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Stéphane Caro
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In the field of parallel robots, marked by the birth and application of the Gough–
Stewart parallel mechanism [1] in the 1960s, great progress has been made in the past 60
years. The most notable feature of a parallel robot is that there are multiple closed-loop
branch chains jointly connecting and driving the moving platform [2], which gives great
flexibility in its configurations, creating a new way to change performance through robot
configuration. Parallel robots usually have outstanding advantages of high stiffness, high
precision, and high speed [3], which make up for the performance shortcomings of serial
robots. The abundant configurations and complex mechanisms of parallel robots also
present challenges in terms of configuration synthesis, performance evaluation, modeling,
calibration, control, etc. Opportunities coexist with challenges, and parallel robots attract
attention from both academia and industry. Today, parallel robots are constantly enriched,
and new types of parallel robots, such as cable-driven parallel robots (CDPRs) [4], soft
parallel robots [5], and hybrid robots [6], are constantly emerging. In particular, while inher-
iting the abovementioned advantages, a CDPR has the advantages of low cost, high energy
efficiency, easy reconfiguration, and light weight, showing great application potential in
scenarios such as large working spaces, heavy loads, high speeds, and bionics [7,8]. Parallel
robotics research and applications show continued vitality and are expected to transform
the industry in the future.

This Special Issue provides an international forum for professionals, academics, and
researchers to present the latest developments from theoretical studies and applications
of parallel robots. It includes 10 selected papers, covering important aspects of parallel
robots such as modeling and control, error analysis and calibration, singularity analysis,
and trajectory planning. The contents of these studies are briefly described here.

In [9], an evaluation model is established to analyze the influence of geometric errors
on limbs’ comprehensive deformations for an over-constrained parallel manipulator. The
evaluation model is established based on kinematics and verified through simulations. Two
global sensitivity indices are proposed, and a sensitivity analysis is conducted using the
Monte Carlo method throughout the reachable workspace. The geometric errors that have
greater effects on the average angular comprehensive deformation are identified.

In [10], a consistent solution strategy for static equilibrium workspaces of different
types of under-constrained cab-driven robots is presented. The dynamic models and
parameters that are applied to make the system stable for point-to-point movements are
introduced. The constraints of the dynamics model are incorporated into the trajectory
planning process to achieve point-to-point trajectory planning for the under-constrained
cable-driven robots.

In [11], the authors present the singularity analysis and the geometric optimization
of a 6-DOF (Degrees of Freedom) parallel robot for SILS (Single-Incision Laparoscopic
Surgery). Based on a defined set of input/output constraint equations, the singularities
of the parallel robotic system are determined and geometrically interpreted. Then, the

Machines 2023, 11, 386. https://doi.org/10.3390/machines11030386 https://www.mdpi.com/journal/machines1
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geometric parameters for the 6-DOF parallel robot are optimized to make the operational
workspace singularity-free.

Paper [12] focuses on pick-and-place trajectory planning and tracking control of a
cable-based gangue-sorting robot in the operation space. A four-phase pick-and-place
trajectory planning scheme based on an S-shaped acceleration/deceleration algorithm
and the quantic polynomial trajectory planning method is proposed. A robust adaptive
fuzzy tracking control strategy is presented against inevitable uncertainties and unknown
external disturbances. The proposed method guarantees a stable and accurate pick-and-
place trajectory tracking process.

Paper [13] proposes a fractional-order impedance control scheme, named KDHD, in
which additional damping is added, proportional to the half-order derivatives of the end-
effector position errors according to the half-derivative damping matrix, HD. The proposed
impedance controller represents an extension to multi-input multi-output robotic systems
of the PDD1/2 controller for single-input single-output systems, which over performs the
PD scheme in the transient behavior.

Paper [14] focuses on the dynamic modeling, workspace analysis, and multi-objective
structural optimization of a large-span, high-speed, cable-driven parallel camera robot. The
curved cable, due to the self-weight, is modeled as a catenary, and the dynamic model is
derived by decomposing the motion of the cable into an in-plane motion and an out-plane
motion. An optimization model is presented to simultaneously improve the workspace
volume, anti-wind disturbance ability, and impulse of tensions on the camera and pan-tilt
device system (CPTDS).

In [15], the authors present kinematic and dynamic modeling and workspace analysis
for a novel suspended CDPR which generates Schönflies motions. The kinematics of the
CDPR are solved through a geometrical approach. The dynamic feasible workspace of the
robot is determined. Experiments are performed on a prototype of the robot to demonstrate
the correctness of the derived models and workspace.

Paper [16] proposes a new method for the kinematic calibration of parallel robots to
strict pose error bounds. The new method includes a new pose error model with 60 error
parameters and a different kinematic parameter error identification algorithm based on L-
infinity parameter estimation. Parameter errors are identified by using linear programming.
The feasibility and validity of the proposed kinematic calibration are verified through both
simulations and experiments.

Paper [17] studies the 3-DOF cutting stability and surface quality optimization of a
parallel kinematic manipulator (PKM). A prediction model for the 3-DOF stability of helical
milling based on the PKM is established through a semi-discrete method based on the
natural frequency analysis of the PKM and a cutting force model of titanium alloy helical
milling. A step-cutter is used to improve the machining process by enhancing the stability
domain. The proposed method can provide a reference for further optimization of the
prediction and optimization of the milling of difficult-to-process materials based on a PKM
in the future.

In [18], the authors develop a simple model to evaluate the first natural frequencies of
over-constrained PKMs. The PKM legs are modeled by beams, and constraint equations
between the parameters are determined according to screw theory. The focus of this paper is
to determine the global mass and stiffness matrices of the PKM in stationary configurations
without the use of Jacobian matrices. The proposed method can be easily used at the
conceptual design stage of PKMs.

The Guest Editors thank all of our colleagues who have taken interest in this Special
Issue, especially the authors of the papers published in this Special Issue. All the of papers
underwent a rigorous review process to ensure the high quality of the publications. We are
grateful to the reviewers who evaluated these papers and provided valuable comments
based on their professional perspectives. We also would like to thank the editors from
MDPI for their support and effort in the organization and publication of this Special Issue.
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It is hoped that the papers published in this Special Issue can be used as vehicles to
promote knowledge sharing in the field of parallel robots. More importantly, we hope
more people will be informed about and understand parallel robots and their latest tech-
nologies and actively participate in the innovation, research, development, and application
promotion of parallel robots.
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Article

Geometric Error Analysis of a 2UPR-RPU Over-Constrained
Parallel Manipulator

Xu Du 1, Bin Wang 1 and Junqiang Zheng 2,*

1 School of Mechanical Engineering, Zhejiang Sci.-Tech. University, Hangzhou 310018, China
2 School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
* Correspondence: zhengjunqiang@hdu.edu.cn

Abstract: For a 2UPR-RPU over-constrained parallel manipulator, some geometric errors result in
internal forces and deformations, which limit the improvement of the pose accuracy of the moving
platform and shorten the service life of the manipulator. Analysis of these geometric errors is
important for restricting them. In this study, an evaluation model is established to analyse the
influence of geometric errors on the limbs’ comprehensive deformations for this manipulator. Firstly,
the nominal inverse and actual forward kinematics are analysed according to the vector theory
and the local product of the exponential formula. Secondly, the evaluation model of the limbs’
comprehensive deformations is established based on kinematics. Thirdly, 41 geometric errors causing
internal forces and deformations are identified and the results are verified through simulations based
on the evaluation model. Next, two global sensitivity indices are proposed and a sensitivity analysis
is conducted using the Monte Carlo method throughout the reachable workspace of the manipulator.
The results of the sensitivity analysis indicate that 10 geometric errors have no effects on the average
angular comprehensive deformation and that the identified geometric errors have greater effects on
the average linear comprehensive deformation. Therefore, the distribution of the global sensitivity
index of the average linear comprehensive deformation is more meaningful for accuracy synthesis.
Finally, simulations are performed to verify the results of sensitivity analysis.

Keywords: 2UPR-RPU parallel manipulator; over-constrained parallel manipulator; geometric error;
deformation; sensitivity analysis

1. Introduction

Parallel mechanisms with three DOFs have been successfully applied to hybrid serial–
parallel machine tools, such as the well-known Eco-speed series, Tricept, and Exechon [1–6],
owing to their high stiffness, large payload, and good dynamics. To achieve a simpler
structure, Li et al. [3] designed a 2R1T (R denotes a rotational DOF, and T denotes a
translational DOF) parallel mechanism named 2UPR-RPU. This mechanism is not only
easier to control but also suitable for many operations along the surfaces. However, it is an
over-constrained parallel mechanism with common constraints and over-constraints [7,8].
Some geometric errors in a manipulator based on this mechanism break the common
constraints and over-constraints, resulting in internal forces and deformations. The internal
forces and deformations not only limit the further improvement of the pose accuracy of the
moving platform but also shorten the service life of the manipulator [9,10]. Therefore, it
is necessary to restrict the internal-force-and-deformation-related geometric errors in the
2UPR-RPU parallel manipulator.

The accuracy design [11–13] can be applied to restrict geometric errors by determining
the tolerances of the fabrication and assembly of machines. It consists of three components:
error modelling [14–16], sensitivity analysis [17–19], and accuracy synthesis [20–22], where
error modelling is the basis of sensitivity analysis and accuracy synthesis. Zhang et al. [13]
applied the closed-loop vector and first-order perturbation methods to establish a geometric

Machines 2022, 10, 990. https://doi.org/10.3390/machines10110990 https://www.mdpi.com/journal/machines5
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error model for a 2UPR-RPS over-constrained manipulator, and they identified the geomet-
ric errors that affected the pose errors of the moving platform. Zhang et al. [15] utilised the
screw theory to establish a geometric error model for a 4RSR-SS over-constrained parallel
tracking machine. With the use of the geometric error model, 53 geometric errors that
had a significant influence on the pose errors of the moving platform were identified after
sensitivity analysis. However, neither of the above two methods considers the deformations
caused by internal forces in over-constrained parallel manipulators. Taking parameter
uncertainties into account, Tang et al. [23] built a general interval kinetostatic model for a
2UPR-SPR over-constrained parallel machine to perform sensitivity analysis and tolerance
allocation. To predict the pose errors of an over-constrained extendible support structure,
Yu et al. [24] proposed a comprehensive model that simultaneously considered geometric
errors, joint gaps, and link flexibility. In spite of good accuracy, these two models are
complicated for the stiffness matrix needs to be derived and the stiffness coefficients of
parts need to be obtained via finite element software.

Affected by geometric errors, the end poses of different limbs of a parallel manip-
ulator should be theoretically inconsistent. However, they can be consistent in non-
overconstrained parallel manipulators due to the existence of the moving platform and the
motion deviations of passive joints. On this basis, a numerical iterative algorithm [25,26]
was proposed to analyse the kinematics of non-overconstrained parallel manipulators
with kinematic errors. Inspired by this algorithm, this study aims to establish an evalua-
tion model based on kinematics to analyse the influence of geometric errors on the limbs’
comprehensive deformations for the 2UPR-RPU over-constrained parallel manipulator.

Based on the established evaluation model, sensitivity analysis can help reveal the
influence of different internal-force-and-deformation-related geometric errors on the limbs’
comprehensive deformations. The interval analysis method and probabilistic method
have been commonly used for sensitivity analysis of the moving platform’s pose error in
literature. The interval analysis method treats geometric errors as interval variables and can
get a balance between calculation speed and accuracy [11,18]. Treating geometric errors as
random variables with a normal distribution, the probabilistic method can be divided into
the Monte Carlo method and the probability modelling method. The Monte Carlo method
calculates the moving platform’s pose errors according to the geometric error model and lots
of random values of a geometric error [22,27]. It has good accuracy and low computational
efficiency. The probability modelling method establishes an analytical model between
the standard deviation of each geometric error and that of the moving platform’s pose
error based on the geometric error model [28]. In spite of high computational efficiency,
this method needs prior knowledge about probability distributions. Considering that
the interval analysis method and probability modelling method are not suitable when
the geometric error model is iterative, the Monte Carlo method is utilised to analyse the
influence of geometric errors on the limbs’ comprehensive deformations in this paper.

The remainder of this paper is organised as follows. In Section 2, the 2UPR-RPU paral-
lel mechanism is briefly introduced. Section 3 presents an analysis of the nominal inverse
kinematics and actual forward kinematics. Section 4 establishes an evaluation model of the
limbs’ comprehensive deformations caused by geometric errors. Based on the evaluation
model, the internal-force-and-deformation-related geometric errors are identified and the
results are verified through simulations in Section 5. In Section 6, two global sensitivity
indices are proposed and sensitivity analysis is conducted. Simulations are also performed
to verify the results of sensitivity analysis. Finally, the conclusions are drawn in Section 7.

2. 2UPR-RPU Parallel Mechanism

As shown in Figure 1, the 2UPR-RPU parallel mechanism mainly consists of a moving
platform, two UPR limbs, one RPU limb, and one fixed base, where the moving platform
and fixed base are represented by the isosceles right triangles ΔA1A2A3 and ΔB1B2B3. U,
P, and R denote universal, prismatic, and revolute joints, respectively. B1, B2 and A3 are
the centres of U, and A1, A2 and B3 are the centres of R. Because each universal joint is
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equivalent to two mutually perpendicular revolute joints, the UPR limb is equivalent to
the RRPR limb, and the RPU limb is equivalent to the RPRR limb. The axis of the jth joint
of the ith limb is denoted by si,j. A fixed coordinate system {oB; x, y, z} is established at
the midpoint between B1 and B2, where x points from B2 to B1 and y points from oB to
B3. Similarly, a moving coordinate system {oA; u, v, w} is also established, where u points
from A2 to A1 and v points from oA to A3. The coordinate axes z and w are determined
using the right-hand rule. For the 2UPR-RPU parallel mechanism, each limb exerts a force
and a couple on the moving platform [8], where the two forces from the UPR limbs are
parallel to v, and the three couples from the UPR and RPU limbs rotate around w. It is
worth mentioning that the two forces parallel to v will lead to over-constraint, and the
three couples rotating around w will lead to common constraints. Thus, the 2UPR-RPU
parallel mechanism is an over-constrained parallel mechanism.

Figure 1. Schematic diagram of the 2UPR-RPU parallel mechanism.

3. Kinematics

Inverse kinematics aims to calculate the displacements of all joints relative to their
initial positions or angles according to a given target pose of the moving platform. Forward
kinematics is the reverse operation of inverse kinematics. Inverse kinematics without
considering geometric errors is called nominal inverse kinematics. In this section, the
nominal inverse kinematics of actuated joints and passive joints is first introduced. Then,
the actual forward kinematics of the limbs is derived.

3.1. Nominal Inverse Kinematics

The position and orientation of the moving platform shown in Figure 1 can be de-
scribed by

[
x y z

]T and
[
α β γ

]T, respectively, where
[
x y z

]T denotes the position

coordinates of oA with respect to {oB; x, y, z} and
[
α β γ

]T denotes the Euler angle with
respect to z-x-v. Because only the translation motion along oBoA and the rotations around
x and v can be achieved by the moving platform [8],

[
z β γ

]T is sufficient to represent

7
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the poses. For a given target pose of the moving platform, the nominal displacements of
actuated P-joints can be derived using the closed-loop vector method [10] as follows:⎧⎪⎪⎨⎪⎪⎩

q1,3 = ‖B1A1‖ − ‖B1
~
A1‖

q2,3 = ‖B2A2‖ − ‖B2
~
A2‖

q3,2 = ‖B3A3‖ − ‖B3
~
A3‖

(1)

where ‖ · ‖ represents the Euclidean norm.
~
Ai denotes the initial position of Ai, which is

determined by⎧⎪⎨⎪⎩
B1A1 =

[
lA cos γ − lB lA sin β sin γ − z tan β −lA cos β sin γ + z

]T

B2A2 =
[
− lA cos γ + lB −lA sin β sin γ − z tan β lA cos β sin γ + z

]T

B3A3 =
[

0 lA cos β − z tan β − lB lAsinβ + z
]T

(2)

where lA = ‖A1A2‖/2 and lB = ‖B1B2‖/2.
For the first UPR limb, the first, second, and fourth joints are passive. The nominal

displacement of the first joint can be expressed as

q1,1 = β (3)

The nominal displacement of the second joint can be expressed as

q1,2 = arccos

(
eT

1 B1A1

‖B1A1‖

)
− arccos

⎛⎝ eT
1 B1

~
A1

‖B1
~
A1‖

⎞⎠ (4)

where e1 is the unit vector along x.
The nominal displacement of the fourth joint can be expressed as

q1,4 = arccos

⎛⎜⎜⎜⎝
−
(

A1
~
A2

)T(
B1

~
A1

)
‖A1

~
A2‖‖B1

~
A1‖

⎞⎟⎟⎟⎠− arccos

(
−(A1A2)

T(B1A1)

‖A1A2‖‖B1A1‖

)
(5)

Because the two UPR limbs are symmetrically distributed with respect to oAoB, we have

q2,1 = β (6)

q2,2 = arccos

(
eT

1 B2A2

‖B2A2‖

)
− arccos

⎛⎝ eT
1 B2

~
A2

‖B2
~
A2‖

⎞⎠ (7)

q2,4 = arccos

(
(A1A2)

T(B2A2)

‖A1A2‖‖B2A2‖

)
− arccos

⎛⎜⎜⎜⎝
(

A1
~
A2

)T(
B2

~
A2

)
‖A1

~
A2‖‖B2

~
A2‖

⎞⎟⎟⎟⎠ (8)

Similarly, the nominal displacements of the first, third, and fourth joints of the RPU
limb can be expressed as

q3,1 = arccos

(
−eT

2 B3A3

‖B3A3‖

)
− arccos

⎛⎝−eT
2 B3

~
A3

‖B3
~
A3‖

⎞⎠ (9)

8
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q3,3 = arccos

(
(Re2)

T(B3A3)

‖B3A3‖

)
− arccos

⎛⎜⎜⎝
( ~

Re2

)T
(

B3
~
A3

)
‖B3

~
A3‖

⎞⎟⎟⎠ (10)

q3,4 = γ (11)

Here, e2 is the unit vector along y, and
~
R denotes the initial state of R, which is given

as follows:

R =

⎡⎣ cos γ 0 sin γ
sin β sin γ cos β − sin β cos γ

− cos β sin γ sin β cos β cos γ

⎤⎦ (12)

3.2. Actual Forward Kinematics

The nominal inverse kinematics described above does not consider geometric errors.
However, geometric errors exist in the 2UPR-RPU parallel manipulator. In this section, the
actual forward kinematics of the limbs in the manipulator is derived in detail.

As shown in Figure 2, four local coordinate systems {Fi,j; xi,j, yi,j, zi,j} are assigned to
each limb to describe the geometric errors of the 2UPR-RPU parallel manipulator, where
the initial pose of the moving platform is

[
z0 β0 γ0

]T
=

[
−0.2m 0 0

]T under the
home configuration. The coordinate systems {oB; x, y, z} and {oA; u, v, w} are identical
to those in Figure 1. For brevity, we use {Fi,j} instead of {Fi,j; xi,j, yi,j, zi,j}. It is worth
mentioning that this figure only shows xi,j and zi,j of the local coordinate systems, and yi,j
can be determined according to the right-hand rule, which will not be illustrated in detail
here. The definitions of the local coordinate systems for the two UPR limbs and the RPU
limb are listed in Tables 1–3.

Figure 2. 2UPR-RPU parallel manipulator and its local coordinate systems.

9
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Table 1. Definitions of local coordinate systems for the first UPR limb.

{Fi,j} The Location Fi,j xi,j zi,j

{F1,1} On the revolute shelf

The intersection of the right
hole axis of the revolute shelf
and the right end face of the
revolute shelf

Parallel to the intersection of the
front and rear symmetry plane
of the right hole of the revolute
shelf and the vertical plane of
the right hole axis

Coincide with the right
hole axis of the
revolute shelf

Point down Point outwards

{F1,2} On the slider seat The midpoint of the hole axis
of the slider seat

Parallel to the intersection of the
slider mounting plane and the
vertical plane of the hole axis of
the slider seat

Coincide with the hole
axis of the slider seat

Point to the moving platform Point to the RPU limb

{F1,3} On the lead screw

The intersection of the lead
screw axis and the plane
passing through z1,2 and
perpendicular to the slider
mounting plane

Parallel to the intersection of the
guide rail plane and the vertical
plane of the lead screw axis

Coincide with the lead
screw axis

Point in the direction opposite to
the RPU limb

Point to the moving
platform

{F1,4} On the moving platform The midpoint of the right hole
axis of the moving platform

Parallel to the intersection of the
vertical plane of the right hole axis
of the moving platform and the
plane constructed with v and w

Coincide with the right
hole axis of the moving
platform

Point down Point to the RPU limb

Table 2. Definitions of local coordinate systems for the second UPR limb.

{Fi,j} The Location Fi,j xi,j zi,j

{F2,1} On the revolute shelf
The intersection of the left hole
axis of the revolute shelf and the
left end face of the revolute shelf

Parallel to the intersection of the
front and rear symmetry plane
of the left hole of the revolute
shelf and the vertical plane of
the left hole axis

Coincide with the left hole
axis of the revolute shelf

Point down Point inwards

{F2,2} On the slider seat The midpoint of the hole axis
of the slider seat

Parallel to the intersection of the
slider mounting plane and the
vertical plane of the hole axis of
the slider seat

Coincide with the hole
axis of the slider seat

Point to the moving platform Point to the RPU limb

{F2,3} On the lead screw

The intersection of the lead
screw axis and the plane
passing through z2,2 and
perpendicular to the slider
mounting plane

Parallel to the intersection of the
guide rail plane and the vertical
plane of the lead screw axis

Coincide with the lead
screw axis

Point in the direction opposite to
the RPU limb

Point to the
moving platform

{F2,4} On the moving platform The midpoint of the left hole
axis of the moving platform

Parallel to the intersection of the
vertical plane of the left hole axis
of the moving platform and the
plane constructed with v and w

Coincide with the left
hole axis of the
moving platform

Point down Point to the RPU limb

10
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Table 3. Definitions of local coordinate systems for the RPU limb.

{Fi,j} The Location Fi,j xi,j zi,j

{F3,1} On the slider seat The midpoint of the hole axis
of the slider seat

Parallel to the intersection of the
slider mounting plane and the
vertical plane of the hole axis of
the slider seat

Coincide with the hole
axis of the slider seat

Point to the moving platform Point to the first UPR limb

{F3,2} On the lead screw

The intersection of the lead
screw axis and the plane
passing through z3,1 and
perpendicular to the slider
mounting plane

Parallel to the intersection of the
guide rail plane and the vertical
plane of the lead screw axis

Coincide with the lead
screw axis

Point to the second UPR limb Point to the
moving platform

{F3,3} On the U joint The midpoint of the hole axis
of the U joint

Parallel to the intersection of the
vertical planes of the two hole
axes of the U joint

Coincide with the hole
axis of the U joint

Point down Point to the first UPR limb

{F3,4} On the moving platform

The intersection of the rear
hole axis of the moving
platform and the rear end face
of the moving platform

Parallel to the intersection of the
vertical plane of the rear hole axis
of the moving platform and the
plane constructed with v and w

Coincide with the rear
hole axis of the
moving platform

Point down Point to the RPU limb

The end poses of the ith limb can be obtained from the local product of the exponential
formula [25] as

gi(qi) = gi,0e
^
ζi,1qi,1gi,1e

^
ζi,2qi,2gi,2e

^
ζi,3qi,3 gi,3e

^
ζi,4qi,4gi,4, i = 1, 2, 3 (13)

where gi denotes the homogeneous transformation matrix (HTM) of {oA; u, v, w} with
respect to {oB; x, y, z} calculated using the ith limb. ζi,j denotes the screw coordinates of si,j
with respect to {Fi,j}, which can be written as [25,26]{

ζi,j =
[

0 0 1 0 0 0
]T for R joint

ζi,j =
[

0 0 0 0 0 1
]T for P joint

(14)

Here, e
^
ζi,jqi,j denotes the exponential map from the Lie algebra se(3) to the special

Euclidean group SE(3), which can be obtained using (A1)–(A4) in Appendix A. gi,j is the
HTM between adjacent coordinate systems when the parallel manipulator is under the
home configuration. To be more specific, gi,0 denotes the HTM of {Fi,1} with respect to {oB;
x, y, z}; gi,4 denotes the HTM of {oA; u, v, w} with respect to {Fi,4}; when j �= 0 and j �= 4, gi,j
is the HTM of {Fi,j+1} with respect to {Fi,j}. gi,j can be written as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

g1,0 = Trans(x, lB + d)Rot(y, π/2)
g1,1 = Trans(z,−d)Rot(x,−π/2)Rot(z, q̃1,2 − π/2)
g1,2 = Rot(y, π/2)
g1,3 = Trans(z, q̃1,3)Rot(y,−π/2)Rot(z,−q̃1,2 + π/2)
g1,4 = Trans(y, lA)Rot(y,−π/2)Rot(z,−π/2)

(15)

11
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
g2,0 = Trans(x,−lB − d)Rot(y, π/2)
g2,1 = Trans(z, d)Rot(x,−π/2)Rot(z, q̃2,2 − π/2)
g2,2 = Rot(y, π/2)
g2,3 = Trans(z, q̃2,3)Rot(y,−π/2)Rot(z,−q̃2,2 + π/2)
g2,4 = Trans(y,−lA)Rot(y,−π/2)Rot(z,−π/2)

(16)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
g3,0 = Trans(y, lB)Rot(y, π/2)Rot(z, q̃3,1 − π/2)
g3,1 = Rot(y, π/2)
g3,2 = Trans(z, q̃3,2)Rot(y,−π/2)Rot(z,−q̃3,1 + π/2)
g3,3 = Trans(y,−c)Rot(x,−π/2)
g3,4 = Trans(z, c − lA)Rot(y,−π/2)Rot(z,−π/2)

(17)

where Trans(x, lB) denotes the HTM that translates by lB along x, and Rot(y, π/2) denotes
the HTM that rotates by π/2 around y. q̃1,2 is the initial angle between x and B1A1, q̃2,2
is the initial angle between B2B1 and B2A2, and q̃3,1 is the initial angle between B3oB and
B3A3, which can be expressed as

q̃1,2 = arccos

⎛⎝ eT
1 B1

~
A1

‖B1
~
A1‖

⎞⎠ (18)

q̃2,2 = arccos

⎛⎝ eT
1 B2

~
A2

‖B2
~
A2‖

⎞⎠ (19)

q̃3,1 = arccos

⎛⎝−eT
2 B3

~
A3

‖B3
~
A3‖

⎞⎠ (20)

In contrast to q̃1,2, q̃2,2, and q̃3,1, q̃1,3, q̃2,3, and q̃3,2 are the initial positions of the actuated
P-joints, and we have

q̃1,3 = ‖B1
~
A1‖ (21)

q̃2,3 = ‖B2
~
A2‖ (22)

q̃3,2 = ‖B3
~
A3‖ (23)

The linear errors δi,j of {Fi,j+1} along xi,j, yi,j, and zi,j can be expressed as follows:

δi,j =
[
δx

i,j δ
y
i,j δz

i,j

]T
, i = 1, 2, 3 and j = 0, · · · , 4 (24)

In addition to linear errors, angular errors also exist. The angular errors εi,j of {Fi,j+1}
around xi,j, yi,j, and zi,j can be expressed as follows:

εi,j =
[
εx

i,j ε
y
i,j εz

i,j

]T
, i = 1, 2, 3 and j = 0, · · · , 4 (25)

where δi,0 and εi,0 denote the linear and angular errors of {Fi,1} with respect to {oB; x, y, z},
respectively. δi,4 and εi,4 denote the linear and angular errors of {Fi,4} with respect to {oA;
u, v, w}, respectively. Among the 90 error parameters, εx

1,0, ε
y
1,1, δz

1,3, εx
1,3, εx

2,0, ε
y
2,1, δz

2,3, εx
2,3,

εx
3,0, δz

3,2, εx
3,2, and ε

y
3,3 represent the initial displacement errors of the 12 joints. In addition,

the values of δx
1,2, δx

2,2, ε
y
1,4, ε

y
2,4, δx

3,1, εz
3,3, and ε

y
3,4 are zeros since the definitions of local

coordinate systems. Therefore, the rest 71 error parameters represent the linear and angular
geometric errors.
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Setting the values of error parameters other than geometric errors to zeros, the HTM
of the geometric errors between adjacent coordinate systems can be written as

Δgi,j =

[
e

^
εi,j δi,j

01×3 1

]
, i = 1, 2, 3 and j = 0, · · · , 4 (26)

where e
^
εi,j denotes the exponential map from the Lie algebra so(3) to the special orthogonal

group SO(3), which can be determined using (A3) and (A5) in Appendix A.
The end poses of the ith limb that include sthe linear and angular geometric errors can

then be obtained as follows:

g
ge
i (qi) = Δgi,0gi,0e

^
ζi,1qi,1 Δgi,1gi,1e

^
ζi,2qi,2 Δgi,2gi,2e

^
ζi,3qi,3 Δgi,3gi,3e

^
ζi,4qi,4gi,4Δg−1

i,4 , i = 1, 2, 3
(27)

which can be rewritten as

g
ge
i (qi) = g

ge
i,0e

^
ζi,1qi,1g

ge
i,1e

^
ζi,2qi,2g

ge
i,2e

^
ζi,3qi,3 g

ge
i,3e

^
ζi,4qi,4g

ge
i,4, i = 1, 2, 3 (28)

4. Evaluation Model of Deformations

As mentioned previously, the 2UPR-RPU parallel manipulator is over-constrained.
Theoretically, the end poses of any two limbs can also be consistent with each other through
the motion deviations of passive joints when the internal-force-and-deformation-related
geometric errors are zero, which can be expressed as

g
ge
i + Δg

ge
i = g

ge
k + Δg

ge
k (29)

where Δg
ge
i and Δg

ge
k denote the end-pose deviations of the ith and kth limbs caused by the

motion deviations of passive joints, respectively. The end-pose deviation between the ith
and kth limbs can be written as [25,26]

Δμk,i =

{
log

[
g

ge
k

(
g

ge
i

)−1
]}∨

(30)

where log[·] stands for the logarithmic operation from SE(3) to se(3), and it can be obtained
using (A6) and (A7) in Appendix A. ∨ represents the reverse operation of (A1). The
end-pose deviation can be rewritten in screw form as follows:

Δμk,i = Δμi − Δμk (31)

where the screws Δμi and Δμk denote the end-pose deviations of the ith and kth limbs
originating from the motion deviations of passive joints, respectively. Take Δμi as an
example. Taking the partial differential of (28) with respect to the displacements of the
passive joints, Δμi can be expressed as follows:

Δμi = ΨiΦiΔqi, i = 1, 2, 3 (32)

where Δqi denotes the motion deviation of the passive joints of the ith limb.
When i = 1 and i = 2, we have

Δqi =
[
Δqi,1 Δqi,2 Δqi,4

]T (33)

and when i = 3, we have
Δqi =

[
Δqi,1 Δqi,3 Δqi,4

]T (34)

13
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For the coefficient matrices Ψi and Φi, when i = 1 and i = 2, we obtain

Ψi =

[
I6 Ad

(
e

^
ξi,1qi,1

)
Ad

(
e

^
ξi,1qi,1 e

^
ξi,2qi,2 e

^
ξi,3qi,3

)]
∈ R

6×18 (35)

Φi = Blkdiag(ξi,1,ξi,2,ξi,4) ∈ R
18×3 (36)

When i = 3, we obtain

Ψi =

[
I6 Ad

(
e

^
ξi,1qi,1 e

^
ξi,2qi,2

)
Ad

(
e

^
ξi,1qi,1 e

^
ξi,2qi,2 e

^
ξi,3qi,3

)]
∈ R

6×18 (37)

Φi = Blkdiag(ξi,1,ξi,3,ξi,4) ∈ R
18×3 (38)

where I6 is an identity matrix of order six. Ad(·) is an adjoint representation of SE(3) and is
given in (A8) in Appendix A. Blkdiag(·) denotes a block-diagonal matrix. ξi,j denotes the
screw coordinates of si,j with respect to {oB; x, y, z}, which can be written as follows [25]:

ξi,j = Ad
(

g
ge
i,0, g

ge
i,1, · · · , g

ge
i,j−1

)
ζi,j (39)

Combining (31) with (32) yields⎡⎣Δμ2,1
Δμ3,2
Δμ1,3

⎤⎦ =

⎡⎣ Ψ1Φ1 −Ψ2Φ2 0
0 Ψ2Φ2 −Ψ3Φ3

−Ψ1Φ1 0 Ψ3Φ3

⎤⎦⎡⎣Δq1
Δq2
Δq3

⎤⎦ (40)

Let
Δμ =

[
ΔμT

2,1 ΔμT
3,2 ΔμT

1,3

]T
∈ R

18×1 (41)

Δq =
[
ΔqT

1 ΔqT
2 ΔqT

3
]T ∈ R

9×1 (42)

J =

⎡⎣ Ψ1Φ1 −Ψ2Φ2 0
0 Ψ2Φ2 −Ψ3Φ3

−Ψ1Φ1 0 Ψ3Φ3

⎤⎦ ∈ R
18×9 (43)

Note that when Δμ is obtained using (30) and (41), the motion deviations of passive
joints can be calculated as

Δq =
(

JTJ
)−1

JTΔμ = JcΔμ (44)

Based on the above work, an iterative model can be proposed to evaluate the defor-
mations caused by geometric errors of the 2UPR-RPU over-constrained manipulator. The
detailed processes are described below.

As shown in Figure 3, the proposed evaluation model mainly includes the following
steps. Firstly, a target pose of the moving platform is input, and specified values are
assigned to some of the 71 geometric errors; secondly, the nominal displacements of
all joints are calculated based on the inverse kinematics; thirdly, the displacements of
the passive joints are iteratively updated starting with the nominal values and the end
condition is given as the maximum number of iterations or the target value of the infinity
norm ‖Δμj − Δμj−1‖∞; finally, the latest end-pose deviation Δμj for the target pose is
output. When the internal-force-and-deformation-related geometric errors are not all zeros,
the end poses of the limbs cannot be consistent without deformations. Therefore, the latest
Δμj and indices based on it can be used to indirectly evaluate the limbs’ comprehensive
deformations caused by geometric errors of the 2UPR-RPU over-constrained manipulator.
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Figure 3. Scheme I: Evaluation of the limbs’ comprehensive deformations caused by geometric errors
of the 2UPR-RPU over-constrained manipulator.

Considering that a large amount of matrix calculation is included in the proposed
evaluation model, MATLAB is used for programming in Sections 5 and 6.

5. Geometric Error Identification

Finding the internal-force-and-deformation-related geometric errors is the basis of
sensitivity analysis. In this section, the reachable workspace of the 2UPR-RPU parallel
manipulator is described. For geometric error identification and verification, 692 and
1738 target poses are selected in the reachable workspace. Subsequently, internal-force-
and-deformation-related geometric errors in the manipulator are identified based on the
proposed evaluation model and an evaluation index. Finally, simulations are conducted to
verify the correctness of the identification results.

15
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5.1. Identification Analysis

The structural parameters of the 2UPR-RPU parallel manipulator are presented in
Table 4. Using the space search method [29], the reachable workspace of the manipulator
can be obtained. The search results are shown in Figure 4. Because the end poses at
the boundaries of the reachable workspace are more sensitive to geometric errors, the
692 target poses shown in Figure 5 are uniformly selected for geometric error identification.
To identify the internal-force-and-deformation-related geometric errors, the evaluation
index of the maximum comprehensive deformation of a limb can be written as

Δμmax = max
(
‖Δμ

j
2,1‖, ‖Δμ

j
3,2‖, ‖Δμ

j
1,3‖

)
(45)

Table 4. Structural parameters of the 2UPR-RPU parallel manipulator.

Symbols Values Units

lA 0.06 m
lB 0.15 m
c 0.025 m
d 0.115 m

 
Figure 4. Reachable workspace of the 2UPR-RPU parallel manipulator.

 

Figure 5. 692 target poses of the 2UPR-RPU parallel manipulator.
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Based on Scheme I and (45), 692 Δμmaxs can be calculated for the selected target poses
of the moving platform. If the 692 Δμmaxs are not close to zero, it means that there are
internal-force-and-deformation-related geometric errors among the geometric errors that
were assigned specified values. Without loss of generality, three groups of specified values
for geometric errors are given, as listed in Table 5. The maximum iteration number λ and
specified tolerance τ in Scheme I are set to 50 and 10−15, respectively.

Table 5. Specified geometric errors [13,26] for geometric error identification.

Symbols Group 1 Group 2 Group 3 Units

δi,j 0.005 0.001 5 × 10−5 m
εi,j 0.005 π/180 π/7200 rad

Taking group 1 as an example, the detailed processes are described as follows:
(1) δx

1,0 is set to 0.005 m, and the remaining geometric errors are set to 0. (2) 692 Δμmaxs
are calculated according to Scheme I and (45). (3) If the number of Δμmaxs that are
smaller than 10−15 is less than 657 (≈95% of 692), then δx

1,0 is referred to as an internal-
force-and-deformation-related geometric error. After repeating the above steps for the
71 geometric errors, 39 internal-force-and-deformation-related geometric errors were
initially identified and are listed in Table 6. In the table, “�” denotes the internal-force-
and-deformation-related geometric error; “–” denotes the error parameter that is not a
geometric error.

Table 6. Initially identified internal-force-and-deformation-related geometric errors.

i j δx
i,j δ

y
i,j δz

i,j εx
i,j ε

y
i,j εz

i,j

1, 2 0 � � – � �
1, 2 1 � � –
1, 2 2 – � � �
1, 2 3 � – – � �
1, 2 4 � � – �
3 0 – � �
3 1 – � �
3 2 – – � �
3 3 � – –
3 4 � – �

Some geometric errors between any two adjacent coordinate systems in a limb may be
linearly dependent. Therefore, it is necessary to analyse geometric errors simultaneously. Based
on the results in Table 6, the set of the six error parameters,

[
δx

i,j, δ
y
i,j, δz

i,j, εx
i,j, ε

y
i,j, εz

i,j

]
, are regarded

as one unit. Take
[
δx

1,1, δ
y
1,1, δz

1,1, εx
1,1, ε

y
1,1, εz

1,1

]
as an example.

[
δx

1,1, δ
y
1,1, δz

1,1, εx
1,1, ε

y
1,1, εz

1,1

]
is set

to [0.005 m, 0, 0.005 m, 0, 0, 0.005 rad], and the remaining units are set to [0,0,0,0,0,0]. Then,
692 Δμmaxs are calculated according to Scheme I and (45). If the number of Δμmaxs that are
smaller than 10−15 is less than 657, the internal-force-and-deformation-related geometric errors
are included in δx

1,1, δz
1,1, and εz

1,1. Then, δx
1,1, δz

1,1, and εz
1,1 are set to 0 in turn, and the remaining

units are unchanged. The Δμmaxs are recalculated. If the number of Δμmaxs that decrease
significantly is greater than 656, it is determined that the geometric error, which is set as 0,
will cause internal forces and deformations. These steps were repeated for each error unit and
the results are listed in Table 7. The identification results for groups 2 and 3 in Table 5 are the
same as those shown in Table 7. The results demonstrate that there are 41 internal-force-and-
deformation-related geometric errors, where the number of angular geometric errors is greater
than that of linear geometric errors. In addition, the internal-force-and-deformation-related
geometric errors of the first UPR limb are the same as those of the second UPR limb because of
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the symmetric distribution of the two limbs. For the RPU limb, the geometric errors that cause
internal forces and deformations are angular geometric errors.

Table 7. Identified internal-force-and-deformation-related geometric errors.

i j δx
i,j δ

y
i,j δz

i,j εx
i,j ε

y
i,j εz

i,j

1, 2 0 � � – � �
1, 2 1 � � – �
1, 2 2 – � � �
1, 2 3 � – – � �
1, 2 4 � � – �
3 0 – � �
3 1 – � �
3 2 – – � �
3 3 � – –
3 4 � – �

5.2. Simulation Analysis

To validate the correctness of the identified results listed in Table 7, three groups of
numerical simulations were conducted using 1738 target poses of the 2UPR-RPU parallel
manipulator, as shown in Figure 6. It is assumed that geometric errors are normally
distributed with zero means [19,22]. Three groups of standard deviations are listed in
Table 8. In the simulation, the internal-force-and-deformation-related geometric errors
identified in Table 7 were set to 0, and the remaining 30 geometric errors were assigned
random values generated by randn function using the standard deviations of δi,j and εi,j
listed in Table 8. Then, according to Scheme I and (45), 1738 Δμmaxs were calculated for
each group. The simulation results are shown in Figure 7. It can be seen that Δμmaxs of
Group 1, Group 2, and Group 3, are all smaller than 10−15. This demonstrates that the
internal-force-and-deformation-related geometric errors identified in Section 5.1 are correct.

 

Figure 6. 1738 target poses of the 2UPR-RPU parallel manipulator.

Table 8. Standard deviations of the geometric errors for the numerical simulations.

Symbols Group 1 Group 2 Group 3 Units

The standard
deviations of δi,j

1.6667 × 10−3 3.3333 × 10−5 1.6667 × 10−5 m

The standard
deviations of εi,j

1.6667 × 10−3 π/540 π/21,600 rad
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Figure 7. Simulation results using the standard deviations listed in Table 8. (a) Group 1; (b) Group 2;
(c) Group 3.

6. Sensitivity Analysis

Sensitivity analysis can help reveal the influence of different internal-force-and-deformation-
related geometric errors on the limbs’ comprehensive deformations. Since Δμj is calculated
iteratively in Scheme I, the Monte Carlo method [22] is utilised to conduct sensitivity analysis in
this section. Two global sensitivity indices are proposed and the results of sensitivity analysis
are verified through simulations.

6.1. Sensitivity Indices

According to (41), Δμj consists of Δμ
j
2,1, Δμ

j
3,2, and Δμ

j
1,3, which can be written as

Δμ
j
k,i =

[
ω

j
k,i,1 ω

j
k,i,2 ω

j
k,i,3 vj

k,i,1 vj
k,i,2 vj

k,i,3

]T
(46)

The end-orientation and end-position volumetric deviations between any two limbs are

Δω
j
k,i =

√(
ω

j
k,i,1

)2
+
(

ω
j
k,i,2

)2
+
(

ω
j
k,i,3

)2
(47)

and

Δvj
k,i =

√(
vj

k,i,1

)2
+
(

vj
k,i,2

)2
+
(

vj
k,i,3

)2
(48)
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Then, the evaluation indices of the average angular and linear comprehensive defor-
mations of the three limbs can be written as

Δω
j
a =

Δω
j
2,1 + Δω

j
3,2 + Δω

j
1,3

3
(49)

and

Δvj
a =

Δvj
2,1 + Δvj

3,2 + Δvj
1,3

3
(50)

Under the condition that geometric errors are normally distributed with zero means,
the sensitivity indices of the average angular and linear comprehensive deformations with
respect to a geometric error can be written as

μω,p =
σ
(

Δω
j
a,p

)
σ
(
Gep

) , p = 1, 2, · · · , 25 (51)

and

μv,p =
σ
(

Δvj
a,p

)
σ
(
Gep

) , p = 1, 2, · · · , 25 (52)

where σ(·) denotes the standard deviation and can be calculated by std function. Geps are
the internal-force-and-deformation-related geometric errors of the first and third limbs.
Because of the symmetric distribution of the first and second limbs, the internal-force-and-
deformation-related geometric errors of the second limb are not considered. Generally, the
values of sensitivity indices vary with different target poses of the moving platform. Hence,
m target poses should be chosen and the global sensitivity indices can be written as [16]

μ
g
ω,p =

m
∑

i=1
μω,p,i

m
+ σ

(
μω,p

)
(53)

and

μ
g
v,p =

m
∑

i=1
μv,p,i

m
+ σ

(
μv,p

)
(54)

6.2. Sensitivity Analysis

Based on the equations in Section 6.1 and Scheme I, the detailed processes to
calculate the two global sensitivity indices with respect to Gep are described as follows:
(1) Set σ

(
Gep

)
to 1 mm (0.001 m) or 1◦ (π/180 rad) for linear or angular geometric error.

And the other 40 internal-force-and-deformation-related geometric errors are set to 0. In
addition, the rest 30 linear or angular geometric errors are set to 1 mm or 1◦. (2) Assign
1000 random values that obey the normal distribution to Gep and calculate 1000 Δω

j
a,ps

and Δvj
a,ps. (3) Calculate σ

(
Δω

j
a,p

)
, μω,p, σ

(
Δvj

a,p

)
, and μv,p for a target pose of the

moving platform. (4) Repeat the above steps for m target poses and calculate the global
sensitivity indicesμ

g
ω,p and μ

g
v,p.

In order to improve the computational efficiency, 158 of the 1738 target poses shown
in Figure 6 were selected uniformly to perform the above steps for each Gep. The global
sensitivity indices of the average angular and linear comprehensive deformations with
respect to Geps are shown in Figures 8 and 9, respectively. It can be seen that the values
of μ

g
ω,p with respect to Ge5(δy

1,1), Ge7(εz
1,1), Ge8(δz

1,2), Ge11(δx
1,3), and Ge14(δy

1,4), are zero. This
indicates that the corresponding geometric errors have no effects on the average angular
comprehensive deformation. It is worth mentioning that δ

y
2,1, εz

2,1, δz
2,2, δx

2,3, and δ
y
2,4, have

also no effects on the average angular comprehensive deformation due to the symmetric
distribution of the first and second limbs. Comparing Figure 8 with Figure 9, it can also
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be found that the value of μ
g
v,p is larger than that of μ

g
ω,p for each Gep. This demonstrates

that the internal-force-and-deformation-related geometric errors have greater effects on the
average linear comprehensive deformation. Thus, the distribution of the global sensitivity
index μ

g
v,p is more useful for accuracy synthesis. According to Figure 9, Geps can be sorted in

descending order as follows: Ge16(εz
1,4), Ge25(εz

3,4), Ge15(εx
1,4), Ge4(εz

1,0), Ge24(εx
3,4), Ge12(εy

1,3),
Ge6(εx

1,1), Ge3(εy
1,0), Ge13(εz

1,3), Ge9(εx
1,2), Ge18(εz

3,0), Ge23(εx
3,3), Ge17(εy

3,0), Ge19(εx
3,1), Ge22(εz

3,2),
Ge10(εy

1,2), Ge20(εy
3,1), Ge21(εy

3,2), Ge8(δz
1,2), Ge14(δy

1,4), Ge5(δy
1,1), Ge11(δx

1,3), Ge1(δy
1,0), Ge2(δz

1,0),
and Ge7(εz

1,1). In order to lower the cost of fabrication and assembly, the allowable range of
geometric errors should be larger and larger from Ge16 to Ge7.

 
Figure 8. Global sensitivity of the average angular comprehensive deformation with respect to Geps.

 
Figure 9. Global sensitivity of the average linear comprehensive deformation with respect to Geps.

6.3. Verification
6.3.1. Average Angular Comprehensive Deformation

As shown in Table 9, three groups of specified values for geometric errors are given.
For each group, 1738 Δω

j
as were calculated according to Scheme I and using the target

poses shown in Figure 6. The maximum and average values of Δω
j
a are listed in Table 9. It

can be seen that both the maximum and average values of Δω
j
a do not change from Group

1 to Group 3. This indicates that Ge5, Ge7, Ge8, Ge11, Ge14, δ
y
2,1, εz

2,1, δz
2,2, δx

2,3, and δ
y
2,4, have

no effects on the average angular comprehensive deformation.
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Table 9. Sensitivity analysis results of the average angular comprehensive deformation.

Group Number
Ge5, Ge7, Ge8, Ge11, Ge14, δ

y
2,1,

εz
2,1, δz

2,2, δx
2,3, δ

y
2,4 [mm or ◦]

Other Geometric
Errors [mm or ◦]

The Maximum
Value of Δω

j
a [◦]

The Average Value

of Δω
j
a [◦]

Group 1 0.1 0.1 0.1430 0.0961
Group 2 0.01 0.1 0.1430 0.0961
Group 3 0.001 0.1 0.1430 0.0961

6.3.2. Average Linear Comprehensive Deformation

As shown in Table 10, Ge7(εz
1,1), which has the smallest effect on the average linear

comprehensive deformation, is set to 1◦. Then, the other Geps are set to μ
g
v,7/μ

g
v,p mm or

◦. It is worth mentioning that the corresponding internal-force-and-deformation-related
geometric errors of the second limb are assigned the same values as the first limb due to the
symmetric distribution of the two UPR limbs. The remaining 30 geometric errors are set to
0.1 mm or ◦. According to Scheme I and using the target poses shown in Figure 6, 1738Δω

j
as

and Δvj
as were calculated. For comparison, the internal-force-and-deformation-related

linear and angular geometric errors are set to their average values, 0.0209 mm and 0.0743 ◦,
respectively, while the values of the remaining 30 geometric errors are unchanged. After
recalculation, the maximum and average values of Δω

j
a and Δvj

a are listed in Table 11. It
can be seen that both the maximum and average values of Δvj

a are larger than that of Δω
j
a

for each group. This indicates that the internal-force-and-deformation-related geometric
errors have greater effects on the average linear comprehensive deformation. It can also be
found that from Group 2 to Group 1, the maximum and average values of Δω

j
a and Δvj

a
decreased by 84%, 83%, 91%, and 89%, respectively. This demonstrates that at the same
cost, restricting the values of geometric errors according to the sensitivity analysis results
of the average linear comprehensive deformation can dramatically decrease the average
angular and linear comprehensive deformations. Furthermore, it indirectly verifies the
sensitivity analysis results of the average linear comprehensive deformation.

Table 10. Specified geometric errors for verification.

i j δx
i,j [mm] δ

y
i,j [mm] δz

i,j [mm] εx
i,j [◦] ε

y
i,j [◦] εz

i,j [◦]

1, 2 0 0.1 0.0177 0.0381 – 0.0054 0.0033
1, 2 1 0.1 0.0174 0.1 0.0053 – 1
1, 2 2 – 0.1 0.0173 0.0056 0.0092 0.1
1, 2 3 0.0174 0.1 – – 0.0037 0.0056
1, 2 4 0.1 0.0174 0.1 0.0028 – 0.0022
3 0 0.1 0.1 0.1 – 0.0079 0.0057
3 1 – 0.1 0.1 0.0083 0.0135 0.1
3 2 0.1 0.1 – – 0.0137 0.0084
3 3 0.1 0.1 0.1 0.0061 – –
3 4 0.1 0.1 0.1 0.0037 – 0.0024

Table 11. Sensitivity analysis results of the average linear comprehensive deformation.

Group Number
The Maximum Value

of Δω
j
a [◦]

The Average Value

of Δω
j
a [◦]

The Maximum Value
of Δvj

a [mm]

The Average Value

of Δvj
a [mm]

Group 1 0.0165 0.0118 0.0696 0.0390
Group 2 0.1061 0.0714 0.8374 0.3581
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7. Conclusions

This paper deals with error modelling and sensitivity analysis of geometric errors
that cause internal forces and deformations in the 2UPR-RPU over-constrained parallel
manipulator. Conclusions are drawn as follows:

(1) The nominal inverse kinematics and actual forward kinematics of the over-constrained
parallel manipulator are analysed according to the vector theory and the local product of the
exponential formula. On this basis, an iterative model is established to indirectly evaluate the
limbs’ comprehensive deformations caused by geometric errors.

(2) Based on the iterative evaluation model, the maximum Euclidean norm of the end-
pose deviations of limbs is defined as an evaluation index of the maximum comprehensive
deformation of a limb. Programming with MATLAB, 41 internal-force-and-deformation-
related geometric errors are identified. Among the 41 geometric errors, the number of
angular geometric errors is greater than that of linear geometric errors; the geometric errors
of the first UPR limb are the same as those of the second UPR limb; the geometric errors of
the RPU limb are all angular geometric errors. The correctness of the identification results
is verified through simulations under the condition that geometric errors are normally
distributed with zero means.

(3) The global sensitivity indices of the average angular and linear comprehensive
deformations with respect to internal-force-and-deformation-related geometric errors are
proposed and calculated based on the Monte Carlo method. The results of sensitivity
analysis demonstrate that δ

y
1,1, εz

1,1, δz
1,2, δx

1,3, δ
y
1,4, δ

y
2,1, εz

2,1, δz
2,2, δx

2,3, and δ
y
2,4, have no

effects on the average angular comprehensive deformation. Furthermore, the internal-
force-and-deformation-related geometric errors have greater effects on the average linear
comprehensive deformation. Therefore, the distribution of the global sensitivity index of
the average linear comprehensive deformation with respect to geometric errors is more
meaningful for accuracy synthesis. Finally, the results of sensitivity analysis are verified
through simulations.

Based on the work presented in this paper, we will establish a model for accuracy
synthesis and determine the tolerances of the fabrication and assembly of the manipulator
in the future.
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Appendix A. Lie Groups and Lie Algebras

Some equations about Lie groups and Lie algebras [25,30,31] are introduced here so that
this work can be clearly understood. For a screw ζ =

[
ωT νT]T, the ∧ operation denotes

^
ζ =

[
^
ω ν

01×3 0

]
∈ se(3) (A1)
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The exponential map from the Lie algebra se(3) to the special Euclidean group SE(3)
can be determined by

e
^
ζq =

[
I3 + sin q

^
ω+ (1 − cos q)

^
ω

2
Vν

01×3 1

]
∈ SE(3) (A2)

where I3 is an identity matrix of order three.
^
ω and V are expressed as

^
ω =

⎡⎣ 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

⎤⎦ ∈ so(3) (A3)

V = qI3 + (1 − cos q)
^
ω+ (q − sin q)

^
ω

2
(A4)

The exponential map from the Lie algebra so(3) to the special orthogonal group SO(3)
can be determined by

e
^
ω = I3 +

sin ‖ω‖
‖ω‖

^
ω+

1 − cos ‖ω‖
‖ω‖2

^
ω

2
(A5)

For a HTM g ∈ SE(3), the Lie algebra se(3) can be obtained as

log(g) =
1
8

csc3 θ

2
sec

θ

2

⎡⎢⎢⎣
θ cos 2θ − sin θ

−θ cos θ − 2θ cos 2θ + sin θ + sin 2θ
2θ cos θ + θ cos 2θ − sin θ − sin 2θ

−θ cos θ + sin θ

⎤⎥⎥⎦
T⎡⎢⎢⎣

I4
g

g2

g3

⎤⎥⎥⎦ (A6)

where

θ = arccos
(

Tr(g)− 2
2

)
, θ ∈ (−π, π) (A7)

The adjoint representation of g can be written as

Ad(g) = Ad
([

R t

01×3 1

])
=

[
R 03×3

^
tR R

]
∈ R

6×6 (A8)
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Abstract: This paper presents a consistent solution strategy for static equilibrium workspaces of
different types of under-constrained robots. Considering the constraint conditions of cable force
and taking the least squares error of the static equilibrium equation as the objective, the convex
optimization solution is carried out, and the static equilibrium working space of the under-constrained
system is obtained. A consistent solution strategy is applied to solve the static equilibrium workspaces
of the cable-driven parallel and planar hybrid robots. The dynamic models are presented and
introducing parameters that are applied to make the system stable for point-to-point movements.
Based on this model, the traditional polynomial-based point-to-point trajectory planning algorithm
is improved by adding unconstrained parameters to the kinematic law function. The constraints of
the dynamics model are incorporated into the trajectory planning process to achieve point-to-point
trajectory planning for the under-constrained cable-driven robots. Finally, under-constrained cable-
driven parallel robots with three cables and planar hybrid robot with two cables are taken as examples
to carry out numerical simulation. The final results show that the point-to-point trajectory planning
algorithm introducing parameters is effective and feasible and can provide theoretical guidance for
the design of subsequent under-constrained robots.

Keywords: static equilibrium workspace; under-constrained cable-driven robot; consistent solution
strategy; trajectory planning

1. Introduction

The cable-driven robot is a mechanism that employs cables in place of rigid-body to
control the end-effector pose.

The classification of cable-driven parallel robots (CDPRs) was introduced by Ming
and Higuchi [1]. A cable-driven robot with n degrees-of-freedom and m cables can be
classified into the following four categories: (1) n + 1 < m: These robots are referred to
as redundantly restrained positioning mechanisms (RRPM), the static forces of the robot
are generally undefined. (2) n + 1 = m: These robots are called completely restrained
positioning mechanisms (CRPM). All degrees of freedom can be controlled through cables.
(3) m = n: This type of robot is called incompletely restrained positioning mechanism
(IRPM). When external forces such as gravity applied, the robot is fully constrained. It
can withstand a limited range of wrenches. (4) m < n: The robot is under-constrained
positioning mechanism (URPM) and in general cannot withstand arbitrary external forces
and torques. Due to the under-constrained nature, these robots have one feasible solution
for cable tensions and mostly works under gravity conditions. This classification method is
also applicable to cable-driven planar hybrid robots.

According to the structure of cable-driven robot, it is generally divided into series
mechanism and parallel mechanism.

Cable-driven robot has the characteristics of simple structure, flexibility, large workspace,
low inertia, high load rate, etc. It has a wide range of applications, such as: Five-hundred-meter
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Aperture Spherical radio Telescope (FAST), wind tunnel test, rehabilitation training, sports
photography, etc. [2–5], it has become a hot spot in robotics research recent years.

The under-constrained cable-driven robots (UCR), with few drivers and low cost,
has its special purpose, attracting more and more scholars’ research interest.
Carricato et al. [6–8] from Italy studied the cable-driven parallel robots with less than
six cables, provided a geometrico-static model, and assessed the stability of static equilib-
rium within the framework of a constrained optimization problem. Several examples are
provided, concerning robots with a number of cables that range from 2 to 4. Berti et al. [9]
proposed a method based on interval analysis to solve the positive geometric statics prob-
lem of an under-constrained cable-driven parallel robot, and find all possible equilibrium
poses of the end effector under a given cable length. Liu Xin et al. [10] proposed a consis-
tent algorithm for solving the workspace of a cable-driven parallel robot under different
constraints. Fu Ying et al. [11] conducted a dynamic analysis on the cable-driven system
with four cables and six degrees of freedom. Zhao Zhigang et al. [12] proposed a compre-
hensive algorithm by combining the least squares method and the Monte Carlo algorithm
to solve the statically balanced workspace for the cable-driven system with multi-robots.
Peng Y et al. [13] analyzed the reachable workspace for spatial 3-cable under-constrained
suspended cable driven parallel robots. The above-mentioned literature put forwards the
solution method of static equilibrium workspace for under-constrained parallel robots.
Based on this, a consistent solution strategy for the static equilibrium workspace of both
cable-driven parallel & planar hybrid robots is put forward in this paper.

Ida E et al. [14] proposed a rest-to-rest trajectory planning for underactuated cable-
driven parallel robots. Barbazza L et al. [15] design and optimally control an underactuated
cable-driven micro–macro robot. Shang Weiwei et al. [16] proposed a geometrical approach
to plan trajectories that extend beyond the static equilibrium workspace (SEW) of the
mechanism. Zi B et al. [17] studied an algebraic method-based point to point trajectory
planning of an under constrained cable suspended parallel robot with variable angle and
height cable mast. Shi P et al. [18] studied Dimensional synthesis of a gait rehabilitation
cable-suspended robot on minimum 2-norm tensions. The above-mentioned literature put
forwards the planning trajectories for under-constrained parallel robots. Based on this,
a consistent solution strategies of point-to-point trajectory planning introducing parameters
for both cable-driven parallel & planar hybrid robots is put forward in this paper.

Firstly, the static equilibrium equations of the under constrained parallel and planar
hybrid robots are established. Then, the mathematical description of the static equilibrium
workspace of the under-constrained cable-driven robots (UCR) that meets the constraints of
the driving motor power and cable strength is given. The characteristics of the static equi-
librium equation and dynamics equation are analyzed, and the consistent solution strategy
for the static equilibrium workspace and point-to-point trajectory planning introducing
parameters of different types of under-constrained robots are given.

The paper is organized as follows: Section 2 presents the model for under-constrained
parallel robots. Section 3 provides the model of under-constraint cable-driven planar hybrid
robot. Section 4 describes the consistent solution strategy for static equilibrium workspace.
Section 5 illustrates some results of static equilibrium workspace. Section 6 puts forward
the consistent solution strategies for point-to-point trajectory planning. Section 7 illustrates
the simulation results of trajectory planning. Finally, Section 8 draws conclusions.

2. Model of Under-Constrained Cable-Driven Parallel Robots

The schematic structure of a cable-driven robot with n degrees-of-freedom and m
cables is shown in Figure 1. Here m < n, it’s an under-constrained CDPR. The moving
platform is connected to the base through m cables, the ith cable (i = 1,2, . . . ,m) exits from
the fixed base at point Ai, connected to the moving platform at point Bi. the cable length
is Li. Oxyz is a Cartesian coordinate which fixed to the base, and O′x′y′z′ is the Cartesian
coordinate fixed to the moving platform.

28



Machines 2022, 10, 920

B1

A2 A3

Am

O

x

y

z

x  

z  

O  y  

mgB2 B3

Bi

A1

t1

t2 t3

tm

Figure 1. The schematic structure of a cable-driven parallel robot (If m < n, it is an under-
constrained CDPR.).

OP
O′ = [OxO′ OyO′ OzO′]

T is the centroid of end effector in the Oxyz frame.
O′Bi = [O′xBi

O′yBi
O′zBi]

T
(i = 1, 2, · · · , m) is the vector connecting point O’ to the point Bi

in the O′x′y′z′ frame. O Ai = [OxAi
OyAi

OzAi]
T
(i = 1, 2, · · · , m) is the fixed base at point Ai,

in the Oxyz frame.
ORO′ represents the rotational matrix from frame O′x′y′z′ to frame Oxyz, in which

α, β, γ are x-y-z the Euler angles.

OR
O′ = rot(x, α)rot(y, β)rot(z, γ) =⎡⎣ cβcγ −cβsγ sβ
cαsγ + sαsβcγ cαcγ − sαsβsγ −cβsα
sαsγ − cαsβcγ sαcγ + cαsβsγ cαcβ

⎤⎦ (1)

where c represents cos, s represents sin.
OBi is the vector in the Oxyz frame.

OBi =
OR

O′
O′

Bi +
OPO′ (2)

OLi is the vector connecting point Bi to point Ai in the Oxyz frame. ei is the unit vector
of OLi.

ei =
OLi

‖OLi‖2
=

O Ai −O Bi

‖O Ai −O Bi‖2
(3)

Thus, the dynamics equations for end effector are shown as follows:

JT + G =

[
m

..
x

I
.

ω + ω × Iω

]
(4)

29



Machines 2022, 10, 920

where T = [t1 t2 · · · tm]
T, ti(i = 1, 2, · · · , m) is cable tensions act on the end effector.

J =
[

Ĵ1 Ĵ2 · · · ˆJm
]

is the construction matrix, Ĵi =
[
ei

OBi × ei
]T, and G = [0 0 − mg 0 0]T.

..
x = [O

..
xO′ O ..

yO′
O ..

zO′]
T is the acceleration of the end-effector centroid O′ in the world

coordinate system, and I = OR
O′ IO′OR

O′ , IO′ is the inertia tensor of the end-effector in the
local coordinate system.

ω and
.

ω are the angular velocity and angular acceleration of the end-effector. ω,
.

ω
and ε, the Euler angle, satisfy the following relationship:

ω = H(ε)
.
ε =

⎡⎣1 0 sβ
0 cα −sαcβ
0 sα cαcβ

⎤⎦
⎡⎢⎣

.
α
.
β
.
γ

⎤⎥⎦ (5)

.
ω =

.
H

.
ε + H

..
ε (6)

Substituting Equations (5) and (6) into Equation (4) yields a general expression for the
system dynamics equation [19], i.e.,

M(q)
..
q − s(q,

.
q)− J(q)T = 0

M(q) =
[

mE3 0
0 IH

]
, s(q,

.
q) = G −

[
0

I
.

H
.
ε + ω × Iω

]
(7)

In Equation (7),
..
q =

[ ..
x

..
ε
]T is the end-effector acceleration. M is the mass matrix

of the end-effector. s is the force vector for a collection of Coriolis-type forces, gravita-
tional forces, and external loads, etc. J(q)T is the cable-tension to which the end-effector
is subjected.

Additionally, the static equilibrium equation of the system can be expressed by

JT + G = 0 (8)

3. Model of Under-Constrained Cable-Driven Planar Hybrid Robot

The schematic structure of a cable-driven planar hybrid robot with planar n -link
serial robot with n degrees-of-freedom and m cables is shown in Figure 2. All links are
connected by revolute joints to form a planar multi-link mechanism. This definition can
also be generalized to space model. Here, m < n, it’s an under-constrained cable-driven
planar hybrid robot. {0} is the base frame, {i} is the link frame xiyi, i∈{1, 2, · · · , n}.
θi(i = 1, 2, · · · , n) is the angle between link frame {i − 1} and {i}.

[
θ1 θ2 · · · θn

]T is
the Joint coordinates of the system.

0Ci is the position vector of the ith link centroid in the fixed frame {0}. It can be
expressed by

0Ci = [0xCi
0yCi ]

T
= (0R1

1R2 · · ·i−1 Ri)
i
Ci (9)

where 0R1 =

⎡⎣cθ1 −sθ1 0
sθ1 cθ1 0
0 0 1

⎤⎦,i Ri+1 =

⎡⎣cθi+1 −sθi+1 0
sθi+1 cθi+1 li

0 0 1

⎤⎦, iRi+1 represents the rota-

tional matrix from frame i + 1 to frame i, i = 1, 2, · · · , n − 1.
0Bi

j is the jth cable position vector of the ith link in the fixed frame. It can be
expressed by

0Bi
j = [0xBi

j

0yBi
j
]
T
= (0R1

1R2 · · ·i−1 Ri)
i
Bi

j (10)

where iBi
j = [ixBi

j

iyBi
j
]
T is the cable position vector of the ith link in the link frame {i}.
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Figure 2. The schematic structure of a cable−driven planar hybrid robot with planar serial n−link
with n degrees-of-freedom and m cables (If m < n, it’s an under-constrained cable-driven planar
hybrid robot.).

The generalized force is solved by Lagrange equation,

τ = d
dt

(
∂L
∂

.
θ

)
− ∂L

∂θ

L = Ek − Ep

(11)

τ =
∂
(

∂L
∂

.
θ

)
∂

.
θ

..
θ +

∂
(

∂L
∂

.
θ

)
∂θ

.
θ − ∂L

∂θ
(12)

where τ is the generalized force, L is the Lagrange function. θ =
[
θ1 θ2 · · · θn

]T is
the generalized coordinate. Ek and Ep are the kinetic energy and potential energy of the
system, respectively.

Write Equation (12) as a generic expression,

M(θ)
..
θ − s(θ,

.
θ) = τ

M(θ) =
∂
(

∂L
∂

.
θ

)
∂

.
θ

, s(θ,
.
θ) = −

∂
(

∂L
∂

.
θ

)
∂θ

.
θ + ∂L

∂θ

(13)
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where M(θ) is the inertia matrix, and s(θ,
.
θ) is the gravity, centrifugal force, Coriolis

force, etc.
The expression (14) can be obtained according to the principle of virtual work

τTδθ =
m

∑
i=1

Tiei
Tδ(0Bi) =

m

∑
i=1

Tiei
T

(
∂0Bi
∂θ

δθ

)
(14)

where m represents the number of cables, T is the cable tension, e is the unit vector of the
cable tension, and 0Bi is the position of the ith pulling point in the coordinate system.

From Equation (14), the relationship between generalized force and cable tension can
be obtained

τ = Jv
TT (15)

where

Jv
T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1
T ∂0B1

∂θ1
e1

T ∂0B1
∂θ2

· · · e1
T ∂0B1

∂θn

e2
T ∂0B2

∂θ1
e2

T ∂0B2
∂θ2

· · · e2
T ∂0B2

∂θn
...

...
. . .

...

em
T ∂0Bm

∂θ1
em

T ∂0Bm
∂θ2

· · · em
T ∂0Bm

∂θn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

where Jv is the pseudo-Jacobian of the constraint equations, Jv
T is the n × m matrix, T is

the m × 1 cable tension matrix.
Combining Equations (13) and (15), the system dynamics equation is obtained

as follows.
M(θ)

..
θ − s(θ,

.
θ)− Jv

T(θ)T = 0 (16)

Since the system is in static equilibrium, and the generalized velocity
.
θ = 0,

Formula (11) can be simplified as

τ =
∂Ep

∂θ
(17)

where Ep =
n
∑

i=1
(−nig)0yCi . Taking the origin of the coordinate system as the reference

point of potential energy.
Combine Equations (15) and (17), yields

Jv
TT =

∂Ep

∂θ
(18)

4. Consistent Solution Strategy for Static Equilibrium Workspace[OxO′ OyO′ OzO′ α β γ
]T is the pose of the parallel robot,

[
θ1 θ2 · · · θn

]T is the
Joint coordinates of the planar hybrid robot. They are uniformly written into generalized
coordinates X =

[
x1 x2 · · · xn

]T.
Combine Equations (8) and (18), yields

J(X)T = W(X) (19)

where W is the external force.
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4.1. The Definition of Static Equilibrium Workspace

Due to the limitation of motor torque and cable strength, the tension of the cable must
be within a certain range. Therefore, for a robot with n degrees of freedom pulled by m
cables, the mathematical description of its static equilibrium workspace is as follows:

X =
[
x1 x2 · · · xn

]T

∃tmin ≤ ti ≤ tmax(tmin > 0 ∩ tmax > 0 ∩ tmax > tmin, i = 1, 2, · · · , m)

J(X)T = W(X)

(20)

where X represents the generalized coordinate. tmin, tmax are the minimum and the maxi-
mum allowable tension of the cable, respectively. T = [t1 t2 · · · tm]

T is the cable tension,
and X belongs to the Static equilibrium workspace.

4.2. Consistent Solution Strategy

For a cable-driven robot with n degrees-of-freedom and m cables, here m < n, it’s
an Under-constrained Cable-driven Robot (UCR). The Static equilibrium workspace of the
under-constrained cable-driven system is analyzed as follows:

In static equilibrium Equation (19), J is n × m matrix, T is m × 1 matrix. For the
under-constrained cable-driven system, the solution of the equation is in the form of the
least squares solution, and it can be expressed by T = J†W. When this solution is within
the limit of cable force, it is considered that the pose (generalized coordinate) is the static
equilibrium point satisfying Equation (20).

Then, the following inequality holds

‖J(X)T − W(X)‖2 < σ∗
T = J†(X)W(X), tmin ≤ ti ≤ tmax

(21)

where σ∗ is the error of the least square solution.
To sum up, the consistent solution strategy for the Static equilibrium workspace of the

UCRs is as follows:

1. For the under-constrained robot, given the lower limit and the upper limit of cable tension
tmin and tmax separately, selected the controllable degrees of freedom and uncontrollable
degrees of freedom Xa = [x1, . . . , xk] and Xb = [x1, . . . , xn−k] separately.

2. Judge the search range k of the system dimension, set the search step δ1, . . . , δk, and
generate the pose set Q to be searched.

3. Take a pose Xa
i to be searched from the set and bring it into Formula (19) to solve the

Jacobian matrix J.
4. Set convex optimization solution goal: σ = ‖J(Xi)T − W(Xi)‖2, nonlinear constraint:

tmin ≤ ti ≤ tmax. Use the interior point method to solve it.
5. Check whether the results of step 4 meets σ < σ∗. If the condition is true, there is

a Static equilibrium point Xi = [Xa
i, Xb

i] in the controllable generalized coordinate
Xa

i that meets the cable force condition, turn to step 6, otherwise, there is no Static
equilibrium point in the controllable posture.

6. Calculate the next pose Xa
i+1 to be searched.

5. Simulation Results of Static Equilibrium Workspace

5.1. 3−6 Under-Constrained Parallel Robot

Solve the Static equilibrium workspace of 3−6 (3 cables pulling 6 degrees of freedom)
under-constrained parallel robot. The mass of end effector is m = 0.935 kg. See Table 1 for
specific parameters.
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Table 1. 3−6 Configuration of cable-driven parallel robot.

Coordinates of Anchor Point (m)
Coordinates of the Hinge Point between

the Cable and the End Actuator (m)

O A1 =
[
0.9 0 1.8

]T O′B1 =
[
0.2265 −0.2275 0

]T

O A2 =
[
0 1.8 1.8

]T O′B2 =
[
0 0.2275 0

]T

O A3 =
[
−0.9 0 1.8

]T O′B3 =
[
−0.2265 −0.2275 0

]T

tmin = 0.1 N is the lower limit of cable tension, and tmax = 10 N the upper limit
of cable tension. σ∗ = 1 × 10−8 is the error. The controllable degree of freedom is
Xa =

[OxO′,O yO′,O zO′
]
, and the uncontrollable degree of freedom is Xb = [α, β, γ], the

rotation angle of x-axis, y-axis, and z-axis, respectively. Considering the volume of end
effector and cable, set the search interval is

Sx ∈ (−0.6, 0.6), Sy ∈ (0.3, 1.6), Sz ∈ (0.27, 1.52)

The search step of δx, δy, δz is 0.05m, and the pose set Q to be searched is generated.
Matlab is used to solve the static equilibrium workspace of 3−6 cable-driven

parallel robot.
It can be seen from Figure 3 the 3D view, xoy planar view and xoz planar view of

the Static equilibrium workspace that the Static equilibrium workspace of the 3−6 under-
constrained parallel robot is approximately a triangular prism, whose cross section is
symmetrical along the x-axis, and there are two narrow workspace cracks in the lower half
(z < 0.75 m) of the triangular prism. Compared with the system schematic diagram 1, this
situation occurs because when the center of mass of the end actuator is low, the tension
force of the three cables cannot be balanced with gravity, so the pose of the end actuator
cannot be kept stable. The anchor points O A1 and O A3 are symmetrical along the y-axis,
and the anchor point O A2 is on the axis, so that the cross section of its Static equilibrium
workspace is symmetrical about the y-axis.

5.2. 0−0−2 Under-Constrained Planar Hybrid Robot

Solve the Static equilibrium workspace of the 0−0−2 under-constrained planar hybrid
robot (no cable attached on the first and second links, and two cables attach on the third
link). The Tables 2 and 3 show the specific parameters of 0−0−2 cable-driven planar hybrid
robot system.

Table 2. 0−0−2 configuration of cable-driven planar hybrid robot.

Coordinates of Anchor Point (m)
Coordinates of the Hinge Point

on the End Effector (m)

O A1 =
[
−0.9 0.6

]T 3B1 =
[
0.09 0.08

]T

O A2 =
[
0.9 0.5

]T 3B2 =
[
0.16 −0.03

]T

Table 3. Link parameters.

The Quality of the Link(kg) The Length of the Link(m)

m1 = 11.8 l1 = 0.45
m2 = 4.5 l2 = 0.4
m3 = 1.1 l3 = 0.25

The lower limit of the cable tension is tmin = 5 N, the upper limit of the cable tension
is tmax = 200 N, σ∗ = 1 × 10−6 is the error.

Xa = [θ1, θ2] is the controllable degrees of freedom, and Xb = [θ3] is the uncontrollable
degrees of freedom.
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(a) 

  

(b) (c) 

Figure 3. 3−6 Static equilibrium workspace of cable-driven parallel robot. (a) 3D Static Equilibrium
Workspace; (b) xoy planar view of Static Equilibrium Workspace; (c) xoz planar view of Static
Equilibrium Workspace.

Set the search interval is Sθ1 ∈ (65◦, 95◦)&Sθ2 ∈ (−40◦, 0◦).
The search step δθ1 , δθ2 is 1◦, and the pose set to be searched is Q.
The static equilibrium working space of the 0−0−2 cable-driven robot is solved by

MATLAB programming.
According to Figure 4, the static equilibrium workspace of the 0−0−2 under-constrained

cable-driven planar hybrid robot is a curved surface. From Figure 4b, θ1θ2 planar view of
the Static equilibrium workspace, the Static equilibrium points in the pose set are mainly
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distributed in the lower right corner area. The uncontrollable degrees of freedom of the
static equilibrium point belongs to θ3 ∈ (−80◦,−20◦) from Figure 4c,d.

 
(a) (b) 

 
(c) (d) 

Figure 4. Static Equilibrium Workspace of 0−0−2 unconstrained cable-driven planar hybrid robot.
(a) 3D Static Equilibrium Workspace; (b) θ1θ2 planar view of Static Equilibrium Workspace; (c) θ1θ3

planar view of Static Equilibrium Workspace; (d) θ2θ3 planar view of Static Equilibrium Workspace.

6. Consistent Solution Strategies for Point-to-Point Trajectory Planning

6.1. Analysis of the Dynamics of Under-Constrained Systems

The end poses
[OxO′ OyO′ OzO′ α β γ

]T of the parallel robot and Joint coordinates[
θ1 θ2 · · · θn

]T of the planar hybrid robot are written in generalized coordinates

X =
[
x1 x2 · · · xn

]T.
Write Equations (7) and (16) uniformly as:

M(X)
..
X − s(X,

.
X)− J(X)T = 0 (22)

where
..
X is the acceleration in generalized coordinates, M(X) is the mass matrix, and J(X)T

is the vector of the cable tensions.
For the under-constrained system, the controllable degrees of freedom, Xa, are m

dimensional vectors. The uncontrollable degrees of freedom, Xu, are n − m dimensional
vectors. As a result, Equation (22) can be written in the form of[

Maa Mau
Mua Muu

][ ..
Xa..
Xu

]
−
[

sa
su

]
−
[

Ja
Ju

]
T = 0 (23)

For Equation (23), when X,
.

X,
..
Xa is known, the acceleration

..
Xu and the cable force T

for the system at this moment can be obtained.
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By presenting the acceleration terms for the (UDFS) uncontrollable degrees of freedom,
we obtain the expressions for

..
Xu

..
Xu = M−1

uu

(
su + JuT − Mua

..
Xa

)
(24)

Substituting the expression for
..
Xu into Equation (23), we obtain the expression for the

cable extension T:

T = (Ja − Mau M−1
uu Ju)

−1[(
Maa − Mau M−1

uu Mua

) ..
Xa + Mau M−1

uu su − sa

]
(25)

6.2. Point-to-Point Trajectory Planning Introducing Parameters

In the process of point-to-point trajectory planning for under-constrained systems, the
start and end points of the motion should be chosen as static equilibrium points and the
speed at the start and end points should be zero.

For an under-constrained system with n degrees-of-freedom and m cables, there are
m controllable degrees of freedom and n − m uncontrollable degrees of freedom. The
dynamics Equations (22) and (23) shows that during trajectory planning, only controllable
degrees of freedom, Xa, can be trajectory planned, while uncontrollable degrees of freedom
Xu are influenced by dynamics [20]. When the controllable degree of freedom reaches the
end, an uncontrollable degree of freedom cannot be guaranteed to reach the end with zero
velocity. Therefore, it is necessary to choose a suitable trajectory plan for the controllable
degrees of freedom to ensure that the uncontrollable degrees of freedom reach the end
point with zero velocity.

Assume that the trajectory planned for Xa is xa(t), t ∈ [0, T], the trajectory of Xu
to be found is xu(t), and the set of differential equations is established by Equation (24)
as follows.

y =

[
xu(t).
xu(t)

]
.
y =

[ .
xu(t)

M−1
uu

(
su + JuT − Mua

..
xa
)] = f (y, xa,

.
xa,

..
xa)

y(0) =
[

xu(0)
0

]
:= y0, y(T) =

[
xu(T)

0

]
:= yT

(26)

where y0, yT are the position and velocity of the non-controllable degrees of freedom
at the start and end points, respectively, which are both static equilibrium points with
zero velocity.

The optimal trajectory for controllable degrees of freedom is achieved when the
trajectory xa(t) is such that Equation (26) holds.

Since Equation (26) has 2 × (n − m) variables and its boundary conditions have
4 × (n − m) constraint. In order to make Equation (26) solvable, 2 × (n − m) parameter
κ1, · · · , κ2λ needs to be added to the planned trajectory xa(t).

As an example of a conventional polynomial, a trajectory is planned for controllable
degrees of freedom Xa and parameters are introduced for the planned trajectory.

A conventional polynomial point-to-point trajectory is planned as a straight-line
path [21] with a trajectory equation of the form:

xa(t) = xa(0) + (xa(T)− xa(0))u(t) (27)

where xa(0), xa(T) is the position of the controllable degrees of freedom at the start and
end points, respectively, 0 ≤ u ≤ 1.
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For a smoothly derivable point-to-point trajectory xa(t) of order r, the law of motion
u(t) is designed as follows:

u(t) =
2r+1

∑
i=r+1

ai

(
t
T

)i
, t ∈ [0, T] (28)

where

ai =
(−1)i−r−1(2r + 1)!

i · r!(i − r − 1)!(2r + 1 − i)!
(29)

Introducing parameters to the trajectory of a traditional polynomial programming, the
equation of the trajectory is

xa(κ, t) = xa(0) + (xa(T)− xa(0))u(κ, t) (30)

The law-of-motion function u(κ, t) can be set to

u(κ, t) = u(γ(κ, t)) =
2r+1

∑
i=r+1

aiγ
i(κ, t) (31)

where ai =
(−1)i−r−1(2r+1)!

i·r!(i−r−1)!(2r+1−i)! . In order to maintain u(0) = 0, u(T) = 1, γ(κ, t). is expressed
as follows.

γ(κ, t) = αt +
2λ+1

∑
i=2

κi−1ti (32)

where α =
1−

2λ+1
∑

i=2
κi−1Ti

T .
Equation (26) is a multivariate marginal differential equation containing parame-

ters that are converted to a multivariate initial differential equation for solution, and the
expression of the converted multivariate initial differential equation is as follows.{ .

y = f (y, xa(κ, t),
.
xa(κ, t),

..
xa(κ, t))

y(0) = y0
(33)

Since the solution of the multivariate initial differential equation removes the constraint
y(T) = yT at the end point, the result can be solved again by setting up the Newton iteration
equation F(κ) = y(κ, T)− yT to ensure that the end point of the solved trajectory is the
same as the planned trajectory.

The trajectory parameters κi for controlled degree of freedom planning is solved
as follows.

1. Set the initial equations of the Newton iterative method: F(κ) = y(κ, T) − yT ,
the iterative convergence value: ζ, and the initial values of the parameters to be
solved: κ0.

2. Solve the multivariate initial differential Equation (33) by taking t = T into the
solution y(κ, t), and calculating equation F(κi).

3. If the condition ‖F(κi)‖ ≤ ζ is satisfied, substitute the coefficient into the trajectory
equation xa(κ, t) to obtain the best planning trajectory for the controllable degrees
of freedom, and the solution is finished; otherwise, let κi+1 = κi + J−1

F (κi)F(κi), and
substitute κi+1 as the initial value into step 2 to continue the solution.

7. Simulation Analysis of Trajectory Planning

7.1. 3−6 Under-Constrained Parallel Robot

Point-to-point trajectory planning was performed for the 3−6 (6 degrees of freedom
parallel robots with 3 cables) under-constrained parallel robot with the articulation shown
in Table 1, and Table 4 shows the end-effector and trajectory planning parameters.
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Table 4. End-effector and trajectory planning parameters.

m(kg) Io′(kg · m2) X0 T(s) XT

0.935
⎡⎣0.01613 0 0

0 0.01599 0
0 0 0.03211

⎤⎦
⎡⎢⎢⎢⎢⎢⎢⎣

0
0.59

1
−0.43

0
0

⎤⎥⎥⎥⎥⎥⎥⎦
1.5

⎡⎢⎢⎢⎢⎢⎢⎣

−0.15
0.8
1.17
−0.05
0.26

0

⎤⎥⎥⎥⎥⎥⎥⎦

In Table 4, m is the mass of the end-effector and Io′ is the inertia tensor of the end-
effector in a local coordinate system where the origin of the local coordinate system coin-
cides with the center of mass. X0, XT is the initial and end pose of the trajectory planning
and both are static equilibrium points. Figure 5 shows the initial state and end state for
unconstrained parallel robot trajectory planning.

 
Figure 5. Initial state (solid line) and end state (dashed line) for unconstrained parallel robot
trajectory planning.

The controllable degrees of freedom are Xa =
[OxO′,O yO′,O zO′

]
and the uncontrol-

lable degrees of freedom are Xb = [α, β, γ]. These are the angles of rotation around the
x-axis, y-axis and z-axis respectively.

For the traditional polynomial trajectory planning method, r = 3 is taken to ensure that
the trajectory is smoothly derivable to the third order, and ai is calculated via Equation (29)
with the following results.

ai =

⎡⎢⎢⎣
a4
a5
a6
a7

⎤⎥⎥⎦ =

⎡⎢⎢⎣
35
−84
70
−20

⎤⎥⎥⎦
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Substitute ai into Equation (27) to find the conventional polynomial trajectory xa(t),
and solve Equation (33) for the multivariate initial value differential equation.

For the polynomial trajectory planning method with the introduction of parameters,
take r = 3, whose coefficients ai are the same as those of a conventional polynomial
trajectory. Let the initial value of the parameter vector κ be the 6−dimensional zero vector
ζ = 1 × 10−8, and solve for the parameters using Newton’s iterative method to obtain the
following results.

κ =

⎡⎢⎢⎢⎢⎢⎢⎣

κ1
κ2
κ3
κ4
κ5
κ6

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

−5.52007049
15.73380808
−24.49999798
21.38293401
−9.84359244
1.85786785

⎤⎥⎥⎥⎥⎥⎥⎦
Substituting the parameter κ into Equation (30), the traditional polynomial trajectory

xa(κ, t) is obtained and solved for the multivariate initial differential Equation (33).
The solution results of the traditional polynomial trajectory planning method are

compared with those of the polynomial trajectory planning method with parameters, and
the comparison results are shown below.

Figure 6 shows the pose of the end-effector in the trajectory. In this case, the direction
drops from 0 m to −0.15 m, the direction increases from 0.59 to 0.8 and the direction
increases from 1 m to 1.17 m. The orientation angle also changes under the influence of the
system dynamics, where α rises from −0.43 rad to −0.05 rad and β from 0 rad to 0.26 rad
(rotated about z-axis) and γ remains largely stable during the process. The trajectory start
and end points of both planning algorithms are consistent with X0, XT in Table 4 in terms
of the pose curves.

Figure 7 shows the velocity curves of the trajectories solved by the two planning algo-
rithms. It can be seen that the difference in velocity between the trajectories planned by the
two algorithms is more obvious. Both planning algorithms achieve the boundary condition
of zeroing the velocity at the start and end point in the direction of x, y, z. However, for
the angular velocity profile of α, β, γ, the traditional trajectory planning algorithm cannot
guarantee stationary at the end point, and the trajectory does not zero at α, β, γ of 2.5 s,
which cannot guarantee the trajectory boundary condition.

  
(a) (b) 

  
(c) (d) 

Figure 6. Cont.

40



Machines 2022, 10, 920

  
(e) (f) 

Figure 6. Trajectory poses solved under two planning algorithms. (a) Comparison of x-direction dis-
placement; (b) Comparison of y-direction displacement; (c) Comparison of z-direction displacement;
(d) Comparison of α angular; (e) Comparison of β angular; (f) Comparison of γ angular.

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 7. Velocity solved under two planning algorithms. (a) Comparison of x−direction velocity;
(b) Comparison of y−direction velocity; (c) Comparison of z−direction velocity; (d) Comparison of
α−angle velocity; (e) Comparison of β−angle velocity; (f) Comparison of γ−angle velocity.
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7.2. 0−0−2 Under-Constrained Planar Hybrid Robot

Point-to-point trajectory planning for an under-constrained cable-driven robot with
0-2-2 (Figure 8). The center of mass of each link is at its geometric center. The coordinates
of the articulation points and the link parameters for the cable-driven robot are shown in
Tables 2 and 3, while the following Table 5 shows the link inertia and trajectory planning
related parameters.

x0

y0

A1

A2

B2

B1

Figure 8. Initial state (solid line) and end state (dashed) for under-constrained cable-driven robot in
trajectory planning.

Table 5. Parameters about Figure 8 to link rotational inertia and trajectory planning.

Izi(kg · m2) X0(rad) T(s) XT(rad)

Iz1 = 0.2
Iz2 = 0.06

Iz3 = 0.006

⎡⎣ 90
−20

−48.61

⎤⎦× π
180

1
⎡⎣ 80

−45
−24.44

⎤⎦× π
180

In Table 5, Izi is the mass product of inertia of the i link around the z-axis. X0, XT are
the starting and ending points of the trajectory plan, and both are static equilibrium points.

The controllable degrees of freedom are Xa = [θ1, θ2], and the uncontrollable degrees
of freedom are Xb = [θ3].

For the traditional polynomial trajectory planning method, r = 3 is taken to ensure that
the trajectory is smoothly derivable to the third order, and ai is calculated via Equation (29)
with the following results.

ai =

⎡⎢⎢⎣
a4
a5
a6
a7

⎤⎥⎥⎦ =

⎡⎢⎢⎣
35
−84
70
−20

⎤⎥⎥⎦
Substitute ai into Equation (27) to obtain the traditional polynomial trajectory xa(t),

and solve Equation (33) for the multivariate initial differential equation.
For the polynomial trajectory planning method with the introduction of parameters,

take r = 3, whose coefficients ai are the same as those of a conventional polynomial
trajectory. Let the initial value of the parameter vector κ be a 2−dimensional zero vector,
ζ = 1 × 10−8, and solve for the parameters using Newton’s iterative method to obtain the
following results.

κ =

[
κ1
κ2

]
=

[
0.58865332
−0.29981383

]
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Substituting the parameter κ into Equation (30), the conventional polynomial trajectory
xa(κ, t) is obtained and solved for the multivariate initial differential Equation (33).

A comparison of the solution results of the traditional polynomial trajectory planning
method with those of the polynomial trajectory planning method with the introduction of
parameters is shown below.

The joint angle curves for the two planning algorithms are shown in Figure 9. The
joint angle θ1, θ2 starts and ends at the same point in both planning algorithms, while
angle θ1 decreases from 90◦ to 80◦ and angle θ2 changes from −25◦ to −45◦. As can be
seen from Figure 7c, in the polynomial trajectory planning method with the introduction
of parameters, the start and end points of the θ3 curve are the same as X0, XT in Table 5,
whereas the traditional polynomial trajectory planning method does not guarantee this.

 
(a) 

  
(b) (c) 

Figure 9. Trajectory joint angles solved under the two planning algorithms. (a) Comparison of
θ1−angle; (b) Comparison of θ2−angle; (c) Comparison of θ3−angle.

The angular velocity of the two planning algorithms is shown in Figure 10. Both
planning algorithms reach the boundary condition of zero at the start and end points for the
angular velocity of θ1, θ2. As can be seen in Figure 10c, for the angular velocity profile of θ3,
stationarity is not guaranteed at the end point using the conventional trajectory planning
algorithm, whereas the polynomial trajectory planning method with the introduction of
parameters maintains stationarity at the end point.

In summary, for under-constrained parallel or planar hybrid systems, the traditional
polynomial trajectory planning algorithm cannot guarantee zero velocity at the end of the
trajectory. In contrast, the polynomial trajectory planning algorithm with the introduction
of parameters at the start and end points keeps the under-constrained system stable without
oscillation and satisfies the trajectory planning requirements.
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(a) 

  
(b) (c) 

Figure 10. Angular velocity of the solution under the two planning algorithms. (a) Comparison of
θ1−angular velocity; (b) Comparison of θ2−angle velocity; (c) Comparison of θ3−angle velocity.

8. Conclusions

In this paper, the force closure equations and geometric closure equations for incom-
pletely constrained cable traction systems (parallel and planar hybrid) are developed, the
equations are solved jointly using a convex optimization solution method with boundary
conditions, a static equilibrium inverse kinematic model of the incompletely constrained
cable traction system is developed, and the static equilibrium workspace is solved.

Point-to-point trajectory planning algorithms for incompletely constrained cable trac-
tion systems are investigated. Traditional purely algebraic methods such as polynomial
functions or trigonometric functions for planning the trajectory of the end-effector do not
take into account the dynamical model of the system, which can cause oscillations of the
system at the start and end points due to insufficient controllable degrees of freedom on the
UCR. In this paper, a dynamical model of the UCR is developed, which consider the cable
force, external force, controllable position and orientation and uncontrollable position and
orientation of the end-effector, etc. Based on this model, the traditional polynomial-based
point-to-point trajectory planning algorithm is improved by adding 2× (n−m) parameters
to the kinematic law function u(t). The constraints of the dynamics model are incorporated
into the trajectory planning process to achieve point-to-point trajectory planning for the
UCR. The results show that the trajectory of the improved algorithm is smooth and deriv-
able, and the end-effector is stationary and stable without oscillation at the start and end
points, which proves the effectiveness of the optimized algorithm.
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Abstract: The paper presents the singularity analysis and the geometric optimization of a 6-DOF
(Degrees of Freedom) parallel robot for SILS (Single-Incision Laparoscopic Surgery). Based on a
defined set of input/output constraint equations, the singularities of the parallel robotic system are
determined and geometrically interpreted. Then, the geometric parameters (e.g., the lengths of the
mechanism links) for the 6-DOF parallel robot for SILS are optimized such that the robotic system
complies with an operational workspace defined in correlation with the SILS task. A numerical
analysis of the singularities showed that the operational workspace is singularity free. Furthermore,
numerical simulations validate the parallel robot for the next developing stages (e.g., designing and
prototyping stages).

Keywords: parallel robot; singularity analysis; geometric optimization; single-incision laparoscopic
surgery

1. Introduction

Single-incision laparoscopic surgery (SILS) is a type of minimally invasive surgery
(MIS) where the surgeon uses a special multi-lumen trocar (a trocar with multiple insertion
points) inserted through a single incision in the patient body for all instruments required
for surgery. SILS was described in the gynecological literature as early as 1969, when
Wheesess reported the first 4.000 cases of tubal ligation [1]. As the literature suggests, the
main advantages of SILS are: (i) the short recovery time for the patient, (ii) lesser degree
of pain (when compared to classical MIS), (iii) and better cosmetics (since it uses a single
access port) [2]. However, the challenges of SILS (performed manually) are caused by its
poor ergonomics [3]. As history shows, robotic systems for surgery were developed to
circumvent various limitations of the classical, human-performed interventions. MIS is
one example in which robots had a significant impact [4,5]. Multiple approaches have
been proposed and developed for robotic systems for MIS, namely: multi-arm robotic
systems [4], flexible robotic systems [4], laparoscope holders [6], etc. The analysis of the
intraoperative data from robotic surgery has enabled the addition of new technologies,
one of them referring to automated gesture recognition, which assists the surgeon during
delicate procedures such as suturing. For this task, multiple intelligent algorithms were
developed using supervised, unsupervised, or semi-supervised learning paradigms [7].
This is an important step toward autonomous robotic-assisted surgery, where the robot
uses a confidence-based shared control strategy to perform certain tasks under supervision
but without the involvement of the human operator [8]. The advancements in computer
science, which are now providing more reliable intelligent algorithms and the increased
availability of large quantities of information (big data)—pre-operative digital information,
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instruments motion for repetitive tasks, recorded surgeries, patient evolution in the short
and long term—are indicators and supporters of the next generation of devices, intelligent
surgical robots [9].

The year 2018 marks the starting point for surgical robots dedicated to SILS due to
the first use of the robotic da Vinci SP system in SILS surgery [4,10,11]. The da Vinci SP
robot received FDA approval in 2018, becoming a benchmark in SILS robotic surgery, with
a serial architecture capable of manipulating and orienting active instruments and the
laparoscopic camera by using a single port through which these instruments are inserted.
The system has an articulated laparoscopic camera and instruments, thus offering much
better visibility and dexterity in the operating field compared to classical instruments [12].
The drawbacks are the limited forces (for tissue manipulation) due to the multiple bends of
the instruments. Another robot dedicated to SILS surgery that has received FDA approval
is the Senhance robot, which in contrast to da Vinci SP is a multi-arm system with three
independent serial manipulators capable of orienting and manipulating surgical instru-
ments [13]. Furthermore, there are various robotic systems for SILS which have not yet
received FDA approval, such as SORT, SPIDER, MASTER, Virtual Incision, and so on [4].

Since a robotic system for SILS must comply with complex design specifications
(e.g., footprint in the operating room, occupied volume, quick removal in case of an
emergency), various optimizations are achieved in the early design stages. In a general
interpretation, optimization aims to find the best solution for a given problem based
on the imposed restrictions. In robotics, the optimization process often faces conflicting
criteria such as speed versus energy efficiency, accuracy versus stability, or geometric
dimensions versus working volume. When dealing with multi-objective optimization
problems, the results are often given as a set of Pareto optimal solutions which must be
further interpreted. In [14], the authors present an optimal dimensional synthesis of a
parallel mechanism using two objective functions: finding the smallest dimensions for the
geometric links of the robot for a given workspace, and the second aims to ensure the best
overall dexterity within this workspace. As the two functions have conflicting criteria, it
was shown that favoring the first function can lead to a robot with low dexterity while
the second leads to a bulky robot. A numerical optimization methodology is presented
in [15] to achieve an optimal design synthesis for a planar parallel manipulator for a
prescribed dexterous workspace, using the condition number (an index that describes
the dexterity of a robot). Merlet emphasizes in [16] the importance of the proper use of
the condition number and global conditioning index (GCI) in the optimal design of a
robot, illustrating their limitations (namely, when they are applied to robots that have both
translation and orientation motions). GCI was first introduced by Gosselin and Angeles
in [17], and it was one of the first approaches to describe the global performance of a
manipulator, also demonstrating that in some cases, GCI can provide conflicting results in
workspace optimization problems. In [18], the authors successfully applied the GCI and
condition number to a 2-DOF parallel mechanism enabling them to obtain a generalized
characterization of the manipulator with respect to its operational workspace. In [19], the
authors used the condition number to optimize Orthoglide, a 3-DOF parallel robot with
only translational motions used in milling applications. The dimensional synthesis of the 3-
DOF Delta parallel robot for a prescribed workspace is presented in [20], where the authors
define several optimization objectives solved using the Lagrange multipliers method,
demonstrating that existing industrial robots could have almost half their size for the same
given workspace. Furthermore, for a Delta-like parallel robot, in [21], the authors achieved
an optimum design using multi-objective optimization algorithms, i.e., Pareto-optimization.
A methodology to achieve an optimal design for a 6-DOF parallel manipulator having
as objective its accuracy is presented in [22], where the authors are using the distribution
of the condition number to determine the best solutions. The Stewart–Gough platform
was analyzed in detail in [23], where the authors used a multi-objective optimization
algorithm (NSGA-II) to obtain the optimal geometric parameters and leg stroke lengths,
demonstrating that this approach is more efficient than the classical numerical methods.
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The workspace maximization of the Delta robot using a geometrical technique implemented
in CATIA is shown in [24], where the use of the Simulated Annealing Algorithm provided
promising results. The process of optimization is also found in the scientific literature
concerning the development of medical robots. In [25], the authors optimized a 3-DOF
serial robot considering the robot workspace and the surgical instrument insertion points.
Other authors [26] used optimization processes for the static balancing of a surgical robot.

A novel approach for robotic-assisted SILS was proposed in [27], which is based
on hybrid robotic systems with three major components: (1) a 6-DOF parallel robot that
simultaneously guides (2) two interconnected orientation platforms (mounted on the
mobile platform of the 6-DOF parallel robot) together with a laparoscopic camera, and
(3) two active surgical instruments (mounted in the orientation platforms) to perform the
SILS task. The kinematics of the surgical instruments was studied in [28], and in [29], the
input–output equations for the orientation platform were provided. Furthermore, a recent
work [27] achieved the kinematic modelling of the 6-DOF parallel robot.

The present paper illustrates the results regarding the further development of the
SILS robotic system, namely: (i) a singularity analysis for the 6-DOF parallel robot pre-
sented in [27] (correlated with the operational workspace of the robot) and (ii) a geometric
optimization of the 6-DOF parallel robot, to reduce its operating room footprint while main-
taining the capabilities of performing the SILS task in a defined operational workspace. The
singularity analysis was achieved using the vanishing conditions of the Jacobian matrices
A and B. The input singularities are straightforward to interpret for the 6-DOF parallel
robot, and for the output singularities, a geometric interpretation was achieved based on
the characteristic tetrahedron [30]. For the geometric optimization, the Multi-Objective
Genetic Algorithm implemented in Matlab gamultiobj function [31] is used to minimize
the dimensions of the robot for a defined operational workspace. The GCI index is used
in the optimization process only as guidance and not as a decision parameter due to its
drawbacks when used on robots that have both translation and orientation motions [16,17].

The paper is structured as follows: Section 2 defines the parallel robotic system with
all its modules and presents the inverse geometric model for the 6-DOF parallel robot.
Section 3 defines the robotic system’s operational workspace to create a clear description
of the robotic system task. Section 4 presents a singularity analysis for the general 6-DOF
parallel robot. Section 5 presents the proposed optimization algorithm for the 6-DOF
parallel robot and the general optimization criteria. Section 6 presents the optimized
version of the 6-DOF parallel robot, showing that the operational workspace is singularity
free. Furthermore, numerical simulations are provided to validate the optimized robotic
system. The conclusions are presented in Section 7.

2. An Innovative Parallel Robotic System for SILS

SILS requires the simultaneous independent manipulation of two surgical instruments
while the operating field is viewed through a laparoscopic camera. The position of the
laparoscope is not fixed, and it can change depending on the target tissue location. Fur-
thermore, both the surgical instruments and the laparoscope must be manipulated with
respect to Remote Center of Motion (RCM) points, i.e., the insertion points of the instrument
within the trocar. Lastly, the position of the insertion points (or the trocar) on the patient’s
abdomen may vary based on various medical factors (e.g., the position of the resected
tissue, areas that must be avoided, etc.) [3].

To comply with the required design parameters, an innovative parallel robotic system
for SILS was proposed with the following components:

1. One 6-DOF parallel robot (patent pending [32])—guides a triangular mobile platform
(Figure 1a) that contains a 1-DOF insertion mechanism for the laparoscopic camera;

2. Two 3-DOF orientation platforms (described in [29])—both mounted on the mobile
platform (Figure 1b) on the sides of the laparoscopic camera insertion mechanism.
The orientation platform can orient the surgical instruments using RCM with 2-DOF.
The third DOF is for the linear insertion/retraction of the surgical instrument;
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3. Two surgical instruments (described in [28])—each mounted in one orientation plat-
form. Each surgical instrument has a serial architecture with 4-DOF: 1-DOF for the
rotation about its longitudinal axis (the third rotation for the surgical instrument), 1-
DOF for the (articulated) bending, and 2-DOF for the gripper (each jaw of the gripper
is actuated separately enabling grabbing and gripper turning) (Figure 1c).

(a) (b) ( )

Figure 1. The initial modules for the SILS robotic system: (a) the 6-DOF parallel robot; (b) mobile
platform containing the laparoscope and two orientation platforms; (c) surgical instrument.

With respect to a defined robotic-assisted medical protocol [3], the proposed robotic
system must comply with the following stepwise procedure:

1. A preplanning procedure is performed to establish the adequate therapeutic con-
duit, also with respect to the robotic-assisted medical task. Among other medical
parameters (patient history, etc.), the patient position is established, insertion points
for the instruments are defined, and the relative position of the robot with respect
to the insertion points is defined to ensure the required ranges of motions for the
surgical instruments;

2. The 6-DOF parallel robot positions the mobile platform at the trocar (insertion points)
and inserts the laparoscope and the surgical instruments on a linear trajectory. Due to
the mechanically constrained RCM position (near the mobile platform), the 6-DOF
parallel robot guides the mobile platform in close proximity to the patient;

3. The combined motion of the 3-DOF orientation platforms and the 4-DOF surgical
instruments allows the surgeon to perform the task from the control console;

4. The laparoscope position can be adjusted by reorienting the mobile platform. Con-
sequently, the laparoscope RCM must be maintained through the robot control, and
simultaneously, the instrument position must be corrected by the 3-DOF orienta-
tion platforms (e.g., to maintain the instrument gripper-tissue relative position while
changing the laparoscope position).

The kinematic scheme of the 6-DOF parallel robot is presented in Figure 2. Although
the mechanism topology is the same as in [27], in this work, the kinematic chains are not
considered identical (removing this design constraint may improve the final solution for
the robot architecture). In [27], the links l2, l3, and l4 had the same values.
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Figure 2. Kinematic scheme of the 6-DOF parallel robot for SILS.

The 6-DOF parallel robot mechanism topology is as follows [27]:

• The parallel robot consists of three (R-PRR-PRS) kinematic chains actuated by the
prismatic joints pairs q1 and q2 for the first kinematic chain, q3 and q4 for the second
kinematic chain, and q5 and q6 for the third kinematic chain. Furthermore, each
kinematic chain has a free rotation motion around the actuation axis of the prismatic
joints (Rf1, Rf2, and Rf3, respectively), and three passive revolute joints (R11, R12, and
R13 for the first kinematic chain, R21, R22, and R23 for the second kinematic chain, R31,
R32, and R33 for the third kinematic chain);

• The three kinematic chains guide the mobile platform via three passive spherical joints,
S1, S2, and S3, respectively. The mobile platform contains two orientation platforms
which are illustrated in Figure 2 (Detail 2) as generic mechanisms (to point out the
functionality). The kinematic scheme of these orientation platforms is presented
in [29];

• The fixed coordinate frame OXYZ is attached to the robot base, and the mobile coordi-
nate frame O’X’Y’Z’ is attached to the mobile platform with its origin at the geometric
center of the equilateral triangle formed by the centers of the three passive spherical
joints (S1, S2, S3). Furthermore, point E [XE, YE, ZE] is defined as the origin of the
mobile coordinate frame O’X’Y’Z’.

Inverse Geometric Modelling for the 6-DOF Parallel Robot

The inverse geometric model will provide constraint equations which, in turn, will be
used as objective functions for the optimization algorithm.

For the inverse geometric model, the inputs are the Cartesian coordinates of point
E [XE, YE, ZE] and the orientation angles ψ, θ, ϕ, whereas the outputs are the active joint
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generalized coordinates qi (i = 1 . . . 6). With respect to the ZYX Euler convention, the
coordinates of the passive spherical joints are:

S1 :

⎧⎪⎪⎨⎪⎪⎩
XS1 = XE +

√
3

6 lpcψcθ − 1
2 lpcψsθsϕ + 1

2 lpsψcθ

YS1 = YE +
√

3
6 lpsψcθ − 1

2 lpsψsθsϕ − 1
2 lpcψcθ

ZS1 = ZE −
√

3
6 lpsθ − 1

2 lpsϕcθ

,

S2 :

⎧⎪⎪⎨⎪⎪⎩
XS2 = XE −

√
3

3 lpcψcθ

YS2 = YE −
√

3
3 lpsψcθ

ZS2 = ZE +
√

3
3 lpsθ

,

S3 :

⎧⎪⎪⎨⎪⎪⎩
XS3 = XE +

√
3

6 lpcψcθ +
1
2 lpcψsθsϕ − 1

2 lpsψcθ

YS3 = YE +
√

3
6 lpsψcθ +

1
2 lpsψsθsϕ + 1

2 lpcψcθ

ZS3 = ZE −
√

3
6 lpsθ +

1
2 lpsϕcθ

(1)

where cψ, cθ , cϕ represent the cosines of the ψ, θ, ϕ Euler angles, and sψ, sθ , sϕ represent the
sines of the ψ, θ, ϕ, Euler angles, respectively. Furthermore, the distances between S1, S2,
S3 and the actuation axes of the three kinematic chains (Figure 2) are given by [27]:

R1 = 1
2l1

(l1 + l2)
√

4l2
1 − (q2 − q1)

2,

R2 = 1
2l1

(l1 + l3)
√

4l2
1 − (q4 − q3)

2,

R3 = 1
2l1

(l1 + l4)
√

4l2
1 − (q6 − q5)

2

(2)

In addition, the following circle equation must be fulfilled [27]:⎧⎪⎪⎨⎪⎪⎩
X2

S1 + Y2
S1 − R2

1 = 0

X2
S2 + (ZS2 − LV)

2 − R2
2 = 0

X2
S3 + (YS3 − LH)2 − R2

3 = 0

(3)

And the following equations derived for each kinematic chain of the 6-DOF parallel robot
(Figure 2) must be fulfilled: ⎧⎪⎪⎨⎪⎪⎩

q2 − 1
2l1

(l1 + l2)(q2 − q1)− ZS1 = 0

q4 +
1

2l1
(l1 + l3)(q3 − q4)− YS2 = 0

q6 − 1
2l1

(l1 + l4)(q6 − q5)− ZS3 = 0

(4)

Using Equations (1)–(3) yields the solution for the inverse geometric model:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q1 = 1
l1+l2

[
(l1 + l2)q2 − 2l1

√
−X2

S1 − Y2
S1 + (l1 + l2)

2
]

q2 =
√
(l1 + l2)

2 − X2
S1 − Y2

S1 + ZS1

q3 = 1
l1+l3

[
(l1 + l3)q4 + 2l1

√
−X2

S2 + (l1 + l3)
2 − (LV − ZS2)

2
]

q4 = YS2 −
√
(l1 + l3)

2 − X2
S2 − (LV − ZS2)

2

q5 = 1
l1+l4

[
(l1 + l4)q6 − 2l1

√
−X2

S3 + (l1 + l4)
2 − (LH − YS3)

2
]

q6 =
√
(l1 + l4)

2 − X2
S3 − (LH − YS3)

2 + ZS3

(5)

3. The Proposed Operational Workspace for the Parallel Robotic System for SILS

For the SILS task, the discussion of the operational workspace must be split into two components:
(1) the intraoperative operational workspace (inside the patient body with respect to the insertion
points), defined by the orientation platforms, the surgical instruments, and the mobile platform of the
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6-DOF parallel robot (for the laparoscopic camera), and (2) the external operating workspace (outside
the patient body with respect to the insertion points), defined only by the 6-DOF parallel robot.

Considering the intraoperative workspace, in previous work [29], the maximum values for the
orientation angles of the surgical instruments were proposed as follows:

• The maximum laparoscope angles in all directions with respect to a vertical axis passing through
the insertion point to be 20 [◦], achieved with the 6-DOF parallel robot;

• The maximum angle for the active instruments in all directions with respect to an axis orthogonal
to the mobile platform (of the 6-DOF parallel robot) passing through the insertion point to be
30 [◦], achieved with the orientation platforms described in [29].

Larger angles may affect patient safety. The intraoperative workspace was defined based on a
sphere of 240 mm in diameter. Figure 3 illustrates the proposed intraoperative workspace, showing
possible insertion points for the surgical instruments and their maximum orientation angles

(a) (b) (c) 

Figure 3. The proposed intraoperative workspace for the SILS robotic system: (a) frontal plane
view showing the desired workspace with respect to the ribcage; (b) transverse plane view of the
desired workspace; (c) the workspace of the surgical instruments with respect to the insertion points
(brown—laparoscope, blue and green—active instruments).

A single set of insertion points for the RCM motion is not sufficient since adjustments may be
required for the relative position between the patient and the robot. Consequently, for the external
operational workspace, a cylindrical volume was proposed that should contain the sets of insertion
points. The proposed cylinder was defined with radius R = 75 [mm] and height h = 75 [mm], and
its position (approximately) relative to the patient is shown in Figure 4. This cylinder represents the
operational workspace of the 6-DOF parallel robot.

 

Figure 4. The proposed external workspace for the 6-DOF SILS robotic system (cylinder with radius
75 [mm] and height 75 [mm] and its position with respect to the ribcage).

4. Singularities of the 3-R-PRR-PRS Parallel Robot

The singularity analysis is achieved for the 3-R-PRR-PRS parallel robot without the loss of
generality (e.g., no numerical values will be substituted for the geometric parameters). Later in
Section 5, the design solution for the 6-DOF parallel robot for SILS is selected (based on the 3-R-
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PRR-PRS parallel robot), and the singularities are correlated with the operational workspace for the
SILS task.

The singularities are studied using the vanishing conditions of the determinants of the Jacobian
matrices A and B from the matrix relation [33–35]:

A ·
.
X + B ·

.
Q = 0 (6)

where
.

Q and
.
X represent the velocity vectors for the active joints Q = [q1, q2, q3, q4, q5, q6]

T and for
the mobile platform coordinates X = [XE, YE, ZE, ψ, θ, ϕ]T, respectively. With respect to the Jacobi
matrices A and B, three types of singularities can be defined, namely: type I singularities (input
singularities) when det(B) = 0, type II singularities (output singularities) when det(A) = 0, and type
III singularities when both det(B) = 0 and det(A) = 0.

The implicit equations used in the singularity analysis were defined using Equations (3) and (4)
with Equations (1) and (2) substituted, yielding:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1 : 1
6l1

[
lpl1

(√
3sθ + 3cθsϕ

)
+ 3(q1 + q2 − 2ZE) + 3l2(q1 − q2)

]
= 0

f2 : 1
12l1

[
4
√

3l1lp

(
XEcψ + YEsψ − 1

2 lpsϕsθ

)
cθ + l1l2

p

(
3c2

ϕ − 2
)

c2
θ − 12l1lp

((
XEcψ + YEsψ

)
sϕsθ −

(
XEsψ − YEcψ

)
cϕ
)
−

−12l2
1(l1 + 2l2) + 12l1

(
X2

E + Y2
E − l2

2
)
+ 3l1

(
l2
p − (q1 + q2)

2
)
+ 6l2(q1 − q2)

2 + 3 l2
2

l1
(q1 − q2)

2
]
= 0

f3 : 1
6l1

[
2
√

3lpl1sψcθ + 3(q3 + q4 − 2YE) + 3l3(q3 − q4)
]
= 0

f4 : 1
12l1

[
8
√

3l1lp
(
XEcψcθ + (LV − ZE)sθ

)
+ 4l1l2

p

(
3c2

ψ − 1
)

c2
θ − 12l2

1(l1 + 2l2) + 12l1
(
(LV − ZE)

2 + X2
E − l2

3

)
+

+l1
(

4l2
p − 3(q3 − q4)

2
)
+ 3

(
2l3 +

l2
3

l1

)
(q3 − q4)

2
]
= 0

f5 : 1
6l1

[
lpl1

(√
3sθ − 3sϕcθ

)
+ 3(q5 + q6 − 2ZE) + 3l4(q5 − q6)

]
= 0

f6 : 1
12l1

[
4
√

3l1lp

(
(LH − YE)sψ − 1

2 lpsϕsθ − XEcψ

)
cθ + l1l2

p

(
3c2

ϕ − 2
)

c2
θ − 12l1lp

(
(LH − YE)sϕsθ + XEcϕ

)
+

+12l1lp
(
XEsϕcψsθ − (LH − YE)cψcθ

)
− 12l2

1(l1 + 2l4) + 12l1
(
(LH − YE)

2 + X2
E − l2

2

)
+ 3l1

(
l2
p + (q5 − q6)

2
)
+

+3
(

2l4 +
l2
4

l1

)
(q5 − q6)

2
]
= 0

(7)

4.1. Type I Singularities
Computing the determinant of the Jacobian Matrix B yields a factored result:

det(B) = − 1
8l6

1
(l1 + l2)

2(l1 + l3)
2(l1 + l4)

2(q1 − q2)(q3 − q4)(q5 − q6) (8)

The singularity analysis is as follows:

1. l1 = 0; this condition causes det(B) to be undefined; however, this condition is disregarded since it
will be avoided in the mechanism design (link lengths cannot be 0);

2. l1 + l2 = 0 or l1 + l3 = 0 or l1 + l4 = 0; these conditions imply negative values for the link lengths,
and are not regarded as possible singularities due to the mechanism design;

3. q1 − q2 = 0 or q3 − q4 = 0 or q5 − q6 = 0; these conditions require that the active joints of a
kinematic chain are equal, meaning the active joints are overlapping. This condition is avoidable
in the robot design or in the robot control.

4.2. Type II Singularities
Computing the determinant of the Jacobian matrix A yields a factored result:

det(A) = l3
p cos(θ)F

(
XE, YE, ZE, ψ, θ, ϕ, lp, LH , LV

)
(9)

which describes singularities when:

1. lp = 0, which is impossible in the robot design (link lengths cannot be zero);
2. cos(θ) = 0, which describes a parametric singularity of the ZYX Euler angles; since the

parameter θ describes the second rotation in the ZYX Euler angles, for θ = π/2 there is a gimbal
lock, i.e., the parameters ψ and ϕ describe rotations about the same axis [36].

3. F
(
XE, YE, ZE, ψ, θ, ϕ, lp, LH , LV

)
= 0. The factor F (shown in Appendix A) could not be further

factorized in this work. However, the following relation can be written:
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det(A) = −8H0 cos(θ) (10)

where the factor H0 (shown in Equation (11)) is written in a compact manner using Equation (1).
Note that the lp parameter is not present in H0 (but is still encoded in Equation (1)).

H0 = LH LV
[
(XS2YS2 − XS2YS3 − XS3YS2 + XS3YS3)X2

S1 − (XS1YS1 − XS1YS3)X2
S2 − (XS1YS1 − XS1YS2)X2

S3 +

+(2YS1 − YS2 − YS3)XS1XS2XS3]− LH [(XS2YS2ZS3 − XS2YS3ZS2 − XS3YS2ZS2 + XS3YS3ZS2)X2
S1 − (XS1YS1ZS3 −

−XS1YS3ZS1 − XS3YS1ZS1 + XS3YS1ZS3)X2
S2 − (XS1YS1ZS2 − XS1YS2ZS2− XS2YS1ZS1 + XS2YS1ZS2)X2

S3+

+(2YS1ZS2 − YS2ZS3 − YS3ZS1)XS1XS2XS3]− LV
[(

XS2YS2YS3 − XS2Y2
S3
)
X2

S1 − (XS1YS1YS3 + XS3YS1YS3 −
−XS1Y2

S3 − XS3Y2
S1
)
X2

S2 +
(
XS2YS1YS2 − XS2Y2

S1
)
X2

S3 + (2YS1YS3 − YS1YS2 − YS2YS3)XS1XS2XS3
]
+

+
(
YS2YS3ZS3 − Y2

S3ZS2
)
X2

S1XS2 −
(
YS1YS3ZS3 − Y2

S3ZS1
)
X2

S2XS1 − (YS1YS2ZS3 − 2YS1YS3ZS2 + YS2YS3ZS1)XS1XS2XS3−
−
(
YS1YS3ZS1 − Y2

S1ZS3
)
X2

S2XS3 +
(
YS1YS2ZS1 − Y2

S1ZS2
)
X2

S3XS2

(11)

To study the output singularities, the characteristic tetrahedron was used [30], which states that
a singularity occurs when the geometry of the tetrahedron is degenerate (e.g., faces are coplanar, etc.).
The tetrahedron is composed of three faces defined by characteristic planes spanned by reciprocal
wrenches at each spherical joint of the three kinematic chains and a base defined by the plane of the
mobile platform. To define the characteristic planes associated with the three kinematic chains (for
the 6-DOF parallel robot for SILS), first, the actuators are considered fixed, and then two reactive
forces for the remaining passive motion are defined (at the level of the spherical joint). Figure 5
illustrates this concept on the kinematic chain 1, with the actuators q1 and q2, the spherical joint S1,
and the reactive forces R1 and R2, respectively (which span the characteristic plane P1). Figure 6
illustrates how these planes intersect to form the characteristic tetrahedron (in a nonsingular pose).

Figure 5. Characteristic plane defined for the kinematic chain 1.

Figure 6. Characteristic tetrahedron for the 6-DOF parallel robot for SILS (nonsingular pose).

The first characteristic plane, P1 (describing the first kinematic chain), contains the OZ axis (the
actuation axis of q1 and q2) of the fixed coordinate system and the center of the passive spherical joint
S1 and has the following equation:

P1 : (−YS1)x + (XS1)y = 0 (12)
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Furthermore, the characteristic plane P2 (for the second kinematic chain) contains the actuation
axis of q3 and q4 and the center of the passive spherical joint S2 and has the following equation:

P2 : (ZS2 − LV)x − (XS2)z + LV XS2 = 0 (13)

The characteristic plane P3 (for the third kinematic chain) contains the actuation axis of q5 and
q6 and the center of the passive spherical joint S3 and has the equation:

P3 : (−YS3 + LH)x + (XS3)y − LH XS3 = 0 (14)

Lastly, the characteristic plane Pm (for the mobile platform) contains the centers of all passive
spherical joints and has the equation:

Pm : (Coe fx)x +
(
Coe fy

)
y + (Coe fz)z + Coe fd = 0

Coe fx = (ZS2 − ZS3)YS1 + (ZS3 − ZS1)YS2 + (ZS1 − ZS2)YS3
Coe fy = (ZS3 − ZS2)XS1 + (ZS1 − ZS3)XS2 + (ZS2 − ZS1)XS3
Coe fz = (YS2 − YS3)XS1 + (YS3 − YS1)XS2 + (YS1 − YS2)XS3
Coe fd = (XS2YS1 − XS1YS2)ZS3 + (YS2ZS1 − YS1ZS2)XS3 + (XS1ZS2 − XS2ZS1)YS3

(15)

There are eight type II (output) singularities (described in a general form in [30]) that are geomet-
rically interpreted by the degeneracy of the geometry of the characteristic tetrahedron. Each singular-
ity case for the 3-R-PRR-PRS parallel robot may be checked independently using the planes defined
in Equations (12)–(15) (the planes contain the faces and the base of the characteristic tetrahedron) and
Equation (11), which generally describes the degeneracy conditions of the characteristic tetrahedron:

In Case 1, all faces of the characteristic tetrahedron and the base intersect in a point [30];
consequently, P1, P2, P3, and Pm intersect in a point. The proof that this case represents a singularity
for the 3-R-PRR-PRS parallel robot is straightforward. Assuming that the characteristic planes P1,
P2, P3, intersect at point I(x, y, z). Equations (12)–(14) can be solved simultaneously to compute the
intersection point’s Cartesian coordinates:

I :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x = LH XS1XS3

(LH−YS3)XS1+XS3YS1

y = LH XS3YS1
(LH−YS3)XS1+XS3YS1

z =
LH LV (XS1XS2−XS1XS3)+LV (XS2XS3YS1−XS1XS2YS2)+LH XS1XS3ZS2

((LH−YS3)XS1+XS3YS1)XS2

(16)

If point I is also contained in the characteristic plane Pm, then Equation (15) must be fulfilled
for the x, y, and z Cartesian components shown in Equation (16). Substituting Equation (16) into
Equation (15) leads to an equation that can be linearly solved for one Cartesian component of the
three passive spherical joints. The computed solution for ZS1 is:

ZS1 = H1
((LH−YS3)XS2−(LH−YS2)XS3)(XS1YS3−XS3YS1)XS2

H1 = LH LV [(XS2 − XS3)((YS3 − YS1)XS1 + (YS2 − YS3)XS2 + (YS1 − YS2)XS3)XS1]−
−LH

[
(ZS2(YS3 − YS2)XS2 + (YS2ZS3 − YS3ZS2)XS3)X2

S1 +
(
ZS2(YS2 − YS1)X2

S3 +

+ XS2(2YS1ZS2 − YS2ZS3)XS3 − X2
S2YS1ZS3

)
XS1 + (XS2ZS3 − XS3ZS2)XS2XS3YS1

]
−

−LV [((YS2 − YS3)XS1 + (YS3 − YS1)XS3 + (YS1 − YS2)XS3)(XS1YS3 − XS3YS1)XS2]+

+((YS2ZS3 − YS3ZS2)XS1 − (XS2ZS3 − XS3ZS2)YS1)(XS1YS3 − XS3YS1)XS2

(17)

Equation (17) describes the constraint of the ZS1 parameter when all four planes intersect at a
point. Substituting Equation (17) into Equation (11) causes H0 to vanish, proving the singularity for
the 3-R-PRR-PRS parallel robot.

To illustrate an example of this singularity, the geometric parameters {LH = 1420, LV = 1000,
lp = 260} [mm] and the mobile platform coordinates {XE = 400 mm, YE = 700 mm, ZE = 500 mm,
ψ = 0 rad, ϕ = π/10 rad} (arbitrary chosen) are considered (only five output parameters are con-
sidered, the last one, θ, is computed). Substituting the numerical values into Equation (A1) (see
Appendix A) and solving the equation for θ (using the solve function in Maple), yields four real
solutions {θ = 0.93 rad, θ = −1.755 rad, θ = 1.82 rad, θ = −2.40 rad}. Figure 7a shows the parallel robot
in the singular pose (for θ = 0.93), whereas Figure 7b shows how the characteristic planes P1, P2, P3,
and Pm intersect at a point.
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(a) (b) 

Figure 7. Type II singularity of the 6-DOF parallel robot for SILS (case 1—the characteristic tetrahedron
faces and base intersect in a point): (a) parallel robot pose; (b) characteristic planes intersect in a point.

In Case 2, the faces of the characteristic tetrahedron (i.e., P1, P2, P3) intersect in a line, but no
faces are coplanar [30]. For the 6-DOF parallel robot for SILS, this case is impossible since P1 and P3
are always vertical, whereas P2 has only two configurations when it is vertical (when the kinematic
chain 2 points upwards or downwards). However, when all of the characteristic planes, P1, P2, and
P3, are vertical, they are all coplanar (due to the mechanism topology); therefore, P1, P2, and P3
cannot intersect in a line. This is straightforward to prove using Equations (12)–(14). Assuming that
the planes P1, P2, and P3 intersect in a line, then the rank of the coefficient’s matrix (matrix containing
the x, y, and z coefficients from the plane equations) M1 and the rank of the augmented matrix (matrix
containing the x, y, and z coefficients and the free terms) M2 must be 2. The two matrices are defined
using Equations (12)–(14):

M1 :

⎡⎣ −YS1 XS1 0
−LV + ZS2 0 −XS2
LH − YS3 XS3 0

⎤⎦, M2 :

⎡⎣ −YS1 XS1 0 0
−LV + ZS2 0 −XS2 LV XS2
LH − YS3 XS3 0 −LH XS3

⎤⎦ (18)

It can be checked that the rank of M1 is 2 for:

XS2 = 0, and/or XS1 =
YS1XS3

YS3 − LH
(18a)

but for the solutions shown in Equation (18a) the rank of M2 is 3 (the planes intersect in two or
three lines). The rank of M2 is 2 for:

XS2 = 0, and XS1 = 0 (18b)

in which case the rank of M1 is also 2 (describing two coincident planes and the third one intersecting
it). Furthermore, for:

XS2 = 0, andXS1 = 0, and XS3 = 0 (18c)

the rank of both M1 and M2 is 1 (describing three coincident planes).
In Case 3, two of the tetrahedron faces and its base intersect in a line [30]. Considering the

characteristic planes P1, P3, and Pm, the coefficient and augmented matrices are:

M3 :

⎡⎣ −YS1 XS1 0
LH − YS3 XS3 0

Coe fx Coe fy Coe fz

⎤⎦, M4 :

⎡⎣ −YS1 XS1 0 0
LH − YS3 XS3 0 −LH XS3

Coe fx Coe fy Coe fz Coe fd

⎤⎦ (19)

It can be checked that the rank of both matrices M3 and M4 is 2 for:

XS1 =
XS3YS1

YS3
, and XS2 =

XS3YS2
YS3

(19a)
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Furthermore, substituting the values of Equation (20) into Equation (19) shows no proportional-
ity between the matrix’s rows; therefore, the intersection describes a line. In addition, substituting
Equation (20) into Equation (11) causes the factor H0 to vanish.

Another geometric configuration for Case 3 is represented by the characteristic planes P1, P2,
and Pm intersecting in a line (the case when P3, P2, and Pm intersect in a line is redundant with
this one due to the configuration symmetry of the parallel robot). The coefficient and augmented
matrices are:

M5 :

⎡⎣ −YS1 XS1 0
−LV + ZS2 0 −XS2

Coe fx Coe fy Coe fz

⎤⎦, M6 :

⎡⎣ −YS1 XS1 0 0
−LV + ZS2 0 −XS2 LV XS2

Coe fx Coe fy Coe fz Coe fd

⎤⎦ (20)

The rank of both matrices M5 and M6 is 2 for:

XS1 =
XS3(LV − ZS1)

LV − ZS3
, andXS2 =

XS3(LV − ZS2)

LV − ZS3
(20a)

Substituting the values of Equation (20a) into Equation (20) shows no proportionality between
the matrix’s rows (the intersection describes a line), and substituting Equation (20a) into Equation (11)
causes factor H0 to vanish.

As an example, for the 3-R-PRR-PRS parallel robot, for θ = 0 rad, ϕ = π/2 rad, the factor F
(Equation (A1)—Appendix A) vanishes. In this configuration, the mobile platform is in a vertical
pose. Figure 8 shows an example of this singularity, (a) the parallel robot poses and (b) the charac-
teristic planes (P1, P3, Pm) intersecting in a line. It can be shown (at least for this example) that the
characteristic plane P2 also intersects that line; therefore, this singularity is the special case of Case 1
discussed previously (since all the characteristic planes intersect at a point).

(a) (b) 

Figure 8. Type II singularity of the 6-DOF parallel robot for SILS (case 3—two faces of the characteristic
tetrahedron and its base intersect in a line): (a) parallel robot pose; (b) characteristic planes intersect
in a line.

In Case 4, two of the characteristic tetrahedron faces are coplanar [30]. Due to the arguments
presented in Case 2 for the 6-DOF parallel robot for SILS, the only possible tetrahedron faces that can
become coplanar are the ones defined by P1 and P3. The coefficient and augmented matrices in this
case are:

M7 :
[ −YS1 XS1 0

LH − YS3 XS3 0

]
, M8 :

[ −YS1 XS1 0 0
LH − YS3 XS3 0 −LH XS3

]
(21)

If P1 and P3 are coplanar then the ranks of M7 and M8 must both be 1. It can be checked that
this is the case for:

XS1 = 0, andXS3 = 0 (21a)

Substituting Equation (21a) into Equation (11) causes factor H0 to vanish, proving the singularity.

As an example, for the numerical values XE = −
√

3
6 lp mm, ψ = 0 rad, θ = 0 rad, the factor F vanishes.

Figure 9a shows this singular configuration for the parallel robot, and Figure 9b shows P1 and P3
being coplanar.
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(a) (b) 

Figure 9. Type II singularity of the 6-DOF parallel robot for SILS (Case 4—two faces of the character-
istic tetrahedron are coplanar): (a) parallel robot pose; (b) characteristic planes.

In Case 5, one side and the base of the characteristic tetrahedron are coplanar [30]. There are
three general configurations for the 3-R-PRR-PRS parallel robot that correspond to this case. The first
of these general configurations is represented by P2 and Pm being coplanar, whereas the second and
third general configurations for this singularity are achieved when either P1 or P2 are coplanar with
Pm. Considering the first case, the coefficient and augmented matrices are:

M9 :
[−LV + ZS2 0 −XS2

Coe fx Coe fy Coe fz

]
, M10 :

[−LV + ZS2 0 −XS2 LV XS2
Coe fx Coe fy Coe fz Coe fd

]
(22)

It can be shown that both matrices M9 and M10 have rank 1 for:

XS2 = (YS2−YS3)XS1+(YS1−YS2)XS3
YS1−YS3

, and

ZS1 = (YS1−YS3)ZS2+(YS2−YS1)ZS3
YS2−YS3

(22a)

Substituting Equation (22a) into Equation (11) causes factor H0 to vanish. It is easy to find
relationships that describe this singularity case when P1 or P2 are coplanar with Pm.

An example is given for the geometric parameters {LH = 1420 mm, LV = 1000 mm, lp = 260 mm},
and for the mobile platform coordinates {XE = 350 mm, YE = 750 mm, ZE = 200 mm, ψ = 0 rad,
ϕ = 0 rad} (arbitrary chosen for the example purpose). Solving the factor F for the numerical val-
ues yields two real solutions {θ = 1.158 rad, θ = 1.9 rad}. Figure 10 illustrates this singularity
for θ = 1.158 rad. Another example is shown for the mobile platform coordinates {XE = 350 mm,
YE = 750 mm, ZE = 200 mm, ψ = 0 rad, θ = π/2 rad} and the computed angle for ϕ = 0.44 rad. In this
example (Figure 11) P1 and Pm are coplanar.

 
 

(a) (b) 

Figure 10. Type II singularity of the 6-DOF parallel robot for SILS (case 5—one face and the base of
the characteristic tetrahedron are coplanar): (a) parallel robot pose; (b) P2 and Pm are coplanar.
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(a) (b) 

Figure 11. Type II singularity of the 6-DOF parallel robot for SILS (case 5—one face and the base of
the characteristic tetrahedron are coplanar): (a) parallel robot pose; (b) P1 and Pm are coplanar.

In Case 6, two sides and the base of the characteristic tetrahedron are coplanar [30]. For the
6-DOF parallel robot for SILS this case is impossible (due to the mechanism topology). Any two
faces of the characteristic tetrahedron are coplanar if and only if the faces are also coplanar with the
YOZ plane (Figure 2). This condition can be proven in two steps. In the first step, P1, P3, and Pm are
assumed to be all coplanar. Consequently, the ranks of M3 and M4 (Equation (19)) must both be 1,
which can be achieved if:

XS1 = 0, and XS2 = 0, andXS3 = 0 (23)

It can be checked that Equation (23) is the only solution for which P1, P3, and Pm are all coplanar.
This is also easy to see geometrically. The actuation axes of q1 and q2 (line contained in P1) and q5
and q6 (line contained in P3) are both included in the YOZ plane of the fixed coordinate system. If P1
and P3 are coplanar, then the actuation axis of q1 and q2 must be contained in P3, and reciprocally, the
actuation axis of q5 and q6 must be contained in P1. Therefore, the planes P1 and P3 (and any other
plane, e.g., Pm) are coplanar if they are coplanar with YOZ, the result is shown by Equation (23). In
the second step, P1, P2, and Pm are assumed to be all coplanar. Consequently, the ranks of M5 and M6
(Equation (20)) must both be 1, which can be achieved if (again) the conditions from Equation (23) are
met. It can be shown, by the same argument as above, that if the planes P1, P2, and Pm are coplanar,
then they must be coplanar with YOZ, the result is shown by Equation (23). Since Equation (23)
represents a (unique) solution for both cases (P1, P3, and Pm being coplanar and P1, P2, and Pm being
coplanar), the conclusion is that if P1, P3, and Pm are coplanar, they must also be coplanar with P2
(condition discussed in Case 8).

In Case 7, one side and the base of the tetrahedron are coplanar and the other two sides of
the tetrahedron are also coplanar [30]. Considering all four characteristic planes, the coefficient and
augmented matrices are:

M11 :

⎡⎢⎢⎣
−YS1 XS1 0

−LV + ZS2 0 −XS2
LH − YS3 XS3 0

Coe fx Coe fy Coe fz

⎤⎥⎥⎦, M12 :

⎡⎢⎢⎣
−YS1 XS1 0 0

−LV + ZS2 0 −XS2 LV XS2
LH − YS3 XS3 0 −LH XS3

Coe fx Coe fy Coe fz Coe fd

⎤⎥⎥⎦ (24)

The ranks of the matrices M11 and M12 is 2 (describing pairs of coplanar planes that intersect in
a line), for:

XS1 = 0, andXS3 = 0, and ZS1 = LV , and ZS3 = LV (24a)

Substituting Equation (26) in Equation (11) causes H0 to vanish.
For the 3-R-PRR-PRS parallel robot, this case can only be achieved if P1 is coplanar with P3 and

P2 is coplanar with Pm. The factor F vanishes for the geometric values parameters {LH = 1420 mm,
LV = 1000 mm, lp = 260 mm}, and for the mobile platform coordinates {XE = −75.05 mm, YE = 750 mm,
ZE = 1000 mm, ψ = 0 rad, θ = 0 rad, ϕ = 0 rad}. This configuration is illustrated in Figure 12.
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(a) (b) 

Figure 12. Type II singularity of the 6-DOF parallel robot for SILS (case 7—one face and the base
of the characteristic tetrahedron are coplanar and the other two faces of the tetrahedron are also
coplanar): (a) parallel robot pose; (b) characteristic planes.

In Case 8, all of the faces and the base of the characteristic tetrahedron are coplanar [30]. The
coefficient and augmented matrices for this case are already shown in Equation (24). All four planes
are coplanar if the ranks of the matrices M11 and M12 are both 1. This is achieved by setting:

XS1 = 0, and XS2 = 0, andXS3 = 0 (25)

Substituting Equation (25) into Equation (11) causes factor H0 to vanish. For the 3-R-PRR-PRS
parallel robot, this singularity is achieved if {XE = 0 mm, θ = ±π/2 rad}. This configuration is
illustrated in Figure 13.

 

 

(a) (b) 

Figure 13. Type II singularity of the 6-DOF parallel robot for SILS (case 8—all the faces and the base
of the characteristic tetrahedron are coplanar): (a) parallel robot pose; (b) characteristic planes.

4.3. Type III Singularities
Since the determinant of the Jacobian matrix A is free of input parameters (i.e., it only depends

on the geometric parameters and the outputs {XE, YE, ZE, ψ, θ, ϕ}), whereas the determinant of the
Jacobian matrix B is free of output parameters (it depends only on the geometric parameters and the
inputs {q1, q2, q3, q4, q5, q6}), it is feasible to assume that type III singularities may occur. However, as
stated before, the type I singularities are easily avoidable in the design stage; hence it can be stated
that the 6-DOF parallel robot for SILS will have no type III singularities.
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5. Geometric Optimization Algorithm

The 6-DOF parallel robot for SILS was geometrically optimized with respect to an operational
workspace defined to comply with the medical task. Several optimization criteria were defined, and
based on these criteria, appropriate input data were defined for the optimization algorithm.

5.1. Optimization Criteria
The following criteria (with the following importance order Criterion 1 is more important than

Criterion 2, which is equally important as Criterion 3) were defined with respect to the SILS task:

• Criterion 1—Operational workspace. The proposed operational workspace is a cylinder shape (see
Section 3). Furthermore, the intervals for the orientation angles of the endoscopic camera must
be (for the entire operational workspace):

ψ, θ, ϕ ∈ [−20 20][◦] (26)

• Criterion 2—Footprint. To minimize the robot footprint, the following conditions were imposed:

LH < 600 [mm], LV < 600 [mm] (27)

• Criterion 3—Dexterity. The robot should have adequate performance with respect to dexterity.
This work uses an approximation of the Global Conditioning Index (GCIa) to assess the 6-DOF
parallel robot dexterity which is computed as [16]:

GCIa =

n
∑

i=1

1
ki

n
(28)

where ki represents the condition number [16] of the ith point from the (discrete generated) operational
workspace, which is computed using Equation (29), and n is the number of points within the
operational workspace. For a given point, the condition number is:

k = ‖ J‖ ‖ J−1‖ (29)

where ‖ · ‖ represents the norm of the Jacobian matrix J, which is computed in this work with:

‖ J‖ =
√

trace
(
JJT) (30)

where J is computed using the input and output Jacobian matrices (Equation (6)), as follows:

J = −B−1 · A (31)

An important note is that condition number k is a measure of dexterity at one specific robot
configuration, and the lower its value, the better (a minimum value of 1 represents isotropy [16]).
For the approximation of GCI, the inverse of k is used, which is bounded by 0 and 1 (in this case the
higher the better). GCIa is a measure of the average of the inverse of k computed from all points
within the operational workspace. However, due to the drawbacks of the condition number and the
GCI (when the robot has translation and rotational motions), the values of GCIa (i.e., Criterion 3) will
be used as a guiding value, not as a definite decision parameter.

5.2. Geometric Optimization Algorithm Description
The optimization algorithm is presented next in pseudocode (Algorithm 1).
The test operational workspace WS_DATA is defined (1) and is used in future steps to determine

the validity of the possible optimized solutions. Note that the proposed algorithm yields solutions
(stacked in SOLS(M)) for a single parallel robot pose (Cartesian coordinates and orientation) within
the desired cylindrical operational workspace. These solutions must be subsequently validated for
the entire WS_DATA. The objectives OBJ of optimization (2) are to minimize the seven geometric
parameters of the parallel robot subject to the kinematic constraint C, which are evaluated with values
for the mobile platform coordinates within the operational workspace. The numerical intervals for
the optimization process are defined (3); L defines intervals for the robot geometric parameters (for
the optimization objectives), whereas CYL ensures that the Cartesian coordinates (for the optimum
solutions) are within the desired cylinder, and ANG ensures that the mobile platform orientations
are within the proper ranges. Note, CYL and ANG are different from WS_DATA; CYL and ANG
are used by the gamultiobj function (from Matlab [31]) to ensure that the objectives are always
minimized with respect to robot poses within the operational workspace, whereas (as pointed out
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before) WS_DATA is used to evaluate (in a discrete manner) if the generated solutions are valid
for the entire operational workspace. The optimization is performed (4) iteratively until the solu-
tions set SOLS(M) fills as best as possible the operational workspace (considering, of course, the
Cartesian coordinates and the orientations of the mobile platform). Then, a solution subset SOL(K)
(for the minimized geometric parameters) is defined for the optimized solutions that are valid for
the entire WS_DATA (i.e., geometric parameters that yield real solutions for all WS_DATA). If no
such subset exists, (3) is repeated. Then, the solution subset is analyzed to determine the ranges of
motion Q_RANGE(K) for the active joints qi (i = 1, . . . ,6) and if there exist ranges that yield feasible
mechanisms (without crossing the actuation axes of the active joints, etc.), the solutions (yielding the
adequate ranges) are subsequently saved in FINAL(H). If there are no adequate ranges for the active
joints (to yield feasible mechanisms), (3) is repeated. The GCI is computed for all of the remaining so-
lutions in FINAL(H), and the design solution is defined (not automatically but by the robot designers).

Algorithm 1. The optimization algorithm.

0. BEGIN OPTIMIZATION

1. Define the test operational workspace

1.1. Input the cartesian coordinates E(N) [XEi, YEi, ZEi] (i = 1, . . . ,n) for the operating
workspace

1.2. Input the required orientation angles ψ, θ, ϕ

1.3. Compute WS_DATA by assigning all angles ψ, θ, ϕ for all E(i) ∈ E(N)

1.4. Goto 2

2. Define objective functions and constraints

2.1. Define objective functions OBJ [o1, o2, o3, o4, o5, o6, o7]
2.2. Define constraints: C [C1, C2, C3, h1, h2, h3, h4, h5, h6]
2.3. Goto 3

3. Input the dimension intervals for the optimization process

3.1. Define and input L [lp_min, lp_max, LH_min, LH_max, LV_min, LV_max, l1_min, l1_max,
l2_min, l2_max, l3_min, l3_max, l4_min, l4_max]

3.2. Define and input CYL [R_min, R_max, H_min, H_max, α_min, α _max]
3.3. Define and input ANG [ψ_min, ψ _max, θ_min, θ _max, φ_min, φ _max]
3.4. Goto 4

4. Minimize robot dimensions

4.1. Compute the Pareto front (iteratively) denoted SOLS(M) by minimizing OBJ subject
to the constraints C and the intervals L, CYL, ANG.

4.2. Define a smaller solution set SOL(K) ∈ SOLS(M) such that for every SOL(i) (i = 1,
. . . ,K), qi (i = 1, . . . ,6) ∈ R for every point in WS_DATA

4.3. If SOL(K) exists, then Goto 4.4, else Goto 3

4.4. Compute the active joints ranges Q_RANGE(K) [qi_min, qi_max] (i = 1, . . . ,6) for
every SOL(i) (i = 1, . . . ,K)

4.5. If Q_RANGE(j) (j = 1, . . . ,K) is acceptable (mechanism is feasible), then save the
solution SOL(j) into FINAL(H)

4.6. If FINAL(H) is empty, then Goto 3, else Goto 4.7
4.7. Compute GCI for every FINAL(h) (h = 1, . . . ,H)
4.8. Define the most optimal solution
4.9. Goto 5

5. END OPTIMIZATION

6. The Optimized 6-DOF Parallel Robot for SILS

6.1. The Geometric Optimization
The parallel robot was optimized using the algorithm presented in Section 5.2 based on the

following inputs:

• The test workspace data (WS_DATA) was defined based on a cylinder with:

C(XC = 290, YC = 415, ZC = −75) [mm]

R = 75 [mm], h = 75 [mm]
(32)
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where C is the center of the base circle (with respect to the fixed coordinate system of the robot), R is
the circle’s radius, and h is the cylinder height. WS_DATA was generated by discretizing the cylinder
and adding the orientations for the mobile platform, based on the following:

Ei =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

XEi = XC + RC cos(α)
YEi = YC + RC sin(α)
ZEi = HC
ψi = ψ

θi = θ

ϕi = ϕ

,

RC∈ [0, 75][mm], increment = 7.5 [mm]

HC∈ [−75, 0][mm], increment = 15 [mm]

α∈ [0, 360][◦], increment = 10 [◦]

ψ, θ, ϕ∈ [−20, 20][◦], increment = 2.5 [◦]

(33)

where Ei represents the ith mobile platform configuration within the operational workspace. WS_DATA
contained approximately 9.78 million unique sets of mobile platform coordinates (a better resolution
was not achievable due to computation power limitations). Figure 14 illustrates the point cloud
defining the discrete operational workspace (only in Cartesian coordinates).

 
 

(a) (b) 

Figure 14. The generated discrete workspace (WS_DATA) for the SILS robotic systems (only the
Cartesian coordinates): (a) isometric view; (b) Z axis view.

• The input intervals L for the geometric parameters for the 6-DOF SILS robot where:

l1 ∈ [140, 200][mm], l2 ∈ [350, 600][mm], l3 ∈ [200, 350][mm], l4 ∈ [200, 350][mm],
lp ∈ [200, 250][mm], LH ∈ [500, 600][mm], LV ∈ [200, 600][mm]

(34)

Furthermore, the CYL intervals were:

R ∈ [0, 75][mm], H ∈ [−75, 0][mm], α ∈ [0, 360][◦] (35)

and the ANG intervals:

ψ ∈ [−20, 20][◦], θ ∈ [−20, 20][◦], ϕ ∈ [−20, 20][◦] (36)

• The objective functions OBJ to be minimized (to reduce the size of the robot for a given opera-
tional workspace) and the constraints C were:

OBJ= [lp, LH , LV , l1, l2, l3, l4],

C= [XE, YE, ZE, h1, h2, h3, h4, h5, h6]
(37)
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where hi (i = 1, . . . ,6) are due to Equation (5):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h1 : 1
l1+l2

[
(l1 + l2)q2 − 2l1

√
−X2

S1 − Y2
S1 + (l1 + l2)

2
]
− q1 = 0

h2 :
√
(l1 + l2)

2 − X2
S1 − Y2

S1 + ZS1 − q2 = 0

h3 : 1
l1+l3

[
(l1 + l3)q4 + 2l1

√
−X2

S2 + (l1 + l3)
2 − (LV − ZS2)

2
]
− q3 = 0

h4 : YS2 −
√
(l1 + l3)

2 − X2
S2 − (LV − ZS2)

2 − q4 = 0

h5 : 1
l1+l4

[
(l1 + l4)q6 − 2l1

√
−X2

S3 + (l1 + l4)
2 − (LH − YS3)

2
]
− q5 = 0

h6 :
√
(l1 + l4)

2 − X2
S3 − (LH − YS3)

2 + ZS3 − q6 = 0

(38)

and:
XE = XC + R cos(β),
YE = YC + R sin(β),
ZE = H

(39)

• The gamultiobj function was iterated 200 times with the defined parameters, and with each
iteration, the data were saved within the solution set SOLS. The gamultiobj function uses random
number generators, and multiple iterations ensured that the optimized solution set spanned
the “entire” operational workspace. The hypothesis is that the large number of solutions that
spanned the entire operational workspace led to a better probability of finding feasible solutions
(that are tested with the WS_DATA) in the next step. The set SOLS(m) (m = 1, . . . ,28,568)
includes numerical values for the mobile platform coordinates, the geometric parameters, and
the active joints. Figure 15 illustrates a point cloud based on the Cartesian coordinates within
SOLS(m) (m = 1, . . . ,28,568), whereas Figure 16 illustrates the distribution of SOLS(m) (m = 1,
. . . ,28,568) with respect to the mobile platform coordinates.

• A subset SOL(k) (k = 1, . . . ,931) was selected from SOLS(m) (m = 1, . . . ,28,568) which yield real
values for qi (i = 1, . . . ,6) for all mobile platform coordinates in WS_DATA. Furthermore, the
ranges Q_RANGE(k) for qi (i = 1, . . . ,6) of each solution the subset SOL(k) were evaluated to
determine which solutions yield feasible mechanisms (where, e.g., the actuation axes do not
cross). For the viable solutions FINAL(h) (h = 1, . . . ,9), the GCI was computed for the WS_DATA.
Table 1 shows the resulting feasible solutions (FINAL(h)) for the geometric parameters of the
6-DOF parallel robot for SILS.

• The design solution was Sol. no. 1 from Table 1, not because it has the best value for GCIa, but
because it shows a “good” compromise between the footprint (e.g., LH) and the computed GCIa
index (it ranks third with respect to LH and first with respect to GCIa). Table 2 shows the ranges
of the active joins for the selected design solution.

 

 
(a) (b) 

Figure 15. Point cloud spanned by the solution set SOLS(m) (m = 1, . . . ,28,568): (a) isometric view;
(b) Z axis view.
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Figure 16. Mobile platform coordinates distribution density for the solution set SOLS(m) (m = 1, . . . , 28,568).

Table 1. Results from the geometric optimization algorithm.

Sol.
No.

lp
[mm]

LH
[mm]

LV
[mm]

l1

[mm]
l2

[mm]
l3

[mm]
l4

[mm]
GCIa

1 215.25 558.86 237.03 158.57 596.12 283.74 342.68 0.192

2 215.51 599.99 206.68 156.04 552.89 269.82 328.02 0.188

3 211.56 575.65 237.92 178.22 480.05 349.99 326.12 0.175

4 222.53 580.55 238.12 173.55 576.46 283.69 314.10 0.180

5 232.36 546.54 228.56 155.83 536.28 291.79 328.11 0.157

6 214.9 506.28 231.16 155.45 501.26 282.31 312.53 0.156

Table 2. Active joints ranges for the design solution.

q1 [mm] q2 [mm] q3 [mm] q4 [mm] q5 [mm] q6 [mm]

min 38.2 179.6 197.8 6.8 −60.8 80.4

max 347.5 592.1 476.6 398.8 193.2 465.2

Other authors used the NSGA-II algorithm [37] for multi-objective optimization problems
(see, e.g., [38]) due to its computational efficiency and algorithm stability. Furthermore, there is
no guarantee that the optimization algorithm used in this work yields a global optimum solution.
However, based on multiple runs of the optimization algorithm (which yielded very similar results),
the conclusion that the resulting design solutions are at least stable local ones is not implausible.

6.2. The Optimized Model of the 6-DOF Parallel Robot
Figure 17 shows the CAD model of the design solution of the 6-DOF parallel robot for SILS.

Figure 17a shows the proposed relative position between the robotic system and the patient. Figure 17b
shows the CAD model of the 6-DOF parallel robot with its actuators. The actuator positions are an
initial concept that are subject to change in the later design stages based on the technical requirements
and constraints.
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(a) (b) 

Figure 17. CAD model of the optimized version of the parallel robotic system for SILS: (a) relative
position between the robotic system and the patient; (b) the 6-DOF parallel robotic system for SILS.

6.3. The Singularities of the Optimized Model of the 6-DOF Parallel Robot
The output singularities for the optimized model were studied by slicing the 6-dimensional

(singular) configuration hyperspace, i.e., the numerical values for the angles ψ, θ, and ϕ were
substituted into the singularity factor F (Equation (A1)—Appendix A), and the implicit surfaces (for
XE, YE, and ZE) were plotted in Cartesian space.

Figure 18a illustrates the implicit surfaces for the given values of angles ψ, θ, and ϕ within the
interval [–20, 20] [◦] using an increment of 2◦. Note that not all orientations defined by ψ, θ, and ϕ

were associated with a color, but rather only the ψ angle was used in the surface color definition to
avoid using a large number for surface colors (9261 colors were needed if each surface was assigned
with a color). One important note is that no singularity surface intersects the operational workspace
cylinder. Furthermore, these surfaces describe the output singularities without considering the
inverse kinematic model. A second computation was made by considering the inverse kinematic
model, i.e., the points on the surface were checked to yield real solutions for {q1, q2, q3, q4, q5, q6}, and
are also within the intervals defined in Table 2. Figure 18b illustrates the results of this computation
as implicit singularity surfaces. These surfaces show roughly where a singularity may occur for the
6-DOF parallel robot for SILS.

Figure 18. Output singularity surfaces: (a) without the inverse kinematic model constraints; (b) with
the inverse kinematic model constraints.
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Some specific singularity surfaces (arbitrarily chosen) are presented next for better detail.
Figure 19 shows the surface for the angle values {ψ = 0, θ = 0, ϕ = 0} [◦], illustrating both the
output singularity surface (Figure 19a) and the surface which degenerates after applying the inverse
kinematic model constraints (Figure 19b). Figure 20 illustrates a possible singular configuration for
the surface presented in Figure 19b (which is an output singularity of Case 5). Figures 21 and 22 show
the surfaces for the angle values {ψ = 20, θ = 0, ϕ = 0} [◦] and {ψ = 20, θ = 20, ϕ = 20} [◦], respectively.

Following the singularity analysis for the optimized model, a conjecture was proposed: Even
though there exist output singularities in the robot workspace, there are none in the operational
workspace. Based on this, the factor F (Equation (A1)—Appendix A) must be implemented in the
robot control as an avoidance function to (i) avoid losing robot control in the positioning stage (when
the robot positions the surgical instruments at the insertion points) and (ii) to avoid damaging the
robot (e.g., in homing sequences or laboratory tests). Factor F can be implemented in the robot
Programable Logic Controller (PLC) in the motion control functions and tested during the robot
motion sequences, when (ideally) F becomes zero or (more often) changes its sign between two
consecutive points if a singular pose is reached and the robot will stop. As these cases can appear
only outside the operational workspace, when the instruments are not inserted in the body, the user
can then move the robot using an alternative trajectory. When a Point to Point (PTP) algorithm is
used, the entire trajectory can be checked before the actual robot motion and validated (using the F
factor value as discussed before).

Figure 19. Output singularity surface for {ψ = 0, θ = 0, ϕ = 0} [◦]: (a) without the inverse kinematic
model constraints; (b) with the inverse kinematic model constraints.

Figure 20. Output singularity configuration for the angle values {ψ = 0, θ = 0, ϕ = 0}.
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Figure 21. Output singularity surface for {ψ = 20, θ = 0, ϕ = 0} [◦]: (a) without the inverse kinematic
model constraints; (b) with the inverse kinematic model constraints.

Figure 22. Output singularity surface for {ψ = 20, θ = 20, ϕ = 20} [◦]: (a) without the inverse kinematic
model constraints; (b) with the inverse kinematic model constraints.
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6.4. Numerical Simulations
The kinematic models of the 6-DOF parallel robot for SILS (the 3-R-PRR-PRS parallel robot)

were derived in [27]. Considering the inverse kinematic models:

.
Q = −B−1 · A ·

.
X

..
Q = −B−1 ·

( .
A ·

.
X + A ·

..
X +

.
B ·

.
Q
) (40)

With the Jacobian matrices, A and B, computed from Equation (7) and the inverse geometric
model from Equation (5). An input trajectory was provided for the mobile platform coordinates and
their velocity

.
Q and acceleration

..
Q vectors, respectively. The trajectory was defined as a sequence of

motions in accordance with the medical protocol:

� Stage 1 (align the medical instruments with the insertion points): linear motions from point
E1 [X1 = 300, Y1 = 400, Z1 = 20, ψ1 = 0, θ1 = 0, ψ1 = 0] [mm, ◦] to point E2 [X2 = 350, Y2 = 410,
Z2 = 0, ψ2 = 0, θ2 = 0, ψ2 = 0] [mm, ◦], with maximum velocity v_max = 10 mm/s and maximum
acceleration a_max = 5 mm/s2;

� Stage 2 (insert the instruments—the mobile platform positions the orientation platform RCM’s
at the insertion points): linear motions from point E2 [X2 = 340, Y2 = 410, Z2 = 0, ψ2 = 0, θ2 = 0,
ψ2 = 0] [mm, ◦] to point E3 [X3 = 350, Y3 = 410, Z3 = -50, ψ3 = 0, θ3 = 0, ψ3 = 0] [mm, ◦], with
maximum velocity v_max = 10 mm/s and maximum acceleration a_max = 5 mm/s2;

� Stage 3 (reorient the mobile platform): orientation motions from point E3 [X3 = 350, Y3 = 410,
Z3 = −50, ψ3 = 0, θ3 = 0, ψ3 = 0] [mm, ◦] to point E4 [X4 = 350, Y4 = 410, Z4 = −50, ψ4 = 0, θ4 = 10,
ψ4 = 20] [mm, ◦], with maximum v_max = 4 ◦/s and maximum acceleration a_max = 2 ◦/s2.

Figure 23 shows the time-dependent diagrams for the input trajectories, whereas Figure 24
shows the time-dependent diagrams for the active joints (computed via the inverse kinematic models).
The results show no spikes and large (inadequate) values in the velocity and acceleration fields (which
represents advantages in the further design stages when actuators must be chosen) and no violation
of the active joint boundaries shown in Table 2.

Figure 23. Time history diagrams of the input trajectory (position—green, velocity—blue,
accelerations—red).
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Figure 24. Time history diagrams of the active joints (position—green, velocity—blue, accelerations—red).

7. Conclusions

This paper presented a singularity analysis using the vanishing points of the determinants of
the Jacobian matrices and the geometric optimization of a 6-DOF parallel robot for SILS. Numerical
analysis for the singularities, where slices of the 6-dimensional singularity hyperspace were studied
for imposed orientation angles (correlated with the SILS task), showed that no singularity surface
intersects the cylindrical operational workspace. The conjecture is that there are no singularities in
the operational workspace (within the boundary of the maximum orientation values for the SILS
task). However, the numerical analysis of the singularities also showed that there exist singularity
configurations outside the operational workspace. Consequently, the singularity factor (of det(A))
must be implemented in the robotic system control to avoid these configurations. Numerical sim-
ulations based on the optimized parallel robot for SILS were performed to validate the proposed
solution for the medical task.

Further work is intended for the next development stages of the robotic system, such as
designing (prototyping and CAD design), simulating (motion simulations and finite element analysis),
and testing the experimental model in laboratory medically-relevant conditions.
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Appendix A

F = 24X3
Ec2

ψc2
ϕsθ + 12XEY2

Ec2
ψsθ + 12XEY2

Ec2
ϕsθ − 12LH X2

Ecϕsϕ + 24X2
EYEcϕsϕ − 12X3

Ec2
ψsθ − 12X3

Ec2
ϕsθ + 12X3

Esθ

+24X3
Ecϕsϕcψsψ − 12X2

EYEc2
θcϕsϕ − 12LH XEYEc2

ψsθ + 12LH X2
Ecψsψsθ − 12LH XEYEc2

ϕsθ − 24X2
EYEcψsψsθ

+2l2
p LVc3

θc2
ϕcψ − 2l2

pZEc3
θc2

ϕcψ − 24XEY2
Ec2

ψc2
ϕsθ + 3lp LH LVc3

ϕcθ + 24LH X2
Ec2

ψcϕsϕ − 3lp LH ZEc3
ϕcθ + 6LH X2

Ec2
θcϕsϕ

−12LV X2
Ec2

ϕcψcθ − 48X2
EYEc2

ψcθsθ + 12X2
EZEc2

ϕcψcθ + 4
√

3lp LHYEc3
θc2

ψsψcϕ + 2
√

3lp LH LVc2
ψc2

θsθsϕ

+8
√

3lp LH XEc2
ψc2

ϕsψcθsθ − 2
√

3lp LH ZEc2
ψc2

θsθcϕsϕ − 4
√

3lp LVYEc2
ψc2

θsθcϕsϕ − 4
√

3lpX2
Ecψcθsθ −

√
3l2

p LHc3
ϕcθsθ

+4
√

3lpX2
Ec3

ψcθsθ − 4
√

3lpY2
Ec3

ψcθsθ − 2
√

3lp LV XEc2
ϕc2

θ + 2
√

3XEZEc2
ϕc2

θ + 6
√

3LH X2
Ecϕcθsθ −

√
3lp LH XEc2

ϕsψcθsθ

+8
√

3lpXEYEc2
ψsψcθsθ + 2

√
3lpXEYEc2

ϕsψcθsθ + 5
√

3lp LH XEcψcθcϕsϕ + 2
√

3l2
p LHc2

ϕsϕcψsψcθ − 2
√

3lp LH XEc3
θcψcϕsϕ

+4
√

3lp LVYEc2
ϕc2

θcψsψ + 16
√

3lpXEYEc3
ψcθcϕsϕ − 8

√
3lpX2

Ec2
ψcθsθcϕsψ + 8

√
3lpY2

Ec2
ψcθsθcϕsψ − 4

√
3lpXEZEc2

ϕc2
θcψsψ

+4
√

3lpXEYEc3
θcψcϕsϕ − 4

√
3lp LH XEc2

ψsψcθsθ − 10
√

3lpXEYEcψcθcϕsϕ + 4
√

3lp LH XEc3
ψc3

θcϕsϕ −
√

3l2
p LHc3

θc2
ϕsϕcψsψ

−4
√

3lpY2
Ec3

θc2
ψsψcϕsϕ − 8

√
3lp LHYEc3

ψc2
ϕcθsθ − 2

√
3lp LH LVc2

ϕc2
θcψsψ − 8

√
3lp LH XEc3

ψcθcϕsϕ + 2
√

3lp LH ZEc2
ϕc2

θcψsψ

+4
√

3lp LHYEc2
ϕcψcθsθ + 4

√
3lp LV XEc2

θsθcϕsϕcψsψ − 4
√

3lpXEZEc2
θsθcϕsϕcψsψ + 4

√
3lp LV XEc2

ψc2
ϕc2

θ

−4
√

3lpXEZEc2
ψc2

ϕc2
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√
3lp LHYEc3
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√
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Ec2

ϕcψcθsθ − 4
√

3lpY2
Ec2

ϕcψcθsθ
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√

3LH LV XEc2
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√
3LH XEZEc2
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√

3lpX2
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√
3l2
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√
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Ec3

ψc2
ϕcθsθ
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√
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√
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√
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√
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ϕc3
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Abstract: A suspended cable–based parallel robot (CBPR) composed of four cables and an end–grab
is employed in a pick–and–place operation of moving target gangues (MTGs) with different shapes,
sizes, and masses. This paper focuses on two special problems of pick–and–place trajectory plan-
ning and trajectory tracking control of the cable–based gangue–sorting robot in the operation space.
First, the kinematic and dynamic models for the cable–based gangue–sorting robots are presented
in the presence of model uncertainties and unknown external disturbances. Second, to improve
the sorting accuracy and efficiency of sorting system with cable–based gangue–sorting robot, a
four-phase pick–and–place trajectory planning scheme based on S-shaped acceleration/deceleration
algorithm and quintic polynomial trajectory planning method is proposed, and moreover, a robust
adaptive fuzzy tracking control strategy is presented against inevitable uncertainties and unknown
external disturbances for trajectory tracking control of the cable–based gangue–sorting robot, where
the stability of a closed-loop control scheme is proved with Lyapunov stability theory. Finally, the
performances of pick–and–place trajectory planning scheme and robust adaptive tracking control
strategy are evaluated through different numerical simulations within Matlab software. The simula-
tion results show smoothness and continuity of pick–and–place trajectory for the end–grab as well as
the effectiveness and efficiency to guarantee a stable and accurate pick–and–place trajectory tracking
process even in the presence of various uncertainties and external disturbances. The pick–and–place
trajectory generation scheme and robust adaptive tracking control strategy proposed in this paper lay
the foundation for accurate sorting of MTGs with the robot.

Keywords: cable–based parallel robot; gangue sorting robot; pick–and–place operations; trajectory
planning; tracking control; robustness

1. Introduction

Robotic systems have played an increasingly important role in the intelligent activity
of coal mining. One practical and important area of application for robotic systems is
in the intelligent identification and roboticized separation of coals and gangues with the
machine vision system [1]. The separation of gangues from coals is an extremely critical
link for the rational utilization of coal resources. cable–based parallel robots (CBPRs),
which have a number of desirable properties, such as simple structure, heavy payload
capabilities, large workspace, low energy consumption, and so on [2–4], have been widely
used in astronomical observation [5], aerial photography [6], multiple mobile cranes [7],
rehabilitation and training [8], and wind tunnel experiments [9]. There has been plenty of
prior work in the aspects of workspace generation and analysis [10–12], stability evalua-
tion and stability sensitivity analysis [1,13,14], cable tension optimal distribution [15–17],
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optimization design [18–20], and so on. The most remarkable characteristic of CBPRs
is that it employs flexible cables instead of rigid links, while the main advantage of the
robots is their high load-carrying capacity, which makes the robots suitable to be employed
in pick–and–place task of the moving target gangues (MTGs). The cable–based parallel
robots, according to the number of cables and degrees of freedom of the end-effector, are
classified into redundant actuated CBPRs and underactuated CBPRs [21]. It should be
noticed that redundant actuated CBPRs are more appropriate than underactuated ones for
accurate pick–and–place operations of the heavy loads, where a high payload-to-weight
ratio and a high positioning accuracy are required. Therefore, a redundantly cable–based
gangue–sorting robot with an end–grab is supposed to perform pick–and–place operation
of MTGs with different shapes, sizes and masses. The track, approach, pick, carry, and place
operation of MTGs for the end–grab must be investigated firstly in order to accomplish the
separation of coals and gangues.

Generally speaking, there inevitably are frictions between the winches and the cables
that are generally time-varying and nonlinear, and therefore, the cable–based gangue–
sorting robots have a complicated dynamic model, including frictional uncertainties, mod-
eling uncertainties, and external disturbances. Similarly, the total mass of the unloaded and
loaded end–grab may also change while the robot performs pick–and–place operations
of MTGs. The robot in this application consists of two coupled subsystems, namely the
cable–based architecture and the end–grab. Lastly, it should be pointed out that the robot
controller must ensure all the cable tensions are always positive because the cables can only
pull the end–grab but not push it. Consequently, the pick–and–place trajectory planning
and trajectory tracking control of the robot are confronted with additional problems beyond
other cable–based parallel robots.

1.1. Pick–and–Place Trajectory Planning

The pick–and–place trajectory planning problem of the cable–based gangue–sorting
robot is a fundamental one, and it is finding a smooth and continuous trajectory from a
starting position to a desired terminal position within the workspace of the robot. The
aim of trajectory planning is to generate the input for the control system of the cable–
based gangue–sorting robot to perform pick–and–place operation of MTGs by smooth
and continuous motion of the end–grab. Thus far, there are also many publications on
the trajectory planning for CBPRs. Qian [22] proposed a new trajectory planning method
based on the improved quintic B-splines curves for a 3-DOF CBPR, and furthermore,
the effectiveness of this method was verified through the experiments. Zhao et al. [23]
presented point-to-point trajectory planning for UCPR with variable angles and height
cable mast by using three algebraic methods, while the effectiveness and feasibility of the
method were validated with numerical simulation and experiments. The improved rapidly
exploring random tree method was proposed to address moving obstacle avoidance for
CDPRs, and the suggested method was verified with the experiment [24]. Jiang et al. [25]
proposed a point-to-point dynamic trajectory planning technique for reaching a series
of poses with a six-DOF cable-suspended parallel robot. Hwang et al. [26] presented a
scheme to suppress unwanted oscillatory motions of the payload of a four-cable-driven
CDPR based on a zero-vibration input-shaping scheme, and the advantage of the proposed
scheme is that it is possible to generate an oscillation-free trajectory based on a ZV input-
shaping scheme, and moreover, a series of computer simulations and experiments to
verify the effectiveness of the proposed method were conducted for three-dimensional
motions of a CBPR with four cables. A smooth trajectory planning algorithm to enhance the
smoothness of the trajectory when used in rehabilitation training was proposed for a cable-
driven waist rehabilitation robot by employing an improved quintic non-uniform rational
B-splines [27]. As demonstrated in [28], a novel methodology for the identification of the
inertial parameters of the end-effector, based on the use of internal-dynamics equations
and free-motion excitations, was proposed for the underactuated cable-driven parallel
robots, where the optimal free-motion trajectories were investigated to obtain optimal
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identification results. In addition, in ref. [29], a general framework for the planning of
point-to-point motions that extend beyond the static workspace was presented for a six-
degree-of-freedom cable-suspended parallel robot, and furthermore, the effectiveness of the
proposed method was verified through simulations. Furthermore, in [30], the design and
experimental validation of a novel three-DOF pendulum-like cable-driven robot capable
of executing point-to-point motions by leveraging partial feedback linearization control
and on-line trajectory planning based on adaptive frequency oscillators were presented.
The research on the trajectory planning for CBPRs, generally speaking, mainly focuses on
trajectory planning in either cable space or Cartesian space. The trajectory planning in the
Cartesian space can intuitively obtain the end-effector trajectory for CBPRs. Different from
other types of CBPRs, the trajectory generation of the end–grab for the pick–and–place
operations of MTGs must be determined according to the movement characteristics of
MTGs, the location of the gangue recovery bin, and optimal tension condition of the cables
in the workspace of the robots. As a result, planning and generating the end–grab trajectory
for the cable–based gangue–sorting robot in Cartesian space is the major objective under
consideration in this paper, and furthermore, a four-stage trajectory planning scheme of
the end–grab is proposed.

1.2. Pick–and–Place Trajectory Tracking Control

As mentioned above, pick–and–place trajectory tracking control of the cable–based
gangue–sorting robots is a challenging problem. Moreover, it is well–known that in practice,
the control system design for CBPRs with model uncertainties and external disturbances,
to the extent of the authors’ knowledge, is also a challenging task, and it has attracted
more attention recently [31–34]. In order to reduce and eliminate the effect of nonlinear
uncertainties and external disturbances on the controller of the robots, a few of approaches
for CBPRs are presented, such as nonlinear adaptive control, sliding mode control, robust
model predictive control, time-delay control, computed torque control, fuzzy logic control,
and so on [35–39]. Izadbakhsh et al. [40] proposed a robust adaptive controller for cable-
driven parallel robots subject to dynamic uncertainties, while the stability of the control
system was analyzed with a Lyapunov-based method. Wang et al. [41] obtained a model-
free robust adaptive control for the cable-driven parallel robots, which is composed of
time-delay estimation, a new PID-NFTSM manifold, and a combined adaptive reaching
law, using adaptive proportional-integral-derivative nonsingular fast terminal sliding
mode. Oh et al. [42] presented an approach to design positive tension controllers for the
cable-suspended parallel robots with redundant cables. Shao et al. [43] established the
elastic dynamic model for the cable-driven Stewart manipulator, while the rigid-body
dynamic model of the A–B rotator and the rigid Stewart manipulator was obtained in
detail, and furthermore, the kinematic and dynamic vibration control strategies for the feed
support system in FAST were proposed and evaluated with simulations. Duan et al. [44]
presented a PID controller with base acceleration feedforward designed in the operational
space of the Stewart platform based on the integrated dynamic model of the Stewart
platform, and furthermore, vibration isolation and trajectory following control experiments
for the cable-suspended Stewart platform was carried out. Schenk et al. [45] developed a
super-twisting controller for a redundant cable-driven parallel robot to track a reference
trajectory in presence of uncertainties and disturbances. Jafarlou et al. [46] investigated an
adaptive fractional-order finite-time sliding mode control for the cable-suspended parallel
robots in the presence of model uncertainties. The stability of the closed-loop system was
analyzed with developed Lyapunov theory. Hosseini et al. [47] designed a nonlinear PD
controller for cable-driven parallel robots in joint space so that the robot can track the
reference trajectory quickly and accurately, while the stability of the closed-loop system
was examined through Lyapunov direct method. Aghaseyedabdollah et al. [48] discussed
the design of supervisory adaptive fuzzy sliding mode control with the fuzzy PID sliding
surface for a planar cable-driven parallel robot. Inel et al. [49] addressed a nonlinear
continuous-time generalized predictive control for a planar cable-driven parallel robot.
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Zi [50] presented a three-DOF cable-driven parallel robot and its adaptive fuzzy control
system design and analysis, and the simulation results showed the satisfactory performance
of the proposed adaptive fuzzy control system. As a matter of fact, the dynamic model of
the cable–based gangue–sorting robot is always contaminated with uncertainties such as
nonlinear and time-varying parameters as well as external disturbances, and this makes the
dynamic model of the cable–based gangue–sorting robots complicated, and thus, a robust
controller and an adaptive fuzzy control system are required to achieve high-performance
pick–and–place trajectory tracking control.

Use of the cable–based gangue–sorting robot in the pick–and–place operation of MTGs
presents unique challenges: (i) the major challenge for designing a controller of the robot
is that the robot may experience abrupt changes in dynamic parameters while the robot
captures and places the MTGs with highly variable payload, which can cause traditional
control methods to achieve poor results in practical applications; and (ii) it should be
emphasized that the most important limitation of the robot is that the cables suffer from
unidirectional constraints that can only be pulled and not pushed, and therefore, the cables,
to perform pick–and–place operation of MTGs effectively and accurately, must be in tension
in the whole workspace. For this reason, the main goal of this paper is to propose a suitable
control strategy for the cable–based gangue–sorting robots. To achieve this goal, in view
of the nonlinear payload variation and external disturbances of the cable–based gangue–
sorting robots, a robust adaptive fuzzy tracking control, which can ensure that the cables
are always in positive tension, is investigated in this paper for the high-precision tracking
of the robots to efficiently and reliably perform the pick–and–place operations of the MTGs.
The advantage of the proposed controller in comparison with ref. [50] is its ability to
obtain the positive cable tensions along the pick–and–place trajectory in presence of model
uncertainties and external disturbances, providing better tracking performance because a
robust term is employed to compensate the estimation errors of the fuzzy control system.

From above, without a smooth and continuous pick–and–place trajectory and appro-
priate trajectory tracking control for the cable–based gangue–sorting robots, the robots
might sustain serious damages, and therefore, the objective of the paper is to generate
a smooth and continuous pick–and–place trajectory and to implement a robust control
scheme suited for the considered pick–and–place application. As a result, the main contri-
butions of this presented paper are summarized as follows:

i. Proposing a four-stage trajectory planning scheme for the end–grab of the cable–
based gangue–sorting robot while taking account the effect of the synchronous
movement of the gangues with the belt conveyor as well as the location of the
gangue recovery bin;

ii. Developing a robust adaptive fuzzy control strategy in the task space to track a
given trajectory for the cable–based gangue–sorting robot in the presence of model
uncertainties, varying payloads, and external disturbances while guaranteeing
closed-loop control system stability;

iii. Demonstrating the validity of the proposed pick–and–place trajectory planning
scheme and the robust adaptive fuzzy tracking control strategy through numerical
simulation.

The structure of this paper is as follows. The second section presents the kinematic and
dynamic models of a cable–based gangue–sorting robot. The control system is presented
in the third section. The effectiveness of the proposed pick–and–place trajectory planning
scheme and robust adaptive tracking control strategy are demonstrated by simulation
results in the fourth section. Finally, conclusions are drawn, and future work is presented
in the fifth section.

2. Description and Modeling of a Cable-Based Gangue-Sorting Robot

2.1. Description of the Robot

In the scope of this research, the investigated gangue–sorting system with a robot, as
shown in Figure 1, is composed of a cable–based gangue–sorting robot, a conveyor belt,
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a machine vision system, gangue recovery bin, as well as coals and gangues. The robot
runs across the belt conveyor and employs four cables to drive the end–grab to move to
the local neighborhood where the target gangues are located so as to complete the pick–
and–place operation of the MTGs. It should be pointed that a collision-free workspace and
pick–and–place trajectory can be obtained for the gangues-sorting system. According to
the process and characteristics of pick–and–place operation of the target gangues, the pick–
and–place trajectory of the end–grab is separated into four phases in this study, namely the
starting phase, preparing phase, picking phase, and placing phase. The sorting process of
the target gangues can be described in more detail as follows: in the first step, the target
gangues, which move synchronously with the conveyor belt at a constant speed, will enter
the visual identification area, and meanwhile, the machine vision system identifies and
collects the shape and position information of the selected target gangues and transmits it
to the main controller of the robot; in the next step, the target gangues move for a while
to reach the picking area, where the robot performs the picking operation of the target
gangues; in the final step, MTGs are placed into the gangue recovery bin, and at this point,
the pick–and–place operation is completed. The robot returns to the zero position and
continues to complete the pick–and–place task of other gangues. As shown in Figure 2, the
proposed cable–based gangue–sorting robot consists of mechanical module and control
module. The mechanical structure is composed of a frame, some pulleys, four cables and
motor driven systems, and an end–grab, while the control module consists of an industrial
personal computer (IPC), motion controllers, a laser tracker, encoders, and so on. It should
be pointed out that the mass of the end–grab and the mass of MTGs could be available
with a machine vision system by their shapes and sizes and force sensors to measure cable
tensions and estimate the carried masses, while the laser tracker, which can be employed
to measure 3D coordinates of the end–grab, are used in combination with the servomotor
encoders to obtain the position of the end–grab. In the presence of measuring systems
and equipment, the closed–loop control can be employed for the robot, which leads to
performance accuracy in the pick–and–place operation of the MTGs.

Figure 1. Three-dimensional CAD model of the robot.

The kinematics model of the cable–based gangue–sorting robot is a prerequisite for the
dynamics model and fundamental for practical aspects such as motion trajectory planning
and control system design. As a result, in this section, a full development of kinematics
and dynamic models for a cable–based gangue–sorting robot is established.
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Figure 2. Configuration of the investigated robot.

2.2. Modeling of the Robot

As shown in Figure 3, the fixed coordinate system noted as OXYZ is attached to the
fixed base, where O is the origin point. The structure dimensions of the robot are denoted
by a, b, and h, respectively. The point Ai (i = 1, 2, 3, 4) represents the position of the fixed
pulley in the coordinate system. As in ref. [1], the cable–based gangue–sorting robot can be
seen by a CBPR with a point mass, and therefore, the position of the end–grab is denoted
by P. With regard to the cable–based gangue–sorting robot, the cables, which are made of
lighter materials, can be treated as a kind of massless straight line that can only sustain
tension, and therefore, the length of the ith cable can be denoted by Li. It can be easily
obtained as follows:

Li = P − Ai(i = 1, 2, 3, 4) (1)

Figure 3. Kinematic model of the robot.

For more detail, the cable length of the four cables can be written as:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

L1 =
√
(x − x1)

2 + (y − y1)
2 + (z − z1)

2

L2 =
√
(x − x2)

2 + (y − y2)
2 + (z − z2)

2

L3 =
√
(x − x3)

2 + (y − y3)
2 + (z − z3)

2

L4 =
√
(x − x4)

2 + (y − y4)
2 + (z − z4)

2

(2)

Furthermore, the unit vector along the ith cable is denoted by ui, and it can be denoted by:

ui = (P − Ai)/Li (3)
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A mathematical dynamic model of the cable–based gangue–sorting robot is essential
for good control design and analysis to realize high-performance pick–and–place trajectory
tracking control. This section presents the dynamic equations for the robot. These equations
will be used later to ensure that the cable tensions remain positive during the pick–and–
place operation of MTGs. There are different approaches for solving the dynamics of the
robots, such as the Newton–Euler equation, Kane equation, and Lagrange equation [51–54].
In this article, the Newton–Euler equation is adopted to solve the dynamics of the robot,
and thus, the dynamic equation of the robot can be expressed as:

m

⎡⎣ ..
x
..
y
..
z

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1 − x
L1

x2 − x
L2

x3 − x
L3
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L4
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L1

y2 − y
L2

y2 − y
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y2 − y
L4

h − z
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h − z
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h − z
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h − z
L4
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⎡⎢⎢⎣

T1
T2
T3
T4

⎤⎥⎥⎦+

⎡⎣ 0
0
−mg

⎤⎦ (4)

where m is the mass of the end–grab; g is gravity acceleration; T is the vector consisting of
all cable tensions;

..
x,

..
y, and

..
z are acceleration of the end–grab, respectively.

For the sake of simplicity, Equation (4) can be rewritten in the following matrix form:
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X
)
= τ (5)
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⎤⎥⎥⎦ is the inertia matrix, which is defined as symmetric and pos-
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X + G(X) is the vector of Coriolis, centripetal, and gravity terms;
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⎤⎥⎥⎦ is a nonlinear Coriolis and centripetal vector terms; G(X) =

⎡⎢⎢⎣
0

0

mg

⎤⎥⎥⎦

is gravity vector; τ is the input torque vector; and τ = JTT and T =
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robot;
..
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..
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..
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..
z

⎤⎥⎥⎦ is the acceleration vector of the end–grab.

As mentioned above, when the cable–based gangue–sorting robot performs the pick–
and–place operations of MTGs, its total mass of the unloaded and loaded end–grab in-
evitably changes. These parameter uncertainties and load variations of the end–grab will
introduce disturbances to the closed-loop system for the robot and greatly affect the control
performance. In practical engineering application, it is difficult to acquire complete infor-
mation of the cable–based gangue–sorting robot because of parameter uncertainties and
external disturbances. As a result, in the presence of the inertial parameter uncertainties
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and external disturbances, we can express the actual dynamic model of the robot by the
following equation:

M(X)
..
X + H(X,

.
X)+f + τd = τ. (6)

where M(X) =M0 + ΔM and H(X) =H0 + ΔH are the actual dynamic parameters of the
robot; M0 is the estimated inertia matrix and H0 is the estimated Coriolis, centrifugal force,
and gravity matrix, while ΔM and ΔH are dynamic modeling errors, respectively; τd is the
vector containing the inertial parameter uncertainties and external disturbances effects; f is
the viscous and Coulomb friction matrix.

Finally, we obtain the actual dynamic equation of the cable–based gangue picking
robot as follows:

M0(X)
..
X + H0(X,

.
X)+D = τ (7)

where D = ΔM
..
X + ΔH + f + τd is the lumped composite disturbance including modeling

errors, friction forces, and external disturbances.
It should be pointed out that the Equation (7) is a non-homogeneous linear equation, and

therefore, the cable tensions may exist in infinite solutions. It must be emphasized that the
equations of motion are valid only if the cables are all in tension. The suitable solution can be
obtained by the cable tension optimization model with the pseudo-inverse method [16,17].

3. Control System

The control system of the cable–based gangue–sorting robot is responsible for:
(i) planning the pick–and–place trajectory of the end–grab to track, approach, capture,
carry, and place operation of MTGs and (ii) assuring realization of the designed and se-
lected pick–and–place trajectory of the end–grab despite the parameters’ uncertainty and
disturbances. Pick–and–place trajectory planning can be performed while the position and
dimension information of the MTG is acquired, while any controller, which is responsible
for realization of the designed and selected pick–and–place trajectory of the end–grab, must
work in real time. As a result, this paper proposes a new control system for the cable–based
gangue–sorting robot that consists of two modules: a pick–and–place trajectory planning
module and a robust adaptive fuzzy tracking controller. As mentioned above, the pick–and–
place trajectory planning and control of the robot can be performed in the cable space or in
the Cartesian space of the end–grab. The pick–and–place trajectory planning and trajectory
track control in the Cartesian space is carried out for performing the pick–and–place task
of the MTGs in the paper. The position and dimension information of the MTG is obtained
by using the machine vision system, and furthermore, the pick–and–place operation of
the MTGs is performed autonomously after the pick–and–place trajectory is planned and
generated. During execution of the pick–and–place trajectory of the end–grab, the position
error of the end–grab is measured and used as a feedback for the control system.

3.1. Proposed Trajectory Planner

In the process of gangue sorting, the target gangue moves synchronously with the
belt conveyor, and the flexible cable drives the gangue–sorting robot to complete the task
of picking the gangue. The position, speed, and acceleration of the end–grab during the
working process need to be set manually according to the specific requirements of the task
of picking the gangue so as to achieve accurate grasping of the gangue. It is desirable
to design a continuous and smooth tracking and approach trajectory for the end–grab
of the cable–based gangue–sorting robot to perform the pick–and–place task of MTGs.
Therefore, generation of smooth and continuous trajectory for performing the pick–and–
place operation of MTGs is the major objective under consideration in this section.

3.1.1. Requirements for Trajectory Planning

The location and distribution of the gangues on the belt conveyor are shown in Figure 4.
The geometric center of the cable–based gangue–sorting robot is located at the center line
of the belt conveyor. Gangue recovery bins are arranged on both sides of the belt conveyor.

82



Machines 2022, 10, 714

Therefore, the gangues to be sorted on the belt conveyor can be considered to be distributed
in zone A and zone B, which are symmetric about the center line denoted by b. As a result,
it is reasonable that we can take the sorting of the gangues within either zone A or zone B
as an example to plan the pick–and–place trajectory of the end–grab for the robot, while
the other side can be solved by using the symmetry relationship. We take zone B as an
example to illustrate the proposed pick–and–place trajectory planning scheme for the robot
in this section.

Figure 4. The location and distribution of the gangues.

According to the synchronous movement characteristics of MTGs with the belt con-
veyor, the location of the gangue recovery bin, and optimal stress condition of the cables in
the workspace of the cable–based gangue–sorting robot, we proposes a four-stage pick–and–
place trajectory planning scheme for the end–grab of robot, which comprises the following
four periods: the starting period, preparing period, picking period, and placing period. As a
result, the pick–and–place trajectory of the end–grab must meet the following requirements:

(1) Starting period: the movement velocity of the end–grab increases from 0 to a prede-
termined constant speed while the robot starts for the first time. There inevitably is an
acceleration stage for the end–grab, and therefore, the motion state of the end–grab
should be continuous and smooth.

(2) Preparation period: in order to avoid impact during the process of picking the target
gangue, the end–grab and the target gangue to be grabbed should be in a relatively
static state. Therefore, there needs to be a constant linear motion along the movement
direction of the target gangue.

(3) Picking period: no impact can occur during the operation of carrying the picked
gangue after the target gangue is captured by the end–grab. In addition, in order to
ensure that the captured gangue can fall into the gangue bin at a fixed direction and
speed, the end–grab should also have a uniform linear motion at this stage.

(4) Placing period: in order to avoid repeated acceleration leading to a discontinuous
trajectory for the end–grab, the end–grab directly enters stage (2) to perform the
pick–and–place operation of the next target gangue after the current picked gangue is
placed in the gangue recovery bin.

In addition, each trajectory for the four periods mentioned above should be smoothly
connected to the next one to avoid the motion state discontinuity in the neighborhood of
the trajectory transition point, which can lead to dynamic impact.
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3.1.2. Trajectory Planning Scheme

(1) Determination of the end-grab position and zero position

As shown in Figure 5, considering the unidirectional characteristics of the cables,
optimal tension condition of the cables, and the workspace where the end–grab is located,
the tension of each cable is equal to each other while the end–grab is located at the geometric
center of the workspace, so the ideal position of the end–grab for grabbing the target gangue
should be located on the vertical axis of the workspace. In addition, the target gangue
moves along the positive direction of y–axis. Considering the tension condition of the cable,
a certain position along the x–axis can be selected as the most appropriate grabbing point,
and thus, point E is selected as the grabbing point of the target gangue. Then, the straight
line is perpendicular to the movement direction of the target gangue and the belt through
E point, which can be obtained, and the straight line crosses the belt at points Q and R on
both sides. As a result, the grabbing point of the target gangue must be on the QR while the
position coordinate of x–direction deviates from the center line b. As requirement (2) states,
the end–grab and the target gangue to be grabbed should be in a relatively static state,
and therefore, the zero point the end–grab should be ahead of the grab point to achieve
the synchronous movement of the end–grab and the target gangue. As a result, point C is
chosen as the zero point of the end–grab for the cable–based gangue–sorting robot.

Figure 5. Pick–and–place trajectory planning scheme.

(2) Determination of the starting period and preparation period

According to the requirement (2) of trajectory planning, point E is the terminal point
of the uniform motion in a straight line of the end–grab, while the starting point of the
uniform linear motion of the end–grab should be reasonably selected. Point D is selected
as the starting point of the uniform linear motion. Then the straight line is perpendicular to
the movement direction of the target gangue and the belt through D point, which can be
obtained, and the straight line crosses the belt at points P and K on both sides. As a result,
the starting point of the uniform linear motion is on PK no matter where the target gangues
are located. Therefore, the CD segment is the starting period while the DE segment is the
preparation period. It should be noted that the starting section CD and preparing section
DE coincide on the same straight line when the target gangue is located at the center line b
of the conveyor belt, and thus, the end–grab does not move in the x–direction.

(3) Determination of the picking period

According to the requirement (3) of the trajectory planning, the end–grab should also
move in a straight line at a constant speed at this stage. The cable tensions will change while
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the target gangue is placed, so the reasonable point should be selected as the placing point
of the target gangues. Considering the fact that the cable tensions are relatively reasonable
when the end–grab is on the x–axis, point G is selected as the terminal point of the straight
line. Connecting the line segment HG and the starting point F of the uniform linear motion
must happen on the extension line of HG along the positive direction of the y–axis, and the
position of point F can be determined while the operation time of the end–grab on FG is
consistent with DE. As a result, EFG section is the picking period when the target gangue is
carried by the end–grab from point E to point G.

(4) Determination of the placing period

According to the requirement (4) of trajectory planning, the end–grab will enter the
placing period after the target gangue is placed by the end–grab at G point to avoid
repeatedly returning to zero to accelerate. The end–grab can directly transition to the
preparation section after the current picked gangue is placed in order to avoid repeated
acceleration, leading to a discontinuous trajectory for the end–grab. Thus, GD is the placing
period of the pick–and–place trajectory for the end–grab.

To sum up, as shown in Figure 5, point C is selected as the zero position of the end–
grab; point D and point F are the starting points of the uniform linear motion of the end
grab, respectively, while point E is the grabbing point of the target gangues, and point G is
the placing point of the target gangues. The CD segment, the DE segment, the EFD segment,
and the GD segment are the starting period, the preparation period, the picking period,
and the gangue-placing period, respectively. The four periods above shall be smoothly
connected to ensure that the end–grab will not be impacted during the process of the
pick–and–place operation of target gangues.

3.1.3. Implementation Methods of Each Trajectory for the Four Periods

(1) S-shaped acceleration/deceleration algorithm

The S-shaped acceleration/deceleration algorithm is optimized on the basis of T-shaped
velocity programming. The planned trajectory, velocity, and acceleration are continu-
ous, which can ensure smooth acceleration and deceleration of the end-effector without
impact [55,56]. There are four types of S-shaped velocity curve planning: seven-stage,
six-stage, five−stage, and four-stage, respectively. Considering the fact that the motion
planning of the end–grab meets the conditions of five−stage planning, the five−stage
S-shaped velocity curve planning method is introduced here, whose velocity and accelera-
tion curves are shown in Figure 6. As shown in Figure 6, vmax represents the maximum
planned speed; ti represents the time; Ti = Ti+1 − Ti is the time of each segment; amax
represents the maximum acceleration; and J represents the jerk. As a result, the relationship
between the total displacement of the end–grab s, displacement of the acceleration stage s1,
the jerk J, and acceleration of the end–grab amax is as follows:

s1 =
Jv2

max + vmaxa2
max

2Jamax
(8)

If the above parameters meet vmax ≤ a2
max
J

and s > 2vmax

√
vmax

J
in the given range of

the total displacement of the end–grab s, the acceleration cannot reach the maximum value,
but the speed can reach the maximum value, and in this case, the maximum acceleration
needs to be adjusted as follows:

anew =
√

vmax J (9)

Further, the time of each segment can be obtained as follows:

T1 = T2 = T4 = T5 =
anew

J
(10)
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T3 =
s − 2vmax

√
vmax

J

vmax
=

s
vmax

− 2
√

vmax

J
(11)

Figure 6. Velocity and acceleration curves of the five−stage.

In this paper, this method is only applied to the acceleration section of y-direction, and
the expressions of its speed and displacement acceleration section are as follows:

v(t) =

⎧⎪⎪⎨⎪⎪⎩
1
2

Jt2 0 < t < T1

1
2

JT1
2 + JT1t − 1

2
Jt2 T1 < t < T2

(12)

s(t) =

⎧⎪⎪⎨⎪⎪⎩
1
6

Jt3 0 < t < T1

1
6

JT1
3 +

1
2

JT2
1t +

1
2

JT1t2 − 1
6

Jt3 T1 < t < T2

(13)

(2) Quintic polynomials

The four trajectories of the four periods should be smoothly connected to each other.
Therefore, the sharp points, which will cause local discontinuity of the speed curve and
impact of the end–grab, are avoided in the trajectory. The quintic polynomial trajectory
planning, which can ensure the continuity up to the acceleration level, is employed to plan
the pick–and–place trajectory of the end–grab [57]. The position, velocity, and acceleration
equations of quintic polynomial trajectory planning can be expressed as:⎡⎢⎢⎢⎢⎢⎢⎣

q(0)
.
q(0)
..
q(0)
q(t)
.
q(t)
..
q(t)

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 2 0 0 0
1 t t2 t3 t4 t5

0 1 t t2 t3 t4

0 0 1 t t2 t3

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

a0
a1
a2
a3
a4
a5

⎤⎥⎥⎥⎥⎥⎥⎦ (14)

where q =
[
q(0),

.
q(0),

..
q(0), q(t),

.
q(t),

..
q(t)

]T is a vector composed of generalized coordi-
nates, generalized velocity, and generalized acceleration from the starting point to the
terminal point. ai represents the coefficients of the quintic polynomial.

From above, the trajectory planning methods adopted by each period are shown in
Table 1.
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Table 1. Trajectory planning method of each section.

Periods Direction Used Trajectory Planning Method

Starting period CD
x Quintic polynomials
y S-shaped acceleration/deceleration algorithm
z No displacement

Preparation period DE
x No displacement
y S-shaped acceleration/deceleration
z No displacement

Picking period EF
x Quintic polynomials
y Quintic polynomials
z Quintic polynomials

Picking period FG
x No displacement
y S-shaped acceleration/deceleration
z Quintic polynomials

Placing period GD
x Quintic polynomials
y Quintic polynomials
z No displacement

3.2. Proposed Controller

For a cable–based gangue–sorting robot, the external disturbances, frictional terms,
internal uncertainties, and payload variation are considered as a composite disturbance,
which mostly affects the control performance and causes inaccuracy in the control process.
The main objective of control for the cable–based gangue–sorting robot is to achieve high-
performance pick–and–place trajectory tracking accuracy in the pick–and–place operation
of MTGs. As a result, considering the structural characteristics and control difficulties of the
cable–based gangue–sorting robot, in the presented control system, a robust adaptive fuzzy
tracking control is used for assuring realization of the selected trajectory of the end–grab
to perform the pick–and–place operation of MTGs for the cable–based gangue–sorting
robot. The uncertainties of the control system are adaptively compensated by fuzzy control
system, while a robust term is employed to compensate the estimation errors of the fuzzy
control system. Meanwhile, the stability of the whole closed-loop system is guaranteed.

As an intelligent control method, fuzzy control is based on fuzzy logic inference, and
the microcomputer control method has also been widely applied to generate auxiliary joint
torques to compensate these uncertainties [58,59]. Fuzzy logic system can be employed
to approximate the unknown nonlinear functions as well as external disturbances. It is
especially suitable for the control of nonlinear, time-varying systems, such as robotics. The
approximation characteristics of the fuzzy logic system are used to compensate for the
composite disturbance for the cable–based gangue–sorting robot. A robust term is designed
to eliminate the estimation errors and external disturbance of fuzzy logic system.

A multi-input and multi-output fuzzy logic system performs mapping from fuzzy sets
in U ∈ Rn to fuzzy sets in V ∈ Rm, based on the fuzzy IF–THEN rules. The output of a
multi-input and multi-output fuzzy logic system with center-average defuzzifier, product
inference, and singleton fuzzifier takes the following form:

yj =

M
∑

l=1

−l
yj

(
n
∏
i=1

μAl
i
(xi)

)
M
∑
l

(
n
∏
i=1

μAl
i
(xi)

) , (j = 1, 2, . . . , m) (15)

where
−l
yj is a value at which the membership function for output fuzzy set reaches its

maximum; μAl
i
(xi) is the membership function of the linguistic variable xi and can be

defined as follows:

μAl
i
(xi) = exp

⎛⎝−(xi −
−l
xi)

σ2

⎞⎠2

(16)
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where
−l
xi and σ are the mean and the deviation of the Gaussian membership function,

respectively.
The fuzzy basis function can be defined as:

ε l(x) =

n
∏
i=1

μAl
i
(xi)

M
∑
l

(
n
∏
i=1

μAl
i
(xi)

) (17)

As a result, Equation (15) can be rewritten as follows:

yj = ΘT
j ε(x) (18)

where ε
(

x) = [e1

(
x),e2

(
x), . . . , eM

(
x)]T is the fuzzy basis function vector, while

Θj = [
−1
yj ,

−2
yj , . . . ,

−M
yj ]

T
is the center of the fuzzy subset.

Furthermore, the overall output of a MIMO fuzzy logic system can be represented as:

y = ΘTε(x) (19)

The control problem for the cable–based gangue–sorting robot is to design a controller
to compute the cable tensions T applied to the end–grab such that the end–grab positions
X tend asymptotically toward the constant desired end–grab positions Xd. Therefore, the
tracking error is defined as:

e = X(t)− Xd(t) (20)

where Xd(t) is the desired trajectory of the end–grab, while X(t) is the actual trajectory of
the end–grab.

Moreover, the sliding surface s is defined as follows:

s =
.
e + Λe (21)

where Λ is a positive definite parameter matrix.
The reference tracking velocity can be defined as follows:

.
Xr(t) =

.
Xd(t)− ΛX(t) (22)

The proposed controller, which can counteract the external disturbances, frictional
terms, and internal uncertainties, can be expressed by the following equation:

T = Tn + Th

Tn =
(
JT)+(M(X)

..
Xr + H

(
X,

.
X
)
+ F̂

(
X,

.
X,

..
X

∼
|Θ

)
−KDs − Wsgn(s)

)
Th =

(
I −

(
JT)+JT

)
λ

F̂
(

X,
.

X,
..
X |

∼
Θ
)
= ΘT

i ε
(

X,
.

X,
..
X
) (23)

in which Tn is the special solution to the vector T, while Th is the homogeneous solution to
the vector T and JTTh = 0; (•)+ denotes the pseudo inverse; KD = diag(Ki), Ki > 0; λ is an

arbitrary scalar; W = diag
[
ωM1, ωM2 , . . . , ωMn

]
, ωMi ≥ |ωi|, i = 1, 2, . . . , n; F̂

(
X,

.
X,

..
X |

∼
Θ
)

88



Machines 2022, 10, 714

is the fuzzy logic compensation control for the lumped composite disturbance, and it is

represented as F̂(X,
.

X,
..
X |

∼
Θ) =

⎡⎢⎢⎢⎢⎢⎢⎣
F̂
(

X,
.

X,
..
X |

∼
Θ1

)
F̂
(

X,
.

X,
..
X |

∼
Θ2

)
F̂
(

X,
.

X,
..
X |

∼
Θ3

)

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
ΘT

1 ε
(

X,
.

X,
..
X
)

ΘT
2 ε
(

X,
.

X,
..
X
)

ΘT
3 ε
(

X,
.

X,
..
X
)
⎤⎥⎥⎥⎦.

As stated in the introduction, the proposed robust adaptive fuzzy tracking controller
has an advantage over the one in ref. [50]. It is assumed that the cables, however, are ideally
massless and nonelastic elements in this paper. It should be pointed out that the cables
may behave as elastic elements in practice. This elasticity of the cables inevitably causes
unwanted vibrations, leading to degradation of the positioning accuracy of the end–grab
for the cable–based gangue–sorting robot. For this reason, the proposed controller for the
cable–based gangue–sorting robot should efficiently dampen the vibrations of the cables,
leading to enhancement of the motion accuracy of the end–grab [60]. Future research will
be dedicated to investigate the effect of the cable vibration on the controller for the robots
using the singular perturbation theory.

By using Lyapunov theory, the stability of the cable–based gangue–sorting robot
according the dynamics in the presence of the disturbances expressed in Equation (7) with
the robust adaptive fuzzy tracking control in Equation (23) is proven. As a result, the
Lyapunov function candidate is defined as:

V(t) =
1
2

(
sTMs +

n

∑
i=1

∼
Θ

T

i Γi
∼
Θi

)
(24)

.
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+
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∑
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(
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T

ε(X,
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X,
..
X) + ω + KDs + WSgn(s)
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n
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∑
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Θ

T

i ΓiΘi − si
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Θε(X,

.
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..
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)
(25)

where ω is the fuzzy approximation error;
∼
Θi = Θ∗

i − Θi; ε(X,
.

X,
..
X) is fuzzy basis function.

Moreover, the adaptive law based on Equation (25) is defined as:

.
Θ̃i = −Γi

−1siε
(

X,
.

X,
..
X
)

(26)

Consequently, the following equation can be obtained:

.
V(t) ≤ −sTKDs ≤ 0 (27)

It can be seen from Equations (24) and (27) that, since function V is a positive def-
inite function, and

.
V is a negative definite function, the cable–based gangue–sorting

robot in Equation (7) controlled by the proposed robust adaptive fuzzy tracking con-
troller in Equation (23) is globally asymptotically stable with respect to s and Θ based
on the Lyapunov method. It means that lim

t→∞
s = 0, and thus, this is equivalent to

lim
t→∞

e = 0 ⇒ lim
t→∞

X = lim
t→∞

Xd . As a result, the control object for the end–grab to track

the scheduled trajectory to perform the pick–and–place operation of MTGs can be realized.
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4. Simulation Study

4.1. Generation of the Proposed Pick–and–Place Trajectory

The end–grab of the robot is requested to start from the state of rest, merge into four
consecutive trajectories in sequence to perform the pick–and–place operation of the current
target gangue, and then go back to the point D to begin the pick–and–place operation of
the next gangue. Assuming that the distance the target gangue is from the centerline of
the belt conveyor is 0.25 m, the pick–and–place trajectory of the end–grab is achieved in
this example. As is shown in Figure 3, some parameters of the cable–based gangue–sorting
robot are given as follows: a = 4 m, b = 4 m, and h = 3 m. In order to ensure the robustness
and the stability of the cable–based gangue–sorting robot, in this paper, all positions of
the end–grab from a planned trajectory are required to be completely within the stability
workspace, which refers to the set of points meeting certain stability requirements of the
end–grab [61]. The stability workspace is composed of the positions of the end–grab with
specified stability performance index, which can be calculated using the position and cable
tension influencing factors, and furthermore, it can be obtained by the stability workspace
generation algorithm as described in the previously published paper, ref. [61], by the author.

Figure 7 shows the pick–and–place trajectory of the end–grab and the positional
relationship between the trajectory and the stability workspace. It should be noted that
the pick–and–place trajectory is obtained while the distance from the position of the MTG
to be grabbed to the center line b, denoted by j, is 0.25 m. It is observed from Figure 7a
that the pick–and–place trajectory consists of four periods, and furthermore, each period’s
connection with each other is smooth, and thus, this leads to no impact for the movement
of the end–grab. In addition, it can be seen from the Figure 7b that the pick–and–place
trajectory of the end–grab is located completely within the stability workspace, and this can
ensure the stability of the end–grab. Indeed, it should be pointed out that all of the positions
when the end–grab is located within the surface meet the specified stability requirement.
Moreover, its colors are worthy of note, as they represent the elevation of the positions
for the end–grab along z–direction. As can be seen from Figure 7c,d, the velocities and
accelerations of the end–grab along the proposed pick–and–place trajectory are continuous.

Figure 7. Pick–and–place trajectory of the end–grab. (a) pick–and–place trajectory; (b) trajectory
within the stability workspace; (c) velocities of the end–grab; (d) accelerations of end–grab.
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In addition, the proposed strategy can generate a smooth and continuous pick–and–
place trajectory while the MTG is located at an arbitrary position of the belt, such as the
center line b, namely j = 0, shown in Figure 8. Comparing Figures 7a and 8, it is clear that
the trajectories of the starting period CD are slightly different from each other, and in more
detail, there is no displacement of the end–grab along the x–direction for the trajectory of
the starting period CD in Figure 8. This is because the pick–and–place position of the MTG
is on the center line b.

Figure 8. Pick–and–place trajectory of the end–grab while j = 0.

Figure 9 displays the length of the four cables. From the simulation results, it may be
concluded that cable 1 and cable 3, cable 2, and cable 4 show opposite trends in the whole
trajectory curve because of the symmetrical geometric relationship between the cables, and
moreover, the length of the four cables change smoothly and continuously.

Figure 9. Length of the four cables.

4.2. Control System Validation

In this section, the proposed pick–and–place trajectory control strategies are evaluated
and compared with MATLAB software. Two motion trajectories for the end–grab, a spatial
circle, and the proposed pick–and–place trajectory generated in this paper are considered
in this section to illustrate the efficiency of the designed controller.

To illustrate the effectiveness of the proposed robust adaptive fuzzy tracking con-
troller, we compared it with the fuzzy controller presented in ref. [50]. The controller
mentioned above was modified to be implementable for the cable–based gangue–sorting
robot considered in this paper. Thus, it can be expressed as:

τ = M(X)
..
Xr + H

(
X,

.
X
)
+ f̂

(
X,

.
X
∣∣∣∣∼Θ)

− KDs (28)
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in which
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Comparing Eqations (23) and (28), it can be observed that the fuzzy controller is
a specific case of the proposed controller in this paper, in which the robust term W =
0. Moreover, the proposed control algorithm benefiting from internal force concept can
ensure that all cables remain in tension while the end–grab moves along the designed
pick–and–place trajectory. As a result, the proposed control scheme in this paper can bring
a better comprehensive control performance.

Moreover, in order to have a quantitative evaluation and comparison between the
performance of the two controllers, the root mean square error (RMSE) and maximum
absolute of tracking errors (MAE) of the end–grab in all directions of the task space are
presented, and they can be expressed as follows:

RMSE =

√√√√ 1
N

N

∑
k=1

|e(k)|2 (30)

MAE = max(|e(k)|k=1∼N) (31)

where e(k) denotes the position tracking error of the end–grab; N is the number of samples,
and k the current sample.

All dynamic and kinematic parameters of the cable–based gangue–sorting robot and the
proposed controller parameters are given in Table 2. Without loss of generality, the lumped com-
posite disturbance vector is set as D= [4 sin(10t) 2 sin(10t) 4 sin(10t)

]T ; the initial motion

state of the end–grab is X0= [X1,
.

X1, X2,
.

X2, X3,
.

X3] = [1.3, 0, 1.2, 0.03π, 1.5, 0
]T

;
the simulation time is set to 40 s; the membership function of the fuzzy control system is

selected as μAl
i
(xi) = exp

⎛⎝−(xi −
−l
xi)

0.2

⎞⎠2

, in which
−l
xi is 1, 2, 3, 4, and Ai is NB, NS, ZO, PS,

and PB, respectively.

Table 2. Dynamic and kinematic parameters of the robot and the proposed controller parameters.

Parameter Symbol Value

Height of the pillar, Figure 3 h 3 m
Length of the rectangle formed by Ai b 4 m
Width of the rectangle a 4 m
Mass of the end–grab m 5 kg
Acceleration of gravity g 9.8 m/s2

Gain matrix KD 250 I4×4
Matrix of the sliding surface Λ 10 I3×3
Adaptation law matrix Γ Diag(10,10,10) × 10−4

Gain matrix of the robust term W Diag(0.2,0.2,0.2)

The spatial circle trajectory for the end–grab can be expressed as:⎧⎨⎩
x = 0.8cos(0 .1πt) + 1.8
y = 0.8sin(0 .1πt) + 2
z = 1.5

(32)
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The results of the position trajectory tracking of the end–grab are shown in Figure 10. It
is observed that the end–grab tracks the planned spatial circle trajectory relatively well with
the proposed robust adaptive fuzzy tracking controller. Figure 11 illustrates the position
trajectory and the position errors of the end–grab in x–, y–, and z–directions, respectively. It
can be seen that, compared with x–direction and y–directions, z–direction has the better
tracking effect, and its absolute error is less than 6‰. Furthermore, the error in z–direction
obviously changes in a fixed period, and the errors are always stable in the above range.
Additionally, it is concluded from Figure 11d that the absolute value of the error in the x–
direction and y–direction are all within 1%, fluctuating in the range of −8–(8‰). Moreover,
the absolute value of the fluctuation is less than 3‰.

Figure 10. The spatial circle and trajectory tracking.

Figure 11. Position trajectory tracking of the end–grab for the spatial circle. (a) Position trajectory in
x–direction; (b) position trajectory in y–direction; (c) position trajectory in z–direction; (d) trajectory
tracking errors.
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Figure 12 illustrates the velocity tracking and the velocity tracking errors of the end–
grab in x–, y–, and z–directions, respectively. It can be observed that the absolute value of
velocity error in x-direction is within 1.6%, and that in y-direction is within 1.5%, while
that in z–direction is within 1.6%. Additionally, it can be seen that the velocities in the
three directions fluctuate greatly within 0.5 s; however, the velocities in the three directions
fluctuate steadily in an acceptable range.

Figure 12. Velocity tracking of the end–grab for the spatial circle. (a) Velocity tracking in x–direction;
(b) velocity tracking in y–direction; (c) velocity tracking in z–direction; (d) velocity tracking error in
x–direction; (e) velocity tracking error in y–direction; (f) velocity tracking error in z–direction.

The four cable tensions while the end–grab follows the spatial circle defined by
Equation (32) are shown in Figure 13. It is obvious that the tension of each cable is
greater than 5 N, which satisfies the unidirectional characteristics of the cables. In addition,
the phase, period, and fluctuation range of the cable tensions change steadily, which can
generate smooth and continuous movement for the end–grab.

94



Machines 2022, 10, 714

Figure 13. The control input cable tensions for the spatial circle.

While the initial motion state of the end–grab is set as

X0= [X1,
.

X1, X2,
.

X2, X3,
.

X3] = [2.25, 0, 1, 0, 1.5, 0
]T

, the simulation time is set to
4 s. The position tracking of the end–grab for the proposed pick–and–place trajectory is
displayed in Figure 14. It is observed that the end–grab, in common with the spatial circle,
tracks the proposed pick–and–place trajectory relatively well with the proposed robust
adaptive fuzzy tracking controller.

Figure 14. The proposed pick–and–place trajectory and trajectory tracking.

The position trajectory tracking errors of the end-effector in the x–direction, y–direction,
and z–direction are shown in Figure 15. As can be seen from the figure, the absolute values
of the errors in x–, y–, and z–directions are all within 2‰, and the error in y-direction is
the largest. The maximum absolute value of the error in y–direction reaches 1.75‰ around
3.8 s. However, from the pick–and–place trajectory planning in Section 4.1, it can be seen
that the end–grab has unloaded the gangues, which will not affect the smooth operation of
the end–grab. Thus, the above error is acceptable.

Figure 15. Position trajectory tracking error for the proposed pick–and–place trajectory.
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RMSE and MAE for the both controllers in the task space while the end–grab moves
along the proposed pick–and–place trajectory are listed in Table 3, respectively. The results
obtained for the performance indices of the both controllers indicate the appropriate
performance in practice. However, it can be seen from the qualitative analysis that the
proposed controller has outperformed the fuzzy controller. As an example, the RMSE and
MAE values of the proposed controller are 8.9867 × 10−4 and 2 × 10−2 m, respectively,
which are better than that of the fuzzy controller, 9.1872 × 10−4 and 2 × 10−2. It can be
seen from the MAE values of the two controllers that they are equal to each other, and
this is because the maximum absolute of tracking errors occurs at the initial position of
the pick–and–place trajectory for the end–grab. The initial motion state of the end–grab is
set as equal to each other for the two controllers. It should be pointed out that the initial
motion state of the end–grab has an effect on the RMSE and MAE.

Table 3. RMSE and MAE for the both controllers.

Controller RMSE MAE

Proposed controller 8.9867 × 10−4 m 2 × 10−2 m
Fuzzy controller 9.1872 × 10−4 m 2 × 10−2 m

Velocity tracking of the end–grab for the proposed pick–and–place trajectory is de-
picted in Figure 16. From Figure 16, we can see that the absolute values of velocity errors
in x–, y–, and z–directions are within 1.8%, and thus, the velocity tracking effect is good.
Furthermore, the velocity fluctuation is the most complicated from 1.8 s to 3.2 s. However,
it can be seen from the figure that the absolute value of the maximum velocity fluctuation
error is about 0.75%.

Figure 16. Velocity tracking of the end–grab for the proposed pick–and–place trajectory. (a) Velocity
tracking in x–direction; (b) velocity tracking in y–direction; (c) velocity tracking in z–direction;
(d) velocity tracking errors.

The four cable tensions while the end–grab follows the proposed pick–and–place
trajectory are shown in Figure 17. It is obvious that the tension of each cable is also greater
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than 5 N, which satisfies the unidirectional characteristics of the cables. In addition, the
cable tensions are smooth and continuous.

Figure 17. The control input cable tensions for the proposed pick–and–place trajectory.

The performed study clearly shows certain advantages of the proposed control system,
which include: first, the presented four−phase pick–and–place trajectory planning scheme
can generate a smooth and continuous trajectory for the end–grab to perform the pick–and–
place operation of the MTGs; second, the proposed robust adaptive fuzzy tracking control
strategy is able to track a trajectory as close as possible to the desired one without violating
the cable tension limits.

5. Conclusions and Future Works

In this paper, a control system for the cable–based gangue–sorting robot performing the
pick–and–place operation of MTGs with different shapes, sizes, and masses was presented,
which consists of two modules: (i) the pick–and–place trajectory planning module and
(ii) trajectory tracking control module.

In more detail, a four-stage trajectory planning scheme for the end–grab of the cable–
based gangue–sorting robot is proposed in this paper. The pick–and–place trajectory of the
end–grab is planned into four periods: the starting period, preparing period, picking period,
and placing period. In addition, according to the established dynamic equation of the cable–
based gangue–sorting robot, a robust adaptive fuzzy control strategy was designed to track
a given trajectory in the presence of model uncertainties, varying payloads, and external
disturbances. Based on Lyapunov stability analysis, the stability of the closed-loop control
system was theoretically proved. To evaluate the proposed control system, numerical
simulations were performed for the cable–based gangue–sorting robot. The simulation
analysis of the pick–and–place trajectory planning scheme of the robot shows that the
motion trajectory, velocity, and acceleration of the end–grab are smooth and continuous,
and moreover, the cable length changes smoothly and continuously. Meanwhile, simulation
analysis of the robust adaptive fuzzy control strategy of the robot shows that a high-
precision position and velocity tracking performance for the end–grab was obtained with
the proposed control strategy, which is robust against the uncertainties.

As a matter of fact, tracking, approaching, picking, and placing the MTGs have become
an important mission of the cable–based gangue–sorting robots. In this paper, the authors
present the proposed pick–and–place trajectory planning and trajectory tracking control
for the robots. In the next phase, we will focus on the following parts as our future
work: (i) contact and impact analysis during the picking and placing process of the MTGs;
(ii) motion stabilization of the cable–based gangue–sorting robots after picking and placing
the MTGs; and (iii) the experimental validation of the four-stage trajectory planning scheme
and the proposed pick–and–place trajectory tracking control scheme for the cable–based
gangue–sorting robots.
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Abstract: In classical impedance control, KD, the steady-state end-effector forces are imposed to
be proportional to the end-effector position errors through the stiffness matrix, K, and a proper
damping term is added, proportional to the first-order derivatives of the end-effector position errors
according to the damping matrix, D. This paper presents a fractional-order impedance control scheme,
named KDHD, in which an additional damping is added, proportional to the half-order derivatives
of the end-effector position errors according to the half-derivative damping matrix, HD. Since the
finite-order digital filters which implement in real-time the half-order derivatives modify the steady-
state stiffness of the end-effector—which should be defined exclusively by the stiffness matrix—a
compensation method is proposed (KDHDc). The effectiveness of this approach is validated by
multibody simulation on a Stewart platform. The proposed impedance controller represents the
extension to multi-input multi-output robotic systems of the PDD1/2 controller for single-input
single-output systems, which overperforms the PD scheme in the transient behavior.

Keywords: impedance control; fractional calculus; half-order derivative; parallel kinematics machine;
KDHD; Stewart platform

1. Introduction

Industrial robots are in most applications controlled in their position, independently of
their serial or parallel kinematic architecture [1]. Position control is appropriate whenever
the task can be correctly performed by regulating only the end-effector trajectory and when
the interaction forces with the environment are not crucial. On the contrary, when, for
proper task execution, it is fundamental to regulate the force/moment exerted in some
directions, it is necessary to adopt the hybrid position/force control (HPFC) [2]. The main
drawback of HPFC is that it requires force/moment sensors for any generalized coordinate
which must be controlled in force/moment. Impedance control represents an intermediate
approach between position control and HPFC and is widely adopted since it allows the
control of the interaction forces with the environment without force/moment sensors, even
if it has lower accuracy than HPFC [3,4].

The basic idea behind impedance control is to impose on the end-effector, subject
to external forces, a trajectory which is followed with a programmed spatial compliant
behavior. The end-effector compliance is defined through the stiffness and damping
matrices, K and D, which correlate linearly with the force/moment exerted by the end-
effector on the environment with the end-effector position/orientation error. Consequently,
it is possible to achieve a compliant behavior with low stiffness in the directions which must
be force-controlled, and a stiff behavior in the directions which must be position-controlled.
Impedance control allows the elimination of the force/moment sensors on the end-effector
through an indirect measurement based on the actuation force/moments; therefore, the
accuracy of impedance control is remarkably lower in the presence of friction in the joints
and gearboxes.

For translational robots, the end-effector external coordinates are always expressed in
an orthogonal reference frame, and, in case of impedance control, K and D are 3 × 3 and

Machines 2022, 10, 604. https://doi.org/10.3390/machines10080604 https://www.mdpi.com/journal/machines101



Machines 2022, 10, 604

represent, respectively, the zero-order (proportional) term and the first-order (derivative)
term of a three-dimensional PD control in the external coordinates [5]. The matrices K and
D can be expressed in a principal reference frame, selected on the basis of the specific task;
when this principal reference frame is not parallel to the fixed reference frame, W, in which
the end-effector coordinates are expressed, K and D are non-diagonal.

On the contrary, for impedance control of robots with rotational degrees of freedom of
the end-effector, there are different possible approaches to define the stiffness and damping
matrices, since the orientation of a rigid body in space can be described in many alternative
ways [6]; this leads to different definitions of rotational stiffness and damping [7,8]. In
general, for impedance control of robots with both translational and rotational degrees
of freedom, the translational and rotational impedances are decoupled, and this results
in block-diagonal matrices K and D, each one with two blocks: one block defines the
translational stiffness (for K) or damping (for D), and the other block defines the rotational
stiffness (for K) or damping (for D) [9].

The recalled basic concepts characterize classical impedance control, in the following
referred to as KD, in which the end-effector stiffness and damping are linear; nonetheless,
in the scientific literature several variants have been proposed. First of all, some researchers
have conceived nonlinear impedance control algorithms, with nonlinear stiffness and
damping of the end-effector, for instance for cooperative human–robot tasks, or to keep the
end-effector within a restricted region in case of excessive contact forces [10–12].

Other alternative impedance control schemes are based on Fractional Calculus (FC),
which deals with derivatives and integrals of non-integer order [13]. Using FC, the end-
effector damping can be proportional not to the first-order derivative of the position error,
but to a derivative with non-integer order μ [14,15], with possible benefits in terms of
accuracy of the regulation of the contact forces [16]. This fractional-order impedance
control, which is referred to as KDμ, represents an n-dimensional version (where n is the
number of external coordinates) of the fractional-order PDμ control scheme for single-input
single-output systems [17], while KD impedance control conceptually corresponds to the
PD scheme.

In [18] a different application of FC to impedance control has been proposed, named
KDHD: there is a damping term proportional to the first-order derivative of the position
error according to matrix D, as in the KD scheme, but a second damping term is added,
proportional to the fractional derivative of order 1/2 of the position error according to the
matrix HD. Consequently, this algorithm generalizes to n-dimensional systems the PDD1/2

scheme, whose benefits over the classical PD have been demonstrated in simulation [19]
and experimentally for linear [20] and rotary axes [21].

In [18] the KDHD impedance control has been applied in simulation to a 3-PUU
parallel robot, with three translational degrees of freedom of the end-effector. In the present
paper the KD–KDHD comparison is extended considering the application to a six-degree-
of-freedom manipulator, the Stewart platform, thus requiring the definition of both the
translational and rotational impedances.

In the remainder of the paper: Section 2 discusses the theoretical definition and
the digital implementation of the half-derivative of a time function; Section 3 proposes
the KDHD impedance control for a six-degrees-of-freedom non-redundant parallel robot,
highlighting the differences with respect to the classical KD impedance control; Section 4
deals with the Stewart platform geometry and its kinematics; Section 5 discusses the
multibody modelling and the considered mechanical parameters; Section 6 presents the
simulation results of the comparison between the KD and KDHD impedance controls;
Section 7 outlines conclusions and future developments.

2. Half-Order Derivative: Definition and Digital Implementation Issues

As already stated, FC generalizes the concepts of derivative and integral to a generic
non-integer order. In the scientific literature there are many alternative definitions of
fractional derivatives and integrals, which are proven to be equivalent, but give rise to
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different numerical implementations. In the following, the Grünwald–Letnikov definition
will be adopted since it leads to a robust discrete-time reduction [22]. Adopting this
definition, the fractional operator for a continuous time function x(t) is:

dα

dtα
x(t) = x(t)(α) = lim

h→0

1
hα

[ t−a
h ]

∑
k=0

(−1)k Γ(α + 1)
Γ(k + 1)Γ(α − k + 1)

x(t − kh), (1)

where: α ∈ R
+ is the differentiation order; a and t are the fixed and variable limits; Γ is the

Gamma function; h is the time increment; [y] is the integer part of y. To obtain a numerical
implementation, Equation (1) must be rewritten using a small but finite sampling time
Ts [23]:

x(t)(α) ∼= x(kTs)
(α) ∼= 1

Tsα

(
k

∑
j=0

wα
j x((k − j)Ts)

)
, k = [(t − a)/Ts], (2)

where:

wα
0 = 1, wα

j =

(
1 − α + 1

j

)
wα

j−1 , j= 1, 2, . . . . (3)

In Equation (2) there is a summation of k + 1 sampled values of x, with k tending
to infinity as time passes, which is computationally unfeasible for real-time control ap-
plications; therefore, only a fixed number of n previous steps is used in Equation (2),
obtaining an nth order digital filter with memory length L = nTs, which can be written in
the z-transform notation:

D(α)(z) =
1

Tsα

n

∑
j=0

wα
j z−j. (4)

The application of digital filter (4) corresponds to considering only the recent past of
the function, in the interval [t–L, t]. In general, this approximation is acceptable according
to the so-called short-memory principle [23]. Nevertheless, the truncation of the summation
of Equation (2) to n + 1 addends leads to an issue when filter (4) is applied to impedance
control, as discussed in [18]. In reality, the summation of the filter coefficients tends to zero
as k tends to infinity:

lim
k→∞

k

∑
j=0

wα
j = 0. (5)

Consequently, any fractional-order derivative of a constant c is null. Unfortunately,
considering only a finite number n of terms, this summation is non-zero, but it is a positive
function of n, which tends to zero quite slowly, as discussed in [18]:

Wα(n) =
n

∑
j=0

wα
j > 0. (6)

Therefore, the fractional derivative of a constant c evaluated in real time by means
of the nth order digital filter (4) is non-zero, but equal to cWα(n)/Tα

s , tending to zero as
the filter order increases. This fact alters the behavior of the impedance control in a steady
state: as a matter of fact, in a steady state only the stiffness term should be non-zero, with
null damping terms, since the position error is constant, and, therefore, its time derivatives
should be null. Nevertheless, if fractional-order derivatives are numerically evaluated
with finite-order filters, the fractional-order damping term is also non-zero in the steady
state, giving rise to a constant term which alters the relationship between position error
and end-effector force, which should depend only on the stiffness matrix and not on
the fractional-order damping matrix. To solve this issue, a proper compensation term is
introduced, as discussed in Section 3.3.
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3. The Proposed KDHD Impedance Control

3.1. KD Impedance Control of Six-Degree-of-Freedom Non-Redundant Parallel Robots

The KDHD impedance control has been proposed for the first time in [18], with
application to a purely translating parallel robot. In the following, the KDHD impedance
control is extended to a full-mobility, six-degree-of-freedom parallel robot. In particular, the
considered case study is the Stewart platform, but the same approach can be used for any
non-redundant six-degree-of-freedom parallel robot by only replacing the Jacobian matrix.

The KD impedance control with gravity compensation for a non-redundant six-degree-
of-freedom parallel robot can be expressed by the following control law [24]:

τ =
(

JT
p (q)

)−1
(

KKD

[
xd − x(q)

Ed − E(q)

]
+ DKD

[
(xd − x(q))(1)

(Ed − E(q))(1)

])
+ τg(q) =

=
(

JT
p (q)

)−1
([

KKDt 0

0 KKDr

][
xd − x(q)

Ed − E(q)

]
+

[
DKDt 0

0 DKDr

][
(xd − x(q))(1)

(Ed − E(q))(1)

])
+ τg(q)

(7)

where τ is the vector of the actuation forces, q is the vector of the internal coordinates, τg(q)
is the gravity compensation vector and Jp(q) is the Jacobian matrix of the parallel robot,
which correlates to the time-derivative of the external and internal coordinates:

.
q = Jp

[ .
x
.
E

]
. (8)

In particular, for the Stewart platform the vector of the internal coordinates collects
the six leg lengths (q = [q1, q2, q3, q4, q5, q6]T), while the vector of the external coordinates
assembles the three end-effector coordinates in the fixed reference frame (x = [x, y, z]T) and
the three components in the fixed reference frame of the angle-axis vector E = [Ex, Ey, Ez]T.
The vector E = θ·e represents a generic rotation with magnitude θ around an axis defined by
the unit vector e according to the right-hand rule [6]. The use of the vector E to represent the
end-effector orientation is the most suitable for impedance control due to its strict relationship
with the angular velocity vector ω. As a matter of fact, it is possible to demonstrate that,
if θ tends to zero, the angular velocity ω tends to be equal to the time-derivative of E [9].
This property is not very important for rotations with respect to a fixed frame, because in
general θ is different from zero, but it is useful in impedance control, where the angle-axis
representation is used to describe the relative rotation between the end effector frame, E(q),
and the frame describing its reference orientation, Ed, because θ is small. Consequently, if
rotational damping is based on the time-derivative of E, which tends to ω, it is based on an
entity with a clear geometric meaning, realizing a strict analogy with the translational position
and velocity vectors [9].

In Equation (7), KKD and DKD are the stiffness and damping matrices, and the vectors
xd and Ed describe the reference trajectory in the external coordinates. Let us note that
KKD and DKD are 6 × 6 and block-diagonal, composed of 3 × 3 blocks representing the
translational stiffness (KKDt), the rotational stiffness (KKDr), the translational damping
(DKDt) and the rotational damping (DKDr). The remaining elements of KKD and DKD are
null, since the translational and rotational behaviors are imposed to be decoupled.

In general, the stiffness and damping matrices are block-diagonal but non-diagonal
in the fixed reference frame, W. Based on the task requirements, it is possible to choose a
convenient principal reference frame in which stiffness and damping are decoupled for
any direction. Moreover, it can be useful to have two distinct principal reference frames,
one for the translations (PT) and one for the rotations (PR). Therefore, the 3 × 3 stiffness
and damping submatrices are defined as diagonal in PT and PR and then transformed into
frame W by means of the corresponding rotation matrices [24]:

KKDt =
(

RPT
W

)T
KPT

KDt RPT
W , (9)
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KKDr =
(

RPR
W

)T
KPR

KDr RPR
W , (10)

DKDt =
(

RPT
W

)T
DPT

KDt RPT
W , (11)

DKDr =
(

RPR
W

)T
DPR

KDr RPR
W . (12)

3.2. KDHD Impedance Control of Six-Degree-of-Freedom Non-Redundant Parallel Robots

In the KDHD impedance control, damping is proportional not only to the first-order
derivative of the external coordinates’ error, according to matrix DKDHD, but also to its
half-order derivative (derivative of order 1/2), according to matrix HDKDHD:

τ =
(

JT
p (q)

)−1
⎛⎝KKDHD

⎡⎣ xd − x(q)

Ed − E(q)

⎤⎦+ DKDHD

⎡⎣ (xd − x(q))(1)

(Ed − E(q))(1)

⎤⎦+
+ HDKDHD

⎡⎣ (xd − x(q))(1/2)

(Ed − E(q))(1/2)

⎤⎦⎞⎠+τg(q) =

=
(

JT
p (q)

)−1
⎛⎝⎡⎣ KKDHDt 0

0 KKDHDr

⎤⎦⎡⎣ xd − x(q)

Ed − E(q)

⎤⎦+

⎡⎣ DKDHDt 0

0 DKDHDr

⎤⎦⎡⎣ (xd − x(q))(1)

(Ed − E(q))(1)

⎤⎦+
+

⎡⎣ HDKDHDt 0

0 HDKDHDr

⎤⎦⎡⎣ (xd − x(q))(1/2)

(Ed − E(q))(1/2)

⎤⎦⎞⎠+τg(q)

(13)

Similarly to the matrices KKDHD and DKDHD, for which the Equations (9) to (12) are
always valid, the two blocks of the matrix HDKDHD can also be defined in the principal
reference frames PT and PR, and then transformed to frame W:

HDKDt =
(

RPT
W

)T
HDPT

KDt RPT
W , (14)

HDKDr =
(

RPR
W

)T
HDPR

KDr RPR
W . (15)

3.3. KDHDc Impedance Control of Six-Degree-of-Freedom Non-Redundant Parallel Robots

As discussed in Section 2, the approximated real-time implementation of fractional-
order derivatives by means of a digital filter with finite order n introduces an issue for
impedance control, since it alters the relationship between position error and end-effector
generalized force. To solve this problem, a stiffness-compensated KDHD impedance control,
named KDHDc, is proposed, subtracting in the stiffness term the unwanted additional
stiffness caused by the half-order damping and evaluated by means of Equation (6):

τ =
(

JT
p (q)

)−1
((

KKDHD − W1/2(n)
T1/2

s
HDKDHD

)[ xd − x(q)

Ed − E(q)

]
+ DKDHD

[
(xd − x(q))(1)

(Ed − E(q))(1)

]
+

+ HDKDHD

[
(xd − x(q))(1/2)

(Ed − E(q))(1/2)

])
+ τg(q)

(16)

This expression extends the KDHDc impedance control proposed in [18] for purely
translational robots to full-mobility, non-redundant manipulators.

4. Kinematic Model of the Stewart Platform

The Stewart platform, also known as the Gough–Stewart platform, has been selected as a
case study since it is the probably the best-known parallel robot. From its introduction in 1956
by Gough as a tire testing machine and in 1965 by Stewart as an aircraft simulation machine, it
has attracted considerable research interest in manufacturing and robotic applications. Several
commercial machine tools based on this architecture have been proposed. Other application
fields are animatronics, crane technology, positioning of satellite dishes, telescopes and surgery
devices. Moreover, the Stewart platform is six-degree-of-freedom and non-redundant, which
is necessary to apply KDHDc impedance control using Equations (7), (13) and (16). The
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Stewart platform and its kinematics [25] have been exhaustively discussed and investigated
in the scientific literature. In this Section, its geometry and the formulation of the Jacobian
matrix, which is used in impedance algorithms, are briefly recalled.

The geometric scheme of a generic Stewart platform is represented in Figure 1. The
base is fixed with respect to the fixed reference frame W. The reference frame P is fixed
to the moving platform. The external coordinates are composed of the vector x, from
the origin of W to the origin of P, and of the angle-axis vector E, which represents the
orientation of P with respect to W. The internal coordinates of the robot are the lengths of
the six variable-length legs, collected in the vector q. The legs are connected to the base and
to the platform by universal joints, and the two parts of each extensible leg are connected by
a cylindrical joint with idle rotation and actuated translation. The positions of the centers
of the platform and base joints are respectively represented in the frame W by the vectors
Pi and Bi.

Figure 1. Geometric scheme of the Stewart platform; W(xw, yw,zw): fixed reference frame; P(xp, yp,zp):
moving platform reference frame.

Let Si be the ith leg vector in the base coordinate system, that is the difference between
the position vectors Pi and Bi; the vector Ui of the six Plücker coordinates of the ith leg is
composed of the vector Si, normalized and expressed in the platform frame P, and by its
moment about the platform reference frame origin, always expressed in frame P:

Ui =

⎡⎣ RP
W

Si
|Si |

RP
W

[
(Bi − x)× Si

|Si |

]⎤⎦. (17)

The static behavior of the Stewart Platform is described by the 6 × 6 matrix U(q), a
function of the internal coordinates, which collects the six vectors of the Plücker coordi-
nates [26]:

τ = (U(q))−1F =
[
U1(q) U2(q) U3(q) U4(q) U5(q) U6(q)

]−1
F, (18)

where τ is the vector of the forces exerted by the six legs and F is the six-dimensional vector
of the generalized forces exerted by the robot on the environment, expressed on the platform
reference frame. Consequently, it is evident that the transpose of U corresponds to the robot
Jacobian matrix Jp and can be used in impedance control algorithms (7), (13) and (16). In
order to work properly, the Stewart platform should avoid configurations in which the
Jacobian matrix is singular or ill-conditioned; to obtain this, first of all the hexagons of the
platform and base joints are never regular; moreover, it is convenient to place the joints of
platform and base as close as possible two by two, giving rise to two hexagons similar to
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equilateral triangles, which are rotated 60◦ in the rest position [27], as in the model shown
in Figure 2.

 

Figure 2. Multibody model of the Stewart platform.

5. Multibody Model of the Stewart Platform

The proposed KDHDc impedance control has been tested and compared to the classical
KD control implementing a model of the Stewart platform in the multibody simulation
environment Simscape MultibodyTM by MathWorks (Figure 2). The main geometrical and
inertial parameters considered in the simulations are collected in Table 1.

Table 1. Geometrical and inertial parameters of the 3-PUU parallel robot.

Symbol Parameter Value Unit

|Bi|, i = 1 . . . 6 base platform radius 0.28 m
|Pi − x|, i = 1 . . . 6 moving platform radius 0.3864 m

angular distances of the platform joint centers 20◦/100◦/20◦/100◦/20◦/100◦ degrees
angular distances of the base joint centers 100◦/20◦/100◦/20◦/100◦/20◦ degrees

mmp moving platform mass, with payload 63 kg
ml mass of the upper part of one leg 1 kg
ms mass of the lower part of one leg 1.5 kg

[J1, J2, J3] principal moments of inertia of the moving platform
(frame P) [1.636, 1.636, 3.221] kg·m2

xref = [0, 0, zref] reference workspace central position [0, 0, 0.69] m

6. Simulation Results

The KDHDc/KD comparison has been carried out in a wide variety of case studies;
here, for reasons of space, the results of three case studies are reported:

(A) Approach/depart motion without contact with the environment: the end-effector
follows a reference trajectory, defined by time-varying reference values of xd and Ed
(external coordinates), without external forces acting on the end-effector; for each
external coordinate a trapezoidal speed law is imposed, and the end-effector compli-
ance is isotropic: the stiffness and damping matrices are diagonal, with three equal
elements for the translational and rotational submatrices.
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(B) Interaction with the environment: the end-effector reference external coordinates
are constant, and an external generalized force is applied to the end-effector. The
stiffness and damping matrices are diagonal in the world frame W, which coincides
with the principal stiffness/damping reference frames PT and PR, but the end-effector
behavior is not isotropic, since the three diagonal elements of each submatrix are
not equal.

(C) Interaction with the environment: similarly to case B, the end-effector reference
external coordinates are constant, and an external generalized force is applied to the
end-effector, but differently from case B the principal stiffness/damping frames PT
and PR do not coincide with W; therefore, the stiffness and damping matrices are
block-diagonal but not diagonal.

6.1. Case Study A: Approach/Depart Motion without Contact with the Environment

In this case study, the stiffness and damping matrices are diagonal and isotropic both
for the KD and KDHD impedance controllers.

For the KD impedance algorithm:

• KKDt is diagonal with diagonal values kKDt,i, i = 1 . . . 3;
• KKDr is diagonal with diagonal values kKDr,i, i = 1 . . . 3;
• DKDt is diagonal with diagonal values dKDt,i, i = 1 . . . 3;
• DKDr is diagonal with diagonal values dKDr,i, i = 1 . . . 3.

After imposing the stiffness diagonal values, the diagonal values of the damping
matrix are selected starting from the nondimensional damping coefficient, ζKD, according
to the following expression [28]:

dKDt,i = 2ζKDt

√
kKDt,immp, i = 1 . . . 3, (19)

dKDr,i = 2ζKDr

√
kKDr,i Ji, i = 1 . . . 3, (20)

in which the mass of the moving platform, mmp, is considered for the translational damping,
and the three moments of inertia of the moving platform, J1, J2 and J3, are considered for the
rotational damping. In general, the nondimensional damping coefficient can have different
values for the translational impedance (ζKDt) and for the rotational impedance (ζKDr).

For the KDHDc impedance algorithm:

• KKDHDt is diagonal with diagonal values kKDHDt,i, i = 1 . . . 3;
• KKDHDr is diagonal with diagonal values kKDHDr,i, i = 1 . . . 3;
• DKDHDt is diagonal with diagonal values dKDHDt,i, i = 1 . . . 3;
• DKDHDr is diagonal with diagonal values dKDHDr,i, i = 1 . . . 3;
• HDKDHDt is diagonal with diagonal values hdKDHDt,i, i = 1 . . . 3;
• HDKDHDr is diagonal with diagonal values hdKDHDr,i, i = 1 . . . 3.

The diagonal values of the two damping matrices can be selected starting from the
nondimensional coefficients ζKDHD and ψKDHD, according to the following expressions:

dKDHDt,i = 2ζKDHDt

√
kKDHDt,immp, i = 1 . . . 3, (21)

dKDHDr,i = 2ζKDHDr

√
kKDHDr,i Ji, i = 1 . . . 3, (22)

hdKDHDt,i = ψ3/4
KDHDt,im

1/4
mp , i = 1 . . . 3, (23)

hdKDHDr,i = ψ3/4
KDHDr,i J

1/4
i , i = 1 . . . 3. (24)

The coefficients ζKDHD and ψKDHD represent non-dimensionally the derivative and
half-derivative damping terms [28]. In [20], three couples of PD and PDD1/2 tunings,
recalled in Table 2, have been compared in the control of a linear axis.
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Table 2. Nondimensional parameters of the compared PD and PDD1/2 tunings.

KD/KDHD
Comparison

PD Control/
KD Impedance Control

PDD1/2 Control/
KDHD Impedance Control

ζKD ζKDHD ψKDHD

I 0.8 0.46 0.7990
II 1 0.45 1.4266
III 1.2 0.48 2.1510

These couples of PD and PDD1/2 tunings have been selected as the starting point
of the study, since they have been obtained with reference to a nondimensional second-
order purely inertial linear system, with transfer function G(s) = 1/s2, according to the
following method:

• A PD closed-loop control with a given ζ (reference PD) is applied to the position
control of G(s), applying a step input, and the settling energy of the step response
is calculated.

• There are infinite combinations of ζ and ψ for a PDD1/2 controller with the same
proportional gain and the same settling energy of the reference PD; among these, the
ζ–ψ combination which minimizes the settling time is selected.

Table 2 collects the PDD1/2 ζ–ψ combinations associated to three different reference
PD controllers, with ζ = 0.8, 1, and 1.2. Simulations and experimental tests on a single
mechatronic axis, as reported in [20], show that these PDD1/2 tunings allow to improve the
readiness with respect to PD, with a similar control effort. Moreover, even if this tuning is
based on the step input, the benefits in terms of control readiness of the PDD1/2 controller
have been also demonstrated with different reference inputs [28]. In the following, for
reasons of space, only the results for the comparison II (KD with ζKD = 1.0 vs. KDHDc with
ζKDHD = 0.45 and ψKDHD = 1.4266) will be reported, the other two comparisons leading to
qualitatively similar results.

The stiffness matrices for the KD and KDHDc impedance controls have been obtained
imposing the following stiffness values:

• kKDt,i = kKDHDt, i = 1 × 103 N/m, i = 1 . . . 3,
• kKDr, i = kKDHDr,i = 1 × 102 Nm/rad, i = 1 . . . 3,

While the damping matrices have been calculated using Equations (19) to (24).
In the simulations, the half-derivative is calculated using the digital filter (4) with

sampling time Ts = 0.005 s and filter order n = 10; these values are suitable for a real-time
digital implementation on a commercial controller.

The two control laws have been compared in case of a trapezoidal reference trajectory,
both translational and rotational, characterized by four phases. At the beginning of this
trajectory, x = xd = xref (Table 1, the reference position in the workspace center) and E = Ed = 0

(the platform is aligned to the base); then:

1. Phase 1: xd varies with constant velocity from xref to xref + [0.05, 0.05, 0.05]T [m], while
Ed varies with constant velocity from 0 to [0.2, −0.2, 0.2]T [rad]. The duration of this
phase is tramp = 1 s.

2. Phase 2: xd remains constant in xref + [0.05, 0.05, 0.05]T [m] and Ed remains constant in
[0.2, −0.2, 0.2]T [rad] for tstop = 2 s.

3. Phase 3: xd and Ed return to the initial values (xref and 0) with constant velocity in tramp.
4. Phase 4: xd and Ed remain constant in xref and 0 for tstop.

The total simulation time is Tsim = 2(tramp + tstop). Figures 3 and 4 show the simulation
results of the KD–KDHDc comparison in terms of external coordinates and actuation forces.
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Figure 3. Case study A, KD–KDHDc comparison, external coordinates.

 

Figure 4. Case study A, KD–KDHDc comparison, actuation forces.
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Adopting the KDHDc impedance control, the peaks of actuation forces are lower
(average reduction over the six actuators: −13%, Figure 4), and the control effort, calculated
according to the following equation,

Etot =
6

∑
i=1

Tsim∫
0

τ2
i dt, (25)

is slightly lower (−0.03%). On the other hand, the settling time to within 0.2% of the
steady-state displacement for the KDHDc is slightly lower (−3.7% averaged over the six
external coordinates, Figure 3), while the overshoot is higher (maximum overshoot for
the translational coordinates: +4.0% for the KDHDc and +3.4% for the KD; maximum
overshoot for the rotational coordinates: +9.3% for the KDHDc and +7.4% for the KD).
Without discussing in detail the possible advantages of the KDHDc and its possible tuning
criteria, it is interesting to observe that this results are qualitatively similar to the ones of the
PDD1/2 control scheme compared to the classical PD with same ζ and ψ (better readiness
and slightly higher overshoot with lower maximum values of the control inputs [20]).
This means that the tuning criteria developed for the PDD1/2 control can provide useful
indications for tuning the KDHDc impedance control.

6.2. Case Study B: Interaction with the Environment, Diagonal Stiffness and Damping Matrices

In this case study, the stiffness and damping matrices are diagonal in the world frame
W, which coincides with PT and PR, but the imposed end-effector behavior is not isotropic,
since the three diagonal elements of each 3 × 3 submatrix are not equal as in case study A:

• kKDt,1 = kKDHDt,1 = 2 × 103 N/m; kKDt,2 = kKDHDt,2 = kKDt,3 = kKDHDt,3 = 1 × 104 N/m,
• kKDr,1 = kKDHDr,1 = 1× 102 Nm/rad; kKDr,2 = kKDHDr,2 = kKDr,3 = kKDHDr,3 = 1× 103 Nm/rad,

Resulting in higher compliance along the x-axis both for the translations and for the
rotations. As in case A, the diagonal values of the damping matrices are obtained using
Equations (19) to (24) separately for each coordinate, and imposing KD with ζ = 1.0 for the
KD, and ζ = 0.45 and ψ = 1.4266 for the KDHDc.

A force F = [100, 100, 100]T N and a moment M = [20, −20, 20]T Nm are applied to the
end-effector at t = 0 s. The half-derivative is calculated adopting the same discrete-time
implementation as in case A (Ts = 0.005 s, n = 10).

Figure 5 shows the simulation results of the KD–KDHDc comparison in terms of
external coordinates. It is possible to note that the steady-state displacements of the
external coordinates using the two algorithms coincide for both the algorithms with the
expected values, xss and Ess, which can be obtained by inverting the translational and
rotational diagonal submatrices:

xss = (KKDt)
−1F = (KKDHDt)

−1F =
[

0.05 0.01 0.01
]T
[mm]

Ess = (KKDr)
−1M = (KKDHDr)

−1M =
[

0.200 −0.020 0.020
]T
[rad]

. (26)

It occurs thanks to the correctness of the stiffness compensation present in Equation (16)
for the KDHDc and absent in Equation (13) for the KDHD; let us note that these correction
terms are in percentage relevant with respect to the corresponding diagonal terms of the
stiffness matrix: 158%, 105% 105%, 134%, 75% and 89%, respectively, for the six external
coordinates. Adopting Equation (13), without this correction, the stiffness of the KDHD
is much higher than the desired stiffness expressed by the matrix KKDHD, with diagonal
values ranging from 175% to 258% of the corresponding desired values. Let us also note
that for the first four external coordinates the negative correction is higher than the desired
stiffness, giving rise to negative diagonal values of the proportional terms, without affecting
the compensation effectiveness. In other words, the corrected stiffness term of Equation (16) is
the sum of two terms, one positive, proportional to the matrix KKDHD of the desired stiffness,
and one negative, proportional to the matrix W1/2(n)/Ts

1/2HDKDHD. The second negative
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term, which is the correction of the unwanted additional stiffness introduced by the half-
derivative digital filter, depends on the filter order n and on the sampling time Ts, and can be
even higher than the desired stiffness term. However, independently of which term is larger,
the stiffness compensation acts correctly, and the KDHDc impedance control, Equation (16),
exhibits in steady-state the desired stiffness for each external coordinate, as shown by the
graphs of Figure 5.

 

Figure 5. Case study B, KD–KDHDc comparison, external coordinates.

6.3. Case Study C: Interaction with the Environment, Non-Diagonal Stiffness and
Damping Matrices

In this case study, the stiffness compensation of the impedance control law KDHDc is
tested with the principal translational and rotational reference frames, PT and PR, rotated with
respect to the fixed reference frame W: PT is rotated with respect to a W of θt = π/6 rad about
an axis represented by the unit vector ut = [+1, −2, +4]T/211/2; PR is rotated with respect to a
W of θt = π/3 rad about an axis represented by the unit vector ur = [+1, +2, +4]T/211/2. The
rotation matrix between W and PT can be obtained from the axis-angle representation by the
following formula [6]:

RPT
W =

⎡⎢⎣ u2
tx +

(
1 − u2

tx
)
cθt utxuty(1 − cθt)− utzsθt utxutz(1 − cθt) + utysθt

utxuty(1 − cθt) + utzsθt u2
ty +

(
1 − u2

ty

)
cθt utyutz(1 − cos θt)− utxsθt

utxutz(1 − cθt)− utysθt utyutz(1 − cθt) + utxsθt u2
tz +

(
1 − u2

tz
)
cθt

⎤⎥⎦. (27)

where cθt and sθt stand for cosθt and sinθt. The rotation matrix between W and PR can be
obtained from the same Equation (27), replacing θt and ut with θr and ur.

The principal stiffness matrix and damping matrices have the same diagonal values of
case study B, but the stiffness matrix and damping matrices expressed in W change due
to the orientations of PT and PR; on the contrary, the external force and moment F and M

are kept equal in frame W to case B. The half-derivative is calculated adopting the same
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discrete-time implementation as in cases A and B (Ts = 0.005 s, n = 10). Figure 6 shows the
simulation results in terms of external coordinates for the KD and KDHDc control laws.

Figure 6. Case study C, KD–KDHDc comparison, external coordinates.

It is possible to note that also in this case the steady-state displacements of the external
coordinates using the two algorithms coincide for both the algorithms with the expected
values, xss and Ess, which can be obtained by inverting the translational and rotational diag-
onal submatrices, once transformed in the fixed reference frame by Equations (9) and (10),
confirming the correctness of the KDHDc stiffness compensation:

xss = (KKDt)
−1F =

((
RPT

W
)T

KPT
KDt RPT

W

)−1
F =

[
0.0180 0.0059 0.0082

]T
[mm]

Ess = (KKDr)
−1M =

((
RPR

W
)T

KPR
KDr RPR

W

)−1
M =

[
0.181 −0.237 0.165

]T
[rad]

(28)

7. Conclusions and Future Research Directions

In this paper, the KDHDc fractional-order extension of the classical KD impedance
control algorithm, already proposed in [18] for a purely translational parallel robot, has
been applied to a six-degree-of-freedom parallel robot, the Stewart platform, requiring the
definition of the rotational impedance. To this end, for the representation of the moving
platform orientation, which influences the rotational impedance, the three components of
the angle-axis vector E have been selected. Using these external coordinates for evaluating
the orientation error and its derivatives has some theoretical advantages over other repre-
sentations (for instance, Euler angles) due to the fact that E is a frame-independent natural
invariant with a clear Euclidean-geometric meaning [6], and its first-order derivative has a
close relationship with the angular velocity vector, which makes it particularly suitable for
defining the damping term [9].

The conception of the KDHDc impedance control originates from the work on the
PDD1/2 control scheme, first developed for single-input single-output systems, and can be
considered as its extension to impedance-controlled robots, which are a class of non-linear
multi-input multi-output systems.
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In this paper and in [18] non-redundant parallel robots are considered, but the pro-
posed KDHDc impedance control can be applied also to non-redundant serial robots, only
bearing in mind that the Jacobian matrix of serial robots usually transforms the internal co-
ordinates into external coordinates and not vice versa, as for parallel robots. Consequently,
the KDHDc impedance control equations proposed in [18] for translational parallel robots
and in this paper for full-mobility parallel robots can be used, respectively, for translational
and full-mobility serial robots by simply replacing (JT(q))−1 with JT(q).

Even if the work is only a starting point, it is possible to summarize the following
conclusions:

• The application of the half-derivative damping term allows for tuning of the impedance
control with additional degrees of freedom, with potential benefits. For instance, the
tuning criterion used in case study A, derived from the one proposed in [20] for a
single-degree-of-freedom, an almost linear mechatronic axis, leads in free motion to
lower actuation forces, almost equal control effort, lower settling time with slightly
higher overshoot. These results are qualitatively similar to what happens for the single
mechatronic axis, conforming the validity of the approach of deriving the KDHDc
tuning form the PDD1/2 tuning. However, the system can be tuned differently, focus-
ing on other performance indices, exploiting the additional regulation opportunities
provided by the half-derivative damping.

• The real-time digital implementation of the half-derivative term introduces a remark-
able alteration to the stiffness of the impedance control in steady state, as discussed in
Section 2, invalidating the capability of the KDHD impedance control to regulate the
contact force between the end-effector and the environment through the measurement
of the position error. Nevertheless, the proposed KDHDc compensation, Equation (16),
has been proven to be effective also for the rotational behavior (case studies B and C).

Some of the possible future research directions are the following:

• a systematic investigation on possible tuning approaches for the KDHDc impedance
control will be carried out, in order to maximize different performance indices; to this
aim, both extension of PDD1/2 tuning methods and numerical optimization techniques
will be considered;

• the KDHDc impedance control will be applied to different serial and parallel architec-
tures; by now, two kinds of mobilities have been taken into account: three translational
degrees of freedom and full mobility, without redundancy (equal numbers of internal
and external coordinates); in the following, also the cases of limited-degree-of-freedom
robots, mixing translational and rotational motions, will be analyzed, both for se-
rial [29,30] and parallel/hybrid manipulators [31,32];

• impedance control of redundant manipulators, which has interesting theoretical as-
pects [33], will also be considered;

• the problem of impedance control for manipulators equipped with flexure joints [34],
requiring a proper stiffness compensation of the joint elastic return force, should
be addressed;

• another possible application of the proposed fractional-order approach is impedance
control of cable-driven parallel robots [35];

• as regards the validation methodology, only simulation results are available by now;
in the future, besides performing experimental tests of the considered case studies
(approach/depart motions without external forces, interactions with the environment
with constant force/moment) the effectiveness of the KDHDc impedance control will
be assessed in real working conditions, for example peg-in-hole or milling tasks.
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Abstract: Since most of the cable-driven parallel manipulators (CDPMs) are small in dimension or
low in speed, the self-weight or inertia of the cable is neglected when dealing with the problems of
kinematics, dynamics and workspace. The cable is treated as a massless straight line, and the inertia
of the cable is not discussed. However, the camera robot is a large-span high-speed CDPM. Thus, the
self-weight and inertia of the cable cannot be negligible. The curved cable due to the self-weight is
modeled as a catenary to accurately account for its sagging effect. Moreover, the dynamic model of
the camera robot is derived by decomposing the motion of the cable into an in-plane motion and an
out-plane motion, based on which an iterative-based tension distribution algorithm and a workspace
generation algorithm are presented. An optimization model is presented to simultaneously improve
the workspace volume, anti-wind disturbance ability and impulse of tensions on the camera and
pan–tilt device system (CPTDS) by selecting the proper optimal variables under the linear and
nonlinear constraints. An improved genetic algorithm (GA) is proposed, and the simulation results
demonstrate that the improved GA offers a stronger ability in global optimization compared to
the standard genetic algorithm (SGA). The ideal-point method is employed to avoid the subjective
influence of the designer when performing the multi-objective optimization, and a remarkable
improvement of the performance is obtained through the optimization. Furthermore, the distribution
characteristics of the optimization objects are studied, and some valuable conclusions are summarized,
which will provide some valuable references in designing large-span high-speed CDPMs.

Keywords: cable-driven parallel manipulator (CDPM); high-speed manipulator; large-span structure;
structural optimization; genetic algorithm (GA); ideal-point method

1. Introduction

The cable-driven parallel camera robot (camera robot for short, see Figure 1) is a type
of CDPM (cable-driven parallel manipulator) consisting of four computer-driven servo
motors that enable the controlled release of four cables that act in parallel on an end-effector,
i.e., the CPTDS (camera and pan–tilt device system). The camera robot can take pictures and
videos with an aerial view that conventional cameras would have difficulty in realizing [1],
making it the best candidate for aerial panoramic photographing in big venues, such as
stadiums, football fields, theaters, etc.

There have existed some commercial camera robots, e.g., Skycam, Spidiercam and
Cablecam [2], which can also be applied in agricultural remote sensing [3] and traffic
monitoring [4] and film production [5]. A camera robot is a typical of large-span high-speed
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CDPM with redundant actuation [6], whose performance is largely determined by its
structural parameters [7,8].

The essence of structural optimization is to establish the mapping relationships be-
tween optimal variables and optimization objects. Determining an optimal structure of
a CDPM meeting a set of optimization objectives is generally challenging, which can be
solved by formulating a constrained optimization problem. There has been plenty of prior
work in the structural optimization of CDPMs, which employ various optimization objects,
such as workspace size [9], condition number of Jacobian matrix [10], tension factor [11,12],
stiffness [13–15], avoiding collision of cables [16,17], manipulability [18] and the maximum
acceptable horizontal distance [19].

Figure 1. Schematic of a camera robot configuration.

However, most of the above optimization methods belong to traditional optimization
methods, such as the simplex method, interval analysis, Dynamic-Q, grouped coordinate
descent and enumeration method, which are sensitive to initial values and easily fall into
local optimums, leading to a failure to obtain a global optimal solution. Until now, many
optimal methods have been developed to overcome this difficulty. Genetic algorithms (GA)
are an intelligent optimization method offering a powerful global search ability and can
effectively escape from local optimums compared to the traditional optimization method,
causing it to be a mainstream structural optimization approach of CDPMs.

Li et al. proposed a GA-based multi-objective optimization method to obtain the best
global dexterity index and overall stiffness index of a planar three degrees of freedom
(DOF) CDPM [20]. Jamwal et al. developed a GA-based multi-objective optimization
method to conduct the optimal design of a cable-driven ankle rehabilitation robot using
the minimum global condition number, the maximum workspace utilization index and
the minimum cable tension norm as optimal objectives [21]. Arsenault et al. used GA to
optimize the geometry of planar CDPMs with four cables with the objective of reaching a
desired pre-stress stable wrench-closure workspace [22].

Bahrami et al. optimized the workspace volume, kinematic performance indices and
actuating energy of a spatial CDPM by means of GA, [23]. Amine and Hamida investigated
the structural optimization of a cable-driven upper limb rehabilitation robot (LAWEX)
based on GA, where the objectives were the simultaneous minimization of the robot size
and the tensions in the cables [24,25]. Nevertheless, cables in these studies were all treated
as massless straight lines without considering the self-weights, which are only suited to
small-dimensional CDPMs.

There are two aspects that require attention in the structural optimization of the camera
robots: large-span and high-speed motion. For the large-span CDPMs, the sagging effect
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due to the self-weight of the cable cannot be neglected [26,27], as the profile of the cable is
no longer a straight line but a curve. Generally, the deformed curve under self-weight can
be described as a catenary or a parabola [28,29].

Jiang et al. optimized the dimensional parameters of a under-restrained six-DOF
CDPM (URPM4-3R3T) with workspace size as the objective function [30]. Yao et al.
obtained the better dimension parameters for a CDPM with four cables used for the feed
supporting system of the five-hundred-meter aperture spherical radio telescope (FAST) to
meet the workspace requirements [31]. Tang et al. optimized dimensional parameters for
constructing a CDPM with six cables for FAST based on the sensitivity design method and
three tension performance evaluating functions [32].

Du determined the structural parameters to simultaneously improve the stiffness and
dexterity of large workspace CDPMs [33]. Wei presented an approach on the stability
analysis of cable-driven parallel robots considering cable mass based on cable tensions
and stiffness matrix condition numbers [34]. However the motions of manipulators are
low-speed or quasi-static, and thus the dynamics of the manipulators were not considered.

The highest speed of the camera robot that is known currently is up to 9 m/s [35].
Hence, the maneuverability of the camera robot due to the high-speed motions must be
considered. Barrette et al. proposed a notion of a dynamic workspace of CDPMs on the
conditions of the dynamic and tension for a planar CDPM [36]. Kawamura et al. developed
a high-speed manipulation (FALCON-7) by using a CDPM and studied its dynamics based
on the vector closure condition [37].

Gagliardini et al. proposed an improved dynamic feasible workspace considering
the inertia of a moving platform, external wrenches applied on the moving platform and
the Coriolis forces corresponding to a constant moving platform twist concurrently [38].
Yu et al. determined the dynamic workspace of a camera robot by taking the intersection
of workspaces with accelerations at different directions [35] and studied the relationships
between the reachable area of the workspace bottom and heights of masts. Kieu et al.
developed a modified kinematic equation considering cable nonlinear tension and analyzed
the wrench-feasible workspace at various motion accelerations [39]. However, the self-
weights of the cables in these studies were all negligible. In our preliminary work, the
dynamic modeling and cable tension distribution considering the self-weight and inertia
of the cable were simultaneously investigated [1,40], which could provide a theoretical
basis for the structural optimization of the camera robot. However, the essence of the
tension distribution algorithm in our preliminary work is a multi-dimensional parameter
optimization problem, which is time-consuming and has the risk of failure in determining
the optimization parameters.

Thus, the algorithm is not fit for CDPMs whose number of cables is much greater
than the DOF of the end-effector, which limits the scope of applications. In this paper,
the dynamical model of the camera robot is established considering the self-weight and
inertia of the cable simultaneously. Furthermore, the tension distribution algorithm is
simplified based on the iterative idea to reduce the computing time and computational
complexity. Based on the dynamical model, a dynamic workspace generating approach
is presented. On the basis of the dynamic workspace, the structural optimization of the
camera robot is studied applying a GA, and the ideal-point method is used to deal with
multi-objective problems.

The organization of the rest of the paper is as follows: Section 2 establishes the dynamic
model of the camera robot by employing the catenary model of the cable and considering
the inertia of the cable. Section 3 proposes an iterative-based optimization algorithm
based on the dynamic model to determine the tension distribution. Section 4 develops a
workspace generation algorithm based on the judging conditions of the dynamic force-
feasible workspace. Section 5 presents an optimization model aiming at achieving the
maximum workspace volume, anti-wind disturbance and impulse of tensions on CPTDS.
Section 6 employs the ideal point method to deal with the multi-objective optimization
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based on an improved genetic algorithm and studies the distribution characteristics of the
optimization objects. Section 7 summarizes our conclusions.

2. Dynamic Model of the Camera Robot

2.1. Description of the Camera Robot

The structure of the camera robot is showed in Figure 1, consisting of a CPTDS driven
by four cables in parallel. One end of the cable is connected to the CPTDS, and the other
end is wound on the pulley and extends to connect to the cable winch and servo motor. The
CPTDS can fly freely in every direction because the cables can be shortened and lengthened
through winding driven by four servo motors mounted on the ground, which receive
control commands from the central controller.

As shown in Figure 1, the four cables intersect at a common point, and therefore the
cables are only responsible for translation. The camera is mounted on a pan–tilt device,
which resembles a composite hinge structure. By means of the pan–tilt device, the camera
realizes pan (yawing) and tilt (pitching) motion. As a result, the CPTDS can be looked as
an ideal mass point P with three translational DOFs, at which the four cables meet. Thus,
the position vector P = [x y z]T of the point P is expressed in the global fixed frame
{oxyz}, and it also denotes the end point of the cable. The camera robot can be categorized
to completely restrained positioning mechanisms (CRPMs) [41]—namely, the number of
the cables m is equal to DOF of the CPTDS n plus one (m = n + 1).

2.2. Catenary Equation of the Cable

In order to guarantee the stability of the camera robot, the cables must be inextensible
and offer high strength. A previous study indicated that a cable can be seen as a catenary
under the sag influence. As a consequence, the profile of the cable i ({i = 1, 2, 3, 4})
is a catenary within a vertical plane, noted oi

sxi
szi

s, is shown in Figure 2. For analysis,
the symbols used in Figure 2 are defined as follows: Bi = [Bi,x Bi,y Bi,z]

T denotes the
position vector of cable drawing point Bi on the pulley in {oxyz}. {oi

sxi
szi

s} is the local
moving frame with the origin oi

s attached to Bi, and the direction of zi
s is straight down.

ti is the tension in the cable i at the end point P, hi is the horizontal component of ti,
and vi is the vertical component of ti. Li is the horizontal length of the span of cable i, and
Ci is the vertical length of the span of cable i. ρ is linear density of the inextensible cable,
and mp is the mass of the CPTDS. Si is the length of the cable i, and fi is the sag of cable i at
the center of the horizontal span. The catenary equation can be written as follows [42]:

zs
i =

hi
ρg

[
cosh αi − cosh

(
2βixs

i
li

− αi

)]
(1)

where g is the gravitational acceleration, and

αi = sinh−1
[

βi(Ci/Li)

sinh βi

]
+ βi (2a)

βi =
ρLi
2hi

(2b)

Equation (1) represents mathematically a family of catenaries. The whole catenary can
be determined being given coordinates of arbitrary points on the catenary. Consequently,
the length Si of the cable i can be calculated as follows:

Si = Li −
hiβi
ρli

[
Li

16βi

(
e4βi−2αi − e−4βi+2αi

)
+

1
2

]
(3)
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According to Equation (3), the length of the cable is closely interrelated with the
tension. When xs

i = Li/2, the sag fi can be obtained as follows:

fi =
8hi sinh βisinh−1

(
ρgCi/2hi

sinh βi

)
− ρCig

2ρg
(4)

Figure 2. Catenary model of the cable in the vertical plane.

2.3. Inertia of the Rapidly Varying-Length Cable

Due to the high-speed motions of the camera robot, the length of cable changes rapidly,
leading to the non-negligible inertia of the cable. As shown in Figure 3, qi is a node on
cable i with the time-varying curve length si away from Bi, whose position vector can be
denoted by qi(si, t) = [xi yi zi]

T in the global frame {oxyz}. The relationship qi and qs
i

can be calculated as follows:
qi = Qqs

i + Bi (5)

where qs
i = [xs

i zs
i ]

T in the local moving frame {oi
sxi

szi
s}, and Q =

⎡⎣cos θi 0
sin θi 0
0 − 1

⎤⎦ is the

rotation matrix from frame {oi
sxi

szi
s} to frame {oxyz}, and θi is the angle between xs

i
and x.

Figure 3. In-plane and out-plane motions of the cable.

Since the motion of qi is decomposed to an out-plane motion between the vertical
planes and an in-plane motion along the cable as shown in Figure 3, the velocity and
acceleration of qi can be calculated by taking the first and second-derivative of qi(si, t) with
respect to si and time t, respectively, in the following expression [1]:⎧⎨⎩

dqi
dt = ∂qi

∂t + ∂qi
∂si

ṡi
d2qi
dt2 = ∂2qi

∂t2 + 2 ∂2qi
∂si∂t +

∂2qi
∂s2

i
ṡi +

∂qi
∂si

s̈i
(6)
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where ∂2qi
∂t2 is yielded by the cable’s out-plane motion and ∂qi

∂si
s̈i by the the cable’s in-plane

motion; ∂2qi
∂si∂t and ∂2qi

∂s2
i

ṡi are yielded by the combination of cable’s in-plane motion and

out-plane motion. ṡi = dsi/dt, and s̈i = dṡi/dt.
Since the cable drawing point Bi on the pulley i is attached to the mast, Ḃi = 0. Noting

that ∂qs
i =

ds
i

Si
∂si and ∂qi

∂t = Ṗ = [ẋ ẏ ż]T. Thus, the derivatives of qi(si, t) with respect to
the curve length coordinate si can be obtained as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂qi
∂si

= ∂
∂si

(
qs

i
)
= Q ∂qs

i
∂si

= Q ds
i

Si
= di

Si
∂qi

∂si∂t = ∂
∂si

(
∂qi
∂t

)
= ∂

∂si
Ṗ

∂2qi
∂s2

i
= ∂

∂si

(
∂qi
∂si

)
= Q ∂

∂si

(
ds

i
Si

)
= ∂

∂si

(
di
Si

) (7)

Moreover, ∂2qi
∂t2 = P̈ = [ẍ ÿ z̈]T, which is the acceleration of the CPTDS. Substituting

Equation (7) into (6), the inertia of the cable i can be found by integrating the whole cable:

Ii = ρ
∫ Si

0

d2qi
dt2 ∂si = ρ

(
P̈Si + 2Ṗṡi +

di
Si

ṡ2
i + di s̈i

)
(8)

2.4. Dynamic Equation of the Camera Robot

As illustrated in Figure 4, the cable tension ti of the cable i is along the tangential
direction of the catenary at the cable end node P. As a consequence, ti can be decomposed
into the components that are along the directions of the x, y and z axes, respectively, which
can be written in terms of

[
hicosθi hisinθi hitanγi

]T, where hi is the horizontal compo-
nent of ti as described in Equation (1) and γi is the angle between hi and ti. The inertia
Ii =

[
Ii,x Ii,x Ii,x

]T is a 3 × 1 vector. W =
[
Wx Wy Wz

]T is the external force on the
CPTDS. The tangent tan γi at P can be computed as the following equation:

tan γi =
dzs

i
dxs

i

∣∣∣∣
xs

i =Li

= − sinh(2βi − αi) (9)

Thus, the dynamic equilibrium equation can be written as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

mPẍ +
4
∑

i=1
Ii,x =

4
∑

i=1
hi cos θi + Wx

mPÿ +
4
∑

i=1
Ii,y =

4
∑

i=1
hi sin θi + Wy

mPz̈ +
4
∑

i=1
Ii,z =

4
∑

i=1
hi tan γi −

4
∑

i=1
ρgSi − mg + Wz

(10)

Figure 4. Catenary model of the cable in a vertical plane.
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Equation (10) can be further transferred to the following matrix form:

MP̈ + Ïcab = JH + W + G + Gcab (11)

where M =

⎡⎣mp 0 0
0 mp 0
0 0 mp

⎤⎦ and mp is the mass of the CPTDS. Icab =
[ 4

∑
i=1

Ii,x
4
∑

i=1
Ii,y

4
∑

i=1
Ii,z

]T

and H =
[
h1 h2 h3 h4

]T. J =

⎡⎣cos θ1 cos θ2 cos θ3 cos θ4
sin θ1 sin θ2 sin θ3 sin θ4
tan γ1 tan γ2 tan γ3 tan γ4

⎤⎦ is the Jacobian ma-

trix of the camera robot. G =
[
0 0 −mpg

]T denotes the gravity vector of the CPTDS,

Gcab =

[
0 0

4
∑

i=1
ρgSi

]T

is the total gravity vector of the four cables.

3. Iterative-Based Tension Distribution Algorithm

Equation (11) can be further simplified to the following formulation:

JH = F (12)

where F = MP̈ + Icab −W − G − Gcab is the generalized external force. As Figure 4 shows,
the vertical component of the tension vi = hi tan γi. Thus, the cable tension ti of cable i can
be calculated through the following equation:

ti = hi

√
1 + tan2γi (13)

The horizontal component hi of ti should subject to the following restraint condition:

hi,min ≤ hi ≤ hi,max (14)

where the lower bound of the cable tension hi,min is required to keep cable i tight; the upper
bound of the cable tension hi,max is defined to account for the the output torque of the servo
motor i and the maximum tension that the cable i can withstand without breaking. In this
paper, hi,min = hmin and hi,max = hmax.

According to Equation (12), it is a non-linear transcendental equation because J and F
are associated with H. In this paper, we propose an iterative-based algorithm to determine
H, which is different from the algorithm in our previous paper. The algorithm termination
condition is when the difference of two sags obtained from adjacent steps is small enough,
which could meet after several iterative steps. As a result, although the algorithm in this
manuscript does not meet an optimization goal, and the computing time and computational
complexity are greatly reduced.

After obtaining H, the cable tension T =
[
t1 t2 t3 t4

]T can be calculated according
to Equation (13). It is well-known that the initial values have a significant impact on the
iterative method. After several trails, the tensions and lengths of the cables obtained by the
massless straight line model of the cable are used as the initial values. Since the profile of
the cable is a straight line, the initial sag f0 =

[
0 0 0 0

]T. ε is a small value and to be
used as the threshold of the iterative-based algorithm. Thus, the iterative-based tension
distribution algorithm can be summarized as Algorithm 1:
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Algorithm 1: Distribution of tensions

Input: Bi, P, Ṗ, P̈, ρ, Δt
Output: H

1 f lag = 1;
2 S0,i = ‖di‖2 %Initial cable length;
3 tan γ0,i = Ci/Li %Initial tangent;

4 Ĵ0,i = [cos θ0,i sin θ0,i tan γ0,i]
T;

5 J0 = [ Ĵ0,1 Ĵ0,2 Ĵ0,3 Ĵ0,4]
T %Initial Jacobian matrix;

6 I0,cab =
4
∑

i=1
ρ

(
P̈S0,i + 2Ṗṡi + di

ṡ2
i

S0,i
+ di s̈i

)
;

7 G0,cab = ρ
4
∑

i=1
S0,i %Initial cable mass;

8 F0 = MP̈ + I0,cab − W − G − G0,cab;
9 H0 = J0F0 %Initial H;

10 while f lag �= 0 do

11 αi = sinh−1
[

βi(Ci/Li)
sinh βi

]
+ βi , βi =

ρgLi
2h0,i

;

12 Si = Li − h0,i βi
qLi

[
Li

16βi

(
e4βi−2αi − e−4βi+2αi

)
+ 1

2

]
;

13 tan γi = − sinh(2βi − αi) % Compute tangent ;
14 H = J+F % Compute H;

15 fi =
8hi sinh βisinh−1

(
ρgCi/2hi

sinh βi

)
−ρgCi

2ρg ;

16 if all (| fi − f0,i| > ε) then

17 J0 = J %Update J;
18 f0 = f %Update f ;
19

20 else

21 f lag = 0;
22

23 end

24 end

25 if all (hmin ≤ hi ≤ hmax) then

26 H = H0 %Final output;
27 else

28 H=Null % H is empty;
29 end

4. Workspace Analysis

4.1. Dynamic Force-Feasible Workspace

There are many workspace criteria proposed to tackle with the influence on the
workspace of the unilateral nature of the wrenches (combination of force and moment) ap-
plied on the end-effector by cables, among which the wrench-closure workspace (WCW) [43]
and wrench-feasible workspace (WFW) [44] are of particular interest. In fact, the WFW is
of more practical significance because the cable tensions must be limited within a reason-
able range.

There is no moment applied on the CPTDS because this is a mass point. Thus, the
camera robot only has a force-feasible workspace (FFW). A position of the end-effector
of the CDPM is said to be force-feasible in a particular structure and for a specified set of
forces, if the tensions in the cables can counteract any external force of the specified set
applied to CPTDS. Liu proposed the generalized determining conditions of WFW/FFW [45]
as follows:

124



Machines 2022, 10, 565

(1) The Jacobian matrix J is full rank.
(2) The tensions in the cables are all positive and in a definite range.
(3) The magnitude and direction of the projections of column vectors arbitrarily chosen

from the Jacobian matrix J and the external force J are both balanced on a normal
vector of the hyperplane determined by J.

In this paper, the dynamic force feasible workspace (DFFW) was applied based on the
FFW. For the camera robot, the Jacobian matrix J and generalized external force F have
some unique features. On the one hand, the Jacobian matrix J depends not only upon the
geometry configuration of the manipulator but also on the tensions and self-weights of
cables. On the other hand, the generalized external force F should consist of the inertias of
the cables and CPTDS.

Based on the proposed generalized determining conditions of FFW, we can summarize
the judging conditions of DFFW, including the direction balance condition (DBC) and
magnitude balance condition (MBC). The DBC, which is also the force-closure condition, is
given as follows: {

qTF > 0∃k : qT Ĵk < 0
qTF < 0∃j : qT Ĵj > 0

(15)

where q = Ĵa × Ĵb is a unit normal vector of a hyperplane determined by the column
vectors of J and pointing towards the exterior of the zonotope as shown in Figure 5.
Ĵi =

[
cos θi sin θi tan γi

]T is the column vector of J. a and b are the subscripts of two
linearly independent column vectors arbitrarily chosen from J with a, b ∈ {1, 2, 3, 4}; j and
k are the subscripts of the rest column vectors with j, k ∈ {1, 2, 3, 4} − {a, b}.

Figure 5. Normal vector of the hyperplane and the generalized external force.

As displayed in Figure 6a, the projections of the tension Ĵjhj (or Ĵkhk) and the general-
ized external force F on q are both scalars. Consequently, there always exists a tension Ĵjhj

(or Ĵkhk) to resist the the generalized external force F as long as the signs of qT Ĵj (or qT ˆbmJk)
and qTF are different. However, H ranges from hmin to hmax. Hence, the components of H
Ĵjhj and Ĵkhk are bound with

[
Ĵjhmin, Ĵjhmax

]
and

[
Ĵkhmin, Ĵkhmax

]
as shown in Figure 6b.

Therefore, the MBC is given as follows:

Γ−
min ≤ Γ+

max +
∣∣∣qTF

∣∣∣⋂ Γ+
min +

∣∣∣qTF
∣∣∣ ≤ Γ−

max (16)

where Γ+
min and Γ+

max are the lower and upper limit of the sum of projections of the rest
column vectors on the positive direction of q, respectively; Γ−

min and Γ−
max are the lower and

upper limit of the sum of projections of the rest column vectors on the negative direction of
q, respectively. They can be computed as follows:
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Γ+
min = ∑

qT Ĵj>0

(
qT Ĵj

)
hmin, Γ+

max = ∑
qT Ĵj>0

(
qT Ĵj

)
hmax (17a)

Γ−
min = ∑

qT Ĵk<0

(
qT Ĵk

)
hmin, Γ−

max = ∑
qT Ĵk<0

(
qT Ĵk

)
hmax (17b)

The pre-condition to determine DBC or MBC is the Jacobian matrix J is full rank. Thus,
the DFFW can be described as the following set:

{
P : (rank(J) = 3)

⋂ ∀
(
q ∈ R3, qTF > 0

)
, ∃k : qT Ĵk < 0

⋂∣∣Γ−
min

∣∣ ≤ Γ+
max + qTF

⋂
Γ+

min + qTF ≤ |Γ−
max|

}⋃{
P : (rank(J) = 3)

⋂ ∀
(
q ∈ R3, qTF < 0

)
, ∃j : qT Ĵj > 0

⋂∣∣Γ−
min

∣∣ ≤ Γ+
max +

∣∣qTF
∣∣ ⋂ Γ+

min +
∣∣qTF

∣∣ ≤ Γ−
max

} (18)

(a) (b)

Figure 6. The projections of the tension and generalized external force in DBC and MBC. (a) The
projections in DBC. (b) The projections in MBC.

4.2. Procedure of Generating DFFW

The DFFW can be generated by judging whether a position X meets the conditions
demonstrating in Equation (18) or not. The search space of X is decided by the position
of the pulleys and the ground, which is a cuboid for the camera robot. Before generating
DFFW, the generalized external force F and the Jacobian matrix J must be calculated
according to Algorithm 1. To calculate the generalized external force F, it is required to
determine the CPTDS’s velocity Ẋ and acceleration Ẍ.

V =
{

v+x , v−x , v+y , v−y , v+z , v−z
}

is defined as the maximal allowable velocity set of the

CPTDS, in which v+x , v−x , v+y , v−y , v+z and v−z denote the maximum translation speeds
along the positive and negative directions of the x-axis, y-axis and z-axis, respectively.
A =

{
a+x , a−x , a+y , a−y , a+z , a−z

}
is defined as the maximal allowable acceleration set of the

CPTDS, in which a+x , a−x ,a+y ,a−y ,a+z and a−z denote the maximum translation accelerations
along the positive and negative directions of the x-axis, y-axis and z-axis, respectively.

Thus, a set $, named a velocity–acceleration pair is constituted by choosing an element
from the set V and A separately while setting the other elements of V and A equal to zero.
For example, the velocity–acceleration pair $ = {v+x , a+x } represents the CPTDS’s velocity
and acceleration along the x-axis positive direction.

Since there are six possibilities for selecting two column vectors randomly from four
column vectors of the Jacobian matrix J, the inner for-loop of Algorithm 2 will execute six
times. The search space refers to SearchCube, which is a cube. After every inner for-loop,
the position should move to the new position P + ΔP. Consequently, the algorithm of
generating the subspace of DFFW can be summarized as Algorithm 2.

For a selected velocity–acceleration pair $l (l = 1, 2, · · · 6), a subspace of DFFW
referred to as DSSl will be generated through implementing Algorithm 2 correspondingly.
By repeatedly performing Algorithm 2 six times and taking the intersection of the subspaces
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DSSl , the DFFW DS will be generated. Mathematically, the relationship between DSSl and
DS can be described as follows:

$l → DSSl ⊆ DS

DS =
⋂

l=1,2,···6
DSSl

(19)

Algorithm 2: Generate the subspace of DFFW
Input: input parameters P, $l , J, F
Output: DSSl , {l = 1, 2, · · · 6}

1 a, b ∈ {1, 2, 3, 4} ;
2 j, k ∈ {1, 2, 3, 4} − {a, b} ;
3 while P ∈ SearchCube do

4 if rank(J) = 3 then

5 for i ← 1 to 6 do

6 if qTF > 0&∃k : qT Ĵk < 0 then

7 Judgei = 1 %Direction balance;
8 else if qTF < 0&∃j : qT Ĵj > 0 then

9 Judgei = 1 %Direction balance;
10 else

11 Judgei = 0 %Direction imbalance;
12 end

13 if ∏
i=1,2···6

Judgei = 1 &
∣∣Γ−

min

∣∣ ≤ Γ+
max +

∣∣qTF
∣∣ ⋂ Γ+

min +
∣∣qTF

∣∣ ≤ |Γ−
max|

then

14 P ∈ DSSl %Magnitude balance;
15 else

16 P /∈ DSSl
17 end

18 end

19 else

20 P /∈ DSSl ;
21 end

22 P = P + ΔP % Move to the new position;
23 end

5. Optimization Model Establishment

5.1. Optimization Variables

The pulleys of the camera robot can be easily mounted on top of masts or the surface
of buildings according to the characteristics of the shooting place, whose positions have a
strong influence on the workspace, kinematics and dynamics. Therefore, it is reasonable to
employ the positions of the pulleys as the optimization variables for structural optimization.
Since the horizontal projection of the four pulleys on the ground is a rectangle, the global
frame {oxyz} can be established with the origin fixed on the projection point of the #1
pulley. As Figure 7 displayed, we can use three dimensional parameters to describe the
positions of four pulleys in {oxyz}, i.e., the length of the rectangle len, width of the rectangle
wid and the pulley height hei. Thus, the position of #1 pulley is B1 = [0, 0, hei]T, #2 pulley
B2 = [len, 0, hei]T, #3 pulley B3 = [len, wid, hei]T and #4 pulley B4 = [0, wid, hei]T.

127



Machines 2022, 10, 565

Figure 7. Optimization variables of the camera robot.

In addition to the positions of the pulleys, the mass of the CPTDS also can be adjusted.
Underweight or overweight CPTDS may affect the performance of the camera robot. Thus,
the performance of the camera robot can be improved by choosing a suitable mass of
the CPTDS. Hence, it is necessary to use the mass of the CPTDS mp as the optimization
variables for structural optimization.

The optimization variables of structural optimization of the camera robot can be
written in the following vector form:

D =
[
len, wid, hei, mp

]T
= [d1,d2,d3,d4]

T, (20)

and the physical significance and unit of each optimization variable are shown in Table 1.

Table 1. The physical significance and unit of each optimization variable.

Element Symbol Physical Significance Unit

d1 len length of the rectangle m
d2 wid width of the rectangle m
d3 hei height of the pulley m
d4 mp mass of the CPTDS kg

5.2. Optimization Objects

The camera robot is a high-speed and high-maneuverable manipulator, which will
bring great challenges to take real-time video pictures. In order to find the video images
with a sufficient scope and high-resolution ratio, a sufficiently large workspace and a stable
enough camera are needed. In this paper, we attempt to enlarge the workspace and enhance
the shooting stability through the structural optimization.

5.2.1. Workspace Volume

In order to satisfy the shooting requirements, it is desired to enable the camera robot to
achieve as high ability of tracking photography as possible. The volume of the workspace
is directly related to the tracking photography ability of the camera robot. The larger the
workspace, the more areas the camera robot can capture. Naturally, the workspace volume
can be integrated into the optimization model of the camera robot as the optimization
object. Given the large-span and high-speed characteristics of the camera robot, the DFFW
presented in the previous section is employed in this paper. As shown in Figure 8a, the
rectangle determined by four pulleys forms the upper surface of the cube, which is the
theoretical maximum workspace, referred to as the maximum shooting workspace (MSW).
However, the shape of the actual workspace (DFFW) is similar to a reversed quadrilateral
prism with a smaller bottom and a larger top as a result of restrictions on the tensions
in cables.

As illustrated in Figure 8b, the horizontal section of the DFFW is a rectangle, which
is analogous to the rectangle formed by four pulleys. In order to guarantee the shooting
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effect, a cube named the minimum shooting task-space (MSTS) is defined within MSW and
is required to be included within the DFFW.

(a) (b)

Figure 8. The DFFW, MSTS and MSW of the camera robot. (a) Top view. (b) Main view.

In this paper, we discretize the MSW, yielding the total number of point within the
MSW Ntotal . Then, we scan the every point within the MSW and record the number of points
meeting the dynamic force-feasible condition NDFFW described in Equations (19) and (20).
Finally, the volume of DFFW vol can be obtained by computing the ratio of NDFFW to Ntotal .
The larger volume of DFFW, the stronger the ability of the tracking photography. Thus, the
optimization objective for the workspace volume is as follows:

f1(D)= max vol(d1, d2, d3, d4) (21)

5.2.2. Anti-Wind Disturbance Ability

Camera robots often function in high-rise cable support structures, which are inevitably
disturbed by wind due to the frequent outdoor operations. Thus, enhancing the ability of
anti-wind disturbance is crucial for maintaining the stability of the camera when taking
videos and pictures. There are two kinds of wind forces acting on buildings, i.e., steady
wind pressure and fluctuating wind pressure [46]. Since the period of the stable wind
pressure is much larger than the natural vibration period of the general structure, its force
can be regarded as a static force [47]. However, the high-frequency pulsation components
of the fluctuating wind pressure lead to vibration responses of the camera robot, which
have an influence on the camera robot’s normal operations.

The frequency characteristics of fluctuating wind can be expressed by its power spec-
trum, which is related to the surface roughness and geomorphic conditions. Considering
that the camera robot mainly works in the open areas of urban spaces, the correction
coefficient to the basic wind pressure w0 is caused by the surface roughness μw0 = 0.731.
Given the air density ρa = 1.225 kg/m3 and the basic wind pressure w0 = 0.35 KN/m2,
the maximum 10-minute average wind speed V̄max with a 30-year return period can be
calculated as follows [47]:

V̄max =

√
2μw0k0w0

ρa
(22)

where k0 is the return period coefficient and k0 = 1 is when the return period is 30 years.
Since the frequently used Davenport spectrum overestimates the turbulence energy at high
frequencies, these frequencies are of great significance for flexible tall structures. Therefore,
this paper employs the modified Davenport wind speed spectrum—namely, the Maier
spectrum, which can be written as follows [47]:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sv(z, f ) =
2x2

(1 + 3x2)
4
3
· σ2

V
f

x =
L∗

v f
V̄(z)

σV =
√

6k V̄10

V̄(z) = V̄10

( z
10

)α

(23)

where z is the height of the CPTDS above the ground, L∗
v = 1200 m is the overall scale of

the turbulence, and V̄10 is average wind speed at 10 m. As the camera robot works under
the common wind speed, the power spectrum of fluctuating wind can be obtained, which
is shown in Figure 9.

Figure 9. Power spectrum of the pulsating wind (wind speed is the half of the maximum 30-year
wind speed).

On the one hand, as the height z changes from 5 to 25 m (the main working range of
the camera robot), the power spectrum varies accordingly. It can be seen from Figure 10
that the maximal value of the power spectrum increases with the increasing pulley height.
However, the values of five curves mainly exist in the range of 0.01–0.12 Hz, which is
also the most-concentrated region of the energy of the pulsating wind. The maximum
values of the five power spectrum curves both emerge at 0.02 Hz and then fall quickly;
when the frequency is more than 0.12 Hz, the power spectrum is less than 0.05. Hence,
we define 0.12 Hz as the energy cut-off frequency. In the study of anti-wind disturbance,
we focused on the energy concentrated region, i.e., the frequency region of the pulsating
wind between 0.01 and 0.12 Hz. On the other hand, we obtained the minimum first-order
natural frequencies on the horizontal sections of the dynamic feasible workspace at different
heights. As shown in Figure 10 , the minimum first-order nature frequency is 0.13 Hz when
z = 10 m. Therefore, the CPTDS will produce a vibration as the result of the wind-excitation
at certain areas within the workspace (such as the workspace boundaries). Therefore, in
order to improve the ability of the camera robot to resist wind disturbance, it is necessary
to increase its first-order natural frequency to keep away from the range of 0.01–0.12 Hz.
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Figure 10. The minimum first-order natural frequency on the horizontal section of the workspace at
different heights (Design variables: len = 90 m, wid = 80 m, hei = 25 m and mp = 50 kg).

The transverse and longitudinal vibrations of the cable may occur in the vertical
plane when the cable is disturbed by the wind. For the cable, the influence of longitudinal
vibration on the end-effector is much greater than that of transverse vibration. Diao et al.
indicated that the influence of transverse vibration on the end-effector is only 1.4%, while
that of longitudinal vibration on the end-effector is 98.4% [48]. Liu et al. suggested that
the longitudinal vibration of the cable has a greater influence on the feed cabin supported
in parallel by six cables [49]. As seen in Figures 9 and 10, the lower the frequency of the
camera robot, the more likely the camera robot was excited. As the first-order vibration has
the most important effects in structural response, it is necessary to calculate the first-order
natural frequency of the camera robot in the following form:

ωi =
1√

eig
{[

(J+)TM J+
]
diag(S1, S2, S3, S4)/EA

} i = 1, 2, 3
(24)

where J+ is the Moore–Penrose generalized inverse of the Jacobin matrix J. eig is an
eigenfunction to solve the eigenvalues. For the camera robot, there are three eigenvalues

as the result of its three translational DOF. diag(S1, S2, S3, S4) =

⎡⎢⎢⎣
S1 0 0 0
0 S2 0 0
0 0 S3 0
0 0 0 S4

⎤⎥⎥⎦ is

a diagonal matrix. E and A are the elastic modulus and cross-section area of the cable
separately. The first-order natural frequency ω1 is the minimum of Equation (24):

ω1 = min{ωi} (25)

GFNF =
1

Ntotal

Ntotal

∑
i=1

ω1(D) (26)

The GFNF should be as large as possible to improve the ability to resist the wind
disturbance of the camera robot in the whole workspace. Therefore, the optimization
objective of anti-wind disturbance performance is as follows:

f2(D) = max
1

Ntotal

Ntotal

∑
i=1

ω1(d1, d2, d3, d4) (27)
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5.2.3. Impulse of Tensions on CPTDS

When the camera robot works normally, the cables remain tight, and hence the cable
tension will exert a tractive force on the CPTDS. Due to the high maneuverable, the tension
changes quickly in a tiny period of time, causing an impulse on the CPTDS exerted by the
cables, which will clearly have a great influence on the camera robot, such as vibration of
the camera or blurred shooting video pictures. The impact should be reduced as much as
possible to ensure the normal operation of the camera robot. If the external force applied
on the CPTDS and locus of the CPTDS are known, the equivalent force Feq of the tensions
in the four cables can be computed according to Algorithm 1.

Feq =
4

∑
i=1

ti (28)

As shown in Figure 11, four sampling points, P1, P2, P3 and P4, were selected. P1, P2,
P3 and P4 are located in the upper, left, lower and right surfaces of the MSTS, respectively.
Thus, the sampling locus of the cable tension impact function is P1 → P2 → P3 → P4 → P1.
As the four sampling points are evenly distributed in MSTS and the acceleration varies
dramatically at the points that the direction of locus changes, the impulse of tensions on
the CPTDS will be great. Therefore, the selection of such a sampling locus can truly reflect
the impact of the tensions on the CPTDS. The sum of impulse imp along the sampling locus
can be calculated by computing the impulse at every time point, which can be used as the
evaluating function of impulse of tensions on the CPTDS.

imp =

∥∥∥∥∫ T

0
Feqdt

∥∥∥∥
2

(29)

where T is duration of the locus. In order to ensure that the impulse of CPTDS is as slight
as possible, the impulse sum imp should be kept as small as possible:

f3(D)= min imp(d1, d2, d3, d4) (30)

Figure 11. Sampling locus of cable tension impulse function.

5.3. Constraints
5.3.1. Linear Constraints

Considering the installation and site conditions, the optimization variable vector D
should meet the following linear constraints to ensure that the camera robot has feasibility
of structure.

lb ≤ D ≤ ub (31)

where lb = [lb1 lb2 lb3 lb4]
T is the lower bound; ub = [ub1 ub2 ub3 ub4]

T is the
upper bound.
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5.3.2. Nonlinear Constraints

As described in the previous sections, the horizontal components of tensions have
upper bound hmax and lower bound hmin. Furthermore, in order to ensure that the CPTDS
has sufficient tracking and shooting abilities in the workspace, the workspace volume
vol(D) determined by the optimization variable vector D must be larger than the volume
of MSTS Ω. To ensure that the camera robot has a strong ability of anti-wind disturbance, it
is necessary to guarantee that the GFNF determined by D must be larger than the energy
cut-off frequency ωp = 0.12 Hz. To sum up, the nonlinear constraints of camera robot
structural optimization can be summarized as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

g1(D) = hmin(D)− hmax ≤ 0
g2(D) = −hmax(D) + hmin ≤ 0

g3(D) = −V(D) + Ω ≤ 0

g4(D) = −ω(D) + ωp ≤ 0

(32)

where hmin and hmax are the minimum and maximum values of the horizontal components
of tensions with regard to the optimization variable vector D, respectively.

6. GA-Based Structural Optimization

6.1. Information Entropy-Based Adaptive Multi-Island GA

Structure optimization of a camera robot is intrinsically a highly nonlinear optimiza-
tion problem. Moreover, it is difficult to obtain a continuous and derivable analytical
expression of the workspace of the camera robot. Therefore, it is difficult to deal with this
problem for the traditional optimization methods. However, SGA is subject to premature
convergence, thereby, falling into local minimum easily. GA is an intelligent optimization
method that simulates the evolution of organisms in nature and genetic laws. It was first
proposed by Professor Holland in 1975 in the book Adaptation in Natural and Artistic Systems.

Multi-island GA divides each population into several sub populations—named
islands—which can be viewed as a niche. As only the excellent individuals migrate
between the islands, it can mean that excellent individuals spread to the whole population
and improve the evolution level of the whole population [50]. In this paper, we propose a
improved genetic algorithm incorporating into three improvements, namely fitness calibra-
tion, sub-population division and adaptive changes of crossover probability and mutation
probability.

6.1.1. Fitness Degree Calibration

There may be special individuals with abnormal fitness in the initial population,
leading to the dominance of the whole population possibly. At the end of the genetic
process, the fitness of individuals tends to be consistent and the solution will swing around
the optimal solution so that the optimal solution can not be searched. The selection ability
of the population can be improved through enlarging fitness degree appropriately, which
is the principle of fitness degree calibration and can be expressed as follows:

˜f it=
f it0 + | f itmin|

| f itmin|+ f itmax + δ
(33)

where f it0 is the original fitness degree; f itmin and f itmax are the lower and upper bound
of fitness degree, respectively; and δ ∈ (0, 1) is a positive real number to avoid the zero
denominator. The purpose of | f itmin| is to guarantee the fitness degree is always positive
after calibration.

6.1.2. Sub-Population Division

The mechanism of sub-population division and migration arises from the idea of multi-
island GA, whose group is divided into several sub-populations referred to as islands. The
selection, crossover and mutation operations of GA are performed on each island, and
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the migration operation is performed between different islands periodically. The steps of
multi-island GA are shown in Figure 12, where t is the current generation, n f is the number
of sub-population, q is positive integer, and m f is the migration interval.

GOs represents a genetic operation, such as selection, crossover, or mutation. Only
when the number of generations reaches the integral multiple of the migration interval m f ,
will the individuals be transferred according to the migration rate i f between the islands;
otherwise, the migrations will not occur but instead GOs. Through the sub-population
division and migration, the diversity of solution to GA is improved to thus improve the
ability to search the global optimal solution [51].

Figure 12. Algorithm steps of the multi-island GA.

6.1.3. Adaptive Changes of Crossover Probability and Mutation Probability

When GA evolves to a certain generation, the fitness of the population will converge,
and the population diversity will decline, allowing the algorithm to easily fall into the
local optimal solution. In this paper, we regulate the crossover probability pc and mutation
probability pm adaptively based on the information entropy of the population. Information
entropy is a concept proposed by Shannon indicating the disorder degree of the system [52].
At the early stage of evolution, the diversity of the population and the disorder degree is
high, and thus the information entropy is high. As the evolution process of the superior
winning and the bad eliminated, the disorder degree of the population decreases, and then
the information entropy decreases, which conforms to the law of biological development.
The information entropy of the population can be defined as follows:

I(t) = −
np

∑
i=1

(p(t)i � log2 p(t)i)

p(t)i =
f it(t)i

np

∑
i=1

f it(t)i

(34)

where nP is the total number of individuals in the population, and f it(t)i is the fitness
degree of the ith individual in the population of the tth generation. Thus, the adaptive
operators of crossover rate Pc(t) and mutation Pm(t) rate of the population of the tth
generation are as follows:
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Pc(t) =
1 +

(
eI(t)/eImax

)
2

Pc0 (35a)

Pm(t) =
1 +

(
eI(t)/eImax

)
2

Pm0 (35b)

Imax is the maximum information entropy and Imax = log2np. Pc0 and Pm0 are the initial val-
ues of crossover rate and mutation rate. According to GA theory, crossover rate ranges from
0.4 to 0.9, and the mutation rate ranges from 0.01 to 0.1 [51]. Therefore, Pc0 and Pm0 should
be calculated several times according to the value range to obtain the appropriate value.

6.1.4. Population Information Entropy-Based Adaptive Multi-Island GA

Based on the three improvements, we propose an improved GA, i.e., the population
information entropy-based adaptive multi-island Genetic Algorithm (PIEAMIGA) as il-
lustrated in Figure 13. Compared to the standard genetic algorithm (SGA), PIEAMIGA
adds three modules, namely sub-groups division, fitness calibration and migration, whose
crossover rate and mutation rate vary according to the information entropy of the popula-
tion. The optimization variable vector D = [d1, d2, d3, d4]

T is the chromosome of PIEAMIGA
that is coded by real values, and the selection is based on stochastic universal sampling.
The entire process will stop when t = G, and the current optimization parameters will be
exported; otherwise, it will re-generate a population and proceed to the next iteration.

Figure 13. Flowchart of PIEAMIGA.
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6.2. Multi-Objective Structural Optimization

The main method to deal with the multi-objective structural optimization problem of
CDPM is the weighted coefficient method [33,53,54]. However, the weighted coefficient
method has three shortcomings: first, the weight coefficients are determined according to
the designer’s subjective intention; second, the weight coefficients are difficult to quantify
accurately; third, a single weight coefficient is difficult to represent all design intents due
to the infinite selections of weight coefficients. In addition to the weighted coefficient
method, there are some other multi-objective structural optimization methods for CDPMs,
such as the enumeration method [55] and tabular method [56]. However, these methods
are not objective, because the optimal criteria are determined by designers subjectively.
Accordingly, we apply the ideal-point method to tackle the multi-objective structural
optimization problem.

Process of the ideal-point method: first, three optimization objectives are conducted
to obtain the optimal solution with regard to each objective; secondly, the solution spaces
of the three objectives are normalized to the interval [0, 1], and the optimal value of each
objective is normalized to “0”; finally, the minimum sum of the distances between the
three optimization objectives and “0” is taken as the optimization objective, namely the
“ideal point”. The PIEAMIGA was implemented with MATLAB programming language
and executed on a notebook computer with a 2.2 GHz Intel Core I5-5200U CPU and a
12 G RAM.

6.2.1. The Optimal Value and Worst Value of Single-Objective Optimization

Since the GA itself does not have the ability to deal with constraints, it is necessary to
transform the constrained optimization problem into unconstrained optimization problem,
which can be realized through the penalty function method. Thus, the fitness function of
the optimization object fi(D) with regard to design variable vector D is as follows:

F̃i(D) = f it{sgn(i) � Tra[ fi(D)] + Pun
4

∑
j=1

[
gj
(

Dj
)
+
∣∣gj(D)

∣∣]} (36)

where f it() is the fitness degree function, and {i = 1, 2, 3}. Tra is a transfer function. Pun
is a large positive number and is used as the penalty factor.

The parameters of SGA and PIEAMIGA are listed in Table 2. The simulation parame-
ters of the optimization model are shown in Table 3. According to the site and installation
conditions, the range of the length len and width wid of the horizontal projection rectangle
of pulleys are [80, 90] m and [70, 80] m, respectively; the range of the height of the pulleys’
points is [25, 30] m. The range of the mass of the CPTDS is [20, 50] kg. The MSTS is a
70 m × 60 m × 22 m cuboid, whose volume Ω is 92,400 m3. Based on the parameters listed
in Tables 2 and 3, PIEAMIGA and SGA are programmed by MATLAB to find the optimal
solution and value with regard to three optimization objects separately, which are listed in
Table 4. The worst values with regard to the single optimization object are also listed in
Table 4.

It can be seen from Table 4 that the optimal solution obtained by PIEAMIGA is better
than that obtained by SGA. Workspace volume increases by 8.52%, the first-order natural
frequency increases by 9.73%, and the impulse exerted by tensions on the CPTDS to CPTDS
is reduced by 10.08%. Although three modules are added into PIEAMIGA based on SGA,
the computing time of PIEAMIGA increases by 4.48% compared with that of SGA because
the multi-island GA adopts the parallel mechanism, and operations in each island are
performed in parallel. It also can be seen from Table 4 that PIEAMIGA has a stronger global
search ability as the result of the adaptive crossover and mutation rate.
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Table 2. Parameters of PIEAMIGA and SGA.

PIEAMIGA SGA

total evolutionary generations 200 total evolutionary generations 200
population size np 40 population size np 40
penalty factor Pun 107 penalty factor Pun 107

initial of crossover rate Pc0 0.01 fixed crossover rate Pc 0.6
initial of mutation rate Pm0 0.85 fixed mutation rate Pm 0.008

correction for fitness degree δ 3
number of sub-population n f 8

migration interval m f 5
migration rate i f 0.5

Table 3. Simulation parameters of the optimization.

Parameter Value Parameter Value

lower bound of design variable L {80, 70, 25, 20}T gravitational acceleration g 9.8 m/s2

upper bound of design variable U {90, 80, 30, 50}T impulse sampling time Δt/s 0.1
volume of MSTS Ω/m3 92400 position of sampling point P2/m [45, 40, 24]T

maximum allowable velocity set V/m/s {9, −9, 9, −9, 9, −9} position of sampling point P2/m [15, 40, 15]T

maximum allowable acceleration set A/m/s2 {3.5, −3.5, 3.5, −3.5, 3.5, −3.5} position of sampling point P3/m [45, 40, 6]T

lower limit of horizontal component hmin/N 55 position of sampling point P4/m [75, 40, 15]T

upper limit of horizontal component hmax/N 4000 time of P1 → P2/s 7.5
elastic modulus of the cables E/Gpa 28 time of P2 → P3/s 7.5

cross sectional area of the cable A/mm2 20.34 time of P3 → P4/s 7.5
linear density of the cable ρ/Kg/m 0.188 time of P4 → P1/s 7.5

Table 4. Comparison between PIEAMIGA and SGA.

Algorithm PIEAMIGA SGA

D∗
1 [89.89, 79.92, 27, 99, 49.97] [90.00, 80.00, 29.89, 40.03]

optimal solution D∗
2 [80.00, 70.00, 30.00, 20.00] [80.00, 70.00, 29.50, 24.85]

D∗
3 [83.77, 80.00, 26.57, 20.00] [85.74, 79.25, 25.72, 20.35]

f ∗1 /m3 183,750 169,325
optimal value f ∗2 /Hz 0.3100 0.2875

f ∗3 /N·s 24,907 27,699
computing time t/min 70 67

the worst value of IEPAMIGA

f ′1 = 84, 875 m3 f ′2 = 0.1042 Hz f ′3 = 63,027 N·s

The convergence processes of each objective by the PIEAMIGA and SGA are shown
in Figure 14. In the early stage of evaluation, the optimal solution changes rapidly due
to the randomness of population and great differences between individuals, which is a
sharply changed line in Figure 14a. With the progress of evolution, the number of excellent
individuals in the population gradually increases; thus, the change of optimal solution
slows down, and the local convergence appears, which is a horizontal line in Figure 14.
Furthermore, the process of local convergence is prolonged gradually as the result of the
increasing proportion of excellent individuals in the population.

Thus, the change of the optimal solution is not as violent as in the initial stage, and the
length of the horizontal line is gradually longer with the increase in generation of evolution.
There exist a jump after the local convergence process on the curve because the optimal
solution jumps out of a local optimal solution and evolves towards a better optimal solution.
It is inevitable that the performance of the offspring will be degraded compared with the
parent because the new individuals are not always better than the parent individuals, which
is a fluctuating line in Figure 14a. It can also be seen from Figure 14 that PIEAMIGA shows
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the better “climbing” (downhill) ability with the progress of evolution, and thus the gap
between the two curves becomes increasingly larger. Finally, PIEAMIGA converges to the
global optimal solution while SGA can only converge to the sub-optimal solution.

(a) (b) (c)

Figure 14. Comparison of the convergence process between IEPAMIGA and SGA. (a) Convergence
of f1(D); (b) convergence of f2(D); and (c) convergence of f3(D).

Figure 15a shows that the workspace boundary extends outwards after using
PIEAMIGA and that the volume increases by 14,425 m3 compared to SGA. Figure 15b
shows that the first-order natural frequency on the horizontal section of workspace that the
height z is 6 m has significantly increased after using PIEAMIGA, and the GFNF is increased
by 0.0452 Hz compared to SGA. Figure 15c shows that the impulse sum to the CPTDS
has decreased significantly after using PIEAMIGA, and the impulse sum is decreased by
2792 N·s compared to SGA.

(a) (b) (c)

Figure 15. Comparison of the workspace, the first-order natural frequency and the impulse on CPTDS
between PIEAMIGA and SGA. (a) Comparison of workspace; (b) comparison of the first-order natural
frequency; and (c) comparison of the impulse on the CPTDS.

6.2.2. Multi-Objective Optimization Based on the Ideal Point Approach

In the previous sections, we performed structural optimization with regard to the three
optimization objectives, respectively. However, we want to optimize the three optimiza-
tion objectives simultaneously, i.e., the largest workspace, the highest first-order nature
frequency and the smallest impulse on CPTDS exerted by tensions. Mathematically, it is a
multi-objective optimization problem and will be solved by using the ideal-point method.

Since the physical meaning of the three optimization objectives is different, it is neces-
sary to normalize the three optimization objectives f1(D), f2(D) and f3(D), respectively.
Thus, the three optimization objects become continuous functions in the [0,1] interval, and
the multi-objective function is uniform in dimension. The maximum and minimum values
of each optimization objective need to be normalized.

As shown in Table 4, for f1(D), f1,min = f ′1 = 84, 875 m3, f1,max = f ∗1 = 183, 750 m3;
for f2(D), f2,min = f ′2 = 0.1042 Hz, f2,max = f ∗2 = 0.3100 Hz; for f3(D), f3,min = f ∗3 =
24, 907 N·s, f3,max = f ′3 = 63, 207 N·s. Thus, we can find three objectives after normaliza-
tion:
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⎧⎪⎪⎨⎪⎪⎩
f̄1(D) =

f1,max− f1(D)
f1,max− f1,min

f̄2(D) =
f2,max− f2(D)
f2,max− f2,min

f̄3(D) =
f3(D)− f3,min
f3,max− f3,min

(37)

According to the definition of the ideal-point method, the minimum sum of the
distances between the three objective function and the three ideal points is taken as the
optimization objective, and the linear and nonlinear constraints proposed in previous are
taken as the optimization constraints:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min W(D) =
3
∑

i=1

∣∣ f̄i(D)
∣∣

s.t. L ≤ D ≤ U
g1(D) = Hmin(D)− hmax ≤ 0
g2(D) = −Hmax(D) + hmin ≤ 0

g3(D) = −V(D) + Ω ≤ 0

g4(D) = −ω(D) + ωp ≤ 0

(38)

6.3. Results and Discussion of Multi-Objective Structural Optimization

According to the simulation parameters listed in Tables 3 and 4, the multi-objective
structural optimization is conducted by real-coded PIEAMIGA in the MATLAB environ-
ment. The results are listed in Table 5. It can be seen that the three optimization results are
balanced, none of which is dominant, while others perform poorly.

Table 5. The results of multi-objective structural optimization.

Optimal Solution D* [83.27, 77.93, 27.46, 25.39]T

optimization objective ideal point optimization result
f1(D)/m3 183,750 140,750
f2(D)/Hz 0.3100 0.2371
f3(D)/N·s 24,907 30,653

Figure 16 shows the DFFW corresponding to the optimal solution D∗, which com-
pletely contains the MSTS, and thus the filming work can be successfully completed.

Figure 16. DFFW and MSTS with regard to the optimal solution D∗, i.e., len = 83.27 m, wid = 77.93 m,
hei = 27.46 m and mP = 25.39 kg.

Figure 17 and Table 6 illustrate the relationship of the workspace volume vol with the
pulley point height hei and the mass of CPTDS mp when the optimization variables d1 and
d2 are fixed. In this case, len = d∗1 and wid = d∗2. The pulley height hei is not positively
correlated with volume of workspace vol. It can be known from the curved surface that
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the volume is small at both ends and large in the middle. It can be seen from Table 6 that
the workspace volumes are about the same when the pulley height is equal to 27 and 28 m,
and thus the maximum value is near hei = 27.5 m.

Generally speaking, the higher the pulley height hei is, the larger the volume is.
However, the tension range is also a decisive factor of workspace. With the increase in
height hei, the angle between the tangent line at the cable end and the direction of gravity
decreases; thus, the cable tension must be increased to balance the gravity. The increase in
height hei will cause an increase in the length and weight of the cable, and thus an increase
in the cable tension. Thus, it is possible that the tensions exceed the upper limit hmax,
leading to a decrease in the workspace that is mainly located in the area near the pulley
point close to the upper surface of the workspace.

Relatively speaking, the relationship between the mass of CPTDS and the workspace
volume is obvious, which has two characteristics: (1) Positive correlation. The light mass of
CPTDS may give rise to the decrease in cable tension, or even less than the lower limit hmin.
The reduced volume of workspace is mainly located at the boundaries of the workspace,
where the area of the cable tension is relatively small. (2) At the beginning of the curve, the
increase is obvious; however, at the end of the curve, the change is small.

When the mass mp is small, increasing the mass of CPTDS will significantly enhance
the cable tension so that many position points that originally do not meet the lower limit
hmin satisfy the lower limit hmin again. Therefore, the volume of workspace increases.
However, when the mass mp increases to a certain extent, the minimum tension at most of
the mp points have been greater than hmin. Therefore, the increase in the workspace volume
vol is limited.

Figure 18 shows the spatial distribution of the first-order natural frequency corre-
sponding to the “ideal point” on three horizontal sections of the workspaces at different
heights, i.e., z = 5 m, z = 15 m and z = 25 m. Clearly, the higher the height along the z axis
is, the higher the natural frequency is. Since the camera robot belongs to the suspended
CDPM, the four pulley points are all above the CPTDS. Therefore, the higher the height
along z axis is, the shorter the cable length is. According to Equation (25), the shorter
the cable length, the higher the natural frequency of the camera robot. Similarly, there is
always a long cable when the CPTDS at one of the four corners of the workspace; hence, the
first-order natural frequency of the camera robot will be smaller, leading to a downward
sharp corner.

Figure 17. Relationship of the workspace volume vol with the pulley point height hei and the mass
of CPTDS mp when len = d∗1 = 83.27 m and wid = d∗2 = 77.93 m.
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Figure 18. Distribution of first-order natural frequency on the horizontal sections of the workspaces
at different heights hei for the optimal solution D∗, i.e., len = 83.27 m, wid = 77.93 m, hei = 27.46 m
and mp = 25.39 kg.

Table 6. The workspace volume when the pulley point height hei and the mass of CPTDS mp vary
(unit m3).

Height
Mass

20/kg 30/kg 40/kg 50/kg

25/m 138,570 132,200 132,000 139,300
26/m 136,754 134,200 134,200 137,000
27/m 165,300 159,700 160,000 153,700
28/m 159,700 160,000 159,800 158,000
29/m 137,000 133,660 132,800 137,000
30/m 135,300 132,200 132,200 139,300

Figure 19 shows the minimum value of the first-order natural frequency on the dif-
ferent horizontal sections of the workspace with different heights, which are significantly
improved compared with those shown in Figure 10. The minimum first-order natural fre-
quency on each horizontal section all exceeds 0.12 Hz. At z = 5 m, the minimum first-order
natural frequency is equal to 0.13 Hz. Although it has been improved, it is still close to
the energy truncation frequency ωp = 0.12 Hz. Therefore, it is still vulnerable to wind
disturbance. Thus, some measures are essential to enhance the first-order natural frequency
of the camera robot, such as the stiffness improvement and tension regulation.

Figure 20 and Table 7 show the relationship of GFNF with the pulley point height hei
and the mass of CPTDS mP when the optimization variables d1 and d2 are fixed. In this case,
len = d∗1 and wid = d∗2. The relationship between GFNF and hei is not proportional, but
exhibits the characteristics of “high at both ends, low in the middle”. It can be concluded
from Equation (21) that the critical factor of determining the GFNF is the length of the
cable. On the one hand, the smaller the height hei is, the smaller the length of the cable is.
Thus, the frequency is larger when hei = 25 m; However, on the other hand, the decrease in
height hei will lead to the decrease in the height of workspace, lead to losing some points
in workspace.

Since the cable length at these “losing point” is shorter, the first-order natural frequency
is larger. Therefore, the whole level of the natural frequency in the workspace will decrease
after losing these points. Hence, the contradiction between them determines that the value
of GFNF is larger when hei is equal to the maximum or minimum height and smaller when
hei is in the middle height. The relationship between the mass of CPTDS mp and GFNF
is very obvious. The greater the mass is, the lower the frequency is. We can observed
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that the GFNFs are the same when the pulley height at 27 m and 28 m. We can also draw
the conclusion that the GFNF is more sensitive to the pulley height than the mass of the
CPTDS.

Figure 19. The minimum first-order natural frequency on the horizontal planes of workspace at
different heights with regard to the optimal solution D∗, i.e., len = d∗1 = 83.27 m, wid = d∗2 = 77.93 m,
hei = d∗3 = 27.46 m and mp = d∗1 = 25.39 kg.

Figure 20. Relationship of GFNF with the pulley height hei and the mass of CPTDS mp when
len = d∗1 = 83.27 m and wid = d∗2 = 77.93 m.

Table 7. The frequency when the pulley point height hei and the mass of CPTDS mp vary (unit Hz).

Height
Mass

20/kg 30/kg 40/kg 50/kg

25/m 0.4461 0.4313 0.4313 0.4461
26/m 0.4398 0.4241 0.4241 0.4398
27/m 0.4479 0.4422 0.4422 0.4479
28/m 0.4479 0.4422 0.4422 0.4479
29/m 0.4398 0.4241 0.4241 0.4398
30/m 0.4455 0.4313 0.4313 0.4461

142



Machines 2022, 10, 565

Figure 21 shows the impulse applied on the CPTDS and the accelerations of the
CPTDS corresponding to the optimization solution following the sampling locus shown in
Figure 11. Since every straight line segment of the locus is planned by a quintic polynomial,
the acceleration curve is a cubic curve, and the value of acceleration at each point change
motion direction of the locus is 0. It can be seen that the impulse is larger in the time point
with larger acceleration, reflecting the tensions exert a large impulse on the CPTDS at this
time point. The maximum value appears at t = 15 s, when the CPTDS moves near the point
P3 and is close to the lower surface of the workspace.

Therefore, the cable length and tension are larger than those at the rest points and thus
the impulse. It can be observed that the curve is not completely symmetrical on both sides
with P3 as the center. However, the left side is larger and the right side is smaller. As the
segment P2 → P3 is on the left side of P3 and the motion direction is consistent with the
direction of gravity, the tension is larger; the motion direction of the segment P3 → P4 on
the right side of P3 is contrary to the gravity direction, and therefore the tension is smaller.
Thus, the impulse on the segment P2 → P3 is larger than that on the segment P3 → P4.
Similarly, the impulse applied on the CPTDS on the segment P1 → P2 is larger than that on
the segment P4 → P1.

Figure 21. The impulse applied on the CPTDS and acceleration of the CPTDS corresponding to
the optimization solution following the sampling locus with regard to the optimal solution D∗, i.e.,
len = d∗1 = 83.27 m, wid = d∗2 = 77.93 m, hei = d∗3 = 27.46 m, mP = d∗1 = 25.39 kg.

Figure 22 and Table 8 show the relationship of the impulse sum on the CPTDS along
the sampling locus with the pulley point height hei and the mass of CPTDS mp when the
optimization variables d1 and d2 are fixed. In this case, len = d∗1 and wid = d∗2. There is
a positive correlation of the impulse sum with the pulley point height hei and the mass
of CPTDS mp. The higher the pulley point height hei and the greater the mass mp of the
CPTDS are, the greater the impulse sum will be. In addition, it can be observed from
Table 8 that the impulse sum linearly increases with increasing of the pulley point height
and the mass of the CPTDS.
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Figure 22. Relationship of impulse sum on the CPTDS along the sampling locus with the pulley
point height hei and the mass of CPTDS mp when len = d∗1 = 83.27 m and wid = d∗2 = 77.93 m.

Table 8. The impulse sum on the CPTDS when the pulley point height hei and the mass of CPTDS
mp vary (unit N·s).

Height
Mass

20/kg 30/kg 40/kg 50/kg

25/m 26,450 32,330 38,220 44,110
26/m 26,740 32,780 38,820 44,860
27/m 27,080 33,300 39,520 45,750
28/m 27,460 33,880 40,310 46,750
29/m 27,930 34,590 41,270 47,940
30/m 28,430 35,370 42,220 49,260

7. Conclusions

In this paper, the dynamic modeling of the camera robot was presented considering the
self-weight and inertia of the cable simultaneously, which was also fit to other large-span
and high-speed manipulators, and a tension distribution algorithm was developed based
on the iteration method. According to the dynamical model, an approach of generating a
dynamic feasible workspace was proposed. In order to improve the shooting ability of the
camera robot, the structure of the camera was optimized by optimizing the three objectives
separately and then mixed together using the ideal point method through a modified GA.
Furthermore, the characteristics of the objectives were analyzed by varying the design
parameters. The main contributions of this study include the following:

First, the dynamic model of the large-span high-speed camera robot with redundant
actuation combining with the cable mass and inertia is established. Based on this model,
an iterative-based tension distribution algorithm (Algorithm 1) was proposed to determine
the tensions in cables given the position of the CPTDS. In addition, a dynamic force-
feasible workspace (DFFW) generation algorithm (Algorithm 2) was proposed according
to the characteristics of the camera robot based on the judging conditions of DFFW that
contain the direction balance condition (DBC) and the magnitude balance condition (MBC)
simultaneously. In this study, the three-DOF four-cable-driven camera robot was considered
for illustrative case-studies. The presented algorithms were applicable to any cable-driven
parallel manipulators while modifying the Jacobian matrix J, the generalized external force
M, the unit normal vector q and the velocity–acceleration pair $.

Secondly, an optimization model of the camera robot was set up aiming to achieve the
best workspace volume of DFFW, anti-wind disturbance ability and impulse exerted by
tensions on CPTDS, where the anti-wind disturbance ability can be evaluated through the
GFNF (global first-order nature frequency).

Thirdly, the multi-island and information entropy ideas were used to improve the
SGA. Thus, an improved genetic algorithm was created in order to optimize the structure
of the camera robot, namely the population information entropy-based adaptive genetic
algorithm (PIEAMIGA). It can be seen from Figures 14 and 15 that PIEAMIGA offered the
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stronger global search capability and the better optimization results compared with SGA
with regard to each optimization objective while the computing time increased slightly as
shown in Table 4.

Fourthly, the ideal-point method was employed to deal with the multi-objective
structural optimization to avoid the influence of the subjective intention of the designer.
The ideal point of each optimization objective was obtained by conducting single-objective
structural optimization through PIEAMIGA. The optimization results with regard to the
optimal solution D∗ by using PIEAMIGA are shown in Table 5 and demonstrate that the
three optimization results were balanced. Figures 16, 18, 19 and 21 illustrate the workspace
shape, spatial distribution of first-order natural frequency, the minimum first-order natural
frequency on different horizontal planes of workspace and the impulse on the CPTDS when
the optimization variables are equal to the optimal solution D∗.

Moreover, the relationship of the three optimization objectives with the pulley height
hei and the mass of CPTDS mp were studied as illustrated in Figures 17, 20 and 22 as well
as Tables 6–8. Moreover, some laws were summarized, and these will be valuable for the
design of camera robots. Furthermore, the design methodology presented in this paper
can be extended to other classes of large-span high-speed CDPMs as well. Apart from
the camera robot, the dynamic workspace generation approach and design methodology
presented in this paper can be extended to other classes of large-span high-speed CDPMs as
well. The next steps involve dynamic modeling for the complex spatial robot architectures
and finally practical testing. Our future research will be focused on the motion control
issue based on the dynamical model in this paper.
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Abstract: In recent years, cable-driven parallel robots (CDPRs) have drawn more and more attention
due to the properties of large workspace, large payload capacity, and ease of reconfiguration. In this
paper, we present a kinematic and dynamic modeling and workspace analysis for a novel suspended
CDPR which generates Schönflies motions. Firstly, the architecture of the robot is introduced, and
the inverse and forward kinematic problems of the robot are solved through a geometrical approach.
Then, the dynamic equation of the robot is derived by separately considering the moving platform
and the drive trains. Based on the dynamic equation, the dynamic feasible workspace of the robot is
determined under different values of accelerations. Finally, experiments are performed on a prototype
of the robot to demonstrate the correctness of the derived models and workspace.

Keywords: cable-driven parallel robot; kinematics; dynamics; workspace

1. Introduction

Cable-driven parallel robots (CDPRs) are particular types of parallel robots in which
the rigid kinematic chains are replaced by flexible cables [1]. In recent years, CDPRs have
drawn more and more attention due to the properties of large workspace, large payload
capacity, and ease of reconfiguration [2,3]. CDPRs are divided into the suspended type
and the fully constrained type according to the tensioning methods. For the suspended
CDPRs, the cables are all located over the moving platform, and the gravity of the moving
platform is essential to keep the cables in tension. Since the space below the moving
platform is free of cables, the suspended CDPRs are generally used to obtain a large
workspace. The suspended CDPRs usually work under static conditions because of the
limited gravity [4]. For the fully constrained CDPRs, the cables are located on both sides of
the moving platform and pull against each other to ensure positive cable tensions. The fully
constrained CDPRs are suitable to generate high-speed motions with large accelerations [5].

The existence of the flexible cables greatly complicates the modeling and analysis of
CDPRs. On the one hand, the elasticity of the cables leads to low stiffness and deteriorates
the positioning accuracy of CDPRs. On the other hand, resulting from the unilateral
property, the cables can only apply pull forces and cannot provide push forces. Thus, a
greater number of cables than the degrees of freedom (DOFs) are generally required to fully
control CDPRs [6]. Many recent works have contributed to the modeling and analysis of
CDPRs. In [7], the authors present the kinetostatic model of a 3-DOF CDPR involving pulley
kinematics and cable elasticity. Meanwhile, a novel pulley structure is proposed to improve
the positioning accuracy of CDPRs. The kinematic model of CDPRs considering pulley
mechanisms is presented in [8]. Based on the kinematic model, a kinematic calibration
method is further developed for CDPRs. In [9], the forward kinetostatic problem of a
6-DOF underactuated CDPR is solved using an unsupervised neural network approach.
This novel approach is computationally efficient and has an accuracy similar to that of other
optimization methods. In [10], the authors provide a kinematic and dynamic analysis of a
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CDPR composed of multiple cranes by considering the hydraulic actuation system. A 3-
DOF CDPR driven by five-bar winding mechanisms for workspace expansion is presented
in [11]. The kinematic and dynamic analysis of the CDPR is performed based on the finite
element method and the Lagrange formulation. In [12], the dynamic model of CDPRs is
derived by combining the finite element model of the cables with the rigid-body dynamics
of the moving platform.

Another important issue is determining the workspace of CDPRs, as the workspace is
one of the decisive properties for the potential applications of CDPRs. The workspace of
CDPRs is strongly coupled to the cable tensions because of the unilateral property of the
cables [13]. A generalized ray-based method is proposed in [14] to solve the wrench-closure
workspace of CDPRs. The authors further introduce a graph representation to visualize the
high-dimensional workspace. In [15], the wrench-feasible workspace of CDPRs is computed
through interval analysis, in which the sets fully inside or outside the workspace can be
efficiently determined. The dynamic feasible workspace of a 6-DOF CDPR is solved by
investigating the dynamic equilibrium of the moving platform in [16]. The authors in [17,18]
use a geometric method to calculate the cylindrical operation workspace of a 3-DOF CDPR
tensioned by passive springs. The relation between the number of springs and the shape
of the workspace is investigated. In [19], a geometric approach based on convex analysis
is proposed to compute the workspace of CDPRs subject to the constraints of the cable
tensions. In [20], the author proposes the differential workspace hull method to calculate the
workspace of CDPRs. This method adopts a triangulation representation to approximate
the boundary of the workspace and can handle various criteria for the workspace.

Although much effort has been devoted to the modeling and analysis of CDPRs,
the existing works mainly focus on the purely translational 3-DOF CDPRs [7,11,17,18] and
the spatial 6-DOF CDPRs [9,12,16,20]. The CDPRs with other types of motions have seldom
been reported, and there is no systematic approach for the modeling and analysis of such
kinds of CDPRs. In many working scenarios, not all directions of motions are essential for
the application requirements, and the redundant DOFs may increase the cost and complicate
the robot systems [21]. Therefore, there is an urgent need to investigate the lower-mobility
CDPRs with sub-spatial motions. Among the lower-mobility motion types, Schönflies
motion, which contains three-dimensional translation and one-dimensional rotation about
the vertical axis, is the most widely used kind of sub-spatial motion in robotics [22]. Aiming
to narrow the research gap and complement the field of lower-mobility CDPRs, in this
paper, we present a kinematic and dynamic modeling and workspace analysis for a novel
suspended CDPR which generates Schönflies motions. In comparison with the existing
works, the main contributions of this paper are summarized as follows:

1. The structure of the novel CDPR which generates Schönflies motions is introduced to
complement the field of lower-mobility CDPRs.

2. The closed-form solutions for the inverse and forward kinematics of the robot are
derived based on a geometrical approach.

3. The dynamic model of the robot is formulated based on the virtual power principle,
which lays the foundation for the workspace determination and the model-based
control of the robot.

4. The dynamic feasible workspace of the robot is determined under different values of
accelerations, which facilitates the motion planning and control of the robot.

The remaining parts of this paper are arranged as follows. The architecture of the
novel CDPR is introduced in Section 2. Then, the inverse and forward kinematic problems
of the robot are solved in Section 3. Section 4 presents the dynamic modeling of the robot by
separately considering the moving platform and the drive trains. Section 5 determines the
dynamic feasible workspace of the robot under different values of accelerations. The proto-
type and experiments of the robot are presented in Section 6. Finally, Section 7 concludes
this paper and discusses suggestions for future work.
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2. Architecture Description

The robot studied in this paper is a novel suspended CDPR which generates Schönflies
motions. A prototype of the robot is shown in Figure 1. In this section, we briefly introduce
the architecture of the robot and define some notations used in later sections.

Figure 1. Prototype of the novel cable-driven parallel robot (CDPR).

2.1. Cable Arrangement

Figure 2 shows the kinematic diagram of the novel CDPR studied in this paper.
The robot has twelve driving cables linking the base and the moving platform. The cable
attachment points of the robot are uniformly arranged at the vertices of the base and the
moving platform. The base of the robot is cuboid-shaped, and its size is determined by
three parameters: LA1, LA2, and LA3. Let TA be the inertial frame located at the geometric
center point O of the base. The cable attachment points on the base are named Aij, where
i ∈ {1, 2, 3, 4} and j ∈ {1, 2, 3}. The locations from point O to points Aij are represented
by vectors aij. The moving platform of the robot is composed of three parts which are
articulated together. The size of the moving platform is depicted by three parameters: LB1,
LB2, and ΔLB. Let TB be the moving frame attached at the geometric center point P of the
moving platform. The vector linking point O and point P are denoted as p = (x y z)T .
The cable attachment points on the moving platform are named Bij. The locations from
point P to points Bij are represented by vectors bij. The cables linking points Aij and points
Bij have the lengths lij, and their directions are represented by unit length vectors sij. Based
on the above defined parameters, the positions of the cable attachment points of the robot
are given as

a11 =
(
− 1

2 LA1 − 1
2 LA2

1
2 LA3

)T
, a12 = a33 =

(
− 1

2 LA1 − 1
2 LA2

1
2 LA3 − LB2

)T
,

a21 =
(

1
2 LA1 − 1

2 LA2
1
2 LA3

)T
, a22 = a43 =

(
1
2 LA1 − 1

2 LA2
1
2 LA3 − LB2 + ΔLB

)T
,

a31 =
(

1
2 LA1

1
2 LA2

1
2 LA3

)T
, a32 = a13 =

(
1
2 LA1

1
2 LA2

1
2 LA3 − LB2

)T
,

a41 =
(
− 1

2 LA1
1
2 LA2

1
2 LA3

)T
, a42 = a23 =

(
− 1

2 LA1
1
2 LA2

1
2 LA3 − LB2 + ΔLB

)T
,

(1)

0b11 =
( 1

2 LB1 0 1
2 LB2

)T , 0b12 =0 b13 =
( 1

2 LB1 0 − 1
2 LB2

)T ,
0b21 =

( 1
2 LB1 0 1

2 LB2
)T , 0b22 =0 b23 =

( 1
2 LB1 0 − 1

2 LB2 + ΔLB
)T ,

0b31 =
(
− 1

2 LB1 0 1
2 LB2

)T , 0b32 =0 b33 =
(
− 1

2 LB1 0 − 1
2 LB2

)T ,
0b41 =

(
− 1

2 LB1 0 1
2 LB2

)T , 0b42 =0 b43 =
(
− 1

2 LB1 0 − 1
2 LB2 + ΔLB

)T ,

(2)
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bij =

{
Rz(θ1)

0bij i ∈ {1, 3}, j ∈ {1, 2, 3}
Rz(θ2)

0bij i ∈ {2, 4}, j ∈ {1, 2, 3}
, (3)

where Rz(·) denotes the rotation matrix about the z axis, and θ1 and θ2 are two angles
representing the orientation of the moving platform. The detailed definitions of θ1 and θ2
will be given in Section 2.2.

Figure 2. Kinematic diagram of the novel CDPR.

The twelve driving cables of the robot consist of four pairs of parallel cables (red lines
in Figure 2) and four independent cables (yellow lines in Figure 2). During the modeling
process, we use j ∈ {1, 2} to represent the parallel cables and use j ∈ {3} to indicate the
independent cables. The working principle of the parallel cables is demonstrated in Figure 3.
Each pair of parallel cables is driven by two identical winches which are connected in a
series and directly coupled to the same motor. The parallel cables are then passed through
two identical guiding pulleys and connected to the moving platform. The arrangement
of the winches and the pulleys ensures that the two cables are parallel, so they always
have the same length. Based on Equations (1) and (2), we have ||Ai1 Ai2|| = ||Bi1Bi2|| and
Ai1 Ai2//Bi1Bi2, and thus the quadrilateral Ai1 Ai2Bi2Bi1 forms a parallelogram. According
to the proprieties of the parallelogram, we define li = li1 = li2 and si = si1 = si2. The
parallel cables are used to constrain the rotational motion of the moving platform. When a
pair of parallel cables are in tension, the moving platform cannot rotate about the normal
direction of the parallelogram formed by the parallel cables. The four pairs of parallel
cables are specially arranged so that the moving platform of the robot can only rotate about
the vertical axis. Thus, the robot is ensured to perform Schönflies motions.
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(a) (b)

Figure 3. Working principle of parallel cables. (a) Drive unit. (b) Kinematic diagram.

2.2. Articulated Moving Platform

The moving platform of the robot is specially designed to extend the rotational ca-
pability of the robot about the vertical axis. Figure 4 shows the detailed architecture of
the moving platform. The moving platform of the robot consists of two sub-platforms
and one end-effector. The two sub-platforms are articulated together and coupled to the
end-effector through a gearbox. The gearbox amplifies the relative motions between the
two sub-platforms, thus extending the rotational capability of the end-effector. The two
sub-platforms are named sub-platform 1 and sub-platform 2, respectively. Sub-platform 1
is shown in cyan color, and the cable attachment points on sub-platform 1 are indicated
by i ∈ {1, 3}. Sub-platform 2 is shown in the magenta color, and the cable attachment
points on sub-platform 2 are indicated by i ∈ {2, 4}. To describe the orientation of the
moving platform, we attached a moving frame on each part of the moving platform at
point P. Sub-platform 1 is attached with frame Tp1, and the orientation of frame Tp1 with
respect to frame TA is denoted as θ1. Sub-platform 2 is attached with frame Tp2, and the
orientation of frame Tp2 with respect to frame TA is denoted as θ2. Let θ represent the angle
between the two sub-platforms, and assume the x axis of frame TB locates on the bisectrix
of θ. The orientation of frame TB with respect to frame TA is denoted as ψ. Frame Tee is
attached on the end-effector of the robot, and the orientation of frame Tee with respect to
frame TA is denoted as φ. The articulated structure of the moving platform introduces one
internal DOF into the robot. We define ψ and θ as the configuration of the moving platform.
Then, the relations between θ1, θ2, φ and ψ, θ are given as

θ1 = ψ − 1
2

θ, (4)

θ2 = ψ +
1
2

θ, (5)

φ = ψ + (η − 1
2
)θ + (φ0 − θ10)− η(θ20 − θ10), (6)

where θ10, θ20, φ0 are the initial values of θ1, θ2, φ, and η represents the amplification ratio
of the gearbox.
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(a) (b)

Figure 4. Architecture of the articulated moving platform. (a) Front view. (b) Top view.

3. Kinematics

For CDPRs, the mass and elasticity of the cables introduce a coupling relation between
the kinematics and the cable tensions. Some researchers have presented approaches such
as the kinetostatic modeling [23] and kinetics modeling [24] to consider these effects.
However, these approaches are usually complicated and require numerical methods to
solve the models. In this paper, in order to derive closed-form solutions for the kinematics
of the novel CDPR, we assume the decoupling of the kinematics and the cable tensions by
considering the cables as massless and inelastic straight lines. In this section, we present
the kinematic modeling of the novel CDPR. Firstly, the inverse and forward kinematic
problems of the robot are solved. Then, the Jacobian matrix of the robot is derived.

3.1. Inverse and Forward Kinematics

The inverse kinematic problem is to calculate the lengths of the driving cables accord-
ing to the prescribed pose of the moving platform. The forward kinematic problem is to
compute the pose of the moving platform according to the prescribed cable lengths. Based
on the notations defined in Section 2, the pose of the moving platform in task space is
defined by the generalized coordinate X as

X =
(

pT ψẑT θ
)T

=
(
x y z 0 0 ψ θ

)T , (7)

where ẑ = (0 0 1)T represents the unit length vector along the z axis. The vector of the
cable lengths is given as

l =
(
l1 l2 l3 l4 l13 l23 l33 l43

)T . (8)

For CDPRs, the inverse kinematic problem is straightforward and generally has closed-
form solutions. According to the vector loops in Figure 2, the inverse kinematic equation
for the robot is derived as

lij = ||aij − bij − p||, i ∈ {1, 2, 3, 4}, j ∈ {1, 2, 3}. (9)

The forward kinematic problem of CDPRs is generally more involved than the inverse
kinematics as there may exist multiple solutions. Numerical methods are usually adopted
to solve the forward kinematics of CDPRs. By exploiting the special architecture of the
robot, here we propose a geometrical approach to derive a closed-form solution for the
forward kinematics of the robot. Figure 5 shows the kinematic diagram of sub-platform 1
used for the forward kinematics. Defining LA4 as the distance between point A12 and point
A32, we have

LA4 =
√

L2
A1 + L2

A2. (10)
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For triangle A12 A32B12, we define h1 as the altitude from vertex B12 to side A12 A32, and de-
fine w1 as the distance between vertex A12 and the foot of altitude h1 on side A12 A32. Since
the lengths of the cables are all known, we have

w1 =
l2
12 + L2

A4 − l2
13

2LA4
, (11)

h1 =
√

l2
12 − w2

1. (12)

Similarly, for triangle A12 A32B32, we define h3 as the altitude from vertex B32 to side
A12 A32, and define w3 as the distance between vertex A12 and the foot of altitude h3 on
side A12 A32. Then, w3 and h3 are expressed as

w3 =
l2
33 + L2

A4 − l2
32

2LA4
, (13)

h3 =
√

l2
33 − w2

3. (14)

Since the robot performs Schönflies motions, line B12B32 is always parallel with the plane
formed by vectors n1 and n2, where n1 and n2 are defined as

n1 =
a32 − a12

||a32 − a12||
, (15)

n2 = n1 × ẑ. (16)

To solve the positions of points B12 and B32, we project the kinematic diagram onto the
plane formed by vectors n2 and ẑ, as shown in Figure 5. The kinematic diagram becomes a
triangle on the projection plane. Defining h13 as the length of line B12B32 on the projection
plane, we have

h13 =
√

L2
B1 − (w1 − w3)2. (17)

Then, the two internal angles ξ1 and ξ3 of the triangle A32B12B32 on the projection plane
are derived as

ξ1 = arccos
h2

1 + h2
13 − h2

3
2h1h13

, (18)

ξ3 = arccos
h2

3 + h2
13 − h2

1
2h3h13

. (19)

Now, we define r12 = p + b12 and r32 = p + b32 as the position vectors of points B12 and
B32, respectively. According to Figure 5, r12 and r32 can be formulated as

r12 = ±h1 cos ξ1n2 − h1 sin ξ1ẑ + a12 + w1n1, (20)

r32 = ∓h3 cos ξ3n2 − h3 sin ξ3ẑ + a12 + w3n1. (21)

Equations (20) and (21) determine two sets of positions for points B12 and B32 which are
symmetrical about the plane formed by vectors n1 and ẑ. After obtaining the positions of
point B12 and point B32, the position and orientation of sub-platform 1 can be derived as

p =
1
2
(r12 + r32) +

1
2

LB2ẑ, (22)

θ1 = arctan
(r12 − r32) · ŷ
(r12 − r32) · x̂

, (23)

where x̂ = (1 0 0)T and ŷ = (0 1 0)T . Equations (22) and (23) also determine two sets of
poses of sub-platform 1. In order to determine the pose of the entire moving platform, we
use the same procedure to solve the poses of sub-platform 2. Since sub-platform 1 and
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sub-platform 2 are articulated together, we can take the intersection of the position vectors
determined by sub-platform 1 and sub-platform 2 as the true position vector of the moving
platform. Then, the orientation of the moving platform can be obtained by computing
Equations (4) and (5).

Figure 5. Kinematic diagram of sub-platform 1 for forward kinematics.

3.2. Jacobian Matrix

The Jacobian matrix plays an important role in the modeling and analysis of the robot
as the Jacobian matrix maps the velocity of the moving platform to the velocity of the
driving cables. Differentiating X and l with respect to time, we have the generalized
velocity Ẋ and the cable velocity l̇ as

Ẋ =
(

ṗT ψ̇ẑT θ̇
)T

=
(

ẋ ẏ ż 0 0 ψ̇ θ̇
)T , (24)

l̇ =
(
l̇1 l̇2 l̇3 l̇4 l̇13 l̇23 l̇33 l̇43

)T . (25)

Define Vp1 and Vp2 as the twist vectors of sub-platform 1 and sub-platform 2, respectively,
and Vee as the twist vector of the end-effector. Based on Equations (4)–(6), we have

Vp1 =

(
ṗ

θ̇1ẑ

)
=

(
ṗ

ψ̇ẑ − 1
2 θ̇ẑ

)
=

[
E6×6

03×1
− 1

2 ẑ

]
︸ ︷︷ ︸

Hp1

Ẋ, (26)

Vp2 =

(
ṗ

θ̇2ẑ

)
=

(
ṗ

ψ̇ẑ + 1
2 θ̇ẑ

)
=

[
E6×6

03×1
1
2 ẑ

]
︸ ︷︷ ︸

Hp2

Ẋ, (27)

Vee =

(
ṗ

φ̇ẑ

)
=

(
ṗ

ψ̇ẑ + (η − 1
2 )θ̇ẑ

)
=

[
E6×6

03×1
(η − 1

2 )ẑ

]
︸ ︷︷ ︸

Hee

Ẋ, (28)
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where En×n represents the n × n identity matrix and 0n×m represents the n × m matrix of
zeros. Differentiating Equation (9) with respect to time and considering the properties of
parallel cables, we have

−

⎡⎢⎢⎣
sT

1 (b1 × s1)
T

sT
3 (b3 × s3)

T

sT
13 (b13 × s13)

T

sT
33 (b33 × s33)

T

⎤⎥⎥⎦
︸ ︷︷ ︸

Jp1

Vp1 =

⎛⎜⎜⎝
l̇1
l̇3
l̇13
l̇33

⎞⎟⎟⎠
︸ ︷︷ ︸

l̇p1

, (29)

−

⎡⎢⎢⎣
sT

2 (b2 × s2)
T

sT
4 (b3 × s4)

T

sT
23 (b23 × s23)

T

sT
43 (b43 × s43)

T

⎤⎥⎥⎦
︸ ︷︷ ︸

Jp2

Vp2 =

⎛⎜⎜⎝
l̇2
l̇4
l̇23
l̇43

⎞⎟⎟⎠
︸ ︷︷ ︸

l̇p2

, (30)

where bi = (bi1 + bi2)/2, i ∈ {1, 2, 3, 4}. Substituting Equations (26) and (27) into
Equations (29) and (30), the velocity equation of the entire moving platform is derived as[

Jp1Hp1
Jp2Hp2

]
Ẋ =

(
l̇p1
l̇p2

)
. (31)

Reshaping Equation (31), we have

−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sT
1 (b1 × s1)

T − 1
2 (b1 × s1)

T ẑ
sT

2 (b2 × s2)
T 1

2 (b2 × s2)
T ẑ

sT
3 (b3 × s3)

T − 1
2 (b3 × s3)

T ẑ
sT

4 (b4 × s4)
T 1

2 (b4 × s4)
T ẑ

sT
13 (b13 × s13)

T − 1
2 (b13 × s13)

T ẑ
sT

23 (b23 × s23)
T 1

2 (b23 × s23)
T ẑ

sT
33 (b33 × s33)

T − 1
2 (b33 × s33)

T ẑ
sT

43 (b43 × s43)
T 1

2 (b43 × s43)
T ẑ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

J

Ẋ = l̇, (32)

where J is denoted as the Jacobian matrix of the robot.

4. Dynamics

The dynamic equation of the robot describes the relation between the actuation torques
and the motion of the moving platform. The dynamic model of the robot can be formulated
using finite element methods such as the SPACAR software [25], which is a general tool
for the dynamic analysis of flexible multi-body systems. However, the analytical dynamic
model plays an important role in the analysis and control of the robot, which can facilitate
the workspace determination and lay the foundation for model-based control approaches.
In this paper, we assume that the cables are massless and inelastic straight lines to derive
the analytical dynamic equation of the robot. In this section, we present the dynamic
modeling of the robot based on the virtual power principle. Firstly, the dynamics of the
moving platform is formulated. Then, the effect of the drive trains is derived.

4.1. Dynamics of Moving Platform

The dynamic equation of the moving platform can be derived based on the virtual
power principle. The friction inside the articulated joints of the moving platform is ne-
glected, because ball bearings are installed inside the joints to reduce the friction. We define
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fij as the tension of cable lij, and fi = fi1 + fi2 as the total tension of parallel cables li1 and
li2. Then, the vector of the cable tensions is dented as

fc =
(

f1 f2 f3 f4 f13 f23 f33 f43
)T . (33)

For sub-platform 1, let mp1 be the total mass, rp1 be the position vector of the center of
mass, Ip1 be the rotational inertia matrix, and ωp1 be the angular velocity vector. For sub-
platform 2, let mp2 be the total mass, rp2 be the position vector of the center of mass, Ip2
be the rotational inertia matrix, and ωp2 be the angular velocity vector. Similarly, for the
end-effector, let mee be the total mass, ree be the position vector of the center of mass, Iee
be the rotational inertia matrix, and ωee be the angular velocity vector. According to the
virtual power principle [26], we have the dynamic equation of the moving platform as

(mp1r̈p1 − mp1g) · δṙp1 + (Ip1ω̇p1 + ωp1 × Ip1ωp1) · δωp1+

(mp2r̈p2 − mp2g) · δṙp2 + (Ip2ω̇p2 + ωp2 × Ip2ωp2) · δωp2+

(mee r̈ee − meeg) · δṙee + (Ieeω̇ee + ωee × Ieeωee) · δωee = fc · δl̇,

(34)

where g = (0 0 − 9.81)T is the vector of gravitational acceleration. To formulate the
dynamic equation as a function of the generalized coordinate X, we need to derive the
detailed expression of each component in Equation (34). For sub-platform 1, we define cp1
as the position vector of the center of mass in frame Tp1, and Ic1 as the rotational inertia
matrix about the center of mass in frame Tp1; then, we have

rp1 = p + Rz(θ1)cp1, (35)

Ip1 = Rz(θ1)Ic1Rz(θ1)
T . (36)

Differentiating Equation (35) with respect to time, the velocity and acceleration of sub-
platform 1 are expressed as

ṙp1 = ṗ + θ̇1ẑ × Rz(θ1)cp1

=
[
E3×3 −[Rz(θ1)cp1]× 1

2 [Rz(θ1)cp1]×ẑ
]︸ ︷︷ ︸

Hc1

Ẋ, (37)

r̈p1 = p̈ + θ̈1ẑ × Rz(θ1)cp1 + θ̇2
1 ẑ × ẑ × Rz(θ1)cp1

= Hc1Ẍ+ Ẋ
T HT

θ1 [ẑ]
2
×Rz(θ1)cp1︸ ︷︷ ︸

Cc1

Hθ1Ẋ, (38)

where [ · ]× denotes the skew-symmetric matrix representation of a vector, and
Hθ1 =

(
0 0 0 0 0 1 − 1

2

)
. Since the robot performs Schönflies motions, the an-

gular velocity and angular acceleration of sub-platform 1 are expressed as

ωp1 = θ̇1ẑ =
[
03×3 E3×3 − 1

2 ẑ
]︸ ︷︷ ︸

Hω1

Ẋ, (39)

ω̇p1 = θ̈1ẑ = Hω1Ẍ. (40)

Then, for sub-platform 2, we define cp2 as the position vector of the center of mass in frame
Tp2, and Ic2 as the rotational inertia matrix about the center of mass in frame Tp2. Similar
results can be obtained as follows:

rp2 = p + Rz(θ2)cp2, (41)
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ṙp2 =
[
E3×3 −[Rz(θ2)cp2]× − 1

2 [Rz(θ2)cp2]×ẑ
]︸ ︷︷ ︸

Hc2

Ẋ, (42)

r̈p2 = Hc2Ẍ+ Ẋ
T HT

θ2 [ẑ]
2
×Rz(θ2)cp2︸ ︷︷ ︸

Cc2

Hθ2Ẋ, (43)

Hθ2 =
(
0 0 0 0 0 1 1

2

)
, (44)

Ip2 = Rz(θ2)Ic2Rz(θ2)
T , (45)

ωp2 =
[
03×3 E3×3

1
2 ẑ
]︸ ︷︷ ︸

Hω2

Ẋ, (46)

ω̇p2 = Hω2Ẍ. (47)

For the end-effector, we define cee as the position vector of the center of mass in frame Tee,
and Ice as the rotational inertia matrix about the center of mass in frame Tee. Then, we can
derive the following results similar to sub-platform 1 and sub-platform 2:

ree = p + Rz(φ)cee, (48)

ṙee =
[
E3×3 −[Rz(φ)cee]× −(η − 1

2 )[Rz(φ)cee]×ẑ
]︸ ︷︷ ︸

Hce

Ẋ, (49)

r̈ee = HceẌ+ Ẋ
T HT

φ [ẑ]2×Rz(φ)cee︸ ︷︷ ︸
Cce

HφẊ, (50)

Hφ =
(
0 0 0 0 0 1 η − 1

2

)
, (51)

Iee = Rz(φ)IceRz(φ)
T , (52)

ωee =
[
03×3 E3×3 (η − 1

2 )ẑ
]︸ ︷︷ ︸

Hωe

Ẋ, (53)

ω̇ee = HωeẌ. (54)

Substituting the above equations into Equation (34), the dynamic equation of the moving
platform can be formulated as a function of the generalized coordinate X. Then, we have
the final form of the dynamic equation of the moving platform as

M(X)Ẍ+ Ẋ
TC(X)Ẋ+ G(X) = JT fc, (55)

where
M(X) = mp1HT

c1Hc1 + HT
ω1Rz(θ1)Ic1Rz(θ1)

T Hω1+

mp2HT
c2Hc2 + HT

ω2Rz(θ2)Ic2Rz(θ2)
T Hω2+

mee HT
ceHce + HT

ωeRz(φ)IceRz(φ)
T Hωe,

(56)

C(X) = mp1HT
θ1HT

c1Cc1Hθ1 + HT
θ1HT

ω1[ẑ]×Rz(θ1)Ic1Rz(θ1)
T Hω1+

mp2HT
θ2HT

c2Cc2Hθ2 + HT
θ2HT

ω2[ẑ]×Rz(θ2)Ic2Rz(θ2)
T Hω2+

meeHT
φ HT

ceCceHφ + HT
φ HT

ωe[ẑ]×Rz(φ)IceRz(φ)
T Hωe,

(57)

G(X) = −mp1HT
c1g − mp2HT

c2g − mee HT
ceg. (58)

4.2. Dynamics of Drive Train

The drive unit of the robot contains a servo motor as the actuator and a winch which
is directly coupled to the servo motor to drive the cable. For all the drive units of the robot,
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we define τm as the vector of the motor torques, θm as the vector of the motor rotation
angles, τf as the vector of the frictional torques, Im as the diagonal matrix of the moments
of inertia of the winches, and rw as the radius of the winches. Based on Newton’s second
law, we have

τm + τf + rw fc = Imθ̈m. (59)

We use the Coulomb and viscous model [27] to formulate the frictional torques, and note
that rwθ̇m = l̇. Then, the dynamic equation of the drive units of the robot is derived as

τm =
Im

rw
l̈ + Kcsign(

l̇
rw

) +
Kv

rw
l̇ − rw fc, (60)

where Kc represents the diagonal matrix of the Coulomb friction coefficients, and Kv
represents the diagonal matrix of the viscous friction coefficients.

5. Workspace Analysis

In this section, we evaluate the dynamic feasible workspace of the robot. The dynamic
workspace is a set of poses where a prescribed set of moving platform accelerations can be
achieved by applying feasible cable tensions. The cable tensions required for generating
the prescribed accelerations can be obtained from Equation (55). For simplicity, we assume
that the vectors cp1, cp2, and cee are all parallel with the z axis of frame TA; we then have
C(X) = 0. Defining Ẍ = (p̈T 0 0 α̈T)T , p̈ = (ẍ ÿ z̈)T , and α̈ = (ψ̈ θ̈)T , the set of the required
moving platform accelerations is formulated as

[Ẍ]r =
{
Ẍ | p̈min � p̈ � p̈max, α̈min � α̈ � α̈max

}
, (61)

where � means the component-wise inequality. Similarly, the set of the admissible cable
tensions is defined as

[ fc]a = { fc | fmin � fc � fmax}. (62)

Thus, the dynamic feasible workspace of the robot is defined as

[X]dyn =
{
X | ∀ Ẍ ∈ [Ẍ]r, ∃ fc ∈ [ fc]a, M(X)Ẍ+ G(X) = JT fc, nc = 0

}
, (63)

where nc represents the number of collisions inside the robot, which is determined by
calculating the distances between two cables and between the cable and the moving
platform [28]. In order to investigate the effects of different acceleration values on the
dynamic feasible workspace, we solve the dynamic feasible workspace of the robot in the
following four scenarios:

Scenario 1 p̈max = −p̈min =

⎛⎝0
0
0

⎞⎠mm/s2, α̈max = −α̈min =

(
0
0

)
rad/s2,

Scenario 2 p̈max = −p̈min =

⎛⎝1500
1500
1500

⎞⎠mm/s2, α̈max = −α̈min =

(
0
0

)
rad/s2,

Scenario 3 p̈max = −p̈min =

⎛⎝0
0
0

⎞⎠mm/s2, α̈max = −α̈min =

(
150
150

)
rad/s2,

Scenario 4 p̈max = −p̈min =

⎛⎝1500
1500
1500

⎞⎠mm/s2, α̈max = −α̈min =

(
150
150

)
rad/s2.

(64)

The kinematic and dynamic parameters of the robot are summarized in Table 1. To visualize
the dynamic workspace of the robot in Cartesian space, the orientation of the moving
platform is set as ψ = 0 and θ = π/2. The dynamic feasible workspace of the robot
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is calculated using the differential workspace hull approach [20], which approximates
the hull of the workspace using a triangulation representation. Firstly, a unity sphere
located at the estimated workspace center is subdivided into a set of triangular faces. Then,
the boundary of the workspace is calculated along the vertices of each triangular face
using a line search method. At each position, the workspace criterion is investigated for a
discrete set of moving platform configurations and a Boolean result is yielded to amend
the searching direction. Finally, the algorithm ends when the hull of the workspace is
approximated within a certain accuracy. After determining the workspace hull, the volume
of the workspace can be obtained by computing the volumes of the tetrahedrons formed
by all the triangular faces.

Table 1. Kinematic and dynamic parameters of the robot.

Parameter Notation Value Unit

Length of the base LA1 1200 mm
Width of the base LA2 1200 mm
Height of the base LA3 800 mm
Length of the moving platform LB1 120 mm
Height of the moving platform LB2 120 mm
Offset of the moving platform height ΔLB 17.5 mm
Amplification ratio of the gearbox η 4.25 -
Initial value of θ1 θ10 −π/4 rad
Initial value of θ2 θ20 π/4 rad
Initial value of φ φ0 0 rad
Mass of sub-platform 1 mp1 0.6 kg
Center of mass position of sub-platform 1 cp1 (0 0 − 75)T mm
Rotational inertia matrix of sub-platform 1 Ic1 diag(1.2 2.5 4.4) kg · cm2

Mass of sub-platform 2 mp2 0.35 kg
Center of mass position of sub-platform 2 cp2 (0 0 − 75)T mm
Rotational inertia matrix of sub-platform 2 Ic2 diag(0.5 0.9 1.5) kg · cm2

Mass of the end-effector mee 0.18 kg
Center of mass position of the end-effector cee (0 0 − 100)T mm
Rotational inertia matrix of the end-effector Ice diag(0.1 0.1 0.2) kg · cm2

Coulomb friction coefficient of the drive unit Kc 0.042 -
Viscous friction coefficient of the drive unit Kv 5.3 × 10−4 -
Upper bound of the cable tension fmax 50 N
Lower bound of the cable tension fmin 0 N

Figure 6 shows the obtained dynamic feasible workspace in each scenario. The volume
of the dynamic feasible workspace in each scenario is summarized in Table 2. In Scenario 1,
where the required acceleration set is empty, the dynamic feasible workspace is actually
equivalent to the static feasible workspace. The volume of the dynamic feasible workspace
in Scenario 1 is the largest among the four scenarios, and the shape of the workspace is
like a cuboid similar to the base. In Scenario 2, the moving platform of the robot only
needs to perform linear accelerations. The shape of the dynamic workspace in Scenario
2 is like a frustum whose cross-section increases along the z direction. The workspace
volume in Scenario 2 is reduced by 46.69% compared with Scenario 1. In Scenario 3 where
only angular accelerations are required, the dynamic feasible workspace is reduced by
20.46% compared with Scenario 1. Comparing Scenario 3 with Scenario 2, it is observed
that the angular accelerations have a weaker effect on the volume of the dynamic feasible
workspace. In Scenario 4, the moving platform is required to perform both linear and angu-
lar accelerations. The dynamic feasible workspace in Scenario 4 is the smallest among the
four scenarios, and its volume is reduced by 62.82% compared with Scenario 1. The shape
of the dynamic workspace in Scenario 4 is similar to that of the workspace in Scenario 2,
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which indicates that the values of linear accelerations play a decisive role in determining
the dynamic feasible workspace of the robot.

(a) (b)

(c) (d)

Figure 6. Dynamic feasible workspace of the robot in different scenarios. (a) Scenario 1. (b) Scenario 2.
(c) Scenario 3. (d) Scenario 4.

Table 2. Comparison of the dynamic feasible workspace in different scenarios.

Scenario Scenario 1 Scenario 2 Scenario 3 Scenario 4

Volume of the robot covered by
the dynamic feasible workspace 71.08% 37.89% 56.54% 26.43%

6. Experiment

To validate the correctness of the previously derived models and workspace, in this
section, we performed experiments on the robot prototype shown in Figure 1. The main
parameters of the prototype are summarized in Table 1. The control system diagram of
the prototype which demonstrates the working principle and main components of the
prototype system is shown in Figure 7. The control algorithms were implemented in the
real-time kernel of Simulink Desktop Real-Time on an industrial computer. A proportional-
integral-derivative (PID) controller was deigned in joint space with the sample rate of 1 kHz
to control the prototype. At the current stage, the robot prototype was not equipped with
tension sensors; the cable tensions were therefore not available in the experimental results.
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Figure 7. Control system diagram of the robot prototype.

In the experiments, the robot prototype was controlled to track a predefined trajectory
inside the workspace. A circular trajectory located near the boundary of the dynamic
feasible workspace determined in Section 5 was designed as

xd = 300 cos (2πs)mm, ψd = 10 sin (2πs) ◦,

yd = 300 sin (2πs)mm, θd = 30 sin (2πs) + 90 ◦,

zd = 100 mm, s = 10(
t
T
)3 − 15(

t
T
)4 + 6(

t
T
)5,

(65)

where T = 5 s is the period of the trajectory. The trajectory was successfully tracked by
the robot prototype and no cable slackness was observed, which demonstrates that the
robot can perform dynamic trajectories with feasible cable tensions inside the dynamic
feasible workspace. Figure 8 shows the trajectory tracking performance of the robot
prototype in joint space. The desired cable lengths were obtained by calculating the inverse
kinematics based on the robot trajectory in Equation (65). These values were fed into
the robot controller as reference signals. The cable length errors were measured with the
encoders on the servo motors. The maximum error among all the cables was 1.26 mm,
which demonstrates that the robot has a high tracking accuracy in joint space. Based on
the measured cable lengths, the task space trajectory performed by the robot prototype
can be obtained by calculating the forward kinematics of the robot. Figure 9 presents
the comparison of the desired trajectory and the calculated trajectory from the forward
kinematics in Cartesian space. The average tracking error and the maximum tracking
error along the Cartesian space trajectory were 0.35 mm and 0.99 mm, respectively. These
results verify the consistency of the inverse and forward kinematic models of the robot
derived in Section 3. However, the real trajectory performed by the robot may deviate
from the calculated trajectory because the unmodeled uncertainties and the manufacturing
errors were neglected. To evaluate the rotational accuracy of the robot, an LPMS-IG1
inertial measurement unit (IMU) was installed on the end-effector of the robot prototype to
measure the rotation angle. Figure 10 shows the rotation angle of the end-effector along the
testing trajectory. The desired value of the rotation angle was calculated using Equation (6)
based on the robot trajectory, and the measured value was obtained from the IMU sensor.
The rotation error of the end-effector varied from −2.05 ◦ to 2.81 ◦, with an average value
of 0.54 ◦. Taking into account the manufacturing and assembly errors of the prototype,
these values can be considered acceptable. The experimental results in this section validate
the correctness of the previously derived models and workspace, and demonstrate the
feasibility of the proposed robot in generating Schönflies motions.
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(a) (b)

Figure 8. Trajectory tracking performance in joint space. (a) Desired cable lengths. (b) Cable
length errors.

(a) (b)

Figure 9. Trajectory tracking performance in Cartesian space. (a) Desired trajectory and calculated
trajectory. (b) Trajectory error.

(a) (b)

Figure 10. Rotation angle of the end-effector. (a) Desired value and measured value. (b) Rotation error.

7. Conclusions

In this paper, kinematic and dynamic modeling and a workspace analysis of a novel
suspended CDPR for Schönflies motions were presented. The inverse and forward kine-
matic problems of the robot were solved through a geometrical approach. The dynamic
equation of the robot was derived by separately considering the moving platform and the
drive trains. Based on the dynamic equation, the dynamic feasible workspace of the robot
was determined under different values of accelerations. The correctness of the derived
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models and the workspace was verified through experiments on a prototype of the robot.
In future works, we will develop a cable tension measurement system and use a motion
capture system to measure the poses of the robot for further validation of the models
derived in this paper.
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Abstract: Pose accuracy is one of the most important problems in the application of parallel robots.
In order to adhere to strict pose error bounds, a new kinematic calibration method is proposed, which
includes a new pose error model with 60 error parameters and a different kinematic parameter error
identification algorithm based on L-infinity parameter estimation. Parameter errors are identified by
using linear programming to minimize the maximum difference between predictions and workspace
measurements. Simulation results show that the proposed kinematic calibration has better kinematic
parameter error estimation and fewer pose errors when measurement noise is less than kinematic
parameter errors. Experimental results show that maximum position and orientation errors, respec-
tively, based on the proposed method are decreased by 86.48% and 87.85% of the original values
and by 14.32% and 18.23% of those based on the conventional least squares method. The feasibility
and validity of the proposed kinematic calibration are verified by improved pose accuracy of the
parallel robot.

Keywords: kinematic calibration; parallel robot; parameter estimation; error model; pose accuracy

1. Introduction

Parallel robots have higher carrying capacity, greater structural rigidity and better
dynamic response than traditional serial robots. Parallel robots have been widely applied in
motion simulators, machine tools and medical devices. The pose accuracy of parallel robots
is required to be higher and higher in the fields of motion simulation [1,2], mechanical
manufacturing [3,4] and surgery [5,6]. The pose accuracy of parallel robots is one of the
most important performance measures in the above fields.

The pose accuracy of parallel robots is affected by geometric errors [7–11] and nongeo-
metric errors [12–16]. Geometric errors are mainly caused by manufacturing tolerances and
assembly errors. Nongeometric errors might result from clearance, friction, deformation,
and so on. Previous studies have shown that geometric errors are the dominant factor
leading to pose inaccuracy of parallel robots. It is important for parallel robots to promote
pose accuracy in practical application. Pose accuracy improvement in parallel robots is
divided into accuracy analysis, synthesis and kinematic calibration.

Accuracy analysis evaluates whether the pose performance of parallel robots meets
the design specifications and identifies sensitive factors affecting pose accuracy based on
geometric error. An analytical method for the forward and inverse error bound analyses of
a Stewart platform was developed by Kim et al. [17]. The relationship between the Stewart
platform pose errors and the joint space errors is characterized by the kinematic error model.
The forward and inverse error bound are obtained by solving two eigenvalue problems.
Comprehensive accuracy modeling and analysis of a new type of lock-or-release mecha-
nism was proposed by Ding et al. [18]. Two accuracy models were established and verified
by Monte Carlo simulation and an experiment designed to influence factor sensitivities,
and results show that the manufacturing tolerances of a lead screw are the most significant
influence factor. Accuracy analysis of a parallel positioning mechanism with actuation

Machines 2022, 10, 436. https://doi.org/10.3390/machines10060436 https://www.mdpi.com/journal/machines167



Machines 2022, 10, 436

redundancy was investigated by Ding et al. [19]. The effects of input uncertainty, compo-
nents stiffness and redundant limbs were addressed; mean value and standard deviation
of the pose errors were computed by optimal Latin hypercube sampling algorithm.

Accuracy synthesis optimally allocates component tolerances of parallel robots under
different assembly indices according to the design specification. Accuracy synthesis of a
multi-level hybrid positioning mechanism was studied by Tang et al. [20]. Three types
of error influence factors are considered in the error model, and the error boundary of
the multi-level hybrid positioning mechanism is obtained by using the vector set theory
and a linear algebra method. Accuracy synthesis was performed based on a nonlinear
optimization algorithm. A comprehensive methodology for implementing the required
pose accuracy of a 4-DOF parallel robot was presented by Huang et al. [21]. In this work, all
possible geometric errors were separated as either identifiable or unidentifiable geometric
errors. The unidentifiable geometric errors were restrained by tolerance design and assem-
bly. Pose accuracy in the whole workspace was achieved by a linear and real-time error
compensator. A systematic tolerance design method of parallel link robots was proposed
by Takematsu et al. [22]. The standard deviations of the kinematic motions of the end
effector were represented by the tolerance values of all joints and links. A suitable set the
tolerance values for all joints and links was determined using an optimization algorithm.

Kinematic calibration achieves an inverse kinematic model that more closely matches
the actual system in all possible configurations. In general, kinematic calibration can be
divided into four steps: error modeling, pose measurement, parameter identification and
error compensation. Kinematic calibration can be classified into two categories: external
calibration and self-calibration. Kinematic calibration of a Stewart platform was presented
by Zhuang et al. [23]. Kinematic error parameters of the Stewart platform were identified
using the Gauss–Newton algorithm, and the kinematic error parameters of each leg were
solved independently. However, precise pose measurement needs be performed in this
approach. Daney [24] established a complete kinematic model of the Gough platform
and a unified kinematic parameter identification scheme, and presented an original kine-
matic calibration method based on the above principle. The accuracy of the Hexapode 300
was experimentally improved by 99% using the original kinematic calibration. A novel
identifiable parameter separation method for kinematic calibration of a 6-DOF parallel
manipulator was proposed by Hu et al. [25]. The method can reduce the number of kine-
matic error parameters in the identification model and improve the convergence of the
parameter identification algorithm by simple and direct measuring. A systematic kinematic
calibration method of a 6-DOF hybrid polishing robot was presented by Huang et al. [26].
Ill-conditioning of the identification Jacobian was dealt with by establishing a linear re-
gression model and implementing kinematic error parameter estimation and pose error
compensation using a linear least squares algorithm and Liu estimator. A new error model
based on a dimensionless error mapping matrix for kinematic calibration of a 5-axis parallel
machining robot was proposed by Luo et al. [27]. Kinematic error parameters are unified
into the same unit in the error model and are identified by an iterative least squares proce-
dure based on full pose measurement with a laser tracker. A comprehensive error model for
kinematic calibration of a non-fully symmetric parallel Delta robot was presented by Shen
et al. [28]. Variations of the parallel Delta robot components and geometric parameters
were considered in the error identification model, and the variations were identified by a
least squares algorithm.

Kinematic error parameter identification in kinematic calibration can be treated as the
best approximation of measurement data. Large amounts of research have been reported on
kinematic error parameter identification based on various identification algorithms [29–32].
A novel geometric calibration of industrial robots was presented by Wu et al. [33]. The
design of experiments was proposed and added to the conventional kinematic calibration
procedure. The additional step is performed before pose measurement in order to obtain
a set of optimal measurement poses that ensure the best robot positioning accuracy after
kinematic calibration. A dedicated geometric parameter identification algorithm was de-
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scribed, and the identification procedure was divided into two steps. These two steps were
repeated iteratively to achieve the desired geometric parameter identification accuracy. A
robust kinematic calibration of serial robots based on separable nonlinear least squares was
proposed by Mao et al. [34]. The optimal geometric parameter identification problem was
converted into a separable nonlinear least squares problem by using the distinctive charac-
teristic of the MDH model. Kinematic calibration of industrial robots based on distance
measurement information was presented by Gao et al. [35]. A novel extended Kalman filter
and regularized particle filter hybrid identification algorithm was adopted to identify the
kinematic parameters of the linearized error model. The algorithm solved the problem with
traditional optimization algorithms of being easily affected by measurement noise in high-
dimension identification. However, there is little in the literature on reduction of the impact
of measurement noise by selecting optimal measurement poses in kinematic calibration. In
order to compare the different pose measurement schemes, several observability measures
were presented in [36–40] and were used to choose an optimal pose measurement scheme.
These measures are not directly related to the pose accuracy of kinematic calibration. A new
industry-oriented performance measure is presented in [33] with the intent of ensuring the
best robot positioning accuracy after geometric error compensation.

The least squares algorithm has been universally used to identifying kinematic error
parameters of parallel robots from pose measurements. Kinematic error can be identified,
analyzed and corrected to minimize the sum of squares of the difference between measured
errors and computed errors. Although this algorithm is mathematically convenient and
can achieve better average pose accuracy in a parallel robot workspace, it may result in
pose accuracy not being evenly distributed in the workspace and may even lead to large
pose errors outside of the subset.

In order to improve the uneven distribution of pose accuracy and to reduce large
pose error, a new kinematic calibration method for parallel robots is presented based on
L-infinity parameter estimation and applied to the spacecraft docking motion simulation
system. The paper is organized as follows: An inverse kinematic model of the parallel robot
is described, and a forward kinematic solution is presented in Section 2. A pose error model
for kinematic calibration is established in Section 3. A new kinematic parameter error
identification algorithm based on L-infinity parameter estimation is proposed in Section 4.
Simulations and experiments are performed, and the results are shown in Section 5. Finally,
some conclusions are given in Section 6.

2. Kinematic Model

A parallel robot model is composed of a moving platform, a base, and six identical
hydraulic cylinders with variable lengths, as shown in Figure 1. The moving platform’s
position relative to the base can be controlled by varying the length of the six hydraulic
cylinders. The parallel robot has six DOF. The base coordinate system OB-xyz is located
in the center of the base. The mobile coordinate system OP-xyz is attached to the center
of the moving platform. All vectors and matrices will be denoted in bold letters. The
two coordinate systems OB-xyz and OP-xyz can be related to each other through a vector
q =

[
x y z φ θ ψ

]T that describes the pose of the moving platform by its position
(longitudinal (x), lateral (y) and vertical (z) displacements) and its orientation (Roll (φ),
Pitch (θ) and Yaw (Ψ) angles). Thus, the position of the moving platform can be expressed
by a position vector t as

t =
[
x y z

]T (1)

and the orientation of the moving platform can be expressed by a rotation matrix R as

R =

⎡⎣cos ψ cos θ cos ψ sin θ sin φ − sin ψ cos φ cos ψ sin θ cos φ + sin ψ sin φ
sin ψ cos θ sin ψ sin θ sin φ + cos ψ cos φ sin ψ sin θ cos φ − cos ψ sin φ
− sin θ cos θ sin φ cos θ cos φ

⎤⎦ (2)
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where φ, θ, and ψ are three Roll, Pitch and Yaw (RPY) angles chosen with respect to the
x-axes, the y-axes and the z-axes, respectively, of the base coordinate system OB-xyz.

 
Figure 1. The parallel robot.

2.1. Inverse Kinematics

Referring to Figures 2 and 3, ui is the unit vector along the ith hydraulic cylinder
direction, and li is the length of the ith hydraulic cylinder; ai is the position vector from
OP to Ai and is represented in the mobile coordinate system OP-xyz, and bi is the position
vector from OB to Bi and is represented in the base coordinate system OB-xyz. A vector
chain equation can be expressed as

liui = Rai + t − bi i = 1, 2, . . . , 6 (3)

OB 

z 
y 

x 

z 
y 

x OP 

B6 B5 B4 

B3 B2 
B1 
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A5 A4 

A3 A2 
A1 

Figure 2. Coordinate system of the parallel robot.
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Figure 3. Vector chain for hydraulic cylinder i.

The vector chain equation is derived for the perfect (no errors) parallel robot. The
length of the ith hydraulic cylinder can be computed from

li = fi(R, t) =

√
(Rai + t − bi)

T(Rai + t − bi) i = 1, 2, . . . , 6 (4)

and the measured length of the ith hydraulic cylinder can be obtained by

si = li − l0,i i = 1, 2, . . . , 6 (5)

where l0,i is the initial length of the ith hydraulic cylinder.

2.2. Forward Kinematics

The forward kinematics of the parallel robot compute the moving platform pose
when the measured hydraulic cylinder lengths are given and the kinematic parameters
are known. Although the inverse kinematics for the parallel robot can be expressed in a
closed form, forward kinematics offer no analytical solution. Mapping the pose using the
hydraulic cylinder lengths is complicated to solve (Equation (4)). Numerical methods are
often employed to solve the forward kinematics for parallel robots. The following method
for the forward kinematics of a parallel robot is based on the Newton–Raphson algorithm.

For solving the forward kinematics of a parallel robot, a vector function is defined
to describe the difference between the estimated hydraulic cylinder length sei and the
measured hydraulic cylinder length sai.

f =

⎡⎢⎣ f1
...
f6

⎤⎥⎦ =

⎡⎢⎣s2
e1 − s2

a1
...

s2
e6 − s2

a6

⎤⎥⎦ (6)

The Newton–Raphson algorithm can be stated as:

(1) Measure sai, and select an initial guess for the pose, q.
(2) Compute sei based on q.
(3) Form f.
(4) If qTq < tolerance1, exit with q as the solution.

(5) Compute the partial derivative matrix J = ∂f
∂q such that Ji,j =

∂ fi
∂qj

.
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(6) Obtain update δq by solving Jδq = −f.
(7) If δqTδq < tolerance2, exit with q as the solution.
(8) Update q by q = q + δq and go to step (2).

The accuracy and rate convergence for the Newton–Raphson algorithm depend on
several factors. The algorithm rapidly converges if the initial guess is in the neighborhood
of the solution, and the algorithm is fairly robust with the choice of the initial guess. If
the second order terms are large, this first order approach will not be accurate, and the
algorithm will converge very slowly. The existence of the Jacbian inverse is required in
step (6), and thus the moving platform may not be near a singularity configuration. If
convergence problems arise, or if speed is of paramount importance, the forward kinematics
may require a different algorithm, such as those presented in [41–44].

3. Error Model

The kinematic parameters of the parallel robot might be different from those in the
design specification due to imprecision in manufacturing and assembly of the joints and
the initial length of the hydraulic cylinders. The difference will lead to pose error of the
moving platform. An error model relating the kinematic parameter errors to the pose errors
is derived in this section.

A vector differential error model is obtained by performing the following differentia-
tion for Equation (3) as

δliui + liδui = δRai + Rδai + δt − δbi i = 1, 2, . . . , 6 (7)

where δli is the length error of li, δui is the deviation vector of ui, δR is the deviation matrix
of R, δai is the position error vector of ai, δt is a deviation vector of t, and δbi is the position
error vector of bi.

The deviation vector δui can be expressed as

δui = Δui ui =

⎡⎣ 0 −δuiz δuiy
δuiz 0 −δuix
−δuiy δuix 0

⎤⎦⎡⎣uix
uiy
uiz

⎤⎦ (8)

where Δui is a skew symmetric matrix of δui.
Let δω be the angular error vector of the nominal RPY angles φ, θ and ψ, and be

represented in the base coordinate system. The angular error vector δω can be expressed as

δω =

⎡⎣δωx
δωy
δωz

⎤⎦ =

⎡⎣− sin ψδθ + cos ψ cos θδφ
cos ψδθ + sin ψ cos θδφ

− sin θδφ + δψ

⎤⎦ (9)

The skew symmetric matrix of δω can be written as

Δω =

⎡⎣ 0 −δωz δωy
δωz 0 −δωx
−δωy δωx 0

⎤⎦ (10)

The deviation matrix δR can be given by

δR = ΔωR =

⎡⎣ 0 sin θδφ − δψ cos ψδθ + sin ψ cos θδφ
− sin θδφ + δψ 0 sin ψδθ − cos ψ cos θδφ

− cos ψδθ − sin ψ cos θδφ − sin ψδθ + cos ψ cos θδφ 0

⎤⎦R (11)

Substituting Equations (8) and (11) into Equation (7) yields

δliui + liΔui ui = ΔωRai + Rδai + δt − δbi i = 1, 2, . . . , 6 (12)
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Let a’
i = Rai, Equation (12) can be rewritten as

δliui + liΔui ui = Δωa’
i + Rδai + δt − δbi i = 1, 2, . . . , 6 (13)

Equation (13) can be expressed in matrix form as

[
I ΔT

a’
i

][ δt

δω

]
=

[
ui liΔT

u’
i

−R I
]⎡⎢⎢⎣

δli
δui
δai
δbi

⎤⎥⎥⎦ i = 1, 2, . . . , 6 (14)

where I is 3 × 3 unit matrix, Δa’
i

is a skew symmetric matrix of a’
i, and Δu’

i
is a skew

symmetric matrix of ui.
Equation (14) can be rewritten as

JΩi
δΩ = Jiδpi i = 1, 2, . . . , 6 (15)

where
δΩ =

[
δtT δωT]T

=
[
δx δy δz δωx δωy δωz

]T (16)

represents the pose error of the parallel robot, and the following matrices, JΩi
and Ji are the

inverse and forward error mapping components defined as

JΩi
=

[
I ΔT

a’
i

]
(17)

Ji =
[
ui liΔT

u’
i

−R I
]

(18)

and
δpi =

[
δli δuix δuiy δuiz δaix δaiy δaiz δbix δbiy δbiz

]T (19)

represents the kinematic parameter errors in the individual vector chain.
Considering all six vector chains, Equation (14) can be expressed in the following

matrix form ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I ΔT
a’

1
I ΔT

a’
2

I ΔT
a’

3
I ΔT

a’
4

I ΔT
a’

5
I ΔT

a’
6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[

δt

δω

]
=

⎡⎢⎢⎢⎢⎢⎢⎣

J1
J2

J3
J4

J5
J6

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

δp1
δp2
δp3
δp4
δp5
δp6

⎤⎥⎥⎥⎥⎥⎥⎦ (20)

Equation (20) above can be rewritten as

JΩδΩ = Jpδp (21)

where JΩ represents the inverse error mapping matrix of the parallel robot, Jp represents
the forward error mapping matrix, and δp represents the kinematic parameter errors for all
the vector chains. The vector δp contains 60 linearly independent error parameters, and the
jth element of the vector can be denoted as δpj.

The pose error of the parallel robot can be computed by

δΩ = Jδp (22)

where
J =

(
JT

ΩJΩ

)−1
JT

ΩJp (23)

is defined as the error Jacobian matrix for the parallel robot, and its condition number will
be used to choose the optimal pose measurement configurations.
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The relationship between the pose errors of the parallel robot and the kinematic
parameter errors is described by Equation (22). It is a linear equation in terms of the
unknown kinematic parameter errors, which can be identified based on L-infinity parameter
estimation once the pose errors of the parallel robot are measured.

4. Calibration Method

The least squares fit is universally used to identify kinematic parameter errors from
measurement data in kinematic calibration. Kinematic error can be identified, analyzed
and corrected to minimize the sum of squares of the difference between measured errors
and computed errors. Thus, for a parallel robot using a control model compensated with
kinematic parameter errors and measuring a number of poses in its workspace, nothing
can be said of its accuracy at any one pose. If the sample of poses measured represents an
unbiased sample of the workspace, the mean squares errors of the parallel robot at these
poses is minimized. That is, the least squares fit does not minimize or bound the pose error
between the measured pose errors and the computed pose errors based on the error model
at a single pose.

The parallel robot is used with the spacecraft docking motion simulation system, so its
pose accuracy will be evaluated not on the basis of average error of all poses on a simulated
trajectory, but based on the error of each pose of a simulated trajectory meeting a given
accuracy specification. In order to achieve the given accuracy requirement at any one pose
in the whole workspace, a different kinematic parameter error identification algorithm
based on L-infinity parameter estimation is selected. It identifies kinematic parameter
errors of the parallel robot by minimizing the maximum difference between measured pose
errors and computed pose errors based on an error model and can bound large pose errors
and equalize pose errors across the workspace. Unknown kinematic parameter errors of
the error model (Equation (22)) can be identified by the following formulation based on
L-infinity parameter estimation:

min max|δΩi| (24)

where δΩi is computed by

δΩi = δΩm
i − δΩc

i i = 1, 2, . . . , n (25)

δΩm
i is the measured pose error, δΩc

i is the computed pose error based on Equation (22),
and n represents the number of measurement poses in the workspace of the parallel robot.

Equation (22) is rewritten in terms of the kinematic parameter errors at the ith mea-
surement pose as

δΩc
ki =

60

∑
j=1

J j
kiδpj k = 1, 2, . . . , 6 (26)

The total number of identification equations will be six times the total number of
measurement poses. The index assigned to the identification equations will be w, and it
can take values between 1 and 6n. Substituting Equations (25) and (26) into Equation (24),
the following is obtained:

min max

∣∣∣∣∣δΩm
w −

60

∑
j=1

J j
wδpj

∣∣∣∣∣ w = 1, 2, . . . , 6n (27)

Equation (27) is subject to no restrictions. The L-infinity parameter identification
problem can be converted to a linear programming problem with the introduction of the
variable z, thus the following is obtained:

min z =
60

∑
j=1

Ojδpj + y (28)
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subject to

y +
60

∑
j=1

J j
wδpj ≥ δΩm

w w = 1, 2, . . . , 6n (29)

y −
60

∑
j=1

J j
wδpj ≥ −δΩm

w w = 1, 2, . . . , 6n (30)

y = max

∣∣∣∣∣δΩm
w −

60

∑
j=1

J j
wδpj

∣∣∣∣∣ w = 1, 2, . . . , 6n (31)

The variable y represents the absolute value of the maximum discrepancy between
the measured pose errors and the computed pose errors based on the error model in the
above linear program, and O represents a 1 × 60 zero vector. The unknown kinematic
parameter errors can be identified by minimizing the variable z. The above linear pro-
gramming problem can be solved by using the simplex method [45]. For identification
of 60 kinematic parameter errors, it is expected to measure the poses that are located near
or at the boundaries of the workspace, which can provide sufficient pose error vectors to
expand the parameter space of the error model (Equation (22)). At least 30 measurement
poses are required in kinematic calibration of the parallel robot.

5. Simulations and Experiments

5.1. Model Verification

In order to verify the pose error model derived in Section 3, a numerical simulation
scheme is designed and performed by computer programs. The nominal kinematic param-
eters and the assumed kinematic parameter errors are listed in Tables 1 and 2, respectively.
The procedure can be described as follows:

1. Select a set of desired poses evenly distributed in the workspace.
2. Compute the measured lengths of the six hydraulic cylinders by using inverse kine-

matics with the nominal kinematic parameters in Table 1.
3. Actuate the parallel robot to the selected poses in sequence with the measured lengths

of the hydraulic cylinders, and compute the actual poses by using forward kinematics
with the actual kinematic parameters (the nominal kinematic parameters plus the
assumed kinematic parameter errors in Table 2).

4. Compute the actual pose errors, namely, subtract the selected poses from the actual poses.
5. Compute the pose errors by using the pose error model with the nominal kinematic

parameters, the lengths and the unit vectors of the hydraulic cylinders, and the
kinematic parameter errors.

6. Draw the contrasting curves of the position error and the orientation error for the
above numerical simulation results in Figures 4 and 5.

Table 1. The nominal kinematic parameters.

aix (mm) aiy (mm) aiz (mm) bix (mm) biy (mm) biz (mm) lix (mm) liy (mm) liz (mm)

1 1394.7 122.0 0 2049.3 3038.5 0 −654.6 −2916.5 3091.2

2 −591.7 1268.8 0 1606.8 3294.0 0 −2198.5 −2025.2 3091.2

3 −803.0 1146.8 0 −3656.1 255.5 0 2853.1 891.3 3091.2

4 −803.0 −1146.8 0 −3656.1 −255.5 0 2853.1 −891.3 3091.2

5 −591.7 −1268.8 0 1606.8 −3294.0 0 −2198.5 2025.2 3091.2

6 1394.7 −122.0 0 2049.3 −3038.5 0 −654.6 2916.5 3091.2
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Figure 4. Comparison of the position error computation results.

 

Figure 5. Comparison of the orientation error computation results.

Table 2. The assumed kinematic parameter errors.

δaix (mm) δaiy (mm) δaiz (mm) δbix (mm) δbiy (mm) δbiz (mm) δlix (mm) δliy (mm) δliz (mm)

1 0.90 −0.09 0.84 −0.18 −0.72 −0.97 0.69 0.36 −0.39

2 −0.54 −0.96 0.48 0.79 −0.59 0.49 0.05 −0.24 −0.62

3 0.21 0.64 −0.65 −0.88 −0.60 −0.11 −0.59 0.66 −0.61

4 −0.03 −0.11 −0.19 −0.29 0.21 0.86 0.34 0.05 0.36

5 0.78 0.23 0.87 0.63 −0.46 −0.07 0.68 0.42 −0.39

6 0.52 0.58 0.83 −0.98 −0.61 −0.16 −0.96 −0.14 0.08

The following conclusions can be summarized from Figures 4 and 5.

1. Pose errors vary at different locations in the workspace. The pose errors are affected
not only by kinematic parameter errors, but also by the pose of the parallel robot.

2. Pose errors computed by using the pose error model are basically consistent with the
actual pose errors.
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Therefore, the proposed pose error model is verified to be correct and to represent the
kinematic parameter errors of the parallel robot.

5.2. Identification Simulations

Kinematic parameter error identifications were simulated with various kinematic
parameter errors, measurement noise levels and pose configuration sets. The actual co-
ordinates of the feature points of the moving platform were measured by a coordinate
measuring machine, and the actual poses of the parallel robot were computed. Three
kinematic parameter error sets were given, with the assumed kinematic parameter errors
obtained from normal distributions with variances of 0.01 mm (set I), 0.1 mm (set II) and
1 mm (set III). These kinematic parameter error sets are shown in Tables 3–5, respectively.
Gaussian noise with variances of 0.0001 mm, 0.001 mm, 0.01 mm and 0.1 mm was added
to the coordinate measurements of the feature points of the moving platform to simulate
measurement noise. Four different pose sets were used in the identification simulations.
Pose set 1 contains 32 random poses. Pose set 2 contains 24 poses based on a full factorial
exploration of the six pose variable limits. Pose set 3 contains 32 poses selected from the
workspace using a coordinate exchange algorithm for optimal experimental design. Pose
set 4 contains 64 poses selected using a coordinate exchange algorithm.

Table 3. The assumed kinematic parameter errors with variances of 0.01 mm.

δaix (mm) δaiy (mm) δaiz (mm) δbix (mm) δbiy (mm) δbiz (mm) δlix (mm) δliy (mm) δliz (mm)

1 0.0538 0.1834 −0.2259 0.0862 0.0319 −0.1308 −0.0434 0.0343 0.3578

2 0.2769 −0.1350 0.3035 0.0725 −0.0063 0.0715 −0.0205 −0.0124 0.1490

3 0.1409 0.1417 0.0671 −0.1207 0.0717 0.1630 0.0489 0.1035 0.0727

4 −0.0303 0.0294 −0.0787 0.0888 −0.1147 −0.1069 −0.0809 −0.2944 0.1438

5 0.0325 −0.0755 0.1370 −0.1712 −0.0102 −0.0241 0.0319 0.0313 −0.0865

6 −0.0030 −0.0165 0.0628 0.1093 0.1109 −0.0864 0.0077 −0.1214 −0.1114

Table 4. The assumed kinematic parameter errors with variances of 0.1 mm.

δaix (mm) δaiy (mm) δaiz (mm) δbix (mm) δbiy (mm) δbiz (mm) δlix (mm) δliy (mm) δliz (mm)

1 −0.0022 0.4847 −0.2434 0.1174 −0.0713 0.3533 −0.3444 0.0103 0.1747

2 0.3480 0.4883 0.0272 −0.4717 −0.2347 −0.3357 0.7433 −0.1947 0.2366

3 −0.0608 0.2810 −0.2419 −0.4434 −0.4498 0.1544 −0.0561 −0.0620 0.4488

4 0.0922 0.0626 0.5021 −0.2544 0.2203 0.2641 −0.0771 0.0682 −0.3687

5 −0.3630 0.0332 0.2284 0.8176 −0.2109 0.0592 −0.0261 −0.6113 −0.1388

6 −0.5675 0.2658 −0.2808 0.0317 −0.1722 0.0960 −0.1898 0.1549 0.2338

Table 5. The assumed kinematic parameter errors with variances of 1 mm.

δaix (mm) δaiy (mm) δaiz (mm) δbix (mm) δbiy (mm) δbiz (mm) δlix (mm) δliy (mm) δliz (mm)

1 1.7119 −0.1941 −2.1384 −0.8396 1.3546 −1.0722 0.9610 0.1240 1.4367

2 −1.9609 −0.1977 −1.2078 2.9080 0.8252 1.3790 −1.0582 −0.4686 −0.2725

3 1.0984 −0.2779 0.7015 −2.0518 −0.3538 −0.8236 −1.5771 0.5080 0.2820

4 0.0335 −1.3337 1.1275 0.3502 −0.2991 0.0229 −0.2620 −1.7502 −0.2857

5 −0.8314 −0.9792 −1.1564 −0.5336 −2.0026 0.9642 0.5201 −0.0200 −0.0348

6 −0.7982 1.0187 −0.1332 −0.7145 1.3514 −0.2248 −0.5890 −0.2938 −0.8479
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For each simulation, kinematic parameter errors were identified using L-infinity
parameter estimation based on the LINPROG function of the MATLAB Optimization
Toolbox. Kinematic parameter identification error was computed as the root mean square
value of the difference between the actual kinematic parameter errors and the identified
kinematic parameter errors. In order to evaluate the resulting pose accuracy improvement,
pose errors were computed before and after kinematic calibration by using the pose error
model given in the previous section in this paper. Position error was computed as the
maximum absolute value of the error along the x, y and z axes at 100 evaluation poses
randomly distributed in the workspace. Orientation error was computed as the maximum
absolute value of the error around the x, y and z axes at the same poses as above. All
identification simulations where the measurement noise level was less than the kinematic
parameter errors resulted in better kinematic parameter error identification and higher
pose accuracy.

The effects of pose selection on kinematic calibration are shown in Figures 6–8. Notice
that identification of kinematic parameter error obtained by using pose set 1 are consistently
worse than those obtained by using pose set 2, even though pose set 1 has more poses
than pose set 2. This shows that choosing the poses is more important than the number
of poses contained in the pose set. However, very little improvement can be obtained
once the number of poses exceeds a certain limit. For the rest of the discussions, kinematic
calibration using pose set 3 will be compared, since this pose set yielded good identification
results with only 32 poses.

The effect of measurement noise on kinematic calibration is shown in Figures 9 and 10.
Notice that pose accuracy improves as measurement noise is reduced, and kinematic
parameter errors are perfectly identified when measurement noise is close to zero. This
shows that measurement noise should be at least an order of magnitude lower than the
desired pose accuracy.

 
Figure 6. Identification error reduction percentage versus pose selection for set I.
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Figure 7. Identification error reduction percentage versus pose selection for set II.

Figure 8. Identification error reduction percentage versus pose selection for set III.
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Figure 9. Position error reduction percentage versus measurement noise.

Figure 10. Orientation error reduction percentage versus measurement noise.

5.3. Comparison Experiments

The experimental system mainly consisted of a parallel robot, a three-dimensional
coordinate-measuring machine and six standard spheres. The experimental system for
kinematic calibration based on L-infinity parameter estimation is shown in Figure 11.
Pose measurement of the parallel robot was done with a precise three-dimensional co-
ordinate measuring machine, model 3000i manufactured by STAR Tech. The measuring
machine has a point repeatability of 0.010 mm and a length accuracy of 0.016 mm in the
1.2 m × 1.2 m × 1.2 m measuring range. Three of these spheres were fixed at three specific
locations of the moving platform, and the other three were fixed at three specific base
locations. On this basis, pose measurement of the parallel robot was developed, which
mainly measured the distances from three standard spheres on the moving platform to
three standard spheres on the base by the coordinate-measuring machine. Then, the poses
were computed using these distances, as shown in Figure 12. It is worth mentioning that
the kinematic calibration experiments were performed in a limited area due to the length
measurement limitation of the coordinate-measuring machine.
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Figure 11. The experimental system.
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Figure 12. The schematic diagram of pose measurement.

The comparison experiments of kinematic calibration were performed using the con-
ventional least squares algorithm and the proposed L-infinity parameter identification
algorithm. The two results were compared according to the following four indicators:
(1) maximum error, (2) range of error, (3) average error and (4) root mean square error.
According to the pose error model, full pose measurement is needed to solve kinematic
parameter errors in the two kinematic calibrations. The full pose could be obtained by
using a mobile, flexible triad coordinate measuring machine. On the foundation of the
abovementioned identification simulations, a measured pose selection rule was determined
to make the comparison more effective and to better carryout the experiment: 32 measure-
ment poses based on pose set 3 were chosen to cover the whole workspace by using the
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union of a full factorial exploration and a coordinate exchange algorithm in the comparison
experiments. Meanwhile, 24 verification poses evenly distributed in the workspace of the
parallel robot were also collected to validate pose accuracy improvement in the experiment.

Pose error measurement and kinematic parameter error identification were accom-
plished by using the original 32 pose errors at the measurement poses listed in Table 6.
Then a new round of pose measurement was performed to evaluate pose accuracy after
the two kinematic calibrations. The pose errors at verification poses based on the two
kinematic calibrations were obtained and are shown in Figures 13 and 14, and the four pose
error indicators before and after kinematic calibration are listed in Table 7. The maximum
position error after kinematic calibration by using conventional least squares algorithm
was 1.0980 mm, and the maximum position error after kinematic calibration by using the
proposed L-infinity parameter identification algorithm was 0.9408 mm. The maximum
orientation errors were 0.1037 and 0.0848 degree, respectively. The maximum position error
based on least squares was reduced by 84.22%, and the maximum position error based
on L-infinity was reduced by 86.48%. The maximum orientation errors were reduced by
85.14% and 87.85%, respectively. The range of position error based on least squares is
reduced by 85.76%, and the range of position errors based on L-infinity was reduced by
87.01%. The range of orientation errors were reduced by 87.67% and 88.99%, respectively.
The percentage reductions of average error and root-mean-square error for a conventional
least squares algorithm were almost identical at 83.37% and 83.42%, respectively. The
percentage reductions of average error and root-mean-square error for the L-infinity pa-
rameter identification algorithm was similar to the conventional least squares algorithm.
The two errors were 85.29% and 85.34%, respectively. Clearly, both kinematic calibrations
can improve pose accuracy, while kinematic calibration based on the L-infinity parameter
identification algorithm is much better than the conventional least squares algorithm. This
verifies that the proposed kinematic calibration based on the L-infinity parameter identifi-
cation algorithm is effective and can achieve strict bounds on the pose errors produced by
the parallel robot.

Table 6. The pose errors at measurement poses before kinematic calibration.

δx (mm) δy (mm) δz (mm) δωx (deg) δωy (deg) δωz (deg)

1 0.7286 −6.3683 3.9254 −0.6993 0.0787 −0.5509

2 3.2461 3.7276 −4.6233 0.5205 0.1881 −0.4997

3 0.4247 −3.5500 5.2487 0.1637 −0.6549 −0.4653

4 7.1205 −0.7135 7.0661 0.6958 0.1667 0.1756

5 −3.8926 2.7736 0.3100 0.0440 −0.1890 0.1089

6 −5.4966 −1.8954 5.5656 −0.0239 −0.6302 −0.6266

7 5.4412 3.4634 1.3559 0.4299 −0.0097 0.6130

8 −6.0964 −1.3912 −4.8010 −0.3787 −0.4286 0.3274

9 −1.2509 2.7113 −4.1599 0.0023 0.5265 0.3404

10 −0.6286 3.0045 −1.2172 0.5702 −0.4103 −0.6106

11 −1.8018 −0.7148 3.6391 0.1103 −0.4934 0.5132

12 3.8494 −6.7218 4.7315 0.4917 −0.4334 0.6175

13 1.9224 −2.2985 4.2254 0.3415 −0.6399 0.6880

14 3.9698 −0.9706 −2.4738 0.1262 0.1956 0.51111
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Table 6. Cont.

δx (mm) δy (mm) δz (mm) δωx (deg) δωy (deg) δωz (deg)

15 6.2558 −3.1595 0.5891 −0.3521 −0.3026 0.4076

16 6.8226 −4.1999 −5.7218 0.2396 0.0594 0.0239

17 −4.2713 4.6767 −5.4127 −0.5823 0.2802 −0.4496

18 −5.0266 −0.8908 −5.0633 0.1826 0.0038 −0.1380

19 2.8939 5.6152 2.6436 0.2319 0.0555 −0.5112

20 −5.6668 −1.4413 0.0365 0.3290 −0.0723 −0.6564

21 0.4660 3.9291 −4.3042 0.5560 −0.5253 0.6242

22 0.5362 −1.3616 0.0340 0.6850 −0.0086 −0.2752

23 5.2368 4.4890 −4.9025 0.3843 0.5027 −0.2833

24 −0.1102 3.7296 −6.2188 0.1198 0.5322 −0.2306

25 −1.4090 −1.6372 5.0886 0.6089 −0.3189 −0.0414

26 2.5410 −3.9304 0.9656 0.1179 −0.4061 0.2140

27 3.5333 4.2317 6.2097 −0.6761 0.0966 −0.6644

28 0.3899 6.4896 2.8996 −0.5296 0.2028 0.4875

29 −2.0590 −2.3453 1.2815 0.5164 −0.1120 0.0882

30 −4.8685 2.5387 4.5868 −0.0171 −0.4096 0.5043

31 1.3284 −0.7669 5.4908 0.4912 0.6366 −0.2095

32 −3.2749 4.8440 7.0524 −0.4047 −0.5843 −0.0711

Figure 13. The absolute position errors at verification poses before and after calibration.
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Figure 14. The absolute orientation errors at verification poses before and after calibration.

Table 7. Comparison of absolute pose errors at verification poses before and after calibration.

Before Kinematic Calibration After Kinematic Calibration

Position
(mm)

Orientation
(deg)

Based on L-Infinity Based on Least Squares

Position
(mm)

Orientation
(deg)

Position
(mm)

Orientation
(deg)

Maximum error 6.9595 0.6977 0.9408 0.0848 1.0980 0.1037

Range of error 14.2670 1.4721 1.8534 0.1620 2.0313 0.1815

Average error 6.1194 0.5952 0.9001 0.0805 1.0174 0.0964

Root-mean-square error 6.1455 0.5971 0.9005 0.0806 1.0189 0.0965

6. Conclusions

A new kinematic parameter error identification algorithm for the kinematic calibration
of a parallel robot using L-infinity parameter estimation is developed in this paper. The
kinematic parameter error identification procedure is transformed into a linear program-
ming problem that computes kinematic parameter errors for a pose error model of a parallel
robot so that the maximum difference between the predictions and measurements across its
workspace is minimized. A strict bound on the pose errors produced by the parallel robot is
given in the kinematic calibration based on L-infinity parameter estimation. The experimen-
tal results show a 14.32% reduction in maximum position errors and a 18.23% reduction in
maximum orientation errors by using L-infinity parameter estimation compared to least
squares estimation. The comparison results show an 8.76% reduction in range of position
errors and a 10.74% reduction in range of orientation errors by using L-infinity parameter
estimation compared to least squares estimation. Therefore, this validates that the proposed
kinematic calibration method can effectively improve pose accuracy of the parallel robot
and determine the range of the pose error. It should be noted that this kinematic calibration
method can be used when pose measurement errors are tightly restricted and measurement
noise is low.
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Abstract: Aiming at the requirements of titanium alloy holes in aircraft industry, the 3-DOF cutting
stability and surface quality optimization of parallel kinematic manipulator (PKM) are studied.
The variation of natural frequencies with the end-effector position of the PKM is analyzed. The
cutting force model of titanium alloy helical milling based PKM is developed, and the cutting force
coefficients are identified. The prediction model for 3-DOF the stability of helical milling based on
the PKM is established through a Semi-Discrete method, and the stability lobes are obtained. The
correctness of the stability lobes is verified by subjecting the cutting force signal to time-frequency
transformation and roughness detection. The step-cutter is used for machining process improvement
to enhance the stability domain. The method proposed in this paper can provide a reference for
further optimization of the prediction and optimization of the milling process of difficult-to-process
materials based on PKM in the future.

Keywords: PKM; helical milling; cutting stability; surface quality; process optimization

1. Introduction

The quality requirements of the aircraft components are stringent because of their
harsh working environment [1]. Besides, the aircraft components have the characteristics of
large size, high requirements of precision and surface quality, high mechanical properties
and high difficulty of material processing, which have posed great challenges to the tradi-
tional processing equipment and technology. Industrial robots have great advantages in
milling process on the large aircraft components due to its high reconfigurablity. The hybrid
PKM combines the advantages of high flexibility of series manipulator and large working
space, high stiffness precision of parallel manipulator. The processing of hole making is
an important part of aircraft assembly process in the aircraft industry. Compared with the
traditional drilling process, helical milling has the advantages of less cutting force, simple
process and low tool loss [2], which makes it more advantageous in the machining process
of titanium alloy and other difficult-to-process materials in the aircraft industry. Therefore,
it is necessary for the research of helical milling based on the hybrid PKM to improve
the precision of hole making and improve the assembly efficiency. However, it is easy to
occur the machining instability when machining the difficult-to-process materials, since
the stiffness of the hybrid PKM is less than five-axis machine tool. Besides, the parameters
of the hybrid PKM may vary with the position. Therefore, it is of great significance to
analyze the machining performance of the hybrid PKM under different positions, study
its cutting stability and machining quality and optimize the machining parameters, which
may improve the machining quality.

Many scholars have carried out some related studies in cutting stability and machining
quality. Altintas et al. [3] established a virtual prototype with the structure of the hybrid
machine tool, which was used to study the stiffness, dynamics, vibration characteristics
and cutting stability of the mechanism. The precision and machining performance of
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the hybrid machine tool were systematically analyzed on the basis of the analysis results.
Piras et al. [4] analyzed the dynamic characteristics of the planar parallel mechanism with
the simplified limbs with the help of the Finite Element Method. The variation of the
natural frequency and the mode under different positions and attitude were obtained.
Luo et al. [5] established an elastodynamics model which could predict the frequency
response function (FRF) of 3-RPS parallel manipulator quickly based on the substructure
synthesis technology. The natural frequency, frequency response and vibration mode
of the parallel manipulator were simulated, and the variation trend of these parameters
among the workspace was given. Law et al. [6] studied FRFs at the end of the system
under different configurations based on the PKM by adopting modal polycondensation and
substructure synthesis, and solved the cutting stability under different configurations by
using a reduced order model. The relationship of dynamic characteristics, cutting stability
and configurations was studied. Mousavi et al. [7] established a parameterized model
to predict the dynamic characteristics and stability limit along the machining trajectory
of the manipulator to achieve the maximum stability domain of the machining process.
Li et al. [8] studied the dynamic behavior of the machine milling system and the chatter
stability domain according to the stiffness model and the dynamic milling force model.
The stability lobes of the whole system were obtained, and the experiments were carried
out to verify the results. Shi et al. [9] took TriMule hybrid PKM as an example, and
established the overall cutting dynamics model considering the hybrid PKM by analytical
method. The cutting stability of TriMule was analyzed in the working space according to
the cutting dynamics model. The trend of the 2-dimensional stability lobe diagram in the
plane of workpiece with the variation of the position of the end-effector of hybrid PKM was
obtained. Cao et al. [10] investigated the interaction mechanism between the spindle-tool
system. Based on the process stability and surface quality of workpiece, a cutting parameter
selection method is proposed from the perspective of machining stability. Mejri et al. [11]
quantify the dynamic behavior s variation of an ABB IRB 6660 robot equipped with a
high-speed machining (HSM) spindle in its workspace, and analyze the consequences in
terms of machining stability. The results show that an adjustment of the cutting conditions
must accompany the change of robot posture during machining to ensure stability.

Titanium alloy is widely used in the aircraft industry due to its excellent material
characteristics. However, its surface quality directly affects its mechanical properties and
practical life. Therefore, in terms of the surface machining quality and process of titanium
alloy, Polini et al. [12] carried out cutting experiments on Ti6-Al4-V using tools of different
materials. The influence of cutting force and tool wear on the machining surface quality
were analyzed. It is found that TiAlN single-coated carbide tool had the better surface
quality and longer tool life. Zain et al. [13] had given the optimal solution of cutting
conditions with genetic algorithm to obtain the minimum surface roughness on the basis
of radial rake processing parameters. The regression model was established according
to the practical machining example. An optimal regression model was established to
determine the fitness function of the genetic algorithm. The minimum surface roughness of
the samples was reduced by about 27%. Munoz-escalona et al. [14] proposed a geometric
model for predicting the surface roughness based on geometric analysis of tool path. The
accuracy of surface roughness prediction reached 98% without considering the side wear of
the tool, which was suitable for arbitrary diameter, arbitrary number of teeth and arbitrary
nose radius of the tool. Liu et al. [15] established a mathematical model to calculate the
uncut thickness and to describe the dynamic behavior of micro-milling force, including
the combined influences of tool runout, minimum uncut thickness and edge plowing.
Zhang et al. [16] designed the two-step milling (roughing and then finishing) experiments
of Ti-6Al-4V titanium alloy to analyze the effect of different roughing parameters on the
cutting force of roughing and finishing, the residual stress of finishing surface and the
microstructure. The microstructural characteristics in terms of residual stress, XRD patterns,
phase composition and content and nano-scale crystallite size of machined surface layer
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were characterized to reveal the machined surface layer quality adjustment and controlling
mechanism from the prospective of the microscopic scale.

The static and dynamic stiffness of hybrid PKM is weaker than that of a 5-axis machine
tool due to its structural characteristics. In order to meet the requirements of aircraft
industry, it is necessary to study the cutting stability considering the PKM, when the PKM
is applied to titanium alloy helical milling. The surface quality is analyzed to optimize the
machining parameters and machining processing according to the above analysis. Few of
the above studies have concerned this aspect. Therefore, this paper will arrange it as follows:
in Section 2, a modal analysis of the PKM is performed and cutting forces model of helical
milling based on PKM are established. The cutting forces coefficients are identified and the
3-DOF cutting dynamic model of helical milling-based PKM is established accordingly. In
Section 3, the cutting experimental platform and modal experimental platform based on the
PKM named TriMule are built, and cutting experiments and hammering modal experiments
are performed. In Section 4, the experimentally obtained data are analyzed and the stability
lobes for titanium alloy helical milling based PKM are obtained and validated. The step-
cutter is used to optimize the machining process to improve the stability domain, and the
optimization effect is demonstrated experimentally. The conclusion is given in Section 5.

2. Cutting Stability Analysis Based on Hybrid PKM

2.1. Modal Analysis of PKM

The natural frequency of the PKM is the basis for the study of its vibration charac-
teristics. The PKM should be avoided from being excited by its natural frequency as far
as possible to ensure the stability in the machining process [17]. The FEA method and
experimental method are used to analyze the modal. The accuracy of the results is verified
by experiments. The vibration equation of PKM can be expressed as

M
..
X + C

.
X + KX = F (1)

where M, C and K are the mass matrix, damping matrix and stiffness matrix of the PKM
respectively; X,

.
X and

..
X are the displacement matrix, velocity matrix and acceleration

matrix respectively; F is the external excitation load at the end-effector of the PKM.
The damping and external load of the PKM in Equation (1) are zero when free vibration

occurs, so the differential equation of free vibration of the PKM can be expressed as:

M
..
X + KX = 0 (2)

Equation (2) can be solved to obtain the vibration characteristics of the PKM in free
vibration state

X = X0 sin(ωt + ψ) (3)

where X0 is the vibration amplitude of the PKM response; ω, t and ψ are the response
frequency, time and original phase angel, respectively.

Substitute Equation (3) into Equation (2):(
K − ω2M

)
X0 = 0 (4)

Solve the characteristic equation of Equation (4) and obtain n different characteristic
values ωi (I = 1~n), which are arranged in ascending order as follows

ω1 < ω2 < ω3 < · · · < ωi < · · · < ωn

where ωi is the ith-order natural frequency of the PKM, which are related to the mass
matrix and stiffness matrix.
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The external excitation of the PKM in the process of machining is simple harmonic
force, which can be express as

F = F0 cos(ωt) (5)

where F is the external excitation; F0 is the amplitude of the external excitation.
The response of the PKM to harmonic force can be express as:

X = X0 sin(ωt) (6)

Substitute Equations (5) and (6) into Equation (1), and H(ω) represents the Frequency
Response Runction (FRF) of the end-effector of the PKM, which is also depending on the
position of the PKM:

H(ω)−1 = −ω2M + jωC + K (7)

The PKM used in this paper is a novel 5-DOF hybrid PKM named TriMule, which
have been proposed by Tian et al. [18]. As shown in Figure 1, the PKM is composed of
a 3-DOF R(2-RPS&RP)&UPS parallel mechanism plus a A/C wrist. Here, R, P, U and S
represent revolute, prismatic, universal and spherical joints, respectively, and P denotes an
actuated prismatic joint. RPS branch is denoted as limb i (i = 1, 2); UPS branch is denoted as
limb 3; and RP branch is denoted as limb 4. It is necessary to simplify the original complex
components and establish their own coordinate system to describe the kinematics model of
hybrid PKM. wi is defined to represent the direction vector of stretch of limb i. The fixed
coordinate system κ is established with the midpoint A4 of the base link as the origin, and
the coordinate system κi is established at the intersection of the joint axes of R pair (or U
pair) and P pair in limb i. Ri is the attitude matrix of coordinate system κi with respect to
fixed coordinate system κ, which can be expressed as:

Ri =
[

ui vi wi
]
=

⎡⎣ cos θ2i 0 sin θ2i
sin θ1i sin θ2i cos θ1i − sin θ1i cos θ2i

− cos θ1i sin θ2i sin θ1i cos θ1i cos θ2i

⎤⎦ (8)

Figure 1. The PKM named TriMule: (a) CAD model (b) structure diagram with coordinates of TriMule.

Due to the structural characteristics of the PKM, its dynamic performance is varied
with the end-effector position of the PKM. Therefore, seven representative positions are
selected in the workspace to analyze the dynamic performance in the coordinate of Om-
xmymzm. The origin of the coordinate system Om-xmymzm is established at the intersection
of the A/C wrist, and each axis is parallel to each axis of the coordinate system κ. Figure 2
shows the selected representative positions in the workspace. The coordinates of them in
the fixed coordinate system κ are shown in Table 1.

The modal simulation of the PKM is carried out by using FEA software on the basis
of the above analysis. The positions of the end-effector of the PKM as shown in Table 1
were also selected to analyze. Figures 3 and 4, respectively, gave the first 4 modal modes of
the PKM at the initial position (Position 1 in Table 1) and the simulation values of natural
frequencies at the 7 representative positions. As shown in Figure 4, the natural frequency
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of the PKM is strongly correlated with the end-effector position. The higher order modes
are relatively more influenced by the end-effector position.

 

Figure 2. Seven representative positions in the workspace of TriMule.

Table 1. Coordinate of selected position points in fixed coordinate system κ.

Number of Positon x (mm) y (mm) z (mm) Angle of A/C Wrist

1 0 0 0 0
2 200 0 0 0
3 400 0 0 0
4 0 0 100 0
5 0 0 −50 0
6 0 −50 0 0
7 0 100 0 0

  
(a) (b) 

 
(c) (d) 

Figure 3. The mode shapes of the first 4 order simulation modes of the PKM at initial position. (a) 1st
mode shape of vibration; (b) 2nd mode shape of vibration; (c) 3rd mode shape of vibration; and (d)
4th mode shape of vibration.
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Figure 4. The natural frequency simulation values of the PKM at position 7.

2.2. Cutting Forces Modeling and Identification of Cutting Forces Coefficients of Helical Milling
Based on PKM

In order to analyze the 3-DOF cutting stability of helical milling, the cutting forces of
the helical milling based on PKM will be established first in this section. Both the side and
the bottom edges of the tool are involved in the cutting process. The working state of the
side edge can be approximated as an ordinary milling process, while the working state of
bottom edge can be approximated as a drilling process. Therefore, the feed motion of helical
milling can be divided into two parts, which are axial feed motion vc and circumferential
feed motion nc. The feed trajectory is a spiral line, whose radius is the eccentric distance e
of the tool and the hole, the pitch is the axial feed ap per revolution, the spindle speed is n,
and the number of tool edges is N. The schematic diagram of cutting thickness of helical
milling is shown in Figure 5.

The cutting force model of helical milling based on PKM is established according to
Literature [8]. According to the cosine theorem, Pc can be expressed as:

PcOw
2 = Rt

2 + e2 − 2Rte cos(π − ϕ) (9)

PcOc = PcOw
2 + e2 − 2PcOwe cos

( ϕk
2

)
(10)

ϕk can be express as:

ϕk = 2ar cos

(
e − Rt cos(ϕ)√

e2 + Rt2 − 2Rte cos(ϕ)

)
(11)

Therefore, the axial depth of side edge b(ϕ) in the helical milling can be expressed as:

b(ϕ) = ap −
ap

π
ar cos

(
e − Rt cos(ϕ)√

e2 + Rt2 − 2Rte cos(ϕ)

)
(12)

kr, kt and ka are the shear effect coefficients of the side edge of tool in radial direction,
tangential direction and axial direction in the cutting force model of helical milling, which
are the main sources of dynamic cutting force; kre, kte, kae are the friction effect coefficients
of side edge of tool in radial direction, tangential direction and axial direction, which are
mainly related to static cutting force and can be ignored to analyze the stability; kFea, kFec
are the shear effect coefficient and friction effect coefficient of the bottom edge in the axial
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direction, respectively, which are not related to the dynamic cutting chips and stability of
the process. Therefore, only kr, kt and ka are considered in the cutting stability analysis.

As shown in Figure 5, radial, tangential and axial cutting forces in relation to the
instantaneous cutting chips thickness during the instantaneous cutting process can be
expressed as:

Frj(ϕ) = krb
(

ϕj
)
hj
(

ϕj
)

Ftj(ϕ) = ktb
(

ϕj
)
hj
(

ϕj
)

Faj(ϕ) = kab
(

ϕj
)
hj
(

ϕj
) (13)

Figure 5. The schematic diagram of cutting thickness of helical milling: (a) the chip of helical milling;
(b) the process of helical milling (top view); (c) dynamic cutting thickness of the j-th cutter tooth
in the xw direction and yw direction of helical milling; and (d) dynamic cutting thickness of the j-th
cutter tooth in the zw direction.
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Neglecting the effect of static cutting forces, which means neglecting the effect of static
cutting thickness, the cutting thickness can be expressed as

h
(

ϕj
)
=

[(
Δx sin ϕj + Δy cos ϕj

)
sin γ − Δz cos γ

]
g
(

ϕj
)

(14)

where Δx, Δy and Δz are the displacements generated by two adjacent cutter teeth cutting
through the workpiece in each direction. γ is the cutter helix angle and g(ϕj) is the function
indicating whether the cutter teeth are cutting in, which can be expressed as:

g
(

ϕj
)
=

{
1 ϕst < ϕj < ϕex

0 ϕj < ϕstor ϕj > ϕex
(15)

Therefore, the differentiation of the radial, tangential and axial forces of helical milling
can be expressed as:⎡⎣ dFrj

dFtj
dFaj

⎤⎦ = b(θ)

⎡⎣ kr
kt
ka

⎤⎦[ sin ϕj sin γ cos ϕj sin γ − cos γ
]⎡⎣ Δx

Δy
Δz

⎤⎦ (16)

Converting the Equation (16) into workpiece coordinate system, it can be expressed as:⎡⎣ dFxj
dFyj
dFzj

⎤⎦ =

⎡⎣ − sin γ sin ϕj − cos ϕj − cos γ sin ϕj
− sin γ cos ϕj sin ϕj − cos γ cos ϕj

cos γ 0 − sin γ

⎤⎦⎡⎣ dFrj
dFtj
dFaj

⎤⎦ (17)

Therefore, the cutting forces can be expressed as:

F =
N

∑
j=0

Fj (18)

Translating the Equation (18) into matrix form, it can be expressed as

F = Ab(ϕ)h(ϕ) (19)

where A is the direction coefficient matrix, which can be expressed as:

A =

⎡⎣ hxx(t) hxy(t) hxz(t)
hyx(t) hyy(t) hyz(t)
hzx(t) hzy(t) hzz(t)

⎤⎦ (20)

In order to analyze the stability of helical milling based on PKM, the cutting force
coefficients need to be identified. According to the method given in the Literature [9],
the cutting force coefficients of the side edges are identified by means of slot milling
experiments. The average cutting force in each direction in the workpiece coordinate
system during slot milling (the entry angle is 0 and the exit angle is π) can be expressed as:⎧⎨⎩

Fwx = 1
4 Nkrapst +

1
π Nkreap

Fwy = 1
4 Nktapst +

1
π Nkteap

Fwz = − 1
4 Nkaapst − 1

2 Nkaeap

(21)

The cutting force coefficient can be identified by linear regression method according
to Equation (21).

2.3. 3-DOF Cutting Stability Analysis of Helical Milling Based on the PKM

The improved Semi-Discrete Time Domain Method is used to analyze the cutting
stability of titanium alloy helical milling at 7 positions of TriMule. The differential equations
of 3-DOF cutting dynamics for helical milling of TriMule can be expressed as
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⎛⎝ ..
x
..
y
..
z

⎞⎠+ 2

⎛⎝ ωnx
ωny

ωnz

⎞⎠⎛⎝ ξx
ξy
ξz

⎞⎠⎛⎝ .
x
.
y
.
z

⎞⎠+

⎡⎣⎛⎝ ωnx
2

ωny
2

ωnz
2

⎞⎠+ Q

⎤⎦⎛⎝ x
y
z

⎞⎠ = Q

⎛⎝ x(t − τ)
y(t − τ)
z(t − τ)

⎞⎠ (22)

Q =

⎛⎜⎜⎝
aphxx(t)

mtx

aphxy(t)
mtx

aphxz(t)
mtx

aphyx(t)
mty

aphyy(t)
mty

aphyz(t)
mty

aphzx(t)
mtz

aphzy(t)
mtz

aphzz(t)
mtz

⎞⎟⎟⎠ (23)

where ωnx, ωny and ωnz are the angular natural frequency of the PKM in the direction of x,
y and z respectively; mtx, mty and mtz are the modal mass of the PKM in the direction of
x, y and z respectively; and ξx, ξy and ξz are the damping ratio. x(t − τ) is the time delay
due to the regeneration effect, which is equal to the time between the cutter teeth cutting
into and cutting out the workpiece. T is the time delay of ordinary cutter with equal pitch.
Since the revolution speed nc is far less than the spindle speed n, T can be expressed as:

T =
60
Nn

(24)

Transforming kinematics equation into state space equation

.
u(t) = Aiu(t) + ωaBiui−m+1 + ωbBiui−m (25)

where Ai is the constant matrix; Bi is the state term; ui is the space term. As the time delay
is equal to the period, ωa = ωb = 1/2. m is the integer introduced:

m = int
(

τ + Δt/2
Δt

)
(26)

The dynamic equation of regenerative cutting can be expressed as:

ui+1 = Piui + ωaRiui−m+1 + ωbRiui−m (27)

Pi = exp(AiΔt) (28)

Ri = (exp(AiΔt)− I)Ai
−1Bi (29)

I represents the identity matrix; (3m + 6) dimensional state vector can be expressed as:

zi = col
(

xi yi zi
.
xi

.
yi

.
zi xi−1 yi−1 zi−1 · · · xi−m yi−m zi−m

)
Thus, the following mapping can be constructed

zi+1 = Dizi (30)

where Di is the (3m + 6) dimensional coefficient matrix, which can be expressed as:
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Di =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Pi11 Pi12 Pi13 Pi14 Pi15 Pi16 0 · · · 0 Ri11
2

Ri12
2

Ri13
2

Ri11
2

Ri12
2

Ri13
2

...
...

...
...

...
...

...
. . .

...
...

...
...

...
...

...
Pi61 Pi62 Pi63 Pi64 Pi65 Pi66 0 · · · 0 Ri61

2
Ri62

2
Ri63

2
Ri61

2
Ri62

2
Ri63

2
1 0 0 0 0 0 0 · · · 0 0 0 0 0 0 0
0 1 0 0 0 0 0 · · · 0 0 0 0 0 0 0
0 0 1 0 0 0 0 · · · 0 0 0 0 0 0 0
0 0 0 0 0 0 1 · · · 0 0 0 0 0 0 0
...

...
...

...
...

...
...

. . .
...

...
...

...
...

...
...

0 0 0 0 0 0 0 · · · 1 0 0 0 0 0 0
0 0 0 0 0 0 0 · · · 0 1 0 0 0 0 0
0 0 0 0 0 0 0 · · · 0 0 1 0 0 0 0
0 0 0 0 0 0 0 · · · 0 0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (31)

The state-transition matrix Φ can be expressed as:

Φ = Dk−1Dk−2 · · ·D1D0 (32)

According to Floquent Theory, indicating that the matrix converges, the variation of
dynamic cutting thickness has an upper limit when the eigenvalue of the state transition
matrix is less than 1. The process of the PKM helical milling is in a stable state. Otherwise,
the cutting process is unstable.

3. Experimental Platform Set-Up

3.1. Cutting Force Coefficients Identification and Stability Verification

Before analyzing the cutting stability of helical milling based on PKM, it is necessary
to model the cutting forces when it is applied to helical milling. The cutting force model
of titanium alloy helical milling based on TriMule is established by taking titanium alloy
commonly used in aircraft industry as an example in this paper, as shown in Figure 6.
Specific modeling methods and experimental methods have been introduced in detail in
Literature [8]. In this paper, the angle of A/C wrist is adjusted to 0, and the cutting force
coefficients can be identified from the platform.

 

Figure 6. Experimental platform for cutting forces coefficients in TriMule based helical milling.

As shown in Figure 6, a Kistler three-direction dynamometer (9257A) with supporting
charge amplifier (type 5070), and data acquisition system and Kistler software were utilized
for the cutting force measurement. The workpiece material used in this paper is titanium
alloy Ti6Al4V, the physical and mechanical properties of which are shown in Table 2 [19].
The diameter of the helical milling holes in this paper is 19.05 mm, and the carbide helical
milling tool with a 12 mm diameter was selected for the helical milling tests. According to
the selected tool diameter and the cutting conditions of titanium alloy, the spindle speed
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of 2000 rpm is selected to identify the cutting force parameters in order to control the
tool wear during machining [20,21]. The helical milling tool is shown in Figure 7, and
details about cutting tool are listed in Table 3. Cutting experiments were performed on the
experimental platform according to the cutting experimental parameters shown in Table 4,
and the cutting forces coefficients were identified.

Table 2. Physical and mechanical properties of titanium alloys used in the experiment.

Properties
Density
(g/cm3)

Tensile
Strength

(MPa)

Yield
Strength

(MPa)

Elastic
Modulus

(GPa)

Shear
Modulus

(MPa)

Poisson
Ratio

Value 4.5 895 825 110 0.342 0.342

Figure 7. Helical milling tool and its 3D model.

Table 3. The geometric and property parameters of cutting tool used in the experiment.

Properties Diameter
Rake
Angle

Tool
Clearance

Helix
Angel

Number
of Teeth

Materials

Values 12 mm 8◦ 15◦ 40◦ 4 K44 UF

Table 4. Cutting force identification experimental cutting parameters.

Spindle Speed
(r/min)

ap (mm)
Feed Engagement

(mm)
Feed Speed
(mm/min)

2000 0.2 0.02 160
2000 0.2 0.03 240
2000 0.2 0.04 320
2000 0.2 0.05 400
2000 0.4 0.02 160
2000 0.4 0.03 240
2000 0.4 0.04 320
2000 0.4 0.05 400
2000 0.6 0.02 160
2000 0.6 0.03 240
2000 0.6 0.04 320
2000 0.6 0.05 400

In order to verify the correctness of the stability prediction model of titanium alloy
helical milling based on PKM, Position 1 and Position 2 shown in Table 1 are used as the
validation positions considering the structural characteristics of the parallel mechanism.
Since the change of spindle speed has little effect on the cutting force parameters and can
be ignored, the cutting force parameters obtained at the spindle speed of 2000 rpm are used
for stability verification experiments [22–24]. The cutting parameters shown in Table 5 are
used for the machining experiments.
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Table 5. Cutting parameters of stability verification experiment.

Number
Spindle Speed

(r/min)
ap (mm)

Feed Engagement
(mm)

Feed Speed
(mm/min)

1 1000 0.2 0.02 80
2 2000 0.2 0.02 160
3 3000 0.2 0.02 240
4 1000 0.4 0.02 80
5 2000 0.4 0.02 160
6 3000 0.4 0.02 240
7 1000 0.6 0.02 80
8 2000 0.6 0.02 160
9 3000 0.6 0.02 240

10 1000 0.8 0.02 80
11 2000 0.8 0.02 160
12 3000 0.8 0.02 240

As the analysis mentioned above, a step-cutter is proposed to reduce the radial cutting
depth to improve the stability of helical milling and optimize the machining quality.

The step-cutter is improved the main structure of the helical milling cutter which
includes two parts of cutting edge, neck part and shank. The height difference between the
two parts of the cutting edge is 1mm. Right-angle transition mode is adopted to reduce
impact. The necking part prevents cutting edge of the second part from cutting the surface
again. The cutter material is cemented carbide. The cutter structure is shown in Figure 8.
The parameters of the cutter are shown in Table 6.

 

Figure 8. The structure of step-cutter.

Table 6. The parameters of step-cutter.

Number
of Teeth

Longth of
Cutting Edge I

(mm)

Longth of
Cutting Edge

II (mm)

Rake
Angel

Tool
Clearance

Helix
Angle

Transient
Mode

4 11 5 8◦ 15◦ 40◦ Right
angle

3.2. Experimental Platform Set-Up to Indentify of Modal Parameters of TriMule

In order to verify the correctness of modal simulation, modal experiments are carried
out on the 7 positions in Table 1 respectively by hammering experiment. The specific
experimental methods and equipment have been described in detail in Literature [8].
The angle of A/C wrist of the PKM change to 0 this time, and the point-line model for
hammering tests is re-established. Table 7 shows the modal parameters of the first 4 modes
of the PKM. The experimental platform of TriMule helical milling modal tests is presented
in Figure 9. The B&K impact hammer and PCB acceleration sensor were used to shock

198



Machines 2022, 10, 404

excitation and pick up the generated vibration signals. The input and output signals are
processed through the data collection system of LMS, and the modal data processing is
imported into the analysis software. In this paper, the modal tests are carried out by single
point impact and single point vibration signal pickup method. As TriMule is a complex
high-order system, multiple vibration pickup points were arranged, as shown in Figure 10.
At the same time, the impact hammer strikes along different directions of each impact point.
In order to reduce the random measurement error, the vibration measurement tests for
every pickup point repeat five times. Taking the initial position as an example, the modal
parameters of the PKM at this position are obtained as shown in Table 5. Figure 11 shows
the variation of natural frequency of the PKM with different position in x, y and z directions
to facility the analysis of variation of modal parameters with the configuration of the PKM.

Table 7. First 4 modal parameters of the initial position of the PKM.

Direction Number of Mode ωn (Hz) ξ m (kg)

1 23.62 9.15 2.31 × 10−8

x 2 29.23 9.80 2.10 × 10−8

3 34.82 6.03 2.07 × 10−8

4 40.93 4.22 7.77 × 10−9

1 23.54 7.79 2.08 × 10−8

y 2 33.56 6.59 1.058 × 10−8

3 56.52 4.19 3.86 × 10−8

4 68.07 2.76 3.63 × 10−10

1 23.76 7.52 2.79 × 10−8

z 2 29.23 10.07 7.68 × 10−8

3 34.33 5.53 2.32 × 10−8

4 39.83 3.48 2.13 × 10−8

 

Figure 9. Experimental platform of TriMule based helical milling modal tests.

Figure 10. Arrangement of vibration pickup points on TriMule modal test.
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(a) (b) 

 
(c) 

Figure 11. The first 4 order natural frequencies of the PKM in different positions. (a) Natural frequency in
the x direction; (b) Natural frequency in the z direction; (c) Natural frequency in the y direction.

As shown in Figure 11, comparing Position 1 and Position 2 and Position 3, the 1st
order natural frequency decreased gradually with the positive deviation of position along
the x-axis. The bigger the offset is, the more decreased it is. Furthermore, the 3rd order
and 4th order natural frequency from the Position 1 to Position 2 are risen sharply, and
from the Position 2 to Position 3 are changed slightly. Comparing Position 1, Position 4 and
Position 5, the 1st order natural frequency varies slightly along the z-axis. The 2nd, 3rd
and 4th order natural frequencies all increase along the z-axis, and the fourth order natural
frequencies increase most obviously. Comparing Position 1, Position 6 and Position 7, the
natural frequencies of the first two orders are basically unchanged along the y-axis, while
the natural frequencies of the 3rd and 4th orders increase significantly with the change of
the y-axis. Therefore, it can be found that the 1st order natural frequency variation range
is the lowest with the position variation. The value of 1st natural frequency decreases at
most 18.4% from the initial position. While the 3rd and 4th orders natural frequency vary
at most 51.2% from the initial position, which increases the most.

4. Results and Discussion

4.1. Cutting Stability Lobes of Titanium Alloy Helical Milling Based TriMule

According to the experimental platform established in Section 3, the cutting force
coefficients of the PKM-based titanium alloy helical milling hole were identified and
obtained, as shown in Table 8.

In addition, hammering modal tests are performed on the TirMule based on the
established experimental platform. Due to the structural characteristics of the PKM, the
modal parameters are strongly position-dependent. Therefore, modal tests are conducted
for each of the 7 positions shown in Table 1, and the stability domain of the TriMule-based
titanium alloy helical milling is analyzed by combining the identified modal parameters
and cutting force coefficients.
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Table 8. Cutting force coefficients of helical milling on titanium alloy based on TriMule.

Depth of Axial
Cutting (mm)

kr
(N/mm2)

kt
(N/mm2)

ka
(N/mm2)

kre
(N/mm)

kte
(N/mm)

kae
(N/mm)

0.2 1044.5 477.4 287.9 299.1 54.3 32.5
0.4 1221.0 584.5 316.5 306.3 56.8 38.8
0.6 1383.1 648.8 357.2 311.5 58.5 48.2

The average 1216.2 570.2 320.5 305.6 56.5 39.8

According to the above analysis, the stability lobes of TriMule at 7 positions are drawn,
as shown in Figure 12. The stability of other poses under the spindle speed of 1000 r/min
is roughly determined by the 1st mode except Position 6 and 7. By comparing Position
1 and Position 2 and 3, the stability domain of the working condition above 2000 r/min
increases significantly when the coordinate of end-effector deviation along x direction, and
this variation is mainly affected by the 4th mode. When the deviation continues to 400 mm,
the stability domain will decrease again. By comparing Position 1 and Position 4 and 5, the
stability domain of the PKM decreases slightly at low spindle speed when the end-effector
extends 100 mm forward along the z-axis, while the stability domain at high spindle speed
has no significant change, which is mainly affected by the 4th mode. However, the end-
effector retracted 50 mm along the z-axis will make the stability domain at high spindle
speed significantly increase, which is mainly affected by the 3rd mode. By comparing
Position 1 and Postion 6 and 7, the stability domain is mainly affected by the 1st and 3rd
order modes after it is moved along the y-axis, and the rise of 100 mm along the y-axis will
greatly improve the stability region at low spindle speed.

4.2. Validation of Cutting Stability Lobes of TriMule Based Titanium Alloy Helical Milling

It is necessary to verify the correctness of stability lobes of helical milling based
TriMule. The acceleration signals in the machining process are collected to time-frequency
transformation to determine whether the machining process was unstable. As mentioned
in Section 3.1, the correctness of the obtained stability lobes is verified, with Position 1 and
Position 2 as examples. The combination of cutting parameters is shown in Table 7. The
spectrum of experimental acceleration signal is shown in Figure 13.

  
(a) (b) 

Figure 12. Cont.
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(c) (d) 

  
(e) (f) 

 
(g) 

Figure 12. Stability lobes of helical milling based TriMule in 7 Positions. (a) Position 1; (b) Position 2;
(c) Position 3; (d) Position 4; (e) Position 5; (f) Position 6; and (g) Position 7.
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(a) 

(b) 

(c) 

(d) 

Figure 13. Spectrum of experimental acceleration signal. (a) Signal spectrum of acceleration along x,
y and z under Position 1 (cutting parameter combine 1); (b) Signal spectrum of acceleration along x, y
and z under Position 1 (cutting parameter combine 10); (c) Signal spectrum of acceleration along x, y
and z under Position 2 (cutting parameter combine 1); and (d) Signal spectrum of acceleration along
x, y and z under Position 2 (cutting parameter combine 10).

As shown in Figure 13, when the spindle speed is 1000 r/min and the axial feed is
0.8 mm, the helical milling of TriMule at Position 1 and Position 2 has a small vibration, and
the machining stability is good under other processing parameters. It can be seen that the
predicted results are in agreement with the experimental results. In addition, at Position 1,
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the main components of the acceleration signal spectrum are the passing frequency of the
cutter tooth, and its frequency doubling when the spindle speed is 1000 r/min and the
axial feed is 0.2 mm per revolution. It can be judged that no instability occurs in the milling
process. When the axial feed is increased in the same position, it can be seen that vibration
with a different amplitude occurs in the high frequency band of the acceleration signal
spectrum in the three directions, and the vibration in the z direction is the most obvious.
Therefore, it can be judged that instability occurs. At Position 2, when the rotational speed
is 1000 r/min, with the increase of axial feed per revolution, the unstable frequency 1247 Hz
of acceleration signal in frequency domain is significant, which will obviously affect the
milling accuracy.

In addition, the cutting stability will also affect the roughness condition of the inner
wall of the hole. Therefore, in verifying the correctness of the above stability leaflet diagram,
the inner wall roughness of titanium alloy helical milling holes at different positions of
TriMule is measured by the roughness measuring instrument. The results are shown in
Figures 14 and 15.

 

(a) (b) 

 
(c) (d) 

Figure 14. Surface roughness of helical milling hole with different processing parameters of TriMule.
(a) Position 1; (b) Position 2; (c) Position 3; and (d) Position 4.
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(a) (b) 

 
(c) 

Figure 15. Surface roughness comparison of Position 1 and Position 2 at different spindle speeds.
(a) n = 1000 r/min; (b) n = 2000 r/min; and (c) n = 3000 r/min.

As shown in Figure 14, the overall surface roughness increases with the axial feed per
revolution increases. This is because the increase of axial feed leads to the increase of spiral
feed track pitch, which makes the machining traces on the processed surface more serious,
alongside the increase of roughness.

The comparison of the surface roughness of helical milling holes at Position 1 and 2 at
each spindle speed shows Figure 15. It can be seen that when the axial feed per revolution
is small (less than 0.4 mm), the surface roughness of holes at Position 2 is smaller and
the machining quality is better. When the axial feed per revolution is larger (greater than
0.4 mm), the surface roughness of holes at position 1 of is smaller and the machining
quality is better.

4.3. Optimization of Cutting Stability Lobes of Titanium Alloy Helical Milling Based TriMule

The influence of machining instability on machining quality can be reduced by op-
timizing the cutter. Since the dynamic cutting force that causes the milling instability is
from the side edge of the tool, and the radial cutting depth of the side edge will directly
affect the cutting force and continuous cutting time of the tool, the use of step-cutters can
significantly reduce the radial cutting force to increase the cutting stability domain and
reduce the cutting instability.

The ratio d of the radial cut depth to the tool diameter is used as a variable to optimize
the cutting stability, which are set as 0.8, 0.6, 0.4 and 0.2, respectively. Taking TriMule
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at initial position as an example, the cutting stability of different radial cutting depths is
shown in Figure 16. As shown in the Figure 16, when d decreases from 1 to 0.4, the limit
cutting depth of the stability region increases slightly. When d decreases from 0.4 to 0.2, the
ultimate cutting depth in the stability region has also increased, but the increase is small
relative to the case where d decreases from 1 to 0.4.

(a) (b) 

(c) (d) 

Figure 16. Stable lobe of TriMule with different radial cutting depths at Position 1. (a) d = 0.8.
(b) d = 0.6. (c) d = 0.4. (d) d = 0.2.

The stability lobe diagrams of TriMule at the initial position with the ordinary helical
milling cutter and the step-cutter were drawn respectively in Figure 17, and the cutting
forces are collected in Figure 18. As shown in Figures 17 and 18, step-cutters significantly
increase the cutting stability domain and reduce cutting forces. Furthermore, the decrease
of the period over the same time is conducive to reducing the excitation of the cutter.

The aperture and roundness of the hole containing ordinary and step-cutters to char-
acterize the precision of the milling hole. Figure 19 is shown the accuracy comparison of
helical milling hole between ordinary cutter and step-cutter. By comparing the machining
accuracy of helical milling with an ordinary cutter and a step-cutter, it can be concluded that
the step-cutter can effectively reduce the aperture error under various parameter combina-
tions. When the cutting depth is 0.4 mm and 0.6 mm with the spindle speed of 3000 r/min,
the optimization effect is most obvious. The average aperture error decreased by 63.2%. The
step-cutter can also effectively reduce the roundness error—particularly in the condition of
large cutting depth and low spindle speed, the roundness error optimization is the most
obvious. The average roundness error is reduced by 67.7%.
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(a) (b) 

Figure 17. Stability lobes of initial position for ordinary helical milling cutter and step-cutter.
(a) Ordinary helical milling cutter. (b) Step-cutter.

(a) (b) 

Figure 18. Cutting force of ordinary and step-cutter (Position 1, n = 1000 r/min, ap = 0.2 mm).
(a) Ordinary helical milling cutter. (b) Step-cutter.

 
(a) (b) 

Figure 19. Accuracy comparison of helical milling hole between ordinary cutter and step-cutter.
(a) Aperture error. (b) Roundness.
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In order to verify that the step-cutter can effectively improve the quality of the ma-
chined surface, the roughness of the inner wall of the hole at different rotational speeds at
the same location was measured using a roughness measuring instrument and compared
with the roughness of the inner wall of the hole diameter machined with an ordinary cutter,
as shown in Figure 20.

 
(a) (b) 

 
(c) 

Figure 20. Roughness of helical milling holes surface with ordinary cutter and step-cutter.
(a) n = 1000 r/min. (b) n = 2000 r/min. (c) n = 3000 r/min.

As shown in Figure 20, the surface roughness of helical milling holes is compared
between an ordinary cutter and step-cutter at different spindle speeds. It can be found that
with the increase of spindle speed, the optimization of step-cutter for surface roughness
becomes more obvious. In addition, it can be seen from Figure 20c that the surface processed
by step-cutter avoids the dramatic increase in roughness with the increase of axial feed
per revolution, and still maintains good reliability. This is because the step-cutter can
reduce the cutting force and increase the period of cutting force. The larger the machining
parameters are, the greater the cutting force is, and the more obvious the optimization of
step-cutter is. The surface roughness of titanium alloy helical milling hole is reduced by
30.7% on average.

5. Conclusions

The FEA software is used to analyze the variation of the static stiffness of the end-
effector of the PKM at different positions. The cutting force model of titanium alloy helical
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milling based PKM is established, and the cutting force coefficients are identified. The
static stiffness at the initial position is obviously better than that at other positions. The
modal parameters and vibration modes of the PKM under different positions are obtained
by simulation and hammer tests. The 1st order natural frequency is least affected by
position, while the 3rd order natural frequency is most affected. A 3-DOF prediction model
for the stability in helical milling based on the PKM is established, and the stability lobe
diagram of seven positions and poses is obtained. The influence of position on stability
region is analyzed. In order to reduce the influence of cutting instability on the machining
quality, the machining process is optimized by using step-cutters. The step-cutter can
significantly reduce the aperture error (63.2%), roundness (67.7%) and surface roughness
(30.7%). The study of the stability of helical milling on titanium alloy provided a basis for
further optimization of machining technology in the future.
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Abstract: This article deals with the development of a simple model to evaluate the first natural
frequencies of over-constrained parallel kinematic machines (PKMs). The simplest elasto-dynamic
models are based on multi-body approaches. However, these approaches require an expression of the
Jacobian matrices that may be difficult to obtain for complex PKMs. Therefore, this paper focuses on
the determination of the global mass and stiffness matrices of an over-constrained PKM in stationary
configurations without the use of Jacobian matrices. The PKM legs are modeled by beams. Because
the legs are connected to a moving platform and the mechanism is over-constrained, constraint
equations between the parameters that model the deformation of each leg are determined according
to screw theory. The first natural frequencies and associated modes can then be determined. It should
be noted that the proposed method can be easily used at the conceptual design stage of PKMs. The
Tripteor X7 machine is used as an illustrative example and is characterized experimentally.

Keywords: parallel kinematic machine tool; over-constrained system; elasto-dynamic model; screw theory

1. Introduction

Parallel Kinematic Robots are used in many fields such as medicinal, aerospace,
rehabilitation, and astronomy [1]. In industry, parallel kinematic robots are mainly used for
pick-and-place operations [2]. However, a few Parallel Kinematic Machine Tools (PKMs)
are used in the automotive or aeronautical industries for High-Speed Machining (HSM)
operations [3]. Their dynamic performances, in terms of acceleration, are better for an
equivalent motorization than Serial Kinematic Machine Tools (SKMs) due their closed-loop
architecture [4]. However, the design of these closed-loop architectures imposes to control
leg size that reduces mobile masses and leads to a loss of stiffness compared to SKM [5,6].

One way to improve PKM stiffness behavior is to use an over-constrained architecture.
To this aim, an over-constrained PKM, named Exechon, was designed by Neumann [7],
and the PCI-SCEMM company chose to integrate an Exechon robot into the design of
Tripteor X7 machine tool (Figure 1). An over-constrained system is considered to be a
hyperstatic system which is defined by the IFToMM terminology as a system in which
the distribution of internal forces depends on the material properties of the members of
the system [8]. Thus, an over-constrained PKM is defined as a PKM with common or
redundant constraints that can be removed without changing the kinematic properties of
the mechanism [9]. Thus, the study of an over-constrained mechanism behavior can be
complex due to the generation of static indeterminacy and geometric constraints [10].

Previous work highlights the impact on part quality of PKM vibrations during ma-
chining [11]. Depending on the machined part position, marks appear on the machined
surfaces. To minimize these vibrations, it is of prime importance to express a parameterized
elasto-dynamic model for over-constrained PKMs. Such a model enables the prediction
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of static and vibration behavior during the conceptual design stage. Moreover, as PKM
behavior is anisotropic and changes regarding the tool pose, the elasto-dynamic model of
the PKM should be fast to compute to quickly obtain its stiffness, its first natural frequencies
and associated modes throughout the manipulator workspace.

Figure 1. Tripteor X7 Parallel Kinematic Machine Tools.

Two main methods are classically used in the literature to express the elasto-dynamic
model of an over-constrained PKM:

1. Finite Element Analysis (FEA): this method is the most accurate one, but it requires
the exact definition of the mechanism components. It is usually used for validation
purposes at the final design stage since it is time-consuming [12–15].

2. Multi-body approaches: PKM legs can be modeled, for example, using beam the-
ory and their joint behavior relies on Virtual Joint Method (VJM) [16,17]. In the
literature, the simplest elasto-dynamic models are based on multi-body approaches.
This method can only be applied for robot architectures whose hypotheses are valid.
Other formulations are introduced to consider large deformations of flexible manip-
ulators [18] or to decrease simulation time for complex mechanisms such as Matrix
Structural Analysis (MSA) [19]. The decreasing of the time simulation is generally
based on the development of a methodology to merge stiffness and mass matrices of
all elements of the mechanism [19,20].

In this article, multi-body approach, a robust but simple approach to obtain a param-
eterized elasto-dynamic model, is preferred to the use of complex and time-consuming
FEA. The prediction of vibration phenomena requires the determination of the first natural
frequencies and their associated modes. In [16,17], this is performed by computing the
global mass matrix and the global stiffness matrix. However, the computation of mass and
stiffness matrices is complex in the case of over-constrained mechanisms such as Exechon
PKM. Indeed, the complex coupling between displacement vector components due to
over-constrained properties must be considered during the sub-systems matrix assembly
stage. Thus, the application of this approach to over-constrained PKMs requires the deter-
mination of Jacobian matrices to characterize kinematic dependencies due to closed-loop
over-constrained mechanisms [16,21] or the definition of a complex methodology to merge
stiffness matrices of each PKM element [19]. Those Jacobian matrices describe the kine-
matic behavior of PKMs by derivation of the geometric model as in Germain’s [16] and
Zhang’s [17] works. Geometric model or closed-loop constraints of complex PKM, such
as Exechon robot, can sometimes not be computed in a systematic and straightforward
way [16,22]. For example, the expression of the geometric model of an Exechon robot is
based on a system of nonlinear equations that are not easy to establish [23]. Moreover, its
solving requires a numerical optimization with the Newton-Raphson method.

This paper aims to introduce a reliable and simple method to compute global mass and
stiffness matrices for over-constrained PKMs, under the assumption of small displacements
and using screw theory. This methodology is relevant for high-stiffness architectures such
as machine tools and industrial robots where flexibility generates only small displacements.
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These mathematical tools allow defining geometric dependencies of leg movements without
the computation of Jacobian matrices [24]. Screw theory is used both:

1. To express the kinematic behavior of each PKM leg using the theory of Timoshenko
beams [25] and

2. To determine the displacement constraints applied to each leg extremity due to over-
constrained mechanism closed-loops [26].

There are different ways to parameterize the orientation of a rigid body such as
quaternion [27]. The choice of screw theory ensures use of the same representation for the
actuation and constraint wrenches applied to the moving platform by the actuators and the
geometry of the mechanism.

This second point is the main contribution of our work and allows us to take into
account stress due to over-constrained with geometric constraint equations extracted only
from the screw theory application to the passive joints. With this method, the computation
of global mass and stiffness matrices is easy to implement. It assumes only geometrical
constraints between displacement vector components without the introduction of the
Jacobian matrices. Global mass and stiffness matrices are then computed to estimate PKM
Cartesian stiffness, the first natural frequencies and their associated modes. This work is
relevant at the embodiment design stage of the robot when only a parameterized CAD
modeling of the PKM under study is available. Indeed, at this stage, a fast computation
time is required to assess the capability of the PKM in terms of vibration behavior and to
determine the optimal architecture and dimensions of the robot under design. During the
next design stages, when accurate simulation results are needed, FEA can be preferred
although it is more computation intensive.

It should be noted that the revolute joints of the Tripteor legs are stiff; their stiffness
is larger than 1.04 × 109 N·m−1 [28]. Moreover, the stiffness of the spherical wrist of the
Tripteor is even more important. As a consequence, and for the sake of clarity, only the
deflection of Tripteor X7 PKM legs is considered in what remains. The joint deflection can
be taken into account by adding local stiffness such as with the Virtual Joint Method [29].

The paper is organized as follows: Section 2 presents the Tripteor X7 PKM and its
parametrization. Section 3 describes the proposed method to express the elasto-dynamic
model of PKMs and to compute their natural frequencies. As an illustrative example, the
stiffness matrix, the natural frequencies and associated modes of the Tripteor X7 PKM are
computed in Section 4. Finally, conclusions and future work are drawn in Section 5.

2. Tripteor X7 PKM

Tripteor X7 PKM is manufactured by the PCI-SCEMM company in France. It is a
hybrid PKM. Its architecture is a combination of a parallel mechanism and a serial wrist
mounted in series. Such a hybrid manipulator ensures the decoupling of translational and
rotational motion of the end-effector. Moreover, hybrid manipulators usually have a better
dexterity than fully parallel manipulators as explained in [30].

Tripteor X7 PKM is a six-axis PKM with the following actuated joint variables (q1, q2,
q3, q4, q5) shown in Figure 2 and one-DoF rotary table represented in Figure 1. The revolute
joint variable of this rotary table is denoted as q6. A parallel mechanism provides three
Degrees of Freedom (DoFs) from the actuation of three ball screw systems (q1, q2 and q3)
and a serial wrist with two DoFs from the actuation of two revolute joints with direct and
belt drives (q4 and q5). The elongations q1, q2 and q3 of Leg 1, Leg 2 and Leg 3 provide
translational motions of the moving platform along axis xb, yb and axis zb with induced
rotational motions about axis xb and axis ym. The serial wrist ensures rotational motions of
the end-effector.

The paper aims to introduce a new methodology to compute natural frequencies of
over-constrained closed-loop mechanism in the case of PKM. Thus, only the vibration
behavior of the parallel mechanism composed of Leg 1, Leg 2, Leg 3 and the mobile
platform (4) is studied in this paper (Figure 2). If a study of the complete PKM should be
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carried, a simple assembly of global mass and stiffness matrices of the parallel mechanism
and the serial wrist can then be carried out.

Figure 2. Kinematic model of Tripteor X7 PKM.

Each leg is connected to the mobile platform (4) by a revolute joint and to the fixed
platform (0) by two revolute joints which form a universal joint (Figure 2). It is worth noting
that Leg 2 has a supplementary revolute joint around its principal axis. Consequently,
bending and traction-compression loads are prescribed to Leg 2 whereas Legs 1 and 3
are loaded in bending, traction-compression, and torsion [28]. The mobile platform is
supposed to be rigid. Because stiffness and low frequencies are of primal importance
in machining [11], an efficient and fast way to compute those frequencies is described
in this paper. For this purpose, a local model of a PKM leg under bending, traction-
compression, and torsion loads is introduced before the definition of constraint equations
due to mechanism assembly.

3. Elasto-Dynamic Modeling of PKMs

This section introduces the novel elasto-dynamic modeling approach and its applica-
tion to PKMs. For the sake of pedagogy, we introduce our method for PKMs with telescopic
legs such as the Tripteor X7 (Figure 3). Ai and Bi are the leg extremities. Ai is attached to
the PKM base and Bi is fixed to the mobile platform. The coordinate system associated
with the fixed base is denoted as Rb = (O, xb, yb, zb) and with the mobile platform as
Rm = (P, xm, ym, zm). zi is the unit vector along leg i direction.

This method can be applied to any PKMs whose legs can be modeled by beams.

Figure 3. Definition of used parameters for PKM with telescopic legs.
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3.1. Local Modeling of PKM Leg

First, each leg is modeled assuming the usual Euler-Bernoulli beam theory. It is worth
noting that this model considers the usual mechanical loads, which are bending, traction-
compression, and torsion conditions. Each leg is considered to be being connected at one of
its ends via a given joint to a fixed part (Figure 4). This boundary condition depends on the
joint type used for connecting the leg to the fixed base. In this sub-section, we first study
the modeling and the parameter definition of a leg assuming generic boundary conditions
to elaborate a leg stiffness matrix Ke and a leg mass matrix Me in the leg coordinate system.
With a generic beam model, leg kinematics are defined through six displacement functions,
which correspond to the displacement of the neutral axis. u(x) is the vector that collects
those displacement functions:

u(x)T =
[
u(x) v(x) w(x) θα(x) θβ(x) θγ(x)

]T (1)

u(x) is the displacement along the neutral axis, v(x) and w(x) are the displacements along
fi-direction and fl-direction. θα(x), θβ(x), and θγ(x) correspond to the small rotations about
ff-axis, fi-axis and fl-axis, respectively. Using a Bernoulli beam theory, cross-sectional
displacements and rotations satisfy the following equations:

θγ(x) =
dv
dx

(x), θβ(x) = −dw
dx

(x) (2)

Figure 4. Local leg model and displacement parameters.

Each kinematic function corresponds to a force function. In the following, fbeam denotes
the force vector and mbeam is the moment vector such that:{

fbeam(x) = N(x)ff + Tβ(x)fi + Tγ(x)fl
mbeam(x) = Mt(x)ff + Mβ(x)fi + Mγ(x)fl

(3)

where N(x) is the axial force, Tβ(x) and Tγ(x) are the shear forces, Mt(x) is the torsion
moment, and Mβ(x) and Mγ(x) are the bending moments. As there is no distributed load,
the governing equilibrium equations give:⎧⎪⎪⎪⎨⎪⎪⎪⎩

dN
dx

(x) = 0,
dTβ

dx
(x) = 0,

dTγ

dx
(x) = 0

dMt

dx
(x) = 0,

dMβ

dx
(x)− Tγ(x) = 0,

dMγ

dx
(x) + Tβ(x) = 0

(4)

In addition, the kinematic and force functions are related to each other as follows:

N(x) = ES
du
dx

(x), Mt(x) = GIG
dθα

dx
(x), Mβ(x) = EIβ

dθβ

dx
(x), Mγ(x) = EIγ

dθγ

dx
(x) (5)
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where E is the material Young’s modulus, S is the cross-sectional area, and IG, Iβ and Iγ are
moments of area about ff-axis, fi-axis and fl-axis.

Combining Equations (2), (4) and (5), we can conclude that u(x) and θα(x) are lin-
ear functions, whereas v(x) and w(x) are polynomial functions of order 3. In a generic
case, all kinematic functions can thus be defined through their nodal values expressed
in Equation (6).

u(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(0)+ x
q (u(q)−u(0))

v(0)+θγ(0)x−
(

2θγ(0)+θγ(q)
q − 3(v(q)−v(0))

q2

)
x2+

(
θγ(0)+θγ(q)

q2 − 2(v(q))−v(0))
q3

)
x3

w(0)−θβ(0)x+
(

2θβ(0)+θβ(q)
q +

3(w(q)−w(0))
q2

)
x2−

(
θβ(0)+θβ(q)

q2 +
2(w(q)−w(0))

q3

)
x3

θα(0)+ x
q (θα(q)−θα(0))

θβ(0)−2
(

2θβ(0)+θβ(q)
q +

3(w(q)−w(0))
q2

)
x+3

(
θβ(0)+θβ(q)

q2 +
2(w(q)−w(0))

q3

)
x2

θγ(0)−2
(

2θγ(0)+θγ(q)
q − 3(v(q)−v(0))

q2

)
x+3

(
θγ(0)+θγ(q)

q2 − 2(v(q)−v(0))
q3

)
x2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6)

unod denotes the vector collecting the nodal values of the kinematic functions (Figure 4)
and is expressed as a 1 × 12 column vector:

unod =

[
u(0)
u(q)

]
(7)

Vectors Nu(x), Nv(x), Nw(x), Nθα(x), Nθβ
(x) and Nθγ(x) express the nodal values as

a function of x coordinate bounded between 0 and q, i.e., x ∈ [0, q]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(x) = Nu(x)Tunod
v(x) = Nv(x)Tunod
w(x) = Nw(x)Tunod
θα(x) = Nθα(x)Tunod
θβ(x) = Nθβ

(x)Tunod

θγ(x) = Nθγ(x)Tunod

(8)

From [31], the beam potential energy Ep is written as:

Ep =
1
2

∫ q

0

[
ES

(
du(x)

dx

)2

+ GIG

(
dθα(x)

dx

)2

+EIβ

(dθβ(x)
dx

)2

+ EIγ

(
dθγ(x)

dx

)2
]

dx (9)

From Equations (8) and (9), Ep can be expressed in a compact form as a function of the
beam stiffness matrix Ke and unod as follows:

Ep =
1
2

uT
nodKeunod (10)

With matrix Ke taking the form of Equation (11).
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Ke =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ES
q 0 0 0 0 0 − ES

q 0 0 0 0 0

0 12EIγ
q3 0 0 0 6EIγ

q2 0 − 12EIγ
q3 0 0 0 6EIγ

q2

0 0
12EIβ

q3 0 −
6EIβ

q2 0 0 0 −
12EIβ

q3 0 −
6EIβ

q2 0

0 0 0 GIG
q 0 0 0 0 0 − GIG

q 0 0

0 0 −
6EIβ

q2 0
4EIβ

q 0 0 0
6EIβ

q2 0
2EIβ

q 0

0 6EIγ
q2 0 0 0 4EIγ

q 0 − 6EIγ
q2 0 0 0 2EIγ

q

− ES
q 0 0 0 0 0 ES

q 0 0 0 0 0

0 − 12EIγ
q3 0 0 0 − 6EIγ

q2 0 12EIγ
q3 0 0 0 − 6EIγ

q2

0 0 −
12EIβ

q3 0
6EIβ

q2 0 0 0
12EIβ

q3 0
6EIβ

q2 0

0 0 0 − GIG
q 0 0 0 0 0 GIG

q 0 0

0 0 −
6EIβ

q2 0
2EIβ

q 0 0 0
6EIβ

q2 0
4EIβ

q 0

0 6EIγ
q2 0 0 0 2EIγ

q 0 − 6EIγ
q2 0 0 0 4EIγ

q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

From [31], the beam kinetic energy Ek is defined as:

Ek =
1
2

ρ
∫ q

0

∫∫
S

vT
MvMdxdydz (12)

where ρ is the beam material density, and vM is the point velocity along the beam ex-
pressed as:

vM =
(
u̇(x) + zθ̇β(x)− yθ̇γ(x)

)
ff +

(
v̇(x)− zθ̇α(x)

)
fi +

(
ẇ(x) + yθ̇α(x)

)
fl (13)

Combining Equations (12) and (13) with the hypothesis that fi-axis and fl-axis are
principal axes of inertia, the kinematic energy Ek writes:

Ek =
1
2

ρS
∫ q

0

(
u̇(x)2 + v̇(x)2 + ẇ(x)2

)
dx +

1
2

ρIββ

∫ q

0

(
θ̇α(x)2 + θ̇β(x)2

)
dx

+
1
2

ρIγγ

∫ q

0

(
θ̇α(x)2 + θ̇γ(x)2

)
dx (14)

with Iββ and Iγγ the beam inertia about fi-axis and fl-axis. Equation (14) takes the following
compact form:

Ek =
1
2

u̇T
nodMeu̇nod (15)

with u̇nod the time derivative of vector unod and Me the mass matrix of beam expressed
in Equation (16).

Me =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b
3 0 0 0 0 0 b

6 0 0 0 0 0

0 13
35 b+ 6ρIγγ

5q 0 0 0 ρIγγ
10 + 11c

210 0 9b
70−

6ρIγγ
5q 0 0 0 ρIγγ

10 − 13c
420

0 0
6ρIββ

5q + 13
35 b 0 −

ρIββ
10 − 11c

210 0 0 0 9b
70−

6ρIββ
5q 0 −

ρIββ
10 + 13c

420 0

0 0 0 a 0 0 0 0 0 a
2 0 0

0 0 −
ρIββ

10 − 11c
210 0

2ρIββq
15 + d

105 0 0 0
ρIββ

10 − 13c
420 0 −

ρIββq
30 − d

140 0

0 ρIγγ
10 + 11c

210 0 0 0 2ρIγγq
15 + d

105 0 − ρIγγ
10 + 13c

420 0 0 0 − ρIγγq
30 − d

140
b
6 0 0 0 0 0 b

3 0 0 0 0 0

0 9b
70−

6ρIγγ
5q 0 0 0 − ρIγγ

10 + 13c
420 0 13

35 b+ 6ρIγγ
5q 0 0 0 − ρIγγ

10 − 11c
210

0 0 9b
70−

6ρIββ
5q 0

ρIββ
10 − 13c

420 0 0 0
6ρIββ

5q + 13
35 b 0

ρIββ
10 + 11c

210 0

0 0 0 a
2 0 0 0 0 0 a 0 0

0 0 −
ρIββ

10 + 13c
420 0 −

ρIββq
30 − d

140 0 0 0
ρIββ

10 + 11c
210 0

2ρIββq
15 + d

105 0

0 ρIγγ
10 − 13c

420 0 0 0 − ρIγγq
30 − d

140 0 − ρIzz
10 − 11c

210 0 0 0 2ρIγγq
15 + d

105

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16)

with a =
ρ(Iββ+Iγγ)q

3 , b = ρSq, c = ρSq2 and d = ρSq3.
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To compute the global mass and stiffness matrices, the constraints between the dis-
placements of the leg extremities are determined in the next section.

3.2. Constraint Equations

The mobile platform is considered to be rigid for the elaboration of the constraint
equations between the leg extremities. We therefore express the movement of the mobile
platform due to leg flexibility in stationary configurations of the PKM architecture using
screw theory [26] (Figure 5).

Figure 5. Parametrization of mobile platform small displacement.

The small displacement screw Tm of the mobile platform is influenced by displacement
and rotation ui(qi) of the leg i at point Bi regarding the movements of passive joints between
leg i and mobile platform. A normalized screw is used to model passive joint movement [32].
Each movement between leg i and mobile platform is model with a one-DoF motion-screw:

Sik =

[SFik
SSik

]
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
sik

sik × rik

]
if it is a rotational movement

[
0

sik

]
if it is a prismatic movement

(17)

where k = 1 to ni (ni is the number of equivalent one-DoF joints between leg i and mobile
platform, ni = 1 for the case study), sik is a unit vector along the axis of the screw Sik, rik is
a vector directed from any point on the screw axis to point Bi.

The computation of the movement transmitted by the leg to the mobile platform or
vice versa can be done using the reciprocal screws of the motion-screws Sik. There is a
unique normalized reciprocal screw system T ⊥

ik of order 5 of Sik [32]. For a rotational joint,
the reciprocal system is a 5-system which includes all rotational screws whose axes intersect
the joint axis and all prismatic screws whose axes are perpendicular to joint axes and all
the combinations of the above reciprocal screw [32]. The relation between screw Sik and
the five one-DoF reciprocal screws S⊥

ijk is:

([
0 I3

I3 0

]
Sik

)T

S⊥
ijk = 0 (18)

where I3 is the 3 × 3 identity matrix, 0 is the 3 × 3 zero matrix, j = 1 to 5. Then,
T ⊥

ik = (S⊥
ijk with j = 1 to 5).

The small displacement screw is defined as Tm =

[
!

dBi

]
with ! the rotation vector of

the mobile platform and dBi the small displacement vector of point Bi (dBj = dBi + bij × !

with bji the vector from Bj to Bi). For leg i, the relation between Tm and ui(qi) is written:

ni

∏
k=1

(
5

∑
j=1

S⊥
ijk

) (
ui(qi)−

[
Rlegi→beamRRm→legi

dBi

Rlegi→beamRRm→legi
!

])
= 0 (19)
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where Rlegi→beam is the rotational matrix between the beam coordinate system and the leg
i coordinate system, and RRm→legi

is the rotational matrix between the leg i coordinate
system and the mobile platform coordinate system.

Constraint equations are defined by expressing Equation (19) for each leg and using
small displacement screw properties.

In the same way, the nodal displacement ui(0) is limited due to passive joints between
the leg i and the fixed base. We note S′

ik the movement-screws between leg i and fixed base.
Thus, the null nodal parameter is computed from:⎛⎝ n

′
i

∏
k=1

(
5

∑
j=1

S′
ijk

⊥
)⎞⎠ui(0) = 0 (20)

where n
′
i is the number of equivalent one DoF joints between leg i and fixed base. For the

case study, n
′
1 = n

′
3 = 2, n

′
2 = 3.

From Equations (19) and (20), constraint equations are grouped together as:

LDuD + LIuI = 0 ⇒ uD = −L−1
D LIuI (21)

where uD is a vector composed of the set of beam nodal dependent parameters extracted
from all ui(qi). Its size is equal to the rank of the equation system (19) for all legs. uI is a
vector composed of the set of beam nodal independent parameters, which is not included
in uD. The choice of uD and uI is not unique. The components of matrices LD and LI are
the factor of vectors uD and uI components in Equations (19) and (20).

Equation (21) corresponds to a simple formulation of the closed-loop geometric con-
straints for over-constrained PKM and is the major contribution of the paper. The determi-
nation of stiffness and vibratory behavior of a PKM is based on the definition of its global
mass and stiffness matrices. These matrices are defined in the following section.

3.3. Mass Matrix Computation of Mobile Platform

The mobile platform and the serial wrist are considered to be a point-mass m located
at its center of mass G. Thus, kinematic energy Ekm writes:

Ekm =
1
2

mvT
GvG (22)

vG being the linear velocity of point G. Under the assumption of small displacement vG is
expressed as:

vG = ḋG = ḋB1 + g1 × !̇ (23)

where dG is the small displacement of point G, ḋG is its time derivative and g1 is the vector
from G to B1.

Equation (23) allows defining Ekm according to beam nodal parameters:

Ekm =
1
2

(
u̇D

u̇I

)T

Mem

(
u̇D

u̇I

)
(24)

where Mem is the mobile platform mass matrix. To compute natural frequency of the system,
this mass matrix is added to the legs mass matrix.

3.4. Cartesian Stiffness Computation

K is the global stiffness matrix of the PKM. It is obtained from the assembly of stiffness
matrices Ke of the three legs such that:

K =

[
KD KDI

KT
DI KI

]
(25)
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where KD is the stiffness matrix corresponding to dependent beam nodal parameters uD,
and KI corresponds to the independent ones uI. KDI is the coupling matrix.

From Equation (21), a decomposition between dependent and independent beam
nodal parameters is used to express the potential energy Ep:

Ep =
1
2

⎡⎣uD

uI

⎤⎦T⎡⎣KD KDI

KT
DI KI

⎤⎦⎡⎣uD

uI

⎤⎦ =
1
2

uT
I K̃uI (26)

Consequently, this allows the introduction of the condensed matrix form K̃ of the
global stiffness matrix of the studied PKM, which now only depends on the independent
beam nodal parameters, such that:

K̃ = LT
I

(
L−1

D

)T
KDL−1

D LI −
(

KT
DIL

−1
D LI +

(
KT

DIL
−1
D LI

)T
)
+ KI (27)

The Cartesian stiffness matrix Kc can be introduced from the expression of the potential
energy Ep according to:

Ep =
1
2

uT
I K̃uI =

1
2

ffixTKcffix (28)

where ffix is the small displacement vector of point Om expressed in the base frame. Thus,
ffix = R−1

m
(
dBi + bmi × !

)
= LXIuI where Rm is the rotation matrix from the base frame

to the mobile platform frame and bmi is the vector from Om to Bi. Finally, the Cartesian
stiffness matrix of the PKM is computed from K̃:

Kc =
(

LXIL
T
XI

)−1
LXIK̃LT

XI

(
LXIL

T
XI

)−1
(29)

Note that Kc is a 3 × 3 matrix and its components are the stiffness along the PKM base
frame vectors.

3.5. Natural Frequency Computation

The global stiffness matrix M of the PKM is obtained from the assembly of the mass
matrices Me and Mem of the three legs and mobile platform, respectively. It is expressed as:

M =

[
MD MDI

MT
DI MI

]
(30)

where MD is the mass matrix corresponding to dependent beam nodal parameters uD,
whereas MI corresponds to the independent ones uI. MDI is the coupling matrices.

The decomposition between dependent and independent parameters is used to express
the kinetic energy Ek as follows:

Ek =
1
2

[
uD

uI

]T[
MD MDI

MT
DI MI

][
uD

uI

]
=

1
2

uT
I M̃uI (31)

Consequently, this allows the introduction of the condensed matrix form of the global
mass matrix M̃, which now only depends on the independent beam nodal parameters:

M̃ = LT
I

(
L−1

D

)T
MDL−1

D LI −
(

MT
DIL

−1
D LI +

(
MT

DIL
−1
D LI

)T
)
+ MI (32)

The eigenvalues λev and the associated eigenvector uev are determined from the spec-
tral decomposition of matrix M̃−1K̃. The eigenvalues are the solutions of the polynomial
det

(
M̃−1K̃ − λevI

)
= 0. The ith natural frequency f0i is expressed as a function of the ith
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eignevalue λevi as follows: f0i =
√

λevi
2π . The natural modes are the eigenvectors associated

with those natural eigenvalues.

4. Natural Frequencies and Modes of Tripteor X7

The methodology described in Section 3 is applied in this section to calculate the
natural frequencies and associated modes of the Tripteor X7 PKM.

4.1. Identification of Null Legs Nodal Parameters

The null nodal parameters of ui(0) depend on the joint types between the legs and the
base as shown in Figure 6. The first joint of Legs 1 and 3 with the base is a revolute joint
about fl-axis, and the second joint is about fi-axis. Thus, for Legs 1 and 3, infinitesimal and
reciprocal screw motion are the following:

S′
i1 =

⎛⎜⎜⎜⎜⎜⎜⎝

0
0
1
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ and S′
i2 =

⎛⎜⎜⎜⎜⎜⎜⎝

0
1
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ ⇒
5

∑
j=1

S′⊥
ij1 =

⎛⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
1
0

⎞⎟⎟⎟⎟⎟⎟⎠ and
5

∑
j=1

S′⊥
ij2 =

⎛⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
0
1

⎞⎟⎟⎟⎟⎟⎟⎠ (33)

Figure 6. Local parameters for Tripteor X7 legs.

Thus, from Equation (20), only θβi(0) and θγi(0) are not null.
For Leg 2, with the same methodology, we obtain that only θα2(0), θβ2(0) and θγ2(0)

are not null (Figure 6b).
To compute the global mass and stiffness matrices, the motion constraints between the

extremities of the three legs are explained hereafter.

4.2. Constraint Equations

The joints between Legs 1 and 3 and the mobile platform are revolute joints about
ym-axis (fi-axis) and the joint between Legs 2 and the mobile platform is a revolute joint
about xm-axis (fl-axis) (Figure 7). Thus, the reciprocal motion-screws in the leg coordinate
system are:

5

∑
j=1

S⊥
1j1 =

5

∑
j=1

S⊥
3j1 =

⎛⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
0
1

⎞⎟⎟⎟⎟⎟⎟⎠ and
5

∑
j=1

S⊥
2j1 =

⎛⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
1
0

⎞⎟⎟⎟⎟⎟⎟⎠ (34)
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Figure 7. Parametrization of Tripteor mobile platform movement.

From Equation (19), the equation associated with the motion constraints between the
mobile platform and the three legs of Tripteor X7 are the following:

5

∑
j=1

S⊥
1j1

[
u1(q1)−

[
Rleg1→beamRRm→leg1dB1

Rleg1→beamRRm→leg1 !

]]
= 0 (35)

5

∑
j=1

S⊥
2j1

[
u2(q2)−

[
Rleg2→beamRRm→leg2dB2

Rleg2→beamRRm→leg2 !

]]
= 0 (36)

5

∑
j=1

S⊥
3j1

[
u3(q3)−

[
Rleg3→beamRRm→leg3dB3

Rleg3→beamRRm→leg3 !

]]
= 0 (37)

z1 (resp. z2 and z3) is the unit vector along the direction of the ith prismatic joint, i = 1, 2, 3
as shown in Figure 8. The rotation matrix between the beam coordinate system and the leg
coordinate system is expressed as:

Rbeam→leg =

⎡⎣ 0 0 1
0 1 0
−1 0 0

⎤⎦ (38)

Figure 8. Leg and mobile platform coordinate systems and joint parametrization of Tripteor X7.
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The angles between the legs and the mobile platform are ϕ24 = (zm, z1), ϕ94 = (zm, z2)
and ϕ54 = (zm, z3) (Figure 8). These angles can be measured with a CAD model or
computed with the geometric model of the Tripteor PKM described in [33]. With this
notation, the rotation matrices between Legs 1, 2 and 3 and the mobile platform coordinate
system Rm are:

Tleg1→Rm =

⎡⎣ cos (ϕ24) 0 sin (ϕ24)
0 1 0

− sin (ϕ24) 0 cos (ϕ24)

⎤⎦ (39)

Tleg2→Rm =

⎡⎣1 0 0
0 cos (ϕ94) − sin (ϕ94)
0 sin (ϕ94) cos (ϕ94)

⎤⎦ (40)

Tleg3���Rm =

⎡⎣ cos (ϕ54) 0 sin (ϕ54)
0 1 0

− sin (ϕ54) 0 cos (ϕ54)

⎤⎦ (41)

Consequently, in the case of Tripteor X7, by the application of a small-displacement
screw relation at point B1 and from Equations (35)–(37), nine constraint equations are
obtained. Nine dependent parameters are chosen:

uT
D =

(
u2(q2), v2(q2), w2(q2), θβ2(q2), u3(q3), v3(q3), w3(q3), θα3(q3), θγ3(q3)

)
(42)

Thus, 16 independent parameters are considered:

uT
I = (θβ1(0), θγ1(0), u1(q1), v1(q1), w1(q1), θα1(q1), θβ1(q1), θγ1(q1), θα2(0),

θβ2(0), θγ2(0), θα2(q2), θγ2(q2), θβ3(0), θγ3(0), θβ3(q3)) (43)

The (9 × 9)-dimensional matrix LD and the (9 × 16)-dimensional matrix LI, obtained from
Equations (35)–(37), and the chosen vectors uD and uI, are expressed in Equations (44) and (45).

LD =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 sin(ϕ54) −cos(ϕ54)
0 0 0 0 0 0 0 cos(ϕ54) sin(ϕ54)
0 0 0 −sin(ϕ94) 0 0 0 0 0
0 0 −1 0 0 0 0 0

−sin(ϕ94) −cos(ϕ94) 0 0 0 0 0 0 0
cos(ϕ94) −sin(ϕ94) 0 −cos(ϕ94)b12·xm 0 0 0 0 0

0 0 0 0 sin(ϕ54) 0 −cos(ϕ54) 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 −cos(ϕ94)b13·xm cos(ϕ54) 0 sin(ϕ54) 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(44)

LI =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 −sin(ϕ24) 0 cos(ϕ24) 0 0 0 0 0 0 0 0
0 0 0 0 0 −cos(ϕ24) 0 −sin(ϕ24) 0 0 0 0 0 0 0 0
0 0 0 0 0 −cos(ϕ24) 0 −sin(ϕ24) 0 0 0 cos(ϕ94) 0 0 0 0
0 0 0 −sin(ϕ24) cos(ϕ24) cos(ϕ24)b12·ym 0 sin(ϕ24)b12·ym 0 0 0 0 0 0 0 0
0 0 0 1 0 −cos(ϕ24)b12·xm 0 −sin(ϕ24)b12·xMPS 0 0 0 0 0 0 0 0
0 0 0 −cos(ϕ24) −sin(ϕ24) −sin(ϕ24)b12·ym 0 cos(ϕ24)b12·ym 0 0 0 0 −sin(ϕ94)b12·xm 0 0 0
0 0 0 −sin(ϕ24) cos(ϕ24) 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 −cos(ϕ24)b13·xm 0 −sin(ϕ24)b13·xm 0 0 0 0 0 0 0 0
0 0 0 −cos(ϕ24) −sin(ϕ24) 0 0 0 0 0 0 0 −sin(ϕ94)b13·xm 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(45)

4.3. Cartesian Stiffness Matrix

As discussed in Section 2, Tripteor X7 is modeled as a structural assembly of three
legs, which link the rigid fixed platform to the rigid mobile platform. The three legs are
considered to be steel beams of rectangular cross-section of size consistent with Tripteor X7
legs (Figure 9).
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Figure 9. CAD model of the Tripteor X7 PKM and cross-section of its first leg.

To compute the Cartesian stiffness matrix of the robot at point Om, the issue is to
compute matrix LXI (Equation (29)). Finally, we can compute the stiffness map at a level
z = 1.18 m for example (Figure 10).

Figure 10. Principal stiffness coefficients of the Tripteor X7 along X, Y and Z axes in the XY−plane,
z = 1.18 m.

To plot Figure 11, the method was implemented in Matlab®. To emphasize the benefit
of this proposed approach, the calculation was performed on a tablet PC with a I5-7300U
processor. The time taken to compute this map is 128.72 s and is mainly due to the time
needed to calculate the Inverse Kinematic Model (IKM) of Tripteor X7.

The main advantage of the method is the fast calculation of the natural frequencies
and associated modes of over-constrained parallel robots.

4.4. Natural Frequencies

The proposed method is used for the calculation, with a low computational cost, of
the first natural frequencies and associated natural modes of the Tripteor X7 PKM.

For this first computation, the leg lengths are q1 = 1.212 m, q2 = 1.314 m and
q3 = 1.22 m, and the mass of the mobile platform is considered to be 8 kg. The approach
introduced in Section 3 is applied that gives the following estimations for the first natural
frequencies in 0.4 s:
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f0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

46.37 Hz
51.26 Hz
52.35 Hz
90.20 Hz

140.11 Hz
249.16 Hz
297.70 Hz
328.35 Hz
350.00 Hz
389.74 Hz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(46)

The associated modes of the first three natural frequencies given in Equation (46) are
schematized in Figure 11. The variation of first natural frequency value at a level z = 1.18 m
is illustrated in Figure 12.

Figure 11. Modal shapes associated with the first tree natural frequencies of Tripteor X7.

Figure 12. Variation of the first natural frequency.
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4.5. Comparison with Experimental Results

In the literature, previous works studied the modal analysis of the Tripteor X7 PKM
architecture using a shaker in three configurations [34] (Figure 13). The displacements of
several points of the PKM architecture are measured with accelerometers located on the
legs, and on the spindle. Nine DoF are considered for each leg, eight about fi-axis or fl-axis
and one about ff-axis, and four DoF for the spindle (Figure 14). The obtained results show
four natural frequencies close to 40, 50, 70 and 90 Hz.

Figure 13. First natural frequency measurement.

Figure 14. Configuration of the Tripteor X7 for the experimental measurement.

The same configurations 1, 2 and 3 were considered with the proposed beam approach,
and the associated results are given in Table 1. Experimental and simulated results are close
for the first mode. For the other modes, the simplification of the legs modeling and the
difference of mass distribution between the model and the real machine tool can explain the
gap between estimated and measured natural frequencies. Indeed, the modeling of the leg
under the assumption that their cross-section area is constant affects the leg stiffness, inertia
and the position of its gravity center. This impact is different regarding the leg lengths
and so to the studied configuration. It should be noted that this method is dedicated to
the embodiment design of parallel manipulators. Therefore, such an error is acceptable,
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and the simplification of the leg shape allows the reduction of the calculation time of the
elasto-dynamic model.

Table 1. Comparison of measured natural frequencies and calculated ones with the proposed method.

Config. 1 Config. 2 Config. 3

Beam Model Measure Error Beam Model Measure Error Beam Model Measure Error

Mode 1 46.45 Hz 46.2 Hz 0.5% 34.84 Hz 39.6 Hz 12% 55.40 Hz 49.4 Hz 12.1%
Mode 2 50.98 Hz 55.3 Hz 7.8% 36.51 Hz 51.6 Hz 29.2% 66.66 Hz 50.2 Hz 32.8%
Mode 3 52.33 Hz 71.3 Hz 26.6% 44.46 Hz 58.4 Hz 23.9% 77.66 Hz 71.3 Hz 8.9%

5. Conclusions

This paper described a new methodology to compute the first natural frequencies of
over-constrained PKMs based on the application of screw theory under the assumption
of small displacements. Specifically designed to require few computing resources, the
obtained model enables the estimation of stiffness maps, first natural frequencies and
associated modes in a simple way without computing any Jacobian matrix. The proposed
methodology was validated by comparing the obtained theoretical natural frequencies and
associated modes of the Tripteor X7 to the measured experimental values. Errors between
experimental and simulated results are less than 13% for the first mode and 33% for the
second and third modes.

As a conclusion, the proposed methodology allows the mathematical expression of the
simplified elasto-dynamic model of over-constrained parallel robots to reduce considerably
the computation time of their natural frequencies. This low computation time allows the
designer of over-constrained parallel robots to quickly estimate the natural frequencies
of candidate robot architectures at the conceptual design stage and thus make the right
choices of robot architecture with respect to required elasto-dynamic performance and a
given task.

Later, variations in leg cross-sections will be implemented and joint stiffness will be
added as an additional stiffness at beam extremities.
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Abbreviations

The following abbreviations are used in this manuscript:

qi ith joint variable
x Beam abscissa
u(x) Displacement vector of the beam neutral axis
unod Vector collecting the nodal values of the kinematic functions
u(x) Beam displacement along the neutral axis
v(x) Beam displacement along fi-axis
w(x) Beam displacement along fl-axis
θα(x) Beam section rotation about neutral axis
θβ(x) Beam section rotation about fi-axis
θγ(x) Beam section rotation about fl-axis
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fbeam(x) Beam force vector at a given abscissa
mbeam(x) Beam moment vector at a given abscissa
Ke Beam stiffness matrix
Me Beam mass matrix
dBi Vector of small displacements of point Bi
! Rotation vector of the mobile platform
uD Vector of dependent parameters
uI Vector of independent parameters
K̃ Global stiffness matrix
M̃ Global mass matrix
f0 First natural frequency vector
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