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liyongthinkpad@outlook.com

1. Introduction

Advanced X-by-wire technologies for vehicular electrified chassis play an essential
role in developing new energy-intelligent vehicles, which is the inevitable choice for
intelligent vehicles in the future. This technology is involved in mechanical engineering,
electronic and electrical engineering, computer technology, control engineering, signal
processing, and artificial intelligence. Advanced electrified chassis control technology
transmits control signals through cables and acts directly on the actuator to implement its
corresponding actions. The application of X-by-wire technologies for vehicular electrified
chassis has changed complex mechanical connections among actuators and hydraulic and
pneumatic equipment in the past, significantly promoting energy efficiency, integration,
and intelligence.

This Special Issue focuses on advanced X-by-wire technologies in durable reliability
design, modeling, integration control, thermal management, energy management, fault
diagnosis, and fault-tolerant control with the vehicular electrified chassis. Therefore,
this Special Issue aimed to solicit recent advanced X-by-wire technologies for vehicular
electrified chassis.

The topics of interest included but were not limited to:

� Modeling, analysis, control, and management of electrified chassis;
� Coordinated control of integrated chassis;
� Highly integrated design technology of electronic control suspension, steering by wire,
braking by wire;
� High-efficiency motor drive control, thermal management, electric drive system design;
� Autonomous driving and intelligent linearization control technology;
� Testing and signal analysis technology of electrified chassis;
� Vibration and noise suppression;
� Reliability design and evaluation;
� System operation condition monitoring and fault diagnosis technology;
� Highly reliable fault-tolerant control technology.

A total of 15 papers (from 17 submitted) were published. These papers can be loosely
categorized into four sections: (1) Suspension System; (2) Trajectory Planning and Control;
(3) Vehicle Torque Distribution; (4) Motor Control Review. In this article, we provide a brief
overview of the published papers.

2. Overview of Contribution

2.1. Suspension System

Reference [1] studies using a mechatronic inerter to enhance vibration isolation in
vehicle seat suspensions by introducing it into a half-vehicle model and optimizing the
seat suspension layout parameters using the particle swarm optimization algorithm. Nu-
merical simulations show that the mechatronic inerter improved the vibration isolation
performance of the suspension compared to a passive suspension and increased the transfer
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function-order of the external electrical network further by reducing seat acceleration and
pitch acceleration RMS values. Reference [2] proposes a design method for vehicle ISD (In-
erter Spring Damper) suspension systems that utilize the fractional-order electrical network
structure of a mechatronic inerter. This method used the inerter’s external electrical network
to simulate the corresponding mechanical network structure equivalently. A 1/4 dynamic
model of the suspension was constructed, and the improved oustaloup filtering algorithm
was used to simulate fractional-order components. The optimal fractional electrical net-
work structure and parameters were obtained through the structure-immittance approach
and an optimization algorithm. Reference [3] proposes a new active suspension control
strategy that combines a fuzzy neural network and a proportional-integral-derivative (PID)
controller to improve vehicle comfort and smoothness and reduce the vibrations caused
by uneven road surfaces. The main optimization target was body acceleration, and the
PID controller parameters were adjusted in real-time. An offline optimization and online
fine-tuning method for fuzzy neural network parameters were proposed using a particle
swarm optimization algorithm and gradient descent method. Reference [4] focuses on
developing a mechatronic inerter consisting of a ball-screw inerter and permanent magnet
electric machinery. The study proves the feasibility of using electrical element impedances
to simulate corresponding mechanical elements. The impedance characteristics of the
bridge and series-parallel electrical networks were introduced, and their effectiveness in
improving the vibration isolation performance of the mechatronic inertial suspension was
compared. The advantages of the bridge network were demonstrated, and a real vehicle
test shows that the mechatronic inertial suspension based on the bridge network is superior
to the passive suspension. Reference [5] proposes a fault diagnosis design method for
the solenoid valve in the electronically controlled air suspension (ECAS) system based
on multiple extended Kalman filter banks (EKFs). The fault model of the solenoid valve
was built by the fault tree analysis of the ECAS system and considered the correlation
between the duty cycle and flow rate of the air spring solenoid valve. An adaptive threshold
was used for fault diagnosis, and an active fault-tolerant control was carried out based
on an analytical model. The real controller based on d2p rapid prototyping technology
and the vehicle model based on AMESim were tested on the hardware-in-the-loop (HiL)
simulation platform.

2.2. Trajectory Planning and Control

Reference [6] proposes an automatic driving trajectory-planning method using a
variable Gaussian safety field to improve planning efficiency and safety. This method
used a time series bird’s-eye view as the input to extract features of the surrounding
traffic environment and the policy gradient algorithm to generate the planned trajectory.
The variable Gaussian safety field improved the safety of the reinforcement learning
vehicle tracking algorithm. The simulation results demonstrated the method’s excellent
trajectory planning ability in highway scenes with high safety and precision tracking control.
Reference [7] presents a trajectory-tracking control algorithm for X-by-wire electric vehicles
based on a hierarchical control architecture. The algorithm consists of three layers: trajectory
tracking, tire force distribution, and actuator control. The trajectory tracking layer used the
model predictive control algorithm to control the vehicle and follow the desired trajectory.
The tire force distribution layer solves the tire force distribution problem using quadratic
programming with constraints. The actuator control layer obtained longitudinal and lateral
forces of each tire and calculated the vehicle’s steer angle and driving torque. Simulation
results show that the proposed algorithm could accurately track the desired trajectory
under different driving conditions. Reference [8] proposes a path-tracking controller for
distributed drive electric vehicles to achieve safe obstacle avoidance. The path planning
was based on a sixth-degree polynomial with anti-collision and anti-rollover conditions.
The Model Predictive Control (MPC) controller outputs the front wheel steering angle
and additional yaw moment, while the torque distribution controller distributes the wheel
torque. The obstacle avoidance path-tracking control was achieved through the additional
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yaw moment and the vertical force ratio of the wheel. Reference [9] proposes an adaptive
robust control framework for the path-tracking control of X-by-wire autonomous vehicles.
The non-singular fast terminal sliding mode control algorithm was used to formulate
the control law, and the radial basis forward neural network was introduced to estimate
system uncertainty in real time. The dynamic model of an active front steering system
was established, and the model reference control algorithm was applied to the steering
torque control. Reference [10] proposes a multi-agent coordinated control system for
active collision avoidance in intelligent vehicles. This system uses hierarchical control
and blackboard model methods to handle conflicts between different agent decisions and
achieve multi-decisions and planning simultaneously. The fuzzy sliding mode control
theory was used to ensure accurate path tracking in lateral collision avoidance.

2.3. Vehicle Torque Distribution

Reference [11] proposes an anti-roll and anti-rollover control strategy to improve the
roll stability of distributed drive electric vehicles (DDEV). The control strategy used the
active control of wheel torque adjustment to achieve an effect similar to active suspension.
This strategy decoupled roll motion and yaw motion and used the LQR algorithm and
sliding mode variable structure to calculate the direct yaw moment and additional rolling
moment, respectively. Reference [12] proposed a regenerative-braking torque optimization
method for dual-motor electric vehicles (EVs) that integrated energy recovery and braking
stability. This method used the genetic algorithm theory and considered the state of
charge (SOC), vehicle speed, and braking intensity to design an energy recovery-dominated
regenerative braking torque distribution rule. Reference [13] proposes a torque distribution
method for four in-wheel motor drive (4IWMD) electric vehicles that aim to optimize torque
distribution and energy efficiency. The dynamic programming (DP) control algorithm was
used to distribute the torque between the front and rear in-wheel motors for optimal
torque distribution and energy efficiency. Reference [14] proposed an acceleration slip
regulation (ASR) control strategy based on nonlinear model predictive control (NMPC)
for front and rear dual-motor four-wheel drive electric vehicles (4WD EVs). The ASR
controller tracks reference speed or optimal slip rate, including intervention and exit
mechanisms. The motor output torque was determined according to the wheel with the
increased slip rate to enhance the passibility of split road surfaces. Simulation experiments
on different road conditions demonstrated that the proposed controller exhibited better
dynamic performance and stability than the PID control, particularly under low speed and
low adhesion road conditions, and met robustness requirements.

2.4. Motor Control Review

Reference [15] reviews the position’s sensorless compound control technology for per-
manent magnet synchronous motors (PMSMs). This technology improved motor reliability,
reduced costs, and expanded the speed range of PMSMs. The article elaborated on the
compound control technology of PMSMs without a position sensor and summarized the
existing problems and development trends of sensorless compound control technology.

3. Final Thoughts

The Special Issue covers advances in the design, control and measurement of
X-by-Wire technologies. The Guest Editorial Board hopes that this Special Issue provides
state-of-the-art research in the field of vehicular electrified chassis. This Special Issue also
presents various innovative approaches with promising results to address the challenges in
vehicular electrified chassis. The Guest Editorial Board also hopes that more researchers
will enter into this interesting field to promote respective research in the near future.
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Improvement of the Vehicle Seat Suspension System
Incorporating the Mechatronic Inerter Element

Chengqun Qiu 1,*, Xiaofu Liu 2 and Yujie Shen 3

1 Jiangsu Province Intelligent Optoelectronic Devices and Measurement-Control Engineering Research Center,
Yancheng Teachers University, Yancheng 224007, China

2 College of Engineering, China Agricultural University, Beijing 100083, China
3 Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China
* Correspondence: yctcqcq@126.com; Tel.: +86-15805108661

Abstract: A mechatronic inerter can simulate the equivalent mechanical network through the external
electrical network and can be used in a wide range of mechanical device design applications. In
this paper, we study the use of a mechatronic inerter to enhance vibration isolation in vehicle seat
suspensions. Firstly, the vertical and pitch movements of the vehicle’s sprung mass and the vertical
vibration of the seat are considered in a half vehicle model. Then, the mechatronic inerter is introduced
and the external electrical network is presented. The particle swarm optimization algorithm was used
to optimize the seat suspension layout parameters with different transfer function-orders. Numerical
simulations under different speeds were performed, and the results show that the application of
the used mechatronic inerter’s seat suspension vibration isolation performance outperforms passive
suspension. In addition, with an increase in the external electrical network transfer function-order,
the seat acceleration and pitch acceleration RMS values will be further reduced. The results of the
study will contribute to a new approach to vehicle seat suspension design.

Keywords: vehicle; seat suspension; inerter; mechatronic system

1. Introduction

Seat suspension is used in vehicles in order to enhance the driver’s comfort and protect
the health of the driver from vibrations caused by uneven roads. Improved driver ride
comfort can be achieved by designing the ride quality of the main and cockpit suspen-
sions [1–4]. However, for commercial vehicles, the driver is primarily exposed to high
amplitude and low frequency vibrations, which are a major factor in health disorders [5,6].
Therefore, using the seat’s suspension to reduce unwanted vibration is a simple and ef-
fective method. In particular, Deng proposed, in 2019, a novel seat suspension capable
of variable stiffness and damping (VSVD) that improved ride comfort with magnetorhe-
ological fluid dampers [7]. In [8], Ning proposed an electrical variable stiffness device
(EVSD) and applied it to suspensions in 2019. The introduction of a negative stiffness
structure into a cab seat suspension structure improved the cab’s working environment
and the seating comfort in [9]. In [10], Liu proposed a semi-active electromagnetic device
capable of varying inertance and damping (VIVD), using an energy storage priority control
(ESPC) strategy to reduce the vibrations in vehicle seat suspensions in 2021. Until now,
several scholars have proposed a number of different structures for seat suspension, and the
structural aspect of improving the performance of seat suspension has reached a bottleneck.
The question of how to design a new seat suspension structure with excellent performance
has becomes a heated problem.

Inerters, such as springs and dampers, are strictly mechanical components with
two endpoints [11–13]; the use of such results in significant improvements in vehicle
suspension system performance [14,15]. Professor Smith gave the physical definition
and dynamic equations of the inerter device, and designed the rack-pinion inerter and
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ball-screw inerter. The application of an inerter element was further studied in a vehicle
suspension system [16–18] and in civil engineering [19,20]. In [21], Liu proposed a new
semi-active suspension system based on a hydro-pneumatic inerter, and an MPC control
strategy was designed to suppress vehicle vibration in 2021. In [22], use of electrical network
elements for equivalent fractional-order mechanical networks in vehicle suspension design
showed that the results of numerical simulations confirm the performance advantages
of vehicle mechatronic ISD suspension with a fractional-order electrical network. In [23],
Li effectively used the advantages of an inertial suspension and GH control strategy to
reduce dynamic tire loads in HMDVs over a wider frequency range in 2022. In [24–26], the
effect of inerter nonlinearity on vehicle suspension vibration isolation performance was
studied. In [27], inerter development led to a new theory of electromechanical similarity,
where an inerter corresponds to a capacitor, a damper corresponds to a resistor, and a
spring corresponds to an inductor. Shen proposed an optimal design method for vehicle
mechatronic ISD suspension based on the structure-immittance approach in 2021 [28].
However, the application of an inerter element to a vehicle seat suspension system lacks
research. Based on the new electromechanical similarity theory, the ability to use an external
electrical network can increase the order of the seat suspension’s transfer function and
simplify the mechanic. Therefore, in order to improve vibration isolation performance and
the ride comfort of seat suspension, this paper integrates a mechatronic inerter element
into vehicle seat suspension. The article is structured as follows.

Firstly, in Section 2, a half vehicle model is established with a seven-degree-of-freedom
model that takes into account the vertical and pitch movements of the vehicle’s sprung mass
and the vertical vibration of the seat. Then, in Section 3, the seat suspension, employing
a mechatronic inerter device, is introduced, and the different external electrical networks
are presented. In Section 4, the particle swarm optimization algorithm is used to optimize
the designed seat suspension parameters. Then, Section 5 provides an analysis of the seat
suspension dynamics according to the half vehicle model. Section 6 is the concluding
section of this paper.

2. Half Vehicle Model

We refer to the half vehicle model built by Shen in 2021 [28]. Figure 1 shows the half
vehicle model built for this study; this seven-degree-of-freedom model takes into account
the vertical and pitch movements of the vehicle’s sprung mass and the vertical vibration
of the seat. This study was carried out with the vehicle unloaded, therefore, the mass and
inertia of the driver are not taken into account.

Figure 1. Seven-degree-of-freedom vehicle model.
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The vertical motion equation of the seat mass is

ms
..
zs = Fs (1)

The equation representing the sprung mass vertical motion is

ma
..
za = k f (zu f − za f ) + c f (

.
zu f − .

za f ) + kr(zur − zar) + cr(
.
zur − .

zar)− Fs (2)

The equation representing the sprung mass pitch motion is

Iϕ
..
ϕ = lrFr + lsFs − l f Ff (3)

The equations of the front and rear unsprung masses are{
mu f

..
zu f = kt f (zr f − zu f )− k f (zu f − za f )− c f (

.
zu f − .

za f )
mur

..
zur = ktr(zrr − zur)− kr(zur − zar)− cr(

.
zur − .

zar)
(4)

The pitch angle can be approximately equal to the following equation when the angle
is relatively small. ⎧⎨⎩

zas = za − ls ϕ
zs f = za − l f ϕ

zsr = za + lr ϕ

(5)

where ms is the vehicle seat mass, zs is the seat’s vertical displacement, ma is the vehicle’s
sprung mass, za is the vertical displacement of the body centroid, Fs is the seat’s suspension
force, Ff and Fr are the forces of the front and rear suspensions, ls is the horizontal distance
from the seat to the centroid, lf and lr are the distances from the front and rear axles to
the body centroid, ϕ is the body pitch angle, Iϕ is the body pitch moment of inertia, kf
and cf are the spring’s stiffness and the damping coefficient of the front suspension, kr and
cr are the spring’s stiffness and the damping coefficient of the rear suspension, muf and
mur are the front and rear unsprung mass, zuf and zur are the vertical displacements of the
front and rear unsprung mass, ktf and ktr are the equivalent stiffness of the front and rear
tires, zrf and zrr are the displacement inputs of the front and rear wheels, zaf and zar are
the vertical displacements of the front corner and rear corner of the vehicle’s body. This
study was carried out on the basis of a passenger car model in order to achieve an effective
increase in ride comfort in passenger cars; the model for this study was built on a mature,
commercially available model. Table 1 shows the parameters of the half vehicle model.

Table 1. Main parameters of the vehicle model.

Name Value

Seat mass ms (kg) 48
Body centroid mass ma (kg) 928.2

Unsprung mass of front wheels muf (kg) 26.5
Unsprung mass of rear wheels mur (kg) 24.4

Distance from seat to centroid ls (m) 0.324
Distance from front axle to centroid lf (m) 0.968
Distance from rear axle to centroid lr (m) 1.392

Moment of inertia aound the Y axis Iϕ (kg·m2) 1058
Front suspension stiffness kf (kN·m−1) 25
Rear suspension stiffness kr (kN·m−1) 22
Front suspension damping cf (Ns/m) 1500
Rear suspension damping cr (Ns/m) 1300

Tire stiffness kt (kN·m−1) 192
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3. Seat Suspension Layout

3.1. The Ball-Screw Mechatronic Inerter

The inerter is a mass element at both ends, and its output force is proportional to
the relative acceleration at both ends. Inerters are available in ball-screw, rack and pinion,
and fluid types. In this study, we have designed a ball-screw mechatronic inerter. The
ball-screw mechatronic inerter comprises a rotary motor device and a ball-screw inerter.
Among them, the ball-screw converts the linear reciprocating motion into a rotary motion
and transmits it to the rotary motor. Figure 2 shows the working principle of the ball-screw
mechatronic inerter.

Figure 2. Ball-screw mechatronic inerter.

According to Figure 2, the inertance of the ball-screw mechatronic inerter can be
changed by modifying the rotational inertia of the flywheel mounted on the ball-screw
shaft. When both endpoints of the ball-screw mechatronic inerter move in a straight line,
the rotating motor rotor is driven by the ball-screw shaft, producing a voltage U that flows
through the external electrical load. Re and Le are the coil resistance and inductance. In this
paper, the coil factor is not considered in the optimization. The external electrical load can
be adopted to simulate the corresponding mechanical network in the optimization process.

3.2. The Seat Suspension Layout

The designed seat suspension, using the mechatronic inerter, includes a mechanical
part and an electrical network part. For the mechanical section, we needed to provide
load-bearing capacity for the seat suspension by means of a parallel spring, which includes
a spring and an inerter, and provides a fundamental seat suspension layout to protect the
system in the event of electrical network failure. The electrical section involves resistors,
inductors, and capacitors to simulate the dampers, springs, and inerters. Figure 3 shows
the layout of the mechatronic seat suspension, where the mechatronic inerter is connected,
in parallel, with the spring.

Figure 3. General layout of the seat suspension.
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Where ks and bs are mechanical structures and T(s) is the impedance expression to be
solved; the double primary impedance transfer function is as follows:

T(s) =
α1s + α0

β1s + β0
(6)

where αi ≥ 0, βi ≥ 0 (βi are not all 0). The positive real constraints of the double primary
impedance transfer function are as follows:

α1β1 ≥ 0 (7)

The biquadratic impedance transfer function is as follows:

T(s) =
α2s2 + α1s + α0

β2s2 + β1s + β0
(8)

where αi ≥ 0, βi ≥ 0 (βi are not all 0). The positive realness constraints of the biquadratic
impedance transfer function are as follows:

(
√

α2β0 −
√

α0β2)
2 ≤ α1β1 (9)

The bicubic impedance transfer function is as follows:

T(s) =
α3s3 + α2s2 + α1s + α0

β3s3 + β2s2 + β3s + β0
(10)

where αi ≥ 0, βi ≥ 0 (βi are not all 0). The positive realness constraints of the bicubic
impedance transfer function are as follows:⎧⎪⎪⎨⎪⎪⎩

(α1 + β1)(α2 + β2) ≥ (α0 + β0)(α3 + β3);

a3 = 0, a2 ≥ 0, a0 ≥ 0,−a1 ≤ 2
√

a0a2;

a3 > 0, a0 ≥ 0, a1 ≥ 0,−a2 ≤ √
3a1a3ora2

2 > 3a1a3, 2a3
2 − 9a1a2a3 + 27a0a2

3 ≥ 2(a2
2 − 3a1a3)

3/2

(11)

where a0 = α0β0, a1 = α1β1 − α0β2 − α2β0, a2 = α2β2 − α1β3 − α3β1, a3 = α3β3.

4. Optimal Design of the Mechatronic Seat Suspension

For optimum performance of the mechatronic seat suspension, the parameters of the
designed seat suspension systems are optimized via particle swarm optimization. To begin
with, the particle is initialized, and the fit value of the particle is then compared with the
best location it passes through, and the speed and position of the particle are updated. This
ends when the termination condition is met. As the model for this study was built on a
mature, commercially available model, before optimization, the main spring coefficient for
protection remained the same as the conventional suspension, and only the parameters in
T(s) and b were optimized to give the optimization results practical significance.

Assuming the vehicle is driving at 30 km/h on a C grade road [29], and taking into
account the vertical acceleration of the seat and the acceleration of the pitch motion; then,
the objective function is defined as

f =
J1

J1pas
+

J2

J2pas
(12)

where J1pas and J2pas are the root-mean-square (RMS) values of the seat vertical acceleration
and the pitch motion acceleration of traditional passive suspension. Here, J1pas = 0.9913 m/s2

and J2pas = 1.2852 rad/s2. J1 and J2 are the RMS values of the seat vertical acceleration
and the pitch motion acceleration of the designed suspension system. The mechanical
inertance b and the T(s) transfer function as the optimization variables. Particle swarm

9
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optimization was used to find the global optimum by following the current search. This
algorithm has attracted academic attention for its ease of implementation, high accuracy
and fast convergence. Equations (13) and (14) are the updated formulas for the particle
velocity and position properties.

Vn+1 = λVn + d1r1(Pn
id − Xn) + d2r2

(
Pn

gd − Xn
)

(13)

Xn+1 = Xn + Vn+1 (14)

where λ is the inertia factor, V is the velocity of the particle, X is the particle’s position, n is
the iterations number, and d1 and d2 are non-negative constants. The random numbers r1
and r2 usually have a value between 0 and 1, while Pid and Pgd are the individual extremum
and global extremum. Figure 4 shows the optimization process of the algorithm.

Figure 4. The optimization process of particle swarm optimization.

The optimized results of the transfer functions can be passively realized by the elec-
trical network involving resistors, capacitors, and inductors. Figure 5 illustrates the corre-
sponding network; Table 2 shows the detailed parameters.

10
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Figure 5. Electrical network. (a) Bivariate transfer function electrical network; (b) Biquadratic transfer
function electrical network; (c) Bicubic transfer function electrical network.

Table 2. Electrical network parameters.

Name Value

Resistor R11 (Ω) 4877
Resistor R12 (Ω) 654
Capacitor C11 (F) 0.0047
Resistor R21 (Ω) 98,754
Resistor R22 (Ω) 35,789
Resistor R23 (Ω) 5711
Capacitor C21 (F) 0.0079
Inductor L21 (H) 0.34
Resistor R31 (Ω) 81
Resistor R32 (Ω) 6998
Resistor R33 (Ω) 74,223
Resistor R34 (Ω) 158
Capacitor C31 (F) 0.0024
Capacitor C32 (F) 0.0017
Inductor L31 (H) 0.76

5. Performance Evaluation

The structural optimization of the designed seat suspension was required for the
application of the mechatronic inerter. Table 3 shows the RMS values of the seat acceleration
and pitch acceleration among the different suspension systems at a speed of 30 km/h.

Table 3. Comparison of the different seat suspension systems.

RMS of Seat
Acceleration

Improvement
RMS of Pitch
Acceleration

Improvement

Passive
suspension 0.9913 / 1.2852 /

Layout S1 0.9664 2.51% 1.2638 1.67%

Layout S2 0.9459 4.58% 1.2414 3.41%

Layout S3 0.8866 10.56% 1.1879 7.57%

Table 3 shows that, for the S1 seat suspension layout, the RMS values of the seat
acceleration and the pitch acceleration decreased by 2.51% and 1.67%, respectively. The
improvements are not obvious. Therefore, as the transfer function of the external electrical
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network increases in order, the RMS values of the seat acceleration and the pitch acceleration
of the S2 seat suspension layout are further reduced by 4.58% and 3.41%, respectively. Then,
for the S3 seat suspension layout, which used a bicubic transfer function electrical network,
the RMS values of the seat acceleration and the pitch acceleration decreased by 10.56%
and 7.57%, respectively; this resulted in a significant improvement in the ride comfort of
the vehicle seat suspension. A comparison of the time domain characteristics of the seat
acceleration and the pitch acceleration are shown in Figures 6 and 7. Figures 8 and 9 show
the comparisons of the RMS values of the seat acceleration and the pitch acceleration at
different speeds.

 
Figure 6. Comparison of the seat accelerations in the time domain.

 
Figure 7. Comparison of the pitch accelerations in the time domain.
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Figure 8. Comparison of the RMS of seat acceleration under different speeds.

 
Figure 9. Comparison of the RMS of pitch acceleration under different speeds.

It is noted that, as the vehicle speed increases, the RMS values of the seat acceleration
under the same suspension structure also increase. Under the same vehicle speed, the
higher the transfer function order is, the smaller the RMS values of the seat acceleration
are. For the pitch acceleration, as can be seen in the bar chart, when the speed of the
vehicle increased, the pitch acceleration under the same type of suspension also increased.
As the order of transfer function of the external electrical network increased, the pitch
acceleration was reduced. In conclusion, the RMS values of the seat acceleration and pitch
acceleration of the S3 layout are significantly lower than those of the S1 and S2 layouts, and
passive suspension.
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6. Conclusions

In this study, a mechatronic inerter element was introduced into the structural design
of vehicle seat suspensions, and the problem of optimizing the design of the vehicle seat
suspension, to integrate the mechatronic inerter element, was investigated. In addition, the
vertical and pitch movements of the vehicle’s sprung mass and the vertical vibration of the
seat were considered in a half vehicle model. Based on a ball-screw mechatronic inerter, the
external electrical networks, using different transfer function-orders, were optimized via
the particle swarm optimization algorithm. The results show that, as the external electrical
network transfer function-order is increased, the RMS values of the seat acceleration and
pitch acceleration will be further reduced. The RMS values of the seat acceleration and pitch
acceleration can be simultaneously reduced by 10.56% and 7.57%, respectively, at most. The
performance of vehicle seat suspensions with an integrated mechatronic inerter element can
be improved by increasing the order of the external electrical network transfer function.

Author Contributions: Conceptualization, C.Q.; methodology, Y.S.; software, X.L.; validation, X.L.;
formal analysis, C.Q.; investigation, Y.S.; writing—original draft preparation, C.Q.; writing—review
and editing, Y.S.; supervision, X.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the Natural Science Foundation of Beijing Municipality
(No. 3214045), and the Natural Science Foundation of Jiangsu Province (No. BK20211364).

Data Availability Statement: The data used to support the findings of the study are available from
the corresponding author upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Choi, S.; Choi, Y.T.; Chang, E.G.; Han, S.J.; Kim, C.S. Control characteristics of a continuously variable ER damper. Mechatronics
1998, 8, 143–161. [CrossRef]

2. Rakheja, S.; Afework, Y.; Sankar, S. An analytical and experimental investigation of the driver-seat-suspension system.
Veh. Syst. Dyn. 1994, 23, 501–524. [CrossRef]

3. Tong, R.T.; Amirouche, F. Ride control-a two state suspension design for cabs and seats. Veh. Syst. Dyn. 1999, 33, 578–589.
[CrossRef]

4. Wereley, N.M.; Pang, L. Nondimensional analysis of semi-active electrorheological and magnetorheological dampers using
approximate parallel plate models. Smart Mater. Struct. 1997, 7, 732–743. [CrossRef]

5. Amirouche, F.; Palkovics, L.; Woodrooffe, J. Optimal driver seat suspension design for heavy trucks. Transp. Syst. ASME 1994, 2,
277–291.

6. Andersson, R. The low back pain of bus drivers in an urban area of California. Spine 1982, 17, 1481–1488. [CrossRef]
7. Deng, H.; Deng, J.; Yue, R.; Han, G.; Zhang, J.; Ma, M.; Zhong, X. Design and verification of a seat suspension with variable

stiffness and damping. Smart Mater. Struct. 2019, 28, 65015. [CrossRef]
8. Ning, D.; Du, H.; Sun, S.; Li, W.; Zhang, N.; Dong, M. A novel electrical variable stiffness device for vehicle seat suspension

control with mismatched disturbance compensation. IEEE ASME Trans. Mechatron. 2019, 24, 2019–2030. [CrossRef]
9. Liao, X.; Du, X.; Li, S. Design of cab seat suspension system for construction machinery based on negative stiffness structure.

Adv. Mech. Eng. 2021, 13, 1–15. [CrossRef]
10. Liu, P.; Ning, D.; Luo, L.; Zhang, N.; Du, H. An electromagnetic variable inertance and damping seat suspension with controllable

circuits. IEEE Trans. Ind. Electron. 2021, 69, 2811–2821. [CrossRef]
11. Smith, M.C.; Wang, F. Performance benefits in passive vehicle suspensions employing inerters. Veh. Syst. Dyn. 2004, 42, 235–257.

[CrossRef]
12. Zhang, C.; Zhang, Z.; Zhao, H. Analysis of dynamic characteristics and ride performance of automobile active suspension.

Chin. Agric. Mech. 2015, 36, 176–179. [CrossRef]
13. Huang, C.; Chen, L.; Yuan, Z.; Jiang, H.; Niu, L. Hybrid fuzzy control of semi-active suspension system. Automot. Eng. 2014, 36,

999–1018.
14. Smith Malcolm, C. Synthesis of mechanical networks: The inerter. IEEE Trans. Autom. Control 2002, 47, 1648–1662. [CrossRef]
15. Zhao, Z.-P.; Chen, Q.-J.; Zhang, R.-F.; Pan, P.; Jian, Y.-Y. Energy dissipation mechanism of inerter systems. Int. J. Mech. Sci. 2020,

184, 105845. [CrossRef]
16. Chen, M.Z.Q.; Hu, Y.L.; Li, C.Y.; Chen, G. Application of semi-active inerter in semi-active suspensions via force tracking.

J. Vib. Acoust. 2016, 138, 041014. [CrossRef]

14



World Electr. Veh. J. 2023, 14, 29

17. Hu, Y.L.; Wang, K.; Chen, Y.H.; Chen, M.Z.Q. Inerter-based semi-active suspensions with low-order mechanical admittance via
network synthesis. Trans. Inst. Meas. Control 2018, 40, 4233–4245. [CrossRef]

18. Liu, Y.L.; Zhao, W.T.; Yang, X.F.; Shen, Y.J. Predictive control of vehicle ISD suspension based on a hydraulic electric inerter.
Shock Vib. 2019, 2019, 9230736. [CrossRef]

19. Zhang, S.Y.; Jiang, J.Z.; Neild, S.A. Optimal configurations for a linear vibration suppression device in a multi-storey building.
Struct. Control Health Monit. 2016, 24, e1887. [CrossRef]

20. Giaralis, A.; Petrini, F. Wind-induced vibration mitigation in tall buildings using the tuned mass-damper-inerter. J. Struct. Eng.
2017, 142, 04017127. [CrossRef]

21. Yang, L.; Wang, R.; Ding, R.; Liu, W.; Zhu, Z. Investigation on the dynamic performance of a new semi-active hydro-pneumatic
inerter-based suspension system with MPC control strategy. Mech. Syst. Signal Process. 2021, 154, 107569. [CrossRef]

22. Shen, Y.; Hua, J.; Fan, W.; Liu, Y.; Yang, X.; Chen, L. Optimal design and dynamic performance analysis of a fractional-order
electrical network-based vehicle mechatronic ISD suspension. Mech. Syst. Signal Process. 2023, 184, 109718. [CrossRef]

23. Li, Y.; Yang, X.; Shen, Y.; Liu, Y.; Wang, W. Optimal design and dynamic control of the HMDV inertial suspension based on the
ground-hook positive real network. Adv. Eng. Softw. 2022, 171, 103171. [CrossRef]

24. Shen, Y.; Chen, L.; Liu, Y.; Zhang, X. Influence of fluid inerter nonlinearities on vehicle suspension performance. Adv. Mech. Eng.
2017, 9, 1687814017737257. [CrossRef]

25. Sun, X.Q.; Chen, L.; Wang, S.H.; Zhang, X.L.; Yang, X.F. Performance investigation of vehicle suspension system with nonlinear
ball-screw inerter. Int. J. Automot. Technol. 2016, 17, 399–408. [CrossRef]

26. Liu, C.; Chen, L.; Zhang, X.; Yang, Y.; Nie, J. Design and tests of a controllable inerter with fluid-air mixture condition. IEEE Access
2020, 8, 125620–125629. [CrossRef]

27. Yang, X.; He, T.; Shen, Y.; Liu, Y.; Yan, L. Research on predictive coordinated control of ride comfort and road friendliness for
heavy vehicle ISD suspension based on the hybrid-hook damping strategy. Proc. Inst. Mech. Eng. D J. Automob. Eng. 2022.
[CrossRef]

28. Shen, Y.; Hua, J.; Wu, B.; Chen, Z.; Xiong, X.; Chen, L. Optimal design of the vehicle mechatronic ISD suspension system using the
structure-immittance approach. Proc. Inst. Mech. Eng. D J. Automob. Eng. 2022, 236, 512–521. [CrossRef]

29. ISO 8608:2016; Mechanical Vibration—Road Surface Profiles—Reporting of Measured Data. International Organization for
Standardization: Geneva, Switzerland, 2016. Available online: https://www.iso.org/standard/71202.html. (accessed on
22 November 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

15





Citation: Hua, J.; Shen, Y.; Yang, X.;

Zhang, Y.; Liu, Y. Optimal Design of

Fractional-Order Electrical Network

for Vehicle Mechatronic ISD

Suspension Using the

Structure-Immittance Approach.

World Electr. Veh. J. 2023, 14, 12.

https://doi.org/10.3390/

wevj14010012

Academic Editors: Yong Li, Xing Xu,

Lin Zhang, Yechen Qin and Yang Lu

Received: 30 November 2022

Revised: 30 December 2022

Accepted: 3 January 2023

Published: 4 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Optimal Design of Fractional-Order Electrical Network for
Vehicle Mechatronic ISD Suspension Using the
Structure-Immittance Approach

Jie Hua 1, Yujie Shen 1,*, Xiaofeng Yang 2, Ying Zhang 3 and Yanling Liu 2

1 Automotive Engineering Research Institute, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
2 School of Automotive and Traffic Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
3 School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
* Correspondence: shenyujie@ujs.edu.cn

Abstract: In order to more effectively design the structure of vehicle ISD (Inerter Spring Damper)
suspension system using the inerter, this paper proposed a design method using a fractional-order
electrical network structure of a mechatronic inerter for fractional-order electrical network compo-
nents, according to the characteristics that the external electrical network of a mechatronic inerter can
simulate the corresponding mechanical network structure equivalently. First, the 1/4 dynamic model
of the suspension is constructed. The improved Oustaloup filtering algorithm is used to simulate
fractional calculus, and the fractional order components are simulated. Then, the simulation model
of the vehicle mechatronic ISD suspension is established. In order to simplify the electrical network,
one resistance, one fractional inductance and one fractional capacitance are limited in the design of
the fractional electrical network at the outer end of the mechatronic inerter. The structure-immittance
approach is used to obtain two general layouts of all possible structures of three elements. At the same
time, the optimal fractional electrical network structure and parameters are obtained by combining
the optimization algorithm. The simulation results verify the performance of the fractional ISD
suspension with the optimized structure, which can provide a new idea for the structural design of a
fractional-order electrical network applied in vehicle mechatronic ISD suspension.

Keywords: vehicle; suspension; mechatronic inerter; fractional-order electrical network;
structure-immittance approach; optimal design

1. Introduction

The proposition of the inerter [1] breaks through the inherent structure of the existing
suspension system “spring damper” parallel connection, and forms a new suspension
structure system. This suspension, consisting of spring, damper and inerter elements,
is called ISD suspension. Scholars all over the world have adopted many methods to
realize the inerter [2–9], and after the application of the inerter, the performance potential
of the vibration isolation system has also been expanded to include aircraft [10], trains [11],
buildings [12], bridges [13], etc. The structural design of ISD suspension plays an important
role in meeting various performance indicators of vehicles. The question of how to design
the structure of ISD suspension has attracted the attention of scholars at home and abroad.

Common ISD suspension structure design methods include the structure approach, the
immitance approach and the structure-immitance approach. The structure approach [14]
limits the number of components in the suspension, and integrates them into parameter
optimization according to the feasible range of component parameters. The disadvantage
is that the arrangement and combination method has a huge workload, which makes it
difficult to cover a wide range of mechanical networks, and it is easy to omit structures
with excellent performance. The immitance approach [15] replaces the suspension structure
with a fixed form of impedance or admittance expression, uses the parameter optimization
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method to optimize the solution and finally realizes it passively through network synthesis.
The suspension component parameters obtained by the immitance approach often do not
conform to the routine, which is not conducive to engineering realization. The structure-
immitance approach [16] can be used to express the structure with a predetermined number
of elements with a general impedance expression. However, the structural complexity
of a pure mechanical network is high, which has affected the engineering design of ISD
suspension. The mechatronic inerter [17] is a device coupled by a mechanical inerter and
a rotating motor. The external circuit impedance of the mechatronic inerter can be used
to simulate the target mechanical impedance to achieve the passive structure design of
complex mechanical network, overcome the space limitation of pure mechanical network
suspension structure and expand the design idea of suspension system structure. However,
for the electrical network at the outer end of the mechatronic inerter, the increase of the
order of its impedance transfer function will bring higher performance improvement [18],
and at the same time, the difficulty of network integration will also increase greatly. For
example, the bicubic impedance transfer function requires no more than 13 elements to
realize passively [19], and its structure is complex.

In the structural design of the suspension system, fractional calculus theory has also
been commonly used [20–23], and its feasibility has also been verified [24,25], indicating that
the fractional-order function can more accurately describe the dynamic characteristics of
complex systems than the integral-order function. Using fractional-order electrical network
elements to replace the original integer-order electrical network at the outer end of the
mechatronic inerter can effectively avoid the high complexity of pure integer order network
structures. However, the structural design of fractional-order electrical networks in vehicle
mechatronic ISD suspension has not been reported yet, and in the design of a fractional-
order vehicle mechatronic ISD suspension, a simple and clear fractional-order electrical
network structure is essential. Therefore, this paper will use the structure-immitance
approach to study the optimal design of the fractional-order electrical network structure
for a vehicle mechatronic ISD suspension. The content layout of the rest of this paper is
as follows.

First, in Section 2, the definition and algorithm realization of fractional calculus
are introduced, and the equivalent realization relationship between fractional electrical
components and fractional mechanical components are analyzed. In Section 3, a quar-
ter suspension dynamic simulation model is established, and fractional-order electrical
components are used in the design of the electrical network, and the structure-immitance
approach is used to design the electrical network structure. Then, in Section 4, the electrical
network structure and parameters of the suspension system are obtained through optimiza-
tion. Finally, in Section 5, the dynamic performance of the optimized fractional-order ISD
suspension is evaluated by comparison, and some conclusions are made in Section 6.

2. Equivalent Realization of Fractional Passive Network Elements

Fractional calculus has the basic operator t0 Dα
t , among which, α is limited to real

numbers, t and t0 are the upper and lower bounds of the operator. The unified definition of
fractional calculus operator [26] is:

t0 Dα
t f (t) =

⎧⎪⎨⎪⎩
dα

dtα f (t), α > 0
f (t), α = 0∫ t

t0
f (τ)dτ−α, α < 0

(1)

There are many definitions of fractional calculus. This paper adopts the Grünwald–
Letnikow [26] fractional calculus definition. The Grünwald–Letnikow of the α derivative
of a given function f (t) is defined as:

GL
t0

Dα
t f (t) = lim

h→0

1
hα

[(t−t0)/h]

∑
j=0

(−1)j
(

α
j

)
f (t − jh) (2)
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where [·] means taking the nearest integer. At the same time, in order to ensure the
approximation effect at the frequency band boundary and ensure that the transfer function
is regular, the improved Oustaloup filtering algorithm [27] is considered to approximate
fractional calculus. The mathematical model of the improved Oustaloup filter is:

sγ ≈
(

dωh
b

)γ( ds2 + bωhs
d(1 − γ)s2 + bωhs + dγ

) N

∏
k=1

s + ω′
k

s + ωk
(3)

ω′
k = ωbωu

(2k−1−γ)/N , ωk = ωbωu
(2k−1+γ)/N , ωu =

√
ωh/ωb (4)

where N is the filter order, γ is the fractional order, ω’k and ωk are zero point and the pole,
respectively. ωh and ωb are the upper and lower limits of frequency bands, respectively. In
general, the weighting parameters b = 10, d = 9. In this paper, the filter frequency band is
(10−3, 103) rad/s. The larger the filter order, the higher the approximation accuracy. In this
frequency band, the fifth order Oustaloup filtering effect has met the accuracy requirements,
so the selection order is five.

In the new mechanical and electrical analogy, the spring and the inductance, the
damper and the resistance, and the inerter and capacitance are similar, respectively [28].
According to the above fractional definition and approximation method, the impedance
expression of fractional network elements (including mechanical network and electrical
network) is obtained by using the form of pull transform, with excitation force as the input
and corresponding speed as the output, as shown in Table 1, where s is the Laplace variable,
α and β are fractional orders.

Table 1. Impedance expression of fractional network elements.

Mechanical Network Elements Impedance Electrical Network Elements Impedance

Spring k/sα Inductor 1/Lsα

Damper c Resistor 1/R
Inerter bsβ Capacitor Csβ

3. Model Construction of Vehicle Mechatronic ISD Suspension System

3.1. The Ball-Screw Mechatronic Inerter

A mechatronic inerter is considered in this paper, which is formed by coupling a
ball-screw inerter with a rotary motor. Its structural diagram is shown in Figure 1. The
relative linear motion of the two ends of the mechanical inerter can be converted into the
rotary motion of the motor. The inductor, resistor and capacitor in the electrical network at
the outer end of the rotary motor can equivalently simulate the spring, damper, and inerter
in the mechanical network structure.

U

Re

Le

Figure 1. The schematic of ball-screw mechatronic inerter.

3.2. Mechatronic ISD Suspension Structure Layout

The quarter suspension model is a typical vibration model of vehicle suspension
system, which is a basic dynamic model for studying its vertical performance. In this paper,
a quarter vehicle mechatronic ISD suspension dynamics model is established, as shown in
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Figure 2. Based on a mature vehicle model, Table 2 illustrates the parameters for the model.

mu

zs

zu

zr

kt

ms

k Rotary

 Motor

b External 
network

mechatronic inerter

c
B(s)

Figure 2. A quarter vehicle suspension model.

Table 2. Parameters of quarter vehicle suspension model.

Parameters Values

Sprung Mass ms/kg 320
Unsprung Mass mu/kg 45

Spring Stiffness k/N m−1 22,000
Tire Stiffness kt/N m−1 190,000

The dynamic Laplace equation of the suspension model is shown in Equation (5):{
mss2Zs + [k + cs + sB(s)](Zs − Zu) = 0

mus2Zu − [k + cs + sB(s)](Zs − Zu) + kt(Zu − Zr) = 0
(5)

where k, kt, and c are spring stiffness, tire stiffness, and the damping coefficient, respectively,
ms and mu are the sprung mass and the unsprung mass, respectively. zs, zu and zr are
the vertical displacements of the sprung mass, the unsprung mass, and road roughness,
respectively, and Zs, Zu and Zr are their Laplace transforms, respectively. B(s) is the
impedance expression of the mechatronic inerter, which is shown as follows [17]:{

B(s) = bs + Km
Ze(s)

Km =
( 2π

P
)2ktke

(6)

where b is the inertance of the ball-screw mechatronic inerter, P is the pitch of the ball-screw
mechanism, ke is the induced electromotive force coefficient of the rotary motor, kt is the
thrust coefficient of the rotary motor. Km is the electromechanical parameter conversion
coefficient of the ball-screw mechatronic inerter, which is taken as 7056 HN/m in this paper.
Ze(s) is the impedance expression of the external electrical network of the rotary motor. The
fractional-order external electrical network of the mechatronic inerter includes resistor(s),
fractional-order capacitor(s) and fractional-order inductor(s). In order to simplify the
electrical network, the number of resistors, fractional capacitors and fractional inductors is
limited to one in the optimal design. Eight structures of the three element arrangement are
summarized using the structure-immittance approach, and two general structures are used
for general expression, as shown in Figures 3 and 4.
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Figure 3. General structure of Y1(s).

Figure 4. General structure of Y2(s).

The impedance transfer function expressions of the two general structures in Figures 3 and 4
are, respectively, as follows:

Y1(s) =
C 1

R sα+β + C( 1
L4

+ 1
L6
)sβ + 1

R (
1
L2

+ 1
L6
)

C 1
R L3s2α+β + Csα+β + 1

R sα + 1
L2

+ 1
L4

(7)

Y2(s) =
C 1

R (L1 + L2)s2α+β + Csα+β + 1
R sα + 1

L3

C(L1 + L5)s2α+β + 1
R (L2 + L5)sα+β + sα

(8)

where L1, L2, L3, L4, L5, and L6 are fractional-order inductors, R and C are the resistor and
the fractional-order capacitor, respectively. α and β are the fractional-order inductance order
and the fractional-order capacitance order, respectively. In the Y1 (s) structure, at least three
of L2, 1/L3, L4 and L6 are zero, and in the Y2 (s) structure, at least three of 1/L1, 1/L2, L3
and 1/L5 are zero. For example, in Figure 3, when L3, L4 and L6 are zero, it is a structure in
which a fractional-order inductor is connected in parallel with a fractional-order capacitor,
and then connected in series with a resistor. In Figure 4, when 1/L2, 1/L3 and 1/L5 are
zero, it is a fractional-order capacitor in series with a fractional-order inductor, and then in
parallel with a resistor.

4. Parameter Optimization Design

4.1. Pattern Search Optimization Algorithm

In this paper, the pattern search method [29] is used for the optimization design of the
suspension system. As a general algorithm for solving the optimal value of a function, the
greatest advantage of pattern search method is that it does not need to use the derivative
of the objective optimization function in the algorithm program of pattern search method.
Therefore, pattern search method can effectively solve the optimization problems of non-
derivative functions and complex derivative functions. The specific steps of pattern search
method are shown in Figure 5.
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Figure 5. Pattern search optimization algorithm.

4.2. Optimization Results

To ensure vehicle ride comfort, the RMS (root-mean-square) values of the vehicle
body acceleration, the suspension working space and the dynamic tire load are selected
as evaluation indicators, and the traditional passive suspension is chosen as evaluation
benchmark to establish the optimization objective function, as shown below:

f =
BA(P)
BApas

+
SWS(P)
SWSpas

+
DTL(P)
DTLpas

(9)

P = [b c Le Ce Re α β] (10)

where BA and BApas are the RMS values of the vehicle body acceleration of the suspension
to be optimized and the traditional passive suspension, respectively, SWS and SWSpas are
the RMS values of the suspension working space of the suspension to be optimized and the
traditional passive suspension, respectively, and DTL and DTLpas are the RMS values of the
dynamic tire load of the suspension to be optimized and the traditional passive suspension,
respectively. BApas, SWSpas and DTLpas are calculated by a mature traditional passive
suspension [30], and their performances have reached a high level, which are 1.3096 m·s−2,
0.0130 m and 900.4704 N, respectively. P represents the set of parameters to be optimized
for the suspension system, including inertance b, damping coefficient c, fractional-order
inductance coefficient Le, fractional-order capacitance coefficient Ce, resistance coefficient
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Re, fractional-order inductance order α, and fractional-order capacitance order β. Their
constraints are as follows: ⎧⎨⎩

b, c ≥ 0
Le, Re, Ce ≥ 0
1 ≥ α, β ≥ 0

(11)

The optimized fractional-order electrical network structure is shown in Figure 6. This
structure is the case when L2, 1/L3 and L6 are zero in Y1 (s) structure. Set the fractional-
order inductance order α and the fractional-order capacitance order β to 1 for optimization,
and get the integer-order ISD suspension system parameters. The optimization parameters
of fractional-order ISD suspension and integral-order ISD suspension are shown in Table 3.

Ce

LeRe

Figure 6. The optimized fractional-order electrical network structure.

Table 3. Optimization parameters.

Fractional-Order ISD Suspension Integer-Order ISD Suspension
Parameters Values Parameters Values

Inertance b/kg 5 Inertance b/kg 13
Damping coefficient c/N·s·m−1 1074 Damping coefficient c/N·s·m−1 232

Fractional-order inductance
coefficient Le/H 1.05 Inductance coefficient Le/H 1.34

Fractional-order capacitance
coefficient Ce/F 0.06 Capacitance coefficient Ce/F 0.03

Resistance coefficient Re/Ω 320.73 Resistance coefficient Re/Ω 5.56
Fractional-order inductance order α 0.28 - -
Fractional-order capacitance order β 0.81 - -

5. Simulation Analysis

5.1. The Characteristics of Bode Diagram

Compared with the Bode diagram of the traditional passive suspension, Figure 7
shows the Bode diagram of vehicle mechatronic ISD suspension applying the optimized
fractional-order electrical network structure.

It can be seen that for the fractional-order ISD suspension, in the low frequency range
[10−2, 2] Hz, the optimized structure shape is similar to the spring. In the range [2,4] Hz,
the structure shape is similar to the damper, and above 4 Hz, the optimized structure is
similar to the inerter, which is the difference between the traditional passive suspension
system and the optimized structure. The traditional suspension system composed of
“spring damper” mechanical components cannot show inertia characteristics, which is the
main factor limiting the performance improvement of the traditional suspension structure,
and also the reason why the ISD suspension of vehicles containing the inerter has better
vibration isolation performance.
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5.2. Random Road Input

The random road input is selected as the road input model to study the advantages
of the optimized fractional-order ISD suspension compared with the integral-order ISD
suspension and the traditional passive suspension. The random road input model is as
follows [31]:

.
zr(t) = −0.111[uzr(t) + 40

√
Gq(n0)uw(t)] (12)

where u, zr(t), w(t) and Gq(n0) are the vehicle speed, the vertical input displacement, the
white noise with the mean value of 0, and the road roughness coefficient, respectively.
Class C pavement is selected in this paper, and the pavement roughness coefficient is
2.56 × 10−4 m3. Figures 8–10 and Table 4 show the comparison of the RMS values of the
vehicle body acceleration, the suspension working space and the dynamic tire load of the
three suspension systems at a speed of 20 m/s.

The optimization adopts multi-objective optimization, and the final optimization
result is the best case of comprehensive improvement. From the data point of view, the
RMS value of suspension working space has the best effect, and the other two indexes have
also been improved. It can be seen that, compared with the traditional passive suspension,
the RMS values of the vehicle body acceleration of the integral-order ISD suspension and
the fractional-order ISD suspension are reduced by 3.44% and 4.12%, respectively. The
RMS values of the suspension working space of the two suspensions are reduced by 22.31%
and 23.08%, respectively. Furthermore, the RMS values of the dynamic tire load of the two
suspensions are reduced by 2.73% and 5.31%, respectively, showing the advantages of the
designed fractional-order electric network structure. It shows that the vehicle mechatronic
ISD suspension with optimized fractional-order electrical network structure can further
improve the vibration isolation performance of the suspension system.
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Table 4. Comparison of performance indexes of three suspensions.

Performance Index
Traditional Passive

Suspension
Integer-Order

Isd Suspension
Improvement Fractional-Order

Isd Suspension
Improvement

RMS of vehicle body
acceleration/(m·s−2)

1.3096 1.3051 3.44% 1.3042 4.12%

RMS of suspension
working space/(m) 0.0130 0.0101 22.31% 0.0100 23.08%

RMS of dynamic tire
load/(N) 900.4704 875.8558 2.73% 852.6704 5.31%

6. Conclusions

In this paper, the optimal design of fractional-order electrical network for vehicle
mechatronic ISD suspension is studied. An optimization design method of fractional-
order electrical network for vehicle mechatronic ISD suspension is proposed by using the
structure-immittance approach. The structural parameters of the fractional-order vehicle
mechatronic ISD suspension are optimized by establishing a 1/4 dynamic model of the
suspension. Through simulation comparison, the results show that the performance of the
vehicle mechatronic ISD suspension system applying the fractional-order electrical network
structure obtained by optimization design is further improved, which provides a reference
for the structural design of fractional-order electrical network components based vehicle
mechatronic ISD suspension.
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Abstract: To improve the comfort and smoothness of vehicle driving and reduce the vehicle vibration
caused by uneven road surface. In this paper, a new active suspension control strategy is pro-posed
by combining a fuzzy neural network and a proportional-integral-derivative (PID) controller, taking
body acceleration as the main optimization target and adjusting the parameters of the PID controller
in real time. Meanwhile, a fuzzy neural network parameter optimization algorithm combining a
particle swarm optimization algorithm and gradient descent method is proposed to realize offline
optimization and online fine-tuning of fuzzy neural network parameters. Finally, the active suspen-
sion model of a 2-degree-of-freedom 1/4 vehicle is established using MATLAB/Simulink, and the
proposed control scheme is verified through simulation studies. The results show that the active sus-
pension system with a particle swarm-optimized fuzzy neural network control method improves the
spring mass acceleration, dynamic deflection of suspension, and dynamic tire deformation by 30.4%,
17.8%, and 15.5%, respectively, compared with the passive suspension. In addition, there are also
14.6%, 12.1%, and 11.2% performance improvements, respectively, compared to the PID-controlled
active suspension system. These results indicate that the control strategy proposed in this paper can
improve the vehicle driving performance and can support the design and development of active
suspension systems.

Keywords: fuzzy neural network; particle swarm algorithm; PID control; active suspension;
MATLAB/Simulink simulation

1. Introduction

The suspension system’s qualities determine the vehicle’s smoothness and handling
stability [1]. Traditional passive suspension systems have fixed parameters such as stiffness
and damping, so they cannot effectively suppress vehicle vibration in the face of complex
driving conditions. In order to reduce body vibration brought on by outside disturbances
and give passengers a comfortable ride experience under various driving conditions, the
active suspension can adjust the vehicle suspension in real time through active control force
according to the road condition information [2–4].

For the controller design and optimization of active suspension systems, many re-
searchers have proposed some simple and feasible control methods, such as linear quadratic
regulator (LQR) control, PID control, optimal control, adaptive control, and sliding mode
control [5–8]. Among them, PID control is favored by many researchers due to its relatively
mature technology and wide application market. The traditional proportional-integral-
derivative (PID) controller has the advantages of simple structure, good real-time perfor-
mance, and low cost [9]. However, in today’s practical engineering applications, many new
control strategies have good improvements compared to PID control [10]. The parameters
of the traditional PID controller are difficult to set accurately and are fixed after setting, and
they cannot adapt to all suspension conditions as the vehicle working conditions change in
real time [11].

In order to be able to improve the control effect of the PID controller, much in-depth
research has been carried out. For example, fuzzy control is used to correct the PID
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parameters, allowing the PID parameters to vary in real time within a specific range,
improving the accuracy of the controller [12]. In the literature [13], a type of PID transverse
interconnected electronically controlled air suspension system controller based on an
optimization algorithm has been designed, and the optimal solution of PID controller
parameters obtained. In addition, the highly parallel structure and powerful learning
capability of the neural network system can also be well used to achieve online real-
time adjustment of PID parameters [14–16]. It can be seen that, by combining different
optimization strategies with PID control and real-time optimization of PID controller
parameters, better control results can be achieved. However, a single optimization strategy
also has certain defects; for example, fuzzy control has a strong subjectivity and uncertainty,
which can be considered as a subjective means of expressing domain expert knowledge, and
as the number of fuzzy rules increases, the parameters and structure of this control system
will become increasingly difficult to establish. Neural network control is also not perfect,
and there are many drawbacks in practical applications, such as the uncontrollability of
network behavior, convergence and stability being difficult to guarantee, and multiple
instances of trial and error being needed for the network.

It was found that hybrid control has better results for PID controllers compared to
a single optimization strategy. Based on the 14-degree-of-freedom whole vehicle model,
in [17], two control systems, the fuzzy PID controller and the neural network controller,
have been used to substantially improve lateral stability and vehicle handling. In addition,
in [18], the fuzzy road information is collected in real time and used to adjust the control
performance of the fuzzy PID, so as to develop a new road condition-based fuzzy PID
control strategy that meets the control performance requirements under different road
conditions. A vibration-controlled active suspension based on an adaptive fuzzy fractional-
order PID controller is proposed in [19], which was very effective in reducing driver
body vibrations, thus improving the ride quality of the driver. In order to optimize the
control system, an attempt was made in [20] to optimize the PID controller and Fuzzy PID
controller using a particle swarm optimization (PSO) algorithm with excellent efficiency in
reducing the vertical displacement of the body and obtaining a suitable control signal.

In addition to achieving active suspension control through a combination of control
methods, a new control method with better performance has been proposed by combining
fuzzy control theory and neural network control theory. In a sense, this design approach
does not have the same heavy reliance on expert experience as fuzzy control, while retaining
the adaptive performance and learning capability of neural network control. For example,
the Adaptive Neuro-Fuzzy Inference System (ANFIS) is an artificial neural network inte-
grated fuzzy logic control system whose control rules are obtained by implementing the
Sugeno first-order fuzzy inference system in the form of a network. In [21], a comparison
of the control of a semi-vehicle suspension system using PID, LQR, FUZZY, and ANFIS
controllers was analyzed, and it was found that the ANFIS controller provided the best per-
formance in terms of “stabilization time” and “peak overshoot”. Meanwhile, in [22], a fuzzy
control and neuro-fuzzy inference system was tested; the solenoid valve was controlled
by an ANFIS, and the proposed method improved the ride comfort while maintaining
road safety. The latter was a fuzzy neural network composed of an RBF neural network
model, whose biggest advantage is that the fuzzy inference process and the RBF function
have functional equivalence and are suitable for real-time control of the system. In [23], a
Takagi–Sugeno fuzzy controller was designed to control the contraction–expansion factor to
satisfy the control input current of the MR damper by introducing a fuzzy neural network
controller with PSO and BP learning and training algorithms, and the results showed that
the system approach was effective. For the regulation of the PID controller, an effective
real-time control strategy is needed. Therefore, this paper proposes an active suspension
control strategy based on particle swarm optimization with fuzzy neural network PID
control. The real-time control performance of the fuzzy neural network is used to achieve
the rectification of the PID controller parameters for the purpose of real-time control of
the suspension system. However, the fuzzy neural network has many parameters such
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as center, width, and weights, and it is difficult to obtain a reliable set of parameters. For
this reason, the particle swarm optimization method is used to calculate a set of optimal
parameters offline based on the objective function. In addition, it can avoid the problem
that the neural network using gradient descent method may lead to gradient explosion,
or the network not being able to converge for a long time due to too large or too small
optimization weights [24]. Through MATLAB/Simulink simulation, it is shown that the
FNN-PID control strategy of particle swarm optimization has a certain control effect on the
active suspension system.

The rest of this paper is organized as follows. In Section 2, the mathematical model of
the active suspension system for a 2-degree-of-freedom 1/4 vehicle and the road excitation
model are presented, and the principles of PID control and fuzzy neural network PID
control, as well as the combined optimization algorithm of particle swarm optimization
algorithm and gradient descent method, are introduced. In Section 3, the simulation results
of the suspension system controller design are shown. Finally, the conclusion and summary
are presented in Section 4.

2. Materials and Methods

2.1. Active Suspension Simulation Model

The 2-degree-of-freedom 1/4 suspension model is shown in Figure 1, and the following
assumptions are made regarding the model.

 
Figure 1. 2-degree-of-freedom 1/4 active suspension model.

1. The elastic center of the vehicle body coincides with the center of mass;
2. The vehicle body is rigid, and the occupants move in the same way as the vehicle body;
3. There is no sliding between the tires and the road, and the wheels are always in

contact with the ground;
4. The vertical vibration characteristics of the wheel are reduced by a spring that does

not take into account the damping effect.

As shown in Figure 1, M denotes the mass on the spring and m denotes the mass under
the spring; xr denotes the road disturbance excitation, xt denotes the vertical displacement
of the mass under the spring, and xs denotes the vertical displacement of the mass on the
spring; c denotes the suspension equivalent damping; k1 is the tire equivalent stiffness and
k2 is the suspension stiffness; and u is the actuator active control force.
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According to Newton’s second law, combined with the suspension system dynamics
model, the 1/4 active suspension dynamics equation is established as follows:

M
..
xs + k2(xs − xt) + c

( .
xs − .

xt
)− u = 0 (1)

m
..
xt − k1(xr − xt)− k2(xs − xt)− c

( .
xs − .

xt
)
+ u = 0 (2)

Meanwhile, the state variable is selected as: x1 = xs − xt, x2 =
.
xs, x3 = xr − xt,

x4 =
.
xt. The state vector is X = [x1 x2 x3 x4]

T . The output variable is y1 =
.
x2 =

..
xs,

y2 = x1 = xs − xt, y3 = x3 = xr − xt. The output vector is represented as Y = [y1 y2 y3]
T .

The input vector is U = [u xr]
T .

Then, the state equation of the model is shown in (3).{ .
X = AX + BU
Y = CX + DU

(3)

Among them, A =

⎡⎢⎢⎢⎣
0 1 0 −1

−k2
M − c

M 0 c
M

0 0 0 −1
k2
m

c
M

k1
m − c

M

⎤⎥⎥⎥⎦, B =

⎡⎢⎢⎣
0 0
1
M 0
0 1
1
M 0

⎤⎥⎥⎦, C =

⎡⎣−k2
M − c

M 0 k2
M

1 0 0 0
0 0 1 0

⎤⎦,

D =

⎡⎣ 1
M 0
0 0
0 0

⎤⎦.

2.2. Road Excitation Model
2.2.1. White Noise Road Excitation

The difference between different grades of road mainly lies in the difference in road
roughness, which is generally expressed by the road unevenness coefficient, Gq. According
to the “Draft Method for Representation of Road Unevenness” presented by the Inter-
national Organization for Standardization in ISO/TC108/SC2N67, the power spectrum
density of a road can be expressed as follows [25]:

Gq(n) = Gq(n0)

(
n
n0

)−w
(4)

In the formula, n is the spatial frequency, n0 is the reference spatial frequency,
n0 = 0.1 m−1, Gq(n0) is the reference spatial frequency of the road power spectral density,
and w is the frequency index, often taken as w = 2.

For the analysis of vehicle suspension system dynamics, the vehicle travel speed is
also a factor to be considered [26]. Converting the spatial frequency power spectral density,
Gq(n), to the temporal frequency power spectral density, Gq(f), the variable of vehicle
speed can be introduced. When a vehicle travels at a certain speed on a road surface with
spatial frequency n, its equivalent time frequency can be expressed as:

f = vn (5)

In the formula, v is the speed of the vehicle in m·s−1 and f is the time frequency in s−1.
As a result, the following may be deduced about the road excitation model created

using the filtered white noise method:

.
x(t) + 2πf0x(t) = 2πn0

√
Gq(n0)vW(t) (6)

In the formula, x(t) is the road displacement, W(t) is the mean value of 0 Gaussian
white noise, f0 is the lower cutoff frequency, n0 = 0.1 m−1, and f0 = 0.1 Hz.
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The basic idea of the model is to abstract the random fluctuations of the road process
as white noise satisfying certain conditions, and then fit the time domain model of the
random unevenness of the road by a hypothetical system with appropriate transformation.
The pavement unevenness refers to the deviation of the road surface from the ideal plane.
The rougher the pavement and the worse the pavement grade, the higher the geometric
mean of power spectral density. In this paper, we simulate and analyze the A–D pavements,
respectively, and the specific parameters are shown in Table 1.

Table 1. Parameters for each grade of pavement.

Road Grade Geometric Mean of Power Spectral Density Gq(n0)/10−6 m3

A 16
B 64
C 256
D 1024

2.2.2. Step Noise Road Excitation

The white noise pavement excitation is mainly used to simulate continuously uneven
pavement, such as asphalt pavement, gravel road surface, etc. However, it is usually
necessary to consider the response to an encountered shock in addition to the continuous
vibration. Here, step pavement excitation is used for simulation. The specific mathematical
expression is as follows:

x(t) =
{

0, t < t1
x, t ≥ t1

(7)

From the equation, x denotes the displacement of the step and t1 denotes the time
when the step occurs.

2.3. Controller Design Principle
2.3.1. FNN-PID Controller

The structure of the FNN-PID controller is shown in Figure 2.

Gradient Descent

Fuzzy Neural 
Network

PID controller Active Suspension 
System

de/dt

KP KI KD

r(k)
e(k) u(k)

y(k)

Particle Swarm 
Optimization

Initialize

Figure 2. FNN-PID controller structure model.

In Figure 2, the input of the FNN is the deviation of Sprung Mass Acceleration, e(k),
and the rate of change of deviation, de/dt; the input of the PID controller is e(k) [27] and
u(k) is the control quantity. The anticipated value of the system is denoted by r(k), and the
actual output value is denoted by y(k). After the fuzzy neural network algorithm has been
trained, the best control parameters for the PID controller are obtained. According to the
optimal control parameters, the PID controller enables real-time control of the suspension
system by adjusting the magnitude of the control quantity, u(k).
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2.3.2. PID Control

In the field of industrial automation control, the PID algorithm is a common control
algorithm [28]. The discrete control rate of a commonly used PID algorithm is shown in
Equation (8).

u(k) = Kpe(k) + Ki ∑k
i=0 e(i) + Kd[e(k)− e(k − 1)] (8)

In the formula, the error between the system’s input and output is denoted as e(k);
Ki ∑k

i=0 e(i) is the cumulative sum of the error, and the error’s rate of change is e(k)− e(k − 1).
In PID control, the proportional link is used to quickly eliminate the error between

input and output; the larger the proportional coefficient, Kp, the faster the system response.
The integral link is used to lower the system’s static error; the larger the integral coefficient,
Ki, the more accurate the system response. The differential link is used to eliminate the
oscillation in the control process; the larger the differential coefficient, Kd, the more robust
the system response process.

The control of the active suspension system often uses incremental PID control. Ac-
cording to Formulas (9) and (10), it can be seen that, when the three coefficients, Kp, Ki,
and Kd, in the PID control are determined after only using the deviation measured before
and after the moment to derive the control increment by the formula, the control amount
corresponds to the increment of the last few errors. There is no accumulation of errors; only
those related to the last three sampling values belong to the recursive algorithm.

Δu(k) = Kp[e(k)− e(k − 1)] + Kie(k) + Kd[e(k)− 2e(k − 1) + e(k − 2)] (9)

u(k) = u(k − 1) + Δu(k) (10)

2.3.3. FNN Control

The structure of the FNN is displayed in Figure 3, and it is split into five layers,
including input layer, fuzzification layer, fuzzy inference layer, normalization layer, and
output layer.

e ec

KP KI KD

Figure 3. FNN structure model.

Input layer: the vector of input is x = [x1, x2, · · · , xn]. The nodes of this layer of the
network are directly connected to each component, xi, and the error, e(k), and the error rate
of change, ec(k), are the inputs to the general FNN. The result of the first layer is y1

i .

y1
i = xi, i = 1, 2, · · · , n (11)
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Fuzzification layer: Each neuron in this layer represents 1 Gaussian subordinate
function, whose role is to divide the input values into fuzzy intervals and fuzzy them [29].
The output is represented as follows:

y2
ij = exp [

(
uij − cij

)2

bij
2 ] (12)

In the formula, i = 1, 2, · · · , n, j = 1, 2, · · · , mi, the quantity of input vectors is n, and
the number of fuzzy rules is mi. The Gaussian function’s center and width, respectively,
are denoted by cij and bij. The output quantity is expressed as y2

ij.
Fuzzy inference layer: A fuzzy rule from the fuzzy rule base is represented by each

neuron. The aim is to determine each rule’s fitness, and the common calculation methods
are the minimum value method and the product method. The product method is chosen
here for calculation.

y3
h = xi1

1 ·xi2
2 · · · xin

m (13)

In the formula, ij = 1, 2, · · · , mi, h = 1, 2, · · · , m, m = ∏n
j=1 mj.

Normalization layer: The output of the fuzzy inference layer is normalized. The
quantity of nodes in this layer is equal to the amount of nodes in the fuzzy inference layer,
and the output of the normalization layer is as stated below.

y4
h =

y3
h

∑m
h=1 y3

h
(14)

Output layer: This layer uses the center of gravity approach to realize the clarification
and defuzzification process, and the output obtained after calculation is the result of PID
parameter adjustment.

yk =
m

∑
h=1

y4
hω

j
s =

m

∑
h=1

y3
h

∑m
h=1 y3

h
ω

j
s (15)

In the formula, in the fuzzy inference layer, there are m nodes, k = 1, 2, · · · , r; the
output layer’s node count is denoted by the symbol r, and ω

j
s is the jth weight corresponding

to the sth output.

2.3.4. FNN Optimization Algorithm

The learning optimization strategy of FNN is usually to continuously adjust the
parameters of the network by the gradient descent method to obtain the ideal control
parameters. Determining the best learning parameters and avoiding local optimality
can be accomplished using a particle swarm algorithm (PSO) to solve continuous and
discrete optimization problems [30,31]. However, the optimization speed of PSO is not
very quick, its local search performance is subpar, and it is simple to fall into a local
extremum. In general, the PSO method is very slow in searching around the global
optimum. To address the shortcomings of existing optimization algorithms, the gradient
descent algorithm and PSO algorithm are combined to optimize the network parameters.
The approximate optimal solutions of the network weight parameters are found by using
the particle swarm algorithm’s global search capability, after which they are adjusted and
optimized using the gradient descent approach, thus improving the training accuracy of
the fuzzy neural network.

1. Gradient Descent;

The network weight learning error metric is defined as:

E(k) =
1
2

e(k)2 =
1
2
[r(k)− y(k)]2 (16)
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From the gradient descent method, the learning algorithm of the network is expressed
as [32]:

Δω
j
s(k) = −η

∂E(k)

∂ω
j
s

(17)

ω
j
s(k) = ω

j
s(k − 1) + Δω

j
s(k) + α

[
ω

j
s(k − 1)−ω

j
s(k − 2)

]
(18)

where η is the learning rate, α is the momentum factor, and η ∈ [0, 1],α ∈ [0, 1].
The same can be obtained:

cij(k) = cij(k − 1) + Δcij(k) + α
[
cij(k − 1)− cij(k − 2)

]
(19)

bij(k) = bij(k − 1) + Δbij(k) + α
[
bij(k − 1)− bij(k − 2)

]
(20)

2. Particle swarm algorithm

The population intelligence optimization approach designated as particle swarm opti-
mization (PSO) is frequently employed in multi-objective optimization situations [33,34]. The
specific working process is as follows: Suppose a particle swarm with M particles searches for
the optimal position in a space of N dimensions. Assuming that the position of the ith particle
(i =1, 2, . . . , M) is xi and the velocity is vi, the individual extreme value, pibest, and the group
extreme value, pgbest, of the particle are determined according to the particle fitness value,
and the particle is continuously updated according to pibest and pgbest. Its own position and
velocity are updated to find the global optimal solution. The particle velocity and position
update formulas are expressed as:

vt+1
id = ωvt

id + c1r1
(
pt

ibestd − xt
id
)
+ c2r2

(
pt

gbestd − xt
id

)
(21)

xt+1
id = xt

id + vt+1
id (22)

In the formula, ω is the inertia weight, t is the number of current iteration steps,
c1 and c2 are learning factors, r1 and r2 are random numbers between 0 and 1, and
d = 1, 2, · · · , D; i = 1, 2, · · · , M.

2.3.5. Hybrid Algorithm Optimization Process

The hybrid algorithm of the particle swarm algorithm and gradient descent method to
optimize the fuzzy neural network PID controller is denoted as PSO-FNN-PID. The specific
steps of the hybrid algorithm to optimize the fuzzy neural network are shown in Figure 4.

1. The fuzzy neural network parameters, cij, bij,ω
j
s, are initialized;

2. Particle swarm initialization. Parameters such as those of population size, particle di-
mensions, and initial inertia weight, as well as learning factor, are set first, after which
a set of particle positions is generated at random and the particle’s maximum and
minimum velocities are determined; between the extremes of highest and minimum
velocity, each particle’s velocity is determined randomly;

3. After updating the velocity and position of the particle, the fitness value of the particle
at each iteration step is calculated, and the individual optimal extremum, pibest, and
the population optimal extremum, pgbest, are updated;

4. If the termination condition is satisfied, the corresponding network parameters are
passed to the FNN;

5. The FNN acquires the initial values of the parameters and then calculates them and
updates the network parameters online by back-propagation through the gradient
descent method. The final optimal solutions are output.
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Figure 4. Hybrid algorithm optimization flow chart.

3. Results

Simulation of the models was performed using MATLAB/Simulink. According to
the differential equations of motion and the 1/4 suspension system’s stochastic road
input model, the simulation models of the 1/4 active and passive suspension systems
were created in Simulink. Table 2 illustrates the fundamental parameters for the 1/4
suspension model.

Table 2. Fundamental data of suspension system.

Variable Value

Sprung mass M/kg 240
Unsprung mass m/kg 30

Tire stiffness K1/(N/m) 160,000
Spring rate K2/(N/m) 16,000

Suspension damping c/(N•s)/m 980

For the sake of highlighting the optimization effect of the FNN-PID control strategy
and to verify its effectiveness, the passive suspension, PID, and FNN-PID control active sus-
pension were emulated and analyzed, respectively. The PID controller’s parameters were
KP = 5, KI = 430, and KD = 0.1. The structure of the FNN was designed as 2-14-49-49-3,
and the number of network parameters to be adjusted was 14 × 2 + 49 × 3 = 175. Therefore,
the dimension of the particles is set to 175, and then the following other pertinent settings
are made to the particle swarm algorithm: the overall population size is 150, the learning
factor is c1 = c2 = 2, and the inertia weight is 0.8. The particle velocity interval for the width
of the affiliation function, bij, and the center value, cij, is set to [−3, 3], and the particle

velocity interval for the connection weight, ωj
s, of the FNN is [−1, 1]. The learning rate of

the FNN is η = 0.5 and the momentum factor is α = 0.2.
When vehicles are driven on actual highways and dirt roads, they are often subjected

to impact-type road surfaces, such as gravel and speed bumps, which affect all vehicle
driving performance. In order to study the control effect of the FNN-PID-controlled active
suspension under such operating conditions, a stepped road model was established to
examine the vibration response properties of the suspension under such conditions. The
step excitation with a step amplitude of 0.01 m was selected, as well as the suspension
system’s vibration response curve, which is displayed in Figures 5–7.
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Figure 5. Step response diagram of Sprung Mass Acceleration.
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Figure 6. Step response diagram of Dynamic Deflection of Suspension.
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Figure 7. Step response diagram of Dynamic Tire Deformation.
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Figure 5 demonstrates that the vehicle suspension system with the FNN-PID controller
has better Sprung Mass Acceleration (SMA) than the conventional suspension system,
which can make the body more stable with good control effect and can make the vehicle
amplitude stable in a short time and quickly converge to 0. Additionally, Figures 6 and 7
show that the Dynamic Deflection of Suspension (DDS) and Dynamic Tire Deformation
(DTD) can also reduce the amplitude under FNN-PID control and cause it to quickly con-
verge to 0. Therefore, the active suspension controlled by FNN-PID can effectively reduce
vibration and recover quickly, which greatly improves the passenger’s ride experience.

Meanwhile, Table 3 shows the root mean square of each suspension index, demon-
strating that the SMA, DDS, and DTD of the active suspension system with the FNN-PID
controller are improved to some extent. The SMA, DDS, and DTD are decreased by 30.7%,
23.4%, and 16.3%, respectively, when compared to passive suspension. Compared to the
PID-controlled active suspension system, the three performance indicators are reduced
by 14.6%, 11.3%, and 8.2% respectively. The FNN-PID controller clearly has the potential
to significantly lower the suspension’s performance indices and improve the vehicle’s
passenger comfort.

Table 3. Comparison of root-mean-square suspension performance under step excitation.

Index Passive PID Controller FNN-PID Controller

SMA (m/s2) 2.265 × 10−2 1.838 × 10−2 1.570 × 10−2

DDS (m) 2.896 × 10−4 2.502 × 10−4 2.219 × 10−4

DTD (m) 3.671 × 10−5 3.350 × 10−5 3.074 × 10−5

In addition, the issue of the time between the change in road conditions and the
response achieved by the suspension system is taken into account. A set of control tests
was set up with the objective of achieving a steady state of vehicle vertical displacement
under step response. As shown in Figure 8, the suspension is given a step signal of 0.01 m,
0.05 m, and 0.08 m at 1 s, and a reasonable steady-state error, Δ, is set. When the step signal
is 0.01 m, Δ = 0.0002, and when the step signal is 0.05 m and 0.08 m, Δ = 0.001. When the
step signal is 0.01 m and 0.05 m, the time for the FNN-PID controller to reach steady state is
approximately 2.1 s, and the overall response time is 1.1 s. The time for the PID controller
to reach steady state is approximately 2.4 s, with an overall response time of 1.4 s, and
the passive system reaches steady state in approximately 3.1 s, with an overall response
time of 2.1 s. When the step signal is 0.08, the time for the FNN-PID controller to reach
steady-state is approximately 2.6 s, and the overall response time is 1.6 s. The time for
the PID controller to reach steady-state is approximately 2.7 s, the overall response time is
1.7 s, and the passive system reaches steady state in approximately 3.4 s, with an overall
response time of 2.4 s. The results show that the response time of the FNN-PID controller
is reduced by 21.4% compared to the PID controller and 47.6% compared to the passive
suspension when the road conditions are less variable. When the road conditions vary
widely, the response time of the FNN-PID controller is reduced by only 5.9% compared to
the PID controller and 33.3% compared to the passive suspension.

In order to obtain each suspension performance index under normal vehicle driving,
the proposed random road excitation is used for simulation analysis. It is assumed that the
vehicle is driven in a straight line at 30 km/h on the Class B road, with a simulation time of
20 s. The simulation is performed under the control of the PID controller and FNN-PID
controller, respectively. The SMA, DDS, and DTD were still chosen as the main indexes
to evaluate the performance of suspension, and the simulation result curves are shown in
Figures 9–11.
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Figure 8. Plot of vehicle vertical displacement change under step signal. (a) The step signal is 0.01 m.
(b) The step signal is 0.05 m. (c) The step signal is 0.08 m.
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Figure 9. Comparison of Sprung Mass Acceleration simulation results.

From Figures 9–11, it is clear that, in comparison with the passive suspension system,
the SMA, DDS, and DTD of the active suspension system with the PID controller and the
FNN-PID controller are reduced to a certain extent, indicating that both designed active
suspension control systems are able to curb the overall vehicle vibration.

To make the analysis of the control effect of different controllers on the suspension
system more intuitive, the above graphs were data processed to obtain the root mean square
values of each curve, as demonstrated in Table 4.
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Figure 10. Comparison of Dynamic Deflection of Suspension simulation results.
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Figure 11. Comparison of Dynamic Tire Deformation simulation results.

Table 4. Root mean square comparison of suspension performance indexes under random.

Class Index Passive PID Controller
FNN-PID
Controller

A
SMA (m/s2) 0.0490 0.0391 0.0334

DDS (m) 6.735 × 10−4 6.286 × 10−4 5.525 × 10−4

DTD (m) 7.017 × 10−5 6.701 × 10−5 5.890 × 10−5

B
SMA (m/s2) 0.0979 0.0782 0.0681

DDS (m) 1.346 × 10−3 1.254 × 10−3 1.107 × 10−3

DTD (m) 1.402 × 10−4 1.336 × 10−4 1.185 × 10−4

C
SMA (m/s2) 0.1820 0.1440 0.1257

DDS (m) 2.515 × 10−3 2.319 × 10−3 2.012 × 10−3

DTD (m) 2.576 × 10−4 2.508 × 10−4 2.151 × 10−4

D
SMA (m/s2) 0.3476 0.2673 0.2390

DDS (m) 4.747 × 10−3 4.354 × 10−3 3.820 × 10−3

DTD (m) 4.933 × 10−4 4.602 × 10−4 4.003 × 10−4

Table 4 illustrates that, in comparison with the passive suspension, the active suspen-
sion with FNN-PID control has 30.4%, 17.8%, and 15.5% reduction in SMA, DDS, and DTD,
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respectively. On the other hand, the SMA, DDS, and DTD of the active suspension with
FNN-PID control were reduced by 14.6%, 12.1%, and 11.2%, respectively, compared to the
active suspension with PID control. From these data, it is possible to draw the conclusion
that, when compared with the other two suspension systems, the FNN-PID controller
is able to suppress the variation of SMA, so that the wheels can closely follow the road,
ensuring good maneuverability while giving passengers a more comfortable ride.

4. Discussion

A 1/4 active suspension simulation model was established in MATLAB/Simulink, and
a PSO-FNN-PID control algorithm was designed. By combining the PSO algorithm and the
gradient descent method, the initial parameters of the FNN were optimized offline and then
finetuned online, so as to obtain the optimal control rules and realize the real-time online
adjustment of the PID control parameters. The combination of the two methods allowed
the learning process to avoid falling into local minima while reaching the exact value at
a later stage of learning. The simulation analysis indicated that the active suspension
system with PSO-FNN-PID control had a preferable control effect compared with the
passive suspension system and active suspension system with PID control, and could
effectively attenuate the body vibration caused by external disturbance. Therefore, an
examination of the graphs and data reveals that the PSO-optimized FNN-PID controller has
significantly superior performance, and is capable of enhancing the vehicle’s road adhesion
and ensuring a smooth and comfortable ride. In the future, we will continue to explore the
possibility of implementing this control system in the whole vehicle system and consider
the development and implementation of related hardware and software. In addition, we
also hope to make some changes to the basic PID control, such as including an integral
anti-saturation control strategy, in order to obtain better results.
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Abstract: Inerters, a new type of mass element, have been successfully applied in various fields, such
as in automotive and civil engineering. The development of a new element, named a mechatronic
inerter, which consists of a ball-screw inerter and permanent magnet electric machinery, proves the
feasibility of adopting electrical element impedances to simulate corresponding mechanical elements.
In this paper, the structures of the bridge electrical network and series-parallel electrical network
and their impedance characteristics are first introduced. Then, a seven-degree-of-freedom vehicle
model is established. In addition, by comparison with passive suspension, a bridge network and
a series-parallel network with various basic topologies are used to improve the vibration isolation
performance of mechatronic inertial suspension, and the advantages of the bridge network (a) are
demonstrated. Finally, a bridge electrical network (a) was designed and a real vehicle test was carried
out. The test results showed that the mechatronic inertial suspension based on the bridge network
(a) was superior to the passive suspension; the RMS (root-mean-square) values of the suspension
working space and dynamic tire load of the left rear wheel suspension were reduced by 21.1% and
6.3%, respectively; and the RMS value of the centroid acceleration was improved by 1.8%.

Keywords: suspension; mechatronic inerter; bridge network; high-order impedance; real vehicle test

1. Introduction

Vehicle suspension has gradually developed from passive suspension with fixed
parameters, to semi-active suspension with variable parameters [1], and active suspension
with active control [2]. However, the suspension structure still utilizes a “spring–damper”
system, which are connected in parallel, and the improvement of suspension performance
has encountered a bottleneck. Since Smith proposed the inerter in 2002 [3], the inerter-
based vibration suppression system has been a popular direction in mechanical fields
and has successfully made up for a lack of inertial element and promoted the structural
development of vehicle suspension. This article refers to suspension with an inerter as
inertial suspension. With the rapid development of inertial suspension systems, the inerter
has developed various implementation forms. Papageorgiou et al. introduced a rack-
and-pinion inerter in 2009 [4], Faraj proposed a ball-screw inerter in 2019 [5], and Liu
designed a hydraulic inerter in 2018 [6]. Other inerters have been proposed by scholars,
such as a fluid inerter [7,8] and hydraulic electric inerter [9]. Inertial suspension performs
better than passive suspension [10–12]. Moreover, an inerter can effectively improve the
performance of mechanical vibration isolation systems [13–16]. To date, inertial suspension
has been widely applied in train suspension [17,18], bridges [19,20], buildings [21,22], and
robots [23].

With the appearance of inerters, electromechanical similarity theory has achieved a
complete correspondence, where an inerter corresponds to a capacitor, a damper corre-
sponds to a resistor, and a spring corresponds to an inductor [24]. Smith et al. improved
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suspension performance by optimizing suspension layouts with an inerter in 2004 [25]. The
optimization was further carried out using linear matrix inequalities, and a synthesized
passive network was realized by Bott-Duffin, which indicated that the system performance
could be further improved by allowing higher order passive impedance [26]. However,
network synthesis for a high-order impedance can be hard to realize mechanically. There-
fore, Wang et al. proposed a mechatronic inerter, consisting of a ball-screw inerter and
permanent magnet electric machinery in 2011 [27], and the system impedance was realized
with the combination of mechanical and electrical networks.

The research on mechatronic inerters mainly focuses in two directions. One is the
mechatronic inerter [28–30] and its external circuit [31,32]. Ning et al. introduced a new
controllable electrically interconnected suspension based on a mechatronic inerter in 2020,
which was composed of a controllable electrical network and two independent electro-
magnetic suspensions [33], and the results showed that the vertical vibration and roll
performance of the vehicle could be improved by controlling the resistance of the electrical
network. The other direction is the simplification of higher-order impedance and synthesis
of passive networks [34,35]. Shen et al. used the structure-immittance approach to im-
plement an optimal design methodology for mechatronic ISD (inerter–spring–damper)
suspension in 2022, which ensured the simplicity of the suspension structure [36]. In sum-
mary, although a mechatronic inerter can utilize an external electrical network to simulate
a target mechanical impedance and improve the performance of the suspension system,
the external electrical network is complex. The problem of the simplest realization of
high-order impedances remains to be studied.

A bridge network is a typical electrical circuit that is widely used in electrical theory.
Unlike a series-parallel network, the bridge network is an non-series-parallel network
that has a special connection method; to solve the impedance expression, the equivalent
conversion of the Δ structure and the Y structure is required, and the bridge network
is converted into a series and parallel network and calculated [37]. Then, the simplest
realization of a biquad impedance of the bridge network is realized [38]. Moreover, the
impedance expressions of different bridge networks have been discussed [39], and the
results indicated that a bridge network can achieve a high-order impedance, with fewer
components compared with Brune synthesis. Considering the large number of high-order
impedance elements and the few studies on the simplification of high-order impedance,
in this paper, a bridge network is used to simplify high-order impedance and apply it
to mechatronic inertial suspension. Based on electromechanical similarity theory, the
electrical network of mechatronic inertial suspension is studied. In summary, the bridge
network is advantageous for improving the vibration isolation performance. This paper will
concentrate on the performance enhancement of a vehicle mechatronic inertial suspension
system using a bridge electrical network, to make full use of the advantages of mechatronic
inertial suspension.

The following parts of this paper are organized as follows: Section 2 establishes a
seven-degree-of-freedom vehicle model and analyzes three bridge networks and three
series-parallel networks. The parameters of the proposed bridge networks and series-
parallel networks are optimized in Section 3. In Section 4, the characteristics of the bridge
network (a) are simulated and analyzed, as well as compared with a series-parallel network
(d). Section 5 conducts reports test of a real vehicle. Finally, the summary and conclusions
are presented in Section 6.

2. Model Building

2.1. Seven-Degree-of-Freedom Vehicle Model

In order to evaluate the influence of a bridge network on the performance of a vehicle, a
seven-degree-of-freedom vehicle model is established in Figure 1. The front axle suspension
adopts passive suspension. As the comfort of the rear passengers is very important, this
paper applies mechatronic inertial suspension to the rear suspension system, and the
mechatronic inerter is connected in series with a damper and then connected in parallel
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with a spring [40], as shown in Figure 1. The mechatronic inertial suspension is presented
in Figure 2. The mechatronic inerter is connected to the damper in series, and the spring is
connected to the mechatronic inerter and damper in parallel, when the mechatronic inerter
is stimulated by vibration, the linear motion is converted into the rotating motion of the
flywheel and motor through a ball screw. As shown in Figure 1.

Figure 1. Seven-degree-of-freedom vehicle model.

Figure 2. Mechatronic inertial suspension.

The vertical motion equation at the center of mass of the vehicle body is:

ma
..
Za = F10 + F20 + F30 + F40 (1)

The roll motion equation of the vehicle body is:

Ix
..
θ = (F20 + F40 − F10 − F30)

d
2

(2)

The pitching motion equation of the vehicle body is:

Iy
..
ϕ = l2(F30 + F40)− l1(F10 + F20) (3)

When the pitch angle and roll angle are small, the following relationship holds:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Z10 = Za − l1 ϕ − dθ

2
Z20 = Za − l1 ϕ + dθ

2
Z30 = Za + l2 ϕ − dθ

2
Z40 = Za + l2 ϕ + dθ

2

(4)
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The vertical motion equation of the unsprung mass is:⎧⎪⎪⎪⎨⎪⎪⎪⎩
m1

..
Z1 = Kt(Q1 − Z1)− F10

m2
..
Z2 = Kt(Q2 − Z2)− F20

m3
..
Z3 = Kt(Q3 − Z3)− F30

m4
..
Z4 = Kt(Q4 − Z4)− F40

(5)

The forces of the four suspensions are:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

F10 = k f (Z1 − Z10) + c f (
.
Z1 −

.
Z10)

F20 = k f (Z2 − Z20) + c f (
.
Z2 −

.
Z20)

F30 = kr(Z3 − Z30) + u3

u3 = b(
..
Zb3 −

..
Z30) + ( 2π

P )
2 ktke

Z (
.
Zb3 −

.
Z30) = cr(

.
Z3 −

.
Zb3)

F40 = kr(Z4 − Z40) + u4

u4 = b(
..
Zb4 −

..
Z40) + ( 2π

P )
2 ktke

Z (
.
Zb4 −

.
Z40) = cr(

.
Z4 −

.
Zb4)

(6)

where ma is the sprung mass. m1, m2, m3, and m4 are the unsprung mass of the four
suspensions, respectively. Kt is the equivalent stiffness of the tire. kf and cf are the spring
stiffness and the damping coefficient of the front suspensions, respectively. kr and cr are the
spring stiffness and the damping coefficient of rear suspensions, respectively. Z10, Z20, Z30,
and Z40 are the vertical displacements of the connection between the vehicle body and the
four suspensions. F10, F20, F30, and F40 are the forces of the four suspensions, respectively.
Z1, Z2, Z3, and Z4 are the vertical displacements of four unsprung masses, respectively. Zb3
and Zb4 are the vertical displacements of the mechatronic inerter of the left rear suspension
and the right rear suspension. Q1, Q2, Q3, and Q4 are the displacement inputs of the four
wheels. Za is the vertical displacement of the sprung mass. θ is the body roll angle, and Ix is
the body roll moment of inertia. ϕ is the body pitch angle, and Iy is the body pitch moment
of inertia. l1 and l2 are the distance from the front axle and rear axle to the body centroid,
respectively. d is the wheelbase, b is the inertial coefficient of the mechatronic inerter, and v
is the vehicle speed. kt and ke are the inductive torque constant and the inductive voltage
constant of the rotating motor, respectively. Z is the impedance of the external circuit of the
rotating motor. u3 and u4 are the forces of the series branch of the mechatronic inerter and
the damper, respectively. P is the lead of the ball screw.

In this paper, a real vehicle was used for the test, the simulation parameters refer
to real vehicle data, and the main dimensional parameters of the vehicle were obtained
according to the vehicle user manual, as shown in Table 1.

Table 1. Main parameters of the vehicle model.

Parameters Symbol Unit Value

Sprung mass ma kg 1659
Unsprung mass of left and right front wheels m1, m2 kg 47.5
Unsprung mass of left and right rear wheels m3, m4 kg 42.5

Spring stiffness of front axle suspension kf kN·m−1 25
Spring stiffness of rear axle suspension kr kN·m−1 22

Damping coefficient of front axle suspension cf kN·s·m−1 1.8
Damping coefficient of rear axle suspension cr kN·s·m−1 1.5

Equivalent stiffness of tire Kt kN·m−1 192
Distance from front axle to body centroid l1 m 1.28
Distance from rear axle to body centroid l2 m 1.43

Wheelbase d m 1.62
Inertance of rear suspension b kg 308
Body roll moment of inertia Ix kg·m2 1088

Body pitch moment of inertia Iy kg·m2 3032
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2.2. Bridge Network

Common bridge networks include a bridge rectifier circuit, half bridge circuit, full
bridge circuit, wheatstone bridge, balanced bridge, and unbalanced bridge. The bridge
network used in this paper was an unbalanced bridge circuit. The most common bridge
network consists of five resistance elements, as shown in Figure 3a. And Figure 3b is the
equivalent network.

Figure 3. (a). bridge network consists of five resistance elements. (b). Equivalent network of the
bridge network.

Where R1, R2, R3, R4, and R5 are resistors, T1, T2, and T3 are equivalent impedances.
In Figure 3, when the Δ structure of Figure 3a is transformed into the Y structure of

Figure 3b, the equivalent transformation equation is:⎧⎪⎨⎪⎩
T1 = R1R2

R1+R2+R3

T2 = R1R3
R1+R2+R3

T3 = R2R3
R1+R2+R3

(7)

Therefore, the impedance expression of Figure 3a is:

Z = T1 +
(T2 + R4)(T3 + R5)

T2 + R4 + T3 + R5
(8)

A bridge network composed of resistance, capacitance, and inductance has many kinds
of structures. In this paper, the three most basic bridge networks are selected. Considering
the special solution method of a bridge network, the selection principles of the bridge
network studied in this paper were as follows. First of all, a resistor, a capacitor, and
an inductor can constitute three kinds of Δ structures and three kinds of Y structures,
respectively. Since the impedance of the resistance has no effect on the total impedance
order [41], the remaining two elements of the bridge network are selected as resistors to
form a five-element bridge network with three resistors, one capacitor, and one inductor, as
shown in Figure 4.

Figure 4. (a–c) are five-element bridge networks of three different structures.
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According to the impedance transformation method shown in the Equation (8), the
impedance transfer function of Figure 4a can be expressed as:

1
Za(s)

=
A1s4 + B1s3 + C1s2 + D1s + E1

F1s4 + G1s3 + H1s2 + I1s + J1
(9)

A1 = (R1 + R2 + R3)L2
1C2

1,
B1 = (R1R2C1 + R1R3C1 + L1)L1C1 + (R1 + R2 + R3)R1L1C2

1,
C1 = (R1R2C1 + R1R3C1 + L1)R1C1 + (R1 + 2R2 + 2R3)L1C1,
D1 = 2R1C1(R2 + R3) + L1,
E1 = R2 + R3,
F1 = (R1 + R2)R3L1

2C1
2,

G1 = (R1 + R2)(R1R3C1 + L1)L1C1 + R1R2R3L1C2
1,

H1 = (R1 + R2 + R3)R1L1C1 + (R1 + R2)R3L1C1 + (R1R3C1 + L1)R1R2C1 + R2R3L1C1,
I1 = (R1R2C1 + R1R3C1 + L1)R1 + R1R2R3C1 + (R1R3C1 + L1)R2,
J1 = (R2 + R3)R1 + R2R3.

(10)

Similarly, it was calculated that the orders of the impedance transfer functions of the
bridge network (b) and the bridge network (c) were also double fourth order, which will
not be repeated here.

2.3. Series-Parallel Network

Correspondingly, three five-element series-parallel networks are shown in Figure 5.

Figure 5. (d–f) are five-element series-parallel networks of three different structures.

From electrical knowledge, the impedances of the three series-parallel networks in
Figure 5d–f were all of biquadratic order. With the same number of components, the bridge
network can achieve a higher order impedance than the series-parallel network.

3. Optimization of the Inertial Suspension Parameters

In order to achieve the best performance of the mechatronic inertial suspension,
the parameters of the suspension needed to be optimized. In this paper, the particle
swarm optimization (PSO) algorithm, which is suitable for multi-objective environments,
was selected to optimize the structural parameters of the external electric circuit of the
mechatronic inerter. The PSO algorithm is an intelligent optimization algorithm, whose
basic idea is to initialize a group of random particles (random solutions) and find the
optimal solution through iteration. The specific optimization process is shown in the
Figure 6. To begin, the particle is initialized, the fit value of the particle is then compared
with the best location it passes through, and the speed and position of the particle is
updated. The process ends when the termination condition is met in each iteration, the
particles update their position attributes by tracking the individual extremum and global
extremum, and finally find the optimal particle [42]. The PSO algorithm has the advantages
of fast search speed and memory, due to the need to adjust few parameters, so the structure
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is simple, and it is suitable for solving practical engineering problems. Particle velocities
and positions are updated in accordance with the following two formulas:

Vk+1 = λVk + d1r1(Pk
id − Xk) + d2r2(Pk

gd − Xk) (11)

Xk+1 = Xk + Vk+1 (12)

where λ is the inertia factor, its value affects the global and individual optimization ability.
V is the velocity of the particle. X is the current position of the particle, and k is the current
number of iterations. d1 and d2 are non-negative constants, called acceleration factors, and
the general range is between 0 and 4. r1 and r2 are random numbers between (0, 1). Pid and
Pgd are the individual extremum and global extremum, respectively.

Figure 6. Parameter optimization flow chart.

This paper mainly studies the influence of the bridge network and the series-parallel
network on the mechatronic inertial suspension, so three resistors (R1, R2, R3), one capacitor
(C1), and one inductor (L1) of the external electrical circuit are taken as individuals to be
solved. Moreover, the performance indicators have different units and orders of magnitude,
so it is necessary to establish a unified objective function. The performance indexes of the
mechatronic inertial suspension are divided by the corresponding indexes of the passive
suspension, and the sum of their quotients is taken as the objective function. In this
paper, f is the objective function of optimization, which is obtained by weighting the
following parameters. The influence of different units of evaluation indexes is ignored;
meanwhile, the improvement of suspension performance is studied by quantifying the
objective function Therefore, the optimization of evaluation indexes of the ride comfort
and the road friendliness is transformed into the minimum value problem of the unified
objective function. The smaller the value of the optimization objective function, the better
the optimization effect, and the performance improvement is obvious. In the optimization
process, the road condition and running speed are set as C grade and 20 km/h, respectively,
and the number of iterations is 100. Due to the mechatronic inertial suspension being
used to replace the rear suspension system, the relevant evaluation indexes of the rear
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suspension are mainly used as the optimization objectives. The expression of the unified
objective function and constraint conditions are as follows:

f =
BA(P)
BApas

+
LRSWS(P)
LRSWSpas

+
LRDTL(P)
LRDTLpas

+
RRSWS(P)
RRSWSpas

+
RRDTL(P)
RRDTLpas

(13)

P =
[
C1 L1 R1 R2 R3

]
(14)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

BA(P) < BApass
LRSWS(P) < LRSWSpas
LRDTL(P) < LRDTLpass
RRSWS(P) < RRSWSpas
RRDTL(P) < RRDTLpass
LM < P < UM

(15)

LM = [0, 0, 0, 0, 0]
UM = [10, 100, 5000, 5000, 5000]

(16)

where BA(P), LRSWS(P), LRDTL(P), RRSWS(P), and RRDTL(P) indicate the root mean
square (RMS) of the centroid acceleration, working space of the left rear wheel suspension,
dynamic tire load of the left rear wheel, working space of the right rear wheel suspension,
and dynamic tire load of the right rear wheel of the optimized mechatronic inertial suspen-
sion, respectively. The above parameters were used to evaluate the ride comfort and road
friendliness of the vehicle. BApas, LRSWSpas, LRDTLpas, RRSWSpas, and RRDTLpas are the
RMS of the corresponding performance indexes of the traditional passive suspension. P
is the set of parameters to be optimized. LM and UM are the upper and lower bounds of
these parameters, and these parameters will affect the handling stability of the vehicle.

After many iterations, the optimized parameters of the proposed bridge network and
series-parallel network were revealed, as shown in Table 2.

Table 2. Optimized parameters of the electrical network.

Parameters
Bridge Network Series-Parallel Network

(a) (b) (c) (d) (e) (f)

Capacitance C1 (mF) 8 3 8.4 6.3 2.5 7.5

Inductance L1 (mH) 18.8 17.5 3.5 16 13.7 15

Resistance R1 (Ω) 2908 2553 857 2976 2856 2598

Resistance R2 (Ω) 2984 2824 3000 2768 2708 2714

Resistance R3 (Ω) 2992 2996 1350 2748 2158 2944

4. Discussion

In this section, numerical simulations are carried out to verify the effectiveness of the
mechatronic inertial suspension based on the bridge network (a).

4.1. Road Input

Assuming the vehicle is driving at a speed of u on a grade C road, the random road
input is expressed as:

.
zr(t) = −0.111[uzr(t) + 40

√
Gq(n0)uw(t)] (17)

where zr(t) is the vertical displacement of the random road input, w(t) is the white noise
with mean value of 0, and Gq(n0) is the road roughness (2.56/104 m3).

In the simulation model, four road inputs were required. The random road input of
the left front wheel is the same as that of the left rear wheel, but the random road inputs of
left front wheel and right front wheel are slightly different. In addition, the time when the
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front wheel and the rear wheel receive the road input is different in the simulation process.
Therefore, the wheelbase divided by the speed was the value of the delay in the simulation,
and the left rear wheel and the right rear wheel have a delay compared with the left front
wheel and the right front wheel, respectively.

In this paper, the road inputs of the left front wheel and the right front wheel are
almost the same; thus, those of the left rear wheel and the right rear wheel are also virtually
identical. To make this paper concise and clear, the centroid acceleration, vehicle body pitch
angular acceleration, vehicle body roll angular acceleration, working spaces of the left front
wheel suspension and the left rear wheel suspension, and the dynamic tire loads of the left
front wheel and the left rear wheel were selected as the performance evaluation indexes.

4.2. Performance Analysis of Mechatronic Inertial Suspension

The parameters in Tables 1 and 2 were input into the proposed mechatronic inertial
suspension based on a bridge electrical network and a series-parallel electrical network for
simulation. The vehicle speed was 20 m/s. The RMS values of performance indexes were
obtained, as shown in Tables 3 and 4.

Table 3. RMS comparison of mechatronic inertial suspension based on the bridge network.

Suspension Performance Index
Passive

Suspension

Bridge Network

(a) (b) (c)

RMS of centroid acceleration (m·s−2) 1.8792 1.7902 1.8023 1.8010

RMS of body roll angular acceleration (rad·s−2) 0.1059 0.1044 0.1037 0.1037

RMS of body pitch angular acceleration (rad·s−2) 1.3827 1.3440 1.3532 1.3539

RMS of working space of left front suspension (m) 0.0266 0.0256 0.0257 0.0257

RMS of dynamic tire load of left front wheel (kN) 1.9287 1.8665 1.8781 1.8781

RMS of working space of left rear suspension (m) 0.0271 0.0201 0.0202 0.0203

RMS of dynamic tire load of left rear wheel (kN) 1.8907 1.7389 1.7497 1.7495

Table 4. RMS comparison of mechatronic inertial suspension based on the series-parallel network.

Suspension Performance Index
Passive

Suspension

Series-Parallel Network

(d) (e) (f)

RMS of centroid acceleration (m·s−2) 1.8792 1.8354 1.8378 1.8446

RMS of body roll angular acceleration (rad·s−2) 0.1059 0.1131 0.1125 0.1125

RMS of body pitch angular acceleration (rad·s−2) 1.3827 1.4571 1.4591 1.4642

RMS of working space of left front suspension (m) 0.0266 0.0253 0.0252 0.0254

RMS of dynamic tire load of left front wheel (kN) 1.9287 1.8444 1.8441 1.8528

RMS of working space of left rear suspension (m) 0.0271 0.0229 0.0233 0.0230

RMS of dynamic tire load of left rear wheel (kN) 1.8907 1.7855 1.7897 1.7935

From Tables 3 and 4, it can be noted that among three mechatronic inertial suspensions
based on the bridge network, the bridge network (a) had the best improvement in vehicle
performance. Similarly, the series-parallel network (d) was the best in its group. Moreover,
compared with the series-parallel network (d), the mechatronic inertial suspension based
on the bridge network (a) had a greater effect on improving the performance of the vehi-
cle. According to Section 2, it can be concluded that with the same number of electrical
components, the bridge network could achieve a higher order impedance compared with
the series-parallel network. Therefore, the bridge network (a) was selected as the external
electrical network for the mechatronic inerter for the following part.
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5. Experimental Research

To further validate the vibration isolation performance of the vehicle mechatronic
inertial suspension system employing a bridge electrical network (a), a test of a real vehicle
was carried out on the road.

5.1. Structure Selection and Real Vehicle Installation

The key components of mechatronic inerter include the ball–screw pair, flywheel, and
rotating motor. The specific parameters were determined, as shown in Table 5.

Table 5. Parameters of the key components.

Parameter Value Parameter Value

Nominal shaft diameter d0 (mm) 16 Rated power P (W) 2000
Lead P (mm) 5 Rated speed ne (r·min−1) 3000

Center distance of balls on both sides dp (mm) 16.75 Maximum speed nm (r·min−1) 6000
Groove diameter dc (mm) 13.5 Rated torque Te (N·m) 5.88

Number of columns × Number of turns 1 × 2.65 Rated voltage Ue (V) 310
Effective stroke l0 (mm) 120 Rated current Ie (A) 6

Lead screw stiffness kl (N·μm−1) 130 Inductive torque constant kt (N·m/A) 0.98
Dynamic rated load ca (kN) 5.4 Inductive voltage constant ke (V·s/rad) 0.98

Static rated load coa (kN) 13.3 Allowable stress σp (N·mm−2) 150
Dynamic load coefficient ks 2 Radius of flywheel r (mm) 30

Static load coefficient kd 3 Thickness of flywheel h (mm) 20

After completing the parameter design of the ball–screw pair, flywheel, and rotating
motor, a mechatronic inerter based on a bridge network (a) was developed and connected in
series with the damper. Then they were installed in the rear suspension of the test vehicle,
to prepare for the subsequent road test, to comprehensively analyze the performance
advantages of a mechatronic inertial suspension based on a bridge network (a). In addition,
three axis acceleration sensors, a PCB acceleration sensor, a SICK laser displacement sensor,
and Siemens LMS Test Lab data acquisition instrument were used to collect the centroid
acceleration, roll angular acceleration, pitch angular acceleration, suspension working
space, and dynamic tire load signals of the test vehicle.

The test instruments and real vehicle test are shown in Figure 7.

Figure 7. Test instruments and real vehicle test.
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5.2. Random Road Input

It was assumed that the test vehicle ran at a speed of 20 km/h on a C grade road. To
ensure the consistency of the random road input, the test vehicle was tested on the same
road section and ran along the white solid line of the road. The sampling interval was
0.005 s, and the sampling time was 10 s. The result of time domain is shown in Figure 8
and Table 6.

Figure 8. Performance comparison under random road conditions with a vehicle speed of 20 km/h.
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Table 6. Performance index with a random input.

Performance Index
RMS of Passive

Suspension
Bridge Network (a)

RMS Improvement (%)

Centroid acceleration (m·s−2) 1.2656 1.2428 1.8
Vehicle body roll angular acceleration (rad·s−2) 1.1139 1.0526 5.5

Vehicle body pitch angular acceleration (rad·s−2) 0.4426 0.4643 −4.9
Working space of left front suspension (m) 0.0142 0.0138 2.5
Dynamic tire load of left front wheel (N) 1022 1000 2.2

Working space of left rear suspension (m) 0.0145 0.0114 21.1
Dynamic tire load of left rear wheel (N) 981 919 6.3

It can be seen from Table 6 and Figure 8 that, compared with the passive suspension,
the RMS values of centroid acceleration and vehicle body roll angular acceleration of the
mechatronic inertial suspension based on a bridge network (a) were reduced by 1.8% and
5.5%, respectively. While, the RMS values of the suspension working space and dynamic
tire load of the left rear suspension, comparing the passive suspension with the mechatronic
inertial suspension based on a bridge network (a), were decreased by 21.1% and 6.3%. The
above improvements improved the ride comfort of the vehicle. However, the RMS value of
vehicle body pitch angular acceleration was increased by 4.9%, and this increase of vehicle
body pitch angular acceleration made vehicle handling stability slightly worse. Meanwhile,
considering that only the rear suspension system adopted the proposed mechatronic inertial
suspension based on a bridge network, it was found that the RMS values of the suspension
working space and dynamic tire load of the left front suspension were improved by 2.5%
and 2.2%, respectively, which is less than the improvement effect of the rear suspension
system. It can be concluded from the above results that the bridge network (a) could
improve the ride comfort of the vehicle, but the effect was not sufficiently significant, and
the handling stability was not improved.

5.3. Pulse Road Input

A comparison of the peak value of performance indexes with a pulse road input and
when the vehicle speed was 20 km/h is shown in Table 7 and Figure 9.

Table 7. Performance index with a pulse road input.

Performance Index

Peak to Peak of
Passive

Suspension

Bridge Network (a)
Peak to

Peak
Improvement

(%)

Centroid acceleration (m·s−2) 7.2110 7.1722 0.5
Vehicle body roll angular acceleration (rad·s−2) 4.9686 4.5532 8.4

Vehicle body pitch angular acceleration (rad·s−2) 9.6225 10.1903 -5.9
Working space of left front suspension (m) 0.1128 0.1102 2.3
Dynamic tire load of left front wheel (N) 7200 7038 2.2

Working space of left rear suspension (m) 0.1234 0.1008 18.3
Dynamic tire load of left rear wheel (N) 7047 6568 6.8
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Figure 9. Comparison diagram with a pulse road input with a vehicle speed of 20 km/h.
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From Table 7 and Figure 9, we can see that, for the centroid acceleration, the im-
provement of the peak to peak of the mechatronic inertial suspension based on the bridge
network (a) was much small than that of the passive suspension, from 7.2110 (m·s−2)
to 7.1722 (m·s−2), which is only 0.5% and helped to improve the vehicle ride comfort.
However, for the vehicle body roll angular acceleration, the improvement was appar-
ent, from 4.9686 (rad·s−2) to 4.5532 (rad·s−2), and the degree of reduction was 8.4%. For
the vehicle body pitch angular acceleration, the peak to peak of the mechatronic inertial
suspension was relatively higher than that of the passive suspension, which increased
from 9.6225 (rad·s−2) to 10.1903 (rad·s−2) (5.9%), and there was no improvement in the
vehicle handling stability. The peak to peak values of the suspension working space and
dynamic tire load of the left front suspension, comparing the passive suspension with
the mechatronic inertial suspension based on a bridge network (a), were reduced by 2.3%
and 2.2%, respectively. The performance improvement of the left rear suspension was
obvious compared to the left front suspension. The suspension working space decreased
from 0.1234 (m) to 0.1008 (m) (18.3%), and the dynamic tire load decreased from 7047 (N)
to 6568 (N) (6.8%). These improvements helped to improve the vehicle ride comfort and
road friendliness.

In summary, the proposed mechatronic inertial suspension based on a bridge net-
work (a) can better realize a high-order suspension impedance and has better working
performance, to effectively improve the ride comfort and vibration isolation performance
of vehicles.

6. Conclusions

In this paper, the optimal design of mechatronic inertial suspension with an external
electrical network was studied. First, an optimization design method of the external circuit
of vehicle mechatronic inertial suspension was proposed using a bridge network. Then,
a whole-vehicle dynamic model, considering the vertical motion, roll motion, and pitch
motion of vehicle body, was established, and the basic structure and impedance transfer
function of the bridge network and series-parallel network were analyzed. The particle
swarm optimization algorithm was used to optimize component parameters of three bridge
networks and three series-parallel networks. Then, a performance comparison and analysis
of the mechatronic inertial suspension using a bridge network and series-parallel network
was studied, and the bridge network (a) and series parallel-network (d) were selected.
On this basis, the bridge network (a) and series-parallel network (d) were compared in
the time domain and frequency domain, and the bridge network (a) with better vibration
suppression ability was selected as the electrical network for the mechatronic inerter. Finally,
a road test with a real vehicle was carried out with a random road input and pulse road
input, respectively.

The results show that, under the random input condition, compared with the passive
suspension, the mechatronic inertial suspension based on a bridge network (a) could reduce
the RMS value of centroid acceleration by 1.8%, the RMS value of the body roll angular
acceleration by 5.5%, and the RMS values of the suspension working space and dynamic
tire load of the left rear wheel suspension by 21.1% and 6.3%, respectively, which effectively
improved the ride comfort of the vehicle.

This article provides a research direction for the passive optimization design of mecha-
tronic inertial suspension and verified its effectiveness and feasibility, laying the foundation
for further improvements of the vibration isolation of vehicle mechatronic inertial suspension.

Author Contributions: Conceptualization, X.Y.; methodology, Y.S.; software, T.Z.; validation, X.L.;
formal analysis, T.H.; investigation, T.H.; writing—original draft preparation, T.Z.; writing—review
and editing, Y.S.; supervision, X.Y. All authors have read and agreed to the published version of
the manuscript.

Funding: The authors disclose receipt of the following financial support for the research, author-
ship, and/or publication of this article: This research was funded by the National Natural Science

58



World Electr. Veh. J. 2022, 13, 229

Foundation of China under Grant 52072157 and 52002156, the Natural Science Foundation of Jiangsu
Province under Grant BK20200911 and Natural Science Foundation of Beijing Municipality under
Grant 3214045.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the editor and the anonymous reviewers for
their careful reading and helpful comments.

Conflicts of Interest: No potential conflict of interest are reported by the authors.

References

1. Lee, D.; Jin, S.W.; Rhee, E.-J.; Lee, C. Practical Damper Velocity Estimation for Semi-Active Suspension Control. Int. J. Automot.
Technol. 2021, 22, 499–506. [CrossRef]

2. Lee, G.-W.; Hyun, M.; Kang, D.-O.; Heo, S.-J. High-efficiency Active Suspension based on Continuous Damping Control. Int. J.
Automot. Technol. 2022, 23, 31–40. [CrossRef]

3. Smith, M. Synthesis of mechanical networks: The inerter. IEEE Trans. Autom. Control 2002, 47, 1648–1662. [CrossRef]
4. Papageorgiou, C.; Houghton, N.E.; Smith, M.C. Experimental testing and analysis of inerter devices. J. Dyn. Syst. Meas.

Control.-Trans. Asme 2009, 131, 101–116. [CrossRef]
5. Faraj, R.; Jankowski, L.; Graczykowski, C.; Holnicki-Szulc, J. Can the inerter be a successful shock-absorber? The case of a

ball-screw inerter with a variable thread lead. J. Frankl. Inst. 2019, 356, 7855–7872. [CrossRef]
6. Liu, X.; Jiang, J.Z.; Titurus, B.; Harrison, A. Model identification methodology for fluid-based inerters. Mech. Syst. Signal Process.

2018, 106, 479–494. [CrossRef]
7. Swift, S.J.; Smith, M.C.; Glover, A.R.; Papageorgiosu, C.; Gartner, B.; Houghton, N.E. Design and modelling of a fluid inerter. Int.

J. Control. 2013, 86, 2035–2051. [CrossRef]
8. Shen, Y.; Chen, L.; Liu, Y.; Zhang, X. Modeling and Optimization of Vehicle Suspension Employing a Nonlinear Fluid Inerter.

Shock Vib. 2016, 2016, 1–9. [CrossRef]
9. Zhang, H.; Shen, Y.; Yang, H. Impact of coil factors on a hydraulic electric inerter based vehicle suspension. J. Theor. Appl. Mech.

2020, 58, 711–722. [CrossRef]
10. Yang, X.; Song, H.; Shen, Y.; Liu, Y.; He, T. Control of the Vehicle Inertial Suspension Based on the Mixed Skyhook and

Power-Driven-Damper Strategy. IEEE Access 2020, 8, 217473–217482. [CrossRef]
11. Li, X.; Li, F.; Shang, D. Dynamic Characteristics Analysis of ISD Suspension System under Different WoSrking Conditions.

Mathematics 2021, 9, 1345. [CrossRef]
12. Zhao, Z.; Zhang, R.; Wierschem, N.E.; Jiang, Y.; Pan, C. Displacement mitigation-oriented design and mechanism for inerter-based

isolation system. J. Vib. Control. 2021, 27, 1991–2003. [CrossRef]
13. Shi, A.; Shen, Y.; Wang, J. Parameter optimization of a grounded dynamic vibration absorber with lever and inerter. J. Low Freq.

Noise, Vib. Act. Control 2022, 41, 784–798. [CrossRef]
14. Zhang, R.F.; Zhao, Z.P.; Liu, X.C.; Zhang, L.X. Optimal design of inerter systems for the force-transmission suppression of

oscillating structures. Earthq. Eng. Eng. Vib. 2022, 21, 441–454.
15. Dai, J.; Wang, Y.; Wei, M.; Zhang, W.; Zhu, J.; Jin, H.; Jiang, C. Dynamic characteristic analysis of the inerter-based piecewise

vibration isolator under base excitation. Acta Mech. 2022, 233, 513–533. [CrossRef]
16. Lewis, T.D.; Jiang, J.Z.; Neild, S.A.; Gong, C.N.; Iwnicki, S.D. Using an inerter-based suspension to improve both passenger

comfort and track wear in railway vehicles. Veh. Syst. Dyn. 2020, 58, 472–493. [CrossRef]
17. Xia, Z.H.; Zhou, J.S.; Lian, J.Y.; Ding, S.; Gong, D.; Sun, W.; Sun, Y. Online detection and control of car body low-frequency

swaying in railway vehicles. Veh. Syst. Dyn. 2021, 59, 70–100. [CrossRef]
18. Wang, Y.; Li, H.X.; Meng, H.D.; Wang, Y. Dynamic characteristics of an underframe inerter-based suspended equipment for high

speed trains. J. Vib. Shock. 2022, 41, 246–254.
19. Zhang, H.; Ye, Z.; Chen, X.; Yao, W. Seismic response mitigation of girder displacement of cable-stayed bridge using inerter

systems. Structures 2022, 39, 928–944. [CrossRef]
20. Xu, K.; Bi, K.; Han, Q.; Li, X.; Du, X. Using tuned mass damper inerter to mitigate vortex-induced vibration of long-span bridges:

Analytical study. Eng. Struct. 2019, 182, 101–111. [CrossRef]
21. Zhao, Z.; Chen, Q.; Zhang, R.; Jiang, Y.; Pan, C. A negative stiffness inerter system (NSIS) for earthquake protection purposes.

Smart Struct. Syst. 2020, 26, 481–493.
22. Li, Y.; Li, S.; Chen, Z. Optimal design and effectiveness evaluation for inerter-based devices on mitigating seismic responses of

base isolated structures. Earthq. Eng. Eng. Vib. 2021, 20, 1021–1032. [CrossRef]
23. Xu, S.; He, B. A compliance modeling method of flexible rotary joint for collaborative robot using passive network synthesis

theory. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021, 236, 4038–4048. [CrossRef]
24. Yang, X.; He, T.; Shen, Y.; Liu, Y.; Yan, L. Research on predictive coordinated control of ride comfort and road friendliness for

heavy vehicle ISD suspension based on the hybrid-hook damping strategy. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2022.
[CrossRef]

59



World Electr. Veh. J. 2022, 13, 229

25. Smith, M.C.; Wang, F.-C. Performance Benefits in Passive Vehicle Suspensions Employing Inerters. Veh. Syst. Dyn. 2004,
42, 235–257. [CrossRef]

26. Papageorgiou, C.; Smith, M. Positive real synthesis using matrix inequalities for mechanical networks: Application to vehicle
suspension. IEEE Trans. Control Syst. Technol. 2006, 14, 423–435. [CrossRef]

27. Wang, F.-C.; Chan, H.-A. Vehicle suspensions with a mechatronic network strut. Veh. Syst. Dyn. 2011, 49, 811–830. [CrossRef]
28. López-Martínez, J.; Martínez, J.; García-Vallejo, D.; Alcayde, A.; Montoya, F.G. A new electromechanical analogy approach based

on electrostatic coupling for vertical dynamic analysis of planar vehicle models. IEEE Access 2021, 9, 119492–119502. [CrossRef]
29. Chen, M.Z.; Papageorgiou, C.; Scheibe, F.; Wang, F.-C.; Smith, M.C. The missing mechanical circuit element. IEEE Circuits Syst.

Mag. 2009, 9, 10–26. [CrossRef]
30. Li, Y.A.; Cheng, Z.; Hu, N.Q.; Yang, Y.; Zhuo, X. Modeling, design and experiments of a ball-screw inerter with mechanical diodes.

J. Sound Vib. 2021, 504, 116121.
31. Yang, X.; Yan, L.; Shen, Y.; Liu, Y.; Liu, C. Optimal Design and Dynamic Control of an ISD Vehicle Suspension Based on an ADD

Positive Real Network. IEEE Access 2020, 8, 94294–94306. [CrossRef]
32. Shen, Y.; Hua, J.; Fan, W.; Liu, Y.; Yang, X.; Chen, L. Optimal design and dynamic performance analysis of a fractional-order

electrical network-based vehicle mechatronic ISD suspension. Mech. Syst. Signal Process. 2023, 184, 2592–2601. [CrossRef]
33. Ning, D.; Du, H.; Zhang, N.; Sun, S.; Li, W. Controllable Electrically Interconnected Suspension System for Improving Vehicle

Vibration Performance. IEEE/ASME Trans. Mechatron. 2020, 25, 859–871. [CrossRef]
34. Hu, Y.L.; Chen, M.Z.Q. Low-complexity passive vehicle suspension design based on element-number-restricted networks and

low-order admittance networks. J. Dyn. Syst. Meas. Control.-Trans. Asme 2018, 140, 101014. [CrossRef]
35. Li, Y.; Yang, X.; Shen, Y.; Liu, Y.; Wang, W. Optimal design and dynamic control of the HMDV inertial suspension based on the

ground-hook positive real network. Adv. Eng. Softw. 2022, 171, 103171. [CrossRef]
36. Shen, Y.; Hua, J.; Wu, B.; Chen, Z.; Xiong, X.; Chen, L. Optimal design of the vehicle mechatronic ISD suspension system using the

structure-immittance approach. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2022, 236, 512–521. [CrossRef]
37. Zhong, R.; Bi, C.; Chen, Y.; Chen, Z.; Zhou, A.; Yang, Z.; Zhai, J. A Simplified Method for Extracting Parasitic Inductances of

MOSFET-Based Half-Bridge Circuit. IEEE Access 2021, 9, 14122–14129. [CrossRef]
38. Advani, J.; Gupta, O. Networks for a Subclass of Minimum Biquartic Impedance Functions. IEEE Trans. Circuit Theory 1965,

12, 621–622. [CrossRef]
39. Lee, S.; Frisch, I. A Class of RLC Networks with Fewer Nonreactive Elements than the Brune Realization. IEEE Trans. Circuit

Theory 1964, 11, 418–421. [CrossRef]
40. Yang, X.F.; Song, H.; Shen, Y.J.; Liu, Y.L. Study on adverse effect suppression of hub motor driven vehicles with inertial suspensions.

Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2022, 236, 767–779. [CrossRef]
41. Wang, F.C.; Chan, H.A. Mechatronic Suspension Design and Its Applications to Vehicle Suspension Control. IEEE Conf. Decis.

Control. 2008, 12, 3769–3774.
42. Clerc, M.; Kennedy, J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans.

Evol. Comput. 2002, 6, 58–73. [CrossRef]

60



Citation: Jiang, X.; Xu, X.; Shan, H.

Model-Based Fault Diagnosis of

Actuators in Electronically

Controlled Air Suspension System.

World Electr. Veh. J. 2022, 13, 219.

https://doi.org/10.3390/

wevj13110219

Academic Editor: Joeri Van Mierlo

Received: 13 October 2022

Accepted: 16 November 2022

Published: 21 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Model-Based Fault Diagnosis of Actuators in Electronically
Controlled Air Suspension System

Xinwei Jiang, Xing Xu * and Haiqiang Shan

Automotive Engineering Research Institute, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
* Correspondence: xuxing@ujs.edu.cn

Abstract: The air suspension adjusts the height of the vehicle body through charging and bleeding air
to meet the high performance of the vehicle, which needs a reliable electronic control system. Through
fault tree analysis of the electronically controlled air suspension (ECAS) system and considering the
correlation between the duty cycle and flow rate of the air spring solenoid valve, the fault model
of the solenoid valve is constructed, and the fault diagnosis design method of the ECAS system
solenoid valve based on multiple extended Kalman filter banks (EKFs) is proposed. An adaptive
threshold is used to realize fault diagnosis, and active fault-tolerant control is carried out based on
an analytical model. The real controller based on d2p rapid prototyping technology and the vehicle
model based on AMESim are further verified on the hardware-in-the-loop (HiL) simulation test
platform and compared with the pure simulation results. The test results show that the fault diagnosis
and fault-tolerant control algorithm can work normally in the actual controller, and can effectively
realize the fault diagnosis and fault-tolerant control of the actuator in the vehicle ECAS system.

Keywords: electronically controlled air suspension; solenoid valve; extended Kalman filter bank;
fault diagnosis; fault-tolerant control

1. Introduction

Air suspension can improve vehicle ride comfort and road friendliness, and its natural
frequency is low and has variable stiffness characteristics [1–5]. However, the general
air suspension cannot adjust the suspension stiffness and damping according to the load
change. The natural frequency and controllability of the electronically controlled air
suspension (ECAS) are low, which can further improve the vehicle ride comfort and
control stability [6–8]. In recent years, research on ECAS has mainly focused on improving
comfort and stability. In 2019, Rui modeled the ECAS system according to its nonlinear
characteristics and designed an adaptive sliding mode control strategy. The method
effectively improves the stability of the system by considering the parameter uncertainty [9].
In 2021, Ma et al. designed an integrated control strategy to solve the problems of small
stiffness adjustment range and poor roll stability of traditional ECAS systems. The handling
stability and anti-roll performance of the vehicle are improved [10]. In 2021, Hu et al.
conducted research on the hybrid control of body height and attitude of the ECAS system.
They built a vehicle model based on mixed logic dynamics and designed the switching
strategy of the solenoid valve. The coordinated control between the ECAS system body
height and attitude is well solved, and good vibration isolation performance and stability
are achieved [11].

However, the ECAS system is highly dependent on the reliability of each component.
Sensors and actuators are very important components [12,13]. The structure of the ECAS
system is shown in Figure 1. The actuator is the air spring solenoid valve. If any of the four
solenoid valves fail, the ride comfort and handling stability of the whole vehicle will be
severely affected [14]. Therefore, it is necessary to consider the reliability of the actuator of
the electronically controlled air suspension system.
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Figure 1. ECAS system.

The fault diagnosis technology in the reliability research of the control system is widely
used in the control system of various industries. The technology can effectively improve
the reliability and maintainability of the system. The technology was first proposed in the
1990s by Frank, who divided the fault diagnosis methods into three categories based on
an analytical model, expert knowledge, and signal processing [15]. In 2009, Zhou further
developed the method from qualitative and quantitative perspectives [16]. In 2020, Feng
proposed an SVM model and effectively distinguished different fault conditions of trains
by using the support vector machine method [17]. The fault diagnosis method based on
qualitative analysis is mainly divided into the graph theory method, the expert system
method, and the qualitative simulation method. Among them, the graph theory method
includes the symbol-directed graph method [18] and the fault tree method [19]. The main
principle is to judge the fault according to the logical causal relationship. This method can
be understood easily and is widely adopted.

The fault location and type can be determined by fault diagnosis. In this way, fault-
tolerant control (FTC) can be implemented. Alwi et al. classified fault-tolerant control
methods in detail [20]. Fault-tolerant control is usually divided into passive FTC (PFTC)
and active FTC (AFTC). The common methods of passive fault-tolerant control include
H methods based on ∞ control theory [21] and sliding mode control theory [22]. The
characteristic of passive fault-tolerant control is that there is no need for fault diagnosis,
and the controller parameters are not changed, so it is easy to implement, but the fault-
tolerant control is limited. The active fault-tolerant control adjusts the controller parameters
online or configures the controller structure units online based on the fault diagnosis
information to realize the system stability, which is different from the passive fault-tolerant
control. Active fault-tolerant control methods can be divided into two types: planning
type and online adjustment type [23]. In the planning of FTC, the controller is designed in
advance for all possible faults of the system, and the corresponding controller is activated
when the corresponding fault occurs. On the other hand, the online adjustment of the
controller is mainly through adaptive control or control signal redistribution to achieve
fault-tolerant control [24,25]. In 2020, Pang et al. designed a fault-tolerant controller based
on the nonlinear suspension system, which combines the state feedback observer and the
H-infinity observer. The purpose of fault-tolerant control is achieved by comparing the
system state under the fault-free state to compensate [26]. In 2021, Xue et al. considered the
failure of a 1/4 active suspension actuator under the change of sprung mass. They used
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the finite-element neural network method to approximate the observer fault, and turned
it into a linear matrix inequality problem. This method can obtain the results faster and
more accurately, and can well adapt to the changing spring mass [27]. The above methods
are very effective, but the actuator fault diagnosis and fault-tolerant control for the ECAS
system are rarely used. In order to fill the shortage in this field, this research will use the
extended Kalman filter bank with an adaptive threshold as the observer, and use the online
adjustment method to continuously improve the body height. Compared with the existing
research, this method has stronger adaptability and accuracy.

At present, research on the fault diagnosis and fault-tolerant control of the ECAS
system is scarce. In addition, research on ECAS vehicle height control rarely focuses on
how to ensure effective control in the case of actuator failure. However, the ECAS system
with actuator failure has many problems to be solved, such as risk analysis, fault diagnosis
architecture, and fault-tolerant control strategy design.

The contribution of this paper is to use the extended Kalman filter bank based on an
adaptive threshold to study the fault diagnosis and fault-tolerant control of the air spring
solenoid valve. This method can change the threshold according to the system input, and
can effectively reduce the probability of missed diagnosis and misdiagnosis. After fault di-
agnosis and isolation, corresponding active fault-tolerant methods are adopted for different
types of faults. Among them, the method of online adjustment of controller parameters is
used to improve the height and attitude control effect of the constant gain fault. In addition,
a hardware-in-the-loop simulation platform is built to finally test the effectiveness and
accuracy of the above methods. The HiL platform can realize the connection between the
real controller and the simulation model of the controlled object, so as to form a complete
loop to test the actual operation and feasibility of fault diagnosis and fault-tolerant control
algorithm model in the real controller. This paper provides a research idea for the operation
stability and fault-tolerant control method of electronically controlled air suspension.

The article is organized as follows. In the next section, the model of the height
adjustment system of the electronically controlled air suspension is established. After
analyzing the fault mode by fault tree method, the controlled object and actuator model
are established. In Section 3. The fault diagnosis mechanism based on the EKF group is
designed and verified by simulation. In Section 4, active fault-tolerant control is designed
based on the previous section. In Section 5, a hardware-in-the-loop simulation test bed
is built to verify the fault diagnosis and active fault-tolerant control system. Finally,
conclusions are drawn in Section 6.

2. Modeling and Failure Analysis of ECAS System

2.1. Modeling of Vehicle Height Adjustment System in ECAS System

To facilitate the design of the fault diagnosis filter, the vehicle ECAS system is simpli-
fied, and the corresponding vehicle height adjustment model of the vehicle ECAS system is
established. This provides a basic platform for the implementation of actuator fault diagno-
sis. The vehicle ECAS dynamics model is established based on the following assumptions:
(1) The sprung mass is a rigid body, and only vertical, pitch, and roll motions are considered;
(2) Tyre damping is ignored; (3) The speed characteristic of the shock absorber is linear;
(4) The ECAS system does not collide with the buffer block during the working process;
(5) The rigidity of the frame and the body is sufficiently large, regardless of the vibration
modes caused by the elasticity of the frame. Therefore, the ECAS dynamics model of the
whole vehicle as shown in Figure 2 is established.
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Figure 2. Dynamic model of the whole vehicle based on ECAS.

The ECAS vehicle dynamics equation is built according to the vehicle dynamics
characteristics and related geometric relationships. Among them, the vehicle body vertical,
pitch, and roll motion equations are as follows:⎧⎪⎨⎪⎩

Ms
..
xs = F1 + F2 + F3 + F4

Iy
..
θ = b(F2 + F4)− a(F1 + F3)
Ix

..
ϕ = (F1 + F2 − F3 − F4)d

(1)

where Ms is the sprung mass of the whole vehicle, kg;
..
xs is the vertical acceleration of the

body center of mass; F1, F2, F3, and F4 are the forces on the front left, rear left, front right,
and rear right body, respectively, N; Iy is the moment of inertia of the car body around the

Y-axis, km·m2;
..
θ is the pitch angular acceleration, rad/s2; a and b are the distance from the

center of mass of the car body to the front and rear axles, m; Ix is the moment of inertia of
the car body around the X-axis, km·m2;

..
ϕ is the roll angular acceleration, rad/s2; and d is

the 1/2 tread, m.
After establishing the vehicle dynamics model, a single-group air spring model is

built. Assuming that the heat exchange during the gas flow is negligible, the charging
and discharging process of the air spring can be regarded as a variable-volume adiabatic
process. According to the first law of thermodynamics, when the solenoid valve is opened,
the air spring opening inflates and discharges the variable mass model as follows:

κRT
dm
dt

= κP
dv
dt

+ V
dP
dt

(2)

When the solenoid valve is closed, dm
dt = 0, then Equation (4) can be rewritten as:

dP
dt

= −κPdV
Vdt

(3)

Research has shown that when the height of the diaphragm air spring changes near
the working position, its effective area and volume change rate can be regarded as fixed
values. Therefore, the volume change of the air spring can be approximated as the spring
vertical displacement change under the volume change rate, namely:

V = V0 + ΔV(xs1 − xu1) (4)

where V0 is the initial volume of the air spring, m3; and ΔV is the rate of change of air
spring volume, m3/m.
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Combining Equations (2)–(4) can derive a complete air spring charging and discharg-
ing process model as follow:

V
.
P = −κPΔV

( .
xs1 − .

xu1
)
+ κRTqm (5)

where V is the air spring volume, m3; k is the adiabatic coefficient of air; R is the gas
constant, N·m/(kg·K); T is the internal temperature of the air spring, ◦C; and qm is the gas
mass flow rate when charging and discharging the air spring, kg/s.

According to the established vehicle ECAS dynamics model and the air spring charging
and discharging process model, the mathematical model of the vehicle height adjustment
of the vehicle ECAS system can be derived. Since the focus of the ECAS system model is
the charging and discharging process of the air spring, the unsprung mass vibration and
road input are combined as system noise. Then, the mathematical expression of the vehicle
height adjustment of the complete vehicle ECAS system can be finally simplified as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ms
..
xs = F1 + F2 + F3 + F4

Ix
..
ϕ = (F1 + F2 − F3 − F4)d

Iy
..
θ = b(F2 + F4)− a(F1 + F3)

V1
.
P1 = −κΔVP1

.
xs1 + κRTqm1

V2
.
P2 = −κΔVP2

.
xs2 + κRTqm2

V3
.
P3 = −κΔVP3

.
xs3 + κRTqm3

V4
.
P4 = −κΔVP4

.
xs4 + κRTqm4

(6)

where⎧⎪⎪⎨⎪⎪⎩
F1 = (P1 − Pa)Ae − ms1g − C1

.
xs1 − k1ω1

F2 = (P2 − Pa)Ae − ms2g − C2
.
xs2 − k2ω2

F3 = (P3 − Pa)Ae − ms3g − C3
.
xs3 − k3ω3

F4 = (P4 − Pa)Ae − ms4g − C4
.
xs4 − k4ω4

,

⎧⎪⎪⎨⎪⎪⎩
V1xs1

V2 = V20 + ΔVxs2
V3 = V30 + ΔVxs3
V4 = V40 + ΔVxs4

,

⎧⎪⎪⎨⎪⎪⎩
xs1 = xs − aθ + dϕ
xs2 = xs + bθ + dϕ
xs3 = xs − aθ − dϕ
xs4 = xs + bθ − dϕ

2.2. Actuator Failure Analysis and Modeling

Through the analysis of the potential failure modes of the components of the system,
the reasons for the failures and their effects are drawn. The corresponding detection method
is designed to greatly improve the reliability of the system.

To analyze the failure mode of the system, a fault tree analysis method is introduced
here. The fault tree analysis method belongs to the method of graphical deduction. Through
top-down or bottom-up logical deductive reasoning, the reasons leading to system failure
are analyzed and expressed in a tree diagram.

In the fault tree analysis, the causal relationship between the faults is represented by
event symbols, logic gate symbols, etc. Table 1 shows the basic symbols and their meanings
used in the fault tree analysis method.

Figure 3 shows the air spring solenoid valve fault tree. It can be seen from the fault
tree that the failure of the air spring solenoid valve of the ECAS system is mainly caused by
the failure of the front left, front right, rear left, and rear right air spring solenoid valves.
The main reasons for the failure of the above four solenoid valves include short circuits,
open circuits, plugging of the valve core, spring fatigue, and leakage of the valve core.
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Table 1. Basic symbols and meanings of fault tree.

Event Symbol Description

Basic event The lowest level event that does not need to
be ascertained

No extended
Events

Events that have little impact on the top event
or whose cause cannot be known temporarily

Result Event Contains top and middle events that are always
at the outputs

Transfer symbol This event indicates information transfer
and avoids drawing repetition

Logic symbol:
and gate

Output events only occur
when all input events occur

Logical symbols:
or doors

As long as one of the input events occurs,
the output event occurs

Figure 3. Fault tree of solenoid valves for air spring system.

After the failure mode analysis of the vehicle ECAS system, mathematical model-
ing is mainly carried out for the different failures of the actuator, namely the air spring
solenoid valve.

The solenoid valve of the air spring is a high-speed switching solenoid valve, using
the pulse-width modulation (PWM) control method. The relationship between the duty
cycle and the flow rate is:

qm = Cd · A · D ·
√

2ΔP
ρ

(7)

where Cd is the flow coefficient; A is the flow area of the valve port, m2; D is the duty
cycle; ΔP is the difference between input pressure and output pressure, Pa; and ρ is the gas
density, kg/m3.

There are two common failure modes of solenoid valves. One is that the valve core is
stuck due to the open circuit of the solenoid valve and cannot be opened normally. The
flow through the solenoid valve becomes zero. Another failure is caused by the increase of
internal friction of the solenoid valve. The core cannot reach the maximum displacement;
that is, the valve port is not fully opened, resulting in a gain loss in the flow through the
solenoid valve. Therefore, from the flow point of view, the fault behavior of the ECAS
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system actuator is defined as stuck and constant gain. In the case of failure, the flow area of
the valve port is expressed as follows:

A f = n · A + β (8)

where n is the fault gain factor, and β is the dead value for failure.
Then, the stuck fault of the ECAS system actuator can be defined as n = β = 0, and the

constant gain fault is n 
= 0 and β 
= 0.
According to Equations (7) and (8), when the actuator fails the control input of the

ECAS system uf is as follow:

u f = qm = n · ui + δ = Cd · n · A · D ·
√

2ΔP
ρ

+ Cd · β · D ·
√

2ΔP
ρ

(9)

where δ is the input fault stuck value for the control, subscript i = 1 − 4.
The fault vector can be defined as:

F =

⎡⎢⎢⎣
f1
f2
f3
f4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
(n1 − 1)u1 + δ1
(n2 − 1)u2 + δ2
(n3 − 1)u3 + δ3
(n4 − 1)u4 + δ4

⎤⎥⎥⎦ (10)

Fault control input Uf can be expressed as:

Uf =

⎡⎢⎢⎣
Uf 1
Uf 2
Uf 3
Uf 4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
u1
u2
u3
u4

⎤⎥⎥⎦+

⎡⎢⎢⎣
(n1 − 1)u1 + δ1
(n2 − 1)u2 + δ2
(n3 − 1)u3 + δ3
(n4 − 1)u4 + δ4

⎤⎥⎥⎦ = U + F (11)

3. Fault Diagnosis of ECAS System Based on Adaptive Threshold

3.1. Fault Diagnosis System Architecture Based on KEFs

When the actuator of the ECAS system fails, the controller may adjust the charging
and bleeding process of the air spring abnormally. Therefore, the actuator fault detection
and isolation strategy shown in Figure 4 is designed for the vehicle ECAS system.

u

Y

u

u

u

Y

U

U

U

U

y

u

u

y

y

y
Y

Y Y

Y Y

Y Y

Figure 4. Actuator fault detection & isolation strategy of the vehicle ECAS system.
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The extended Kalman filter (EKF) algorithm is widely used for state estimation in
nonlinear systems. The main idea is to use Taylor’s formula to transform the nonlinear
model into a linear model and then perform Kalman filtering. Therefore, in view of the
nonlinear characteristics of the ECAS system, the extended Kalman filter algorithm is used
to design the fault diagnosis filter.

To design EKF1, selecting the state variable X1 =
[
θ

.
θϕ

.
ϕxs

.
xsx2

.
x2P2

]T
, defining mea-

surement output Y1 =
[
x2

..
x2P2

]T , control input U2 = [qm2]
T ; For EKF2, selecting state

variable X2 =
[
θ

.
θϕ

.
ϕxs

.
xsx1

.
x1P1

]T
, defining measurement output Y2 =

[
x1

..
x1P1

]T , control

input U1 = [qm1]
T ; For EKF3, selecting state variable X3 =

[
θ

.
θϕ

.
ϕxs

.
xsx4

.
x4P4

]T
, defining

measurement output Y3 =
[
x4

..
x4P4

]T , control input U4 = [qm4]
T ; For EKF4, selecting state

variable X4 =
[
θ

.
θϕ

.
ϕxs

.
xsx3

.
x3P3

]T
, defining measurement output Y4 =

[
x3

..
x3P3

]T , and

control input U3 = [qm3]
T .

According to Equation (5) and the selected state variables, measurement output, and
control input, write the corresponding system and measurement equations, respectively.
The general form of the system and measurement equation is as follows:{ .

X = f (X) + g(X)U + q(X)ω
Y = h(X) + υ

(12)

f (X), g(X), q(X) and h(X) derived from EKF1, EKF2, EKF3, and EKF4, respectively.
According to the Equation (11) design filter equation, the general form of the equation is:{ .

X̂ = f
(
X̂
)
+ g

(
X̂
)
U + Lk

(
Y − Ŷ

)
Ŷ = h

(
X̂
) (13)

where X̂ is the estimate for state variables, Ŷ is the estimate for measurement output, Y
is the output for measurement, U is the input matrix for control, and Lk is the filter gain
matrix. Process noise ω and measurement noise ν are mutually uncorrelated Gaussian
white noise. The probability distribution characteristics are as follows:⎧⎨⎩

E(ωk) = 0, Cov
(
ωk, ωj

)
= Qkδkj

E(υk) = 0, Cov
(
υk, υj

)
= Rkδkj

Cov
(
ωk, υj

)
= 0

(14)

where Qk is the process noise covariance matrix, and Rk is the measurement noise co-
variance matrix. The EKF algorithm is shown in Figure 5, where Fk = ∂ f (xk)

∂xk
|xk = x̂k ,

Hk =
∂h(xk)

∂xk
|xk = x̂k , Γk =

∂ f (xk)
∂ωk

|xk = x̂k , ẑk = h(x̂k, k−1).
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Figure 5. EKF algorithm flow.

3.2. Calculation of Adaptive Threshold

Threshold selection is an important step to achieve fault detection and isolation. The
adaptive threshold changes with system input, which can effectively reduce the probability
of missed diagnosis and misdiagnosis. In this section, an adaptive threshold is designed
according to the system model error and system input, so as to minimize the probability
of missed diagnosis and misdiagnosis. The system model error includes linearization
error and parameter uncertainty error. Firstly, the system equation of EKF1 is taken as an
example to illustrate the analysis of the linearization error and parameter uncertainty error

1. Linearization error

The ECAS system equation has nonlinear characteristics. In the design process of the
extended Kalman filter, the system equations need to be linearized, resulting in linearization
errors. Equation (12) can be written in the form of

.
X = AX + BU X. Thus, the state

transition matrix A and the control input coefficient matrix B are obtained.

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −bC2

Iy
bAe
Iy

0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 −C2d

Ix
dAe
Ix

0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 −C2

ms
Ae
ms

0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −C2

ms2

Ae
ms2

0 0 0 0 0 0 0 −κΔVP0
V20

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(15)

B =
[
0 0 0 0 0 0 0 0 κRT

V20

]T
(16)

Thus, the linearization error matrix can be obtained as:

ΔA1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ΔA11 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(17)
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ΔB1 =
[
0 0 0 0 0 0 0 0 ΔB11

]T (18)

where ΔA11 = −κΔVP2
V20+ΔVx(7) +

κΔVP0
V20

, and ΔB11 = κRT
V20

− κRT
V20+ΔVx(7) .

2. Parameter uncertainty error

In the ECAS vehicle model, the uncertain parameters mainly include the sprung mass
and the damping of the shock absorber. The sprung mass has the characteristics of uneven
distribution and changes with vehicle masses. The damping value of the shock absorber is
also different under different working temperatures. Therefore, the parameter uncertainty
is introduced as follows: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Δms1 = ms1 − ms1
real

Δms2 = ms2 − ms2
real

Δms3 = ms3 − ms3
real

Δms4 = ms4 − ms4
real

Δms = ms − ms
real

(19)

⎧⎪⎪⎨⎪⎪⎩
ΔC1 = C1 − C1

real

ΔC2 = C2 − C2
real

ΔC3 = C3 − C3
real

ΔC4 = C4 − C4
real

(20)

The parameter value with real superscript represents the actual parameter value or
the floating limit of the parameter. From this, the parameter uncertainty error matrix is
derived as follows:

ΔA2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ΔA21 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ΔA22 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ΔA23 ΔA24
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ΔA25 ΔA26
0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(21)

ΔB2 =
[
0 0 0 0 0 0 0 0 0

]T (22)

where ΔA21 = −bC2
Iy

+ bC2
real

Iy
, ΔA22 = −C2d

Ix
+ C2

reald
Ix

, ΔA23 = −C2
ms

+ C2
real

msreal ,

ΔA24 = Ae
ms

− Ae
msreal , ΔA25 = −C2

ms2
+ C2

real

ms2
real , and ΔA26 = Ae

ms2
− Ae

ms2
real

The model error matrix is introduced, and the system input is considered to determine
the adaptive threshold. Then, the system can be expressed to:

.
X = (A + ΔA)X + (B + ΔB)U (23)

where ΔA = ΔA1 + ΔA2, and ΔB = ΔB1 + ΔB2.
Model error can be defined as ε = X − X̂. Equations (13) and (23) are combined, so

that the model error can be expressed as follow:

.
ε = (A + LkC)ε + (ΔA1 + ΔA2)X + (ΔB1 + ΔB2)U (24)

Integrating Equation (24), the error ε can be deduced as:

ε = ε(A+LkC)tε(0) +
∫ t

0 ε(A+LkC)(t−τ)(ΔA1 + ΔA2)X(τ)dτ

+
∫ t

0 ε(A+LkC)(t−τ)(ΔB1 + ΔB2)U(τ)dτ
(25)
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The adaptive threshold for fault detection is given from the above equation as:

h = ε + c (26)

where c calculates the acceptable deviation.

3.3. Fault Detection

The output residual is defined according to fault detection and isolation strategy as
r = Y − Ŷ. For the vehicle ECAS system, the residual characteristic description shown in
Table 2 can be obtained.

Table 2. Characterization of residuals.

Residual r1
(1) r2

(1) r3
(1) r4

(1) r1
(2) r2

(2) r3
(2) r4

(2) r1
(3) r2

(3) r3
(3) r4

(3)

No Failure 0 0 0 0 0 0 0 0 0 0 0 0
Actuator 1

failure 0 1 0 0 0 1 0 0 0 1 0 0

Actuator 2
failure 1 0 0 0 1 0 0 0 1 0 0 0

Actuator 3
failure 0 0 0 1 0 0 0 1 0 0 0 1

Actuator 4
failure 0 0 1 0 0 0 1 0 0 0 1 0

In Table 2, ri
(j) is the output estimated residual, i is the extended Kalman filter number

(i = 1 − 4), and j is the measurement output number. j = 1, 2, 3 represent the height change
of the air spring, the vertical acceleration at the four corners of the body, and the internal
air pressure of the air spring, respectively. Actuators 1–4 represent the front left, rear left,
front right, and rear right air spring solenoid valves, respectively. Taking the residual r
as the fault detection indicator, there are three fault detection indicators, including the air
spring height estimation residual ri

(1) and the vertical acceleration estimation residual error
at the four corners of the car body ri

(2), and the air spring pressure estimation residual ri
(3).

Each extended Kalman filter will produce the above three fault detection indicators (that is,
ri

(1), ri
(2) and ri

(3)). Comparing the fault detection index with the adaptive threshold h, it
can be detected whether the actuator has a fault.{

index ≥ h, Failure
index < h, Nofailure

(27)

According to Equation (27), when the fault detection index value is greater than or
equal to the detection threshold, the actuator has failed. The corresponding detection index
ri

(j) = 1; when the detection index value is less than the detection threshold, the actuator
has not failed. The corresponding detection index ri

(j) is equal to 0.
As long as one of the three fault detection indicators exceeds the threshold, it is con-

sidered that a fault has occurred. The advantage of setting three fault detection indicators
is to further reduce the missed diagnosis rate and increase the reliability and effectiveness
of fault detection. By looking up Table 2, you can not only know whether the actuator is
malfunctioning, but also determine the location of the malfunctioning actuator; that is,
fault detection and isolation are realized.

3.4. Simulation and Analysis

To verify the proposed fault diagnosis program, four fault behaviors shown in Table 3
are selected. Fault 1 is a stuck fault, and Faults 2–4 are constant gain faults. In the fault
behavior, n represents the gain coefficient, and δ represents the fault stuck value. The
flow area of the valve port can be calculated from Equation (8). Therefore, the fault
behavior represents the flow area of the valve port, corresponding to four fault behaviors.
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Actuators 1–4, respectively, represent the front left, rear left, front right, and rear right air
spring solenoid valves. The fault diagnosis module was started at the same time as the
vehicle height adjustment was started at 5 s, and the fault occurred at 8 s. The first 5 s is
the process of the air spring model in AMEsim gradually returning to a steady state. The
simulation results of Faults 1 and 2 detections are shown in Figures 6 and 7.

Table 3. Description of fault behavior.

Fault Number 1 2 3 4

Moment of failure/s 8
Fault

behavior
n 0 0.2 0.4 0.6
δ 0 0 0 0

 
(a) (b) 

(c) 

Figure 6. Changes of fault detection indicators under Fault 1: (a) Fault detection index ri
(1) and

threshold h1; (b) Fault detection index ri
(2) and threshold h2; (c) Fault detection index ri

(3) and
threshold h3.

As shown in Figure 6, before the occurrence of Fault 1, the estimated residuals of
the three fault detection indicators, namely displacement, acceleration, and air pressure
output, are smaller than the adaptive threshold. The fault occurs at the 8th second, and the
residual error r2

(1), r2
(2) and r2

(3) output by EKF2 all exceeds the adaptive threshold. The
residual outputs by other filters still fluctuate around zero or are less than the adaptive
threshold. According to Figure 7 and the residual characteristics in Table 2, the front left air
spring solenoid valve is malfunctioning. The fault detection time is 11.1 s, 10.4 s, and 10.1 s,
respectively. If one of r2

(1), r2
(2) and r2

(3) exceeds the threshold, it is considered that a fault
has occurred. Therefore, the actuator failure was detected at 10.1 s.
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(a) (b) 

 
(c) 

Figure 7. Change of fault detection index under Fault 2: (a) Fault detection index ri
(1) and threshold

h1; (b) Fault detection index ri
(2) and threshold h2; (c) Fault detection index ri

(3) and threshold h3.

As shown in Figure 7, before Fault 2 occurs, the fault detection indicators are all less
than the adaptive threshold. After the fault occurs, the output residuals of EKF1 r1

(1),
r1

(2), r1
(3) all exceed the adaptive threshold. The residual outputs by other filters are still

smaller than the adaptive threshold, and the fault detection time is 11.4 s, 10.6 s, and 10.4 s,
respectively. Therefore, the actuator failure is detected at 10.4 s. According to Figure 7 and
the residual characteristic Table 2, it can be judged that the rear left air spring solenoid
valve is malfunctioning.

Similarly, simulation verification was performed for Failures 3 and 4. According
to the simulation results and the residual characteristics in Table 2, it can be accurately
known that the fault occurred in the front right and rear right air spring solenoid valves.
In summary, the ECAS system fault diagnosis system based on the adaptive threshold is
accurate and effective. It can correctly judge whether there is a fault and the location of the
corresponding faulty solenoid valve.

4. Design and Simulation of Active Fault Tolerant Control

4.1. Design of Active Fault Tolerant Control

An active fault-tolerant control strategy is designed for the actuator failure of the
vehicle ECAS system, shown in Figure 8. The active fault-tolerant control decision-making
module (the content of this module is shown in Table 4) judges whether a fault has occurred
according to the information sent by the fault detection and isolation module. If there is no
fault, use the original controller. If a fault is detected, the fault estimation value sent by the
fault estimation module is judged as whether it is stuck or a constant gain fault. If it is a
stuck fault, the vehicle height adjustment is stopped immediately. If it is a constant gain
fault, the estimated value Â1 of the valve port area calculated from the estimated value of
the fault is sent to the controller. The original valve port area parameter A0 of the controller
is replaced so that the duty ratio of the solenoid valve is increased, and the height change
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rate of the air spring corresponding to the faulty solenoid valve is increased. This can
improve the inconsistency of air spring changes at the four corners and, ultimately, increase
the vehicle height adjustment speed, as well as improve the body posture.

Ureal

u

u
1

u
2

u
3

u
4

Y

Y

u

Ureal

Umodel

u

Figure 8. Active fault tolerant control strategy of vehicle ECA system.

Table 4. Contents of active fault tolerant control decision module.

Fault Type Fault Tolerance Measures

No fault The original controller is adopted
Constant gain fault Online adjustment of controller parameters

Stuck fault Close all solenoid valves and stop height adjustment

4.2. Simulation of Active Fault Tolerant Control

Taking Fault 1 (stuck) and Fault 2 (constant gain) shown in Table 3 as examples, the
simulation results are as follows.

From Figure 9b,c, it can be seen that under normal circumstances, the pitch and roll
angles of the vehicle body during the vehicle height adjustment process (5 s to 22.5 s)
are well controlled. In the case of Fault 1, the height of the front left air spring stops
increasing because the front left air spring solenoid valve is stuck. Its changes cannot be
synchronized with other air springs. This causes the pitch angle and roll angle during
the height adjustment process to rapidly increase to about 0.0055 rad and −0.0066 rad,
respectively, and the body attitude deteriorates. Under fault-tolerant control, the vehicle
height adjustment stops because all air spring solenoid valves are closed. Therefore, the
pitch angle and roll angle of the body are stabilized at about 0.0005 rad and −0.0012 rad, to
avoid further deterioration of the body attitude.
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(a) (b) 

 
(c) 

Figure 9. Performance comparison before and after fault tolerant control under Fault 1 (stuck):
(a) Relative height of mass center; (b) Pitch angle; (c) Roll angle.

It can be seen from Figure 10 that when Fault 2 occurs, the vehicle height adjustment
speed without fault-tolerant control decreases, and the pitch and roll angle peaks increase.
This is due to the fact that the solenoid valve port of the rear left air spring cannot be fully
opened, and a constant gain failure has occurred, resulting in a decrease in flow. After
performing fault-tolerant control, the duty ratio of the rear left air spring solenoid valve is
increased by adjusting the controller parameters online. After entering, the flow rate of the
left air spring increases, and the vehicle height adjustment time decreases. Compared with
fault-tolerant control, the vehicle height adjustment time is improved by about 15.3%. The
peak pitch angle and roll angle are reduced, and the improvement in the peak pitch angle
of the body is about 43.8%. The peak roll angle improvement rate is about 37.5%.

Faults 3 and 4 are also constant gain faults. Since the air spring solenoid valve cannot
be fully opened, the flow into the solenoid valve is reduced. The simulation results show
that the vehicle height adjustment speed decreases, and the pitch angle and roll angle peaks
increase when there is no fault-tolerant control. After performing fault-tolerant control, the
vehicle height adjustment time range, pitch angle, and roll angle peak are all improved.

In summary, when the actuator fails, the designed active fault-tolerant control method
can effectively improve the vehicle height adjustment and attitude control performance
under the fault compared to the case of no fault-tolerant control.
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(a) (b) 

 
(c) 

Figure 10. Performance comparison before and after fault tolerant control under Fault 2 (constant
gain): (a) Relative height of mass center; (b) Pitch angle; (c) Roll angle.

5. Hardware In-Loop Simulation System

5.1. Hardware Platform

The fault-tolerant control HiL test platform of the vehicle ECAS system simulates
the input and output signals through various boards. The connection between the real
controller and the controlled object simulation model can be realized to form a complete
loop. To verify the actual operation and feasibility of the fault-tolerant control algorithm
model in the real controller, the hardware test is shown in Figure 11.

Under the existing hardware platform, building an HiL test system that is mainly
divided into three steps includes establishing the controlled object model, developing the
control model, and creating the system engineering file and user interface.

The controlled object model of the vehicle ECAS system is obtained by specifying
relevant settings based on the AMESim model, including (1) online parameter setting,
(2) observation variable setting, and (3) external interface setting. After applying the
corresponding settings, you can compile and generate *.dll file, and load it into the system
project file. The control model is built based on D2P rapid control prototyping technology,
and NI VeriStand software is used to create project files and user interfaces.

NI VeriStand software is a software environment for configuring real-time test ap-
plications. Its functions include configuring the operating system, board, vehicle model,
input/output interface with the actual controller, and user interface. NI VeriStand software
carries out hardware-in-the-loop simulation by interacting with the signal of the actual
controller. Researchers can monitor the simulation process in real time through the upper
computer. The test principle of the HiL platform is shown in Figure 12.
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Figure 11. Hardware composition of fault-tolerant control HiL test platform for ECAS system.

 
Figure 12. The working principle of HiL test platform.

5.2. Results and Analysis

Fault Behaviors 1 and 2 in Table 3 are selected for the fault-tolerant control HiL test,
and the results are shown in Figures 13 and 14.
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(a) (b) 

(c) 

Figure 13. Performance comparison before and after fault tolerant control under Fault 1: (a) Relative
height of mass center; (b) Pitch angle; (c) Roll angle.

 
(a) (b) 

 
(c) 

Figure 14. Performance comparison before and after fault tolerant control under Fault 2: (a) Relative
height of mass center; (b) Pitch angle; (c) Roll angle.
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As shown in Figure 13, after the vehicle height starts to increase (that is, after 5 s), it will
reach the target height after about 17.5 s (that is, the 22.5 s) normally. After the current left
air spring solenoid valve has a stuck fault, if there is no fault-tolerant control, the relative
height of the body’s center of mass will continue to increase to about 0.0232 m, and the pitch
angle and roll angle will rapidly increase to about 0.0056 rad and −0.0066 rad, respectively.
Under fault-tolerant control, about 2.1 s after the fault occurs, the air spring solenoid valve
is closed, and the vehicle height adjustment stops. At this time, the pitch angle and roll
angle of the body are stabilized at about 0.0005 rad and −0.0011 rad. Compared with the
model-in-loop (MiL) simulation of the Fault 1 situation in Section 3.4, it can be found that
the data results are similar. For Fault 2, the HiL test curve is shown in Figure 14.

The data results of the MiL and HiL simulation tests are given in Tables 5 and 6,
respectively. By comparing Tables 5 and 6, it can be found that the HiL test data results of
faults are basically consistent with the MiL simulation data results.

Table 5. Analysis of simulation results of Faults 2–4.

Fault Number Performance Index
Failure (No Fault

Tolerance)
Fault Tolerant Control Improvement Range

2
Height adjustment time (s) 25.5 21.6 15.3%

Peak pitch angle (RAD) 0.0009 43.8%
Peak roll angle (RAD) 0.0024 0.0015 37.5%

3
Height adjustment time (s) 24.2 20.4 15.7%

Peak pitch angle (RAD) 0.0094 0.001 89.4%
Peak roll angle (RAD) 0.0063 0.0013 79.4%

4
Height adjustment time (s) 20.8 19.2 7.7%

Peak pitch angle (RAD) 0.0027 0.0011 59.3%
Peak roll angle (RAD) 0.0017 0.0012 29.4%

Table 6. HiL test result analysis of Faults 2–4.

Fault Number Performance Index
Failure (No Fault

Tolerance)
Fault Tolerant Control Improvement Range

2
Height adjustment time (s) 25.5 21.6 15.3%

Peak pitch angle (RAD) 0.0018 0.001 44.4%
Peak roll angle (RAD) 0.0025 0.0016 36%

3
Height adjustment time (s) 24.2 20.4 15.7%

Peak pitch angle (RAD) 0.0091 0.00098 89.2%
Peak roll angle (RAD) 0.0061 0.0016 73.8%

4
Height adjustment time (s) 20.8 19.2 7.7%

Peak pitch angle (RAD) 0.003 0.0012 60%
Peak roll angle (RAD) 0.0017 0.0013 23.5%

In summary, the HiL test results of fault diagnosis and fault-tolerant control strategy
are basically consistent with the MiL simulation results in Section 3.4. It shows that the fault
diagnosis and fault-tolerant control model designed in the actual controller can operate
normally. It can effectively realize the fault detection isolation of the controlled object under
the actuator failure and the improvement of the vehicle height adjustment and attitude
control performance.

6. Conclusions

In this paper, the fault diagnosis and active fault-tolerant control of the ECAS system
under actuator fault are studied. Based on the fault model, an extended Kalman filter bank
with an adaptive threshold is designed for fault diagnosis. In addition, online adjustment
is adopted for fault-tolerant control.

Firstly, the ECAS vehicle model is simplified, and the mathematical model of vehicle
height regulation is established as the basis of fault-tolerant control. The faults are classified
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into constant gain faults and stuck faults by the fault tree method. According to the fault
type, an accurate fault mathematical model is established. Then, an adaptive threshold
extended Kalman filter bank is designed as the observer. Each residual is compared with
the adaptive threshold. Therefore, the fault location and type can be accurately located.
This method improves the accuracy and speed of diagnosis. Then, based on the method of
model analysis, the fault-tolerant control of the ECAS system under fault is successfully
carried out by closing the air spring solenoid valve or adjusting it online.

The designed observer, controller, and vehicle model are run on the simulation plat-
form. The validity of the above methods is verified by comparing the relationship between
detection modes and adaptive thresholds under the four proposed fault behaviors. Finally,
in order to verify the control effect on the actual vehicle, an HiL semi-physical test platform
was built. Such a test platform can combine the actual controller with the simulation model.
The test results prove that the fault diagnosis and fault-tolerant control methods proposed
in this study can be used in actual controllers. At the same time, it can accurately diagnose
the location and type of faults, so as to carry out effective active fault-tolerant control.
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Abstract: The existing intelligent vehicle trajectory-planning methods have limitations in terms
of efficiency and safety. To overcome these limitations, this paper proposes an automatic driving
trajectory-planning method based on a variable Gaussian safety field. Firstly, the time series bird’s-
eye view is used as the input state quantity of the network, which improves the effectiveness of the
trajectory planning policy network in extracting the features of the surrounding traffic environment.
Then, the policy gradient algorithm is used to generate the planned trajectory of the autonomous
vehicle, which improves the planning efficiency. The variable Gaussian safety field is used as the
reward function of the trajectory planning part and the evaluation index of the control part, which
improves the safety of the reinforcement learning vehicle tracking algorithm. The proposed algorithm
is verified using the simulator. The obtained results show that the proposed algorithm has excellent
trajectory planning ability in the highway scene and can achieve high safety and high precision
tracking control.

Keywords: autonomous driving; planning algorithm; variable Gaussian safety field; reinforcement
learning; policy gradient

1. Introduction

In recent years, autonomous driving technology has developed rapidly due to its
significant economic potential and advantages in improving traffic efficiency and driving
safety. Various methods have been proposed to solve the decision-making problem of
autonomous vehicles in highway driving tasks. Most studies have considered decision
making as a control problem. As an unavoidable part of the autonomous driving system,
trajectory planning is of great significance to the study of the autonomous vehicle. Avoid-
ing the surrounding obstacles accurately and driving safely and efficiently based on the
upper perception and prediction results are the basic requirements for automobile driving.
Therefore, most autonomous driving researchers are now focusing on more intelligent, safe
and efficient trajectory-planning methods.

The existing trajectory-planning methods are generally divided into four categories:
potential field methods [1], sample-based methods [2], search-based methods [3], and
optimization-based methods [4]. A potential field method simulates the movement of
a controlled object in space into a forced movement of a particle in a virtual force field
and plans the future trajectory of a vehicle by calculating the combined force field to
which the vehicle is subjected. However, this method relies on accurate modeling of the
environment, which will put the training into the dilemma of the local optimal solution
and increase the computational cost. The sampling-based methods are mainly divided into
fast random search tree (RRT) and probability path map (PRM) methods. The probability
map path method is based on the graph structure, converts the continuous space into a
discrete space, and uses the search algorithms such as A* to find paths on the route map
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to improve search efficiency. However, this method needs to solve the boundary value
problem and does not focus on generating paths in the process of building the graph. The
search-based planning algorithms mainly refer to map search methods, including A*, D*,
and the corresponding variants. This kind of algorithm is widely used in the field of robot
motion planning, but its planned path does not consider the geometric constraints of the
road and has poor smoothness. Qi Xuanxuan et al. [5] introduced simulated annealing
to optimize the expansion of nodes and heuristic functions, and guided the algorithm to
search for the target point, which improved the inefficiency of the traditional A* algorithm
but still fell into the dilemma of a suboptimal solution. To improve sampling efficiency
and avoid suboptimal dilemmas for agents, Claussmann et al. [6] classified the spatial
configuration for route planning into three main categories: sampling [7], connection
unit [8], and raster representation (Lattice) [9]. The raster representation can be used to
predict and plan based on the moving obstacles around the vehicle while considering the
kinematic constraints. However, the raster method is difficult to sample completely and
can only sample better driving tracks. It is also difficult for the complete search method
to consider the dynamic constraints of the automobile. The trajectory planning based on
the optimization method has higher computational power requirements for the vehicle
computer, and the optimization delay between each frame is large. In summary, most of the
existing traditional trajectory-planning methods have relatively stable security performance
and excellent computational efficiency. However, they focus only on the generation of the
optimal path and can fall into the suboptimal dilemma.

In recent years, deep reinforcement learning (DRL) has shown satisfactory perfor-
mance in both trajectory planning and trajectory tracking control. Feher et al. [10] trained
deep deterministic policy gradient (DDPG) agents to generate waypoints for vehicle track-
ing and achieved good results. However, the algorithm only focused on the lateral trajectory
and provided a suboptimal solution. Several studies have used original sensor measure-
ments to generate turn angles and throttle values [11–16] in an end-to-end manner. The
deep deterministic actor-critic (DDAC) algorithm [11,12] can keep the vehicle as far as
possible on the center line of the lane and has achieved satisfactory results. However,
this algorithm only considers the lateral control, not the longitudinal vehicle following.
Lingli Yu et al. [15,16] proposed to use the DDPG algorithm to reduce the dependence on
sample data. Their method had more continuous corner control and less lateral error when
a vehicle was traveling. Although better results have been shown in the simulation envi-
ronment, the agent is still affected by turn and throttle fluctuations and does not consider
safety issues when interacting with other vehicles in highway conditions resulting in poor
stability and safety.

To solve the above-mentioned problems, a vehicle safety planning and control method
based on the variable Gauss safety field is designed in this paper. A planning model is
constructed using a time series bird’s-eye view as a state quantity and policy gradient
algorithm. The timeliness and security of the planning model are verified by experiments.
The reinforcement learning method of multi-task partitioning is used to partition and
train the whole automatic driving trajectory tracking control task. Compared with the
general end-to-end reinforcement learning auto-driving method, the multi-task partitioned
training method reduces the training duration by dividing the entire auto-driving tracking
control task into several sub-tasks and improves the noise input method in the longitudinal
control module to further improve the training efficiency and provide a smoother driving
experience. Meanwhile, protecting traffic participants is the most important topic in driving
theory. Wang et al. [17,18] proposed the driving safety field theory modeling method and
developed a collision warning algorithm, field experiments were conducted to verify the
proposed algorithm. However, the whole framework contains several factors of driver,
vehicle, and road, which bring great difficulties to practical application. To improve the
practicability of safety field theory, a variable Gaussian safety field model is proposed to
reveal the dynamic field characteristics of vertices. We use the variable Gaussian safety field
model as the reward function of the planning module and combined with the constraint
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and evaluation index of the control module. The model combines a Gaussian field in both
directions to form an envelope and varies with the vehicle speed angle. While ensuring
reasonable trajectory generation, the interaction of the ego vehicle with the surrounding
vehicles is utilized to actively avoid the surrounding vehicles when they enter the Gaussian
field, which improves the safety performance of the vehicle in high-speed scenarios such as
highways. The simulation results in CARLA show that the vehicle safety planning control
method based on the variable Gauss safety field has good planning efficiency and better
safety compared with the traditional algorithms.

The main contributions of this paper are as follows:

(1) An automatic driving trajectory-planning method based on time series bird’s-eye
view and policy gradient algorithm is designed. The policy gradient algorithm is
used to improve the ability of automatic driving vehicle trajectory planning and
the efficiency of Lattice sampling method for trajectory planning. The time series
bird’s-eye view combined with the policy gradient algorithm can enhance the ability
of feature extraction of the policy network, make the network convergence easier, and
improve the feasibility of the method.

(2) The variable Gauss security field is added as the evaluation index of the reward
function and control part to improve the security of trajectory and control effect.

2. Route Planning Algorithm

The goal of trajectory planning for autonomous driving is to find the optimal trajectory
in advance for a vehicle. On the one hand, it is necessary to ensure the safety of the vehicle;
On the other hand, getting to the destination through obstacles as soon as possible, reducing
traffic pressure and improving driving efficiency are also important criteria to measure the
effectiveness of the planned trajectory. Figure 1 shows that the trajectory planning module
plays a key role in the overall auto-driving system.

Figure 1. Autopilot system flow chart.

2.1. Time Series Bird’s-Eye View and Strategic Network

The agents of reinforcement learning obtain the state input through interaction with
the surrounding complex traffic environment to conduct effective learning training. One of
the difficulties of the existing reinforcement learning algorithm is obtaining effective state
features from complex environments. Overly redundant states will increase the learning
difficulty of the agent. It is particularly important to make it easier for an agent to extract
valid features. Therefore, this paper designs a policy network and corresponding time
series bird’s-eye view as the state quantity of the reinforcement learning, enabling the
network to extract better environmental features.

2.1.1. Policy Network State Quantity

For an effective policy network for reinforcement learning, it is essential to obtain
the perceptual information including lane lines, pedestrians, vehicles, and obstacles from
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the surrounding environment as well as the predictive tracks for the next few moments
including dynamic obstacles.

The sequential bird’s-eye view significantly improves the learning efficiency of the
policy network. Figure 2 shows the time series bird’s-eye view matrix diagram.

Figure 2. A time series bird’s-eye view matrix diagram.

The bird’s-eye view is a three-dimensional matrix composed of lateral displacement,
vertical displacement and time. The specific elements in the matrix diagram shown in
Figure 2 include (a) the current position status of the ego vehicle, (b) the ego vehicle,
(c) obstacles, (d) the non-driving area and (e) the exercisable area, (f) the reference line,
(g) the planned trajectory.

The generation of the time series bird’s-eye view includes the following two steps:
(1) According to the perception module of the autonomous vehicle, obtain the surrounding
environmental information, including dynamic and static obstacles and lane lines. The
prediction module is used to obtain the position information of dynamic obstacles in the
future time of 0 ∼ tend. (2) The information obtained from the perception module and the
information is used to generate a bird’s-eye view of features in three dimensions: horizontal,
vertical and time.

The size of the three-dimensional the time series bird’s-eye view matrix is (40, 400, 80).
The first dimension 40 represents the horizontal range of 10 m on the left and right of the
reference line, with the horizontal displacement interval of 0.5 m; The second dimension
400 represents the longitudinal 200 m forward range with the ego vehicle as the origin, the
longitudinal displacement interval is 0.5 m, and the third dimension 80 represents the time
range within the next 8 s, the time interval is 1 s. The (c) obstacles and (d) the non-driving
area are represented by −1 in the time series bird’s-eye view matrix; (e) the exercisable
area is represented by 0 in the time series bird’s-eye view matrix; (f) the reference line
is represented by 1 in the time series bird’s-eye view. In the matrix, the reference line
represents higher priority than (c) obstacles, (d) the non-driving area and (e) the exercisable
area. At the same time, (a) the current position status of the ego vehicle, (b) the ego vehicle,
and (g) the planned trajectory are not specifically represented in the time series bird’s-eye
view matrix.

Figure 3 shows the vertical view of a time series bird’s-eye view with a green rect-
angle representing the vehicles on the highway and a dashed grey line representing the
driveway sidelines.
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Figure 3. Time series bird’s-eye view top view.

The generation of a time series bird’s-eye view includes the following two steps:
(1) Obtain the surrounding environment information, including dynamic and static obsta-
cles, and lane lines, according to the perception module of the automobile. Obtain dynamic
obstacles using prediction module in the future 0 ∼ tend location information within the
end. (2) Generate cross-sectional, vertical, and temporal feature bird’s-eye views using the
information obtained from the perception and prediction modules. Then, train using the
bird’s-eye view as the state input.

2.1.2. Strategic Network Structure

Figure 4 shows the structure of the policy network πθ(z, a). The network includes a
convolution feature extraction network consisting of one convolution layer and a fully con-
nected network consisting of three fully connected layers. Where z is the input state quantity
of the policy network, including the time series bird’s-eye view matrix and the history track
of the vehicle, θ denote the weights and offset parameters for the network and a is the output
of the policy network, that is, the final state of the planning trajectory a =

{
s,

.
s,

..
s, l,

.
l,

..
l, t

}
,

where s,
.
s and

..
s are the final longitudinal position, the end-of-longitudinal speed, and the

acceleration of the longitudinal end state of the vehicle, respectively, while l,
.
l and

..
l are the

lateral end state position, the lateral end-state speed and the acceleration of the lateral end
state of the vehicle, respectively. The input of the convolution feature extraction network
is the time series aerial view matrix and the output is the final extracted environmental
feature information. The input of the fully connected network is the convolution feature.
The environmental feature information and the historical track information of the vehicle
are extracted from the network output.

Figure 4. Strategic network structure diagram.
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2.2. Variable Gauss Safety Field Theory

Since reinforcement learning explores policies and rewards by making agents con-
stantly try and error, the security of reinforcement learning is lower than the other methods.
Improving the security of reinforcement learning remains the focus of research. The variable
Gauss security field model based on risk center transfer further improves the security of
trajectory planning and control methods and serves as the reward function of the trajectory
planning part and the constraint boundary of the control part.

Figure 5 shows that a static vehicle is abstracted as a rectangle with a length of lv, a
width of wv, and the risk center O(x0, y0) is its geometric center. The static security field of
the vehicle is described by a two-dimensional Gaussian function as:

Ssta = Ca · exp(− (x − x0)
2

a2
x

− (y − y0)
2

b2
y

) (1)

where Ca is the field strength factor, ax and by represent the function of vehicle shape. The
main control parameter for the shape of a static safety field is anisotropy:

ε =
a2

x − b2
y

a2
x + b2

y
=

φ2 − 1
φ2 + 1

(2)

Figure 5. Static safety field overhead projection.

Parameter ε equivalently expressed in aspect ratio ∅ = ax/by = lv/wv.
The direction of the safety field is a vector from the risk center whose isoelectric line

is projected upward into a series of ellipses. In Figure 5, the red rectangle represents the
vehicle, the area in the solid red rectangle is called the core domain, the area between the
red and the yellow ellipses is called the restriction domain, the area between the yellow
and the blue ellipses is called the expansion domain, and each area represents a different
risk state. The sizes of these different domains are related to the shape and motion of the
vehicle and can be determined based on the parameters ax, by of the Gaussian function (1).
The Gauss security field is variable. The aspect ratio of the virtual vehicle will change with
the change of the vehicle motion state and will significantly change the core, restriction and
extension domains of the Gauss security field.

Figure 6 shows the overhead projection of the dynamic safety field. It can be seen that
when the vehicle is in motion, the risk center will transfer following the vector kv

→
v , the

new risk center becomes O′(x0
′, y0

′) and there are:⎧⎨⎩ x′0 = x0 + kv

∣∣∣→v ∣∣∣ cos β

y′0 = y0 + kv

∣∣∣→v ∣∣∣ sin β
(3)
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where
→
v is the velocity vector of the vehicle motion, kv is the regulator and 0 < kv < 1 or

−1 < kv < 0, the sign corresponds to the front and back directions of the movement. β is
the transferred angle between the vector and the x-axis.

Figure 6. Overhead projection of dynamic safety field.

A virtual vehicle is formed with a length of l′v and width of w′
v under the transfer of

the risk center, whose geometric center is (x′0, y′0), which establishes its dynamic security
field as:

Sdyn = Ca · exp(− (x − x′0)
2

(a′x)
2 − (y − y′0)

2

(b′y)
2 ) (4)

where a′x and b′y are parameters related to vehicle shape and motion state. The new aspect
ratio is expressed as ∅′ = ax

′/by
′ = lv ′/wv

′.

2.3. Improved Lattice Programming Algorithm Based on Strategic Gradient Algorithm

The traditional Lattice programming algorithm achieves trajectory planning by sam-
pling the target vertically and horizontally. This method will lead to the dilemma of a
suboptimal solution for the sample-fitting trajectory, and it would be difficult to obtain
the optimal trajectory. However, too many sampling points will lead to complex and
inefficient calculations.

The Lattice algorithm is improved by using the policy gradient algorithm to directly
obtain the optimal final state sample points as shown in Figure 7. This improved method
abandons sampling with high time complexity and cost function evaluation for each
alternate trajectory, which considerably improves the timeliness of the algorithm. Although
the training process of reinforcement learning has better universality than the general rule-based
planning algorithm, the design of the reward function based on the final control effect will
make it more suitable for complex traffic scenes and complex vehicle dynamic features.

2.3.1. Track Planning Agent Design

The trajectory output by general dynamic programming, Monte Carlo sampling and
time series difference methods will have a complete state action sequence < s0, a0, s1, a1 · · ·
send−1, aend−1, send > and a trajectory consists of several state–action pairs as shown in
Figure 8. Different actions a in each step will inevitably lead to changes in the overall
trajectory. This will necessarily result in an exponential increase in the complexity of the
solution as the length of the trajectory will increase. The simplified trajectory τ is composed
of the start state s0, action a and end state send. In the start state s0, executing action a
produces a unique trajectory τ, reaching the end state send.
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Figure 7. Lattice sampling process improvement.

Figure 8. Diagrams of single-step and multi-step dynamic planning trajectory outputs.

In practice, the policy gradient algorithm is used instead of the last state sampling
process in the Lattice algorithm. The end state of the track is used as the action space A:

A =
{

send,
.
send,

..
send, lend,

.
lend,

..
lend

}
(5)

Policy network πθ(z, a) maximizes the expected return of the output trajectory as an
optimization objective:

J(π) = ∑τ
p(τ, θ) · r(τ) (6)

where z denotes the state features of the surrounding traffic environment, a is the network
output action, θ is a network parameter, p = (τ, θ) is the probability of executing action a
and outputting track τ under parameter θ and state z, and r(τ) is the reward function of
trajectory τ.

The gradient rise method is used to optimize πθ(z, a) from Equation (6):

θ = θ + α · ∇θ J(π) (7)
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To calculate the derivative of the optimization objective with respect to network
parameter θ, the strategy gradient is derived as:

∇θ J(θ) = ∇θ∑τ p(τ, θ) · r(τ)
= ∑τ ∇θ p(τ, θ) · r(τ)
= ∑τ

p(τ,θ)
p(τ,θ)∇θ p(τ, θ) · r(τ)

= ∑τ p(τ, θ)∇θ log p(τ, θ) · r(τ)

(8)

To improve the efficiency of training, during the training process, the agent continu-
ously stores the experience data < z, a, τ, r > from the interaction with the environment
in real-time into the experience pool (Memory). The Monte Carlo method is also used to
randomly extract the mini-batch-sized empirical data from the experience pool for training:

∇θ J(θ) ≈ 1
n∑n

i=1 ∇θ log p(τ, θ) · r(τ) (9)

From Formula (9), the update direction of the final policy parameters θ is:

θ = θ + α · 1
n∑n

i=1 ∇θ log p(τ, θ) · r(τ) (10)

To enhance the agent’s exploring ability in unfamiliar state space and avoid the agent
falling into local optimal space during training, the output of the policy network πθ(z, a)
will conform to normal distribution. It consists of two parts: mean μ(z, a) and variance
σ(z, a):

πθ(z, a) =
1√

2π · σ(z, θ)
exp(− (z − μ(z, θ))2

2σ2(z, θ)
) (11)

During the learning process of the policy network πθ(z, a), the mean μ(z, a) and the
variance σ(z, a) of the output keep approaching argmaxQ(z, a) and 0, respectively, and the
probability of the agent taking random behavior exploration keeps decreasing. During
training, the agent selects action a =

{
s,

.
s,

..
s, l,

.
l,

..
l, t

}
from this normal distribution as the

training output and executes it.

2.3.2. Reward Function Design

Reinforcement learning obtains the amount of state by interacting with the environ-
ment and evaluates the training agent by a reward function. The agents obtain higher
returns by continuously optimizing their network of policies. Therefore, the design of
the reward function is critical to the convergence of the agent, which affects the final
decision-making results of the overall model. Moreover, a reasonable reward function
design can also make the agent obtain more incentives from the environment and accelerate
the convergence speed of the agent.

The reward function design for the trajectory planning section includes the
following sections:

reward = k1 · rspeed + k2 · racc + k3 · rlateral + k4 · rcom f ort + k5 · radditional + k6 · rsa f e (12)

In the formula, rspeed = −∑t<ttotal
t·(νtarget − νt

)2 is the speed reward, its goal is to

keep the speed at the target speed; racc = −∑t<ttotal

..
s2

t and rcom f ort = −∑t<ttotal

..
lt

2 are
the longitudinal and lateral comfort rewards, respectively, their goals are to maintain low
longitudinal acceleration and low lateral acceleration, respectively; rlateral = −∑t<ttotal

l2
t is

the lateral deviation reward, its goal is to maintain a small lateral deviation from the ref-

erence line; radditoanal = −∑t<total

(
st − sactual

t

)2
+
(

lt − lactual
t

)2
is the additional coupling

reward, the objective is to maintain the coupling force between the planned trajectory and
the controller and vehicle dynamics, and to maintain a better horizontal and vertical track-
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ing accuracy of the vehicle during actual tracking; and rsa f e is the safety reward. k1 ∼ k6
is the proportion weight of each reward function. Where, k1 = 1.0, k2 = 0.2, k3 = 1.0,
k4 = 0.2, k5 = 0.5, and k6 = 1.0. The value of k1 ∼ k6 is obtained through debugging, and
the specific value comparison is shown in Figure 9 below.

Figure 9. Comparison chart of proportional weights.

The design of rsa f e is constrained by the variable Gaussian safety field, as shown below:
When the vehicle is stationary:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

rsa f e,lat =

{ −100 i f dlat < lv
0 i f dlat >lv

rsa f e,lon =

⎧⎨⎩ −100 i f dlon < 3lv√
9−w2

v

0 i f dlon > 3lv√
9−w2

v

(13)

When the vehicle is moving:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

rsa f e,lat =

{ −100 i f dlat < l′v
0 i f dlat > l′v

rsa f e,lon =

⎧⎪⎪⎨⎪⎪⎩
−100 i f dlon < 4l′v√

16−(w′
v)

2

0 i f dlon > 4l′v√
16−(w′

v)
2

(14)

where

⎧⎨⎩w′
v = wv + 2·kv·

∣∣∣→v ∣∣∣· sin β

l′v = lv + 2·kv·
∣∣∣→v ∣∣∣· cos β

, lv and wv are the length and the width of the agent,

respectively,
→
v is the speed vector of vehicle motion, kv is the adjustment factor, and β is

the angle between the transfer vector and the x-axis. After the actual vehicle test, kv = 0.35.

3. Controller Design

The traditional trajectory planning module and the control module are simple upper
and lower-level relationships. The trajectory planning module outputs the optimal trajec-
tory and the controller tracks the control. Although this mode is simple and easy to operate,
it cannot meet the real-time requirements in complex traffic environments. Figure 10 shows
the relationship diagram of the proposed feedback design model. It can be seen from the
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figure that the trajectory planning agent based on the policy gradient algorithm, the trajec-
tory tracking controller and the environment form a planning control environment closed
loop. The proposed loop feedback design model will enable the agents to continuously
learn to adapt to the environment and adapt to the trajectory tracking controller. This
method effectively links the traffic environment, the planner and the controller, so that the
output trajectory of the planner can effectively adapt to the dynamic features of the vehicle
and the controller. To enable the agent to stably, efficiently and safely track the optimal
trajectory output by the planner, and improve the efficiency, the training of the control part
is divided into horizontal control and vertical control.

Figure 10. Planner/Controller/Environment relationship diagram.

3.1. Horizontal Trajectory Tracking Control Model Training

The goal of the traditional horizontal trajectory tracking task [19,20] is to enable
vehicles to drive stably on the lane line without deviating, regardless of the state relationship
with other vehicles. However, when the vehicle tracks and controls the track, the first
consideration is the safety of the track, that is, it will not collide with other vehicles.
Therefore, the variable Gaussian safety field is introduced as the evaluation index, and
the state quantity and reward function are adjusted. The variables including the distance
di from other vehicles, the lateral relative coordinate xi−v, the coordinate (xi, yi) of the
navigation point in the current vehicle coordinate system, the heading deviation ϕ and the
speed v and acceleration

.
v of the control vehicle are added as the state variables:

slane−keep =< d0, d1, . . . , x0, x1, . . . , x1−v, x2−v, . . . , ϕ, v,
.
v > (15)

The output action is only the steering wheel angle asteer ∈ [−1, 1]. For the design
of the reward function for lane keeping, the lateral error x0 between the current vehicle
coordinate and the lane centerline, the deviation ϕ of the heading angle and the relative
distance di from other vehicles are considered as the evaluation index reward functions:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

rsa f e,lat = − log(
∣∣∣ 1√

2
w′

v − d
∣∣∣+ 1, 1.2)

rsa f e,lon = − log(
∣∣∣ 1√

2
l′v − d

∣∣∣+ 1, 1.2)

rlane−keep = −k1abs(x0)− k2 sin ϕ

(16)

where

⎧⎨⎩w′
v = wv + 2·kv·

∣∣∣→v ∣∣∣· sin β

l′v = lv + 2·kv·
∣∣∣→v ∣∣∣· cos β

, lv and wv are the length and the width of the agent,

respectively,
→
v is the speed vector of vehicle motion, kv is the adjustment factor, and β is

the angle between the transfer vector and the x-axis. After the actual vehicle test, kv = 0.35.
If the lateral deviation of the current position of the autonomous vehicle is greater

than the set maximum lateral deviation threshold value x0max during the training, the
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current round of iterative training will be ended for the next round of training. Through the
cumulative reward mechanism, agents that enhance learning continuously obtain higher
reward reports. Hence, they can take more potential threats into account. However, the
dynamic features of the vehicle will be hidden in the state quantity of the past few moments.
Thus, it would be difficult to fully understand the current state of the intelligent vehicle only
through the current state quantity. To enable the agent to better understand the dynamic
features of the intelligent vehicle at the current time and output more reasonable trajectory
tracking actions, the state quantities at the current time and at the past four times are
stacked together as network inputs.

3.2. Training of Longitudinal Trajectory Tracking Control Model

To maintain an ideal distance between the ego vehicle and the vehicle in front without
any collision with the vehicle in front, the ego vehicle is expected to cruise at a constant
speed when there is no vehicle in front. When there are other vehicles in front of the ego
vehicle, the road information is not considered, instead only the information of the current
vehicle and the vehicle ahead is considered as the state quantity. Figure 11 describes the
cruise mission status. The longitudinal trajectory tracking control task considers the speed
v and acceleration

.
v of the current vehicle, speed vl and acceleration

.
vl of the vehicle in

front, the distance d from the vehicle in front and the expected speed vdes of the current
vehicle as the state variables:

sacc =< y0, y1, . . . , ϕ, v,
.
v > (17)

Figure 11. Description of cruise mission status.

Output action aacc ∈ [−1, 1] of the agent, including accelerator action athrottle and
brake action abrake: {

athrottle = aacc, abrake = 0 i f aacc ≥ 0
athrottle = 0, abrake = aacc i f aacc < 0

(18)

For vertical control tasks, the reward function is designed as:

racc =

{−k5abs(v − vdes)− k6abs(d − ddes) i f d > dsa f e
−100 i f d ≤ dsa f e

(19)

where ddes and dsa f e are the expected and safe distances from the vehicle in front, respec-
tively. When the distance between the intelligent vehicle and the vehicle in front is less
than the safe distance, the reward is −100 and the current interaction is stopped to start the
next round of interaction. During longitudinal training, the speed vl of the vehicle in front
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and the expected speed vdes of the current vehicle are randomly given each round, so that
the training model can be generalized to more complex situations.

The traditional training mostly uses Gaussian noise or Ornstein Uhlenbeck (OU)
noise to promote agents to actively explore the environment at the beginning of training.
However, unnecessary exploration will prolong the training time of agents. Therefore, in
this paper, a Multi-Head Actor network structure is designed for the tasks with convex
solution space in longitudinal control tasks. The main function of the proposed structure
is to make the output action noisy. Action noise reflects the uncertainty measure of the
optimal solution of the current policy. The Multi-head Actor network structure is used to
construct this uncertainty measurement method.

The output of the Online Actor network is connected to multiple Head networks.
To reflect the difference of each Head network, the initialization and training sampling
experience pool of each Head network are independent and the way to converge to the
optimal solution space is also different. Therefore, the variance of the Head network
output action is used to estimate the uncertainty measure of the output action of the Actor
network as:{

Nt = {k · var(μ( st| θμonline)) i f k · var(μθμonline
( st|θμonline)) < Nthreshold

Nthreshold else
(20)

where Nt and Nthreshold are the real-time action noise and the threshold noise, respectively,
θ is the adopted policy, μ

(
st|θμonline

)
is the deterministic action of the network output, and

k is the weight parameter.
Similar to the horizontal control part, the vertical control part also selects the current

state quantity of the agent and the state quantity of the past four times as the network input,
making the network easier to converge and having high training efficiency.

4. Experiment and Analysis

The simulation experiment is based on the open-source autopilot simulator CARLA,
which supports the development, training and validation of autopilot systems. In addition
to open-source code and API protocol, CARLA also provides open mathematical assets
(urban layout, buildings and vehicles) that can be freely invoked. CARLA works through
the client mode. It has a specific python API interface that can realize simulation environ-
ment configuration, environment interaction and vehicle control through interface code.
CARLA is suitable as a training platform for automatic driving reinforcement learning. The
simulation training was completed under the environment of TOWN06 and TOWN04 in
CARLA 0.9.9. Figure 12 shows the specific CARLA simulation scenario.

Figure 12. CARLA simulation diagram.

4.1. Trajectory Planning Experiment Based on PG Algorithm

When training the trajectory planning module, other obstacle vehicles were randomly
generated for each round of training to enable the trained agents to target complex traffic
conditions. In a random environment, the average reward of each round was used to
evaluate the training effect of the agent. When the agent reached the specified number
of steps or encounters a collision, it directly started the next round of training. To avoid
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randomness, the final training results were obtained by averaging the five training results.
The training results are shown in Figure 13. The red curve is the average reward, and
the red-shaded part is the sliding average of the five training rewards. Due to the strong
randomness of the training environment, the rewards show a strong jitter with the change
of the round. The rewards show an overall upward trend with the change of rounds,
indicating that the agents are increasingly adapting to the changing traffic environment
to obtain higher rewards during the training process. After 100 rounds, the variance of
rewards tends to decrease, and the training results of agents become more stable.

 

Figure 13. The change in average reward of the track planning module with the number of
training wheels.

As shown in Figure 14, the red curve represents the reward curve of the planning
method based on the time series bird’s-eye view and the policy gradient algorithm proposed
in this paper, and the blue curve represents the reward curve of the planning method using
the DDPG algorithm. Because of the strong randomness of the training environment, the
reward fluctuates greatly with the change of the round. In the comparison of average
rewards, both curves are almost the same. However, it is obvious that the DDPG algorithm
represented by the blue curve has convergence effect only after 100 rounds, while the
planning method proposed in this paper starts to converge gradually after 70 rounds.
Therefore, the proposed planning method has higher convergence efficiency and stability.

Figure 14. Comparison curve of average reward of the track planning module changing with the
number of training wheels.
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4.2. Safety Control Module Experiment

In the control module, due to the randomness of the steps that the autonomous vehicle
can take during the training process, it is not suitable to use a single reward or a cumulative
reward as the evaluation standard of the training effect of the agent at the current moment.
Therefore, it is reasonable to take the average reward of each step of the current round
as the evaluation standard of the training effect of the current round. The abscissa is the
number of training rounds, and the ordinate is the average reward obtained in each round.
Figure 15 shows the change in the training curve of the horizontal trajectory tracking task.

Figure 15. The change in average reward of the horizontal trajectory tracking task with the number
of training wheels.

It can be seen from Figure 15 that in the first 15 rounds of the lateral trajectory tracking
control task, the agent is still in the free exploration stage, and the reward curve fluctuates
and does not converge. With the progress of training, the agent continuously optimizes
its strategic network, makes more reasonable behavior, obtains higher rewards and op-
timizes its network again according to the rewards obtained from feedback, forming a
virtuous circle. After 50 rounds, the reward curve begins to converge and achieves good
training results.

In this paper, the variable Gaussian safety field is used as the constraint and evaluation
index of the control part. Figure 16 shows the reward curve of the variable Gaussian safety
field. The red curve represents the reward curve of the lateral tracking control considering
the relationship with other vehicle state quantities under the variable Gaussian safety field.
The blue curve represents the reward curve of the traditional lateral tracking control under
the variable Gaussian safety field. In both cases, the average value of the five experiments
is taken. Figure 16 clearly shows that the reward curve of the safety lateral tracking control
method proposed in this paper is superior to the traditional lateral tracking control, with
higher safety performance and greater response space to emergency conditions. At the
beginning of several training rounds, since the agent did not interact with other vehicles
in the opening exploration phase, the average reward was 0, as shown in Figure 16. From
the sixth round, the agent interacts with other vehicles in the environment, the variable
Gaussian safety field acts, and the reward curve changes.

97



World Electr. Veh. J. 2022, 13, 203

 

Figure 16. Reward curve of variable Gauss safety field.

Figure 17 shows the average reward of the longitudinal trajectory tracking control
task over time. It can be seen that the average reward changes with the training times.
The blue and red curves represent the average reward change curves of the agents with
Gaussian noise and adaptive noise exploration, respectively, and the shaded part is the
standard deviation of five experiments. Figure 17 shows that both types of agents have
achieved good training results in the longitudinal trajectory tracking control task. Due
to the randomness of the ego vehicle’s speed and the state of the vehicle ahead in each
training round, the average reward of the lateral trajectory tracking control task fluctuates
to some extent. However, similar to the lateral trajectory tracking control task, the training
effect of the adaptive noise detection method is better than that of the common noise
attenuation method.

 

Figure 17. The change in the average reward of the longitudinal trajectory tracking task with the
number of training wheels.

5. Conclusions

In this paper, a vehicle safety planning control method based on the variable Gaussian
safety field is designed. The policy gradient algorithm is used to improve the driving safety
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of autonomous vehicles and make the driving trajectory of autonomous vehicles more
intelligent. The spatiotemporal bird’s-eye view proposed in combination with the policy
gradient algorithm as a state variable can enhance the ability of feature extraction of the
policy network and make the network convergence easier. The variable Gaussian safety
field is added as the reward function of the trajectory planning module and the evaluation
index of the control module to improve the safety and rationality of the output trajectory
and tracking control, respectively. In the longitudinal control module, Gaussian noise
input is improved to avoid repeated invalid exploration of agents and enhance training
efficiency. Compared with the traditional planning control algorithm, the proposed method
has the following advantages: (1) the spatiotemporal bird’s-eye view is used as the input
state of the policy network enabling the trajectory planning policy network to effectively
extract the features of the surrounding traffic environment. The planning trajectory of
autonomous vehicles is generated through reinforcement learning, which improves the
trajectory planning ability of autonomous vehicles in complex scenes. The efficiency of
the lattice sampling method for trajectory planning algorithm avoids invalid sampling in
complex traffic scenes; (2) the variable Gaussian safety field is added as a reward function to
improve the safety of trajectory and control effect; (3) the traditional noise input is improved
and the multi-head actor network structure is designed to add noise in the output action
and improve the training efficiency. The experimental results demonstrate and validate
that the proposed framework is superior to the traditional methods.

At the same time, this paper does not consider the scenarios other than an expressway,
and how to change lanes in an emergency. In the future, we will test and improve the
algorithm in more complex environments, such as ramps and urban roads. From another
point of view, the single vehicle will be extended to the fleet, and the driving efficiency and
safety of the fleet on the expressway will be considered.
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Abstract: Vehicle intelligence is an effective way to improve driving safety and comfort and reduce
traffic accidents. The trajectory tracking control of unmanned vehicles is the core module of intelligent
vehicles. As a redundant system, the X-by-wire electric vehicle has the advantage that the turning
angles and driving torque of the four wheels can be precisely controlled and it has a higher degree
of controllability and flexibility. In this paper, a trajectory tracking control algorithm based on a
hierarchical control architecture is designed based on x-by-wire vehicles. The hierarchical control
algorithm architecture includes the trajectory tracking layer, tire force distribution layer, and actuator
control layer. The trajectory tracking layer uses the longitudinal force, lateral force, and yaw moment
as the control variables; the model predictive control algorithm controls the vehicle to follow the
desired trajectory. The tire force distribution layer is solved by transforming the tire force distribution
problem into a quadratic programming problem with constraints. Based on the expected resultant
force and resultant moment, the longitudinal force and lateral force of each tire in the vehicle
coordinate system are obtained. The actuator control layer converts the coordinate system to obtain
the longitudinal force and lateral force in the tire coordinate system, which uses the arctangent
function tire model to solve the desired tire slip angle, and then obtains the vehicle steer angle
and driving torque. To verify the effectiveness of the trajectory tracking control algorithm of the
hierarchical control architecture, the proposed trajectory tracking control algorithm is simulated and
verified through the variable speed double line change condition and the low road friction coefficient
double line change condition. The simulation results show that the control algorithm proposed in
this paper has the accuracy to follow the desired trajectory.Definition:

Keywords: x-by-wire vehicle; trajectory tracking control; model predictive control; hierarchical control

1. Introduction

The rapid development of control-by-wire technology provides a strong technical
guarantee for the realization of electronic, intelligent, and electrified vehicles, and makes
x-by-wire vehicles a current research hotspot [1,2]. The x-by-wire electric vehicle is a highly
redundant system, whose steer angle and driving torque of the four wheels can be precisely
controlled; thus, compared with traditional vehicles, it can theoretically achieve better
control effects [3]. The x-by-wire electric vehicle has a variety of driving modes that can be
switched, with better trajectory tracking performance and a larger turning curvature limit,
which can easily realize in situ steering, differential steering, oblique driving, and other
working conditions, and can meet the requirements of higher precision trajectory tracking
and critical working conditions [4–6]. The high degree of controllability and flexibility and
high execution ability of x-by-wire electric vehicles provide a platform for the research into
driverless vehicles, which has great development potential.

The problem of trajectory tracking control is one of the three key technologies related
to intelligent driving vehicles [7]. As far as the trajectory tracking control of traditional
front-wheel steered vehicles is concerned, the relevant theories and research methods are
relatively mature, the relevant simulation experiments have been quite abundant, and
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many control strategies have been verified by real vehicles in specific environments. The
control strategies include the following: pure tracking control, traditional proportional-
integral-derivative (PID) control, sliding mode control, dynamic feedback control, fuzzy
control, and model predictive control (MPC) [8–10]. Al-Mayyahi et al. [11] proposed a
PID-based fractional-order (FOPID) controller for the trajectory tracking problem, using
two FOPID controllers to calculate the control input torque of the vehicle and using a
particle swarm optimization algorithm to control the parameters in the FOPID controller.
Kapania et al. [12] added the vehicle’s side-slip characteristics to the feedforward controller
to improve the dynamic characteristics of the tire within the friction limit while keeping
the vehicle within the handling limit, minimizing lateral tracking deviation. Wu [13]
proposed a back stepping sliding mode controller to reduce the chattering problem of
the sliding mode control. Using the fuzzy control algorithm for the overdrive system,
the simulation experiment proves that the back stepping sliding mode control method
has higher control precision and a smoother control process than the traditional sliding
mode control. Mallem et al. [14] proposed a fast terminal sliding mode dynamic inverse
control method based on PID, which makes the position and direction of the movement
around the desired trajectory asymptotically stable, and used a terminal sliding mode
control method to ensure finite time convergence of the trajectory tracking error to zero.
Rokonuzzaman et al. [15] proposed to use the large amount of data provided by the
vehicle to design MPC with a neural-network-based vehicle learning dynamic model to
improve the tracking performance; the results under various road conditions show that the
proposed method outperforms the MPC of the traditional vehicle model. Funke et al. [16]
proposed a new control structure based on model predictive control and feedback control
that integrates path tracking, vehicle stabilization, and collision avoidance, and coordinated
these conflicting goals through the priority of collision avoidance. Experimental data show
that the controller drives safely within the operational limits of the vehicle.

The x-by-wire electric vehicle has the advantages of independent four-wheel drive/brake
and steering control, so it has been widely studied by universities and enterprises. However,
the research on trajectory tracking control mainly focuses on traditional vehicles and there
are few studies on trajectory tracking control algorithms for x-by-wire electric vehicles.

Based on proportional-integral (PI) control and adaptive model predictive control,
Ahn et al. [17] designed an integrated autonomous driving system independent of each
wheel for vehicles equipped with four-wheel independent motors to improve vehicle
stability and path tracking performance. Li et al. [7] proposed a sliding mode drive
controller based on PID control and sliding mode control for 4WIS/4WID vehicles.
Hiraoka et al. [18] proposed an automatic controller for four-wheel steering vehicle
path tracking based on sliding mode control theory. Compared with active front-wheel
steering, the four-wheel steering controller has a more stable and accurate trajectory
tracking capability. Zheng et al. [19] designed a trajectory tracking strategy based on a
hierarchical control method. The path tracking layer adopts a nonlinear state feedback
controller, and a neural network proportional-integral-derivative controller is designed
to track the desired path and obtain the desired yaw rate. Chen et al. [20] designed a
new adaptive linear quadratic optimal regulator (LQR) as a coordinated controller for
4WIS/4WID electric vehicle stability control. According to different vehicle speeds and
road conditions, the phase plane method is used to calculate the center of mass slip angle
and stability margin.

On the other hand, the current research on the trajectory tracking control of x-by-wire
electric vehicles rarely considers constraints such as tire adhesion. As each wheel of the
x-by-wire vehicle can be independently controlled, a reasonable control algorithm and
control strategy can achieve independent longitudinal and lateral control of each wheel,
improving the accuracy of trajectory tracking and the driving stability of the vehicle.

This paper takes the x-by-wire electric vehicle as the research carrier and designs the
trajectory tracking control strategy based on the hierarchical control architecture, which
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includes the trajectory tracking layer, the tire force distribution layer, and the actuator
control layer. The main contribution of this paper is as follows:

1. Based on the hierarchical architecture, an x-by-wire electric vehicle trajectory tracking
control strategy is established in which the controllers of each layer are modularly
designed. The effectiveness of the algorithm is verified by simulation experiments.

2. In the tire force distribution layer, the regular octagon constraint is used to linearize
the tire force constraint and the tire force distribution problem is transformed into a
quadratic programming problem with constraints for solving, which improves the
real-time performance of the algorithm.

The rest of this article is structured as follows. Section 2 introduces a nonlinear x-by-
wire chassis vehicle model. Section 3 introduces the trajectory tracking controller based
on a hierarchical architecture. Section 4 introduces the simulation under the DLC test.
Section 5 presents the conclusion of the article.

2. Vehicle Dynamic Model and Tire Model

2.1. Vehicle Dynamic Model

The nonlinear dynamic model of the vehicle established in this paper is as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

.
vy = −vxr + 1

m ∑ Fy
.
vx = vyr + 1

m ∑ Fx
.
r = 1

Iz
∑ Mz

.
eϕ = r − .

sκr.
el = vx sin eϕ + vy cos eϕ

.
s = vx cos eϕ−vy sin eϕ

1−lκr

(1)

where m is the mass of the vehicle. Iz is the moment of inertia around the center of mass.
s is the distance of the desired path. κr is the curvature of the desired path. r, vx, and
vy are the yaw rate, longitudinal speed, and lateral speed of the vehicle, respectively. el
and eϕ are the lateral deviation and the heading angle deviation between the center of
mass of the vehicle and the reference waypoint, respectively.∑ Fx , ∑ Fy, and ∑ Mz are the
lateral force, longitudinal force, and yaw moment received by the center of mass of the
vehicle, respectively.

The above vehicle model is nonlinear. Considering that the heading deviation eϕ is
generally small, it is assumed that cos

(
eϕ

) ≈ 1, sin
(
eϕ

) ≈ 0. At the same time, considering
that the road curvature and lateral deviation are generally small, the lateral speed of the
vehicle is generally much smaller than the longitudinal speed. Based on this, the following
can be obtained: ⎧⎨⎩

.
s ≈ vx − vyeϕ ≈ vx.

el ≈ vxeϕ + vy
.
vx = 1

m ∑ Fx

(2)

The state equation of the vehicle lateral model is as follows:

d
dt

⎡⎢⎢⎣
vy
w
eϕ

el

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0 −vx 0 0
0 0 0 0
0 1 0 0
1 0 vx 0

⎤⎥⎥⎦
⎡⎢⎢⎣

vy
w
eϕ

el

⎤⎥⎥⎦+

⎡⎢⎢⎣
1
m 0
0 1

Iz
0 0
0 0

⎤⎥⎥⎦[ ∑ Fy

∑ Mz

]
+

⎡⎢⎢⎣
0
0

−vx
0

⎤⎥⎥⎦κr (3)

The state equation of the vehicle longitudinal model is as follows:

d
dt

[
s

vx

]
=

[
0 1
0 0

][
s

vx

]
+

1
m∑ Fx (4)
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2.2. Tire Model

At present, there are three types of tire models: the physical tire model, empirical–
semi-empirical tire model, and finite element tire model. In this paper, the Pacejka tire
model is selected, which is a semi-empirical tire model and can be expressed as follows [21]:

Y(x) = D sin{Carctan[Bx − E(Bx − arctan(Bx))]}

where Y(x) is the lateral tire force. x is the slip angle of tire. B is the stiffness factor. C, D, E
are curve shape factor, peak factor, and curvature factor, respectively.

3. Trajectory Tracking Controller Based on Hierarchical Architecture

The hierarchical control algorithm structure has the advantages of clear algorithm
design and being convenient for subsequent algorithm updating. For the x-by-wire chassis
vehicle, which is a research object with high integration and high controllable degrees of
freedom, the method of controlling each subsystem separately cannot give full play to
its own performance advantages. The control strategy of the hierarchical structure can
realize the coordinated control of each controller of the vehicle with an x-by-wire chassis.
As shown in Figure 1, in the hierarchical trajectory tracking controller, it is divided into
the trajectory tracking layer, tire force distribution layer, and actuator control layer. In the
trajectory tracking layer, which is based on the MPC, the expected total force and moment
are calculated by taking the longitudinal force ∑ Fx, lateral force ∑ Fy, and yaw moment
∑ Mz in the vehicle coordinate system as the control variables. The tire force distribution
layer solves for the longitudinal force Fl,i,j and lateral force Fc,i,j in the vehicle coordinate
system of each wheel. The actuator control layer obtains the tire steer angle δij and driving
torque Tij based on the inverse tire force model and controls the controlled vehicle to track
the trajectory.

Figure 1. Trajectory tracking controller architecture.

3.1. Trajectory Tracking Layer
3.1.1. Prediction Model

In this paper, the trajectory tracking layer is established based on the MPC algorithm
and the state equation established based on Equation (1) is used as the prediction model
as follows:

d
dt

⎡⎢⎢⎢⎢⎢⎢⎣

vy
r

eϕ

el
s

vx

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

0 −vx 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
1 0 vx 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

vy
r

eϕ

el
s

vx

⎤⎥⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
m 0 0
0 1

Iz
0

0 0 0
0 0 0
0 0 0
0 0 1

m

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎣ ∑ Fy

∑ Mz

∑ Fx

⎤⎦+

⎡⎢⎢⎢⎢⎢⎢⎣

0
0

−vx
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎦κr (5)
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Equation (5) is rewritten as follows:{ .
x(t) = Acx(t) + Bcuu(t) + Bcdd(t)

y(t) = Ccx(t)
(6)

Ac is the state matrix, Bcu is the control matrix, Bcd is the disturbance matrix, and Cc is
the output matrix, respectively:

Ac =

⎡⎢⎢⎢⎢⎢⎢⎣

0 −vx 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
1 0 vx 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦, Bcu =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
m 0 0
0 1

Iz
0

0 0 0
0 0 0
0 0 0
0 0 1

m

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, Cc = I6×6

Discretization of Equation (5):{
x(k + 1) = Adx(k) + Bduu(k) + Bddd(k)

y(t) = Ccx(t)
(7)

The discrete sampling time is defined as Ts, then the discretized coefficient matrix is
as follows:

Ad = eAcTs

Bdu = Bcu
∫ Ts

0 eAcτdτ

Bdd = Bcd
∫ Ts

0 eAcτdτ
Cd = Cc

(8)

In order to reduce the vibration of the control amount, the control amount is rewritten
as an incremental type:

Δu(k) = u(k)− u(k − 1) (9)

The state equation is as follows:

x(k + 1) = Adx(k) + Bdu(u(k − 1) + Δu(k)) + Bddd(k) (10)

The augmented state is as follows:

ξ(k) =
[

x(k)
u(k − 1)

]
(11)

Then, the equation of state can be rewritten as follows:{
ξ(k + 1) = Adξ(k) + BduΔu(k) + Bddd(k)

y(k) = Cdξ(k)
(12)

Among:

Ad =

[
Ad Bdu
O I

]
, Bdu =

[
Bdu

I

]
, Bdd =

[
Bdd
O

]
, Cd =

[
Cd O

]
After applying the control variables, the model prediction process is as follows:

ξ(k + 1) = Adξ(k) + BduΔu(k) + Bddd(k) (13)

ξ(k + 2) = Adξ(k + 1) + BduΔu(k + 1) + Bddd(k + 1)
= A2

dξ(k) + AdBduΔu(k) + BduΔu(k + 1) + AdBddd(k) + Bddd(k + 1)
(14)
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ξ(k + Nc) = Adξ(k + Nc − 1) + BduΔu(k + Nc − 1) + Bddd(k + Nc − 1)

= ANc
d ξ(k) +

Nc−1
∑

i=0
Ai

dBduΔu(k + Nc − 1 − i) +
Nc−1

∑
i=0

Ai
dBddd(k + Nc − 1 − i)

(15)

ξ
(
k + Np

)
= Adξ

(
k + Np − 1

)
+ BduΔu(k + Nc − 1) + Bddd

(
k + Np − 1

)
= A

Np
d ξ(k) +

Nc−1
∑

i=0
A

i+Np−Nc
d BduΔu(k + Nc − 1 − i) +

Np−1

∑
i=0

Ai
dBddd

(
k + Np − 1 − i

) (16)

Definition:

Y(k + 1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(k + 1)
y(k + 2)

...
y(k + Nc)

...
y
(
k + Np

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cdξ(k + 1)
Cdξ(k + 2)

...
Cdξ(k + Nc)

...
Cdξ

(
k + Np

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, X(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ(k + 1)
ξ(k + 2)

...
ξ(k + Nc)

...
ξ
(
k + Np

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, ΔD(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

d(k)
d(k + 1)

...
d(k + Nc)

...
d
(
k + Np

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
where Y(k + 1) is the output vector, X(k) is the state vector, and ΔD(k) is the disturbance vector.

Y(k + 1) = Sxξ(k) + SuΔU(k) + SdD(k) (17)

The state matrix Sx, control matrix Su, and disturbance matrix Sd are, in respective
order, as follows:

Sx =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cd Ad

Cd A2
d

...
Cd ANc

d
...

Cd ANp

d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Su =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CdBdu O · · · O
Cd AdBdu CdBdu · · · O

...
...

. . .
...

Cd ANc−1
d Bdu Cd ANc−2

d Bdu · · · CdBdu
...

...
. . .

...

Cd ANp−1
d Bdu Cd ANp−2

d Bdu · · · Cd ANp−Nc

d Bdu

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Sd =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CdBdd O · · · O
Cd AdBdd CdBdd · · · O

...
...

. . .
...

Cd ANc−1
d Bdd Cd ANc−2

d Bdd · · · O
...

...
. . .

...

Cd ANp−1
d Bdd Cd ANp−2

d Bdd · · · CdBdd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
3.1.2. Cost Function

In order to ensure the safe and accurate driving of the x-by-wire electric vehicle
according to the predetermined trajectory, the cost function is as follows:

J =
Np

∑
i=1

[
Γxi

(
y(k + i)− yre f

)]2
+

Nc−1
∑

i=0
[Γui(Δu(k + i))]2

=
(

Y(k + i)− Yre f

)T
Γx

(
Y(k + i)− Yre f

)
+ ΔU(k)TΓuΔU(k)

=
(

Sxξ(k) + SuΔU(k) + SdD(k)− Yre f

)T
Γx

(
Sxξ(k) + SuΔU(k) + SdD(k)− Yre f

)
+ ΔU(k)TΓuΔU(k)

(18)

The error E is defined as follows:

E = Sxξ(k) + SdD(k)− Yre f (19)

Equation (18) be rewritten as follows:

J = (SuΔU(k) + E(k))TΓx(SuΔU(k) + E(k)) + ΔU(k)TΓuΔU(k)
= ΔU(k)T(Γu + Su

TΓxSu
)
ΔU(k) + 2ΔU(k)TSu

TΓxE(k) + E(k)TΓxE(k)
(20)
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The symmetric matrix is as follows:

Γx = diag
(

Γx1, · · · ΓxNp

)
, Γu = diag(Γu1, · · · ΓuNc)

To simplify further,

H = Γu + Su
TΓxSu

f = 2Su
TΓxE(k) + E(k)TΓxE(k)

(21)

Substituting Equation (21) into Equation (18), the cost function is as follows:

J = ΔU(k)T HΔU(k) + ΔU(k)T f + E(k)TΓxE(k) (22)

3.1.3. Security Constraints

When the vehicle is driving, it is necessary to ensure the stability and safety of the
vehicle. Vehicle stability characteristics can be captured by nonlinear tire state models.
Bobier [22] uses the center of mass slip angle-yaw rate to handle the vehicle’s stability
constraint envelope.

When the additional yaw moment generated by the longitudinal force is not consid-
ered, in the steady state, the relationship between the yaw rate of the vehicle and the lateral
force is as follows:

.
r =

∑ Fy

mvx
(23)

As the road friction coefficient limit is ∑ Fy ≤ μmg, the limit of the yaw rate at which
the vehicle is stable is as follows:

.
r ≤ μg

vx
(24)

The safe driving environment of the vehicle is the safe envelope area considering road
boundaries, obstacles, and traffic vehicles. The obstacle avoidance and stability control
framework proposed by Erlien et al. [23] uses the safe driving envelope to delineate a
collision-free area for the vehicle to exercise and the environmental safety constraints
are constrained by road boundaries and traffic vehicles. This paper is based on the road
boundary of the tracked trajectory as a constraint, which can be expressed as follows:

Henvξ ≤
[

emax − B
2 − lbu f f er

−emin + B
2 + lbu f f er

]
(25)

Henv =

[
0 0 0 1 0 0
0 0 0 −1 0 0

]
. emax and emin represent the upper and lower bound-

aries of the road, respectively. lbu f f er is the boundary safety margin.

3.2. Tire Force Distribution Layer

As the four wheels of an x-by-wire electric vehicle can be independently controlled,
the control variables obtained based on the trajectory tracking layer are the longitudinal
force ∑ Fx, lateral force ∑ Fy, and yaw moment ∑ Mz at the center of mass. Therefore, the
resultant force and torque need to be distributed to each wheel. The tire force distribution
layer adopts an optimized method to distribute the force/moment to each wheel under the
condition of satisfying the tire force constraint.
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3.2.1. Tire Force Constraints

During the driving of the vehicle, the resultant force generated by each tire must
satisfy the constraints of the trajectory tracking layered force equation:⎧⎪⎨⎪⎩

Fx, f l + Fx, f r + Fx,rl + Fx,rr = ∑ Fx
Fy, f l + Fy, f r + Fy,rl + Fy,rr = ∑ Fy(

Fy, f l + Fy, f r

)
l f −

(
Fy,rl + Fy,rr

)
lr + B

2

(
−Fx, f l + Fx, f r − Fx,rl + Fx,rr

)
= ∑ Mz

(26)

When distributing the tire force, in order to ensure the stability of the vehicle, it is
necessary to consider the adhesion capacity of the wheel and tire. Assuming that the road
friction coefficient is μ, the maximum resultant force that the tire can generate is F ≤ μFz,
where Fz is the vertical load.

F2
x + F2

y ≤ (μFz)
2 (27)

As shown in Figure 2, the longitudinal force and lateral force of the tire must satisfy the
friction circle constraint. When the wheel is in the extreme condition, the tire force will reach
the limit of the friction circle and the wheel will slip, resulting in the loss of vehicle stability.
The constraint of tire adhesion is nonlinear and the tire force problem can be defined as an
optimization problem with quadratic constraints, but it is often time-consuming. In order
to improve the real-time performance of the algorithm, the tire force constraint is simplified
on the premise of ensuring the driving stability of the vehicle. Therefore, this paper adopts
the circumscribed regular octagon of the friction circle to approximately describe the tire
friction constraint and converts the quadratic constraint into a linear constraint.

Figure 2. Tire friction constraint.

As shown in Figure 2, R is the radius of friction circle and Re is the radius of the
simplified octagon.

Re = R · sec 22.5◦ ≈ 1.08R

Soctagon

Scircle
=

8

π
(

1 +
√

2
) ≈ 1.0548

According to the geometric calculation, the radius of the regular octagon is 1.08 times
the radius of the friction circle and the area of the octagon is about 5.5% larger than that
of the friction circle. This linearization treatment has little effect on tire force and ensures
the driving stability of an x-by-wire chassis vehicle. The regular octagon is replaced by
the friction circle and the octagon linear inequality constraint of the tire friction circle is
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shown in Equation (28).
(

Fx, Fy
)

must be inside the regular octagon A1 A2 A3 A4 A5 A6 A7 A8
and the constraints of the attached ellipse can be expressed as follows:⎧⎪⎪⎨⎪⎪⎩

−μFz ≤ Fx ≤ μFz
−μFz ≤ Fy ≤ μFz

−√
2μFz ≤ Fx + Fy ≤ √

2μFz
−√

2μFz ≤ Fx − Fy ≤ √
2μFz

(28)

For the four tires of the vehicle, the matrix form is expressed as follows:

F =
[
Fx, f l Fx, f r Fx,rl Fx,rr Fy, f l Fy, f r Fy,rl Fy,rr

]T (29)

3.2.2. Objective Function

The tire adhesion margin is defined as follows [24]:

ε = 1 − F
μFz

(30)

The adhesion margin of the tire represents the ratio of the remaining utilization force
of the tire to the maximum force provided by the tire. The value range is 0 ∼ 1 and ε = 0
represents the tire reaching the adhesion limit. Thus, the objective function is defined to
maximize the attachment margin. The tire usage rate is defined as follows:

η = 1 − ε =
F

μFz
(31)

Based on Equation (31), the objective function is defined as the minimum sum of the
tire usage rates of the four tires, which is as follows:

J =
4

∑
i=1

F2
xi + F2

yi

(μFzi)
2 (32)

In this article, the main object of coordination control is the lateral and longitudinal tire
forces, which are related to vertical force. However, the vertical forces are not the control
object of the control strategy, so the vertical force is regarded as directly available through
sensors or other means.

3.2.3. Tire Force Distribution Algorithm

From Equation (32), the tire force distribution problem is regarded as an optimization
problem with constraints:

min
{Fx,ij ,Fy,ij}

J

s.t. Ax ≤ b
(33)

Based on the objective function in Equation (32) and the optimization variable in
Equation (29), the optimization problem is a quadratic programming problem, which can
be solved quickly.

3.3. Actuator Control Layer

X-by-wire electric vehicles follow a desired trajectory by having independent drive/brake
and steering control of each wheel. The actuator control layer converts the longitudinal force
and lateral force of each wheel under the vehicle coordinate system obtained by the tire force
distribution layer into the tire coordinate system. Figure 3 presents the tire force diagram.
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Figure 3. Tire force of a single wheel.

The tire force relationship is as follows:[
Fc,ij
Fl,ij

]
=

[
cos δij sin δij
− sin δij cos δij

][
Fx,ij
Fy,ij

]
(34)

δij is the wheel steer angle, αij is the tire slip angle, and θij is the angle between the
driving direction of the wheel and the longitudinal axis of the wheel coordinate system.

θij = δij + αij (35)

The tire side slip angle αij is generally small. Equation (35) is approximated as follows:

θij ≈ δij

The force in the tire coordinate system can be obtained as follows:[
F̂c,ij
F̂l,ij

]
=

[
cos θij sin θij
− sin θij cos θij

][
Fx,ij
Fy,ij

]
(36)

The lateral and longitudinal velocity of each wheel are as follows:⎧⎪⎪⎨⎪⎪⎩
vy, f l = vy, f r = vy + l f

.
ϕ

vy,rl = vy,rr = vy − l f
.
ϕ

vx, f l = vx, f r = vx − B
2

.
ϕ

vx, f r = vx,rr = vx +
B
2

.
ϕ

(37)

It can be obtained from Equation (37) that the angle between the motion direction of
each wheel and the longitudinal direction of the body coordinate system is as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ f l = tan−1 vy, f l
vx, f l

= tan−1 vy+l f
.
ϕ

vx− B
2

.
ϕ

θ f r = tan−1 vy, f r
vx, f r

= tan−1 vy+l f
.
ϕ

vx+
B
2

.
ϕ

θrl = tan−1 vy,rl
vx,rl

= tan−1 vy−l f
.
ϕ

vx− B
2

.
ϕ

θrr = tan−1 vy,rr
vx,rr

= tan−1 vy+l f
.
ϕ

vx+
B
2

.
ϕ

(38)
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The actuator control layer solves the relationship between tire slip angle and lateral
force based on the arctangent model proposed by Sakai et al. [25], the function of which
could fit the magic tire formula. The tire side slip model can be expressed as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Fy = −CGx
μ
k tan−1

(
k
μ α

)
Gx =

√
1 −

(
Fx

μFz

)2

k = Cπ
2Fz

(39)

k and Gx are factors and C is the tire side slip stiffness.
The desired F̂l,ij is brought into Equation (39) and the tire slip angle α̂ij can be obtained,

then the wheel angle is as follows:

δij = θij − α̂ij (40)

The longitudinal moment of the wheel is as follows:

Tij =
1

1 + τs
Fijrij (41)

τ is the time constant and rij is the radius of rotation of the wheel.

4. Simulation Test

On the one hand, real vehicle experiments have a certain risk owing to a variety of
conditions. On the other hand, in order to ensure the vehicle in the experiment has the
expected trajectory and speed and to reduce the influence of the experimenter’s subjective
control on the experimental results, focus is placed upon the influence of the control
strategy on the vehicle driving stability in the trajectory tracking control. In this paper, the
effectiveness of the control strategy is verified by simulation experiment.

Through MATLAB/Simulink and CarSim simulation, the hierarchical trajectory track-
ing control algorithm is verified by the double line change (DLC) test. The vehicle parame-
ters are shown in Table 1.

Table 1. Vehicle parameters.

Parameters Symbol Unit Value

Vehicle mass m kg 1120
Distance from center
of mass to front axle l f m 1.165

Distance from center
of mass to rear axle lr m 1.165

Wheelbase B m 1.75
Moment of inertia Iz kg · m2 1020

4.1. Variable Velocity DLC Condition

On a road with a friction coefficient of 0.85, the trajectory tracking of an x-by-wire
electric vehicle under variable speed is simulated. The initial velocity of the vehicle is
20 km/h and the simulation time is set to 20 s.

As shown in Figure 4, the control algorithm can follow the changing vehicle velocity
well and accurately track the desired trajectory; the lateral deviation and heading angle
deviation of the trajectory tracking are kept within a small range.
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(a) (b) 

 

(c) (d) 

Figure 4. Vehicle state and tracking error: (a) velocity; (b) vehicle location; (c) lateral error;
(d) heading error.

As shown in Figure 5, the values of the vehicle’s center of mass slip angle and yaw
angular velocity all change within a small range and the changes are relatively stable; the
change range in the vehicle’s lateral speed and lateral acceleration is also small, which
proves the vehicle has lateral stability.

As shown in Figure 5a, the driving torque has a jitter before 5 s, which is due to the
large deviation between the real vehicle velocity and the reference velocity at this time.
In order to reduce this deviation, the driving torque is increased. When the deviation is
reduced to a reasonable range, the driving torque returns to the normal value. The change
in velocity is shown in Figure 4a.
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 5. Vehicle state: (a) driving torque; (b) steer angle; (c) side slip angle; (d) yaw rate; (e) lateral
velocity; (f) lateral acceleration.

As shown in Figure 6, the trajectory tracking control algorithm can reasonably dis-
tribute the load of the four tires while following the desired trajectory to ensure the stability
of the vehicle.
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(a) (b) 

Figure 6. Tire state: (a) tire vertical load; (b)tire utilization.

4.2. Low Road Friction Coefficient DLC Condition

In order to further verify that the control algorithm has good following ability and
stability, a pavement with friction coefficient of 0.35 was selected for the DLC test. The
initial speed is 40 km/h.

As shown in Figure 7, the control algorithm can also follow the desired vehicle speed
well and accurately track the desired trajectory in the low friction coefficient road environment.

 
(a) (b) 

  
(c) (d) 

Figure 7. Vehicle state and tracking error: (a) velocity; (b) vehicle location; (c) lateral error;
(d) heading error.
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As shown in Figure 8, the lateral deviation and heading angle deviation of trajectory
tracking are kept within a small range. The change in the control amount is relatively stable
and there is no major fluctuation. The side slip angle and yaw rate also kept fluctuating
within a relatively stable range.

 
(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 8. Vehicle state: (a) driving torque; (b) steer angle; (c) side slip angle; (d) yaw rate; (e) lateral
velocity; (f) lateral acceleration.
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As shown in Figure 9, it can be seen from the tire utilization coefficient of each wheel
that the vehicle runs stably and safely on a low-adhesion road surface. It is proved that
the algorithm proposed in this paper is suitable for various working conditions. Based
on the curve of tire force and tire utilization coefficient in the simulation experiment, it
conforms to the change in tire performance of each wheel in the real driving process of
the vehicle. On the other hand, the vehicle state parameters also conform to the actual
driving performance of the vehicle. Therefore, the results of the simulation experiment are
considered to be reliable.

 
(a) (b) 

Figure 9. Tire state: (a) tire vertical load; (b) tire utilization.

5. Conclusions

In this paper, the trajectory tracking control module of an x-by-wire electric vehicle is
designed. A trajectory tracking control algorithm based on a hierarchical control architec-
ture is designed to perform effective trajectory tracking control for an x-by-wire electric
vehicle, which facilitates the subsequent further development of each layer. The control
algorithm includes the trajectory tracking layer, tire force distribution layer, and actuator
control layer. The trajectory tracking layer uses longitudinal force, lateral force, and yaw
moment as control variables and designs an MPC algorithm to control the vehicle to follow
the desired trajectory. The tire force distribution layer distributes the desired resultant
force/moment to each vehicle tire. In this paper, the tire force distribution problem is
transformed into a quadratic programming problem with constraints to solve such that
the longitudinal force and lateral force of each tire in the vehicle coordinate system are
obtained. The actuator control layer can obtain the longitudinal force and lateral force in
the tire coordinate system through coordinate system transformation in order to obtain
the vehicle turning angle and vehicle driving/braking torque control amount. Through
the arctangent function tire model, the expected tire slip angle is obtained, and then the
vehicle steer angle and driving torque are obtained. In order to verify the effectiveness
of the algorithm, the effectiveness of the proposed control algorithm is verified based on
simulation experiments.
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Abstract: A path tracking controller based on front wheel steering angle and additional yaw moment
control is designed to achieve safe obstacle avoidance of distributed drive electric vehicles. Using
sixth-degree polynomial at a given time with anti-collision and anti-rollover conditions, the path
planning of obstacle avoidance is proposed. The front wheel steering angle and additional yaw
moment are output by the Model Predictive Control (MPC) controller. The wheel torque is distributed
by the torque distribution controller. Through additional yaw moment and the vertical force ratio of
the wheel, the obstacle avoidance path tracking control is realized. The co-simulation platform is
established with Carsim/Simulink. The obstacle avoidance path, model predictive controller and
torque distribution controller designed in this paper are simulated. The results show that obstacle
avoidance path and tracking controller for the distributed drive electric vehicles effectively meet the
requirements of safe obstacle avoidance.

Keywords: distributed driving electric vehicles; polynomial path planning; model predictive control;
torque allocation; obstacle avoidance path tracking

1. Introduction

With the continuous increase in car ownership, the modern intelligent transportation
system has increasingly regarded vehicle safety as its key factor. Between 2002 and 2012,
the lack of proper obstacle avoidance contributed to the deaths of millions of people in
traffic accidents around the world, and the economic cost of these accidents amounted
to $0.48 trillion [1]. More than 90% of these accidents are caused by human factors [2].
Therefore, in order to avoid vehicle collisions and minimize the impact of accidents, a
method of adding an increasing proportion of active safety systems is proposed [3].

The obstacle avoidance trajectory tracking control of intelligent vehicles is one of the
key functions. According to the trajectory planned by the upper controller and the real-
time state information, real-time vehicle control variables, such as front wheel angle and
driving force/braking force, are generated [4]. Compared with traditional vehicles, the
drive motors are directly installed in the drive wheels for the distributed drive electric
vehicles. So they have outstanding advantages, such as short drive transmission chain,
high transmission efficiency and compact structure. It can be more beneficial to realize the
tracking control of the obstacle avoidance path by optimizing the distribution of the driving
torque of each wheel [5]. Although distributed hub motors can lead to greater unsprung
mass, a small amount of unsprung mass increase is negligible, given their advantages in
dynamic control.

After the continuous development of path tracking control, different tracking control
algorithms have been proposed and verified, such as sliding mode control, fuzzy control,
and model predictive control. Reference [6] proposed a distributed drive unmanned vehicle
path tracking and stability coordinated control strategy based on the layered control theory.
In order to reduce the heading deviation and lateral deviation during the path-tracking
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process, the sliding mode control method was used. Moreover, it can ensure the stability
of the vehicle. On the basis of the traditional dynamic model and preview model, Zhang
Bingli [7] designed a new trajectory-tracking controller based on neural networks and
fuzzy control theory. Wang Yao [8] proposed a model prediction-fuzzy (MPC-Fuzzy)
joint control strategy, which alleviated the conflict between the vehicle tracking accuracy
and the controller’s computational pressure under a single model prediction control and
better solved the distributed driving vehicle path, tracking accuracy and stability issues in
tracking. Hu [9] designed a fuzzy linear quadratic regulator (LQR) with preview PID angle
compensation and verified that it can maintain good accuracy and stability at different
vehicle speeds. However, it also had the problem of low tracking accuracy when the
vehicle was running at a low speed. Kou [10] used a state expansion MPC and corner
compensation fuzzy controller, designed a dual feedback MPC controller based on state
expansion and verified that it had better path tracking performance at medium and low
vehicle speeds. Wu [11] proposed a front-wheel steering controller and optimized the
controller parameters so that the vehicle had better path-tracking performance at low and
medium speeds and ensured that the vehicle had certain steering accuracy and driving
stability when driving at high speed on ice and snow roads. In order to improve the stability
of distributed drive electric vehicles in extreme working conditions, Li [12] proposed a
nonlinear model predictive control (NMPC) based torque coordination control strategy.
In order to coordinate the trajectory tracking accuracy and stability of distributed drive
electric vehicles and improve the adaptive ability of the control algorithm to different
working conditions, Zhuang [13] proposed a trajectory tracking control strategy based on
Takagi–Sugeno fuzzy model predictive control (T-S FMPC).

The total required torque is calculated through the yaw moment obtained by the
upper controller. The torque distributed to each drive wheel is obtained through differ-
ent algorithms. There are many distribution methods for torque distribution. A fixed
proportional distribution method was proposed in the literature [14,15]. Although this
method was simple, it cannot implement different proportional distributions according to
different road conditions. There was no optimization in the energy utilization efficiency of
the motor, and the best distribution result could not be achieved. Ono E [16] proposed to
realize the torque distribution to the four wheels according to the usage of the tire force
of four tires. This method made the wear degree of the four tires more balanced, and the
life of the tires and the motor were improved, but the performance of vehicle handling
was greatly reduced. Mokhiamar O [17] also proposed to analyze the torque distribution
problem by establishing a multi-objective optimization function, but this method may show
different effects in different models and different operating conditions, so the consistency
and robustness were poor. Reference [18] considered the dynamic characteristics of the
vehicle when it is unstable and proposed a control allocation scheme based on feedback
linearization. This scheme was relatively dependent on the accuracy of the model and had
poor stability. Reference [19] distributed torque according to the vertical load distribution
ratio of each wheel. Since the friction ellipse of the tire increases with the increase of the
vertical load, the torque distribution according to the vertical load ratio of a single tire can
avoid the saturation of the tire force and can simply and effectively improve the driving
stability of the vehicle.

Based on the above analysis, the whole vehicle control process designed in this paper is
shown in Figure 1. In Section 1, using the obstacle information obtained by the environment
awareness layer and the vehicle pose information detected by the vehicle sensor, the
obstacle avoidance path is planned. Anti-collision and anti-rollover constraints adding to a
six-degree polynomial are used for path planning. The front wheel angle δf and additional
yaw moment ΔMz are output by the MPC controller in Section 3.2. By processing the
information of the path planning layer, the torque distribution controller distributes the
torque through the additional yaw moment and the wheel vertical force ratio in Section 3.3.
The MPC controller and the torque distribution controller together form a path-tracking
controller. During the obstacle avoidance process, the vehicle avoids obstacles through
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the front wheel angle and four-wheel torque output by the controller. In Section 4, the
simulation platform is established, and the effect of the controllers is verified.

Figure 1. Vehicle control flow chart. Where, Xc0 and Yc0 are the lateral distance and longitudinal
distance from the obstacle; vc is the vehicle speed of the obstacle; Xd and Yd are the expected lateral
and longitudinal distance of the vehicle; ϕd is the expected yaw angle of the vehicle; ΔMz is the
additional yaw moment; Tfl, Trl, Trr and Tfr are the torques of the left front wheel, the left rear wheel,
the right rear wheel and the right front wheel, respectively; X and Y are the transverse and vertical
coordinates under the inertial coordinate system; ϕ is the yaw angle under the body coordinate
system; r is the turning radius of the vehicle; vx and vy are the lateral and speed longitudinal of the
vehicle; ax is the lateral acceleration of the vehicle.

2. Path Planning

In this paper, the six-degree polynomial path planning method [20] for a given time is
used. In the sixth-degree polynomial path planning method, the vehicle’s gentle arrival
from the starting point to the target point is considered, the collision between the vehicle
and the obstacle in the process of running is considered, and the smooth running according
to the planned path is also considered. With the addition of anti-collision and anti-rollover
conditions, the safety of obstacle avoidance path planning is improved.

Based on the longitudinal and lateral displacements at a given time, the initial expres-
sion for the sixth-degree polynomial is:{

X(t) = c0 + c1t + c2t2 + c3t3 + c4t4 + c5t5 + c6t6

Y(t) = b0 + b1t + b2t2 + b3t3 + b4t4 + b5t5 + b6t6 (1)

Adding anti-collision conditions [20]: set the coordinate center of the obstacle as (Xob,
Yob), and the radius of the circumscribed circle of the vehicle and the obstacle as Rcar and
Rob, this is shown in Figure 2,the constraint condition of anti-collision can be expressed as:

(Rcar + Rob)
2 < [X(t)− Xob]

2 + [Y(t)− Yob]
2 (2)

Figure 2. Schematic diagram of collision avoidance.

Adding the anti-rollover condition constraint [20].
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According to the simplified model diagram of vehicle rollover in Figure 3, the moment
balance equation can be expressed as:

msayh + msgΔy = (Fzl − Fzr)
s
2

(3)

where, ay is the lateral acceleration, ms is the sprung mass, h is the distance from the center
of mass to the ground, Fzl represents the sum of forces on the left front and rear wheels in
the vertical direction, Fzr represents the sum of forces on the right front and rear wheels, s
represents the track width, g is the gravitational acceleration, Δy = h · sin φ.

Figure 3. Simplified model of automobile rollover.

The lateral transfer rate of the vehicle is:

LTR =
Fzl − Fzr

Fzl + Fzr
(4)

Combining Equations (3) and (4), LTR can be expressed as:

LTR =
2R
s

[
ay

g
+ sin φ

]
(5)

where, φ is the vehicle roll angle.
The larger the absolute value of LTR indicates, the greater the rollover risk of the car,

so the size of ay should be fully taken into account in path planning. Given the maximum
roll risk LTRmax,

ay =
..
Y(t) ≤

(
s · LTRmax

2h
− sin φ

)
g (6)

aymax =

(
s · LTRmax

2h
− sin φ

)
g (7)

Constructing the evaluation index function of anti-rollover:

Janti−r =
∫ td

t0

−(
aymax −

∣∣ay
∣∣)dt (8)

The polynomial optimization path planning problem is expressed as:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

minJanti−r

s.t.(Rcar + Rob)
2 < [X(t)− Xob]

2 + [Y(t)− Yob]
2

ay =
..
Y(t) ≤

(
s·LTRmax

2h − sin φ
)

g
b3td

3 + b4td
4 + b5td

5 + b6td
6 = H

3b3td
2 + 4b4td

3 + 5b5td
4 + 6b6td

5 = 0
6b3td + 12b4td

2 + 20b5td
3 + 30b6td

4 = 0

(9)

where, t0 and td are the initial time and the end time, respectively, ay is the lateral accel-
eration, Xob and Yob are the coordinate centers of the obstacles, the coordinate center of
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the obstacle:(Xob, Yob) = (100, 1), Rcar and Rob are the radiuses of the circumscribed circles
between the vehicle and the obstacle, ∅ is the body roll angle, and w is the wheelbase, h is
the distance from the center of mass to the ground, g is the acceleration of gravity, H is the
self-conjugate matrix, Janti-r is the anti-rollover evaluation index function, and LTR is the
roll risk coefficient.

In Equation (9), the coefficients b3, b4, b5 and b6 can be obtained by the optimization algorithm.
The yaw angle can be expressed as:

ϕ(t) = arctan
dY(t)
dX(t)

= arctan

.
Y(t)
.

X(t)
(10)

3. Path Tracking Control

3.1. Establishment of Vehicle Dynamics Model

The three-degree-of-freedom vehicle dynamics model is shown in Figure 4, including
lateral motion, yaw motion and longitudinal motion [21,22]. The aerodynamics, suspension
system and steering system are ignored. Considering that the sideslip angle of the center
of mass is small when the lateral acceleration is not high, the control accuracy will not
be affected if it is ignored, so the sideslip angle of the center of mass is ignored [23].
According to the characteristics of the distributed drive vehicle, the additional yaw moment
is considered.

.
Figure 4. Three-degree-of-freedom vehicle dynamics model.

In Figure 4, the coordinate axis oxyz is the fixed coordinate system of the vehicle, xoz
is in the left-right symmetrical plane of the vehicle, the coordinate origin of the center of
mass of the vehicle is o, the x-axis is the coordinate axis along the longitudinal direction of
the vehicle, and the y-axis is the coordinate perpendicular to the longitudinal direction of
the vehicle axis. The z-axis is the coordinate axis perpendicular to the xoy plane, and the
direction satisfies the right-hand rule. XOY is the geodetic coordinate system. Considering
that Fxf and Fyf are the force exerted on a single tire, it needs to be multiplied by 2. According
to Newton’s second law: ⎧⎨⎩

m
..
x = m

.
y

.
ϕ + 2Fx f + 2Fxr

m
..
y = −m

.
x

.
ϕ + 2Fy f + 2Fyr

Iz
..
ϕ = 2l f Fy f − 2lrFyr

(11)

where lf and lr are the distances from the center of mass to the front and rear axles, respec-
tively. m is the overall mass of the vehicle, and Iz is the central moment of inertia of the
vehicle around the z axis.

123



World Electr. Veh. J. 2022, 13, 221

The conversion relationship between the resultant force of the tire in the x-direction
and y-direction, the longitudinal force and the lateral force is expressed as follows:⎧⎪⎪⎨⎪⎪⎩

Fx f = Fl f cos δ f − Fc f sin δ f
Fxr = Flr cos δ f + Fcr sin δr
Fy f = Fl f sin δ f + Fc f cos δ f
Fyr = Fcr cos δr − Flr sin δ f

(12)

where Fxf and Fyf are the resultant forces on the front wheels in the x and y directions,
respectively. Fxr and Fyr are the resultant forces on the front wheels in the x and y direc-
tions, respectively, and Flf and Flr are the longitudinal forces on the front and rear wheels,
respectively. Fcf and Fcr are the lateral forces on the front and rear wheels, respectively. δf is
the front wheel angle, δr is the rear wheel angle.

The lateral and longitudinal forces of vehicle tires can be expressed as complex func-
tions of parameters such as wheel slip angle, slip rate, road friction coefficient and verti-
cal load:

Fc = fc(α, s, μ, Fz) (13)

Fl = fl(α, s, μ, Fz) (14)

where, Fz is the vertical load on the tire, μ is the road friction coefficient, s is the slip ratio,
and α is the wheel side angle.

In order to simplify the model, the tire force is usually represented by a linear function
under the condition of small tire longitudinal slip rate, lateral acceleration and slip angle.
The force is expressed as follows: {

Fl = Cls
Fc = Ccα

(15)

where Cl is the longitudinal stiffness of the vehicle tire, and Cc is the cornering stiffness of
the vehicle tire.

The following approximate relationship is satisfied:⎧⎨⎩
cos θ ≈ 1
sin θ ≈ θ
tan θ ≈ θ

(16)

where θ can be expressed as front wheel side angle and rear wheel side slip angle, etc.
The wheel side slip angle α can be obtained according to the geometric relationship:

α = tan−1 vc

vl
(17)

where vc and vl represent the lateral and longitudinal speeds of the tire, respectively, which
can be represented by the speeds vx and vy in the direction of the coordinate system:{

vl = vy sin δ + vx cos δ
vc = vy cos δ − vx sin δ

(18)

where δ is the tire deflection angle. The tire speed is generally calculated by the speed
conversion of the vehicle, and the conversion relationship is shown in Formula (19):{

vy f =
.
y + l f

.
ϕ

vyr =
.
y − lr

.
ϕ

(19)

{
vx f =

.
x

vxr =
.
x

(20)

124



World Electr. Veh. J. 2022, 13, 221

Through the above formulas, the wheel side slip angle can be obtained as:⎧⎨⎩ α f =
.
y+l f

.
ϕ

.
x

− δ f

αr =
.
y−lr

.
ϕ

.
x

(21)

From Equation (20), the tire lateral force of the front and rear wheels can be obtained as:⎧⎪⎨⎪⎩ Fc f = Cc f

(
δ f −

.
y+l f

.
ϕ

.
x

)
Fcr = Ccr

lr
.
ϕ− .

y
.
x

(22)

According to the above derivation formula, the following nonlinear vehicle dynamics
model can be obtained as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m
..
y = −m

.
x

.
ϕ + 2

[
Cc f

(
δ f −

.
y+l f

.
ϕ

.
x

)
+ Ccr

lr
.
ϕ− .

y
.
x

]
m

..
x = m

.
y

.
ϕ + 2

[
Cl f s f + Cc f

(
δ f −

.
y+l f

.
ϕ

.
x

)
δ f + Cl f sr

]
Iz

..
ϕ = 2

[
l f Cc f

(
δ f −

.
y+l f

.
ϕ

.
x

)
− lrCcr

lr
.
ϕ− .

y
.
x

]
+ ΔMz

.
Y =

.
x sin ϕ +

.
y cos ϕ

.
X =

.
x cos ϕ − .

y sin ϕ

(23)

In this paper, due to the use of a linear time-varying model predictive control algorithm,
the displacement and velocity in the longitudinal direction are not considered as control
variables. Let

.
ϕ = r,

.
x = vx,

.
y = vy, Equation (22) can be simplified as:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

.
vy = −Cc f +Ccr

mvx
vy −

( lfCc f −lrCcr
mvx

+ vx

)
r +

Cc f
m δf

.
r = − l f Cc f −lrCcr

Izvx
vy −

l2
f Cc f +l2

r Ccr

Izvx
r +

l f Cc f
Iz

δ f +
ΔMz

Iz.
ϕ = r
.

Y = vx ϕ + vy

(24)

According to the above dynamic model, the following state space equation is established:{ .
ξ = Aξ + Bu
y = Cξ

(25)

where the state quantity ξ =
[
vy r ϕ y

]T, the control quantity u =
[
δ f ΔMz

]T, A, B,
and C are coefficient matrices, respectively:

A =

⎡⎢⎢⎢⎢⎣
−Cc f +Ccr

mvx
−
( l f Cc f −lrCcr

mvx
+ vx

)
0 0

− l f Cc f −lrCcr
Izvx

− l2
f Cc f +l2

r Ccr

Izvx
0 0

0 1 0 0
1 0 vx 0

⎤⎥⎥⎥⎥⎦ (26)

B =

⎡⎢⎢⎢⎣
Cc f
m 0

l f Cc f
Iz

1
Iz

0 0
0 0

⎤⎥⎥⎥⎦ (27)

C =

[
0 0 1 0
0 0 0 1

]
(28)
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3.2. MPC Controller Design

The linear time-varying model is shown in Figure 5. In the model, the control value is
initial velocity v0 = 18 m/s; The actual measured value is vy, r, ϕ, y; The control input value
is αf, ΔMz.

Figure 5. Flow chart of linear time-varying model control.

Since the linear time-varying model [13] is used, it is necessary to perform linear
time-varying processing and discretization processing on Equation (24).

Let Ak = I + AT, Bk = BT, Ck = C.

where T is the sampling time, I is the identity matrix,

Ak =

⎡⎢⎢⎢⎢⎣
1 − Cc f +Ccr

mvx
T −

( l f Cc f −lrCcr
mvx

+ vx

)
T 0 0

− l f Cc f −lrCcr
Izvx

T 1 − l2
f Cc f +l2

r Ccr

Izvx
T 0 0

0 T 1 0
T 0 vxT 1

⎤⎥⎥⎥⎥⎦ (29)

Bk =

⎡⎢⎢⎢⎣
Cc f
m T 0

l f Cc f
Iz

T T
Iz

0 0
0 0

⎤⎥⎥⎥⎦ (30)

Ck =

[
0 0 1 0
0 0 0 1

]
(31)

So the following discrete state space equation is obtained:{ .
ξ(k + 1) = Aξ(k) + Bu(k)
y(k) = Ckξ(k)

(32)

In order to avoid the phenomenon of a sudden change in the control quantity of the
system, it is necessary to restrict the control increment in each sampling period, so the
above formula of this paper is converted and deformed:

Note: ζ =, substitute into the above formula to obtain a new state space equation:{
ζ(k + 1) = Ãkζ(k) + B̃kΔu(k)

y(k) = C̃kξ(k)
(33)

In the formula,

Ãk =

[
Ak Bk

03×4 I2

]
(34)

B̃k =

[
Bk
I2

]
(35)
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C̃k =

[
0 0 1 0 0 0
0 0 0 1 0 0

]
(36)

The optimization objective function of the path tracking and torque distribution
controller is expressed as:

J =
Np

∑
i=1

‖y(k + i)− yre f (k + i)‖2
Q +

Nc−1

∑
i=1

‖Δu(k + i)‖2
R (37)

where yref is obtained by the path planning layer; Q and R are the trajectory tracking error
weight matrix and the control amount increment weight matrix, respectively; Np and Nc
are the prediction time domain and the control time domain, respectively. Some parameter
settings in model predictive control are shown in Table 1.

Table 1. Part of the parameter settings of the controller.

Parameter Name Value

Nc 8
Np 25

Δumin −0.02
Δumax 0.2
aymin −0.25 g
aymax 0.25 g

Q [2000 0; 0 2000]
R [3000 0; 0 1]

3.3. Torque Distribution Controller Design

Torque distribution strategy has a great impact on vehicle lateral stability. Firstly, the
additional yaw moment ΔMz output by the MPC controller is used to calculate the total
demand torque Tall. Then using the proportion of the vertical load, calculates the torque of
the four wheels. On the premise of ensuring lateral stability, the flexible torque distribution
is realized.

The additional yaw moment ΔMz and the four-wheel torque should satisfy the follow-
ing relationship:

ΔMz =
b

2R

[
(TFr − TFl) cos δ f + (TRr − TRl)

]
(38)

where R is the wheel radius, b is the wheel track, and TFl, TFr, TRl and TRr are the torques of
the left front wheel, the right front wheel, the left rear wheel and the right rear wheel, respectively.

Fz = Fz,Fl + Fz,Fr + Fz,Rl + Fz,Rr (39)

while: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
k1 =

Fz,Fl
Fz

k2 =
Fz,Fr

Fz

k3 =
Fz,Rl

Fz

k4 =
Fz,Rr

Fz

(40)

where Fz,Fl, Fz,Fr, Fz,Rl, Fz,Rr are the vertical loads of the left front wheel, the right front
wheel, the left rear wheel and the right rear wheel, respectively. Force, k1, k2, k3, k4 are the
proportional coefficients of the four-wheel vertical force and the total vertical force.

According to Equations (37)–(39), the total demand torque Tall and the distributed
four-wheel torques TFl, TFr, TRl, TRr can be obtained:

Tall =
ΔMz · 2R

d ·
[
(k2 − k1) cos δ f + (k4 − k3)

] (41)
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⎧⎪⎪⎨⎪⎪⎩
TFl = k1Tall
TFr = k2Tall
TRl = k3Tall
TRr = k4Tall

(42)

The solution of the final path tracking and torque distribution controller can be ex-
pressed as: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minZ =
Np

∑
i=1

‖y(k + i)− yre f (k + i)‖2
Q +

Nc−1
∑

i=1
‖Δu(k + i)‖2

R

s.t. ζ(k + 1) = Ãkζ(k) + B̃kΔu(k)
Δumin ≤ Δu(k + i) ≤ Δumax
umin ≤ u(k + i) ≤ umax
ymin ≤ y(k + i) ≤ ymax
ϕmin ≤ ϕ(k + i) ≤ ϕmax

(43)

The control quantity at time k + 1 can be expressed by the control quantity at time k
plus the control increment at time k:

u(k + 1) = u(k) + Δu(k) (44)

4. Simulation Analysis and Verification

The C-class vehicle model is adopted in Carsim. PD18 in-wheel motor is adopted
in the motor model. According to the characteristics of the distributed drive vehicle, the
vehicle parameters are shown in Table 2.

Table 2. The vehicle model parameters.

Parameters Value

Vehicle sprung mass ms/kg 1743
Vehicle mass m/kg 1907
Moment of inertia Iz/

(
kg · m2) 3246.9

front wheelbase l f /m 1.33
rear wheelbase lr/m 1.81
The height of the center of mass above the ground h/m 0.781
Wheeltrack b/m 2.029
Lateral stiffness of front wheels Cc f /

(
N · rad−1

)
116,050

Lateral stiffness of rear wheels Ccr/
(

N · rad−1
)

104,590

4.1. Verification of Co-Simulation Platform

The initial speed of the vehicle is 60 km/h, the road adhesion coefficient μ = 0.8 and the
maximum value of LTR is set at 0.1. The simulation results are shown in Figures 6 and 7.

It can be seen from Figure 5 that the controller can accurately track the reference path.
The tracking error of the yaw angle is small, and the lateral acceleration appears slightly
jittered between 0 and 1 s, but the value of the lateral acceleration is maintained throughout
the process. Within a reasonable range, the front wheel corners shake slightly at 0 s to 1 s
and 6 s to 7 s, but the changes in the corners are relatively gentle, and the corner values do
not exceed the specified value. It can be concluded that the control effect of the controller is
good and can meet the needs of vehicle obstacle avoidance.
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Figure 6. Co-simulation results. (a) Path tracking. (b) Yaw angle tracking. (c) Lateral acceleration.
(d) Front-wheel turning angle.

Figure 7. Changes in LTR value.

It can be seen from Figure 6 that the value of LTR is always in a small range during the
entire obstacle avoidance process, which verifies the effectiveness of the set obstacle avoid-
ance path and meets the requirements of anti-rollover in the obstacle avoidance process.

4.2. Simulation of Tracking Control Performance

The stability and robustness of the designed path tracking and torque distribution
controller are verified by the simulation of different road adhesion coefficient conditions.
Select high adhesion pavement coefficient μ = 0.8, low adhesion pavement coefficient
μ = 0.2, μ = 0.1. The specific simulation results are shown in Figures 7 and 8.

It can be seen from Figure 8a–d that the tracking control effect of the controller is
excellent when the high adhesion coefficient road surface μ = 0.8. The effect is slightly
decreased when the low adhesion coefficient road surface μ = 0.2, and the tracking control
error is slightly increased. The changes in lateral acceleration and front wheel angle are
relatively gentle under both conditions. When μ = 0.1, the vehicle deviates greatly from the
planned path and the planned yaw angle. The lateral acceleration and front wheel angle
also produce a lot of jitter. This is because the road adhesion coefficient is too low to the
adhesion limit. Under this condition, the controller cannot perform tracking control.
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Figure 8. Simulation comparison under different road adhesion coefficient conditions. (a) Path
tracking. (b) Yaw tracking. (c) Front-wheel angle. (d) Lateral acceleration.

It can be seen from Figure 9 that when μ = 0.8 and μ = 0.2, the vertical force changes
of the wheels are relatively gentle, which meets the requirements of stable driving of the
vehicle in the process of obstacle avoidance. When μ = 0.1, the tires are not sufficient
to provide the vehicle with steady longitudinal and lateral force. At 2.5 s and 4.7 s,
there is a large jump, which can no longer meet the stability requirements of the vehicle
during driving.

Figure 9. Comparison of vertical forces on wheels. (a) vertical force of left wheel; (b) vertical force of
right wheel.

Figure 10a–d shows that when μ = 0.8, the torque distribution of each wheel meets
the requirements of this paper. When μ = 0.2, the torque of the left front wheel begins to
increase after 1 s and reaches a peak at 1.5~3.5 s, the maximum value is 107 N·m. The torque
starts to decrease continuously at 3.5~5 s and 5~5.5 s. It reaches the reverse maximum
value of 116 N·m and then changes to 0 N·m. The torque changes of the remaining wheels
are roughly the same as the torque changes of the left front wheel, so this conclusion
description will not be repeated. It can be seen that under this working condition, the
controller has a good torque distribution effect. When μ = 0.1, the torque of each wheel
drops rapidly to about −100 N·m in 2 s, and the controller cannot continue to distribute
the torque normally.
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Figure 10. Comparison of torque distribution among wheels. (a) Torque comparison of left front
wheel. (b) Torque comparison of left rear wheel. (c) Torque comparison of right front wheel.
(d) Torque comparison of right rear wheel.

From the analysis of Figures 9 and 10, it can be seen that the controller designed in
this paper can still control the vehicle to drive according to the correct planned path under
the condition of low road adhesion coefficient μ = 0.2 and carry out reasonable torque
distribution, which verifies the path. The tracking controller has good robustness. When
μ = 0.1, the vehicle has already slipped, and the path tracking control can not be realized.

5. Conclusions

(1) Sixth-order polynomial for obstacle avoidance path planning is presented. Through
the simulation results, it is verified that the planned path can be accurately tracked,
and the LTR values are always within the safe range. The vehicle has no risk of rollover.
The obstacle avoidance path and tracking controller in this paper can effectively meet
the requirements of safe obstacle avoidance.

(2) In this paper, path planning, path tracking and torque distribution are combined to
achieve safe obstacle avoidance through the tracking control of the obstacle avoidance
path. The path-tracking controller not only realizes the intelligent obstacle avoidance
process of unmanned vehicles but also combines it with distributed vehicles. The
safety and stability are improved by the torque distribution strategy in the obstacle
avoidance process compared with traditional vehicles. Simultaneously, simulations
are carried out under different road adhesion coefficient conditions, and the simulation
results show that the vehicle can still perform safe and stable automatic obstacle
avoidance under the conditions of road adhesion coefficient μ = 0.2, indicating that
the controller has good robustness.

This paper provides an idea for the obstacle avoidance path tracking control of dis-
tributed drive electric vehicles. In the follow-up research work, the torque distribution
controller can be improved, and better torque distribution and anti-skid control can be
added to the original design scheme. The control strategy can be realized under the condi-
tion of a lower road adhesion coefficient. The real vehicle test link is added to verify the
effectiveness of the control strategy in this paper.
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Abstract: As the bottom layer of the autonomous vehicle, path tracking control is a crucial element
that provides accurate control command to the X-by-wire chassis and guarantees the vehicle safety. To
overcome the deterioration of control performance for autonomous vehicle path-tracking controllers
caused by modeling errors and parameter perturbation, an adaptive robust control framework is
proposed in this paper. Firstly, the 2-DOF vehicle dynamic model is established and the non-singular
fast terminal sliding mode control algorithm is adopted to formulate the control law. The unmeasured
model disturbance and parameter perturbation is regarded as the system uncertainty. To enhance the
control accuracy, the radial basis forward neural network is introduced to estimate such uncertainty
in real time. Then, the dynamic model of an active front steering system is established. The model
reference control algorithm is applied for the steering torque control considering model uncertainty
brought by the dissipation of manufacturing and mechanical wear. Finally, the Simulink–CarSim
co-simulation platform is used and the proposed control framework is validated in two test scenarios.
The simulation results demonstrate the proposed adaptive robust control algorithm has satisfactory
control performance and good robustness against the system uncertainty.

Keywords: autonomous vehicle; path tracking control; non-singular fast terminal sliding mode
control; model reference control

1. Introduction

Promoted by growing demands on safety, efficiency, and low carbon emissions, the
intelligent transportation system (ITS) has become one of the hottest fields of research in
recent years. As the most important part, autonomous vehicles play a crucial role for the
development of the ITS. Owing to the gradual reduction in sensor cost and the popularity
of drive-by-wire chassis technology, advanced driver assistant systems are equipped by
more and more vehicle manufacturers, such as autonomous emergency braking (AEB), lane-
keeping assistance (LKA), and adaptive cruise control (ACC) [1–3]. With the continuous
development of autonomous vehicles, it is estimated that one in ten cars will be fully
autonomous-driving by the year 2030.

The key technology of autonomous vehicles includes environment perception, deci-
sion making, trajectory planning, and chassis control. As the bottom layer of the typical
hierarchical architecture, vehicle chassis control is a vital part of autonomous vehicles,
which implements accurate, stable, and safe tracking of desired trajectory by applying
precise control instructions to actuators. As the fundamental function achieved by an
autonomous vehicle, vehicle chassis control has been extensively researched, especially
for vehicle trajectory tracking. Due to the complexity of the vehicle dynamic model with
the multi degrees of freedom, non-linear, and multi-dimensional coupling characteristics,
the simplicity of a vehicle dynamic model is widely adopted for model-based controller
design, including linear quadratic regulators (LQRs) and model predictive control (MPC)
to guarantee the real-time performance of the controller [4–6].
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Salepour et al. proposed an integrated controller via LQR, which established a tracking
optimization function and regulated the yaw moment [7]. Xu et al. considered the variation
of road curvature and introduced the multiple point preview into the LQR controller
that reduced the overshooting of the tracking error and smoothened the steering wheel
angle [8]. Ji et al. adopted the linear tire model and formulated the MPC-based path-
tracking controller with multiple constraints to guarantee the vehicle collision and stability
safety [9]. Based on the prediction of the cut path of the obstacle vehicle, Chen et al.
designed the model predictive tracking control with the dynamic prediction time domain,
which avoided the collision effectively while tracking the desired path [10]. Guo et al.
presented a dual-constraint vehicle collision avoidance control algorithm. The variable
step MPC is utilized for path tracking. In addition, road boundaries and obstacles were
integrated into the controller as constraints, which realized the vehicle obstacle avoidance
with high tracking accuracy [11]. Funk et al. proposed a cooperative control mode in which
two safety space models are defined in the process of vehicle collision avoidance to avoid
collision and ensure vehicle stability. One is the vehicle stability limit, the other is the
boundary of vehicle collision space. The variable predictive step MPC controller is used to
take over the driver’s operation in case of danger [12,13].

However, the tracking performance of the model-based controller directly depends
on the model accuracy. Most of the above control strategies adopted linear tire model
based on the fixed lateral cornering stiffness. Although they have achieved considerable
tracking effect in simulations and experimental tests, the deterioration of the tracking error
under extreme conditions such as low friction coefficient and emergency lane-changing is
inevitable. More seriously, the instability of the control system caused by model mismatch
may lead to critical traffic accidents. To alleviate the negative impact of the varying
cornering stiffness and acquire better system robustness, robust control is also widely
considered in vehicle trajectory tracking control.

Hu et al. considered the variation in the vehicle speed and tire-cornering stiffness un-
certainty during the trajectory tracking process, and established the time-varying parameter
model and designed the H∞ output feedback robust controller. The gain-scheduling matrix
is obtained by off-line optimization via genetic algorithm [14]. Guo et al. expanded the
dimension of the vehicle dynamic model according to the upper and lower bounds of the
uncertain parameters and designed the robust tracking controller to ensure the convergence
of tracking errors even in the severe working conditions in which tire-cornering stiffness
deviated far from its nominal value [15,16]. Chen et al. established the human–vehicle–
road closed-loop model based on TS fuzzy theory for vehicle lane-keeping. The H∞ robust
steering torque compensation controller was designed to reduce the lateral offset [17].
Though H∞ robust control guarantees the system robustness under a certain parameter
perturbation range, the control performance is conservative. Adaptive control is considered
as another suitable candidate. Akermi et al. proposed a path-tracking architecture with
the combination of sliding mode control, fuzzy logic, and perturbations observer. The
SMC gain is automatically adjusted by fuzzy organ [18]. Ao et al. developed the super
twisting sliding model control algorithm based on Lyapunov theory and applied back-
stepping technology. The system robustness is enhanced and the chattering phenomenon is
attenuated [19]. Sun et al. proposed the adaptive non-singular fast terminal sliding mode
(NFTSM) control for yaw stability control of a bus. Meanwhile, the robust least-squares
allocation method is adopted for braking force distribution of each tire, which significantly
improves the vehicle lateral stability under special driving conditions [20]. Most research
focuses on the variation in the vehicle tire-cornering stiffness under different working
conditions. Except for the vehicle state parameters, the system uncertainty of the vehicle
chassis subsystem also has an important impact on the control performance.

In this paper, a novel adaptive autonomous vehicle path-tracking controller is proposed.
The control framework is shown in Figure 1. The main contributions are listed as follows:

(1) The NFTSM controller is adopted for the vehicle lateral tracking control considering
the vehicle dynamic model uncertainty and parameter disturbance, which has a
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faster convergence rate and transient response than a linear sliding model controller.
In addition, the RBFNN is introduced to estimate and compensate the nonlinear
uncertainty terms in real time, which enhances the control performance;

(2) The steering system dynamics are established and the model reference adaptive
control (MRAC) is utilized for the steering torque control to overcome the model
uncertainty caused by the dissipation of production and system degradation

yeX Y ψ

δ

Tδfδ

y ye e e eψ ψ δ

f fδ δ

Figure 1. Control framework for vehicle path tracking.

The rest of the paper is outlined as follows. In Section 2, the vehicle dynamic model
is introduced for controller design. In Section 3, the path-tracking controller based on the
NFTSM is established with the radial basis forward neural network (RBFNN) estimator.
Then, the system stability and finite time convergence are analyzed. Section 4 provides
the MRAC for steering torque control. The CarSim–Simulink co-simulation results are
presented in Section 5 to verify the effectiveness and advantages of the proposed robust
path-tracking control algorithm. Finally, the conclusions are drawn in Section 6.

2. Vehicle Dynamic Modeling

In this paper, the 2-DOF bicycle tracking model is utilized for controller design [21,22],
which is shown in Figure 2.
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Figure 2. The 2-DOP bicycle-tracking model.
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To follow the reference trajectory, both lateral position error ey and orientation error eψ

should be eliminated. The relationship of ey and eψ can be expressed as Equation (1) based
on vehicle kinematic model: { .

ey = u sin eψ + v cos eψ
.
eψ =

.
ψ − .

ψd
, (1)

where u, v, ψ represent the vehicle longitudinal speed, lateral speed, and heading angle,
respectively. ψd is the desired heading angle. With the small angle assumption and
simplified linear tire model, the vehicle dynamic model is described as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

.
Y = u sin ψ + v cos ψ
.
v = 1

m

(
Fy f + Fyr

)
− ur

.
ψ = r
.
r = 1

Iz

(
l f Fy f − lrFyr

)
Fy f = Cf α f = Cf

(
δ − v+l f r

u

)
Fyr = Crαr = Cr

(
− v−lrr

u

)
, (2)

where
.

Y is change rate of the vehicle lateral position in the global coordinate. lf, lr represent
the distance from the center of gravity to the front and rear axle, respectively. r is the vehicle
yaw rate. Fyf, Fyr denote the lateral force of the front and rear axle, respectively, which can
be calculated by the cornering stiffness Cf, Cr and steering wheel angle δ.

Combining Equations (1) and (2), and defining the state vectors as X =
[
ey,

.
ey, eψ,

.
eψ

]T ,
the system input as U = δ and reference as D =

.
ψd, the nominal state equation of tracking

model can be written as: .
X = AX + BU + GD, (3)

where

A =

⎡⎢⎢⎢⎢⎣
0 1 0 0

0 −Cf +Cr
um

Cf +Cr
m −Cf l f −Crlr

um
0 0 0 1

0 −Cf l f −Crlr
Izu

Cf l f −Crlr
Iz

−Cf l2
f +Crl2

r
Iz

⎤⎥⎥⎥⎥⎦, B =

⎡⎢⎢⎢⎣
0

Cf
m
0

Cf l f
Iz

⎤⎥⎥⎥⎦, G =

⎡⎢⎢⎢⎢⎣
0

−Cf l f −Crlr
um − u

0

−Cf l2
f +Crl2

r
Izu

⎤⎥⎥⎥⎥⎦
3. Path-Tracking Control Algorithm

In this section, the NFTSM is designed to eliminate the lateral position error that
guarantees the vehicle accurately tracking the reference path. Meanwhile, the RBFNN is
adopted to estimate the model uncertainty terms.

3.1. Control Law Design

Based on the nominal tracking error model presented in Equation (3), the second-time
derivative of lateral position error could be written as:

..
ey = L + gδ, (4)

where

L = −
(Cf + Cr

um

)
.

Y −
(

u +
Cf l f − Crlr

um

)
.
ψ + u

( .
ψ − .

ψd

)
,

136



World Electr. Veh. J. 2023, 14, 11

However, the simplicity model cannot accurately describe the dynamic characteristics
of the vehicle in a complex environment. Moreover, the parametric perturbation and
disturbances also deteriorate model accuracy. Hence, Equation (4) is rewritten as:

..
ey = L + gδ + ς, (5)

where ς is the system uncertainty that cannot be directly measured.
To eliminate lateral position error, the sliding surface is defined as:

s = ey + p−1eα
y + q−1 .

eβ
y , (6)

which satisfies p > 0, q > 0, 1 < β < 2, β < α [20].
It can be seen that if |ey| ≤ 1, Equation (6) can be approximated by ignoring the high

order terms as:
s = ey + q−1 .

eβ
y , (7)

When system maintains on the sliding surface, Equation (7) is equivalent to:

.
ey = −q

1
β e

1
β , (8)

which obviously reveals that the convergence rate is better than the linear sliding surface
with the same parameters. If |ey| ≤ 1, the

.
ey can be approximated by:

.
ey = −

(
qp−1

) 1
β e

α
β
y , (9)

Based on the sliding surface in Equation (6), the control law can be conceived as:

δ = δeq + δsw − ς, (10)

where δeq is equivalent control term, δsw is switching control term, and ς is system uncer-
tainty. The equivalent control term is designed as:

δeq = − 1
g

(
L +

(
1 + p−1αeα−1

y

)
qβ−1 .

e2−β
y

)
, (11)

To improve the approach speed and system robustness, the fast terminal-switching
control term is proposed as:

δsw = −qβ−1
(

λ1s + λ2sθ1 + λ3sθ2
)

, (12)

where λ1, λ2, λ3 are positive constants.

3.2. RBFNN-Based System Uncertainty Estimator

Note that Equation (10) contains unmeasurable system uncertainty ς. Owing to the
simple structure, fast learning, and fine approximation ability, RBFNN is much more widely
used for complex dynamical system control than other neural networks such as multilayer
perception, which not only has less network parameters for tuning, but can also avoid
local minimum problems [23,24]. Here, the RBFNN is adopted to approximate the system
uncertainty ς.

Define the ideal output and the actual output of RBFNN as f * and f, which are ex-
pressed as:

f ∗ = w∗Tσ(x) + ε∗, (13)

f = wTσ(x) + ε, (14)
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where w = [w1, w2, . . . , wn]
T , ε = [ε1, ε2, . . . , εn]

T represent the estimation of optimal
network weight w* and bias ε*, respectively, n is number of nodes in the hidden layer of
network, and σ = [σ1, σ2, . . . , σn]

T is Gaussian radial basis function, expressed as:

σi(x) = exp

(
−‖x − ci‖2

2b2
i

)
, i = 1, 2, . . . , n, (15)

where x is input vectors of the network. ci and bi are network parameters of the ith radial
basis function. In this paper, the steering wheel angle δ and state vectors ey,

.
ey, eψ,

.
eψ are

chosen as the network input.
Usually, the switching gain is set as larger to suppress the approximation error of the

neural network. However, such a method is conservative, which leads to control chattering.
Here, an adaptive compensation term is introduced, reducing network estimation error.
The control law in Equation (10) can be redefined as:

δ = − f − 1
g

(
L +

(
1 + p−1αeα−1

)
qβ−1 .

e2−β
)
− pβ−1

(
λ1s + λ2sθ1 + λ3sθ2

)
− ς, (16)

To guarantee that the actual output of network f adaptively approximates the real
one f * and weight of the neural network is bounded, the update law of weight and error
compensation term can be designed as:

.
w = Γwσsq−1βτ − Γwηwψs2w, (17)

.
ε = Γεsq−1βτ − Γεηεψs2ε, (18)

where Γw, ηw, Γε, ηε are positive constants and τ =
.
eα−1

> 0.
Note that the network weight w and bias ε are updated iteratively online at each

sampling time via Equations (17) and (18). The detailed structure of the RBFNN-based
NFTSM control algorithm is shown in Figure 3.

x

σσnσ −nσ

w

y ye e e eψ ψ

δs

s

Figure 3. The structure of RBFNN-based NFTSM control algorithm.

3.3. System Performance Analysis

Next, the system stability and finite time control convergence are proven to illustrate
the satisfactory system performance of the proposed control algorithm.
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3.3.1. System Stability

Theorem 1. For the path-tracking system expressed as Equation (3), the closed-loop system is
global asymptotically stable and the weight and error compensation term of the network are bounded
by choosing the control law as Equation (16) and adaptive update law as Equations (17) and (18).

Proof of Theorem 1. Define the Lyapunov function as:

V1 =
1
2

(
sTs + tr

(
ŵTΓ−1

w ŵ
)
+ ε̂TΓ−1

w ε̂
)

, (19)

where ŵ, ε̂ denote the error between estimation and actual value of network weight and
approximation error, represented as ŵ = w∗ −w and ε̂ = ε∗ − ε, respectively. Differentiating
Equation (19), we obtain:

.
V1 = sT .

s − tr
(

ŵTΓ−1
w

.
w
)
− ε̂TΓ−1

w
.
ε, (20)

Substitute Equations (6) and (16)–(18) into (20):

.
V1 = sT

{
q−1β

.
eβ−1

[
f̂ − qβ−1(λ1s + λ2sθ1 + λ3sθ2

)− ε
]}

−tr
(

ŵTΓ−1
w

.
w
)
− ε̂TΓ−1

w
.
ε

= sq−1βψε̂ − sψλ1s − sψλ2sθ1 − sψλ3sθ2 − tr
(
ŵTσsq−1βψ

)
+ tr

(
ηwψs2ŵTw

)− ε̂Tεq−1βψ + ηεψs2 ε̂Tε

= −ψλ1s2 − ψλ2sθ1+1 − ψλ3sθ2+1 + tr
(
ηwψs2ŵTw

)
+ ηεψs2 ε̂Tε

(21)

where f̂ = f ∗ − f . Since f is bounded, w*, ε* satisfies ‖w*‖ ≤ wmax and |ε*| ≤ εmax. Based
on the F-norm properties [25], we obtain:

.
V1 ≤ −ψλ1s2 − ψλ2sθ1+1 − ψλ3sθ2+1 − ηψs2

(
‖ŵ‖ − wmax

2

)2
+ ηψs2 wmax

4
− ηψs2

(
‖ε̂‖ − εmax

2

)2
+ ηψs2 εmax

4
, (22)

For Equation (22), if ‖ŵ‖ ≥ wmax and |ε̂| ≥ εmax, it is obvious that
.

V ≤ 0. The closed
system is asymptotically stable and ‖ŵ‖, |ε̂| finally converge to wmax and εmax, respectively.

If |s| ≥ 1, Equation (22) can be further expressed as follows based on sθ1+1 ≥ s2:

.
V1 ≤ −

(
λ1 + λ2 − ηw2

max + ηε2
max

4

)
ψs2, (23)

Here, the
.

V1 ≤ 0 can be guaranteed only if the following inequality is satisfied:

λ1 + λ2 ≥
(

ηw2
max + ηε2

max

)
/4, (24)

Similarly, if |s| < 1,
.

V1 ≤ 0 can be guaranteed under the condition that λ1 + λ3 ≥(
ηw2

max + ηε2
max

)
/4.

In conclusion, by choosing the reasonable λ1, λ2, λ3, Equation (22) demonstrates that
the closed system retains asymptotic stability. When ‖s‖ → ∞ , ‖ŵ‖ → ∞ , or ‖ε̂‖ → ∞ ,
V1 → ∞ , the Lyapunov function is positive definite, which demonstrates that the closed-
loop system is globally asymptotically stable. �

3.3.2. Finite Time Convergence

Set another Lyapunov function as:

V2 =
1
2

sTs, (25)
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Differentiating Equation (25), we obtain:

.
V2 = sT

{
q−1β

.
eβ−1

[
f̂ − qβ−1(λ1s + λ2sθ1 + λ3sθ2

)− ε
]}

= sq−1βψŵTσ + sq−1βψε̂ − sψλ1s − sψλ2sθ1 − sψλ3sθ2
(26)

Note that the range of the Gaussian function is [0,1], so ‖σ‖ ≤ √
L, and ŵTσ is bounded

due to ‖ŵTσ‖ ≤ ‖ŵT‖‖σ‖. For the following inequalities:∣∣∣ŵTσ
∣∣∣ ≤ qβ−1Kσ|s|, (27)

|ε| ≤ qβ−1Kε|s|, (28)

they are tenable if the following inequalities hold:

‖s‖ ≥ ‖ŵTσ‖
qβ−1Kσ

= Δ1, (29)

‖s‖ ≥ ε

qβ−1Kε
= Δ2, (30)

where Kσ, Kε are positive constants. Based on Equations (29) and (30), we can obtain the
following inequality by setting ‖s‖ = Δ3 ≥ max(Δ1, Δ2) and substituting Equations (27)
and (28) into (26):

.
V ≤ sψKσs + sψKεs − sψλ1s − sψλ2sθ1 − sψλ3sθ2

≤ −ψ(λ1 − Kσ − Kε)s2 − ψλ3sθ2+1 (31)

For simplicity, set Θ1 = λ1 − Kσ − Kε, Θ2 = ψλ3. Once λ1 ≥ Kσ + Kε is guaranteed,
the finite convergence time Ts satisfies:

Ts ≤ 1
2Θ1(1 − v)

ln
2Θ1V2(0)1−v + 2v(1 − v)Θ2

2vΘ2
, (32)

where v = (θ2 + 1)/2 and V2(0) is the initial value of the Lyapunov function. Equation (32)
demonstrates that the sliding function s eventually converges in the field of Δ3. Meanwhile,
it can be perceived that the tracking performance is better with smaller Δ3, which can be
acquired by tuning parameters q and β.

4. MRAC for Active Steering System

This section provides a model reference adaptive control algorithm for steering torque
generation that tracks the desired steering wheel angle calculated by the path-tracking
controller. The feedback control law is designed via quadratic Lyapunov function to achieve
the faster rate of convergence and better tracking performance.

The structure of the active front wheel steering (AFS) system based on the steering-by-
wire technology is shown in Figure 4. The dynamic model of AFS can be described as a
second-order system:

J
..
δ f + b

.
δ f + Kδ f = Tδ, (33)

where δf is the eventual front steering angle. J, b, K represent the nominal moment of inertia,
damping coefficient, and angular stiffness of the steering system, respectively. Tδ is the
output torque of the steering motor.
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Figure 4. Active front wheel steering system.

By specifying ω2
n = K/J and 2ξωn = b/J, the state–space Equation can be established

with the measurable state vector xp =
[
δ f ,

.
δ f

]T
and input up = Tδ as:

.
xp = Apxp + Bpup, (34)

where

Ap =

[
0 1

−ω2
p −2ξpωp

]
, Bp =

[
0
1
J

]
,

The object of MRAC is to design the input up that the closed–loop system is bounded
to and the state vectors xp that track the reference signals. Here the second-order low-pass
filter is adopted to describe the reference model:

.
xm = Amxm + Bmδ, (35)

where

Am =

[
0 1

−ω2
r −2ξrωr

]
, Bm =

[
0
1

]
Here, xm =

[
δr,

.
δr

]T
is reference steering wheel angle and angular speed, and δ is the

steering wheel command calculate by the path-tracking controller. ωr and ξr are the cut-off
frequency and damping coefficient of the filter.

It is obvious that if the following control law is applied,

up = Ω∗
1 xp + Ω∗

2δ, (36)

the closed-loop system can be expressed as:

.
xp =

(
Ap + BpΩ∗

1
)
xp + BpΩ∗

2δ, (37)

If the Ω∗
1 and Ω∗

2 can be chosen as Ω∗
1 = B−1

p
(

Am − Ap
)
, Ω∗

2 = B−1
p Bm, the closed-loop

steering system is the same as the reference model, which implies that the state vector xp
asymptotically tracks xm for any bounded reference signal δ [26].

lim
t→∞

eδ = lim
(
xp(t)− xm(t)

)
t→∞

= 0, (38)

However, due to the gear abrasion, nonlinear characteristics of steering motor, and
other factors, the dynamic model of AFS has parameter perturbation including J, b, K, which
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is difficult to accurately identify in real time. On the other hand, the different longitudinal
tire forces between the left and right wheels, differential steering angle caused by scrub
radius, and tire self-aligning moment also bring uncertainty to the steering system. The
Ω∗

1 and Ω∗
2 cannot be obtained analytically in practice. Thus, the adaptive estimator has

to be carried out for online estimation. Define the Ω̂1, Ω̂2 as the estimation values of
Ω∗

1, Ω∗
2. The parameter error is represented as Ω̃1 = Ω̂1 − Ω∗

1, Ω̃2 = Ω̂2 − Ω∗
2. Combining

Equations (35)–(38), the tracking error satisfies the followed Equation:

.
eδ = Ameδ + BP

(
Ω̃1xp + Ω̃2δ

)
, (39)

Set the Lyapunov candidate as:

V3 = eT
δ Peδ + γ−1

x Ω̃
T
1 Ω̃1 + γ−1

δ Ω̃
T
2 Ω̃2, (40)

where γx, γδ are the parameters learning rate, then the time derivative of Lyapunov function
V3 is:

.
V3 = eT

δ P
(

Ameδ + BP

(
Ω̃1xp + Ω̃2δ

))
+
(

eT
δ AT

m + xT
p Ω̃

T
1 BT

p + δTΩ̃
T
2 BT

p

)
Pe + 2γ−1

x Ω̃
T
1

.
Ω̃1 + γ−1

δ Ω̃
T
2

.
Ω̃2, (41)

If the adaptive law is chosen as:

.
Ω̃1 =

.
Ω1 = −γxxpeT

δ PBP, (42)

.
Ω̃2 =

.
Ω2 = −γδδeT

δ PBP, (43)

The Equation (41) can be written as:

.
V3 = eT

δ

(
PAm + AT

mP
)

e + 2Ω̃
T
1

(
xpeT

δ PBp + γ−1
x

.
Ω̃1

)
+ 2Ω̃

T
2

(
δeT

δ PBp + γ−1
δ

.
Ω̃2

)
= −eT

δ Peδ ≤ 0, (44)

Therefore, the adaptive control scheme is established in case that Ω̃1, Ω̃2, eδ are
bounded and eδ(t) → 0 as t → ∞ .

5. Simulation Results and Discussion

Considering the certain risk for real vehicle experiments, especially for some extreme
conditions at high speed and a variety of road friction coefficients, the MATLAB/CarSim
co-simulation test was conducted in this work to verify the effectiveness and advantage
of the proposed control architecture. The simulation scenarios and high fidelity vehicle
dynamic model is established in CarSim and the controller is developed via Simulink.

In this section, two typical test scenarios including double-lane change maneuver and
slalom-like maneuver are carried out to evaluate the control performance of the adaptive
robust control. These two scenarios can obviously reflect the vehicle stability and system
response in the process of high-speed obstacle avoidance and continuous steering, which
are widely adopted for vehicle lateral stability evaluation.

5.1. Double-Lane Change (DLC) Maneuver

This test scenario simulates the vehicle emergency obstacle avoidance behavior at high
speed. The vehicle longitudinal speed is kept at 90 km/h and the road friction coefficient is
set as 0.5. The front and rear tire-cornering stiffness variation are regarded as the model
uncertainty, which is set as only 60% of the nominal value. The tracking performance of
two controllers is compared here. One is the proposed NFTSM controller and the other is
the convention sliding mode control with linear sliding surface controller. The simulation
results are shown in Figure 5.
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(a) (b) 

 
(c) (d) 

Figure 5. The simulation results for scenario 1: (a) Global vehicle trajectory; (b)Steering wheel angle;
(c) Lateral position error; (d) Orientation error.

Figure 5a–d illustrate the global vehicle trajectory, steering wheel angle, lateral position
tracking error, and orientation error, respectively. From Figure 5a, it can be seen that both
controllers accomplish the DLC maneuver. However, due to the high initial speed, poor
road friction condition, and the perturbation of the tire-cornering stiffness, they fail to
follow the reference path accurately. Due to the attenuation of the tire-cornering stiffness,
the steering angle calculated based on the nominal dynamic model cannot generate the
corresponding lateral force. Therefore, the conventional sliding mode controller has a
relatively large deviation when the vehicle changes to the adjacent lane and switches back
to the main lane because of the insufficient system input response. As shown in Figure 5b,
the proposed adaptive controller generates larger steering angle during the lane-change
process. The adaptive sliding mode controller identifies the parameters perturbation of the
system through the RBFNN and gives the controller a certain amount of compensation.
Thus, the path of the adaptive sliding mode control strategy is smoother in the tracking
process and the offset of the reference path is smaller. Figure 5c,d reveal that the maximum
lateral position error and orientation error of the conventional sliding mode control are
0.48 m and 0.053 rad, respectively, which are only 0.43 m and 0.046 rad, respectively, for the
RBFNN-based NFTSM controller. The tracking error is reduced by about 10%. Therefore, it
can be demonstrated that the adaptive control algorithm proposed in this paper has higher
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path tracking accuracy. It also has better robustness, especially when system uncertainty or
parameter perturbation occur under complex working conditions.

To further illustrate the advantage of the proposed controller, two other commonly used
controllers are introduced for comparison as MPC and H∞ robust control. Here, the tracking
performance is compared under two conditions. One is when the control system is healthy (with-
out any parameter perturbation or external disturbance) and the other one has tire-cornering
stiffness variation, as stated above. The simulation results are shown in Figure 6.

 
(a) (b) 

 
(c) (d) 

Figure 6. The comparison for three controllers: (a) Global vehicle trajectory with healthy system;
(b) Lateral position error with healthy system; (c) Global vehicle trajectory with parameter perturba-
tion; (d) Lateral position error with parameter perturbation.

The MPC is designed with a nominal vehicle dynamic model. Thus, it has the best
tracking performance when the control system is totally healthy. The maximum lateral
position error of MPC is only 0.17 m. On the contrary, the feedback gain matrix of the
H∞ controller is regulated by solving linear matrix inequalities considering the potential
system uncertainty, which obtains a wide range of robustness by sacrificing certain control
accuracy. The tracking error is largest when system is healthy, which reaches 0.31 m,
although the tracking performance of the proposed NFTSM control is inferior to MPC. Its
maximum lateral position error is 0.18 m, only about 7% worse than MPC. However, when
parameter perturbation occurs, MPC no longer generates the optimal steering command.
The tracking performance becomes the worst among these three controllers, and has the
largest tracking error. In contrast, the H∞ controller and NFTSM controller have better
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robustness against the tire-cornering stiffness variation. The proposed NFTSM controller,
in particular, modifies the control law in real time by estimating system uncertainty online,
which significantly reduces the tracking error compared with the fixed control gain of the
H∞ controller. Hence, compared with MPC and the H∞ controller, the proposed control
algorithm has better adaptability and a more balanced tracking performance in complex
working conditions.

5.2. Slalom-like Maneuver

In this test scenario, the reference path is generated via continuous sinusoidal signal,
which simulates the continuous obstacle avoidance maneuver. The initial vehicle speed
is 80 km/h and the road friction coefficient is set as 0.85. This scenario mainly tests the
system robustness and tracking accuracy under the condition that the AFS performance
deteriorates. Thus, the damping coefficient and angular stiffness of the steering system
are set as 50% higher than nominal value and the vehicle tire-cornering stiffness is still
set as 60% of the nominal value. Similarly, to illustrate the advantage of the proposed
control algorithm, another controller without MRAC is introduced here as the comparison.
It has the same upper NFTSM controller but the steering torque is directly calculated by
Equation (33) based on the nominal moment of inertia, damping coefficient, and angular
stiffness of the steering system. The detailed simulation results are shown in Figure 7.

 
(a) (b) 

 
(c) (d) 

Figure 7. The simulation results for scenario 2: (a) Global vehicle trajectory; (b) Steering wheel angle;
(c) Lateral position error; (d) Orientation error.
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Figure 7a–d illustrate the global vehicle trajectory, steering wheel angle, lateral position
tracking error, and orientation error, respectively. Due to the increase in the damping
coefficient and angular stiffness of the steering system dynamics model, the system response
speed decreases. The steering torque calculated by the controller without MRAC is based
on the nominal model parameters, which is unable to generate enough steering wheel angle
in time for the real steering system. It can be seen from Figure 7a,b that the response speed
of steering wheel angle is slow, and there is a large time delay between the actual vehicle
trajectory and the reference path. In addition, during the process of continuous steering for
obstacle avoidance, the phenomenon of time delay is further amplified. On the contrary,
the proposed controller in the paper adjusts the steering torque by comparing the response
error between the actual steering system and reference model, which has a faster response
speed and higher tracking accuracy. From Figure 7c,d, it is clear that the maximum lateral
position error and orientation error of the control algorithm without MRAC are 2.1 m and
0.22 rad, respectively, which are only 1.2 m and 0.14 rad, respectively, for the proposed
controller in this paper.

6. Conclusions

This paper proposed a cascade adaptive robust control architecture that overcomes
the influence of multi-dimensional system uncertainty on control performance. The higher-
level controller regarded the dynamic model error and parameter disturbance as the system
uncertainty and adopted the NFTSM control algorithm with RBFNN estimator to generate
the steering wheel angle command. The lower-level controller applied MRAC, considering
the uncertainty of stiffness and damping coefficient in AFS to realize the accurate steering
torque control. The system stability and finite time convergence are proven by choosing
the appropriate Lyapunov function. Two simulation scenarios are carried out to validate
the feasibility of the proposed control architecture. The simulation results reveal that the
RBFNN-based NFTSM has satisfactory tracking performance under different road friction
coefficients and has good robustness against varying tire-cornering stiffness. Meanwhile, it
has better control accuracy and a faster convergence rate compared with the conventional
sliding mode controller. On the other hand, the model reference adaptive steering torque
controller could generate the accurate steering torque that follows the steering wheel angle
command with the variation in the steering model parameters or under the circumstance
that system performance deteriorates.
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Abstract: This paper provides a multi-agent coordinated control system to improve the real-time
performance of intelligent vehicle active collision avoidance. At first, the functions and characteristics
of longitudinal and lateral collision avoidance agents are analyzed, which are the main components of
the multi-agent. Then, a coordinated solution mechanism of an intelligent vehicle collision avoidance
system is established based on hierarchical control and blackboard model methods to provide a
reasonable way to avoid collision in complex situations. The multi-agent coordinated control system
can handle the conflict between the decisions of different agents according to the rules. Comparing
with existing control strategies, the proposed system can realize multi decisions and planning at the
same time; thus, it will reduce the operation time lag during active collision avoidance. Additionally,
fuzzy sliding mode control theory is introduced to guarantee accurate path tracking in lateral collision
avoidance. Finally, co-simulation of Carsim and Simulink are taken, and the results show that the
real-time behavior of intelligent vehicle collision avoidance can be improved by 25% through the
system proposed.

Keywords: multi-agent coordinated control system; active collision avoidance; blackboard model;
real-time

1. Introduction

With the development of the intelligent vehicle, studies on the active collision avoid-
ance system of intelligent vehicles have attracted more and more attention. Based on the
perception of the driving environment, the intelligent vehicle can avoid collision risk by
braking or steering.

To improve the performance of intelligent vehicles’ active collision avoidance system,
researchers have carried out effective research on longitudinal and lateral avoidance. In
the aspect of longitudinal collision avoidance, Li Suhua et al. [1] proposed a longitudinal
collision avoidance method for electric vehicles, establishing a safe distance model with
consideration of road adhesion coefficient and driving intention. Li Shifu et al. [2] made a
theoretical derivation of the critical distance of the warning and the critical distance based
on the braking process and obtained a safe distance model considering the emergency of
the preceding vehicle. Considering the characteristics of vehicle dynamics and synthesizing
the influence of road environment and vehicle factors, an RV hierarchical safety distance
model was established in the paper [3]. Hou Dezao et al. [4] designed the upper controller
based on the optimal tracking theory and driver priority principle.
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In the aspect of lateral collision avoidance, Boada et al. [5] designed an emergency
steering path tracking controller with a fuzzy control logic method based on vehicle yaw
rate. Soudbakhsh et al. [6] constructed the state equation with actual lateral acceleration,
ideal lateral acceleration, yaw angle, and ideal yaw angle error. Li Wei et al. [7] proposed a
lane change path planning method with an RBF neural network in which the boundary
conditions of the path planning algorithm and path change based on polynomials are
designed. This method has advantages in complex road conditions. Papers [8,9] studied
the braking and steering modes based on the analysis of the vehicle braking process to
design a longitudinal safety distance model under various working conditions and braking
controllers [8]. In paper [9], the longitudinal and lateral safety distance models were also
designed with different collision avoidance methods by analyzing the state of the preceding
vehicle. Paper [10] introduced the advantages and shortcomings of the traditional APF
method, solving the problem of excessive initial attractive force and the intelligent vehicle
cannot reach the target by improving the potential field functions.

It can be seen from the above results that most active collision avoidance systems
currently focus on a single collision avoidance method, and there is no reasonable integra-
tion of longitudinal and lateral collision avoidance. With the increasingly complex driving
conditions of smart cars, the independent active collision avoidance method is difficult to
meet the driving requirements of intelligent cars due to its poor flexibility. Therefore, under
the premise of ensuring the timeliness of active safety control, it is of great significance
to design a comprehensive coordinated control strategy for longitudinal collision avoid-
ance and lateral collision avoidance. At present, most researchers believe that an agent
is a computing entity with a life cycle that exists in a specific environment and has the
characteristics of real-time perception of the surrounding environment and the ability to
operate independently and affect the environment [11,12]. A single agent mainly has four
basic characteristics: autonomy, sociality, responsiveness, and initiative. A Multi-Agent
System (MAS, Multi-Agent System) is composed of multiple single agents. Through the
coordinated control of each agent, its problem-solving ability is far beyond the ability of a
single agent, so the multi-agent system is widely used in the coordinated control of complex
systems [13,14]. A novel hybrid artificial intelligence-layered multi-agent architecture was
presented in the paper [15] to help the digital transformation of energy and the smart grid.

In this paper, an intelligent vehicle active collision avoidance method based on a multi-
agent coordinated control system is designed. The longitudinal and the lateral collision
avoidance agents are designed based on the blackboard model, to provide reasonable
collision avoidance way under different driving conditions. This proposed system can
realize the multi-parallel operation of decision and planning at the same time. The lateral
and the longitudinal collision avoidance agent can provide collision avoidance planning
simultaneously, which can achieve the integration of collision avoidance decisions and
planning. It will help reduce the time lag caused by the collision avoidance decision-
planning process and improve real-time performance.

The rest of this paper is organized as follows. In Section 2, the main agents of the
intelligent vehicle are produced. In Section 3, the blackboard model is introduced to
coordinated control of each agent, and the real-time performance of the multi-agent active
collision avoidance system is evaluated through simulations in Section 4, followed by some
concluding remarks in Section 5.

2. Main Agents

Decision-making agents with lateral collision avoidance and longitudinal collision
avoidance are designed in this section to provide decisions for collision avoidance.
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2.1. Longitudinal Collision Avoidance Agent

The safety distance model [16] of the longitudinal collision avoidance agent is designed
as Equations (1) and (2):

Sl =
Vr

2

2ar−max
+ Vr(tdetect1 + tdecision1 + texcution1) + d0 (1)

ar−max =

⎧⎪⎨⎪⎩
μgcosα − gsinα (downhill)
μg (zero slope)
μgcosα + gsinα (uphill)

(2)

where tdetect1 is the environment perception time, tdecision1 is the decision-planning time
of the longitudinal collision avoidance agent, texcution1 is the mechanical delay time, Vr is
the vehicle speed, ar−max is the maximum braking deceleration of the vehicle, d0 is the
minimum safety threshold between vehicles, μ is the coefficient of road adhesion, g is the
acceleration of gravity and α is the vehicle slope angle.

A longitudinal collision avoidance agent is designed to get a safe distance from
obstacles in front of the intelligent vehicle. Brake pressure will be calculated if a smaller
distance between the obstacle and the intelligent vehicle than the safety distance is detected.

The analysis of vehicle forces during braking is made to get the brake pressure and
the diagram is shown in Figure 1.

Figure 1. Diagram of vehicle force during braking.

The force balance equation of the vehicle is shown in Equation (3):

mades = Ft − FXb − ∑ F(V r) (3)

Fw is the air resistance force, Ts is the driving torque, Tbf and Tbr are the braking torque
of the front and rear wheels, Ff and Fr are the ground friction of the ground acting on the
front and rear wheels, Wf and Wr are the vertical force of the front and rear wheels, Ft is
the driving force, FXb is the braking force, and ∑ F(V r) is the total resistance.

Air resistance and ground friction are shown in Equation (4):

∑ F(V r) =
1
2

CD AaρvVr
2 + mgf (4)

Desired braking pressure can be calculated based on Equations (3) and (4), which is
shown in Equation (5):

Pdes =
|ma des +

1
2 CD AaρvVr

2 + mgf |
Kb

(5)

Pdes is the desired braking pressure and Kb is the braking pressure ratio.
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Most important of all, the braking force is represented approximately as a linear
function of oil pressure in the brake system, as shown in Equation (6):

Tbf + Tbr

rr
= KbPb (6)

rr is the rolling radius of wheels, and Pb is the pressure of the brake pipe.

2.2. Lateral Collision Avoidance Agent

A fifth-order polynomial lane-changing model is used in this paper to present a lateral
collision avoidance agent [17]:

y(x) = ye[10(
x
xe
)3 − 15(

x
xe
)4 + 6(

x
xe
)5] (7)

ye is the lateral displacement for the vehicle to avoid a collision.
Longitudinal speed Vr is considered constant during the lane-changing and the rela-

tionship between trajectory and time can be shown as Equation (8):

y(t) = ye[10(
t
te
)3 − 15(

t
te
)4 + 6(

t
te
)5] (8)

te is the lane-changing time, xe = Vrte.
The equation of lateral acceleration in the course of vehicle lane change can be obtained

based on Equation (8), which is shown in Equation (9):

..
y(t) = ay(t) =

60ye
t5
e

[2t 3 − 3tet2 + t2
e t] (9)

The maximum lateral acceleration during the process can be calculated by Equation (10):

aymax =
10
√

3ye

3t2
e

(10)

It can be seen from Equation (10) that the maximum lateral acceleration during the
lane-changing process is related to the lane-changing time te and the lateral distance ye.
The minimum lane-changing time of the intelligent vehicle on dry asphalt pavement and
wet asphalt pavement is set to 1.68 s and 2.1 s, and the maximum lateral accelerations are
7.67 m/s2 and 4.91 m/s2.

As shown in Figure 2, to avoid collision with the front obstacle, the lateral displacement
of the right-corner vehicle should be greater than the width of the obstacle Wb [18].

 

Figure 2. Intelligent vehicle lateral collision avoidance route.
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Assuming that there is no vehicle in adjacent lanes. The lateral displacement of point A
should meet the requirement of Equation (11) based on the path provided in Equation (11):

Wb = ye

[
10
(

tc

te

)3
−15

(
tc

te

)4
+ 6

(
tc

te

)5
]
−
(

Ws

2

)
(11)

where Ws is the vehicle width, tc is the collision time, Wb is the lateral distance between the
obstacle edge and the vehicle center.

The longitudinal displacement Sa of the vehicle can be calculated as Equation (12):

Sa = Vr(tc + tdetect2 + tdecision2 + texcution2) (12)

where tdetect2 is the perception delay, tdecision2 is the decision-planning time and texcution2 is
the steering mechanical delay.

The minimum longitudinal safety distance to accomplish horizontal change is shown
in Equation (13):

Sfmin = Sa + LOA − L + d0 (13)

The lateral collision avoidance agent is designed to calculate the desired steering wheel
angle to follow the preset collision avoidance trajectory. A fuzzy sliding mode control,
which has good robustness and real-time performance, is introduced to ensure the accuracy
of the path tracking of the vehicle during the lateral collision avoidance process.

The yaw rate and derivative of the sideslip angle based on the vehicle two DOF model
are shown in Equation (14) [19–21]:⎧⎨⎩

.
ω =

a2Cf + b2Cr
Izvr

ω +
aC f − bCr

Iz
β − aC f

Iz
δ

.
β = (

aC f − bCr

Mv2
r

−1)ω +
Cf + Cr

Mvr
β − Cf

Mvr
δ

(14)

β is the sideslip angle. vy is the lateral speed. M is the vehicle mass. ω is the yaw rate.
a and b are the front and rear wheelbase. Iz is the vehicle’s moment of inertia. Cf and Cr
represent the stiffness of the front and rear tires.

The vehicle yaw rate of the vehicle in this paper can be expressed as Equation (15):

.
ωr = a11ωr + a12β + b11u(t)

b11 =
aC f
Iz

a11 =
a2Cf + b2Cr

Izvr

a21 =
aC f − bCr

Mv2
r

− 1

(15)

The vehicle yaw rate is chosen as the controlled variable. The tracking error between
the yaw rate and the ideal yaw rate can be shown in Equation (16):

e = ωr − ωd (16)

The controller switching function is designed as Equation (17):

s = e + γ

t∫
0

e(τ)dτ (17)

where γ is the sliding surface gain.
The sliding mode control law is designed based on Equations (15)–(17), which is

shown in Equations (18) and (19):

u =
1

b11
[− f (ω r) + γ(ω r − ωd) + K(t)sgn(s)] (18)
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K(t) = −ksgn(s) k > 0 (19)

Control of front wheel angle can be expressed as Equation (20):

δ =
Iz

aCf

[
aCf − bCr

Iz
β +

a2Cf + b2Cr

IzVr
ωr − ωd + γ(

.
ωr − ωd)

]
(20)

The steering wheel angle can be obtained as Equation (21):

θs = δ ∗ iSW (21)

isw is the steering system ratio.

3. Multi-Agent Coordinated Control System Based on Blackboard Mode

Longitudinal and lateral collision avoidance agents are taken into consideration to
ensure the multi-agent coordinated control system deals with the traffic accident risk.
Additionally, global path planning agents, path tracking agents, and actuator control agents
are taken as fundamental agents in the system.

Each agent of a multi-agent coordinated control system can be carried out in its default
mode. Thus, the conflict problem in the driving process is generally classified into three
categories according to the cause: resource conflicts, target conflicts, and result conflicts [22].

As can be seen from Figure 3, conflicts between longitudinal and lateral collision
avoidance agents are easily issued. When front obstacles are detected by vehicle sensors,
safe distance will be calculated by the longitudinal collision avoidance agent and braking
force will be transmitted to the active braking agent. Correspondingly, steering control
signals will be transmitted to the active steering agent by the lateral collision avoidance
agent. Different solutions for front-distance avoidance may lead to the result of conflicts in
multi-agent systems.

Figure 3. Topology of multi-agent coordinated control system.

The blackboard model is used to solve result conflicts in this section [23], in which each
agent exchanges data and writes its solution on the blackboard. The model is composed
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of three basic components: blackboard, knowledge source, and control mechanism. The
internal coordination module manages the data on the blackboard in a unified manner.
When there is a collision avoidance decision conflict between the agents, the coordination
module can choose a reasonable collision avoidance method according to the internal rule
base. A multi-agent coordinated control system based on a blackboard model is shown
in Figure 4. As shown in Figure 4, the multi-agent active collision avoidance decision-
making system based on the blackboard model is divided into three layers: a planning
layer, decision and coordination layer, and execution control layer. Longitudinal and lateral
collision avoidance agents constitute the planning layer of the system, which also includes
the basic global path planning agent, path tracking agent, and actuator control agents.
They can be regarded as different knowledge sources, and each agent can interact with
the blackboard model to obtain information and complete a relatively independent and
complete problem-solving. In the decision and coordination layer, the blackboard module
is used to store the environmental information obtained by the environment perception
system of the intelligent vehicle and the solution results of each agent, and the internal
coordination module is used to manage the data on the blackboard in a unified way.
When encountering collision avoidance decision conflicts between agents, the coordination
module needs to choose a reasonable collision avoidance method according to the internal
rule base. The executive control layer includes the active braking control agent and the
active steering agent, which interacts with the blackboard model and finally, executes the
decision of the multi-agent collision avoidance control system.

Figure 4. Multi-agent coordinated control system based on blackboard model.

During the driving process, the information acquired by the environment perception
layer is uploaded to the blackboard in real time, and each agent obtains information by
interacting with the blackboard. When an obstacle appears on the default path, longitudinal
and lateral collision avoidance agents are activated. The brake pressure and steering wheel
angle are uploaded to the blackboard separately. If the two agents are activated at the
same time, a choice must be made by the coordinated control module according to the
actual situation.

Figure 5 shows the choice of active collision avoidance during an emergency in
different environments.
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Figure 5. The choice of active collision avoidance during an emergency in different environments:
(a) Dry asphalt pavement (μ = 0.8); (b) Wet asphalt pavement (μ = 0.5).

Longitudinal lateral collision avoidance agents are plotted in Figure 5a,b. The mini-
mum safety distance required for emergency longitudinal collision avoidance is related to
the square of the vehicle speed, and the minimum longitudinal safety distance required
for emergency lateral collision avoidance is related to the square of the vehicle speed.
When the vehicle speed is in the lower range, the collision avoidance distance required
for longitudinal collision avoidance is small. With the increase in speed, the collision
avoidance distance required for longitudinal collision avoidance increases rapidly, and the
longitudinal collision avoidance distance required for lateral collision avoidance begins to
be smaller than that for longitudinal collision avoidance. It can be seen that Db in area 1© is
greater than the longitudinal and lateral collision limit distance. In this case, the vehicle
faces no risk and the auxiliary braking mode is adopted. At this time, more attention should
be paid to the traffic efficiency and occupant comfort of the vehicle. The absolute value of
the vehicle deceleration is limited to 4 m/s2 or less.

When located in areas 2© and 4©, the maximum braking deceleration should be
adopted in this emergency condition to reduce the risk of traffic accidents.

When Db is located in area 3©, the speed of the vehicle is higher and the longitudinal
distance required for collision avoidance is large. So, a lane-changing strategy will be taken
to avoid a collision.

According to the analysis above, the decision and judgment process of the coordinated
module is shown as follows, which is designed to make sure the vehicle drives along the
planned path. When an obstacle ahead is detected by an intelligent vehicle, the distance
between the intelligent vehicle and the obstacle must be compared with the safe distance
of the limit collision distance of the longitudinal collision avoidance agent and the lateral
collision avoidance agent, firstly. If the distance Db is longer than the braking limit distance,
then it is according to the braking acceleration to judge whether to use auxiliary braking
mode or emergency braking mode. However, if the distance is shorter than the braking
distance and longer than the steering limit distance, which will use the steering collision
avoidance mode.

The active collision avoidance control strategy in this paper is shown in Figure 6a and
the collision avoidance control strategy is shown in Figure 6b. T1 is the planning time of
longitudinal collision avoidance, T2 is the decision time of collision avoidance way, T3 is
the planning time of lateral collision avoidance, T4 is the execution control time.
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Figure 6. Active collision avoidance system control method: (a) Distributed coordinated control
system; (b) Sequential control system.

As shown in Figure 6a, time consumption TD−Braking and TS−Brakingused during the
entire collision avoidance can be calculated as Equations (22) and (23):

TD−Braking = max{T1, T2} + T4 or TD−Steering = max{T2, T3} + T4 (22)

TS−Braking = T2 + T1 + T4 or TS−Steering = T2 + T3 + T4 (23)

As can be seen from Equations (22) and (23), the separation of the collision avoidance
decision and the collision avoidance planning will take more time.

The distributed multi-agent coordinated system based on the blackboard model per-
forms parallel operations. The lateral and longitudinal collision avoidance agents, respec-
tively, solve the steering wheel angle and brake pressure required for collision avoidance.
At the same time, the blackboard coordinated module selects the optimal collision avoid-
ance way according to the environmental information and can directly output the control
instruction to agents of the execution control layer. By rationally unifying the decision and
planning, the running time lag of the active collision avoidance system is reduced, and the
real-time behavior of the vehicle collision avoidance is effectively improved.

4. Simulation Analysis

To verify the real-time performance of the distributed coordinated multi-agent system
of the active collision avoidance proposed, the longitudinal collision avoidance agent,
the lateral collision avoidance agent, and the blackboard model were built in CarSim
and Simulink.

Some of the important vehicle parameters are given in Table 1. Most of them are
directly measured from a B-class vehicle.

Co-simulation results are compared with the Sequential control system collision avoid-
ance and the co-simulation model is shown in Figure 7.

Two different conditions are adopted to characterize the effectiveness of a multi-agent
coordinated control system and superiority in improving the real-time performance of
active collision avoidance. The vehicle that used the distributed coordinated multi-agent
control system of active collision avoidance based on the blackboard proposed in this paper
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is recorded as vehicle A and the vehicle that used the sequential control system of active
collision avoidance is recorded as vehicle B.

Table 1. Basic parameters of the vehicle.

Parameter Value Unit

Mass (m) 1274 kg
Distance from c.g.to front axle (a) 1.8 m
Distance from c.g.to rear axle (b) 1.31 m

Atmospheric density (ρ) 1.206 kg/m3

Frontal area (Aa) 1.6 m2

The rolling radius of wheels (rr) 0.31 m
Intelligent vehicle width (Ws) 1.695 m
Stiffness of the front tire (Cf ) 976.24 N/rad
Stiffness of the rear tire (Cr) 980.18 N/rad

Coefficient of air resistance (CD) 0.3 1
Inertia around the vertical shaft (Iz) 1523 kg·m2

Figure 7. Distributed multi-agent collision avoidance system simulation.

4.1. Simulation of the Longitudinal Collision Avoidance Agent

The vehicle speed is set as 36 km/h, and suddenly, there is an obstacle that falls 10 m
in front of the vehicle. The green dotted line in the figure is the moment when the obstacle
appears. At this time, Db is located in the area 4©. Simulation results are shown in Figure 8.

Results show that after detecting the obstacle, the vehicle selects braking to avoid a
collision. As can be seen from Figure 8c, the brake pressure output time of vehicle A is
0.13 s ahead of vehicle B. What is more, from Figure 8a,b, we can see that vehicle A is 3.12 m
away from the obstacle at 3.1 s when it stops, and vehicle B is 1.4 m away from the obstacle
at 3.18 s when it stops. In the face of sudden emergency conditions, the coordinated control
system adopted by vehicle A can make decisions and simultaneously conduct collision
avoidance planning to realize the integration of collision avoidance decision-making and
planning, so that vehicle A will provide safer control. So, the data from the simulation
experiments show that a multi-agent coordinated control system improves the real-time
performance of active collision avoidance, which has a shorter braking distance than the
sequential control system.
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Figure 8. Simulation of longitudinal collision avoidance: (a) Vehicle speed; (b) Distance between
vehicle and obstacle; (c) Brake pressure of the vehicles.

4.2. Simulation of the Lateral Collision Avoidance Agent

This simulation will be used to verify the performance of the multi-agent coordinated
control system at higher vehicle speeds. The vehicle runs at a constant speed along the
road at 80 km/h, and suddenly, there is an obstacle falling 30 m from the front as shown
in Figure 9a. The green dotted line in Figure 9a,b is the location and moment when the
obstacle appears. The relative distance between the lateral width of the obstacle and the
vehicle center of mass is 2 m. At this time, Db is in the area 3©. Simulation results are shown
in Figure 9.

Results show that when the obstacle appears, the vehicle selects steering to avoid
collision in this situation. The steering wheel angle output time of vehicle A is 0.14 s ahead
of vehicle B as shown in Figure 9b. The critical collision time is calculated to be 1.09 s, the
longitudinal displacement of vehicle A is 28.43 m, and the longitudinal displacement of
vehicle B is 31.54 m. At this time, vehicle B collided with the obstacle, and vehicle A still
has a certain distance from the obstacle. Figure 9a shows a close-up view of the collision
with vehicle B. The timeliness and effectiveness of vehicle A’s lane-changing collision
avoidance control have been verified, but its trajectory tracking performance has room for
improvement. Therefore, as shown in Figure 9c,d, the fuzzy sliding control is adopted to
ensure the good tracking performance of the vehicle on the lane-changing trajectory and
the lateral acceleration curve of the vehicle is also more gradual, which meets the stability
requirements of the vehicle. The fuzzy sliding control mainly acts on the turn-back stage
of the vehicle’s emergency steering. As can be seen from Figure 9, the lateral acceleration
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of the vehicle decreases significantly after the vehicle quickly escapes from the danger of
collision, which can ensure the stability of the vehicle and the comfort of the occupants.

Figure 9. Simulation of lateral collision avoidance: (a) Lane-changing track; (b) Steering wheel angle;
(c) Lane-changing track; (d) Lateral acceleration.

5. Conclusions

A multi-agent coordinated control system based on a blackboard model is proposed for
improving the real-time performance of an active collision avoidance system in this paper.
To do this, some agents, including a longitudinal collision avoidance agent and lateral
collision avoidance agent, are established, and all of them can support and cooperate under
the unified goal to produce reasonable control rules in coordination with the blackboard
model, which can select a reasonable collision avoidance method under different driving
conditions. In the process of active collision avoidance, the decision and planning are
simultaneously operated. At the same time as the decision and planning are completed,
underlying control instructions can be executed immediately, and the decision and planning
integration of the collision avoidance system is realized, which effectively reduces the time
lag during the process of active collision avoidance. The simulation results also indicate
that the proposed multi-agent active collision avoidance system can reduce the decision
and planning time, improving the real-time behavior of the intelligent vehicle.

The next step will further consider the state of the preceding vehicle. In terms of
emergency steering and collision avoidance, the next step will be to consider vehicles in
adjacent lanes to ensure that vehicles in adjacent lanes are not affected during the process
of changing lanes to avoid collisions. At the same time, a real vehicle test is arranged.
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Nomenclature

Symbol

tdetect1 (s) the environment perception time
tdecision1 (s) the decision-planning time of longitudinal collision avoidance agent
texcution1 (s) the mechanical delay time
Vr (km/h) the vehicle speed
ar−max (m/s2) the maximum braking deceleration of the vehicle
d0 (m) the minimum safety threshold
μ the coefficient of road adhesion
g (m/s2) the acceleration of gravity
α (rad) the vehicle slope angle.
Fw (N) the air resistance force
Ts (N·m) the driving torque
Tb f (N·m) the braking torque of the front wheels
Tbr (N·m) the braking torque of the rear wheels
Ff (N) the ground friction of the ground acting on the front wheels
Fr (N) the ground friction of the ground acting on the rear wheels
Wf (N) the vertical force of the front wheels
Wr (N) the vertical force of the rear wheels
Ft (N) the driving force
FXb (N) the braking force
∑ F(Vr) (N) the total resistance.
Pdes (Pa) the desired braking pressure
Kb the braking pressure ratio
rr (m) the rolling radius of wheels
Pb (Pa) the pressure of the brake pipe
ye (m) the lateral displacement for the vehicle to avoid collision
te (s) the lane-changing time
Ws (m) the vehicle width
tc (s) the collision time
Wb (m) the lateral distance
Sa (m) the longitudinal displacement
tdetect2 (s) the perception delay
tdecision2 (s) The decision-planning time
texcution2 (s) the steering mechanical delay
β (rad) sideslip angle
vy (km/h) the lateral speed
M (kg) the vehicle mass
ω (rad/s) the yaw rate
a and b (m) the front and rear wheel base
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Iz (kg·m2) the vehicle’s moment of inertia
Cf and Cr (N/rad) the stiffness of the front and rear tire
γ the sliding surface gain
iSW the steering system ratio
θs (rad) the steering wheel angle
T1 (s) the planning time of longitudinal collision avoidance
T2 (s) the decision time of collision avoidance way
T3 (s) the planning time of lateral collision avoidance
T4 (s) the execution control time
TD−Breaking (s) time consumption using distributed coordinated control system
TS−Breaking (s) time consumption using a sequential control system
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Abstract: This work presents an approach to improve the roll stability of distributed drive electric
vehicles (DDEV). The effect of the reaction torque from the in-wheel motor exerts additional roll
moment, which is different from traditional vehicles. The additional roll moment can be achieved
by active control of the wheel torque adjustment, which achieves a control effect similar to the
active suspension. The anti-roll control strategy of decoupling control of roll motion and yaw
motion are proposed. The direct yaw moment is calculated by the linear quadratic regulator (LQR)
algorithm while the additional rolling moment is calculated by the sliding mode variable structure.
For maneuvering rollover caused by excessive lateral acceleration, an anti-rollover control strategy is
designed based on differential braking. A fuzzy control theory is used to decide the yaw moment to
be compensated. The distribution method of the braking torque applied to the outer wheel alone, and
the lateral load transfer rate is the main evaluation index for simulation verification of typical working
conditions. The simulation results show that the proposed control strategy for DDEV is effective.

Keywords: distributed drive electric vehicles; additional roll moment; decoupling control; load
transfer rate

1. Introduction

In recent years, the problem of environmental pollution and energy shortage caused by
the massive use of fossil energy has become increasingly serious. The traditional automobile
belongs to the industry of high energy consumption and high pollution. Therefore, more
and more researchers and enterprises engaged in automobile related work focus on electric
vehicles. Distributed drive electric vehicles (DDEV) are one kind of electric vehicles, and
the research and development of its key technologies has always been the focus of many
automotive and industrial experts. Compared with traditional fuel vehicles, there is no
transmission system to transmit power in the distributed drive electric vehicle (DDEV). It
not only enables the vehicle to have more controllable degrees of freedom, but also greatly
improves its efficiency and response speed, which helps to solve the sustainability problems
of energy and vehicles. In [1] a study using bibliometric analysis, analyses sustainable
mobility in relation to economic returns, environmental benefits and societal advantages.

The rollover accidents caused by the loss of the stability of vehicles seriously threaten
people’s lives, property and safety. It has become a safety issue and attracted worldwide
attention. The statistics of the US Highway Traffic Safety Administration show that the
degree of harm caused by vehicles rollover accidents are second only to vehicles collision
accidents in all traffic accidents [2]. Many scholars all over the word have conducted
research on the vehicle roll motion control, including controlling the body posture and
changing the trajectory of the vehicles. Body posture control can be subdivided into lateral
stabilizer control [3–5] and active suspension control [6,7] while the trajectory change
strategy consists of active steering control [8–11] and differential brake control [12,13].

The unique structure of DDEV affects the roll and rollover performance which in-
cludes the following aspects: (1) in-wheel motors increase the unsprung mass, which will
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deteriorate the vibration isolation performance of the suspension and cause the lifting effect
of the wheels; (2) because of rigid connection between the suspension and the motor stator,
the ground driving force and the reaction torque of the motor to be transmitted to the body
will form a large roll torque; (3) The cancellation of the differential will cause the coaxial
drive wheels to lose the torque self-balancing mechanism. The torque difference between
the two sides of the wheels form a large yaw moment. It will cause excessive steering of
the car or sharp turn. Therefore, to study the roll stability of the DDEV is the basis and
premise for proposing the anti-rollover control [14].

Currently, the safety control of DDEV is mainly focused on the yaw stability. However,
many studies on the roll stability control are mainly to control the suspension. Among
them, the literature [15] aimed at the roll phenomenon of in-wheel driving vehicles. Based
on the control of the suspension technology through the vertical load distribution transfer,
the vehicle’s front and rear axle lateral stiffness are changed. In [16] an active suspension
control algorithm was designed based on the optimal control theory LQG and the robust
control theory respectively. According to the driving status, the extra force is applied to the
suspension to reduce the dynamic displacement. It made the vertical motion in an optimal
state. However, the active suspension is both expensive and complex. Consequently, other
control schemes have been developed to maintain the roll stability. A strategy of applying
driving/braking torque to different drive motors is proposed in [17,18]. An additional
roll moment is generated to the vehicle's body that effectively improves the posture of
the vehicle body. A roll stability controller is designed in literature [19], which takes the
suppression of the body’s roll angle as the control target and its roll torque was generated
by the wheel drive torque difference, so it is no longer necessary to design a separate
suspension actuator. A joint control system for roll stability and yaw stability is designed
in literature [20]. The controller considered the coupling effect of yaw rate and lateral
acceleration. The adjustment factor RI is proposed to allocate the proportion of the roll
control, which effectively improved the roll stability of the vehicle. Integrated control of the
roll, yaw and pitch of DDEV was implemented in literature [21]. It based on the algorithm
of optimal allocation of different wheel torques. The strategy did not require the analysis of
complex equations to achieve spatial stability of the vehicle. The additional roll moment
force of DDEV is analyzed in literature [22]. It is generated by the driving/braking torque.
The in-wheel motor drive itself has the ability to self-adjust the body posture, it is found.

It should be noted that different driving torque could realize the control of the rolling
moment. Its effect is similar to the active suspension. But the roll and yaw of the vehicle
will affect each other to exacerbate the instability of the vehicle. In this paper, the anti-roll
control strategy for decoupling control of roll and yaw is proposed. For the roll torque
generated by the centrifugal force due to excessive lateral acceleration and centrifugal force,
an anti-rollover control strategy for differential braking is proposed.

Section 2 analyzes the generating mechanism of the DDEV roll moment. Section 3.1
discusses the rolling stability control based on active distribution of wheel driving torques.
The change of wheel driving torque will affect both the vehicle’s roll stability and yaw
stability, so the anti-roll control strategy for decoupling control of roll motion and yaw mo-
tion is proposed, which is the main contribution of this work. Aiming at the maneuvering
rollover caused by excessive roll acceleration, an anti-rollover control strategy based on
differential braking is proposed, which is in Section 3.2. Section 4 shows the behavior of
the control system in a simulation environment.

2. Generating Mechanism of the Rolling Moment of DDEV

2.1. Rolling Moment of DDEV

The vehicles’ rolling moment is mainly composed of three parts. The first term
represents the rolling moment caused by the centrifugal force of the sprung mass. The
second term is caused by the deviation of the spring center of gravity The third term is
produced by the force of the suspension on the body [23].
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DDEV also produces the above three kinds of rolling moments when turning. The
interaction between the vehicle body and the suspension has a great impact for the rolling
moment. After introducing the in-wheel motor, the ground driving force and the reaction
torque of the motor are transmitted to the body through the wheels and suspension, thereby
generating additional “vertical force”, as shown in Figure 1. In the case that the lateral
acceleration is not large, the value of the roll moment generated by this “vertical force” is
sufficiently large compared to the rolling moment due to lateral acceleration. The additional
rolling moment will have a greater impact on the roll attitude of the vehicle body. The roll
motion equation of the DDEV is expressed as

Ix
..
φ = mshsay + mshsg sin φ − (Kφφ + Cφ

.
φ)− ΔMX (1)

where Ix is the rotational inertia of the vehicle around the x axis; ϕ is vehicle roll angle; ms is
vehicle sprung mass; hs is the distance from the center of the sprung mass to the roll center
of the car; ay is lateral acceleration at the center of mass; g is gravitational acceleration; Kϕ

is the equivalent roll stiffness of the vehicle; Cϕ is equivalent roll damping of automobile
and ΔMX is additional roll moment.

θ θ

F F F F

F F

Figure 1. The diagram of additional vertical force.

2.2. Analysis of the Rolling Effect for the Additional Vertical Force of DDEV

Taking the vehicle turning left as an example, the transmission process of the additional
vertical force in the longitudinal plane and the lateral plane of the vehicle is analyzed
separately. The following assumptions are made:

(1) The left and right sides of the vehicle are symmetrical, and the front wheel angle δ
is not large, that is, cosδ ≈ 1, sinδ ≈ 1;

(2) McPherson suspension is used for front and rear suspension;
(3) The loss is ignored during force or torque transmission.
In the longitudinal plane of the vehicle, the left suspension is used as a force body, the

force is shown in Figure 2.

 
Figure 2. The force analysis of vehicle longitudinal plane.
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At the center of the front left wheel Of, the force balance equation and the moment
balance equation can be obtained as{

Fx1 cos δ + PL1 cos θ1 − PL2 cos θ2 = 0
T1 cos δ − PL1z1/cos θ1 − PL2z2/cos θ2 = 0

(2)

where, Fx1 and T1 represent the ground driving force and motor torque transmitted from
the front wheel to the vehicle body via the suspension; PLi (i = 1, 2) is the force exerted by
the left body on the front suspensions; zi (i = 1, 2) and θi (i = 1, 2) are the corresponding
distance and angle in the Figure 2.

According to Equation (1), PL1, PLi
′

and PL2, PLi
′

can be expressed as⎧⎨⎩PL1
′ = PL1 = T1 cos δ cos θ1 cos2 θ2−Fx1 cos δ cos θ1z2

z1 cos2 θ2+z2 cos2 θ1

PL2
′ = PL2 = T1 cos δ cos2 θ1 cos θ2+Fx1 cos δ cos θ2z1

z1 cos2 θ2+z2 cos2 θ1

(3)

where, PLi (i = 1, 2) and PLi
′

(i = 1, 2) are acting force and reaction force; PLi
′

(i = 1, 2) is the
force exerted by the front suspensions on the left body.

Then the vertical force of the left front wheel transmitted to the body through the
suspension in the longitudinal plane can be described as

FZ1 = PL1
′ sin θ1 + PL2

′ sin θ2 (4)

The roll moment generated by the left front wheel via the suspension in the longitudi-
nal plane can be described as

MX1 =
1
2

BFZ1 = Fx1
B cos δ[sin θ1 cos θ1(rcos2θ2 − z2) + sin θ2 cos θ2(rcos2θ1 + z1)]

2(z2 cos2 θ1 + z1 cos2 θ2)
(5)

where r is the wheel rolling radius; B is track width.
The Equation (5) can be abbreviated as

MX1 = K1 Fx1 (6)

where K1 = B cos δ[sin θ1 cos θ1(rcos2θ2−z2)+sin θ2 cos θ2(rcos2θ1+z1)]
2(z2 cos2 θ1+z1 cos2 θ2)

Similarly, the roll moment gen-
erated by wheel via the suspension in the longitudinal plane can be described as⎧⎪⎪⎨⎪⎪⎩

MX1 = K1Fx1
MX2 = K2Fx2
MX3 = K3Fx3
MX4 = K4Fx4

(7)

where MX1 is the roll moment the left front wheel; MX2 is the roll moment of the left rear
wheel; MX2 is the roll moment of the right front wheel; MX4 is the roll moment of the right
rear wheel; Ki (i = 1, 2, 3, 4) is the corresponding coefficient.

The force of lateral plane is shown in Figure 3.
At the connection point of the inner suspension kingpin, there is{

Fx1 sin δ + Pi1 cos θi1 − Pi2 cos θi2 = 0
T1 sin δ − Pi1zi1/cos θi1 − Pi2zi2/cos θi2 = 0

(8)

where Pi1 and Pi2 represent the force exerted by the vehicle body on the inner side of the
front suspension; zi1 and zi2 are the corresponding distance; θi1 and θi2 are the correspond-
ing angle.
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Pi1, Pi1
′

and, Pi2, Pi2
′

can be expressed as⎧⎨⎩Pi1
′ = Pi1 = T1 sin δ cos θi1 cos2 θi2−Fx1 sin δ cos θi1zi2

zi1 cos2 θi2+zi2 cos2 θi1

Pi2
′ = Pi2 = T1 sin δ cos2 θi1 cos θi2+Fx1 sin δ cos θi2zi1

zi1 cos2 θi2+zi2 cos2 θi1

(9)

where, Pij (j = 1, 2) and Pij (i = 1, 2) are a pair of acting force and reaction force, and
Pij (i = 1, 2) are the force exerted by the front-inner suspension on the vehicle body.

Figure 3. The force analysis of roll mechanism of lateral plane.

Then the vertical force transmitted by the front inner wheel to the body through the
suspension in the transverse plane can be expressed as

FZi = Pi1
′ sin θi1 + Pi2

′ sin θi2 (10)

And the roll moment generated by the front-inner wheel via the suspension in the
transverse plane to the vehicle body is stated as

MXi = −(Pi1
′ sin θi1 + Pi2

′ sin θi2) · lin (11)

where, lin is the distance from the roll center to the instantaneous center of roll motion on
the inside of the front suspension.

Similarly, the roll moment generated by the front-outer wheel via the suspension is
stated as

MXo = −(Po1
′ sin θo1 + Po2

′ sin θo2) · lout (12)

where Po1
′

and Po2
′

represent the force exerted by the front-outer suspension on the vehicle
body, lout is the distance from the roll center to the instantaneous center of roll motion on
the outside of the front suspension, θo1 and θo2 are the corresponding angle.

According to the method of solving Equation (6), we can get{
MXi = K5Fx1
MXo = K6Fx2

(13)

where K5 and K6 are the coefficient term of the roll moment generated by the front-inner
wheel and front-outer wheel.

Conclusively, the roll moment acting on the body of the DDEV can be changed by
controlling the magnitude of the driving torque of the motor, so as to achieve the function
of adjusting the body posture.

Based on the above analysis, it is plain that the roll posture control of the DDEV during
cornering can be achieved by actively adjusting the size of the wheel driving torque.
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3. Roll Stability Control Algorithm

3.1. Yaw and Roll Decoupling Control Algorithm

When the lateral acceleration is not large, the rolling effect of the vehicle body can be
controlled by the wheel torque. However, the size of the wheel driving torque also directly
affects the yaw moment of the vehicle, which affects the yaw stability. The distribution
of the driving torque of each DDEV wheel must be comprehensive consideration of the
vehicle’s yaw stability and roll stability.

3.1.1. Yaw Stability Control

The linear two-degree-of-freedom vehicle can explain the vehicle’s handling char-
acteristics. The ideal side angle of mass center and ideal yaw rate of the vehicle can be
expressed as

βd =
b + mav2

x/kr · L
L · (1 + Kv2

x)
· δ (14)

ωrd =
vx/L

1 + K · v2
x
· δ (15)

where, b is distance from center of mass to rear axle, a is distance from center of mass to
front axle, m is the vehicle quality, vx is the vehicle’s longitudinal speed, kr is the cornering
stiffness of the rear wheel, kf is the cornering stiffness of the front wheel, L is the vehicle
wheelbase and K is the stability factor, K = m

L2 (
a
kr
− b

kf
).

However, the vehicle will not be always in the small-angle operation. When the tire
model is in the nonlinear region, the steady-state response value of the two-degree-of-
freedom vehicle model is not suitable for the ideal value. It should be replaced by the
limit value. The size of the limit is constrained by the road surface adhesion coefficient
μ. Considering these factors, the ideal yaw angular velocity and the ideal centroid lateral
declination angle can be expressed as

|ω| = min{|ωrd| , |ωrmax|} · sign(δ) (16)

|β| = min{|βrd| , |βrmax|} · sign(δ) (17)

where ωrmax = μg
vx

and βrmax = tan−1(0.02μg).
The state space equation of the linear two-degree-of-freedom vehicle model take the

ideal yaw rate ωrd and ideal side slip angle βd as state variables described as[ .
βd.

ωrd

]
= A ·

[
βd
ωrd

]
+ B · (δ) (18)

where A =

[ kf+kr
mvx

akf−bkr
mv2

x
− 1

akf−bkr
Iz

a2kf+b2kr
Izvx

]
, B =

[
− kf

mvx
− akf

Iz

]T
, and Iz is the moment of inertia of

the vehicle around the Z axis.
The yaw instability of the vehicle mostly occurs in the non-linear region of the tire. At

this time, the lateral force of the tire is gradually saturated, and the vehicle begins to appear
side slip phenomenon, which deviates from the driver’s desired trajectory. At this time, the
vehicle can be actively compensated for an additional direct yaw moment ΔMz to make
the vehicles’ yaw rate ωr and side slip angle β re-track the change of the ideal value. The
relationship between the vehicle’s steering characteristics and the compensated additional
yaw moment is shown in Table 1.
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Table 1. Relationship between vehicle steering and additional yaw moment.

Steering Condition Yaw Velocity Additional Yaw Moment

left understeer ωr > 0 ΔMz > 0
left oversteer ωr > 0 ΔMz < 0

light understeer ωr < 0 ΔMz < 0
light oversteer ωr < 0 ΔMz > 0

With the actual yaw velocity ωr and the actual side slip angle β as state variables, the
equation of state of automobile motion described as[ .

β
.

ωr

]
= A ·

[
β

ωr

]
+ B · (δ) + B1 · ΔMZ (19)

where, ΔMz is additional direct yaw moment, and B1 = [0 1/Iz]T.
Subtract (19) from (18), we can get the following Equation[

Δ
.
β

Δ
.

ωr

]
= A ·

[
Δβ

Δωr

]
+ B1 · ΔMz (20)

where Δβ is the difference between the actual side slip angle and the ideal side slip angle;
Δωr is the difference between the actual yaw velocity and the ideal yaw velocity.

Equation (20) describes the dynamic relationship between the direct yaw moment and
the yaw velocity deviation and the side slip angle deviation. So the optimal direct yaw
moment [24–26] can be determined by LQR control theory as

ΔMZ = −Kx(t) = −k1Δβ(t)− k2Δωr(t) (21)

where K is the feedback matrix, and K = [k1 k2]T.

3.1.2. Roll Stability Control

Aiming at the roll phenomenon of the vehicle body, an active control strategy is
applied to improve the roll attitude of the vehicle when cornering. Based on the sliding
mode variable structure control theory, this paper implements the design of the roll stability
controller. It can be seen from the three-degree-of-freedom vehicle model of DDEV that its
roll motion equation is as follows

Ix
..
φ = mshs(

.
vy + vxωr) + mshsg sin φ − (Kφφ + Cφ

.
φ)− ΔMX (22)

where vy is the vehicle lateral speed.
When the body has a serious roll instability phenomenon, according to the Equation (22),

the vehicle can be compensated with an anti-roll moment ΔMX to recover the roll stability.
In order to reduce the roll angle and roll velocity, the sliding mode surface can be

defined as
s =

.
e + ξe (23)

where, ξ is the weight coefficient between the roll angle and roll angular velocity; e is the
error of roll angle.

Derivation of Equation (23) can be obtained

.
s =

..
φ + ξ

.
φ (24)

The additional rolling moment is expressed as

ΔMX = mshs(
.
vy + vxωr) + (ξ Ix − Cφ)

.
φ + (mshsg sin φ − Kφ)φ + ηsat(s) (25)
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where sat(s) is the saturation function; η is the switching gain.

3.1.3. Torque Distribution Strategy for Decoupling Control

Assuming that the vehicle is in an unstable state, the yaw moment to be compensated
is ΔMz, and the roll moment to be compensated is ΔMx, and the yaw moment and roll
moment that can be compensated by adjusting the driving torque of each wheel are shown
in Table 2 respectively.

Table 2. Compensating roll and yaw moment for 4 wheels.

Wheel Compensated Roll Moment Compensated Yaw Moment

front left wheel torque ΔMX1 ΔMZ1
rear left wheel torque ΔMX3 ΔMZ3

front right wheel torque ΔMX2 ΔMZ2
rear right wheel torque ΔMX4 ΔMZ4

The distribution of the roll moment is as follows{
ΔMX1 + ΔMX3 = ΔMX/2
ΔMX2 + ΔMX4 = ΔMX/2

(26)

The distribution of the yaw moment is as follows{
ΔMZ1 + ΔMZ3 = ΔMZ/2
ΔMZ2 + ΔMZ4 = ΔMZ/2

(27)

Suppose that the increment of driving force applied to each wheel is as follows⎧⎪⎪⎨⎪⎪⎩
ΔMX1 = K1ΔFx1 + K5ΔFx1
ΔMX2 = K2ΔFx2 + K6ΔFx6
ΔMX3 = K3ΔFx3
ΔMX4 = K4ΔFx4

(28)

⎧⎪⎪⎨⎪⎪⎩
ΔMZ1 = − 1

2 BΔFx1 cos δ + ΔFx1 sin δ · a
ΔMZ2 = 1

2 BΔFx2 cos δ + ΔFx2 sin δ · a
ΔMZ3 = − 1

2 BΔFx3
ΔMZ4 = 1

2 BΔFx4

(29)

According to Equations (26)–(29), the driving force distribution strategy of the inner
and outer wheels can be solved as in the following.

Inside wheels:{
K1ΔFx1 + K5ΔFx1 + K3ΔFx3 = ΔMX/2
− 1

2 BΔFx1 cos δ + ΔFx1 sin δ · a − 1
2 BΔFx3 = ΔMZ/2

(30)

Outer wheels:{
K2ΔFx2 + K6ΔFx2 + K4ΔFx4 = ΔMX/2
1
2 BΔFx2 cos δ + ΔFx2 sin δ · a + 1

2 BΔFx4 = ΔMZ/2
(31)

Rewrite equation (30) and equation (31) into the following matrix form:

Ax = B (32)
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where, K = [ΔFx1 ΔFx2 ΔFx3 ΔFx4]T

A =

⎡⎢⎢⎣
K1 + K5 0 K3 0

− 1
2 B cos δ + sin δ · a 0 − 1

2 B 0
0 K2 + K6 0 K4
0 1

2 B cos δ + sin δ · a 0 1
2 B

⎤⎥⎥⎦,

B =
[
ΔMX/2 ΔMZ/2 ΔMX/2 ΔMZ/2

]T.
Considering the limitation of motor power and pavement condition, ΔFxi should meet

the limits as following: { |ΔFxi · r| ≤ Tmax
|ΔFxi · r| ≤ μmg

(33)

where ΔFxi is the increment of each driving force. r is the radius of the wheel; Tmax is the
maximum driving moment of the motor; μ is the road adhesion coefficient.

And the increment of each wheel drive torque can be expressed as following:⎧⎪⎪⎨⎪⎪⎩
ΔT1 = ΔFx1 · r
ΔT2 = ΔFx2 · r
ΔT3 = ΔFx3 · r
ΔT4 = ΔFx4 · r

(34)

Finally, the decoupling control of the roll stability and yaw stability of the DDEV can
be achieved by distributing the increment of the driving torque of each wheel.

3.2. Anti-Rollover Control Algorithm Based on Differential Brake

On a good level road with high adhesion coefficient, the lateral acceleration of the
vehicle can reach more than 0.8 g when turning. At the same time, the centrifugal force of
the vehicle is large enough, which is likely to cause rollover. Although DDEV can control
the vehicle’s roll attitude by controlling the driving force, it is difficult to avoid the vehicle
rollover phenomenon only by controlling the driving force in an emergency situation of
high-speed sharp turns. Applying brake control and reducing the speed are often the safest
control strategy.

As shown in Figure 4, the brake control is applied to the target wheels by differential
braking. The fuzzy controller outputs the compensated yaw moment, and the torque
distribution controller outputs the braking pressure applied on the front outer wheel.

Figure 4. Anti-rollover control flow.

The vehicle’s longitudinal speed will obviously change after performing differential
brake control. At the time, the vehicle model should be extended from three-degree-of-
freedom vehicle model to four-degree-of-freedom vehicle model, and the equation of
motion is ⎧⎪⎪⎨⎪⎪⎩

m
.
vx = Fb

may = Fyf + Fyr
Iz

.
ωr = aFyf − bFyr + ΔMZ

Ix
..
φ = mshsay + mshsg sin φ − Kφφ − Cφ

.
φ

(35)

where Fb represents the braking force exerted on the front outer wheel, ay is the vehicle
lateral acceleration, Fyf and Fyr are the side force of vehicle front and rear wheels, ΔMZ
represents the compensated additional yaw moment.
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We can get from Equation (35) that the essence of differential braking control is
applying a braking force to the front outer wheel to make the vehicle generate an additional
yaw moment. The longitudinal speed and yaw rate will be improved. Obviously, the
correctness of the additional yaw moment is directly related to the quality of the control
effect. ΔMZ will be calculated by fuzzy control algorithm.

3.2.1. Evaluation Index of Vehicle Rollover

LTR is used as the evaluation index of vehicle rollover [15]. The definition of LTR is

LTR =
(Fz1 + Fz3)− (Fz2 + Fz4)

Fz1 + Fz2 + Fz3 + Fz4
(36)

where Fz1, Fz2, Fz3 and Fz4 are the vertical load of each driving wheel.
When LTR = 0, it means that the vertical load on the left and right sides of the vehicle

is equal, and there is no roll phenomenon;
When LTR = 1, it means that the vertical load of the right wheel is just 0, and the

vehicle has a tendency to turn to the left;
When LTR = −1, it means that the vertical load of the left wheel is just 0, and the

vehicle has a tendency to turn to the right.
The value of the lateral load transfer rate LTR should be as close to 0 as possible. In

order to prevent the vehicle from entering a rollover state, LTR should be satisfied that
|LTR| ≤ 1. In general, |LTR| = 0.8 is taken as the critical state of automobile rollover
to ensure the safety of the vehicle and prevent the negative impact of excessive lateral
load transfer.

3.2.2. Fuzzy Control Algorithm

Fuzzy control is a control method based on fuzzy mathematics. Its great advantage is
that it does not require accurate mathematical models. A series of variables describing the
driving state of the vehicle such as the yaw rate, the side angle, the roll angle and the lateral
acceleration are difficult to express with a precise mathematical equation. At this time,
the concept of fuzzy mathematics can be used to deal with similar control problems. The
fuzzy controller outputs the compensated yaw moment ΔMZ who is entered into torque
distribution controller. The torque distribution controller outputs the braking pressure
applied on the front outer wheel.

And the fuzzy rules in this paper are listed in Table 3.

Table 3. Fuzzy control rule table.

ΔMZ
e

NB NM NS ZO PS PM PB

ec

PB ZO ZO NW NS NM NB NB

PS PM PS ZO NW NS NB NB

ZO PB PM PW ZO NW NM NB

NS PB PB PS PW ZO NS NM

NB PB PB PM PS PW ZO ZO

3.2.3. Distribution Strategy of Yaw Moment

Taking the vehicle turning left as an example to illustrate the distribution strategy
of compensated yaw moment ΔMZ. When the vehicle is in danger of rollover, a braking
torque will be applied to the right front wheel of the vehicle separately. The relationship
between compensated yaw moment and braking force is

Fb(
B
2

cos δ + a sin δ) = ΔMZ (37)
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The kinematic equation of the right front wheel during braking is as follows

Iw
.

ω = Tb − Fbr (38)

where Iw is the rotating inertia of front outer wheel; ω is the angular velocity of the wheel;
Tb is the vehicle braking torque.

The mathematical expressions of braking torque and wheel cylinder pressure of the
braking system are as following:

Tb = S · P (39)

where P is the braking pressure; S is the braking efficiency coefficient.
The relationship between the yaw moment and brake pressure can be obtained from

Equations (37)–(39) as following:

P =
1
S
(

2 · r · ΔMZ
B cos δ + 2a sin δ

+ Iw
.

ω) (40)

As long as the braking pressure of the size P is applied to the front outer wheels, the
vehicle can generate an additional yaw moment according to the Equation (40), so that the
DDEV can achieve the effect of anti-rollover control.

4. Simulation and Verification

4.1. Vehicle Model

The 18 DOF vehicle model established in literature [27] is used in this paper. 6
freedoms of vehicle body, 4 vertical freedoms for suspension, 4 rotary motion freedoms
and 4 vertical freedoms of wheels are included. The main simulation parameters of the
vehicle model are shown in Table 4.

Table 4. Main parameters of vehicle model.

Parameters Value

Vehicle mass
sprung mass

un-sprung mass

1380
900
480

Distance from center of mass to front axle 1.05
Distance from center of mass to rear axle 1.57

front wheel tread 1.4
rear wheel tread 1.4

height of centroid 0.6
Tire diameter load radius 0.33

tire type 255/75 R16

The Magic-Formula tire model is used as the tire model. The brushless DC motor
is selected as the driving motor of the vehicle. Since the research is focused on the roll
stability of the vehicle, the motor torque control can be simplified into the transfer function
model of the actual electromagnetic torque Tm to the target electromagnetic torque Tm

*.
The transfer function is

G(s) =
Tm(s)
T∗

m(s)
=

1
2ζ2s2 + 2ζs + 1

(41)

where ξ is determined by motor characteristics, it can be obtained by fitting test results.

4.2. Simulation Verification of Yaw and Roll Decoupling Control Algorithm
4.2.1. Angular Step Input Condition

At speed of 60 km/h input the steering wheel angle which set to 50◦, and the road
surface adhesion coefficient is set to 0.25. The simulation results are shown in Figure 5.
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 5. Simulation results of angular step input condition. (a) Steering wheel angle. (b) Vehicle
track. (c) Yaw velocity. (d) Side slip angle. (e) Lateral acceleration. (f) Roll angle.

Figure 5b shows the change of the trajectory of the vehicle before and after the control.
There is no obvious difference between the two curves, indicating that the vehicle is not
completely unstable; Figure 5c,d show the yaw rate and the side slip angle of the vehicle
respectively. After the control strategy is applied, the vehicle’s yaw rate and side slip
angle can ideally track the change of the ideal value. When the control strategy is not
applied, both the yaw rate and side slip angle of show large fluctuations. It indicates that
the vehicle has not completely destabilized. The controller can control the vehicle’s lateral
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well under this condition showed by Figure 5e,f. It can be seen that the roll angle of the
vehicle is reduced by about 80% after the control is applied, and the lateral acceleration is
also suppressed to a certain extent. In summary, the roll and yaw decoupling controller
designed in this paper can gradually stabilize the vehicle that is not completely unstable
under the angular step condition.

4.2.2. Sine Input Condition

Sine input condition at the speed of 60 km/h. The road surface adhesion coefficient is
0.20. The simulation results are shown in Figure 6.

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 6. Simulation results of sine input condition. (a) Steering wheel angle. (b) Vehicle track.
(c) Yaw velocity. (d) Side slip angle. (e) Lateral acceleration. (f) Roll angle.
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Figure 6b shows the driving trajectory curve of the vehicle. Without the control strategy
the vehicle has been off tracking; Figure 6c,d show the yaw rate and side slip angle of the
vehicle. Both of them have been better corrected with control. It indicates that the vehicle’s
yaw stability has been improved. Figure 6e,f show the changes of the vehicle’s lateral
acceleration and roll angle. It can be seen both of them have been significantly reduced.

4.2.3. Fish Hook Test Condition

Fish hook test condition at the speed of 60 km/h. Let the vehicle turn left sharply for
160◦ at 10 s, and then quickly turn right for 320◦. The road surface adhesion coefficient is
0.20. The simulation results are shown in Figure 7.

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 7. Simulation results of fish hook test condition. (a) Steering wheel angle. (b) Vehicle track.
(c) Yaw rate. (d) Side slip angle. (e) Lateral acceleration. (f) Roll angle.
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Figure 7c,d show the curves of the vehicle’s yaw rate and side slip angle. It can be seen
that the vehicle is not seriously stability at this time, and the control strategy of the vehicle’s
yaw rate is ideal to track the expected value changes while there is a large deviation in
the yaw rate and side slip angle without control. Figure 7e,f show the curves of the lateral
acceleration and roll angle of the vehicle. After the control strategy is applied, both of them
have been better corrected, indicating that the roll yaw control strategy designed in this
paper is feasible.

4.3. Simulation Verification of Anti-Rollover Control Algorithm

High-speed sharp turning will cause the vehicle to roll over. Therefore, J-Turn condi-
tion and fish hook condition are used as test conditions for simulation verification.

4.3.1. J-Turn Condition

Let the vehicle turn left sharply for 120◦ at the speed of 80 km/h. It make the vehicle
enter the J-turn condition. The road surface adhesion coefficient is 0.85. The simulation
results are shown in Figure 8.

It can be seen from Figure 8a,b the LTR value of the vehicle that will reach 0.8 at
about 9.5 s and about 1 at 13 s without control. It indicates that the vehicle has already
experienced serious roll. At about 17.5 s, the vehicle rolls over. But the LTR value does not
fluctuate significantly with control. It keep stable at around 0.8 at 13 s and then remains
stable. The vehicle does not roll over. The lateral acceleration reaches 0.78 g at 10 s without
control in Figure 8c. Such a large lateral acceleration will inevitably cause the vehicle
to generate a greater centrifugal force. At 17.5 s, the curve disappears. It indicates that
the vehicle has roll over. The lateral acceleration is significantly reduced and remains
stable with control. Figure 8d is the roll angle curve of the vehicle. It can be intuitively
judged from the change of the vehicle’s roll angle that the body’s roll attitude has been
significantly suppressed. The controlled roll angle will stabilize at 4.5◦ after entering the
J-turn, while the uncontrolled vehicle roll angle will continue to increase until vehicle roll
over. Figure 8e,f are the changes of the vertical load of the four wheels before and after
the control. The vertical load of uncontrolled vehicle wheels fluctuates greatly, and the
vertical load of the left wheel decreases rapidly after entering a turn. The vertical load of
the left rear wheel even drops to 0 which indicates the left rear wheel left the ground. After
about 17 s, the vehicle rolls over and all four curves disappear, and the vertical load of the
right wheel of the vehicle is significantly reduced with control, especially the peak load of
the right front wheel has dropped to about 9000 N. In summary, the anti-rollover control
strategy applied to DDEV in this paper is basically effective and feasible under the J-turn
operating condition.
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Figure 8. Simulation results of J-turn condition. (a) Steering wheel angle. (b) LTR. (c) Lateral
acceleration. (d) Roll angle. (e) Wheel vertical load before control. (f) Wheel vertical load after control.

4.3.2. Fish Hook Test Condition

Fish hook input at the speed of 80 km/h. The road surface adhesion coefficient is 0.85.
The simulation results are shown in Figure 9.
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Figure 9. Simulation results of fish hook test condition. (a) Steering wheel angle. (b) LTR. (c) Lateral
acceleration. (d) Roll angle. (e) Wheel vertical load before control. (f) Wheel vertical load after control.

Figure 9b shows that the LTR value fluctuates greatly without control. With control
the LTR decreases by about 20%, and the curve changes smoothly and stabilizes at 0.8 s. It
can be seen from Figure 9c the peak value of lateral acceleration drops from 0.8 g to 0.5 g
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with control, and the vehicle no longer rolls over. The lateral acceleration finally stabilizes
at 0.55 g. Figure 9d shows the curve of the roll angle of the vehicle. The roll angle continues
to increase until the vehicle rolls over without control. The peak value of the roll angle
decreases significantly with control. The roll angle at the 20 s still stable at 4.5◦. It indicates
that the vehicle did not roll over at this time. Figure 9e,f show the changes of the vertical
load of the four wheels before and after the control. The vertical load no longer fluctuates
greatly with control Moreover, after the vehicle enters a right turn, the peak value of the
inner wheel increases, and there is no 0 value. The vertical load of the outer wheel also
decreases from 11,000 N at the maximum peak to 9000 N. The vehicle can maintain stable
driving without rollover phenomenon.

Therefore the simulation results show that the differential braking anti-rollover control
strategy proposed for DDEV in this paper can effectively prevent the vehicle from rolling
over under high-speed sharp turns.

5. Conclusions

(1) Active distribution of wheel drive torque will affect both the roll and yaw move-
ments of the vehicle, a decoupling control strategy for roll and yaw is proposed. The yaw
stability controller and the roll stability controller are designed based on the LQR control
theory and the sliding mode control theory. The control strategy of the compensated yaw
and roll moment is evenly distributed in the left and right wheels.

(2) For maneuvering rollover caused by excessive lateral acceleration, an anti-rollover
control strategy based on differential braking is designed. The vehicle generates a reverse
yaw moment to achieve the control effect of reducing vehicle speed and changing steering
characteristics by separately applying a braking torque to the front outer wheel. The lateral
load transfer rate is used as the main evaluation index to simulate the typical working
conditions. It shows that the differential braking anti-rollover control strategy proposed for
DDEV is effective.
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Nomenclature

Symbol

Ix (kg·m2)
φ (deg)

rotational inertia of the vehicle around the x axis
vehicle roll angle

ms (kg) vehicle sprung mass
hs (m) distance from the center of the sprung mass to the roll center of the car
b (m) distance from center of mass to rear axle
a (m) distance from center of mass to front axle
m (kg) vehicle mass
vy (km/h) vehicle lateral speed
vx (km/h) vehicle longitudinal speed
ay (m/s2) vehicle lateral acceleration
ω (rad/s) angular velocity of the wheel
kr, kf (N/rad) cornering stiffness of the rear and front wheel
L (m) vehicle wheelbase
r (m) wheel rolling radius
B (m) track width
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δ (deg) front wheel angle
K stability factor
gy (m/s2) gravitational acceleration
Fyf, Fyr (N) side force of vehicle front and rear wheels
Kφ (N/rad) equivalent roll stiffness of the car
Cφ (N/(km/h)) equivalent roll damping of automobile
ΔMX (N·m) additional roll moment.
Fx1 (N) ground driving force

T1 (N·m)
motor torque transmitted from the front wheel to the vehicle body via the
suspension

PLi (i = 1, 2, 3, 4) (N) force exerted by the left body on the front suspensions
PLi (i = 1, 2, 3, 4) (N) force exerted by the front suspensions on the left body
Pij (j = 1, 2) (N) force exerted by the car body on the side of the front-inner suspension
Pij (j = 1, 2) (N) force exerted by the front-inner suspension on the car body
Poi

′
(j = 1, 2) (N) force exerted by the front-outer suspension on the car body

Ki (i = 1, 2, 3, 4, 5, 6) the corresponding coefficient of the roll moment
zi (i = 1, 2, 3, 4) (m)
zij (j = 1, 2) (m)
lout, lin (m)

the corresponding distance

θi (i = 1, 2, 3, 4) (rad)
θij (j = 1, 2) (rad)
θoi (i = 1, 2) (rad)

the corresponding angle

MXj (j = 1, 2, 3, 4)
(N·m)

roll moment generated by the suspension to the vehicle body

MXi, MXo (N·m) roll moment generated by the front wheel via the suspension
ωr (dge/s) vehicle yaw rate
ωrd (dge/s) ideal yaw rate
ωrmax (dge/s) the maximum values of yaw rate
βd (dge) ideal side slip angle
βrmax (dge) the maximum values of side slip angle
ξ weight coefficient between the roll angle and roll angular velocity
e (dge) the error of roll angle
η switching gain
μ road adhesion coefficient
sat (s) the saturation function
ΔFxi (i = 1, 2, 3, 4)
(N)

increment of each driving force

ΔTi (i = 1, 2, 3, 4) wheels drive torque
Tmax (N·m) maximum driving moment of the motor
Fb (N) braking force exerted on the front outer wheel
Iw (kg·m2) rotating inertia of front outer wheel
Tb (N·m) vehicle braking torque.
Fzi (i = 1, 2, 3, 4) (N) wheels vertical load
P braking pressure
S braking efficiency coefficient.
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Abstract: The dual-motor EV (Electric Vehicle) is increasingly favored by manufacturers for its
excellent performance in terms of power and economy. How to further reduce its energy consumption
and make full use of the dual-motor energy recovery is an important support to improve the overall
vehicle economy and realize the “dual carbon” strategy. For the dual-motor EV architecture, the
motor model, power battery loss model and vehicle longitudinal braking force model are established
and the energy recovery-dominated regenerative braking torque distribution (RBD) rule of the dual
motors is designed. Based on genetic algorithm (GA) theory and taking into account SOC, vehicle
speed and braking intensity, a regenerative-braking torque optimization method is proposed that
integrates energy recovery and braking stability. The braking intensity of 0.3 and the initial vehicle
speed of 90 km/h are selected for verification. Compared with the rule method, the energy recovery
and stability are improved by 22.8% and 4.8%, respectively, under the genetic algorithm-based and
energy recovery-dominated regenerative-braking torque distribution (GA-RBD) strategy. A variety
of conditions are selected for further strategy validation and the result shows that compared with the
rule-based method, both energy recovery and braking stability are improved as braking speed and
braking intensity increase under the GA-RBD strategy.

Keywords: electric vehicles; regenerative braking; energy recovery; genetic algorithm; braking stability

1. Introduction

The Energy Saving and New Energy Vehicle Technology Roadmap (Version 2.0) indicates
the development direction of the automotive industry during the next 15 years. By 2035,
the annual sales of energy-efficient vehicles and new energy vehicles will each account
for 50% and the transformation of the automotive industry towards electrification. Dual-
motor EVs are favored by an increasing number of manufacturers for their outstanding
performance in terms of power and economy. According to statistics, the vehicle braking
energy loss accounts for more than 43% in typical urban conditions, and making full use of
the dual-motor EV regenerative braking for energy recovery is an important supportive
role in improving the economy of the whole vehicle and realizing the “double carbon”
strategy [1]. As a result, regenerative braking systems [2–5] are being studied in greater
depth by national and international scholars.

To maximize energy recovery, Pennycott et al. [6] designed a constant proportional
regenerative braking strategy based on the control distribution, which considered the influ-
ence of motor operating characteristics on regenerative braking. Considering the different
braking conditions, Pei [7] proposes a coordinated control strategy for the electro-hydraulic
braking of distributed electric vehicles, aiming to improve the comprehensive performance
of the system in terms of energy regeneration and braking stability. Maia et al. [8] proposed
a fuzzy controller-based distribution strategy for regenerative braking torque, taking into
account vehicle acceleration, bumpiness and road inclination and verifying the effectiveness
of this distribution strategy under the real road experiments. Xu [9] proposed a new braking
torque distribution strategy based on model predictive control which aimed to achieve
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both braking stability and optimal energy recovery under the constraints of regenerative
braking. Chen [10] proposed a hierarchical cooperative control for the electromechanical
brake-by-wire system (EBW) to solve the coordination of mechanical and regenerative
braking and ensure vehicle stability and maximum energy regeneration.

Existing studies on regenerative braking energy recovery have generally focused on
the effects of braking intensity, vehicle speed and residual power on energy recovery and
braking safety during regenerative braking. The relevant research on composite braking
has mainly focused on models with the single-motor configuration where the energy
recovery power flow path is relatively simple, and less research has been conducted on
braking energy recovery in the dual-motor configuration. The research object of this paper
has characteristics that dual motors can participate in energy recovery. Compared to the
single-motor configuration, the dual-motor driven vehicles have the multiple power flow
paths for energy recovery, and by distributing the motor braking torque, the motors can
work to a greater extent in the high efficiency zone. Thus, fully considering the structural
characteristics of dual-motor EVs and establishing a regenerative braking strategy for
dual-motor EVs that integrates energy recovery and braking stability to further improving
the regenerative braking energy recovery rate has important theoretical significance and
engineering value. The contributions of the proposed regenerative braking method lie in
the following three aspects:

(i) A energy recovery-dominated regenerative-braking torque distribution rule of the
dual motors is designed, which takes into account the characteristics that both motors can
participate in the energy recovery characteristics.

(ii) Considering the variation of SOC, vehicle speed and braking intensity, a dual-
motor EV regenerative-braking optimization method that integrates energy recovery and
braking stability is proposed.

(iii) The energy recovery rate and braking stability are integrated into one control
objective by weighting coefficients, and the optimal value of torque distribution is solved
by genetic algorithm under the corresponding weighting coefficients.

Therefore, this paper proposes a dual-motor EV regenerative braking strategy that
integrates energy recovery and braking stability. Both the energy recovery rate and braking
stability are improved compared to the rule-based method. The rest of the paper is orga-
nized as follows. In Section 2, the powertrain configuration and main component models
of the dual-motor EV are presented. In Section 3, the energy-recovery rate-dominated
regenerative-braking torque-distribution rule is designed and a regenerative-braking
torque-optimization strategy that incorporates braking energy recovery and braking sta-
bility is proposed. In Section 4, the results of the two distribution strategies are compared
and the effectiveness of the strategies is demonstrated. At last, conclusions are given in
Section 5.

2. Model of a Dual-Motor EV Regenerative Braking System

2.1. Dual-Motor EV System Configuration

The configuration of one dual-motor EV in this paper is shown in Figure 1, which
mainly include a coupled structure of two motors and two gear pairs, hydraulic lines,
control units, battery packs and other components. Motor 1 and motor 2 can individually
or jointly provide the braking torque in regenerative mode.

When the driver applies the brake pedal to apply the brakes, the Vehicle Control
Unit (VCU) determines the braking torque to be assumed by the Motor Brake System
(MBS) and the Hydraulic Brake System (HBS) based on information such as current vehicle
speed, braking intensity and battery SOC. The motor braking torque and hydraulic braking
torque are controlled by the Motor Control Unit (MCU) and the Hydraulic Control Unit
(HCU), respectively.
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Figure 1. Schematic diagram of an EV system structure.

2.2. Motor Model

Permanent magnet synchronous motors are used in this configuration of EV. It offers
the advantages of small size, high-speed, high-power density and flexibility in shape and
size. Compared to other types of motors, permanent magnet synchronous motors are more
efficient and have a longer range. Moreover, China is rich in rare earth resources and the
cost of using permanent magnet-synchronous stand-alone machines is lower.

Since the focus of this paper is on the regenerative-braking torque-distribution strategy,
the transient characteristics of the motors are simulated by first-order delays. The equations
are shown as follows:

Tm1 =
1

τm1s + 1
(1)

Tm2 =
1

τm2s + 1
(2)

where τm1 and τm2 denote the time constants of the first-order system; Tm1, Tm2 denote the
actual output torque

The generation efficiency maps of motor 1 and motor 2 are measured experimentally,
as shown in Figures 2 and 3.

Figure 2. Efficiency map of motor 1.
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Figure 3. Efficiency map of motor 2.

2.3. Power Battery Loss Model

The charging efficiency of the power battery directly influences the regenerative-
braking energy recovery, and its power loss can be expressed as follows:

Plos =

(
Vo −

√
V2

o − 4Rc_dis · Pm

)2

4Rc
(3)

where Vo denotes the battery terminal voltage; Rc and Rc_dis denote the battery equivalent
resistance and the battery discharge resistance, respectively; and Pm denotes the total
generated power of the motor.

2.4. Vehicle Braking Model

The force analysis of the braking process is shown in Figure 4.

Figure 4. Vehicle force analysis diagram of the braking process.

The vehicle longitudinal dynamics equations are as follows:

m
.
v = −Fxb_ f − Fxb_r − Fw − Ff (4)

Fw =
Cd · Av

21.15
v2 (5)

Ff = fv · m · g (6)

where v denotes the longitudinal speed of the vehicle; m denotes the overall vehicle mass;
Fxb_f and Fxb_r denote the ground braking force of the front wheel and the rear wheel,
respectively; Fw and Ff denote the wind resistance and the rolling resistance of the vehicle;
Cd and fv indicate the wind resistance coefficient and the rolling resistance coefficient; and
Av is expressed as the equivalent wind resistance area.
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The torsional dynamics equations of the front wheel and the rear wheel are expressed
as follows: {

J f
.

ω f =
1
2

(
Rv · Fxb_ f − TbF_m − TbF_h

)
Jr

.
ωr =

1
2 (Rv · Fxb_r − TbR_h)

(7)

where Jf and Jr denote the equivalent rotational inertia of the front and rear wheels, re-
spectively; Rv indicates the wheel radius; ωf and ωr represent the front and rear wheel
rotational speeds; TbF_h and TbR_h represent the hydraulic braking force of the front and
rear wheels. TbF_m is the regenerative braking torque applied to the wheel end by the dual
motor, expressed as follows:

TbF_m =
(
Tm1ig1 + Tm2im2ig2

) · i0 (8)

where Tm1 and Tm2 denote the output torque of motor 1 and motor 2; im2 and i0 denote
the output reduction ratio of motor 2 and the final drive ratio, respectively; and ig1 and
ig2 represent the corresponding reduction ratios of motor 1 and motor 2 in the current
operating mode of the coupling mechanism.

The detailed parameters of the EV and related components studied in this paper are
shown in Table 1.

Table 1. Key parameters of vehicle powertrain.

Components Description

Transmission
Reduction ratios (i1, i2): 2.11/1.31

Final drive ratio (i0): 3.91
Reduction ratio of the motor 2 end (im2): 1.72

Motor
Type: Permanent magnet synchronous motor (PMSM)

Maximum power: 55 kW (M1); 75 kW (M2)

Battery
Type: NiMH

Voltage: 387 V
Capacity: 25 kW·h

Vehicle

Internal resistance: 0.015 Ω
Vehicle mass: 1570 kg

Frontal area of vehicle: 1.26 m2; Aerodynamic drag: 0.35
Tire rolling resistance coefficient: 0.018

Drive wheel radius: 0.3 m

3. Regenerative Braking Strategy for Dual-Motor EV

3.1. Energy Recovery-Dominated Regenerative Braking Torque Distribution (RBD) Rule

Combined with the dual-motor EV configuration in this paper, an energy recovery
rate-dominated regenerative braking torque distribution rule is proposed, and its specific
distribution strategy is shown in Figure 5. Where FbF and FbR denote the front wheel
braking torque and the rear wheel braking torque, respectively.

From the Figure 5, the braking force operating points under the RBD rule are between
the I curve and the ECE regulation curve. With the braking intensity increases, the front
and rear wheel braking forces are distributed along the OABCDE curve. The term z denotes
braking severity.
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Figure 5. Regenerative braking torque distribution rules dominated by energy recovery.

(1) OA segment: When z < 0.21, the braking intensity is so light that braking stability
does not need to be considered. In this case, the braking force is supplied exclusively by
motor 2 to the front wheels and the braking force of the rear wheels is 0.

(2) AB segment: When 0.21 ≤ z < 0.26, with the braking intensity increasing, the rear
wheels start to engage the brakes and the braking torque is supplied exclusively by the
hydraulic system. In addition, the braking force of the front wheels is still provided only
by motor 2, and the braking torque of motor 2 reaches a maximum at point B.

(3) BC segment: When 0.26 ≤ z < 0.42, the braking force provided by motor 2 is no
longer sufficient for the braking of the front wheels, so that motor 1 and motor 2 together
provide braking force to the front wheels. At the point C, the braking torque of motor 1
and motor 2 reaches its maximum value at the same time.

(4) CD segment: When 0.42 ≤ z < 0.58, motor 1 and motor 2 are all involved in the
braking process and have reached their peak state. At this point, the energy recovery rate
of the system has been ensured, and in order to take into account the braking stability at
the same time, the braking force is distributed according to the f-curve with ϕ = 0.58. At
this stage, the hydraulics start to participate in the front wheel braking, and as the braking
intensity increases, the curve gradually approaches the I curve.

(5) DE segment: When 0.58 ≤ z ≤ 1, in this phase, the braking stability is predominant,
the braking force distribution curve exactly follows the I-curve and the braking torque is
provided by the hydraulic system and the motor.

3.2. Regenerative Braking Torque Optimisation Incorporating Energy Recovery and
Braking Stability

GA-RBD distribution strategy architecture diagram is shown in Figure 6.
Through the brake intention module, the driver’s required braking torque and braking

intensity are calculated. Based on the current vehicle speed, battery SOC and other infor-
mation, the weighting coefficients under the current state are obtained according to the
weighting allocation table. The optimal values of the assigned braking torque under this
weighting factor are calculated by the genetic algorithm, and the corresponding reference
torque information of each actuator is sent to the motor system and the hydraulic braking
system. Finally, the actuator outputs the braking torque to complete the braking process.

190



World Electr. Veh. J. 2023, 14, 19

Figure 6. GA-RBD distribution strategy architecture diagram.

In order to take into account both the braking stability and the energy recovery rate
of the vehicle, both the energy recovery rate and the braking stability were selected as
optimization objectives in this study.

The energy recovery rate is defined as the ratio of the energy recovered by the battery
to the kinetic energy lost during braking, expressed as follows:

f1 =

∫ (
nwi0ig1Tm1

9550 η1 +
nwi0ig2im2Tm2

9550 η2 − Plos

)
dt

1
2 m

(
vt2 − v2

0
)− ∫ (

mg fv +
Cd ·Av
21.15 v2

)
vdt

(9)

where nw denotes wheel end rotational speed; η1 and η2 denote the generation efficiency of
motor 1 and motor 2, respectively; vt and v0 represent the current vehicle speed and the
initial braking speed; and Plos denotes the loss of power for battery charging.

Braking stability is defined as the degree of deviation between the front and rear axle
braking torque distribution curves and the ideal braking torque distribution curve, which
is expressed as follows:

f2 =

√(
TbF_h + TbF_m − TI f

)2
+ (TbR_h − TIr)

2

zmgRv
(10)

where TIf and TIr represent the front and rear wheel braking torques corresponding to when
the braking force distribution curve is on the ideal distribution curve, respectively.

The comprehensive optimization objectives of the final design are as follows:

f (T) = w1 · f1 + w2 · f2 (11)

where w1 and w2 denote the corresponding weighting factors.
The regenerative braking system will stop working when the vehicle speed is below

20 km/h or when the battery SOC value is high, the former to take into account that the
motor does not recover enough braking energy at low speeds, and the latter to prevent
the battery from being overcharged. Focusing on energy recovery at low speeds or at low
braking intensities, the weighting factor w1 will be increased. Conversely, at high speeds or
high braking intensities the focus is on braking stability and the weighting factor w1 will be
reduced, w2 increased. When braking under normal operating conditions, the weighting
coefficients are taken to be 0.5, respectively, in order to take into account the effects of both
braking energy recovery and braking stability.

Taking into account SOC, vehicle speed and braking intensity, the weighting factors
are set as shown in Figure 7.
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Figure 7. Rules for setting weighting factors.

The optimization objective selected by the genetic algorithm is a comprehensive index
of braking energy recovery and braking stability after considering weighting factors (as
shown in Equation (11)). The motor 1 braking torque, motor 2 braking torque, front wheel
hydraulic braking force and rear wheel hydraulic braking force are used as genes for the
individuals in the genetic algorithm, and the objective function is solved using the genetic
algorithm to obtain the torque distribution corresponding to the optimal value.

The Genetic Algorithm (GA) [11] process is shown in Figure 8 and mainly consists of
three parts as follows:

(1) Initialization

Figure 8. GA algorithm optimization process.
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Individual coding and population and initialization. The coding method adopted in
this paper is real number coding and the optimisation parameters of the genetic algorithm
are set as follows: the population size is set to 30, the crossover probability and variation
probability are set to 0.95 and 0.1, respectively, and the number of stopping iterations is 50.

Where the size of the population is related to the degree of dispersion for the optimised
problem, and the larger the dispersion, the larger the population size to improve the speed
of convergence [12]. In this paper the linear relationship between the torque and the
objective function is obvious, so the population can be relatively small and is set to 30.

(2) Calculation of the fitness

Calculate the value of the fitness function corresponding to each individual f (TI), and
determine whether it satisfies the termination condition of the genetic algorithm; if it does,
then output the optimal solution, otherwise continue to evolutionary operations.

(3) Evolutionary operations

Evolutionary operations are the heart of genetic algorithms and include selection,
crossover and mutation. In nature, the further adapted individuals are, the more likely
they are to reproduce offspring. Based on fitness, the system selects a certain number of
individuals to cross and mutate in order to produce offspring and form new populations,
and repeats the operation in (2).

4. Results Verification

In order to verify the effectiveness of the GA-RBD allocation strategy algorithm, the
optimization was first carried out at different braking intensities and speeds to obtain the
vehicle speed-braking intensity-braking torque maps, as shown in Figure 9.

Based on the maps of braking torque distribution obtained from the above optimiza-
tion, the brake intensity of 0.3 and the initial vehicle speed of 90 km/h were selected for
verification. As shown in Figure 10, compared to the rule-based regenerative braking
strategy with motor 2 working first and then motor 1, the GA-RBD strategy enables both
motors to participate in the braking process more evenly. As can be seen from Figure 11,
the motor efficiency under the GA-RBD strategy moves towards the high efficiency zone
benefiting from the genetic algorithm’s optimization for the dual motor operating point.

Figure 9. Cont.
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Figure 9. Vehicle speed-braking intensity-braking torque distribution maps. (a) Motor 1 braking
torque. (b) Motor 2 braking torque. (c) Front wheel hydraulic braking torque. (d) Rear wheel
hydraulic braking torque.

Figure 10. Comparative graph of the different braking torque distribution strategies. (a) Motor 1
braking torque. (b) Motor 2 braking torque. (c) Front wheel hydraulic braking torque. (d) Rear wheel
hydraulic braking torque.
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Figure 11. Comparative graphs of motor efficiency under the different strategies. (a) Motor 1
efficiency. (b) Motor 2 efficiency.

The comparison of energy recovery and stability of the vehicle under different strate-
gies is depicted in (a) and (b) of Figure 12, respectively. Compared to the rule-based
method, energy recovery under the GA-RBD strategy (shown in Figure 12a) is improved
by 16.3% and the root-mean-square value of the stability coefficient ε (shown in Figure 12b)
is reduced by 4.5% (stability is improved).

Figure 12. Comparative graphs of energy recovery and stability under the different strategies.
(a) Cumulative energy recovery. (b) Stability coefficient.

Where braking stability ε [13]: During braking, the situation with full use of the
ground adhesion is defined as the ideal situation, therefore the deviation of the front- and
rear-axle braking torque from the ideal braking torque is used to express braking stability.
The symbol is denoted as ε.

In order to further verify the effectiveness of the two distribution strategies under
different vehicle speeds and braking intensity operating conditions, the two strategies are
compared and verified in Table 2. Under the braking intensity of 0.2 to 0.6 and vehicle
speeds between 60 km/h and 90 km/h, the GA-RBD strategy improved the braking stability
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by a maximum of 5.4% compared to the rule method and the braking energy recovery
improvement rate varied from 8.3% to 20.2% as the braking intensity and initial vehicle
speed increased. The effectiveness of the GA-RBD strategy is further verified.

Table 2. Results comparison under the different braking conditions.

Braking
Intensity

Vehicle
Speed
[km/h]

Distribution
Strategy

ε-RMS
Change

Rate

Recovered
Energy

[KJ]

Change
Rate

0.2

v = 60
R-RBD 0.482 −2.7%

30.43
8.3%GA-RBD 0.469 32.96

v = 75
R-RBD 0.473 −3.8%

34.63
10.2%GA-RBD 0.455 38.16

v = 90
R-RBD 0.452 −4.3%

42.09
13.1%GA-RBD 0.433 47.60

0.4

v = 60
R-RBD 0.331 −2.9%

21.32
11.5%GA-RBD 0.321 23.77

v = 75
R-RBD 0.321 −3.1%

21.12
14.2%GA-RBD 0.311 24.12

v = 90
R-RBD 0.311 −3.4%

19.71
18.1%GA-RBD 0.300 23.28

0.6

v = 60
R-RBD 0.150 −4.6%

8.29
13.5%GA-RBD 0.143 9.08

v = 75
R-RBD 0.140 −5.0%

11.01
16.2%GA-RBD 0.133 12.79

v = 90
R-RBD 0.128 −5.4%

13.71
20.2%GA-RBD 0.121 16.48

5. Conclusions

This paper fully considered the structural characteristics of dual-motor EVs and
established a regenerative braking strategy for dual-motor EVs that integrates energy
recovery and braking stability, which further improves the regenerative braking energy
recovery rate and braking stability. The main conclusions show the following:

(1) Based on the dual-motor EV architecture, an electric motor model, a power battery
loss model and a vehicle longitudinal braking force model are established, and an energy
recovery rate-dominated regenerative braking torque distribution rule considering the dual
motors is designed.

(2) Based on the theory of genetic algorithm, a regenerative braking torque opti-
mization method integrating energy recovery and braking stability is proposed, which
considering SOC, vehicle speed and braking intensity. The braking intensity of 0.3 and the
initial vehicle speed of 90 km/h are selected for validation. Compared with the rule-based
method, the energy recovery and the stability under the GA-RBD strategy are improved by
22.8% and 4.8%.

(3) Various conditions were further selected for strategy validation and the results
show that as vehicle speed increases and braking intensity increases, both the energy
recovery rate and braking stability under the GA-RBD strategy are improved compared to
the rule-based method.

In short, the proposed dual-motor EV regenerative braking that combines energy
recovery and braking stability strategy can significantly improve the energy recovery rate
and braking stability during braking, and can provide a theoretical reference for the EV
in engineering practice. Considering the many uncertainties in real vehicle testing, the
effectiveness of the GA-RED strategy could be tested on different types of real vehicles in
future research.
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Abstract: The improvement of both the stability and economy of the four in-wheel motor drive
(4IWMD) electric vehicle under complex drive cycles is currently a difficult problem in this field.
A torque distribution method with the comprehensive goals of optimal torque distribution and
energy efficiency, considering economy through energy efficiency for the 4IWMD electric vehicle, is
proposed in this paper. Each component of the 4IWMD electric vehicle is modelled. The dynamic
programming (DP) control algorithm is utilized for torque distribution between the front and rear
in-wheel motors to obtain optimal torque distribution and energy efficiency in the 4IWMD electric
vehicle. The simulation is performed on a co-simulation platform with the software of AVL Cruise
and MATLAB/Simulink, considering a straight road. Compared to the fuzzy logic control algorithm,
the simulation results are very promising, as the energy consumption of the electric vehicle was
reduced by 22.68%, 20.73% and 21.84% under the WLTC, NEDC and customized IM240 driving cycle
conditions, respectively, with the proposed DP control algorithm. The hardware-in-the loop (HIL)
experimental results also indicate that the effectiveness of the proposed DP algorithm is verified under
the NEDC, WLTC and IM240 driving cycles, when a straight road is considered. The proposed DP
control algorithm not only reduces the vehicle energy consumption and guarantees the optimization
of torque distribution, but also increases the driving range of the vehicle.

Keywords: energy consumption optimization; torque distribution; energy efficiency; motor efficiency;
four in-wheel motor drive electric vehicle

1. Introduction

Over the years, owing to the increasingly severe energy crisis and environmental
pollution, there has been an increase in the demand and manufacture of electric vehicles.
Researchers have carried out extensive research on electric vehicles, especially on in-wheel
motor drive (IWMD) electric vehicles. Amongst electric vehicles, IWMD electric vehicles
possess distinct advantages, some of which are a simple and compact structure, flexible
maneuverability and steering, high transmission efficiency and easy control including the
independent torque control of each wheel.

The possibility for individual torque control has led to ample research in this area,
including research focus on torque distribution, with a large focus on safety. Safety-based
torque distribution utilizes torque vector/torque distribution to improve traction, handling
and stability performances in vehicles. Li et al. [1] proposed an optimal torque distribution
approach for the improvement of vehicle handling and stability in spite of slippery road
conditions. Joa et al. [2] presented an integrated chassis control method for front/rear
torque distribution and four-wheel independent braking based on tire slip which improves
handling performance. A novel torque vectoring algorithm was proposed by Park et al. [3]
to improve cornering performance in electronic-four-wheel drive vehicles, meanwhile
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Deng et al. [4] and Chatzikomis et al. [5] studied a torque vectoring algorithm, with a
consideration of stability and economy, as well as safety and energy efficiency improvement,
respectively. The total longitudinal slip of an electric vehicle can also be reduced through
novel torque distribution strategies to improve the vehicle safety [6]. When considering
safety, results from a torque distribution study indicate that the improved stability of the
vehicle can be derived when a greater weight coefficient is applied to the rear wheels, as
this causes the rear axle to bear a larger weight [7]. Four IWMD electric vehicles which
have four in-wheel motors positioned inside each of the vehicle wheel possess several
advantages as stated earlier, including the delivery of the desired torque directly to each
wheel [8], providing increased possibilities for economy management and improvement.
Based on the vehicle requirement for propulsion, the torque distributed to each motor has
to be well controlled and distributed to ensure the in-wheel motor functions efficiently and
prevents energy loss. Furthermore, part of the efficiently distributed energy can be saved
through regenerative braking, ensuring maximal energy saving [9–11].

Considering vehicle economy, methods for acquiring optimal torque distribution
are diverse, and this includes utilizing motor loss models for gaining optimal torque
distribution [12,13]. The motor loss model has the possibility of increasing system efficiency
by some margin. However, the boundary conditions, such as motor parameters and control
algorithms, could affect the possibility of getting the desired positive results [14,15]. The
steering controlled by the driver and longitudinal forces restricted from yaw result in the
increase in the vehicle’s maximum acceleration ability [16]. Furthermore, mathematical
models and quadratic programming methods are used to provide driving force [17–19].
Additionally, energy management strategies, such as strategies based on optimal driving
torque distribution, can be considered to reduce electric energy consumption [20]. Braking
torque distribution between the front and the rear wheels in an electric vehicle can also
significantly improve energy regeneration efficiency [21].

It is necessary to investigate the torque distribution approach of the 4IWMD electric
vehicle considering the coordinated control of stability and economy [22]. However, there
are few scholars working from this perspective. Deng et al. proposed a novel torque
vectoring algorithm based on a novel type of mechanical elastic electric wheel, which
ensures the stability of the vehicle and reduces the energy consumption of the powertrain.

An optimized torque distribution method considering energy efficiency optimization
based on DP strategy for a 4IWMD EV is proposed in this paper. This was considered
under the constraint of straight-line driving. The main contributions made by this research
are stated as follows:

(1) A torque distribution method with the comprehensive goals of optimal torque dis-
tribution and energy efficiency considering economy through energy efficiency is
proposed in this paper.

(2) The DP control algorithm is utilized for toque distribution between the front and rear
in-wheel motors to obtain optimal torque distribution and energy efficiency in the
4IWMD EV.

(3) The proposed torque distribution based on the DP algorithm for the 4IWMD electric
vehicle considering energy efficiency optimization is effectively verified through
simulation and experiment under the NEDC, WLTC and IM240 driving cycles.

The rest of the paper is organized as follows. First, in Section 2, the four in-wheel
electric vehicle model is discussed, meanwhile Section 3 exposes the torque distribution
strategies applied in the study, followed by Sections 4 and 5 which detail the simulation
results and the experimental validation results, respectively, and in Section 6, the conclusion
of the study is drawn and considerations for future studies are presented.

2. IWMD Electric Vehicle Model

A four-in-wheel motor drive (4IWMD) electric vehicle model is built to verify the
effectiveness of the proposed strategies under various driving cycles. The AVL Cruise
and MATLAB/Simulink platforms are utilized in building the co-simulation model. The
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complete vehicle model consists of the vehicle, in-wheel motor and battery model estab-
lished in the AVL Cruise software, meanwhile the vehicle dynamics model and the torque
distribution control models are built in the MATLAB/Simulink software.

2.1. Vehicle Dynamics Model

The vehicle model consists of four electric motors located inside each wheel of the
electric vehicle. The total vehicle mass can be expressed using the following equation:

Mv = mc + mem + mbat (1)

where mem = m f l + m f r + mrl + mrr, mc is vehicle curb weight, mem is total mass of the
in-wheel motors, mbat is battery mass, mfl is the mass of the front left in-wheel motor, mfr is
the mass of the front right in-wheel motor, mrl is the mass of the rear left in-wheel motor
and mrr is the mass of the rear right in-wheel motor [23].

Table 1 shows the parameters of the four IWMD electric vehicles modelled in this study.

Table 1. Vehicle parameters for four IWMD electric vehicles.

Vehicle Parameter Symbol Value (Unit)

Curb weight M 1270 kg
Coefficient of rolling friction Cr 0.017

Cross-sectional area A 1.97 m2

Aerodynamic drag coefficient CD 0.35
Rolling radius R 0.31 m

The vehicle torque calculation is carried out in MATLAB/Simulink, in which the
input variables are vehicle speed u and acceleration ax. Figure 1 shows the free body
diagram of the 4IWMD electric vehicle on a slope, with the resistance forces that act on the
vehicle [24,25].

Figure 1. Longitudinal model diagram of vehicle accelerating up a slope.

The total driving torque (Ft) is derived through the following equations:

Ft = Fa + FG + Fr + Fw (2)

The forces that make up the necessary overall total driving force can be expressed
as follows:

Fa = M
.
v (3)

FG = Mg sin θ (4)

Fr = Cr Mg cos θ (5)

Fw =
1
2

ρACav2 (6)
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where Fa is the acceleration resistance, FG is the grade resistance, Fr is the vehicle rolling
resistance, Fw is the aerodynamic resistance, Cr represents the rolling resistance coefficient,
Ca represents the aerodynamic resistance coefficient, ρ is the density of air and A is the
frontal area of the 4IWMD electric vehicle.

The power consumption of the 4IWMD electric vehicle can be calculated through the
following equation:

PEV = Ftv =
2

∑
j=1

2η(j)Pmotor(j) (7)

where Pmotor = Tω and it represents the power of a single in-wheel motor, meanwhile
η represents the in-wheel motor efficiency, v is the vehicle speed and j represents the
polynomial order number. T represents torque, and ω represents the angular velocity of
the in-wheel motor.

The torque required on the drive wheel can be calculated as follows:

T = Ft × rwheel (8)

where rwheel is radius of the drive wheel.

2.2. In-Wheel Motor Model

The efficiency map of the in-wheel motor is shown in Figure 2. The output power of
the in-wheel motor is bounded by the output torque and motor speed conditions, which
can be defined as:

Tm(t) ∈ [Tm,min(ωm(t)), Tm,max(ωm(t))] (9)

ωm(t) ∈ [0, ωm,max(t)] (10)

Figure 2. Efficiency map of in-wheel motor.

Where Pm is the output power of the in-wheel motor, Tm is the output torque of the
in-wheel motor and ωm is the speed of the in-wheel motor.

The in-wheel motor power demanded by the 4IWMD electric vehicle need to be
supplied by the battery through the following equation:

Pdem = Pm + Ploss.m (11)

where Pdem represents the power demanded by the power system of the 4IWMD electric
vehicle, and Ploss.m is the power loss of the in-wheel motor, especially as a result of motor
heat losses and mechanical losses.

The efficiency η of the in-wheel motor can be calculated by the formula:

η = Pout/Pin (12)

where Pout and Pin are the output and input power of the in-wheel motor, respectively [26].
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Table 2 shows the parameters of the in-wheel motor used for the test bench experimen-
tal study.

Table 2. Parameters of the in-wheel motor utilized for the experimental test bench studies.

In-Wheel Motor Parameter Value (Unit)

Rated voltage 72 V
Rated current 110 A

Maximum speed 1200 rpm
Rated power 8 kW

Rated frequency 50 Hz
Maximum torque 250 Nm

2.3. Battery Model

The battery pack is made up of rows and columns of battery cells modelled as voltage
sources with resistance. The total power of the battery can be described as follows:

Pem,tot = Pdem + Paux (13)

where Paux is the auxiliary power demanded by the vehicle.
The simplified battery equivalent circuit model utilized by theoretically deriving the

state of charge (SOC) of the EV is shown in Figure 3 below.

Figure 3. Simplified battery equivalent circuit model.

The simplified equation of the battery SOC is shown as follows:

·
SOC = − I(k)

Qbat
(14)

·
SOC = −ηSOC

UOCV(SOC)−
√

U2
OCV(SOC)− 4(Rint(SOC) + Rt)Pm(k)

2(Rint(SOC) + Rt)Qbat
(15)

where I represents the battery current, Qbat represents the battery capacity, ηSOC represents
the coulomb efficiency, UOCV represents the battery’s open circuit voltage, Rint represents
the battery’s polarization internal resistance, Rt represents the battery’s ohmic internal
resistance and Pm represents the required power of the in-wheel motor. Rint and UOCV
are the function of the battery’s SOC as a variable [27]. Equation (15) is the broadened
expression of Equation (14).

3. Torque Distribution Strategies

3.1. Torque Optimization Approach

Torque distribution and energy saving can be achieved by the proper control allocation
method [28]. The overall framework for torque distribution control is illustrated in Figure 4.
Torque can be allocated utilizing different control allocation methods. In this study, the
DP algorithm is proposed for optimizing the torque distributed to the in-wheel motors.
Meanwhile, the fuzzy logic control (FLC) algorithm, based on the fuzzy set theory which
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operates very precisely and responds rapidly, ascertained by other studies, is used in
comparison. The triangular membership function with the input variables of vehicle
speed, vehicle acceleration and output variable being the coefficient of torque distribution
k, were utilized for the fuzzy logic controller. Additionally, the simulated FLC algorithm
is designed considering equal torque distribution between front and rear axles under a
straight-line driving scenario. The optimal operation of the in-wheel motor is improved by
the optimal distribution of the required drive torque, so as to ensure that the in-wheel motor
operates in high efficiency areas during operation at specified motor working speeds. As a
result, optimal torque distribution control can be expressed as a problem of determining
the torque distribution coefficient k of the front wheels and rear wheels. The coefficient
k is described as the torque distribution characteristic between the front wheels and rear
wheels, which can be expressed by the following Equation:

k =
Tf

Tf + Tr
(16)

The boundary conditions guiding the above equation are shown below:⎧⎪⎪⎨⎪⎪⎩
Tf + Tr = Treq
0 ≤ Tf ≤ Treq
0 ≤ Tr ≤ Treq
0 ≤ k ≤ 1

(17)

where Tf represents the torque of the front axle motor, Tr represents the torque of the rear
axle motor and Treq represents the torque demand of the 4IWMD electric vehicle.

Note that k can express different driving modes. When k = 1, it expresses a separate
front wheel drive. When k = 0, it expresses a separate rear wheel drive. When k = 0.5, it
expresses a four-wheel average torque distribution mode [18,29].

The driving energy utilization efficiency under the in-wheel motor driving condition
can be defined by Equation (18).

maxη =

[
k

η f (kTdem, n)
+

(1 − k)
ηr((1 − k)Tdem, n)

]
(18)

where ηf represents the efficiency of the front axle motor, ηr represents the efficiency of the
rear axle motor and n represents the equivalent speed of the axle motor.⎧⎪⎪⎨⎪⎪⎩

n < nmax
0 < Tf < Tdem
0 < Tr < Tdem
Tdem < Tmax

(19)

The boundary condition that satisfies the above equation is shown above.
Considering the interference of other factors, the overall efficiency of the system η

can be acquired. Then, the energy consumption of the of the in-wheel motor drive system
under driving cycles can be simplified as below:

E =
∫ t

0
(Pdem × η)dt (20)

The torque distribution coefficient k is the output value derived by the control alloca-
tion method and used for optimal torque distribution to ensure high working efficiency of
the front and rear in-wheel motors, in straight line driving conditions as considered in this
study [30].
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Figure 4. Framework of torque distribution control scheme.

3.2. Torque Distribution Based on DP

To derive a better efficiency optimizing effect, the torque distribution by DP is utilized
to solve the torque optimization problem.

Torque distribution through DP optimization involves the establishment of the con-
strained optimization problem and solving the numerical solution [31]. The utilization of
the mathematical optimization and computer programming method developed by Richard
Bellman in the 1950s for torque distribution in an electric vehicle requires utilizing the DP
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algorithm to solve and derive an optimal shorter path for the working points of the in-wheel
motor, in such a way that it brings about increased in-wheel motor and vehicle efficiency.

The DP computational technique extends the decision-making concept to sequences
of decisions, which as a whole define an optimal policy and trajectory. To determine the
optimal trajectory and enable the in-wheel motors to work in high efficiency regions, the
DP algorithm is defined by these mathematical equations:

C∗
axih = Jaxi + J∗xih (21)

J∗αh = min{C∗
ax1h, C∗

ax2h, . . . , C∗
axih, . . .} (22)

where α is the current state, ui is an allowable decision elected at the state α, xi is the state
adjacent to α that is replaced by the application of ui at α, h is the final state, Jaxi is the cost
to move from α to xi, J∗xih

is the minimum cost to reach the final state h from xi, C∗
axih

is the
minimum cost to go from α to h via xi, J∗αh is the minimum cost to go from α to h (by any
allowable path), u∗(α) is the optimal decision (control) at α.

The principle of optimality utilized to find an optimal policy, represented by Equation (23),
can be represented by the state equation of the 4IWMD electric vehicle presented in Equation (24).

u∗(t) = f (x(t), t) (23)

where f is a functional relationship referred to as the optimal control law or the optimal
policy, and t is the time.

The vehicle speed u and torque Tdem of the 4IWMD electric vehicle are the state
variables in the range of actual domain [t0, tf] of power system of the 4IWMD. The speed of
the 4IWMD electric vehicle can be determined according to the driving cycle utilized for
the optimization. Therefore, the state variable is noted as x(t) = [Tdem(t), n]′, meanwhile the
vehicle demand power is utilized as the control variable, which is noted as u(t) = [Pdem(t)]
discrete state. The powertrain of the 4IWMD electric vehicle can then be described by the
following Equation (24).

dx
dt

= f (x(k), u(k)) (24)

where f is the equation of the power system of the 4IWMD electric vehicle, consisting of
the vehicle dynamics Equations (2)–(7) and (11),

0 ≤ Pdem ≤ Pdem,max
Tm,min ≤ Tdem(t) ≤ Tm,max
nm,min ≤ n(t) ≤ nm,max

(25)

where Tdem represents the in-wheel motor torque, Tm,min represents the minimum torque,
Tm,max represents the maximum torque of the in-wheel motor, nm,min and nm,max represent
the minimum and maximum speed of the in-wheel motor, respectively, Pdem,max represents
the maximum output power of the in-wheel motor.

The energy efficiency of the in-wheel motor drive system that is necessary for the
optimal energy consumption is taken as the objective function in this study. Additionally,
the objective function is shown as follows:

J = min
N

∑
i=0

⎡⎣ nTf

η f

(
Tf , n

) +
nTr

ηr(Tr, n)

⎤⎦ = min
N

∑
i=0

[
nkTdem

η f (kTdem, n)
+

n(1 − k)Tdem
ηr((1 − k)Tdem, n)

]
(26)

where Tf represents the output torque value of the front axle in-wheel motor, Tr represents
the output torque value of the rear axle in-wheel motor, ηf (Tf,n) represents the efficiency of
the front axle in-wheel motor and ηr (Tr,n) represents the efficiency of the rear axle in-wheel
motor [32].
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The dynamics model of the 4IWMD electric vehicle needs to be represented in terms
of change of state for the investigation of DP. The procedure needs to be performed in a
discrete format, rather than in a continuous format. Therefore, the discretization needs to
be carried out due to the numerical solution of DP. The time and system state are firstly
discretized, and then the calculation grid of the torque distribution ratio state is divided
along the time direction of the vehicle driving cycle.

According to the drive cycle, the vehicle model is utilized to calculate the power
demand and speed of the drive cycle along the time direction. Considering the constraints
of the in-wheel motor, the system’s reachable boundary of the entire driving cycle is
acquired from the initial state and the termination state. The system constraints are met
within the reachable boundary range. Additionally, the forward function is calculated
according to the designed objective function. Through the recursive call method, the final
state is reversed to the initial state when the torque distribution ratio state matrix of the
in-wheel motor for the entire drive cycle is obtained.

The transversal optimization process is completed when the optimal torque distri-
bution trajectory of the in-wheel motor is obtained. The calculation approach of the DP
method is shown in Figure 5, and it can be seen that the backward recursion process of the
dynamic program is used to calculate the minimal cost for torque distribution along the
entire drive cycle by proceeding backward. This is done in order to output the dynamic
and optimal path for the calculation process, in such a way that the optimal torque dis-
tribution coefficient can be derived for every time step of the state space of the dynamic
programming algorithm [33].

Figure 5. DP control method calculation approach.

The process of utilizing the DP method to conduct the torque distribution of the
in-wheel motor is shown in Figure 6. For the simulation’s implementation, the inputs for
the DP optimization are the calculated total torque and wheel speeds for the front and rear
in-wheel motors, while the output is the coefficient of torque distribution. Considering
the in-wheel motor, stator resistance, rated motor power, wheel speed and loss model,
the in-wheel motor efficiency map is linearly interpolated and the distribution coefficient
are greatly utilized to find the optimal outputs. The output is the optimal torque for each
in-wheel motor, with the utilized distribution coefficient [34].
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Figure 6. DP optimization diagram.

The equations for the calculation of the output are expressed as follows:

MT1 = Ttoll×Kr
2 ;

MT2 = MT1;
MT3 = Ttoll×(1−Kr)

2 ;
MT4 = MT3

(27)

where MTi represents the in-wheel motor torque and i = 1, 2, 3, 4 represent each of the four
motors (front left, front right, rear left, rear right), respectively. Ttoll represents the required
total torque for propulsion and braking and Kr is the torque distribution coefficient.

The discretized dynamic model produces the output indicated by the above equations
to provide the front left, front right, rear left and rear right total motor torque utilized
by the in-wheel motor when the in-wheel motor torque is greater than T1 (at Ttoll > T1).
Meanwhile, at other instances of Ttoll < T1, the torque is distributed to the in-wheel motors
as indicated below:

MT1 = 0;
MT2 = 0;
MT3 = Ttoll

2 ;
MT4 = Ttoll

2

(28)

The vehicle dynamic model may optimally distribute no torque to the front electric
motors when the vehicle torque is lower than T1. However, it only distributes the total
required torque to the vehicle by the rear wheels, as it enhances the optimal performance
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of the in-wheel motor and electric vehicle overall, as the in-wheel motor operates with a
higher torque.

For the vehicle torque to be optimally controlled, the dynamic programming model
utilizes the above mode for the derivation of the vehicle torque. This is further indicated
as below,

MTi(k + 1) = MT3 =
Ttoll(k)

2
= MT4 =

Ttoll(k)
2

(29)

where k represents the index of the current node, MTi (k + 1) represents the motor torque
for the next node and Ttoll (k) is the required motor torque.

4. Simulation Results and Analysis

To compare the effectiveness of the proposed DP-based torque distribution strategies
for the 4IWMD electric vehicle, simulations were carried out using the co-simulation
platform of MATLAB/Simulink and AVL Cruise. The simulations ran under the WLTC
driving cycle, the NEDC driving cycle and the IM240 driving cycle to simulate the driving.
The simulation results of the torque distribution based on DP control algorithm carried out
under these different driving cycle conditions are compared with the torque distribution
based on the FLC strategy. This comparison documents a comprehensive energy saving
analysis of both torque distribution strategies.

The FLC distribution strategy is developed considering the equal distribution of
torque, as well as the effective torque distribution to both sets of in-wheel motors of the
front and rear axle [35]. When the required torque is low, the rear in-wheel motors supply
most of the torque. When the required torque is supposed to increase and enlarge, the
front in-wheel motors will supply more torque and compensate for the remaining required
torque. The DP controller is developed considering maximum in-wheel motor efficiency, in
which both of the rear in-wheel motors handle the vehicle propulsion request when the
calculated total required torque is less than 300 Nm. When the required torque is over
300 Nm, both of the front in-wheel motors assist the rear in-wheel motors and supply the
left-over share of the required torque that is needed to propel the vehicle. The simulations
are carried out under the assumption that the 4IWMD electric vehicle drives on a straight
line without cornering. The low-speed–low-torque characteristic of the in-wheel motor
keeps the electric vehicle within a maximum speed under 60 km/h. The main parameters
of the 4IWMD electric vehicle utilized in the co-simulation studies are shown in Table 1.

4.1. WLTC Driving Cycle

The worldwide harmonized light vehicle test cycle (WLTC) with a distance of 23,266 m,
a duration of 1800s and a maximum speed around 130 km/h is utilized, as it is the classified
test cycle for a broader category of vehicles and diverse electric powertrain vehicles. The
speed profile of the WLTC drive cycle is shown in Figure 7.

The required total torque under the WLTC drive cycle is shown in Figure 8, as the
control distribution method controls the amount of torque that is needed to navigate
through the entire driving cycle. The torque that is individually distributed to the pair of
front and rear motors when FLC is utilized for torque distribution is shown in Figure 9a.
The torque that is individually distributed to the pair of front and rear motors when the
DP algorithm is utilized for torque distribution is depicted in Figure 9b. It can be noted
that the calculated required torque by vehicle dynamics (Ttoll) is different from the required
total torque to navigate through the driving cycles, as the latter is the total torque which
the control algorithm utilizes to navigate through the driving cycle, considering the control
parameters, constraints and objectives. Therefore, it is the result calculated by the torque
distribution control algorithm, using the total desired torque by vehicle dynamics and
in–wheel motor speed for the front and rear in-wheel motors.
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Figure 7. WLTC driving cycle.

Figure 8. Total torque desired under WLTC drive cycle.

Figure 9. Torque distribution to front and rear in–wheel motors in WLTC: (a) FLC algorithm;
(b) DP algorithm.

Figure 10 shows a section of the torque distribution figure in Figure 9b, from 0 s to 500 s.
Figure 10 shows that the rear in-wheel motors work all through the drive cycle, while the
front in-wheel motors assist the rear motors as intended, when the calculated required total
torque is over 300 Nm. At other time periods of lower torque, the front in-wheel motors
remain inactive and do not engage in torque distribution. It is noted that both the front
and rear in-wheel motors engage in energy recuperation, as the negative torque recorded
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shows. It is also visible in Figure 9 that the torque distribution using the proposed DP
algorithm is well coordinated, efficient in distribution and better in comparison to the FLC
method. The results indicate that a lesser amount of torque with a maximum of 109.3 Nm is
utilized to achieve the torque distribution task in comparison with FLC with the maximum
of 160.927 Nm. Good regenerative braking/energy recuperation is also visible, as the above
figures indicate.

Figure 10. Torque distribution to front and rear electric motors using DP in WLTC (cropped).

The DP controller works with the in-wheel motor to ensure it works within its desig-
nated operation capacity, while working with the end goal of improving torque distribution
to the front and rear axle through maximum in-wheel motor efficiency.

The in-wheel motor operation points for both front in-wheel motors and both rear
in-wheel motors in the WLTC driving cycle are shown in Figure 11a,b, respectively. The
figures show a comparison of operating points between the FLC and the proposed DP
torque distribution strategy.

Figure 11. Distribution of motor working points of the front and rear motors under WLTC driving
cycle: (a) Front motor; (b) Rear motor.

As the operating points have significantly shown in Figure 11, important efforts are
being undertaken by the front and rear in-wheel electric motors. The in-wheel motors
work effectively as required in very high efficiency working regions. The proposed DP-
based torque distribution strategy ensures the in-wheel motor works in higher efficiency
regions than that with the FLC-based torque distribution strategy. Therefore, compared
to the FLC-based torque distribution method, the proposed DP-based torque distribution
method achieves a better efficiency optimizing effect, as both of the front and rear in-
wheel motors work mostly in highly efficient regions. The proposed DP-based method
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always works in high efficiency regions effectively, even when only the front motor is in
operation. The WLTC driving cycle motor operating points with the proposed DP-based
torque distribution strategy presents better results in comparison to the motor operating
points with the FLC-based torque distribution strategy, as depicted especially by the WLTC
driving cycle motor operating point map in Figure 11a,b.

4.2. NEDC Driving Cycle

The new European driving cycle (NEDC) with a total distance of about 11,017 m, a
duration of 1180 s and a maximum speed of 120 km/h, is the one used for the determination
of a vehicle’s consumption and emission values. The speed profile of the NEDC driving
cycle is shown in Figure 12.

Figure 12. NEDC driving cycle.

The required total torque utilized by the 4IWMD electric vehicle to navigate through
the entire NEDC cycle is shown in Figure 13. Meanwhile, shown in Figure 14a,b is the
torque individually distributed to the pair of front and rear motors when FLC and the
proposed DP strategy are utilized for torque distribution, respectively. Figure 15 shows one
section, from 0 s to 430 s of the torque distribution result presented in Figure 14.

Figure 13. Total torque desired under NEDC driving cycle.
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Figure 14. Torque distribution to front and rear electric motors in NEDC: (a) FLC algorithm;
(b) DP algorithm.

Figure 15. Torque distribution to front and rear electric motors using DP in NEDC.

The rear in-wheel motor works all through the NEDC driving cycle, while the front
in-wheel motor assists the rear motor as intended. It can be visibly seen in Figure 14 from
830 s to 1100 s that the front in-wheel motors remain inactive and do not engage in torque
distribution at other time periods of lower torque, where the front in-wheel motors’ torque
becomes idle after assisting the vehicle in reaching the higher acceleration from low torque.
The rear in-wheel motor is able to provide sufficient torque to sustain the vehicle at the
attained desired vehicle speed. The in-wheel motor works as a generator at deceleration
periods, enabling energy recuperation through regenerative braking.

The in-wheel motor operating points for both of the front motors and rear motors in the
NEDC driving cycle are shown in Figure 16. The figures show a comparison between the
operating points, when torque distribution is based on FLC and the proposed DP strategy.

The in-wheel motors effectively work as required in higher efficiency working regions
of the electric motors when the DP-based torque distribution strategy is applied. Therefore,
the proposed DP-based torque distribution method achieves a better efficiency optimization
effect than that with the FLC-based torque distribution method, as both the front and rear
in-wheel motors work mostly in highly efficient regions. The motor operating points in the
NEDC driving cycle, under the proposed DP-based torque distribution strategy, clearly
shows that the rear in-wheel motor provides more torque for vehicle propulsion than the
front in-wheel motor.
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Figure 16. Distribution of motor working points of the front and rear motors under NEDC driving
cycle: (a) Front motor; (b) Rear motor.

4.3. Customized IM240 Driving Cycle

A customized driving cycle called the custom IM240 drive cycle based on the inspec-
tion and maintenance driving cycle with a total distance of about 3100 km, a duration of
240 s and maximum speed of 56.7 km/h is also utilized in this study as it is a represen-
tation of a low-speed driving cycle, which represents the driving pattern in urban areas
with traffic and low speed limitations. The speed profile of the custom IM240 driving
cycle is shown in Figure 17. The required total torque with the entire custom IM240 drive
cycle is presented in Figure 18. The torque individually distributed to the front and rear
motors based on FLC and the proposed DP algorithm strategy are shown in Figure 19a,b.
The torque requirement with the IM240 drive cycle is low and the rear in-wheel motor
supplies most of the required torque throughout the driving cycle. This has the benefit of
reducing the battery consumption, as only the rear in-wheel motor supplies the needed
torque, therefore increasing the final SOC of the battery, which can be used to cover more
travel range.

Figure 17. Custom IM240 driving cycle.
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Figure 18. Total torque required to navigate through custom IM240 driving cycle.

Figure 19. Torque distribution to front and rear electric motors using FLC and DP in custom IM240
driving cycle: (a) FLC algorithm; (b) DP algorithm.

The motor operating points for both the front and rear in-wheel motors in the custom
IM240 driving cycle are shown in Figure 20. The figures show a comparison between the
motor operating points, when torque distribution based on FLC and on the proposed DP
are utilized for torque distribution.

Figure 20. Distribution of motor working points of the front motor and rear motor under custom
IM240 driving cycle: (a) Front motor; (b) Rear motor.

The motor operating points under the custom IM240 driving cycles shown in Figure 20
indicate that the in-wheel motors work in high efficiency working areas when the proposed

215



World Electr. Veh. J. 2022, 13, 181

DP-based torque distribution is utilized. The custom IM240 driving cycle operating points
confirm that an increase in vehicle speed will lead to an increase in torque, which allows
the in-wheel motor to work at higher efficiency regions. The in-wheel motor contributes to
the high motor efficiency, with a maximum efficiency of approximately 96.48% by the front
motors and 96.52% by the rear motors, which is obtained by the proposed DP-based torque
distribution method in the 4IWMD electric vehicle.

4.4. Energy Saving Analysis

The energy consumption of the 4IWMD electric vehicle with FLC and the proposed
DP strategy for torque distribution under different drive cycles are shown in Table 3. From
Table 3, it can be seen that the energy consumption of the 4IWMD electric vehicle with
FLC and the proposed DP strategy for torque distribution under the WLTC drive cycle
are 10.01 kWh/100 km and 7.74 kWh/100 km, respectively. It can be seen that the energy
consumption with the proposed DP strategy is less than that with the FLC strategy, in
which the energy consumption is reduced by 22.68%. The energy consumption of the
vehicle with FLC and the proposed DP strategy for torque distribution under the NEDC
drive cycle are 9.89 kWh/100 km and 7.84 kWh/100 km, respectively. It also can be seen
that the energy consumption with the proposed DP strategy is less than that with the FLC
strategy, in which the energy consumption is reduced by 20.73%. The energy consumption
with FLC and the proposed DP strategy for torque distribution under the custom IM240
drive cycle are 9.11 kWh/100 km and 7.12 kWh/100 km, respectively. We see that the
energy consumption is reduced by 21.84% with the proposed DP strategy compared to the
FLC strategy.

Table 3. Energy consumption of the 4IWDEV over the studied driving cycles.

FLC-Based Torque
Distribution Energy

Consumption
(kWh/100 km)

DP-Based Torque
Distribution Energy

Consumption
(kWh/100 km)

Improvement
in Energy

Consumption (%)

WLTC 10.01 7.74 22.68
NEDC 9.89 7.84 20.73

Custom IM240 9.11 7.12 21.84

The energy consumption with FLC and the proposed DP strategy for torque distribu-
tion under different drive cycles is clearly shown in Figure 21.

Figure 21. Energy consumption in the three drive cycles using FLC and the proposed DP strategy.

It can be seen that the proposed DP-based torque distribution method functions with
high motor efficiency capability, which enables the in-wheel motor to work maximally in
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highly efficient working regions. The rear in-wheel motors supply most of the required
torque, while the front in-wheel motors assist the rear in-wheel motors as designed.

The proposed DP-based torque distribution method brings an improvement in the
torque distribution of the 4IWMD electric vehicle, resulting in reduced energy consumption,
good energy recuperation and an increase in vehicle travel range.

5. Experimental Validation

Experimental studies were carried out to verify the effectiveness of the proposed
DP-based torque distribution strategy, which is achieved on a NI Veristand IWMD electric
vehicle test bench. The above-mentioned three drive cycles are used for experimental
studies. Figure 22 shows the utilized experimental test bench setup.

Figure 22. Experiment test bench setup.

5.1. WLTC Drive Cycle

A comparison of both the experimental and simulation results of torque distribution
for the front and rear in-wheel motors with the FLC and the proposed DP strategy under
the WLTC drive cycle are shown in Figures 23 and 24, respectively. It can be seen that the
experimental results of torque distribution track most of the simulation results. The torque
distribution results obtained by the proposed DP strategy follow those obtained by the
FLC strategy, in which the track accuracy is improved and the fluctuation is reduced. It is
confirmed that the proposed DP strategy is a better option for torque distribution than the
FLC strategy in the 4IWMD electric vehicle.

Figure 23. Torque distribution to front motor and rear motor obtained in experiment and FLC
simulation of WLTC driving cycle: (a) Front motor; (b) Rear motor.
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Figure 24. Torque distribution to front motor and rear motor obtained in experiment and DP
simulation under WLTC driving cycle: (a) Front motor; (b) Rear motor.

5.2. NEDC Drive Cycle

Figures 25 and 26 show the comparison between simulation and experimental results
of torque distribution with FLC and the proposed DP strategy under the NEDC driving
cycle. It is noted that the NEDC cycle requires less torque for acceleration to the required
vehicle speed in comparison to the WLTC cycle, as the WLTC experiment results show
in Figures 23 and 24. The experimental result validates the simulation results of torque
distribution in the NEDC driving cycle.

Figure 25. Torque distribution to front motor and rear motor obtained in experiment and FLC
simulation of NEDC driving cycle: (a) Front motor; (b) Rear motor.

Figure 26. Torque distribution to front motor rear motor obtained in experiment and simulation with
DP algorithm under NEDC driving cycle: (a) Front motor; (b) Rear motor.
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5.3. Customized IM240 Driving Cycle

Figures 27 and 28 highlight the torque distribution results for the experiment in the
custom IM240 driving cycle in comparison with the simulation results in the custom IM240
driving cycle for torque distribution based on the FLC and DP algorithm, respectively.
The experimental results of the custom IM240 driving cycle for the torque distribution,
similar to the NEDC driving cycle, tracks the simulation results, with high torque exerted
during deceleration.

Figure 27. Torque distribution to front motor and rear motor obtained in experiment and simulation
with FLC algorithm under custom IM240 driving cycle: (a) Front motor; (b) Rear motor.

Figure 28. Torque distribution to front motor and rear motor obtained in experiment and simulation
with DP algorithm under custom IM240 driving cycle: (a) Front motor; (b) Rear motor.

5.4. Energy Saving Analysis

Energy saving analysis is conducted in line with the energy consumption during the
experimental studies. The quantitative analysis of the vehicle energy consumption during
the experiment was derived based on the torque distribution coefficient, for torque distri-
bution based on the FLC algorithm and the DP algorithm, respectively. The total energy
consumed by the in-wheel motor during the experiment based on the FLC algorithm and
the DP algorithm in the WLTC driving cycle is 359.714 kJ and 273.765 kJ, respectively. Mean-
while, in the NEDC driving cycle, the in-wheel motor consumed an energy of 528.834 kJ
and 406.549 kJ during the experiment based on the FLC algorithm and the DP algorithm,
respectively. For the custom IM240 driving cycle, the in-wheel motor consumed an energy
of 163.051 kJ and 125.527 kJ during the experiment based on the FLC algorithm and the
DP algorithm, respectively. As is shown from Figures 23–28, the WLTC urban driving
experiment covered 0–500 s of the WLTC driving cycle, while that of NEDC covered 0–438 s
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of the NEDC driving cycle; meanwhile, the custom IM240 experiment covers the entire
240 s of the custom IM240 driving cycle.

The energy consumption in Kilowatt-hour per 100 km, calculated from the Watt-hour
calculation, is assumed to showcase the consumption per km for the three driving cycles,
for torque distribution methods with FLC and the proposed DP algorithm. The percentage
of improvement in energy consumption during the experiments based on the FLC and DP
torque distributions is shown in Table 4.

Table 4. In-wheel Motor Energy Consumption during Experimental Studies.

Energy Consumption
with FLC Algorithm

(kWh/100 km)

Energy Consumption
with DP Algorithm

(kWh/100 km)

Improvement
in Energy

Consumption (%)

WLTC 9.992 7.605 23.89
NEDC 14.690 11.293 23.12

Custom IM240 4.529 3.487 23.01

The IM240 driving cycle during the experiments based on the FLC and DP torque dis-
tributions is presented in Figure 29. Compared to the FLC-based strategy, it can be seen that
there is a reduction in energy consumption with the DP-based torque distribution strategy.

Figure 29. Energy consumption in the three drive cycles using FLC-based and DP-based torque
distribution during experiment.

The energy consumed in the WLTC, NEDC and custom IM240 driving cycles during
the experiment clearly verifies that DP-based torque distribution is a more optimal torque
distribution method than the FLC strategy, for which less energy is consumed when the
DP-based torque distribution is applied in the 4IWMD EV.

6. Conclusions

Centered on the aim of improving energy saving, the economy-based torque distri-
bution strategy is proposed in this paper. Upon the building of a complete four-in-wheel
motor drive electric vehicle model, featuring a comprehensive vehicle model, a motor
model and a battery model, torque distribution methods based on the FLC algorithm and
a proposed DP algorithm are investigated through co-simulation studies carried out in
AVL Cruise and MATLAB/Simulink software. Additionally, further experimental studies
were implemented to verify the simulation results. These were performed considering a
straight-line road.

This article produces very interesting results, as shown by the simulation and exper-
imental results. The simulation results show that the torque distribution based on the
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DP algorithm is the optimal option for optimized front and rear torque distribution, as it
effectively reduces the vehicle’s energy consumption by 2.27 kWh, 2.05 kWh and 1.99 kWh
for every 100 km of distance travelled in the WLTC, NEDC and custom IM240 driving
cycle conditions, respectively, when compared to the torque distribution based on the FLC
algorithm. Furthermore, compared to the FLC algorithm, the experimental results show
that the energy consumption under the WLTC, NEDC and IM240 drive cycles is reduced
by 23.89%, 23.12% and 23.01% with the proposed DP algorithm, respectively. Hence, the
proposed DP algorithm produces an optimized front and rear torque distribution that
effectively reduces vehicle energy consumption, which leads to an improved energy saving
and overall vehicle efficiency in four-in-wheel motor drive electric vehicles. The online
global optimization method with the proposed DP algorithm which can be monitored in
real-time during simulation and the vehicle experiment studies may assist in optimization
and real time control, enabling better simulation results and even experimental results to
be obtained with minimal or negligible errors.

It should be noted that DP is an exhaustive search that requires more time and space
for its computation. Future work will focus on the algorithm and the reduction of the
computation load.
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Abstract: To address the problem in which wheel longitudinal slip rate directly affects the dynamics
and handling stability of a vehicle under driving conditions, front and rear dual-motor four-wheel
drive electric vehicles (4WD EVs) were selected as the research object in this study. An acceleration slip
regulation (ASR) control strategy based on nonlinear model predictive control (NMPC) is proposed.
First, the vehicle dynamics model and the Simulink/CarSim co-simulation platform were built.
Second, an ASR controller with intervention and exit mechanisms was designed with the control
objective of tracking reference speed or optimal slip rate. Then, considering the problem that the
left and right wheels could not freely distribute torque under the condition of a split road surface,
the motor output torque was determined in accordance with the wheel with the larger slip rate to
enhance passibility. Finally, on the basis of the built Simulink/CarSim co-simulation platform, slip
rate control simulation experiments were performed on a snow-covered road, a wet asphalt road, a
docking road, and a split road. The designed controller can better track target slip rate and it exhibits
better dynamic performance and stability than the method with PID control under different road
conditions, especially under low speed and low adhesion road conditions, and its robustness can also
meet the requirements.

Keywords: nonlinear model predictive control; four-wheel drive; acceleration slip regulation;
intervention and exit mechanisms

1. Introduction

Pure electric vehicles (EVs) are new energy vehicles driven by motors with batteries
as a power source. Compared with traditional vehicles, they exhibit the advantages of
not consuming fossil fuels and producing zero emissions during operation; thus, EVs are
highly valued by society as an important tool for future development of the automotive
industry [1]. EVs, with four-wheel drive (4WD EVs), will provide a higher degree of
initiative and electrification to the chassis, improving the performance of the entire vehicle,
making the overall structure more compact, and achieving higher transmission efficiency
and freer control of the vehicle [2]. In contrast with centralized-drive EVs, front-and-rear
axle independent-drive EVs can control the front and rear motors independently, and
thus, they exhibit unique advantages in vehicle stability control, vehicle maneuverability
enhancement, and motor efficiency improvement [3–5]. Front-and-rear axle dual-motor
pure EVs have become a popular research topic [6–9].

The acceleration slip regulation (ASR) system has been widely used in vehicles driven
by an internal combustion engine (ICE). Compared with torque output by ICE, torque
output via motor presents the characteristics of quick response and large quantity, making
EVs more prone to slipping [10–12]. This phenomenon will result in the speed of 4WD EVs
being uncontrollable, whereafter stability and dynamics cannot be guaranteed. Therefore,
the ASR control strategy of 4WD EVs is important.

World Electr. Veh. J. 2022, 13, 200. https://doi.org/10.3390/wevj13110200 https://www.mdpi.com/journal/wevj
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To solve the aforementioned problems, scholars have conducted numerous related
studies. MPC has received wide attention due to its advantages in solving constrained,
nonlinear problems [13]. Yuan et al. [14] presented a nonlinear model predictive control
(NMPC) for an antilock braking system (ABS) and a traction control system (TCS). Reference
tracking was not used because slip rate was solely controlled through the constraints of
NMPC formulation. Davide et al. [15] presented a TCS for EVs with in-wheel motors;
this TCS is based on explicit NMPC. The proposed controller achieved good results in
the simulation and real vehicle verification. Chen et al. [16] proposed an ASR strategy
by using fuzzy control. The results of their study indicated that the proposed strategy
is an effective technique for improving the dynamic performance and stability of EVs.
They focused on controlling the slip rate to remain below the optimal slip rate. In this
manner, vehicle stability is guaranteed, but dynamic performance is sacrificed to a certain
extent. Guo et al. [17] presented an ASR control strategy based on the classification of road
conditions and the calculation of the optimal slip rate for road conditions. In accordance
with the real-time slip rate, an appropriate motor torque can be calculated by the control
algorithm to track the reference value. These researchers focused on tracking the optimal
slip rate, which can maximize the power of a vehicle. However, when driver acceleration
demand is small, the actual slip rate is less than the optimal slip rate, and the vehicle is in a
stable state. At this moment, turning on the controller will increase computational burden.
Therefore, the problem of a controller’s intervention and exit must be solved.

In the current study, an ASR control strategy for EVs based on NMPC with intervention
and exit mechanisms is proposed. The algorithm is divided into three modules: the speed
control module based on a proportional–integral–derivative (PID) controller, the slip rate
control module based on an NMPC controller, and the torque selection module. The PID
controller outputs the corresponding torque in accordance with the difference between
actual and target vehicle speeds. The NMPC controller outputs the corresponding torque
in accordance with the relationship between the actual and optimal slip rates. The torque
selection module is responsible for coordinating the torque output of the two controllers,
ensuring that the vehicle obtains the most suitable torque input in a certain state. The
overall control block diagram is shown in Figure 1. In order to highlight the advantages of
the proposed algorithm, we compared it with ASR-PID (contains PID speed controller, PID
slip rate controller, intervention and exit mechanisms) and WASR (without acceleration slip
regulation). The simulation results show that the proposed algorithm can achieve better
results, especially under low speed and low adhesion road conditions.

Figure 1. ASR control block diagram.
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The structure of this paper is as follows. In Section 2, we establish the vehicle dynamics
model, the motion model of a single wheel, the tire longitudinal force calculation model,
and the longitudinal slip model. In Section 3, the speed control strategy is first introduced;
then, the NMPC and torque selection mechanism are described. Finally, the overall control
block diagram is provided. In Section 4, the control strategy is verified through the co-
simulation of Simulink/CarSim.

2. System Model Establishment

2.1. Vehicle Longitudinal Movement

In accordance with Newton’s law, the motion equations of a vehicle are shown as
follows [18]. Figure 2 illustrates the longitudinal dynamic model of a vehicle.

m
.
v = Fx f l + Fx f r + Fxrl + Fxrr − Fw − Ff (1)

 

Figure 2. The longitudinal dynamic model of a vehicle.

where m is the mass of the vehicle;
.
v is the acceleration of the vehicle; Fx f l , Fx f r, Fxrl ,

and Fxrr are the longitudinal forces of the front left, front right, rear left, and rear right tires,
respectively; and Fw and Ff are the air resistance and rolling resistance, respectively.

2.2. Four Wheels’ Rotation Movement

The wheels’ rotation movement describes the relationship between the applied torque
and the longitudinal force generated, which is shown in Figure 3.

Ji
.

ωi = Tdi − FxiR, i = f l, f r, rl, rr (2)

where Ji is the wheel moment of inertia,
.

ωl is the wheel angular acceleration, Tdi is the
torque acting on the wheel, and R is wheel rolling radius.
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Figure 3. The wheel dynamics model.

2.3. Tire Longitudinal Force Calculation Model

The calculation of the longitudinal force of the tire is crucial for the longitudinal
dynamics of a vehicle. Researchers typically establish a tire model to obtain the longitudinal
force of a tire. Here, the μ–s curve of the standard road proposed by Burckhardt is used to
replace the tire model [19], which is shown in Figure 4.

μ(λ) = C1

(
1 − e−C2λ

)
− C3λ (3)

Figure 4. Adhesion coefficient vs. slip.

where C1, C2, and C3 are the coefficients related to the road surface. Their values are
provided in Table 1. λ is the slip rate.

Table 1. The relevant parameters of a standard road.

Road Surface C1 C2 C3 λopt μmax

Snow 0.1964 94.129 0.0646 0.06 0.19
Wet asphalt 0.8570 33.822 0.3470 0.13 0.80
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In accordance with Formula (3), the following conclusion can be drawn:

dμ(λ)

dλ
= C1C2e−C2λ − C3 (4)

Let dμ(λ)
dλ = 0. We obtain{

λopt =
1

C2
ln C1C2

C3

μmax = C1 − C3
C2
(1 + ln C1C2

C3
)

(5)

where λopt is the optimum slip rate, and μmax is the maximum road adhesion coefficient.
The calculation method for tire longitudinal force is

Fxi = μ(λ)Fzi, i = f l, f r, rl, rr (6)

The vertical force of each tire can be calculated using the following formula:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Fz f l = m
(

b
a+b g − hg

a+b ax

)(
1
2 − hgay

t f g

)
Fz f r = m

(
b

a+b g − hg
a+b ax

)(
1
2 +

hgay
t f g

)
Fzrl = m

(
a

a+b g +
hg

a+b ax

)(
1
2 − hgay

t f g

)
Fzrr = m

(
a

a+b g +
hg

a+b ax

)(
1
2 +

hgay
t f g

) (7)

In the current study, the longitudinal motion of a vehicle is considered, and the
influence of lateral acceleration is disregarded. The above formula can be simplified as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Fz f l =
1
2 m

(
b

a+b g − hg
a+b ax

)
Fz f r =

1
2 m

(
b

a+b g − hg
a+b ax

)
Fzrl =

1
2 m

(
a

a+b g +
hg

a+b ax

)
Fzrr =

1
2 m

(
a

a+b g +
hg

a+b ax

) (8)

where Fz f l , Fz f l , Fz f l , and Fz f l are the vertical loads of the four wheels; a and b are the
distance from the center of mass to the front and rear axles, respectively; g is the gravita-
tional acceleration; hg is the height from the center of mass to the ground; and ax is the
longitudinal acceleration of a vehicle.

2.4. Longitudinal Slip Calculation Model

The longitudinal slip of the tire is the key to calculating its longitudinal force. The rela-
tionship of longitudinal slip with vehicle speed and wheel angular speed can be described
as

λi =
ωiR − v

ωiR
, i = f l, f r, rl, rr (9)

3. Control Strategy

3.1. PID-Based Speed Controller Design

The speed control module is specifically established to simulate the driver’s expected
torque output. It consists of a PID controller and an average torque distribution. The total
control torque can be expressed by the following formula:{

Tv = Kpe + Ki
∫

edt + Kd
de
dt

e = vre f − v
(10)
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where Tv is the total control torque; e is the difference between reference and actual speeds;
and Kp, Ki, and Kd are the proportional, integral, and differential parameters of the PID
controller, respectively.

The torque adopts the principle of equal distribution, and the torque of each wheel
can be expressed as

Tvi =
1
4

Tv (11)

where Tvi is the torque of each wheel.

3.2. NMPC-Based Slip Controller Design

Wheel slip rate is set as the direct control variable by the general slip rate control.
When the vehicle uses slip rate as the control variable in the low-speed starting stage,
errors and disturbances in vehicle speed estimation will exert a relatively greater effect,
and the lag of the motor torque will cause larger buffeting. The primary reason for this
phenomenon is that disturbances and delays are passed directly to the control variable.
Considering this deficiency, a slip rate control algorithm with wheel speed as the control
variable is proposed to compensate for the defect of the controller at low vehicle speed.
From the definition of slip rate, the tracking reference wheel slip rate signal is equivalent to
the tracking reference wheel speed signal.

ωo =
v

r(1 − λo)
(12)

A minimum vehicle speed strategy is designed to prevent the effects of vehicle speed
errors and disturbances on the controller when starting at a low speed. That is, when the
estimated vehicle speed is less than a certain value, the fixed value vehicle speed vmin is
used in calculating reference wheel speed.

ωo =
max(v, vmin)

r(1 − λo)
(13)

From Formula (2), the following can be determined:

.
ωi =

Tdi − FxiR
Ji

, i = f , r (14)

From Formula (1),

.
v =

Fx f l + Fx f r + Fxrl + Fxrr − Fw − Ff

m
(15)

3.2.1. Model Discretization

The state-space equation of slip control can be described as⎧⎪⎪⎨⎪⎪⎩
.

ω f =
Td f −Fx f R

J f
.

ωr =
Tdr−Fxr R

Jr
.
v =

Fx f l+Fx f r+Fxrl+Fxrr−Fw−Ff
m

(16)

The state-space equations of the system are discretized using Euler’s method. Δt is
defined as the sampling step size. By applying it to the state-space model at sampling time
k, the preceding formula can be discretized as{

x(k + 1) = f k(x(k), u(k))Δt + x(k)
y(k) = Cyx(k)

(17)
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where x =
[
ω f , ωr, v

]T
is the state variable, u =

[
Td f , Tdr

]T
is the input for system control,

y =
[
ω f , ωr, v

]T
is the output for system control, f k represents the gradient of the system

state change at time k, and the output matrix is Cy = diag(1; 1; 1).
NC is defined as the control time domain, Np is the prediction time domain, and

Np ≥ Nc ≥ 1. At sampling time k, the control sequence Uk and the output sequence of the
system Yk are expressed as follows:

Uk =

⎡⎢⎢⎢⎣
u(k|k)

u(k + 1|k)
...

u(k + Nc − 1|k)

⎤⎥⎥⎥⎦ and Yk =

⎡⎢⎢⎢⎣
y(k + 1|k)
y(k + 2|k)

...
y
(
k + Np|k

)
⎤⎥⎥⎥⎦

Here, R(k) is the output reference sequence that represents the optimal angular velocity
sequence ω0. At sampling time k, r(k) = [ωo1(k), ωo2(k)]

T is the sequence of changes in the
control input. It is calculated such that Δu(k) = u(k)− u(k − 1), and its value is 0 when k
exceeds the control time domain.

Rk =

⎡⎢⎢⎢⎣
r(k)
r(k)

...
r(k)

⎤⎥⎥⎥⎦, ΔUk =

⎡⎢⎢⎢⎣
Δu(k|k)

Δu(k + 1|k)
...

Δu(k + Nc − 1|k)

⎤⎥⎥⎥⎦
At sampling time k, the predicted state and output are

x(k + 1|k) = f k(x(k|k), u(k|k))Δt + x(k|k)
x(k + 2|k) = f k(x(k + 1|k), u(k + 1|k))Δt + x(k + 1|k)

...
x(k + Nc|k) = f k(x(k + Nc − 1|k), u(k + Nc − 1|k))Δt + x(k + Nc − 1|k)

(18)

y(k + 1|k) = Cy

(
f k(x(k|k), u(k|k))

)
Δt + x(k|k)

y(k + 2|k) = Cy

(
f k(x(k + 1|k), u(k + 1|k))

)
Δt + x(k + 1|k)

...
y
(
k + Np | k

)
= Cy

(
f k(x

(
k + Np − 1|k), u

(
k + Np − 1|k)))Δt + x

(
k + Np − 1|k)

(19)

3.2.2. Description of Optimization Problem

The primary objective of the control requirement is to track the optimal slip rate
and ensure that the vehicle can obtain a large longitudinal force to fully utilize the road
adhesion coefficient and improve possibility. Therefore, a cost function J1 is added to meet
the requirements for tracking the optimal angular speed.

J1 =
Np

∑
i=1

‖(y(k + i|k)− r(k + i)|k)‖ (20)

To preserve driver comfort, the change rate of the control action should not be ex-
cessively large, because such a condition may lead to serious torque ripple. That is, the
change rate of the control variable should be sufficiently small to ensure comfort during
acceleration. Thus, a cost function J2 is added to limit the change rate of the control variable.

J2 =
Nc−1

∑
j=1

‖ Δu(k + j − 1)|k ‖ (21)
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By combining the aforementioned control objectives, the following cost function is
proposed:

minJ = J1 + J2 =
Np

∑
i=1

‖(y(k + i|k)− r(k + i)|k)‖2
Q +

Nc−1

∑
j=1

‖Δu(k + j − 1)|k‖2
R (22)

s.t

⎧⎪⎪⎨⎪⎪⎩
−Tfmax ≤ Td f (k + j|k) ≤ Tfmax , j = 0, 1, . . . , Nc − 1
−Trmax ≤ Tdr(k + j|k) ≤ Trmax, j = 0, 1, . . . , Nc − 1
x(k + 1) = f k(x(k), u(k))Δt + x(k)
y(k) = Cyx(k)

(23)

3.3. Design of Intervention and Exit Mechanisms

In practical applications, being fully controlled by the controller is unnecessary, and
driver’s demand torque must also be comprehensively considered. Therefore, for the
selection of driver’s demand torque and controller’s control torque, the current study
designs intervention and exit mechanisms for the control algorithm to ensure that the
motor output torque conforms to the current state of the vehicle.

To avoid the failure of the intervention and exit mechanisms due to the chattering of
the slip rate at low speed, the NMPC controller is always turned on when v < vmin. The
specific flowchart is shown in Figure 5:

Figure 5. The process of the torque option.

where λact is the actual slip rate, λopt is the optimal slip rate, TPID is driver’s demand
torque, and TNMPC is the output torque of the NMPC controller.

The controller is turned on when flag = 1, and the driver takes over when flag = 0.

4. Simulation and Analysis

MATLAB/CarSim co-simulation was conducted to verify the effectiveness of the
proposed algorithm. The optimization toolbox fmincon in MATLAB is suitable for solving
constrained and nonlinear problems; therefore, it could be used to solve the optimization
problem in this study.

The simulations were performed under four different conditions: low adhesion road,
high adhesion road, docking road, and split road. In addition, every condition included two
aspects: vehicle starting and vehicle acceleration, the former initial velocity was 0 km/h,
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the latter initial velocity was 30 km/h. The road surface is assumed to be flat and smooth,
and the vehicle will drive straight on these roads except on the split road. These test
maneuvers are typical maneuvers developed for evaluating the performance characteristics
of a vehicle [20].

In order to ensure that the controller can adapt to various single road surfaces, the
simulation tests of low adhesion and high adhesion road surfaces are carried out. When the
vehicle enters the low adhesion road from the high adhesion road, the wheels will rotate
violently if the driving torque cannot be reduced rapidly, which will greatly reduce the
stability; from the low adhesion road to the high adhesion road, the vehicle’s dynamic
performance will be limited to a large extent if the torque cannot increase rapidly. In order
to ensure that the controller can respond quickly to this, the simulation test of the docking
road is carried out.

Driving on a split road is a very critical test maneuver, since the vehicle will experience
severe instability if the driver does not react immediately to correct the course of the vehicle.
During this test, due to the asymmetric driving forces generated on the left and right tires,
the vehicle will be pushed to the side of the road that has a lower coefficient of friction.
Therefore, it is necessary to a conduct simulation test on a split road.

The major parameters of the class A 4WD EV are listed in Table 2. To improve the
realism of the simulation and the validity of the results, the white noise is added to the
simulation process. Finally, the robustness of the whole control system is analyzed. The
simulation results are as follows:

Table 2. Major parameters of the EV.

Parameter Symbol Value

Vehicle Mass m 1710 kg
Height of the vehicle c.g. hg 0.552 m

Distance from c.g. to front axle a 1.216 m
Distance from c.g. to Rear axle b 1.613 m

Rolling radius of the tyre R 0.32 m
Front area A 2.3157 m2

Front motor peak power Pf max 130 kW
Front motor peak torque Tf max 225 Nm
Rear motor peak power Prmax 60 kW
Rear motor peak torque Trmax 170 Nm

4.1. Low Adhesion Road

The simulation condition is a snow-covered road. The road adhesion coefficient is 0.19.
The optimal slip rate is 0.06. The reference speed is 0–15 km/h and 30–45 km/h. The target
speed is reached within 2 s, and this speed is maintained until the end of the simulation
The simulation results are shown in Figures 6 and 7.

As shown in the figure, the designed controller achieves ideal results compared with
the WASR (without acceleration slip regulation), which only contains the PID speed con-
troller. ASR-MPC is the simulation result of the designed algorithm, ASR-PID contains
PID speed and a PID slip rate controller, which also contains intervention and exit mecha-
nisms. “Ref” and “Opt” are the reference vehicle speed and the optimal wheel slip rate,
respectively. In order to clearly show the role of the intervention and exit mechanisms,
only the simulation results of ASR-MPC are shown in the second and fourth lines of the
above simulation figures. In vehicle starts condition of ASR-MPC, at 0–2.2 s, the slip rate
controller is always on. At 0–0.8 s, vehicle velocity is less than 5 km/h, the actual slip rate
cannot track the optimal slip rate because of the reference angular speed is a fixed value
and the motor output torque is limited. An actual slip rate of 0.8–2.2 s can track the optimal
slip rate well, and acceleration remains at 1.83 m/s2. After 2.2 s, the NMPC is turned off,
and acceleration rapidly drops close to 0, because the reference speed has been tracked at
this time, and thus, continuing to accelerate becomes unnecessary. The simulation results of
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ASR-PID are similar to those of ASR-MPC. The difference is that the first arrival reference
speed of ASR-PID is slightly slower than that of ASR-MPC, because the latter has better slip
rate control. In contrast with WASR, acceleration is maintained at 1.65 m/s2 most of the
time, and the slip rate is close to 1. After reaching the reference speed, acceleration cannot
be reduced in time, and the simulation reports an error at 4.6 s. This working condition
is extremely dangerous and should be avoided. In the torque diagram, MPC and PID are
the slip rate control output torque and driver output torque, respectively, in ASR control.
ASR is the final output torque of the front and rear axle motors. Under the action of the
intervention and exit mechanisms, the front and rear axle motors can always select a more
suitable torque as the output.

Figure 6. Vehicle starts under a low adhesion coefficient road.
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Figure 7. Vehicle accelerates under a low adhesion coefficient road.

During vehicle acceleration, the simulation results are similar to those of a vehicle
starting. The difference is that the former slip rate changes smoothly and the NMPC is
closed in the beginning of the simulation, while the latter fluctuates evidently and the
NMPC is turned on. The reason for this phenomenon is that the latter starts at a speed of
0, and a small fluctuation in wheel angle can cause a considerable change in slip rate. To
suppress this phenomenon, the NMPC is turned on when the vehicle speed is less than the
minimum vehicle speed vmin.

4.2. High Adhesion Road

The simulation condition is a wet asphalt road. The road adhesion coefficient is 0.8,
and the optimal slip rate is 0.13. The reference speed is 0–55 km/h and 30–85 km/h.
The target speed is reached within 2 s, and this speed is maintained until the end of the
simulation. The simulation results are shown in Figures 8 and 9.
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Figure 8. Vehicle starts under a high adhesion coefficient road.

As shown by the results, ASR-MPC and ASR-PID are more dynamic than WASR and
has a faster speed response. In ASR-MPC control, the NMPC is turned on when vehicle
speed is greater than vmin, and the front wheel slip rate can effectively track the optimal
slip rate. However, the rear wheel slip rate cannot track the optimal slip rate, because the
load is transferred backward during the acceleration process, and the rear axle wheels
require a larger motor torque to generate the same slip rate. The slip rate cannot continue
increasing due to the limitation of the motor torque. The control effect of ASR-PID is
basically consistent with that of ASR-MPC. In WASR control, the wheel slip rate is large
at 0.2–3 s. The handling stability of the vehicle is considerably reduced at this time. This
condition is more dangerous, and the rear wheel slip rate is always kept at a small value
due to load transfer. When speed is greater than vmin, the slip rate can track the optimal slip
rate if flag = 1, and the slip rate remains below the optimal slip rate if flag = 0. Therefore, the
designed algorithm can also play an important role in a road surface with a high adhesion
coefficient. The expected results can be achieved regardless of the starting and acceleration.
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Figure 9. Vehicle accelerates under a high adhesion coefficient road.

4.3. Docking Road

The road adhesion coefficient is 0.8 in the first 5 m, 0.19 in 5–15 m, and 0.8 after 15 m.
The reference speed is 0–50 km/h and 30–80 km/h. The target speed is reached within
2 s, and this speed is maintained until the end of the simulation. The target slip rates are
0.13 and 0.06 when the adhesion coefficients are 0.8 and 0.19, respectively. The simulation
results are shown in Figures 10 and 11.

In accordance with the preceding simulation results, the vehicle starting process is
as expected. However, the vehicle acceleration results have two unusual aspects. First,
the slip rate of the rear wheel can keep up with the optimal slip rate immediately after
entering the high adhesion road from the low adhesion road, because the reference slip
rate is obtained on the basis of the front wheels. When the front wheels have just entered
the high adhesion road from the low adhesion road, the rear wheels are still in the low
adhesion road, and thus, their slip rate increases rapidly as the rear motor torque increases.
Second, WASR acceleration is greater than ASR-MPC and ASR-PID acceleration in the
second half of the acceleration process. The reason for this phenomenon is that wheel
angular speed is excessively high, such that it can maintain a large slip rate after entering
the high adhesion road from the low adhesion road in WASR. Meanwhile, in ASR-MPC
and ASR-PID, the rear wheels’ slip rate decreases rapidly after the vehicle enters the high
adhesion road. The adhesion–longitudinal slip curve can determine that the longitudinal
force generated by the rear wheels of WASR is greater than that of ASR-MPC and ASR-PID,
and the total longitudinal force is also related in this manner.
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Figure 10. Vehicle starts on a docking road.

 
Figure 11. Vehicle accelerates on a docking road.
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4.4. Split Road

The road adhesion coefficient of the left wheels is 0.8 in the first 5 m, 0.19 in 5–15 m,
and 0.8 after 15 m. Meanwhile, that of the right wheels is 0.8. The reference speed is
0–5 km/h and 30–80 km/h. The target speed is reached within 2 s, and it is maintained
until the end of the simulation. The simulation results are shown in Figures 12 and 13.

 
Figure 12. Vehicle starts on a split road.

When entering the split road, the output torque of the motor is determined by the
wheel with the smaller optimum slip rate. At 5–15 m, the optimal slip rate of the left wheels
is 0.06. The vehicle has dual motors on the front and rear axles; hence, the torque of the left
and right wheels on the same axis should be equal. When the left wheels keep up with the
optimal slip rate, the output torque of the motor makes the right wheels’ actual slip rate
less than 0.06, while the optimal slip rate of the right wheels is 0.13. If the actual slip rate
is less than the optimal slip rate, then the generated longitudinal force increases with an
increase in slip rate. In the simulation process, the longitudinal force generated by the right
wheels is smaller than that of the left wheels. When the vehicle is traveling, differential
steering is generated due to the difference in longitudinal force of the left and right wheels,
and the vehicle is slightly deflected to the right. Accordingly, the PID controller is added to
ensure that the vehicle drives on the split road within the 5–15 m interval.
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Figure 13. Vehicle accelerates on a split road.

As shown in the figure, ASR-MPC and ASR-PID have a smaller steering wheel angle
and a smaller lateral displacement than WASR. The former is kept near the centerline of
the lane. The maximum steering wheel angle is around 25◦, and the maximum deviation
does not exceed 0.08 m. The simulation runs smoothly throughout the whole process.
Meanwhile, the latter’s maximum steering wheel angle reaches the limit value of 360◦, and
the maximum deviation reaches 15 m. Safety is particularly important when driving on the
split road; hence, power is sacrificed to a certain extent to ensure the smooth running of
the vehicle.

A, B, C, D, and E in Table 3 represent the time taken to reach the reference speed
for the first time, the time taken to stabilize at the reference speed, whether speed has
an overshoot, the maximum steering wheel angle, and the maximum lateral displacement,
respectively. “In” in B indicates that the steady speed is not reached at the end of the
simulation. Different road surfaces and conditions have varying reference speeds. The
difference between the maximum and minimum reference speeds of the same road surface
under different conditions is the same.
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Table 3. A comparison of the simulation results.

Road
Surface

Condition Algorithm A B C D E

Low
adhesion

road

Starting
ASR-MPC 2.2 s 2.2 s N 0 0
ASR-PID 2.3 s 2.3 s N 0 0

WASR 2.6 s In Y 0 0

Acceleration
ASR-MPC 2.2 s 2.2 s N 0 0
ASR-PID 2.4 s 2.4 s N 0 0

WASR 2.6 s In Y 0 0

High
adhesion

road

Starting
ASR-MPC 2.3 s 2.3 s N 0 0
ASR-PID 2.35 s 2.35 s N 0 0

WASR 2.6 s 3.2 s Y 0 0

Acceleration
ASR-MPC 2.3 s 2.3 s N 0 0
ASR-PID 2.3 s 2.3 s N 0 0

WASR 2.6 s 3.2 s Y 0 0

Docking
road

Starting
ASR-MPC 2.9 s 2.9 s N 0 0
ASR-PID 2.9 s 2.9 s N 0 0

WASR 3.1 s 4.2 s Y 0 0

Acceleration
ASR-MPC 2.8 s 2.8 s N 0 0
ASR-PID 2.8 s 2.8 s N 0 0

WASR 2.8 s 3.6 s Y 0 0

Split road

Starting
ASR-MPC 2.9 s 2.9 s N 24.8◦ 0.08 m
ASR-PID 2.9 s 2.9 s N 26.1◦ 0.08 m

WASR 2.7 s In Y 360◦ 7.3 m

Acceleration
ASR-MPC 2.8 s 2.8 s N 25.2◦ 0.07 m
ASR-PID 2.8 s 2.8 s N 26.2◦ 0.07 m

WASR 2.6 s In Y 360◦ 5.6 m

Table 3 clearly shows that, except for the docking road, the acceleration time of the
same road surface under different conditions tends to be the same. The reason for the
difference in the docking road is that under acceleration condition, when the low adhesion
road enters the high adhesion road, the angular speed of the rear wheels of WASR is
excessively high, such that the slip rate can still be maintained at a large value immediately
after entering the high adhesion road. Meanwhile, the angular speed of the rear wheels
of ASR-MPC and ASR-PID is low, and the slip rate of the rear wheels decreases rapidly
after entering the high adhesion road. The longitudinal adhesion coefficient–slip rate
relationship curve can determine that the longitudinal force generated by WASR is greater
than that generated by ASR-MPC and ASR-PID. Thus, the acceleration of WASR in the
second half is greater than that of ASR-MPC and ASR-PID.

To keep the vehicle running on the split road, a PID controller is added to offset the
differential steering caused by the difference in longitudinal force of the left and right
wheels. ASR-MPC and ASR-PID always achieve a smaller lateral displacement with a
smaller steering wheel angle. The control effect of ASR-MPC at low speed and low adhesion
is obviously better than that of ASR-PID, the simulation results of the two at other working
conditions are close. The effectiveness of the proposed algorithm is fully verified through
the preceding simulation tests.

4.5. Robustness Analysis

In order to verify the robustness of the control system, the vehicle body mass in CarSim
is set to 0.8, 1 and 1.2 times the original body mass, and working condition is set to vehicle
starts under a low adhesion coefficient road. The simulation results are shown in Figure 14.
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Figure 14. The robustness verification.

where mb refers to the original body mass, 0.8mb and 1.2mb represent 0.8 times and
1.2 times the body mass, respectively.

From the above simulation results, it can be seen that the simulation result is the best
when the body mass is mb, because the body mass in the control algorithm is the same;
when the body mass is 0.8mb, the slip ratio decreases slowly from a large value. The reason
for this is that the optimal wheel angular speed is a fixed value if the vehicle speed is
less than vmin. It takes a short time to track the optimal wheel speed for the reason that
the vehicle weight is small. With the increase of vehicle speed, the slip ratio decreases
gradually; when the body mass is 1.2mb, the reference speed tracking time of the vehicle
speed is greater than the 0.8mb and mb. This phenomenon occurs because the maximum
output torque of the motor is limited when the vehicle speed is less than vmin, which results
in the wheel slip rate being kept at a small value, and therefore the acceleration is small. In
general, under these three body masses, the simulation can achieve the desired results, and
the robustness of the controller has been verified.

5. Conclusions

This study proposes an ASR control system for 4WD EVs based on NMPC with
intervention and exit mechanisms to solve the problem of wheel slipping and uncontrollable
speed under acceleration conditions. Considering dynamic performance and comfort
problems caused by severe torque fluctuation, a cost function for tracking the optimal slip
rate and limiting torque change rate is established. An optimal solution is then found
using the optimization toolbox fmincon in MATLAB. Intervention and exit mechanisms are
designed for the controller to solve the problem of switching between slip rate tracking and
speed tracking. The effectiveness of the proposed controller is evaluated on a low adhesion
road, a high adhesion road, a docking road, and a split road. The simulation results show
that the proposed controller can accurately control the longitudinal slip of the four wheels
in accordance with the optimal slip rate and reference speed, and the robustness can also
meet the requirements.
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Abstract: As position sensorless control technology can avoid many disadvantages caused by me-
chanical position sensors, improve the reliability of the motor, reduce costs and other advantages,
a large number of researchers have conducted research on compound control technology in order
to achieve position sensorless control technology in a wide speed range. In this article, the position
sensorless compound control technology of a permanent magnet synchronous motor is reviewed,
and the compound control technology of a permanent magnet synchronous motor without a position
sensor is elaborated. Finally, the existing problems and development trend of sensorless compound
control technology are summarized and prospected.

Keywords: permanent magnet synchronous machine (PMSM); position sensorless compound control;
high frequency (HF) signal injection method; I/F control; model-based techniques

1. Introduction

In recent years, with the shortage of energy and the deterioration of the environment,
energy conservation and environmental protection have become the main theme of the
development of automobiles in the future [1–5]. Permanent magnet synchronous motors
(PMSMs) have been continuously improved in the field of automotive motor applications
due to their high-power density, large torque inertia ratio and fast dynamic response
speed [6]. To achieve high performance control of the motors, the current vector and the
rotor position must be synchronized. Therefore, the exact position of the rotor needs to be
obtained in real time [7]. Many mechanical detection devices, such as an optical encoder
and a rotary encoder, are usually installed on the motor to detect the rotor position [8].
However, the traditional motor rotor position observer occupies a certain size, which is
not conducive to the installation of the motor and can also cause the motor to go out of
control due to sensor faults working in harsh operating environments [9,10]. Thus, position
sensorless control technology plays a key role in the field of PMSM research [11–13].

The research on position sensorless control technology for PMSM is gradually matur-
ing and is currently focused on two main aspects of position sensorless control technology
for zero- and low-speed and for medium- and high-speed operation [14,15]. As shown in
Figure 1 and Table 1, the former relies on the saliency of the motor, including high-frequency
(HF) signal injection [16–23], etc.; the latter generally relies on the mathematical model
of the motor and is usually divided into two categories: open-loop algorithms, including
direct calculation [24–27], the back electromotive force (BEMF) integration method [28–30],
flux estimation [31,32], etc., and closed-loop algorithms, including the model reference
adaptation system (MRAS) [33–38], sliding mode observer (SMO) [39–42], etc.

While the current position sensorless control technology at zero–low speed and
medium–high speed is now well established, it is still a weak point in the full-speed
domain, which appeals to numerous researchers for improvement. In the zero–low-speed
range, saliency-based position sensorless control techniques are able to estimate the motor
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speed and position signal very well; similarly, in the medium- and high-speed range,
model-based control algorithms have very good performance. As a result, most of the
current position sensorless control techniques in the full-speed range are compound control
technology, which combine control techniques at zero–low speed with control techniques at
medium and high speed, and use switching algorithms to achieve a smooth switch between
the two algorithms in the over-range. The block diagram of the compound control structure
in the full-speed domain is generally shown in Figure 2.

Model-Based
(High Speed)

Saliency-Based
(Low Speed)

Open Loop 
Methods

Closed Loop 
Methods

Artificial 
Intelligence 

BEMF 
Integration 

Direct 
Calculation 

SMO

MRAS

HF signal 
injection 

FPE-Based

Pulsating Signal 
Injection

Rotating Signal 
Injection

Arbitrary Injection

Sensorless
Control

 

Figure 1. Categories of PMSM sensorless control methods.

Table 1. Position sensorless control algorithms.

Algorithms Reference Description

high frequency (HF) injection [16–23]

The HF injection method is not reliant on the spatial protrusion of the tracking
rotor rather than the mathematical equation of the motor, which addresses the
sensitivity to the change in motor parameters and leads to a strong robustness.
Yet the filter is needed, which has the defects of low signal-to-noise ratio and
large phase lag in signal processing.

including direct calculation [24–27]
This method does not depend on the speed of the motor, but it needs to
increase the integral circuit and increase the hardware complexity and may
bring additional integral error.

back-electromotive
force (EMF) [28–30]

The realization is simple, but the back EMF signal is small when the motor is
low speed or static. The back EMF needs to be filtered, which will cause phase
shift of the signal.

flux estimation [31,32]

The rotor flux of the motor cannot be detected directly. It is necessary to
measure the phase voltage and current of the motor, and to establish the
function equation, which is directly related to the rotor flux without relying on
the rotor speed. The calculation is large.

model reference adaptation
system (MRAS) [33–38]

The position observation is based on the accuracy of the reference model, and
the accuracy of the parameters of the reference model itself directly affect the
effectiveness of the identification.

sliding mode observer (SMO) [39–42]
It can solve the problem that the motor is difficult to control at high speed and
heavy load, and has strong robustness, but it needs a large
amount of operation.
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Figure 2. The block diagram of the compound control structure in full speed.

In addition to the conventional compound control algorithms above, there are also
many special control algorithms in the full-speed range, such as compound control based
on three-stage control [43–45] and compound control based on arbitrary injection [46,47].

The contribution of this paper is a classification of state-of-the-art compound position
estimation methods and advances in sensorless control. The paper provides a complete
overview of the advantages and disadvantages of HF-based, as well as IF-based, com-
pound estimation techniques, which provides an effective guide for researchers working
in this field.

The rest of this review paper is organized as follows. Section 2 introduces sensorless
position estimate strategy for compound control based on the high-frequency injection
method and Section 3 for compound control based on I/F control. Section 4 introduces the
switching strategy in the full-speed range. Conclusions and future trends are drawn in
Section 5.

2. Compound Control Based on High-Frequency Injection Method

High-frequency signal injection methods are generally divided into two categories.
One is the high-frequency voltage injection method, and the other is the high-frequency
current injection method [17]. As the high-frequency current injection method is difficult to
control due to the high requirements of the current regulator used, the high-frequency volt-
age signal injection method is more commonly used. According to the different injection
signals, high-frequency voltage injection methods are divided into two categories. One is
the high-frequency rotary voltage injection, the other is the high-frequency pulse voltage
injection. The former enables sensorless control of saliency-pole motors, and the latter is
suitable for sensorless control of both saliency-pole and hidden-pole motors. A large num-
ber of researchers have made many improvements to traditional signal injection [18–23].
Therefore, the current system of high-frequency signal injection methods has been formed.
Since this paper focuses on compound control, instead of giving a detailed account of
each high-frequency signal injection method, two common high-frequency voltage signal
injection methods have been selected for introduction.

The principle of the high-frequency voltage signal injection method is that when the
motor is at standstill or running at low speed, the injection of a high-frequency voltage
signal into the winding, due to the saliency of the motor, causes the feedback high-frequency
signal to carry rotor position information.

1. High-frequency rotating injection method:

In general terms, the basic principle of this method is to add a high-frequency voltage
excitation signal to the static coordinate system of the motor and to use the saliency of
motors’ own structural convex pole or saturated convex pole effect to produce a high-
frequency current response. This current response contains both positive- and negative-
phase sequence components, and only the phase of the negative-phase sequence high-
frequency current component contains rotor position information. Therefore, appropriate
signal processing techniques are required to extract rotor speed and position information
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by constructing suitable observer methods or the phase-locked loop method. The block
diagram of the system structure is shown in Figure 3. The injected high-frequency voltage
signal can be expressed as [8] [

uαh
uβh

]
=

[−Uh sin(ωht)
Uh cos(ωht)

]
(1)

Figure 3. The control block diagram of the HF rotating injection method.

The high-frequency rotating injection method is insensitive to the uncertainty of motor
parameters. However, its signal demodulation process is relatively complicated, the use of
multiple filters deteriorates the dynamics of the system, and it is susceptible to multiple
uncertainties leading to poor position-estimation accuracy.

2. High-frequency pulsating injection method:

The basic principle of this method is similar to that of the rotating high-frequency
voltage signal method, except that the pulsating high-frequency voltage injection method
only injects a high-frequency sinusoidal voltage signal into the d-axis of the estimated
synchronous rotating coordinate system and produces a pulsating voltage vector in space.
Figure 4a establishes the relationship between the estimated rotor and the actual rotor syn-
chronous rotation coordinate system. In addition, in terms of the signal processing method
for the feedback current, the pulsating high-frequency voltage injection method needs to
multiply the high-frequency current component with the high-frequency sinusoidal signal
for amplitude modulation, and then perform filtering and rotor position observation. The
block diagram of the system structure is shown in Figure 4b. The injected high-frequency
voltage signal can be expressed as [8].[

ûdh
ûqh

]
=

[
Uh cos(ωht)

0

]
(2)

Compared with the high-frequency rotating injection method, the high-frequency
pulsating signal injection method does not require the salient polarity of the motor and
has the advantages of reliability, with inverter non-linearity and high accuracy in position
identification. However, it has the problems of a long convergence time, poor dynamic
performance and small stability range [19,20].

This section then provides an in-depth analysis of compound control based on the two
widely used high-frequency signal injection methods mentioned above.
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Figure 4. (a) The relationship between the estimated rotor and the actual rotor synchronous rotation
coordinate system; (b) The control block diagram of the HF pulsating injection method.

2.1. HF Compounded with Model Reference Adaptive Method

The model reference adaptive system (MRAS) is a common method for estimating
rotor positions based on the fundamental wave model method [33,34]. The basic principle
of MRAS is to use the mathematical equations containing the parameters to be estimated as
the adjustable model and the PMSM itself, which does not contain the unknown parameters,
as the reference model. The output error of the two models is used to achieve the tracking
of the adjustable model to the reference model by designing a suitable adaptive law to
achieve the estimation of the rotor position and speed [35–37]. The basic structure is shown
in Figure 5.

Figure 5. Block diagram of parallel structure MRAS.

In [48,49], Qin and Xu combined HF signal injection with MRAS in order to obtain rotor
position estimates in the full-speed range. Rotor position and speed signals are obtained by
the HF signal injection method at zero–low speeds, and by the model reference adaption
method at medium and high speeds. The switching of the two algorithms is achieved
by a switching method with weighting factors, which is described in detail separately in
Section 4. In [50], the error term constructed using the HF pulse injection method was
applied to correct the model reference adaptive observer, and the rapid dynamic response
performance of the adaptive observer was combined with the steady-state accuracy of
the HF injection method. The framework diagram of the compound system is shown in
Figure 6.
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Figure 6. Block diagram of a compound control structure based on MRAS and HF.

The MRAS has the advantages of parameter adaption, structural simplicity and good
steady-state performance [51]. As a result, it is often used in combination with HF for
position estimation in the full-speed range. However, the performance of this algorithm
depends on the selection of the reference model and the design of the adaptive law, which
directly affect the stability and robustness of the algorithm, as well as the accuracy of the
estimation. Therefore, the design of the adaptive law has been a problem that needs to
be studied in depth in this method in order to obtain superior performance in the full-
speed range [35]. In order to improve the robustness of this algorithm, the literature [36]
proposes to combine the sliding mode algorithm with MRAS to improve the robustness of
the system. In [52], Li introduced ADRC into the adaptive law design of MRAS to improve
the estimation accuracy and increase the robustness of the system.

2.2. HF Compounded with Sliding Mode Observer

The Sliding Mode Observer (SMO) algorithm uses a switching characteristic that
makes the structure of the system change over time, allowing the control to take on a
discontinuous character [53,54]. The basic principle of the method is to build the SMO from
a mathematical model of a permanent magnet synchronous motor and to design the sliding
surface from the estimated error between the observed and actual currents [55,56]. By
measuring the estimation error of the current, the back electromotive force is reconstructed
and the rotor position and speed information is estimated using the back electromotive
force. The basic structure is shown in Figure 7.

Figure 7. Block diagram of SMO.
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In [57,58], the HF signal injection method was combined with SMO to determine the
rotor position. The driver not only adopted a nonlinear adaptive SMO for the estimation
of the rotor speed, but also conducted Lyapunov stability analysis to improve the low-
speed and stationary performance of the drive. In [58], the running speed range of the
motor was split into three sections, including a low-speed zone, transition zone and
medium high-speed zone, so as to realize the smooth switching of the control method of
the whole speed range of the motor, while verifying the sudden addition load and the
discharge load of the transition area. In [59], a nonlinear sliding mode speed regulation
scheme was proposed for IPMSM to be combined with the maximum torque amperometry
trajectory. The global asymptotic stability of the controller and observer was ensured
by Lyapunov stability analysis. As for IPMSM, Wang proposed a hybrid observation
method based on a combination of the location error information of high-frequency signal
injection and the anti-electric potential model method. The HF voltage signal of pulse
vibration was injected during low-speed operation, and the medium–high-speed operation
obtained the information on the position error through the anti-electric potential model
SMO, thus normalizing the position error signal captured by the two methods and merging
the information in a weighted way [60]. The scheme of the hybrid methods adopted
in these papers is shown in Figure 8. Aiming at the compound control method based
on rotational speed or position information fusion, it shows the disadvantages of high
operation complexity and the difficulty in realization.

Figure 8. The block diagram of the rotor position hybrid observer based on HF and SMO.

2.3. HF Compounded with BEMF Integration Method or Flux Estimation

The BEMF integration method, or flux estimation, is an open-loop algorithm, which is
different from the two-position sensorless algorithms already described above at medium
and high speeds [61,62]. The key point of this algorithm is to obtain an accurate rotor
magnetic chain vector and to use it to derive rotor position information. The stator voltage
equation and the stator-rotor magnetic chain relationship in the α-β coordinate system of a
permanent magnet synchronous motor are used for integration and inverse trigonometric
operations to find the rotor position angle and speed [63].

ψ f = ψs − LαβIs =
∫
(Us − RsIs)dt − LαβIs (3)

θe = arctan
ψ f α

ψ f β
(4)

where ψf is the permanent magnet chain vector; ψs is the stator synthetic magnetic chain
vector; Us is the stator voltage vector; Is is the stator current vector; Lαβ is the inductance
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matrix of the motor in the α-β coordinate system; and ψfα and ψfβ are the components
of the rotor magnetic chain on the α-β axis, respectively. The basic structure is shown in
Figure 9.

Figure 9. The block diagram of Flux Estimation.

In [64,65], a hybrid structure integrating flux observer and signal injection technology
was proposed to make the rotor position signal independent of motor parameters at low
and zero speed. In [66], a single Luenberger position observer compound control method
based on the integration of standardized position error information was suggested. The
standard position error signals were captured by square-wave voltage injection and the
back-EMF model, respectively, at different speeds, and the information on the weighted
fusion of the standardized position error signals in the transition region was collected
through velocity information. In [67], when the motor remained up and running at low
speeds, the real-time three-phase inductance of the motor was obtained by the rotating HF
injection method, and the stator flux was obtained by combining the phase current. When
the motor was running at high speeds, the back-EMF filter was applied to estimate the
stator flux, according to which the DTC method based on the torque angle was combined,
the motor operation was controlled, and the hysteresis method was used to ensure the
smooth transition. In [68], through a combination of the EEMF and the HF signal injection
method, the amplitude of the signal current was adjusted to maintain sufficient EEMF
amplitude for mitigating interference. As the lower bound of the EEMF could be adjusted
according to the degree of interference, signal setting was made easier. The scheme of the
hybrid methods adopted in these papers is similar to Figure 8.

3. Compound Control Algorithm Based on I/F Control

I/F control is a frequency conversion speed control process to keep the current stable
through the current closed loop, avoiding too much or too little current []. I/F control
can directly control the torque current, which improves the ability to match the motor
output torque with the load torque and can avoid low-frequency oscillation during motor
operation. V/F control is similar to I/F control in that it is also a variable frequency speed
control strategy, but in contrast to I/F control, V/F control is open loop for both speed
and current, whereas I/F control is open loop for speed and closed loop for current. The
schematic diagram for starting and running a permanent magnet synchronous motor via
I/F control is shown in Figure 10.

At the initial start, the virtual synchronous coordinate system lags behind the synchronous
coordinate system by a π/2 electrical angle. As the virtual synchronous coordinate system
rotates, the motor rotor also starts to rotate with the virtual synchronous coordinate system. The
motor output electromagnetic torque is determined by the phase difference between the two
coordinate systems, and the motor output electromagnetic torque is shown as

Te =
3
2

npψ f i∗q cos θL (5)

The equation for the torque balance of the motor during acceleration is

Te − TL =
J

np
· dωre

dt
=

J
np

· d2θre

dt
(6)
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where iq* is the given current; J is the rotational inertia; TL is the load torque; and ωre is the
rotor electric angular velocity.

Figure 10. The phase relation of virtual synchronous frame and rotor synchronous frame in IF control.
(a) Start state; (b) Running state.

3.1. I/F Compounded with Sliding Mode Observer

In [69,70], the I/F control method combined with a SMO composite control strategy
was presented. In order to analyze the phase relationship of the virtual synchronous
coordinate system and the rotor synchronous coordinate system used in the I/F control,
the I/F control strategy of rotational speed open loop and current closed loop was adopted
in the low-speed region of the motor. The adaptive SMO estimated the rotor flux by
introducing the electric angular velocity. Based on I/F open-loop control theory, single-
current closed-loop I/F control was achieved based on instantaneous reactive power, thus
improving the current utilization [71]. The block diagram of the rotor position compound
control methods based on I/F and SMO is shown in Figure 11.

Figure 11. The block diagram of the rotor position compound control methods based on
I/F and SMO.
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3.2. I/F Compounded with Flux Obsever

In [72], a hybrid sensorless control strategy integrated with an improved flux linkage
observer and the current-frequency (I-F) starting method was proposed. The I/F control
method was utilized for the stable startup and strong antijamming capability, and the
improved flux linkage observer based on the sliding-mode compensator is designed for the
closed-loop sensorless operation. An adaptive transition algorithm was designed in order
to achieve smooth operation between the two different control schemes.

4. Switching Methods

From the above sections, it can be found that the current compound control methods
mainly use one or more zero–low-speed control methods combined with one or more
methods of position sensorless control at medium and high speeds to achieve the full-speed
range of the compound control technology, so how to achieve a smooth transition and
switching between the two speed detection methods is an extremely important part of
whether the compound control can achieve reliable operation [73]. The switching control
algorithm between the two control methods is also the focus of this paper.

4.1. Weighting Factor Method

The basic principle of the weighted coefficient switching method is that when the
rotor speed is above the upper limit of the switching interval, the medium–high speed
control method is used for control; when the speed is below the lower limit of the switching
interval, the position sensorless control method at zero–low speed is used for control; and
when the estimated speed is within the switching interval, the weighted value of the results
of the two algorithms is used to ensure smooth switching of the two methods. At the same
time, the lower speed limit in the switching zone should be higher than the minimum
speed at which the control algorithm can operate at medium and high speeds, while the
upper speed limit in the switching zone should be lower than the maximum speed at
which the control algorithm can start itself at zero–low speed. To ensure that there are no
jumps in position and speed signals in the switching zone, the two methods are required
to have essentially the same speed and position errors in the switching zone [5,60]. The
block diagram of the system structure is shown in Figure 12. The estimation equation for
the rotor speed is

n̂ = Whn̂h + (1 − Wh)n̂m (7)

where n̂ is the estimated speed of the compound; are the lower and upper limits of the
speed switching interval respectively; and a and b are estimated speeds at zero–low speed
and medium–high speed, respectively. The weighting factor Wh is

Wh =

⎧⎨⎩
1, n̂ � n1

n−n2
n1−n2

, n̂1 < n < n2,
0, n̂ � n2.

(8)

Although this weighted coefficient method has a simple structure and is easy to imple-
ment, in practical applications, in order to achieve reliable switching during speed changes,
both algorithms need to run all the time, resulting in a large amount of wasted hardware
and software resources, and also causing an impact on the system control performance due
to the constant injection of high-frequency signals. In [74], Zhao proposed an improvement
scheme: under the premise of ensuring the upper and lower limits of the switching interval
remain unchanged, based on the basis of the variable weighted switching algorithm, the
working interval of the two algorithms is reduced, while providing sufficient margin for
the convergence of the algorithms, and the speed and rotor position identified by the other
algorithm in real time when each algorithm starts working is used as the initial value for the
identification of the new working algorithm in order to enable the algorithm that suddenly
switches to the working state to quickly converge to a stable value. The lower limit of
the switching interval for both algorithms is set to 100 r/min, and the upper limit is set
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to 200 r/min. On top of this, the speed of the MRAS method is additionally set to 50 r/min
at the start of the speed rise phase, and the speed of the pulse vibration injection method
is set to 300 r/min at the start of the operation. The operation of the improved switching
algorithm in each speed interval is shown in Figure 13.

Figure 12. The block diagram of the system structure for weighting factor method.

Figure 13. Operations of high-frequency pulse injection method and MRAS in each speed interval
after improvement.

4.2. Smooth Switching Method

The smooth switching algorithm is mostly used in the control strategy of I/F start-up.
The I/F control uses a virtual synchronous coordinate system, which has a phase difference,
θL, between it and the rotor synchronous coordinate system [69,70]. The process of smooth
switching control strategy is actually the process of adjusting the phase difference θL from an
acute angle to close to zero. The phase angle difference θL during I/F control preparation for
switching cannot be equal to zero, otherwise it will cause the motor to miss-step [71,72,75].
The ideal control strategy is shown in Figure 14.

The traditional smooth switching strategy is actually a strategy of smooth switching
by gradually adjusting the given angle of the virtual synchronous coordinate system in
the IF control. However, due to the “torque-work angle self-balancing” principle, the
virtual synchronous coordinate system can never “catch up” with the rotor synchronous
coordinate system. In order to solve this problem, in [8], Liu proposed a smooth switching
strategy by adjusting the amplitude of the virtual qv-axis current given indirectly to adjust
the phase difference θ between the two coordinate systems at heavy load, and by adjusting
the virtual qv-axis and virtual d-axis current given simultaneously at no load or light load.
This improved switching strategy has a wider range of application, and at the same time,
in this improved switching strategy, the synthetic current vectors of the qv and dv axes have
a larger phase difference with the q-axis of the rotor synchronous coordinate system, such
that this switching strategy is more resistant to disturbances and has a lower risk of motor
miss-steps. The improved switching strategy is shown in Figure 15.
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Figure 14. The block diagram of the ideal control strategy for smooth switching method.

Figure 15. The block diagram of the improved smooth switching strategy. (a) Motor positive rotation
under heavy load; (b) Motor negative rotation under heavy load; (c) Motor positive rotation under
light load; (d) Motor negative rotation under light load.
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4.3. Hysteresis Loop Switching Method

The hysteresis loop switching strategy is shown in Figure 16. When the speed rises to
|ωeH|, the estimated position is quickly switched from the position sensorless estimation
algorithm at zero–low speed to the position sensorless estimation algorithm at medium
and high speed within a certain time Tsw. The switching process uses a smooth transition
strategy as

θ̂e = ghθ̂h + (1 − gh)θ̂m (9)

ω̂e = ghω̂h + (1 − gh)ω̂m (10)

where θ̂hf, ω̂hf are the estimated position and speed obtained by the zero–low-speed
sensorless estimation algorithm, respectively; and ghf = t/Tsw, where 0 ≤ t ≤ Tsw.
The zero–low-speed sensorless estimation algorithm can be removed when all positions
estimated by the medium- and high-speed sensorless estimation algorithm are used in
order to reduce losses, noise, etc. To avoid the problem of switching back and forth
between the two methods due to speed fluctuations, a hysteresis loop strategy is designed
so that the position-free estimation algorithm at medium and high speeds is switched
to the position sensorless estimation algorithm at zero–low speed, only when the speed
is below |ωeL|. As |ωeL|<|ωeH|, it can avoid switching back and forth between the two
methods at two switching points and improve the smoothness of speed operation at the
switching point [76,77].

Figure 16. The block diagram of Hysteresis loop switching method.

5. Conclusions

This article reviews the two main types of state-of-the-art compound control based
on high-frequency signal injection, and compound control based on IF algorithms without
position sensors and their switching algorithms. The advantages and disadvantages of
compound control combined with MRAS, SMO, BEMF, et al. are presented under com-
pound control based on the HF signal injection method and I/F control, and the position
estimation process is illustrated with examples. In addition, the advantages and disadvan-
tages of the various switching algorithms in the compound control algorithm are presented.
The following points can be drawn from the content of the sections set out above:

1. The high-frequency signal injection method has many advantages, but there are also
problems of long convergence time, poor dynamic performance and small stability
range. For compound control, the advantages of the high-frequency signal injection
method inherit many disadvantages, which can have more or less impact on the
estimation accuracy and other aspects in the compound control process. Therefore
more advanced high-frequency signal injection methods should be studied to improve
the reliability of the dynamic range of motor compound control estimation.

2. I/F control is simple in structure, easy to implement, and has the advantages of
smooth start-up and no current overcharge. It is the current start-up strategy for
most position sensor-free control at medium and high speeds. However, the basic
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I/f control strategy is an open-loop scheme with disadvantages, such as the current
amplitude and frequency cannot be automatically adjusted, and there is a tendency to
lose steps, and the speed is easily disturbed, so its improvement will largely improve
the performance of the compound control.

3. There is a wide variety of control strategies for position sensorless control at high
speeds, each with its own advantages, but also some shortcomings. So, the im-
provement of such algorithms will greatly improve the performance of the current
compound control.

4. Switching algorithms play a pivotal role in compound control. In the current research
field of compound control, whether based on HF control or I/F control, switching
strategies are required. Most of the switching algorithms commonly used today have
the advantages of, for example, simpler methods and relatively stable algorithm
switching, but their switching smoothness is not ideal, which means that the exist-
ing switching algorithms should be improved to achieve smoother and more stable
switching, or smoother and more stable switching algorithms should be developed to
meet the current high demand for motor position estimation.
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