefficient 35.09
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Figure 11. Image representing the confusion matrix for the proposed RNN model for future ill-
ness prediction.

As shown in Table 4, estimated values clearly demonstrated that the model made
predictions reasonably with few records. However, the model’s performance could be
further improvised when more data records could be used. The Receiver Operating Char-
acteristic (RoC) Curve of the proposed model is presented in Figure 12, and it is depicted
that the model has outperformed with reasonable accuracy in precisely classifying the
genomic data. The RoC curve estimates how well the proposed approach can differentiate
the two-class records that include gene expression with a higher or lower possibility of
being affected with type-2 diabetes. An accurate model can tell the difference between the
two. An improper model will find it difficult to tell the difference between the two sets
of records.

Figure 12. Graph presenting the ROC curve of the proposed model.

4.2. Experimental Outcome with Tabular Data (PIMA Dataset)

The Pima Indian dataset consists of eight features that help predict the possibility of
affecting type-2 diabetes. The model’s performance was evaluated using various evaluation
metrics. The heat map represents the association of multiple parameters in determining a
future illness. Figure 13 illustrates the heat map of features in the PIMA Indian dataset.
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Figure 13. Heat map generated with the PIMA dataset.

The experimentation was performed with the PIMA data by optimizing initial weights
assigned to parameters. The proposed model exhibited better accuracy in optimizing
weights. Figure 14 presents the resultant confusion matrix obtained over data with and
without weight optimization for all three recurrent neural network components. Among
these, the LSTM-based architecture has outperformed in terms of classification accuracy.
Correctly identifying the individual record as a diabetic patient was assumed as a True
Positive (TuPR). The correctly predicting the non-diabetic patient was assumed as a True
Negative (TuNR). When the model misinterpreted normal cases as diabetic cases, False
Positive (FsPR) was considered. When diabetic cases were recognized as normal cases,
False Negative (FsNR) was considered.

The percentage of true positives that are accurately recognized is what sensitivity
analyzes. Specificity, often known as the real negative rate, is a measurement that deter-
mines the percentage of actual negative instances that are accurately classified as such.
The ratio of the number of instances properly categorized to the total number of instances
is called Accuracy. The F1 score is a statistic calculated by taking the harmonic mean of
a classifier’s accuracy and recall values and combining them into a single value. A low
number of false positives and false negatives gives you an excellent F1 score. The Matthews
correlation coefficient, or MCC, is a correlation coefficient that compares predicted values
to actual values, which is mostly used in binary class classification problems. The weight
optimization process could help evaluate the dataset more precisely as features with more
significance would be considered in the evaluation process. Weights are optimized over
the iteration. Resultantly, more significant features are involved in the evaluation process.
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The weight optimization could yield considerable Accuracy over a conventional model.
The experimental outcome presented in Table 5 shows the outcome of the proposed model
concerning optimized weights.

Figure 14. Confusion matrix of the proposed model.

Table 5. Performance of the proposed model with weight optimization.

Sensitivity Specificity Accuracy F1-Score MCC

RNN Model 0.800 0.690 0.753 0.825 0.473
RNN + GRU 0.786 0.652 0.744 0.809 0.426
RNN + LSTM 0.826 0.679 0.774 0.823 0.505

RNN Model (WO) 0.819 0.742 0.796 0.848 0.541
RNN + GRU(WO) 0.833 0.733 0.800 0.849 0.558
RNN + LSTM(WO) 0.815 0.793 0.810 0.856 0.568
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The classification efficiency assessment of the proposed model was compared with
various existing studies concerning evaluation parameters such as sensitivity, specificity,
Accuracy, and F1 score. Table 6 presents experimental values obtained by the proposed
model over other existing models such as Naive Bayes, J48, Logistic Regression, K Nearest
Neighbor, Random Forest, Decision Tree, REPTree, Sequential Minimal Optimization
(SMO) and BayesNet. Experimental outcomes of the current model are evaluated against
the outcomes of other existing models using similar datasets [77,78].

Table 6. Performance analysis of the proposed model with existing studies.

Sensitivity Specificity Accuracy F1-Score MCC

Decision Tree 0.781 0.561 0.697 0.762 0.349
J48 0.688 0.695 0.691 0.754 0.383

K Nearest Neighbour 0.748 0.603 0.708 0.787 0.331
Logistic Regression 0.775 0.666 0.744 0.813 0.416

Naive Bayes 0.820 0.687 0.689 0.830 0.502
Random Forest 0.789 0.661 0.750 0.813 0.436

Support Vector Machine 0.775 0.666 0.744 0.813 0.416
REPTree 0.530 0.744 0.590

SMO 0.280 0.724 0.410
BayesNet 0.570 0.738 0.600

RNN model 0.837 0.774 0.818 0.864 0.591

A resampling technique for evaluating the machine learning approaches is known as
cross-validation, where a small data sample is considered for evaluation. The technique
includes a single parameter, k which specifies how many groups are provided with sample
data. The k-fold cross-validation describes the number of groups associated with the
evaluation. When k = 2 means the model reference to 2-fold cross-validation. The formula
for the cross-validation over k f folds concerning to the mean square error (MSE) is shown
in Equation (33). In the current study, the accuracies of the RNN model with different
auxiliary memory components are evaluated against divergent K-Values, as presented in
Table 7.

cross_validationk f
=

1
k f

∑
k f
x=1 msex (33)

Table 7. The Accuracy of the RNN model with auxiliary memory components against divergent
K- Values.

Value of K RNN Model RNN + GRU RNN + LSTM RNN Model (WO) RNN + GRU (WO) RNN + LSTM (WO)

2 0.716 0.704 0.723 0.752 0.771 0.789
5 0.745 0.739 0.770 0.791 0.799 0.812

10 0.774 0.762 0.798 0.810 0.821 0.824

The ROC curve of the proposed model states the trade-off between the True Positive
assumption and the False Positive assumption of the proposed model concerning predic-
tions made with the Pima diabetic dataset. Figure 15 presents the ROC of the proposed
model with optimized weights using tabular data. The proposed model has shown the
classification’s desired performance concerns.

The present model was trained with limited genomic data or PIMA diabetic dataset.
Either of these datasets consisted of approximately 700 records. Of them, 30% of the overall
data were meant for testing, resulting in training the model with inadequate records that
could impact its performance. RNN-based models in various applications have exhibited
noticeable accuracies. However, the neural network model’s Accuracy can vary depending
on the ratio of the training sample to the testing sample.
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Figure 15. ROC curve of the proposed model using PIMA data.

4.3. Practical Implications

The proposed technique for forecasting type-2 diabetes can be implemented over
a mobile framework with a front-end module. Patients and practitioners can perform
the initial assessment of the illness. Users can provide details such as glucose levels,
pregnancies, insulin, hypertension, BMI, Diabetes Pedigree, skin thickness, and heart rate.
Based on the provided input and the trained data, the model can analyze the input with
the trained data for predicting the illness. The model can be implemented in the iOS
platform to the back-end Kaggle using the back-end service such as the MBaaS component.
A secured socket layer (SSL) and two-factor authentication can ensure the security of the
model [79,80].

Images of the user interface of the application model are presented in Figure 16. The
leftmost image represents the registration page of the application. The middle image shows
the user information page, followed by the resultant prediction screen of the model. The
model makes the task of predicting a future illness more convenient. The model can be
improved by incorporating the genomic module for accepting gene data and evaluating
the illness based on gene information.

Figure 16. Images presenting the mobile interface of the future implication model.

The future implication model was inspired by a non-invasive way of assessing fu-
ture illness more precisely. The assessment could help physicians and individuals better
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evaluation of health conditions. The prediction could assist individuals in adopting better
life standards and living habits to avoid or prolong the chance of being affected by the
illness [81]. The computationally efficient approaches like the MobileNet V2 and MobileNet
V3 architectures would assist better in deploying the models in lightweight computational
devices. The RNN models need tremendous computation efforts despite providing highly
accurate performances.

5. Conclusions

The genomic-based future illness prediction is a path-breaking approach for pre-
cisely assessing future illness. Genomic-based data can be conveniently analyzed through
supervised-based approaches such as Neural Network models. The sequence of GENE
can be downsampled and analyzed based on the weight concerning the diseased sequence.
The approach decomposes a large GENE sequence into smaller GENE strings, raising the
chances of accurate matching with diseased sequences and resulting in a precise prediction.
Although there might be a considerable burden on the machine to decompose the large
genomic patterns, decomposing them to a certain predetermined extent has better Accuracy
than conventional approaches. When the proposed model was evaluated over the PIMA
diabetic dataset, it exhibited a reasonable performance in predicting type-2 diabetes. The
PIMA dataset consists of 768 records, of which only 537 are used for training. The Accuracy
would be much better when more records are for training purposes. Statistical analysis
for disease progression [82] has exhibited better performance than the existing models
when adequate data are available. Users may access the suggested model’s prediction
result via the Android application. As a result, it is desired to give an effective method
for determining the possibility of being affected by diabetes at an early stage. However,
it is exceedingly challenging to work with larger sequence gene data, the quantum and
federated learning techniques would effectively handle such a larger sequence data. On the
other side, when dealing with tabular data, the ensemble classification models would yield
almost identical performance with minimal computation to the suggested RNN models.

Although the proposed approach showed promising results, it was challenging when
decomposing to a more significant extent. In such situations, incorporating Long Short-
Term Memory (LSTM) can make the approach more robust with considerably lesser com-
putational latency. For handling an unusual illness, self-Learning Based algorithms and
the use of cognitive technology would be appropriate to minimize the steps needed for
training the algorithm [83]. The proposed approach based on Genomics with Self-Learning
algorithms might result in better results than supervisory approaches alone. In future
work, comparison with other smart diagnosis techniques and assessment of other clinical
datasets need to be performed. Once the model validation is performed with more datasets,
other risk factors affecting diabetes can be revealed. The future dimensions of the research
include the deep learning-driven pattern recognition models for analyzing the gene se-
quences for identifying the possible future illness and developing mobile applications that
can generalize the information from the genomic data. However, there is great demand for
explainable Artificial Intelligence models that are interpretable in decision-making.
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Abstract: SARS-CoV-2 and Influenza-A can present similar symptoms. Computer-aided diagnosis
can help facilitate screening for the two conditions, and may be especially relevant and useful in
the current COVID-19 pandemic because seasonal Influenza-A infection can still occur. We have
developed a novel text-based classification model for discriminating between the two conditions
using protein sequences of varying lengths. We downloaded viral protein sequences of SARS-CoV-2
and Influenza-A with varying lengths (all 100 or greater) from the NCBI database and randomly
selected 16,901 SARS-CoV-2 and 19,523 Influenza-A sequences to form a two-class study dataset. We
used a new feature extraction function based on a unique pattern, HamletPat, generated from the
text of Shakespeare’s Hamlet, and a signum function to extract local binary pattern-like bits from
overlapping fixed-length (27) blocks of the protein sequences. The bits were converted to decimal
map signals from which histograms were extracted and concatenated to form a final feature vector of
length 1280. The iterative Chi-square function selected the 340 most discriminative features to feed to
an SVM with a Gaussian kernel for classification. The model attained 99.92% and 99.87% classification
accuracy rates using hold-out (75:25 split ratio) and five-fold cross-validations, respectively. The
excellent performance of the lightweight, handcrafted HamletPat-based classification model suggests
that it can be a valuable tool for screening protein sequences to discriminate between SARS-CoV-2
and Influenza-A infections.

Keywords: Hamlet Pattern; protein sequence classification; SARS-CoV-2; bioinformatics

1. Introduction

Understanding how viruses interact with host cells for their life cycle is essential
for understanding viral pathogenesis. In addition, the viral genetic codes enable these
interactions. The unique protein sequences that distinguish between viruses are a crucial
cornerstone. For this purpose, medical laboratories make great efforts. On the other hand,
in silico approaches cover a wider place in today’s academic research than ever before. This
study proposes a method based on viral protein sequences that can classify SARS-CoV-
2, which has scared the world in recent years, and the Influenza-A virus, which causes
difficulties in differential diagnosis [1].

SARS-CoV-2 is a new type of coronavirus that emerged in December 2019, causing
severe acute respiratory distress syndrome [1]. It spread worldwide, resulting in a pan-
demic named COVID-19. Coronaviridae family members are enveloped by single-stranded
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positive-sense Ribonucleic acid (RNA) viruses [2]. SARS-CoV-2 [3] shares a 50% similarity
with the MERS-CoV genome. Additionally, it has 88% similarity to two SARS-like coron-
aviruses derived from bat species [4]. The SARS-CoV-2 genome contains 14 open reading
frames (ORFs) that encode about 27 proteins [5], including four structural (surface (spike)
(S), envelope (E), matrix (membrane) (M)) proteins, and a nucleocapsid (N) protein [5].
The S protein binds to host cells and exhibits tropism towards the angiotensin-converting
enzyme receptors (ACE-2s) [6]. ACE-2 is highly expressed in alveolar type 2 epithelial
cells, which explains the vulnerability to pneumonia [7]. The S protein consists of two
subunits: S1 binds to the receptor on the host cell membrane, while S2 fuses the viral and
host membranes [8]. Therefore, these proteins are potential therapeutic drug targets [8,9].

The influenza virus is an RNA virus belonging to the Orthomyxoviridae family that
can infect a variety of human and animal hosts. Influenza B and C are more common in
humans, while Influenza D infects animals such as goats and pigs [10]. The genomes of
Influenza A and B viruses contain eight RNA segments that encode 18 different proteins.
Influenza C and D lack the fifth segment responsible for neuraminidase. The fourth gene
encodes hemagglutinin, and other genes encode viral polymerases, nucleoproteins, major
matrix protein, ion channel matrix protein, and other nonstructural proteins [11]. Influenza-
A viruses are named according to the structural differences of neuraminidase (N1-11) and
hemagglutinin glycoproteins (H1–18), which are on the surface of the envelope [3]. These
envelope proteins play an important step in viral pathogenesis by binding to the host
cells [12]. This stage is also an important drug target [13].

The viral pathophysiology that we previously mentioned, and the etiopathogenesis of
influenza explained in the prior section, should illustrate why the viral genomes are the
crucial component of these diseases and their therapies. SARS-CoV-2 and Influenza-A can
present with similar symptoms, and Influenza-A infection may be more problematic for
patients during the current COVID-19 pandemic [14]. In addition, computer-aided diagno-
sis could help screen for the two pathological conditions requiring different treatment and
isolation protocols [15].

Our main aim is to propose a new machine learning model to classify COVID-19
and Influenza-A diseases with high classification performance. Moreover, we propose a
lightweight protein classification model. This model uses a new feature extraction technique
named Hamlet Pattern. We in fact propose a new feature extraction methodology, and
Hamlet Pattern is the first feature generator of the presented feature extraction methodology.
This methodology is named text-based feature extractor creation. To take attention, we
have used the popular text, Hamlet. In the Materials and Methods we present the main
steps in the creation of our text-based feature extractor. Our main hypothesis is that literary
texts have harmonies, which have been created using hidden patterns. In this paper we
propose a new feature extraction methodology to obtain these hidden patterns. We used a
piece of text from Hamlet to generate a new pattern, and the features were extracted using
this pattern. We tested the feature generation ability of the presented feature extraction
function using a protein sequence dataset to classify COVID-19 and Influenza-A.

Machine learning and artificial intelligence models are commonly used in the biomed-
ical and bioinformatics sciences to solve classification problems [16–18]. Therefore, we
were motivated to develop a computationally lightweight machine learning model for
automated SARS-CoV-2 versus Influenza-A diagnosis. Feature engineering is an important
aspect of machine learning [19,20]. One popular handcrafted feature generator is the local
binary pattern (LBP) [21], which extracts local textual features based on the neighborhood
relations of overlapping blocks. LBP possesses the advantages of simple application, low
time complexity, ability to generate distinctive features, and fixed-size feature vector cre-
ation. We were motivated to develop an LBP-like feature extractor based on a novel pattern
inspired by art. To this end, we selected text from a famous literary work, Hamlet, to
create a novel pattern, combined with the feature selection function and a standard shallow
classifier to form a handcrafted learning model.

The contributions of the proposed model are as follows:
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• A novel feature extraction method based on a novel pattern that was inspired by a
literary work. The presented feature extraction method is the first text-based feature
extraction function creation methodology.

• Using protein sequences, a classification model incorporating the novel pattern was
applied for the binary classification of SARS-CoV-2 versus Influenza-A diagnosis.
The model attained excellent classification performance, supporting its potential
use as an adjunctive screening tool for suspected viral respiratory infections in the
current pandemic.

The paper is organized as follows: The dataset is shown in Section 2. Section 2
describes our proposed protein sequence classification model. Section 3 presents the results.
Section 4 presents a discussion of the results. Section 5 outlines the conclusions.

2. Materials and Methods

2.1. Materials

In FASTA format, we downloaded viral protein sequences of SARS-CoV-2 and Influenza-
A with lengths 100 or greater from the NCBI database [22]. Among these, we randomly
selected 16,901 SARS-CoV-2 and 19,523 Influenza-A sequences to form a two-class study
dataset with 36,424 observations.

2.2. Our Proposed Protein Sequence Classification Model

Shakespeare’s Hamlet inspired our novel handcrafted feature engineering method. In
Act 1 Scene 1, an apparition is before Horatio, who initially doubts but later acknowledges
it to be the ghost of the recently deceased King Hamlet [23]. Horatio, the speaker of truth,
i.e., the oracle, and confidant of the protagonist Prince Hamlet, later informed him of the
encounter, thus setting the unfolding of subsequent tragic events in motion. By using
letters from this text, HamletPat is applied to extract features from protein sequences. The
protein sequences were coded with letters because the amino acids are named with text.
We converted these texts to numerical values. HamletPat extracts a feature vector from
these numerical values. An iterative Chi-square (IChi2) application [24] was then deployed
to choose the most discriminative features to feed a support vector machine (SVM) [25,26]
for classification using hold-out (75:25 split ratio) as well as 5-fold cross-validations (CVs)
(see Figure 1).

The basic steps of the model are listed below (details are provided in the following sections):
Step 0: Load/read each protein sequence from the dataset and convert the amino acid

sequence conventionally denoted by letters of the alphabet to a string of numbers.
Step 1: Extract features from each protein sequence using HamletPat.
Step 2: Select highly discriminative features from the generated feature vector by

deploying the IChi2 feature selection function.
Step 3: Classify selected features by deploying the SVM classifier with two validation

techniques, hold-out (split ratio 75:25) and 5-fold CVs.

2.2.1. Feature Extraction Using HamletPat

A novel text-generated pattern, HamletPat, was used to extract LBP-like features from
overlapping fixed-length blocks (27) of protein sequences of different lengths. A block
diagram of the proposed feature extraction function is shown in Figure 2.
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Figure 1. Schema of the proposed HamletPat-based model for binary classification of viral protein
sequences.

Figure 2. Block diagram of the proposed text-based feature extraction function generation model.
We used Hamlet as a text in this paper. In the figure, Map defines feature map signals, and Hist
is histogram.

First, text from the first page of Hamlet Act 1 Scene 1 was pre-processed by deconstruct-
ing it into letters of the English alphabet, with special characters deleted and all uppercase
letters converted to lowercase. Next, the letters were enumerated from 1 to 26 using ASCII
conversion and input to a pattern generator algorithm. The output, HamletPat, was then
used to extract bits, similar to LBP feature extraction, from overlapping fixed-length blocks
of protein sequences of varying lengths to construct the final feature vector. The feature
engineering steps are detailed below:

1: Choose the text. In this model, we chose the text from Hamlet Act 1 Scene 1.
2: Remove all special characters in the text.
3: Transform all uppercase letters to lowercase.
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4: Enumerate letters by using their ASCII code.

val = ascii(lc)− 96 (1)

where val defines value and ascii(.) is the ASCII value conversion function of lc, the
lowercase character. The frequency histogram of the enumerated letters is shown in
Figure 3.

Figure 3. Frequency histogram of the enumerated letters used in the selected Hamlet text.

5: Generate a pattern by deploying Algorithm 1.

Algorithm 1. Pattern generator using enumerated letters.

Input: The calculated values of the letters
Output: Pattern

01: for i = 1 to 26 do // Assign counter
02: counter(i) = 0;
03: end for i

04: i = 1; j = 1; // Define variables
05: sum = ∑26

i=1 counter(i);
06: while sum < 26 do

07: v = val(i);
08: if counter(v) = 0 then

09: counter(v) = 1;
10: pattern(j) = v;
11: j ++;
12: end if

13: sum = ∑26
i=1 counter(i);

14: i ++;
15: end while

Computed values or indexes in the pattern array, which are arranged in ascend-
ing order of the identifying number of the enumerated letters (Table 1), constituted
the HamletPat.
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Table 1. Pattern array of the computed Hamlet Pattern.

id 1 2 3 4 5 6 7 8 9 10 11 12 13

Ind. 2 5 18 14 1 4 15 23 8 19 20 6 3

id 14 15 16 17 18 19 20 21 22 23 24 25 26

Ind. 9 25 13 21 12 7 22 11 16 17 24 10 26

Here “id” represents the identifying number of the enumerated letter (e.g., “1” and “26” represent “a” and “z”,
respectively) and “Ind.” represents the corresponding computed index.

6: Divide the signal/sequence into overlapping blocks with a length of 27 each.

b = s(j + i − 1), j ∈ {1, 2, . . . , 27}, i ∈ {1, 2, . . . , l − 26} (2)

where s represents the utilized one-dimensional signal with a length of l and b represents
the overlapping block with a size of 27. To create overlapping blocks, frameshift is defined
as one (stride = 1). Therefore, l − 26 overlapping blocks with a length of 27 were created
from a one-dimensional signal/array with a length of l.

7: Choose the center value (14th value) as the center.

c = b(14) (3)

where c is the center value.
8: Enumerate all other values, skipping the 14th value.

d(h) = b(h), h ∈ {1, 2, . . . , 13} (4)

d(k − 1) = b(k), k ∈ {15, 16, . . . , 27} (5)

where d represents renumbered values with a length of 26.
9: Create bits using the HamletPat, renumbered values, center value, and signum function.

b f (i) = sign(center, d(pattern(i)), i ∈ {1, 2, . . . , 26} (6)

sign(q, w) =

{
0, q − w ≥ 0
1, q − w < 0

(7)

where b f represents bits; sign(., .), signum function; and (q, w), parameters of the signum
function.

10: Divide the generated bits into three groups with bit lengths 9, 8, and 9, respectively.

f irst(r) = b f (r), r ∈ {1, 2, . . . , 9} (8)

second(t) = b f (r + t), t ∈ {1, 2, . . . , 8} (9)

third(r) = b f (r + 17) (10)

11: Calculate three map signals from the three-bit groups using binary-to-decimal
conversion.

map1(i) =
9

∑
j=1

f irst(j)× 29−j (11)

map2(i) =
8

∑
j=1

second(j)× 28−j (12)

map3(i) =
9

∑
j=1

third(j)× 29−j (13)
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12: Extract histograms (hist1, hist2, hist3) from the corresponding map1, map2, and
map3, which have lengths equal to 512 (=29), 256 (=28), and 512 (=29), respectively.

13: Merge the generated histograms to obtain the feature vector, which has a length
of 1280.

f tvec(p) = hist1(p), p ∈ {1, 2, . . . , 512} (14)

f tvec(z + 512) = hist2(z), z ∈ {1, 2, . . . , 256} (15)

f tvec(p + 768) = hist3(p) (16)

2.2.2. Iterative Chi-Square Feature Selection

For feature selection, we deployed IChi2, which uses the parametric Chi-square
function, one of the fastest in the literature [27], to compute qualified indexes of the features.
IChi2 is efficient at iteratively selecting highly discriminative features using fewer features,
effectively reducing the execution times of the classifiers. An iteration range is typically set,
and then variable feature vectors are selected iteratively using a loss value calculator. Here
we set the iteration range at (100–500), and an SVM with a Gaussian kernel (see Section 3.3
below) was deployed as the loss calculator using a 5-fold CV. In our experiments on the
study dataset, the SVM calculated the loss values of 401 (=500 – 100 + 1) feature vectors,
and IChi2 selected the optimal feature vector of length 340.

2.2.3. Classification

An SVM was deployed as a loss calculator (see Section 3.2 above) and classifier. The
hyperparameters were set as: kernel function, Gaussian; kernel scale, 4.6; box constraint,
one [25,26]. Both five-fold and hold-out CVs (split ratio 75:25, i.e., the dataset was ran-
domly split into 75% and 25% for training and testing, respectively) were used for the
classification task, whereas only the former was used for loss calculation during the IChi2
feature selection.

3. Results

3.1. Experimental Setup

The study dataset comprised two viral protein sequence classes, each typically notated
as a string of letters corresponding to the individual amino acid’s building blocks. An ASCII
code table was used to transform these letters into integer values. The latter were then input
to the proposed handcrafted HamletPat-based model. The model was computationally
lightweight and was implemented in a MATLAB (2021b) environment on a personal
computer with an Intel i9-9900 Processor (cache 16 M, clock speed 5 GHz) and 48 GB
memory, using Microsoft Windows 10.1 Professional operating system. The presented
Hamlet-Pattern-based model has linear time complexity. Therefore, more simply configured
computers can be used for implementation. There is no need to use expensive hardware, for
instance, a graphical processing unit (GPU) and a tensor processing unit (TPU). Therefore,
this model can be implemented on any computer. Moreover, the proposed Hamlet Pattern
model can be embedded in a card.

3.2. Evaluation Metrics

Standard metrics were used to evaluate the performance of the model for binary
classification: accuracy (ac), sensitivity (sn), specificity (sp), precision (pr), F-measure ( f 1),
and geometric mean (geomean). The metrics were calculated from the numbers of true
positive (tp), true negative (tn), false positive ( f p), and false negative ( f n) results using
Equations (17) to (22) [28,29].

ac =
tp + tn

tp + tn + f p + f n
(17)

sn = recall =
tp

tp + f n
(18)
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sp =
tn

f p + tn
(19)

pr =
tp

tp + f p
(20)

f 1 = 2
pr × sn
pr + sn

(21)

geomean =
√

sp × sn (22)

3.3. Performance of the Proposed Model

The model’s performance metrics stratified by the validation schemes, i.e., hold-out
versus five-fold CVs and virus type, are summarized in Table 2.

Table 2. Performance metrics for binary classification of viral protein sequences into SARS-CoV-2
versus Influenza-A using the HamletPat-based classification model.

Metric Cross Validation SARS-CoV-2 Influenza-A

Sensitivity (%)
5-fold CV 99.95 99.79

75:25 100 99.86

Specificity (%)
5-fold CV 99.79 99.95

75:25 99.86 100

Precision (%)
5-fold CV 99.76 99.96

75:25 99.83 100

F1-score (%)
5-fold CV 99.86 99.87

75:25 99.92 99.93

Overall accuracy (%)
5-fold CV 99.87

75:25 99.92

Overall geometric
mean (%)

5-fold CV 99.87

75:25 99.93

The model attained 99.92% and 99.87% classification accuracy using hold-out and five-
fold CVs, respectively. Of note, 100% sensitivity for SARS-CoV-2 detection was achieved
by deploying a hold-out CV with a 75:25 split ratio.

ROC curves were added to evaluate this model. The ROC curves of both classes are
demonstrated in Figure 4.

Figure 4. ROC curves of each class (a) SARS-CoV-2 and (b) Influenza-A.

96



Diagnostics 2022, 12, 3181

As can be seen from Figure 4, the proposed model attained a 100% area under curve
(AUC) value.

3.4. Time Complexity Analysis

We calculated the time complexity of the proposed model and describe the results in
this section. The presented Hamlet Pattern is a handcrafted model. Therefore, the time
burden of this feature extractor is equal to O(n). Herein, n is the length of the signal. To
choose features, the IChi2 feature selector was used. IChi2 uses Chi2, a loop, and a loss
value calculator. Therefore, it is calculated as O(s + ic). The used s, i, and c variables are the
time burden coefficients of the feature selector, the number of loops, and the time burden
coefficients of the classifier, respectively. In the classification phase, a shallow classifier
is used, and its computational complexity is O(c). In total, the time complexity of the
presented Hamlet-Pattern-based classification model is O(n + s + ic + c) ∼= O(n + s + ic).
This result demonstrates that the presented model has linear time complexity.

4. Discussion

SARS-CoV-2 and Influenza-A are very different pathogens that share important over-
lapping clinical features. In the current COVID-19 pandemic, SARS-CoV-2 has caused
nearly six million deaths worldwide. The H1N1 Influenza-A virus was the cause of the
Spanish flu that infected one-third of the world’s population and killed millions from 1918
to 1920 [30]. Subsequent influenza-related pandemics had less-severe consequences [31].
According to the World Health Organization, about half a million people, mostly the elderly,
die from seasonal influenza cases each year [3]. Both viruses are transmitted through the
respiratory tract, and it is possible to be protected with non-pharmacological interventions
such as masks [32]. Measures were taken amid the COVID-19 pandemic, and a reduction
in global travel has caused a decrease in the number of seasonal influenza cases. However,
it is expected that influenza cases will rise as the level of international travel is slowly
being restored. Distinguishing infection from SARS-CoV-2 vs. Influenza-A is clinically
difficult in the early stages of infection. It is also important to keep in mind the possibility
of co-infection, which can exacerbate the clinical prognosis. During the influenza season, it
is difficult to confidently secure clinical diagnosis due to similar symptom presentations,
such as fever, cough, and dyspnea. In this context, real-time polymerase chain reaction and
nucleic acid tests can be performed on suspected patients to determine the viral etiology
and institute appropriate treatment and, if applicable, isolation procedures. Our main
motivation in this study was to create an accurate algorithm that can be used to classify
infection due to SARS-CoV-2 versus Influenza-A at the highest level.

We presented a new handcrafted text-based feature generation model that could
accurately discriminate between SARS-CoV-2 and Influenza-A. The novel Hamlet [33,
34] Pattern is a local texture feature extractor with low time complexity, O(n). IChi2
selected the most valuable 340 features among the 1280 features created with HamletPat,
thereby effectively reducing the execution time. Using two validation techniques, these
selected features were then classified using an SVM with a Gaussian kernel. The calculated
confusion matrices according to the validation technique are shown in Figure 5.

The performance of our model for SARS-CoV-2 versus Influenza-A diagnosis is com-
pared with another study in the literature that involved the binary classification of SARS-
CoV-2 versus human immunodeficiency virus [9] in Table 3. The HamletPat-based model
outperformed the other model on a larger dataset.
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Figure 5. Confusion matrices of the HamletPat-based classification model using hold-out (split ratio
75:25) versus 5-fold cross-validations (CVs).

Table 3. Comparative results (%).

Model Dataset Number of Observations Method Result

Afify and Zanaty [9] NCBI
18,476 protein sequences:

9238 COVID-19
9238 HIV

Conjoint triad feature extraction
and Random Forest classification
with hold-out validation (80:20)

Accuracy: 99.80%

Our model NCBI
36,424 protein sequences:

16,901 COVID-19
19,523 Influenza-A

HamletPat feature extraction,
IChi2 feature selection, and SVM

classification with hold-out
validation (75:25) and 5-fold CV

Accuracy:
hold-out: 99.92%
5-fold CV: 99.87%

Table 3 shows that Afify and Zanaty [9] used a balanced protein sequence dataset
with two classes, HIV and COVID-19. They achieved a 99.80% accuracy. We utilized an
unbalanced dataset, and our classes are COVID-19 and Influenza-A (which have similar
symptoms). Our proposal attained a 99.92% accuracy with a five-fold CV. Moreover, this
model is the first text-based feature extractor generation methodology. The high classifica-
tion capability of the features generated using HamletPat is clearly demonstrated. Moreover,
we used a larger dataset than that of Afify and Zanaty’s [9]. This result demonstrates the
robust feature generation ability of HamletPat.

Moreover, using the presented HamletPat-based classification model, a decision-
support system was created. By incorporating the 340 features selected, the decision
support-system could be implemented. A graphical representation of the decision tree
(pruning level = 10) for basic decision support is demonstrated in Figure 6.

By only using these nine rules (see Figure 6), 96.84% classification accuracy was
attained on the used dataset. These nine rules demonstrated the explainability of the
proposed system. By using HamletPat, features were created. Hidden rules were extracted
by deploying the created features and a decision tree. These rules were created using
features 167, 127, 210, 324, 9, 1, 242, 8, and 17 (see Figure 6). The proposed HamletPat
is useful for creating a cognitive model to detect COVID-19. Figure 6 shows that an
explainable artificial intelligence (XAI) model was proposed in this work. We were able
to create a decision-support system by using these rules (see Figure 6), and this decision-
support system can be embedded in a card to develop an embedded system.
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Figure 6. Rules of a basic decision-support system using our selected features. Herein, the symbol 1
denotes COVID-19, while 2 denotes influenza.

The MATLAB codes of the presented pattern generation are given in Appendix A
(Tables A1 and A2).

The advantages and disadvantages of the novel HamletPat-based protein sequence
classification model are listed below.

Advantages:

• Influenza and COVID-19 share similar symptoms, and clinical discrimination is dif-
ficult. Therefore, an automated protein-sequence-based model was developed to
differentiate the disorders automatically.

• To our knowledge, HamletPat is the first text-based pattern utilized to create a new
feature extraction function.

• The novel HamletPat-based classification model was trained on a two-class dataset and
attained 99.87% and 99.92% accuracy rates by deploying a five-fold CV and hold-out
(split ratio 75:25) CV, respectively.

• The model is simple, it has a low time complexity of O(n), and is easy to implement.

Limitations:

• The model used overlapping blocks with a fixed length of 27. Therefore, the minimum
length of the studied protein sequence should be 27 (we used a protein sequence with
a length of 100 or greater in the study).

• We used the SVM classifier with default hyperparameters in the study. The hyperpa-
rameters can be further optimized using a metaheuristic optimization model.

5. Conclusions

To discriminate between SARS-CoV-2 and Influenza-A infections, we developed a
new automated detection model for the binary classification of protein sequences. The
handcrafted classification model used a textual-based pattern to extract 1280 features.
IChi2 was used to select the 340 most discriminative features, and an SVM was used for
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classification using two validation strategies, hold-out (75:25 split ratio) and five-fold CV,
which attained 99.92% and 99.87% accuracy rates, respectively. These results suggest that
the proposed model has discriminative utility for the binary classification of SARS-CoV-2
vs. Influenza-A on the basis of protein sequences.

Developments in personalized or precision medicine have grown apace in recent
years, and medical understanding is evolving with the use of new technologies. As a result,
computer-assisted algorithms have become increasingly more relevant and valuable. We
hope that our new textual-based feature generation methodology can lend assistance in this
regard, and that new-generation explainable artificial intelligence models can be built to aid
clinicians [35]. For now, the salutary results of our lightweight, handcrafted classification
model suggest that it can be applied as a useful adjunctive screening tool to discriminate
between these two important viral respiratory conditions.
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Appendix A

We implemented the proposed model using the MATLAB (2021b) programming
environment. The novelty of this paper is HamletPat. The MATLAB codes of the presented
pattern generation of the text-based feature generation methodology and HamletPat are
given in Tables A1 and A2, respectively.

Table A1. Pattern generation code of the text-based feature generation methodology.

clc,clear all,close all
text = ‘bernardowhostherefrancisconayanswermestandandun-
foldyourselfbernardolonglivethekingfranciscobernardobernardohefrancisco-
youcomemostcarefullyuponyourhourbernardotisnowstrucktwelvegettheeto-
bedfranciscofranciscoforthisreliefmuchthankstisbittercoldandiamsickatheartber-
nardohaveyouhadquietguardfrancisconotamousestirringbernardowellgoodnight-
ifyoudomeethoratioandmarcellustherivalsofmywatchbidthemmakehastefrancisco-
ithinkihearthemstandhowhosthereenterhoratioandmarcellushoratiofriendstothisg-
roundmarcellusandliegementothedanefranciscogiveyougoodnightmarcellusofarew-
ellhonestsoldierwhohathrelievedyoufranciscobernardohasmyplacegiveyougoodnig-
htexitmarcellushollabernardobernardosaywhatishoratiotherehoratioapieceofhimber-
nardowelcomehoratiowelomegoodmarcellusmarcelluswhathasthisthingappeardagai-
ntonightbernardoihaveseennothingmarcellushoratiosaystisbutourfantasyandwillnotl-
etbelieftakeholdofhimtouchingthisdreadedsighttwiceseenofusthereforeihaveentreatedh-
imalongwithustowatchtheminutesofthisnightthatifagainthisapparitioncomehemayappro-
veoureyesandspeaktoithoratiotushtushtwillnotappearbernardositdownawhileandletuson-
ceagainassailyourearsthataresofortifiedagainstourstorywhatwehavetwonightsseenhorati-
owellsitwedownandletushearbernardospeakofthisbernardolastnightofallwhenyondsame-
starthatswestwardfromthepolehadmadehiscoursetoillumethatpartofheavenwherenowitbu-
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Table A1. Cont.

rnsmarcellusandmyselfthebellthenbeatingoneenterghostmarcelluspeacebreaktheeofflook-
whereitcomesagainbernardointhesamefigurelikethekingthatsdeadmarcellusthouartaschola-
rspeaktoithoratiobernardolooksitnotlikethekingmarkithoratiohoratiomostlikeitharrowsmew-
ithfearandwonderbernardoitwouldbespoketomarcellusquestionithoratiohoratiowhatartthou-
thatusurpstthistimeofnighttogetherwiththatfairandwarlikeforminwhichthemajestyofburiedd-
enmarkdidsometimesmarchbyheavenichargetheespeakmarcellusitisoffendedbernardoseeitsta-
lksawayhoratiostayspeakspeakichargetheespeakexitghostmarcellustisgoneandwillntanswerb-
ernardohownowhoratioyoutrembleandlookpaleisnotthissomethingmorethanfantasywhatthink-
youonthoratiobeforemygodimightnotthisbelievewithoutthesensibleandtrueavouchof-
mineowneyesmarcellusisitnotlikethekinghoratioasthouarttothyselfsuchwastheveryarmou-
rhehadonwhenhetheambitiousnorwaycombatedsofrowndheoncewheninanangryparlehe-
smotethesleddedpolacksontheicetisstrangemarcellusthustwicebeforeandjumpatthisdeadh-
ourwithmartialstalkhathhegonebyourwatchhoratioinwhatparticularthoughttoworkiknow-
notbutinthegrossandscopeofmyopinionthisbodessomestrangeeruptiontoourstatemarcellu-
sgoodnowsitdownandtellmehethatknowswhythissamestrictandmostobservantwatchsonig-
htlytoilsthesubjectofthelandandwhysuchdailycastofbrazencannonandforeignmartforimpl-
ementsofwarwhysuchimpressofshipwrightswhosesoretaskdoesnotdividethesundayfromth-
eweekwhatmightbetowardthatthissweatyhastedothmakethenightjointlabourerwiththeday-
whoistthatcaninformmehoratiothatcaniatleastthewhispergoessoourlastkingwhoseimagee-
venbutnowappeardtouswasasyouknowbyfortinbrasofnorwaytheretoprickdonbyamostem-
ulatepridedaredtothecombatinwhichourvalianthamletforsothissideofourknownworldes-
teemdhimdidslaythisfortinbraswhobyasealdcompactwellratifiedbylawandheraldrydidforfe-
itwithhislifeallthosehislandswhichhestoodseizedoftotheconqueroragainstthewhichamoietycom-
petentwasgagedbyourkingwhichhadreturndtotheinheritanceoffortinbrashadhebeenvanqui-
sherasbythesamecovenantandcarriageofthearticledesigndhisfelltohamletnowsiryoungfortin-
brasofunimprovedmettlehotandfullhathintheskirtsofnorwayhereandtheresharkdupalisto-
flawlessresolutesforfoodanddiettosomeenterprisethathathastomachintwhichisnoothera-
sitdothwellappearuntoourstatebuttorecoverofusbystronghandandtermscompulsatoryth-
oseforesaidlandssobyhisfatherlostandthisitakeitisthemainmotiveofourpreparationstheso-
urceofthisourwatchandthechiefheadofthisposthasteandromageinthelandbernardoithink-
itbenootherbuteensowellmayitsortthatthisportentousfigurecomesarmedthroughourwatch-
solikethekingthatwasandisthequestionofthesewarshoratioamoteitistotroublethemindseye-
inthemosthighandpalmystateofromealittleerethemightiestjuliusfellthegravesstoodtena-
ntlessandthesheeteddeaddidsqueakandgibberintheromanstreetsasstarswithtrainsoff-
ireanddewsofblooddisastersinthesunandthemoiststaruponwhoseinfluenceneptunesem-
pirestandswassickalmosttodoomsdaywitheclipseandeventhelikeprecurseoffierceeven-
tsasharbingersprecedingstillthefatesandprologuetotheomencomingonhaveheavenan-
dearthtogetherdemonstrateduntoourclimaturesandcountrymenbutsoftbeholdlowherei-
tcomesagainreenterghostillcrossitthoughitblastmestayillusionifthouhastanysoundo-
ruseofvoicespeaktomeiftherebeanygoodthingtobedonethatmaytotheedoeasandgrac-
etomespeaktomecockcrowsifthouartprivytothycountrysfatewhichhappilyforeknowing-
mayavoidospeakorifthouhastuphoardedinthylifeextortedtreasureinthewombofearthf-
orwhichtheysayyouspiritsoftwalkindeathspeakofitstayandspeakstopitmarcel-
lusmarcellusshallistrikeatitwithmypartisanhoratiodoifitwillnotstandbernardotish-
erehoratiotisheremarcellustisgoneexitghostwedoitwrongbeingsomajesticaltoofferit-
theshowofviolenceforitisastheairinvulnerableandourvainblowsmaliciousmockeryb-
ernardoitwasabouttospeakwhenthecockcrewhoratioandthenitstartedlikeaguiltythingu-
ponafearfulsummonsihaveheardthecockthatisthetrumpettothemorndothwithhisloftya-
ndshrillsoundingthroatawakethegodofdayandathiswarningwhetherinseaorfireinearthor-
airtheextravagantanderringspirithiestohisconfineandofthetruthhereinthispresentobjec-
tmadeprobationmarcellusitfadedonthecrowingofthecocksomesaythatevergainstthatseas-
oncomeswhereinoursavioursbirthiscelebratedthebirdofdawningsingethallnightlon-
gandthentheysaynospiritdaresstirabroadthenightsarewholesomethennoplanetsstriken-
ofairytakesnorwitchhathpowertocharmsohallowdandsograciousisthetimehoratiosoha-
veiheardanddoinpartbelieveitbutlookthemorninrussetmantlecladwalksoerthedewofy-
onhigheastwardhillbreakweourwatchupandbymyadviceletusimpartwhatwehaveseento-
nightuntoyounghamletforuponmylifethisspiritdumbtouswillspeaktohimdoyouconsen-
tweshallacquainthimwithitasneedfulinourlovesfittingourdutymarcellusletsdotipra-
yandithismorningknowwhereweshallfindhimmostconveniently’;
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Table A1. Cont.

number = double(text)-96;
histo = zeros(1,26);
for j = 1:length(number)
histo(number (j)) = histo(number (j)) + 1;
end
plot(histo)
% Pattern Generation
counter = zeros(1,26);
summ = sum(counter);
i = 1; j = 1;
while(summ < 26)
sy = number(i);
if (counter(sy) == 0)
counter(sy) = 1;
pattern(j) = sy;
j = j + 1;
end
summ = sum(counter);
i = i + 1;
end

Table A2. The proposed HamletPat.

function histo = hamlet_pat(sinyal)
h1 = zeros(1512); h2 = zeros(1256); h3 = h1;
for i = 1:length(sinyal)-26
blok = sinyal(i:i + 26);
m = blok(14);
deger(1:13) = blok(1:13);
deger(14:26) = blok(15:27);
for j = 1:26
bit(j) = deger(j) >= m;
end
b1(1:9) = bit(1:9); b2(1:8) = bit(10:17); b3(1:9) = bit(18:26);
m1(i) = 0; m2(i) = 0; m3(i) = 0;
for j = 1:9
m1(i) = m1(i) + b1(j)*2ˆ(j-1);
m3(i) = m3(i) + b3(j)*2ˆ(j-1);
end
for j = 1:8
m2(i) = m2(i) + b2(j)*2ˆ(j-1);
end
h1(m1(i) + 1) = h1(m1(i) + 1) + 1; h2(m2(i) + 1) = h2(m2(i) + 1) + 1;
h3(m3(i) + 1) = h3(m3(i) + 1) + 1;
end
histo = [h1 h2 h3];
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Abstract: Many epidemics have afflicted humanity throughout history, claiming many lives. It has
been noted in our time that heart disease is one of the deadliest diseases that humanity has confronted
in the contemporary period. The proliferation of poor habits such as smoking, overeating, and lack of
physical activity has contributed to the rise in heart disease. The killing feature of heart disease, which
has earned it the moniker the “silent killer,” is that it frequently has no apparent signs in advance. As
a result, research is required to develop a promising model for the early identification of heart disease
using simple data and symptoms. The paper’s aim is to propose a deep stacking ensemble model to
enhance the performance of the prediction of heart disease. The proposed ensemble model integrates
two optimized and pre-trained hybrid deep learning models with the Support Vector Machine (SVM)
as the meta-learner model. The first hybrid model is Convolutional Neural Network (CNN)-Long
Short-Term Memory (LSTM) (CNN-LSTM), which integrates CNN and LSTM. The second hybrid
model is CNN-GRU, which integrates CNN with a Gated Recurrent Unit (GRU). Recursive Feature
Elimination (RFE) is also used for the feature selection optimization process. The proposed model
has been optimized and tested using two different heart disease datasets. The proposed ensemble is
compared with five machine learning models including Logistic Regression (LR), Random Forest
(RF), K-Nearest Neighbors (K-NN), Decision Tree (DT), Naïve Bayes (NB), and hybrid models. In
addition, optimization techniques are used to optimize ML, DL, and the proposed models. The
results obtained by the proposed model achieved the highest performance using the full feature set.

Keywords: machine learning; deep learning; ensemble learning; heart disease

1. Introduction

Heart disease is among the most common illnesses that persisted in the past and have
increased and spread in our present. The reasons for the increase in its rates are varied,
especially in our modern age. Diabetes, hypertension, cholesterol, erratic heartbeat, and
many more clinical signs are some biological markers and risk factors that are needed to
diagnose heart disease. World Health Organization (WHO) claims that one of the main
and highly-ranked causes of death worldwide is heart disease, which can have several
forms such as ischemic, hypertensive, and vascular heart disease [1], and it has been shown
that cardiovascular illnesses kill 17.9 million patients each year. In addition, unhealthy
behavior that results in being overweight, obesity, and hypertension raises the risk of heart
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disease [1]. In addition, the heart is one of the essential organs of the human body. It
is primarily responsible for the continuity of pumping the blood needed for the work of
the rest of the human body. However, it is difficult for the heart to maintain the same
efficiency throughout a person’s life. The heart is exposed to many problems that can
occur because of several different reasons, such as bad health and nutritional habits or
aging [2]. Therefore, finding methods and techniques that allow for the early detection or
even prediction of potential heart problems has become inevitable. This can help doctors
and healthcare organizations to reduce the problems and complications of the disease.

Artificial intelligence (AI) based on machine learning (ML) and deep learning (DL) has
conducted key roles in evaluating medical data to assist in illness diagnosis to determine the
appropriate treatment. It is used to find patterns automatically from the clinical data and
then reason about clinical data to predict the early risk for patients such as heart disease [3],
cancer disease [4,5], and COVID-19 [6,7]. Recently, deep learning algorithms such LSTM,
GRU, CNN, and hybrid models of these algorithms have played an important role in
strengthening and enhancing the level of heart disease prediction using various layers
that could collect deeper features [8–11] Recently, authors have used ensemble learning to
enhance the performance of these models in the healthcare domain [12]. Ensemble learning
combines the decisions of various base classifiers using many techniques such as voting
or averaging to improve the final decision [13]. Ensemble algorithms can be categorized
into three branches: boosting [14], stacking [15], and bagging [16]. Stacking ensemble is
considered as the best technique for building ensemble models because it is based on a meta-
learner, which learns from data how to weight the base classifiers and combine them in the
best way to optimize the performance of the resulting model. Ensemble stacking optimizes
a set of heterogeneous base models and combines their decisions using a meta-learner [15].

In this study, we proposed an optimized ensemble stacking model that merged the
two pre-trained hybrid models of CNN-LSTM and CNN-GRU with a meta-learner (SVM)
to enhance the performance of heart disease prediction. In addition, Recursive Feature
Elimination (RFE) has been used to choose the most informative features from two heart
disease datasets. Our contributions can be summarized as follows:

• We proposed two hybrid models with heterogeneous architectures: CNN-LSTM and
CNN-GRU were proposed and optimized.

• We proposed a stacking ensemble model that merged the previous pre-trained hybrid
models of CNN-LSTM and CNN-GRU. The best meta-learner classifier has been
selected based on the experimental results. The SVM algorithm achieved the best
results as the meta-classifier to determine the best weights of the base classifiers;

• We compared the proposed model with different ML models using two benchmark
heart disease datasets;

• The proposed model significantly outperformed all other models and achieved the
best results.

The remainder of the paper is structured as follows: Section 2 discussed heart disease-
related works. The section describes the main phases and approaches Section 3 of predicting
heart disease. Section 4 describes the results and discussion results. Finally, the paper is
concluded in Section 5.

2. Related Work

Machine learning and deep learning have been used to predict heart disease. For
example Kavitha M. et al. [17] suggested a hybrid model that combines DT and RF to
predict heart disease using the Cleveland dataset. They contrasted the hybrid model’s
performance with that of DT and RF. Ishaq A. et al. [18] applied different ML algorithms:
SVM, DT, LR, NB, Adaptive boosting (AdaBoost), Stochastic Gradient Descent (SGD), RF,
Gradient Boosting Machine (GBM), and Extra Tree Classifier (ETC) using the Cleveland
heart disease dataset to analyzes the heart failure. The results showed that ETC gave the
best performance and outperformed other models. Ansarullah, S. I. et al. [19] used ML
algorithms to predict heart disease: NB, RF, DT, K-NN, and SVM. The dataset was gathered

106



Diagnostics 2022, 12, 3215

in Kashmir from many heterogeneous data sources (India). The results showed that RF has
the best model performance.

Many authors applied feature selection methods with ML and DL models to predict
heart disease. For example, Spencer R. et al. [20] used Chi2, ReliefF, symmetrical uncertainty
(SU), and PCA feature selection methods to extract the important features from four heart-
disease datasets. They applied BayesNet, Logistic, Stochastic Gradient Descent (SGD), and
KNN Adaboost to the full and selected features. The result showed that the BayesNet
model was recorded as the best performer using the Chi-2 feature selection compared with
other models. Bharti R. et al. [21] used the Lasso algorithm to select features from the
heart disease dataset. They applied ML and DL models: LR, KNN, SVM, RF, DT, and
ANN, respectively. The results showed that ANN has the best performance compared
to ML models. Gokulnath C. B. et al. [22] used KNN, MLP, SVM, and J48 for heart
disease detection. The datasets were gathered from a variety of sources. The authors
applied various feature selection strategies, including the extra tree classifier, gradient
boosting classifier, random forest, recursive feature removal, and XG boost classifier. In the
study by Amin, M. S. et al. [23], in order to increase the prediction accuracy, the authors
proposed a voting hybrid model based on NB and LR. They used k-NN, DT, NB, LR, SVM,
Neural Network (NN), and the hybrid model to choose meaningful characteristics from
the Cleveland heart disease dataset. The hybrid model was given the best performance
compared to other models. Bashir S. et al. [24] used DT, LR, NB, SVM, and RF models
with feature extraction methods with the Cleveland heart disease dataset to predict heart
disease. The results showed that LR and SVM with feature selection methods had better
accuracy than the other models. Javid I. et al. [25] developed model-based GRU and RF
(GRU-RF) for heart disease detection. The GRU-RF was compared with RF, GRU, KNN,
and DNN algorithms and achieved the best performance. Chae M. et al. [26] proposed a
hybrid model, LSTM–GRU, and compared it with DT, RF, LR, LSTM, and GRU to predict
heart disease. They used the dataset from Soonchunhyang University Cheonan Hospital
in Korea to train and test the models. They improved the performance models based on
hyperparameter adjustment, the quantity of primary patient data, and input parameters.
The results indicate that when compared to other models, the GRU model outperforms
the others. In the study by Narmadha, S. et al. [27], the authors used LSTM and GRU
hyperparameter tuning to enhance the performance of the algorithms. The outcomes
demonstrated that the GRU provides better accuracy than the LSTM across the board.

The authors have used ensemble models to predict heart disease. For example, Ad-
hikari, B. et al. [28] applied LR, SVM, DT, K-NN, GNB, and ensemble models using a
dataset collected from the UCI heart disease dataset. They used the voting and averaging
ensemble models built by combining the ML above models. The results showed that the
ensemble model was the best performer compared with other models. Javid, I. et al. [29]
used RF, SVM, K-NN, LSTM, Hard Voting Ensemble Model, and GRU for heart disease
prediction. The results showed that the Hard Voting Ensemble Model recorded higher
accuracy compared to other models.

Ghosh P. et al. [30] proposed hybrid models that integrated boosting and bagging
with traditional ML models: KNN, DT, and RF. The hybrid models: K-NN Bagging Method
(KNNBM), DT-Bagging Method (DTBM), AdaBoost (AB), and Random Forest Bagging
Method (RFBM) were applied to heart disease datasets. Relief, Least Absolute Shrinkage,
and Selection Operator were the three feature selection approaches they used (LASSO).
When compared to other models, the RFBM model showed the best performance.

Previous studies do not use ensemble stacking based on heterogeneous hybrid deep
learning models to predict heart disease. In addition, most previous studies have used
the Cleveland heart disease database to perform this experiment. In our work, we used
a new large heart disease dataset, and we proposed ensemble stacking models based on
optimizing different heterogeneous hybrid models: CNN-LSTM and GRU-LSTM.
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3. Methodology

In this study, we evaluate three approaches: the classical machine learning approach,
the hybrid models approach, and a proposed model. These models are applied to the full
feature set and selected feature set. The proposed model for predicting heart disease has
several steps including data collection, data preprocessing, data splitting, feature selection,
and evaluation models, as shown in Figure 1. Each phase is described in detail as follows.

Figure 1. The phases of predicting heart disease.

3.1. Heart Disease Datasets

In our work, we used two heart disease datasets.

3.1.1. Dataset 1

We used the large heart disease dataset (Heart Disease) [31]. This data includes 18
independent features and one dependent variable as the class label for predicting heart
disease. The class label includes two values: 0 represents the healthy class label, and 1
represents the heart disease class label. Table 1 presents the number of medical records for
each class in the training and testing sets. The description of each feature is described in a
Supplementary File.

3.1.2. Cleveland Dataset

The Cleveland dataset [32] includes 13 independent variables as features and one
dependent variable as the class label used to diagnose heart disease. The class label includes
two values: 0 represents the healthy class label, and 1 represents the heart disease class label.
Table 1 presents the number of medical records for each class in the training and testing
sets of the Cleveland heart disease dataset. The description of each feature is described in
the Supplementary File.

Table 1. The number of medical records for each class in the heart disease datasets.

Dataset Classes Training Set Testing Set Total

Dataset 1
Heart disease 21,898 5475 27,373

Healthy 24,000 6000 30,000

Total 45,898 11,475 57,373

Cleveland Dataset
Heart disease 421 105 526

Healthy 399 100 499

Total 820 205 1025
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3.2. Data Pre-Processing

The first heart disease dataset includes 14 numeric features and four categorical
features. The data was preprocessed after collection as follows: removing duplicate records
and encoding category data into numerical data such as smoking and skin cancer.

3.3. Data Splitting

The two datasets are divided into two sets using a stratified sampling method: 80%
training sets and 20% testing sets. Models are trained and optimized using training data.
The test set is employed to assess and test the model.The stratified sampling method is one
way of splitting the dataset used to get samples that accurately reflect the distribution of
classes in the population. It separates the dataset into homogeneous subsets; each subset
contains the same percentage of every class. [33,34]. This method has been used in studies
of different fields of healthcare [35–37]

3.4. Feature Selection Methods

In our work, we use the Recursive Feature Elimination (RFE) feature selection method
to extract the most informative features from each dataset. The RFE determines the essential
features by figuring a high correlation between features and the target [38]. It assigns one
value as ranking for features if the features have high collaboration with the target. A novel
RFE strategy is recently presented that used RF and SVM to evaluate features rather than
classification performance and selects the minor significant features for deletion [39,40]

3.5. Machine Learning Approach
3.5.1. ML Algorithms

We tested many classical ML models from different families including SVM [41–44],
Logistic Regression (LR) [45,46], Nave Bayes (NB) [47], Decision tree (DT) [48], Random
Forest (RF) [49,50], and K-nearest Neighbors (k-NN) [51].

3.5.2. Optimization Techniques for Classical Models

Grid search is employed to fine-tune hyperparameters of different classical ML models
by generating discrete grids within the hyperparameter domain and select the list of
parameters that give the best performance [52]. Data is split into two segments using the
cross-validation technique: one is used to train and validate the models (training set), and
the other is utilized for model testing (testing set) [19]. The training set has been used to
validate the models using the k-fold cross validation technique.

3.6. The Hybrid Models
3.6.1. The Hybrid Model Architectures

We proposed two hybrid models: CNN-LSTM and CNN-GRU for predicting heart
disease. The structures of hybrid models are illustrated in Figure 2.

• The first model is CNN-LSTM, which combines CNN with LSTM, consisting of
a convolutional layer, a max-pooling layer, an LSTM layer, a flatten layer, a fully
connected, and an output layer;

• The second model is CNN-GRU, which combines CNN with GRU. The architecture
consists of a convolutional layer, a max-pooling layer, an GRU layer, a flatten layer, a
fully connected, and an output layer.
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Figure 2. The architecture of the hybrid models CNN-LSTM and CNN-GRU used to predict heart
disease.

3.6.2. Optimization Techniques for Hybrid Models

The Bayesian optimizer is used to optimize the hybrid models. This search technique
quickly generates the search space and locates the best hyperparameter values for the
models [53]. We adopt the parameter settings for CNN-LSTM and CNN-GRU, as shown in
Table 2.

Table 2. Setting values of the parameters.

Parameters Values

filters [16,128]
Kernel_size [2,3,4,5]
Pool_Size [2,3,4,5]
Unit_LSTM between 20 and 500
Unit_GRU between 20 and 500
Unit_Dense between 20 and 500

3.7. The Proposed Stacking Ensemble Model

In this work, our model is developed using two levels: Level-1 and Level-2, as shown
in Figure 3. Level-1 begins by loading the pre-trained models of hybrid models CNN-LSTM
and CNN-GRU, and the layers of the models are frozen except for the last layers. The
models anticipate the training set’s output probabilities and subsequently integrate them
into stacking training. Secondly, the models estimate the output probabilities of the testing
set and aggregate them in stacking testing. At Level 2, SVM, as a meta-learner, is trained
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and optimized using stacking training and Grid search, respectively, while producing the
final results using stacking testing.

Figure 3. The proposed model for predicting heart disease.

3.8. Evaluating Models

The metrics for classification performance that are most frequently employed are
accuracy (ACC), precision (PRE), recall (REC), and F1-score (F1). In contrast to the True
Positive (TP), which denotes that the person is ill and the test is positive, the True Negative
(TN) shows that the person is healthy and the result is negative. False positives are tests
that come back positive even when the subject is healthy (FP). When a test is negative, but
the subject is ill, it is known as a false negative (FN).

Accuracy =
TP + TN

TP + FP + TN + FN
. (1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1-score =
2 · precision · recall
precision + recall

(4)

4. Experimental Results

In this section, we describe the rank of features after applying the RFE to the two
datasets. Moreover, we describe the results of the performance of using ML models (SVM,
LR, RF, NB, and KNN), the hybrid models (CNN-LSTM, CNN-GRU), and the proposed
model to full and selected features.

4.1. Experimental Setup

The experiments in this paper are implemented using Google Colab with Python
libraries such as Scikit-learn, TensorFlow, and others. We used grid-search and the Bayesian
optimizer to optimize the ML and hybrid models. We used RFE technique to identify the
best features from the two datasets. The two datasets are separated into two sets: 80%
training and 20% testing set using the stratified methods. The models are trained and tested
by utilizing the training and testing sets, respectively.
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4.2. Results of Dataset1
4.2.1. Feature Selection Results

In the experiments, we used the RFE to extract the important features from the heart
disease dataset by assigning ranking for every feature. The critical features are ranked 1,
and the least important features are ranked 8. The features ranking is shown in Figure 4. We
can see that the most significant 10 features have a ranking of 1: BMI, Stroke, PhysicalHealth,
MentalHealth, DiffWalking, AgeCategory, Race, Diabetic, GenHealth, and SleepTime. The
lowest important feature has a ranking of 8, which is AlcoholDrinking.

Figure 4. The ranking features for heart disease Dataset 1.

4.2.2. Results of Applying Models

This section presents the ACC, PRE, REC, and F1 of ML, hybrid models, and the
proposed model for Dataset 1. In the hybrid models CNN-LSTM and CNN-GRU some
parameters were adapted: batch_size of 500, epoch = 50, learning rate = 0.00004, and
the optimizer used is Adam. Some of the best values of CNN-LSTM and CNN-GRU
hyperparameters that were selected by KerasTuner are shown in Table 3.

Table 3. The best values of the parameters for CNN-LSTM and CNN-GRU.

Dataset Models Parameters Full Features Selected Features

Dataset 1

CNN-LSTM

filters 128 16

Kernel_size 4 4

Pool_Size 2 2

Unit_LSTM 380 40

Unit_Dense 140 50

CNN-GRU

filters 128 16

Kernel_size 4 4

Pool_Size 2 2

Unit_GRU 100 320

Unit_Dense 100 200
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Table 4 shows the results of applying ML, hybrid models, and the proposed model
with full features and selected features by RFE to the heart disease Dataset 1.

• Results of the full features:
For ML models, RF and LR register approximately the same highest scores (75.32% of
ACC, 75.44% of PRE, 75.32% of REC, 75.33% of F1) and (75.60% of ACC, 75.60% of PRE,
75.60% of REC, 75.60% of F1), respectively. NB records the worst scores (60.87% of
ACC, 64.98% of PRE, 60.87% of REC, 56.69% of F1). KNN registers the second-highest
scores (73.16% of ACC, 73.47% of PRE, 73.16% of REC, 73.16% of F1).
For hybrid models, CNN-LSTM has the highest scores (76.64% of ACC, 76.9% of PRE,
76.64% of REC, and 76.65% of F1). CNN-GRU records the lowest scores (75.63% of
ACC, 75.65% of PRE, 75.63% of REC, 75.58% of F1).
The proposed model records the highest scores (ACC = 78.81%, 78.1% of PRE, 78.81%
of REC, and 78.81% of F1) compared to other models. It improves ACC by 2.17, PRE
by 1.2, REC by 2.17, and F1 by 2.16 compared to CNN-LSTM.

• Results of the selected features:
For ML models, RF and LR register approximately the same highest scores (73.02%
of ACC, 73.06% of PRE, 73.02% of REC, 73.03% of F1) and (73.58% of ACC, 73.60%
of PRE, 73.58% of REC, = 73.59% of F1), respectively. NB records the worst scores
(60.84% of ACC, 64.97% of PRE, 60.84% of REC, F1 = 56.63%). KNN registers the
second-highest scores (72.59% of ACC, 72.92% of PRE, 72.59% of REC, F1 = 72.59%).
The top scores for hybrid models belong to CNN-LSTM (75.22% of ACC, 75.42% of
PRE, 75.22% of REC, and 75.22% of F1). The lowest scores are recorded by CNN-GRU
(74.07% of ACC, 74.23% of PRE, 74.07% of REC, and 74.08% of F1).
In comparison to other models, the proposed model achieves the greatest scores
(77.42% of ACC, 77.99% of PRE, 77.42% of REC, and 77.39% of F1). In comparison to
CNN-LSTM, it enhances ACC by 2.2%, PRE by 2.57%, REC by 2.2%, and F1 by 2.17%.

Table 4. Result of applying models with full features and the selected features for Dataset 1.

Approaches Models Features
Matrix Performance

ACC PRE REC F1

Regular ML approach

RF
Full features 75.32 75.44 75.32 75.33

Selected features 73.02 73.06 73.02 73.03

LR
Full features 75.60 75.60 75.60 75.60

Selected features 73.58 73.60 73.58 73.59

DT
Full features 67.28 67.26 67.28 67.27

Selected features 65.76 65.76 65.76 65.7

NB
Full features 60.87 64.98 60.87 56.69

Selected features 60.84 64.97 60.84 56.63

KNN
Full features 73.16 73.47 73.16 73.16

Selected features 72.59 72.92 72.59 72.59

The hybrid models

CNN-LSTM
Full features 76.64 76.9 76.64 76.65

Selected features 75.22 75.42 75.22 75.22

CNN-GRU
Full features 75.63 75.65 75.63 75.58

Selected features 74.07 74.23 74.07 74.08

The proposed model Stacking SVM
Full features 78.81 78.1 78.81 78.81

Selected features 77.42 77.99 77.42 77.39
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4.3. Results of the Cleveland Dataset
4.3.1. Feature Selection Results

In the experiments, we used the RFE to extract the important features from the Cleve-
land dataset. It assigns features a value of ranking, with the critical features having a
ranking of 1, and the least important features having a ranking of 8. The features ranking is
shown in Figure 5. We can see that the 8 most significant features have a ranking of 1: age,
cp, thalach, oldpeak, ca, and thal. The least important feature has a ranking of 8, which
is fbs.

Figure 5. The ranking features for the Cleveland dataset.

4.3.2. Results of the Applied Models

This section presents the setting of values parameters for models and the results of
applied ML, hybrid models, and the proposed model with the full and selected features
for the Cleveland dataset. The following settings were modified for CNN-LSTM and
CNN-GRU hybrid models: batch size = 50, epoch = 50, learning rate = 0.00004, and the
optimizer used is Adam. Some of the best CNN-LSTM and CNN-GRU hyperparameter
values as determined by KerasTuner are shown in Table 5.

Table 6 shows the results of applying ML, hybrid models, and the proposed model
with full features and selected features by RFE to the Cleveland dataset.

• Full features
For ML models, RF has the highest scores (86.34% of ACC, 86.34% of PRE, 86.34% of
REC, and 86.34% of F1). NB records the lowest scores (60.00% of ACC, 60.05% of PRE,
60.00% of REC, 59.74% of F1). DT registers the second-highest scores (82.44% of ACC,
82.46% of PRE, 82.44% of REC, 82.44% of F1).
For hybrid models, CNN-LSTM has the highest scores (89.76% of ACC, 89.96% of PRE,
REC = 89.76% of REC, F1 = 89.75%). CNN-GRU records the lowest scores (88.29% of
ACC, 89.06% of PRE, REC = 88.29% of REC, 88.26% of F1).
The proposed model records the highest scores (97.17% of ACC, 97.42% of PRE, 97.17%
of REC, 97.15% of F1) compared to the other models. It improves ACC by 7.41, PRE
by 7.46, REC by 7.41, and F1 by 7.4 compared to CNN-LSTM.

• Selected features
For ML models, RF has the highest scores (82.93% of ACC, 82.99% of PRE, 82.93%
of REC, 82.91% of F1). NB records the lowest scores (64.88% of ACC, 64.90% of PRE,
64.88% of REC, 64.88% of F1). DT registers the second-highest scores (81.95% of ACC,
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PRE = 82.01%, 81.95% of REC, 81.93% of F1).
For hybrid models, CNN-LSTM has the highest scores (86.34% of ACC, 86.41% of PRE,
86.34% of REC, and 86.34% of F1). CNN-GRU records the lowest scores (85.85% of
ACC, 86.92% of PRE, 85.85% of REC, 85.78% of F1).
The proposed model records the highest scores (91.22% of ACC, 91.29% of PRE, 91.22%
of REC, 91.22% of F1) compared to other models. It improves ACC by 4.88, PRE by
4.88, REC by 4.88, and F1 by 4.88 compared to CNN-LSTM.

Table 5. The best values of the parameters for the Cleveland dataset.

Datasets Models Parameters Full Features Selected Features

Cleveland dataset

CNN-LSTM

filters 128 16

Kernel_size 4 5

Pool_Size 2 2

Unit_LSTM 360 60

Dense Unit 160 20

CNN-GRU

filters 64 16

Kernel_size 4 5

Pool_Size 2 2

Unit_GRU 440 80

Unit_Dense 160 40

Table 6. Result of applying models with full features and selected features for the Cleveland dataset.

Approaches Models Features
Matrix Performance

ACC PRE REC F1

Regular ML approach

RF
Full features 86.34 86.34 86.34 86.34

Selected features 82.93 82.99 82.93 82.91

LR
Full features 67.32 67.43 67.3 67.18

Selected features 73.17 73.19 73.17 73.14

DT
Full features 82.44 82.46 82.44 82.44

Selected features 81.95 82.01 81.95 81.93

NB
Full features 60.00 60.05 60.00 59.74

Selected features 64.88 64.90 64.88 64.88

KNN
Full features 60.00 60.25 60.00 59.92

Selected features 66.34 66.62 66.34 66.29

The hybrid models

CNN-LSTM
Full features 89.76 89.96 89.76 89.75

Selected features 86.34 86.41 86.34 86.34

CNN-GRU
Full features 88.29 89.06 88.29 88.26

Selected features 85.85 86.92 85.85 85.78

The proposed model Stacking SVM
Full features 97.17 97.42 97.17 97.15

Selected features 91.22 91.29 91.22 91.22
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4.4. Discussion

We used two heart disease datasets downloaded from Kaggle. We applied RFE feature
selection methods to select the essential features. The proposed model, in all cases, has
achieved the highest score compared with the other models.

4.4.1. Dataset1

Figures 6 and 7 show the best models for applying models with full features and
selected features. We can see that the proposed model has achieved the highest scores with
full features at ACC = 78.81%, PRE = 78.81%, REC = 78.81%, and F1 = 78.81% compared to
other models with full features and selected features, and It improves ACC by 2.17, PRE by
1.2, REC by 2.17, and F1 by 2.16 compared to CNN-LSTM. In addition, it has the highest
scores with selected features at (ACC = 77.42%, PRE = 77.99%, REC = 77.42%, F1 = 77.39%,
and it improves ACC by 2.2%, PRE by 2.57%, REC by 2.2%, and F1 by 2.17%. LR has the
lowest scores with full features and selected features.

Figure 6. The best models for applying models with full features for Dataset 1.

4.4.2. Cleveland Dataset

Figures 8 and 9 show the best models for applying models with full features and
selected features. We can see that the proposed model has achieved the highest scores with
full features at ACC = 98.17%, PRE = 98.42%, REC = 98.17%, and F1 = 98.15% compared to
other models with full features and selected features, and it improves ACC by 3.41, PRE by
3.46, REC by 3.41, and F1 by 3.4 compared to CNN-LSTM. In addition, it has the highest
scores with selected features at (ACC = 91.22%, PRE = 91.29%, REC = 91.22%, F1 = 91.22%,
and it improves ACC by 4.88, PRE by 4.88, REC by 4.88 and F1 by 4.88 compared to CNN-
LSTM. RF has the lowest scores with full features, and LR has the lowest scores with the
selected features.

116



Diagnostics 2022, 12, 3215

Figure 7. The best models for applying models with selected features for Dataset 1.

Figure 8. The best models for applying models with full features for Dataset 2.
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Figure 9. The best models for applying models with selected features for Dataset 2.

4.4.3. Comparison with Literature Studies

By assessing the developed model against the current models we could observe that
our approach enhanced the scores more than other models. We compared our approach
with the approach by authors who used the Cleveland Dataset, as shown in Table 7. The
authors of Ref. [17] used a hybrid model combining DT and RF, which recorded 88.7% of
ACC. The authors in Refs. [20,22–24,29], used various models, none of which were accurate
to more than 90%, which recorded 85%, 88.34%, 87.41%, 84.85%, and 85.71%, respectively.
While in Ref. [18,21,28], the authors achieved an accuracy of over 90%. The proposed model
has achieved the highest ACC at 98.41% compared to the ACC values in these studies.

Table 7. Comparison between previous studies and the proposed model for the Cleveland dataset.

Papers Models Datasets Accuracy

[17] hybrid model that
combines DT and RF Cleveland Dataset. 88.7%

[18] DT, AdaBoost, LR, SGD, RF, GBM,
ETC, GNB, SVM Cleveland Dataset. 92.62%

[20]

BayesNet, LR, SGD,
IBK(k = 21), AdaB(DS),

AdaB(Logistic), RF

Cleveland Dataset. 85%

[21]
LR, KNN, SVM,

RF, DT, DL
Cleveland Dataset. 94.2%

[22] KNN, MLP, SVM, and J48 Cleveland Dataset. 88.34%

[23] K-NN, DT, NB, LR, SVM, NN, Vote Cleveland Dataset. 87.41%

[24] DT, LR, RF, NB,
LR (SVM) Cleveland Dataset. 84.85%

[28] Ensemble Voting, Cleveland Dataset. 96.43%
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Table 7. Cont.

Papers Models Datasets Accuracy

[29] Hard Voting Ensemble Model Cleveland Dataset. 85.71%

Our work The proposed model Cleveland Dataset. 98.41

5. Conclusions

The study proposed a deep staking ensemble to improve the performance of heart
disease prediction. The proposed model was based on the integration of two pre-trained
and optimized deep hybrid models: CNN-LSTM and CNN-GRU. The SVM classifier has
been used as the meta-learner model. The first hybrid model was the CNN-LSTM model,
which combined CNN and LSTM layers. The second hybrid model was the CNN-GRU
model, which combined CNN with GRU models. RFE was used to choose the most
important features from two heart disease datasets. The proposed models were compared
with five classical ML models, including LR, RF, K-NN, DT, NB, and hybrid models (i.e.,
CNN-LSTM and CNN-GRU). Results were collected with the full feature set and a selected
feature set. Compared to other models, the result generated by the proposed model had
the optimum performance with all the features. For the first dataset, the proposed model
had the highest ACC of 78.81%, PRE of 78.1%, REC of 78.81%, and F1 of 78.81. For the
Cleveland dataset, the proposed model had the highest ACC of 97.17%, PRE of 97.42%,
REC of 97.17%, and F1 of 97.15%. In addition, the proposed model achieved better results
than the literature. As a result, the proposed model can improve the disease prediction
and can improve the quality of life of the heart disease patients. In the future, we will test
the performance of the proposed model with other datasets. We will extend the model by
adding other modalities such as images and EEG data. We will provide interpretability
features to the proposed model.
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Abstract: ECG wave recognition is one of the new topics where only one of the ECG beat waves
(P-QRS-T) was used to detect heart diseases. Normal, tachycardia, and bradycardia heart rhythm are
hard to detect using either time-domain or frequency-domain features solely, and a time-frequency
analysis is required to extract representative features. This paper studies the performance of two
different spectrum representations, iris-spectrogram and scalogram, for different ECG beat waves in
terms of recognition of normal, tachycardia, and bradycardia classes. These two different spectra are
then sent to two different deep convolutional neural networks (CNN), i.e., Resnet101 and ShuffleNet,
for deep feature extraction and classification. The results show that the best accuracy for detection
of beats rhythm was using ResNet101 and scalogram of T-wave with an accuracy of 98.3%, while
accuracy was 94.4% for detection using iris-spectrogram using also ResNet101 and QRS-Wave.
Finally, based on these results we note that using deep features from time-frequency representation
using one wave of ECG beat we can accurately detect basic rhythms such as normal, tachycardia,
and bradycardia.

Keywords: ECG; iris-spectrogram; scalogram; CNN; ResNet101; ShuffleNet; heart rhythm

1. Introduction

The heart is a muscle that pumps blood throughout the body, and contracts rhythmi-
cally. The atrial sine node, which functions as a natural pacemaker, initiates this contraction,
which then spreads to the rest of the muscle. There is a pattern to the way that this electrical
pulse spreads [1]. This action causes fluctuations in the skin’s surface’s electrical potential
by producing electric currents on the body’s surface. Electrodes and proper tools can be
used to record or measure these signals, known as an electrocardiogram (ECG) [2].

An ECG signal is composed of three major components explained in Figure 1 [3]: P-
wave; QRS complex, which contains three waves, i.e., Q, R, and S; and the T-wave [4]. The
P-wave is a small flexure wave indicating atrial depolarization, ventricular depolarization
is represented by the QRS complex, and the T-wave is indicative of ventricular repolariza-
tion (atrial repolarization is hidden by the large QRS complex) [5]. The amplitudes and
frequencies of these waves are shown in Table 1 below [4,6].

When there is no disease or abnormality in the waveform of the ECG signal, the heart’s
regular rhythm is known as a normal sinus rhythm (NSR). Typically, the heart rate of NSRs
ranges from 60 to 100 beats per minute. The breathing cycle causes a small change in the
R-R interval’s regularity. Sinus tachycardia is the name for the rhythm when the heart rate
rises above 100 beats per minute and the R-R interval decreases. This is the heart’s normal
response to the need for increased blood circulation; it is not an arrhythmia. However,
overly rapid heartbeats result in incomplete filling of the ventricles before contraction,
which lowers pumping effectiveness and negatively impacts perfusion. Bradycardia, which
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occurs when the heartbeat is extremely slow, can have a significant negative impact on
important organs and the heart rate drops down to 60 beats per minute, and the R-R
interval increases [7].

The paper is organized as follows: Section 2 provides details about the state-of-the-
art-related works. Section 3 presents an explanation of the used dataset, the preprocessing
and segmentation of the ECG, iris spectrogram, and scalogram. Section 4 shows the results,
including the performance of the proposed CNN classifiers, and the discussion about the
proposed method results. Finally, Section 5 represents the conclusion of the work.

Figure 1. ECG signal components show the onset and offset of each wave.

Table 1. The amplitudes and frequencies of ECG waves.

ECG Waves Amplitude Frequency

P-Wave 0.25 mV 5–30 Hz

QRS-Complex The amplitude for the largest
wave R is 1.6 mV 8–50 Hz

T-Wave 0.1–0.5 mV 0–10 Hz

2. Literature Review

Classification of normal and arrhythmia-associated ECG is an important goal to
achieve better detection and proper identification of various cardiovascular diseases (CVDs).
However, the small amplitude and duration of the ECG arrhythmia can make it difficult to
classify. With the rise of deep learning techniques, several recent studies have used very
deep networks for ECG classification. Here, we will attempt to detail the latest related
works using time-frequency methods for ECG classification.

Rashed Al-Mahfuz et al. proposed a novel ECG beat classifier using a customized
VGG16-based Convolution Neural Network (CNN) with two advanced time-frequency
representation techniques, Continuous Wavelet Transforms (CWT) and Hilbert-Huang
transform (HHT), to identify the best time-frequency representation of ECG beats. The
proposed adopted CNN with CWT scalogram achieved 100% classification accuracies
on MIT-BIH arrhythmia database for 2–4 classes and 99.90% for 5 classes, and the CWT
scalogram outperformed the HHT spectrum in all the cases [8].

Swain et al. introduced an automated identification of myocardial infarction (MI)
using a modified Stockwell transform (MST)-based time-frequency analysis and a phase
information distribution pattern method. Both healthy and MI ECG signals are collected
from the PTB diagnostic ECG database with 12 lead ECG signals; the results of the proposed
method can detect the MI successfully with an accuracy, sensitivity, and specificity of 99.93%,
99.97%, and 99.30% respectively [9]. Additionally, Lekhal et al. introduced an ECG beat
classifier system based on features observed in time–frequency analysis using a variant of
the Stockwell transform, and then the SVM with asymmetric costs (AS3VM) was applied
for assessment of the feature performance. The proposed method has been evaluated on
the MIT-BIT arrhythmia database, using four types: normal beats (N), left and right bundle
branch blocks (L and R), and premature ventricular contractions (V). The obtained results
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show accuracies of 99.35%, 98.73%,98.57%, and 99.44% respectively, for N, L, R, and V
beats [10].

However, a suitable method for telemedicine systems provided by Kayikcioglu et al.
to classify ST segment using time-frequency distribution based on features from multi-lead
ECG signals of four-class and tested them on three different databases, MIT-BIH Arrhythmia
database, European ST-T database, and Long-Term ST database. The weighted k-NN
algorithm achieved the best average performance with an accuracy of 94.23%, a sensitivity
of 95.72%, and a specificity of 98.15% using the Choi–Williams time-frequency distribution
features, in addition to the other classification algorithms SVM and Ensemble [11].

Kłosowski et al. proposed an effective method for ECG classification using the deep
neural long-short-term memory (LSTM) network and feature extraction consists of convert-
ing the ECG signal into a series of spectral images using short-term Fourier transformation.
Then, the images were converted using Fourier transform again to two signals, which
include instantaneous frequency and spectral entropy, which are used to train the LSTM
network [12].

In 2021, Wang et al. provided a simple and accurate method, which can be used as
a clinical auxiliary diagnostic tool, and is an automatic ECG classification method based
on Continuous Wavelet Transform (CWT) to obtain different time-frequency components
and Convolutional Neural Network (CNN) to extract features from the 2D scalogram
composed of the time-frequency components. The method achieved an accuracy of 98.74%,
a sensitivity of 67.47%, an F1-score of 68.76%, which compared with existing methods is
increased by 4.75~16.85%, and a positive predictive value of 70.75% [13].

In the same year, Hussein et al. presented a novel method to extract ST and PR features
from the Choi–Williams time-frequency distribution proposed for myocardial ischemia
identification. With the use of these extracted features, a multi-class SVM classifier is
trained to detect unknown circumstances and assess whether they are ischemic or normal.
Improved detection performance is the result of using multi-lead ECG for classification and
1 min intervals rather than beats or frames. The proposed strategy produced a final result
that had an overall accuracy, sensitivity, and specificity of 99.09%, 99.49%, and 98.44%,
respectively [14].

Furthermore, in 2022, Alqudah et al. published a paper in which they present a
method that is efficient, simple, fast, and deployable on mobile devices. A deep learning
methodology was developed to detect up to 17 classes of cardiac arrhythmia based on
analyzing a single ECG beat and calculating the iris spectrogram to feed the convolutional
neural network. The results show that the proposed methodology has an overall recognition
accuracy of 99.13% ± 0.25, 98.223% ± 0.85, and 97.494% ± 1.26 for 13, 15, and 17 arrhythmia
classes, respectively. The training/testing is performed using tenfold cross-validation [15].

Faraget et al. provided a short-time Fourier Transform (STFT) Convolutional Neural
Network (CNN) model for ECG classification in real-time at the edge. To extract the
spectrogram from the input ECG signal, they developed an STFT-based 1D convolutional
(Conv1D) layer and then reshaped it into a 2D heat-map image to feed the 2D convolutional
(Conv2D) neural network (CNN) for classification. The proposed classifier achieved 99.1%
accuracy and a 95% F1-score at the edge with a maximum model size of 90 KB, an average
inference time of 9 ms, and a maximum memory usage of 12 MB [16].

This study aims to propose a comparison between two different advanced time-
frequency methods, i.e., iris spectrogram and scalogram, to categorize the previous types
of ECG, i.e., Normal, Tachycardia, and Bradycardia, using deep learning with Resnet101
and ShuffleNet convolutional neural networks.

3. Materials and Methods

The methodology of this research can be concentrated on the design and implementa-
tion of the procedure steps to achieve the overall approach. The first step is preparing ECG
data with different types to be ready for the system implementation. The implemented
approach for ECG wave recognition is passed into three main steps, as shown in Figure 2,

125



Diagnostics 2023, 13, 308

the Preprocessing and Segmentation process, Time-Frequency methods, and diagnosis and
Recognition using Deep Learning.

Figure 2. Block diagram of the proposed methodology.

3.1. Dataset

ECG-ID Database is used in this study for normal ECG type; the database contains 310
ECG recordings, obtained from 90 persons, and was created and contributed by Tatiana
Lugovaya, who used it in her master’s thesis [17]. Additionally, the Challenge 2015 Training
Sets is used for tachycardia and a bradycardia type; the training set contains 750 recordings
for five ECG categories. However, two types were selected [18]. The length of each ECG
signal segment is 10 s. The applied segmentation methodology (discussed in the next
section) results in 316 normal beats, 138 Bradycardia, and 326 Tachycardia images for all
methods, with a total of 780 images.

3.2. ECG Preprocessing and Segmentation

The main objective of this processing is to distinguish the P, QRS, and T waves and
detect the characteristic points P-Onset, P-Offset, QRS-Onset, QRS-Offset, and T-Onset,
T-Offset for each cycle. After identifying the ECG waves, their respective amplitudes are
measured concerning the baseline. Before analysis, an ECG signal is typically the first
bandpass filtered using several frequency ranges. Bandpass filtering is widely used to
remove low- and high-frequency noise components, baseline wander muscle noise, and
power line interference [19]. The frequency range used is 0.5–40 Hz [20,21].

For de-noising and baseline wandering removal, different types of wavelet transforms
were usually applied to ECG signals. Advanced signal processing methods, such as the
stationary wavelet transform de-noising technique, should be employed to eliminate vari-
ous noise types that contain muscle artefacts and electrode moving artefacts [22]. Baseline
wanders removal and de-noising were achieved by multiresolution wavelet transform [23].
In this study, the noisy signal was decomposed into nine levels by using the Daubechies
wavelet db8. The de-noised signal was recovered by taking the inverse discrete wavelet
transform of the resulting coefficients. The next step in the preprocessing stage used is
amplitude normalization, which is optional but useful for visually comparing data from
various patients and datasets [24]. To ensure the signal starts with P-wave and ends with
T-wave, find the peaks of the R-wave. The onset of the P-wave for the signal is the half
peak-to-peak distance between the two first peaks and the offset of the T-wave for the
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signal is also the half peak-to-peak distance between the two last peaks. Figure 3 below
show the preprocessing stages for all ECG data.

Figure 3. The preprocessing stages for normal ECG signal for example: (a) The Original ECG signal;
(b) The Preprocessed ECG signal; (c) The ECG signal starting with the P-wave and ending with the
T-wave.

In this work, we have adopted the QRS-waves detection algorithm, which is developed
by Faruk U, who proposed a new thresholding method on the Pan–Tompkins algorithm [25]
and found the maximum peaks in the left and the right of the R-wave within a window to
detect the P-wave and the T-wave of the same beat. Furthermore, in this work, we have
depended on the zero crossing to detect the onset and offset of each wave; the P-wave
and T-wave onset and offset was detected by beginning from the waves’ peaks and by
searching backwards and forward, respectively, to find zero crossing, which is the onset
and offset of the two waves, respectively. From the P-wave offset to Q-wave, a forward
search is carried out in this window to find the last zero crossing point. This point is the
QRS onset. To find the QRS offset, we take a window from the S-wave to T-wave onset and
search forward in this window to find the first zero crossing. Figures 4 and 5 illustrates the
process of segmentation.

Figure 4. The peaks and intervals detection for ECG types: (a) The Normal ECG; (b) The Bradycardia
ECG; (c) The Tachycardia ECG.
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Figure 5. The wave segmentation for ECG types: (a) The Normal P-wave; (b) The Normal QRS-
waves; (c) The Normal T-wave; (d) The Bradycardia P-wave; (e) The Bradycardia QRS-waves;
(f) The Bradycardia T-wave; (g) The Tachycardia P-wave; (h) The Tachycardia QRS-waves; (i) The
Tachycardia T-wave.

For segmenting, ECG waves are considered at an extracted onset and offset of each
wave separately from the ECG signal for all ECG types as shown in Figure 5. A total of
320 for normal, 140 for bradycardia, and 325 for tachycardia P-waves, QRS-waves, and
T-waves are extracted.

3.3. Time-Frequency Representations

Time-frequency representations define the frequency content of a signal as a function
of time [26]. Time-frequency analysis and representation are used in the fields of signal
and image processing, data analysis, measurements, acoustics and vibration, machinery
diagnosis, seismology, etc. for the analysis of signals and data, fundamental frequency
detection, instantaneous frequency determination, etc. [27]. Two of the most commonly
used time–frequency analysis tools include the short-time Fourier transform (STFT) and
continuous wavelets transform (CWT) [28].

STFT is a series of Fourier transforms of a windowed signal. When a signal’s fre-
quency components change over time, the STFT gives time-localized frequency informa-
tion, whereas the conventional Fourier transform provides frequency information averaged
across the whole signal time interval. The spectrogram, which is an intensity representa-
tion of STFT magnitude over time, is frequently used to visualize STFT [29]. The STFT is
given by:

X(n, ω) = ∑∞
m=−∞ ω[n − m]x[m]e−jωn (1)

m is a “dummy” time argument whereas n represents the location of the short segment of
the original time function as it is obtained by the window ω[n − m] which moves along the
m-axis according to the value of n.

Wavelet decomposition uses a scale rather than a frequency to translate a signal onto
a time-scale plane. The time-frequency plane of the STFT is the same as this, and each
scale of the time-scale plane corresponds to a certain frequency range of the time-frequency
plane. When comparing the wavelet with the Fourier transform, the wavelet decomposes
the signal into shifted or scaled shapes from a mother wavelet, whereas the Fourier analysis
decomposes the signal into sinusoids of various frequencies [30].

The CWT is the sum of the signal x(t) multiplied by shifted and scaled shapes from a
mother wavelet ϕ(t) [30]:

CWT(scale, position) =
∫ +∞

−∞
x(t) ∗ ϕ(scale, position, t)dt (2)
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At this time, frequency–time analysis allows us to know how the signal is distributed
with frequency and phase, so complex signals can be expressed concisely and analyzed
easily. However, by visually representing signals at various scales and various frequencies
through CWT, hidden features can be seen in the time-frequency domain [30].

3.3.1. Irisgram ECG Representation

In 2018, H. Zhivomirov proposed an innovative method for visualizing the outcomes
of time-frequency analysis called an “iris-spectrogram” or “irisgram” for its resemblance
to a human iris, as shown in Figure 6. The irisgram is a circular representation of the
traditional spectrogram in which the signal strength is indicated axially with color and
time increases circumferentially in a clockwise direction. To pinpoint the precise location of
a given point in the time-frequency domain, one must utilize a Data Cursor tool because
the circular design of the irisgram does not permit annotations to be placed on the time
and frequency axes [27].

Figure 6. (a) An irisgram of QRS-waves; (b) Human eye iris.

Times and frequencies values converted into the polar coordinates to generate an
irisgram, using the following Equations (3)–(5), are applied [31]:

θ =

{
−π :

2π

T − 1
: π

}
, where T is the length o f time vector. (3)

ρ =
max( f )

3
+ f , where f is the f requency vector. (4)

X = ρ × cos θ , and Y = ρ × sin θ. (5)

Then, compute the spectrogram of power spectral density (PSD) and convert to
amplitude spectrum in dB within the range −120 dB to 120 dB, which are the values of the
Z plane [32]. Using the (surf) function, the values of X and Y are plotted against Z to create
a 3D surface plot. This sort of plot contains solid edge colors and face colors, and the color
of the surface varies according to the heights that Z specifies. This function is used to plot
the values in matrix Z as heights (weights) above a grid in the X-Y plane [15].

In this research, for all types of segmented ECG waves, the irisgram representation
has been generated using the function irisgram, accessed in MATLAB® Central File Ex-
change [32], and the resulting images are stored with their relevant classes, as shown in
Figure 7. Then, the deep learning models will be applied to the stored images, as will be
shown next.
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Figure 7. The irisgrams for ECG types: (a) The Normal P-wave irisgram; (b) The Normal QRS-waves
irisgram; (c) The Normal T-wave irisgram; (d) The Bradycardia P-wave irisgram; (e) The Bradycardia
QRS-waves irisgram; (f) The Bradycardia T-wave irisgram; (g) The Tachycardia P-wave irisgram;
(h) The Tachycardia QRS-waves irisgram; (i) The Tachycardia T-wave irisgram.

3.3.2. Scalogram ECG Representation

The scalogram (SG) is a time-frequency representation of the signal constructed by a
wavelet transformation, where coefficient values at specific time-frequency locations can be
indicated by color [33]. The SG of x is defined by the following equation:

S(x) =‖ Wax(b) ‖
√∫ +∞

−∞
x(t)ϕ(

t − B
A

)da (6)

Which represents the energy of Wax(b) at the scale A. B defines the translation of the mother
wavelet ϕ(t). The SG enables the detection of the signal’s most representative scales (or
frequencies), or those that contribute the most to the signal’s overall energy. By integrating
(4) between these values, we may define the appropriate windowed SG if we are only
interested in a specific time window (t0; t1). The three axes are time (x), scales (y), and
coefficient value (z) [34,35]. The ECG wave SG sample is shown in Figure 8.

Figure 8. The Tachycardia T-wave SG.
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Additionally, in this research, for all types of segmented ECG waves, the SG repre-
sentation has been generated using the function wscalogram, in MATLAB®, with different
scaling in each wave, as shown in Table 1, and the resulting images are stored with their
relevant classes, as shown in Figure 9. Then, the deep learning models will be applied to
the stored images, as will be shown next.

Figure 9. The Scalogram for ECG types: (a) The Normal P-wave SG; (b) The Normal QRS-waves
SG; (c) The Normal T-wave SG; (d) The Bradycardia P-wave SG; (e) The Bradycardia QRS-waves SG;
(f) The Bradycardia T-wave SG; (g) The Tachycardia P-wave SG; (h) The Tachycardia QRS-waves SG;
(i) The Tachycardia T-wave SG.

3.4. Deep Learning

Usually, deep learning models need a large dataset to train and achieve robust results.
Therefore, many researchers have started to employ transfer learning techniques to tune
the pre-trained deep learning structures to perform the intended task.

The first convolutional neural network is the residual neural network, which is dis-
tinguished by its residual block property. This feature enhances the performance of clas-
sification by overcoming the problems of vanishing or exploding gradients due to deep
learning layers. ResNet allows forming a skipping connection which enables activating a
layer to further layers by skipping some layers in between. There are various versions of
ResNet, such as ResNet-18, -34, -50, and -101. These versions are based on the number of
deep layers. The architecture ResNet is stacking of such residual blocks. The input size of
these networks is 224 × 224 × 3 [36].

The second convolutional neural network is ShuffleNet, which is one of the most effective
networks utilized in mobile applications. To obtain a high accuracy level, ShuffleNet performs
two types of convolutions: point-wise group convolution and channel convolution, which
makes its performance efficient and fast. It consists of a stacking of ShuffleNet blocks, each one
consisting of two grouped convolutional layers, channel shuffle layer, in addition to depth-wise
convolutional layers. The output from each block maps using the ReLU layer. The designed
input layer is compatible with image size 224 × 224 × 3 [37,38].

4. Results

The resulting images were utilized to build deep learning models either using ResNet101
or ShuffleNet. ECG signal is segmented into three waves P, QRS, and T. Each segment
proceeds with irisgram and scalogram, separately. For each wave, there are two generated
colored images; one for scalogram and the other for irisgram. The labeled data are recog-
nized based on ECG diagnosis, normal, bradycardia, or tachycardia. For each class, six
datasets are achieved; three ECG segments for each category in both signals’ representa-
tions, i.e., irisgrams and scalograms. The classification is performed using two pre-trained
deep-learning structures ResNet and ShuffleNet. The resulting representation images are
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divided into 70% training and 30% testing. The corresponding sections demonstrate the
analysis of the results.

4.1. Irisgram Representation
4.1.1. ResNet

The iris image classification is executed using pre-trained ResNet101 structures, and
the corresponding matrices illustrate its performance. The first one shows the performance
of the irisgram of the P-waves, and the second one illustrates the capabilities of the irisgram
of the T-waves. The third represents the performance of the irisgram of the QRS waves.

For the irisgram P-wave, as shown in Figure 10a, the sensitivity of bradycardia is
85.4%, where 35 out of 41 cases are classified correctly. The precision of bradycardia is
94.6%. Meanwhile, 87 segments were discriminated from 95 P-waves for normal subjects,
with a sensitivity of 91.6% and a positive predictive value of 98.9%. A true positive rate
of tachycardia is the highest value at 98.9%. On the other hand, its precision is the lowest
because 14 cases were misrecognized as tachycardia. The overall accuracy is 92.7% for
all classes.

Figure 10. Confusion matrices of ECG irisgram using ResNet101: (a) P-waves irisgram; (b) T-waves
irisgram; (c) QRS waves irisgram.

The confusion matrix describes the outputs of T-waves. The results are not promising.
Seven segments are misclassified as healthy and 18 cases of bradycardia are misclassified
as tachycardia. Therefore, the sensitivity is too low for bradycardia cases, at 39%. Moreover,
14 cases from other classes are misclassified as bradycardia by the worst precision of 57%.
The performance of ResNet is better regarding normal class recognition. Nine samples are
misclassified, which is one as bradycardia and the rest as tachycardia, with a sensitivity of
90.5% and a misclassification rate of 9.5%. Regarding discrimination between tachycardia
and normal classes, there are seven classes of bradycardia classified as normal and the
precision is 92.5%. Tachycardia’s sensitivity reaches 95.9%, and the misclassification rate is
4.1%. Furthermore, 19 cases of bradycardia cases are recognized as tachycardia. Therefore,
the precision was reduced to 82.2%. The overall accuracy is the lowest, and it does not
exceed 83.3%.
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For the QRS wave irisgram, results show an improvement in discrimination between
three classes in terms of sensitivity, accuracy, and precision. In the bradycardia class,
37 cases are distinguished correctly from 41 and six misclassified samples as bradycardia.
That is why the precision reduced to 86% from what it was in the P-waves case. Recall
and PPV are the highest for healthy segments by almost 97% for both performance terms.
Tachycardia obtains a high level of precision using the QRS-waves, in which just three
samples from the whole data were misclassified as tachycardia, and the sensitivity is 94.9%.
The overall accuracy of the proposed approach regarding QRS-waves irisgram is 94.9%.

4.1.2. ShuffleNet

The irisgram images are proceed using ShuffleNet. The process is started by splitting
the dataset into 70% training and 30% tests. That operation is executed on each ECG
segment. The following confusion matrices characterize the performance of the test phase
of the whole database.

The first confusion matrix in Figure 11a represents the P-waves irisgram images. The
sensitivity of bradycardia is 90.2%, where 37 cases are classified correctly from 41. The
precision of bradycardia is 78.7%. Meanwhile, 94 segments were distinguished from 95
p-waves for normal subjects, with the highest sensitivity of 98.9% and a best positive
predictive value reaching 100%. A true positive rate of tachycardia is 89.8%. On the other
hand, its precision is the lowest because 14 cases were misrecognized as tachycardia. The
overall accuracy is 93.6% for all classes.

Figure 11. Confusion matrices of ECG irisgram using ShuffleNet: (a) P-waves irisgram; (b) T-waves
irisgram; (c) QRS-waves irisgram.

The second confusion matrix represents the outputs of T-waves representation. The
results are not adequate. Nine segments are misclassified as healthy, and seven cases
of bradycardia are misclassified as tachycardia. Therefore, the sensitivity is too low for
bradycardia cases at 61%. However, nine cases from other classes are misrecognized as
bradycardia by the worst precision of 73.5%. The accomplishment of ShuffleNet is better
than normal class discrimination. Seven samples are misclassified as bradycardia, and zero
samples as tachycardia, with high sensitivity of 92.9%, and a misclassification rate of 7.1%.
There are seven classes of bradycardia classified as normal for discrimination between
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tachycardia and normal classes, and the precision does not exceed 92.5%. Tachycardia’s
sensitivity reaches 95.9%, and the misclassification rate is 4.1%. Moreover, 19 cases of
bradycardia cases are classified as tachycardia. Therefore, the precision was reduced to
82.2%. The overall accuracy is the lowest, and it does not exceed 83.3%

For the QRS waves irisgram, results show an improvement in discrimination between
three classes in terms of sensitivity, accuracy, and precision. In the bradycardia class,
31 cases are classified correctly from 41, and four misclassified samples as bradycardia.
That is why the precision reduced to 88.6% from what it was in the P waves case. Recall
and PPV are the highest for normal ECG segments by almost 94.8% for both performance
evaluation terms. Tachycardia obtains a high level of precision using the QRS-waves,
in which just five segments from all the data were misclassified as tachycardia, and the
highest sensitivity reaches 100%. The overall accuracy of the proposed approach regarding
QRS-waves irisgram is 94.0%.

4.2. Scalogram Representation
4.2.1. ResNet

The scalogram image recognition is performed utilizing pre-trained ResNet101 archi-
tecture, and the following matrices represent its performance. The first matrix describes the
accomplishment of the scalogram of the P-waves, while the second one shows the capability
level of the scalogram of the T-waves. On the other hand, the third one demonstrates the
performance of the scalogram of the QRS-waves.

The first confusion matrix in Figure 12a indicates P-waves scalogram images. The
sensitivity of bradycardia is 85.4%, where 35 cases are discriminated correctly from 41.
The precision of bradycardia is almost moderate by 87.5%. While 93 segments were
distinguished from 95 P-waves for healthy subjects, with the highest sensitivity of 97.9%
and a best positive predictive value reaching 100%. The true positive rate of tachycardia
is 94.9%. The precision is 92.1% because 14 cases were misclassified as tachycardia. The
overall accuracy is 94.4% for all classes.

Figure 12. Confusion matrices of ECG SGs using ResNet101: (a) P-waves SG; (b) T-waves SG;
(c) QRS-waves SG.
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The second confusion matrix describes the output of T-waves representation. The
results are better than the P-waves and QRS-waves scalogram. Two segments are misclassi-
fied as healthy, and no cases of bradycardia are misclassified as tachycardia. Therefore, the
sensitivity is too high for bradycardia cases at 95.1%. However, two cases from other classes
are misrecognized as bradycardia by the highest precision of 95.1%. The performance of
ShuffleNet is better than normal class discrimination. Two samples are misrecognized
as bradycardia, and zero samples as tachycardia, with high sensitivity of 97.9%, and a
misclassification rate of 2.1%. For discrimination between tachycardia and normal classes,
there are no misclassification segments with the highest precision reaches to 100%. Tachy-
cardia’s sensitivity is the best by 100%. Moreover, only two cases of bradycardia cases are
misclassified as tachycardia. Therefore, the precision is high at 98%. The overall accuracy is
the highest and reaches 98.3%.

QRS-waves SG is presented in the third confusion matrix. In the bradycardia class,
18 cases are classified correctly from 41, and 19 segments are misclassified as bradycardia.
That is why the precision is too low reaching 48.6% from what it was in the P-waves
case. Recall and PPV are the highest for normal ECG segments by almost 92.8% for both
performance evaluation terms. Tachycardia obtains an acceptable level of precision using
QRS-waves, in which 18 segments from the whole data were misclassified as tachycardia,
while the sensitivity reaches 83.7%%. The overall accuracy of the proposed approach
regarding the QRS-waves SG is 81.0%.

4.2.2. ShuffleNet

The scalogram image recognition is executed using a pre-trained ShuffleNet structure,
and the corresponding matrices illustrate its performance. The first matrix represents the
performance of the scalogram of the P-waves, while the second one shows the capability
level of the scalogram of the T-waves. On the other hand, the last confusion demonstrates
the performance of the scalogram of the QRS waves.

The first confusion matrix in Figure 13a indicates P-waves scalogram images. The
sensitivity of bradycardia is 2.4%, where just one case is discriminated correctly from 41.
The precision of bradycardia is too low at 14.3%. While 80 segments were distinguished
from 95 P-waves for healthy subjects, with moderate sensitivity of 84.2% and a positive
predictive value reaching 89.9%. A true positive rate of tachycardia is 91.8%. The precision
is 65.2%, because eight cases were misclassified as tachycardia. The overall accuracy is
73.1% for all classes.

Figure 13. Confusion matrices of ECG SGs using ShuffleNet: (a) P-waves SG; (b) T-waves SG;
(c) QRS-waves SG.
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The second confusion matrix describes the outputs of T-waves representation. The
results are almost like a P-waves SG. Eight segments are misclassified as healthy and five
cases of bradycardia are misclassified as tachycardia. Therefore, the sensitivity is too low
for bradycardia cases at 80.5%. However, 13 cases from other classes are misrecognized
as bradycardia by the lowest precision of 38.1%. The performance of ShuffleNet is better
than normal class discrimination. Eight samples are misrecognized as bradycardia and
five samples as tachycardia, with moderate sensitivity of 86.3% and a misclassification
rate of 13.7%. For discrimination between tachycardia and normal classes, there are
five misclassification segments and 32 segments misclassified for bradycardia with a low
precision reach of 71.1%. Tachycardia’s sensitivity is the best at 93.9%. Moreover, only five
cases of bradycardia cases are misclassified as tachycardia. Therefore, the precision is high
at 98%. The overall accuracy is the highest and reaches 77.6%. Tables 2–5 summarize the
obtained results. Exploiting the scalogram representation of T-waves and the pre-trained
ResNet101 yields a high accuracy of 98.3%.

Table 2. Results of Irisgram and ResNet101.

P-Wave QRS-Wave T-Wave

Sensitivity Precision Sensitivity Precision Sensitivity Precision

Bradycardia 85.40% 94% 90% 86% 39% 57.10%

Normal 91.60% 98.90% 96.80% 96.80% 90.50% 92.50%

Tachycardia 96.90% 87.20% 94.90% 96.40% 95.90% 83.20%

Accuracy = 92.7% Accuracy = 94.9% Accuracy = 83.8%

Table 3. Results of Irisgram and ShuffleNet.

P-Wave QRS-Wave T-Wave

Sensitivity Precision Sensitivity Precision Sensitivity Precision

Bradycardia 90.20% 79% 76% 89% 61% 73.50%

Normal 98.90% 100.00% 95.80% 94.80% 97.90% 91.20%

Tachycardia 89.80% 94.60% 100.00% 95.10% 92.90% 92.90%

Accuracy = 93.6 Accuracy = 94 Accuracy = 89.3

Table 4. Results of Scalogram and ResNet101.

P-Wave QRS-Wave T-Wave

Sensitivity Precision Sensitivity Precision Sensitivity Precision

Bradycardia 85.40% 88% 44% 49% 95% 95.10%

Normal 97.90% 100.00% 94.70% 92.80% 97.90% 100.00%

Tachycardia 94.90% 92.10% 83.70% 82.00% 100.00% 96.00%

Accuracy = 94.4% Accuracy = 81.2% Accuracy = 98.3%

Table 5. Results of Scalogram and ShuffleNet.

P-Wave QRS-Wave T-Wave

Sensitivity Precision Sensitivity Precision Sensitivity Precision

Bradycardia 2.40% 14% 88% 90% 20% 38.10%

Normal 84.20% 84.90% 96.80% 100.00% 86.50% 97.60%

Tachycardia 91.80% 65.20% 99.00% 95.10% 93.90% 71.30%

Accuracy = 73.1% Accuracy = 96.2% Accuracy = 77.8%

136



Diagnostics 2023, 13, 308

QRS-waves SG is presented in the third confusion matrix. In the bradycardia class,
36 cases are classified correctly from 41, and 4 segments are misclassified as bradycardia.
That is why the precision is almost high reaching 90.0% from what it was in the P-wave
case. Recall and PPV are the highest for normal ECG segments by almost 96.8% and 100%,
respectively. Tachycardia obtains the best level of precision using the QRS-waves, in which
just one segment from the whole data was misclassified as tachycardia, while the sensitivity
is the best too, reaching 99.0%. The overall accuracy of the proposed approach regarding
the QRS-waves SG is 96.2%.

To check the validity of features extracted using the models, we check the class
activation maps (CAMs) and we find that all the trained models have selected the most
significant regions of the scalogram and irisgram. Figures 14–16 show a sample if CAM
using ShuffleNet using the last ReLU layer and scalogram for the three classes Normal,
Bradycardia, and Tachycardia, respectively.

Figure 14. Normal Class CAM using ShuffleNet and Scalogram.

Figure 15. Bradycardia Class CAM using ShuffleNet and Scalogram.
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Figure 16. Tachycardia Class CAM using ShuffleNet and Scalogram.

4.3. K-Fold Results

To ensure the validity of the proposed methodology, the datasets’ evaluation was
performed using a 5 K-fold technique. These techniques were applied on the highest two
results gained using each ShuffleNet and ResNet101. The overall confusion matrix and
ROC of ResNet101 with Scalogram T-waves are shown in Figure 17. The overall confusion
matrix and ROC of ResNet101 with Scalogram T-waves are shown in Figure 18.

Figure 17. (A) Confusion matrix and (B) ROC for ResNet101 with Scalogram T-waves.

Figure 18. (A) Confusion matrix and (B) ROC for ShuffleNet with Scalogram QRS-waves.
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Then, the performance results of 5 K-fold using the two scenarios are shown in Table 6.
Using these results, we can conclude that the performance of the proposed model is stable
over different sets of training and testing, which make it robust.

Table 6. Results of 5 K-fold using two scenarios.

T-Wave with ResNet101 QRS-Wave with ShuffleNet

Sensitivity 97.13 ± 0.95% 97.29 ± 1.30%

Precision 97.52 ± 0.23% 96.11 ± 0.17%

Accuracy 97.82 ± 0.65% 97.31 ± 0.50%

5. Conclusions

This paper introduced a comparison between different ECG waves (P-QRS-T) spec-
trum representations (iris-spectrogram and scalogram) and two widely used CNN archi-
tectures (ResNet101 and ShuffleNet) for classifying three main heart rhythms (Normal,
Tachycardia, and Bradycardia). The paper mainly focused on how different spectrum
representations of other ECG beat waves combined with one of the two used CNN archi-
tectures perform on the classification of arrhythmias to ensure their ability to be applied
later using embedded systems. The proposed methodology addressed the main concern of
providing high performance with the lowest computational complexity on preprocessing,
feature extraction, and classification for classifying ECG beats arrhythmias. The suggested
combination methods achieved, in general, high-performance rates with generated images
from these spectrums and were fed to CNN architectures. The main advantages of the
proposed system are the ability to employ the methodology in embedded systems in the
future. The disadvantages are the limited number of records on the used dataset, where a
larger dataset is required for further evaluation of the method, yet the current results are
very promising.
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Abstract: Atrophic gastritis (AG) is commonly caused by the infection of the Helicobacter pylori
(H. pylori) bacteria. If untreated, AG may develop into a chronic condition leading to gastric cancer,
which is deemed to be the third primary cause of cancer-related deaths worldwide. Precursory
detection of AG is crucial to avoid such cases. This work focuses on H. pylori-associated infection
located at the gastric antrum, where the classification is of binary classes of normal versus atrophic
gastritis. Existing work developed the Deep Convolution Neural Network (DCNN) of GoogLeNet
with 22 layers of the pre-trained model. Another study employed GoogLeNet based on the Inception
Module, fast and robust fuzzy C-means (FRFCM), and simple linear iterative clustering (SLIC)
superpixel algorithms to identify gastric disease. GoogLeNet with Caffe framework and ResNet-50
are machine learners that detect H. pylori infection. Nonetheless, the accuracy may become abundant
as the network depth increases. An upgrade to the current standards method is highly anticipated
to avoid untreated and inaccurate diagnoses that may lead to chronic AG. The proposed work
incorporates improved techniques revolving within DCNN with pooling as pre-trained models
and channel shuffle to assist streams of information across feature channels to ease the training of
networks for deeper CNN. In addition, Canonical Correlation Analysis (CCA) feature fusion method
and ReliefF feature selection approaches are intended to revamp the combined techniques. CCA
models the relationship between the two data sets of significant features generated by pre-trained
ShuffleNet. ReliefF reduces and selects essential features from CCA and is classified using the
Generalized Additive Model (GAM). It is believed the extended work is justified with a 98.2% testing
accuracy reading, thus providing an accurate diagnosis of normal versus atrophic gastritis.

Keywords: H. pylori; atrophic gastritis; deep learning; convolution neural network; ShuffleNet;
feature fusion; Canonical Correlation Analysis; ReliefF; generalized additive model

1. Introduction

Artificial intelligence (AI) has been important in steering various medical imaging-
related problems. Although consultancy or diagnosis from medical practitioners has been
the gold standard, computer-aided systems play a key role in assisting the limited number
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of busy-scheduled medical practitioners. Moreover, enhancing medical imaging techniques
via AI is useful for screenings, medical precision, and risk assessment.

Otherwise, AI implementation in medical imaging enables physicians to detect medical-
related conditions faster, thus promoting early intervention. AI enables colorectal cancer
to be detected and diagnosed by analyzing tissue scans [1]. Furthermore, AI can identify
fractures [2], neurological diseases [3], and thoracic complications [4]. Recent works have
highlighted that AI may be better or at least on par with pathologists. It is observed that
AI can be a tool to assist pathologists in keeping up with the rising demands for expert
services. Despite pathologists regularly assessing histopathology images, their average
workload has risen significantly, leading to unintended misdiagnosis [5]. The fusion of
AI into medical imaging also enhances precision medicine. Outside of this, a machine
learning tool can recognize types of cancer [6] and predict patient survival rates, resulting
in healthcare providing better treatment [7]. In addition, AI can be a tool to predict potential
risks for the future, such as the prediction of heart attacks [8].

Various studies that employ machine learning are also significant for sparking further
applied or improved works. Weis et al. developed unsupervised segmentation via Linear
Combination [9]. Beneficial works are segmentation in medical imaging [10,11] and studies
related to body parts [12,13] that employed deep learning. Skin-lesion segmentation
implemented using hybrid metaheuristics machine learner has also been studied [14].
Lv et al. highlighted speech and gesture recognition and natural language processing
studies implemented using deep learning [15]. Face image identification has been used to
detect fake faces via Xception, which is a variation of deep learning [16]. There has also been
work on disease diagnosis implemented using Convolution Neural Network (CNN) [17,18].
Recognition of different types of skin lesions using Fast Random Forest (FRF) learner has
been beneficial [19]. Massaro et al. performed comparative studies via Discrete Fourier
Transform (DCT), K-Means clustering, and Long-Short Term Memory (LSTM) to determine
assembled tires defects [20]. Mohimont et al. estimated crop yielding via machine learning
and deep learning [21]. Massaro et al. identified water leaks in pipelines using infrared
thermography (IRT), CNN-LSTM, and image filtering algorithm [22].

Similarly, AI-based research impacts significantly on recognizing internal gastric
infection. Untreated Helicobacter pylori (H. pylori) gastric bacterial infection may lead to
gastric cancer, among other complex morbidities. AG, which is mostly caused by H. pylori
bacteria, induces chronic inflammation of gastric mucosa leading to the loss of glands in
the stomach lining. Additionally, H. pylori-associated AG increases the risk of developing
stomach cancer. Therefore, preliminary detection of AG is crucial.

To date, many meta-analyses have focused on the application of AI-based H. pylori
diagnosis [23–25] and gastric disease [26,27]. Five studies [28–32] developed an AI al-
gorithm based on Convolution Neural Network (CNN) to diagnose H. pylori infection.
Studies [33,34] have employed AI to diagnose gastric disease and deep Recurrent Neural
Network (RCNN) to diagnose AG progression to gastric cancer [35]. In addition, Sup-
port Vector Machine (SVM) algorithms have also been employed to recognize gastric
disease [36,37] and H. pylori infection in the gut [38]. Yet another work with biomarkers
features has used statistical analysis to detect AG [39].

This work acknowledged Pecere et al.’s [25] critique that many studies focus on
selected populations that may experience spectrum bias or class imbalance. Pecere et al. [25]
argued some studies have tendencies to employ CNN regardless of other available machine
learners mentioned in Mohan et al. [24]. To date, the pooled accuracy, sensitivity, and
specificity of AI in the diagnosis of gastrointestinal disease is 87.1% (95% CI 81.8–91.1),
86.3% (95% CI 80.4–90.6), and 87.1% (95% CI 80.5–91.7), respectively [25]. The recognition
rates of the three measures indicated were between 86.3% and 87.1%, demonstrating an
improvement in AI-based AG-related detection. This is still acceptable even when some
classifiers, such CNN, do not satisfy the recognition rates in research connected to AG.

The essential issue is to find a better machine learner to improve the standard of
diagnostic results. Hence, an accurate, fast, and reliable diagnosis is needed to treat
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H. pylori infection early. This is important in bacteria transmission inhibition, which
promotes a longer lifespan.

2. Related Works

Recent trends have a growing interest in incorporating artificial intelligence (AI),
medical diagnosis, and medical imaging related to the area in gastric. Getting a correct
diagnosis with the assistance of a machine learner leads to a positive response because
it is consistent and less likely to have inter-reader variability. Similar to other medical
conditions, early detection of Helicobacter pylori (H. pylori) infection in human gastric is
essential to acquire treatment and suppress the progression of this bacteria. Note that
H. pylori cause not only gastritis, but untreated infections may also turn into chronic
gastritis that leads to gastro-duodenal ulcer, gastric neoplasia, and gastric cancer [24].

This work highlights AI-based studies to detect H. pylori-related AG and other types
of conditions in the gut. For example, Takiyama et al. [40] and Wu et al. [41] both examined
gastric cancer, particularly to identify the anatomic multi-location of cancer. Wu et al.
found an accuracy of 90% for detecting gastric cancer location-wise, and Takiyama showed
an Area Under Curve (AUC) of 0.99, a sensitivity of 96.9%, and a specificity of 98.5%,
respectively. On the other hand, Kanesaka et al. [37] detected 66 abnormal conditions
out of 126 images during training and 61 abnormalities out of 81 images during testing.
Furthermore, the study employed a Support Vector Machine (SVM) to detect early gastric
cancer with an accuracy of 96.3%, a sensitivity of 96.7%, and a specificity of 95%. This result
is quite impressive compared to works that employed CNN that mostly report around 85%
to 93.8% accuracy.

In 2018, Hirasawa et al. [42] identified gastric cancer using Single Shot MultiBox
Detector (SSD) with a sensitivity of 92.2% via 13,584 abnormalities during training and
2.296 abnormalities during testing out of 51,558 images. Another work by Ishioka et al. [43]
also detected gastric cancer via SSD with a sensitivity of 94.1%. However, unlike Li et al. [44],
Horuichi et al. [45] and Zhu et al. [46] both managed to detect gastric cancer with an
accuracy of 85.3% and 89.16%, respectively. Meanwhile, Li et al. scored 90.91% accuracy
in identifying gastric cancer via CNN Inception-V3. The other two studies also employed
CNN, GoogLeNet, and ResNet, respectively.

Subsequent works describe studies related to machine learning detecting H. pylori
infection in the gastric antrum. For example, Shichijo et al. employed Deep CNN (DCNN)
of GoogLeNet with 22 layers of the pre-trained model that learned generic image features
of H. pylori-infected cases. The AUC was 0.89, while sensitivity, specificity, and accuracy
were 81.9%, 83.4%, and 83.1%, respectively [28]. Otherwise, Shichijo et al. collected a huge
range of data with 32,208 images; 735 were H. pylori positive and 1015 were negative [28].
Another work by Shichijo et al. in 2019 [31] recorded an 80% accuracy (465/582) of negative
diagnoses, 84% (147/174) eradication, and 48% (44/91) positive diagnoses. Similarly, the
author employed a deep pre-trained CNN learner to identify the occurrence of H. pylori in
the gastric antrum.

Alternatively, Itoh et al. [29] and Dong-Hyun et al. [33] both employed GoogLeNet to
detect H. pylori conditions and gastric lesions, respectively. Dong-Hyun et al. employed
GoogLeNet based on the Inception module, fast and robust fuzzy C-means (FRFCM), and
simple linear iterative clustering (SLIC) superpixel algorithms applied for image segmen-
tation during preprocessing of those images. Their work scored 0.85 and 0.87 for normal
and abnormal lesions based on Receiver Operating Characteristic (ROC) curves. Mean-
while, Itoh et al. [29] achieved an AUC of 0.956, a sensitivity of 86.7%, and a specificity of
86.7%. Furthermore, Guimarães et al. [34] had 100 normal and 100 abnormal images of
pre-cancerous detection during training and 40 normal and 30 abnormal images during
testing. Accordingly, he achieved an AUC of 0.981, an accuracy of 92.9%, a sensitivity
of 100%, and a specificity of 87.5% via ImageNet. The result was impressive because
image samples were acquired from generic databases and were not unique. However,
there is a possibility that the databases captured fewer complex conditions of features
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from atrophic gastritis (AG). In 2018, Nakashima et al. [30] employed GoogLeNet with
the Caffe framework to detect H. pylori infection that causes AG acquired from 222 en-
rolled participants. The study showed 105 were H. pylori-positive with an AUC reading of
0.97. Aside from this, Zheng et al. [32] achieved an AUC of 0.66, an accuracy of 93.8%, a
sensitivity of 91.6%, and a specificity of 98.6%, respectively, via ResNet-50. The study high-
lighted the identification of AG-infected patients with samples of 1959 patients: 1507 out of
1959 (77%) patients were deemed as training data, 847 (56%) out of 1507 cases were infected
with H. pylori, and 11,729 gastric images were assigned for training using image augmenta-
tion. On the other hand, 452 (23%) out of 1959 patients were deemed as testing data, 310
(69%) out of 452 cases were infected with H. pylori, and 3755 gastric images were assigned
for testing using image augmentation [32]. It is acknowledged that studies that employ
only CNN Inception-V3 score 90.91% accuracy [44]. Similarly, the SVM can achieve high
accuracy at 96.3% [37] in identifying gastric cancer.

Subsequently, Alquran et al. [47–49] employed ResNet and ShuffleNet Version 2,
which are suitable for cervical cytology and cornea ulcer. Nevertheless, gastric cancer has
different unique features compared to AG, which are incomparable. Improved recognition
methods applied to the detection of H. pylori-related AG per se are essential to improve the
standards of the diagnostic methods which are currently being used. In addition, further
work to detect and upgrade H. pylori-related to AG is compelling. The current accuracy
stands at 92.9% via ImageNet. As mentioned earlier, however, the samples may be generic
and less descriptive since they are public data sets. Furthermore, there is always room for
improvement to upgrade the accuracy of AG detection, which currently stands at 93.8%
via ResNet-50. Accurate AG detection may promote faster treatment in the early stages of
H. pylori infection, saving patients from experiencing chronic conditions.

3. Materials and Methods

This section elaborates on the feature fusion, feature selection, and classifier employed
in the study. The materials and characteristics of atrophic gastritis and normal gastric
are presented. The proposed approach, which includes these methods and deep learning
specification, is also addressed.

3.1. Feature Fusion Canonical Correlation Analysis (CCA)

Canonical Correlation Analysis (CCA) is a multivariate-based correlation statisti-
cal method. CCA assesses the complex relationships among variable sets that originate
from different modalities and is an improved technique for determining the traditional
correlation between two sets of variables. Besides this, CCA focuses on a dependence rela-
tionship, aiming to model the correlation between variables and the correlation between the
two datasets [50]. There are two main concepts to comprehend CCA, which are canonical
variables and canonical correlation. Note that canonical variables are linear combinations
of the variables in the data sets. Since CCA focuses on correlations between two data sets,
users define pairs of canonical variables from the left side of the data set and a second
canonical variable from the right side. In the case of a different number of variables in the
datasets, it maintains many pairs of canonical variables by determining linear combina-
tions for features with the most correlation in two datasets. On the other hand, Principal
Component Analysis (PCA) highlights the determination of linear combinations for the
most variance features in one data set. Meanwhile, Multivariate Multiple Regression
(MMR) is similar to CCA, whereby the prior method tries to find linear combinations that
enable the model of correlations between two data sets. This work uses CCA to extract
essential features because its characteristics demonstrate correlated features from two huge
datasets [51–53]. The idea behind CCA is described in Figure 1.
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Figure 1. A general schematic for CCA to model the correlation between two feature datasets.
Reprinted/adapted with permission frm Ref. [50]. Copyright from Li. et al., Mech. Syst. Signal
Process; published by Elsevier Ltd., 2022.

3.2. ReliefF

Relief-F is an instance-based feature selection technique that assesses the feature ability
to discriminate between samples rooted in different groups and the similarity between
them. Relief-F is a filter-based feature selection method that computes the weighted value
of each feature to determine the available essential features [54], as it carries the highest
weight. If a feature value differs from its neighboring feature pair of a similar class, the
weight decreases. In addition, Relief-F reduces the feature dimension by removing the
negative-weighted value feature, which is suitable for a two-class scheme. Correspondingly,
it is also useful for multi-class problems [55,56]. Hence, Relief-F was chosen in this work
due to its ability to deal with noisy and missing data, a dependence feature that requires
swift computation time and is fairly accurate.

3.3. Generalized Additive Model (GAM)

A generalized additive model (GAM) is a generalized linear model whereby its re-
sponse variable depends linearly on unknown smooth functions of some predictor variables,
and interest focuses on inference about these smooth functions. Trevor Hastie and Robert
Tibshirani developed GAMs to combine the characteristics of generalized linear models
with additive models. They can be interpreted as the discriminative generalization of the
Naive Bayes generative model. Additionally, GAM is a model that allows the linear model
to learn nonlinear relationships. It assumes that instead of using simple weighted sums,
it can use the sum of arbitrary functions. Besides, GAMs may overfit when there are too
many explanatory variables or a small sample size. For cases where the sample size is
too small, the overfitting problem can be solved by increasing the sampling [57]. This
work employed GAM due to the ability of the learner to learn nonlinear relationships in
the dataset.

3.4. Materials

The gastric images were acquired from the Endoscopy Unit, Hospital Universiti Sains
Malaysia, Kubang Kerian, Kelantan. The images were captured from 20 patients where 12
were detected as having atrophic gastritis and 8 were classified as normal. The patients
had undergone an endoscopy procedure performed by an endoscopy specialist. Each
patient’s hardcopy photo 4 by 6 inches in size was obtained from their medical report.
The hardcopy photos were scanned in 300 dpi resolution and saved in softcopy form for
the study. Thus, 12 images were categorized as atrophic gastritis (AG) and there were
8 normal gastric images. Due to the small-scale number of images available, each image was
cropped into 20 regions of interest (ROI) of size 128 × 128 pixels. Therefore, the actual ROIs
used in the classification were 244 images from AG and 160 images from normal gastric.
The experiment was trained using 70% of the total data and tested on the remaining 30%
of the available data. Thus, 282 mixed images of AG and normal gastric were employed
for training. On the other hand, 122 mixed normal gastric and AG images were used for
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testing. Figure 2 illustrates a sample of the normal gastric image, which was then cropped
into 20 ROIs. Similarly, Figure 3 shows a sample of the AG image cropped into 20 ROIs.

 
 

(A) (B) (C) 

Figure 2. Sample of the normal gastric image cropped into 20 ROIs; (A) normal gastric, (B) normal
ROI_1, (C) normal ROI_20.

 
 

(A) (B) (C) 

Figure 3. Sample of the atrophic gastric image cropped into 20 ROIs; (A) atrophic gastric, (B) atrophic
ROI_1, (C) atrophic ROI_20.

3.5. Characteristics of Normal Gastric and Atrophic Gastric

The human stomach has a shield of mucus lining called the mucosa. The safe lining
guards the stomach from the sturdy stomach acid that absorbs food. When the protective
lining is damaged, the mucosa becomes inflamed, resulting in gastritis. It is indicative that
Helicobacter pylori (H. pylori) is the most common bacteria that cause gastritis [58].

AG is a histopathological substance characterized by chronic inflammation of the
gastric mucosa. The inflamed gastric mucosa experience loss of gastric glandular cells
and is reinstated by intestinal-type epithelium, pyloric-type glands, and fibrous tissue.
AG is frequently linked with H. pylori infection, unidentified environmental factors, and
autoimmunity governed in the case of gastric glandular cells. Note that the bacteria disrupt
the barrier of mucus that protects the human stomach lining from the acidic juices that help
with digestion [58]. Hence, the infection will gradually destroy the cells in the stomach
lining if untreated.

3.6. Proposed Method

This work focused on the detection of AG versus the normal gut. We highlighted
machine learning improvement related to H. pylori-related AG infection in the gut. It
was observed that previous studies employed GoogLeNet, pre-trained Deep Convolution
Neural Networks (DCNN), ImageNet, and ResNet-50. Based on experimentation and
analysis, this study used pre-trained ShuffleNet Version 1, CCA feature fusion, Relief-F
feature selection method, and GAM classifier, as described in Figure 4.

The pre-trained ShuffleNet used the ReLu layer, which later produced 26,656 features
and a global average pooling layer of 544. Subsequently, the high-dimensioned features
were processed with feature fusion, known as CCA, resulting in 265 features. The features
were further reduced to the 50 most relevant features using the ReliefF feature selection
method. Finally, GAM was employed as a machine learner to perform binary classification
to identify between atrophic and normal gastritis classes.
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Figure 4. The proposed method for atrophic gastritis detection.

3.7. Specification of ShuffleNet

This work employed the pre-trained ShuffleNet model already implemented in
MATLAB® Version 2021. The pre-trained ShuffleNet utilized the following hyperparame-
ters setting as described in Table 1. It consisted of 171 layers, and employed the root means
square propagation (RMSProp) optimizer, a mini-batch size of 64, sixty epochs, and a
0.0004 learning rate.

Table 1. Pre-trained ShuffleNet hyperparameters setting.

Hyperparameters Setting

Optimizer RMSprop
Number of Layers 171

Mini batch size 64
Maximum Epoch 60

Learning Rate 0.0004

The proposed ShuffleNet structure for AG and its summaries are presented in Figure 5
and Table 2. Table 2 describes the detailed structure of the model. All the images in the
dataset were resized to 224 × 224 × 3 pixels to follow the standard image size suggested by
ShuffleNet Version 1 network architecture. The model initiated with a group convolution-
max pool stem and proceeded with three repeated stages before the finalized global pool-
fully connected layer. Consequently, the block began with a 1 × 1 group convolution layer
of filter size 112 × 112, kernel size 3 × 3, and stride 2 × 2. Then, the layer was processed
via the ReLu layer and followed by an average pooling layer kernel size of 3 × 3 and stride
2 × 2. The initial group convolution did not have a shuffle layer. Thus, the output channel
of the next stage was doubled into 56 × 56.

In the next stage, the filter size was 28 × 28 and stride 2 × 2 but not repeated. Subse-
quently, the average pooling layer featured a 28 × 28 filter size using stride 1 × 2 repeated
three times. Finally, ReLu was the activated layer and was followed by batch normalization.
Note that ShuffleNet was differentiated from other architectures via shuffle layers as this
study had three channels due to colored images. First, the input tensor was reshaped to
shuffle the channels from 224 × 224 × 3 channels to 224 × 224 × 3 groups × 3 channels
divided by 3 groups. Then, the last two dimensions were permuted, and the input tensor
was reshaped to the original shape.

Correspondingly, the next two stages had shuffle layers, in which the filter size in the
group convolution layer remained 28 × 28 in Stage 3 with stride 2 × 2 but not repeated.
The model applied the ReLu layer and batch normalization at this point. The average
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pooling layer was of size 14 × 14 with stride 1 × 1, repeated seven times. Then, the channel
layers were shuffled via permutation via 3 groups or 3 channels.

Stage 4 featured 7 × 7 maps in the grouped convolution layer with stride 2 × 2 and
not repeated. After the layer was activated via ReLu and batch normalization, the average
pooling size filter size remained the same: 7 × 7 but this time around with stride 1 × 1 and
repeated three times.

The global average pool layer generated a 1 × 1 feature map with kernel size 7 × 7
that produced the best features, followed by a fully connected layer that applied a softmax
layer to proceed with the classification layer with two neurons that depicted classes of
normal and AG presence. This structure is described in Figure 5 and Table 2. The transfer
learning strategy was performed in the last fully connected layer to be compatible with the
number of intended classification classes.

Figure 5. Atrophic Gastritis ShuffleNet structure.

Table 2. Structure summaries for Atrophic Gastritis ShuffleNet.

Layer Information

Input Layer Size: 224 × 224 × 3
Number of Filters: 112

Group Conv1 Kernel Size: 3 × 3
Stride: 2 × 2
Padding: 0

Activation Layer ReLu
Type: Average Pooling

Pooling Layer Kernel Size: 3 × 3
Stride: 2 × 2
Padding: 0

Number of Groups: 3
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Table 2. Cont.

Layer Information

Group Convolution Layer Number of Filters: 56
Kernel Size: 3 × 3

Padding: 0
Activation Layer ReLu

Type: Average Pooling
Pooling Layer Kernel Size: 3 × 3

Stride: 1 × 1
Padding: 0

Shuffle layer
Group Convolution Layer Number of Filters: 28

Kernel Size: 3 × 3
Stride: 1 × 1
Padding: 0

Activation Layer ReLu
Shuffle layer

Number of Groups: 3
Group Convolution Layer Number of Filters: 11

Kernel Size: 3 × 3
Stride: 1 × 1
Padding: 0

Activation Layer ReLu
Type: Global Average Pooling

Fully Connected Layer 2 neurons
Softmax Layer

Classification Layer

4. Results and Discussion

Figure 6 shows the confusion matrix with results analyzed from the testing data
executed via pre-trained ShuffleNet. Figure 6 demonstrates the results for the binary
classes of atrophic gastritis (AG) and normal gut. A total of 52 out of 67 were correctly
classified as AG, meaning 77.6% were correctly classified as AG. Whereas the remaining
15 samples were misclassified, meaning 22.4% were misclassified as normal gut. All 48
out of 48 normal gut images were correctly classified, meaning that 100% were classi-
fied correctly. The overall accuracy for the pre-trained ShuffleNet was 87.0% for binary
classes of AG and normal classes. The misclassification rate for the pre-trained ShuffleNet
was 13.0%.

Figure 6. Confusion matrix with results analyzed from the testing data executed via pre-trained ShuffleNet.
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The obtained results using deep learning structure were less prominent in distinguish-
ing between atrophic and normal cases. Therefore, a new strategy was proposed to enhance
the pre-trained classification result. The proposed method focused on the utilization of
feature engineering techniques. The feature engineering enhancement focused on fusion
between the ReLU and global average pooling layer. The resultant new features were
passed to the feature selection algorithm to nominate the most relevant representative
descriptors. Finally, these features were delivered to the generalized additive model (GAM)
that distinguished between two classes: atrophic or normal. This hybrid model based on
feature engineering clarified the prominent results. Figure 7 shows the confusion matrix
with results analyzed from the testing data executed via the hybrid model.

Figure 7. Confusion matrix with results analyzed from the testing data executed via hybrid model
and classified by GAM.

As a result of the techniques that constitute the hybrid model, the classification result
improved, with 65 out of 66 instances correctly detected as AG, constituting 98.5% accuracy;
the remaining one sample was misclassified, meaning that 1.5% was misclassified as normal
gut. Furthermore, 47 out of 48 cases of normal gastric images were accurately identified,
i.e., 97.9%; the remaining one sample was misclassified, meaning 2.1% were misclassified
as AG. The overall performance of the hybrid model was outstanding at 98.2% accuracy
for binary classes of AG and normal classes, as depicted in Figure 7.

Even though the result from the pre-trained ShuffleNet was less prominent, it gen-
erated 26,656 significant features via the ReLu layer and 544 significant features from the
global average pooling layer, as mentioned in Section 3.6. CCA successfully modeled the
relationship between the two data sets of significant features from the ReLu layer and the
global average pooling layer respectively. CCA focused on finding linear combinations
that most accounted for the correlation of the two datasets. To some extent, ReliefF selected
essential features by reducing the feature dimension of the negative-weighted value feature.
The features may have consisted of non-linearity characteristics because they were extracted
from huge features, thus GAM performed as a better learner. The strength of GAM is that
it allows linear modeling to identify the nonlinear relationship among its features.
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Table 3 describes the results based on precision and recall, also known as sensitivity,
specificity, and accuracy matrices for the pre-trained ShuffleNet and the proposed method.
Similarly, Table 4 shows the F1-score results for the mentioned models. Based on the results
in Table 4, although the precision and specificity reading of the proposed method compared
to the pre-trained network slightly dipped to 98.5% and 97.9% respectively, the recall or
sensitivity, accuracy, and F1-score displayed significant improvement in the proposed
method. Outside of this, the recall or sensitivity greatly increased from 77.6% in the pre-
trained network to 98.5% in the proposed method. Subsequently, accuracy improved from
87.0% in the pre-trained network to 98.2% in the proposed method. Moreover, the F1-score
also demonstrated a significant leap from 0.87 in the pre-trained model to 0.98 in the
proposed method. These readings indicate that the proposed method can determine true
positive cases of AG. Similarly, the proposed method can also predict the cases of atrophic
and normal gastric correctly. On a scale from 0 to 1, 1 being the best, the proposed method
successfully classified each observation into the correct atrophic and normal classes.

Table 3. Results based on precision, recall, specificity, and accuracy matrices for the pre-trained
ShuffleNet and proposed method.

Pre-Trained ShuffleNet (%) Proposed Method (%)

Precision 100.0 98.5
Recall = Sensitivity 77.6 98.5

Specificity 100.0 97.9
Accuracy 87.0 98.2

Table 4. F1-score result for the pre-trained ShuffleNet and proposed method.

Pre-Trained ShuffleNet Proposed Method

FI-score 0.87 0.98

The proposed approach was compared with literature that worked on the same
classification problem for endogastric diagnosis images. Table 5 illustrates their methods,
type of infection, number of classes, and achievement. The comparison is based on the
type of study, of either atrophic gastritis or non-atrophic gastritis. Similar studies of
atrophic gastritis were compared based on performance in terms of specificity, sensitivity,
and accuracy.

Table 5. Comparison of the proposed approach with literature on similar endogastric diagnosis
classification problems.

Study Method Type Classes Accuracy

Shichijo S. et al.
(2017) [28]

Deep CNN, 22 layers,
pre-trained GoogLeNet

via ImageNet
H. pylori 2

AUC = 0.89, Specificity = 81.9%,
Sensitivity = 83.4%,
Accuracy = 83.1%

Takiyama H. et al.
(2018) [40] GoogLeNet

Anatomical
location of the upper

digestive tract

AUC = 0.99, Specificity = 98.5%,
Sensitivity = 96.9%,
Accuracy = N/A

Itoh et al. (2018) [29] GoogLeNet H. pylori 2
AUC = 0.956, Specificity = 86.7%,

Sensitivity = 86.7%,
Accuracy = N/A

Hirasawa et al.
(2018) [42] SSD Gastric cancer 2

AUC = N/A,
Specificity = N/A,
Sensitivity = 92.2%,
Accuracy = N/A
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Table 5. Cont.

Study Method Type Classes Accuracy

Kanesaka et al.
(2018) [37] SVM Early gastric

cancer 2

AUC = N/A,
Specificity = 95%,

Sensitivity = 96.7%,
Accuracy = 96.3

Nakashima et al.
(2018) [30] GoogLeNet; Caffe H. pylori 2 AUC = 0.97, Specificity = N/A,

Sensitivity = NA, Accuracy = NA,

Shichijo S. et al.
(2019) [31] Pre-trained DCNN H. pylori 2 Accuracy = 80% (negative),

84% (eradicated), 48% (positive)

Dong-hyun et al.
(2019) [33]

GoogLeNet;
Inception module Gastric disease 2 ROC = 0.85 (normal)

and 0.87 (abnormal)

Zheng et al. (2019) [32] ResNet-50 H. pylori 2

AUC = 0.66,
Specificity = 98.6%,
Sensitivity = 91.6%,

Accuracy = 93.8

Wu et al. (2019) [41] VGG ResNet 26 locations of
gastric cancer

AUC = N/A, Acc = 90,
Sensitivity = N/A,
Specificity = N/A

Ishioka et al. (2019) [43] SSD Gastric cancer 2

AUC = N/A,
Specificity = N/A,
Sensitivity = 94.1%,
Accuracy = N/A

Horiuchi et al.
(2020) [45] GoogLeNet Gastric cancer vs. gastritis 2

AUC = 0.85,
Specificity = 71.0%,
Sensitivity= 95.4%,
Accuracy= 85.3%

Zhu et al. (2019) [46] ResNet Gastric cancer 2

AUC = 0.94,
Specificity = 95.56%,
Sensitivity= 76.47%,
Accuracy= 89.16%

Guimarães P et al.
(2020) [34] ImageNET H. pylori 2

AUC = 0.981,
Specificity = 87.5%,
Sensitivity = 100%,
Accuracy = 92.9%

Li et al. (2020) [44] Inception-V3 H. pylori 2

AUC = N/A,
Specificity = 90.64%,
Sensitivity = 91.18%,

Accuracy = 90.9%

Our study Pre-trained CNN:
ShuffleNet version 1 H. pylori 2 Test: 98.2%; Atrophic sensitivity

(98.5%), Normal sensitivity (97.9%)

Based on the comparison of our and the existing works in Table 5, some studies [37,40–42]
were not comparable with our study because their work focussed on either gastric cancer or
determining the location of infection. Furthermore, some studies [30,31,33] had insufficient
information related to the results presented here and thus were incomparable to this work. It is
evident from Table 5 that study [28] achieved specificity, sensitivity, and accuracy in the range
of less than 83.5%. Meanwhile, study [44] achieved much a better result compared to [28];
however the specificity, sensitivity, and accuracy were much lower than 91.5%; thus this work
was insignificant to this research, which achieved specificity, sensitivity, and accuracy all
above 97%. References [28,44] achieved a less significant result compared to this work because
they employed GoogleNet with Inception Module, which did not employ group convolution
and had fixed convolution sizes for each layer, thus missing significant features. On the other
hand, the result of this study is much better because it employed ShuffeNet, which performed
group convolution and each output channel related to the input channels outside the group.
As for study [34], even though their sensitivity reading was 100% compared to the this study’s
sensitivity reading of 98.5%, its specificity was 87.5% and its accuracy was 92.9%, both much
lower than the readings in this study. Unlike this in this study, it is suggested that study [34],
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which employed ImageNet, was actually a large-scale dataset rather than deep learning
network itself. Study [32], which employed ResNet-50, achieved a slightly better specificity
of 98.6% compared to that of this work with its specificity reading of 98.5%. Nevertheless,
study [32]’s sensitivity reading of 91.6% and accuracy reading of 93.8% were both much lower
than this study’s readings of 98.5% and 98.2% respectively. Unlike in this study, study [32],
which employed ResNet-50, suffered a degradation problem when the network became deeper.
On the other hand, study [29], which employed GoogleNet, achieved a specificity of 98.5%,
slightly better than the 97.9% reading in this study. Nevertheless, study [32]’s sensitivity and
accuracy fell short at 96.9% and were not applicable respectively compared to the readings in
this study. This study’s sensitivity reading was at 98.5% and its accuracy was at 98.2%. It is
evident this study’s accuracy, at 98.2%, was higher than studies [28,32,34,44], which all had
readings are lower than 94%.

Compared to existing works, this study had the best accuracy because it employed a
hybrid model that included pre-trained ShuffleNet. The pre-trained ShuffleNet performed
group convolution and each output channel was related to the input channels outside
the group due to the shuffle mechanism. This mechanism strengthened the blocks of
information representation, thus generating essential features. In the hybrid model, the
essential features were channeled to perform a feature engineering technique besides
learning with GAM. The feature engineering technique was supported by the Canonical
Correlation Analysis (CCA) feature fusion approach and ReliefF feature selection method
that successfully extracted relevant and essential features before the finalized classification
method was executed. Indeed, CCA was supported in one of the stages whereby the
method took a linear combinations approach that enabled the model correlation between
two feature datasets. Furthermore, during the classification process, GAM successfully
learned nonlinear relationships in the dataset and managed the small sample size problem
by generating many regions of interest (ROIs).

5. Conclusions

To sum up, some previous studies have highlighted the detection of gastric cancer, yet
studies to detect atrophic gastritis (AG) are equally important. This is because Helicobacter
pylori (H. pylori)-related AG is the initial indicator of problematic gut condition. Further-
more, undetected and untreated AG may worsen into a chronic condition and eventually
develop into gastric cancer.

This study proposed a hybrid model which included a pre-trained ShuffleNet that
shuffled channels in a group-wise manner. The pre-trained ShuffleNet employed a cheap
approach that later produced 26,656 features from the ReLu layer and 544 rich features
from the global average pooling layer. Although accuracy at the pre-trained ShuffleNet
stage was 87% and less prone to achieve an ideal model with an F1-score reading of
0.87, the rich and essential features were successfully identified. Extended approaches
generated more relevant features from the deep features; namely feature fusion Canonical
Correlation Analysis (CCA), which produced 265 features, and ReliefF feature selection,
which generated 50 relevant features from the deep features. This was evident from the
huge improvement to 98.2% accuracy and an almost ideal model based on an F1-score
value of 0.98.

As mentioned earlier, the proposed hybrid model inclusive of pre-trained ShuffleNet
achieved an accuracy of 98.2%, which was higher than similar studies that attempted
to detect atrophic gastritis in binary classes of atrophic gastritis versus normal gastric
condition. Unlike the method proposed in this study, some of the existing works employed
a basic deep learning approach without an extended approach, which resulted in much
lower accuracy and fewer chances to create an ideal model to detect atrophic gastritis or
normal gastric condition.

Through endless efforts by researchers in medicine and artificial intelligence (AI) via
the proposed hybrid model, the physician can detect the occurrence of AG as an initial step
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to screen the H. pylori infection in the human stomach, thus reducing the possibility of a
further chronic condition in the gastric.
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Abstract: Diabetes Mellitus, a metabolic disease, causes the body to lose control over blood glucose
regulation. With recent advances in self-monitoring systems, a patient can access their personalized
glycemic profile and may utilize it for efficient prediction of future blood glucose levels. An efficient
diabetes management system demands the accurate estimation of blood glucose levels, which, apart
from using an appropriate prediction algorithm, depends on discriminative data representation. In
this research work, a transformation of event-based data into discriminative continuous features
is proposed. Moreover, a multi-layered long short-term memory (LSTM)-based recurrent neural
network is developed for the prediction of blood glucose levels in patients with type 1 diabetes. The
proposed method is used to forecast the blood glucose level on a prediction horizon of 30 and 60 min.
The results are evaluated for three patients using the Ohio T1DM dataset. The proposed scheme
achieves the lowest RMSE score of 14.76 mg/dL and 25.48 mg/dL for prediction horizons of 30 min
and 60 min, respectively. The suggested methodology can be utilized in closed-loop systems for
precise insulin delivery to type 1 patients for better glycemic control.

Keywords: diabetes mellitus; blood glucose prediction; forecasting; long short-term memory

1. Introduction

The ability of the human body to control imbalanced blood glucose (BG) levels is
administered by the pancreas. When the glucose level in the bloodstream increases beyond
the normal range, the pancreas senses this and instructs the β-cells to release insulin. As
a result, excess sugar begins to be stored in fat cells, keeping the blood glucose in the
normal range. In contrast, the low sugar level in the bloodstream is handled by α-cells,
which release glucagon hormone. This hormone dictates the liver releasing glucose into the
bloodstream, maintaining BG levels in the safe range. Diabetes mellitus (DM) is a medical
condition in which the human body loses this closed-loop control partially or completely. In
Type-1 diabetes, the human pancreas loses its ability to produce insulin to regulate elevated
sugar levels.

In Type-2 diabetes, the patient becomes insulin resistant, or the insulin produced
becomes ineffective at decreasing the high BG levels. In comparison to other diseases,
diabetics have a higher prevalence of illness and mortality. Regardless of its present
incidence and burden, i.e., 415 million adults, this disease is projected to affect 642 million
by 2040 [1]. In 2015, it was estimated that there were 415 million people with diabetes aged
20–79 years, 5 million deaths attributable to diabetes, and a total global health expense
due to diabetes of 673 billion US$. This figure was reported to be 760 billion dollars in
a 2019 survey [2]. Since no established cure exists for diabetes, disease management is
the only option. Efficient glycemic control requires constant monitoring of BG levels,
sufficient physical activity, precise insulin delivery, and appropriate diet intake. In this
regard, future estimation of blood glucose levels is the most important aspect for a patient.
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A realistic assessment of BG levels can help patients avoid fatal glycemic conditions such
as hypo-glycemia (BG < 70 mg/dL) or hyper-glycemia (BG > 180 mg/dL). The prediction
of blood glucose levels is quite a complex task due to its non-linear nature and multiple
confounding factors. Although a number of factors affect BG levels, the few important ones
include previous BG values, dietary intakes, insulin infusion, and the physical activity of a
patient [3].

BG prediction methodologies can be categorized into three types: Physiology-based
(knowledge-based), data-driven (empirical-based), and hybrid. The physiological model
requires comprehensive knowledge of individual underlying physiological mechanisms. It
divides the person’s BG metabolism into three different regulatory sectors: BG dynamics,
meal absorption dynamics, and insulin dynamics [4]. Each one is modeled using a variety
of mathematical (differential) equations and probabilistic frameworks. The physiology-
based approach is primarily categorized into two: The lumped (semi-empirical) model and
the comprehensive model. In contrast to the physiology-based approach, the data-driven
strategy relies on the person′s self-recorded historical data and needs little knowledge of
the underlying physiological mechanism; thus, referred to as the “black box” approach.
Neural networks (NNs) and autoregressive (AR) models are the most common examples of
this type of approach. A data-driven approach can generally be divided into three models:
A time series model, a machine learning model, and a hybrid model. Hybrid models, as
the name suggests, are a combination of both physiological and data-driven models. The
blood glucose prediction approaches are illustrated in Figure 1.

 

Figure 1. Blood glucose prediction approaches.

Historically, efforts have been made to employ statistical approaches for the prediction
of blood glucose levels. A multivariate statistical modeling approach was employed using a
latent variable for short-term blood glucose forecasting in T1DM patients [5]. Another study
presented a comparative analysis of various machine learning techniques with classical time
series forecasting methods such as auto-regression with Exogenous input (ARX) for glucose
level prediction [6]. Event detection such as hypo/hyperglycemia has also been an interest
of researchers for T1DM patients [7]. In addition to BG level forecasting, the study [8]
presented the efficiency of detecting hypo/hyperglycemic events in Type 1 diabetic patients.
In another study, the application of the XG-Boost algorithm was proposed for glycemia
prediction [9]. The authors in the study [10] developed a model of multi-horizon glucose
level prediction with alerts for the hypoglycemia condition.

Recently, machine learning and deep learning applications for blood glucose prediction
in patients with Type 1 and Type 2 diabetes have gained a lot of attention. A recurrent neural
network (RNN) was employed for blood glucose level forecasting with the provision of
forecast certainty [11]. A personalized BG level forecasting model was proposed based on a
convolutional neural network (CNN) by converting the regression task into a classification
task [12]. Another study [13] proposed a personalized deep learning framework for the
prediction of BG distribution over the prediction horizon of 30 and 60 min in T1DM patients.
Authors in the study [14] worked on the development of a multitask learning [15] approach
using a convolutional recurrent neural network MTCRNN for short-term personalized
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blood glucose forecasting. Multitask learning allows for learning from the data of all
available diabetic subjects who took part in the research.

The authors of another study [16] proposed the rectification of a sensor defect for CGM
readings using the Kalman filter smoothing technique [17]. The prediction of blood glucose
levels using a stacked Long-short term memory-based RNN model was presented. The
proposed work on sensor fault rectification is prone to flaws since the target labels were
modified in lieu of sensor noise rectification.

Deep learning approaches have recently played a significant role in increasing blood
glucose forecasting accuracy. However, the need to furnish an optimized deep learning
model, for multi-horizon prediction, is not over and requires more research. In addition
to the learning model, the discriminative feature representation of sensor data is equally
vital to establish an efficient and robust prediction model. Pre-processing of sensor data
including normalization, interpolation, and filtering has been performed. However, the
discriminative feature transformation of sensor data is rare in the literature.

In this research work, a deep learning technique based on multi-layer Long Short-Term
Memory for blood glucose prediction of T1DM patients is presented. The pre-processing
of sensor data is performed, including sampling consistency, interpolation to fill missing
samples, and filtering. Moreover, to achieve lower forecasting errors, the event-based
features are transformed into time-stamped samples. The Ohio T1DM dataset published
by the University of Ohio for the BGLP challenge in 2018 is used. It contains eight weeks
of data from six T1DM patients including a variety of physiological features along with
event-based information such as meal and insulin injection. The contributions of this
research work are as follows:

• Pre-processing of the T1DM dataset is performed including the incorporation of time-
consistency in features as per the target values, interpolation for missing values, and
filtering to achieve smoothing.

• Based on the relation with blood glucose levels, two event-based features, namely, meal
and insulin, are transformed into continuous features, which led to improved accuracy.

• The LSTM and Bi-LSTM-based RNN models are developed and optimized to achieve
minimum prediction error for blood glucose levels.

• The proposed models outperformed the state-of-the-art methods for the prediction
horizons of 30 and 60 min.

The paper is organized as follows: Section 2 presents the dataset and the pre-processing.
Feature transformation is explained in Section 3. The evaluation strategy is discussed in
Section 4. The learning algorithm is presented in Section 5. Section 6 presents the results
and discussion. Finally, the conclusion is added in Section 7.

2. Dataset and Pre-Processing

2.1. Dataset

The Ohio T1DM dataset [18] published by the University of Ohio is used in this
research. It is a great source of blood glucose forecasting research due to the fact that it
provides a diverse range of characteristics associated with Type 1 diabetes patients, which,
according to the most recent literature on diabetes [3], affect blood glucose levels. The
dataset was released in two phases: In 2018 and in 2020. Each release contains data from
six T1DM patients who were on insulin therapy wearing a fitness tracker and Medtronic’s
insulin pump with continuous glucose monitoring (CGM). In addition, the self-reported life
events from these contributors were also recorded via a smartphone application. The data
recorded for each individual includes CGM sampled at 5 min intervals, finger stick blood
glucose levels for self-monitoring, insulin doses (both basal and bolus), self-reported time
of physical activity, work, stress, sleep, and illness, and physiological information from a
fitness tracker such as Galvanic skin resistance (GSR), heart rate, step count, air temperature,
and skin temperature. The dataset contains the sensors’ data for a total period of eight
weeks. Several data features, such as CGM and heart rate, are recorded at 5 min intervals,
whereas others, such as meal and insulin, are recorded only at the time of eating a meal
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or insulin intake, respectively. An illustrative overview of these features recorded from
one of the contributors (ID 570) is illustrated in Figure 2. In each release of the Ohio T1DM
dataset, the training data and testing data are already segregated by the provider. Table 1
summarizes the data of six patients in the Ohio T1DM dataset version 2018, including the
number of training and testing samples predefined by the data providers.

 

Figure 2. Feature visualization using data of T1DM patient ID 570.

Table 1. Ohio T1DM dataset contributor details.

ID Gender Pump Model Sensor Band Train Samples Test Samples

559 female 530 G Basis 10,796 2514
563 male 530 G Basis 12,124 2570
570 male 530 G Basis 10,982 2745
575 female 530 G Basis 11,866 2590
588 female 530 G Basis 12,640 2791
591 female 530 G Basis 10,847 2760

2.2. Feature Vector

The dataset includes automatic and manual measuring of several parameters forming
the feature vector for a patient. The type of feature is periodic and event-based; however,
all of them are recorded with a time stamp. The details of recorded features are provided in
Table 2.
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Table 2. Feature details in Ohio T1DM dataset.

Ser # Feature Name Type Source

1 glucose level periodic medtronic Sensor
2 basal insulin event self-Reported
3 bolus insulin event self-Reported
4 finger stick event self-Reported
5 meal event self-Reported
6 exercise event self-Reported
7 sleep event self-Reported
8 work event self-Reported
9 hypo Events event self-Reported
10 air temperature periodic basis Sensor
11 GSR periodic basis Sensor
12 heart Rate periodic basis Sensor
13 skin temperature periodic basis Sensor
14 sleep periodic basis Sensor
15 steps periodic basis Sensor

2.3. Pre-Processing
2.3.1. Time Coherence

The features, as shown in Table 2, are periodic and event-based in nature. Continuous
glucose monitoring (CGM)—the vital information—is recorded at a sampling interval of
5 min. However, during sensor replacement, the time coherence breaks. Consequently,
upcoming samples are time inconsistent. To avoid this, new samples are added to the data,
ensuring a sampling time of 5 min. The net effect is the introduction of many new samples.
For example, there exist 10,982 training samples of CGM for patient ID 570. After time
coherence, 649 more samples were introduced. Next, since CGM is the most important
feature, the rest of the periodic features were also time-aligned with the CGM time stamps.

2.3.2. Interpolation

The criterion for filling new CGM values was based on the forward-filling rule with
a limit of 1, i.e., if there is a single new sample, it will be assigned the magnitude of the
previous sample. In the case there were 2 or more consecutive new samples, interpolation
was performed to fill the samples. Several interpolation techniques including linear, Akima
cubic, spline, and shape-preserving methods were used. It was found that linear interpolation
learns the best behavior of glucose levels, producing the best prediction results. Figure 3
shows the linear interpolation result of the CGM feature over a period of 4 days. The orange
color in Figure 3 shows the interpolated samples, which were empty in the original data. The
same interpolation strategy was adopted for the test data. However, for result evaluation, the
interpolated samples in the test data were not considered for error calculation.

2.3.3. Median Filtering

Observing Figure 3, sharp changes in the CGM profile are visible, which can be
regarded as sensor noise. To smooth the profile, a median filter is used replacing the
extreme values with the median value as used in an earlier study [19]. Figure 4 shows the
CGM profile smoothing using the median filter where the profiles of both the original data
and the filtered data are shown. Smoothing the feature profile enables the predictor to learn
better. The filtering scheme was only implemented on training data while the test data
remained unchanged.
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Figure 3. Missing CGM data imputation using linear interpolation. The orange lines represent the
interpolated sample data, which were missing in the original dataset.

 

Figure 4. Data smoothing using median filtering.
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3. Feature Transformation

The data include several periodic features such as CGM and some event-based features
such as meal and sleep. Since all the periodic features are made time-coherent with the feature,
it is beneficial to approximate the event-based features as time-coherent periodic values. The
meal and insulin injection are two features recorded at random time stamps. Currently, such
features can be treated as binary features where a value of 1 will be observed when a meal was
eaten and 0 for the rest of the time. Such values are not only insignificant to the feature vector
but also may cause an adverse effect on the learning of the algorithm. Therefore, we propose
the transformation of such features into continuous-value observation. This transformation
will improve the feature representation for meal and insulin information. To consider those
features for blood glucose prediction, they need to be made time-coherent with CGM, which
is performed and explained in the following sub-sections.

3.1. Carbs from Meal to Operative Carbs Transformation

One of the data features is the carb intake by patients in the form of a meal, which
has a direct impact on blood glucose. The rate at which the carbs affect blood glucose
levels depends on their type, as high glycemic index (GI) carbs instantly affect the blood
glucose while low-glycemic-index carbs have a slower effect, but the effect remains over a
longer period of time. Research [20] revealed that a normal meal starts raising the blood
glucose level after 15 min of having the meal. The glucose level approaches its peak in
60 min and then decays at a certain rate such that after 3 h it becomes steady. Based on
that, carbohydrate absorption can be converted into operative carbs, which provides a
continuous-value feature. The primary objective of this conversion is to determine the
effectiveness of carb intake at any certain time in the human body. The conversion model
can be estimated by combining the rise and decay profile as shown in Figure 5.

 

Figure 5. Carbohydrates to the operative carb conversion profile.

The operative carbohydrates at any time in the data are estimated using the following
procedure:

i Based on the assumption of working at a 5 min reference time scale, the first three
samples after taking the meal have zero operative carbs.

ii The operative carbs start rising at a rate of 0.11 (11.1%).
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iii At the 12th sample or the 60th minute after having the meal, the value of operative
carbs attains its maximum value, which is almost equal to the total amount of carbs.

iv After that, the operative carbs start decreasing at a rate of 0.028 (2.8%). It reaches zero
after 3 h.

The mathematical piecewise function of the above-mentioned method can be obtained
as follows:

Cop(ts) =

⎧⎪⎨⎪⎩
0, 0 ≤ tmeal ≤ 2

(ts − tmeal+2)/(ts − ts−1 )∗αinc∗Cmeal , 3 ≤ tmeal < 12(
1 − (ts − tpeak

)
/(ts − ts−1 )∗αdec)∗Cmeal , 12 ≤ tmeal < 48

(1)

where:

ts is the sampling time.
tmeal is the time when the meal is encountered.
Cop is the effective carbohydrates at any given time.
Cmeal is the total amount of carbohydrates taken in a meal.
tpeak is the time when Cop reaches its maximum value → Cop ∼= Cmeal .
αinc is the increasing rate of the curve.
αdec is the decreasing rate of the curve.

Figure 6 shows the meal carbs transformation to the operative carbs of patient ID 570.

Figure 6. Meal into operative carbs transformation for data of patient ID 570. Blue circles represent
the time of meal and the corresponding carbs whereas the brown curves show the transformation
into operative carbs.

3.2. Bolus Insulin to Active Insulin Transformation

Patients with Type-1 diabetes rely on exogenous insulin delivery [21], which usually
has two types, one is rapid-acting insulin named bolus and the second is slow-acting insulin
termed basal insulin. Bolus insulin is normally taken before meals to compensate for the
effect of a rise in blood glucose. Most insulin-pump users are familiar with the insulin
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activity curve, as insulin’s effect is time dependent. It takes a short while for insulin to
have an effect on the blood glucose level: Normally, it peaks after 1 h and decays gradually
over 6 h. The effect of insulin is characterized by the type and brand of insulin used, such
as rapid-acting insulin—child, which has a peak time of 65 min, whereas rapid-acting
insulin—adult has a peak time of 75 min. The insulin activity remaining or the percentage
of active insulin after a bolus insulin injection can be modeled with an exponential decay
curve [22] known as insulin on board (IOB). It is the inverse of the insulin activity curve for
a given duration of insulin action (DIA).

The transformation of bolus insulin into active insulin is performed. With insulin
infusion, the blood glucose is expected to drop based on several aspects such as the insulin
sensitivity factor (ISF), amount of dose, and type of insulin. The effect of insulin could be
visualized in three different ways, one of which is expected active insulin. We envision the
effect of bolus insulin in terms of active insulin. The expected active insulin in the human
body at any time is the product of the original insulin delivered and the percent of insulin
activity remaining (IOB). Figure 7 shows the transformation of four units of bolus insulin
into the respective active insulin.

 

Figure 7. Bolus-to-active-insulin transformation curve.

The mathematical expression for active insulin can be described as follows:

IOB(ts) = 1 − S∗(1 − a) ∗
{(

ts
2

τ ∗ td ∗ (1 − a)
− ts

τ
− 1
)

∗ e−
ts
τ + 1
}

(2)

where:

ts is the sampling time.
td is the total duration of insulin activity.
τ is the time constant of exponential decay.
a is the Rise time factor.
S is the Auxiliary Scale factor.

τ = tp ∗
(

1 − tp

td

)
/
(

1 − 2 ∗ tp

td

)
(3)

a = 2 ∗ τ/td (4)
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S = 1/
(

1 − a + (1 + a) ∗ e−
td
τ

)
(5)

Figure 8 shows the bolus insulin intake and the corresponding active insulin for patient
ID 570.

Figure 8. Bolus insulin transformation into active insulin for patient ID 570 over a period of 5 days.
Blue circles represent the time and amount of bolus insulin, whereas the brown curves represent the
transformation into active insulin over the next 6 h.

4. Evaluation Strategy

4.1. Evaluation Metric

The root mean squared error (RMSE) is used to evaluate the performance, as it has
been widely used in existing studies. A prediction horizon (PH) of 30 min and 60 min is
considered. If the prediction for the ith example made by the model against the actual
target yi is denoted as yi, then RMSE can be expressed as:

RMSE =

√
1/n

n

∑
i=1

(yi − yi)
2 (6)

where n is the total number of test samples. It is, once again, worth mentioning that within
the test data, only samples that were recorded using the sensor were used to compute the
error and not the interpolated samples.

4.2. Feature Configurations

The dataset contains plenty of features; to start with, a recent review study guides the
suitable choice based on their historical employment for blood glucose prediction [3]. The
adoption of different features in terms of percentage in 624 previous studies is shown in
Figure 9.
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Figure 9. Input Feature set contribution in recent studies for diabetes prediction.

Based on widely used features, we opted for BG, diet, and insulin. Overall, three
feature configurations are used in this work, as follows:

Configuration 1 (C-01): In this scheme, a univariate model is developed using CGM data only.
Configuration 2 (C-02): For this scheme, a combination of CGM and operative carbs is
used as a feature set.
Configuration 3 (C-03): This is the combination of three features: CGM, operative carbs,
and active insulin.

In addition to the mentioned features, other features such as basal insulin, heart rate,
and physiological features were also used; however, the performance was inferior. The
complete profiles of the three selected features for this study are shown in Figure 10.
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Figure 10. The profiles of CGM, Operative Carbs, and Active insulin in the dataset for patient ID 570.

5. Learning Model

Continuous blood glucose prediction is a multistep time-series forecasting task, and
therefore a sequence-to-sequence learning algorithm is a suitable choice. The class of deep
learning models for such a task belongs to recurrent neural networks (RNNs). The long
short-term memory (LSTM) model is considered due to its ability to memorize long-term
temporal dependencies [23]. In this section, the model architecture is presented first, and
then the training and optimization details of the developed model are discussed.

5.1. Model Arhitecture

RNNs are a type of neural network that has the capability to learn sequential data.
This is because of the provision of feedback paths known as the hidden state h. The hidden
state can be computed using the following expression:

h(t) = fc(Ux(t) + Wh(t − 1) + b) (7)

where h(t) is the current hidden state, h(t − 1) is the previous hidden state, fc is a non-
linear activation function such as tanh or ReLU (Rectified Linear Unit), x(t) is the input
vector, b is the bias term, and U and W are the weight matrices defined between input-
to-hidden and hidden-to-hidden connections, respectively. The standard RNN computes
the output through cyclic flow across different hidden layers. It faces the problem of
a vanishing gradient due to the short-term memory constraint and thus minimizes the
learning. The updated RNN architecture, known as long short-term memory (LSTM),
resolves this problem by making use of a memory cell and gates to regulate the flow of
information [24].

A two-layer LSTM, i.e., Bi-LSTM, model is developed for this research work, com-
prising two layers stacked on top of each other. The first hidden layer in LSTM 1 contains
128 neurons followed by a leaky ReLU layer and then a dropout layer to prevent overfitting.
The second LSTM layer with 64 neurons is introduced followed by a dropout layer and
a dense layer, respectively. The dense layer is the deeply connected output layer of this
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network, which receives input from all previous hidden layers. The number of units in the
dense layer depends on the prediction horizon (PH) for which the model is trained, which
are 6 for 30 min PH and 12 for 60 min PH. The developed Bi-LSTM structure for 30 min
blood glucose level forecasting is shown in Figure 11. The figure is generated using the
software ‘Netron’, which is a utility to visualize the trained deep learning models. The
model expects data to have the following shape: [examples, sample per example, number of
features], which the software produced as [? × 6 ×1]. Figure 11 depicts the proposed model
architecture that is trained using a single feature with six lag samples (timestamps) to
predict the output.

 

Figure 11. Bi-LSTM model architecture for blood glucose forecasting at 30 min prediction horizon
with 6 samples per example and single feature. The size of input data is ‘?× 6 × 1′ where ‘?’ represents
the number of examples fed to the model.

To understand the input data volume, we consider an example of patient ID 570
with a univariate (one input feature: Glucose level) model, which has the following three-
dimensional training and test set shapes:

• Total Number of training samples = 10,982.
• Total Number of training samples after resampling and interpolation = 11,611.
• Number of training samples (80%) = 9288 [1548, 6, 1].
• Number of training examples = 1548 (9288/6).
• Number of test samples (20%): 2322 [387, 6, 1].
• Number of test examples 387 (2322/6).

The training set has 1548 samples with one feature and six lag values. In other words,
9288 timestamps in the training data are converted into 1548 training examples with
6 samples (timestamps) per example. Similarly, there are 387 test examples with 6 samples
per test example. The output of the model is 6 samples for a prediction horizon of 30 min
as shown in Figure 11.

Similarly, ‘? × 12 × 2′ represents the data input into the model for 60- min prediction
(12 samples per example) using 2 features. Likewise, the output of the model for the 60 min
prediction horizon will be 12 samples.

In the end, the dense layer produces a vector of 6 values, which represents the predic-
tion for a 30 min horizon. For example:
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Input→Output:
[[152. 155. 156. 158. 161. 164.]]=====>[[168. 170. 171. 173. 174. 175.]]
The model takes six previous samples of single features as the input and predicts the

six-step-ahead values of the target variable.
Moreover, the vanilla model with a single LSTM layer is also used separately.

5.2. Model Training and Optimization

The Ohio T1DM dataset includes pre-split files of each contributor as the training
data and test data. In this research, the test data are used to finally evaluate the results,
while the training data are subdivided for training and validation using the time-series
cross-validator [25] provided by the Scikit-learn library of python. It splits the data based
on the rolling origin, where each successive training set is a superset of those that come
before them. The training data were split into training and validation sets. The five splits
were made where the validation data size remains constant, but the training data size
increases. For instance, the number of training samples visualized in Figure 12 is 1936,
3871, 5806, 7741, and 9676 in splits 1, 2, 3, 4, and 5, respectively. The number of validation
samples remains at 1935 in each split; however, the validation samples themselves change
every time. The data-splitting strategy is illustrated in Figure 12. The data for each split
are visualized in Figure 13. After normalizing the training and validation data using a
standard scalar, the trained model is evaluated using validation data, and the mean score
of five splits is recorded. While training, the number of input samples was also altered
using the sliding window mechanism with a stride of 1 and a variable window size of half
an hour to 6 h. The optimum input sample size was observed as 6, i.e., the last half hour,
based on the best mean prediction score.

 

Figure 12. Data splits used for training the model.
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Figure 13. The five combinations of training–validation splits for CGM data of patient ID 570.

As discussed earlier, both vanilla- and Bi-LSTM RNN models are employed; the
performance is evaluated based on the blood glucose prediction. The blood glucose
regulation system is nonlinear in nature; therefore, to best approximate the input–output
relationship, several hyper parameters were adjusted to achieve the optimum results,
such as the number of neurons in each LSTM layer, the batch size, the learning rate,
and the number of epochs. Different batch sizes including 32, 64, and 128 were used
in the experiments where 128 produced the best validation results. Likewise, different
combinations of the number of neurons in the LSTM layers were tested and resulted in
128 and 64 neurons in the first and second LSTM layers, respectively. The Adam optimizer
was used with an optimized learning rate of 0.001 to train the model. Once all the model
parameters are optimized, the final model is evaluated using the walk-forward validation
scheme [26] on the test data.

6. Results and Discussion

The model results are recorded using the test data provided in the dataset. Each of
the three input feature configurations are used to produce the prediction results. The root
mean square error is computed to evaluate the model performance. The continuous glucose
monitoring (CGM) prediction results of patient ID 570 for 30-min and 60-min prediction
horizon are shown in Figures 14 and 15 respectively. Figure 16 shows the complete test
data forecasting results for patient ID 570.
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Figure 14. Prediction curve for patient ID 570 at PH of 30 min.

Figure 15. Prediction curve for patient ID 570 at PH of 60 min.

Figure 16. Prediction curve for complete test data of Patient ID 570.
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Table 3 shows the model’s prediction error for each of the three feature configurations
over 30-min as well as 60-min PH for patient ID 570. The performance of the model with
Bi-LSTM shows better results than vanilla LSTM due to its capability of memorizing the
long-term temporal dependencies.

Table 3. Prediction error using different input feature configurations at 30 min and 60 min PHs for
patient 570.

Configuration RMSE @ PH = 30 min RMSE @ PH = 60 min

Vanilla-LSTM Bi-LSTM Vanilla-LSTM Bi-LSTM
C-01 15.43 15.22 26.41 26.10
C-02 15.67 15.12 26.12 25.48
C-03 15.48 14.76 26.18 25.65

The model with an input configuration of C-03 = [CGM, Carbs(Cop), Insulin(Ieff)] pro-
duced the best results for the PH of 30 min while configuration C-02 = [CGM, Carbs(Cop)]
outperformed for the 60 min PH. Based on these results for patient ID 570, the blood
glucose prediction results of other patients were recorded by employing a, similar feature
configuration pattern, i.e., configuration C-03 for PH of 30 min and C-02 for 60 min. Table 4
presents the error results produced by the trained model for patients ID 588 and 563. The
Bi-LSTM model outperformed the vanilla-LSTM model. A comparison of the proposed
model with existing studies for the 30 min prediction horizon is presented in Table 5. It
can be observed that the proposed methodology outperformed the state-of-the-art tool
except for patient ID 563 where the margin was almost negligible. Moreover, the mean
RMSE across the data of three contributors was computed, and the proposed methodology
produced the minimum error.

Table 4. Prediction error for patient ID 588 and 563.

Patient ID Configuration RMSE @ PH = 30 min RMSE @ PH = 60 min

Vanilla-
LSTM Bi-LSTM Vanilla-

LSTM Bi-LSTM

588
C-02 × × 30.44 30.17
C-03 18.29 17.55 × ×

563
C-02 × × 29.98 29.11
C-03 18.58 18.14 × ×

Table 5. Comparison of prediction RMSE with other studies at prediction horizon of 30 min.

Patient ID
Bi-LSTM
(Prposed

Work)
[11] [4] [5] [9]

570 14.76 15.94 16.40 18.26 15.73
588 17.55 17.71 19.20 21.69 17.66
563 18.14 18.12 19.00 20.17 18.51

Mean RMSE 16.81 17.25 18.20 20.04 17.30

Among existing studies, for this dataset, several performed blood glucose prediction
using the prediction horizon of 60 min. Their results are compared with the proposed
model results for the three patients as shown in Table 6. The proposed model produced
less prediction error than the state of the art for the prediction horizon of 60 min.
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Table 6. Comparison of prediction RMSE with other studies at prediction horizon of 60 min.

Patient ID
Bi-LSTM (Proposed

Work)
[18]

[4] (Martinsson,
et al., 2018)

570 25.48 25.74 28.6
588 30.17 30.45 33.1
563 29.11 30.42 29.9

Mean RMSE 28.25 28.87 30.53

Although the achieved error margin is relatively small with the state of the art, con-
sidering the highly non-linear nature of the blood glucose profile, the slight improvement
in forecasting becomes significant. The existing studies used features such as insulin and
meals as event-based features. However, the proposed methodology incorporates the
transformation of event-based features into continuous values, which led to improving the
prediction performance.

7. Conclusions

Efficient blood glucose forecasting is critical for continuous monitoring in diabetic
patients. This research proposed an efficient method for accurate continuous glucose
monitoring. The data of three contributors in the Ohio T1DM (2018) dataset were used
for the performance evaluation of the proposed algorithm. Preprocessing of data was
performed including interpolation and filtering. Two important event-based input features
were transformed into continuous features that are inherent to the critical relationship with
the blood glucose level. Recurrent-neural-network-based LSTM models were trained for
blood glucose forecasting with prediction horizons of 30 and 60 min. The proposed models
outperformed the state-of-the-art tools, achieving an RMSE as low as 14.76 mg/dL and
25.48 mg/dL for prediction horizons of 30 min and 60 min, respectively. This research will
help practitioners and patients in closed-loop systems such as artificial pancreas/automated
insulin-delivery systems. It will assist people with diabetes in predicting and managing
their blood glucose levels, potentially reducing the risk of complications such as hypo-
glycemia (low blood sugar) or hyperglycemia (high blood sugar). It was observed that
our model generated larger errors approximating sharp transitions in the CGM. Moreover,
interpolated data may not reflect the true nature of the blood glucose profile. Therefore,
efficient approximation of missing samples and the introduction of discriminative features
for improved performance are possible future work directions.
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Abstract: White blood cells (WBCs) constitute an essential part of the human immune system. The
correct identification of WBC subtypes is critical in the diagnosis of leukemia, a kind of blood cancer
defined by the aberrant proliferation of malignant leukocytes in the bone marrow. The traditional
approach of classifying WBCs, which involves the visual analysis of blood smear images, is labor-
intensive and error-prone. Modern approaches based on deep convolutional neural networks provide
significant results for this type of image categorization, but have high processing and implementation
costs owing to very large feature sets. This paper presents an improved hybrid approach for efficient
WBC subtype classification. First, optimum deep features are extracted from enhanced and segmented
WBC images using transfer learning on pre-trained deep neural networks, i.e., DenseNet201 and
Darknet53. The serially fused feature vector is then filtered using an entropy-controlled marine
predator algorithm (ECMPA). This nature-inspired meta-heuristic optimization algorithm selects the
most dominant features while discarding the weak ones. The reduced feature vector is classified with
multiple baseline classifiers with various kernel settings. The proposed methodology is validated on
a public dataset of 5000 synthetic images that correspond to five different subtypes of WBCs. The
system achieves an overall average accuracy of 99.9% with more than 95% reduction in the size of the
feature vector. The feature selection algorithm also demonstrates better convergence performance
as compared to classical meta-heuristic algorithms. The proposed method also demonstrates a
comparable performance with several existing works on WBC classification.

Keywords: deep learning; nature-inspired feature selection; leukemia; CNN; white blood cell;
classification; medical imaging

1. Introduction

Blood is a crucial fluid in the human body that is essential for life. Human blood is
made up of plasma and blood cells. Plasma is the yellowish liquid component of blood
that is largely water and accounts for 55% of blood volume [1]. The blood also includes
proteins, carbohydrates, minerals, hormones, carbon dioxide, and blood cells. Red blood
cells (RBCs), white blood cells (WBCs), and platelets (thrombocytes) are the three different
types of cellular components found in the blood, each distinguished by their color, texture,
and appearance. RBCs, also known as erythrocytes, carry hemoglobin, an iron-containing
protein that aids in the delivery of oxygen from the lungs to the tissues. WBCs, also known
as leukocytes, are an essential component of the human immune system, assisting the
body in fighting infectious diseases and foreign substances [2,3]. Figure 1 demonstrates a
classification of WBCs on the basis of their structure. WBCs are primarily of two types, i.e.,
granulocytes and agranulocytes. The granulocytes have their origin in the bone marrow
and are present within the cytoplasm in the form of granules of protein. There are three
types of granulocyte cells, namely basophils, eosinophils, and neutrophils. Agranulocytes,
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which are defined as cells without granules in their cytoplasm, are further divided into
two types, i.e., lymphocytes and monocytes [4]. Each type of cell has a unique role in the
immune system of the body. For example, neutrophils act as scavengers that surround
and destroy bacteria and fungi present in the body. Eosinophils play a role in the general
immune and inflammatory responses of the body. An increased level of basophils results
in a blood disorder after an allergic reaction. Monocytes fight against infections, remove
dead or damaged tissues, and kill cancerous cells; lymphocytes combat bacteria, viruses,
and other cells that pose a threat to the body’s ability to function [5]. A detailed analysis of
WBCs is very important to assess the overall condition of the human immune system. In
particular, WBC analysis is crucial in the diagnosis of leukemia, a type of blood cancer that
occurs due to the excessive production of malignant WBCs in the bone marrow. Leukemia
diagnosis is performed by one of three main clinical tests, i.e., physical test, complete blood
count (CBC) test, and bone marrow test. The first step of CBC is to determine different
types of WBCs from the blood samples. This task is mainly performed by hematologists
through the visual examination of microscopic images of blood smears. This manual
method is labor-intensive, time-consuming, and prone to inaccuracy due to judgment
errors influenced by several external factors.

Figure 1. White blood cell subtypes.

With the recent advancement in digital image processing technology, the automated
classification of WBCs using computer vision techniques has attracted significant research
interest. However, due to morphological overlap between different subclasses and their
structural irregularities, the machine learning-based classification and localization of WBCs
is challenging. Deep learning with convolutional neural networks (CNNs) is the most
promising method for classification and detection tasks in the field of contemporary medical
imaging [6,7]. Despite the fact that CNNs perform best on large datasets, training them
takes a lot of data and computational power. The dataset is frequently small and may not
be sufficient to train a CNN from scratch. In such a case, transfer learning is frequently
used to maximize the effectiveness of CNNs while also decreasing the computational
costs [8]. In this approach, the CNN is initially pre-trained on a large dataset consisting
of a diverse range of classes and then applied to a specific task [9]. There are various
pre-trained neural networks that have won international contests, including VGGNet [10],
Resnet [11], Darknet [12], Densenet [13], Mobilenet [14], Inception [15], Xception, [16]
etc. Through their capacity for self-learning, these models are able to extract a rich set of
features from images that contain substantial semantic information. This helps to achieve
a significant level of accuracy for a variety of image classification scenarios. In modern
deep learning applications, feature selection is a crucial step which reduces the difficulty
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of model learning by removing irrelevant or redundant features. The present research
is focused on achieving a high level of accuracy with a smaller feature set to reduce the
computation costs and memory requirements of expert systems.

The existing works on WBC classification are broadly classified into two categories,
i.e., (a) classical methods and (b) deep learning methods. The classical methods consist
of approaches which propose efficient preprocessing techniques to extract strong features
from WBC images and classify them using baseline classifiers. Some remarkable works
in this domain are discussed as follows. In [17], the authors proposed a method which
selects the eigenvectors from color images of blood cells based on the minimization of
similarities. The Bayesian classifier is then used to classify the eigen cells on the basis of
density and color information. In [18], Fuzzy C-means clustering is applied to separate
the nucleus and cytoplasm of leukocytes. Then, various geometric, color, and statistical
properties are extracted and classified by support vector machines (SVMs). In [19], an image
segmentation method is proposed based on mean-shift clustering and boundary removal
rules with a gradient vector flow. An ensemble of features is extracted from the segmented
nucleus and cytoplasm, which is then classified using a random forest algorithm. In [20],
the authors tested the performance of six different machine learning algorithms on 35
different geometric and statistical features. The multinomial logistic regression algorithm
outperformed other methods. A stepwise linear discriminant analysis method is proposed
in [21], which extracts specific features from blood structure images and classifies them
using reversion values such as partial F values. In [22], the authors presented a WBC
cancer detection method which combines various morphological, clustering, and image
pre-processing steps with random forest classifier. The suggested method uses a decision
tree learning method, which uses predictors at each node to make better decisions, in order
to categorize various types of cancer.

The second category of works is based on deep learning approaches for WBC clas-
sification. The works in this category primarily employ transfer learning of a pretrained
deep neural network for feature extraction or classification. Some important works are
discussed as follows. In [23], the authors proposed a deep learning method that uses
the DenseNet121 [13] model to classify WBC subtypes. The model is optimized with the
preprocessing techniques of normalization and data augmentation applied to a Kaggle
dataset. The work in [24] first applies a thresholding-based segmentation on the WBC
images. Feature extraction from segmented images is performed using VGG16 CNN [10]
model learning. The extracted feature vectors are classified using the K-nearest neighbor
(KNN) algorithm. In [25], the authors investigated generative adversarial networks (GANs)
for data augmentation and employed the DenseNet169 [13] network for WBC classification.
In [26], the authors applied Gaussian and median filtering before training the images using
multiple deep neural networks. The authors in [27] applied a you-only-look-once (YOLO)
algorithm for the detection of blood cells from a smear images. In [28], two techniques
are proposed for blood cell identification, namely single-shot multibox detector and an
incrementally improved version of YOLO.

Although modern approaches based on transfer learning on deep CNN models achieve
a decent level of accuracy for a variety of classification tasks, they all share the use of a
large number of features extracted from deep neural networks. This suffers from high com-
putational cost and memory requirements for practical deployment. In most biomedical
scenarios, many of these deep features are redundant or contain zeros. Effective dimen-
sionality reduction, or choosing only powerful, discriminant features, increases classifier
accuracy while decreasing computational time and expense. WBC classification using
deep feature selection is an emerging research area. Few works have reported population-
based meta-heuristics for deep feature selection. The authors of [29] have proposed a
leukemia detection system in which various features, such as color, texture, shape, and
hybrid features, are first extracted from WBC images and then an optimization algorithm
inspired by social spiders is used to select the most useful features. In [30], a leukemia
detection approach is proposed which combines deep feature extraction using VGGNet
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and a statistically enhanced salp swarm algorithm for feature selection. Furthermore, the
classification of reduced feature vectors was performed using a baseline classifier. The work
in [31] proposes a self-designed neural network named W-Net to classify five subtypes of
WBCs. The authors also generated a synthetic WBC dataset using a generative adversarial
network (GAN).

In this study, we have proposed a hybrid approach for WBCs classification. The
proposed approach first creates an ensemble of deep features extracted by applying transfer
learning of multiple deep CNNs on WBC images and then performs feature selection using
an entropy-controlled nature-inspired algorithm. The main contributions of this work can
be summarized in the following steps.

1. Using a synthetic, real-world, large-scale dataset of five WBC types, transfer learning
is performed using two deep CNNs, namely Darknet53 and Densenet201, followed
by their feature fusion;

2. For feature selection, a nature-inspired meta-heuristic named entropy-controlled
marine predators algorithm (ECMPA) is proposed. The proposed algorithm effectively
selects only the most dominant features;

3. The reduced feature set is classified using various baseline classifiers with multiple
kernel settings;

4. The proposed feature selection algorithm demonstrates a high accuracy with signifi-
cant reduction in feature size. The algorithm also achieves a better convergence rate
as compared to classical population-based selection methods.

The main focus of our manuscript is to present a novel method of deep-feature selection
using an entropy-controlled population-based algorithm and show its effectiveness in the
domain of WBCs classification for leukemia detection. Since the definition of appropriate
image features is a very difficult task due to the morphological similarity of images and
subject variability, WBC classification is a pertinent design case for such an approach. The
rest of this paper is organized as follows. Section 2 discusses all steps of the proposed WBC
classification pipeline, Section 3 presents the results and analysis, and Section 4 concludes
the paper.

2. Materials and Methods

This section provides a description of all steps of the proposed WBC classification
system which are discussed in the following subsections.

2.1. Dataset Description

This work uses the public dataset in [31], which was generated synthetically from a
real-world dataset [32] of five sub-types of WBC images, namely neutrophil, eosinophil,
basophil, lymphocyte, and monocyte. The synthetic dataset was generated with the help
of a deep convolutional generative adversarial network (DCGAN) trained on the original
real-world dataset [32] of blood smear images, captured by a Sysmex DI-69 machine
and provided by the Catholic University of Korea. The synthetic dataset is composed
of 5000 images each of size (128 × 128 × 3), with 1000 images belonging for each class.
Figure 2 shows samples belonging to all classes of the dataset of [32] used in this work.

2.2. WBCs Classification Pipeline

Figure 3 shows the proposed WBCs classification pipeline, whose main computation
steps are discussed as follows.

2.2.1. Preprocessing

Image contrast enhancement is a fundamental pre-processing step of many digital
image-processing applications. In this work, the input image enhancement is performed
with the help of color histogram equalization. The classical method of histogram equal-
ization is applied to grayscale images and performs as redistribution of their intensity.
In case of color images, performing histogram equalization on R, G, and B components
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independently will not necessarily enhance the image. Color histogram equalization can
be achieved by converting a color image into a HSV/HSI image and enhancing the inten-
sity while preserving hue and saturation components. The main steps of color histogram
equalization are as follows.

• Convert the RGB image into HSI image;
• Obtain the intensity matrix from the HSI image matrix;
• Perform histogram equalization on the intensity matrix;
• Replace the intensity matrix of the HSI image with the histogram-equalized intensity

matrix;
• Convert HSI image back to RGB image.

Figure 2. Samplesof WBC images of dataset used in this work.

Figure 3. Pipeline of proposed WBCs classification system.
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2.2.2. Feature Extraction Using Transfer Learning

The pre-processed image dataset is now subjected to the feature extraction using the
transfer learning step. In this work, we performed transfer learning on two well-known
deep CNNs, namely DarkNet53 and DenseNet201, which are discussed as follows.

DarkNet53 is a convolutional neural network proposed as a feature extractor in
YOLO3 image detection workflow [12]. It is pretrained on more than a million images from
ImageNet database [33]. The pretrained network is able to classify up to 1000 categories of
image objects. Details about the various layers in the DarkNet CNN architecture are shown
in Table 1. The network has an input layer with a size of 256× 256× 3 and is primarily made
up of convolution layers with sizes of 1 × 1 and 3 × 3, totaling 53 layers, including the final
fully connected layer but excluding the residual layer. Each convolutional layer is composed
of a Conv2d layer followed by a batch normalization (BN) [34] and LeakyReLU [11] layer.
The residual layer is added to solve the gradient disappearance or gradient explosion
problems in the network [12]. In Darknet53, a significant reduction in parameters is
achieved as compared to its previous version, i.e., Darknet19.

Table 1. DarkNet53 layer architecture.

Layer Type Filters Filter Size Stride Size Repeat Output Size

Input - - - - 224 × 256

Convolutional 32 3 × 3 1 1 256 × 256

Convolutional 64 3 × 3 2 1 128 × 128

Convolutional 32 1 × 1 1
1Convolutional 64 3 × 3 1

Residual 128 × 128

Convolutional 128 3 × 3 2 1 64 × 64

Convolutional 64 1 × 1 1
2Convolutional 128 3 × 3 1

Residual 64 × 64

Convolutional 256 3 × 3 2 1 32 × 32

Convolutional 128 1 × 1 1
8Convolutional 256 3 × 3 1

Residual 32 × 32

Convolutional 512 3 × 3 2 1 16 × 16

Convolutional 256 1 × 1 1
8Convolutional 512 3 × 3 1

Residual 16 × 16

Convolutional 1024 3 × 3 2 1 8 × 8

Convolutional 512 1 × 1 1
4Convolutional 1024 3 × 3 1

Residual 8 × 8

GlobalAvgPool

Fully Connected 1000

Softmax

In order to perform transfer learning of Darknet53, the last learnable layer of Darknet53,
i.e., “Conv5”, is replaced with a new fully connected layer with the number of outputs equal
to the number of classes in our WBCs dataset (5 classes). A new softmax layer is created
and replaced with the original softmax layer of the network. Similarly, the classification
layer of the network is replaced with a new classification layer without class labels. To
perform the network training, first the dataset images are resized to 256 × 256 × 3 using the
nearest neighbor interpolation method, followed by image augmentation which performs
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random rotation of images in the range of [0, 360] degrees and scaling with a factor in the
range of [0.5, 1]. The deep features are extracted from the “GlobalAvgPool” layer. The
DarkNet53 returns a deep feature vector of size 1024 per image.

DenseNet201. This deep convolutional neural network is 201 layers deep [13]. It is
also pre-trained on Imagenet [33] dataset. DenseNet is designed to overcome the vanishing
gradient problem in high-level neural networks. In DenseNet, each layer receives new
inputs from all preceding levels and passes on its own feature maps to all following layers.
Concatenation is utilized. Each layer receives “collective knowledge” from all preceding
levels. This results in a thinner and compact network that achieves a high computational
efficiency and memory saving. Table 2 shows the layer details of DenseNet201.

Table 2. DenseNet201 layer architecture.

Layer Type Composition Repeat OutSize

Input – – 224 × 224

Convolution Conv(7 × 7), stride 2 112 × 112

MaxPool (3 × 3), stride 2 56 × 56

Dense Block 1 Conv(1 × 1) 6Conv(3 × 3 ) 56 × 56

Transition Layer 1 Conv(1 × 1) 1 56 × 56
Avg Pool(2 × 2), Stride 2 28 × 28

Dense Block 2 Conv(1 × 1) 12Conv(3 × 3 ) 28 × 28

Transition Layer 2 Conv(1 × 1) 1 28 × 28
Avg Pool(2 × 2), Stride 2 14 × 14

Dense Block 3 Conv(1 × 1) 48Conv(3 × 3 ) 14 × 14

Transition Layer 3 Conv(1 × 1) 1 14 × 14
Avg Pool(2 × 2), Stride 2 7 × 7

Dense Block 4 Conv(1 × 1) 32Conv(3 × 3 ) 7 × 7

Classification Layer 7 × 7 Global Avg. Pool
1000D fully Connected, softmax 1 × 1

In order to perform transfer learning using DenseNet201, the last learnable layer of
the network, i.e., “fc1000” is replaced with a new fully connected layer with 5 classes
of the WBCs dataset used in this work. A new softmax layer is created and replaced
with the original softmax layer of the network. Similarly, the classification layer of the
network is replaced with a new classification layer without class labels. The dataset images
are first resized to 224 × 224 and augmented in a way similar to DarkNet53. From the
trained network, the deep features are extracted from the global average pooling layer.
DenseNet201 returns a deep feature vector of size 1920 per image. There was no layer
freezing carried out during the training process. As a result, the highest possible numbers
of trainable parameters, i.e., 18.1 million for DenseNet201 and 41.6 million for DarkNet53,
were considered.

2.2.3. Feature Fusion

The deep features extracted from both the Darknet53 and Densenet201 networks
discussed above are concatenated together to form a fused feature vector. Let X and Y
be the feature vectors of Darknet53 and Densenet201, respectively, and the fused feature
vector Z is given as

Z = [XY]
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The total size of fused feature vector Z is 2944 features per image.

2.2.4. Feature Selection Using Marine Predators Algorithm

Feature selection is an important step which significantly alleviates the curse of di-
mensionality by reducing the size of the feature vector, selecting only relevant features.
The classical feature selection methods based on search algorithms such as complete and
sequential search suffer from high computational cost. Population-based meta-heuristic
algorithms have been demonstrated as an effective way to solve complex optimization
problems [35,36].

The marine predators algorithm (MPA) is a meta-heuristic algorithm that draws
inspiration from nature and models the foraging behavior of marine predators (MPs)
to find their prey [37]. In the aquatic environment, both the prey and the predator are
looking for food at the same time. Position updates for the predator and prey are based
on Brownian or Lévy movement, depending on the relative velocities of the two. The goal
of MPA, like other swarm optimization techniques, is to choose the best solution (elite)
from the population of predators. The MP with the strongest foraging capacity is called
elite predator. The MPA is based on the observation that MPs move in Lévy patterns when
there are few prey items present and in Brownian patterns when there are many prey items
present. Additionally, predators alter their behavior and move to areas with different prey
concentrations in the presence of environmental effects. As a result, there are three phases
to the position updates in MPA optimization based on the relative velocities of predator
and prey: low velocity ratio, unit velocity ratio, and high velocity ratio. The velocity ratio
vs. is defined as the ratio between the velocity of prey and predator.

1. In low velocity ratio (v <= 0.1), the most suitable movement strategy for the MP is
Lévy, whereas the prey moves in Brownian or Lévy movement;

2. In unit velocity ratio (v <= 1), if the prey moves in Lévy, the most suitable movement
for MP is Brownian;

3. In high velocity ratio (v > 1), the best strategy for a predator is not moving at all. In
this case, either prey is moving Brownian or Lévy.

Standard MPA Methodology. The standard MPA is an iterative, population-based
optimization algorithm. The first step is to generate an initial population of solutions. The
population matrix of size n × d is generated as follows:

P =

⎡⎢⎢⎢⎣
X1,1 X1,2 · · · X1,d
X2,1 X2,2 · · · X2,d

...
...

...
...

Xn,1 Xn,2 · · · Xn,d

⎤⎥⎥⎥⎦ (1)

where n is the size of population, i.e., number of search agents (each predator and prey are
searching for food and can be considered as a search agent), and d is the dimension (no. of
variables) of each agent. Each variable of initial solution is uniformly distributed over the
search space computed as

Xi = lb + rand × (ub − lb) (2)

where lb denotes the lower bound, ub denotes the upper bound, and rand is a uniformly
distributed random number from the interval [0, 1]. Based on the concept of survival of the
fittest, the top predators have the best foraging capabilities. Therefore, the fittest solution is
nominated as the best predator and used to construct a matrix called Elite. In an iteration I,
the Elite matrix is constructed as

Elite =

⎡⎢⎢⎢⎢⎣
XI

1,1 XI
1,2 · · · XI

1,d
XI

2,1 XI
2,2 · · · XI

2,d
...

...
...

...
XI

n,1 XI
n,2 · · · XI

n,d

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

X
X
...
X

⎤⎥⎥⎥⎦ (3)
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where X is the top predator vector which is replicated n times to construct the Elite matrix.
At the end of each iteration, the Elite matrix will be updated if the fittest predator of a
population is replaced by another better predator. Another matrix named Prey is generated
with the same dimensions as Elite. The Prey matrix is computed as

Prey =

⎡⎢⎢⎢⎣
X1,1 X1,2 · · · X1,d
X2,1 X2,2 · · · X2,d

...
...

...
...

Xn,1 Xn,2 · · · Xn,d

⎤⎥⎥⎥⎦ (4)

where Xi,j denotes the j-th dimension of i-th prey. During first iteration, the Prey matrix is
equal to randomly generated population matrix P. In all subsequent iterations, the Prey is
updated and its values are used to compute the Elite matrix. The update of the Prey matrix
is carried separately in three phases of MPA optimization. These phases include:

Phase 1: This phase corresponds to the high velocity ratio and happens in the first
( 1

3 )
rd of maximum iterations of algorithm where exploration is more significant. The update

rule of this phase is given as:

Stepsizei = RB
⊗

(Elitei − RB
⊗

Preyi), ∀i = 1, · · · , n (5)

Preyi = Preyi + P.R
⊗

Stepsizei, ∀i = 1, · · · , n (6)

where Preyi is a vector of Prey matrix, RB and R are vectors of dimensions d containing
random numbers from Normal and Uniform distribution, respectively, P is constant value
equal to 0.5, and

⊗
shows element-wise multiplication.

Phase 2: This phase corresponds to unit velocity ratio when predator and prey are
moving at the same pace. This is the phase which occurs for intermediate ( 1

3 )
rd of iterations,

where exploration and exploitation matters. The update rules for this phase are given as
follows:

Stepsizei = RL
⊗

(Elitei − RL
⊗

Preyi), ∀i = 1, · · · ,
n
2

(7)

Preyi = Preyi + PR
⊗

Stepsizei, ∀i = 1 · · · ,
n
2

(8)

Stepsizei = RB
⊗

(Elitei − RB
⊗

Preyi), ∀i =
n
2
+ 1, · · · , n (9)

Preyi = Elitei + P.CF
⊗

Stepsizei, ∀i =
n
2
+ 1 · · · , n (10)

(11)

where RL is vector of size d containing random numbers based on Lévy distribution,

CF = (1 − I
IMax

)
(2 I

IMax
) is an adaptive parameter to control the step size for predator

movement, I is the current iteration, and IMax is the maximum number of iterations.
Phase 3: This phase corresponds to low velocity ratio when predator is moving faster

than prey. This scenario happens in the last ( 1
3 )

rd iterations of the optimization phase where
exploitation matters. The update rules for this phase are given as follows:

Stepsizei = RL
⊗

(Elitei − Preyi), ∀i = 1, · · · , n (12)

Preyi = Elitei + P.CF
⊗

Stepsizei, ∀i = 1 · · · , n (13)

The next step is to model the behavioral change in MPs as a result of environmental
effects. These effects are known as fish aggregating devices (FADs). The FADs are known
as local optima; therefore, the prey and predators must perform longer jumps during
simulation to avoid stagnation in local optima. The update of Prey matrix considering the
FAD effect is mathematically represented as follows:
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Preyi =

{
Preyi + CF[Xmin + R

⊗
(Xmax − Xmin)]

⊗
U r ≤ FADs

Preyi + [FADs(1 − r) + r](Preyr1 − Preyr2) r > FADs)

}
(14)

where FADs = 0.2 is the probability of occurrence of FAD effects, U is a randomly generated
binary vector, r is the uniform number in [0, 1], Xmax and Xmin are the vectors containing
lower and upper bounds of dimensions, respectively, and r1, r2 are the random indices of
the Prey matrix.

After the Prey matrix is updated using Equations (6)–(13), and incorporating the FAD
effects of Equation (14), this matrix is evaluated for fitness function. The fitness of each
solution of current iteration is compared to its equivalent solution in prior iteration. If
the current solution is more fitted, it replaces the previous one. In the next iteration, the
best solution of Prey is used to generate the Elite matrix and update the Prey matrix using
Equations (6)–(13).

2.2.5. Entropy-Controlled MPA for Feature Selection

In this work, we proposed a multi-level feature selection algorithm named entropy-
controlled marine predators algorithm (ECMPA). The proposed technique is based on two
stages of feature selection, the first of which corresponds to feature reduction based on the
entropy of the fused feature vector, followed by additional feature reduction based on the
MPA. The main computational steps of ECMPA are discussed in Algorithm 1.

Notations: In Algorithm 1, matrices and vectors are represented as double struck
characters (e.g., F) and scalars are represented as normal letters.

The algorithm receives as inputs the fused feature matrix F, the label vector L, the
entropy-controlled feature reduction parameter ec, the maximum number of iterations
IMax, and the population size N. Other constant parameters specific to MPA are upper
bound ub, lower bound lb, threshold t, constant P, Levy coefficient β, and fish aggregating
devices effect FADS. The matrix F is of dimensions nt × D, where nt is the number of
training images and D is the number of features extracted from the feature fusion step.
The first level of feature extraction, i.e., entropy-based, is performed by steps 4–7. Step
4 computes the entropy of each column of F and returns a vector E of size 1 × D. Step
5 sorts E in descending order, thus returning the sorted vector E2 along with indices
stored in I. Step 6 extracts the indices of the first ec percentage of features with maximum
entropy. Step 7 extracts features in these indices from F and stores them in F2. The task for
generating initial population matrix P using Equation (1) is performed in Steps 11–15. Step
13 corresponds to Equation (2), where rand() computes a random number from uniform
distribution from interval [0, 1]. In Steps 19–26, the fitness function of each individual
of P is computed using CostFunction and stored in fitness vector Fit. The best fitness is
stored in f itg and best individual is stored in �gb. The Elite matrix E is computed in Step
28, by performing the Repeat function which concatenates N copies of �gb along the first
dimension (i.e., column-wise). Steps 31–37 perform update of Prey matrix P according
to Phase 1 (Equations (5) and (6)). In Step 32, the function randn(1, D) returns a vector
of size 1 × D, containing random numbers from Normal distribution. The Phase 2 of
MPA according to update rules of Equations (7)–(11) is performed by Steps 39–57. In
Step 43, Levy(β, D) generates a vector of size D containing random numbers from Lévy
Distribution. Steps 59-66 perform the P matrix update according to Equations (12) and (13)
of Phase 3. In Steps 68–83, the FAD effects are added to the Prey according to update rules
of Equation (14). In each iteration, Steps 85–92 correspond to the memory-saving step
where the updated Prey matrix P is evaluated for CostFunction and best individual of �gb
is obtained. Steps 95–97 correspond to the output step where SF, i.e., a binary vector of size
D is obtained. The indices of non-zero entries of SF correspond to the indices of selected
features of the fused feature vector.

In Steps 100–115 the execution of CostFunction is demonstrated, which performs the
computation of fitness value of each individual solution. The function accepts as inputs
the entropy-reduced feature vector F2, the label vector L, and a binary vector � computed
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by comparing the entries of ith solution of P with the threshold t. The Step 104 extracts all
the features of F2 whose indices correspond to non-zero values of �, and then the function
partition splits the feature matrix F2 and label vector L into training feature set Ftrain,
testing feature set Ftest, training label set Ltrain, and testing label set Ltest with a splitting
ratio ho. In the subsequent steps of the function, model training and prediction is performed
using KNN classifier and fitness value (cost) is computed using the classification error
metric. An individual with a smaller cost value is the fitter individual.

Algorithm 1 ECMPA for feature selection.

1: Inputs: F,L, ec , IMax , N
2: Parameters: lb = 0, ub = 1, t = 0.5, β = 1.5, P = 0.5,

FADS = 0.2
3: Level1: Entropy Based Feature Selection
4: E ← entropy(F)
5: [I,E2] ← sort(E)
6: I2 ← select(I, ec)
7: F2 ← F(:, I2)
8: Level2: MPA
9: D ← size(F2, 2)

10: Generate Initial Population
11: for i = 1 : N do
12: for j = 1 : D do
13: P(i, j) ← lb + rand()(ub − lb)
14: end for
15: end for
16: while I < IMax do
17: f itg ← ∞
18: Compute the fitness and Elite Solution
19: for I = 1 : N do
20: �← (P(i, :) > t)
21: Fit(i) ← CostFunction(F2,L,�)
22: if Fit(i) < f itg then
23: f itg ← Fit(i)
24: �gb ← P(i, :)
25: end if
26: end for
27: Generate Elite Matrix
28: E ← Repeat(�gb , N, 1)
29: Phase 1
30: if I < IMax

3 then

31: for i = 1 : N do
32: RB ← randn(1, D)
33: for d = 1 : D do
34: step ← RB(d).(E(i, d)−RB(d).P(i, d))
35: P(i, d) = P(i, d) + P.rand().step
36: end for
37: end for
38: Phase2
39: else if

IMax
3 < I < 2

3 IMax then

40: CF = (1 − I
IMax

)
2I

IMax

41: for i = 1 : N do
42: if i ≤ N

2 then
43: RL ← Levy(β, D)
44: RB ← randn(1, D)
45: for d = 1 : D do
46: step ← RL(d).(E( i, d)−RL(d).P(i, d))
47: P(i, d) = P(i, d) + P.rand().step
48: end for
49: else
50: RB ← randn(1, D)
51: for d = 1 : D do
52: step ← RB(d).(RB(d).Ei(i, d)− P(i, d))
53: P(i, d) ← E(i, d) + P.CF .step
54: end for
55: end if
56: end for
57: Phase3
58: else if I > 2

3 IMax then

59: for i = 1 : N do
60: RL ← Levy(β, D)
61: for d = 1 : D do
62: step ← RL(d).(RL(d).Ei(i, d)− P(i, d))
63: P(i, d) ← E(i, d) + P.CF .step
64: end for
65: end for
66: end if
67: FADs Effect
68: r ← randn()
69: if r <= FADS then
70: for i = 1 : N do
71: : U ← (randn(1, D) < FADS)
72: for d = 1 : D do
73: P(i, d) ← P(i, d) + CF(lb + rand().(ub −

lb).U(d)
74: end for
75: end for
76: else
77: for i = 1 : N do
78: for d = 1 : D do
79: P1 = P(randn(), :),P2 = P(randn(), :),
80: P(i, d) ← P(i, d) + [FADS(1 − r) + r](P1 − P2)
81: end for
82: end for
83: end if
84: Memory Saving
85: for i = 1 : N do
86: �← (P(i, :) > t)
87: Fit(i) ← CostFunction(F2,L,�)
88: if Fit(i) < f itg then
89: f itg ← Fit(i)
90: �gb ← P(i, :)
91: end if
92: end for
93: end while
94: Compute the Index of Best Features
95: I ← 1 : D
96: SF ← I((Xgb > t) == 1)
97: OUTPUT: SF
98: ——————————————————————————-

99: Function: CostFunction
100: Inputs:F2,L,�
101: Parameters: α1 = 0.99, α2 = 0.01, k = 5, ho = 0.2
102: if (sum(� == 1) == 0 then
103: cost = 1
104: else
105: F2 ← F2(:,� == 1)
106: Ftrain ,Ltrain ,Ftest ,Ltest ← partition(F2,L, ho)
107: �2 ← (� == 1)
108: Model ← trainKNN(Ftrain ,Ltrain , k)
109: Lpred ← predict(Model,Ftest)

110: acc ← sum(Lpred == Ltest)/length(Ltest)

111: err ← 1 − acc
112: fs ← sum(� == 1)
113: ft ← length(�)
114: cost ← α1 × err + α2 × ( fs

ft
)

115: end if
116: OUTPUT: cost

2.2.6. Classification

The indices of the reduced feature set extracted from the ECMPA step discussed above
are used to perform training and validation using baseline classifiers with multiple feature

189



Diagnostics 2023, 13, 352

settings. In this work, we used KNN [38] and SVM [39] classifiers with multiple kernel
settings.

3. Results and Discussion

The proposed system was implemented in Matlab 2021 on Windows 10 64-bit using
a Core i5, 2.5 GHz CPU, and 8 GB of RAM. The dataset of 5000 thousand images was
split into training and testing with an 80% splitting ratio in order to perform transfer
learning using DenseNet201 and DarkNet53 deep models. Table 3 demonstrates the main
model training parameters for deep transfer learning. For both networks, a significant level
of training and validation accuracy was achieved with five epochs. Figure 4 shows the
accuracy and loss function plots for DenseNet201. In order to extract the indices of the
most dominant features, the fused feature vector of size 2944 features was then subjected to
feature reduction using ECMPA. The reduced set of features is then used to train the KNN
and SVM classifiers with multiple kernel settings. In order to perform the classification task,
testing images are applied to the trained deep models and a fused feature vector is obtained.
The reduced feature vector is generated by using the indices obtained by the ECMPA. This
is then classified using the trained KNN and SVM classifiers. Figure 5 demonstrates a set of
reduced features extracted from the ECMPA step. Figure 6 demonstrates the results of the
proposed WBCs classification system with various kernels of SVM and KNN classifiers. The
SVM classifier achieves a 99.9% accuracy with a reduced feature set consisting of 70 strong
features. The confusion matrix of SVM with the quadratic kernel is also demonstrated.
The high value of true positive rate (TPR) and low value of false negative rate (FNR) are
achieved for all image classes.

Table 3. Model training parameters for transfer learning of DenseNet201 and DarkNet53 models.

Property Value Property Value

Kernel sdgm Initial Learning Rate 1× 10−4

Execution Environment Auto MiniBatch Size 20

MaxEpochs 5 Validation Frequency 30

Dropout rate 0.1 Stride Size 1

Figure 4. Training accuracy and loss function plots for DenseNet201 network.
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Figure 5. Extracted deep features from proposed ECMPA.

Figure 6. Classification results of proposed WBCs classification system. Left: Test accuracy
achieved by SVM and KNN classifiers with several kernels. Right: Confusion matrix of SVM
with quadratic kernel.

In Figure 7, the convergence of the proposed ECMPA is compared with a classi-
cal population-based meta-heuristic algorithm, i.e., genetic algorithm (GA). The graph
demonstrates that ECMPA achieves a better value of cost function with a smaller number
of iterations.

Table 4 shows an accuracy comparison of the proposed approach with some recent
works on WBC classification using deep learning networks that use similar datasets. The
proposed method shows a comparable or even better accuracy performance with a smaller
number of features as compared to other works. This demonstrates the validity of the
proposed approach.
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Figure 7. Convergence performance of ECMPA and GA.

Table 4. Performance Comparison of proposed method with some existing works. ×: Not done, N.A:
Information not available.

Work
Deep

Learning
Model

Feature
Selection

Feature Vector
Size

Classifier Accuracy %

[40] GoogleNet,
ResNet-50

Maximal
Information
Coefficient,

Ridge
Regression

Model

755
Quadratic

Discriminant
Analysis

97.95

[41] AlexNet × 1000 CNN 98.4

[42]

PatternNet
fused

ensemble of
CNNs

× N.A CNN 99.90

[43] ResNet and
Inception

Hierarchical
Approach N.A ResNet and

Inception 99.84

This Work
DenseNet201

and
DartkNet53

ECMPA 76
SVM and

KNN
99.6

Statistical Significance

Obtaining a certain level of confidence in the proposed strategy is the main goal of
this statistical investigation. We use the analysis of variance (ANOVA) [44] to compare the
means of several distributions in order to determine whether the results are statistically
significant. We consider classification accuracy as a performance characteristic for our
proposed framework. In order to implement ANOVA, we performed a series of tests to
validate the assumption of normality using the Shapiro–Wilk test [45], and homogeneity
of variance using the Bartlett’s test [44]. In these testing procedures, we used 1% level of
significance (i.e., α = 0.01). The means of classification accuracy values for the selected
classifiers, i.e., SVM, KNN, and NNN, as μ1, μ2, and μ3, respectively. For each of the tests
mentioned above, the null hypotheses are considered true if the computed Shapiro–Wilk p-
values are less than or equal to α; otherwise, the alternative hypotheses are affirmed as true.
The p-values of SVM, KNN, and NNN classifiers are obtained as p1 = 0.784, p2 = 0.7124,
and p3 = 0.7031, respectively. The Chi-squared probability from the Bartlett’s test is
pch = 0.85. From these p-values, we fail to renounce the null hypotheses and confidently
claim that our accuracy data are normally distributed with homogeneous variances.

Table 5 presents the statistical results obtained from the ANOVA test including the
sum of squared deviation (SS), degree of freedom (df), F-statistics, mean squared error
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(MSE), and p-value. The obtained p-value is 0.705, which is greater than α and leads to the
conclusion that the means of three classifiers are identical.

Table 5. Statistical test results based on ANOVA using accuracy metric.

V-Source SS df MSE F-Statistics p-Value

Between 7.0812 × 10−5 2 3.6333 × 10−5 0.37 0.705
Within 5.9123 × 10−4 6 9.8222 × 10−5 - -
Total 6.6232 × 10−4 8 - - -

Figure 8 shows the confidence interval plots of accuracy values of the three selected
classifiers. In the figure, red bars present the average accuracy, whereas the black bars
present the 99% confidence limits of each classifier. In addition, the blue bars show lower
and upper quantile points obtained by performing the above-mentioned statistical tests.
From the figure, we can observe that the SVM classifier achieves a higher average accuracy
with relatively smaller confidence interval size as compared to other classifiers. The quantile
points of each classifier lie within their respective confidence limits. The higher p-values
resulting from these quantile points lead to the acceptance of null hypotheses, which means
significant differences in the accuracy distribution of the classifiers.

SVM KNN NNN

Classifiers

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

A
cc

ur
ac

y

Confidence Interval

Figure 8. Confidence interval for selected classifiers.

4. Conclusions

WBCs classification is a vital step in the correct diagnosis of Leukemia. The existing
manual methods of WBC classification are labor-intensive and error-prone. Automated
WBC classification using computer vision techniques is an emerging paradigm. Modern
approaches using deep neural networks achieve a significant level of accuracy for a variety
of tasks. However, these neural networks suffer from exorbitant computational complexity,
processing power, and memory requirement owing to very large feature sets. Therefore, an
efficient feature reduction is essential to make deep neural networks feasible for real-time
biomedical applications. This work proposes a complete WBCs classification pipeline that
performs transfer learning using deep neural networks followed by an efficient feature
reduction algorithm. The proposed feature reduction method is validated using several
baseline classifiers with multiple kernel settings. An accuracy of 99.9% is achieved with
a feature reduction of 95%, which demonstrates the feasibility of the proposed WBCs
classification method. While the proposed approach has been applied to an augmented
clean dataset containing only WBC subtype images, the ECMPA feature selection algorithm
can be applied in any blood cell classification setup with little tuning of parameters. In
the future, we plan to extend this work to a more challenging dataset for clinical-grade
classification of other cell entities such as platelets and red blood cells, among others. The
proposed algorithm can also be tested on the bench mark datasets for other diseases such as
skin lesion and brain tumors, among others. In order to address the “curse of dimensionality”,
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other similar bio-inspired meta-heuristics can be investigated to obtain a trade-off between
classification accuracy and computational complexity.
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Abbreviations

The following abbreviations are used in this manuscript:

WBC White blood cell
CNN Convolutional neural network
DNN Deep neural network
SVMs Support vector machines
MPA Marine predators algorithm
ECMPA Entropy-controlled marine predators algorithm
KNN K-nearest neighbors
TPR True positive rate
FNR False negative rate
GAN Generative adversarial network
GVF Gradient vector flow
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Abstract: Breast cancer is diagnosed using histopathological imaging. This task is extremely time-
consuming due to high image complexity and volume. However, it is important to facilitate the early
detection of breast cancer for medical intervention. Deep learning (DL) has become popular in medi-
cal imaging solutions and has demonstrated various levels of performance in diagnosing cancerous
images. Nonetheless, achieving high precision while minimizing overfitting remains a significant
challenge for classification solutions. The handling of imbalanced data and incorrect labeling is a fur-
ther concern. Additional methods, such as pre-processing, ensemble, and normalization techniques,
have been established to enhance image characteristics. These methods could influence classifica-
tion solutions and be used to overcome overfitting and data balancing issues. Hence, developing
a more sophisticated DL variant could improve classification accuracy while reducing overfitting.
Technological advancements in DL have fueled automated breast cancer diagnosis growth in recent
years. This paper reviewed studies on the capability of DL to classify histopathological breast cancer
images, as the objective of this study was to systematically review and analyze current research on
the classification of histopathological images. Additionally, literature from the Scopus and Web of
Science (WOS) indexes was reviewed. This study assessed recent approaches for histopathological
breast cancer image classification in DL applications for papers published up until November 2022.
The findings of this study suggest that DL methods, especially convolution neural networks and
their hybrids, are the most cutting-edge approaches currently in use. To find a new technique, it
is necessary first to survey the landscape of existing DL approaches and their hybrid methods to
conduct comparisons and case studies.

Keywords: breast cancer; classification; histopathological image; review

1. Introduction

Cancer, which occurs when cells in the body grow unnaturally, is one of the main
causes of human death. It has become a huge problem that threatens the safety and well-
being of people all over the world. Breast cancer is one of the most widely known types
of disease affecting women. These days, breast cancer is the deadliest cancer that can
strike women, making it the leading cause of death overall. Due to its high prevalence
and broad dissemination, breast cancer is dangerous and mostly depends on pathological
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diagnosis [1]. Accurate breast cancer diagnoses can improve cancer survival rates. Imaging
modalities are being developed to promptly detect this disease. Cancer diagnosis relies
on medical images, which are used for screening, diagnostic, and adjunctive evaluation to
give field experts more confidence in their initial decision. Mammography, histopathology,
MRI, ultrasonography, thermography, and PET/CT are imaging modalities. Each modality
has its own advantages and disadvantages [2]. For instance, a mammogram is suitable for
early detection. However, it is expensive and has low specificity.

Histopathological images serve as a valuable guide for the pathological analysis of this
disease, as they can be used to describe tumor characteristics in all subgroups of interval
cancers. A precise prognosis is dependent on the accurate classification of these images. It
has been shown that the histopathological tumor characteristics of missed interval cancers
are worse than those of true interval cancers in terms of prognosis [3]. For this reason,
the number of interval cancers in a screening program can be reduced by improving a
radiologist’s perception and interpretation by establishing a systematic collection of features
and implementing structured reviews. Much research on breast cancer has been conducted
to identify benign and malignant categories, with histopathological imaging often used in
diagnosis. However, the high complexity of histopathological images and their associated
heavy workload makes this work extremely time-consuming [3–5]. Additionally, diagnosis
is tough, routine, and repetitive, as the clinical diagnosis of breast cancer is a complex
problem. Additionally, the subjectivity of each pathologist may influence results, further
complicating matters.

Histopathological breast cancer image recognition is a difficult task [6,7]. Traditional
manual feature extraction and image classification usually necessitate in-depth knowledge,
and more professional researchers are needed to extract and calculate high-quality image
features. This operation typically takes a long time and produces poor classification results.
It is critical in this field to develop an accurate, automated method for analyzing histopatho-
logical images because breast cancer diagnosis heavily relies on histopathological image
classification [8]. Furthermore, previous research has shown that histopathological images
have important clinical implications in the early stage of breast cancer screening [9,10].
The accurate classification of histopathological images could be used to develop automated
and precise breast cancer classification systems for early detection [9]. Therefore, the proper
screening of histopathological images is critical for the earlier detection and diagnosis of
breast cancer.

Much work on histopathological image classification has been reported. Decades ago,
traditional machine learning (ML) approaches, such as artificial neural networks (ANNs),
support vector machines (SVMs), and decision trees, began to be used in breast cancer image
classification. Deep learning (DL) has been introduced to overcome issues of accuracy in ML
models. DL has snowballed and been successfully applied to many applications [11]. DL
allows for massive amounts of data learning [12–14]. More importantly, DL has improved
sound and image recognition [15–17]. DL comprises several methods, such as convolution
neural networks (CNNs), recurrent neural networks (RNNs), long short-term memory
(LSTM), gated recurrent unit (GRU), and bidirectional LSTM [15–17]. The CNN is a popular
DL method that directly learns from input without feature extraction. The CNN is famous
for being used to improve regularized MLP networks. CNN layers optimize parameters for
meaningful output and reduce model complexity. Visual geometry group (VGG), AlexNet,
Xception, Inception, ResNet, and other CNN variants can be used in different application
domains depending on their learning capabilities [18,19]. Another popular DL method is
the RNN. The CNN and RNN architectures differ. RNN works with feedback results [15,20].
Time series data mostly require an RNN where feedback loops provide memory for optimal
performance in context-sensitive data [21], such as sentence completion.

As a result, this study examined recent technological advances in histopathologi-
cal breast cancer image classification using DL methods. Consequently, this research
considered DL methods to evaluate the performance of current classification solutions.
Researchers have proposed DL techniques to determine the best method for classifying
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histopathological breast cancer images, and these techniques were reviewed in this pa-
per. The findings of this study are expected to assist researcher in choosing a suitable DL
method. Correct diagnoses are required for complete care in a limited amount of time in
cases of breast cancer, as the classification of benign and malignant cancers can save lives.
DL performance depends on an image’s type, size, and features. Many previous studies
embedded augmentation operations or strategies into DL methods to improve classifica-
tion accuracy for histopathological images, with several methods employed to enhance
image features.

While DL methods have shown promise, there is a need for a recent review of their
efficacy in analyzing histopathological breast cancer images solutions. This work investi-
gated DL and integration with other feature extraction, normalization, and optimization
methods in histopathological image classification. This study employed a research ideology
review to determine the best way to classify breast cancer based on its histopathology. The
review considers what is known now and what methodological contributions have been
made to classification solutions for specific problems. The rest of the paper is organized as
follows. Section 2 describes the review methods. Section 3 shows the results and findings.
Section 4 concludes the discussion.

2. Review Method

The use of contemporary technology in medical data analysis has evolved along with
technology, particularly in image processing, classification, and segmentation, as well as in
cancer research. The most well-liked machine learning method for medical image diagnosis,
DL, is being used by an increasing number of researchers. The medical community agrees
that the future of DL in disease prediction is promising [22]. Additionally, scientists have
applied various classification techniques to cancer image data to categorize breast cancer.
Convolutional neural networks (CNNs) are widely used in image classification [23,24]. In
addition, many researchers have tried to apply pre-processing, feature extraction, ensemble
learning, and classifier techniques to automate the detection of breast cancer cells.

High-performance evaluation values in terms of accuracy, specificity, sensitivity, preci-
sion, and F-measure can be obtained using several methods, and DL methods can be used
to compensate for traditional methods of breast cancer diagnosis, allowing for the early
detection of the disease. This paper provides a comprehensive review based on advanced
searching related to the classification of histopathological breast cancer images using DL
and its hybrids. Advanced evaluation is one of the most critical discussions at the moment.
Thus, a systematic flow method was used in this work. A protocol or plan with clearly
stated criteria before a review is referred to as a structured review [25], which is a method
for strategically identifying patterns, trends, and critical evaluations of the literature on
research subjects [26].

Following the analysis and integration of the results, further readings in the literature
were utilized to develop future research directions on the applications of DL to histopatho-
logical classification. The review technique comprised four steps for choosing numerous
relevant papers for this study. This study used the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) methodology [27]; it is a framework created to
illustrate the flow of information during the various stages of a systematic review, as shown
in Figure 1. The first step in writing this comprehensive literature review was identifying
research items that may be relevant to the research question. The total number of searched
papers was then screened. Finally, the eligibility of each paper based on its abstract was
evaluated. Overall, the scientific literature was reviewed and summarized to identify, select,
and evaluate breast cancer classification techniques. Subsequently, additional research
directions to address the raised concerns were recommended. In this study, the best practice
method was used to conduct the comprehensive literature review, and the publication
rules provided essential information to help the researchers evaluate the accuracy of the
review. Furthermore, an investigation for the systematic analysis of the various studies
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considered within this review. The WOS and Scopus databases were used to examine the
studied methodologies.

Figure 1. The PRISMA flow diagram of the entire procedure for selecting reviewed articles.
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2.1. Preliminary Identification

Articles in the literature were identified to select studies on the utilization of DL in
histopathological classification. Keywords such as “classi*” AND “image*” AND “breast
cancer” AND “deep learning” were applied. The year was restricted to 2022 to consider
all related recent studies. The literature search was conducted by using the Scopus and
WOS databases. The initial search yielded 505 articles from Scopus and 299 articles from
the WOS, as demonstrated in Table 1.

Table 1. Search strings from the Scopus and WOS databases.

Search strings from the
Scopus database

TITLE-ABS-KEY “classi*” AND “images”
AND “breast cancer” AND “deep

learning” (LIMIT-TO PUBYEAR, 2022)
Results = 503 Articles

Search strings from the
WOS (Web of Science)

database

TS = “classi*” AND “images” AND
“breast cancer” AND “deep learning”
AB = “classi*” AND “images” AND

“breast cancer” AND “deep learning”
Refined by: DOCUMENT TYPES:
(ARTICLE) AND PUBLICATION

YEAR: 2022

Results = 299 Articles

2.2. Screening

Screening is used to examine relevant research items for content that matches pre-
defined research question(s). Here, machine learning-classified cervical cancer cells were
employed to select research items in the screening phase. This step removed duplicate
papers from the searched list. The first screening eliminated 291 publications, and the
second step comprised the examination of 515 papers based on this study’s exclusion and
inclusion criteria (see Table 2). The selection criteria for the search were based on those of
Alias et al. [28]. Research papers were the first criterion because they provide practical ad-
vice, and they include reviews, meta-synthesis, meta-analyses, books, book series, chapters,
and conference proceedings not included in the most recent studies. Publications written in
English released in 2022 were analyzed and considered for coverage. Note that 478 articles
were removed because of their premature results and because they did not discuss the DL
method in histopathological classification. Some articles were also incomplete, and some of
the full articles were not accessible, had broken links, and overlapped.

Table 2. Second-stage examination criteria.

Criterion Inclusion Exclusion

Language English Non-English

Published Year 2022 <2022

Source type Journal (only research articles) Conference proceeding

Document Type Article Letter, review, conference, and note

Research Area Computer Science and
Engineering

Besides Computer Science and
Engineering

2.3. Eligibility

After all inclusion and exclusion criteria were met, the final review sample was gener-
ated. Based on the research objectives, the inclusion criteria included articles that helped us
find recent solutions for challenges in histopathological breast cancer imaging, DL method-
ology, and types of classification analysis. Consequently, 9 publications were excluded
since their titles and abstracts were not significantly related to the study’s purpose based
on empirical data. Finally, 30 papers were made available for evaluation (see Figure 1).
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A further inclusion criterion was that the studies had to be in the field of computer
science and engineering. This helped narrow this review to DL theories and methods in
histopathological breast cancer classification. Furthermore, tools and predictive factors
aided the extraction, comparison, and synthesis processes. The exclusion criteria excluded
articles that focused on different contexts (such as brain cancer, traditional machine learning,
and healthcare) and studies that were not specifically about histopathological breast cancer
images. Figure 2 shows examples of four magnification classes of histopathological images
from the BreakHis dataset. Then, the authors of this study generated themes based on evi-
dence from this analysis. Analyses, points of view, questions, and other data interpretation
ideas were recorded in a log. Finally, the authors looked for theme design inconsistencies in
the results; they discussed any conceptual differences, and themes were tweaked to ensure
consistency. To validate the issues and ensure subtheme clarity, importance, and appro-
priateness during the expert review, Dr. Kusmardi from Cipto Mangunkusumo Hospital,
Jakarta, and the Faculty of Medicine, Universitas Indonesia, Indonesia, was chosen as a
pathology expert.

  
(a) (b) 

  
(c) (d) 

Figure 2. (a) Histopathological breast cancer images of the BreakHis dataset: (a) 40×; (b) 100×;
(c) 200×; (d) 400×.

3. Results and Findings

As the prevalence of breast cancer has grown, image-based histopathological analysis
has become widely used in pathological research and disease diagnosis. However, patholo-
gist errors in cell identification have been identified as a significant problem. As a result, a
comparative evaluation of the proposed model was performed to demonstrate the utility
of feature selection and class imbalance. In addition, how well the classifier performed
in terms of accuracy, sensitivity, precision, F-measure, and specificity was assessed. This
study evaluated the use of a cell classification algorithm associated with imaging in breast
cancer screening to improve the effectiveness and accuracy of the early clinical diagnosis of
breast cancer, and it was found that researchers have developed several methods to fix the
problems of the proposed classification methods. One popular technique for categorizing
cancer cells is the use of CNNs. Note that 30 articles were ultimately selected for inclusion
and analysis based on extensive searching.

Classification of Histopathological Images on Deep Learning Approach
Many researchers have contributed to the field of histopathological image classification,

and a summary of methods and outcomes facilitated comparisons between studies. Table 3
summarizes recent DL research on categorizing histopathological breast cancer images.
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Table 3. Summary of recent deep learning research.

Reference Dataset Class Methodology Results Advantages/Shortcomings

[5]

BreakHis Multi-
class

Data augmentation and
handcrafted feature

extraction (FE) techniques
(Hu moment, Haralick

textures, color histograms,
and deep neural networks

(DNNs)).
Hybrid DL method: CNN +

feature extraction.

Accuracy:
40×: 97.87%;

100×: 97.60%;
200×: 96.10%;
400×: 96.84%.

Average accuracy: 97.10%

The proposed handcrafted
feature extraction and

DNN showed the
best performance.

[29]

Dual residual block with a
multi-scale dual residual

recurrent network
(MTRRE-Net74).

DL Method: RNN.

Accuracy:
40×: 97.12%;
100×: 95.2%;
200×: 96.8%;

400×: 97.81%.

Better accuracy at four
magnification levels than

previously
described models.

[30]

NetDense residual
dual-shuffle attention
network (DRDA-Net)

inspired by the bottleneck
unit of the ShuffleNet

architecture.
DL Method: CNN.

Accuracy:
40×: 95.72%;

100×: 94.41%;
200×: 97.43%;
400×: 98.1%/

The proposed model
showed acceptable
accuracy. Densely
connected blocks

addressed the overfitting
and vanishing

gradient problems.

[3]

DenseNet201 and VGG16
architecture models as an
ensemble model used to

extract global features. DEEP
Pachi extracts spatial

information on the region of
interest.

Hybrid DL method: CNN +
pre-processing +

augmentation + ensemble.

BreakHis
Malignant Accuracy: 99%.
Benign Accuracy: 100%.

A significant result.

[31] Wide-scale
data

DeepML framework to
achieve multi-class

classification.
DL Method: CNN.

Average accuracy: 98%
(90–10% train–test split)

and 89% (80–20%
train–test).

Acceptable accuracy.

[32]

BreakHis Binary

DL are DenseNet_201,
MobileNet_V2, and

Inception_V3.
Ensemble or boosting
methods are AdaBoost

(ADB), Gradient Boosting
Machine (GBM), LightGBM

(LGBM), and XGBoost (XGB)
with Decision Tree (DT) as a

base learner.
Hybrid DL method:
CNN + ensemble.

XGB + Inception_V3
showed the best accuracy

of
92.52%.

Feature extraction and
boosting ensembles were

shown to be a good
combination for

image classification.

[10]

Pre-processed by multiple
scaling decompositions to

prevent overfitting due to the
large dimension.
It improved the

DenseNet-201-MSD network
model.

DL Method: CNN +
preprocessing.

Accuracy:
40×: 99.4%;

100×: 98.8%;
200×: 98.2;

400×: 99.4%.

The mode demonstrated
very good results and can

be used with other
image data.
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Table 3. Cont.

Reference Dataset Class Methodology Results Advantages/Shortcomings

[33]

LightXception is based on
cutting off layers at the
bottom of the Xception

network, which reduces the
number of convolution filter
channels. LightXception only

has about 35% of the
parameters of the original.

Hybrid DL method:
CNN + filter.

At 100× magnification:
Xception Accuracy:

97.31%;
Xception Recall: 98.67;

Xception Precision:
99.26%; LightXception

Accuracy: 97.42%;
LightXception Recall:

97.42%;
LightXception Precision:

97.42%.

Acceptable classification
solution; the model needs

improvement.

[34]

Support vector machine
(SVM), CNN, and CNN with

transfer learning (TL).
Hybrid DL method:

CNN + TL.

Accuracy:
SVM: 92%;
CNN: 94%;

CNN + TL: 97%.

Improved results for CNN
+ transfer learning
compared with a
single method.

[35]

DenseNet201 with the SVM
RBF classifier.

Hybrid DL method:
CNN + classifier.

At 200× magnification:
Accuracy of 95.39%

and
precision of 95.43%.

Acceptable accuracy could
have been due to the use

of traditional machine
learning as a classifier.

[23]

BreakHis Binary

The attention model features
multi-scale channel

recalibration and
msSE-ResNet convolutional

neural network
(msSE-ResNet34).

Hybrid DL method:
CNN + FE.

Accuracy: 88.87%.
Accuracy was low,

although the approach
was embedded with FE.

[36]

CNN and color channel with
attention module (CWA-Net).

Hybrid DL method:
CNN + FE.

At 400× magnification:
Private dataset accuracy:

95%; BreakHis dataset
accuracy: 96%

Acceptable accuracy.

[37]

DenseNet as a backbone
model and transfer learning

(DenTnet).
Hybrid DL method:

CNN + TL.

Accuracy: 99.28%.
Good generalization

ability and computational
speed.

[38]

“Deep-Hist” with pre-trained
and Stochastic Gradient

Descent (SGD).
Type: CNN + optimization.

Accuracy: 92.46%.
The proposed model

required accuracy
improvements.

[39]

Pre-trained Xception model
with VGG16 and enhanced

with logistic regression.
Uses real-time data

augmentation (AUG).
Hybrid DL method: CNN +

TL + AUG.

Xception + VGG16:
Precision of 78.67% and

recall of 0.76.
F-score of 0.75, and AUC

of 0.86.
Xception + VGG16 +
logistic regression:

precision of 82.45%,
recall of 0.82.

F-score of 0.82, and
AUC of 0.90.

The proposed model
outperformed a

conventional CNN.
Augmentation could

reduce the problem of
overfitting.
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Table 3. Cont.

Reference Dataset Class Methodology Results Advantages/Shortcomings

[22]

Breaches’

Binary

Xception and deeplabv3+.
DL method: CNN.

Binary accuracy: 95%.
Malignant accuracy: 99%.

The proposed framework
demonstrated remarkable

performance on a
malignant dataset.

[40]

Inception-ResNet-v2 and
Categorical Boosting

(CatBoost), Extreme Gradient
Boosting (XGBoost), and
Light Gradient Boosting

Machine (LightGBM).
DL method: CNN.

Accuracy:
40×: 96.82%;

100×: 95.84%;
200×: 97.01%;
400×: 96.15%;

Average: 96.46%.

The proposed
Inception-ResNet-v2 and

Categorical Boosting
(CatBoost) models

outperformed other
methods.

[41]

Two custom deep
architectures, CSAResnet and
DAMCNN, integrated with

channel and spatial attention.
Type: CNN + ensemble.

Accuracy: 99.55%.

The proposed model
demonstrated outstanding
accuracy, showing that the

employed ensemble
method could be

successfully used on the
studied type of images.

[42]
Invasive

breast
carcinoma

CNN with Resnet50 and
Xception.

Type: CNN.

Xception was better than
Restnet50, with an

accuracy of 88% and
a sensitivity of 95%.

Model performance was
still low for Xception. The
model could be improved
by embedding ensemble
and classifier programs.

[43] BACH, UC,
and

BreakHis

Deconv-Transformer (DecT)
with color jitter data

augmentation.
Hybrid DL method:

CNN + AUG.

BreakHis dataset accuracy:
93.02%.

BACH dataset accuracy:
79.06%.

UC dataset accuracy:
81.36%.

Performance was low
even though

augmentation was added.
A hyperparameter tuning

and pre-processing
method would improve

performance.

[44]

Embeds attention mechanism
and high-order statistical

representation into a residual
convolutional network

(attention high-order deep
network (AHoNet).

Adds non-dimensionality
reduction and local

cross-channel interaction to
achieve local salient deep

features with normalization
(NORM).

Hybrid DL method:
CNN + FE + NORM.

BreakHis dataset accuracy:
99.29%.

BACH dataset accuracy:
85%.

Performance was more
competitive than

previously described
models. A very good

model to be tested with
other types of image data.

[45] BreakHis
and FNAC

Binary

Twenty-eight hybrid
architectures combining

seven recent deep learning
techniques for feature

extraction (DenseNet 201,
Inception V3, Inception

ResNet V2, MobileNet V2,
ResNet 50, VGG16, and

VGG19) and four classifiers
(MLP, SVM, DT, and KNN)

for binary classification.
Hybrid DL method:

CNN + classifier.

DenseNet 201 (MDEN)
with MLP showed the best

performance.
FNAC accuracy: 99.29%.

BreakHis accuracy:
40×: 92.61%;
100×: 92%;

200×: 93.93%;
400×: 91.73%.

The proposed model
requires accuracy

improvements.
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Table 3. Cont.

Reference Dataset Class Methodology Results Advantages/Shortcomings

[46]
Public
image

database

Ensemble (ENS) for color
adjustment methods with

VGG-19 architectures.
Hybrid DL method:

CNN + ENS.

Accuracy: 91.93%.
AUC: 97.72%.

The proposed model with
color adjustment was

shown to be an acceptable
classification solution.

[47] PCam
Kaggle

Hybrid deep learning
(CNN-GRU).

Hybrid DL method:
CNN and GRU.

Accuracy: 86.21%.
Precision: 85.50%.

Sensitivity: 85.60%.
Specificity: 84.71%.

F1-score: 88%.
AUC: 0.89.

The proposed model
showed low accuracy.

GRU seemingly could not
improve the method’s

performance.

[48]

Histopatho-
logical data

and
ultrasound

data

Automatic framework for
reliable breast cancer

classification CNN and TL.
Embeds Manta Ray Foraging

Optimization (MRFO) as
metaheuristic optimization

(OPT) to improve the
framework’s
adaptability.

Hybrid DL method:
CNN + TL + OPT.

Histopathological data
accuracy:
97.73%.

Ultrasound data accuracy:
99.01%.

The proposed framework
was superior to previously

tested methods. MRFO
has the potential to be
applied to other types

of images.

[49]

BreakHis
invasive
ductal

carcinoma
(IDC)

dataset

CNN with logistic regression
(LR), random forest (RF),

k-nearest neighbor (K-NN),
support vector machine

(SVM), linear SVM, Gaussian
Naïve Bayesian (GNB), and
decision tree (DT) processes.
Hybrid DL method: CNN +

classifier.

Invasive ductal carcinoma:
Range accuracy: 80–86%;
range precision: 92–94%;

range recall: 91–96%;
range F1-score: 94–96%.

BreakHis:
range accuracy: 91–94%;
range precision: 91–95%;

range recall: 93–96%;
F1-score: 95–98%.

Improvements in accuracy,
precision, recall, and F1

score were shown.
Hyperparameter tuning,

pre-processing, and image
augmentation may be
used to achieve better

classification performance.

[1] BreakHis

Binary and
multi-
class

The novel model fusion
framework utilizes online

mutual knowledge transfer
(MF-OMKT) to classify
histopathological breast

cancer images.
Imitates mutual

communication and learning.
Hybrid DL method: CNN + MF.

Accuracy range:
Binary [99.27%, 99.84%];

Multi-class [96.14%,
97.53%].

The proposed framework
demonstrated good

accuracy. The authors
suggested evaluating a

fusion strategy with other
cancerous image data.

[50]

BreakHis
histopatho-

logical
dataset—

ICIAR
2018

DenseNet architecture and
DenseNet architecture with

image level mean.
Hybrid DL method:

CNN + NORM.

BreakHis:
Binary DenseNet accuracy:

96.55%.
Multi-class DenseNet

accuracy: 91.82%.
Binary DenseNet with

image level mean
accuracy: 91.72%.
Multi-class with

image level mean
DenseNet accuracy:

96.72%.
Competitive accuracies of
93.25% and 92.3% at the
patient and image levels,

respectively.

The proposed framework
outperformed previously

assessed methods. The
normalization method

seemed to influence
improvements in results.
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Table 3. Cont.

Reference Dataset Class Methodology Results Advantages/Shortcomings

[51] Cancer
images

Not
available

Wavelet transform (WT)
process is applied to noisy

images;
VggNet-16 model

Hybrid DL method:
CNN + preprocessing.

Best accuracy for the
dataset with Gaussian
noise of a 0.3 intensity:

86.9%.

Accuracy was low. WT
was not found to be

suitable for image data,
though it may be

applicable to other types
of data.

One plausible explanation for these findings is that the histopathological diagnosis of
breast cancer classification has been researched several times. CNNs currently comprise
one of the best approaches for the classification process. Previous researchers have studied
several techniques related to CNNs, such as CNNs with ensembles, CNNs with feature
extraction, CNNs with model fusion, and CNNs with classifiers. For example, Li et al. [1]
introduced a novel model fusion framework based on knowledge transfer (MF-OMKT)
for binary histopathological breast cancer image classification. It demonstrated better
performance than that reported in other studies, with an accuracy of 99.84%. Their findings
showed an improvement of 0.55% compared with a CNN with feature extraction and
normalization. On the other hand, Karthik et al. [41] calculated the same accuracy of 99.55%
with two ensemble learning strategies, namely, channel and spatial attention, integrated
with custom deep architectures. The ensemble model reduced the margin of error and
improved the overall classification performance. This kind of approach is usually called
ensemble learning and involves fusing multiple learning algorithms. Ensemble learning
could produce a robust and reliable model with good generalization performance. However,
the results were still low in some cases, as seen in Figure 3.

 

BINARY CLASS PERFORMANCE ON 
ACCURACY,  %

Figure 3. Binary classification accuracy of the popular and best classification approaches.

Another improved model used CNN with pre-processing, showing accuracies of 0.44%
for 40× and 400× magnifications, respectively, of the BreakHis dataset. These results were
nearly identical to those of a previous study by Li et al. [1] who utilized CNN and filtering;
LightXception achieved an accuracy of 97.42%, a recall of 97.42%, and a precision of 97.42%
in that study. Another study by Yang and Guan [9,10] classified pathological medical images
of breast cancer using the BreakHis image dataset and an improved network DenseNet201-
MSD model; the new DL model classified pathological images of the BreakHis dataset with
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accuracies of 99.4%, 98.8%, 98.2%, and 99.4% at four magnifications. These results were
consistent with those of [48], which used CNN with transfer learning and integrated Manta
Ray Foraging Optimization (MRFO) as a metaheuristic optimization method to increase
the adaptability of image features. As a nature-inspired algorithm, Manta Ray Foraging
improved classification performance, but it requires more testing on several parameters.
Additionally, Burçak and Uuz [52] concluded that CNN models are robust feature selection
strategies in four categories of histopathological images. Their findings contradicted the
findings of Rashmi et al. [36], who proposed a classification method based on a CNN and a
color channel with an attention module (CWA-Net).

Amin et al. [22] proposed a hybrid semantic model that employed pre-trained Xception
and deeplabv3+ models to classify microscopic cancer images into malignant and benign
classes, with 95% and 99% accuracy for benign and malignant, respectively. Compared with
previously published methodologies, the proposed framework demonstrated exceptional
performance. Numerous scholarly articles have studied the classification and analysis
of breast cancer using histopathological images. In addition, histopathological images of
breast cancer patients are increasingly classified using deep CNNs. Most of the research
solutions dealt with histopathological breast cancer modalities. The BreakHis dataset has
mainly been popular in the binary classification of malignant and benign cancers. Different
methodological approaches have demonstrated a variety of accuracy levels for the studied
datasets. Much more research is expected to consider sub-classes of datasets, such as
regarding a diversity of magnification to improve the performance of models, as seen
in Table 3.

The authors of this study established two categories of classification approaches,
namely, binary and multi-class DL solutions. Figures 3 and 4 illustrate these two ap-
proaches, with a focus on the best performance and popular hybrid solutions. Hybrid DL
models were found to demonstrate better accuracy in pathological image classification. For
binary classification, five different methods were used in recent studies: a CNN with feature
extraction (CNN + FE), a CNN with ensemble (CNN + ENS), a CNN with model fusion
(CNN + MF), a CNN with transfer learning (CNN + TL), and others. Binary classification is
based on popular BreakHis image data. It can be seen from Figure 3 that the CNN + FE and
CNN + ENS models have been the most popular approaches in the binary classification of
breast cancer based on histopathological images. Additionally, the classification method
based on CNN with model fusion demonstrated a higher accuracy level (more than 99.84%)
than other studied approaches, as illustrated in Figure 3. In this case, fusion adaptation
showed significant influence on feature extraction. Other approaches showed accuracies
ranging from 89% to 99.55%. For instance, the recent DL with ensemble approach demon-
strated an accuracy of 91% to 92%. Therefore, more research is required to improve model
classification accuracy, although the CNN + MF model has been shown to be the best of
the currently described methods. In addition, statistical analysis methods such as the t-test
must be performed to confirm the significance of the studied methods.

For multi-class classification, studies have used a CNN with pre-processing, aug-
mentation, and ensemble (CNN + PRE + AUG + ENS); a CNN with feature extraction
(CNN + FE); a CNN with model fusion (CNN + MF); a CNN with normalization (CNN-
Norm); and a CNN alone. Figure 3 demonstrates the performance of DL variants for
multi-class histopathological image classification. The CNN + PRE + AUG + ENS model
outperformed other methods, with an accuracy of 100%.
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Figure 4. Multi-class classification accuracy of the popular and best classification approaches.

4. Discussion

DL technological advancements are propelling the growth of automated breast cancer
diagnosis. A breast cancer diagnosis can be performed with various image modalities, such
as histopathological images. One of the most significant challenges in DL has long-been
the accurate and automatic classification of pathological medical images. Additionally, the
use of deeper layers in neural networks enables higher abstraction levels and more precise
data analysis. Therefore, neural networks have become increasingly popular in evaluate
the performance of classification approaches in recent years. Researchers have proposed
many CNN variants to determine the best method for classifying histopathological images,
as discussed in this paper. The findings of this study are intended to help identify the best
performing CNN methods.

Several established methods can be used to detect and classify benign and malignant
cancers based on deep feature characteristics. Ensemble learning and embedded fusion
models have shown better performance than other integration methods. Furthermore, a
CNN with model fusion is a powerful tool for precise feature extraction and histopatho-
logical image classification. The suggested idea of adapting an online mutual knowledge
transfer strategy as a fusion strategy embedded in CNNs could be promising for other
types of breast cancer detection.

Different levels of accuracy were demonstrated by several hybrid CNN methods.
Some showed an excellent accuracy of more than 97%, and others showed an accuracy
of below 97%. The combination of a CNN with FE and ENS has shown different levels
of accuracy for the same dataset depending on the data variance, feature selection, and
methodological approach used in binary and multi-class classification. It is evident that the
fusion strategy has a high viability in binary classification solutions but a low viability for
multi-class classification solutions. Another promising strategy with strong performance is
the combination of the pre-processing, augmentation, ensemble, and CNN methods.

The progression of DL has resulted In the production of promising solutions for
the binary and multi-class classification of breast cancer images, with a primary focus
on histopathology. It is hoped that more health information on areas such as the brain,
eyes, chest, heart, abdomen, musculoskeletal system, and other human body regions
will be incorporated into DL models. The findings presented in Figures 3 and 4 and
Table 3 can serve as a foundation for developing DL models. Incorporating pre-processing,
feature extraction, and augmentation methods into models is one way to improve their
performance. In addition, the use of a fusion strategy is likely to produce favorable
outcomes for binary classification and could be improved to suit multi-class image data.
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5. Conclusions

A correct diagnosis is necessary for the comprehensive treatment of breast cancer in
a short time. Accordingly, lives can be saved with the accurate classification of benign
and malignant cancers. DL performance depends on the input images’ type, size, and
characteristics. Many previous studies embedded augmentation operations or strategies
into DL methods, especially CNNs, to improve classification accuracy for histopatholog-
ical images. Similarly, several methods have been proposed to enhance image features.
However, a review of DL models and their performance for histopathological breast cancer
images is lacking for both binary and multi-class classification solutions. Therefore, this
work investigated DL and its integration with other feature extraction and normalization
methods in histopathological image classification. This review paper is intended to aid
the creation of better breast cancer classification designs and methodologies to assist in
the identification process of this cancer. Furthermore, the proposed CNN hybrid architec-
ture simplifies the detection and classification of cancer cells in histopathological images,
potentially leading to the earlier detection of breast cancer and an increase in women’s
survival rates. More research should be conducted on methods, beginning with studies of
pre-processing, feature extraction, and classification using various breast cancer images.
Furthermore, a new strategy for improving classification performance in histopathological
images should be imposed on hybridization with computational optimization algorithms
such as cuckoo search, the firefly algorithm, and particle swarm optimization to find local
and global image features that lead to better classification performance.
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Abstract: Improving forecasts, particularly the accuracy, efficiency, and precision of time-series
forecasts, is becoming critical for authorities to predict, monitor, and prevent the spread of the
Coronavirus disease. However, the results obtained from the predictive models are imprecise and
inefficient because the dataset contains linear and non-linear patterns, respectively. Linear models
such as autoregressive integrated moving average cannot be used effectively to predict complex time
series, so nonlinear approaches are better suited for such a purpose. Therefore, to achieve a more
accurate and efficient predictive value of COVID-19 that is closer to the true value of COVID-19, a
hybrid approach was implemented. Therefore, the objectives of this study are twofold. The first
objective is to propose intelligence-based prediction methods to achieve better prediction results
called autoregressive integrated moving average–least-squares support vector machine. The second
objective is to investigate the performance of these proposed models by comparing them with the
autoregressive integrated moving average, support vector machine, least-squares support vector
machine, and autoregressive integrated moving average–support vector machine. Our investigation
is based on three COVID-19 real datasets, i.e., daily new cases data, daily new death cases data,
and daily new recovered cases data. Then, statistical measures such as mean square error, root
mean square error, mean absolute error, and mean absolute percentage error were performed to
verify that the proposed models are better than the autoregressive integrated moving average,
support vector machine model, least-squares support vector machine, and autoregressive integrated
moving average–support vector machine. Empirical results using three recent datasets of known
the Coronavirus Disease-19 cases in Malaysia show that the proposed model generates the smallest
mean square error, root mean square error, mean absolute error, and mean absolute percentage error
values for training and testing datasets compared to the autoregressive integrated moving average,
support vector machine, least-squares support vector machine, and autoregressive integrated moving
average–support vector machine models. This means that the predicted value of the proposed
model is closer to the true value. These results demonstrate that the proposed model can generate
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estimates more accurately and efficiently. Compared to the autoregressive integrated moving average,
support vector machine, least-squares support vector machine, and autoregressive integrated moving
average–support vector machine models, our proposed models perform much better in terms of
percent error reduction for both training and testing all datasets. Therefore, the proposed model is
possibly the most efficient and effective way to improve prediction for future pandemic performance
with a higher level of accuracy and efficiency.

Keywords: COVID-19 pandemic; machine learning; hybrid models; forecasting; public health;
accuracy and efficiency

1. Introduction

The city of Wuhan in Hubei Province, China, made history as the first point of the
spread of the coronavirus disease (COVID-19) due to severe respiratory syndrome. On
January 31, the World Health Organization (WHO) declared for the first time that COVID-
19 is a “public health emergency of international concern” [1]. The virus was originally
thought to have come from a fish market in Wuhan. On 11 January 2020, the gene sequence
that China openly shared through personal contacts fueled its rapid spread, with a total
of 9,129,146 confirmed cases, including 473,797 deaths worldwide as of 24 June 2020 [2].
However, as of 1 May 2021, COVID-19 has infected more than 151 million people and
caused three million deaths worldwide. Countries such as the USA, Brazil, Russia, Spain,
UK, Italy, France, Germany, China, India, Iran, and Pakistan have been hit the hardest
by COVID-19. The first cases of COVID-19 reported in Malaysia on 2 January 2020 were
detected by Chinese tourists entering the country from Singapore [3]. Only single-digit
daily cases were reported in the initial phase, but this increased to 235 by 26 March [4].
The number of daily cases in Malaysia continued to increase exponentially by reaching
around 20,000 in August 2021. The Malaysian government declared the implementation
the Movement Control Order (MCO) from 18 March to 3 May 2020, the Conditional MCO
(CMCO) from 4 May to 9 June 2020, and the Recovery MCO (RMCO) from 10 June 2020 to
31 March 2021. All travel and socio-economic activities (religious and cultural gatherings
were not allowed) have been restricted across the country to keep new infections at bay
and avoid overloading the country’s healthcare system during this time. All government
and private offices and educational institutions, including transportation hubs, have been
closed, citizens have been ordered to stay at home, and interstate travel has been banned,
with fines of up to RM 10,000 for violators.

Since the WHO declared the COVID-19 outbreak a pandemic, not only governments
from around the world, but also dedicated medical institutions have made many efforts
to find vaccines and treatments to control the spread of the virus. Statisticians and public
health scientists have also performed extensive statistical modelling, especially regarding
the forecasting of COVID-19 cases, to help the health system prevent the contagion catas-
trophe. In this scenario, the ability to most effectively determine the growth rate at which
the epidemic is spreading is very critical to counterattack and help governments, social
planning, and policy making to accurately address the epidemic. Therefore, the motivation
behind this research compared to the existing research is to (i) develop the most accurate
and efficient predictive model related to the spread of COVID-19 in Malaysia and (ii) com-
pare the performance of this new model with autoregressive integrated moving average
(ARIMA), support vector machine (SVM), least-squares support vector machine (LSSVM),
autoregressive integrated moving average-support vector machine ARIMA–SVM, and
autoregressive integrated moving average–least-squares support vector machine models
(ARIMA–LSSVM).

During the pandemic, many studies have been conducted using various mathematical
and statistical models to predict the spread of the COVID-19 pandemic. One of the most
popular time-series prognostic models for analyzing and predicting disease spread is the
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ARIMA (p, d, q) model [5–7]. Predicting new daily cases of COVID-19 was a difficult
task, as cases increased daily. In the first wave, the pattern of COVID-19 cases has been
continuously increasing for a period and then decreasing. However, for the second wave, it
appears to be picking up again, and some of the COVID-19 cases are difficult to predict.
In this scenario, some researchers predict the pattern of COVID-19 using ARIMA [8–14].
However, the ARIMA model has a limitation in that it typically can only handle a linear
time-series data structure [15]. ARIMA model approximations are insufficient to pose a time-
series prediction obstacle for researchers, especially for nonlinear patterns [16]. Despite its
superior performance, the classification performance of Support Vector Machines (SVMs)
and the generalizability of the classifier are often affected by the dimension or number of
feature variables used, as mentioned by Lee [17]. As a result of the development of Vector
Machines models, this process will be able to provide the most accurate and efficient result
in each prediction case. SVMs, first introduced in 1995 by Vladimir Vapnik [18] in the
field of statistical learning theory and structural risk minimization, have proven useful in
a variety of prediction problems and classifications. SVMs could also manage or address
difficulties such as non-linearity, local minimum, and high dimension where the ARIMA
model could not [15,19–21]. SVM models have recently been used to handle problems
such as nonlinear, local minimum, and high dimension. SVM can even guarantee higher
accuracy for long-term predictions compared to other computational approaches in many
practical applications. However, the single SVM model as a single ARIMA model also has
some limitations, as the SVM model can only handle non-linear data and not linear data.
With the limitations of a single ARIMA and SVM model, as well as an in-depth analysis of
time-series prediction, hybrid approaches have become the best approach to overcome both
limitations, and have a very significant impact in many areas due to their dynamic nature
and higher level of predicting accuracy, efficiency, and precision. This approach is crucial
because of the problems encountered in time-series forecasting, where almost all real time
series contain linear and nonlinear correlation patterns between the data. Recently, the
hybridization of prediction methods has been used with great success to achieve higher
prediction accuracy [15,16,19,20,22–26].

Regarding the spread of COVID-19, the hybrid time-series model approach is crucial
for predicting the impact of the COVID-19 outbreak, and has proven successful in predicting
COVID-19 [27–33]. This study aims to (a) propose the ARIMA–LSSVM hybrid model
approach to achieve better forecast results when it is able to produce the best estimator,
i.e., produce small error terms; additionally, it aims to (b) examine the performance of
the proposed models by comparing them to ARIMA and SVM models using three daily
cases of COVID-19 data in Malaysia, that is, daily new positive cases, daily new deaths,
and daily new recovered cases. Despite recent advances in time series and on COVID-19,
the modelling process does not include COVID-19 cases specifically in Malaysia to help
authorities manage the spread of this outbreak by producing more efficient, more accurate
data, and more accurate forecasting results.

This study makes a significant contribution to the field of pandemic prediction and
prevention by introducing novel approaches to dealing with COVID-19 data. Rather than
relying on traditional methods, this research utilizes evidence-based prediction techniques,
which have been shown to be more accurate and efficient. The use of these intelligent
forecasting models enables local health authorities to create more precise and effective
preventive measures, especially in the face of future outbreaks.

This study is particularly innovative in its use of hybrid forecasting models by machine
learning for Malaysia’s future pandemics, such as avian flu or novel coronavirus strains.
According to Moore [34], the scenario is for the next possible new pandemic of avian
influenza virus strain H7N9 or a novel coronavirus. The predictive models developed
are more precise, accurate, and efficient in anticipating the dynamic spread of the virus.
This approach has been tested on real-world data, including daily new cases, daily new
death cases, and daily new recovered cases of COVID-19, making it a valuable tool for
public health officials and researchers. This research also has significant implications for
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future outbreaks, particularly in countries with tropical rainforests such as Malaysia. By
predicting the spread of COVID-19 early on, this model can help policymakers build better
healthcare facilities, take legislative action, and avoid economic losses. While a vaccine
is now available, this model remains useful in accurately forecasting and preventing the
impact of future pandemics, including those caused by new virus strains.

This study’s innovative and evidence-based methods make a valuable contribution
to pandemic prediction and prevention, providing significant insights that can be used to
mitigate the impact of future outbreaks. The implications of this research extend to public
health authorities, policymakers, and researchers worldwide, offering powerful tools for
mitigating the devastating effects of pandemics. The remainder of this paper is structured
as follows. Materials and Methods goes into detail about the method we used to develop
our proposed model. The hybrid ARIMA–SVM model used in this study is then briefly
described. The results and discussion present the performance of our proposed model
based on three known COVID-19 case datasets. Finally, we wrap up the article and make
suggestions for future research.

2. Materials and Methods

2.1. ARIMA Modelling

The ARIMA (p, d, q) autoregressive integrated moving average model is one of the
families in time-series forecasting that is widely used for time-series forecasting series
datasets due to its flexibility with different time categories [16]. It also explicitly considers
several standard patterns in time-series analysis, allowing for a powerful and easy-to-use
way to produce accurate time-series forecasts. However, limitations may occur due to the
existence of assumptions of a linear form that represents a linear relationship between
the future value of the time series with the current value, the past value, and random
noise in the model [15–17,21,26]. In the ARIMA model, p and q are the numbers of the
autoregressive and moving average terms, and they are always listed in the order of the
model, while d is the integer representing the differential order. The ARIMA model type
with mean μ is represented mathematically as follows:

yt = β + θ1yt−1 + θ2yt−2 + · · ·+ θpyt−p + et −∅1et−1 −∅2et−2 − · · · −∅qet−q (1)

where yt and et are the actual value and the random error at time t, respectively. Both are
assumed to be independently and identically distributed (iid) with a mean 0 and a constant
variance of σ2; θi (i = 1, 2, . . . , q) and ∅j(j = 0, 1, 2, . . . , q) are the model parameters that
need to be predicted.

2.2. Support Vector Machines Modelling

The Support Vector Machine (SVM) introduced by Vladimir Vapnik [18], which incor-
porates statistical learning theory, can handle larger dimensional data better, even with a
small number of instances generalizability. Because the models select boundary support
vectors from the input data, they process the data quickly. The SVM regression function is
written as follows.

For linear and regressive dataset {xi, yi} the function is formulated as follows:

f (x) = wTx + b (2)

The coefficient w and b are estimated by minimizing.

1
2
wTw+ C

1
n

n

∑
i−1

Lε(yi, f (xi)) (3)
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where �ε is called the ε-intensive loss function and is formulated as follows:

�ε(y, f (x)) =
{

0 if |y− f (x)| ≤ e
|y− f (x)| others

(4)

Equation (3) can be transformed to the following constrained formulation by introduc-
ing positive slack variables ξ and ξ∗i :

min 1
2 w

Tw+ C
n
∑

i=1

(
ξi + ξ∗i
)

wxi + bi − yi ≤ ξ+ ξ∗i
−wxi − bi + yi ≤ ξ+ ξ∗i

ξi, ξ∗i ≥ 0

i = 1, 2, . . . , N

(5)

We always use dual theory to convert the above formula into a convex quadratic
programming problem when solving it. Adding the Lagrange Equation (5) results in the
following term:

min
1
2

n

∑
i,j=1

(α∗i − αi)(α
∗
j − αj)α

T
i αj −

n

∑
i=1

α∗i (yi − e)− αi(yi + e) (6)

Subject to
y

∑
i=1

(αi − α∗i ) = 0 , αi, α∗i ∈ [0, C]

When a dataset cannot be regressed linearly, we map it to a high dimension feature
space and regress it linearly. The following is the formulation:

min
1
2

n

∑
i,j=1

(α∗i − αi)(α
∗
j − αj)ϕ(xi)

T ϕ
(
xj
)
−

n

∑
i=1

α∗i (yi − e)− αi(yi + e) (7)

Subject to
n

∑
i=1

(αi − α∗i ) = 0 , αi, α∗i ∈ [0, C]

Let K
(
Xi, Xj
)
=
{

ϕ(Xi)·ϕ
(
Xj
)}

= ϕT(Xj
)

ϕ(Xi); K(x, x) is the inner product of fea-
ture space and is called kernel function. Any symmetric function that satisfies Mercer
condition can be used as Kernel function [19]. The Gaussian kernel function is specified in
this study.

K
(

xi, xj

)
= exp(−||xi − xi||2/(2σ2)) (8)

SVMs were used to estimate the nonlinear behaviour of the forecasting dataset because
Gaussian kernels perform well under general smoothness assumptions [22].

2.3. Least-Square Support Vector Machines Modelling

The Least-Squares Support Vector Machines (LSSVM) proposed by Suykens and
Vandewalle [35] is a modification of the standard SVM. LSSVM formulates the training
process by solving linear problem quicker than SVM through quadratic programming.
Additionally, this model is also more time efficient when analysing huge data. Consider a
given training set

{
(xi, yj), i = 1, 2, . . . n

}
with xi ∈ Rn as input data and yi ∈ R as output

data. LSSVM defines the regression function as:

minJ (ω, e) =
1
2

ωTω +
C
2

n

∑
i=1

e2
i (9)

217



Diagnostics 2023, 13, 1121

Subject to
yi = ωT ϕ(xi) + b + ei; i = 1, 2, 3 . . . n

where ω is the weight vector; y is the regularization parameter where it determines the
trade-off between the training error minimization and smoothness of the estimated func-
tion; e is the approximation error; ϕ(.) is the nonlinear function; and b is the bias term.
Constrained optimization of Equation (9) can be translated to unconstrained optimization
by constructing Lagrange function. This can be obtained by using Karush–Kuhn–Tucker
(KKT) condition, where it partially differentiates with respect to ω, b, e, and ϕ(.):[

0 It
v

Iv Ω + c−1 I

][
b
a

]
=

[
0
y

]
where y = [y1, . . . , yn]

T ; Iv = [1, . . . , 1]T ; a = [a1, . . . , an]
T ; Ω =

{
Ωij
∣∣ i, j = 1 . . . n

}
, Ωij =

ϕ(xi)
T ϕ(xi) = K(xi, xj); K(.) is the Radial Basis Function (RBF) kernel function that ob-

tains a and b by calculating linear operations.

2.4. Proposed Hybrid Model

Despite the various time-series models presented, the accuracy, efficiency, and pre-
cision of time-series forecasts are becoming crucial for many decision-making processes
today. However, these factors do not appear in ARIMA and SVM models. This is also
the main reason why the time-series forecasting model is crucial, more demanding, and
dynamic, as well as actively researched in many fields of study. ARIMA and SVM models
have also prevailed in their linear or nonlinear domains [15,25,26]. However, none of these
are generic principles that can be generalized to all situations. Therefore, a hybrid approach
using both linear and non-linear modelling capabilities is recommended. This approach
is mainly proposed to improve the overall prediction effectiveness. Therefore, there is no
research on how to improve the effectiveness of predictive models created in Malaysia,
particularly in the case of COVID-19.

There are two reasons for using hybrid models in this study. First, a single ARIMA
and SVM model may not be sufficient to identify all the time series’ characteristics. The
second assumption is that one or both cannot recognise the actual data generation process.
This study’s hybrid models were built in two stages. Part I discusses linear autocorrelation
composition, and Part II discusses nonlinear components. Thus,

yt = �t +Nt (10)

where �t and Nt are denoted as the linear composition and the nonlinear component,
respectively. Based on the data, these two parts must be approximated. Part I focuses on
linear modelling, which employs the ARIMA model to model the linear composition. The
model from the first model included residuals, which are nonlinear interactions that cannot
be modelled by a linear model or possibly a linear relationship. Thus,

�t =

[
p

∑
i=1

θizt−i −
p

∑
i=1

∅jet−j

]
+ εt = �̂t + εt (11)

Let εi denoted as the residual from the linear model at time t. Then,

εt = yt − �̂t

where �̂t is the predicted value for time t from the estimated relationship in (1), with εt as
the residual at time t from the linear model. The residual dataset after ARIMA fitting will
only contain non-linear relationships that can be represented by a linear model [15]. The
first stage results, which include forecast values and residuals from linear modelling, are
then used in Part II.
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Following Part II, the emphasis is on nonlinear modelling, where LSSVM is used to pre-
dict the nonlinear connection that occurs in residuals of linear modelling and original data.
Then, the residual can be calculated using LSSVM by modelling various configurations
as follows:

Part II focuses on nonlinear modelling, and LSSVM is used to model the nonlinear (pos-
sibly linear) relationship that occurs in residuals of linear modelling as well as original data.
The residual can then be calculated using LSSVM by modelling different configurations
as follows:

εt = f (εt−1, εt−2, . . . εt−n) + et (12)

εt = f (εt−1, εt−12) + et (13)

yt = f
(
yt−1, yt−12, �̂t

)
+ et (14)

yt = f (yt−1, yt−12) + et (15)

where f is a nonlinear function determined by the LSSVMs model and et is the random
errors. Thus, the hybrid forecast is

ŷt = �̂t + N̂t (16)

Equations (12) and (13) can be identified as N̂t, therefore the forecasted values can be
achieved by summation of linear and nonlinear components. Figure 1 shows the functional
flowchart of hybrid models.

Figure 1. Flowchart process for hybrid ARIMA-LSSVM models.

In short, the proposed hybrid process methodology is divided into two parts. The
ARIMA model is used to analyse the linear composition problem in Part I. Part II develops
an LSSVM model to model the residuals from Part I. Because the ARIMA model in Part
I cannot handle the nonlinear component of the data, the residuals of the linear model
will include information about the nonlinearity. The LSSVM results can be utilised as
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forecasts of the ARIMA model’s error terms. The hybrid model defines various patterns
by combining the distinct features and strengths of the ARIMA and LSSVM models. As
a result, it is more effective to model linear and non-linear patterns separately with two
different models and then re-hybridize the forecast results to improve overall modelling
and forecasting performance.

2.5. Proposed Algorithm

Step 1: Three selected time series of COVID-19 cases datasets (1 October 2020–4 November
2022), namely daily new positive cases, daily new deaths cases, and daily new recovered
cases, are generated in R programming Language.
Step 2: Each of the generated datasets is defined as {X1i = x11, x12, x13, . . . , xn1}, {X2i = x21,
x22, x23, . . . , x2n}, and {X3i = x31, x32, x33, . . . , x3n} for daily new positive cases, daily new
deaths cases, and daily new recovered cases, respectively. Then, the best ARIMA (p, d, q) is
selected after checking the autocorrelation function (ACF) plot of ARIMA (p, d, q) residuals.
The best fitted value for daily new positive cases is ARIMA (2, 1, 2), while it is ARIMA (1,
1, 2) and ARIMA (0, 1, 1) for daily new fatalities cases and daily new recovered cases of
COVID-19, respectively.
Step 3: The fitted value, yt−i = (yt−1, yt−2, . . . , yt−m) and the residuals εt−i = (εt−1, εt−2,
. . . . , εt−n).
Step 4: Combine the values in step 3 as a set of input variables to obtain the output yt
Step 5: The ARIMA (p, d, q) is defined by the order of q. According to the information in
step 4, Vector Machines is carried out to examine the residuals to obtain the output Lt using
R-programming Language.
Step 6: A fitted value of ARIMA with the hybridization of Vector Machines model is
obtained for all sample data. Then, the residuals εt is generated to obtain the forecasting
result N̂t.
Step 7: The framing data split randomly into training data and testing data for further
Vector Machines modelling. Run the Vector Machines procedure using the “e1071” and
“liquidSVM” package in R-Programming Language.
Step 8: The two modifiable parameters of the LSSVM technique (γ and σ) derived by
objective function minimization such as mean square error (MSE). The grid-search method
updates the parameters exponentially in the specified range using predetermined equidis-
tant steps.
Step 9: Assume the split data as the processing data and the order q as in Step 5. Therefore,
the combine forecast as in Equation (16): ŷt = �̂t + N̂t
Step 10: Estimate the model performance using the statistical measurement which are MSE,
RMSE, MAE, and MAPE.

2.6. Forecasting Evaluation Criteria

In order to assess the overall performance of the proposed hybrid models, the one of a
kind statistical measurements standard which accompanied by [15,16,36] including MAE
(Mean Absolute Error), MAPE (Mean Absolute Percentage Error), MSE (Mean Squared
Error), and RMSE (Root Mean Squared Error) are used.

MAE =
1
n ∑n

t=1

∣∣∣∣ŷt − yt

∣∣∣∣
MAPE =

1
n ∑n

t=1

∣∣∣∣ ŷt − yt

yt

∣∣∣∣× 100

MSE =
1
n ∑n

t=1(ŷt − yt)
2

RMSE =

√
1
n ∑n

t=1(ŷt − yt)
2 =

√
MSE
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In time-series analysis, measurement tools such as Akaike’s information criterion
(AIC) and the Bayesian information criterion (BIC) are commonly used to determine the
appropriate length for distributed lag for the ARIMA model. As a result, model selection
is based on the model with the lowest AIC and BIC values to provide measures of model
performance, resulting in the selection of the best ARIMA model. Meanwhile, three
parameters such as C are used as measurement tools to determine the best fitted model for
LSSVMs models. Meanwhile, for the LSSVMs models, two parameters such as γ and σ are
used as the measurement tools to determine the best fitted model.

Incorrect LSSVM model parameter selection can lead to over or underfitting of the
training data. The parameter sets of the LSSVMs model with the lowest MSE value, as with
the ARIMA model, will be selected for use in the best fitting model. As a result, for the
hybrid models, the ARIMA first functioned as a pre-processor, filtering the linear pattern
of datasets. The ARIMA model’s error term is then fed into the SVM in the hybrid models.
LSSVMs were used to reduce the ARIMA error function.

3. Results and Discussion

3.1. Application of the Hybrid Model of COVID-19 in Malaysia

This section examined the proposed model’s performance in two ways: first, the
performance of the proposed models compared to ARIMA, SVM, LSSVM, ARIMA–SVM,
and ARIMA–LSSVM models; second, the percentage improvement of the proposed models
compared to ARIMA and SVM models. Since the World Health Organization (WHO)
declared COVID-19 to be a worldwide pandemic, the COVID-19 time-series datasets have
been extensively studied. The predictive capability of the developed novel models was then
compared using three well-known datasets of daily COVID-19 cases in Malaysia—daily
new positive cases data, daily new fatalities cases data, and daily new recovered cases data—
to demonstrate the performance of the proposed model in terms of accuracy, effectively,
and accurately. All these data are reported from the 1 October 2020 to 4 November 2022
and retrieved from the COVIDNOW website at https://covidnow.moh.gov.my/, accessed
on 10 January 2023.

The minimum value of new death, new cases, and new recovered cases in Table 1 is 0,
2600, and 1.8, respectively, while the maximum value of new cases, death, and recovered
cases is 33,872.0, 592, and 33,406, respectively. Similarly, the mean and median for new
cases, deaths, and recovered cases are 6322.7, 47.51, and 6415.5, respectively, where the
parentheses indicate the median (3471, 11, 3447.0). The first quartile values for daily new
cases, death cases, and recover cases are 1922, 4, and 1843, respectively. The number of daily
new cases, deaths, and recoveries in the third quartile is 6824, 58, and 6775, respectively.
Furthermore, the standard deviations for new cases, deaths, and recoveries are 7097.8,
81.12, and 7058.3 percentiles, respectively.

Table 1. Descriptive statistics of COVID-19 daily new cases, death, and recovered cases of Malaysia.

New Case New Death New Recovered

Min 2.60000 × 102 0 1.8
1st Qu 1.9220 × 103 4 1.8430 × 103

Median 3.4710 × 103 11 3.4470 × 103

Mean 6.4155 × 103 47.5098 6.3227 × 103

3rd Qu 6.8240 × 103 58 6.7750 × 103

Max 3.3406 × 104 592 3.3872 × 104

SD 7.0978 × 103 81.1215 7.0583 × 103

Furthermore, this section discusses the process of proposed models for both parts,
i.e., Part I (Linear Modelling) and Part II (Nonlinear Modelling), using three well-known
COVID-19 datasets, namely daily new positive cases, daily new deaths cases, and daily
new recovered cases, to demonstrate the effectiveness of the proposed models. Both linear
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and nonlinear modelling, as well as the data used in this study, are carried out using
R programming.

Part I (Linear Modelling)—ARIMA is used to generate the best ARIMA model for the
daily new positive case dataset (2, 1, 2). ARIMA is the best fitting ARIMA model for the
daily new death case dataset (1, 1, 2). Meanwhile, the best ARIMA model is reported as
ARIMA in the case of the daily new recovered cases dataset (0, 1, 1). Table 2 summarizes
the results of this ARIMA (p, d, q) model. Table 3 displays the estimates for all parameters.
The p-values for all parameters are small, as shown in this table. As a result, for confirmed,
recovered, and death cases, the models were statistically significant and could be used to
forecast the future [37,38].

Table 2. The best ARIMA (p, d, q) model selection.

COVID-19 Daily Cases ARIMA (p, d, q) AIC BIC

Daily New Positive Cases (2, 1, 2) 12,564.54 12,587.73
Daily New Deaths Cases (1, 1, 2) 6930.12 6948.63

Daily New Recovered Cases (0, 1, 1) 13,044.74 13,054.01

Table 3. Parameter estimates of ARIMA models and their p-values.

Model Parameters Estimate Z-Stat p-Value

New Case ARIMA (2, 1, 2)
θ1 1.2408 120.085 2.2 × 10−16

θ2 −0.9715 −98.320 2.2 × 10−16

ϕ1 −1.2628 −42.225 2.2 × 10−16

ϕ2 0.8738 48.102 2.2 × 10−16

Recovered Case ARIMA (0, 1, 1) 2.2 × 10−16

ϕ1 −0.3473 −9.953 2.2 × 10−16

Death Case ARIMA (1, 1, 2) 2.2 × 10−16

θ1 0.8595 19.852 2.2 × 10−16

ϕ1 −1.6196 −35.651 2.2 × 10−16

ϕ2 0.7039 20.432 2.2 × 10−16

Part II (Nonlinear Modelling)—Based on the concepts of support vector machine
design and the use of pruning algorithms in R-programming software, an optimal machine
learning algorithm was created. For the daily new positive COVID-19 cases datasets,
parameters γ = 264, σ = 0.008 show the smallest values of MSE i.e., 6,661,412 (see Table 4).
Therefore, this parameters value was selected for use in the best-fitting model for the
datasets of daily new positive COVID-19 cases. Whereas the smallest value of MSE is
250.887 and 21114252 (Table 4), with parameters γ = 877, σ = 0.006 and γ = 334, σ = 0.008
are selected as the best-fitting model for daily new death and daily new recovered cases of
COVID-19, respectively.

Table 4. LSSVMs Model Parameters for the daily new COVID-19 cases datasets.

COVID-19 Daily Cases LSSVM Parameter MSE

γ = 11, σ = 0.008 11,432,512
γ = 38, σ = 0.008 10,235,488

Daily New Positive Cases γ = 74, σ = 0.008 9,025,413
γ = 110, σ = 0.008 8,014,123
γ = 264, σ = 0.008 6,661,412
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Table 4. Cont.

COVID-19 Daily Cases LSSVM Parameter MSE

γ = 25, σ = 0.006 1678.364
γ = 56, σ = 0.006 1233.481

Daily New Deaths Cases γ = 277, σ = 0.006 965.143
γ = 436, σ = 0.006 554.368
γ = 877, σ = 0.006 250.887

γ = 54, σ = 0.008 28,412,113
γ = 89, σ = 0.008 27,140,039

Daily New Recovered Cases γ = 125, σ = 0.008 26,412,142
γ = 275, σ = 0.008 23,032,256
γ = 334, σ = 0.008 21,114,252

3.1.1. New Positive Cases Data Forecasts

The daily new positive cases datasets series contains 765 data points and is recoded
from 1 October 2020 to 4 November 2022 (see Figure 2). The number of daily new positive
COVID-19 cases in Malaysia has increased significantly twice since July 2021, but has now
dropped below 5000 new cases. However, it has continued and increased to a maximum
of 33,406.00 around March–April 2022. This figure is expected to fall precipitously un-
til 5 November 2022. The COVID-19 datasets have been extensively used with a wide
range of linear and nonlinear time-series models, including ARIMA and machine learning
methods [7–9,11,13,16,19–26]. The analysis of daily new positive cases of COVID-19 is
critical as an indicator of the effectiveness of preventive measures that have been taken,
are being taken, and will be taken by authorities to control the spread of this epidemic
more effectively.

Figure 2. Malaysian daily new positive COVID-19 cases (1 October 2020 to 4 November 2022).

Therefore, a similar approach to that used by Aisyah et al. [15] is used to investigate
the performance of the proposal models on daily new positive cases of COVID-19 datasets,
where the dataset is divided into two samples, known as training sample and testing
sample. According to Aisyah et al. [15] and Nurul Hila et al. [16], datasets should be
divided into two parts to achieve the best results: 70–80% for training and the remaining
20–30% for testing [39,40]. The training data are used to assemble the models, while the
testing data are used to evaluate the forecasting performances of the models based on
statistical measurements. Thus, the daily new positive cases of the COVID-19 dataset
are divided into two samples in this study: the training dataset and the test dataset. The
training datasets contain 612 observations from day 1 to day 612, accounting for 80% of
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the datasets used exclusively to formulate from 1 October 2020 to 4 June 2022. In order to
evaluate the forecasting performance of proposed models, the test sample datasets used
approximately 153 observations from days 613–765 (20%) from the 5 June 2022 to the 4
November 2022

Table 5 displays the performance of the proposed model on the daily new positive
COVID-19 case datasets. The proposed models produced results in terms of measurement
error terms, namely MSE and MAE, which have smaller values of 10634.1142 and 46.54471,
respectively. Similar results were obtained from the testing datasets, with MSE, MAPE,
RMSE, and MAE values of 25478.114, 0.01547, 159.6182, and 75.6987, respectively. The
findings are examined in greater detail using figures such as those shown in Figure 3a–e
based on these numerical results. The estimated values for the proposed model (test
sample) of daily new positive COVID-19 cases are shown in this figure. The proposed
model line, as seen in this figure, closely matches the actual data. Figure 4a–e show the
estimated values of our model for test sample data of ARIMA, SVM, LSSVM, ARIMA-SVM,
and ARIMA–LSSVM models for COVID-19 cases. A comparison of the proposed model’s
(ARIMA–LSSVM) lines for the test sample (Figure 4e) with the lines from the ARIMA, SVM,
LSSVM, and ARIMA–SVM models (Figure 4a–d) clearly shows that the proposed model’s
lines are somewhat close to the actual data. When we compared the performance of our
proposal models to the performance of ARIMA, SVM, LSSVM, and ARIMA–SVM models,
we discovered that our proposal models are efficient, accurate, and precise. In addition, the
number of daily new positive COVID-19 cases is plotted, as shown in Figure 5. The daily
new positive cases of COVID-19 for Malaysia are forecasted based on this figure for the
next three weeks.

Table 5. Performance measures of the proposed model for daily new positive COVID-19 cases datasets.

MODELS
TRAIN TEST

MSE MAE MSE MAPE RMSE MAE

ARIMA 929,843.169 611.0274 298,988.28 0.15167 546.7982 397.57
SVM 8,355,184.483 2001.644 274,588.16 0.15421 524.0116 390.3848

LSSVM 1084.1527 739.5387 83,026.550 0.07580 288.1432 205.6450
ARIMA–SVM 42,552.7137 90.34845 61,223.474 0.05633 247.4337 146.9841

ARIMA–LSSVM 10,634.1142 46.54471 25,478.114 0.01547 159.6182 75.6987

Based on Table 6, we examined the performance of the proposed models for the daily
newly positive COVID-19 cases dataset by comparing the percentages of MSE, MAPE,
RMSE, and MAE. The study hypothesis investigates the assumptions of the proposed
hybrid model (ARIMA–LSSVM) approach to single ARIMA, SVM, LSSVM models, as
well as hybrid ARIMA–LSSVM models. The proposed model outperformed the ARIMA–
SVM model in MAE, MAPE, MSE, and RMSE, with improvements of 48.50%, 72.54%,
58.39%, and 35.50%, where the parentheses indicate an ARIMA, SVM, and LSSVM model,
respectively, that results in the following: 80.96%, 89.80%, 91.48%, 70.81%; 80.61%, 89.97%,
90.72%, 69.54%; 63.20%, 79.59%, 69.31%, 44.60%. As a result of these findings (Tables 5
and 6 and Figures 3–5), it is possible to conclude that the proposed model produced greater
accuracy and efficiency than ARIMA and SVM.

Table 6. Percentage improvement of the proposed models with other forecasting models (the COVID-
19 cases of daily new positive cases).

Model MAE MAPE MSE RMSE

ARIMA 80.9596549 89.80022417 91.47855762 70.80857252
SVM 80.60920917 89.96822515 90.72133554 69.53918577

LSSVM 63.18962289 79.59102902 69.31329316 44.60455773
ARIMA–SVM 48.49871517 72.5368365 58.38505669 35.49051726

224



Diagnostics 2023, 13, 1121

(a
) 

(b
) 

(c
) 

(d
) 

F
ig

u
re

3
.

C
on

t.

F
ig

u
re

3
.

R
es

u
lt

s
ob

ta
in

ed
fr

om
th

e
p

ro
p

os
ed

m
od

el
fo

r
d

ai
ly

ne
w

p
os

it
iv

e
C

O
V

ID
-1

9
ca

se
s

d
at

as
et

:(
a
)a

ct
u

al
d

at
a

vs
.A

R
IM

A
m

od
el

,(
b

)
ac

tu
al

d
at

a
vs

.L
SS

V
M

m
od

el
s,

(c
)a

ct
ua

ld
at

a
vs

.S
V

M
m

od
el

,(
d

)a
ct

ua
ld

at
a

vs
.A

R
IM

A
–S

V
M

m
od

el
s,

(e
)a

ct
ua

ld
at

a
vs

.A
R

IM
A

–L
SS

V
M

m
od

el
s.

225



Diagnostics 2023, 13, 1121

(a
) 

(b
) 

F
ig

u
re

4
.

C
on

t.

226



Diagnostics 2023, 13, 1121

 

(c
) 

(d
) 

 
(e

) 

F
ig

u
re

4
.

M
od

el
s’

pr
ed

ic
tio

n
of

da
ily

ne
w

po
si

tiv
e

C
O

V
ID

-1
9

ca
se

s
da

ta
se

t(
20

%
te

st
sa

m
pl

e)
:(

a
)a

ct
ua

ld
at

a
vs

.A
R

IM
A

m
od

el
,(

b
)a

ct
ua

ld
at

a
vs

.S
V

M
m

od
el

,(
c)

ac
tu

al
da

ta
vs

.L
SS

V
M

m
od

el
s,

(d
)a

ct
ua

ld
at

a
vs

.A
R

IM
A

–S
V

M
m

od
el

s,
(e

)a
ct

ua
ld

at
a

vs
.A

R
IM

A
–L

SS
V

M
m

od
el

s.

227



Diagnostics 2023, 13, 1121

 
F

ig
u

re
5

.
A

ct
ua

la
nd

th
re

e
w

ee
ks

ah
ea

d
fo

re
ca

st
ed

va
lu

es
of

A
R

IM
A

,S
V

M
,L

SS
V

M
,A

R
IM

A
–S

V
M

,a
nd

A
R

IM
A

–L
SS

V
M

m
od

el
s

fo
r

ne
w

ca
se

s
of

C
O

V
ID

-1
9

of
th

e
80

%
tr

ai
ni

ng
an

d
20

%
te

st
in

g
se

t.

228



Diagnostics 2023, 13, 1121

3.1.2. New Deaths Cases Data Forecasts

In addition to the Malaysian daily new positive COVID-19 cases datasets, the Malaysian
daily new deaths cases datasets are taken into account and used to evaluate the perfor-
mance of the proposed models. This dataset, like the daily new positive dataset and the
daily new death case dataset, has a recording period of 1 October 2020 to 4 November
2022 (see Figure 6) and contains 765 data points divided into two samples. As the number
of daily positive COVID-19 cases reported rises, so does the number of deaths, which
now stands at around 600. The training dataset contains 612 observations (80%) from 1
October 2020 to 4 June 2022, and the test sample contains approximately 153 observations
(20%) from 5 June 2022 to 4 November 2022 to evaluate the prediction performance of the
proposed model.

Figure 6. Malaysian daily new deaths COVID-19 cases (1 October 2020 to 4 November 2022).

A similar approach to the daily new positive cases of the COVID-19 dataset was
used to study the performance of the proposed model on the daily new death cases of the
COVID-19 dataset. The dataset was divided into two samples, namely training sample
and testing sample. It accounts for approximately 80% of the daily new death cases in the
COVID-19 dataset for the training sample (involving 612 observations with the period 1
October 2020 until 4 June 2022). The remaining 20% is for the test sample, which includes
approximately 153 observations from 5 June 2022 to 4 November 2022.

As shown in Table 7, the performance of the proposed models using the daily new
deaths datasets from COVID-19 is first characterized by statistical measurements such
as MSE, MAPE, RMSE, and MAE. The results for the training data in this table show
that the proposed model produces the smallest MSE and MAE values of 19.6422 and
1.03218, respectively, when compared to ARIMA, SVM, LSSVM and ARIMA–SVM. The
same pattern can be seen in the test data, where all the statistical measures used have the
lowest values when compared to the ARIMA, SVM, LSSVM, and ARIMA–SVM models.

Table 7. Performance measures of the proposed model for daily new deaths COVID-19 cases datasets.

MODELS
TRAIN TEST

MSE MAE MSE MAPE RMSE MAE

ARIMA 697.999 11.8083 6.06741 0.56838 2.46321 1.92791
SVM 1409.19 21.8006 5.38920 0.53687 2.32146 1.85605

LSSVM 505.181 11.4309 5.38920 0.53687 2.32146 1.85605
ARIMA–SVM 49.4459 3.53812 0.92630 0.19088 0.96303 0.76230

ARIMA–LSSVM 19.6422 1.03218 0.89114 0.18741 0.94400 0.72364
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The study then examines the estimated value of the suggested model for the COVID-19
case dataset for daily deaths, as shown in Figure 7a–e. This graph makes it abundantly
clear that the proposed model line and the observed data are nearly identical. Additionally,
Figure 8a–e each show the estimated values for the test sample for ARIMA, SVM, LSSVM,
ARIMA–SVM and ARIMA–LSSVM the suggested models. Once more, it is obvious that
when compared to ARIMA, SVM, LSSVM, and ARIMA–SVM models, the test sample
lines for our suggested model (Figure 8e) are somewhat close to the actual data. This
demonstrates that the outcomes of our suggested model are in line with prior findings
and are more effective, accurate, and precise than those of ARIMA, SVM, LSSVM, and
ARIMA–SVM models. The number of daily COVID-19 death cases is also plotted, just
like in Figure 9. The daily new death cases of COVID-19 in Malaysia are anticipated to
decline because of this number over the course of the following three weeks, indicating a
downward trend.

As shown in Table 8, a similar method in the daily addition of positive COVID-19
case dataset is used to investigate the performance of the proposed model for the daily
recorded death COVID-19 case dataset using percentages MSE, MAPE, RMSE, and MAE.
Again, the percentage of improvement shows that our proposed model outperforms the
ARIMA–LSSVM models for all statistical measures, with results of 5.07%, 1.82%, 3.80%,
and 1.98%, respectively; there are also improvements (62.47%, 67.03%, 85.31%, 61.68%;
61.61%, 66.74%, 83.92%, 59.90%; 61.01%, 65.10%, 83.50%, 59.34%) for MAE, MAPE, MSE,
and RMSE. The ARIMA, SVM, LSSVM, and ARIMA–SVM model results are shown in
parentheses. The presented results (see Tables 7 and 8 and Figures 7–9) clearly show that
our proposed model outperforms the ARIMA, SVM, LSSVM, and ARIMA–SVM models in
terms of efficiency and accuracy.

Table 8. Percentage improvement of the proposed models with other forecasting models (the COVID-
19 cases of daily new death cases).

Model MAE MAPE MSE RMSE

ARIMA 62.46505283 67.02734086 85.31267872 61.67602437
SVM 61.60592539 66.73588924 83.92334934 59.90434808

LSSVM 61.01182619 65.09210796 83.46433608 59.33593514
ARIMA–LSSVM 5.071494162 1.81789606 3.795746518 1.976054744

3.1.3. New Recovered Cases Data Forecasts

The investigation to study the performance of the proposed model is continued with
the dataset of new daily recovered cases of COVID-19 in Malaysia. Predicting Malaysia’s
daily new recovered COVID-19 cases is just as important as the previous two datasets. The
data used in this paper include daily observations from 1 October 2020 to 4 November 2022,
for a total of 765 data points in the time series (Figure 10). The number of patients recovered
from COVID-19 exhibits the same trend, with a significant increase twice. Beginning in
July 2021, the number of recovered patients increases exponentially until it reaches over
22,500.00 in August 2021 (the time-series plot is shown in Figure 10) and then drops.
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Figure 10. Malaysian daily new recovered COVID-19 cases (1 October 2020 to 4 November 2022).

However, around March–April 2022, the number of recovered COVID-19 cases in-
creased again to a maximum of 33,872.00, then decreased and showed a relatively stable
movement after that. This dataset is also divided into two samples, namely the training
dataset and the test dataset. The training dataset, which included 612 observations (80%)
from 1 October 2020 to 4 June 2022, was used in the same way as the previous datasets
to formulate the model. In contrast, the test sample uses approximately 153 observations
(20%) for the period 5 June 2022–4 November 2022. Table 9 displayed the performance of
the proposed model on the daily new recovered COVID-19 case datasets based on training
and testing samples. The results in Table 9 clearly show that the proposed training sample
model produces the smallest MSE and MAE values, with 47602.551 and 80.2214, respec-
tively, when compared to the MSE and MAE models of the ARIMA, SVM, LSSVM, and
ARIMA–LSSVM models. For the test sample, the same scenario as the training sample pro-
duced the smallest MSE, MAPE, RMSE, and MAE with values of 13004.11, 0.0125, 114.0351,
and 54.14471, respectively, when compared to ARIMA, SVM, LSSVM, ARIMA–SVM and
ARIMA–LSSVM models.

Table 9. Performance measures of the proposed model for daily new recovered COVID-19 cases datasets.

MODELS
TRAIN TEST

MSE MAE MSE MAPE RMSE MAE

ARIMA 1,802,678.36 804.4378 271,462.22 0.1560 521.0203 387.2768
SVM 7,636,804.13 1890.917 239,672.00 0.1504 489.5630 371.6573

LSSVM 1,206,113.52 723.9413 149,871.53 0.1127 387.1324 285.9190
ARIMA–SVM 99,205.699 136.8519 26,108.02 0.0396 161.5797 104.1002

ARIMA–LSSVM 47,602.551 80.2214 13,004.11 0.0125 114.0351 54.14471

Figure 11a–e shows the estimated value of the dataset for daily new recovered COVID-
19 cases for the test sample. Once more, this graph demonstrates how closely the predicted
value from the proposed models seems to match the actual values. Figure 12a–e present an
additional analysis of the outcomes of the proposed model. These plots (Figure 12a–e) show
the predicted values for the test samples derived from ARIMA, SVM, LSAVM, ARIMA–
SVM and ARIMA–LSSVM models. In these models, however, the proposed model is close
to the true value because, as we shall see in Figure 11e, the proposed model dominates them.
As shown in Figure 13, the number of daily new recovered COVID-19 cases is plotted. This
figure makes it abundantly clear that the suggested model maintains the data’s original
sharpness. The daily new recovered COVID-19 cases for Malaysia are predicted from this
figure for the upcoming three weeks, and it suggests that these cases will rise in the days to
come in Malaysia.
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As shown in Table 10, further research was completed to determine how well the
proposed models performed for the daily newly recovered COVID-19 case datasets for
MSE, MAPE, RMSE, and MAE in terms of the percentage. When comparing the results
of the proposed model to ARIMA, SVM, LSSVM, and ARIMA–SVM models, the results
show a better improvement when looking at the percentage of improvement for statistical
measurements such as MSE, MAPE, RMSE, and MAE, with results of 47.99%, 68.43%,
50.20%, and 9.42% improvement (86.02%, 91.99%, 95.21%, 78.11%; 85.43%, 91.69%, 94.57%,
76.71%; 81.06%, 88.91%, 91.32%, 70.54%). The results reported in the parentheses are the
ARIMA, SVM, LSSVM, and ARIMA–SVM models. As a result, based on the findings,
the proposed model has produced results that are more accurate and effective than those
produced by ARIMA, SVM, LSSVM, and ARIMA–SVM models.

Table 10. Percentage improvement of the proposed models with other forecasting models (the
COVID-19 cases of daily new recovered cases).

Model MAE MAPE MSE RMSE

ARIMA 86.01911863 91.98717949 95.20960596 78.11311767
SVM 85.43154944 91.68882979 94.57420558 76.70675684

LSSVM 81.06291992 88.90860692 91.32316191 70.54364347
ARIMALSSVM 47.98789051 68.43434343 50.19112901 29.42485968

4. Conclusions

In conclusion, predicting the spread of COVID-19 with accuracy and efficiency is
essential but frequently challenging for decision-makers, especially the front-line workers
and health care authorities. Despite what might seem to be an endless spread of COVID-19,
there have been numerous efforts to develop time-series models and ongoing research to
enhance forecasting model efficacy. One of the most well-liked types of hybrid models that
divide time series into linear and non-linear forms is the hybrid approach. In this study, a
hybrid model that combines some linear and non-linear predictions is proposed. Utilizing
three well-known COVID-19 datasets—daily new positive cases, daily new death cases,
and daily new recovered cases—revealed that our proposed models were demonstrated
as having the highest efficiency, accuracy, and precision. In comparison to ARIMA, SVM,
LSSVM, and ARIMA–SVM models, the proposed model with cross-validation check based
on MSE, RMSE, MAE, and MAPE makes the most accurate predictions. In terms of
performance (the proposed models compared to ARIMA, SVM, LSSVM and ARIMA–SVM
models) for both the training and testing datasets, the proposed models’ performance yields
the smallest values of MSE, RMSE, MAE, and MAPE. This indicates that the proposed
model’s predicted value is more closely aligned with the observed value. Therefore, our
proposed models had a higher level of precision and could be suggested for COVID-19
forecasting. It can be concluded that the proposed model may be the most efficient and
effective way to increase prediction accuracy performance, especially since it is important
to anticipate and stop the spread of COVID-19 cases.

5. Limitations and Future Recommendation

In this research study, an attempt was made to predict the overall number of confirmed
cases, fatalities, and recoveries of COVID-19 in Malaysia. Investigating SVM performance
with various kernel functions and developing the best hyperparameters for the SVM fore-
casting model can help to increase the forecast’s accuracy in upcoming work. Since only
one-step-ahead forecasting is considered in this paper, multi-step forecasts can be cen-
tralised in subsequent work. It has been demonstrated that multi-step forecasts can greatly
increase the trading system’s realism [41,42]. Additionally, to improve the performance
of the model in terms of efficiency and accuracy of dataset prediction, hybrid approaches
such as bootstrap and double bootstrap methods [16,43,44] can be considered in the hy-
bridization of ARIMA and SVM. Given the dearth of researchers using bootstrap in daily
COVID-19 forecasting cases, it is a reliable method. Numerous studies have demonstrated
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that the bootstrap resampling method yields a more precise estimate [45]. Future studies
should also consider (i) the clinical and behavioural aspects such as actions, cognition, and
emotions and (ii) the possibility of the underreporting of cases and deaths, as well as delays
in notifications, in order to avoid biased predictions, forecasts, and results.
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