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and Francisco Javier Cañete
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Editorial

Recent Advances in Underwater Signal Processing

Xuebo Zhang 1 and Haixin Sun 2,*

1 Whale Wave Technology Inc., Kunming 650200, China; xby_zhang@nwnu.edu.cn
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The ocean, covering 71% of the Earth’s surface, is integral to human life. To solve
its mysteries, equipment such as sonar and radar have emerged to perform topography,
underwater communication, target detection, positioning, imaging, and ocean monitoring.
Recent advances in signal processing and electronic technology have propelled new theo-
ries, mechanisms, and processing technologies for underwater equipment to a new stage.

This Special Issue aims to highlight recent advancements, developments, and ap-
plications in underwater signal processing methodologies, including characterization,
simulation, real data processing, as well as applications to underwater engineering.

The editorial of this Special Issue introduces a total of 12 articles, which are divided
into four types: (1) optimization of ship navigation, (2) underwater acoustic communication,
(3) underwater acoustic signal recognition, and (4) underwater detection and positioning.
The specific breakdown is as follows: two articles are introduced for the first type, four
articles for the second type, three articles for the third type, and three articles for the
fourth type.

1. Optimization of Ship Navigation

Ship navigation optimization has received much attention in recent years due to the
increasing demand for ocean resources and space, presenting various challenges to ocean
management and security. The need to improve ship navigation safety and detect ship
operating trajectories is growing. In this issue, two articles present valuable methods
and ideas.

In [1], researchers discuss the significance of atomic interference gravimeters for
underwater navigation assistance. The instrument requires high precision to measure weak
gravitational signals. To ensure accuracy, vibration isolation is essential in reducing external
interference. The article reviews three vibration isolation methods: passive isolation,
active isolation, and vibration compensation. It also highlights the direction of vibration
compensation improvement as a future development trend.

In [2], researchers address the storage, management, analysis, and mining of ship
target data. It designs and develops the overall structure and functional modules of the
Ship Trajectory Data Management and Analysis System (STDMAS), proposing a ship
identification method based on motion characteristics. The system is user-friendly, easy
to maintain, and expandable, meeting the actual needs of ocean target data management,
analysis, and mining. However, the current processing capacity for AIS data is limited.
Future research can utilize big data algorithms and cloud computing architecture to improve
the efficiency of processing massive data.

2. Underwater Acoustic Communication

Underwater acoustic communication utilizes sound waves to propagate through water
and has various applications, including ocean detection, underwater sensing, and underwa-
ter operations. In recent years, underwater acoustic communication technology has gained
increasing attention and research. In this article, we introduce four new methods to enhance
the effectiveness of waterborne acoustic communication from different perspectives.

Sensors 2023, 23, 5777. https://doi.org/10.3390/s23135777 https://www.mdpi.com/journal/sensors
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The article [3] explores the impact of temporal and spatial fluctuations of the ocean
acoustic field on waterborne acoustic communication. Researchers have theoretically
derived the fluctuation of signal intensity concerning changes in horizontal distance, sig-
nal frequency, bandwidth, and deployment depth, which were further verified through
simulation and analysis experiments in the Yellow Sea acoustic field. The experimental
results showed that a vertical array should be used for reception in shallow-water acoustic
communication to improve the signal-to-noise ratio and system reliability. In addition
to the acoustic field, corresponding achievements have been made in underwater signal
sampling and transmission. Ref. [4] proposes a signal transmission and reception method
for sonobuoys based on an autoencoder. By using an autoencoder at the transmission and
reception ends, signal compression and restoration can be efficiently achieved, reducing
the impact of environmental noise and improving the reliability of signal transmission. Fur-
thermore, the article [5] designs a hardware/software platform for measuring channels and
testing transmission technology under actual conditions in the ultrasonic band, allowing
for the analysis and design of new underwater communication system solutions.

The overview article [6] takes the routing protocol as a starting point and discusses its
various aspects, such as the concept and causes of void regions and the main challenges
researchers face when designing routing protocols. The most advanced void avoidance protocol
using OR technology is studied in-depth. We believe that these research results will provide
robust support for applying and promoting waterborne acoustic communication technology.

3. Underwater Acoustic Signal Recognition

We have achieved significant progress not only in underwater acoustic communication
but also in underwater acoustic signal recognition. This has become a prominent research
field, with applications in underwater communication, ocean exploration, sonar detection,
and other areas.

In [7], researchers proposed an EVMD algorithm that overcomes the accuracy limita-
tions of VMD execution in the field of underwater acoustic communication. Simulation
and experimental results show that this method has a recognition rate superior to tra-
ditional ship-radiated noise feature extraction methods, with a recognition rate of up to
96.6667%. However, the paper only discusses VMD mode numbers, and future work will
consider optimizing the number of models and quadratic penalty terms for achieving
higher decomposition accuracy.

Reducing noise and efficiently acquiring target underwater acoustic signals by sensors
are equally crucial in signal recognition. In [8], the researchers proposed a method using
Hidden Markov Models (HMM) to detect sequence acoustic data without separate training
data. The stability and accuracy of detecting signals of interest (SOI) were improved
using genetic algorithms and multiple measurements. Therefore, the multi-measurement
GA-HMM exhibited excellent performance in both passive and active acoustic data.

Similarly, we have made significant progress in image transmission recognition. In [9],
a normalization-based adaptive modulator (INAM) was proposed, which amplifies pixel
deviations through adaptive predictive modulation factors. INAM was introduced into
the learning of image-adaptive 3D LUT for underwater image enhancement, achieving
good results.

4. Underwater Detection and Positioning

In addition to the previously mentioned fields, the importance of underwater detec-
tion and positioning technology in ocean science cannot be understated. Nowadays, this
technology has been extensively utilized in ocean exploration, ocean resource development,
underwater safety monitoring, and other areas. However, the complex marine environment
can significantly impact the accuracy of underwater detection, and developing this technol-
ogy entails overcoming substantial challenges. This issue of the Sensors journal presents
three articles on underwater detection and positioning that are of significant importance
for advancing this technology.
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To address the issue of low signal-to-noise ratios in the underwater environment,
which poses challenges for active sonar in detecting, tracking, and identifying underwater
targets, the article [10] proposes a Tacotron model-based deep neural network (DNN)
approach for active sonar signal synthesis. This method applies the Tacotron model to
sonar signal synthesis and successfully synthesizes data that are almost identical to the
data used for training, as confirmed by spectral comparison, attention result inspection,
and MOS testing.

To improve the tracking performance of low SRR underwater targets, the article [11]
proposes a particle filtering track-before-detect algorithm based on the knowledge-aided
(KA-PF-TBD) algorithm. This method maximizes the utilization of prior information on
the underwater diver target and establishes a set of multi-directional motion models to
address the mismatch between conventional model sets and actual target motion.

In [12], researchers conducted a full-scale experiment simulating the underwater
localization of magnetic sensors. Two natural computing algorithms were utilized to
solve the signals generated by the known ferromagnetic object trajectory, successfully
determining the positions of eight magnetometers. The methods performed exceptionally
well, particularly in the multi-target version, accurately determining the position of the
sensor with a relative error of 1% to 3%. The near sensor and the far sensor exhibited
absolute errors of between 20 and 35 cm, respectively. These three papers illustrate the
continual development and innovation in underwater detection and positioning technology.

5. Conclusions

The theme of this Special Issue focuses on underwater signal and ocean signal pro-
cessing. This Special Issue highlights 12 articles that can be divided into four categories:
optimization of ship navigation [1,2], underwater acoustic communication [3–6], under-
water acoustic signal recognition [7–9], and underwater detection and positioning [10–12].
In addition to traditional underwater acoustic signals, research objects also include under-
water sensors, underwater environments, ships, underwater images, etc. Therefore, in the
field of underwater acoustic communication, in addition to traditional signal processing
and analysis methods, there are many related technologies and applications worthy of
research. In addition, in terms of algorithm design, the development of artificial intelligence
algorithms also provides new solutions to analyze and process underwater signals. Sig-
nal processing algorithms that combine artificial intelligence algorithms with underwater
signal processing technology will be a very important development trend in the future.

Conflicts of Interest: The authors declare no conflict of interest.
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Article

INAM-Based Image-Adaptive 3D LUTs for Underwater
Image Enhancement

Xiao Xiao 1,2,3, Xingzhi Gao 2,*, Yilong Hui 2, Zhiling Jin 2 and Hongyu Zhao 1

1 State Key Laboratory of CEMEE, Luoyang 471000, China
2 School of Telecommunications Engineering, Xidian University, Xi’an 710071, China
3 Science and Technology on Complex System Control and Intelligent Agent Cooperation Laboratory Beijing

Electro-Mechanical Engineering Institute, Beijing 100074, China
* Correspondence: gxzhz1988@163.com

Abstract: To the best of our knowledge, applying adaptive three-dimensional lookup tables (3D
LUTs) to underwater image enhancement is an unprecedented attempt. It can achieve excellent
enhancement results compared to some other methods. However, in the image weight prediction
process, the model uses the normalization method of Instance Normalization, which will significantly
reduce the standard deviation of the features, thus degrading the performance of the network. To
address this issue, we propose an Instance Normalization Adaptive Modulator (INAM) that amplifies
the pixel bias by adaptively predicting modulation factors and introduce the INAM into the learning
image-adaptive 3D LUTs for underwater image enhancement. The bias amplification strategy in
INAM makes the edge information in the features more distinguishable. Therefore, the adaptive 3D
LUTs with INAM can substantially improve the performance on underwater image enhancement.
Extensive experiments are undertaken to demonstrate the effectiveness of the proposed method.

Keywords: image enhancement; underwater images; instance normalization

1. Introduction

1.1. Background

In recent years, with the excavation and exploration of marine resources and the ocean
world, high-quality underwater images have become increasingly important. The pro-
cessing and enhancement of underwater signals and images have also attracted a lot of
attention. However, the complex underwater environment and lighting conditions signifi-
cantly pose great challenges for underwater image enhancement, which aims to improve
the image visibility and contrast and reduce chromatic aberration. The reasons are as
follows. Firstly, underwater images will be affected by noise from marine snow, which
increases the scattering effect and dramatically reduces the contrast and visibility of the im-
age. Secondly, underwater images are degraded by wavelength-dependent absorption and
scattering including forward and back scattering [1–5], which all limit the practical applica-
tion of underwater images and videos in marine biology, archaeology, marine ecology, and
ocean exploration. In terms of performance and efficiency, underwater image enhancement
remains a significant challenge due to the diversity of captured scenes, the complexity of
underwater environments, and the fluctuation of underwater lighting conditions.

1.2. Related Works

To solve the above problems, a number of methods have been proposed. (1) Supple-
mentary information-based methods. The method proposed by Narasimhan et al. [6] is to
use the supplementary information of multiple images to increase the visibility of the image.
Some methods [7–10] use special hardware such as polarization filtering to improve the
image visibility. ERH [11] uses three procedures for color compensation, image alignment,
and homogenization using a multiscale synthesis strategy. The ERH method cascades

Sensors 2023, 23, 2169. https://doi.org/10.3390/s23042169 https://www.mdpi.com/journal/sensors
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the three procedures for underwater image enhancement. (2) Non-physical model-based
methods. The method proposed by Iqbal et al. [12] modifies the image pixel values in
RGB (Red, Green, Blue) color space and HSV (Hue, Saturation, Value) color space through
Non-Physical Model-Based Methods to improve the contrast and saturation of underwater
images. (3) Physical model-based methods. Underwater image enhancement is carried
out through Physical Model-Based Methods [13]. This method sets a cost function and
increases the image contrast by reducing the cost function, thereby obtaining excellent
underwater images. GUDCP [14] is a new method for backward scattered light estimation
that integrates several prior knowledge and introduces a new scoring formula. This method
also develops a white balance method to further modify the appearance of the synthetic
image. There are also excellent methods such as SVM-RBF [15] in remote sensing that
provide inspiration for underwater image processing.

These years, many deep learning-based image enhancement methods [16–22] have
been proposed in the field of computational imaging. MFFN [23] is a multi-scale fea-
ture fusion network that can enhance the adaptability and visualization of the scene.
SGUIE-Net [24] is a semantic region-based enhancement module that can better learn local
enhancement features of semantic regions with multi-scale perception. The fused features
are semantically consistent and visually have better enhancement effects. The AGA-based
Swin Transformer module [25] is designed to be an end-to-end underwater image en-
hancement network. It can dynamically select visually complementary channels based
on dependencies, reducing the number of further attention parameters. R. Liu et al. de-
veloped a bilaterally constrained closed-loop adversarial enhancement module [26] that
alleviates the requirements of the unsupervised approach for pairwise data by coupling
twin inverse mappings and preserves more informative features. J. Yuan et al. proposed a
multi-scale fusion enhancement algorithm [27] to improve sharpness by contrast-based a
priori de-fogging of the dark channel in the red-green-blue (RGB) model. However, some
of them have complex network structures or expensive computational cost. Zeng, H et al.
proposed the learning image-adaptive 3D LUTs (three-dimensional lookup tables) hybrid
method [28], combining multi-layer features in deep learning-based methods and image
priors in traditional methods. This image enhancement method has high performance, high
image quality, high computational efficiency, and low memory consumption. However,
the normalization method of instance normalization adopted by the CNN (Convolutional
Neural Network)-based weight predictor in this method will lead to the degradation on the
network performance. Instance Normalization (IN) [29] is a milestone technique in deep
learning that normalizes the distribution of intermediate layers, leading to faster training
and better generalization accuracy. However, the residual features’ standard deviation is
greatly reduced after normalization. The standard deviation reflects the variation of pixel
values. When the variation is reduced, the ability of the network distinguishing edges will
decrease, further degrading the network performance, which significantly impacts on the
performance of underwater image enhancement methods.

1.3. Contributions

In this paper, we propose an Instance Normalization Adaptive Modulator (INAM)
that amplifies pixel bias by adaptively predicting modulation factors to solve this issue.
The Instance Normalization operation applies normalization to a specific image instance
and normalizes it in the HW (Height and width) dimension of the tensor, and is initially
used for image style transfer. The mean and variance of each channel of the feature map
affect the style of the final generated image. We introduce INAM into the learning image-
adaptive 3D LUTs for underwater image enhancement. The bias amplification strategy in
INAM makes the edge information in the features more distinguishable.

The environmental and lighting conditions underwater lead to poor visibility, low
contrast, and large color differences from natural scenes in underwater images. 3D LUT
itself is an artificially produced method for image enhancement. Adaptive 3D LUT, on the
other hand, can be learned by a deep learning method driven by data, which compares the
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input poor visibility image with clear ground truth. In this process, the weight prediction
of the image is critical. The weights not only determine the weight of the LUT’s influence
on the image but also affect the parameter learning of the 3D LUT itself under adaptive
conditions. Our proposed INAM can effectively improve the problem caused by IN in
CNN by amplifying the pixel bias and making the network more capable of discriminating
the edges of objects in images. The introduction of INAM enables CNN to predict the
weights of images more accurately and further affects the parameters learned by 3D LUTs.
It gives the adaptive 3D LUTs a more vital ability to enhance the images. In contrast to other
methods, we combine traditional lookup tables and deep learning methods. We exploit
the powerful learning ability of deep learning models, which makes manual lookup tables
unnecessary, dramatically reduces the workload, and has high accuracy and precision. Our
proposed INAM compensates for the IN layer drawback of the weight prediction module,
which enables a more efficient and accurate combination of weight prediction and image
enhancement. Our model has low complexity, a small number of parameters, and uses only
a few computational resources to achieve good enhancement results.

Our approach breaks the limits of deep learning and combines it with traditional
methods. It also uses deep learning to simplify the complex work of traditional methods
greatly. Significantly, our proposed INAM also reduces the drawbacks of IN, which allows
CNNs to ignore the effects of residual feature reduction in weight assignment, substantially
improving the edge information recognition and the accuracy of weight assignment. Our
method provides a new idea for underwater image enhancement.

The main contributions of the work are summarized as follows:
(1) We propose INAM, which enhances CNN recognition of image edge information by

adaptive modulation factors to amplify pixel deviations. Compared with current methods,
this module has few parameters, and substantial performance improvement on CNN with
almost no increase in computational resources.

(2) We introduce INAM into adaptive 3D LUTs to form adaptive 3D LUTs and train
them for data-driven deep learning. We improve the prediction accuracy of the CNN
network for image weights in this way. The predicted weights also affect the learning of
subsequent 3D LUTs parameters. Our method improves image enhancement by enhancing
the weight prediction accuracy and the parameters of 3D LUTs.

(3) We conduct extensive experiments to compare our approach with some existing
methods on one public dataset. The results demonstrate the superiority of our method in
terms of performance, both data and visual effects.

2. Materials and Methods

2.1. Three-Dimensional Lookup Table

3D LUT is a classic and efficient image enhancement technique that has been widely
and effectively used. As shown in Figure 1, a 3D LUT has three dimensional channels,
representing the RGB color index. Each color channel is divided into M units so that a
3D LUT consists of M3 elements

{
V(i,j,k)

}
i,j,k=0,...,M−1

, where M is the number of units

in any color channel. Each element V(i,j,k) defines an input
{

rI
(i,j,k), gI

(i,j,k), bI
(i,j,k)

}
of RGB

value and the corresponding transformed output
{

rO
(i,j,k), gO

(i,i,k), bO
(i,j,k)

}
. For a given M,

the indexed color value
{

rI
(i,j,k), gI

(i,j,k), bI
(i,j,k)

}
i,j,k=0,...,M−1

can be obtained in a uniform

color space. Different 3D LUTs will have different outputs so that different color outputs{
rO
(i,j,k), gO

(i,j,k), bO
(i,j,k)

}
i,j,k=0,...,M−1

will be obtained after a given color index. The scale of

M determines the accuracy of the color conversion. The larger the M is, the higher the
accuracy of the color conversion will be. In our experiments, we set M = 33. In this case,
a 3D LUT contains 108 K

(
3M3) parameters.
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Figure 1. Illustration of a 3D LUT containing 43 elements.

The 3D LUT transforms and transmits the color in two steps: lookup and trilinear
interpolation. Firstly, given the input RGB color value

{
rI
(x,y,z), gI

(x,y,z), bI
(x,y,z)

}
, the 3D

LUT lattice is calculated to find its corresponding position (x, y, z). Here, x, y, z can

be expressed as x =
rI
(x,y,z)

s , y =
gI
(x,y,z)

s , z =
bI
(x,y,z)

s , respectively, where s = Cmax
M , Cmax is

the maximum value on each color channel. After the position of the input color value
is determined, trilinear interpolation can be performed using the eight elements closest
to it to obtain the output RGB value. Let i = �x�, j = �y�, k = �z�, where �.� is the

floor function, and let dx =
rI
(x,y,z)−rI

(i,j,k)
s , dy =

gI
(x,y,z)−gI

(i,j,k)
s , dz =

bI
(x,y,z)−bI

(i,j,k)
s . The output

RGB
{

rO
(x,y,z), gO

(x,y,z), bO
(x,y,z)

}
after the color transformation will be obtained by trilinear

interpolation and can be given by the following expression:

cO
(x,y,z) = (1 − dx)

(
1 − dy

)
(1 − dz)cO

(i,j,k) + dx
(
1 − dy

)
(1 − dz)cO

(i+1,j,k)

+ (1 − dx)dy(1 − dz)cO
(i,j+1,k) + (1 − dx)

(
1 − dy

)
dzcO

(i,j,k+1)

+ dxdy(1 − dz)cO
(i+1,j+1,k) + (1 − dx)dydzcO

(i,j+1,k+1)

+ dx
(
1 − dy

)
dzcO

(i+1,j,k+1) + dxdydzcO
(i+1,j+1,k+1),

(1)

where c ∈ {r, g, b}. The above trilinear interpolation is sub-differentiable, and it is easy to
derive the gradient of cO

(i,j,k). Since the trilinear interpolation of each input is independent
of other pixels, this transformation is convenient for parallel computation.

2.2. Instance Normalization Adaptive Modulator (INAM)

Normalization is a method applied in the data preparation process when features in
the data have different ranges to change the values of numeric columns in the data set
using an identical scale. The advantages of normalization are as follows. (1) Normalization
of each feature maintains the contribution of each feature when some features have higher
values than others. This ensures that the network is unbiased. (2) The network activation
distribution changes due to changes in network parameters during training. To improve
training performance, we use normalization to reduce internal covariance. (3) Normal-
ization makes the loss plane smoother because normalization constrains the size of the
gradient more strictly. (4) Normalization makes the optimization faster because it disallows
the weights to explode everywhere and limits them to a specific range. (5) Normalization
helps the network to apply regularization.

The IN operation is to apply normalization to a specific image instance and normalize
it in the HW dimension, which is initially used for image style transfer. The generated
result mainly depends on an image instance, and the mean and variance of each feature
map channel will affect the final image’s style. Therefore, the normalization of the entire
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batch and entire sample are unsuitable for image stylization, since only H or W dimension
is normalized. Model convergence can be accelerated, and the independence between each
image instance and channel (various features) is maintained. However, in the instance nor-
malization process, the features’ standard deviation will be compressed, and the network’s
ability to distinguish edge information will be reduced, which results in a decrease in the
network’s performance. Inspired by Ref. [30], we propose the INAM that amplifies pixel
bias by adaptively predicting modulation factors to solve this issue.

As shown in Figure 2, we constructed three simple models to demonstrate our ap-
proach. Figure 2a shows the model containing only one Conv layer without instance
normalization. The input x is convolved to obtain the output y. Figure 2b shows the
model constructed by inserting an IN layer before the Conv layer. The model shown in
Figure 2c is constructed by inserting an IN layer before the Conv layer, i.e., the input x is
first subjected to an instance normalization operation, and then the result of the operation
is convolved to obtain the output y. The model shown in Figure 2c adds the IN layer after
the input x, and then the output y′ is obtained by convolution. y′ is then multiplied by the
conditioning factor to obtain the final output ŷ′. For the sake of our exposition, we simplify
this conditioning factor. We will describe the equations for these three models and then
discuss the effects of feature normalization in terms of pixel standard deviation.

Figure 2. Three simple models for demonstration. (a) shows the model containing only one Conv
layer without instance normalization. (b) shows the model containing a Conv layer and an instance
normalization layer before Conv layer. (c) shows the model with an instance normalization layer, a
Conv layer and a conditioning factor σ(x).

Denote the function of the Conv layer as fConv, the input of the Conv layer is x, and the
output of the Conv layer is y. In Figure 2a, it is evident that we can describe the output y
by the following formula:

y = fConv(x) (2)

In Figure 2b, x is a single input sample with four axes (C, H, W, N), and x̂ is the
transformed feature with IN. For IN, the mean and standard deviation are computed along
the (H, W) axes so that we can compute x̂ as:

x̂ =
x − μ

σ
(3)

where μ and σ are scalars shared by all pixels in x, μ is the calculated mean of each instance,
and σ is the calculated variance of all instances. Then the output y′ can be computed by:

y′ = fConv(x̂) = fConv

(
x − μ

σ

)
(4)

9
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Rewrite Equation (4) as:

y′ = 1
σ

fConv(x − μ) (5)

Equation (5) can be further expanded using the distributivity:

y′ = 1
σ

fConv(x)− 1
σ

fConv(μI) (6)

where I is the all-ones matrix with the same dimensions as x.
By comparing (2) and (6), it can be found that IN reshapes the pixel distribution of y.

We compute the standard deviation (std) of y′:

std(y′) = std
(

1
σ

fConv(x)− 1
σ

fConv(μI)
)

=
1
σ

std( fConv(x))

=
1
σ

std(y).

(7)

It can be seen that with instance normalization, the pixel bias is reduced to 1
σ . The stan-

dard deviation decreases because σ is usually bigger than 1. To compensate for the loss of
pixel bias, we multiply y′ by σ in the third model, ŷ′ can be obtained by:

ŷ′ = y′ · σ (8)

2.3. INAM-Based Image-Adaptive 3D LUTs

Learning image-adaptive 3D LUTs is an effective color-mapping operation. Its process
is divided into three steps, the first of which is using a weight predictor to predict the
weight of the down-sampled low-resolution image and then using a look-up table generated
from this weight for looking up and interpolation. For simplicity of description, we do
not describe the interpolation operation in the 3D LUT but simplify it to look up in this
subsection. Equation (9) represents a mapping function. In the RGB color domain, a classic
3D LUT is defined as a 3D cube containing N3 elements, where N is the number of bins
in each color channel. Each element defines a pixel-to-pixel mapping μ(x), where x is the
input image, and qo is the output image .

qo = μ(x) (9)

However, the weight predictor used in learning image-adaptive 3D LUTs method to
predict weights uses instance normalization (IN), which makes the standard deviation of
the features compressed so that the network’s performance is reduced. That is, the model’s
ability to distinguish edge information is reduced, resulting in a reduction in the accuracy of
weight assignment. The INAM adaptively adjusts the feature standard deviation based on
instance normalization, which improves the model’s ability to distinguish edge information
and makes the weight prediction more accurate. The overall frame is shown in Figure 3.

As shown in Figure 3, the input of the model is a 480 × 640 high-resolution image,
and the input of the weight predictor is a down-sampled low-resolution image with a
resolution of 256 × 256. The weight predictor consists of five convolution blocks, a dropout
layer and a fully connected layer. The output is the weight N which is set to 3 in our
experiment. Each convolution block consists of a convolution layer, an IN layer, a leaky
Relu layer, and an INAM. The first convolutional layer uses a three-channel image with
an input of 256 × 256, a convolutional kernel of size 3 × 3, and an output of 16 channels.
The second convolutional layer has an input size of 128 × 128 and an output of 32 chan-
nels. The third convolutional layer has an input size of 64 × 64 and outputs 64 channels.
The fourth convolutional layer has an input size of 32 × 32 and outputs 128 channels.
The fifth convolutional layer has an input size of 16 × 16 and outputs 128 channels. All the
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convolutional layers use a convolutional kernel size of 3 × 3, with a stride of 2 and padding
of 1. The input size of the fully connected layer is 8 × 8, the convolutional kernel size is
8 × 8, and the number of output channels is N = 3. Based on the above data, the complexity
of this CNN model can be calculated. The number of its parameters is about 191 k, and the
number of FLOPs is 155 M. In Section 2.2, we introduced the basic principles of INAM
through three simple models. However, in practical applications, the model will be more
complex. For example, bias terms exist in each convolution, and there may be non-linear
layers between convolutional layers. Equation (10) describes the INAM in the actual model:

ŷ′ = y′ · eφ(log(σ(x))) (10)

where x is the input, σ is the calculated standard deviation of x, y is the feature to be
adjusted, y′ is the output after modulating the feature, and φ(v) := w · v + b is a learnable
linear model consisting of a weight w and a bias b. During training, w and b can be updated
via the backpropagation algorithm. The φ function predicts an appropriate modulation
factor based on the input value v. In Equation (10), we learn φ in logarithmic space for better
stability. Finally, the modulation factor is obtained by exponential operation. The model is
shown in Figure 4.

Figure 3. Overview of our proposed framework. The weight predictor outputs weights, and basic 3D
LUTs form adaptive 3D LUTs based on the weights. The adaptive 3D LUT then enhances the input
image. In the weight predictor, our proposed INAM is used.

Figure 4. Illustration of INAM in the actual model.

We learn several basic 3D LUTs and INAM-based CNN weight predictors. 3D LUTs are
used to process the images and INAM-based CNNs are used to predict the weights of the
images. Assuming that the weights obtained from the prediction are {wn}n=1,...,N = f (x)
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and the corresponding 3D LUT processing is {μn}n=1,...,N , the final enhanced image ob-
tained is:

q =
N

∑
n=1

wnμn(x) (11)

where x indicates the input image. The objective function of our learning scheme can be
written as follows:

min
f ,μn

L(q, y) (12)

where f and μn are the CNN model and the basic 3D LUTs to be learned, L(q, y) indicates
some loss functions and regularization terms.

2.4. Loss Function

We use supervised learning methods to learn image enhancement models. Suppose
that there are a number of T training pairs {xt, yt}t=1.2....T , where xt and yt denote a pair
of input and target images, respectively. We employ the Mean Square Error (MSE) loss to
train the model:

Lmse =
1
T

T

∑
t=1

‖qt − yt‖2 (13)

Using Lmse loss, we train 3D LUTs with momentum or Adam optimizer and CNN
weight predictors using the gradient descent algorithm. However, the optimized 3D LUTs
may have unsmooth surfaces. The color mutations in the neighboring lattices of the 3D
LUTs may amplify the chromatic aberration after color conversion, resulting in some
banding artifacts in the smooth regions of the enhanced images. In order to make the
learned 3D LUTs more stable and robust, we introduce two regularization terms in the
optimization process.

Smoothing regularization: We introduce a 3D smoothing regularization term in 3D
LUTs learning, which converts the input RGB values more stably into the desired color
space, thus making the output of the 3D LUTs locally smooth. We choose the L2 distance
in the above term to achieve smoother regularization. To improve the smoothness of the
adaptive 3D LUT, we introduce L2-norm regularization for the prediction weights wn.
The overall smooth regularization term is as follows:

Rs = ∑
c∈{r,g,b}

∑
i,j,k

(
‖cO

(i+1,j,k) − cO
(i,j,k)‖2 + ‖cO

(i,j+1,k)

−cO
(i,j,k)‖2 + ‖cO

(i,j,k+1) − cO
(i,j,k)‖2

)
+ ∑

n
‖wn‖2.

(14)

Monotonicity regularization: In addition to smoothness, 3D LUTs should also be
monotonic. This is because monotonic transformations maintain the relative brightness and
saturation of the input RGB values, ensuring natural enhancement results. Monotonicity
helps update parameters that may not be activated by the input RGB values, improving
the generalization ability of the learned 3D LUTs. Therefore, we adopt a monotonic
regularization as follows:

Rm = ∑
c∈{r,g,b}

∑
i,j,k

[
g
(

cO
(i,j,k) − cO

(i+1,j,k)

)
+ g

(
cO
(i,j,k)

−cO
(i,j+1,k)

)
+ g

(
cO
(i,j,k) − cO

(i,j,k+1)

)] (15)

where g(·) is defined as the standard ReLU operation, i.e., g(a) = max(0, a). The mono-
tonicity regularization ensures that the output RGB values cO

(i,j,k) increase with the index
i, j, k and larger i, j, k indices correspond to larger input RGB values in the 3D LUT lattice.
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By incorporating the two regularization terms, the final loss function used in learning
is as follows:

L = Lmse + 0.0001 ∗ Rs + 10 ∗ Rm (16)

2.5. Experimental Setup
2.5.1. Dataset

We conduct experiments on the EUVP dataset. The dataset contains a large number
of paired and unpaired underwater images with good or poor perceptual quality. These
images are collected at different locations with different visibility conditions, and most of
them are taken during ocean exploration and human-robot cooperation experiments. These
images are carefully selected to accommodate a wide range of natural variations in the data.
We use paired data of underwater-scenes from EUVP dataset, which contains 2185 raw
underwater images covering different underwater scenes, underwater creatures, etc. We
randomly select 2000 images as the training set and the remaining 185 images as the test
set. We uniformly resize the image to 640 × 480 pixels for the experiment of 480 pixels.

2.5.2. Baselines

We compare the perceptual image enhancement performance of the INAM-based
image-adaptive 3D LUTs with the following models: (1) relative global histogram, unsu-
pervised color correction (UCM) [12]; (2) contrast limited adaptive histogram equalization
(CLAHE) [31]; (3) underwater dark channel prior (UDCP) [32]; (4) Water-net [33]; and
(5) learning image-adaptive 3D LUTs [28]. The first three are physics-based models, and the
Water-net is a learning-based model.

2.5.3. Evaluation Metrics

In order to evaluate the image enhancement methods in a multifaceted way, four
metrics are used for evaluation. They can be classified as full-reference evaluation metrics
and no-reference evaluation metrics.

1. Full-Reference Evaluation:
PSNR is a Full-Reference image evaluation metric. It is one of the most common and

widely used objective image evaluation metrics, which is based on the error between the
corresponding pixel points, i.e., on error-sensitive image quality evaluation. A larger value
indicates less distortion.

SSIM is a Full-Reference image evaluation index, which measures image similarity
in brightness, contrast, and structure. Its value range is [0, 1]. A larger value indicates a
smaller image distortion.

2. Non-Reference Evaluation:
UCIQE [34] is a linear combination of color intensity, saturation, and contrast, which

is used to quantitatively evaluate the non-uniform color shift, blurring, and low contrast of
underwater images. It is a Non-Reference (ground-truth) image quality evaluation index,
and higher values indicate better image quality.

UIQM [35] is a Non-Reference underwater image quality evaluation index based on
the stimulation of the human eye visual system, which adopts color, sharpness, and contrast
measurements evaluation basis for the degradation mechanism and imaging characteristics
of underwater images. A larger value means better color balance, sharpness, and contrast.

2.5.4. Experiment Settings

Using the EUVP dataset, we experiment with color enhancement pipelines in camera
imaging. In such applications, the target image is in the sRGB color space, has 8 bit of
dynamic range, and is compressed to JPG format. In the photo retouching application,
the input image has the same format as the target image. We learn the color enhancement
part of the imaging pipeline instead of learning the entire pipeline from the raw data
to the final RGB output. We use 2000 underwater images as the training set for image
enhancement. One image per batch is selected with a size of 640 × 480. The model is
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trained using the ADAM optimizer, and the learning rate is set to 10−4 and reduces by
half every 200 epochs. The model is trained for a total of 400 epochs. We implement our
network with PyTorch and train all modules on an NVIDIA GTX1060ti GPU.

3. Results

3.1. Comparison Experiments

We first perform image enhancement using each method and compare the enhanced
image with the ground-truth image using full-reference metrics to evaluate our method
against the other methods. As shown in Table 1, our method outperforms UCM by
10.36 points or 71.39% in the PSNR metric. Our method is 6.54 points higher than CLAHE,
which is 35.68% higher. Our method outperforms UDCP by 8.12 points or 48.48%. Our
method outperforms Water-net by 4.83 points, or 24.10%. Compared to the original learning
image-adaptive 3D LUTs method without adding the INAM module, our method improves
by 3.85 points. This indicates that the pixel-to-pixel error between the image enhanced by
our method and the ground-truth image is minimal. In the SSIM metric, our method is
0.390 points higher than UCM, which is 74.7% higher. It is 0.260 points or 39.87% higher
than CLAHE, 0.358 points or 64.62% higher than UDCP, 0.209 points or 29.73% higher than
the Water-net method, and 0.056 points or 6.5% higher than the original learning image-
adaptive 3D LUTs method. This indicates that the enhanced image of our method is much
better than other methods in all three aspects of brightness, contrast, and structure, which
proves that our proposed INAM improves the 3D LUT method performance. An intuitive
qualitative performance comparison is shown in Figure 5.

Table 1. Quantitative comparison for average PSNR and SSIM values on test images of the
EUVP dataset.

Model PSNR SSIM

UCM 14.51 0.522
CLAHE 18.33 0.652
UDCP 16.75 0.554

Water-net 20.04 0.703
Learning image-adaptive 3D LUTs 21.02 0.856

INAM-based image-adaptive 3D LUTs 24.87 0.912

Figure 5. Qualitative performance comparison of UCM [12], CLAHE [31], UDCP [32], Water-net [33],
learning image-adaptive 3D LUTs [28], and INAM-based image-adaptive 3D LUTs.

14



Sensors 2023, 23, 2169

We perform image enhancement using each method and evaluate the enhanced images
using the no-reference metrics UCIQE and UIQM. The obtained data are shown in Table 2.
In the UCIQE metric, our method is 0.078 points higher than the UCM, which is 13.56%
higher. Our method is 0.054 points or 9.01% higher than CLAHE. Our method is 0.068 points
or 11.62% higher than UDCP. Our method outperforms Water-net by 0.047 points, or 7.76%.
Compared with the learning image-adaptive 3D LUTs method without adding the INAM
module, our method improves by 0.030 points, which is 4.8% higher. This indicates that the
image quality enhanced by our method is the highest compared with other methods. In the
UIQM metric, our method is 0.155 points or 11.27% higher than the UCM. It is 0.135 points
higher than CLAHE, which is 9.64% higher. It is 0.120 points or 8.47% higher than UDCP,
0.181 points or 13.36% higher than the Water-net method, and 0.102 points or 7.11% higher
than the original learning image-adaptive 3D LUTs method. This demonstrates that the
enhanced image of our method is far better than other methods in three aspects: color
balance, contrast, and sharpness structure, and it is more in line with human eye perception.

Table 2. Quantitative comparison for average UCIQE and UIQM values on test images of the
EUVP dataset.

Model UCIQE UIQM

UCM 0.575 1.375
CLAHE 0.599 1.401
UDCP 0.585 1.416

Water-net 0.606 1.355
Learning image-adaptive 3D LUTs 0.623 1.434

INAM-based image-adaptive 3D LUTs 0.653 1.536

The INAM proposed by us has recovered the residual standard deviation reduced
by IN through an operation. In this process, the network’s ability to recognize edge
information is enhanced, and the prediction accuracy of weight is improved. This enables
the model to learn excellent parameters in the learning process quickly. During the test,
the image enhanced by the model will have better saturation, brightness contrast, and the
highest structural similarity with the ground truth image.

3.2. Ablation Study

The number N of 3D LUTs: To verify the effect of the number of 3D LUTs on the image
enhancement, we set the number of LUTs as 1, 2, 3, 4, 5. We still train the model on the
EUVP dataset and evaluate the model to observe the effect of the number of LUTs on the
image enhancement. We first conducted ablation experiments controlling the number of
LUTs and obtained the data as shown in Table 3. From the data in the table, we can see that
the values of PSNR, SSIM, UCIQE, and UIQM significantly increase as N increases from 1
to 3. While with N increasing from 3 to 5, the increase of these indicators is relatively small.
Therefore, we use the number of LUTs as 3 in the comparison test.

Table 3. Ablation studies on the number (N) of LUTs affecting the INAM-based image-adaptive
3D LUTs.

N 1 2 3 4 5

PSNR 20.43 22.83 24.87 25.81 25.84
SSIM 0.806 0.868 0.912 0.919 0.924

UCIQE 0.596 0.628 0.653 0.665 0.671
UIQM 1.422 1.489 1.536 1.544 1.551

INAM: To verify the effectiveness of our proposed INAM, we set the number of
LUTs in the learning image-adaptive 3D LUTs method without adding the INAM module,
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and train the model on the EUVP dataset and evaluate it. The data are compared with the
INAM-based image-adaptive 3D LUTs method to verify the effectiveness of our proposed
INAM module for image enhancement. We change the number of LUTs for the learning
image-adaptive 3D LUTs method without the INAM and obtain the data in Table 4. We
compared it with the INAM-based image-adaptive 3D LUTs method at the same number of
LUTs. The comparison results are shown in Figure 6. Our method outperforms the learning
image-adaptive 3D LUTs method without INAM for different N in PSNR, SSIM, UCIQE,
and UIQM metrics. This comparison verifies the effectiveness of our proposed INAM.

Table 4. Ablation studies on the number (N) of LUTs affecting the image-adaptive-3D LUTs with-
out INAM.

N 1 2 3 4 5

PSNR 18.36 19.84 21.02 21.55 21.86
SSIM 0.784 0.824 0.856 0.863 0.867

UCIQE 0.576 0.608 0.623 0.629 0.633
UIQM 1.314 1.388 1.434 1.446 1.453

Figure 6. The performance of the learning image-adaptive 3D LUTs method and our proposed
INAM-based image-adaptive 3D LUTs are compared in a line graph for each metric. The performance
comparison of the two methods on PSNR metrics is shown in (a). (b) The comparison of the two
methods in terms of SSIM performance. (c) Comparison of the performance of the two methods on
the UCIQE metric. A comparison of the two methods evaluated by the UIQM metrics is shown in (d).
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4. Conclusions

We introduced the INAM into learning image-adaptive 3D LUTs for underwater
image enhancement. After instance normalization, the standard deviation of features will
be reduced, which reduces the ability of the network to distinguish edge information
and thus, the accuracy of weight assignment will be reduced. Our proposed INAM can
compensate for the compressed standard deviation and thus improve the accuracy of the
weight predictor. We train and test on the EUVP dataset and evaluate its effectiveness by
comparing with other traditional and learning-based methods. The experimental results
show that the method outperforms other methods in PSNR, SSIM, UCIQE, and UIQM
metrics. We conducted ablation experiments to verify the effect of the number of LUTs on
our proposed method. We also verified the performance improvement of our proposed
INAM on the image-adaptive 3D LUTs method for different numbers of LUTs.

5. Discussion

In this study, we propose INAM, which can compensate for the change of standard
deviation caused by instance normalization through learning. We apply it in the weight
prediction module of the adaptive 3D LUT, which significantly improves the underwa-
ter image enhancement effect in all indicators without affecting the training speed and
generalization accuracy.

We consider the CNN module to be necessary in the image enhancement process. This
is because the fraction of LUT weights it predicts directly determines the size of this LUT’s
role in the subsequent image enhancement process. In past CNN modules that used IN,
the standard deviation of the residual features would be greatly reduced. The standard
interpolation of the residual features would reflect the variation of the pixel values. We
propose the INAM module, which allows CNN to improve the standard deviation of the
residual features while maintaining the training speed and generalization accuracy. This
operation enables the CNN module to improve the recognition of edges and allows the
prediction accuracy of weights to be improved when the CNN and 3D LUTs are trained
together. This allows for better coordination between several 3D LUTs in the processing
of images and also impacts the parameters being learned by the 3D LUTs. Therefore, our
proposed method has an excellent performance in all metrics.

Our proposed INAM can improve the edge recognition ability of CNN by amplifying
the pixel bias through adaptive prediction of modulation factors. It may be helpful for
other networks, such as edge detection, semantic segmentation, and other tasks.
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Abstract: In the shallow water regime, several positioning methods for locating underwater mag-
netometers have been investigated. These studies are based on either computer simulations or
downscaled laboratory experiments. The magnetic fields created at the sensors’ locations define an
inverse problem in which the sensors’ precise coordinates are the unknown variables. This work
addresses the issue through (1) a full-scale experimental setup that provides a thorough scientific
perspective as well as real-world system validation and (2) a passive ferromagnetic source with
(3) an unknown magnetic vector. The latter increases the numeric solution’s complexity. Eight
magnetometers are arranged according to a 2.5 × 2.5 m grid. Six meters above, a ferromagnetic object
moves according to a well-defined path and velocity. The magnetic field recorded by the network
is then analyzed by two natural computing algorithms: the genetic algorithm (GA) and particle
swarm optimizer (PSO). Single- and multi-objective versions are run and compared. All the methods
performed very well and were able to determine the location of the sensors within a relative error of
1 to 3%. The absolute error lies between 20 and 35 cm for the close and far sensors, respectively. The
multi-objective versions performed better.

Keywords: magnetometers; underwater sensing; genetic algorithm; particle swarm optimization

1. Introduction

Underwater sensors arrays have been widely used for various applications such as
scientific exploration, sea disaster investigation, and military purposes [1–4]. Figure 1
shows a schematic view of this kind of deployment.

Figure 1. Schematic view of underwater sensor deployment [3].
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Acoustic, optical, or RF sensing technologies are commonly used. The challenging task
is the precise location estimation for the deployed network, due to the special underwater
medium, as well as the lack of GPS data. This is critical to enable the system to provide an
accurate description of any investigated phenomenon. Unfortunately, common localization
solutions do not provide a satisfactory response to this crucial issue.

In the shallow water regime, solutions for the location of the underwater sensor are
often divided into two main categories [5]. Range-based schemes estimate the locations of
sensors by using inter-sensor measurements and the prior knowledge of the locations of a
few reference sensors [6,7]. Range-free schemes are much simpler, but the location output
they supply cannot be very precise [8,9]. Several positioning methods using magnetic
technologies have been investigated. The magnetic fields generated at the sensors location,
given a known object trajectory, define an inverse problem, in which the precise positions
of the sensors are the variables of the equation system.

Callmer et al. [5] utilize triaxial magnetometers and a friendly vessel with a known
magnetic dipole to silently localize the sensors. In Yu et al. [10], a solenoid coil carrying
a direct current is employed as a magnetic source carried by a boat. This moves along
a predetermined trajectory above the sensor field. Using the magnetic measurements,
the localization problem is translated into a multi-objective optimization problem. A
non-dominated sorting genetic algorithm is used to compute the sensor positions.

Other studies are based on either computer simulations or downscaled laboratory
experiments [11–15].

For instance, Bian et al. [11] proposes an oscillating magnetic field-based indoor
and underwater positioning system. The magnetic approach generates a bubble-formed
magnetic field that is unaffected by environmental variation, unlike radio-wave-based
positioning modalities. The proposed system achieves 13.3 cm for the 2D underwater
positioning mean accuracy and 19.0 cm for the 3D underwater positioning mean accuracy.
In [12], the authors use a magnetic field gradient optimization to localize. The magnetic
source in the localization system is a direct current solenoid coil. An objective function is
established by measuring the magnetic source’s magnetic field in different positions. A
multi-swarm particle swarm optimization with a dynamic learning strategy determines
the sensor position vector. Recently, John et al. [13] designed an extensible modular multi-
sensor platform prototype that can detect and localize objects with different properties in
all environments. Their prototype detects and localizes objects using magnetic, acoustic,
and electrical sensors. Although the system is ready for underwater measurements, data
fusion algorithms are still being developed.

In [14], the authors derive an approximate equation to calculate the external magnetic
field of a three-core armored underwater cable based on seafloor environments and the
cable structure. Underwater cable localization uses a dual three-axis magnetic sensor array
and beetle swarm optimization (BSO) algorithm. An optimization algorithm replaces
analytical geometry, and a magnetic flux-density amplitude fitness function improves
underwater cable localization. Although quite promising, the results are only based on
simulations. Zhang et al. recently conducted real-world experiments (1.5 m depth in a
water tank and 9 m depth in a shallow sea) [15]. An electric field induced by a standard
current source is used for real-time underwater equipment location. Stationary or moving
underwater equipment is tracked and located in shallow and deep seas (9 m) under noisy
conditions. A real-time position is estimated using an extended Kalman filter. Although
not based on magnetometers, this system is an interesting competitor despite the fact that
it exhibits errors larger than ours (0.5–0.7 m vs. 0.25–0.35 m).

As far as resolution methods are concerned, Philippeaux et al. [16] uses a genetic
algorithm. The field tests appear promising after extensive magnetic field modeling and
an algorithm simulation. The simulation matches the field tests. Only preliminary in-
water testing of the system has been conducted. In [17], Hu et al. present a practical
localization algorithm that uses magnetic field vector and gradient tensor data to determine
the center coordinates and magnetic moments of multiple underwater magnetic objects.
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The Levenberg–Marquardt algorithm is used. Hou et al. perform an interesting machine
learning approach [18]. They present an Auto Mobile Base Simultaneous localization and
mapping (AMB-SLAM) online navigation algorithm based on an artificial neural network
(ANN) and measurements from randomly distributed beacons of low-frequency magnetic
fields. Their simulations show that a setup of unsophisticated low-cost magnetic beacons
can produce geometrically consistent feature maps and an accurate trajectory for AUVs’
underwater navigation.

The present work addresses several issues that have not been addressed previously.
First, we construct a full-scale experimental setup that provides comprehensive scientific
insight as well as a real-life system validation. In addition, instead of the active coil used
in previous studies, we use a passive ferromagnetic source. Finally, the magnetic vector
moment of the source is a part of the unknown that the algorithms solved.

The algorithms we have developed provide results that closely match reality in this
type of scenario. In order to reproduce more faithfully realistic conditions, we have
voluntarily disturbed one of the testing events. Even in this case, the results are still reliable.
We also present a comparison between two classes of meta-heuristics, GA and PSO, for
which single- and multi-objective implementations are considered.

2. Experimental Setup and Methodology

Our setup consists of eight vector magnetometers arranged on the ground according to
the grid shown in Figure 2. The geometry is chosen to imitate a shallow water deployment
in the vicinity of a harbor entrance. Six meters above, a plastic tube is attached on the
laboratory ceil. Within the tube, a non-ferromagnetic winch-drive activated by a pulley
allows for the motion of the ferromagnetic object. The velocity is motor-controllable from
the ground. The only unknown variable remains the moment of the moving object, which
we let the algorithms calculate together with the coordinates of the sensors.

Figure 2. Top and side views of the experimental setup used in the experiment. Note the point O in
red, which is the center of the searching box used in both GA and PSO.

Natural computing or nature-inspired algorithms refer to a wide class of computational
paradigms in which selected features of natural phenomena or behaviors are studied
and imitated to solve complex mathematical systems [19]. Two important subclasses are
evolutionary algorithms and swarm intelligence [20]. The former is inspired by the Darwin
theory of evolution; the latter is based on emergent properties of the collective behavior
of a large number of small, simple agents. Among evolutionary algorithms, the genetic
algorithm (GA) is one of the more well-studied ones that has been implemented in a wide
variety of applications [21]. Among the swarm intelligence schemes, we choose particle
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swarm optimization (PSO), which is also a well-known algorithm that has proven itself in
a large range of scientific problems [22].

2.1. Physical Problem

We assume the dipole approximation of a ferromagnetic object moving on a straight
line at constant velocity [23]. This motion deforms the ambient magnetic field recorded
by the sensor. The signal shape depends on the trajectory parameters, the magnetic
moment of the moving object, and the position of the sensor. The components of the field,
Bx, By, and Bz, are given by Equation (1):⎛⎝Bx

By
Bz

⎞⎠ =
μ0

4πR5

∣∣∣∣∣∣
3x2 − R2 3xy 3xz

3yx 3y2 − R2 3yz
3zx 3zy 3z2 − R2

∣∣∣∣∣∣
⎛⎝Mx

My
Mz

⎞⎠, (1)

where x = xsensor − xobject (likewise for y and z); R is the distance between the sensor and
the object; Mx, My, and Mz are the object moment components; and μ0 is the vacuum
magnetic permeability.

In our situation, the geometric parameters of the trajectory are known, including
velocity and direction. The sensors’ positions are the main unknowns. Since the moving
object is not a controllable magnet or beacon, we cannot assume given values for the
moment vector that we must consider as additional variables in the optimization problem.
The latter then includes six parameters: three for the sensor position and three for the
moment. Since the trajectory is known, there is no other coupling term between the fields
measured by the sensors. Hence, each sensor is treated separately.

The algorithm looks for the set of variables that minimizes an error functional ex-
pressing the difference between the calculated and measured fields. The proximity of the
graphs of two 2D functions is estimated by considering how well the graphs superpose, e.g.,
evaluate, the cross correlation of the functions. This is achieved using the normalized dot
product of the two functions. If P and Q are the curves we compare, the cross-correlation
fitness, fcc, can be written using Equation (2):

fcc =
P · Q

max[P · P, Q · Q]
, (2)

where

P · Q =
length(P)

∑
i=1

Pi · Qi. (3)

For each sensor, when the errors coming from the three axis curves are summed into
one single expression, we have a single-objective scheme. When each sensor axis error is
treated separately, we refer to it as multi-objective optimization. The error to minimize
is a 3D function of the three axis errors. Although more computationally complex, it has
the advantage of benefitting more from the spatial information provided by the vector
magnetometer. For both GA and PSO, we have tested both single- and multi-objective
versions.

In its most general form, a multi-objective optimization (MO) problem consists of
finding, in a set of admissible solutions, a subset of solutions minimizing (or maximizing)
its objectives. The main issue in MO is the definition of order (sorting) of two vectors in
a space that has the dimension of the number of objectives to optimize. Such a relation
is called dominance, and it serves to define a Pareto front. Consider a vector, f(u), of the
decision vector, u, having n variables or objectives. The MO problem can be expressed as
minimizing the value of f for every variable:

minf(u) = ( f1(u), f2(u), . . . , fn(u))), u ∈ Ω (4)
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Then, f can be interpreted as a mapping of the decision space to the objective space.
Next, the dominance relation is defined in the decision space (for a minimization problem).
Given two vectors, u and v, u dominates v if and only if f (u) is not larger than f (v) for
any objective, and it is less for at least one objective. u and v are equivalent if and only
if f (u)and f (v) are the same for all objectives; u and v cannot be compared if and only if
neither dominates the other nor are they not equivalent. The dominance relation is noted
≺ and is formally defined by

f(u) ≺ f(v) i f

∀i ∈ { 1, 2, . . . , n}, fi(u) ≤ fi(v), ∧∃i, fi(u) < fi(v) . (5)

Given the dominance relation, the Pareto optimal set, ρ∗, is defined as the set of all
Pareto optimal vectors, where a vector is called optimal if and only if it is not dominated by
any other vector of the decision space. Formally speaking:

ρ∗ = { u ∈ Ω ¬∃v ∈ Ω, f(u) ≺ f(v)} . (6)

The image set of ρ∗ in the objective space is called a Pareto front:

ρ f ∗ = {f(u) | u ∈ ρ∗} . (7)

Solving the MO problem means finding solutions that are closed to the Pareto front
and are uniformly distributed. Figure 3a–c show the Pareto front formation and evolution
for one of our Multi Objective Genetic Algorithms (MOGA) runs.

  
(a) (b) (c) 

Figure 3. Pareto front dynamics in multi-objective optimization of the genetic algorithm. (a–c) refer
to 5, 15, and 50 generations of the GA, respectively.

2.2. Genetic Algorithm

Genetic algorithms encode potential solutions on a simple chromosome-like structure
and apply recombination operators to preserve critical information. They apply the princi-
pal concept of “survival of the fittest” on genes achieving best results. An implementation
of a genetic algorithm begins with a population of random chromosomes. Each chromo-
some is a possible solution, which carries six genes, one for each variable of the magnetic
equation: three for the sensor position and three for the moment. These structures are eval-
uated and reproductive opportunities are allocated in such a way that those chromosomes
that represent a better solution are given more chances to reproduce than others. Mutation
operators are applied to guarantee good exploration of the solution space.

For multi-objective GA, we used a modified version of the fast, elitist Non Selective
Genetic Algorithm (NSGAII) algorithm [24]. This algorithm is based on a classification of
individuals into several levels. Since, as we shall see later, the NSGAII produces the best
solution, we provide a more detailed description of the algorithm here.

The NSGA algorithm does not fundamentally differ from classical genetic algorithms.
No choice is imposed on the genetics operators of mutation, crossing, selection, or insertion.

24



Sensors 2023, 23, 1797

The only difference is at the level of the implementation of the assignment operator of the
adaptation value of individuals. We have upgraded the classical GA operators by using
an adaptive and dynamic mutation mechanism. Moreover, the crossover was modified
by adding a simulated annealing moderating process. Finally, we update the size the
population according to the convergence of the best fitness values. These three additions
greatly increase the convergence rate of the algorithm without deteriorating the quality of
the final results.

This assignment operator is based on the rank of the Pareto set to which the solution
belongs. In this procedure, all the solutions of the first set are given with the same adap-
tation value. For all other sets, the adaptation value is equal to the smallest value of the
edge solution that precedes it, minus ε, which is a small positive number. This mechanism
prevents the situation in which two solutions belonging to two different sets have the
same adaptation value. The main disadvantage of this algorithm is the lack of elitism. The
NSGA-II algorithm fills this gap.

The presence of elites increases the chances of creating better children, leading to a
much faster convergence. In the case of single-criterion optimization problems, the elites
are easily identified. They have the best value with respect to the objective function. For
multi-criteria optimization problems, this statement is, of course, no longer valid.

In order to manage elites, the NSGA-II algorithm uses the rank of the Pareto set to
which the solution belongs. The elites are identified as the solutions that are part of the first
Pareto set. To manage diversity at the level of Pareto sets, the algorithm uses a particular
implementation of the selection operator called “crowded tournament”. In the crowded
distance assignment procedure, the density of the solutions surrounding a given solution
are evaluated. This value has the effect of reducing the chances of survival of a solution in
a region where several other solutions are concentrated.

In our scheme, the density is measured in the objective space and not in the decision
space. The method directly includes a normalization, which is essential when calculating
distances.

To summarize, the NSGA-II algorithm uses two populations: a parent population
P of size N and an offspring population Q, which consists of the set of individuals that
have been created by the application of the GA operators. At each iteration, the two
populations are combined in an intermediate population, R, and sorted to obtain the Pareto
sets. Finally, a new population P’ consists of the best Pareto sets of population R. To achieve
this, the solutions of the Pareto sets are included in the population, until the size becomes
greater than or equal to the size, N, of the initial population. If, following the addition
of the last possible set of Pareto, the population size is greater than N, then the last set is
sorted according to the crowded distance, and the solutions with the smallest distances are
eliminated until size N is achieved. The selection operator, crossing, and mutation are then
applied to P’ to create the new population, Q’, and so on. A basic flowchart of NSGA-II is
shown in Figure 4.

GA has already been used as an optimization technique for underwater sensor posi-
tioning [25]. However, in that study, GA was employed to calculate the best deployment
of the sensor nodes not the exact position of these nodes after deployment, as we show in
our work. In another important study, already cited above [10], GA was used to compute
the position of the sensor, given the known trajectory of a ferromagnetic object like in our
study. There are, however, two important differences. First, Yu’s paper reports a laboratory
reduced-scale setup, which is more similar to a computer simulation than to a real-world
full-scale experiment. Second, the authors use, as the source, a solenoid coil with a given,
controllable magnetic moment. This ideal setup reduces, by a factor of 2, the number of
unknown parameters (genes in GA terminology) and simplifies the search procedure. We
release this constraint by allowing any ferromagnetic object that is big enough to be used,
leaving the algorithm to compute, by itself, the source of the magnetic field. Later, we show
that this choice does not affect the ability of our GA to successfully determine the exact
position of the sensors.
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Figure 4. Basic flowchart of the NSGA-II algorithm.

2.3. Particle Swarm Optimization

In the PSO paradigm [22], the chromosomes of the GA are replaced by particles moving
in the space spanned by the 6 directions defined by the problem’s unknowns (the genes in
the GA). From a given position in the space, the new particle direction and amplitude is
computed as a weighted combination of its current inertia, its own best past position, and
the best past position of the swarm. This is usually understood as a compromise between
pure individual and social behaviors.

A particle, i, is defined by its position vector, xi, and its velocity vector, vi. In every
iteration, each particle changes its position according to the new velocity, see Equations (8)
and (9):

vt+1
i = ωvt

i + c1r1
(
xbestt

i − xt
i
)
+ c2r2

(
gbestt

i − xt
i
)

, (8)

xt+1
i = xt

i + vt+1
i · t (9)

where xbest and gbest denote the best particle position and best group position, respectively;
and the parameters ω, c1, c2, r1, and r2 are inertia weight, two positive constants, and two
random parameters within [0, 1], respectively. In the baseline particle swarm optimization
algorithm, ω is selected as unit, but an improvement of the algorithm is found in its inertial
implementation using ω ∈ [0.5 0.9]. Usually, maximum and minimum velocity values are
also defined, and initially the particles are distributed randomly to encourage the search in
all possible locations.

A position is “better” defined according to its fitness value. The fitness function is the
same functional error that is defined above. The multi-objective version is inspired by [26].
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3. Results and Discussion

Among the several events (the motion of the target above the grid) performed during
the experiments, we selected six of them for testing the algorithms. Events #1, #3, and #6 are
the reverse directions of events #2, #4, and #5, respectively. The velocities varied between
0.5 to 1.5 m/s. During event #6, a distractor was moved within the laboratory, creating a
degradation of the signal. We see the influence of it in the results. All four algorithms were
run: single- and multi-objective GA (NSGA-II) and single- and multi-objective PSO.

Some comments regarding the raw data are required before the experiment results
and analysis.

The distance between the sensors and the moving object is at least 6 m. The object
dimensions are not longer than 0.5 m in any dimension. In these conditions, we can
perfectly assume a dipole approximation for the magnetic field model. In this condition,
we know that the magnetic field should decay with a power of 3 of the distance between
the sensor and the source.

The total moment is around 10 Am2, as shown later. The magnetic field that the sensor
records at a distance of 6 m should be roughly 7 nT [23]. We employ three-axial fluxgate
sensors with an internal noise of about 0.25 nT rms (Mag634 by Bartington Instruments
Ltd., Oxon OX28 4GG, UK), which is an order of magnitude less than the anticipated signal
strength. We calculated an Signal to Noise Ratio (SNR) value of approximately 20, for most
events. This is more than sufficient to quantify the magnetic anomaly produced by the
moving object.

The sensors’ differences can be seen in two ways: first, in a slight but nevertheless
well-discernible difference in the field magnitude; second, in the changes in the phase as a
function of time (we use vector magnetometers). These variations enable the localization of
each sensor on its own, and our SNR enables a high absolute value precision.

Figure 5 displays the sensor-measured raw data. Keep in mind that the maximum
amplitude values for the near and distant sensors are different: [7.16 6.91 6.71 6.68] nT
for sensors #3, #5, #6, and #4, respectively, and [5.42 5.56 6.44 6.63] nT for sensors #1, #2,
#7, and #8, respectively. With just an amplitude variation, the sensors on the same side of
the trajectory display identical phases throughout each axis. For the sensors located on a
separate side of the trajectory, the x phase is the opposite.

Both PSO and GA require a bounded search space. For each sensor, a random point
was chosen inside a 5 × 5 m box centered on the point O, as shown in Figure 2. This box
has a width of 2 m and is centered on the floor level. The searching space is then defined
by a square of 10 m side around this initial point. The algorithm has almost no idea where
each sensor is localized when it starts searching.

Both the GA and PSO parameters were optimized using event #1 as the test case (an
arbitrary choice). The NSGAII algorithm was slightly modified during the ranking process,
and one population from the two generated from the optimal Pareto front was selected.
The algorithms were first run 10 times for each of the six events. From these runs, we chose
the best result according to the best fitness value. This procedure was repeated 10 times
in order to obtain some statistics. We then calculated the weighted error, relative to the
confidence of each run, and computed the median error for each coordinate.

Figure 6 shows the median error of all the sensors (deviation from their exact position),
and Table 1 looks at each sensor averaged over all events. Taken together, Figure 6 and
Table 1 compare the four algorithms.
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Figure 5. Typical raw data recorded during one of the events.
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Figure 6. Deviation from exact location (in m) for each event (averaged over the eight sensors).

Table 1. Deviation from exact location (in m) for each sensor (averaged over the six events).

GA PSO

Single Multi Single Multi

Sensor #1 0.26 0.28 0.44 0.25

Sensor #2 0.32 0.29 0.57 0.40

Sensor #3 0.29 0.26 0.42 0.32

Sensor #4 0.28 0.31 0.44 0.22

Sensor #5 0.22 0.21 0.44 0.33

Sensor #6 0.25 0.22 0.42 0.17

Sensor #7 0.23 0.22 0.47 0.25

Sensor #8 0.24 0.21 0.43 0.24

An overall look at Table 1 and Figure 5 shows that the results are excellent. This
is particularly encouraging regarding the very large size of the search space. Figure 5
shows that the algorithms were insensitive to the direction, velocity, and moment of the
crossing event. Event #6 shows a larger error due to the distractor presence, although
its best median location error was only 40 cm. This means that even in more realistic
conditions, our method can provide a precise and reliable location of the grid. Overall,
the multi-objective optimization is the most appropriate method, either for the GA or PSO
algorithm. A remarkably small averaged error (less than 30 cm) was found in both cases.

Figure 7 shows a more detailed view of the results, where each sensor’s performance
is shown for each event separately. Figure 7a shows the overall best results (obtained with
MOGA), while Figure 7b shows the overall worst results (obtained with Single Objective
Particle Swarm Optimization (SOPSO)).
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(a) (b)

Figure 7. Deviation from exact location (in m) for each event and for each sensor. (a) and (b) are the
best (MOGA) and the worst (SOPSO) results, respectively.

The MOGA algorithm performs slightly better that the Multiple Objective Particle
Swarm Optimization (MOPSO) algorithm, although the best local solution was obtained
using MOPSO; this is encouraging, since it has a smaller number of free parameters. Still,
GA looks more stable, probably because of its ability through the mutation operator to exit
local minima and find a better optimum. Adding this kind of operator to MOPSO should
improve the performance toward errors of less than 20 cm.

As already mentioned, our methods do not suppose a known moment but rather
calculate it as a part of the global solution of the inverse problem. The results are shown in
Table 2. The values are consistent from sensor to sensor and from event to event, which is
a fact that gives us confidence in our calculation schemes. The results from events #1, #3,
and #6 show consistently higher values than those from events #2, #4, and #5. This can be
expected, since the same moment can have a different projection on the Earth’s magnetic
field according to its direction of motion.

Table 2. Calculated total moments (A m2) using the MOGA method.

Sensor #

1 2 3 4 5 6 7 8

Event #

1 9.05 9.35 8.42 8.69 9.55 9.61 9.05 9.04

2 8.64 7.9 8.22 8.18 8.02 8.15 8.25 7.73

3 9.23 9.02 9.18 8.59 8.17 8.52 8.68 8.89

4 7.89 8.17 8.25 8.21 7.75 7.87 7.96 7.88

5 8.4 8.08 7.86 8.01 7.96 8.18 8.12 7.82

6 9.21 8.84 9.25 8.76 8.48 9.01 9.16 9.4

4. Conclusions

A full-scale experiment was performed that mimics the underwater positioning of
magnetic sensors. The position of eight magnetometers was successfully calculated, where
the signals generated by a known trajectory of a ferromagnetic object were solved by two
kinds of natural computing algorithms. Single- and multi-objective versions of a GA and a
PSO were able to compute the position of the sensors, with an error of 25 cm around their
exact locations. This is a remarkable result regarding the realistic scale of the setup and the
almost blind initial guess locations.
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Multi-objective optimization seems to be the most appropriate heuristic technique,
despite its higher computation complexity. This is probably because, when looking for the
three coordinates of the sensors, the 3D information available in the signals must be taken
advantage of in the best way possible. MOGA generally performs better than MOPSO,
although the latter sometimes shows better local results.

Finally, we believe our methods can offer an answer to several open challenges listed
in [2], such as reliability, node mobility, and efficiency. Future work includes testing the
system in a true maritime environment and using a shallow water deployment of the
magnetometers. Several configurations can be considered, from relatively small-scale
applications involving securing harbor facilities to larger-scale deployments for monitoring
ship motion.

Author Contributions: Conceptualization, R.A. and E.F.; methodology, R.A. and E.F.; software, R.A.
and K.N.; validation, K.N.; writing—R.A.; writing—review and editing, R.A. and E.F.; supervision,
R.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to legal restrictions.

Acknowledgments: The helpful discussions with Eyal Weiss are gratefully acknowledged.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Felemban, E.; Shaikh, F.K.; Qureshi, U.; Sheikh, A.; Qaisar, S.B. Underwater Sensor Network Applications: A Comprehensive
Survey. Int. J. Distrib. Sens. Netw. 2015, 11. [CrossRef]

2. Su, X.; Ullah, I.; Liu, X.; Choi, D. A Review of Underwater Localization Techniques, Algorithms, and Challenges. J. Sens. 2020,
2020, 6403161. [CrossRef]

3. Wang, H.; Wang, S.; Bu, R.; Zhang, E. A Novel Cross-Layer Routing Protocol Based on Network Coding for Underwater Sensor
Networks. Sensors 2017, 17, 1821. [CrossRef] [PubMed]

4. Cayirci, E.; Tezcan, H.; Dogan, Y.; Coskun, V. Wireless sensor networks for underwater surveillance systems. Ad Hoc Netw. 2006,
4, 431–446. [CrossRef]

5. Callmer, J.; Skoglund, M.; Gustafsson, F. Silent Localization of Underwater Sensors Using Magnetometers. EURASIP J. Adv. Signal
Process. 2010, 2010, 709318. [CrossRef]

6. Erol, M.; Vieira, L.F.M.; Caruso, A.; Paparella, F.; Gerla, M.; Oktug, S. Multi stage underwater sensor localization using mobile
beacons. In Proceedings of the 2nd International Conference on Sensor Technologies and Application, SENSORCOMM 2008, Cap
Esterel, France, 25–31 August 2008; pp. 710–714.

7. Cheng, X.; Shu, H.; Liang, Q.; Du, D.H.-C. Silent positioning in underwater acoustic sensor networks. IEEE Trans. Veh. Technol.
2008, 57, 1756–1766. [CrossRef]

8. Wong, S.Y.; Lim, J.G.; Rao, S.; Seah, W. Multihop localization with density and path length awareness in non-uniform wireless
sensor networks. In Proceedings of the 2005 IEEE 61st Vehicular Technology Conference, Stockholm, Sweden, 30 May–1 June
2005.

9. Chandrasekhar, V.; Seah, W. An area localization scheme for underwater sensor networks. In Proceedings of the OCEANS
2006-Asia Pacific, Singapore, 16–19 May 2006.

10. Yu, Z.; Xiao, C.; Zhou, G. Multi-Objectivization-Based Localization of Underwater Sensors Using Magnetometers. IEEE Sens. J.
2014, 14, 1099–1106. [CrossRef]

11. Bian, S.; Hevesi, P.; Christensen, L.; Lukowicz, P. Lukowicz. Induced Magnetic Field-Based Indoor Positioning System for
Underwater Environments. Sensors 2021, 21, 2218. [CrossRef] [PubMed]

12. Zhou, G.; Wang, Y.; Wu, K.; Wang, H. Localization Approach for Underwater Sensors in the Magnetic Silencing Facility Based on
Magnetic Field Gradients. Sensors 2022, 22, 6017. [CrossRef] [PubMed]

13. John, F.; Schmidt, S.O.; Hellbruck, H. Multisensor Platform for Underwater Object Detection and Localization Applications. In
Proceedings of the OCEANS 2022, Hampton Roads, Hampton Roads, VA, USA, 17–20 October 2022.

14. Huang, W.; Pan, Z.; Xu, Z. Underwater cable localization method based on beetle swarm optimization algorithm. IEEE/CAA J.
Autom. Sin. 2022, 1–3. [CrossRef]

31



Sensors 2023, 23, 1797

15. Zhang, J.-W.; Yu, P.; Jiang, R.-X.; Xie, T.-T. Real-time localization for underwater equipment using an extremely low frequency
electric field. Def. Technol. 2022; in press. [CrossRef]

16. Philippeaux, H.; Dhanak, M. Real-Time Localization of a Magnetic Anomaly: A Study of the Effectiveness of a Genetic Algorithm
for Implementation on an Autonomous Underwater Vehicle. In Proceedings of the OCEANS 2018 MTS/IEEE Charleston,
Charleston, SC, USA, 22–25 October 2018.

17. Hu, S.; Tang, J.; Ren, Z.; Chen, C.; Zhou, C.; Xiao, X.; Zhao, T. Multiple Underwater Objects Localization With Magnetic
Gradiometry. IEEE Geosci. Remote Sens. Lett. 2019, 16, 296–300. [CrossRef]

18. Hou, G.; Shao, Q.; Zou, B.; Dai, L.; Zhang, Z.; Mu, Z.; Zhang, Y.; Zhai, J. A Novel Underwater Simultaneous Localization and
Mapping Online Algorithm Based on Neural Network. ISPRS Int. J. Geo-Inf. 2019, 9, 5. [CrossRef]

19. Brabazon, A.; O’Neill, M.; McGarraghy, S. Natural Computing Algorithms; Springer Publishing Company, Inc.: New York, NY,
USA, 2015.

20. Bansal, J.; Singh, P.; Pal, N. Evolutionary and Swarm Intelligence Algorithms; Springer Nature: Cham, Switzerland, 2018.
21. Affenzeller, M.; Winkler, S.; Wagner, S.; Beham, A. Genetic Algorithms and Genetic Programming: Modern Concepts and Practical

Applications; Chapman & Hall/CRC: New York, NY, USA, 2009.
22. Clerc, M. From Theory to Practice in Particle Swarm Optimization. In Handbook of Swarm Intelligence: Adaptation, Learning, and

Optimization; Panigrahi, B.K., Shi, Y., Lim, M.H., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 8.
23. Weiss, E.; Alimi, R. Low-Power and High-Sensitivity Magnetic Sensors and Systems; Artech House: Boston, MA, USA; London, UK,

2018.
24. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol.

Comput. 2002, 6, 182–197. [CrossRef]
25. Iyer, S.; Rao, D.V. Genetic algorithm based optimization technique for underwater sensor network positioning and deployment.

In Proceedings of the IEEE Underwater Technology (UT), Chennai, India, 23–25 February 2015; pp. 1–6.
26. Coello, C.A.C.; Toscano-Pulido, G.T.; Lechuga, M.S. Handling multiple objectives with particle swarm optimization. IEEE Trans.

Evol. Comput. 2004, 8, 256–279. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

32



Citation: Kim, Y.; Kim, J.; Hong, J.;

Seok, J. The Tacotron-Based Signal

Synthesis Method for Active Sonar.

Sensors 2023, 23, 28. https://doi.org/

10.3390/s23010028

Academic Editors: Haixin Sun and

Xuebo Zhang

Received: 25 November 2022

Revised: 16 December 2022

Accepted: 17 December 2022

Published: 20 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

The Tacotron-Based Signal Synthesis Method for Active Sonar

Yunsu Kim 1, Juho Kim 2, Jungpyo Hong 1,* and Jongwon Seok 1,*

1 Department of Information and Communication Engineering, Changwon National University,
Changwon 51140, Republic of Korea

2 Sonar System PMO, Agency for Defense Development, Changwon 51618, Republic of Korea
* Correspondence: hansin@changwon.ac.kr (J.H.); jwseok@changwon.ac.kr (J.S.)

Abstract: The importance of active sonar is increasing due to the quieting of submarines and the
increase in maritime traffic. However, the multipath propagation of sound waves and the low signal-
to-noise ratio due to multiple clutter make it difficult to detect, track, and identify underwater targets
using active sonar. To solve this problem, machine learning and deep learning techniques that have
recently been in the spotlight are being applied, but these techniques require a large amount of data.
In order to supplement insufficient active sonar data, methods based on mathematical modeling are
primarily utilized. However, mathematical modeling-based methods have limitations in accurately
simulating complicated underwater phenomena. Therefore, an artificial intelligence-based sonar
signal synthesis technique is proposed in this paper. The proposed method modified the major
modules of the Tacotron model, which is widely used in the field of speech synthesis, in order to
apply the Tacotron model to the field of sonar signal synthesis. To prove the validity of the proposed
method, spectrograms of synthesized sonar signals are analyzed and the mean opinion score was
measured. Through the evaluation, we confirmed that the proposed method can synthesize active
sonar data similar to the trained one.

Keywords: active sonar; deep learning; signal synthesis; Tacotron

1. Introduction

Sonar stands for sound navigation and ranging, and refers to equipment or methodol-
ogy that identifies the existence, location, and characteristics of an underwater target object.
As water is used as a medium in which propagation proceeds, detection is performed
using sound waves [1]. Passive sonar is a receiver-only system that detects vibrations
originating from objects, such as the vessel’s engines and propellers themselves. Relatively,
it is simple to design and inexpensive to build. However, it requires a vast amount of
data to distinguish only the desired signal by receiving all signals from animals and other
ships. On the other hand, active sonar detects echo signals which are radiated from the
transmitter, reflected by targets, and returned to the receiver. Since the radiated signal
has a preset frequency characteristic and matched filtering can be applied to improve the
signal-to-noise ratio (SNR) with the knowledge of the transmitted signal, active sonar is
promising for underwater target detection in spite of the reverberation [2,3].

Active sonar modeling refers to estimating a returned echo signal reflected by an
underwater target. In general, an active sonar modeling system consists of a transmitter, a
receiver, and a target, and the transmitter and the receiver are located in different places
to perform radiation and reception [4]. Various studies have presented methods for the
simulated generation of sonar data [5–8], one of which is a simulation module provided
by the North Atlantic Treaty Organization (NATO) submarine research center. In the
simulation module, the signal emitted by the transmitter is simulated with the target
through statistical calculation [5]. It also produces a more realistic signal by providing
a target fading effect between sensors as seen in real-world sea environment datasets.
However, in simplifying the sonar equation, the modeled signal inevitably differs from
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the data collected in the real ocean. In [6], La Cour et al. developed a multi-everything
sonar simulation (MESS), reflecting the reverberation and simplified sea environment.
However, the MESS also failed to closely realize the real ocean data because simplified
sea environment parameters were added to the existing sonar equation. In addition, a
simulator of non-acoustic and acoustics (SIMONA) simulators generate signals that reflect
contact states and reverberations, as well as target shapes, multipath fading, and waveform
types [7]. For the full simulation, beamforming and reverberation calculations, which
are required to be input to the matching filter module, play a major role in the realistic
data generation. Therefore, studies on generating reverberation in real time only for
bidirectional active sonar have also been conducted [8]. However, these mathematical
modeling-based methods are limited in accurately simulating by vast and complicated
underwater environments.

Meanwhile, with the rapid development of deep neural networks (DNN), a lot of
interest and research has been conducted on the technology of generating complicated
time series signals of variable length from simple text information in the speech synthesis
area [9–13]. Representatively, WaveNet [9] is a voice signal synthesis model that presented
a remarkable performance in audio sample generation. However, there is a limitation
in that it is only used as a kind of vocoder that uses a mel spectrogram, which contains
linguistic features of the desired voice, not natural language text, as an input. In addition,
DeepVoice [10] is a method that replaced conventional text-to-speech (TTS) pipelines with
DNN. However, the method is limited because the learning process is not an end-to-end
system. Subsequently, a model of the encoder–decoder structure is proposed to improve
synthesis performance, and the importance is calculated using a pre-trained hidden Markov
model (HMM) to predict the vocoder parameters [11]. Furthermore, a Char2Wav [12] model
is designed to enable end-to-end learning, but additional preprocessing is still required in
that it predicts the Vocoder parameter. Finally, Tacotron [13] is an end-to-end TTS model
that succeeds in training a linear spectrum of speech data in natural language text at once.
It consists of an encoder, a decoder, and attention modules, showing high generation
performance enough to be used in commercial applications, and is widely used as a basic
structure of the TTS models.

Therefore, in this paper, we propose a signal synthesis method for active sonar using
the Tacotron model. To achieve our goal, we modified several main blocks of the Tacotron
model to be operated for sonar signal synthesis. Starting with the introduction of the
related works in Section 2, we explain the proposed method in detail in Section 3. Through
experiments, we verify the effectiveness of the proposed method in Section 4 and conclude
in Section 5.

2. Related Works

2.1. Active Sonar Target Signal Generation Based on the Highlight Model

Active sonar modeling means simulating a reflected signal against an underwater
target. When a pulse signal is emitted to an underwater object in a steady state, various
types of reflective signals are generated due to factors such as hull, medium, structural
characteristics, frequency of incident waves, and pulse width. The echo signal of an active
sonar using high frequency is produced by the reflection of the object’s representation,
along with several equivalent scattering inside, characterized by the spatial distribution of
the object’s highlights. Simulating a sonar signal is to consider everything that may occur in
this process of reflection. Entering each point that hits the target into the reflection tracking
algorithm has an infinite number of cases, thus the concept of highlights that simulate the
target as a series of points is introduced [14].

At long range, an underwater target is represented by a single point generated from
a single highlight. However, at short range, the distribution of highlights needs to be
properly expressed because the target can have a distribution characteristic that varies with
time and angle. Assuming that target is a submarine, the concept of a spheroid-placed
highlight is used. The concept of a spheroid-placed highlight discontinuously recognizes
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the surface of the target that varies with the angle of incidence of the highlights attached at
a specific position. Figure 1 shows the concept of the corresponding highlight:

pb(r, x) =
N

∑
g=0

hg
(
rg, x

) ∗ pi(x) (1)

 

Figure 1. Spheroid-placed highlight modeling.

Given the time delay of each highlight, the signal pb reflected on all the highlights of
the target can be expressed as a sum, as shown in (1). The receiver is r, the target is x, and
there are a total of N highlight points in a multi-highlight system, including short-range
underwater targets. At this time, the object transfer function of each highlight is called hg
and the incident signal is pi. This highlight modeling is simple but widely used due to high
environmental approximation.

2.2. The Tacotron for TTS Modeling

At long range, an underwater target is represented by a single point generated from
a single highlight. However, at short range, the distribution of highlights needs to be
properly expressed because the target can have a distribution characteristic that varies with
time and angle. Assuming that target is a submarine, the concept of a spheroid-placed
highlight is used. The concept of a spheroid-placed highlight discontinuously recognizes
the surface of the target that varies with the angle of incidence of the highlights attached at
a specific position. Figure 2 shows the concept of the corresponding highlight.

 

Figure 2. The Tacotron compared to conventional methods.

The encoder–decoder structure and attention mechanism are the core building blocks
of the Tacotron. The <Text, Speech> pair consists of the input and output of the model,
respectively. The input uses natural language raw text and, as an output, linear and mel
spectrograms are generated, respectively. Finally, the spectrograms are reconstructed as a
WAV audio file through post-processing. The encoder receives text data and outputs a kind
of text embedding, a vector that best represents the meaning of the input text sequence. The
embedded text vector is used as information for reference when the decoder sequentially
generates audio samples.
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In addition, attention techniques determine the importance of text embedding vectors
used by decoders to generate audio sequences at each time step. In the recurrent neural
network (RNN) based sequence-to-sequence (seq2seq) model, the vanishing gradient prob-
lem in which the information itself slowly disappears when it is located at the beginning of
the sentence exists. However, the attention technique successfully alleviates the problem.
With these advantages, the Tacotron became the cornerstone of the end-to-end TTS model.

3. Proposed Method

3.1. System Structure

Figure 3 presents the overall structure of the proposed signal synthesis method for
active sonar. The entire system is largely divided into four stages: dataset configuration,
preprocessing, signal synthesis, and post-processing. In this paper, the dataset configuration
part used a highlight-based active sonar simulator for data generation because the amount
of real ocean datasets is insufficient to train the proposed system model. However, this
data generation part has to be replaced by real ocean data ultimately. The dataset generated
in this way is converted into data to be an input of the model through the preprocessor,
and the input is synthesized by the DNN model and outputs a corresponding linear
spectrogram. By estimating the phases corresponding to the synthesized spectrograms
using the Griffin–Rim algorithm, the synthesized waveform signal is reconstructed through
post-processing.

Figure 3. System structure.

Figure 4 compares the inputs and outputs of Tacotron models utilized in speech
and sonar signal synthesis areas. The two Tacotron models are in common with yielding
linear spectrograms corresponding to the provided inputs, whereas they are different in
relevance with time-order dependency. In other words, the input of the TTS model for
Korean synthesis combines 80 symbols in a time-ordered sequence, but the input of the
proposed model for sonar signal synthesis consists of 14 parameters regardless of time
order. Therefore, in order to achieve our goal of reflecting the difference to the Tacotron
model, we modified several main blocks and the modifications will be explained in detail
in the following section.
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(a) (b) 

Figure 4. Input and output configuration. (a) The input/output structure of the TTS model. A total of
80 symbols are arranged in time order. (b) The input/output structure of the proposed sonar signal
synthesis model. Fourteen marine environmental parameters are arranged regardless of time order.

3.2. The Tacotron-Based Sonar Signal Synthesis Model

Figure 5 shows the structure of the proposed Tacotron-based sonar signal synthesis
model. As the input of the model, the parameter values used in the configuration of
the dataset are normalized to real numbers in the range of [0, 1] in the order of depth,
transmitter, receiver, target coordinates, and pulse information. After that, it goes through
an encoder network to extract and convert from parameter information necessary for signal
simulation to information necessary for synthesizing a linear spectrogram. The information
vector output of the encoder is input into the decoder and goes through a process of
synthesizing an active sonar echo signal corresponding to the input marine environment
parameters. The active sonar echo signal is sequentially synthesized through multiple
steps using decoder RNN in the form of a spectrogram. In the decoding step, the attention
RNN refers to the necessary information from the parameters input to the model when
synthesizing the frequency coefficient of the corresponding time step.

Figure 5. Model structure of the proposed sonar signal synthesis.
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3.2.1. The Sonar Environment Parameter Embedding Layer

In the conventional TTS model, tokenization is performed in the process of converting
natural language text into vectors. After converting the order in which the word appears
within a preset word dictionary into a one-hot vector, the neural network can judge the
meaning of the word within the sentence by itself through a text embedding layer. It is a
more effective approach in that it estimates meaning specific to each task than conventional
word embedding algorithms, such as count vectorization [15], bag-of-words [16], and term
frequency–inverse document frequency (TF–IDF) [17,18]. Figure 6 shows the operation
process of this text embedding layer. Although it appears to compute the context vector hc
of the word as the matrix product of the weights Wc

in and the one-hot vector c, the hc can be
easily obtained by selecting the corresponding row of the weight Wc

in.

Figure 6. Word embedding layer.

In this paper, however, the input of DNN used to synthesize sonar signals represents
a series of numerical vectors of environmental parameter values such as depth, pulse
information, transmitter, receiver, and target coordinates. Unlike text embedding layers
that estimate only the meaning of words that exist within a dictionary, sonar environment
parameter embedding layers are continuous numbers and the number of cases can be
infinite. In addition, due to the nature of the one-hot vector, meaningless zero values
occupying only space are filled as elements, but sonar environment parameter vectors are
denser and have unique meanings for each element. Therefore, it is necessary to design a
weight vector so that the meaning can be inferred individually according to each parameter.

The operation process of the sonar environment parameter embedding layer is de-
picted in Figure 7. Unlike the sparse text embedding vector c, the sea environment pa-
rameter vector requires processing as a dense structure. The ith element si of the vector
S is assigned a weight W and a bias bi to output hs

i , which transforms the meaning of the
element into the information needed for signal synthesis purposes with a offset dimension
n_embed. By performing an operation, such as a fully connected layer for each element of
the input, it becomes possible to convert a single number into a nonlinear context vector.
This allows the proposed model to synthesize more realistic active sonar data.
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Figure 7. Sonar parameter embedding layer.

3.2.2. Attention Layer

The proposed model has an autoregressive structure that synthesizes variable-length
signals in units of a specific number of frames and again uses them as input to the decoder
cell to output frames of the next time step. The RNN-based seq2seq model [19] inputs an
entire sequence, referencing one information vector output from the encoder equally across
all steps, and iterating the process until an end-of-sequence (EOS) token appears. However,
after the Transformer model [20] came out, an attention layer that acts as an intermediary
between the encoder and the decoder was introduced. Although the seq2seq structure is
used as it is in the decoder output of the model, the attention layer determines its important
input features at that time step, helping to process and generate more flexible performance.
In this paper, we also use a structure that introduces an attention mechanism to enable
the extraction and processing of encoded information necessary to form a signal spectrum
output at frame time t. A Bahdanau attention mechanism [21] was used as the method of
calculating attention in the same manner as the Tacotron, and its configuration is as follows:

Q = St−1, K = H, V = H (2)

et = Watanh
(
WqQ + WkK

)
(3)

at = so f tmax(et) (4)

ct = Vat (5)

St = D
(
concat

(
ct, It

))
(6)

We performed the importance calculation process by repeating up to the last frame
generation point T with a total of three vectors: Q, K, and V, which mean queries, keys,
and values. St−1 refers to the decoder cell’s hidden state at the point just before the point
t and H refers to the encoder cell’s hidden states at all points in time. Similarly, three
types of weights: Wa, Wq, and Wk correspond to attention values, queries, and keys and
are calculated to obtain attention score values et. Furthermore, et becomes the attention
value at via the softmax function, and computes a context vector ct that utilizes only
important information from the encoded information vector via a dot product operation
with V. Finally, the calculated ct is concatenated to the input It of the current decoder D(x),
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resulting in St. In this way, determining how important information is in synthesizing
signals plays a crucial role in improving synthesis performance.

3.2.3. Positional Decoding

The biggest difference between speech synthesis and the proposed sonar signal syn-
thesis is in time information. The text sequence, which is the input of the speech Tacotron
model, is representative time series data, and the list of each word in the sentence affects
each other a lot in order, which also directly affects the output speech spectrogram. How-
ever, the sonar Tacotron model simultaneously receives a number of sea environment
parameters as input. The corresponding values have a profound effect on the output of
each element, but the arrangement order of the parameters does not affect the output. This
temporal mismatch causes confusion as the decoder of the model does not correspond to
the input in yielding the output sequence sequentially. Therefore, in this paper, we add
a term to the input of the cell under decoding to indicate at what point in the entire file
the frame corresponds to so that the decoder can track the context of the output point.
The added temporal term is expressed in the form of a normalized floating point of [0,
1], and each time point t is expressed in the order of frames rather than information in
seconds; thus, t divides the total number of frames in the generation file by T and uses it as
location information. This alleviates the problem of perception confusion between inputs
and outputs of models that do not correspond to each other in time, as described above.

3.2.4. Target Masked L1 Loss

The design of appropriate cost functions is essential for the optimization of DNN
models. To design a cost function comparing the linear spectrogram of the model’s output
speech signal with the actual one, the conventional method used mean absolute error
(MAE), as shown in (7):

Ltotal =
1
T

1
N

T

∑
t=0

N

∑
i=0

∣∣∣oi
t − ôi

t

∣∣∣ (7)

Time information, i.e., the total number of frames, is T, the ith frequency spectrum
coefficient of the tth frame output by the model is ôi

t, and the frequency spectrum coefficient
of the reference signal is set to oi

t. The L1 distance of oi
t and ôi

t was averaged over the entire
frame and coefficients as a loss value, which presented better performance than using mean
squared error (MSE) [13].

However, as described above, the sonar signal synthesis model does not effectively
pass time information in the decoding step. Using positional decoding to provide temporal
information to decoders is only an auxiliary role and is not a fundamental solution. In
addition, due to the nature of the sonar signal, the background noise or clutter occupies
most of the time except for the target portion at a specific point in time, so it is necessary
to design the cost function to focus more on reducing the difference from the original. To
solve this problem, we propose a target-masked MAE. A frequency coefficient of the target
signal is mainly larger than the magnitude of the background noise. We calculate a binary
mask M that is 1 where the target is estimated, as shown in (8–11), and 0 where there is no
target. We add LmaskedLinear to the overall cost function Ltotal , which allows the energy to be
compared only to the target locations through the element-specific product of the output
value of the neural network model and the frequency spectrum of the original signal.

μ =
1
N

N

∑
i=0

si
t (8)

M =

{
0, si

t ≤ 2μ

1, si
t > 2μ

(9)

40



Sensors 2023, 23, 28

LmaskedLinear =
1
T

1
N

T

∑
t=0

N

∑
i=0

∣∣∣M 
 si
t − M 
 ŝi

t

∣∣∣ (10)

Ltotal = Llinear + LmaskedLinear (11)

4. Experiments

4.1. Dataset Configuration

As described in Section 1, the proposed method aims to synthesize more realistic echo
signals but requires more than a certain amount of data due to the nature of the data-driven
approach. Because it is difficult to collect large amounts of sonar data in practice, data
generated by an active sonar simulator are used for training the proposed Tacotron model.
Ultimately, this generated data should be replaced by real ocean data when the real data is
sufficiently collected.

In order to generate highlight-based active sonar data introduced in Section 2, the
active sonar simulator receives parameters, including the coordinates of the transmitter,
target, and receiver, calculates the signal reflected on the target, and outputs it in the form
of a waveform. The input parameters of the highlight-based active sonar signal generator
are summarized in Table 1.

Table 1. Input parameters of the highlight-based active sonar signal generator.

Parameter Description Setting Range

depth depth information (unit: m) [0, 5000]

tx transmitter coordinates (x,y,z)
(unit: m)

[0, range]/[0, range]/[0,
range]

rx receiver coordinates (x,y,z)
(unit: m)

[0, range]/[0, range]/[0,
depth]

target target coordinates (x,y,z) (unit:
m)

[0, range]/[0, range]/[0,
depth]

svp sound velocity profile (unit:
m/s) [0,∞]/[0,∞]

highlight
highlight information

(number of points, relative
position)

[0,∞]/[0,∞]

range calculation limit range (min,
max, and step) (unit: m) [0,∞]

pulse

pulse information (type,
duration, center frequency,

and bandwidth) (unit: linear
frequency modulation, and

continuous
wave/sec/Hz/Hz)

[0,∞]

When the entire range and the step are set to 15,000 m and 10 m, respectively, the
sound ray is tracked until the entire distance is reached by the interval by the set parameter.
The tracking altitude is calculated by dividing the [−20,20] degree range set as the default
value by 400, the number of indexes, as shown in Figure 8.
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Figure 8. The ray tracing process.

In the experiment of this paper, a dataset was constructed by changing a total of
three parameters that have a noticeable influence on the characteristics of sonar signals:
depth, pulse length, and pulse center frequency. The sound velocity profile used for data
generation is presented in Table 2. Highlight points were set to 10 and Gaussian noise is
added to generated sonar signals corresponding to 10 dB SNR. The total number of cases
considered in this experiment for training the model is summarized in Table 3.

Table 2. The sound velocity profile.

Depth (m) Sound Speed (m/s)

0 1502
31 1504
60 1480
90 1477

120 1482
150 1481
180 1482
210 1476
240 1477
360 1479

..
.

..
.

5000 1480

Table 3. Dataset configuration.

Parameter Step Number of Files

depth 100–1000 m, 10 m per step 100
pulse duration 100–1000 m, 10 m per step 100

pulse center frequency 1000–7000 Hz, 60 Hz per step 100

4.2. Experimental Settings

Instead of loading a single long signal file and entering the entire file, it divides into
frames and goes through all processes such as processing, input, and training. This section
describes all parameters used in the experimental process. It is divided into two categories,
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audio processing and DNN training, and consists of parameter names, numerical values,
and parameter descriptions.

(a) Audio processing parameters.

• num_mels: 80, the number of mel filters to obtain the mel spectrogram.
• num_freq: 1025, the number of frequency coefficients.
• frame_length_ms: 50 ms, the length of the frame.
• frame_shift_ms: 12.5 ms, the length of the shift between frames.

(b) Model training parameters.

• Parameter embedding dimension (same as encoder input dimension): 256.
• Encoder output dimension: 128.
• Attention type: the Bahdanau attention.
• Attention dimension: 256.
• Decoder input dimension: 256.
• Decoder output dimension (meaning the final output dimension of the model): num_freq

and num_mels.

4.3. Experimental Results

To evaluate the synthesis performance of the proposed model, we examined three
aspects: comparing spectrograms, checking attention alignment, and measuring mean
opinion scores (MOS). The evaluation was conducted using an untrained test file, and 10
were separated for each parameter.

(a) Spectrogram comparison.

Spectrograms of the original sonar data generated by an active sonar simulator and
spectrograms of the synthesized signal according to changes in depth, pulse length, and
pulse center frequency are presented in Figures 9–11. As can be seen in the figures, a
target echo signal is successfully synthesized in each parameter condition. The time of the
signal, which means the distance of the target and its shape are, similarly synthesized to the
original signal. However, attenuation of the background noise level, which is synthesized
by simple repetition, is observed.

  
(a) (b) 

  
(c) (d) 

Figure 9. Spectrograms of active sonar signals with various depth parameters. (a) Original signal
with a depth of 180 m. (b) A synthesized signal with a depth of 180 m. (c) An original signal with a
depth of 660 m. (d) A synthesized signal with a depth of 660 m.
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(a) (b) 

  
(c) (d) 

Figure 10. Spectrograms of active sonar signals with various pulse duration parameters. (a) An
original signal with a pulse duration of 160 ms. (b) A synthesized signal with a pulse duration of
160 ms. (c) An original signal with a pulse duration of 770 ms. (d) A synthesized signal with a pulse
duration of 770 ms.

  
(a) (b) 

  
(c) (d) 

Figure 11. Spectrograms of active sonar signals with various pulse center frequency parameters. (a)
An original signal with a pulse center frequency of 2080 Hz. (b) A synthesized signal with a pulse
center frequency of 2080 Hz. (c) An original signal with a pulse center frequency of 5920 Hz. (d) A
synthesized signal with a pulse center frequency of 5920 Hz.

(b) Attention alignment.

In order to check the attention mechanism, we visualized the importance of parameters
for synthesizing sonar signals. As shown in Figure 12, the high parameter importance
resulted in the corresponding training cases. Thus, we confirmed that the attention mecha-
nism for model training was normally operated.

(c) The MOS score.

In order to measure the subjective quality between the generated and synthesized
data, we conducted an MOS test [22]. A total of five persons participated in this experiment,
and each type of data, i.e., generated and synthesized data, are evaluated. The average
score of the participants for each sea environment parameter is shown in Table 4.
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(a) 

 
(b) 

 
(c) 

Figure 12. Attention alignments in the test. (a) Training only depth parameters. (b) Training only
pulse center frequency parameters. (c) Training only pulse duration parameters.

Table 4. The MOS score.

Depth Pulse Duration
Pulse Center

Frequency

Generated 4.03 4.10 4.51
Synthesized 3.68 3.78 4.32

As shown in Table 4, the MOS score of the signal synthesized by the proposed model
is similar to the generated original sonar signal. From these results, it can be seen the sonar
signal synthesized by the proposed model generates a signal similar to the trained signals.

5. Conclusions

In this paper, we proposed a Tacotron model based on DNN for active sonar signal
synthesis. The proposed Tacotron-based sonar signal synthesis method is suitably modified
for active sonar. It consists of three submodels: an encoder that turns the input vector into
an information vector needed to simulate the environment, a decoder that sequentially
generates output based on the received information vector, and an attention module that
extracts and processes only the information needed at each point in time when decoding.
To evaluate the proposed method, we performed spectrogram comparison, attention results
checking, and MOS tests. Through the evaluation, we confirmed that the proposed Tacotron
model successfully synthesized almost similar data used for training. Furthermore, the
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proposed Tacotron model can be improved using variable signal generation models, such
as Tacotron2 [23], combined with the WaveNet Vocoder and Flowtron [24] from NVIDIA,
but it remains to be tested in a future work.
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Abstract: This work studies the underwater detection and tracking of diver targets under a low
signal-to-reverberation ratio (SRR) in active sonar systems. In particular, a particle filter track-before-
detect based on a knowledge-aided (KA-PF-TBD) algorithm is proposed. Specifically, the original
echo data is directly used as the input of the algorithm, which avoids the information loss caused by
threshold detection. Considering the prior motion knowledge of the underwater diver target, we
established a multi-directional motion model as the state transition model. An efficient method for
calculating the statistical characteristics of echo data about the extended target is proposed based
on the non-parametric kernel density estimation theory. The multi-directional movement model set
and the statistical characteristics of the echo data are used as the knowledge-aided information of the
particle filter process: this is used to calculate the particle weight with the sub-area instead of the
whole area, and then the particles with the highest weight are used to estimate the target state. Finally,
the effectiveness of the proposed algorithm is proved by simulation and sea-level experimental data
analysis through joint evaluation of detection and tracking performance.

Keywords: active sonar; track-before-detect; knowledge-aided; particle filter; non-parametric kernel
density estimation

1. Introduction

The signal-to-reverberation ratio (SRR) decreases with the increasing complexity of
targets and marine environments, resulting in reduced detection performance of sonar
equipment. Traditional active sonar regards detection and tracking as two separate sub-
systems. The detection system sets the threshold using constant false alarm technology to
detect the echo signal. If the echo intensity exceeds the threshold, it is considered a target;
otherwise, it is regarded as clutter and filtered out. The obtained point-trace information
is then passed to the tracking system. When the target motion model is known, some
common tracking algorithms estimate the target trajectories using the obtained point trace
information. In this method, the accuracy of detection depends on tracking performance.
However, in low SRR, the lack of target information reduces tracking accuracy since the
threshold filters the weak target. If a lower threshold is used to improve the detection
rate of weak targets, it will cause many false alarms. This significantly increases both the
difficulty of associating and the computational cost.

The track-before-detect (TBD) methods address the target detection and tracking
problem in low SRR [1]. This method accumulates the test statistic according to possible
target trajectories, and the threshold decision is then made. Finally, target tracking is
realized through traceback. The commonly used TBD algorithms include the dynamic
programming TBD algorithms (DP-TBD) [2–8], Hough transform TBD algorithms (HF-
TBD) [9–11], and particle filter TBD algorithms (PF-TBD) [12–24]. The DP-TBD algorithms
generally require state space discretization and are very computationally intensive. The
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HF-TBD algorithms are only suitable for a rectilinear motion target. The PF-TBD algo-
rithms are applied to nonlinear non-Gaussian problems and are more flexible than the
former two methods.

At present, the PF-TBD method has been applied in infrared [13–15], radar [16–19],
sonar [20–24], and other fields. Most researchers evaluate the PF-TBD method by simulation.
However, in [16], Guerraou et al. use the PF-TBD method to detect and track the real target
on marine radar. To address weak target detection and tracking in multi-spectral infrared
images, a PF-TBD algorithm based on a measurement fusion strategy is proposed by [13].
Bao et al. derive a multi-model optimal particle filter track-before-detect (MMPF-TBD)
algorithm for maneuvering weak targets [15]. This algorithm can estimate the target’s state
and the existence of the target separately, and improve the particle utilization rate. To solve
the problem of target loss or poor tracking accuracy caused by particle impoverishment,
Huang et al. propose an improved TBD method that combines the auxiliary particle
filter and the multiple-model filter (AUX-MMPF-TBD) [17]. Tian et al. propose a PF-TBD
method based on the spring model firefly algorithm, and this method can guide low-weight
particles to move in the direction of the high likelihood region, thereby improving particle
quality [12]. Awadhiya presents a weight update method based on previous moment
feedback for PF-TBD [18]. For an underwater target, Jing combines a standard particle filter
with the track-before-detect method to solve the problem of underwater target detection and
tracking [20]. Yi proposed a PF-TBD method for passive array sonar target detection [23].
This method minimizes the Cramer-von (CV) distance to obtain the statistical characteristics
of the spectrum measurement data.

The TBD method has two key factors: the test statistic and the target motion path.
First, a good test statistic can distinguish the target from the clutter. Common test statistics
for point targets are amplitude [13], complex amplitude [9], or the likelihood ratio between
the power of the target and that of clutter [7]. However, active sonar has the characteristics
of high resolution, and the target appears in multi-resolution cells. Although some point
spread functions (PSFs) [25] are used to model the energy diffusion over the resolution
cells [26], the limited PSFs are too simple to reflect the variations in the characteristics of the
target in the sonar system. Secondly, the exact target motion paths on frames are established
to accumulate the test statistics in the correct direction. However, whether in single-mode
or multi-mode PF-TBD algorithms, the established motion models are mostly uniform
motion or uniform turning motion without considering the target motion characteristics in
practical applications.

A track-before-detect based on a knowledge-aided particle filter (KA-PF-TBD) algo-
rithm for an underwater diver was proposed. First, based on the motion characteristics of
the diver target, a multi-direction motion model set is developed as the target state transi-
tion model, which can guide the particle state transition more accurately. To address the
problem that the likelihood ratio calculation is inaccurate due to the difficulty in modeling
the weak extended underwater target, we use the non-parametric kernel density estimation
method to simulate the statistical characteristics of echo data in the sub-area rather than
the whole area, which reduces the calculation time with little loss of detection and tracking
performance. Therefore, we solve the problem of the underwater diver detecting and
tracking by using the multi-directional movement model set of the diver, and the statistical
characteristics of the real echo data, as knowledge-aided information in the filtering process.
Finally, joint detection and tracking performance indicators are proposed to evaluate the
algorithm performance.

The structure of this paper is as follows: In Section 2, the sonar measurement model
and target state transition models are given. In Section 3, we develop a KA-PF-TBD
method framework for active sonar systems, which includes constructing the diver multi-
directional movement model set, and acquiring the measurement data likelihood function
and particle filtering process. In Section 4, the effectiveness and efficiency of the KA-PF-
TBD method are confirmed both in simulation and in the sea trial data. In Section 5, we
summarize the results.
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2. System Models

2.1. Sonar Measurement Model

Assuming that the position of the target xt located in the far field at time t is xpt and ypt ,
and the corresponding velocities are vxt and vyt , respectively, then the target state at time t
is xt =

[
xpt , vxt , ypt , vyt

]
. In an ideal condition without considering noise, the relationship

between sonar distance measurement, angle measurement, and target location is:⎧⎨⎩ rt =
√

x2
pt + y2

pt

θt = arctan
(

xpt
ypt

) , (1)

The sonar system consists of a transmitting array element and a uniform linear array.
M is the number of receiving array elements, and d is the array element spacing. If the
transmitted signal is s(t), the signal received by M array elements is written as a vector:

r(t) = a(θt)As(t − τtt+tr)ejw(t−τtt+rt) + v(t), (2)

where A is the reflection coefficient of the target; the carrier angular frequency is w;
tt stands for signal from transmission to target; tr represents the signal from the tar-
get to the receiver; the propagation time delay between transmission and reception is
τtt+tr = 2rt

c ; and c denotes the speed of sound. The propagation delay is denoted by
τm(θt) = (m − 1)d sin θt/c; r(t) =

[
r1(t) · · · rm(t)

]′ denotes the vector that is composed

of the received signal; a(θt) =
[
1 e−jwτ1(θt) · · · e−jwτm(θt)

]′
denotes the steering vector;

and the noise vector is v(t) =
[
v1(t) · · · vm(t)

]′.
In general, because the complex carrier does not carry any useful information, we only

consider complex baseband signals [27]. Thus, the discrete form of (2) is:

r(k) = a(θk)As(k − τtt+tr) + v(k), (3)

where k denotes the k-th sample time.
In this paper, after matched filtering and beamforming, the echo signal r(k) is used

as the original measurement of the track-before-detect algorithm. Taking the location of
the sonar as the origin, the observation area of interest is limited. The distance range is
[Rmin, Rmax], which is divided into Nr distance units, and the azimuth range is [θmin, θmax],
which is divided into Nb azimuth units, according to Equation (4):

Nr =
2(Rmax − Rmin)

c
× Fs, (4)

where Fs is the sampling frequency in array signal processing; and Nb can be determined
by the direction resolution unit, Δθ.

Then the measurement Δθ at time k contains Nr × Nb data, which is defined as:

zk =

{
g(y(k)) + wkThe target exists.

wkThe target does not exist.
(5)

Among them, g(·) is the mapping between signal y(k) and the measurement, and its
form affects the specific form of its measurement; and wk is the measurement of noise and
clutter of the system at time, k.

2.2. Target State Transition Model

If the target state transition model matches the actual target motion, the filter has good
tracking performance. If the filter fails to track, it is important for the tracking system to
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establish an appropriate target state transition model. The general expression for target
state transition is:

xk+1 = f (xk, τk) + vk, (6)

where the target state is denoted by xk; τk represents the target motion model type; vk is the
corresponding process noise; and f (·) is the state transition matrix under different models.

In this paper, τk = 1 and τk = 2 are the commonly used uniform and cooperative
turning motion models, respectively, and wk is the cooperative turning rate.

f (xk, τk = 1) =

⎡⎢⎢⎣
1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

⎤⎥⎥⎦, (7)

f (xk, τk = 2) =

⎡⎢⎢⎢⎣
1 sin(wkT)

wk

cos(wkT)−1
wk

0
0 cos(wkT) 0 sin(wkT)
0 1−cos(wkT)

wk
1 sin(wkT)

wk
0 sin(wkT) 0 cos(wkT)

⎤⎥⎥⎥⎦. (8)

The transition probability between multiple models at time k can be represented by a
Markov chain:

P{τk = j|τk−1 = i} = pij, i, j = 1, 2. (9)

3. Algorithm Development

We propose a KA-PF-TBD method for underwater diver target tracking in active sonar
systems. Figure 1 shows the flowchart of this method, and as shown, the input of the
method is the unthresholded measurements, and the output of the method is the target
tracking results. The important steps include the construction of the diver multi-directional
movement model set, the acquisition of the measurement data likelihood function, and the
particle filtering process.

 
Figure 1. The KA-PF-TBD signal processing procedure flowchart.

3.1. The Construction of the Diver Multi-Directional Movement Model Set

Compared with the maneuvering target, the diver target has its own unique motion
characteristics. It is difficult for its motion direction to be predicted, and there is little
change in the speed of motion between adjacent moments. To describe the low-speed
and high-directional change rate of the diver, as shown in Figure 2, a multi-directional
motion model set composed of 8 directions and 16 uniform linear motions is established
in this paper.
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Figure 2. The diver multidirectional movement model set.

In Figure 2, the red circle represents the position of the diver target at the current
moment, and the direction indicated by the eight arrows is the possible predicted direction
of the target. Each direction includes two uniform linear motion models with speeds of
0.75 and 1.25 times the target speed range at the previous moment. Vx and Vy denote the
velocity direction of the target state estimation at the current time.

3.2. The Acquisition of the Measurement Data Likelihood Function

The non-parametric kernel density estimation does not make any assumptions about
the distribution of measurement data, and only models the probability density function
based on the sample data itself. This method is frequently used in financial risk prediction
and estimation [28], industrial machinery residual life prediction and estimation [29], and
so on. This paper uses the non-parametric kernel density estimation theory to fit the
statistical properties of sonar measurement data.

Assuming that z1, z2, · · · , zn are the n measurement data samples, and ĝ(z) is the
kernel density estimation of the sample probability density function, then the expression of
ĝ(z) is:

ĝ(z) =
1

nh

n

∑
i=1

K
(

z − zi
h

)
, (10)

where n is the number of independent identically distributed samples; K(·) represents the
kernel function, which determines the role of each sample data point zi, i = 1, · · · , n in
the density estimation of random variable z; and h is the window width that affects the
smoothness of the probability density estimation.

After obtaining the statistical characteristics of real echo data, the likelihood function
of the measurement resolution unit (i, j) can be calculated from:

l
(

z(i,j)k |xk, Ek

)
=

⎧⎪⎨⎪⎩
g1

(
z(i,j)k |xk ,Ek=1

)
g0

(
z(i,j)k |Ek=0

) Ek = 1

1 Ek = 0
, (11)

where g1(·) denotes the statistical property of measurement data when the target exists,
and g0(·) denotes the statistical property of measurement data when the target does not
exist. Since the target occupies multiple resolution units in the measurement space, the
likelihood function is expressed as,

l(zk|xk, Ek ) = ∏
i,j∈Θ

l
(

z(i,j)k |xk, Ek

)
, (12)
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where Θ is the range of target influence resolution units, which will be detailed in Section 4.

3.3. Algorithm Steps

If the particle set
{

xA,i
k−1, wi

k−1

}Nc

i=1
at time k − 1 can be used to describe the posterior

probability density p
(

xA
k−1, Ek−1|z1:k−1

)
, then one iteration of the algorithm

is shown in Figure 3.

 
Figure 3. Iteration steps.

Steps 1: At the initial moment, only newly born particles are generated. If the prior
distribution of the target is known, the particle is generated according to its distribution;
if there is no prior information on the target, the samples are uniformly sampled in the
observation area.

Steps 2: According to the prior probability distribution, Nb new-born particles are
generated; using the established diver motion model as knowledge-aided information, the
state of the Nc continuing particles is estimated as follows:

x(b)ik ∼ q(xk|Ek = 1, Ek−1 = 0, zk ). (13)

x(c)ik ∼ q(xk|xk−1, Ek = 1, Ek−1 = 1, zk ). (14)

Steps 3: The statistical characteristics of measurement in the previous section are used
as knowledge-aided information. The weight of new particles and continuing particles are
calculated and normalized as follows.

w̃(b)i
k =

l
(

zk

∣∣∣x(b)ik , E(b)i
k = 1

)
p
(

x(b)ik

∣∣∣E(b)i
k = 1, E(b)i

k−1 = 0
)

Nbq
(

x(b)ik

∣∣∣E(b)i
k = 1, E(b)i

k−1 = 0, zk

) . (15)

w̃(c)i
k =

l
(

zk

∣∣∣x(c)ik , E(b)i
k = 1

)
Nc

. (16)

w(b)i
k =

w̃(b)i
k

Nb
∑

i=1
w̃(b)i

k

. (17)

w(c)i
k =

w̃(c)i
k

Nc
∑

i=1
w̃(c)i

k

. (18)

Steps 4: Non-normalized weights are used to calculate the mixing probability and
then it is normalized.

M̃b = Pb
(
1 − P̂k−1

) Nb

∑
i=1

w̃(b)i
k . (19)
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M̃c = (1 − Pd)P̂k−1

Nc

∑
i=1

w̃(c)i
k . (20)

Mb =
M̃b

M̃b + M̃c
. (21)

Mc =
M̃c

M̃b + M̃c
. (22)

Steps 5: The weight of new born and continuing particle is scaled according to the
mixing probability.

�
w
(b)i
k = Mbw(b)i

k . (23)

�
w
(c)i
k = Mcw(c)i

k . (24)

Steps 6: The new and continuing particles form a complete particle set. They are

resampled to obtain
{

xA,i
k

}Nc

i=1
, and then the target state

{
xA,i

k

}Nc

i=1
is estimated. In the next

simulation experiments, we use the system resampling method.{(
x(t)ik ,

�
w
(t)i
k

)
|i = 1, · · · , Nt, t = b, c

}
. (25)

x̂k =

Nc
∑

i=1
xi

k

Nc
. (26)

Steps 7: In this algorithm, target detection and tracking are realized by particles,
and the initiation and termination of trajectories are actually related to the initiation and
termination of particles. The particles are generated by importance sampling, so the
importance density can be designed to determine the trajectory initiation and termination.

According to reference [21], for each target with Nt frames, the Σw sum of all particles
weight is calculated.

Σw =
Nt

∑
j=1

Nb+Nc

∑
i=1

w̃i
j. (27)

If:
Σw < ηd, (28)

then the target initiation fails or terminates, and ηd is the likelihood threshold.
Steps 8: The target track results are generated as output.

4. Numerical Results

In this section, the performance of the proposed KA-PF-TBD method is evaluated
by analyzing the simulated data and the trial data which are compared with the MMPF-
TBD [15] and the AUX-MMPF-TBD [17]. The experiments are performed on our computer
using an Intel i5-12500H CPU (2.50 G) and 16 GB memory.

4.1. Evaluation Indicators

Evaluating a track-before-detect algorithm is itself a challenge. A common quantitative
evaluation indicator is the position’s root mean square error. However, this indicator does
not always accurately measure tracking performance. For instance, if an algorithm tracks a
target properly in most cases but fails to do so in a few cases, the mean error may be higher
than that generated by the algorithm without accurate tracking. In addition, the indicator
only evaluates the tracking performance without considering the detection performance.
For the above reasons, we also use the following indicators in addition to the position’s
root mean square error.

54



Sensors 2022, 22, 9649

The position’s root mean square error (RMSE): This is used to evaluate the tracking
performance well, and it is defined as

RMSE =

√
m

∑
i=1

[(
x̂i

k − xk
)2

+
(
ŷi

k − yk
)2
]
/m, (29)

where m is the Monte Carlo (MC) experiment times.
The accurate detection probability sequence Pd: This consists of the N-frame accuracy

detection probability of the target. The single-frame accurate detection probability is the
probability that the frame is accurately detected in multiple MC simulations. The steeper
the rising edge of the accurate detection probability sequence curve is, the faster is the
effective track formed. The accurate detection probability sequence curve tends to be stable,
and the smaller the fluctuation is, the stronger the robustness of the algorithm.

The stable detection and tracking probability Pdt: In the MC experiments, if the
proportion of the number of traces of the effective track in the total number of traces exceeds
the predetermined proportion, the experiment is said to have achieved stable detection
and tracking of the target. The proportion of the number of experiments to achieve stable
detection and tracking relative to the total number of experiments is called the stable
detection and tracking probability. Compared with the traditional single-frame detection
probability, this indicator no longer considers the plot alone but also the probability of
stable detection and tracking of the target based on the effective track. It is a joint evaluation
of detection and tracking performance.

The precision plot: This plot shows the percentage of frames for which the esti-
mated object location was within some threshold distance of the actual position. If
the algorithm has higher tracking accuracy at a lower threshold, it can achieve more
accurate target tracking.

4.2. Simulation Experiments

In this section, to test the performance of the proposed KA-PF-TBD method, we
designed a simulation in which the diver target makes a compound movement in the plane.
For our purposes, we make the assumption that the target shows up at 10 s and disappears
at 120 s. The initial state is set as follows:

x0 = [100, 0.5, 150, 0.5]. (30)

The reference trajectory is shown in Figure 4.
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Figure 4. The reference trajectory.
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The sonar emits linear frequency modulation (LFM) signals and the sampling interval
is T = 2 s. The measurement range is Rmin = 150 m to Rmax = 250 m; and angle
range is θmin = 20◦, θmax = 80◦. Taking SRR = 10 dB and SRR = −5 dB as examples,
the non-parametric kernel density estimation method is used to simulate the statistical
characteristics of the echo data. The effect of the size of the sub-area on the performance of
the algorithm—and how to select the appropriate sub-area through the tradeoff between
efficiency and accuracy—are explained.

Figure 5a,b displays the fitting results of the statistical characteristics of the echo data
when the SRR is 10 dB and −5 dB, respectively. It can be seen from Figure 5 that the smaller
the SRR is, the larger the overlap between the noise and the target statistical characteristics,
and the more difficult it is to distinguish the target from the clutter.

 
(a) SRR = 10 dB (b) SRR = −5 dB 

Figure 5. Statistical characteristics of reverberation and target echo data, showing the fitting results
when: (a) the SRR is 10 dB. (b) the SRR is −5 dB.

The six setups represent six different sizes of the sub-area. The stable detection and
tracking probability, the position’s root mean square error, and the computation time are
compared in Table 1.

Table 1. Simulation results of the different setups.

Setup 1 Setup 2 Setup 3 Setup 4 Setup 5 Setup 6

Nwr × Nwa 2 × 2 5 × 5 10 × 5 20 × 5 50 × 10 all
PSNR=10

dt 0 0.798 0.79 0.902 0.934 1
RMSESNR=10 2.075 m 2.11 m 1.696 m 1.331 m 0.19 m

tSNR=10 46.3 s 52.1 s 54.2 s 56.6 s 90.4 s 1805.3 s

It can be seen from Table 1 that using a sub-area instead of the whole area to calculate
the likelihood ratio can greatly improve computational efficiency. The smaller the size of
the sub-area, the less computation time is required. However, the size of the subarea affects
the accuracy of the algorithm. In all settings, setup 1, 2, and 3 have higher computational
efficiency, but they have obvious performance degradation. Although the detection and
tracking performance of setup 5 and 6 are good, the computational efficiency is low, and
cannot meet the real-time requirements. Compared to other setups, setup 4 has higher
computational efficiency with little loss of accuracy, so in the subsequent experiments, the
likelihood ratio is calculated on the basis of setup 4 instead of the whole area.

To ensure the fairness of the algorithm comparison, the three methods keep the same
parameter settings. The number of particles is 1500, the birth probability of particles is
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Pb = 0.85, and the death probability of particles is Pd = 0.15. Birth information is an a
priori for target births, similar to [30].

xp0 ∼ U[90, 160]
yp0 ∼ U[140, 170]

vx0 ∼ U[−1, 1]
vy0 ∼ U[−1, 1]

The transition probability matrix of the commonly used model sets is:

P =

[
0.85 0.15
0.15 0.85

]
.

The transition probability matrix of the multi-directional diver motion model set is:

P =

⎡⎢⎢⎢⎣
0.85 0.01 · · · 0.01
0.01 0.85 · · · 0.01

...
...

. . .
...

0.01 · · · 0.01 0.85

⎤⎥⎥⎥⎦
16×16

.

To ensure the reliability of the results, we carried out 100 MC simulation experiments.
Figure 6a,b shows that the stable detection and tracking probability of the three methods
decrease with the decrease in SRR. The MMPF-TBD algorithm suffers from poor detection
and tracking performance when the SRR is lower than 5 dB. Because it uses two conven-
tional state transition models to limit the direction of particle transfer, the prediction results
are inconsistent with the actual diver motion state. The performance of AUX-MMPF-TBD
is slightly better than that of the MMPF-TBD algorithm because the former uses auxiliary
particles to improve particle utilization. Compared with the former two methods, the
KA-PF-TBD algorithm has better detection and tracking performance when the target SRR
is low. The reason for the performance improvement is that it uses the original measure-
ment as its input and combines the motion characteristics of the diver target to provide the
necessary knowledge assistance for detection and tracking.

 
(a) RMSE (b) Stable detection and tracking probability 

Figure 6. (a) The RMSE under different SRR. (b) The stable detection and tracking probability under
different SRR.

Figure 7 shows the reference and tracking trajectories obtained using the three algo-
rithms when SRR = 4 dB. In the low SRR scene with an uncertain target direction, the
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AUX-MMPF-TBD and KA-PF-TBD algorithms can accurately estimate the target direction
and position. In contrast, the MMPF-TBD algorithm performs poorly and only tracks
the target in a few frames. The first two methods make particles move toward the high
likelihood ratio region by using auxiliary particles and improving the target state transition
model, so their performance is improved. Since both of them are tracking before the detec-
tion algorithms come into effect, the detection decision is made after tracking the target,
and the tracking will affect the subsequent detection results.
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Figure 7. The tracking results.

Figure 8a compares the position RMSE results of the three algorithms under each
frame. The position RMSE of the KA-PF-TBD algorithm is much smaller than that of the
other two algorithms, and the fluctuation is not large. The tracking accuracy plot of the
three methods is shown in Figure 8b. This shows that the KA-PF-TBD method can obtain
higher accuracy at a lower threshold, so its tracking is more accurate.

(a) RMSE (b) Precision plot. 
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Figure 8. Simulation results. (a) The RMSE plotted against time. (b) Precision plotted against time.

Figure 9 presents the accurate detection probability sequence of the three methods.
Compared with the MMPF-TBD and AUX-PF-TBD methods, the KA-PF-TBD method has a
higher detection probability, which is consistent with the corresponding tracking results.
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Moreover, because the accurate detection probability curve of the KA-PF-TBD algorithm
fluctuates less, the algorithm is more robust.
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Figure 9. The accurate detection of probability sequences.

4.3. Sea Trial Experimental Data Processing

In this section, the performance of the KA-PF-TBD method is further confirmed using
a set of sea trial experimental data. We collected the trail data in a shallow sea, and recorded
the actual position of the diver target using GPS devices. The voyage with reverberation
around the target is chosen for data processing to test the effectiveness of the proposed
algorithm. First, the non-parametric kernel density estimation method is used to fit the
statistical characteristics of the measured data. Figure 10 shows the histogram of the
reverberation and target echo data and the fitting results. As shown in the figure, the
reverberation and target statistical characteristics largely overlap, which proves that the
SRR is low.

Figure 10. Statistical characteristics of reverberation and target echo data.

We then carried out 100 MC simulation experiments. The number of particles used in
both algorithms was 3000, the probability of particle birth was Pb = 0.85, and the probability
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of particle death was Pd = 0.15. Figure 11 shows the tracking results of the three methods.
Compared with the MMPF-TBD and AUX-PF-TBD methods, the KA-PF-TBD algorithm
estimates the target state more accurately. Because the latter establishes a multi-directional
motion model based on the motion characteristics of the diver, the surviving particles can
transfer to all directions of the target motion; that is, the particles that predict the target
state of the next frame will appear in multiple directions. We then calculated the particle
likelihood ratio according to the measurement statistical characteristics of the original
data. Finally, the particles with the high likelihood ratio from resampling were selected to
estimate the target state.

distance (m)

reference trajectory

MMPF-TBD

AUX-MMPF-TBD

KA-PF-TBD

Figure 11. The tracking results.

Figure 12a,b shows the root mean square error and accuracy curves of the three
algorithms at each time. Figure 13 shows the accurate detection probability sequence of
the three algorithms at each time, indicating that the proposed KA-PF-TBD method can
achieve weak target detection and can track more accurately than the other two methods.

(a) RMSE (b) Precision plot. 
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Figure 12. The trial data processing results. (a) The RMSE plotted against time. (b) Precision plotted
against time.
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Figure 13. Accurate detection of probability sequences.

5. Conclusions

This work considers underwater diver target tracking in active sonar systems with
low signal-to-reverberation (SRR). We proposed a particle filter track-before-detect based
on a knowledge-aided (KA-PF-TBD) algorithm to enhance the tracking performance of
low SRR diver targets. This method establishes a diver multi-directional motion model
set for an underwater diver by making full use of the prior information about the diver
target, and solves the problem that the conventional model set does not match the actual
target motion. The received original measurement data is directly used as the input of
the KA-PF-TBD method to avoid the loss of the target due to threshold processing. We
adopt the non-parametric kernel density to simulate the statistical characteristics of echo
data, which is used to calculate the particle likelihood ratio with the sub-area instead of the
whole area. The effectiveness of the KA-PF-TBD method was verified by simulation and sea
trial data processing. Compared with the MMPF-TBD and AUX-MMPF-TBD algorithms,
the proposed method detects the diver target with a detection probability higher than 90 %
in the sea trial data with a low SRR.

The proposed method in this paper only models the motion state of the diver, but is
difficult to apply to all underwater targets due to the diversity of underwater target motion
types. The kernelized correlation filter tracker does not depend on any predefined target
state transition model [30,31]. Thus, it can obtain the maximum test statistics with a fast
and exhaustive search, and track targets with multiple motion types. In addition, extracting
the image features or signal features of the target can improve the target recognition
ability [32,33]. We will extend the kernelized correlation filter theory-based track-before-
detect methods and consider assistance based on feature knowledge in the future.
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Abstract: The purpose of this work is to present a flexible system that supports the study of wideband
underwater acoustic communications (UAC). It has been developed both to measure channels and to
test transmission techniques under realistic conditions in the ultrasonic band. This platform consists of
a hardware (HW) part that includes multiple hydrophones, projectors, analog front-ends, acquisition
boards, and computers, and a software (SW) part for the generation, reception, and management of
acoustic sounding signals and noise. UAC channels are among the most hostile ones and exhibit an
important attenuation and distortion, essentially due to both multipath propagation, which results
in a very long channel impulse response, and time-varying behavior, which produces a notable
Doppler spread. To cope with this challenging medium, sophisticated transmission techniques must
be employed. In this sense, adequate signal processing algorithms have been designed aiming
not only at the analysis and characterization of underwater communication channels but also at
the evaluation of diverse modulation, detection, and coding schemes, from Orthogonal Frequency
Division Multiplexing (OFDM) to single-carrier digital modulations with a single-input multiple-
output (SIMO) configuration that takes advantage of diversity techniques. Wideband sounding
signals, to be injected into the sea from the transmitter side, are created with patterns that allow
multiple tests on a batch. With offline processing of the captured data at the receiver side, different
trials can be carried out in a very flexible manner. The different aspects of the platform are described
in detail: the HW equipment used, the SW interface to control acquisition boards, and the signal
processing algorithms to estimate the UAC channel response. The platform allows the analysis and
design of new proposals for underwater communications systems that improve the performance of
the current ones.

Keywords: underwater acoustic communications; ultrasonic frequencies; fading channels;
broadband channel measurements; channel estimation; sounding signals; OFDM; MIMO; filter
bank; Doppler spread

1. Introduction

This paper is focused on underwater acoustic communications (UAC) for shallow
water applications and deals with a measurement system designed for UAC channels
in the ultrasonic range. In this section, we give context to the work, especially from an
experimental perspective.

UAC channels impose relevant restrictions like strong attenuation, mainly due to
water absorption; severe time-dispersion, because of multipath propagation; and also,
frequency-dispersion, due to the Doppler broadening caused by the medium and ter-
minals motion [1–3]. All these factors impede the use of high data-rate communication
systems [4,5], because the high delay spread and the low speed of sound put UAC channels
around the limit, even crossing it, of being overspread [6–9]. Hence, the applications are
mostly oriented to low-rate communications, like a collection of data from sensor networks,
environmental monitoring, surveillance, etc. [10].
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Several works have reported measurements of sea trials trying to characterize both
the UAC channel response and the received additive noise. The authors of [11,12], provide
estimations of the multipath channel impulse response obtained by means of single-carrier
sounding signals, with a direct sequence spread spectrum (DSSS) scheme and binary phase-
shift keying (PSK) modulation at a carrier frequency of 40 kHz. In [3], a wide set of trials
are described, with signals located in bandwidths up to 32 kHz, to analyze the channel
behavior with emphasis on its doubly selective nature, in time and frequency. Less attention
has been devoted to noise measurements, but we mention [1] that gives a general view of
the expected power spectral density (PSD) and [13] that presents some trials to study UAC
noise in the audio frequency band in shallow water scenarios and provides estimations of
the noise PSD as well.

There are interesting papers that deal with communication system trials for lower
frequencies and for ultrasonic bands. Among the firsts, it is worth mentioning the pioneer-
ing work in [14], which describes experimental tests in a lake in deep waters, the authors
employed a frequency-hopping scheme with PSK signals to reach data transmissions of
about 5–6 kb/s. The more recent work in [15] analyzes the experimental behavior of a com-
munication system working at audio frequencies in a trial at the sea with a water depth of
100 m approximately, using a SIMO configuration and comparing diverse techniques based
on an OFDM system for low data rates. Likewise, multiple-input multiple-output (MIMO)
systems have been deployed in shallow water scenarios, for narrow-band signals in the
audible frequencies, and their performance is discussed in [16–18]. Other notable works
that show measurements of systems in similar scenarios and operating at the ultrasonic
band, but in low frequencies around 30 kHz, can be found in [19,20].

There are few efforts trying to develop systems for higher bit-rate applications, like
e.g., video transmission, although of modest quality [21]. Some interesting ideas of how to
transmit video signal through UAC channels are provided in [22], proposing a selective
frequency mapping of the video components according to their importance, with simulation
tests over modeled channels for a band from 4 to 30 kHz. Likely, the more ambitious
experimental UAC trial for video transmission of wide bandwidth and at high ultrasonic
frequencies (between 60 and 100 kHz) is reported in [23]. Although the link is established
at deep waters (at 100 m depth), with more favorable channel conditions, and off-line
simulations were performed to apply the receiver algorithms over the recorded data,
which included adaptive decision-feedback equalizers whose complexity is not described.
There exist also works presenting measurement trials for other applications like in [24]
for underwater acoustic localization, by using DSSS signals at 15 kHz, or for military
applications ([25] and references therein), but in this latter case the technical details are not
usually unveiled. All this literature supports the increasing interest in the development of
new systems that improves the current technology for UAC applications.

The main contribution of this paper is to describe the details of a platform that has been
designed for UAC measurements in our research group. It is based on the signal processing
of sounding signals that are injected into the water from a transmitter and are registered
at a remote receiver. Both terminals are autonomous and contain specific hardware (HW)
equipment that is controlled by ad-hoc software applications. The presented set-up allows
carrying out trials in underwater scenarios over a wide band of ultrasonic frequencies,
up to approximately 200 kHz. Nevertheless, there is a trade-off between bandwidth (and,
hence, data rate) and signal-to-noise ratio (SNR), because the higher the frequency the
higher the UAC channel attenuation due to the water absorption [1]. For that reason, we
limit our measurements up to 130 kHz. The presented platform has been successfully
used both in narrow-band UAC trials, for channel characterization [26], and in broad-band
UAC trials, with a twofold aim: channel characterization [9] and communication systems
assessment based on OFDM [27]. To the best of the authors’ knowledge, no research group
has published any description of this type of platform in such detail. This paper will
facilitate the work of those researchers who want to create their own measurement setups.
In addition, a signal processing algorithm for estimating UAC channels based on filter
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banks is presented and its better performance is justified as compared with other classical
ones based on a correlator receiver.

We summarize here the main distinctive facts of our system that makes it innovative:

1. High operating frequencies in the ultrasonic band, 32–128 kHz.
2. Very broad bandwidth of 96 kHz, two octaves.
3. A robust and rather automated system that allows registering long signal records.

The first one is a challenge, because the UAC channel conditions at such frequencies
are more hostile, the transducers operations are less favorable and it is more difficult to
reach long distances. The second one represents a trade-off. On one hand, the SNR is
less homogeneous in the whole frequency band and receiver algorithms must face more
difficulties to reach good performance. On the other, we can exploit the diversity in
frequency, e.g., by means of coded OFDM [27], and employ apparently simpler schemes,
with lower spectral efficiencies, but effective and reliable. The third one is an advantage to
studying the time-varying nature of UAC channels with higher resolution [9] and testing
broadband communication systems that deal with it.

The paper is organized as follows. After this introduction, we will describe the UAC
scenarios that are targeted in the trials. In the third section, the equipment employed to
carry out the measurements is explained whereas, in the fourth one, it is the software used
for the control and management of the involved signals that are shown. The fifth section
deals with the algorithms designed for signal processing of the data obtained from the trials
and, in particular, for synchronization and channel estimation. Finally, some conclusions
are given in the last section.

2. UAC Scenarios

The measurement and emulation platform presented in this paper is designed to
investigate certain scenarios in the field of UAC, especially within the 3-octave ultrasonic
band from 32 kHz to 128 kHz. This section describes in detail these communication
scenarios and their associated UAC channels.

At first, our platform is designed for the measurement/emulation of both horizontal
and vertical UAC channels. The horizontal UAC channel is characteristic of shallow waters in
littoral zones. As shown in Figure 1, possible transmission paths include direct line-of-sight
(LoS) (red), surface reflection (blue) and bottom reflection (green). There is an essential
difference between the two reflections mentioned. Reflection at the surface usually occurs
with a reflection coefficient whose modulus is close to one due to the large difference
between the characteristic impedance of seawater and air, this implies that little energy
is lost in such reflection. On the other hand, reflection at the bottom depends very much
on the geological nature of it. If the bottom is sandy, a significant part of the incident
energy is usually absorbed, while if the bottom is rocky, little energy is lost for similar
reasons to what occurs at the seawater-air interface. The full configuration for the UAC
horizontal channel is also shown in Figure 1. The platform is able to measure/emulate
a 1 × 4 single-input multiple-output (SIMO) UAC channel, i.e., transmitting through
one projector and receiving through up to four hydrophones. The number of receiver
hydrophones can be variable from one to four, including UAC single-input single-output
(SISO) channel measurement.

The vertical UAC channel is shown in Figure 2a. In this case, the paths followed by
the acoustic waves are predominantly orthogonal to the bottom plane and the effect of
reflection on the seabed is non-existent or almost negligible. In general, the vertical UAC
channel is much less hostile for communication than the horizontal one. The main reason is
that multipath components other than LoS usually reach the receiver in a smaller number,
with lower energy and with less temporal dispersion. As shown in Figure 2a, measuring
vertical channels at the receiver requires an extension cable, which in some scenarios can be
large (the green cable). In addition to horizontal and vertical UAC channels, the platform is
capable of measuring other types of geometric configurations that are a mixture of the two.
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Figure 1. 1 × 4 SIMO UAC horizontal channel.

Figure 2. Diagrams for UAC measurement scenarios: (a) 1 × 4 SIMO vertical channel;
(b) dynamic channel.

Secondly, the platform is capable of measuring both quasi-static and dynamic UAC
channels. Quasi-static channels are those in which both the transmitter and receiver do not
explicitly move relative to each other, and channel variations are due to oscillations of both
around a given equilibrium position, as well as variations and movements of the physical
environment (waves, currents, tides, marine life, etc.). However, quasi-static UAC channels
in the ultrasonic band exhibit strong temporal variations due to the low speed of sound
propagation in seawater (≈1500 m/s). Dynamic channels are those in which there is explicit
relative motion between the transmitter and receiver. Figure 2b shows a dynamic channel
with a looped path, which is one of those commonly used in our measurement platform.
Dynamic UAC channels with modest TX-RX relative velocities, around or greater than
1 sea knot, easily become overspread channels in the ultrasonic band; that is, the channel
coherence time is equal to or less than the effective duration of the impulse response.

Finally, Figure 3 summarizes twelve basic scenarios covered by the
measurement/emulation platform for three different dimensions: scenario geometry, rela-
tive motion between communication nodes, and use or not of diversity in reception.
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Figure 3. Summary of the UAC scenarios supported by the measurement platform according to
geometry (horizontal, vertical, and mixture), movement (quasi-static and dynamic) and diversity in
reception (SISO and SIMO).

3. HW of the Measurement/Emulation System

The HW of the measurement/emulation platform is shown schematically in the
Figure 4. On the transmitter side, the test signal is generated by the platform SW (explained
in the next section) and sent to the IOTECH Personal DAQ 3000 board that performs the
digital to analog (D/A) conversion. This board is capable of generating a transmitted signal
at a sampling frequency of 1 MHz and with a resolution of 16 bits. Before being injected
into the projector, the signal is boosted by the classic Bruel&Kjaer 2713 power amplifier.
The Bruel&Kjaer 8105 projector is quite omnidirectional and its frequency response is of
the resonant type, reaching its resonance peak at around 100 kHz. Although the non-flat
response of the projector must be taken into account in estimating the acoustic response
of the channel. The projector response, in the band of interest, is mainly high pass and,
since both the underwater channel response and the noise power spectral density are
low pass [1], the overall result is that similar values of SNR are obtained throughout all
frequencies. On the receiver side, the platform is capable of supporting up to a maximum
of 4 RESON TC4032 hydrophones. Each pair of hydrophones use an IOTECH Personal
DAQ 3000 board that has the analog to digital (A/D) conversion function. This is because
the effective sampling frequency for each channel is divided by the number of channels
used. Hence, in order to limit the maximum frequency of the acquired signals as little as
possible, we decide to use one card for the transmitter and two for the receiver. This way
the transmitter card can use a sampling frequency of up to 1 MHz and the receiver cards of
up to 500 kHz per channel, which is enough for the maximum working frequency we are
targeting of 128 kHz (that implies a minimum sampling frequency of 256 kHz). In contrast
to the projector, the RESON TC4032 hydrophone has a fairly flat frequency response and
needs a preamplifier like the RESON VP2000 before the A/D conversion. This hydrophone
has a spatial response quite omnidirectional as well.
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Figure 4. Schematic of the platform HW.

In Figure 5, we summarize the physical implementation of the HW platform. Figure 5a
shows the transmitter unit, which is packaged in a watertight box protecting the power am-
plifier, and also the projector. Figure 5b presents the receiver unit for a pair of hydrophones,
inside its watertight box, consisting of two preamplifiers (one for each hydrophone) and
a shared acquisition board; the platform has two such units to support 4 hydrophones.
Figure 5c shows the inverter power supply unit, capable of providing both 12 VDC and
220 VAC; the 220 VAC output is essential to feed the transmitter unit power amplifier. This
power unit is connected to the transmitter and receiver units through watertight cables and
connectors. Finally, Figure 5d presents a more detailed picture of the receiver unit, where
the amplification gain knob and the cutoff frequency knobs of the preamplifier can be seen.

Figure 5. Images of the HW platform implementation: (a) transmitter unit, (b) receiver unit for
2 hydrophones, (c) power inverter unit and (d) top view of the receiver unit.
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4. SW of the Measurement/Emulation System

The SW of the system has been developed to manage and control the realization of
measurement campaigns. Laptop screens are not easy to see at sea outside on the deck
of the ships, especially on sunny days, which makes SW operation more difficult than
under normal conditions. Therefore, the interface is designed with large buttons so that
the measurements can be configured with a minimum of user actions. The SW of the
system consists of two applications. The first one is the transmitter app, which controls the
acquisition board that generates the input signal for the amplifier connected to the projector.
The second one is the receiver app, which controls the two acquisition cards in charge of
acquiring the signals received by the 4 hydrophones. The configuration of a measurement
requires specifying the particular conditions: distance between the transmitter and receiver
boats, amplifier gains, separation between the hydrophones, swell conditions, depth,
etc. The SW has been developed so that for each measurement configuration a different
set of transmitted signals can be specified. To optimize the process, all these signals
are transmitted sequentially, without user intervention. However, they are separated by
silences, i.e., intervals in which nothing is transmitted. These silences allow the receiver
app, by means of basic signal processing, to split the received signals and save each one
in separate files. This greatly facilitates the measurement organization and its subsequent
analysis. Despite that, everything received is recorded and stored in files, i.e., no received
signal sample is discarded, because the silence periods serve later as noise measurements.

The SW of the measurement system has been developed in Microsoft Visual C++
using the Applications Program Interface (API) called DAQX. It is an API provided by the
manufacturer IOTECH for its cards and valid for the Personal DAQ3000 [28]. Although the
manufacturer offers other SWs to control the card, the API is the one that allows better
control of the card operation and easier embedding in custom applications. As mentioned
in the previous section, the cards work with sampling frequencies up to 1 MHz at the
transmitter and up to 500 kHz per channel/hydrophone at the receiver.

4.1. Transmitter Application

The operation of the transmitter SW is relatively simple since it is only necessary to
specify which set of signals, from the previously configured ones, are to be transmitted.
The specific conditions of the measurement are not configured in the transmitter but
in the receiver. By means of text files, a button is configured for each set of signals to
be transmitted. The duration of each signal and the silence time among them are also
configured in these files. Samples of each signal are provided by Matlab files.

Two transmission modes are considered: fixed duration and indefinite duration. In the
fixed duration mode, the set of configured signals is transmitted, each with its predefined
duration, ending when the last signal is sent. This is the mode used to measure quasi-
static channels described in Section 2. In the indefinite duration mode, the same signal
is transmitted all the time until the user cancels the transmission. The indefinite mode is
interesting, for instance, to measure dynamic channels (described in Section 2) to study
the effect of movement when the distance between the boat changes, and we want to
analyze the effect on the same signal. To inform the user about the transmission status,
the application indicates which signal is currently being transmitted from the selected set
of signals or if it is in a silence period.

The most significant details in the transmitter app implementation are those related
to the DAQ3000 card programming. Using the API, the card is configured in a mode
that allows transmitting any signal (with the parameter DdomDynamicWave of the daqDac-
SetOutputMode function) and it can work either in a fixed duration mode or in an indefinite
duration mode. (In the fixed duration mode, the card is configured with the DdwmNShot
parameter of the daqDacWaveSetMode function, in which the number of samples to be
transmitted must be specified. In the indefinite duration mode, the DdwmInfinite parameter
is specified.) Likewise, the card internal clock is selected as the reference for the D/A
conversion. The signal samples to be generated are loaded into a buffer (by using the
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daqDacWaveSetBuffer function). Once the card is configured to transmit, i.e., when the
card is armed, the signal generation starts and it ends when the specified number of sam-
ples is reached in the fixed duration mode or when the card is disarmed in the indefinite
duration mode if the user presses the end button. Silences between signals are simply
non-transmitting states, i.e., time intervals with the card disarmed.

4.2. Receiver Application

Figure 6 presents the appearance of the receiver application interface. The buttons are
fully configurable by means of text files, as well as the combination of them that defines a
type of measurement. In the example shown in the figure, the first row has been configured
so that determines the set of signals to be used and the second one the distance between the
boats. The parameters button allows us to specify other characteristics of the measurement
to be performed: power used in the transmitter, the gain of the receiver preamplifiers,
depth at which the hydrophones are, swell. . . Another control allows us to specify the
gain that the card applies to the acquired signals. During the course of measurement
and with a configurable refresh rate, a graph of the received signal is displayed, either in
time or in frequency using the Fast Fourier Transform (FFT). As the signals are received,
the application performs a basic signal processing to estimate the received SNR, to activate
a signal saturation alarm, as well as to separate the set of received signals and save each one
in a different file. The saturation alarm allows us to check if the gains applied either to the
transmitter amplifier, the receiver preamplifiers, or the acquisition card, are not adequate
for the distance between the transmitter and the receiver. In such case, the user can readjust
gains and restart the measurement.

Figure 6. Appearance of Receiver application interface.

We describe the details of the receiver application implementation that are related to
the DAQ3000 card programming, acquisition optimization, and the measurement-saving
loop. The card is configured so that once the measurement is started it does not end until
the user presses the end button which disarms the card. This way, no received signal sample
is lost. The card allows defining different gains so that the analog input signal dynamic
range fits the card input range, which is selectable between the larger limits, +/−10 V,
and the smaller one, +/−0.1 V. The selection is done by setting an amplitude gain of 1
to 100, respectively. The SW allows the user to define which gain to apply according to
the needs. The board is configured so that the reading buffer, which is a circular buffer, is
managed by itself (by selecting both the DatmDriverBuf and DatmCycleOn mode). The card
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generates an overload event if it has to write in the buffer by overwriting samples that
have not yet been read. Depending on the laptop performance, an overload event may
be more or less likely. The application is designed so that, in the event of an overload,
the acquisition continues and is not canceled. Nevertheless, a procedure is implemented to
try to avoid overload, as described later.

The number of samples to request in each call is made configurable, although the
usual value we choose for this record length is 10,000, which corresponds to a time interval
of 20 ms for the sampling frequency of 500 kHz. In order to check how far we are from an
overload, we calculate the waiting time of the reading samples function (samples are read
from the card by the daqAdcTransferBufData function using the DabtmWait mode, whereby
the function does not terminate until all requested samples are available). The percentage of
this time with respect to 20ms gives a metric that allows us to anticipate possible overloads.
We call throttling to a situation in which a high probability of overload is expected. Once
the measurement is started, the application enters into a loop and performs the actions
shown in the diagram of Figure 7 in each iteration. First, information on the capture status
is displayed on the interface (signal being expected, saturation detection, estimated SNR,
etc.). Second, the specified number of samples of the record length is obtained from the card
and it is evaluated whether to get in throttling mode or not. Then, a basic signal processing
is applied to the samples and, later, a short-time windowed signal is plotted on the screen,
either in the time or frequency domain. Finally, the signal segment is recorded on disk.

Figure 7. Measurement Loop diagram.

When the application enters in throttling mode, and to avoid overload, some actions
are stopped. The frequency at which the received signal is painted on the screen is config-
urable, but if the application is in throttling mode, painting is stopped. On the other hand,
in normal conditions the samples are recorded on disk as they are obtained, but the file
is only closed when a configurable time elapses, the default value is 1 s. The file closing
action is when the operating system consumes the most time. There is a trade-off between
choosing a very long period of file closing that reduces the total CPU time but increases the
risk of sample loss in case of a fatal error (e.g., the laptop runs out of battery). In the latter
case, all samples in memory since the last time the file was closed would be lost. Into the
throttling mode, although this involves more risk, the closing of files is postponed to reduce
the probability of overload.

There are two kinds of tasks involved in the signal processing of the measurement
loop. A first group, carried out each iteration, includes a filtering in the band of interest,
from 32 to 128 kHz, and a local count of clipped samples from the maximum and minimum
values registered in each segment, among others. A second group is performed after a
configurable number of iterations, which is 5 by default and corresponds to an extended
interval of 100 ms. They comprise the detection of the sounding signal beginning; the signal
end; a saturation/clipping event. To detect the signal beginning and end, the power in the
100 ms interval is estimated. Since the set of transmitted signals are separated by silences,
it is possible to detect significant power variations when changing from silence to signal or
vice versa and a differential algorithm compares the power level of successive extended
intervals to decide, by means of heuristic thresholds, when a signal is starting or ending.
To validate a signal start detection, it is verified that the power level remains high over
some time, to avoid that spurious in the received signal could lead to false start detections.
The signal detection does not influence the signal recording, which is always done from
the first sample, but allows to change the processing phase towards the detection of the
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signal end that does determine the current file closing (and automatically a new file is open
to keep on saving the following samples). Regarding the detection of a saturation event,
in each extended interval, the number of clipped samples is estimated by accumulating the
local maxima/minima of each signal segment and if it exceeds a configurable threshold,
a saturation alarm is generated. In a similar fashion to the transmitter app, the receiver app
shows the evolution of the detected signal, so that the user can follow the transmission
status of the selected set of sounding signals.

5. Description of the Signal Processing

In this section, we describe the technical details of the algorithms designed for channel
estimation, or communication tests, from the sounding signals. This estimation procedure
is an end in itself when trying to characterize the channel response from measurements and
is a means when we want to demodulate the received signals to assess the performance of
a given communication system.

5.1. Procedure for Channel Estimation Based on Multicarrier Signals

We denote the time-invariant impulse and frequency responses of the channel as h(τ)
and H( f ) respectively while the sampled counterparts will be denoted as h[n] = h(nTs)
for n = 0 . . . N − 1 and H[k] = H( k

NTs
) where Ts is the sampling frequency and N is such

that NTs is longer than the duration of h(τ). In the general case of a time-variant channel,
the impulse and frequency responses will be written as h(t, τ) and H(t, f ) respectively and
their discrete-time versions h[m, n] = h(mNTs, nTs) and H[m, k] = H(mNTs, k

NTs
).

One of the most widespread channel sounding systems is the correlative
sounder [3,7,18] which consists in transmitting repetitively a probe signal p[n], performing
correlation at the receiver and storing successive channel snapshots. Common probe signals
are linear frequency modulated (LFM) chirps and pseudo noise (PN) sequences due to
their favorable autocorrelation properties, i.e., Φ[n] ≡ p[n]� p[−n] ≈ δ[n] where � stands
for the N-point circular convolution. The signal processing carried out by the correlative
sounder can be described as follows.

Let p̃[n] denote the periodic sounding signal and let N and L be the length of p[n] and
the number of successive transmitted copies of p[n], respectively. Hence
p̃[n] = ∑L−1

m=0 p[n − mN]. Assuming that the impulse response of the channel h[n] is
static (this restriction will be relaxed later), the received signal ỹ[n] = p̃[n] ∗ h[n] will also
be periodic. Since the convolution of a periodic signal p̃[n] (with a period of N samples)
with a non-periodic signal h[n], with Nh ≤ N samples and n = 0 . . . Nh, can be expressed
as the concatenation of the N-point circular convolution of p[n] and h[n], it follows that
ỹ[n] = ∑L−1

m=0 y[n − mN] with y[n] = p[n]� h[n]. Next, the output of the correlation receiver
can be expressed as s̃[n] = ỹ[n] ∗ p[N − n], where an N-point delay has been included
so that p[N − n] is defined in the range n = 0 . . . N − 1. Following the same reason-
ing as before, we can write s̃[n] = ∑L−1

m=0 s[n − mN] where s[n] = y[n]� p[N − n] and,
hence s[n] = p[n]� h[n]� p[N − n] ≈ δ[n − N]� h[n] = δ[n]� h[n] = h[n] and therefore
s[n] = ĥ[n] where ĥ[n] is the estimated impulse response. The output of the correlator
receiver can be expressed in a more convenient way as

s̃[n] =
L−1

∑
m=0

ĥ[n − mN] (1)

with
ĥ[n] = y[n]� p[N − n]. (2)

The output in (1) is composed of a concatenation of successive channel estimations
ĥ[n] each of which is computed as indicated in (2). This particular way of describing the
correlator system directly leads to an alternative way of implementation using the FFT and
inverse FFT (IFFT). Concretely, each period of the received signal in (2) can be obtained as
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ĥ[n] = IFFTN{FFTN{y[n]} · FFTN{p[N − n]}} (3)

The procedure is shown in the block diagram of Figure 8 where Yk = FFTN{y[n]} and
P∗

k = FFTN{p[N − n]}.

Figure 8. Block diagram of correlator receiver implemented via FFT. P/S stands for parallel to serial
conversion and S/P for serial to parallel.

An alternative to the correlator receiver approach described above is the use of a
multitone/multicarrier probe signal at the transmitter and a bank of filters at the receiver,
which is the technique we have adopted in our measurement campaigns. In the following
derivation we will show that our method is a generalization of the correlator receiver and

may offer remarkable advantages. Let x̃[n] = ∑k∈K Xk · ej 2π
N kn be a discrete-time complex

sounding signal composed of a sum of (at most N) tones or carriers equally spaced in
frequency where K is a set of positive integers smaller than N and where Xk is the complex
amplitude of the k-th carrier. As stated in [29] the peak-to-average power ratio (PAPR) of
the sounding signal can be minimized if Xk is a Zadoff-Chu sequence, i.e., Xk = e−jφk with
φk = πqk2 where q is a constant related to the length of the sequence. Assuming a static h[n],

the received signal can be written as ỹ[n] = ∑k∈K H[k] · Xk · ej 2π
N kn. The frequency response

H[k] of the channel is estimated using a bank of N filters centered at the discrete frequencies
of the sounding carriers k

N , k = 0 . . . N − 1. The impulse response of each filter is given by

gk[n] = g[n] · ej 2π
N kn, n = 0 . . . M − 1 where g[n] is a low pass filter with cutoff frequency

1
2N and length M samples, being M ≥ N. In ideal conditions of flat frequency response of

the low pass filter g[n] the output of each filter will be given by Yk[n] = H[k] · Xk · ej 2π
N kn

i.e., a complex exponential with constant amplitude H[k] · Xk. Taking a sample of Yk[n] at
instant n = N results in Yk = H[k] · Xk and the estimation of the frequency response at
index k is obtained by Ĥ[k] = Yk

Xk
= Yk · X∗

k . Finally, an N-point IFFT is applied to obtain

ĥ[n]. The procedure is shown in the block diagram of Figure 9.
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Figure 9. Block diagram of the channel estimation procedure using a bank of filters and a unit
amplitude sequence at transmitter.

For the simple case of M = N, the bank of filters followed by decimation depicted in
Figure 9 can be implemented using the FFT [30] as shown in Figure 10, where the received
signal ỹ[n] is windowed by g[n]. In a more general case, if M ≥ N, such implementation is
still valid by subdividing the M-point-windowed input sequence into blocks of N points
and then stacking and adding these blocks before performing the N-point FFT, which is an
optimized procedure based on the linear character of the FFT (see the details in [30]).

Figure 10. Block diagram of the channel estimation procedure using a multicarrier sounding signal,
of unit amplitude and a bank of filters implemented via FFT.

The comparison of Figures 8 and 10 reveals that both systems are identical except
for the windowing. If we consider the received signal in Figure 8 to be windowed by a
rectangular window w[n], n = 0 . . . N − 1, we can conclude that the correlator sounder
approach is a particular case of the multicarrier/bank of filters procedure. The equiv-

alent filters of the correlator receiver have an impulse response ck[n] = w[n]ej 2π
N kn, for

n = 0 · · · N − 1 and k = 0 · · · N − 1 which leads to a sinc-shaped frequency response. See
that the length of each filter is N samples.

In order to estimate the acoustic response of the channel it is necessary to compensate
for the non-flat responses of both the transmitter’s projector and the receiver’s preamplifier.
We compensate both in the frequency domain, before applying the IFFT, with the responses
provided by the manufacturer or the ones obtained with a calibration procedure of the
equipment setup.

One of the main advantages of the multicarrier/bank of filters method stems from
the fact that the filters gk[n] can be designed with an arbitrarily close-to-ideal response
since there is no restriction in their length M. The only drawbacks of using a large M
are a computational burden increase and an initial delay in the decimation of the output
of the filter due to the longer transient of the filters. Both are minor issues since we are
dealing with an offline computation. In Figure 11, we have superimposed the frequency
response of a set of consecutive filters corresponding to the correlator receiver, ck[n] (in
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several colors), and the bank of filters receiver gk[n] (in blue). In this latter case, the filters
have been designed by Hanning-windowing the ideal impulse response and M � N.

31.65 31.7 31.75 31.8 31.85 31.9 31.95 32 32.05 32.1 32.15 32.2 32.25 32.3 32.35

0

0.2

0.4

0.6

0.8

1

1.2

frequency (kHz)

A
m

pl
it

ud
e

Figure 11. Frequency response of 5 consecutive filters of the bank of filters (blue) and the correlator
receiver (other colors).

If the channel is time-invariant, the received carriers will remain located in their
original frequencies and both systems would perform identically. However, in a real
situation for UAC scenarios, the time variation of the channel response will lead to a
Doppler shift and Doppler spread of the received carriers. In this case, the filters of the
correlator receiver may remarkably distort each received tone and moreover, interference
from adjacent bands may be significant, because neither the amplitude of the wanted
signal would be maximum nor the value of the adjacent signal would be null. This fact is
described in Figure 12, where a typical spectrum of received carriers is represented (the
information presented in the graphics of this subsection corresponds to a measurement
campaign carried out by the authors, whose details are accessible in [9]).
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Figure 12. Received carriers spectra before resampling for low index carriers (left) and high index
carriers (right). The vertical dotted lines indicate the filter band boundaries.

5.2. Doppler Effect Reduction by Resampling

The Doppler spread shown in Figure 12 can be remarkably reduced by preprocessing
the received signal using resampling. This topic has been profusely mentioned in the
bibliography [2–4,7,31,32] but is scarcely detailed. The procedure followed in our mea-
surement campaigns is as follows: first, L successive estimations of the impulse response
are obtained with the multicarrier/bank of filters method. The fluctuation of the initial
delay on each estimation is then used to evaluate the frequency offset produced by the
Doppler effect. This offset is compensated by resampling the corresponding block of the
received signal. Finally, the impulse response estimation procedure is started over using
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the resampled received signal, which yields an improved estimation. Figure 13 shows the
estimated time-variant impulse response ĥ(t, τ) of a channel before and after resampling.
In that channel, the transmitter was 198 meters from the receiver, the hydrophone and
projector were at a depth of 6 meters with respect to the surface and the seabed was at 20 m.
The corresponding spectra of the received carriers before and after resampling is depicted
in Figures 12 and 14, respectively. Notice that in the latter one, each spectrum is remarkably
narrower and closer to the center of its band after resampling.
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Figure 13. Time-variant impulse response estimation ĥ(t, τ) of a measured channel before and
after resampling. (a) Impulse responses before resampling. (b) Impulse responses after resampling.
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Figure 14. Received carriers spectra after resampling for low index carriers (left) and high index
carriers (right). The vertical dotted lines indicate the band boundaries.

The fact that the underwater noise spectra strongly decrease with frequency [1] is also
noticeable in Figure 12, where the noise floor is significantly higher for the low-frequency
tones. Taking into account that these carriers are more confined in their band, we could
consider an improved version of the bank of filters receiver of Figure 9 with different cutoff
frequency filters, which would further reduce the noise in the estimation.
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5.3. Enhancing the Measurement System Versatility

The measurement platform can work with any type of signal. For example, in the trials
presented in [9], multitone signals were used for channel sounding, with the technique
described above. OFDM or single-carrier signals can be employed to analyze and evaluate
the performance of any underwater communications system [27]. Since measurement
campaigns are generally expensive and time-consuming, it is convenient to choose the
transmitted signals so that the same measurements are versatile enough to test different
communication schemes. For this purpose, the following strategies have been followed.
The signals are generated with non-differential constellations, for example quadriphase
shift-keying (QPSK), and modulated with a pseudo-random, but deterministic and known,
data sequence that is uncorrelated. If we want to study the behavior of a differential
constellation, for example, differential QPSK (DQPSK), this can be achieved by interpreting
the received symbols in another way (by differential decoding of the detected symbols).
A similar approach can be employed to analyze the effect of using pilots in OFDM for
channel estimation with a certain arrangement, more or less dense, by considering the
received symbols at a set of carriers as pilots instead of data. Although we select to
transmit QPSK constellations, it is also possible to test the behavior of BPSK, with this
simple operation

x̂ = sign(�[xR · x∗T ]) · xT , (4)

where the BPSK-equivalent demapped symbol x̂ is estimated from an antipodal decision
over the scalar product of xR and xT , being xR and xT the complex QPSK symbols at
receiver and transmitter (which is indeed known), respectively.

Additionally, we adopt the strategies proposed in [33], which allows testing both any
type of channel coding and interleaving schemes, and any kind of quadrature amplitude
modulation (M-QAM). The first is achieved by means of a whitening process and the
second by means of a so-called dithering process. In principle, the transmitted signals
are generated without applying any type of channel coding. However, a post-processing
of the data trials permits us to assess channel coding performance: a whitening binary
sequence can be added (with modulo-2 or XOR addition) to the one obtained from the
channel encoder under test, so that the resulting sequence is the pseudo-random one used
in the measurements. Afterward, at the receiver, such a whitening sequence must be added
to the demodulated data before applying de-interleaving and channel decoding. On the
other hand, a somehow similar approach is also possible to analyze the behavior of higher
order M-QAM constellations from the measurement results obtained with a simpler QPSK.
For this purpose, a memoryless mapping can be used with a dithering complex sequence
that is added at the transmitter after the symbol mapper and is subtracted at the receiver to
the samples that feed the desired detector or M-QAM symbol demapper (this is a shortened
explanation of the more detailed one that can be found in [33]).

Note that the choice of not transmitting modulated signals in measurement campaigns
is also possible. Instead, one can use the same approach proposed in [34] (these authors
offer a simulator and test channels available for download [35]) and make the convolution
of modulated signals with the channel impulse response estimated from measurements,
provided that the estimation is sufficiently accurate in time and frequency. In [27], we
have presented results using this approach. However, the employ of modulated signals
directly in measurement campaigns yields more realistic results. On one hand, the channel
estimation is obtained using received signals that are subject to noise and residual distortion
(like actual inter-carrier interference). On the other hand, the accuracy obtained in the
synchronization algorithms by using periodic sounding signals and resampling, cannot be
fully achieved when transmitting modulated signals.

6. Conclusions

We have described in this paper a versatile and robust measurement system to perform
trials in UAC scenarios. The system comprises two subsystems prepared for on-board
operation, one for the transmitter side and the other for the receiver. Both subsystems
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contain specific purpose HW, among which we highlight projector and hydrophones,
analog front-ends, DAQ3000 acquisition boards for A/D and D/A signal conversion,
and personal computers. Two SW applications have been developed for the operation,
control, and management of both subsystems. Such applications carry out some on-
the-fly signal processing tasks to create files where a set of sounding signals are stored
after they have been transmitted through the underwater channel. Additionally, offline
signal processing algorithms, which are designed to analyze the recorded data, have
been explained. These set of algorithms have a two-fold purpose: some are employed to
estimate the time and frequency of selective UAC channel response, and others are used
to evaluate the performance of digital communication systems under realistic conditions.
In particular, the need for signal resampling to compensate for the time expansion and
compression it experiences through the UAC channel is addressed. Our system works
in the ultrasonic frequency range and manages a wider band than the one used in other
reported measurement set-ups, which supports the possibility to reach higher data rate
communications. The presented work can pave the way for other research groups interested
in carrying out these kinds of trials.
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Abstract: Sonobuoy is a disposable device that collects underwater acoustic information and is
designed to transmit signals collected in a particular area to nearby aircraft or ships and sink to
the seabed upon completion of its mission. In a conventional sonobuoy signal transmission and
reception system, collected signals are modulated and transmitted using techniques such as frequency
division modulation or Gaussian frequency shift keying. They are received and demodulated by
an aircraft or a ship. However, this method has the disadvantage of a large amount of information
being transmitted and low security due to relatively simple modulation and demodulation methods.
Therefore, in this paper, we propose a method that uses an autoencoder to encode a transmission
signal into a low-dimensional latent vector to transmit the latent vector to an aircraft or vessel. The
method also uses an autoencoder to decode the received latent vector to improve signal security
and to reduce the amount of transmission information by approximately a factor of a hundred
compared to the conventional method. In addition, a denoising autoencoder, which reduces ambient
noises in the reconstructed outputs while maintaining the merit of the proposed autoencoder, is
also proposed. To evaluate the performance of the proposed autoencoders, we simulated a bistatic
active and a passive sonobuoy environments. As a result of analyzing the sample spectrograms
of the reconstructed outputs and mean square errors between original and reconstructed signals,
we confirmed that the original signal could be restored from a low-dimensional latent vector by
using the proposed autoencoder within approximately 4% errors. Furthermore, we verified that the
proposed denoising autoencoder reduces ambient noise successfully by comparing spectrograms
and by measuring the overall signal-to-noise ratio and the log-spectral distance of noisy input and
reconstructed output signals.

Keywords: sonobuoy; autoencoder; denoising; signal transmission and reception; modulation
and demodulation

1. Introduction

Sonobuoy is a combination of sonar and buoy, and refers to a device that collects
underwater information through sound waves. Sonobuoy is a disposable device that is
dropped from the maritime patrol to the area of interest. It is designed to transmit the
collected underwater signal to the maritime patrol via wireless communication and sink to
the sea when the mission is completed. Sonobuoy is divided into passive and active types
according to the detection method and the detection range, operating time, and service
life vary widely for each product model [1]. Among them, the transmission bit rate of
signals is used from hundreds of kbps (kilobits per second) to tens of Mbps (Megabits per
second) [2].

The sonobuoy may be operated in a monostatic sonobuoy when the active sonobuoy
(CASS) or DICASS (Directional CASS) is used alone. It may be operated in a bistatic and
multi-static sonobuoy with an explosive sound source or a combination of active and

Sensors 2022, 22, 6510. https://doi.org/10.3390/s22176510 https://www.mdpi.com/journal/sensors
81



Sensors 2022, 22, 6510

passive sonobuoys [3]. In general, since a bistatic target detection has different positions of
a transmitter and a receiver, the detection area is wider and confidentiality is guaranteed
compared to monostatic target detection [4]. Figure 1 presents a research conceptual dia-
gram schematically illustrating a bistatic target detection environment using active and
passive sonobuoys in anti-submarine warfare (ASW). Since the system of the electronic unit
of the sonobuoy cannot perform complex signal processing, sonobuoy inevitably transmits
the collected underwater signal to the maritime patrol plane or the ship through wireless
communication. The existing signal modulation and demodulation methods used in wire-
less communication include frequency division multiplexing [5] and frequency shift keying
(FSK) [6]. Such a signal modulation and demodulation method have a disadvantage in that
a high bit rate is required due to the large amount of information to be transmitted because
it is the entire acoustic signal. In addition, since the frequency band of the modulated signal
is easily analyzed, the modulation scheme is relatively easy to predict and is highly likely
to be demodulated, resulting in low security.

Figure 1. A research conceptual diagram of the bistatic sonobuoy signal transmission and reception.

Conversely, using deep neural nets recently, there have been great achievements in
various fields, i.e., speech recognition, visual object recognition, object detection, and
natural language processing [7]. In particular, autoencoder is an unsupervised learning-
based feature extraction technique that can obtain high-level features of input signals
by learning and using unlabeled data. It is more practical because it can be applied to
a wider range of data than supervised learning, which is expensive to obtain labeled
data. The autoencoder mainly consists of encoder and decoder parts, where the encoder
yields high-level features, usually called codes or latent variables. These represent input
signals compressively well, and the decoder is trained to restore the codes as close as
possible to the original inputs. Autoencoder is similar to principal component analysis
(PCA) in that it compresses inputs into latent variables by reducing the dimension of
data in the encoding process. However, autoencoder is a nonlinear generalization of PCA
and presents superior performance to PCA in general [8]. Normally, the structure of the
autoencoder is stacked by multiple layers to extract high-level features. Denoising, sparse,
and variational autoencoders are developed for further performance improvements in the
feature representation [8–18]. According to [10,11], denoising autoencoders learn more key
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high-dimensional features in the training process by performing denoising tasks on noisy
input signals and are known to be superior to the traditional autoencoder [10,11]. Usually,
traditional and denoising autoencoders are implemented as under-complete models in
which the input dimension is larger than the hidden layer, and as the autoencoder is
stacked, the input of the layer is compressed and the number of activations (outputs
of each layer) is reduced. Conversely, sparse autoencoders are implemented as over-
complete models, which have a larger dimension of hidden layer than the dimension
of input, unlike traditional and denoising autoencoders [12,13]. Sparse autoencoders
are other methods for extracting interesting structures of data by imposing “sparsity”,
which means most nodes are inactive and active nodes exist very rarely, on nodes of
layers. However, the disadvantage of sparse autoencoders is the computational complexity
of which the activation value must be calculated in advance in order to add sparsity
to the cost function [12]. An efficient algorithm to iteratively solve this problem has
been proposed [13]. In addition, variational autoencoders are the ones that involve the
notion of probability [14,15]. Variational autoencoders are stochastic generative models
that model the probability distribution of parameters, whereas the other autoencoders
are deterministic discriminative models that model the value itself of parameters [15].
The common and ultimate goals of the above-mentioned methods are to extract high-
dimensional features or representations of the input and to improve the performance of
tasks (mainly classification) with the features. The results of the autoencoders are used
independently or in combination with other methods, i.e., support vector machine (SVM),
convolutional neural network (CNN), and Gaussian mixture model (GMM), mainly as a
front-end for parameter initialization of supervised learning [16–18].

In this paper, a novel approach to apply the under-complete structure of the au-
toencoder to sonobuoy signal modulation and demodulation for signal transmission and
reception in order to decrease the amount of information to be transmitted and increase
security. Our contributions are two-fold. First, we propose a method that modulates the
transmission signal to a low-dimensional latent vector using an autoencoder to transmit the
latent vector to an aircraft or vessel and demodulates the received latent vector to reduce
the amount of transmission information and improve the security of the signal. Second,
a denoising autoencoder that reduces ambient noises in the reconstructed outputs while
maintaining the merit of the proposed autoencoder is also proposed.

2. Conventional Sonobuoy Signal Modulation and Demodulation Methods

2.1. Frequency Division Multiplexing

Frequency division multiplexing is a method used to transmit multi-channel signals
to a single channel, and multi-channel signals are transferred to different frequency bands
within a multiplexer. The modulated signals are combined into a single-channel signal
through simple addition and then transmitted. Directional frequency analysis and recording
(DIFAR) uses frequency division multiplexing and the overall structure is in Figure 2. As
shown in Figure 2, DIFAR requires a high bit rate because it transmits the entire signal
combined into a single channel, and it is less secure because the transmitted signal is easily
distinguishable in the frequency domain.

Figure 2. Frequency division multiplexing of DIFAR for signal modulation and demodulation.
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2.2. Frequency Shift Keying

Frequency shift keying transmits information as a frequency change of a carrier signal
such as a sine wave. For the simplest binary frequency variation modulation (binary
FSK), two signals of different frequencies are used to transmit binary information of 0
and 1. In addition, a Gaussian filter is used for frequency conversion, called Gaussian
frequency shift keying (Gaussian FSK), which is a signal transmission method used in
various sonobuoy models.

3. Proposed Autoencoder-Based Signal Modulation and Demodulation Methods

3.1. Autoencoder-Based Signal Modulation and Demodulation Method (General Form)

Autoencoder is a widely used structure in the field of deep learning. It trains the output
value of the model to be the same as the input value and forms a symmetrical structure. The
structure is largely divided into an encoder, a decoder, and a bottleneck section between
the encoder and the decoder. The dimension of the latent vector in the bottleneck section
extracted through the encoding is generally much lower than the dimension of the input,
and the latent vector reflects the compressed implications of the data. Therefore, the
autoencoder mainly serves as a feature extractor using the characteristics of latent vectors
to obtain initial weights of other models [16–18].

In this paper, using the autoencoder structure, latent vectors are extracted by the
encoder installed within the sonobuoy and transmitted. The signal processor in the marine
patrol reconstructs the original signal from the received latent vectors. The schematic
description and the entire training process of the proposed autoencoder-based method are
shown in Figure 3 and Algorithm 1, respectively.

Algorithm 1: Pseudocode for autoencoder training algorithm

1: AE training (e, b, l, E, Δ, θ)
2: x = [x1, x2, . . . , xn] ∈ RN∗1 is the input signal, in which xi ∈ [−1, 1] (1 ≤ i ≤ N) is a single
acoustic signal sample
3: e is the number of epochs
4: l is the learning rate
5: b is the batch size
6: E is encoder network
7: Δ is decoder network
8: θ is the network parameters
9: for 0 to e do

10:
^
x = Δ(E(x))

11: L =
b
∑

i=1
(x − ^

x)2

12: L = mean(L)
13: g = gradient of θ
14: for θ in θ do
15: θ = θ − l ∗ g
16: end
17: end

The purpose of this study is to secure the security of the signal using fewer bits than
the conventional method when transmitting the sonobuoy signal. The autoencoder judged
it to be a suitable model that satisfies both of these purposes. Since the autoencoder trains
the same input and output values, it is consistent with the concept of demodulating the
transmission signal again. Furthermore, since the latent vectors in the bottleneck section
have information that can be restored to the original signal, they can be demodulated to
the original signal if only the latent vector and trained demodulator are present, even
if the entire signal is not transmitted. By using this, it is possible to transmit signals
even in adverse communication environments with a very low bit rate compared to the
conventional sonobuoy signal transmission technique. In addition, since all of these
transmission and reception processes can only be demodulated by having a basically
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trained autoencoder model, a third party cannot demodulate into an original signal even if
it acquires a transmitting latent vector.

Figure 3. The schematic description of the proposed autoencoder-based signal modulation and
demodulation. The trained encoder and decoder are installed on sonobuoy and aircraft, respectively.
The main goal of the proposed method is to reconstruct the input signal as close as possible with the
latent vector.

3.2. Denoising Autoencoder-Based Signal Modulation and Demodulation Method (Optional Form)

As can be seen in Figure 1, ambient noise exists in the underwater environment [19].
Ambient noise acts as one of the major causes of performance degradation in underwater
target detection and identification using signals acquired by sonar and sonobuoy [20].
Therefore, noise reduction algorithms are usually applied as preprocessing to prevent
unnecessary performance degradation [20]. In this section, we propose a denoising autoen-
coder method that can perform the additional ambient noise reduction while maintaining
the advantages of the general autoencoder-based method proposed in the above section.

The overall structure of the proposed denoising autoencoder is shown in Figure 4. The
denoising autoencoder, like the autoencoder in Figure 3, consists of an encoder, a bottleneck
section, and a decoder. However, the output is different in that it yields a noise-removed
signal, and the training method for this is different. The entire training process is described
in detail in Algorithm 2. The denoising autoencoder is trained with noise-corrupted input
data at various signal-to-noise ratios (SNRs) in order to restore the signal of interest even if
the input data is distorted or contains a noise. Therefore, using the denoising autoencoder,
ambient noise reduction is possible in the transmission and reception process without a
separate noise reduction method.

As can be seen in Figure 4, since the network structure is in the under-complete form,
the size of the layer is decreasing. As such, it can be transmitted using only a few bits
compared to the conventional signal transmission and reception technique; the security of
the signal can be guaranteed. In addition, it is possible to obtain an ambient noise-reduced
output.
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Figure 4. This is the schematic description of the proposed denoising autoencoder-based signal mod-
ulation and demodulation. This is an optional form of the general form in Figure 3 for ambient noise
reduction. The trained encoder and decoder are installed on sonobuoy and on aircraft, respectively.
The main goals of the proposed method are to reconstruct the input signal as close as possible with
the latent vector and to reduce ambient noise.

Algorithm 2: Pseudocode for denoising autoencoder training algorithm

1: DAE training (e, b, l, E, Δ, θ)
2: x = [x1, x2, . . . , xn] ∈ RN∗1 is the clean input and z = [z1, z2, . . . , zn] ∈ RN∗1 is the noise input
in which xi ∈ [−1, 1] and zi ∈ [−1, 1] (1 ≤ i ≤ N) are a single acoustic signal sample
3: e is the number of epochs
4: l is the learning rate
5: b is the number of batches
6: E is encoder network
7: Δ is decoder network
8: θ is the network parameters
9: for 0 to e do
10: for j = 1 to b do
11: r is SNR between xj and zj in dB scale ∈ [0, 5, 10, 15]
12: yj = xj + rzj

13:
^
yj = Δ(E(yj))

14: L =
b
∑

j=1
(xj − ^

yj)
2

15: L = mean(L)
16: g = gradients of θ
17: for θ, g in θ, g do
18: θ = θ − l ∗ g
19: end
20: end
21: end

4. Experiments with Simulated Data

In this paper, the performance of the autoencoder was verified in a bistatic active
sonobuoy environment and the performance of the denoising autoencoder was verified in
a passive sonobuoy environment. However, both autoencoder and denoising autoencoder
are basically applicable to both active and passive sonobuoy environments.
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4.1. Experiments for Evaluation of Autoencoder in a Bistatic Active Sonobuoy Environment
4.1.1. Experimental Setup

In this paper, we generate bistatic simulation data in an underwater environment
to verify the proposed method. The transmitting signals are generated in two forms:
continuous wave (CW) and linear frequency modulation (LFM). The positions of the
transmitter and receiver were fixed, and the maximum distance between a target and
sonobuoys was limited to 9 km. The target maneuver range was set between 50 m and
150 m. Other detailed conditions for simulation data generation are summarized in Table 1.

Table 1. Simulation environmental setup.

CW LFM

Center frequency 3500 Hz, 3600 Hz, 3700 Hz, 3800 Hz
Bandwidth - 400 Hz

Pulse duration 0.1 s, 0.5 s, 1 s
Sampling frequency 31,250 Hz

Data were generated in a scenario of receiving a pulse signal reflected from a target.
Scenarios in which the target location is randomly set are stored as files that are about 10 s
long. The total training data were about 50 h, and the evaluation set for evaluating whether
the training was converged was about 3 h of data separately from the training data. All
data were generated by applying ray tracing [21] as in Figure 5, and the sound velocity
profile used for the ray tracing is shown in Figure 6.

Figure 5. Cont.
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Figure 5. Sound propagation paths samples [range (m), depth (m)] (triangle: transmitter [0,8], square:
receiver [1000,8], circle: target [3000,50]): (a) Sound propagation paths sample (from the transmitter
to the target); (b) Sound propagation paths samples (from the target to the receiver).

Figure 6. Sound speed profile of the simulated bistatic sonobuoy environment.

Since the sonobuoy signal cannot be modeled with a simple single-layer autoencoder
structure, this experiment used a stacked autoencoder to train. Table 2 shows the parameter
setting of the model used in the experiment. The parameters were empirically set, and due
to the nature of the research data, the result cannot be confirmed only by the loss value,
so it should be determined through the restored sample. Although the width and depth
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of the training layer are not optimal variables, we have failed to model the distribution of
complicated input signals when the depth of the layer is too low.

Table 2. Model structure of the baseline autoencoder model.

Encoder (Dim) Decoder (Dim)

Noisy input (3125) Latent vector (10)
Linear (3125–1000) Linear (10–100)

ReLU ReLU
Linear (1000–500) Linear (100–500)

ReLU ReLU
Linear (500–100) Linear (500–1000)

ReLU ReLU
Linear (100–10) Linear (1000–3125)

ReLU Tanh
Latent vector (10) Output (3125)

Unlike general audio signals, underwater acoustic signals are very sparse in the
frequency domain, thus, we used the time domain acoustic signal as an input for training,
which means end-to-end training. Input signals were normalized in the range of −1 to 1
per file, and if the input size of the model was too small, it could not reflect the pulse of one
cycle properly, resulting in discontinuity, so it was put into the model in 0.1 s (3125 samples).
Between linear layers, ReLU was used as an activation function to reflect the nonlinearity of
the input signal, and in the last layer of the decoder, that was used as an activation function
to restore the signal to the range from –1 to 1. As a loss function, a mean square error (MSE)
between the input and the output signals was calculated for each sample, and the adam
optimizer [22] with a learning rate of 0.001 was used.

4.1.2. Experimental Results

To evaluate the original signal restoration performance of the autoencoder, we mea-
sured the MSE of the original and the restored spectrograms. The signal used for the
evaluation generated 60 s of data not used for model training, and the average energy in the
frequency domain was 0.0074. The performances of three autoencoder models (autoencoder
I, autoencoder II, and autoencoder III) were measured and summarized in Table 3. The
experimental results presented that MSE, which represents a difference from the original
signal, had 4.08%, 3.88%, and 3.22%, respectively, compared to the energy average of the
original signal. The performance of the model consisting of eight linear layers was the best.

Table 3. Comparison of autoencoder models in MSE. Autoencoder III refers to model in Table 2. M
denotes 106.

Model MSE The Number of Parameters

Autoencoder I 0.00302 6.27 M
Autoencoder II 0.00287 6.66 M
Autoencoder III 0.00238 7.36 M

Comparing the spectrograms depicted in Figure 7, it can be confirmed that the original
signal can be restored by a low-dimensional latent vector with a small artifact. In addition
to the frequency band where the echo signal exists, it can be seen that signals such as
harmonics are seen or signals such as noise are also present in the signal-absent interval.
In the case of the signal-absent interval, it is considered that the magnitude of the data
in the interval of the original signal is too small. This results in a noise-like signal in the
band in which the echo signal exists due to the bias value of the autoencoder model. In
addition, since the proposed method trains in the form of end-to-end without a separate
feature extraction process, small value differences in the time domain may appear as noise
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in the high-frequency band even if the value of the loss function decreases. Nevertheless,
both types of signals have been restored very similarly in the frequency bands where echo
signals exist. Artifacts generated in the signal absent intervals and bands are negligible
compared to the energy of the target signal of interest.

Figure 7. Spectrogram comparison between original and reconstructed signals: (a) Original CW;
(b) Original LFM; (c) CW reconstructed by the proposed autoencoder; (d) LFM reconstructed by the
proposed autoencoder.

In order to demodulate the original signal, in addition to the latent vector, two val-
ues used for normalization must be transmitted. Therefore, if the 10-dimensional latent
vector and the size value used for normalization are quantized to 16 bits, the amount of
information in the proposed method is about 1.92 kbps. To compare the reconstruction
performance, we measured MSE according to the number of quantized bits per sample used
in the conventional method [1]. Figure 8 shows the reconstruction error of the conventional
and the proposed methods depending on the amount of information required for encoding
and decoding. Here, Autoencoder III in Table 3 is used for comparison.

Figure 8. Reconstruction error (MSE) according to the amount of information transmitted. A signal
quantized to 16 bits was regarded as a reference signal without errors.

Figure 8 presents that the MSE value of the proposed method (red square) is located
between the MSEs of the conventional method (blue triangle) using 8 bits and 9 bits per
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sample. Considering that the conventional method quantizes to 14 or 16 bits [1], the
proposed method relatively presents a large MSE. Therefore, further study to reduce the
MSE of the proposed method is necessary. Nevertheless, the reason why we insist that the
proposed method is superior to the conventional method is the noticeable reduction in the
amount of information transmitted. Consider the cases of quantizing a sampling frequency
of 31,250 Hz to 16 bits and 8 bits per sample. These cases require 500 kbps (31,250 samples
× 16 bits) and 250 kbps (31,250 samples × 8 bits), respectively. In this paper, we generated
a 10-dimensional latent vector every 0.1 s, and store the two-dimensional information that
we used for normalization in the training process. Therefore, the proposed method only
requires transmitting vectors of 120 dimensions for transmitting a signal of 1 s, not the total
number of samples (e.g., 31,250 samples for 31,250 Hz). Compared to the conventional
method using 16-bit quantization, the amount of transmission information of the proposed
method is 260 times smaller than that of the conventional method. Furthermore, assuming
that the amount of transformation information of the conventional method presenting
similar MSE performance in Figure 8 is approximately 250 kbps, the amount of transmission
information of the proposed method is 130 times smaller than that of the conventional
method. This means that the proposed method can encode and decode sonobuoy signals
with 130 times less information, which is due to the nature of the latent vector, generated
from autoencoder, being represented as a compressed, very high-dimensional feature vector
of the input signal. Additionally, owing to the inherent characteristics of the autoencoder,
the latent vector can obtain high security that cannot be decrypted without the decoder of
the corresponding autoencoder.

4.2. Experiments for Evaluation of Denoising Autoencoder in a Passive Sonobuoy Environment
4.2.1. Experimental Setup

In order to verify the performance of the denoising autoencoder, a DIFAR passive
sonobuoy detection environment was simulated using the MATLAB Phased-Array System
Toolbox [23,24], and detailed experimental conditions are shown in Table 4.

Table 4. Simulation setup for evaluating the denoising autoencoder.

Tonal Signal

Depth 30, 60, 120, 300 (m)
Detection range 0~15 km

Center frequency 1000~2400 Hz
Sampling frequency 40,000 Hz

It is assumed that a tonal signal is continuously generated at a target located randomly
in the detection range. The signal generated at the target reaches the receiver in considera-
tion of the Doppler effect, the reflection loss of sound waves, and the spreading loss. One
file was about 60 s long, a total of 50 h of data were used for training, and 3 h of data were
used for evaluation and test.

Like the autoencoder in Table 3, the denoising autoencoder model consists of an
encoder and a decoder with multiple layers, and the detailed model structure is shown in
Table 5. The input signal was normalized in the range from −1 to 1, chopped by 0.1 s, and
inserted into the model for network training. The difference from Table 3 is slight in the
number of input samples caused by the different sampling rate, and there is one more layer.
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Table 5. Model structure of the baseline denoising autoencoder model.

Encoder (Dim) Decoder (Dim)

Noisy input (4000) Latent vector (10)
Linear (4000–1000) Linear (10–50)

ReLU ReLU
Linear (1000–500) Linear (50–100)

ReLU ReLU
Linear (500–100) Linear (100–500)

ReLU ReLU
Linear (100–50) Linear (500–1000)

ReLU ReLU
Linear (50–10) Linear (1000–4000)

ReLU Tanh
Latent vector (10) Output (4000)

As described in Algorithm 2, the input of the encoder synthesized the clean signal and
the white noise with an SNR from 0 to 15 dB. The output of the decoder was trained to
reduce the MSE with the clean signal. Through this training method, the noisy signal may
be restored as a clean signal for various SNR environments.

4.2.2. Experimental Results

To evaluate the performance of the denoising autoencoder, the spectrogram was subjec-
tively analyzed, and the overall SNR and log spectral distance (LSD) of inputs and outputs
were objectively measured [25]. We summarized the noise reduction performance of the
proposed denoising autoencoder and the Wiener filter-based sonobuoy noise reduction
method [26] in Table 6.

Table 6. Overall SNR and LSD results at various SNRs. All measures are in dB.

Input SNR 0 dB 5 dB 10 dB 15 dB

Overall
SNR

Noisy input 2.24 4.01 6.56 10.35
Conventional method [26] 4.35 7.13 10.73 15.14

Reconstructed output 10.91 12.96 12.80 15.90

LSD
Noisy input 7.54 7.16 6.78 5.96

Conventional method [26] 7.05 6.56 6.04 5.52
Reconstructed output 3.64 3.61 3.68 3.22

In the spectrogram of Figure 9, most of the noises present in the noisy input have been
removed from the restored signals. The noise around the signal band remains; however,
the level of the remaining noise is negligible.

In addition, an overlayed frequency analysis of time segments of clean, noisy, and
reconstructed signals at the 2.4–2.6 s interval in Figure 9 is inserted in Figure 10. Normaliza-
tion was performed using each maximum value of clean, noisy, and reconstructed signals
for power spectrum comparison. In Figure 10, it can be seen that the spectra of the clean
signal and reconstructed output are very close by removing the noises distributed in the
entire band.
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Figure 9. Spectrogram comparison: (a) Clean signal; (b) Noisy autoencoder input at 5 dB SNR; (c)
Reconstructed autoencoder output.

Figure 10. An overlayed frequency analysis of time segments of clean, noisy, and reconstructed
signals from 2.4 s to 2.6 s in Figure 9. The “power (dB)” means the square of magnitude of each
spectrum represented in decibels. In addition, normalization was performed using each maximum
value of clean, noisy, and reconstructed signals for power spectrum comparison. (Red solid: clean
signal, black dash-dot: noisy input, and blue dot: reconstructed output).
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Furthermore, in order to objectively evaluate the noise reduction performance of
the denoising autoencoder, overall SNR and LSD for 50 min of test data were measured
and summarized in Table 6. Table 6 presented that the proposed method is superior to
the conventional method satisfying higher overall SNR and lower LSD simultaneously
for all SNR conditions. Through this, it was confirmed that the transmission/reception
technique using the denoising autoencoder successfully performs ambient noise removal
in the transmission/reception stage without using a separate noise reduction method.

5. Conclusions

In this paper, novel sonobuoy signal transmission and reception methods using au-
toencoders are proposed. Through evaluation, we confirmed that the original signal could
be restored from a low-dimensional latent vector by using the proposed autoencoder with
approximately 4% errors. We also proposed that the autoencoder shows similar recon-
struction performance only using 130 times less information than the conventional method.
Furthermore, we verified that the proposed denoising autoencoder successfully reduces
ambient noise by comparing spectrograms and by measuring the overall SNR and the
LSD of noisy input and reconstructed output signals. The proposed method demonstrates
superior denoising performance satisfying higher overall SNR and lower LSD simultane-
ously for all SNR conditions than the conventional denoising method. However, studies to
improve the reconstruction performance by reducing the MSE and to verify the proposed
method with real sonobuoy data are necessary and these remain as future works.
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Abstract: In underwater acoustic communication (UAC) systems, the channel characteristics are
mainly affected by spatiotemporal changes, which are specifically manifested by two factors: the
effects of refraction and scattering caused by seawater layered media on the sound field and the
random fluctuations from the sea floor and surface. Due to the time-varying and space-varying
characteristics of a channel, the communication signals have significant variations in time and
space. Furthermore, the signal shows frequency-selective fading in the frequency domain and signal
waveform distortion in the time domain, which seriously affect the performance of a UAC system.
Techniques such as error correction coding or space diversity are usually adopted by UAC systems to
neutralize or eliminate the effects of deep fading and signal distortion, which results in a significant
waste of limited communication resources. From the perspective of the sound field, this study used
experimental data to analyze the spatiotemporal fluctuation characteristics of the signal and noise
fields and then summarized the temporal and spatial variation rules. The influence of the system
then guided the parameter configuration and network protocol optimization of the underwater
acoustic communication system by reasonably selecting the communication signal parameters, such
as frequency, bandwidth, equipment deployment depth, and horizontal distance.

Keywords: underwater acoustic communication; channel characteristics; spatiotemporal fluctuation

1. Introduction

At present, using sound waves is the only method for transmitting data over long
distances in seawater. Underwater acoustic communication has become an indispens-
able part of data transmission technology for exploring, developing, and protecting the
ocean. The complexity of UAC systems is mainly manifested in the time-varying and
space-varying channels. The signal-to-noise ratio (SNR) as a measurement parameter of
system performance design is also an important indicator for evaluating the quality of
underwater acoustic communication. The spatiotemporal variation range of the SNR can
be used to describe the spatiotemporal fluctuation characteristics of underwater acoustic
communication signals.

Due to the complexity and time variation of the marine environment, the SNR of
communication signals varies widely in time and space. Therefore, the degeneration
in the UAC system performance would be caused by two reasons: the difficulties in
optimizing the synchronization signal detection threshold and determining the location
of the UAC system equipment. However, from the perspective of the sound field, it is
possible to describe the spatiotemporal variation from the signal field and noise field, and
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then analyze the fluctuation characteristics of the underwater acoustic communication
channel. Environmental factors, such as ocean currents, tides, and internal waves, with
large spatial-temporal fluctuations have not been considered.

Since the 1950s, researchers have gradually paid attention to signal interference in
shallow-water sound fields, and they mainly analyzed the spatial-temporal characteristics
of sound fields based on ray acoustic theory and normal wave theory [1–3]. Ray acoustics
researchers focused on the Loe mirror effect in optics, which assumes that the interfering
sound rays are approximately parallel, and they derived a partially analytical solution and
discovered vertical distribution characteristics of the sound field [4]. In the 1980s, in view
of the normal wave theory and far-field assumption, scholars analyzed the interference
sound field and put forward the conception of waveguide invariants. However, previous
theoretical analyses of the interference phenomenon, which are based on restricted scenarios
and simplified assumptions, were detrimental to the establishment of a universal analysis
model. This study mainly focused on the influence of short-range shallow sea interference
on signal fluctuations. Compared with the normal wave method, the ray acoustic method is
superior given its clear concept and simple calculation; therefore, the ray acoustic method
was adopted to analyze the spatial distribution of the sound field.

From the perspective of the sound field, the influencing factors of the spatial varia-
tion range of the SNR are not only the spatial-temporal distribution characteristics of the
signal field caused by the signal interference and interface fluctuations but also the spatial-
temporal distribution characteristics of the system noise field. The operating performance
of a UAC system is significantly affected by the noise of the system and the marine envi-
ronment. The marine environmental noise was first measured in two studies [5,6]. After
analyzing a large amount of measured data, it was found that marine environmental noise
is mainly composed of wind-induced noise, ship noise, and biological noise; reference [7]
gives a marine environmental noise spectrum and notes that the low-frequency noise com-
ponents mainly come from the machinery of ships, while high-frequency noise is mainly
wind-induced wave noise. Due to the continuous development of signal acquisition tech-
nology and the increase in marine research investment, research on marine environmental
noise has become a popular topic of discussion [8–15]. On the basis of different sound field
propagation theories, researchers proposed various marine environmental noise models.
The classic models include the C/S model, K/I fast-field model, and P/K model [16–18].
Using these models, scholars have conducted in-depth studies on calculation accuracy,
calculation speed, orientation, and boundary conditions, and concluded a series of results,
which promoted the development and application of exploration of the noise field [19–22].
Zhou Jianbo et al. considered wind-induced waves as the noise source and used the
transmission theory method instead of the traditional Monte Carlo method to construct a
noise field model. They analyzed the spatial noise distribution and concluded that high-
frequency noise had fluctuations in intensity at the offshore surface [23]. Avrashi, G. et al.
considered the problem of carrier frequency offset estimation in OFDM underwater acoustic
communication and analyzed the causes of changing environmental impacts [24]. Z.L. et al.
analyzed wave fluctuation on underwater acoustic communication using measured data
collected with USV [25]. X.Z. et al. used quantile–quantile (Q-Q) plots to analyze real
marine environmental data, interpreting the impulsive property of ocean ambient noise in
shallow waters [26]. X.Z. et al. applied Loffeld’s bistatic formula to SAS image processing,
which provided a more accurate approximation of the spectrum compared to that based
on phase center approximation [27]. An, J. et al. propose underwater acoustic (UWA)
communications using a generalized sinusoidal frequency modulation (GSFM) waveform,
which makes full use of the time and frequency variation laws of the marine environment
in experimental data [28]. Zhang, Y. et al. proposed a deep-learning-based orthogonal fre-
quency division multiplexing receiver for underwater acoustic communications to process
marine environmental data through neural networks [29].

The stratum structure of the ocean space determines the multi-channel coherent
structure characteristics of the ocean sound field. The motion of the transmitter end, the
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interface, and the receiving sensor affect the spatiotemporal fluctuation characteristics
of the sound field, which shows that the channel response function is time-varying and
space-varying. The feature of time-varying and space-varying channels is the key point
to manage to achieve effective and stable UAC systems. In this study, the signal field and
noise field were evaluated by establishing a model and obtaining data through experiments,
and the spatial-temporal distribution of signals was summarized to provide theoretical
support for the design of UAC systems.

2. Spatial Distribution Characteristics of the Signal and Noise Fields

2.1. Investigation of the Spatial Distribution of the Signal Field

In a uniformly shallow sea, the characteristics of the medium do not change signif-
icantly with the depth; therefore, the sound field can be studied using ray theory. The
accuracy of ray theory for calculating the sound field is correlated with the number of
sound rays examined in the study. The larger the number of sound rays considered, the less
the sound rays reflected from the bottom of the water contribute to the sound field. Thus,
the direct sound and the first-order reflection rays of the sea surface are mainly considered.
The sound pressure field is

p(r, z, t) =
1

R00
exp[i(kR00 − ωt)]− G10

1
R10

exp[i(kR10 − ωt)] (1)

The direct sound path R00 =
√

r2 + (z − zs)
2 and the first surface reflection sound

path R10 =
√

r2 + (z + zs)
2, where r is the horizontal distance between the sound source

and the receiving hydrophone and zs is the depth of sound source placement; G10 is the
absolute value of the surface reflection coefficient. Separating out the time variable gives

p(r, z) =
1

R00R10
exp(ikR){R10exp[ik(R00 − R)]− G10R00exp[ik(R10 − R)]} (2)

where

R00 − R =
√

r2 + z2

⎛⎝√
1 +

z2
s − 2zsz
r2 + z2 − 1

⎞⎠ (3)

When the value of r is greater than 3 times the depth of the sea, i.e.,
(
z2

s − 2zsz
)
/
(
r2 + z2)� 1,

Formula (3) can be approximated:

R00 − R ≈
√

r2 + z2

⎛⎝√
1 + 2· z2

s − 2zsz
2(r2 + z2)

+

[
z2

s − 2zsz
2(r2 + z2)

]2

− 1

⎞⎠ =
z2

s − 2zsz
2(r2 + z2)

(4)

Similarly:

R00 − R ≈ z2
s + 2zsz

2(r2 + z2)
(5)

Substituting (4) and (5) into Equation (2), we obtain

p = 1
R00R10

exp
[
ik
(

R + z2
s

2
√

r2+z2

)]
×
{
(R10 − G10R00)cos

[
k
(

zsz√
r2+z2

)]
−i(R10 − G10R00)sin

[
k
(

zsz√
r2+z2

)]} (6)

Then, the mean square sound pressure in the sound field is

p2 = 1
2

1
(r2+z2+z2

s )2−4z2
s z2

[(
1 + G2

10
)(

r2 + z2 + z2
s
)
+ 2

(
1 − G2

10
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√
(r2 + z2 + z2
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s z2cos( 2kzsz√
r2+z2 )

] (7)
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When focusing on the sound field distribution in the central area of the water body,
there is an approximate value of z ≈ zs/2; after substitution into Equation (7), this gives

p2 = 1
2

1
(r2+ 5

4 z2
s )

2−z4
s

[(
1 + G2

10
)(

r2 + 5
4 z2

s
)
+
(
1 − G2

10
)
z2

s

−2G10

√(
r2 + 5

4 z2
s
)2 − z4

s cos
(

2kzsz√
r2+z2

)] (8)

If the signal is a broadband signal, the following formula can be obtained:

p2
Δ f =

1
Δ f

∫ f0+0.5Δ f

f0−0.5Δ f
p( f )2d f (9)

Further derivation can be written as follows:

p2 = 1
2

1
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4 z2
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s

[(
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10
)(
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θ cos
(
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)] (10)

where θ = 2πzsz·Δ f /
(

c
√

r2 + z2
)

and k0 = 2π f0/c. It is worth noticing that when the
signal has a single frequency, i.e., Δ f approximates 0, sin θ/θ approaches 1; furthermore,
when the signal bandwidth increases, θ increases and sin θ/θ approaches 0. Given this,
when the signal has sufficient bandwidth, the fluctuation of the sound field of the signal
can be effectively smoothed. When z ≈ zs/2, the approximation can be given as

θ ≈ πz2
s ·Δ f

c
√

r2 + z2
≈ π

c
z2

s
r
·Δ f (11)

According to Formula (11), it can be obtained that the fluctuation range of the signal
is proportional to the distance r at the transmitting and receiving ends and inversely
proportional to the center frequency f , the bandwidth Δ f , and the modem depth zs.

2.1.1. Simulation Testing

In order to verify the theoretical distribution of the signal field, the signal sound
intensity fluctuations of different center frequencies, bandwidths, and horizontal distances
of the transceiver were simulated and examined.

1. Simulation of the signal interference at different center frequencies

Simulation parameters: the seabed was absolutely hard and flat; water depth: 100 m;
sound source deployment depth: 95 m (near the seabed); horizontal distance of the trans-
mitting and receiving end: 200 m; signal bandwidth: 10 Hz; frequencies were 500 Hz,
2 kHz, and 5 kHz.

Figure 1 shows the signal interference diagrams at different frequencies. The fre-
quencies from (a) to (c) were 500 Hz, 2 kHz, and 5 kHz. The abscissa is the signal sound
pressure level and the ordinate is the depth. Comparing the figures, it can be seen that
as the center frequency of the signal doubled, the vertical fluctuation range of the sound
intensity decreased by a factor of half; the higher the mark frequency, the smaller the
spatial fluctuation. In underwater acoustic communication, the center frequency of the
signal should be appropriately increased within the tolerance range of the high-frequency
absorption and attenuation of the signal.
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(a) (b) (c) 

Figure 1. Signal interferograms at different frequencies: (a) 500 Hz, (b) 2000 Hz, and (c) 5000 Hz.

2. Simulation of signal interference at different horizontal distances

Simulation parameters: the seabed was absolutely hard and flat; water depth: 100 m;
sound source deployment depth: 95 m (near the seabed); frequency: 5 kHz; mark band-
width: 10 Hz; the horizontal distances of the transceiver end were 100 m, 300 m, and
1000 m.

Figure 2 shows the signal interference patterns at different horizontal distances. The
distances from (a) to (c) were 100 m, 300 m, and 1000 m, where the abscissa is the mark
sound pressure level and the ordinate is the depth. Comparing the figures, the range
of vertical fluctuations in sound intensity increased exponentially as the horizontal dis-
tance increased, which was consistent with the inference obtained using Formula (11). In
the case of the same bandwidth, as the signal frequency and the horizontal distance in-
creased, the sound intensity fluctuation was inversely proportional to the signal frequency
and proportional to the horizontal distance; as the depth increased, the sound intensity
fluctuation decreased.

  
(a) (b) (c) 

Figure 2. Signal interferograms at different horizontal distances: (a) 100 m, (b) 300 m, and (c) 1000 m.

3. Interference simulation of different bandwidth signaling

Simulation parameters: the seabed was absolutely hard and flat; water depth: 100 m;
sound source deployment depth: 95 m (near the seabed); frequency: 1 kHz; horizontal
distance of the transmitting and receiving end 200 m; mark bandwidths were 1 Hz, 10 Hz,
and 100 Hz.

Figure 3 shows the signal interference diagrams at different bandwidths. The band-
widths from (a) to (c) were 1 Hz, 10 Hz, and 100 Hz, where the abscissa is the signal sound
pressure level and the ordinate is the depth. It can be seen from the comparison of the
figures that as the bandwidth increased, the vertical fluctuation range of the sound intensity
decreased exponentially until it tended to be stable in the end.
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(a) (b) (c) 

Figure 3. Signal interferograms at different bandwidths: (a) 1 Hz, (b) 10 Hz, and (c) 100 Hz.

In summary, from the simulation results shown in Figures 1–3, it can be seen that
the signal fluctuation range was proportional to the distance between the sending and
receiving ends and was inversely proportional to the signal center frequency, bandwidth,
and modem lowering depth, which were related to Formulas (3)–(11) and were consistent
with the inferences given.

2.1.2. Analysis of Experimental Data

The bottom of the Yellow Sea is relatively flat and the sea conditions are relatively
stable in the autumn, which is suitable for sound field analysis. With a view to verify the
spatial distribution of the sound field obtained from the simulation experiments, a sound
field analysis experiment ExQD_1701 was performed in the Yellow Sea in the autumn
of 2017.

The depth of this experimental sea area was precisely 40 m. A signal-launching ship,
which used a UW350 type transmitting transducer with a working frequency range of
20 Hz–20 kHz, was used for the transmission. The transmitting transducer was cylindrical
with a diameter of 0.2 m and a length of exactly 1 m. The net weight was exactly 100 kg
with its own hoisting device. The schematic diagram of the experiment is shown in Figure 4.
The Xiangyang Hong 81 experimental ship was utilized to be the signal-receiving ship with
five sub-arrays of the same specification for signal reception with a pitch of 1 m. When the
signal-transmitting ship reached the preset position, it could transmit signals with different
frequencies. The real-time positions of the signal-transmitting ship and the signal-receiving
ship were recorded using GPS, which was used to calculate the relative distance between
the transmitting and receiving ends.

 

Figure 4. ExQD_1701 test.

1. Spatial fluctuation of the low-frequency signal field
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The former simulation experiments demonstrated that when the signal frequency
was low, the fluctuation was large. First, the experiment processed and analyzed the
low-frequency signal data below 1 kHz. During the experiment, single-frequency signals
of 95 Hz and 400 Hz were transmitted, and the sound source level of the transmitting trans-
ducer was stable. In order to summarize the spatial distribution of signals, Figures 5 and 6
display the vertical distribution of sound pressure levels for single-frequency signals of
95 Hz and 400 Hz when the relative distances between the transmitting and receiving
ends were different. The abscissa is the received sound pressure level and the ordinate is
the water depth. By comparing different distances, frequencies, and depths, the spatial
fluctuation characteristics of the signal could be summarized. When the signal frequency
was low, the sea trial results fit well with the simulation results. As for the normal wave, the
fluctuation law could be described as: the modes of the normal wave excited at different
frequencies were different. The higher the frequency was, the greater the number of modes,
and the more complicated the signal fluctuation law. This rule can be used to guide the
equipment placement of low-frequency remote UAC systems.

   
(a) (b) (c) 

Figure 5. Spatial distribution at different distances (95 Hz): (a) vertical distribution at 1 km, (b) vertical
distribution at 4 km, and (c) vertical distribution at 8 km.

 
  

(a) (b) (c) 

Figure 6. Spatial distribution at different distances (400 Hz): (a) vertical distribution at 1 km,
(b) vertical distribution at 4 km, and (c) vertical distribution at 8 km.

2. Spatial fluctuation of the high-frequency signal field

The spatial fluctuations of high-frequency signals were also analyzed. The commu-
nication frequency band was selected from 5 kHz to 20 kHz with a steady energy level
used in underwater acoustic communication experiments. The transmitting signals were
single-frequency signals with frequencies of 12 kHz and 20 kHz. The sound source level of
the transmitting transducer was stable. In order to discover the law of spatial fluctuations,
Figures 7 and 8 demonstrate the vertical distribution of the sound pressure level when
the relative distances between the sending and receiving ends were different for single-
frequency signals with frequencies of 12 kHz and 20 kHz, respectively. The abscissa in the
figure is the obtained sound pressure level and the ordinate is the water depth. Through
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the comparison of different distances, frequencies, and depths, it was discovered that when
the signal frequency was above 1 kHz, the signal wavelength was short; meanwhile, the
environment was greatly affected during the propagation, which was difficult to study
qualitatively. The farther the horizontal distance was, the larger the vertical fluctuation
range, while the deeper the equipment deployment depth, the larger the vertical fluctuation
range and the sound intensity of the near-sea surface signal was slightly lower than the
signal strength in water. With the increase in frequency, the signal fluctuation is reduced;
however, when the signal frequency was too high, i.e., the signal wavelength was short,
which was greatly affected by the scattering and reflection of surface fluctuations, and
the signal absorption loss was greater than when the frequency of the signal was low.
Therefore, a single-frequency signal appeared to have a violent spatial distribution. When
the frequency was as high as 20 kHz, there was a 25 dB intensity difference in the vertical
distribution at a horizontal distance of 8 km.

  

(a) (b) (c) 

Figure 7. Spatial distribution at different distances (12 kHz): (a) vertical distribution at 1 km,
(b) vertical distribution at 4 km, and (c) vertical distribution at 8 km.

   

(a) (b) (c) 

Figure 8. Spatial distribution at different distances (20 kHz): (a) vertical distribution at 1 km,
(b) vertical distribution at 4 km, and (c) vertical distribution at 8 km.

2.2. Analysis of the Spatial Distribution of the Noise Field

The time distribution characteristics of the noise field are mainly targeted at the
commonly used high-speed underwater acoustic communication frequency bands of
5 kHz–20 kHz. According to the sound field analysis, in addition to the spatial distribution
of the signal field due to the interference and the interface fluctuation, the influencing
factors of the spatial variation range also have the spatial distribution of the system noise
field. This study investigated the spatial distribution characteristics of the noise field in the
5 kHz–20 kHz frequency band with a general volume noise model [22]. It was assumed
that all noise sources were uniformly distributed on an infinite plane; then, the spatial
correlation coefficient of the marine environmental noise was simulated. In the ExQD_1701
experiment, the curve of the spatial correlation coefficient with respect to depth for a 10 kHz
signal for 10 h is shown in Figure 9. The black dotted line is the theoretical value given by
the general model of volume noise, and the spatial correlation of noise was small at high
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frequencies. Due to the correlation, calculations were performed between 30 array elements
at different vertical depths and the no. 1 surface array element; consequently, the spatial
correlation coefficient curve was clearly revealed. It was found that the curve matched
the theoretical value given by the volume noise model. In subsequent high-frequency
noise experimental data processing, the vertical correlation between array elements could
be ignored.

 

Figure 9. Correlation coefficient with depth (10 kHz, 10 h).

In order to discuss the spatial distribution of wind and wave noise, the environmental
noise was collected by using an array in ExQD_1701. The seabed in the experimental sea
area was approximately the same level. The water depth was 40 m and the wind speed
during the experiment was approximately 3 m/s. There were no other vessel activities
within 5 km. Figure 10a indicates the noise field distribution of the marine environment at
different depths, and Figure 10b shows the noise field distribution with the ship’s self-noise.
The no. 1 array element was an offshore array element, and the no. 30 array element was
a near-seabed array element. The ship’s self-noise had a greater impact on the frequency
band below 5 kHz, which gradually decreased with the increase in depth and slightly
fluctuated at high frequencies. Underwater acoustic communications often utilize high-
frequency bands, with an associated 5 dB of noise fluctuations. The spatial distribution
of environmental noise was not obvious and it was mainly because the surface noise
source was a surface source composed of multiple noise sources. During the propagation
process, the noise signals overlapped and neutralized each other with relatively small
spatial fluctuation.

 

(a) (b) 

Figure 10. Environmental noise and vertical distribution of ship self-noise: (a) environmental noise
and (b) ship noise.
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Figure 11 demonstrates the vertical distribution of noise at different frequencies mea-
sured using an array suspended from the side of the ship when the auxiliary ship was still
working. Compared with the noise in Figure 10b, it can be considered that the noise was
below 4 kHz. The noise in the frequency band was mainly the self-noise of the receiving
ship. Due to this frequency band, the noise had a more obvious vertical distribution at each
frequency point. As the depth increased, the noise power spectral density gradually in-
creased, and the difference in noise spectral level could accumulate to approximately 20 dB.
When the frequency was higher than 4 kHz, the noise mainly came from the surface waves,
and the surface fluctuations contributed more significantly to the high-frequency noise
field strength of 1 kHz–10 kHz. In the experiment, the array element closest to the surface
was placed about 2 m underwater. When the water depth reached 5 m, the noise variation
curve had no obvious fluctuations in the depth range covered by the hydrophone array.
Thus, after the device was placed at a certain depth, the contribution of high-frequency
noise to the fluctuation of the communication signal could be ignored.

Figure 11. Different frequency noise field intensities with depth (40 m).

According to the analysis of the experimental results, the spatial distribution of the
signal field and the noise field was basically consistent with the simulation results, and its
vertical distribution showed that the intensity of the near-sea surface signal was lower than
that of other depth signals.

3. Analysis of the Time Fluctuation of Underwater Acoustic Communication Signals

The time window of a UAC system is smaller than other systems. Therefore, this study
mainly analyzed the impact of small-scale spatial-temporal fluctuations caused by envi-
ronmental parameters, such as wind and waves, on underwater acoustic communication.
Moreover, environmental factors, such as ocean currents, tidal waves, and internal waves,
with large spatial-temporal fluctuations were not considered.

3.1. Statistics of the Time Fluctuation of Low-Frequency Signal Fields

When an acoustic signal propagates in a shallow sea channel, it also has an undulating
effect that changes over time, which corresponds to a time-varying channel in underwater
acoustic communication. In this section, based on the spatial fluctuations of the signal field,
the temporal fluctuations of the signal field were studied. The experimental ExQD_1701
data was statistically analyzed. In order to fully consider the selective frequency fading of
the signal and ignore the effect of bandwidth on the time fluctuation of the signal field, the
analysis used single-frequency signals. The time fluctuations in the low-frequency signal
field and the high-frequency signal field were examined.

1. Spatial fluctuation of the high-frequency signal field

First, we analyzed the time fluctuation of the low-frequency signal. The frequencies
of the transmitted signal were 95 Hz and 400 Hz, and the sound source level of the
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transmitted transducer was stable. Figures 12 and 13 show the spurious color maps of
the spatiotemporal distribution of the single-frequency signals (95 Hz and 400 Hz) at
different distances. The vertical axis represents the water depth; the horizontal axis is the
time when the signal was collected. With the increase in the horizontal distance between
the transmitting and receiving ends, the signal strength increased significantly with time,
which verified the conclusion of the theoretical calculations. The variation law of the
signal intensity in the vertical direction was also consistent with the previous experimental
results. When the frequency remained unchanged, the time fluctuation of the near-sea
surface signal was larger than the sea floor fluctuation with the increase of the horizontal
distance. With the increase in frequency, the number of normal wave modes of the signal
field increased and the time fluctuation became stable.

  

(a) (b) (c) 

Figure 12. Temporal and spatial distribution at different horizontal distances (95 Hz): (a) spatiotem-
poral distribution map at 1 km, (b) spatiotemporal distribution map at 4 km, and (c) spatiotemporal
distribution map at 8 km.

  

(a) (b) (c) 

Figure 13. Temporal and spatial distribution at different horizontal distances (400 Hz): (a) spatiotem-
poral distribution map at 1 km, (b) spatiotemporal distribution map at 4 km, and (c) spatiotemporal
distribution map at 8 km.

2. Statistics of the time fluctuation of high-frequency signal fields

Analyzing the time fluctuations of high-frequency signals and selecting the 5 kHz–
20 kHz communication frequency band were commonly used in underwater acoustic
communication experiments, with the transmitted single frequency signals at 12 kHz and
20 kHz being used. The sound source level of the transmitting transducer was stable and it
was the same as the processing flow of the time fluctuation of the low-frequency signal field.
Figures 14 and 15 show the spurious color maps of the spatiotemporal distribution of the
single-frequency signals (12 kHz and 20 kHz) at different distances. The abscissa represents
the time when the signal was collected, and the ordinate is the water depth, which indicates
the distribution of the hydrophones from the surface to the sea floor. With the increase
in distance, the time distribution of high-frequency signals became more pronounced,
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which showed that the channel structure stabilization time became shorter in underwater
acoustic communication. As the frequency increased, the wavelength of the acoustic wave
became shorter, the signal field became more complex under the influence of scattering and
interference caused by interface fluctuations, and the fluctuation law of single-frequency
signals appeared to be less significant.

  

(a) (b) (c) 

Figure 14. Temporal and spatial distribution at different horizontal distances (12 kHz): (a) spatiotem-
poral distribution map at 1 km, (b) spatiotemporal distribution map at 4 km, and (c) spatiotemporal
distribution map at 8 km.

  

(a) (b) (c) 

Figure 15. Temporal and spatial distribution at different horizontal distances (20 kHz): (a) spatiotem-
poral distribution map at 1 km, (b) spatiotemporal distribution map at 4 km, and (c) spatiotemporal
distribution map at 8 km.

3.2. Analysis of the Time Distribution Characteristics of Noise Fields

The time distribution characteristics of the noise fields were mainly targeted at the
commonly used high-speed underwater acoustic communication frequency bands of 5 kHz–
20 kHz. According to the foregoing, the vertical elements of the noise distribution were
weakly correlated to each other. Therefore, the array elements at 5 m, 15 m, and 25 m were
selected as research objects to study the noise time distribution in the surface, seabed, and
water column situations. In the ExQD_1701 experiment, the environmental noise data in
the experimental stage was randomly taken for 600 s, and a 1 s Hanning window was
applied to intercept the data at an overlap rate of 0.66. Therefore, a total of 1762 sample
points were obtained. Statistics of narrow-band noise distribution at different frequencies
are shown in Figure 16. In the high-frequency range, the environmental high-frequency
noise was mainly distributed in the 60 dB to 70 dB range. As the frequency increased, the
noise intensity gradually decreased; the noise intensity also gradually decreased as the
depth increased. This was found to be in accordance with the theoretical model.

In order to study the time distribution characteristics of noise further, the probability
distribution of the single-frequency noise intensity at a depth of 15 m (Figure 16) was
selected to explore the time distribution characteristics of noise.
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Figure 16. Noise distribution at different frequencies and different depths.

In Figure 17, subfigure (a) shows the time probability distribution of the 5 kHz nar-
rowband noise with a mean of 68.59 dB and a standard deviation of 5.08 dB, subfigure
(b) shows the time probability distribution of the 10 kHz narrowband noise with a mean
of 66.16 dB and a standard deviation of 5.01 dB, subfigure (c) shows the time probability
distribution of the 15 kHz narrowband noise with a mean of 65.30 dB and a standard devi-
ation of 5.10 dB, and subfigure (d) shows the 20 kHz narrowband noise time probability
distribution with a mean of 64.39 dB and a standard deviation of 4.97 dB. A comparison of
these figures demonstrated that the probability of noise intensity basically followed the
Gaussian distribution with a relativity small fluctuation on the time scale. As shown in
Figure 17, the mean decreased with increasing frequency while the standard deviation
remained stable.

  
(a) (b) 

  
(c) (d) 

Figure 17. Statistical distribution of the noise over time: (a) 5 kHz, (b) 10 kHz, (c) 15 kHz, and
(d) 20 kHz.
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According to the analyses of the above experimental results, it can be concluded that
the time distribution of the high-frequency noise field was relatively stable. The analysis
results can provide a theoretical guide and data support for the underwater acoustic
communication quality evaluation model.

4. Analysis of the Spatiotemporal Variation Range of the Signal-to-Noise Ratio in
Underwater Acoustic Communication

Based on the spatial-temporal distribution characteristics of the sound field obtained
in the previous section, the spatial-temporal variation range of the SNR was analyzed from
the experimental data. The data was selected from the Yellow Sea Acoustic Communication
Experiment ExDQ_1702. The external field experimental parameters were: water with
a depth of 15 m, communication signal frequency band of 8 kHz–16 kHz, transducer
placement with a depth of 5 m, and five arrays for each receiving array. There were
32 hydrophones in each array and the distance between the hydrophones was exactly
0.5 m, the horizontal communication distance was 3.5 km, the experimental sea state
was approximately two levels, and the vertical distribution of the entire bandwidth SNR
was counted.

Figure 18 indicates the vertical fluctuation of the SNR of different arrays. Because the
receiving array was limited by the size of the receiving ship, the relative horizontal distance
between the arrays was not large and the gap between the SNR was small. During the
underwater acoustic communication experiment, the auxiliary ship of the receiving ship
was continuously working and displayed certain random fluctuations on the surface. As
the receiving ship fluctuated up and down on the sea, the SNR of the surface array element
was significantly lower than that of the underwater array element. With the increase in
water depth, the variation range of the SNR gradually decreased and basically remained
stable after 5 m underwater.

Figure 18. Signal-to-noise ratio of different arrays as a function of depth.

Figure 19 demonstrates the statistical range of the space-time variation of the SNR of
array 5 over 31.5 s. The black hexagon indicates the mean of the SNR within the changing
range, which is in line with Figure 18. From the figure, it was relatively small and fluctuated
dramatically, which matched the trend of the spatial and temporal distributions of the
signal field and noise field of the single-frequency signal. However, the experimental
signal was further processed to cope with the slight inconsistency of the fluctuation range.
Signals with center frequencies of 9 kHz and 15 kHz and a length of 31.5 s were selected.
The sampling frequency of the system was 50 kHz and the number of sample points was
about 1,574,520. The processing results are shown in Figures 20 and 21. In these figures,
the abscissa is the SNR and the ordinate is the depth, and the plots show the variation
ranges of the SNR within the signal time of 31.5 s at different depths, with the blue point
representing the mean value. With the increase in the processing bandwidth, the spatial-
temporal variation range of the SNR was significantly reduced, and the SNR of the surface
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array elements in the vertical direction was significantly lower than that in the water array
elements, which verified the laws obtained using the theory and simulation experiments.

Figure 19. Signal-to-noise ratio fluctuation chart (fifth array).

   
(a) (b) (c) 

Figure 20. Signal-to-noise ratio vertical distribution (9 kHz): (a) bandwidth at 1 Hz, (b) bandwidth at
10 Hz, and (c) bandwidth at 500 Hz.

   
(a) (b) (c) 

Figure 21. Signal-to-noise ratio vertical distribution (15 kHz): (a) bandwidth at 1 Hz, (b) bandwidth
at 10 Hz, and (c) bandwidth at 500 Hz.

Figure 22 shows the simulation experiments performed under the fixed coding method
using the channel parameters in the ExDQ_1702 experiment and the bit error rate corre-
sponding to different signal-to-noise ratios (SNRs) and mapping methods. It can be seen
that as the SNR increased, the bit error rate decreased. When the SNR in the experiment
is less than 10 dB, the system should avoid using the 16QAM mapping method with a
bit error rate higher than 0.01 and select other mapping methods according to the actual
effective rate requirements.
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Figure 22. Bit error rate variation simulation results.

5. Conclusions

Aiming at solving problems of the serious spatiotemporal fluctuations of the signal
caused by the time-varying channel structure of the shallow sea, this study took identifying
the spatiotemporal variation range of the SNR of underwater acoustic communication
as the research goal, which was explored in the sound field from two aspects: the signal
field and the noise field. The investigation of the temporal and spatial distribution of the
signal field considered signal interference effects caused by surface reflection and scattering
and theoretically deduced the variation of signal intensity fluctuations with horizontal
distance, signal frequency, bandwidth, and deployment depth, which was further verified
through both simulations and the Yellow Sea trial. The investigation of the noise field
mainly considered the spatiotemporal distribution of high-frequency wind-induced noise
and ship noise. Through processing and analysis of the experimental data, it was found
that the time fluctuation of noise basically conformed to the Gaussian distribution, the
spatial distribution consistency was high, and the near-sea surface noise was slightly
higher than the bottom noise. Combining the analysis of the spatiotemporal distribution
characteristics of the signal field and the noise field, it was found that when the signal
frequency was high, the bandwidth was large; furthermore, when the horizontal distance
between the transceivers was small and the depth of the receiver was deep, the spatial-
temporal variation range of the SNR of the UAC system was relatively small. These
characteristics were verified using sea trial data, and the derived law will be used to guide
the parameter configuration and network protocol optimization of the UAC systems.

The correlation radius of the acoustic signal decreased with increasing frequency. The
vertical correlation radius was smaller than the horizontal correlation radius. Therefore,
in shallow sea acoustic communication, vertical arrays should be used for receiving to
enhance the SNR and improve system reliability.
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Abstract: It is important to find signals of interest (SOIs) when operating sonar systems. A threshold-
based method is generally used for SOI detection. However, it induces a high false alarm rate at a
low signal-to-noise ratio. On the other side, machine-learning-based detection is performed to obtain
more reliable detection results using abundant training data, costing intensive time and labor. We
propose a method with favorable detection performance by using a hidden Markov model (HMM)
for sequential acoustic data, which requires no separate training data. Since the detection results from
HMM are significantly affected by the random initial parameters of HMM, the genetic algorithm
(GA) is adopted to reduce the sensitivity of the initial parameters. The tuned initial parameters
from GA are used as a start point for the subsequent Baum–Welch algorithm updating the HMM
parameters. Furthermore, multiple measurements from arrays are exploited both in determining the
proper initial parameters with GA and updating the parameters with the Baum–Welch algorithm. In
contrast to the standard random selection of the initial point with single measurement, a stable initial
point setting by the GA ensures improved SOI detections with the Baum–Welch algorithm using the
multiple measurements, which are demonstrated in passive and active acoustic data. Particularly, the
proposed method shows the most confidential detection in finding weak elastic surface waves from
target, compared to existing methods such as conventional HMM.

Keywords: sonar signal detection; hidden Markov model; genetic algorithm

1. Introduction

Sonar systems with arrays comprising multiple sensors have been used to detect sig-
nals of interest (SOIs). However, various noises from vessels, submarines, and fish schools,
etc., exist in the ocean and are measured by the sensors along with the SOIs. Therefore,
detection methods are required to discriminate the desired signals from the noises.

Threshold-based detection schemes such as energy detection [1] or constant false alarm
rate (CFAR) detection [2] are generally used in finding the SOIs. In energy detection, the
energy of measured data is compared with a predefined threshold value. CFAR detection
is a scheme that uses an adaptive threshold based on the relationship between a specified
cell (sample under test) and adjacent auxiliary data. The threshold-based detections do not
require prior information regarding the marine environment and exhibit low computational
complexity. However, the detection performance is inferior in low signal-to-noise ratio
(SNR) owing to the simple decision rules for SOIs. Hence, sophisticated detection methods
using algorithms from machine learning (ML) have been proposed [3–6].

Owing to technological developments, various ML schemes have been applied in
detecting the SOIs passively or actively [3–7], which treat the SOI detection as classification
problems. To distinguish a target from a clutter in active sonar systems, a perceptual-based
signal features from the human auditory system are exploited [3]. To suppress interference
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from background noise in recognizing underwater sound signals, a denoising autoencoder
are used with random forest [4]. Furthermore, signal detection methods using various
convolution neural networks have been used actively [5–7]. Although ML-based detections
or classifications have remarkably enhanced performance, they require abundant training
data for a given task, which have time and labor costs.

A hidden Markov model (HMM), a ML algorithm, has been applied widely to speech
and text recognition with sequence data [8–11]; it estimates hidden states (or hidden
information) of samples in the sequence data by using probabilities (HMM parameters)
explaining the hidden states, which are extracted from the given data themselves. HMM
has been applied to sequential data measured by radar and sonar systems to detect the
corresponding target signals (i.e., SOIs) [12–14]. For a track-before-detection strategy in
noisy environments, HMM was used for radar target detection to avoid the usage of
threshold-based detection [12]. In bioacoustics, the vocalizations of Bryde’s whales were
automatically identified by using HMM, which enables the SOI detection even when ship
noise interfering with the whale sounds is present [13]. In [14], to enhance detection
performance in passive sonar data, a pregrouping of acoustic signals (i.e., samples are
preliminarily clustered into “signal” and “noise”) was incorporated with HMM.

In the current study, we attempt to detect SOIs in sonar data such as scattered signals
from targets with low false alarms using limited measurements. Thus, we propose an HMM-
based detection requiring no separate training data. Since the detection results from HMM
are significantly affected by random initial parameters of HMM, a genetic algorithm (GA) is
utilized to reduce the sensitivity of the initial parameters to the detection [15]. Furthermore,
multiple measurements from array are exploited in the HMM-based detection to enhance
accuracy and stability in finding the SOIs within sonar data. Section 2 presents problems in
underwater signal detection and describes the parameters in the HMM. In Section 3, the
proposed scheme using the HMM is explained comprehensively. The detection performance
of the proposed scheme is investigated using synthetic passive and real active sonar data
(Sections 4 and 5). Finally, the conclusions are provided in Section 6.

2. Problem Description

Here, an HMM-based detection scheme is proposed to detect SOIs with less false
alarms and without separate training data by exploiting sequential acoustic data with
pre-established probability models in the HMM. The conventional HMM is modified to
accommodate multiple measurements from an array, which enhance the detection accuracy
and robustness by correlated SOIs over sensors in the array.

The HMM has been widely adopted in speech and text recognition involving sequen-
tial data [8–11]. In the HMM framework, samples in the sequential data have hidden states,
which are estimated from observed signals. Sonar data can be sequenced based on the
regularity of the SOIs, and the HMM can be applied to underwater acoustic signal detection
using time-domain sonar data after quantization is performed. Two states exist in sonar
data, i.e., signal and noise states.

Figure 1 shows the structure of the HMM. The HMM (or probability models in the
HMM) can be expressed as θ = [π, A, B], where π, A, and B are the initial state distribution,
transition matrix, and emission matrix, respectively. The initial state distribution, π,
indicates the probability distribution over the states at the initial time. The states, as
time progresses, are connected by the first-order Markov chain [16], and their transitions
are represented by the transition matrix A (relevant to dotted line), whose element (i, j)
represents the probability of the state changing from the ith state at the present time to
the jth state at the next time. The probability of a specific observation at a certain state
(emission probability) is represented by emission matrix B (relevant to dashed line). The
sizes of the transition and emission matrix are M × M and M × N , respectively, when the
number of states is M and the values in sonar data are quantized with N (in the current
study, M = 2 and N = 150).
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Figure 1. The structure of the HMM. The HMM explains observations ot by using three probability
models. An initial state distribution π is the probability distribution over the states at the initial time.
The state change (marked with dotted line) is accounted for by the first-order Markov chain, and the
previous state affects the present state. An observation at a specific time appears probabilistically,
which depends on the state (marked with dashed line). HMM finds the optimal probability models
for observations (Baum–Welch algorithm), which are subsequently used to identify the hidden states
with the observations (Viterbi algorithm).

In the HMM framework, optimal probability models (also, referred to as optimal
parameters) are obtained with best explaining the observations by the Baum–Welch al-
gorithm in HMM [17] (θ∗ = argmax

θ

P(o|θ)). Then, the hidden states are revealed by the

Viterbi algorithm, which uses the estimated parameters with observations as follows [18,19]:
argmax

q
P(q|o, θ∗). From the perspective of detection, the SOIs are identified by samples

possessing the “signal” state.
During parameter estimation using the HMM, the Baum–Welch algorithm was used

to determine θ∗ from randomly selecting the initial values. However, the estimates strongly
depend on the initial values owing to local optimal points; HMM-based detection results
for the same data can be different owing to the random initial values differing along with
the applications of HMM. Hence, several studies have been conducted to determine the
appropriate initial values for the parameters [14,15,20,21]. In relevant studies pertaining to
the detection of underwater SOIs [14], k-means and pre-grouping were used to derive the
proper initial values instead of the random ones. This detection scheme is referred to as
expectation-maximization (EM)-Viterbi Algorithm (VA) as in [14]. Although the EM-VA
provides an accurate detection of SOIs in environments containing transient noise, its per-
formance degrades when ambient noise is present, as discussed in Section 4. Furthermore,
when multiple SOIs exist, SOIs having magnitudes similar to or less than the magnitude of
noise are overlooked by the EM-VA.

In the EM-VA [14], a single measurement (acoustic data at a single sensor) was used
as observation. In the sonar system, multiple measurements can be acquired by sensor
arrays. Unlike previous studies using HMM [14,22,23], here, multiple measurements were
exploited not only to determine the reliable initial values using the genetic algorithm
(GA) but also to update parameters using the Baum–Welch algorithm; these are described
comprehensively in the following section.

3. HMM Calibration and Parameter Adjustment Using Multiple Measurements

The Baum–Welch algorithm is sensitive to the initial values of the parameters, and
its estimations strongly depend on the initial values. To determine the appropriate initial
values, multiple measurements from arrays in the sonar system are used to ensure accurate
and robust SOI detection. The detection process, which involves various algorithms, is
illustrated in Figure 2. First, the initial values for the HMM, which exhibit the most effec-
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tively the observations of multiple measurements in terms of probability, are determined
using the GA (Section 3.1). Next, the parameters in the calibrated HMM are adjusted by
the Baum–Welch algorithm using multiple measurements (Section 3.2). Finally, the hidden
states are derived for the multiple measurements using the Viterbi algorithm, and they
indicate the SOIs.

Figure 2. Block diagram of detection process in hidden Markov model (HMM). Multiple measure-
ments were exploited to determine the best initial values for the HMM parameters using the genetic
algorithm. They were updated with the Baum–Welch algorithm using the multiple measurements.
Then, hidden states of the multiple measurements were revealed via the Viterbi algorithm using the
HMM parameters.

3.1. Initialization: Calibrating HMM

We used a GA, which is inspired by the natural selection process, to estimate the
initial values of the parameters. The GA is a representative scheme for solving optimiza-
tion problems, where genes (candidates for the solution) in a population at the current
generation produce genes in a population at the next generation using crossover, mutation,
and selection (evolution) to approach the solution [24]. In particular, mutation in the GA
prevents a solution from being a local optimum.

In the current study, genes in the GA are parameters with distinct values (θp
g , where

the subscript g and superscript p indicate the gene and generation numbers, respectively),
and the appropriate initial values for the measurements are determined by evolving θ

p
g

in the GA. The criterion for the appropriateness is calculated using the fitness function
Pp

g = lnP(o|θp
g), where o = [o1, ..., oT ] is observed in the time domain, ot is a quantized

acoustic signal vn, and T is the total number of observations with a signal length. P(o|θp
g) is

the likelihood function, which stochastically explains the observation based on the specified
parameters and is calculated using the forward or backward algorithm in the Baum–
Welch algorithm. In this study, the forward algorithm was adopted for the calculation
with probability P(o1, ..., ot, qt = sm|θ), which was obtained from αt(m′) = bm′(ot =
vn)∑M

m=1 αt−1(m)am,m′ . qt is the observed state at time t and is one of the state types sm (i.e.,
“signal” or “noise”; hence, M = 2); am,m′ ((m, m′) element of the transition matrix) and bm′
(ot = vn) ((m′, n) element of the emission matrix) are the probabilities of state transition
from state m to state m′ and the observation of ot = vn at state m′, respectively.
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A new gene was created for the next population by selectively using θ
p
g among the

current population; θ
p
g with a high probability was used preferentially. This process was

repeated until a terminal condition was satisfied.
The signals received at the sensor array contain the SOIs. Hence, the parameters for

the measurements are expected to be the same. The shared parameters were estimated to
increase the detection accuracy and robustness, and the fitness function for the single mea-
surement was modified to accommodate the multiple measurements with the assumption
of their stochastic independence. A product of likelihood functions for the measurements
was used for the fitness function [15], as follows:

Pp
g =

K

∑
k=1

lnP(o(k)|θp
g) (1)

The superscript k in parenthesis represents the measurement number; K represents
the total number of the measurements, which is the same as the number of sensors in the
arrays. The optimal values from the GA using (1) are the initial values for the parameter in
the HMM, which is referred to as the calibrated HMM herein.

3.2. Parameter Adjustment Using Baum–Welch Algorithm with Multiple Measurements

Optimal parameters (θ∗) were derived using the Baum–Welch algorithm [17], which
uses the parameters from GA (θ0) as a starting point. The Baum–Welch algorithm has an
iterative loop composed of an expectation (E) step and a maximization (M) step. Hidden
variables from the E-step are used to update old parameters in the M-step, and they are
denoted as follows [17]:

γt = P(qt = sm|o, θq), (2)

ξt(m, m′) = P(qt = sm, qt+1 = sm′ |o, θq), (3)

where θq is the parameter after q iterations; the superscript indicates the iteration number.
γt and ξt are the probabilities of state sm at time t, and the joint states of sm at time t and
sm′ at time t + 1 for o and θq, respectively.

When applying the Baum–Welch algorithm with a single measurement, the parameters
are updated using the hidden variables as follows [17]:

π
q+1
m = γ1(m), 1 ≤ m ≤ M (4)

aq+1
m,m′ =

∑T−1
t=1 ξt(m, m′)
∑T−1

t=1 γt(m)
, 1 ≤ m ≤ M, 1 ≤ m′ ≤ M, (5)

bq+1
m (vn) =

∑T
t=1 Iot=vn γt(m)

∑T
t=1 γt(m)

, 1 ≤ m ≤ M, 1 ≤ n ≤ N, (6)

where π
q+1
m , aq+1

m,m′ , and bq+1
m (vn) are elements of the initial state distribution, transition

matrix, and emission matrix at q + 1 iterations, respectively. Iot=vn is an indicator function,
which equals one when ot = vn. Otherwise, it is zero. T is the signal length of observation
(or measurement) o. The initial state distribution of (4) is obtained from γ1. The transition
probability of (5) is a conditional probability that accounts for the state changing from the
mth state at the present time to the m′th state at the next time. It is the ratio of the sum of
joint probabilities of sm at time t and sm′ at time t+ 1 to the sum of probabilities of sm at time
t; the sums are conducted in the time domain. The emission probability of (6) conforms
to its definition (i.e., the probability of a specific observation quantity vn at state sm) by
counting γt(m) with the observation ot matching vn among all γt(m). Equations (2)–(6) are
used repeatedly until the parameters converge or the iteration reaches a predefined number.

117



Sensors 2022, 22, 5088

To exploit the commonality (i.e., the shared parameters) of the multiple measurements
from the array, the parameters are updated during the iterations of the Baum–Welch
algorithm as follows [17]:

π
q+1
m =

1
K

K

∑
k=1

γ
(k)
1 (m), 1 ≤ m ≤ M (7)

aq+1
m,m′ =

∑K
k=1 ∑T(k)−1

t=1 ξ
(k)
t (m, m′)

∑K
k=1 ∑T(k)−1

t=1 γ
(k)
t (m)

, 1 ≤ m ≤ M, 1 ≤ m′ ≤ M, (8)

bq+1
m (vn) =

∑K
k=1 ∑T(k)

t=1 Io(k)t =vn
γ
(k)
t (m)

∑K
k=1 ∑T(k)

t=1 γ
(k)
t (m)

, 1 ≤ m ≤ M, 1 ≤ n ≤ N, (9)

Hidden variables γ
(k)
t and ξ

(k)
t are calculated using the kth measurement o(k) in the E-step;

T(k) is the signal length of o(k) and is set as a constant of T in the current study. Equations
(7)–(9) are obtained by modifying (4)–(6) with an additional summation over the spatial
domain based on multiple measurements by the array. The initial state distribution of
(7) is the average of γ

(k)
1 over the spatial domain. Similar to (5) and (6), the transition

probability of (8) is the ratio of the sum of the joint probabilities ξ
(k)
t (m, m′) and the sum of

the corresponding marginal probabilities γ
(k)
t (m); the sums are conducted in the space and

time domains. The emission probability of (9) is calculated by counting γ
(k)
t (m), with the

observation ot matching vn among γ
(k)
t (m).

Multiple measurements from the array are beneficial to the HMM because they provide
additional samples that are in proportion to the number of sensors for estimating the
conditional probabilities, as shown in (7)–(9). The probabilities from rich data are more
reliable and result in stable and accurate signal detections.

Next, the hidden states for each measurement are revealed using the Viterbi algo-
rithm [18,19], based on observations as well as shared parameters θ∗ from the Baum–Welch
algorithm. ŝ(k), which comprises hidden states as time progresses at the kth measurement,
is derived using the Viterbi algorithm by maximizing P(q(k) = s(k)|o(k), θ∗); it indicates the
SOIs in the measurement. The suggested process is abbreviated as the GA-HMM.

Although the parameters can be determined using the GA or Baum–Welch algorithm
separately, the two optimization schemes are used sequentially in SOI detection for a
superior estimation of parameters; the GA derives an unbiased initial point for the Baum–
Welch algorithm (Figure 3a), and a desired optimal point is subsequently determined from
the initial point (Figure 3b). The detection performance afforded by the Baum–Welch
algorithm alone is sensitive to the random initial values of the parameter (or random initial
point), which are updated consecutively using the Hill-Climbing [25,26] and hence can fall
into a local optimum point next the neighboring random initial point. Using only the GA
incurs a high computational cost for parameter convergence. Furthermore, noise hinders
the GA from converging near global optimal points. The parameters cannot converge even
after sufficient generations; hence, the detection performance based on the GA deteriorates.
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Figure 3. Parameters in HMM evaluated via sequential usage of GA and Baum–Welch algorithm:
(a) GA yielded unbiased initial point for Baum–Welch algorithm in subsequent stage; (b) Baum–Welch
algorithm yielded global optimal point from unbiased initial point.

4. Analysis of GA-HMM Using Synthetic Data

The detection performance of the GA-HMM was analyzed by comparing its detection
results with those of other schemes. The effects of the fine initial point from the GA were
demonstrated with synthetic data.

4.1. Numerical Environment

To analyze the GA-HMM, synthetic data were generated while considering the acoustic
signals measured using the sonar systems. Each synthetic datum with a signal length of 0.3 s
was discretized with a sampling frequency of 500 Hz and contained 150 samples (T = 150).
Here, the SOI in the synthetic data was a 50 Hz three-cycle sine wave comprising 30 samples,
and it was contaminated by additive white Gaussian noise (Figure 4a). Although the
starting point of the SOI did not affect the detection performance, the 50th sample of
the synthetic data was used as the starting point to ease the visual inspection of the
detection results.
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Figure 4. (a) Representative example of synthetic data with SNR of 8 dB. Detection results from
(b) EM-VA, (c) single-measurement Random-HMM, (d) single-measurement GA-HMM, (e) multiple-
measurement Random-HMM, and (f) multiple-measurement GA-HMM. The Interval for SOI is indicated
by vertical dashed lines. Symbols “o” and “x” represent “signal” and “noise” states, respectively.

Noise with various magnitudes were added to the clean synthetic to investigate the
detection performance according to SNRs. Additionally, different numbers of the synthetic
data were used for the detection to demonstrate properties of multiple measurements in
finding the SOI.

In the current study, an observation value of HMM is an absolute value of the acoustic
signal quantized with uniform intervals of 150 (N = 150) after normalization with its
absolute maximum. To obtain the fine initial point using the GA, 200 randomly gener-
ated parameters were used as genes in the first-generation population. A score for the
appropriateness was calculated for the genes using the fitness function presented in (1),
and the genes with high scores had a high probability of being selected for generating the
next genes with crossover. The probability of mutation was set to 0.01. The most feasible
parameter after 10 generations (p = 10) was used for the fine initial point. In the GA,
the transition probability between the same (or different) states had a lower (or upper)
bound of 0.5, owing to rare transitions between different states, which occurred at the
50th (from noise to signal) and 80th samples (from signal to noise) among 150 samples in
the simulation.

Subsequently, the Baum–Welch algorithm commenced from the fine initial points and
terminated when the parameters converged or the iteration reached a predefined number
(in this study, Q = 500).

The Viterbi algorithm, which is applied to the sequential samples in the observations
with estimated parameters, implies the states at the samples with a value of 0 or 1 (M = 2).
The variance of samples with the same state was calculated. The state with a higher (or
lower) variance was assigned to the “signal” state (or “noise” state) as in [14]; here, samples
with values of 0 and 1 correspond to the “noise” and “signal” states, respectively. Quantities
for the hyperparameters in the GA-HMM, including the quantization number and upper
and lower bounds, were determined empirically.
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4.2. Detection Performance Analysis of GA-HMM

Figure 4 shows representative examples of detection results obtained by the GA-
HMM, EM-VA, and Random-HMM; the HMM using a random initial point for the Baum–
Welch algorithm is referred to as the Random-HMM here in. The SOI is indicated by
vertical dashed lines. The SOI was detected under a harsh condition without using a
matched filter enhancing the SNR (passive sonar signal detection). Noise comparable to
the SOI (SNR = 8 dB) restricts the use of threshold-based detection schemes. Therefore,
sophisticated schemes were used. In this study, the GA-HMM and Random-HMM were
applied to perform detections using single or multiple measurements based on (1) and
(7)-(9). Meanwhile, the EM-VA used a single measurement to identify the SOI because it
cannot accommodate multiple measurements [14].

When using the EM-VA, most of the samples in the synthetic data were identified
as the SOI by noise, and false alarms occurred, as shown in Figure 4b. Figure 4c,d show
the detection results obtained from the Random-HMM and GA-HMM based on a single
measurement. Many noise samples were misclassified as SOIs, increasing false alarm rates
(FAR) owing to some inappropriate initial values in Random-HMM. This problem was
mitigated using the GA-HMM, which determined the parameters using the fine initial
point. However, considerable false alarms remained. Therefore, multiple measurements
comprising 30 synthetic data were used, as shown in Figure 4e,f, to reduce false alarms. As
a result, the Random-HMM using multiple measurements achieved significantly reduced
the FAR of the SOI sample. On the other hand, the GA-HMM using multiple measurements
exhibited the highest recall with less false alarms, thereby demonstrating its superior
detection performance compared with the considered schemes.

Table 1 summarizes the recall, FAR, and computation time of the schemes based on the
average detection results for 100 trials at a fixed SNR of 8dB. In this study, recall is defined
based on the ratio of the number of correctly identified SOI samples to the total number
of SOI samples, and the FAR is defined based on the ratio of the number of misidentified
noise samples to the total number of noise samples. Although the EM-VA exhibited a high
recall, it incorrectly identified noise persistently. In particular, the noise near the SOI tended
to be identified as a “signal”, and it resulted in the highest FAR as shown in Figure 4b.
The Random-HMM using single measurement overlooks the SOI and misclassified noise
because of unstable detection from the random initial point; thus, it resulted in an inferior
recall and FAR. While these problems were alleviated using the single-measurement GA-
HMM, it still exhibited a considerable FAR. Therefore, all single-measurement schemes
exhibited unsatisfactory detection performance owing to excessive false alarms. Noise
could not be distinguished from the SOI, thereby resulting in high FARs in the scarce
measurement. Therefore, multiple measurements were used to mitigate these problems.

Table 1. Recall, false alarm rates, and computation time of the investigated schemes.

Scheme Recall False Alarm Rate Computation Time

EM-VA (single) 0.86 0.63 0.83 s
Random-HMM (single) 0.60 0.48 0.08 s

GA-HMM (single) 0.65 0.43 6.76 s
Random-HMM (multiple) 0.69 0.27 11.02 s

GA-HMM (multiple) 0.88 0.06 12.10 s

The considered schemes were implemented at a computer with an intel(R) Core
(TM) i9-9900K CPU, and the corresponding computational times were measured (Table 1).
Although the proposed scheme showed the hugest computational burden, it can be applied
to acoustic measurements during experiments and detect SOIs in semi-real-time, owing to
its computational time in the order of 10 s.

The multiple-measurement Random-HMM exhibited improved performance in terms
of both recall and FAR (moderate recall with significantly reduced FAR) because it exploited
the consistency of the SOI in the multiple measurements when updating the parameters
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and was less affected by erratic noise. Detection performance was significantly improved
by using multiple measurements to determine better initial points with GA and update
parameters with the Baum–Welch algorithm. As a result, the multiple-measurement GA-
HMM exhibited the highest recall and lowest FAR, indicating that most of the samples
were identified correctly.

To investigate the detection performance of the schemes for various noise magnitudes,
synthetic data with various SNRs were generated. The recalls and FARs from schemes
were displayed according to the SNRs, as in Figure 5, where they were averaged over
100 trials at each SNR. At low SNR, EM-VA had high recall and FAR, and most of samples
were identified as “signal”. With the increment in the SNR, the false alarm significantly
reduced with lower recall by overlooking SOI samples more frequently. The other schemes
using single measurement resulted in increased recalls and decreased FARs as the SNR
increased. In particular, the initial point obtained using the GA improved the single-
measurement performance, which also improved as the SNR increased. The schemes based
on single measurement could not provide reliable detections (even at high SNRs) because
of their insufficient recalls (EM-VA and Random-HMM) or high FARs (GA-HMM and
Random-HMM). As shown previously in Figure 4, the multiple measurements improved
the detection performance by evaluating the conditional probabilities in (7)–(9) more
confidently. The recall (or FAR) of the multiple-measurement Random-HMM improved
gradually as the SNR increased and reached 0.75 (or approximately 0.2) at a high SNR
of 13. The detection performance improved considerably by the multiple-measurement
GA-HMM, whose classification accuracy was accelerated by the increase in the SNR and
became almost perfect at the appropriate SNR. Additional methods for obtaining fine initial
points such as the GA are important in HMM-based detection because the initial points
significantly affect the parameter estimation in the Baum–Welch algorithm of HMM.

Figure 5. Detection performance of scheme according to SNRs: (a) Recall; (b) FAR. Multiple measure-
ments consist of 30 synthetic data.

Figure 6 shows the detection results from the Random-HMM and GA-HMM ana-
lyzed based on the measurement number (sensor number in array) at a fixed SNR of 8 dB.
Although their performances improved in proportion to the measurement number, the GA-
HMM with a fine initial point exhibited superior accuracy in terms of detection regardless
of the measurement number. The GA-HMM exploited multiple measurements more effec-
tively than the Random-HMM because it used them in the Baum–Welch-algorithm-based
update as well as the GA-based initial point identification. The performance differences
increased until the measurement number reached 30. Despite the slow performance en-
hancement after 30 measurements, the multiple measurements afforded accurate and robust
SOI detection.

122



Sensors 2022, 22, 5088

Figure 6. Detection Performance of scheme according to measurement number at fixed SNR of 8 dB:
(a) Recall; (b) FAR.

5. Application of GA-HMM to Measured Acoustic Data

The feasibility of the multiple-measurement GA-HMM was investigated by analyzing
acoustic data from a water tank experiment, which included intense specular echoes and
weak elastic waves from shell targets (SOIs). The detection results for the real data were
compared with those obtained using the EM-VA and multiple-measurement Random-HMM.

5.1. Experimental Environment

An experiment for target scattering was conducted in a water tank with size of 35 m
(length) × 20 m (width) × 9 m (depth). A simple illustration of the water tank is shown in
Figure 7a, and its details are provided comprehensively in [27]. A 1 s long linear frequency-
modulated pulse signal with a bandwidth between 0.5 and 25 kHz from a transducer
impinged on the cylindrical shell target, and the scattered signal from the target was
measured using two hydrophones at different water depths (referred to as R1 and R2).
After applying a matched filter to the measured signals (pulse compression), a specific
time period of 1.5 ms, including the returns from the target (intense specular echo and two
subsequent weak elastic surface waves) was selected, as illustrated in Figure 7b, and the
corresponding observation size T was 150, with a sampling frequency of 100 kHz.

Figure 7. (a) Experimental environment; transmission signals are scattered by cylindrical shell and
are received by two receivers at different water depths. (b) Portion of acoustic signals at two receivers
after pulse compression (R1 and R2), which include intensive specular echoes and weak elastic
surface waves.
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The specular echoes from two measurements exhibited similar amplitudes and arrival
times (approximately 0.5 ms) and were insensitive to the depth difference. The elastic
waves, which exhibited distinct circumferential paths on the cylinder surface, were not
consistent with the measurements in terms of amplitudes and time delays. A slight gap
existed between the first elastic wave (approximately 0.8 ms) and the specular echo in
the R1 measurement. On the other hand, the first elastic wave (approximately 0.6 ms)
was immediately behind the specular echo and exhibited a small amplitude in the R2
measurement. The arrival times were confirmed by comparing the measured data with the
simulated data based on the same environment [27]. The second elastic waves in the R1
and R2 measurements arrived at approximately 1.3 and 1.5 ms, respectively. The detection
performance of the schemes was analyzed in terms of the identification of weak elastic
waves, as will be described in the following subsection.

5.2. Detection Results of GA-HMM for Measured Acoustic Signals

Figure 8 shows the detection results from the EM-VA, the multiple-measurement
Random-HMM, and the multiple-measurement GA-HMM. While the EM-VA was applied
to the measurements individually, the Random-HMM and GA-HMM detected the SOIs
after the shared parameters over the measurements were estimated. In the EM-VA, k-
means and pre-grouping were applied to evaluate the initial values, and obtain a consistent
detection result for the same data. However, although the GA-HMM is less affected by
the random initial value used in GA, the detection of the GA- and Random-HMM varies
depending on the trials, even if the same data are used. Hence, the Random–HMM and
GA-HMM were applied to the measurements repeatedly, and the average of 100 detection
results were used. The value for the state of a certain sample in the measurements was
between 0 and 1, and a sample with a higher (or lower) number was likely to be the signal
(or noise). In this study, samples exhibiting values exceeding 0.7 and less than 0.3 were
classified as “signal” and “noise”, respectively. The remaining samples exhibiting values
between 0.3 and 0.7 were neither “signal” nor “noise” and were referred to as “unclear
samples”.

The EM-VA detected the specular echoes without unclear samples owing to the con-
sistent estimation, whereas it overlooked the weak elastic waves in both measurements.
Furthermore, the elastic waves having similar magnitudes with noise made the Random-
HMM using multiple measurements determine most samples as unclear samples, except
for some samples within the specular echoes, and it was detrimental to identifying the
SOIs. The GA-HMM using multiple measurements also suffered from detecting the weak
elastic waves. Particularly, the second elastic wave in the R2 measurement was misiden-
tified as “noise”. In the water tank experiment, acoustic signals were measured by two
hydrophones, and thus sparse measurements were used for the detection, which resulted
in the diminished detection performance, compared to those using the synthetic data. The
performance reduction could be mitigated by using additional measurements, which were
unavailable in the current study. However, the multiple-measurement GA-HMM showed
the best performance among the considered schemes. It significantly reduced the unclear
samples and detected the specular echoes and elastic waves most confidently; even unclear
samples locating between noise provided clues for the SOIs (e.g., the first elastic wave in
R2 measurement).

Among the considered schemes, the GA-HMM exhibited the best signal detection and
false alarm reduction in both the synthetic and measured data. Hence, the GA-HMM is
applicable to sonar signal detection when ML-based schemes are unavailable because of
inadequate training data.
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Figure 8. Detection results for signals measured by two receivers (R1 and R2). (a) Single-measurement
detection result of EM-VA for R1; (b) single-measurement detection result of EM-VA for R2; (c) average
detection result of multiple-measurement Random-HMM for R1; (d) average detection result of
multiple-measurement Random-HMM for R2; (e) average detection result of multiple-measurement
GA-HMM for R1; (f) average detection result of multiple-measurement GA-HMM for R2. Averaged
values of the states from multiple-measurement Random-HMM and multiple-measurement GA-
HMM are between 0 and 1. Samples exhibiting values exceeding 0.7 and less than 0.3 were classified
as “signal” and “noise,” respectively. The remaining samples exhibiting values between 0.3 and 0.7
were “unclear samples”. Symbols of “o”, “x”, and “�” represent “signal”, “noise”, and “unclear
samples,” respectively.

6. Conclusions

We proposed a novel HMM-based detection method to accurately identify signals
with a low FAR without requiring training data. However, the Baum–Welch algorithm
for parameter estimation in the HMM is sensitive to the initial point and the problem of
falling into the local optimum point often occur because of a random initial point. The GA
provided a proper initial point for obtaining a global optimal point and determined the
appropriate parameters by using the Baum–Welch algorithm with the initial point.

Furthermore, by using multiple measurements both in deriving the initial point with
GA and updating the parameters with Baum–Welch algorithm, SOIs are detected more
accurately and reliably; GA and multiple measurements improve the stability and accuracy
of SOI detection, respectively. Thus, the multiple-measurement GA-HMM displayed supe-
rior performance in passive and active acoustic data, which are from simulation and real
measurements, respectively. The detection results are compared with those from other de-
tection schemes such as EM-VA and Random-HMM. Particularly, inconsistent and unclear
detections from conventional HMM (single-measurement Random-HMM) are significantly
alleviated by the multiple-measurement GA-HMM at the cost of computational complexity.
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Abstract: To address the data storage, management, analysis, and mining of ship targets, the object-
oriented method was employed to design the overall structure and functional modules of a ship
trajectory data management and analysis system (STDMAS). This paper elaborates the detailed design
and technical information of the system’s logical structure, module composition, physical deployment,
and main functional modules such as database management, trajectory analysis, trajectory mining,
and situation analysis. A ship identification method based on the motion features was put forward.
With the method, ship trajectory was first partitioned into sub-trajectories in various behavioral
patterns, and effective motion features were then extracted. Machine learning algorithms were
utilized for training and testing to identify many types of ships. STDMAS implements such functions
as database management, trajectory analysis, historical situation review, and ship identification and
outlier detection based on trajectory classification. STDMAS can satisfy the practical needs for the
data management, analysis, and mining of maritime targets because it is easy to apply, maintain,
and expand.

Keywords: AIS; ship trajectory; data analysis; system design; trajectory classification

1. Introduction

China faces an increasing demand for marine resources and ocean space along with
economic and social development, bringing a variety of practical challenges to its maritime
regulation and security. In the maritime regulation field, it has become more and more
difficult to supervise and regulate the ships engaging in illegal fishing and maritime
smuggling because these ships evade detection [1]. In the military and national security
field, China’s national defense and military security is severely threatened by military
vessels in disguise, including survey ships and electronic reconnaissance ships that some
countries sent to deliberately perform illegal activities such as seabed and hydrological
surveying and mapping and military reconnaissance in China’s offshore waters [2]. In
the nontraditional maritime security field, China faces rampant criminal activities on its
shipping routes across the South China Sea and the Strait of Malacca, etc., and the passing
ships are also exposed to the serious threat posed by pirates, armed hijacking at sea, and
maritime terrorism. Therefore, implementing an accurate classification of unknown ships,
the effective identification of suspected ships, and the timely detection of ships doing
abnormal activity is of great significance to achieving effective maritime regulation and
defending maritime security [3].

Apart from further strengthening the maritime military forces and increasing patrols
and law enforcement efforts, “soft methods” must also be employed to cope with these
challenges, e.g., improving the automatic identification system (AIS) receiving stations
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and radar surveillance stations [3]. The data analysis in AIS can be conducted to dig out
some valuable information from the spatial and temporal ship trajectory data that are
constantly accumulated. Computers are able to automatically learn the regular movement
and behavioral patterns of ships [2]. In this way, the analysis can assist maritime supervisors
and military commanders in rapidly locating any suspected and abnormal target based on
the massive quantities of information on ship trajectory. This analysis is then combined
with other detection means to comprehensively judge the actual identity of suspected and
abnormal maritime targets and their purposes.

In recent years, attention has been focused on the classification and identification
of moving targets using data mining technology and AIS trajectory data. Reference [1]
studied temporal and spatial data mining algorithms, and illustrated the design and im-
plementation of a moving object activity pattern recognition system. The system utilized
methods as data cleaning, data interpolation, and compression to preliminarily process
the original trajectory data. Subsequently, a trajectory clustering algorithm was designed
to realize the identification and classification of similar motion modes. Nevertheless, it
overlooked the influence of time on the behavioral characteristics of ships, so that it was
not applicable to the classification and identification of long-duration ships. Reference [2]
put forward a ship behavioral pattern recognition method based on machine learning. In
this method, AIS trajectory data were segmented to generate sub-trajectories for dimension
reduction and visualization of data. Subsequently, sub-trajectories were clustered using the
spectral clustering algorithm to recognize the behavioral pattern of ships. In reference [3],
a new port ship classification method based on behavioral clustering was proposed to
first conduct behavioral clustering of ships in a port and then extract the clustering char-
acteristics. The ships were then classified into different behavioral clusters based on the
ship features. The proposed method helped resolve the classification and identification of
ships in the port, but was not applicable for ships sailing at sea. Reference [4] presented a
ship classification model based on a graph neural network (GNN). The trajectory features
extracted with the model contained such temporal and spatial features as location, distance,
and speed. Additionally, a topologic correlation network was constructed to effectively
extract the spatial features for ship classification and identification. Nevertheless, it did not
consider the intrinsic differences between different types of moving objects.

This paper takes the AIS as a fundamental platform to design and develop a ship tra-
jectory data management and analysis system (STDMAS) with various functions following
the trajectory data management and analysis method. A ship identification method based
on the motion features was put forward. With the method, ship trajectory was first parti-
tioned into sub-trajectories in various behavioral patterns, and effective motion features
were then extracted. Machine learning algorithms were utilized for training and testing to
identify many types of ships. By addressing the practical needs of ship management and
regulation, STDMAS can help realize the effective management of ship trajectory data, so as
to effectively support and safeguard China’s maritime management and maritime security.

2. Demand and Functional Analysis

The main tasks of STDMAS include managing the storage of ship trajectory data
from various sources to provide protection service for the historical data on spatial and
temporal ship trajectory; assessing and analyzing the quality of trajectory data from various
sources to provide the data support for evaluating the equipment performance based on the
collected ship target trajectory data; and analyzing and mining the information on the hot
spots and situation regularity in the waters around China to provide the technical support
for the analysis and decision making in maritime supervision and management [5,6]. It can
also analyze the navigational characteristics, pattern, and regularity of ships to overcome
the impossible identification of many targets at sea and provide the basis for maritime
administration and military commanders in the selection and tracking of key targets among
many unknown ships [7].
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STDMAS has five modules: database management module, trajectory analysis mod-
ule, trajectory mining module, situation analysis module, and configuration management
module. Among them, the database management module can be further divided into three
sub-modules including original maritime information data management, trajectory data
management, and geographical information data management. The trajectory analysis
module is further divided into two sub-modules: situation review analysis and trajec-
tory quality assessment [8]. The trajectory mining module is further divided into three
sub-modules, including target identification, ship navigational pattern detection, and ship
outlier detection. The situation analysis module is further divided into two sub-modules,
including ship activity statistical analysis and ship activity hot spots. The system con-
figuration management module is further segmented into two sub-modules, i.e., system
configuration and user authority management. The main functional modules of STDMAS
are presented in Figure 1.

Figure 1. Main functional modules of STDMAS.

3. System Design

3.1. Overall Architecture

The logical structure of STDMAS is designed as shown in Figure 2. In general, the
structure is divided into three levels, i.e., the data level, service level, and presentation level.
The data level is mainly responsible for the storage, management, and maintenance of
massive amounts of ship trajectory data, and it transmits the data to the service level. At the
service level, the maritime data are sorted out and processed to remove invalid redundant
data. Subsequently, a variety of algorithms are employed to obtain the regularity, pattern,
and knowledge of ship navigation, which are directly provided to the presentation level or
stored in the dataset. The presentation level allows for human-computer interaction so that
a user request for computation service is sent to the service level to obtain the abstract data.
After that, the abstract data are presented to the user in graphical form [9,10].

Data level: As the fundamental database of STDMAS, this level is mainly responsible
for cleaning, filtering, and converting the massive multi-source heterogeneous data of
maritime targets. Subsequently, it puts the maritime data into storage in a unified format
and provides the corresponding interface for data management, maintenance, and query.
For this level, attention is mainly paid to the marine geospatial representation model,
trajectory data representation model, massive trajectory fast storage method, and fast
temporal and spatial query method, etc.
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Figure 2. Logical structure diagram of STDMAS.

Service level: As the business center of STDMAS, this level is responsible for the
central computation service of trajectory data. It involves three modules, i.e., trajectory
analysis, trajectory mining, and online analysis processing. It implements such functions as
ship historical trajectory review and replay, data quality assessment of various information
sources, ship identification, ship navigational regularity mining, ship outlier detection, and
situation regularity mining in the waters around China [11].

Presentation level: This level is responsible for presenting the human-computer inter-
action operations and the results of data analysis. After borrowing the data presentation
methods from other similar platforms and soliciting opinions from maritime information
supervision users, the GIS display technique and graphic user interface technique are
comprehensively applied to present the results of trajectory data computation and analysis
to users in the form of maps, diagrams, and data reports.

3.2. Technical Route

For the design and development of STDMAS, the technical route is determined ac-
cording to the requirements for system construction and functions. It also ensures that the
system is easy to expand and maintain.

(1) The object-oriented method is employed to design the system. The unified modeling
language UML is taken as the analysis tool to enhance the reuse rate of code.

(2) The system adopts the C/S architecture based on the Visual Studio 2013.NET devel-
opment environment. It is developed with the C# programming language that is
absolutely object-oriented.

(3) The GIS spatial display module is developed using SharpMap. As a completely open
source and lightweight GIS rendering tool, SharpMap offers a variety of underlying
function interfaces.

(4) The database is the open source object-relational database PostgreSQL with the Post-
GIS spatial module plug-in. Additionally, Npgsql dynamic link library is employed
to connect the system with the database [12,13].
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3.3. Physical Deployment

The physical deployment of STDMAS, as shown in Figure 3, involves a data storage
cluster, a computation service center, clients, and a network.

(1) The data storage cluster is the foundation of the entire system. The data from different
information sources have different security levels. Therefore, physical separation is
ensured in the storage of the maritime data from different sources to guarantee the
absolute security and control of the data. For the efficient, stable, and expandable
management of data storage, IP-SAN two-layer data storage architecture is employed,
and the data storage disk array supports convenient future expansion. The storage
capacity is 100 T.

(2) The computation service center is mainly composed of a switch, a router, a computing
server, and a management server. The management server is responsible for system
configuration and user authority management. The computing server is connected
by high speed Ethernet to the data storage cluster. It allows querying and sorting
of the maritime data and other operations through the storage server in the data
storage cluster. In this way, it can fulfill such functions as maritime and air situation
data loading management, storage management, data query, system review analysis,
trajectory mining, and situation analysis. Through the client, a user can send a data
analysis request to the computation service center. The computing server can then
extract the data from the data storage cluster for computation, and transmit the
computation results to the client [14].

(3) A client is a computer for any maritime data management user or common user in the
local area network. Maritime data users can send a service request through a client to
the computation service center, and obtain the corresponding trajectory data, graphic
reports, or other views.

(4) The network in the system is divided into three parts, i.e., the part in the data storage
cluster, the part in the computation service center, and the part for interaction between
the computation service center and the client user. After comprehensively consider-
ing the needs for functions and the construction cost, optical fiber connection was
provided in the data storage cluster (between the storage server and the storage disk
array), whereas the Gigabit Ethernet was used in the computation service center [15].
A 100 m local area network is employed to connect the computation service center
with the clients.

Figure 3. Physical deployment diagram of STDMAS.
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4. Design of Functional Modules

4.1. Database Management Module

The database management module provides the basic data for the upper-layer services
such as trajectory data analysis and mining [16]. The class diagram for the UML design of
the module is presented in Figure 4. In the diagram, the GUI class of STDMAS represents
the overall graphical user interface of the system. It can be used to call the graphical
user interface of the database management module, i.e., the DatabaseManagerGUI class.
The DatabaseManagerGUI class can call the functional sub-modules of the database man-
agement module, i.e., original maritime data management (OriginalDataManager class),
trajectory data management (TrajDataManager class), and geographical information data
management (GISDataManager class) [17].

Figure 4. Class diagram of the database management module.

The OriginalDataManger class implements the storage, query, deletion, and other
management services of original maritime information data. The class mainly contains
the object dbConfig indicating the database connection configuration, the object fileName
indicating the file name of original maritime information data files, and the object orig-
inalData indicating the storage of original data. Among the methods used in the class,
ReadOriginalData() is responsible for reading the original maritime data of different for-
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mats from various sources and depends on the LogFileModel class representing the reading
of files; PrepareData() is used for the cleaning, format conversion, and other operations
of the original maritime data after being read and relies on the OriginalDataFormat class
for the unified format; Write2OriDB() implements the storage of the original maritime
data and depends on the DatabaseModel class for realizing the basic database services.
Moreover, the OriginalDataManger class can also, upon the user’s request, call the methods
Update2OriDB(), QueryFromOriDB(), and DeleteFromOriDB() for the update, query, and
deletion in the original maritime database.

The TrajDataManager class implements the storage, query, deletion, and other man-
agement services of trajectory data. The class mainly consists of the object dbConfig
indicating the database connection configuration, the objects timeRange and spatialRange
indicating the time and spatial range, respectively, selected by a user, the object trajData
saving the constructed trajectory data, and other objects such as movingObject, movingTra-
jectory, and movingSegment. Among them, the objects movingObject, movingTrajectory,
and movingSegment have their type of data depending on the MovingObject, Trajectory
and Segment classes for the trajectory data model. Among the methods for the TrajData-
Manager class, GetOriginalData() is used to extract all the original data in the time and
spatial ranges given by the user from the original maritime database; TrajPrepare() al-
lows reconstructing the trajectory with all the trajectory data of a target, and IsValueble()
is then employed to judge the validity of the trajectory, remove the invalid points, and
smooth the trajectory; ConstructObject(), ConstructTrajectory(), and ConstructSegment()
are used to construct the trajectory data model designed in this paper; Write2TrajDB(),
Update2TrajDB(), QueryFromTrajDB(), and DeleteFromTrajDB() can store, update, query,
and delete the data in the trajectory database upon a user’s request. Like those in the
OriginalDataManger class, these methods also rely on the DatabaseModel class [18].

The GISDataManager class implements the storage, query, deletion, and other man-
agement services of geographical information data. The class is mainly composed of the
object dbConfig indicating the database connection configuration, and the object gisData
indicating the storage of geographical information data. In the class, readGisFile() is
used to read the geographical information data, and the methods ConstructSeaAreas(),
ConstructGrids(), and ConstructCells() are responsible for converting the geographical in-
formation data into the spatial grid model. The three methods rely on the SeaArea class, the
Grid class, and the Cell class, respectively. The methods Write2GisDB(), Update2GisDB(),
QueryFromGisDB(), and DeleteFromGisDB() can implement the storage, update, query,
and deletion in the geographical information database upon a user’s request. Similarly,
these methods are also dependent on the DatabaseModel model [19].

4.2. Trajectory Analysis Module

The class diagram of the trajectory analysis module is shown in Figure 5. In the
diagram, the TrajAnalysisGUI class represents the graphical user interface of the trajectory
analysis module. It can also be called by virtue of the STDMAS GUI class. The graphical
user interface (TrajAnalysisGUI) of the trajectory analysis module can be also used to call
two functional sub-modules, i.e., situation review analysis (the SituationAnalysis class)
and trajectory quality assessment (the TrajQualityAssessment class).

The SituationAnalysis class mainly implements such functions as querying all the
maritime data in the time and spatial ranges given by a user, performing the review,
replay, and analysis of maritime situation, creating the sequence of events for the sea
and air situation in the corresponding process, and reproducing the maritime situation
evolution process of missions and events in the corresponding time and spatial ranges. The
SituationAnalysis class contains the object dbConfig indicating the database configuration,
the objects spatialRange and timeRange indicating the time and spatial ranges selected by
a user, the object simStep determining the speed of replay, and the object trajData for the
storage and query of trajectory data. Among the main methods for the class, SelectTrajs()
is used to check the trajectory in the trajectory database based on the time and spatial
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ranges given by a user, and depends on the DatabaseModel class; RunSituation() calculates
the location of each target at each time of simulation by calling the simulation module
(the SimulationModel class) and replays the maritime situation using the simulation step
simStep through the geographical information display module (the GISDisplayModel
class); TargetStats() is employed for the statistics of the information on various targets, e.g.,
quantity, and displays the information in the form of a report [20–22].

Figure 5. Class diagram of the trajectory analysis module.

The TrajQualityAssessment class is designed to analyze and assess the quality of the
selected trajectories. In the class, the object filterParameter indicates the conditions for
selecting trajectories, and the object trajs stores all the selected trajectories. The method
GetTrajs() can extract the trajectory data from the database or from the trajectories in the
replay and analysis module. It depends on the DatabaseModel class and the Situation-
Analysis class. The method GetAssessment() is used to analyze and assess the quality of
the selected trajectories. The method DrawResult() displays the results of analysis and
assessment to the user in graphical form. The indicators of the trajectory quality assessment
include target identification rate, average identification response time, trajectory outlier
rate, continuous tracking rate, and fault tracking rate [23].

4.3. Trajectory Mining Module

The UML class diagram of the trajectory mining module is shown in Figure 6. In the
diagram, the TrajMiningGUI class represents the graphical user interface of the trajectory
mining module, and can be called by the STDMAS GUI class. The TargetIdentify class, the
OutlierDetection class, and the PatternRecognition class are used to implement three func-
tions of the trajectory mining, respectively, that is, identifying the unknown ships, detecting
the ship outliers, and recognizing the navigational pattern of ships. The OutlierDetection
class mainly involves the methods ConstructOutlierModel() and DetectOutlier(), which
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are used to construct and detect the outlier model, respectively. The ship outlier detection
model in the STDMAS depends on the identification of unknown ships (the TargetIdentify
class) and the recognition of ship navigational patterns (the PatternRecognition class) [24].

Figure 6. Class diagram of the trajectory mining module.

The TargetIdentify class can construct the ship trajectory classification model based
on the parameters set by a user and then use the model to determine the category of
any unknown ship. The class consists of the database configuration object dbConfig,
the trajectory data set targetTraj, and the classifier, etc. In the TargetIdentify class, the
method GetTrajs() is employed to extract the trajectory data needed from the trajectory
database according to the user’s request, and depends on the DatabaseModel class [25].
The method TrajPartition() can partition each ship trajectory using the proposed trajectory
partitioning method based on the movement mode in this paper. Subsequently, the method
FeatureSelection() is utilized to extract the characteristics of each trajectory in the way
proposed in this paper. The method DataPrepare() aims to classify the characteristic data
sets into the training set and test set and utilizes the algorithms including IDP-SMOTE to
balance these data sets. The method depends on the DataPrepareModel class and indirectly
on the clustering model, i.e., the ClusteringModel class [26]. TrainModel(), TestModel(),
and TargetPredict() represent the training, test, and prediction of the classification model,
respectively, and depend on the ClassificationModel class for the abstract classification
model. It implements the RandomForest class for the random forest model, the SVM class
for the support vector model, and the DSM-Co-Forest class for the semi-supervised learning
model. Meanwhile, it can be further expanded based on the specific classification model.
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The PatternRecognition class is used to construct the clustering model based on the
trajectory selected by a user and display the trajectory clustering results in graphical form.
The class consists of the objects dbConfig, trajs, and clusterModel [27]. The methods mainly
include TrajPartition() for trajectory partitioning, Clustering() for trajectory clustering
modeling, Predict() for cluster prediction, and DisplayResult() for displaying the trajectory
clustering result. In the class, the construction of the cluster model depends on the abstract
class, i.e., the ClusteringModel class, which implements the cluster models including the
K-Means model, the DBSCAN, and the Improved-DP model.

4.4. Situation Analysis Module

The UML class diagram of the situation analysis module is shown in Figure 7. In the
diagram, the TDWManagerGUI class represents the graphical user interface of the situation
analysis module. It is also called through the STDMAS GUI class.

Figure 7. Class diagram of the situation analysis module.

The TDWMaker class is mainly used to construct the trajectory data warehouse.
Among its methods, CreateNewTDW() can create the new data mart for a new subject; Fact-
TableConstruct() can define the fact table and dimension table based on the configuration
given by a user; DataLoading() can extract the processed data from the trajectory database
in the extraction-transformation-loading (ETL) method and then input the data into the
data warehouse, but it depends on the DatabaseModel class for implementation [28].

The DataAnalysis class is mainly intended to extract information from the trajectory
data warehouse upon a user’s request, and it generates the reports. Among its methods,
SelectGranule() is used to select the granule of time, space, and other dimensions for data
analysis; Measures() can further calculate and obtain the measured value of a subject (e.g.,
speed, distance, pass time, etc.) at each granule; DataReport() and GraphicalReport() can
present the results of data analysis in the form of a data report or graphical report. However,
the DataAnalysis class must rely on the GISDisplayModel class in the display of data
analysis results, so as to more vividly present the changes of historical maritime situations.

5. Methods for Ship Trajectory Data Mining

Presently, trajectory mining technology offers four features in terms of mission and
based on temporal and spatial characteristics, that is, trajectory pattern mining, trajectory
clustering analysis, trajectory classification, and trajectory outlier detection [2]. Among

137



Sensors 2022, 22, 310

them, the trajectory pattern mining feature discovers the valuable motion feature patterns
for a single moving object or a group of moving objects, e.g., frequent pattern, periodic
pattern, and adjoint pattern, so as to help people understand the motion regularity of the
moving object and reasonably predict its future trend of motion. Trajectory clustering
intends to devise a measure of similarity between trajectories and cluster the highly similar
trajectories, in order to find out the representative path or common behavioral tendency of
moving objects. Trajectory classification aims to predict the motion state of moving objects
or their means of transport by extracting the features of trajectory or trajectory sections and
then classifying them into different categories. Trajectory outlier detection can identify any
suspected moving object or behavior based on the motion regularity or behavioral pattern
of historical trajectories.

5.1. Ship Trajectory Partitioning

In the studies of trajectory motion mode, many scholars divide trajectory only into
Stop Mode and Move Mode. However, ships at sea may take any turn for a specified reason
or purpose unlike the moving objects on the ground, e.g., vehicles and pedestrians, which
are restricted by road grids. In other words, turn is also an important motion mode of ship
trajectory. On this basis, this paper partitions ship trajectory into three basic motion modes,
that is, Stop Mode, Turn Mode, and Line Mode [7,8].

(1) Stop Mode: A ship trajectory contains a segment of continuous sub-trajectories in
which the speed at all points is lower than the speed threshold. The distance between
any two trajectory points must be lower than the distance threshold, and the duration
is greater than the time threshold. At this time, the motion mode of the sub-trajectory
is Stop Mode.

(2) Turn Mode: The turn threshold is set to Δθ . If the sum of trajectory direction changes
within a range of time Δt1 before and after a trajectory point p is greater than Δθ , the
trajectory point p is a potential turn point. If the potential turn point is a segment
of a continuous sub-trajectory, and the total time for such sub-trajectory exceeds the
threshold Δt2, the motion mode of the sub-trajectory is Stop Mode.

(3) Line Mode: In a ship trajectory, the remaining sub-trajectory is in the Line Mode after
taking out those in the Stop Mode and the Turn Mode. The three motion modes of a
ship trajectory are illustrated in Figure 8.

Figure 8. Three basic motion modes of a ship trajectory.

For further data mining and knowledge discovery, a ship trajectory can be partitioned
in terms of these three basic motion modes in the following procedure:

Step 1: Partition a ship trajectory into several continuous sub-trajectory segments;
Step 2: Go through all the sub-trajectory segments. When the speed at most of the

points in a sub-trajectory segment is less than the speed threshold δv, it is judged that the
sub-trajectory is in the Stop Mode. Otherwise, it is in the Move Mode;

Step 3: Go through all the sub-trajectory segments in the Move Mode. When the sum
of direction changes at the points of a sub-trajectory within the time threshold exceeds the
turn threshold, it is judged that the sub-trajectory is in the Turn Mode. Otherwise, it is in
the Line Mode;
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Step 4: Use the outlier detection algorithm to rule out the outliers in the trajectory;
Step 5: Add the segmented ship sub-trajectories into the corresponding sets of Stop

Mode, Turn Mode, and Line Mode.

5.2. Ship Trajectory Feature Extraction

For higher efficiency of the trajectory data mining algorithm, the trajectory features
must be selected in terms of their contribution to ship identification. Based on the above
ship trajectory partitioning algorithm, trajectory features are classified into four categories,
that is, global features, stop features, line features, and turn features.

(1) Global features refer to the extracted general features of the entire trajectory and
its sub-trajectories and reflect the features of the trajectory holistically. There were nine
global features extracted in this paper, including total sailing time, total sailing distance,
total sailing sinuosity, number of sub-trajectories in the Stop Mode, Line Mode, and Turn
Mode, and their respective proportion of total trajectory time. Among these global features,
trajectory sinuosity represents the ratio of the sailing distance between two trajectory points
and the straight distance between them and is employed to indicate the curvature of the
path. Total trajectory sinuosity is the ratio of the total sailing distance of a ship to the
straight distance between its departure and destination. The total trajectory sinuosity is
calculated by the following formula:

sinuosity =
∑n−1

i=1 distance(p(i), p(i + 1))
distance(p1, pn)

(1)

(2) Stop features are the trajectory features extracted from the sub-trajectories in the
Stop Mode. The stop features extracted in this paper include two parameters, that is, stop
duration and stop range. Stop duration refers to the period of time from the start to the
end of a sub-trajectory in the Stop Mode. Stop range is represented by the area of circle
of uncertainty for all trajectory points available in a sub-trajectory in the Stop Mode. It is
assumed that the stop sub-trajectory is extracted as StopT = {p1, p2, . . . . . . , pn}, the central
point of stop C(x, y)is as follows:

Let the matrix stop error radius Re be the maximum distance between all trajectory
points in the trajectory segment and the stop central point, there is:

Re = max{distance(pi, C)}N
i=0 (2)

Then the stop range Sa is:
Sa = π·R2

e (3)

(3) Line features are the trajectory features extracted from the sub-trajectories in the
Line Mode. The line features extracted in this paper involve three parameters, that is, speed,
acceleration, and heading. The “global features” for these parameters are calculated with
seven statistical quantities including mean, median, standard deviation, average of three
largest numbers, coefficient of variation, skewness, and kurtosis. Among them, skewness
is a coefficient for measuring the deviation of data distribution from the symmetrical center
and is normally represented by the ratio of three-order center distance to the third power
of standard deviation. Kurtosis is a coefficient reflecting the aggregation level of data at the
center and normally denoted by the ratio of four-order center distance to the fourth power
of standard deviation. Skewness Sk and kurtosis Ku are calculated as follows:

Sk =
∑ (xi − μ)3

N·σ3 (4)

Ku =
∑ (xi − μ)4

N·σ4 (5)
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(4) Turn features are the trajectory features extracted from the sub-trajectories in the
Turn Mode. In this paper, the extracted turn features involve three parameters in total,
that is, angular speed, turn speed, and turn angle. Angular speed is the ratio of the
direction difference between two trajectory points and the time. Turn speed is the ratio
of the distance between two trajectory points and the time. Turn angle is the difference
between the destination direction and the departure direction of all sub-trajectories in the
Turn Mode.

5.3. Ship Trajectory Classification Based on Motion Features

Based on the ship trajectory partitioning and trajectory feature extraction, the classifi-
cation algorithm in the field of machine learning is employed to obtain a ship trajectory
classification model through training. The feature extraction method proposed in this
paper is taken to construct the overall framework of a ship trajectory classification model
as shown in Figure 9.

Figure 9. Overall framework of ship trajectory classification model.

In this paper, the real AIS data of ships were taken from the ship historical temporal
and spatial trajectory library to extract 1000 effective trajectories of fishing boats and cargo
ships (500 each) through data cleaning, filtering, conversion, and preliminary processing,
for training and testing of the ship classification model [13]. The spatial distribution of the
selected ship historical trajectories (50 items) is shown in Figure 10.
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Figure 10. Spatial distribution of ship historical trajectories (50 items).

Based on the proposed ship trajectory feature extraction method, 158 trajectory features
were extracted from the historical trajectories of fishing boats and cargo ships, including
global features, stop features, line features, and turn features of each trajectory. Subse-
quently, the data sets of trajectory features for fishing boats and cargo ships were created
together with the statistics and analysis of features.

As shown in Figure 11, the cargo ship has a longer and more centrally distributed
sailing time and a significantly higher proportion of Line Mode than the fishing boat.
However, the fishing boat has a larger turn count and line count (i.e., the number of sub-
trajectories in the Turn Mode and Line Mode) and a higher proportion of Turn Mode than
the cargo ship. The motion pattern of trajectory is not considered for the global features of
trajectory in the calculation of total sailing distance and total sailing sinuosity. This may
be the reason for some remaining outliers or outlier sub-trajectories. After normalization,
these two features are dramatically reduced and not effectively reflected in the box plot.

5.4. Ship Classification Model Training and Testing

To verify the effectiveness of the proposed ship trajectory feature extraction method,
some popular single classifier learning algorithms in the machine learning field were
selected in this paper for training and testing the ship classification model, including
Decision Tree (DT), Naïve Bayers (NB), Logistic Regression (LR), Artificial Neural Networks
(ANN), and Support Vector Machine (SVM) [21]. The test was implemented with the
Python programming language and the scientific computing environment Anaconda. The
classification algorithm used the standard model given in the machine learning kit scikit-
learn. The default parameters were employed. The classification model was constructed
and tested in the following procedure:

(1) Feature selection and dimension reduction:
The principal component analysis (PCA) method [22] was adopted to select the

features from the extracted trajectory features for dimension reduction. The threshold
for retaining principal components was 95%. After dimension reduction, the number of
extracted features is as shown in Table 1.
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Figure 11. Comparison of global features of fishing boat (blue) and cargo ship (red) trajectories.

Table 1. Selected features using PCA.

Number of original features 158

Number of features after dimension reduction 24

(2) Classification of training set and test set:
The feature data set was partitioned with hold-out. Before each test, the feature data

set was randomly divided into two mutually exclusive sets, that is, 75% training set and
25% test set.

(3) Model training and evaluation:
Two indicators were selected to evaluate the results of model prediction, that is,

accuracy and area under curve (AUC) [22]. For this binary problem, the model predicted
results and actual results of the test set form a confusion matrix presented in Table 2.
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Table 2. Confusion matrix.

Actual Class
Predicted Result

Positive Class Negative Class

Positive class True positive (TP) False Negative (FN)

Negative class False Positive (FP) True Negative (TN)

Accuracy indicates the proportion of all predicted results as follows:

Accuracy =
TP + TN

TP + FN + FP + FN
(6)

The receiver operating characteristic curve (ROC) can be used to reflect the perfor-
mance of model classification. The true positive rate (TPR) and false positive rate (FPR) are
as follows:

TPR =
TP

TP + FN
(7)

FPR =
FP

TN + FP
(8)

Based on the predicted results of classifiers, samples were sequenced and correspond-
ingly predicted as the positive class. Their FPR and TPR were calculated, respectively,
and then used to obtain the ROC curve with FPR as the horizontal axis and TPR as the
longitudinal axis, as shown in Figure 12. Normally, the closer the ROC curve gets to the
upper left corner, the better performance of a classifier. AUC is the area encircled under the
ROC curve. It is a quantitative description in place of the ROC curve. AUC ranges between
0 and 1. The larger the AUC, the better performance of a classifier.

Figure 12. Diagram of ROC curve and AUC.

The average accuracy and AUC values of the classification model are indicated in
Table 3. The specific distribution is given in Figure 13. Figure 13a shows the accuracy
distribution of the classification model from 100 independent tests. Figure 13b provides
the AUC distribution of the model.
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Table 3. Comparison of classification performance of classifiers.

Classification Model Evaluation Indicator Result

Decision tree (DT)
Accuracy 0.8560

AUC 0.8558

Naïve Bayers (NB) Accuracy 0.8443

AUC 0.8435

Logistic Regression (LR) Accuracy 0.8837

AUC 0.8833

Artificial Neural Networks (ANN)
Accuracy 0.8260

AUC 0.8159

Support Vector Machine (SVM) Accuracy 0.8456

AUC 0.8451

K-nearest Neighbor (KNN) Accuracy 0.8379

AUC 0.8377

The analysis reveals that the prediction performance of the trained model was dra-
matically improved when the trajectory was reasonably partitioned and then trajectory
features were extracted from sub-trajectories. In the meantime, features were extracted
with the proposed ship trajectory partitioning method in terms of motion mode to further
enhance the prediction performance of classifiers.

Figure 13. Comparison of the distribution of evaluation indicators of each classifier. (a) Comparison
of classification accuracy of each classifier; (b) Comparison of AUC scores of each classifier.

6. System Implementation

Presently, the ship trajectory management and analysis system (STDMAS) has im-
plemented such functions as identification of unknown ships and ship outlier detection
in the database management module, trajectory analysis model, and trajectory mining
module [29]. In this section, the functional modules of STDMAS are illustrated with
some images including the main interfaces of system management configuration, database
management, trajectory analysis, trajectory mining, and situation analysis.

6.1. Database Management Module

With the database management of the system, a user can read the original files of
original maritime data, trajectory data, and GIS data, and can also convert, write, check,
update, and delete the data from the database, as shown in Figure 14. When reconstructing
the trajectory data, the parameters including time threshold and distance threshold can be
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set to filter the outliers in the original data. Additionally, interpolation or filter algorithms
may be chosen to process the data as needed [30].

Figure 14. STDMAS database management interface.

6.2. Trajectory Analysis Module

This module can implement the fast query of radar detection or AIS target original data
and trajectory target within the spatial and time ranges and analyze the variation tendency
of the spatial curve, sampling time interval, and distance interval of trajectories [6], as
shown in Figure 15. It can also calculate the outlier rate, error rate, and inferior rate of the
radar detection data, so as to indirectly reflect the target detection performance of radar.
Moreover, the trajectory analysis module of STDMAS is integrated with the review and
replay feature of historical trajectories to review and analyze the historical situation of
military exercises, major missions, or other special maritime activities. The functions of
the module are as shown in Figure 16. The interface integrates the common measuring
tools for distance, area, and angle, etc., in the GIS software to facilitate the user’s analysis
and calculation. A user may select and control the retention length of target wake and the
replay speed of historical situation in this interface, so as to implement the detailed review
and analysis of historical maritime situations [31].

Figure 15. STDMAS trajectory analysis interface.
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Figure 16. STDMAS historical trajectory review interface.

6.3. Trajectory Mining Module

Based on the abovementioned trajectory data mining method, the trajectory mining
module of STDMAS can implement the identification of unknown targets and the outlier
detection of targets. However, both functions depend on the training and implementation
of the trajectory classification model [32].

Figure 17 presents the unknown ship identification function of the STDMAS trajectory
mining module. The “trajectory data loading” panel in the upper left of the interface is
used to check the ship trajectory within the given time or space ranges. All the searched
trajectories are displayed in the GIS display module in the middle of the interface. The
“ship type identification” panel in the lower left of the interface can load the trained
trajectory classification model and identify the selected unknown ship trajectory. In the
figure, an unknown ship trajectory with the target No. 900,411,284 is selected, and its ship
identification and prediction results include fishing: 90.3%, tugboat: 1.7%, passenger liner:
6.8%, and cargo ship: 1.2%. Hence, the target is identified as a fishing boat in the system.

Figure 17. STDMAS unknown ship identification interface.

Figure 18 presents the outlier detection function of the STDMAS trajectory mining
module. The buttons “Add” and “Delete” in the “outlier detection” panel in the right
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section of the interface are used to implement the setting and management of the monitored
area. The tabs “Monitored Area” and “Outlier Type” are used to select the area to be
monitored (for outlier detection) and the type of outlier. The text box in the lower right of
the interface displays the system’s target identity outlier detection results in the “Monitor
Region Area”.

Figure 18. STDMAS ship identity outlier detection interface.

7. Conclusions

To address the data storage, management, analysis and mining, of maritime targets, an
object-oriented method was adopted to design the overall structure and functional modules
of the ship trajectory management and analysis system (STDMAS). This paper elaborates
the design and technical details of the STDMAS functional modules including logical
structure, module composition, physical deployment, database management, trajectory
analysis, trajectory mining, and situation analysis. A ship identification method based
on motion features was put forward. With the proposed method, ship trajectory was
first partitioned into sub-trajectories in various behavioral patterns, and effective motion
features were then extracted. Machine learning algorithms were utilized for training and
testing to identify many types of ships. The functional modules implemented for the
system include database management, trajectory analysis, historical situation review, ship
identification, and outlier detection based on trajectory classification. STDMAS can satisfy
the practical needs for the data management, analysis, and mining of maritime targets
because it is easy to apply, maintain, and expand. Efforts will be made to integrate such
functions as trajectory cluster analysis and mining and trajectory situation analysis in
STDMAS. Moreover, STDMAS will be connected to the real-time maritime target data
receiving system, and then tested to further provide the data support and computation
service for research and application personnel in the management, analysis, and mining
of maritime target data. Additionally, the system can process a limited size of AIS data at
present, so that big data algorithm and cloud computing architecture may be employed to
improve the efficiency of mass data processing algorithms in future research.
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Abstract: Due to the complexity and unique features of the hydroacoustic channel, ship-radiated
noise (SRN) detected using a passive sonar tends mostly to distort. SRN feature extraction has been
proposed to improve the detected passive sonar signal. Unfortunately, the current methods used
in SRN feature extraction have many shortcomings. Considering this, in this paper we propose a
new multi-stage feature extraction approach to enhance the current SRN feature extractions based
on enhanced variational mode decomposition (EVMD), weighted permutation entropy (WPE), local
tangent space alignment (LTSA), and particle swarm optimization-based support vector machine
(PSO-SVM). In the proposed method, first, we enhance the decomposition operation of the conven-
tional VMD by decomposing the SRN signal into a finite group of intrinsic mode functions (IMFs)
and then calculate the WPE of each IMF. Then, the high-dimensional features obtained are reduced
to two-dimensional ones by using the LTSA method. Finally, the feature vectors are fed into the
PSO-SVM multi-class classifier to realize the classification of different types of SRN sample. The
simulation and experimental results demonstrate that the recognition rate of the proposed method
overcomes the conventional SRN feature extraction methods, and it has a recognition rate of up
to 96.6667%.

Keywords: ship-radiated noise; variational mode decomposition; weighted permutation entropy;
local tangent space alignment

1. Introduction

Ships are playing an increasingly important role in many military and civilian ap-
plications. For example, in military field applications, an effective prediction for enemy
ships helps us to take the correct action and activate our countermeasure to avoid enemy
attacks and defeat them. For civilian applications, a logical comprehensive analysis of
different port noise, including ship-radiated noise (SRN) can help researchers support the
reproduction of marine life [1]. For improving the passive sonar operation in ship appli-
cations, SNR feature extraction has been proposed [1]. However, marine environmental
diversity provides a rich noise environment, and that increases the difficulty of extracting
features reflecting the intrinsic characteristics of the ships [1]. In recent years, studies of the
SRN feature extraction have increased. Unfortunately, the current SRN feature extraction
schemes have many drawbacks. For example, Fourier transform (FT) [1] is only useful
in only estimating the signal spectral information, but it is unsuccessful at time-varying
representation. To address this drawback, short-time Fourier transform (STFT) has been
proposed to indicate the time-varying signal traits. However, a fixed STFT window width
makes STFT unable to consider good representation for the time domain and frequency
domain at the same time [1]. To overcome the STFT drawbacks wavelet transform (WT)
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has been proposed by using the unfixed length of the window) [2]. The time-frequency
decomposition is improved based on WT, but the wavelet basis function and decomposition
layers are required to be set in advance, which practically limits the further application for
WT in practice.

Empirical mode decomposition (EMD) has been proposed in [3], to decompose the
signal into a group of limited intrinsic mode functions (IMFs), the core of the Hilbert
transform (HT). The main purpose of the HT is to snaffle the component of the instanta-
neous frequency. Therefore, EMD can carefully and rapidly describe the instantaneous
frequency of multi-components, hence EMD is more suitable for analyzing non-linear and
non-stationary signals. However, the main EMD drawback is the mode mixing problem and
many researchers have tried hard to address this issue. To this end, the ensemble empirical
mode decomposition (EEMD) [4] has been offered as an amended EMD method [4]. EEMD
has been proposed to solve the mode mixing problem by adding Gaussian white noise
to the construed signal, and at the end averaging the obtained multiple decompositions
results to obtain the IMFs. However, EEMD introduces and has additional problems, firstly,
as, in the EMD, the EEMD decomposition results include residual components. Secondly,
due to the randomness of Gaussian white noise, the outcome of EEMD is diverse between
each decomposition time. Hence, the EEMD lacks a solid mathematical foundation to be
distributed and widely accepted. Unlike the EMD and EEMD, variational mode decom-
position (VMD) has been proposed in [5], which assumes that each mode is concerning
a central frequency with restricted bandwidth. Thus, to obtain the center frequency and
bandwidth of each component, VMD constantly searches for the modes and center fre-
quency of each mode by using an alternating direction method of a multiplier, thereby
solving the variational problem. In recent years, many works tried to extend the current
EMD, EEMD, and VMD methods and applied these schemes in the fields of biomedical
engineering [6–9], mechanical fault diagnosis [10–12], and acoustic signal processing [13,14].
In [13], the VMD is firstly performed to decompose the SRN signal, and the permutation
entropy (PE) of each IMF with the highest energy is then extracted, achieving a recognition
rate of 94%. In [14,15] the VMD decomposition of the SRN signal was performed and the
fluctuation-based dispersion entropy (FDE) of each IMF was studied; the obtained IMF
with the smallest difference from the FDE of the prime signal was then chosen to describe
the raw signal with a recognition rate of 97.5%. In the EMD-EIMF-PE method proposed
in [16], the signal-dominant IMF by EMD was chosen based on the energy gauge, and
its PE was regarded as the feature parameter effectively distributing the SRN. Although
both [13,14] have high recognition rates, there are still flaws in these methods. The mode
VMD number has specified the EMD results in [13,14], which will certainly influence the
VMD decomposition accuracy. Since the pertinent studies failed to strictly obtain the VMD
model number, this paper suggests a new enhanced VMD (EVMD) method with the mode
number close to the variance of IMFs’ center frequency.

Entropy is an important indicator to measure the uncertainty of time series and can
consider the implicit system dynamics. When the system dynamics vary, the time series
complexity will be varied as well. PE [15] has been used in mechanical fault diagno-
sis [16], agricultural commodity analysis [17], financial sequence analysis [18] due to its fast
operation speed and excellent stability. Nevertheless, PE does not consider the case of neigh-
boring vectors having the same ordinal patterns with different amplitudes, which will lead
to the estimated value higher than the actual [19]. To this end, due to the preamble weights,
the weighted permutation entropy (WPE) [20] is further critical to the amplitude-coded
information in the signal and has outperformed the PE in combating the distortion caused
by noise. To the best of the authors’ knowledge, WPE has been widely used in uncertainty
measurements in many fields [21,22], but is rarely used in the SRN feature extraction.

With current computer technology development and the fast growth of data, it is of
great necessity to further process the original high-dimensional data. Feature extraction can
be divided into two parts; extracting the feature vectors can reflect the essence of analyzing
signals through suitable signal processing methods. The other is selecting an appropri-
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ate measure decreases algorithm to minimize the increases, and in that way support the
confession execution. Up to now, researchers have suggested different dimension relief
algorithms, such as principal component analysis (PCA) [23,24], independent component
analysis (ICA) [24], and linear discriminant analysis (LDA) [25]. PCA recognizes measure-
ment saving by realizing optimal variance without dropping the creative data. The PCA
and ICA are linear unsupervised dimension reduction algorithms. LDA is also a linear
projection method that achieves dimension reduction by making the most of the ratio of
the discrete matrix among classes and the discrete matrix within the class. Due to the SRN
non-linear characteristics, linear dimension reduction algorithms are scarce in removing
the intrinsic features of SRN signals. As a non-linear manifold learning algorithm, local
tangent space alignment (LTSA) has been extensively useful in dimension reduction, thanks
to its fast process speed and selfishness to selected parameters [26–29]. To the best of our
knowledge, there is no study combining EVMD, WPE, and LTSA to classify underwater
acoustic targets. Each method has its pros and cons, motivating us to combine all methods
to have the maximum benefits.

To that end, this paper puts forward a novel multistage feature extraction method
proposing an EVMD method and combining it with the WPE, and LTSA for SRN samples
classification. In this paper, the proposed EVMD method uses the variance of the IMFs’
center frequency to calculate the mode number of VMD and enhance its operation. Next,
the new EVMD algorithm is used to decompose the SRN signals plus calculate the WPE
of each IMF. Then high-dimensional features are reduced to two-dimensional ones by the
LTSA method. Finally, the feature vectors obtained are fed into the PSO-SVM multi-class
classifier to recognize the different types of SRN samples.

The structure of the paper is presented as follows: the fundamental theories of the
relevant algorithms are described in Section 2. In Section 3, the basic steps of the proposed
method are presented. Section 4 applies the proposed method to the analysis of simulated
signals. In Section 5, the proposed method is utilized for the feature extraction of SRN.
Finally, the paper is concluded in Section 6.

2. Basic Theory

In this section, the theories of the related methods such as VMD, PE, WPE, and LTSA
will be presented.

2.1. Variational Mode Decomposition (VMD)

The VMD defines the IMF in the function of the instantaneous amplitude Amk(t) and
phase Phk(t) as an amplitude-modulated-frequency-modulated (AM-FM) signal, given
as below:

Ik(t) = Amk(t) cos(Phk(t)) (1)

where the change of the Amk(t) and
.

Phk(t) are slower than Phk(t). Each Ik(t) is com-
pacted around a respective center frequency with limited bandwidth obtained by Gaussian
smoothing demodulation. In the VMD algorithm, decomposing the raw signal s(t) into a
finite group of IMFs to find the variational problem can be expressed as follows:

min︸︷︷︸
{Ik , fk}

{
∑
k
||∂ t

[(
δ(t) +

j
πt

)
∗ Ik(t)

]
e−j2π fkt||22

}
, s.t. ∑

k
Ik = s(t) (2)

where ∂t, δ(t) and fk represent the partial derivative, impulse function, and center frequency
of Ik(t), respectively. The constrained variation problem in Equation (2) is addressed using
the quadratic penalty term and the Lagrange multipliers below:

L({Ik}, { fk}, λ) = α ∑
k
||∂ t

[(
∂t +

j
πt

)
∗ Ik(t)

]
e−j2π fkt||22 + ||s(t) − ∑

k
Ik(t)||22 + λ(t), s(t)− ∑

k
Ik(t) (3)
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where α and λ denote the penalty factor and Lagrange multiplier, respectively. In+1
k , f n+1

k
and λn+1 are updated as follows:

În+1
k ( f ) =

ŝ( f )− ∑i �=k Îi( f ) + λ̂( f )
2

1 + 2α( f − fk)
2 (4)

f n+1
k =

∫ ∞
0 2π f

∣∣ Îk( f )
∣∣2d f∫ ∞

0

∣∣ Îk( f )
∣∣2d f

(5)

λ̂n+1( f ) = λ̂n( f ) + ε(ŝ( f )− ∑
k

În+1
k ( f )) (6)

where ε represents the update parameter. In this method, the stop condition is given by:

∑
k
|| În+1

k − În
k ||22/|| În

k ||22 < a (7)

where a denotes the convergence accuracy. The VMD algorithm can be summarized in:
(1) initialize

{
Î1
k
}

,
{

f 1
k
}

, λ̂1 and n = 0; (2) update the values of
{

În+1
k

}
,
{

f n+1
k

}
and λ̂n+1

based on Equations (4)–(6); (3) check the covariance condition based on Equation (7), and
the details about the VMD algorithm are published in [5].

2.2. Permutation Entropy (PE)

PE [15] can not only characterize the randomness of the time series but also detect
its dynamic changes. In addition, PE does not consider the amplitude value, but only
compares the neighboring values, which makes its operation speed faster. For the given
time series x =

{
xj
}N

j=1, the PE can be reconstructed as:

Xi = {x(i), x(i + τ), · · · , x(i + (m − 1)τ)}, i = 1, 2, · · · , N − (m − 1)τ (8)

where m is the embedding dimension, τ is the time delay and i = 1, 2, · · · , N − (m − 1)τ.
The elements in Xi can be rearranged in increasing order as:

x(i + (j1 − 1)τ) ≤ x(i + (j2 − 1)τ) ≤ x(i + (jm − 1)τ) (9)

If two of the rearranged elements are equal, then,

x(i + (j1 − 1)τ) = x(i + (j2 − 1)τ) (10)

hence, the new order can be denoted as:

x(i + (j1 − 1)τ) ≤ x(i + (j2 − 1)τ)(j1 ≤ j2) (11)

Therefore, the symbols group can be obtained as:

S(g) = (j1, j2, · · · , jm) (12)

where S(g) represents one of m! symbol sequences in phase space, g = 1, 2, · · · , k, and
k ≤ m!. If the probability distribution of the symbol sequence is P1, P2 · · · , Pk, for conver-
gence, the normalized PE is defined as follows:

Hp(m) = −(ln(m!))−1
k

∑
g=1

Pg ln
(

Pg
)

(13)
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From Equation (13), we can observe that the value of PE ranges from 0 to 1. Hp
indicates the randomness of time sequence, a larger Hp value means higher complexity of
the time series; a smaller Hp value means lower uncertainty of the time series.

2.3. Weighted Permutation Entropy (WPE)

In the PE the neighboring vectors having the same ordinal patterns but with different
amplitude values are unreasonably ignored. The WPE [20] has been proposed to take
such a situation into account and overcome the PE shortcomings. In the WPE, forgiven
embedding dimension m and time delay τ, first, the weight wi of neighbouring vectors Xi
is calculated as:

wi =
m

∑
k=1

[
xj+(k−1)τ − Xm,τ

j

]2
(14)

Xm,τ
j =

1
m

m

∑
k=1

xj+(k−1)τ (15)

Then, the weighted relative frequency is calculated as:

pw
(
πm,τ

i
)
=

∑ j ≤ N
1u:type(u)=πi(Xm,τ

j )

∑ j ≤ N
1type(u)∈∏ (Xm,τ

j )wj

(16)

Finally, the WPE definition is described below:

Hw(m, τ) = − ∑
i:πm,τ

i ∈∏

pw
(
πm,τ

i
)

ln
(

pw
(
πm,τ

i
))

(17)

2.4. Local Tangent Space Alignment (LTSA)

Due to the advantages of insensitivity to parameter selection and fast operation, the
local tangent space alignment (LTSA) method has been widely used in dimension reduction
in multiple fields [29,30]. The basic idea of the LTSA algorithm is constructing the local
tangent space by using the sample neighborhood and mapping the coordinates of the local
tangent space corresponding to the global low-dimensional coordinates through the local
radiological transformation matrix. Given the data X = {x1, x1, · · · , xm} ⊂ RM×N , the
principle of LTSA can be briefly described as below:

(1) Determine the K nearest neighbors of xi to form the set of Xi, and centralize X̂i,

Xi = [xi,1, xi,2, · · · , xik] (18)

X̂i = Xi − xilT
k (19)

where xi =
1
k ∑k

j=1 xij and lk is a unit vector with dimension K.
(2) Calculate the eigenvalues and eigenvectors of a matrix X̂i by singular value decompo-

sition. The eigenvectors corresponding to the first d largest singular values are the
tangent space Hi.

θij = HT
i
(
xij − xi

)
(20)

(3) Construct the transformation matrix Li = θ+i , to retain as much information as
possible, and the following conditions must be met,

minμ(Y) = min
M

∑
i=1

∣∣∣∣Yi

(
I − 1

k
llT

)
− Liθi

∣∣∣∣ (21)

where θ+i represents the generalized inverse matrix of θi, Yi represents the set of
nearest neighbors of Y after dimension reduction, that is, Yi = (yi1, yi2, · · · , yik).
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(4) Solve the optimization problem of Equation (21) by calculating the eigenvalues
and eigenvectors of the matrix, and then the embedding matrix Y can be obtained.
Equation (21) can be equivalent to the following equation:

minμ(Y) = min(YHW) = mintr
(

YHWT HTYT
)

, (22)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
H = (H1, H2, · · · , HM)
W = diag (W1, W2, · · ·WM)

Wi =
(

I − 1
k llT

)(
I − θ+i θi

)
I = YYT

(23)

The low-dimensional embedding matrix Y can be obtained by calculating the eigen-
vectors corresponding to the second to d-th smallest eigenvalues of the alignment matrix B
and it can be calculated as:

B = HWWT HT (24)

3. Proposed Feature Extraction Method Based on Enhanced Variational Mode
Decomposition (EVMD), Weighted Permutation Entropy (WPE), and Local Tangent
Space Alignment (LTSA)

In Section 2 the details of the basic theories of VMD, WPE, and LTSA are presented.
However, the model number of VMD needs to be determined in advance, so this paper
proposes the EVMD for SRN signal processing. A multi-stage feature extraction method
fully inheriting the advantages of EVMD, WPE, and LTSA is proposed in this paper. The
flowchart of the proposed method is shown in Figure 1. The main steps of the proposed
method can be summarized as follows:

(1) Based on the center frequency of the intrinsic mode functions, the variational mode
decomposition mode number K will be calculated firstly.

(2) The VMD algorithm based on the optimum mode number K obtained in the first step
is applied to the decomposition of the SRN signals.

(3) The WPE of each IMF by EVMD is then calculated.
(4) The feature vectors obtained will be randomly divided into two groups, the first group

represent the training data used in classification information while the second one is
used for evaluating the testing data and measuring its ability for classification.

(5) Definitively, PSO-SVM multiclass classifier uses the analysis data that are recognized
and detects the underwater acoustic object.

To extract features of SRN, this paper classifies three types of SRN using a combination
of VMD, WPE, LTSA, and PSO-SVM multi-class classifier. In the proposed method, the
VMD mode number range is first set according to the EEMD decomposition results, and the
variance of the IMFs’ center frequency after each decomposition is calculated. The mode
number corresponding to the maximum variance is used as an optimum value for VMD.
Then, VMD is performed on three SRN signal types. The WPE value of each IMF for each
VMD decomposition is calculated. The high-dimensional features obtained are reduced to
be two-dimensional features using LTSA. Finally, the obtained feature vectors are input to
the PSO-SVM multi-class classifier to achieve classification and recognition of the samples.
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Figure 1. The flowchart of the proposed method.

4. Simulation Signals Analysis

4.1. Analysis of Simulated Signals Based on EVMD

In this paper, as the SRN signals contain the rich line spectral components, the simu-
lated signals composed of the single-frequency components are introduced. In addition,
the simulated signals are feasible as long as they satisfy the measurement signal conditions
explained in [12], namely, their frequency interval should not be too small (like 1 Hz, 2 Hz,
and 3 Hz). Following the same restriction conditions of [12] and verifying the effectiveness
and feasibility of the proposed EVMD method. The simulated signals used in this paper
are as follows: ⎧⎪⎪⎨⎪⎪⎩

f1(t) = cos(10πt)
f2(t) = cos(60πt)
f3(t) = cos(110πt)
f (t) = f1(t) + f2(t) + f3(t) + η

(25)

where the data length is set to be 5000 with a sampling frequency of 1 kHz and η denotes
the Gaussian white noise with CN (0, 0.5).

Following the literature [5], before performing the VMD algorithm, the model number
K needs to be adjusted, which serves as a main factor affecting the VMD performance.
Other parameters are set as constants, namely the balancing parameter of the data-fidelity
constraint is α = 2000, the convergence tolerance level is tol = 1 × 10−7 and the update
mode of the center frequency is init = 0, 1, 2 for center frequency iterated with 0, uniform
distribution, or randomly. Too-large a K will lead to the occurrence of over-decomposition,
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which means undesirable spurious components will be generated during the decomposition
process; too-small a K will cause under-decomposition, which discards some IMFs carrying
useful information during the decomposition process. Hence, a properly chosen K value
is crucial to the VMD method. Although the VMD method in [13,14] can successfully
decompose the SRN signals to some extent, the method for determining the mode number
of VMD has not been reasonably demonstrated, making it unacceptable scientifically. In
general, the mode number of VMD will not be greater than the mode number of EMD
and EEMD, so conventional EMD and EEMD methods are first employed to analyze the
simulated signals above. Figure 2 shows the decomposition results and the time domain
waveforms of the simulated signals.

Figure 2. Modeled signals and decomposition results based on empirical mode decomposition (EMD)
and ensemble empirical mode decomposition (EEMD) methods. (a) the initial modeled signals;
(b) EMD procedure; (c) EEMD procedure.
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Figure 2, show modeled indicator decomposed by using the EMD, one remaining
part is obtained in addition to 10 IMFs. While in the EEMD decomposed method there
are one remaining part and 10 IMFs, and they are separated. Hence, based on setting
the variables for the mode number range to be (2 ∼ 12), and following calculation of
every decomposition IMFs’ center frequency, the good mode number K has the maximum
variance which maximizes the IMFs center frequency difference. Figure 3, shows the IMFs’
center frequency at different mode number K when the VMD decomposing method is used,
and Figure 3 shows that K = 9 is the best choice.

 

Figure 3. The variance curve of intrinsic mode functions (IMFs) center frequency with mode number
K after simulated signals decomposition using variational mode decomposition (VMD).

When the mode number K is set to be more than the good, estimated value K = 9,
the variance begins to reduce and that shows irrelevant variation among the IMFs’ center
frequency and the existence of the done decomposition. Figure 4, shows the decompo-
sition results of the modeled signals based on the EVMD procedure. The IMFs’ center
frequency distribution at different mode numbers K are listed in Table 1. Table 1 shows
how components are unseparated for K = (2 ∼ 6), and for K ≥ 7 the modeled signal is
separated. For K = (10 ∼ 12) further false components are created to recognize the split of
the modeled signals.

Figure 4. The EVMD decomposition results for the simulated signals.
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Table 1. The mode number corresponding to the distribution of IMF’s center frequency by VMD.

K Center Frequency/Hz

2 7.79 52.50
3 7.77 52.50 310.22
4 7.73 52.51 193.88 358.92
5 7.71 52.52 178.13 306.10 429.27
6 7.63 52.53 132.93 231.63 325.67 438.33
7 5.04 55.14 30.02 178.15 281.03 365.89 468.10
8 5.04 55.12 30.02 150.48 230.17 304.96 377.06 470.06
9 5.04 55.11 30.02 133.53 202.41 280.99 349.96 413.83 476.09

10 5.04 55.09 30.01 122.45 181.76 240.15 300.08 359.29 418.56 477.08
11 5.03 55.09 30.01 118.11 173.42 227.27 276.65 321.81 369.88 424.40 478.29
12 5.03 55.05 30.01 99.61 146.79 192.70 237.79 283.66 325.96 372.20 425.66 468.56

Based on the analysis above, the proposed EVMD method using the variance of the
IMFs’ center frequency is feasible in calculating the mode number of VMD. To further
verify this method in the VMD algorithm, the VMD method in [4,20] is also introduced for
comparison. The correlation coefficients between the corresponding IMF and simulated
signals are calculated and the results are listed in Table 2. As shown in Table 2, the
corresponding three components of the proposed EVMD have the highest correlation
coefficients with the simulated signals, and its decomposition performance is significantly
better than the conventional methods of the EMD, EEMD, and VMD. This confirms the
validity and feasibility of the method proposed in this paper for determining the VMD
mode number.

Table 2. Correlation coefficients between corresponding IMF with simulated signals.

EMD EEMD VMD EVMD

f 1 IMF6: 0.9244 IMF7: 0.9665 IMF1: 0.9938 IMF1: 0.9944
f 2 IMF4: 0.8959 IMF5: 0.9806 IMF3: 0.9914 IMF3: 0.9925
f 3 IMF3: 0.8875 IMF4: 0.9460 IMF2: 0.9872 IMF2: 0.9880

4.2. Analysis of the Properties Concerning Weighted Permutation Entropy (WPE) and
Permutation Entropy (PE)

According to the basic principles of WPE and PE explained in Section 2, when the
signal is mutated, it is difficult for PE to detect this state, while WPE should be more
sensitive to this mutation. To validate the conjecture, we generate a standard Gaussian
white noise series with a length of 5000. As the pulse series means a larger fluctuation, we
add the pulse series to these Gaussian white noise series. As in [31], the time delay and
the embedding dimension are set as 1 and 6, respectively. The PE and WPE are calculated
using a window function with a length of 500 and a sliding step of 50. The time-domain
waveforms of the Gaussian white noise series and the signal plus additive pulse series are
shown in Figure 5. The results of the calculated entropy are shown in Figure 6.

As shown in Figure 6, the WPE values of two signals of the SRN are smaller than the
corresponding PE ones. This indicates how Gaussian white noise has a higher complexity
and contains more information. There is no difference in the PE of the two signals in the
pulse region, which means the inability of PE to distinguish between these two signals.
This can be attributed to the neglect of the amplitude difference between neighboring
vectors having the same ordinal patterns in PE calculation. As a result, PE performs poorly
in effectively detecting fluctuations caused by noise. In contrast, the WPE value of the
signal after superimposed pulses decreases significantly in the pulse region, indicating
that the WPE can effectively detect the amplitude-encoded information contained in the
signal due to the introduction of weights, which outperforms the PE in noise detection and
fluctuation observation.
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Figure 5. The time domain diagrams of Gaussian white noise and the signal plus additive pulse series.

 
Figure 6. The curve of PE and WPE with window.

For further comparison between the performance of the PE and WPE, 50 1/f noise
samples with a length of 500 are generated and the pulse series is superimposed on the raw
1/f noise series. For a fair comparison, PE and WPE calculations concern the two signals.
The time-domain waveforms of the analyzed signals and the scatter plots of the calculation
results are given in Figures 7 and 8, respectively.
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Figure 7. The time domain waveforms for; (a) 1/f noise (b) the signal plus additive pulse series.

 

Figure 8. The scatter plots of calculation results for PE and WPE.

As shown in the results, thanks to the good anti-noise ability of WPE, making the
estimated WPE value of the two signals is lower than the PE value. Also, sudden change
detection is a hard task in the PE method as it neglects the amplitude information. In
contrast, except for the significant difference in WPE values between the two signals, the
WPE fluctuation trends are more dramatic than PE. Larger fluctuation means stronger
discrimination ability. In short, the analysis of experimental results proves the advantages
of WPE over PE.
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5. Feature Extraction of Ship-Radiated Noise Based on the Proposed Method

5.1. Parameter Selection

The WPE calculation is dependent on the time delay τ and embedding dimension m.
If m is too small, the reconstructed sequence will contain less state information, and the
WPE algorithm cannot adequately detect the dynamic change of the time series. However,
larger m indicates that the time series is homogenized by the reconstructed phase space
and cannot detect the time series slight change. Also, if τ is too small, a strong correlation
will occur between different delay vector elements, resulting in information redundancy.
The phase space trajectory cannot be fully expanded when τ is too large. Therefore, such
parameters should be adjusted first before WPE calculation.

To study the influence of m and τ on PE and WPE, the three types of SRN are randomly
selected from the data set used in [32]. The samples were recorded on the Atlantic coast in
north-western Spain

(
42

◦
14′ N, 008

◦
43.4′ W

)
at a depth of 10 m. The sampling frequency

is 52.734 kHz and the data length is set to be 5000. The three types of SRN signals are
named class A, B, and C, respectively. Figure 9 shows the time-domain waveforms of the
normalized signals.

 

  
Figure 9. The time-domain waveforms for the three types of normalized ship−radiated noise (SRN).

As in [30], the PE and WPE of the three types of SRN signals are calculated under the
condition m = 3, 4, 5, 6, 7, and the time delay ranges from 1 to 20. The results are shown in
Figure 10. As seen in Figure 10, the class C SRN signal has the maximum entropy value
and thus the highest complexity.

162



Sensors 2022, 22, 112

  

  

 

Figure 10. PE, WPE comparison of the three types of SRN under different embedding dimensions.

Thanks to the excellent anti-noise performance of WPE, the WPE value of the same
time series is less than the PE. WPE is more sensitive to the time delay compared to the
PE, as the PE fluctuates subtly with the time delay increasing. The WPE and PE begin to
separate when m = 6. However, when m is increased to 7, the computational complexity
will be increased without improving the accuracy of calculation results. Based on the results
obtained in Figure 10, a significant difference occurs between the WPE and PE when the
time delay is equal to 1. Therefore, in the proposed method when calculating the WPE
and PE, the delay and embedding dimensions are set to be 1 and 6, respectively. These
parameters are consistent with the recommendations given by [15,31]. The PE and WPE of
the signals versus the time delay are shown in Figure 11. As shown in Figure 11, the time
delay has a greater influence on PE and WPE in some ranges, while less in others as the
embedding dimension increases. Compared to PE, the trends of WPE fluctuate relatively
sharply, as the WPE is more sensitive to the pattern extracted from signals containing
amplitude information.
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Figure 11. PE and WPE of the signals varying with the time delay.

5.2. Decomposition of Ship-Radiated Noise Using VMD

As described in Section 3, to calculate the VMD model number, the EEMD algorithm
is first employed to decompose the SRN signals. The decomposition results are presented
in Figure 12. Figure 12 shows that 12 IMFs and one residual component are obtained after
the EEMD of each type of SRN signal. For the sake of observation, K is set as (2 ∼ 15) to
calculate the variance of the IMFs’ center frequency. The results are given in Figure 13. It
can be observed from Figure 13 that the optimal K is 12, and when K is higher than 12, the
variance starts to decrease sharply, implying the occurrence of over-decomposition. The
decomposition results by EVMD are given in Figure 14.
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Figure 12. The EEMD results for SRN signals.
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Figure 13. The results of variance analysis for the SRN signals.

Figure 14. Cont.
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Figure 14. The EVMD results for SRN signals.

5.3. Classification of Ship-Radiated Noise (SRN)

In this section, the proposed method is applied to the SRN samples classification.
100 samples are randomly selected from each type of SRN sample and thus a total of
300 samples can be obtained. The EVMD is first performed to decompose these samples and
the WPE of each IMF is calculated. Figure 15 shows the WPE mean and standard deviation.

 

Figure 15. The mean and standard deviation of WPE.

Figure 15 shows, when the mode is IMF3 or IMF4, that the three types of samples
can be distinguished, and the WPE values of class C samples are higher than that of the
other two classes. This can be due to the dynamic behavior changes at different signals.
Hence, WPE can effectively reflect the dynamic changes of the time series. However,
when the mode is IMF2, the class A and B samples cannot be identified; when IMF5, only
class A can be identified. In other modes, all three types of sample are indistinguishable.
Therefore, not every IMF can fully characterize the raw SRN signal after the proposed
EVMD decomposition. The results can be attributed to two points.

Firstly, due to the pollution of marine environmental noise, some IMFs belong to noise
or noise-dominant components. Secondly, the occurrence of over-decomposition in the
VMD algorithm allows different IMFs to share the same spectrum information. In this way,
the dimension reduction algorithms are introduced to avoid dimensional disasters, thus
preparing for the classification below. Next, the PCA, MDS, LLE, and LTSA methods are
utilized for the low-dimensional feature extraction. The number of neighboring points and
the target dimension are set as 15 and 2, respectively. The results are given in Figure 16. As
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shown in Figure 16, overall, most of the three types of samples can be distinguished by the
four algorithms despite the partially overlapping samples between classes A and B. From a
qualitative point of view, the combined EVMD-WPE-PCA algorithm has shown the worst
performance with a small number of samples crossing between class A and B, and more
samples overlapping between class B and C, while the performance of EVMD-WPE-MDS
and EVMD-WPE-LLE has been significantly improved compared to EVMD-WPE-PCA
with only a few samples of class A and B crossed. Despite the good performance of EVMD-
WPE-PCA, EVMD-WPE-MDS, and EVMD-WPE-LLE in roughly identifying the three types
of samples, the degree of clustering within the class is still small, especially for class B.
In contrast, the proposed combined EVMD-WPE-LTSA method has the best clustering
performance. The three kinds of SRN sample can be separated well, and the samples
of classes B and C are better clustered. For a fair comparison, the scatter plots of WPE,
EMD-WPE-LTSA and EEMD-WPE-LTSA are represented in Figure 17.

As shown in Figure 17a, affected by the oceanic environment and the ambient noise,
we cannot recognize the majority of the three forms of samples as they will be opposed
together. Hence in such a case, the algorithms of the decomposition should be used. For
the EMD-WPE-LTSA shown in Figure 16b, a large proportion of samples of classes A
and B are overlapped, which cannot be separated well. The samples in the C category
are also intersected with the others. Hence, recognition of the three samples becomes
difficult. While concerning the EEMD-WPE-LTSA, the samples in categories A and B can be
completely separated, but the degree of separation between categories B and C is still small.
From a qualitative point of view, there is no significant difference between EEMD-WPE-
LTSA and EVMD-WPE-LTSA, and EEMD-WPE-LTSA even looks more clustered within the
class, but we cannot conclude on the merits of both algorithms. Data visualization is only a
qualitative tool rather than a quantitative one. In this situation, the PSO-SVM multi-class
classifier is introduced to compare the algorithms above more accurately. Next, 60 samples
are randomly selected from each class to be used as a training classifier and the remaining
samples are left to be used in testing the performance. Also, both EMD-EIMF-PE [21] and
VMD-WPE-LTSA (the mode number of VMD is set as [4,20]) methods are considered. The
classification outputs are shown in Figure 18. Table 3 lists the classification accuracy and
computational time for SRN feature extraction under different algorithms.

 
Figure 16. Cont.
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Figure 16. The clustering results of the four algorithms.

As shown in Figure 18 and Table 3, the direct calculation of the WPE for the samples
fails to achieve the SRN samples identification as it has only a 62.5% recognition rate and
that is far from the classification standard. The multistage classification techniques based
on the proposed EVMD have the highest classification accuracy of 95.8333% and 96.6667%
in EVMD-WPE-LLE and EVMD-WPE-LTSA, respectively. The proposed multistage classifi-
cation techniques based on EVMD outperform the other conventional algorithms with the
additional computational time cost. In general, computational complexity and classification
accuracy are determined by the configuration of the hardware and algorithm design.
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Figure 17. The scatter plots of the three algorithms.

Table 3. The classification accuracy and computational complexity under different algorithms.

Method
NUMBER OF MISCLASSIFIED SAMPLES ACCURACY

RATE (%)
COMPUTATIONAL
TIMES (SECOND)CLASS A CLASS B CLASS C

WPE 11 7 27 62.5 787.35041

EMD-WPE-LTSA 11 9 2 81.6667 6956.81681

EEMD-WPE-LTSA 0 12 0 90 23,643.2661

EVMD-WPE-PCA 2 5 5 90 22,254.0133

EVMD-WPE-MDS 4 2 0 95 22,255.2634

EVMD-WPE-LLE 1 4 0 95.8333 22,255.0276

EVMD-WPE-LTSA 3 0 1 96.6667 22,255.0041

EMD-EIMF-PE 5 0 8 89.1667 1342.94618

VMD-WPE-LTSA 3 5 0 93.3333 12,404.5999
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Figure 18. The outputs of classification under different algorithms.
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6. Conclusions

A novel multi-stage feature extraction method for underwater acoustic signals is
proposed in this paper based on combining the new EVMD method with WPE and LTSA.
The main innovations and contributions of this work can be summarized as follows:

(1) The proposed EVMD method mode number was calculated based on the variance of
IMFs’ center frequency.

(2) WPE and LTSA were combined with the new EVMD and applied to underwater SRN
signals for the first time.

(3) The proposed EVMD-WPE-LTSA was successfully applied, and extracted the features
of the underwater acoustic signals. Compared with other algorithms, EVMD-WPE-
LTSA had a higher recognition rate and better classification performance at the cost of
computational time.

The EVMD algorithm proposed in this paper to overcome the shortage of the VMD
performed accurately in the field of underwater acoustic communication. Nevertheless,
this paper only addresses the VMD mode number. In future, the optimization between both
the model number and the quadratic penalty term will be considered to obtain high decom-
position accuracy for the EVMD. Also, we will try to reduce the computation complexity.
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Abstract: One of the most challenging issues in the routing protocols for underwater wireless sensor
networks (UWSNs) is the occurrence of void areas (communication void). That is, when void areas
are present, the data packets could be trapped in a sensor node and cannot be sent further to reach the
sink(s) due to the features of the UWSNs environment and/or the configuration of the network itself.
Opportunistic routing (OR) is an innovative prototype in routing for UWSNs. In routing protocols
employing the OR technique, the most suitable sensor node according to the criteria adopted by the
protocol rules will be elected as a next-hop forwarder node to forward the data packets first. This
routing method takes advantage of the broadcast nature of wireless sensor networks. OR has made
a noticeable improvement in the sensor networks’ performance in terms of efficiency, throughput,
and reliability. Several routing protocols that utilize OR in UWSNs have been proposed to extend the
lifetime of the network and maintain its connectivity by addressing void areas. In addition, a number
of survey papers were presented in routing protocols with different points of approach. Our paper
focuses on reviewing void avoiding OR protocols. In this paper, we briefly present the basic concept
of OR and its building blocks. We also indicate the concept of the void area and list the reasons that
could lead to its occurrence, as well as reviewing the state-of-the-art OR protocols proposed for this
challenging area and presenting their strengths and weaknesses.

Keywords: void avoiding; opportunistic routing (OR); underwater wireless sensor networks (UWSNs);
void area; routing

1. Introduction

With a large area of the earth (more than 2/3) covered by water [1,2], investigating
the underwater environment and exploiting the UWSNs in various areas of underwater
studies have become imperative due to the increasing human requirements and needs.
Applications in different human activities in the underwater environment have become
very important and opened a new field for investigators interested in this area. Many
researchers such as [3–12] have proposed solutions to fulfill human requirements and
needs in such a harsh environment for industry (detecting chemical pollution, pipeline
monitoring, biological phenomena, and seismic studies), government (military applications
and maintaining the coast), and nature (hazard events, marine farms, ecological monitoring,
and contamination studies). The underwater sensor design in such applications ranges
from simple to complex [13]. However, this UWSN research area is very challenging, and
most work that has been conducted using terrestrial wireless sensor networks (TWSNs)
cannot be directly implemented into UWSNs because different communication channels are
used and the characteristics of underwater environments are unique [3,14–16]. Moreover,
underwater sensor nodes are expensive battery devices, and they need better protection of
their hardware to resist the water characteristics [17–19].

Sensors 2022, 22, 9525. https://doi.org/10.3390/s22239525 https://www.mdpi.com/journal/sensors
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One of the main tasks that faces researchers in the networks is determining how to
route the information collected by sensor nodes to reach the sink(s) while minimizing
routing costs (minimum delay, energy cost, number of hops, and shortest path) and ensur-
ing network connectivity (void area problem). That is, to assure the network continues
to function for as long as possible. OR is one of the routing techniques used to transmit
data in UWSNs. It is an emerging routing technology that was proposed to overcome the
drawback of unreliable transmission, especially in UWSNs. OR uses the broadcast nature
of wireless communication to forward data packets to reach the sink(s) through one-hop or
multi-hops. It addresses the major challenges of UWSNs, such as energy efficiency, void
avoidance, reliability, and network stability. This OR approach takes into consideration
the limited resources (battery and memory) of the underwater sensor nodes, and over the
years, many forwarder methods in OR were proposed to prolong the network lifetime and
increase the chance that every node has a direct or indirect link to the sink(s). Therefore,
OR extends the lifetime of the UWSNs. However, based on previous research, it has been
determined that there is still space for development in this area [20].

Many survey papers for UWSNs have been published, such as [21–26] which cover
different directions of studies in the UWSN area, and [2,27–32] summarize existing UWSN
routing protocols. However, in order to present a more specific survey paper from the
perspective of routing, we aim through this survey paper to collect and present a com-
prehensive overview of the state-of-the-art of routing protocols for UWSNs that focuses
on addressing the void area problem by utilizing OR. We also predict future trends and
challenges that remain unexplored in order to bring these to researchers’ attention.

The main contributions of this survey paper are:

• We explain how the void area problem in UWSNs can be addressed by utilizing the
OR technique, and we review up-to-date OR protocols. To the best of our knowledge,
our survey paper is the first one that reviews up-to-date void-avoidance OR protocols
for UWSNs.

• We classify up-to-date void avoiding OR protocols for UWSNs based on their most
important characteristics and features.

• We identify some of the open issues and challenges in UWSNs, which can assist the
designers of OR protocols for UWSNs.

The rest of this paper is structured as follows: Section 2 presents the routing protocols
in general. It includes the main challenges facing UWSN routing protocol designers, the
void area problem, and the reasons that may lead to its existence in the network architecture.
It also includes the concept of OR, the main components, and the classification of the OR
protocols based on their construction blocks. A review of the state-of-the-art of routing
protocols for UWSNs related to our paper is presented in Section 3. The comparison
study between the reviewed protocols, including their architectural features, benefits, and
drawbacks, is presented in Section 4. Future challenges to be faced in this area are reported
in Section 5. Finally, we conclude this paper in Section 6.

2. Routing Protocols

In general, the underwater sensor nodes are deployed in the area of interest following
one of the underwater network architectures (i.e., 1, 2, 3, or 4 dimensional UWSNs, which
are presented in many papers such as [16,26,32–35]). The deployed underwater sensor
nodes must be organized in such a way that they cover the entire area of interest in
order to gather the data whenever an event occurs. Routing protocols are responsible for
discovering and maintaining transmission routes. Thus, a route between sensor nodes and
the sink needs to be established for effective and reliable data transmission. Routing is the
backbone of any network. The sensor nodes can communicate with the sink(s) either by:
(1) direct link, where the data packets can be sent directly from the source node towards
the sink(s). or (2) through a multi-hop path where the data packets are forwarded by the
relay nodes until they reach the sink(s). However, multi-hop communication suffers from
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the complexity of establishing a route, which has effects on network performance such as
capacity, reliability, and efficiency.

2.1. Main Challenges Facing UWSN Routing Protocol Designers

In this context, to better design an OR routing protocol for UWSN, a number of
challenges that UWSN routing protocol designers encounter are listed and briefly discussed
below, as in [36]:

1. Limited bandwidth and data rate: UWSNs suffer from limited available bandwidth
(i.e., acoustic waves use a frequency between a few Hz and tens of kHz) and low
data rate (i.e., the transmission rate hardly exceeds 100 kbps). The limited accessible
acoustic bandwidth depends on the communication range and acoustic frequency.

2. High propagation delay: The UWSNs use an acoustic channel for communication
between the underwater sensor nodes themselves and with the sink(s). In the acoustic
channel, the propagation speed is five orders of magnitude lower than in the radio
channel. This high propagation delay (0.67 s/km) can significantly decrease the
throughput of the network.

3. High noise and interference: Basically, there are two kinds of noises, man-made and
natural. These noises are caused by water currents, machines, marine mammals,
and shipping. The noise under water is much more serious than in the terrestrial
environment. The interference is essentially caused by the surface, the bottom, or
animals and contamination reflections.

4. High bit error: Due to the shadow zones caused by animals, water currents, and
human-made noise, the acoustic channel suffers from a high bit error rate and tempo-
rary losses of connectivity.

5. Limited resources: In UWSNs, sensor nodes are constricted resource devices (i.e., they
have limited energy and memory). Therefore, after deploying the sensors in an un-
derwater environment, it becomes difficult and costly to replace or recharge the node
batteries due to the harsh underwater environment. Moreover, underwater sensor
nodes are vulnerable to deterioration and damage due to corrosion and pollution.

6. Topology changes: Due to the flow of water, the underwater sensor nodes cannot
stay in one location; instead, they move randomly, which gives UWSNs a mobile or
changeable topology.

2.2. Void Area Problem in UWSNs

Sensor nodes drift at different depths in the commonly deployed three-dimensional
UWSN architecture to make it easier to identify or monitor a certain phenomenon. Multi-
hop routing protocols depend on the relay nodes with positive advancement to transmit the
data collected from the phenomenon from the source node to reach the target location on
the water surface (sink(s)), as illustrated in Figure 1. In this figure, data can be transmitted
through the path with dotted arrows to reach the middle sink or through the path with
solid arrows to reach the sink on the right side. One of the very critical issues that face data
transmission, particularly with UWSNs, is known as the void area problem as it appears
in Figure 1. The data will be stuck in the relay node in the dotted path since the upper
hemisphere area of the relay node is empty and there is no other node closer to the sink
than this relay node. Numerous researchers have recently become more interested in this
issue; however, much more research is required before it can be fully addressed. In this
paper, we will follow the same UWSN routing protocol classification, location based and
location-free based categories, as presented in previous works [15,25,29,31,37] in order
to give a clear understanding of void area characterization. In location-based routing
protocols, the detected data is transmitted from the source through the relay nodes with
a shorter Euclidean distance to the destination on the sea surface. The upward region of
the node’s sphere is referred to as the void area if, during this procedure, any node that is
holding sensed information could not locate a relay node in its communication range with
a shorter distance to the destination to transmit the information to it. In this case, the node
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is known as a void node. In the location-free based routing protocols, the sensed data is
forwarded by sensor nodes using their depths until it is delivered to the sea surface. The
sensed data is transmitted from the source through low-depth relay nodes to the surface.
In this category of routing protocols, a node holding information is referred to as a void
node and the space above it as a void region if it is unable to connect with a node that is in
its transmission range but has a lesser depth than itself.

Figure 1. Void area in UWSN architecture.

Therefore, a communication void or void area between underwater nodes exists
when the area has an absence of nodes. The void area is one of the essential problems
to investigate in the UWSN field. It can prevent communication between two or more
network sensor nodes, which in turn can lead to a topological partition that results in
decreased network connectivity and increased packet loss, which lowers the performance
of the entire network.

Through our research and review of the literature, we have come to conclude that any
network architecture can experience the void area phenomenon due to one or more of the
following causes [36]:

1. Sparse topology deployment: Because underwater sensor nodes are expensive, it may
not be possible to deploy enough of them to cover the area of interest. These sparse
networks are prone to empty areas.

2. Underwater sensors failure: Owing to the harshness and peculiarities of the underwa-
ter environment, it is more likely that the sensors would malfunction due to corrosion
and fouling, which could result in a void area issue.
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3. Movement of the underwater sensor nodes: Water currents cause the underwater
sensor nodes to move in both horizontal and vertical directions. Both node placements
and the network topology will change because of this relocation, and a void area
might be created.

4. Temporary obstacles: Many living organisms are found in the underwater environ-
ment. The movement of organisms could interfere with the underwater sensor nodes’
ability to communicate. In addition, ships, boats, and other water-surface machinery
might block the communication link between the network devices. As a result, void
areas could be created.

5. The acoustic channel characteristics: The underwater environment characteristics
have an impact on the acoustic communication channel, changing the signal’s quality
and strength at different water depths due to disturbed pressure, temperature, and
salinity at varying water levels.

2.3. Opportunistic Routing

At the beginning of this section, we will give the definitions of some terminologies
that are used in this paper to make it simple and clear.

Neighbor nodes/neighboring nodes of node (i): are a set of nodes, which are in the
transmission range of the node (i).

The qualified set: is a subset of the node’s neighbor, which meet the rules adopted by
the author(s) to design an efficient routing protocol.

Next-hop forwarder of node (i): the nodes within the transmission range of the node
(i) and at the same time have depths less than the depth of node (i).

Beacon messages: Status messages that contain the status information of the nodes,
which are used to exchange this information between the neighbors.

Pholder: is the node carrying the data packet in the current round. It could be the source
node, which originally generated the data pocket, or a relay node.

Relay nodes (i): any node located between source node and sink(s) that carries on
forwarding the data packet starting from the source hop by hop until it reaches the sink(s).

OR is a promising technique that was proposed for overcoming acoustic signal fading,
high bit errors and losses due to shadow zones, limited bandwidth, high power consump-
tion, and signal spreading [38]. The main concept of OR is to use the broadcast nature of
wireless networks, which allows multiple nodes to overhear the transmissions made by any
in-range sensor node. Therefore, various underwater OR protocols have been suggested in
order to enhance communication in underwater networks.

In OR protocols, a subset of a node’s neighbors will be selected as next-hop forwarder
set candidates. These nodes collaborate in a coordinated manner to continue forwarding the
packet along toward the destination (sink) by using a prioritized technique according to the
rules implemented by the protocol [1,14,39]. The forwarding candidate set selection and the
coordination manner between these forwarding candidates to deliver the packet are the two
main parts of OR construction. This OR approach is preferable to the traditional multi-hop
routing approach, in which only a single node is selected to act as a next-hop forwarder, to
increase the probability of delivering the packet [1,25,30]. This can be illustrated through
the following example:

Let us assume that the delivery probability of each link (which presented by the arrow
in Figure 2 is p and (0< p ≤ 1).
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Figure 2. Multi-hop traditional routing vs. OR.

In the traditional multi-hop routing approach, the delivery probability, DProb„ from
the source node to the sink using h hops can be presented mathematically as.

DProb = ph (1)

In contrast, if all the relay nodes can transmit the packet by using the OR approach,
the probability of delivering the packet to the sink is increased, as explained in [40]. For OR
with m possible relay nodes in each hop, as shown in Figure 2, we can express the DProb
mathematically as

DProb =
(
1 − (1 − p)m)h (2)

where h is the number of hops between the node that originally generated the packet and
the final sink, and m is the number of relay nodes in each hop.

Consider the following numerical example: assume p = 0.8, m = 3, and h = 4. By using
Equation (1), the delivery probability is 0.4096 for the traditional routing, while by using
Equation (2), we get a delivery probability of 0.9684 for the OR routing. Figure 2 below
illustrates both routing protocols.

Hence, by taking into account the advantage of the broadcast nature of the wireless
transmission medium [41] and using the OR forwarding technique, it has become possi-
ble to mitigate the effects of the underwater environment and its characteristics on the
acoustic communication channel and improve the efficiency of the underwater acoustic
physical links [1,25,42]. That is, the OR technique has been proposed to enhance network
performance by reducing high bit errors and losses caused by limited bandwidth, high
power consumption, and signal spreading [38]. Moreover, using OR reduces packet re-
transmission; retransmission will only take place when none of the next-hop forwarder set
candidates receive that packet. Taking into account OR features, a number of OR protocols
for UWSNs have been developed in recent years. These OR protocols utilize multicast
mode, in which a single source node transmits its data to multiple nodes by utilizing more
than one link at the same time to form the next forwarder candidate set.
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2.3.1. OR Construction Blocks

The OR protocol technique is essentially constructed on two important building blocks,
as illustrated with their classifications in Figure 3. These building blocks are candidate
forwarding set selection and candidate set coordination [1,21,25].

Figure 3. Opportunistic routing building blocks.

Candidate Forwarding Selection

The first building block in OR protocol design is the candidate forwarding set selection
process. Selecting a subset of nodes from the source’s neighboring nodes to be the qualified
set to carry on the packet and continue the forwarding procedure is the responsibility of
this process. More generally, based on the next-hop forwarder node-selecting technique,
the candidate forwarding set selection procedures can be classified into the three following
categories [1,25]:

1. Sender-side-based candidate set selection: in this category, beacon messages between
the nodes in the networks are used to exchange the information of the sensor nodes
and make it available within their neighborhood. The current forwarder node, which
has a data packet to transmit, will use this information to facilitate its mission to
determine its next-hop forwarder candidate set.

2. Receiver-side-based candidate set selection: in contrast to the first category, this one
requires the neighbors to check the data packet’s header when they receive a data
packet from the sender in order to identify which received nodes are eligible to be
candidate nodes and which ones are not. In this category, each neighboring node is
responsible for determining whether it will be included in the list of the potential
next-hop forwarder candidate set or not.

3. Hybrid candidate set selection: In this category, the next-hop forwarder candidate set
is determined cooperatively by the current forwarder node, which has the data packet
to transmit, and its neighbor nodes by exchanging their information.

Candidate Set Coordination

The coordination phase is the second and most significant building block in construct-
ing an OR protocol. In order to continue forwarding the data packet until it reaches its
destination, the nodes in the next-hop forwarder candidate set must cooperate in a coordi-
nated manner. According to the protocol’s regulations, the node with the highest priority
(i.e., the most suitable node) will transmit the packet in this case, deferring transmission to
other candidates with lesser priorities. If the node with the higher priority cannot finish its
transmission, the node with the next higher priority will begin its transmission, and so on,
until the packet reaches its destination.

By functioning in a coordinated manner, this building process supports enhancing the
network’s throughput and the routing protocol’s accuracy by preventing packet duplication.
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Packet duplication causes unnecessary and redundant transmissions, wasting the node’s
energy. Additionally, the overall collision rate can be decreased.

The coordination procedures between the candidate nodes can be divided into the
two following categories [1,25]:

1. Timer-based candidate set coordination: Each candidate node in this process has a
holding time based on its priority. As a result, the candidate keeps the source’s re-
ceived data packet in their possession for a while (the holding period). The remaining
candidates will suppress their transmission if the highest-priority node successfully
transmits the packet and if they get an indication during the waiting period. If not,
the packet will begin to be forwarded by the node with the next highest priority when
its holding time expires, and so on.

2. Control packet-based candidate set coordination: The candidate nodes in this ap-
proach communicate with one another by exchanging control packets. Therefore, a
candidate node responds to a packet with a brief control message. This control packet
transmission is used to notify the currently active forwarder node that the packet has
been successfully received. It also notifies the other low priority candidate nodes to
pause their transmissions.

2.3.2. OR Classification

The existing OR protocols in UWSNs can be classified based on their positioning
information into two main classifications: geography-based and pressure-based. In the
first category (geographic-based), selecting the forwarding set candidates and making
the forwarding packet decisions in OR requires information about the geographic loca-
tion of sensor nodes. While in the pressure-based category the depth information of
nodes is needed to select the next forwarding set candidates and make the forwarding
packets decisions. This classification with the state-of-the-art reviewed protocols can be
seen in Figure 4.

Figure 4. Classification of OR protocols for UWSNs based on position information.
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3. Review on Opportunistic Routing Void Avoidance Protocols for UWSNs

Only a few protocols have been proposed to deal with the void communication area
problem in UWSNs using the opportunistic routing technique. In this section, we will give
a quick review of all the existing protocols.

HydroCast

Authors in [43] presented a hydraulic pressure routing for underwater sensor net-
works protocol (HydroCast). HydroCast forms a cluster of nodes by using only the local
knowledge of the topology, excluding hidden terminals among them, while also maximiing
the expected packet advance (EPA) of this cluster. When adopting the time of arrival
technique, which is frequently used in UWSNs, the current forwarder node in HydroCast
can define the pairwise distances and two-hop connections for the nearby nodes in order to
determine its forwarding set. Additionally, the forwarding set candidates are prioritised
using a distance-based timer approach. To help organise the transmission and reduce
collisions, when nodes in the forwarding set receive a data packet from a recent forwarder
node, they set their timers in order, starting with the node with the longest distance.

HydroCast also proposes a Local Lower-Depth-First Recovery approach and 2-D Void
Floor Surface Flooding for Recovery Path Search for a recovery mode. Where each void node
(i.e., local minimum node as used in the paper) seeks out its neighbors to find a node with
a lesser depth than itself, this lesser depth node could be another void node with a new
recovery path or a sensor node in a position that helps to resume the greedy forwarding
techniques. Figure 5 shows the recovery path in the HydroCast protocol.

Figure 5. HydroCast void handling technique.

In the 3D network topology, nodes experiencing a void area employ a costly flooding
technique to learn which nodes are best suited to resume greedy forwarding or identify
alternative routes to better forwarding channels. However, it is difficult to estimate the
limited 3D flooding probability value because the flooding could involve every sensor node
and affect the entire network topology. They suggest 2D flooding on the surface of the void
floor to get around this restriction and increase the effectiveness of the procedure. This
flood will include the best possible collection of nodes. As a result, nodes on the surface
will monitor their void floor surface status using their local connectivity information and
forward packets accordingly, whereas nodes that are not on the surface but are controlled
by surface neighbors will not forward packets.

HydroCast addresses the void area issue using an OR approach, which also success-
fully enables increasing the packet delivery ratio with small end-to-end delays since a
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subset of the neighboring nodes simultaneously receive the data packet appropriately.
However, at the same time, as a result of using opportunistic routing, the HydroCast
protocol suffers from redundant packet transmission, where a data packet may be delivered
to the sink multiple times, causing the depletion of network resources. In addition, in terms
of energy efficiency, implementing the recovery mode results in additional energy costs.
Moreover, there is no evidence provided about the energy consumed by the pressure sensor
in order to find its depth.

VAPR

Void-Aware Pressure Routing (VAPR) [44] is an anycast soft-state routing protocol. It
was proposed in order to address the void node issue in UWSNs. VAPR is built up of two
stages: the enhanced beaconing stage and the opportunistic data forwarding stage. Instead
of falling into a void area and then implementing a recovery mode, VAPR takes advantage
of the geographic routing and employs the regular beaconing messages method, which
includes some useful local information about the node, in the forwarding set selection stage.

In VAPR, any node that receives a beaconing message from a neighbor updates its
neighboring table and examines its depth with the received depth information. The node
then makes its own routing decision by removing void nodes (dead ends or local maxima)
from its forwarding sets and chooses the overall best route to the destination as shown in
Figure 6; this will help avoid the packet from falling into a void area in the network. In
fact, implementing the VAPR protocol will prevent data packets from being stuck in a node
because the protocol relies on the surface station and the beaconing message sent from it to
the sensor nodes below as well as the stored information in the nodes.

Figure 6. VAPR voids and trapped areas.

GEDAR

In [45], the proposed protocol, geographic and opportunistic routing with depth
adjustment-based topology control for communication recovery (GEDAR), utilizes the
greedy forwarding technique by knowing the position information of each current for-
warding node, its neighbors, and the known sink. GEDAR follows the sender-side OR
category, where the forwarding set candidates are determined in each hop by the sender
node. Initially, GEDAR uses a greedy, opportunistic forwarding mode to route the packets.
Once a node has gathered some data and needs to transmit these data to a sink(s) node, it
includes IDs of its forwarding set candidates in the data packet header and broadcasts the

183



Sensors 2022, 22, 9525

packet to its neighbors. When a neighbor node receives the transmitted packet, it checks
whether its ID is in the packet header or not. If it is not a forwarder candidate node, it just
drops the packet. Otherwise, it calculates the holding time to decide when it can transmit
the packet. This procedure will continue until the packet reaches the sink(s) on the water’s
surface. If the packet is trapped in a void node, the recovery mode is applied by GEDAR.
In the recovery mode, when the packet gets stuck in a void node (node v in Figure 7), the
protocol deals with the problem by taking advantage of a network topology control strategy
where any node in a void area can move in a vertical direction (from D1 to D2) to adjust its
depth. Then it bypasses the void area to be able to communicate with other nodes trying
to resume the greedy forwarding. Therefore, the void node first discontinues sending the
gathered packets and starts calculating a new depth that will allow it to continue its OR
greedy forwarding to deliver the data packet to the next hop.

Figure 7. Depth Adjustment.

The recovery technique used by GEDAR helps by bypassing the void area, which as a
result, improves the networks connectivity and increases the packet delivery ratio. On the
other hand, in energy consumption terms, this Depth Adjustment technique implemented
by GEDAR exhausts a very high amount of energy in physical movement to adjust the
network topology, and this will make nodes exhaust their energy rapidly and reduce the
network lifetime.

IVAR
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An Inherently Void Avoidance Routing Protocol for Underwater Sensor Networks
(IVAR) [46] is a receiver-based forwarding protocol, so the forwarding node does not
need to store its neighbor’s information. In IVAR, a hop-by-hop forwarding set selection
technique is used to forward the data packets from the sensed node to the sink. Each packet
holder uses local information about hop distance and packet advancement to determine
its own forwarding set, and the nodes in these forwarding sets are arranged and given
a priority depending on two metrics: their hop count as a first metric and their depth
as a second one, to forward the packets. IVAR uses beaconing messages sent from the
destination to the source; this helps the sensor nodes get the reachable information of the
sink(s) and relay nodes. Therefore, the void nodes (yellow and red nodes), as Figure 8
shows, will be excluded from the forwarding set of the sensor node, and the route with a
lower hop count will be chosen.

Figure 8. Void-handling technique [46].

Choosing a route with a lower hop count manages the energy consumption and
reduces the packet delivery time. Besides, using the node’s depth assists in preventing
packet duplication. On the other hand, because of the broadcast nature of the protocol
and because the qualified forwarding nodes may be distributed around the forwarding
node in various directions, the protocol cannot completely suppress route and transmission
duplication. This limitation will cause the hidden terminal problem and, consequently, extra
energy consumption. IVAR uses a periodic beacon by the sink to update the underwater
nodes with their current position in the network. Therefore, all the routes from the sink to
the sensor nodes will be established in advance, and all the routes directing the packets
to void areas will be excluded. However, the beacon interval has to be chosen cleverly
because it has a great effect on node information and communication efficiency, which
consequently will impact network performance.

OVAR

The opportunistic void avoidance routing (OVAR) protocol [47] is a sender-side
method and a soft-state routing protocol, that requires some local reachability information
(e.g., hop count distance, forwarding direction, etc.) about one-hop neighbors to be held
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in every node. This provides a general observation of each node on the topology. OVAR
was proposed to handle IVAR weaknesses (i.e., hidden terminal problems and duplicated
packets of transmission). In the same way as IVAR, to handle the problem of void areas,
OVAR implements the beaconing procedure and considers its benefits. Different from the
receiver side IVAR protocol, in the sender side OVAR protocol, the one-hop neighboring
information is held in the sensor node to establish an adjacency graph at each forwarding
node. In terms of energy consumption management, OVAR deals with the number of
nodes in the forwarding sets, where the size of the forwarding set can be adjusted based on
the network density to save energy by reducing the energy consumed by a node when it
receives a packet. Reducing the forwarding set size may reduce the delivery ratio and in-
crease packet retransmission, which will lead to more energy consumption. In terms of void
area, OVAR includes the high-depth nodes in the forwarding set, which may be inefficient
in terms of reliability, energy consumption, and protocol latency. OVAR is slightly more
complicated than IVAR, which is caused by the procedure OVAR implemented to eliminate
the hidden nodes problem and its effects on the protocol’s performance, in addition to the
trade-off procedure between energy consumption and reliability.

VHGOR

Void handling using geo-opportunistic routing in underwater wireless sensor net-
works (VHGOR) [48] adopts geography-based opportunistic routing (GOR) to forward
data packets to reach the destination over multi-hops. It is a heuristic protocol implemented
using two metrics to form optimal forwarder selection. OREPP metrics try to positively
advance the data packets towards their destination. The first metric is opportunistic rout-
ing based expected packet progress (OREPP), which is calculated based on the difference
between the geographic distance between the source and destination and the geographic
distance between any node and the destination, residual energy, and packet delivery proba-
bility. The second metric is node closer to the destination (NCD); NCD can be defined as
the best node with maximum OREPP to forward the current packet. VHGOR uses a greedy
forwarding approach to advance the packet through each hop towards the destination, and
if the packet becomes stuck in one of the forwarding nodes, then it switches to the void
mode. VHGOR handles the void problem using the two following techniques:

1. Convex void handling: If the packet is stuck at the NCD node, VHGOR attempts to
identify a different path to forward the same packet to the destination by removing the
present forwarder and re-establishing the convex structure with remaining neighbors
founded in the neighbor table (NT).

2. Concave void handling or recovery mode: The void becomes concave when a packet
gets trapped in a node without any neighbors with lower pressure levels, which
means that its NT entry is empty. In order to reroute the packet along a different
path to the destination, VHGOR manages the concave void by rerouting it down the
recovery path, which runs from downward to upward. The previous sender chooses
the subsequent NCD node from its NT to continue sending the same packet after
receiving the packet from the concave empty node.

Figure 9 demonstrates the forwarding packet route and recovery mode that VHGOR
has adopted. Node n1 chooses node n2 to be the next forwarding node, since node n2 has
the highest Expected Packet Progress (EPP) value in its neighbor table (direction number 1
in the figure). In the same manner, node n2 chooses node n3 as the next forwarding node
and transmits the packet to it (direction number 2 in the figure). However, since node
n3 is a void node and has no nodes to forward to, node n3 returns the message back to
node n2 (direction number 3 in the figure). The next node in Node n2′s neighbor table is
subsequently chosen as the next forwarder (direction number 4 in the figure). Since D is
inside the transmission range of node n10, node n10 finally delivers the packet to D. In order
to create the best forwarder from FCS, VHGOR takes into account residual energy, which
helps cut down on energy consumption.
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Figure 9. VHGOR recovery mode [48].

VHGOR considers the residual energy in forming the optimal forwarder from the
forwarding candidate set (FCS), which assists in reducing the energy consumption. Besides,
employing opportunistic forwarding works in improving the delivery ratio at the same
time introduces end-to-end delay to some extent [48].

WDFAD-DBR

In [49], another pressure-based routing protocol was described in detail, namely
the weighting depth and forwarding area division DBR routing protocol (WDFAD-DBR).
To increase the reliability of the packet transmission and decrease the probability of the
occurrence of a void area, WDFAD-DBR uses the weighting depth difference of two-hop
nodes to construct its routing decision. As presented in Figure 10, node S is a source node,
and the two forwarding candidate nodes with lesser depth are A and B. In the greedy
protocol DBR, node A has a lesser depth than node B, giving A the priority to transmit first.
Node B will suppress its transmission and drop the packet when it hears it from node A.
However, a void area occurs since there are no nodes in node A’s transmission area (S2)
with less depth than node A to carry forward the packet. In contrast, WDFAD-DBR selects
node B to forward the packet because it considers both depth differences, current depth
difference (node B depth—source depth), and the difference depth of the expected next hop
(node E depth—node B depth).

In WDFAD-DBR, the void nodes can remove themselves from the data packet routing
to increase the opportunity for the other candidates in the forwarding set to forward the
packet. In addition, to control the number of forwarding nodes, WDFAD-DBR divides
the forwarding area into a constant primary forwarding area (the Reuleaux triangle) and
two auxiliary forwarding areas, which might be extended or shrunk depending on node
density and the quality of the channel. In terms of energy consumption, on one one hand,
to help reduce the energy expenditure due to the duplicated packet transmission, the
auxiliary forwarding area is divided into a number of smaller sub-areas, which helps save
some energy. On the other hand, the periodic neighbor requests and the corresponding
ACKs in a reply to each control packet exhaust the energy of the nodes and waste network
resources. In order to bypass the void area, WDFAD-DBR successfully detects the void
nodes and excludes them from the forwarding procedure. However, the protocol fails to
detect the trapped nodes in advance. Moreover, when a fixed primary forwarding area is

187



Sensors 2022, 22, 9525

implemented by the protocol, the flexibility of the routing might be restricted in its ability
to choose and adjust the forwarding nodes under various conditions.

Figure 10. Void area problem [49].

EVA-DBR and SORP

In [50,51], the energy-efficient and void avoidance depth-based routing (EVA-DBR)
protocol and A Stateless Opportunistic Routing Protocol for Underwater Sensor Networks
(SORP) are proposed. SORP builds on the performance evaluation from [50], considering
a realistic sensor mobility model, the shadow zone, variable propagation delays, and
additional network parameters and results. EVA-BDR and SORP are routing protocols
consisting of two phases: the updating phase and the routing phase. The protocols depend
on the information broadcasted periodically in the updating phase from the neighbor nodes
that are one-hop away from the source node for void detection and bypassing in the routing
phase. Initially, all the nodes in the network are homogeneous. However, in the updating
phase, the void and trapped nodes are detected over time by the broadcasted information
from the neighboring nodes. In addition, through the updating phase, each regular node
will choose its best candidate node in terms of the expected packet advancement (EPA)
among the neighboring nodes with lesser depth to be used as a reference node in the
opportunistic data forwarding [50,51]. In the routing phase, to increase the packet delivery
probability in each data transmission operation, all the detected void and trapped nodes
take themselves out of the forwarding set; this procedure will increase the opportunity
for the other regular nodes in the forwarding set to forward the packet. In addition, the
forwarding area can be resized depending on the density of the network, as presented in
Figure 11, and all the qualified nodes will set their forwarding timer to forward the data
packet. This forwarding time should guarantee a priority-based scheduling of the nodes in
the forwarding set and should suppress the duplicate packets.
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Figure 11. Resizing the forwarding area, sparse density on the right and dense density on the left [50].

In terms of energy consumption, since the nodes do not need to send an ACK to the
node’s neighbors as a reply to their control packets, the energy consumed per node will be
somewhat reduced. In contrast, both protocols may allow the duplicated transmissions
to increase the packet delivery probability in a sparse network in addition to periodic
broadcasted information exhausting the node’s battery and, as a result, decreasing the
network lifetime as well as the node’s life. And in terms of void avoidance, the state of
excluded nodes from the forwarding set that announced themselves as void or trapped
nodes may change during the transmission data packet or before the period of broadcast-
ing information expires, which may effect the energy consumption and reliability of the
network. Moreover, maintaining the neighboring table and the two-hop information will
adversely affect the limited resources of the nodes (i.e., energy and memory).

EDOVE

This section reviews the energy and depth variance-based opportunistic void avoid-
ance (EDOVE) protocol that was presented in [52]. EDOVE was proposed on the basis of
the work presented in [24], called the WDFAD-DBR protocol. The protocol addresses the
void area problem by selecting the forwarder candidates among the total distributed nodes
that have i) a large residual energy and ii) several neighboring nodes within its transmission
range (neighbors). Each node in the network architecture shares its information with its
1-hop neighbors using neighbor request and neighbor acknowledgment packets, and each
node must keep its neighbor table updated in order to obtain this relevant node information
when needed. Once a sender has a data packet to deliver, all of its neighbors will inevitably
get it due to the broadcast nature of the protocol. From then, the packet must be transferred
through one of these neighbors to the next hop or directly to the destination (sink(s)). In
contrast to WDFAD-DBR, EDOVE uses the two-hop depth differences, the normalised
residual energy of the node, the next hop depth difference to the source, and the depth
difference variance between the neighbors to compute the holding time. This is because
the receiving nodes have different residual energies, and EDOVE takes this diversity into
account. The holding time parameters are shown in Figure 12.
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Figure 12. Holding time calculation parameters [52].

Finally, to choose the best forwarder node, EDOVE makes the decision by calculating
the holding time and selecting the receiving node with the largest residual energy, the
greatest depth difference to the source, the greatest depth difference to its neighbor, and
many neighbors with a large variance in their depth differences. More factors are taken into
account by the protocol, which increases energy efficiency, prevents packet collisions, and
extends network lifetime. However, in dense networks or when the size of the network is
increased, there are increases in the probability of duplicated packet transmission because
the number of nodes with the same depth will increase, making their estimated holding
times almost the same. This results in an increase in data packet traffic, which in turn
increases energy consumption. Additionally, the protocol views the void area only as a
series of energy holes, despite the fact that it serves a variety of purposes, as stated above.

TORA

The totally opportunistic routing algorithm (TORA) is proposed for UWSNs in [53].
TORA is a novel anycast, receiver-based opportunistic, and geographical routing protocol.
It is suggested in order to prevent horizontal transmission, minimize end-to-end delay,
address the issue of void nodes, and increase network performance and energy efficiency.
The three steps of the proposed protocol’s operation are node localization, candidate
forwarder selection, and data transmission.

At the water surface, the multi-sink network architecture is installed, and ordinary
nodes drift in different levels underwater, as shown in Figure 13. The ordinary nodes are
divided into two types: 1) single transmission node (STN) that are in transmission range
of surface sinks; and 2) double transmission node (DTN) that are not within transmission
range of surface sinks, they estimate their position by communicating with STNs.
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Figure 13. Layering structure in TORA at the node localization phase [53].

To locate nodes in the network, the time of arrival (TOA) and range are used. Sinks
periodically send hello messages to help collect node information that will be used to
determine ordinary node location in the localization phase. Next, based on the nodes’
geographic coordinates and remaining energy, the best forwarding node that has a higher
residual energy and is closer to one of the sinks will get a higher priority to relay the packet
in the candidate forwarder selection phase. After that, the data transmission phase starts
once a node has a data packet ready to send. This data packet should be delivered to one of
the sinks in a multi-hop fashion through selected forwarding relay nodes. TORA utilizes
2-hop Ack to make sure that the packet has traveled for two hops and zero Acks to reduce
end-to-end delay and retransmissions. As a conclusion, data is transmitted to the sink node
using a combination of several short, active links.

EBER2

In [54], an energy-efficient and reliable protocol called an energy balanced efficient
and reliable routing protocol (EBER2) has been proposed to address the void areas. EBER2

adopts the potential forwarding nodes (PFN) concept to tackle WDFAD-DBR shortcomings.
Since WDFAD-DBR experiences void area problems in some cases because it ignores
taking into account the PFNs for the second hop, it suffers from high duplicate packets
and collisions, which reduce protocol performance and efficiency. In EBER2, the network
architecture consists of three types of sensor nodes (sink nodes, anchored nodes, and relay
nodes), as demonstrated in Figure 14.

The authors of EBER2 take into account three factors as primary parameters for
choosing the next forwarder in order to address the WDFAD-DBR weaknesses. The first
parameter is the weighting depth difference of two hops; by choosing the next forwarder
node based on the depths of the first two hops, the likelihood of a network void area
problem is reduced. The second factor is the number of PFNs, which are nodes that are
within the source node’s upper hemisphere of its transmission range. A void node is one
that has no PFNs; as a result, it is excluded from the upcoming forwarding set, which
improves network stability. The residual energy is the third parameter, and it is used to
provide PFNs with the same depth but varying holding durations in order to prevent
duplicate packets. In addition to forming the next forwarder set and preventing void nodes
from being chosen as candidates for the next forwarder, these three parameters also support
energy efficiency, boost packet delivery ratio, and lengthen network lifetime by preventing
duplicate packets and the ensuing collisions.
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Figure 14. EBER2 Network Topology.

To further assist these nodes in communicating with the embedded sinks and deliver-
ing data packets to them rather than travelling through a long path to reach the sinks on the
surface, the EBER2 protocol deploys two additional embedded sinks in the underwater area
of interest that have high traffic density, as can be seen from Figure 15. In general, since the
nodes placed in these dense and high traffic areas transfer the received packet to the closest
embedded sink rather than transmitting further to the surface, this strategy enhances net-
work packet delivery ratio while consuming less energy. Instead, the cost of communication
rises because of the high-speed optical fiber links used to connect embedded sinks and
on-surface sinks. Additionally, EBER2 employs a transmission energy adaptation mecha-
nism that enables nodes that are closer to sinks to reduce their transmission power level in
accordance with their distance from that sink. This minimizes the void area created by the
death of these nodes by preventing the nodes close to the sinks from rapidly exhausting
their energy due to being involved in the majority of forwarding procedures.

EDORQ

The authors of [55] proposed a new receiver side-based routing protocol for UWSNs
named Energy-efficient Depth-based Opportunistic Routing with Q-Learning (EDORQ).
The EDORQ contains two phases: (1) the candidate set selection phase to choose a subset
of neighbor nodes to carry on forwarding data packets until delivered to the destination;
(2) the candidate set coordination phase, where the candidate nodes collaborate according to
their priorities by applying the timer-based mechanism to suppress redundant forwarding.
Moreover, the authors adopted the Q-learning technique to design the holding time of
the candidate nodes. By defining a holding time for each candidate, the candidate node
with the larger Q-value has a higher priority, a lower holding time, and will transmit the
packet first.
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Figure 15. Network Topology with Two Embedded Sinks [54].

EDORQ starts the forwarding process using greedy mode, where the current forward-
ing node broadcasts the data packet to its neighbors. Each candidate neighbor extracted
the depth (d) and void-flag information of the current node from the packet header after
receiving the data packet and then compared d with its own depth. In order to ensure that
the data packets are quickly sent in the sink’s direction, the greedy mode helps locate a
collection of candidate nodes closer to the water’s surface. In order to achieve this, the
void-flag field in the packet header is set to “0,” indicating that only nodes whose depth
is less than the current forwarder are eligible to be chosen as candidates. However, the
protocol switches to void recovery mode when the packet is stuck in the void node as,
illustrated in Figure 16.

The current node will retransmit the data packet in a void recovery mode, where the
value “1” is entered in the void-flag field, allowing the neighbor nodes with the greatest
depth to be chosen as candidate nodes. A node should only forward packets with the same
ID once for a predetermined period of time in order to reduce duplicate transmissions,
comparable to the DBR. As a result, the new candidate set of current nodes would continue
the forwarding process. The next best packet forwarder from the current node will then
transmit packets in a greedy manner toward the sink if no other the void node is reached.
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Figure 16. EDORQ void recovery mode [55].

RPSOR

In [56], another novel OR protocol called Reliable Path Selection and Opportunistic
Routing (RPSOR) for UWSNs is presented to address the void area problem in UWSNs.
It is an improved version of the WDFAD-DBR protocol. RPSOR operates in two stages:
knowledge acquisition and packet forwarding. In the knowledge acquisition stage, nodes
exchange their information through hello packets sent from surface sinks, neighbor request
packets, and ACK packets generated by each sensor node. In addition, the node maintains
three different tables, which are the source info table, the first hop info table, and the routing
table. Furthermore, in the packet forwarding stage, the decision for PFN selection will be
made based on the priority function, which is defined by three elements: the reliability
index, the advancement factor, and the shortest path index. RPSOR only selects the nodes
of the upper hemisphere as the forwarding neighbors. Therefore, nodes having higher a
depth than the current node simply drop the packet.

In RPSOR, two sinks are mobile, as can be seen in Figure 17. Mobile sinks are utilized
to travel to denser network areas that experience high traffic.

At the beginning of each simulation round, the network uses hello messages to assess
the node density at various hops, and it then permits the sink to travel to any hops with a
high node density. The nodes located at the following hop must transmit a large amount of
load created by denser network locations. The majority of the packets are lost when this
high traffic enters the network’s sparse area since the network cannot handle such high
traffic levels. Utilizing the position data of the denser hop, which was acquired by the
greeting message, the sink determines the vertical trajectory.

PCR

Recently, a novel power control-based opportunistic (PCR) routing protocol for the
Internet of Underwater Things (IoUTs) was proposed in [57]. They develop opportunistic
routing and transmission power control methods in order to send data in IoUTs with the
least amount of energy possible. Each node in PCR checks many transmission power levels
before selecting its candidate set for the next-hop. The PCR protocol implements a periodic
beaconing technique during the neighbor discovery phase for each transmission power
level in order to gather information from neighbors and update the neighbors table. The
candidate set will be expanded to include the neighbor node exhibiting positive packet
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progress. The appropriate transmission power level and the next-hop forwarding set
are then computed based on the energy waste for each candidate set. Hence, the set of
candidate nodes with the least energy waste is chosen as the best candidate set to continue
forwarding the packet to the next hop until the packet reaches the destination. The nodes
in the candidate set will then be sorted based on their normalized packet advancement
to define the node’s priority. Then, PCR applies a timer-based approach to manage the
transmission coordination between the candidate nodes. Therefore, the candidate node’s
packet holding time decreases as its priority increases. Additionally, if a lower priority
candidate node detects packet transmission from a higher priority candidate node, it will
cancel its own transmission.

Figure 17. Sink mobility model [56].

By changing the transmission power level at each hop, the PCR packet delivery
ratio was enhanced in order to select the most suitable candidate nodes from the sender
neighbors to continue passing data packets to the sink(s) on the water’s surface. In dense
networks, PCR also lowers the node’s transmission power level to lessen the need for
retransmissions, which lowers energy usage in some cases. The energy consumption is
still higher than the related works, as we can see from their data, and this will shorten the
lifespan of the network.

SEEORVA

A secure and energy-efficient opportunistic routing protocol with void avoidance for
underwater acoustic sensor networks, (SEEORVA) was presented in [58]. This protocol
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employs the OR strategy for reliable data delivery in UWSNs and uses energy thresholds in
the forwarding process to give a priority to the forwarding nodes, which have energy above
that particular threshold; in that way, energy efficiency and expanding network lifetime
can be achieved. The protocol handles the communication void problem and encrypts
transmitted packets using a secure, lightweight encryption technique for security.

In SEEORVA, the best forwarder selection was performed as follows: when a source
node has packets to transmit, it creates a virtual vector pipe to the sink (as can be seen
in Figure 18). The source then lists all the nodes that are detected within this pipe to be
considered, calculating the highest energy of the nodes and the threshold energy value
based on the calculated highest energy value.

Figure 18. The best forwarder selection process in the SEEORVA protocol [58].

In the forwarding process, only candidate nodes within the source transmission range
that have residual energy greater than the threshold and are making maximum progress
to the sink will be given the highest priority and chosen as the best forwarder node. If
this node could not forward the packet within the allocated transmission time, the next
node in the list would forward the packet to the sink. Therefore, to ensure the security of
transmitted data, SEEORVA uses a lightweight security protocol, the novel tiny symmetric
encryption algorithm, to encrypt data packets before sending them through the network
to the sink. These encrypted data packets can only be decrypted by the collection and
processing centers at the water’s surface.

Moreover, the proposed protocol addresses the void problem by encouraging the
forwarder node to send a data packet void alert to its previous node if the forwarder node
faces a communication void. The previous node searches for an alternative route to avoid
the void and uses this alternate route to transmit the remaining data packets from the
previous node to the sink.

The nodes’ remaining energy is used as a significant factor to determine the priority of
the next forwarder nodes in the forwarding process, thus extending the lifetime of each
sensor node and the network overall. While the technique used to handle communication
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voids gives much better quality of service (QoS) results, it is also easy to implement with
less overhead and delay. In addition, the encryption method ensures secure data packet
transmission and avoids any leakage in data packets that can be harmful in any way.

EEDOR-VA

In [59], the most recently published routing protocol to address the void area issue is
named energy efficient depth-based opportunistic routing with void avoidance protocol for
UWSNs (EEDOR-VA). EEDOR-VA aims to improve network performance by developing
a routing protocol that achieves a high packet delivery ratio while using less energy by
choosing the shortest routing path. EEDOR-VA decides on routing based on the nodes’
ability to reach the surface sink. This protocol introduces Hop Count Request (HCREQ)
and Hop Count Reply (HCREP) messages to update the node’s hop count to the nearest
sink that can be approached. In the proposed protocol, data packets will not get stuck in
any void and trapped nodes located in the transmission range of a source and/or relay
node because these void and trapped nodes do not respond to the HCREQ message and are
therefore removed from being one of the forwarding candidates. As a result, each Pholder
can easily construct its forwarding set. That is, sensor nodes use the information from the
hop-count discovery algorithm to update their hop count from the sink(s) and exclude
void and trapped nodes in the Pholder nodes’ transmission range from being included in
the forwarding set. Periodic beaconing and its related costs is eliminated by the hop count
discovery mechanism proposed in EEDOR-VA. The main goal of EEDOR-VA is to find as
many loop-free paths as possible between a source node and a single or multiple sinks on
the sea surface. The protocol can easily change the chosen route from one path to another
by electing the next relay nodes from a different path if this relay node is the best choice
in the next hop forwarding range. As a result, this technique prevents having to start
the hop-count discovery process all over again. If all routes to all of the sinks fail, then a
hop-count discovery is initiated. EEDOR-VA updates relay node information using route
information and ensures that nodes responding to the Pholder have a path to one of the
sink(s) in order to avoid the void nodes. The EEDOR-VA protocol’s process is depicted
in Figure 19. When a source node has a packet to send, it sends HCREQ first, which is
received by all of its neighbors. Each of these neighbors sends out a rebroadcast of the
appeal to their own neighbors.

Figure 19. Underwater Network Architecture Model of the EEDOR-VA Protocol.
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The EEDOR-VA protocol uses rounds; every round is comprised of three phases: a hop-
count discovery phase, a forwarding set creation phase, and a data packet forwarding phase.

The hop-count discovery phase is in charge of determining the hop count of any source
and/or relay nodes in the network to the sinks, whether the sink(s) are directly reachable
within the transmission range of the source or reachable via one or more hops through
relay nodes. Once the hop count of each of the route nodes is defined, the forwarding set
formation phase is started. In each hop, the Pholder forms its next-hop forwarder set based
on the extracted candidate information, and only a candidate with a hop count less than
the Pholder hop count, no matter if it has less or more depth than the Pholder, will be added
to that Pholder next-hop forwarder set. Finally, Pholder integrates the data packet with the
sorted list of the selected forwarding candidate IDs and transmits it to its neighbors. Each
neighbor checks the packet header and simply drops the packet if it cannot find its ID in
the attached list or starts computing its holding time otherwise.

The EEDOR-VA protocol uses the node’s hop count as the first metric to identify the
best forwarding node and the node’s depth as a secondary metric in the event of a tie.
The best forwarding node will transmit the data packet immediately after receiving it to
continue the forwarding process. Other forwarding candidates will drop the packet if they
successfully hear the transmission from the most appropriate node. If not, the data packet
will be transmitted by the following node in the sorted list, and so forth. These processes
will be repeated hop by hop until the data packet reaches the sink or all the candidate nodes
in the forwarding set fail to do so.

4. Comparison Study of OR Protocols for UWSNs

In the previous section, the literature review of the state-of-the-art of the OR proto-
cols that are proposed for UWSNs to address the void area problem is presented. The
main challenge in the protocols was to handle the void area problem by using different
approaches. The occurrence of the void area in the routing path can significantly reduce
network performance. In this section, the general comparison of these reviewed protocols
based on their characteristics and features is summarized below in Table 1.

In Table 1, we can see that the existing void avoiding OR protocols for UWSNs are
classified into two main classifications: geographic-based and pressure-based. In the
first category, geographic-based, which includes [44,45,48,57,58], selecting the forwarding
set candidates and making the forwarding packet decisions in OR requires information
about the geographic position of sensor nodes. While in the pressure-based category,
which includes [43,46,47,49–52,54,59], the depth information of nodes is needed to select
forwarding set candidates and make forwarding packet decisions.

The reviewed protocols are divided into sender-side and receiver-side categories based
on which node will decide if the candidate node can be added to the next hop forwarder set
or not. A higher communication overhead is needed on the sender-side because the sensors
frequently need to exchange node information in order to update their neighbors’ tables.
As a result, the limited resources of the node (i.e., battery and memory) are used up. On the
receiver-side, the sender is unaware of its neighbors and is unaware of its forwarding set.
This may result in a significant number of redundant broadcasts and raise the possibility
of transmission collisions requiring reiterate transmissions. The entire network stability
period may be shortened as a result of packet loss and sensor node energy consumption. A
number of these protocols take advantage of the multi-sink architecture and consider the
data packet as delivered if it reaches one of the deployed sinks on the water surface. This
improves the network reliability.
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These state-of-the-art protocols employ various void area handling techniques to
address the void area problem in order to increase network performance and deliver data
packets properly.

Moreover, Table 1 also includes a brief summary of the benefits and drawbacks of the
reviewed protocols in the two last fields. Additionally, most of the protocols deal with the
void region by switching from the forwarding approach to the recovery mechanism, and
the bulk of them have the stuck node issue. The IVAR, SEEORVA, and EEDOR-VA protocols
are the only ones that address the void area issue and recognize every void/trapped node.
However, both IVAR and SEEORVA implement periodic beaconing to provide sensor nodes
with sink(s) reachability information. The network performance is significantly impacted
by the beacon interval. Due to the prioritizing process, which depends on the depth that
could be the same for more than one node, and the holding time, which depends on shared
parameters between more nodes, both protocols still suffer from duplicate transmissions.
While the EEDOR-VA protocol addresses the limitations of these two protocols through the
novel hop-count discovery mechanism and the prioritizing technique.

5. Open Issues and Challenges in UWSNs

• Energy efficiency: Due to the harsh underwater environment restrictions and limita-
tions on recharging or replacing the deployed sensor node, energy efficiency is a major
constraint that can restrict many applications from achieving their goals. The current
focus of study is on energy conservation and routing process energy optimization.
Future studies will continue to focus heavily on this topic.

• Channel utilization: effective and efficient channel usage is a significant area of in-
vestigation in UWSNs that has attracted a lot of attention; it has an effect on energy
consumption and void areas that form easily in UWSNs. The channel must be used
to its full potential to overcome its limitations, like interference, high error rates,
continual sensor node mobility, and propagation latency.

• Void areas: Due to the reasons listed in Section 2.2, void areas result in more frequent
packet drops, decreasing the network QoS. To ensure a high QoS for various UWSN
applications and increase network reliability, more mechanisms to handle void areas
and void communications effectively and establish trust for user apps are required.

• Security: A significant area of concern is the security of data exchanged between sensor
nodes. The security of data is the most crucial issue in many UWSN applications,
especially the military ones. In such applications, any information leak could lead to
harmful effects and severe repercussions. To secure the connection between the sensor
nodes in UWSNs as attacks and threats grow, investigations that consider security and
privacy will be a continuing and extremely difficult effort.

These are some of the most significant and active fields of research for UWSNs that
need more investigation, and they will remain so in the upcoming years.

6. Conclusions

These days, opportunistic routing in UWSNs has drawn a lot of attention from re-
searchers. OR has been shown to be more effective than the conventional routing strategy
for wireless networks because it makes use of the broadcast nature of wireless networks.
A number of factors have an impact on the performance and effectiveness of the UWSNs,
including a shortage of resources (restricted battery power and memory), the harsh under-
water environment, and a weak communication channel. The void area problem employing
an OR approach is one of the significant concerns and research challenges in UWSNs. We
have investigated in this paper the existing OR protocols proposed to address this problem.

First, we discussed the aspects of routing protocols for UWSNs covering the main
challenges facing researchers when designing routing protocols, the concept of the void
area problem in UWSNs, and reasons for this problem. OR and its key elements, including
OR construction blocks and OR classification have been introduced. Second, the state-
of-the-art void avoiding protocols that use the OR technique were investigated in depth.
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The reviewed protocols have then been compared in many aspects, including the type of
protocol, number of sinks, network topology requirements, and the special information
required or needed to be maintained during the data packet routing. Their advantages and
limitations were listed in the last two columns of Table 1. Moreover, we provided some of
the open research issues in UWSNs that require further investigation.
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Abbreviations

ACKs Acknowledgment messages
ADCs Analog to Digital Converters
ADV Advancement Distance
AUV Autonomous Underwater Vehicle
DTN Double Transmission Node
EBER2 An Energy Balanced Efficient and Reliable Routing Protocol
EDORQ Energy-efficient Depth-based Opportunistic Routing with Q-Learning
EDOVE Energy and Depth variance-based Opportunistic Void avoidance
EEDOR-VA Energy Efficient Depth-based Opportunistic Routing protocol
EVA-DBR Energy-efficient and Void Avoidance Depth Based Routing
GEDAR GEographic and opportunistic routing with Depth Adjustment-based

topology control for communication Recovery
HCREP Hop-Count Reply
HCREQ Hop-Count Request
HydroCast A Hydraulic Pressure Based Anycast Routing Protocol
IoUTs Internet of Underwater Things
IVAR An Inherently Void Avoidance Routing Protocol for Underwater Sensor Networks
OR Opportunistic Routing
OREPP Opportunistic Routing based Expected Packet Progress
PCR Power Control-based opportunistic Routing protocol
PDP Packet Delivery Probability
QoS Quality of Service
RPSOR Reliable Path Selection and Opportunistic Routing
SEEORVA Energy-Efficient Opportunistic Routing Protocol with Void Avoidance For

Underwater Acoustic Sensor Networks
STN Single Transmission Node
TORA Totally Opportunistic Routing Algorithm
TWSNs Terrestrial Wireless Sensor Networks
uw-sinks underwater sinks
UWSNs Underwater Wireless Sensor Networks
VAPR Void-Aware Pressure Routing
VHGOR Void Handling using Geo-Opportunistic Routing in underwater wireless

sensor networks
WDFAD-DBR Weighting Depth and Forwarding Area Division DBR routing protocol

206



Sensors 2022, 22, 9525

References

1. Coutinho, R.W.; Boukerche, A.; Vieira, L.F.; Loureiro, A.A. Design Guidelines for Opportunistic Routing in Underwater Networks.
IEEE Commun. Mag. 2016, 54, 40–48. [CrossRef]

2. Shovon, I.I.; Shin, S. Survey on Multi-Path Routing Protocols of Underwater Wireless Sensor Networks: Advancement and
Applications. Electronics 2022, 11, 3467. [CrossRef]

3. Akyildiz, I.F.; Pompili, D.; Melodia, T. Underwater acoustic sensor networks: Research challenges. Ad Hoc Netw. 2005, 3, 257–279.
[CrossRef]

4. Allen, C.O. Wireless sensor network nodes: Security and deployment in the niger-delta oil and gas sector. Int. J. Netw. Secur. Its
Appl. (IJNSA) 2011, 3, 68–79.

5. Du, X.; Liu, X.; Su, Y. Underwater acoustic networks testbed for ecological monitoring of Qinghai Lake. In OCEANS 2016-Shanghai;
IEEE: Piscataway, NJ, USA, 2016.

6. Freitag, L.; Grund, M.; Von Alt, C.; Stokey, R.; Austin, T. A shallow water acoustic network for mine countermeasures operations
with autonomous underwater vehicles. In Proceedings of the Undersea Defence Technology (UDT), Amsterdam, The Netherlands,
21–23 June 2005; pp. 1–6.

7. Henry, N.F.; Henry, O.N. Wireless sensor networks based pipeline vandalisation and oil spillage monitoring and detection: Main
benefits for nigeria oil and gas sectors. SIJ Trans. Comput. Sci. Eng. Its Appl. 2015, 3, 1–6.

8. Khan, A.; Jenkins, L. Undersea wireless sensor network for ocean pollution prevention. In Proceedings of the 2008 3rd International
Conference on Communication Systems Software and Middleware and Workshops (COMSWARE’08), Bangalore, India, 6–10
January 2008.

9. Kumar, O.; Priyadarshini, P. Underwater acoustic sensor network for early warning generation. In Proceedings of the 2012
Oceans, Hampton Roads, VA, USA, 14–19 October 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1–6.

10. Lloret, J.; Sendra, S.; Garcia, M.; Lloret, G. Group-based underwater wireless sensor network for marine fish farms. In Proceedings
of the 2011 IEEE GLOBECOM Workshops (GC Wkshps), Houston, TX, USA, 5–9 December 2011; IEEE: Piscataway, NJ, USA,
2011.

11. Mohamed, N.; Jawhar, I.; Al-Jaroodi, J.; Zhang, L. Sensor network architectures for monitoring underwater pipelines. Sensors
2011, 11, 10738–10764. [CrossRef] [PubMed]

12. Casey, K.; Lim, A.; Dozier, G. A sensor network architecture for tsunami detection and response. Int. J. Distrib. Sens. Netw. 2008, 4, 27–42.
[CrossRef]

13. Alsulami, M.; Elfouly, R.; Ammar, R. Underwater Wireless Sensor Networks: A Review. In Proceedings of the 11th International
Conference on Sensor Networks (SENSORNETS 2022), Virtual Event, 7–8 February 2022.

14. Garg, P.; Waraich, S. Parametric Comparative Analysis of Underwater Wireless Sensor Networks Routing Protocols. Int. J. Comput.
Appl. 2015, 116, 0975–8887. [CrossRef]

15. Khasawneh, A.; Abd Latiff, M.S.B.; Kaiwartya, O.; Chizari, H. Next forwarding node selection in underwater wireless sensor
networks (UWSNs): Techniques and Challenges. Information 2017, 8, 3. [CrossRef]

16. Wosowei, J.; Shastry, C. Underwater Wireless Sensor Networks: Applications and Challenges in Offshore Operations. Int. J. Curr.
Adv. Res. 2021, 10, 23729–23733.

17. Mittal, S.; Kumar, R.K.R. Different Communication Technologies and Challenges for Implementing UWSN. In Proceedings of
the 2021 2nd International Conference on Advances in Computing, Communication, Embedded and Secure Systems (ACCESS),
Ernakulam, India, 2–4 September 2021.

18. Nayyar, A.; Puri, V.; Le, D.N. Comprehensive Analysis of Routing Protocols Surrounding Underwater Sensor Networks (UWSNs).
In Data Management, Analytics and Innovation; Springer: Singapore, 2019; pp. 435–450.

19. Solayappan, A.; Frej, M.B.H.; Rajan, S.N. Energy Efficient Routing Protocols and Efficient Bandwidth Techniques in Underwater
Wireless Sensor Networks—A Survey. In Proceedings of the 2017 IEEE Long Island Systems, Applications and Technology
Conference (LISAT), Farmingdale, NY, USA, 5 May 2017.

20. Yee, L.; Mehmood, S.; Almogren, A.; Ali, I.; Anisi, M.H. Improving the performance of opportunistic routing using min-max
range and optimum energy level for relay node selection in wireless sensor networks. PeerJ Comput. Sci. 2020, 6, e326. [CrossRef]
[PubMed]

21. Chen, D.; Varshney, P.K. A survey of void handling techniques for geographic routing in wireless networks. IEEE Commun. Surv.
Tutor. 2007, 9, 50–67. [CrossRef]

22. Kavar, J.M.; Wandra, K.H. Survey paper on Underwater Wireless Sensor Network. Int. J. Adv. Res. Electr. Electron. Instrum. Eng.
2014, 3, 7294–7300.

23. Kiran, J.S.; Sunitha, L.; Rao, D.K.; Sooram, A. Review on Underwater Sensor Networks: Applications, Research Challenges and
Time Synchronization. Int. J. Eng. Res. Technol. 2015, 4, 1329–1332.

24. Erol-Kantarci, M.; Mouftah, H.T.; Oktug, S. A Survey of Architectures and Localization Techniques for Underwater Acoustic
Sensor Networks. IEEE Commun. Surv. Tutor. 2011, 13, 487–502. [CrossRef]

25. Darehshoorzadeh, A.; Boukerche, A. Underwater Sensor Networks: A New Challenge for Opportunistic Routing Protocols. IEEE
Commun. Mag. 2015, 53, 98–107. [CrossRef]

26. Luo, J.; Fan, L.; Wu, S.; Yan, X. Research on Localization Algorithms Based on Acoustic Communication for Underwater Sensor
Networks. Sensors 2018, 18, 67. [CrossRef]

207



Sensors 2022, 22, 9525

27. Ayaz, M.; Baig, I.; Abdullah, A.; Faye, I. A Survey on Routing Techniques in Underwater Wireless Sensor Networks. J. Netw.
Comput. Appl. 2011, 34, 1908–1927. [CrossRef]

28. Lu, Q.; Liu, F.; Zhang, Y.; Jiang, S. Routing Protocols for Underwater Acoustic Sensor Networks: A Survey from an Application
Perspective. In Advances in Underwater Acoustics; InTech: London, UK, 2017.

29. Islam, T.; Lee, Y.K. A Comprehensive Survey of Recent Routing Protocols for Underwater Acoustic Sensor Networks. Sensors
2019, 19, 4256. [CrossRef]

30. Jadhav, P.; Satao, R. A Survey on Opportunistic Routing Protocols for Wireless Sensor Networks. Procedia Comput. Sci. 2016, 79, 603–609.
[CrossRef]

31. Khan, H.; Hassan, S.A.; Jung, H. On Underwater Wireless Sensor Networks Routing Protocols: A Review. IEEE Sens. J. 2020, 20,
10371–10386. [CrossRef]

32. Felemban, E.; Shaikh, F.K.; Qureshi, U.M.; Sheikh, A.A.; Qaisar, S.B. Underwater Sensor Network Applications: A Comprehensive
Survey. Int. J. Distrib. Sens. Netw. 2015, 11, 14. [CrossRef]

33. Akyildiz, I.F.; Pompili, D.; Melodia, T. Challenges for Efficient Communication in Underwater Acoustic Sensor Networks. ACM
Sigbed Rev. 2004, 1, 3–8. [CrossRef]

34. Jain, U.; Hussain, M. UnderwaterWireless Sensor Networks. In Handbook of Computer Networks and Cyber Security; Springer: Cham,
Switzerland, 2020; pp. 227–245.

35. Awan, K.M.; Shah, P.A.; Iqbal, K.; Gillani, S.; Ahmad, W.; Nam, Y. Underwater Wireless Sensor Networks: A Review of Recent
Issues and Challenges. Wirel. Commun. Mob. Comput. 2019, 2019, 20. [CrossRef]

36. Mhemed, R. Energy Efficient and Void Avoiding Routing Protocols for Underwater Wireless Sensor Networks. Ph.D. Thesis,
Dalhousie University, Halifax, NS, Canada, 2022.

37. Khalid, M.; Ullah, Z.; Ahmad, N.; Arshad, M.; Jan, B.; Cao, Y.; Adnan, A. A Survey of Routing Issues and Associated Protocols in
Underwater Wireless Sensor Networks. J. Sens. 2017, 2017, 7539751. [CrossRef]

38. Vieira, L.F.M. Performance and Trade-off of Opportunistic Routing in Underwater Networks. In Proceedings of the IEEE Wireless
Communications and Networking Conference: Mobile and Wireless Networks, Paris, France, 1–4 April 2012.

39. Jiang, J.; Han, G.; Guo, H.; Shu, L.; Rodrigues, J.J. Geographic multipath routing based on geospatial division in duty-cycled
underwater wireless sensor networks. J. Netw. Comput. Appl. 2016, 59, 4–13. [CrossRef]

40. Liu, H.; Zhang, B.; Mouftah, H.T.; Shen, X.; Ma, J. Opportunistic routing for wireless ad hoc and sensor networks: Present and
future directions. IEEE Commun. Mag. 2009, 47, 103–109. [CrossRef]

41. Fang, Q.; Gao, J.; Guibas, L.J. Locating and Bypassing Routing Holes in Sensor Networks. Mob. Netw. Appl. 2006, 11, 187–200.
[CrossRef]

42. Al-Dharrab, S.; Uysal, M.; Duman, T.M. Cooperative Underwater Acoustic Communications. IEEE Commun. Mag. 2013, 51, 146–153.
[CrossRef]

43. Lee, U.; Wang, P.; Noh, Y.; Vieira, L.F.; Gerla, M.; Cui, J.H. Pressure routing for underwater sensor networks. In Proceedings of the
2010 Proceedings IEEE INFOCOM, San Diego, CA, USA, 14–19 March 2010.

44. Noh, Y.; Lee, U.; Wang, P.; Choi, B.S.C.; Gerla, M. VAPR: Void-Aware Pressure Routing for Underwater Sensor Networks. IEEE
Trans. Mob. Comput. 2013, 12, 895–908. [CrossRef]

45. Coutinho, R.W.; Boukerche, A.; Vieira, L.F.; Loureiro, A.A. Geographic and Opportunistic Routing for Underwater Sensor
Networks. IEEE Trans. Comput. 2016, 65, 548–561. [CrossRef]

46. Ghoreyshi, S.M.; Shahrabi, A.; Boutaleb, T. An Inherently Void Avoidance Routing Protocol for Underwater Sensor Networks.
In Proceedings of the 2015 International Symposium on Wireless Communication Systems (ISWCS), Brussels, Belgium, 25–28
August 2015. [CrossRef]

47. Ghoreyshi, S.M.; Shahrabi, A.; Boutaleb, T. A Novel Cooperative Opportunistic Routing Scheme for Underwater Sensor Networks.
Sensors 2016, 16, 297. [CrossRef]

48. Kanthimathi, N. Void handling using Geo-Opportunistic Routing in underwater wireless sensor networks. Comput. Electr. Eng.
2017, 64, 365–379. [CrossRef]

49. Yu, H.; Yao, N.; Wang, T.; Li, G.; Gao, Z.; Tan, G. WDFAD-DBR:Weighting depth and forwarding area division DBR routing
protocol for UASNs. Ad Hoc Netw. 2015, 37, 256–282. [CrossRef]

50. Ghoreyshi, S.M.; Shahrabi, A.; Boutaleb, T. An Underwater Routing Protocol with Void Detection and Bypassing Capability.
In Proceedings of the 2017 IEEE 31st International Conference on Advanced Information Networking and Applications, Taipei,
Taiwan, 27–29 March 2017.

51. Ghoreyshi, S.M.; Shahrabi, A.; Boutaleb, T. A Stateless Opportunistic Routing Protocol for Underwater Sensor Networks. Wirel.
Commun. Mob. Comput. 2018, 2018, 18. [CrossRef]

52. Bouk, S.H.; Ahmed, S.H.; Park, K.J.; Eun, Y. EDOVE: Energy and Depth Variance-Based Opportunistic Void Avoidance Scheme
forUnderwater Acoustic Sensor Networks. Sensors 2017, 17, 2212. [CrossRef]

53. Rahman, Z.; Hashim, F.; Rasid, M.F.A.; Othman, M. Totally opportunistic routing algorithm (TORA) for underwater wireless
sensor network. PLoS ONE 2018, 13, 1–28. [CrossRef] [PubMed]

54. Wadud, Z.; Ismail, M.; Qazi, A.B.; Khan, F.A.; Derhab, A.; Ahmad, I.; Ahmad, A.M. An Energy Balanced Efficient and Reliable
Routing Protocol for Underwater Wireless Sensor Networks. IEEE Access 2019, 7, 175980–175999. [CrossRef]

208



Sensors 2022, 22, 9525

55. Lu, Y.; He, R.; Chen, X.; Lin, B.; Yu, C. Energy-Efficient Depth-Based Opportunistic Routing with Q-Learning for Underwater
Wireless Sensor Networks. Sensors 2020, 20, 1025. [CrossRef]

56. Ismail, M.; Islam, M.; Ahmad, I.; Khan, F.A.; Qazi, A.B.; Khan, Z.H.; Wadud, Z.; Al-Rakhami, M. Reliable Path Selection and
Opportunistic Routing Protocol for Underwater Wireless Sensor Networks. IEEE Access 2020, 8, 100346–100364. [CrossRef]

57. Coutinho, R.W.; Boukerche, A.; Loureiro, A.A. A novel opportunistic power controlled routing protocol for internet of underwater
things. Comput. Commun. 2020, 150, 72–82. [CrossRef]

58. Menon, V.; Midhunchakkaravarthy, D.; John, S.; Jacob, S.; Mukherjee, A. A secure and energy-efficient opportunistic routing
protocol with void avoidance for underwater acoustic sensor networks. Turk. J. Electr. Eng. Comput. Sci. 2020, 28, 2303–2315.
[CrossRef]

59. Mhemed, R.; Comeau, F.; Phillips, W.; Aslam, N. Void Avoidance Opportunistic Routing Protocol for Underwater Wireless Sensor
Networks. Sensors 2021, 21, 1942. [CrossRef] [PubMed]

209



Citation: Gong, W.; Li, A.; Huang, C.;

Che, H.; Feng, C.; Qin, F. Effects and

Prospects of the Vibration Isolation

Methods for an Atomic Interference

Gravimeter. Sensors 2022, 22, 583.

https://doi.org/10.3390/s22020583

Academic Editors: Haixin Sun and

Xuebo Zhang

Received: 8 December 2021

Accepted: 10 January 2022

Published: 13 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Review

Effects and Prospects of the Vibration Isolation Methods for an
Atomic Interference Gravimeter

Wenbin Gong 1, An Li 1, Chunfu Huang 1, Hao Che 1, Chengxu Feng 2 and Fangjun Qin 1,*

1 College of Electrical Engineering, Naval University of Engineering, Wuhan 430033, China;
herwbin@yahoo.com (W.G.); lian196101@126.com (A.L.); wateriness_e@163.com (C.H.);
hg15441@126.com (H.C.)

2 College of Weapon Engineering, Naval University of Engineering, Wuhan 430033, China;
kerryfengcx@126.com

* Correspondence: haig2005@126.com; Tel.: +86-189-7144-4646

Abstract: An atomic interference gravimeter (AIG) is of great value in underwater aided navigation,
but one of the constraints on its accuracy is vibration noise. For this reason, technology must
be developed for its vibration isolation. Up to now, three methods have mainly been employed
to suppress the vibration noise of an AIG, including passive vibration isolation, active vibration
isolation and vibration compensation. This paper presents a study on how vibration noise affects the
measurement of an AIG, a review of the research findings regarding the reduction of its vibration,
and the prospective development of vibration isolation technology for an AIG. Along with the
development of small and movable AIGs, vibration isolation technology will be better adapted to the
challenging environment and be strongly resistant to disturbance in the future.

Keywords: atomic interference gravimeter; active vibration isolation; vibration compensation; vibra-
tion noise; gravity measurement

1. Introduction

Gravity is the force applied by the attraction of the Earth to the objects on the ground.
Under the effect of gravity, an object descends at an accelerated speed, so that its acceleration
is called gravitational acceleration. Gravitational acceleration varies with time and space. At
a place on the Earth, gravitational acceleration is dependent on such factors as local latitude,
altitude, landform, density and distribution of underground matters. As an important
parameter in describing the gravitational field of the earth, gravitational acceleration has
been extensively applied in studies of inertial navigation, geological survey, geophysics
and basic physics, etc. [1–3]. Today, high-precision gravity field maps, like remote sensing
satellite images, SAR images and other satellite images, play an important role in the
field of national economy and people’s livelihood [4–7]. In the underwater navigation of
submarines, the traditional sonar technology is unable to meet the requirements for high
precision navigation at the seabed since it cannot receive any signal in deep waters, but a
seabed high precision gravity map can be used to assist submarines in rapidly locating and
avoiding the obstacles at seabed [1,8,9]. Hence, underwater gravity navigation entails high
precision gravity measurement.

De Broglie claimed that physical particles had a wave particle duality. Like lights,
atoms could be interfered by laser in beam splitting, reflection and combination because of
their wave nature. In 1991, Kasevich and Chu et al. [10] utilized stimulated Raman transition
in the coherent manipulation of cold atomic cloud for the first time, and implemented a
cold atomic interferometer. Based on the measured gravity, the averaged resolution of the
interferometer for 1000 s was 3 × 10−6 g. In 1992, Kasevich and Chu et al. [11] designed
the world’s first atomic fountain gravimeter based on the stimulated Raman transition,
and achieved the gravity measurement resolution of 30 uGal (1uGal = 10−8m/s2 ≈ 10−9g)
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within the integral time of 2000 s. Continual improvements were then made for eliminating
the local gravity error driven by earth tides, so as to achieve the measurement resolution of
0.3 uGal within the integral time of 60 s, and realize more accurate gravitational acceleration
measurement [12].

An atomic interference gravimeter (AIG), as a high precision measuring device for
absolute gravity based on atomic interferometer, can be used to measure the absolute value
of gravitational acceleration. At present, more than 50 research and development institu-
tions are engaging in the exploration worldwide including LNE-SYRTE in France [13–15],
Humboldt University in Germany [16,17], Stanford University in USA [18], Zhejiang Uni-
versity of Technology (ZJUT) [19,20], Huazhong University of Science and Technology
(HUST) [21,22], University of Science and Technology of China (USTC) [23], and Wuhan
Institute of Physics and Mathematics (WIPM) [24,25] in China, among others [26–31]. A
short list is given in Table 1. In 2009, LNE-SYRTE in France developed the world’s first
movable atomic gravimeter [15]. While improving the sensitivity of atomic gravimeter,
more efforts must be made to develop the atomic interference gravimeters of small size
and good mobility. For this purpose, a number of dynamic experiments have been carried
out ever since [20,32–38].

Table 1. Overview of studies on AIG.

Year Institution Interrogation Time Sensitivity References

2001 Stanford 160 ms 20 uGal/
√

Hz Peters et al. [18]
2008 Stanford 400 ms 8 uGal/

√
Hz Holger Müller [39]

2019 University of
California 130 ms 37 uGal/

√
Hz Wu et al. [32]

2008 LNE-SYRTE 50 ms 1.4 uGal/
√

Hz Le Gouët J et al. [15]
2013 ONERA 48 ms 42 uGal/

√
Hz Bidel et al. [36]

2018 Muquans 60 ms 50 uGal/
√

Hz Menoret et al. [35]
2014 LENS 160 ms 30 uGal/

√
Hz Rosi et al. [40]

2013 Humboldt
University 260 s 3 uGal/

√
Hz Hauth et al. [16]

2016 Humboldt
University 0.26 s 9.6 uGal/

√
Hz Freier et al. [17]

2013 ANU 60 ms 60 uGal/
√

Hz Altin et al. [41]
2013 HUST 300 ms 4.2 uGal/

√
Hz Hu et al. [42]

2019 HUST 160 ms 53 uGal/
√

Hz Luo et al. [43]

2014 Zhejiang
University 60 ms 10 uGal/

√
Hz Wu et al. [44]

2018
National

Institute of
Metrology

70 ms 44 uGal/
√

Hz Wang et al. [31]

2019 ZJUT 120 ms 300 uGal/
√

Hz Fu et al. [19]
2019 WIPM 200 ms 30 uGal/

√
Hz Huang et al. [45]

Compared with the traditional absolute gravimeter based on laser interferometer, an
atomic gravimeter uses cold atomic cloud as a material to measure gravity. It can measure
the gravity continuously for a long time and without mechanical wear, and achieve the
sensitivity and accuracy as good as an FG5 gravimeter. Presently, the best combined
standard uncertainty of atomic gravimeters can be up to 4.5 uGal in the world [46]. Due
to its high measurement sensitivity and accuracy, an AIG has been widely applied in the
accurate measurement of physical quantities including gravitational acceleration [37,47],
gravity gradient [48], and universal gravitational constant [26]. Therefore, it is of great
value in underwater navigation, resource scanning, and geologic monitoring, etc. [48–51].

The noise source of AIG is mainly composed of detection noise, vibration noise,
Raman optical phase noise, optical frequency shift noise, etc. [52]. With the prior art,
the detection noise, phase noise and frequency noise can be reduced to the level of
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mrad/single measurement; however, the vibration and noise can only be reduced to
the level of 10–100 mrad/single measurement even if complex active and passive damping
platforms are used, which makes the vibration and noise become the main noise source
limiting the sensitivity of AIG.

Vibration, as a common phenomenon in the nature, often undermines the stability
and reliability of various engineering instruments or equipment. Hence, vibration isola-
tion is indispensable for these instruments and equipment [53,54]. In most engineering
applications, attention has to be mainly paid to the vibration noise at 10–100 Hz or higher
frequency, e.g., various means of transport and engines. The vibration at these frequency
bands can be satisfactorily suppressed by simply applying the passive vibration technology.
Nevertheless, more attention is paid to the vibration noise at low frequency and even
very low frequency in some precision measurement experiments, e.g., microscopes, laser
frequency stabilization systems and gravitational wave detection experiments [55–57]. For
the purpose of higher measurement sensitivity, the good technology of low frequency
vibration isolation should be adopted in these experiments [58–60]. When an AIG is used
to measure gravitational acceleration, its measurement accuracy is dependent on a variety
of factors with the increasing accuracy and the decreasing scale of measurement. Among
these factors, the vibration of a Raman light reflection mirror significantly affects the mea-
surement accuracy of an AIG, while vibration noise becomes a considerable restriction over
its measurement accuracy and reliability [61,62]. Consequently, the technology for isolation
and attenuation of vibration noise is crucial to accurately obtaining the atomic interference
phase and implementing the accurate information detection of gravitational field [63,64].

The measurement error caused by Raman mirror vibration in the process of atomic
interference can be effectively suppressed by differential measurement, such as atomic
interference gradiometer [65]. Two sets of interference platforms at different positions in
the atomic interference gravity gradiometer share the same optical and electronic system,
and the two groups of atoms share the same pair of Raman light in the interference process,
which can better suppress the Raman phase noise, vibration noise and other common mode
noise in the measurement process without vibration isolation system, so as to obtain higher
performance indexes than a single gravimeter. However, the measuring principle of AIG is
different from that of gradiometer. There is only one interference platform, it is difficult to
suppress or eliminate the vibration noise measured by a single atomic interferometer from
the change of interferometer configuration, and can only be controlled from the vibration
source or propagation path.

According to the noise transfer function of AIG, the low-frequency vibration noise
has a great impact on AIG, while the high-frequency noise is attenuated by the mirror
vibration noise transfer function. The response to the AIG to vibration and noise is like a
low-pass filter. The cut-off frequency is the reciprocal of the time interval of the Raman light
pulse of the atomic interferometer. The low-frequency vibration and noise has the greatest
impact on the measurement. High frequency vibration and noise can be isolated by passive
vibration isolation platform. For low-frequency vibration, the passive vibration isolation
platform has no or little effect. In order to further improve the measurement accuracy of
AIG, restraining low-frequency vibration and noise is the main research direction.

The other sections of this paper are organized as follows: the second section gives an
introduction to the working principles of an AIG; the third section presents an analysis
on how vibration noise affects the error of an AIG; the fourth section contains a review of
the research findings regarding the vibration isolation technology for an AIG; and the fifth
section gives a summary and discussion of the prospective development of the vibration
isolation technology for an AIG.

2. Working Principles of an AIG

Like light wave interference, matter wave interference needs a beam splitter and
combiner, which are often implemented by virtue of two-photon stimulated Raman tran-
sition in an atomic interferometer [10]. An AIG applies three Raman pulse beams onto
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an atomic wave packet to implement beam splitting, reflection and combination, so as to
achieve atomic interference. Atoms are affected by gravity in the interference process. The
gravity information can be obtained from atomic interference fringe to implement gravity
measurement in the principles as shown in Figure 1a.

Figure 1. Principles of an AIG. (a) Operation diagram of an AIG; (b) Diagram of three-dimensional
MOT atom cooling and trapping; (c) Diagram of Raman pulse atomic interference. Three Raman light
pulse beams cause the beam splitting, reflection and combination of atomic wave packet to result in
interference.

Under normal temperature, atoms are not easily manipulated since they move fast.
Therefore, atoms must be slowed down first to generate cold atomic cloud. The dipole
force and scattering force under the interaction of light and atoms are utilized for laser
cooling and trapping of atoms in the vacuum cavity [66]. Rubidium atoms are decelerated
by the Doppler cooling effect of resonant laser to generate cold atomic cloud in the end.
Polarization gradient cooling is further implemented using the magnetic field generated by
the Helmholtz coil in a magneto-optical trap (MOT) and a light field generated by three
pairs of circular polarization lasers with propagation directions vertical to each other. This
brings the temperature of cold atomic cloud to the uK level [67]. The decelerated cold
atomic cloud is eventually trapped in the MOT as shown in Figure 1b. After shutting
down the magnetic field, state preparation is conducted with the microwave state selection
method when atoms move downward freely under the effect of gravity. The atoms at
the level of basic state, which are sensitive to the magnetic field and have zero magnetic
quantum in the atomic cloud, are therefore selected [68].

As shown in Figure 1c, MOT is utilized to prepare a cold atomic cloud. A sequence of
three Raman pulse beams (π/2 − π− π/2) is then used and applied to cold atoms for the
beam splitting, reflection and combination of the atomic wave packet. Meanwhile, chirped
scanning is carried out for the frequency of Raman transition to regulate the interference
phase. It is assumed that atoms are in the state |a〉 at the initial time. After interaction with
the first pulse beam π/2, atoms are in the superposition state of |a〉 and |b〉 have different

momentums, and their difference is h
→
k e f f . The atomic wave packet experiences beam

splitting, and then evolves along two paths in space. In the meanwhile, the phase of light
field is also transferred to atoms. After the free evolution time T, the second pulse beam π

interacts with atoms. At this time, the atoms in the state |a〉 transit to the state |b〉, while
the atoms in the state |b〉 transit to the state |a〉. The momentum of atoms also changes
correspondingly, causing the reorientation of the atomic wave packet. After the time T, the
third pulse beam π/2 interacts with atoms. Under this circumstance, beam combination
happens to the atomic wave packet, causing the interference.

In the detection area, the time of flight method (TOF) is employed to detect the
fluorescence signal of atoms, and obtain the normalized atomic transition probability
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P of atoms in two states [33,69,70]. In this case, P represents the probability of atomic
interference in the macroscopic observable, and can be described by the following function:

P = P0 + C · cos(ΔΦ)/2 (1)

where P0 is the average of atomic transition probability; C is the contrast of atomic interfer-
ence fringe; ΔΦ is the measured phase difference of interference fringe, which is originated
from the accumulation of atomic interference in different paths, and expressed as

ΔΦ = φ1 − 2φ2 + φ2= (ke f f g − 2πα
)

T2 (2)

where φ1, φ2, φ3 is the Raman light phase at the time of interaction with three Raman pulses,
respectively; α is the chirp rate of Raman laser, which is used to compensate for the gravity-
induced Doppler frequency shift by linearly scanning the Raman light frequency difference;
ke f f is the equivalent wave vector; T is the time interval between two adjacent Raman light
pulse beams, i.e., free evolution time of atoms.

Doppler frequency shift is positively correlated with the square of fall time [71].
In the implementation of an atomic interferometer, the Doppler frequency shift caused
in the fall of atoms should be compensated to ensure the resonance of atoms with all
three Raman pulse beams. The Raman light frequency difference is linearly scanned to
compensate for the Doppler frequency shift. When the Doppler frequency shift can be
perfectly compensated, cold atomic cloud always resonates with Raman light. The phase
difference is ΔΦ = (ke f f g−2πα

)
T2 = 0. The gravitational acceleration measured by a cold

AIG is g = 2πα/ke f f .

3. Influence of Vibration Noise on an AIG

The noise of AIG is mainly composed of detection noise, vibration noise, Raman
optical phase noise, optical frequency shift noise, etc. With the prior art, the detection noise,
phase noise and frequency noise can be reduced to the level of mrad/single measurement.
However, the vibration and noise can only be reduced to the level of 10–100 mrad/single
measurement even if complex active and passive damping platforms are used, which
makes the vibration and noise become the main noise source limiting the sensitivity of cold
atom gravimeter.

An AIG is presently one of the highest precision measuring devices for gravitational
acceleration g in the world. In the measurement experiment, external vibration noise is very
easily coupled into the total phase of inference fringe by virtue of the vibration of the Raman
light reflection mirror in an atomic interferometer. This results in some measurement error.
The vibration noise of most optical components in an atomic interferometer is in common
mode during measurement. Therefore, phase noise can be caused to interference fringe
only by the vertical vibration displacement of the Raman light reflection mirror placed at
the bottom of the interferometer, and then undermine the sensitivity of the instrument [72].

The concept of sensitivity function is normally taken to describe the time domain
atomic interferometer [63,73]. It is assumed that Raman light phase φ jumps δφ at the time
t, causing the variation δP(δφ, t) of transition probability P. The sensitivity function gs(t)
may be defined by

gs(t) = 2 lim
δφ→0

δP(δφ, t)
δφ

(3)

Interference signal has an approximately linear relationship with phase. The relation-
ship between phase change and variation of transition probability is σΔφ = 2σP. In terms of
phase change, the sensitivity function is therefore expressed as

gs(t) = lim
δφ→0

δΦ(δφ, t)
δφ

(4)
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The variation of transition probability is solved by segmenting evolution matrix. The
time at the center of the second pulse beam π is taken as the time origin to obtain the
sensitivity function of atomic transition signal to Raman light as follows:

g(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

sin ΩR(T + t) −T ≤ t < −T + τ

1 −T + τ ≤ t < −τ

− sin ΩRt −τ ≤ t < τ

−1 τ ≤ t < T − τ

− sin ΩR(T − t) T − τ ≤ t < T

(5)

where ΩR is the Rabi frequency; τ is the length of finite Raman pulse; and T is the Ra-
man pulse time interval. Transfer function is a weighting function for the relationship
between system input and output. It is the Fourier transform of the sensitivity func-
tion G(ω) =

∫ ∞
−∞ gs(t)eiωtdt. The transfer function between the interference phase of an

interferometer and the Raman light modulated phase is Hφ(ω) = ωG(ω).
In the measurement of atomic interference gravity, a reflection mirror is used to

generate a pair of Raman lights in opposite directions, which jointly affect the atomic
cloud. The effective laser phase perceived by atoms is originated from the phase difference
between two Raman light beams that are transmitted downward and reflected by the
reflection mirror, respectively. Hence, the change of laser phase is directly attributed
to the motion of the Raman light reflection mirror at the stage of interference. Noise is
then introduced. It is assumed that two Raman light beams in an atomic interferometer
have the wave vector k1, k2, respectively. If the reflection mirror has the vertical vibration
displacement δz(t), the phase noise introduced by the Raman light because of vibration
is ke f f δz(t). The phase difference of interference fringe ΔΦ = φ1 − 2φ2 + φ3 + ke f f δz(t).
When the vibration noise ke f f δz(t) is large enough to make the influence of vibration on ΔΦ
greater than π, the interference fringe of atoms will be entirely eliminated. It is therefore
evident that the phase of an AIG is affected by the position change of the reflection mirror.
Vibration isolation should be therefore provided for the reflection mirror to achieve more
accurate measurement of gravitational acceleration. The power spectral density of the
Raman reflection mirror phase can be expressed as

sφ(ω) = k2
e f f sa(ω)/ω4 (6)

where ω is the angular frequency of vibration; and sa(ω) is the noise power spectrum of
vibration acceleration. The phase variance of an AIG can be expressed as

σ2
φ =

∫ ∞

0
H2

φ(ω)k2
e f f sa(ω)/ω4dω (7)

The influence of the reflection mirror vibration noise on gravity is defined by

σ2
g =

∫ ∞

0
H2

a (ω)sa(ω)dω (8)

where H2
a (ω) is the transfer function of the reflection mirror vibration noise to the gravime-

ter. While satisfying ω � ΩR and τ � T, there is

|Ha(ω)|2 =
k2

e f f

ω4

∣∣Hφ(ω)
∣∣2 =

16 sin4(ωT/2)
T4ω4 (9)

The transfer function of the reflection mirror vibration noise for an AIG can be used
to create the transfer function curve of the vibration noise at different Raman light time
intervals T as shown in Figure 2. As shown in the figure, when interrogation time T is
50 ms, 90 ms, 120 ms, respectively, the noises with the frequency lower than 1 Hz are
all transferred nearly at the ratio of 1:1 to the interference phase. When the frequency is
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greater than 1 Hz, the transfer rate of vibration begins to attenuate. Additionally, when
the frequency exceeds 10 Hz, the transfer rate has attenuated by five orders of magnitude.
Evidently, the vibration noises with the frequency lower than f = 1/T has the highest
influence on measurement. The increasing frequency causes the transfer rate of vibration
to attenuate at the rate f 2. Hence, the transfer function of vibration noise is typical of low
pass just as a low-pass filter. In other words, it is more sensitive to low frequency vibration.
The vibration noises with the frequency lower than 10 Hz affect a cold atomic gravimeter
most significantly. For this reason, special attention must be paid to the vibration of low
frequency bands for the vibration isolation system of an atomic gravimeter.

Figure 2. Transfer function spectrum of the reflection mirror vibration noise in an AIG at different
time intervals under the effect of Raman light. (a) T = 50 ms, (b) T = 90 ms, and (c) T = 120 ms.

4. Research Status of Vibration Isolation Technology for an AIG

Vibration noise may be reduced by causing the attenuation of vibration and lowering
the motion of the reflection mirror as much as possible. This can be implemented in a
low noise environment, e.g., cold atomic gravimeter [13] (CAG), which had been used
for gravity measurement in the Walferdange Underground Laboratory for Geodynamics.
Nevertheless, a gravimeter will be significantly limited to a laboratory and not applied
extensively if the measurement of gravitational acceleration is performed only in a low
noise environment [74].

Vibration isolation is one of the major methods for vibration control. In this method, a
vibration isolation system is used to isolate a vibration source from precision instruments.
At present, vibration noise is mainly suppressed in three ways, including passive vibration
isolation, active vibration isolation and vibration compensation. Among them, the last two
ways are mainly applied for an AIG.

4.1. Passive Vibration Isolation

A passive vibration isolation system relies on an elastic damping material and me-
chanical structure to absorb or attenuate the mechanical waves of vibration. It is normally a
mass-spring-damping system as shown in Figure 3. The attenuation of vibration is mainly
achieved by such devices as a coil spring, elastomer pad, and air spring. The advantage of
this system is the realization of the best vibration isolation with a simple structure, but not
relying on any external energy, sensor, actuator or control system. Nevertheless, this system
is troubled by very poor isolation of vibration at low frequency bands, very long time
needed for stabilization, and low operability. It is often applied in industrial equipment,
civil engineering structure, precision instrument and equipment. The common devices of
passive vibration isolation include pneumatic vibration isolator [75], zero-length spring
vibration isolator [76], and negative stiffness spring vibration isolator [77–79].
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Figure 3. Composition of a passive vibration isolation system.

A zero-length spring based on long period is one of the main passive vibration isola-
tion system designs for an AIG, IMGC-02 absolute gravimeter adopts this passive vibration
isolation method [80,81]. It mainly consists of zero-length spring structure, geometric
reverse spring structure, Euler column spring structure, and torsion balance spring struc-
ture, etc. In [76], Li et al., of Tsinghua University utilized feedback control to improve
the zero-initial-length spring structure, devised and manufactured an ultralow frequency
vertical vibration isolator based on spring link. The vibration isolation system employed
the optical lever to detect the angular displacement of swing link. The feedback circuit
controlled the voice coil motor to drive the swing link based on the detected displacement
signal, which compensated for the influence of creep and temperature shift on the spring.
After careful modulation, the system could achieve the stable oscillation within the natural
cycle of 32 s, and constantly operate for more than one year. The system had been tested in
T−1 absolute gravimeter, and realized the uncertainty of 2 μGal in 12 h measurement. At
present, compared with other types of passive vibration isolation structures, zero-length
spring structure is widely used.

However, because the spring needs a large volume, the volume of the zero-length
spring structure is large, and will continue to accumulate due to the influence of tempera-
ture drift and creep. The requirements of miniaturization and mobility are difficult to meet
the requirements of vibration isolation.

The negative stiffness spring can locally reduce the overall stiffness of the spring.
The greater the spring stiffness, the stronger the bearing capacity and the greater the
natural frequency. The negative stiffness spring is connected in parallel with the positive
and negative stiffness springs, so that the whole has nonlinear characteristics near the
equilibrium position, and the stiffness is close to 0. Negative stiffness vibration isolation
system is widely used in gravity measurement experiment based on atomic interference,
which can realize low vibration environment [79].

The research and development cost of high-precision passive vibration isolation plat-
form based on complex spring and support structure is high, while the passive vibration
isolation platform based on negative stiffness is simple and efficient, and can provide multi
degree of freedom vibration isolation. The negative rigid commercial vibration isolation
platform developed by Minus K company has good vibration isolation performance, small
volume, simple operation, and it is easy to retrofit and install a voice coil motor [32]. It
is widely used in the vibration isolation of the reflector of atomic gravimeter with good
effect. The 100BM-10 commercial passive vibration isolation platform produced by the
company is only in size 310 mm × 310 mm × 117 mm, with a payload range of 34–50 kg.
It can provide 0.5 Hz vertical natural frequency and 1.5 Hz horizontal natural frequency,
which is suitable for miniaturized system applications.

The Müller research team of the University of California at Bernoulli [32] used the
passive damping platform (25BM-10, Minus K) to carry out vehicle flow static gravity
measurement, and obtained the measurement sensitivity of 500 uGal/

√
Hz and the mea-

surement accuracy of 40 μGal.
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A passive vibration isolation system can bear very high loads regardless of its simple
structure, but depends much on the assembly and debugging accuracy of structure. It is
essentially dependent on the elastic components of special structure for good vibration
isolation, so that it is easily affected by the creep and temperature shift of elastic materials.
For this reason, the system cannot maintain its good vibration isolation for a long time,
and has poor resistance to disturbance. Its performance of vibration isolation is normally
inferior to that of an active vibration isolation system, so that the active isolation is more
common.

The passive vibration isolation platform can suppress high-frequency vibration and
noise, but it has a poor suppression effect on low-frequency vibration and noise below
0.5 Hz, and even resonance will occur and increase vibration and noise. According to the
transfer function of vibration, low-frequency vibration noise has a greater impact on atomic
interference than high-frequency noise. Therefore, the passive vibration isolation system
cannot meet the high-precision requirements of atomic gravimeter.

4.2. Active Vibration Isolation

An active vibration isolation system is equipped with a vibration sensor and actuator.
By virtue of feedback control, it can make an effective improvement to the poor vibration
isolation of a passive vibration isolation system at low frequency bands. This system is
normally consisted of spring, sensor (accelerometer or seismograph), actuator and control
system [82], as shown in Figure 4. Vibration signal is converted into the output signal
of a brake through amplifier and control circuit. The feedback control is imposed on the
vibration isolation platform to effectively control vibration. As the active vibration isolation
can use a certain control algorithm according to the vibration signal of the sensor and use
feedforward or feedback to achieve the control effect, compared with the passive vibration
isolation platform, it can produce lower resonance frequency and achieve a stronger effect
of vibration suppression. An active vibration isolation system has been widely applied in
metrological, photoetching and medical fields as well as semiconductor industry. In the
study of the active vibration isolation system for an AIG, research institutions have devel-
oped a variety of vibration isolation systems and achieved good effective improvements to
measurement accuracy and sensitivity [83–85].

Figure 4. Composition of an active vibration isolation system.

Hensley et al. of the Stanford University, USA designed an experimental system with
vertical ground motion and atomic gravimeter isolation as given in [86]. The system com-
bined an active system with a passive system formed by a mechanical spring and an optical
workstation suspended in the compressed air. The active system was used to measure the
acceleration of an object to be isolated, and then fed it back to an electromagnetic actuator
as an offset against the motion. Eventually, an active spring vibration isolation system
was developed with the effective natural resonance frequency of 0.033 Hz. It could lower
the vibration noise to 10−8 g/

√
Hz from 0.1–20 Hz. The vibration noise of the system was

reduced by 300 times. The system was tested in an atomic interference measurement exper-
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iment to obtain the uncertainty 3 × 10−9 g. In the meanwhile, a comparative experiment
was carried out to prove that acceleration error signal could be lowered by 30–1000 times
when noise was at 10 Hz to 100 Hz, and by 1000 times when noise was above 100 Hz.

In [87], Freier of the Humboldt University of Berlin simplified the structure of active
vibration isolation, and devised a single rate spring active vibration isolation system. The
system followed the basic principle that an isolated platform was supported by a principal
spring to isolate high frequency vibration noise and form a passive vibration isolation
system. An accelerometer placed on the isolated platform was employed to detect the
vibration of the platform. Through active feedback compensation, feedback force was then
applied to compensate for the influence of such vibration, so as to achieve the equivalent
ultra-long period and isolate the influence of low frequency vibration noise. The vibration
noises within the range from 0.03 Hz to 5 Hz were suppressed by 200 times. The natural
resonance frequency of the system was 0.025 Hz. The sensitivity of an atomic gravimeter
reached 7 × 10−8 g/

√
Hz.

Schmidt et al. developed a gravimetric atom interferometer (GAIN) as detailed in [88].
To reduce the mechanical vibration noise, a vibration isolation system with active feedback
was devised by placing a reflection mirror on a retrofitted commercial passive vibration
isolation platform (Minus K50BM-10). A feedback circuit was implemented by measuring
the residual vibration of the vibration isolation platform with a Guralp CMG-3VL uniaxial
force feedback accelerometer, so that a voice coil motor was used to feed back the vibration
to a vibration isolator. An electronic feedback device was installed in a detached control
unit to keep the small size of the sensor, which lowered the effective resonance frequency
from 0.50 Hz to 0.025 Hz. Hauth et al. [16] further optimized the active vibration isolation
system in GAIN given in [15], and achieved the same low resonance frequency for both
horizontal and vertical axes by remodeling the passive vibration isolation platform on
which the reflection mirror was placed. Additionally, an inclined workstation was also
devised to obtain the atomic interference fringe with the pulse interval T = 230 ms and
realize the measurement sensitivity of 3 × 10−8 g/

√
Hz.

Following the vibration isolation scheme proposed by Schmidt, Zhou et al., of HUST
made an improvement to the active vibration isolation system of a cold atomic gravimeter in
2012 as detailed in [22]. In this improved vibration isolation system, the uniaxial accelerator
in the original design was replaced by a triaxial commercial seismograph (Guralp CMG-
3ESP) to achieve the positive correlation of the system’s damping force with the output
of sensor. In this way, the stability of the feedback system was further improved to better
obtain the data of horizontal vibration. The improved system could suppress the vibration
noise at 0.1–1 Hz by 100 times, and realize the sensitivity less than 1 × 10−9 g/

√
Hz to the

vibration noise at lower than 2 Hz, and its natural resonance frequency 0.016 Hz. When the
vibration isolation system was applied in an AIG for experimental gravity measurement,
its sensitivity reached 5.5 × 10−8 g/

√
Hz, and its resolution was 6.5 × 10−9 g within the

integral time of 60 s, which was comparable to that of the most advanced atomic gravimeter.
In [89], Zhou et al., designed an ultralow frequency active vibration isolator that was

able to suppress the vibration noise in three-dimensional directions simultaneously. In
the system, a passive vibration isolation platform suppressed the vibration noise on the
ground in three directions. A triaxial microseismograph was introduced to detect the
residual vibration noise on the passive vibration isolation platform, and then the vibration
signal was converted into a control signal for a voice coil motor. Feedback force was
applied in the vertical direction and two horizontal axial directions to further attenuate
the vibration noise on the ground. This could also lower the vertical vibration acceleration
caused by coupling with the horizontal vibration, so as to realize the optimal vibration
isolation. After the vibration isolation system formed a feedback circuit, the equivalent
resonance frequency in the vertical direction was 0.01 Hz, while the equivalent resonance
frequency in the horizontal direction was 0.083 Hz. The vibration noise in the vertical
direction was suppressed by approximately 50 times within the frequency range of 0.2 Hz
to 2 Hz, but the vibration noise in the horizontal direction was suppressed by around
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5 times. When there was not any active vibration isolation in the horizontal direction, the
vibration noise was 1.8 × 10−9 g/

√
Hz. When active vibration isolation was added in the

horizontal direction, the performance of vibration isolation was mainly restricted by the
self-noise of the sensor and the electronic noise of electronic devices, but the vibration
noise was lowered to 7.5 × 10−10 g/

√
Hz. Hence, the atomic interferometer achieved the

sub-microgal level of gravity measurement accuracy.
As detailed in [90], Tang et al. of University of Chinese Academy of Sciences designed

and implemented a compact and stable active low frequency vibration isolation system
to improve the active vibration isolation system devised by Freier [87]. In the system,
the vibration signals detected by a seismograph (CMG-3VL) were processed in a digital
control system and then fed back to a voice coil motor, which could control and suppress
the vibration of the passive vibration isolation platform. The natural frequency of the
system decreased from 0.8 Hz to 0.015 Hz, so that the vibration in the vertical direction was
effectively suppressed. The vibration noise at the frequency of around 1 Hz was attenuated
to 1 × 10−9 g/

√
Hz. The vibration noise was reduced by 100 times on the whole. Therefore,

its measurement accuracy was considerably improved.
Luo et al. of ZJUT developed a compact low frequency active vibration isolation

system as presented in [91]. A sliding mode robust control system was utilized to process
and feedback the vibration signals detected by a seismograph, while a voice coil motor was
employed to control and eliminate the motion of the passive vibration isolation platform.
Within the frequency range of 0.1–10 Hz, the sliding mode robust control system achieved
the power spectral density of residual vibration noise 99.9% lower than that of the passive
vibration isolation platform to the maximum, and 83.3% lower than that of the lead-lag
compensation control method to the maximum. Apart from better performance of vibration
isolation, it needed a setting of only three parameters, and offered a strong resistance to
disturbance.

Chen et al. of USTC constructed an easily hauled three-dimensional active vibration
isolation system for a movable atomic gravimeter as detailed in [92]. The system could
effectively isolate the motion on the ground to enhance the measurement sensitivity of a
movable atomic gravimeter. With a devised comprehensive feedback algorithm, it could
isolate the vertical vibration on the ground by three orders of magnitude and the horizontal
vibration on the ground by one order of magnitude. At the frequency of below 10 Hz to
which an atomic gravimeter was sensitive, the vibration noise in the vertical direction was
suppressed to 4.8 × 10–9 g/

√
Hz, while the vibration noise in the horizontal direction was

lowered to 2.3 × 10–7 g/
√

Hz. The influence of vibration noise on the sensitivity of an
interferometer was reduced to below 2 uGal/

√
Hz, which was two orders of magnitude

lower than that of the interferometer without a vibration isolation system.
To measure the vibration noise of a reflection mirror in an atomic gravimeter, Zhang

et al. [93] introduced an evaluation scheme for measuring the mirror vibration noise of
an atomic gravimeter with a Michelson Raman laser (MIRL) interferometer. The MIRL
interferometer was composed of the intrinsic Raman beam of the atomic gravimeter and
a four-channel phase shift detector. The scheme presented an approach of using an im-
proved “AI-MI-AI” three-interference system with a “three-cornered hat” to measure the
contribution of mirror vibration to measurement instability. Restricted by the equivalence
principle, the approach could not give the absolute vibration of the reflection mirror, but it
was very simple, inexpensive, efficient and accurate to apply. Therefore, it offered another
way to evaluate the contribution of vibration noise to measurement instability apart from
commercial seismograph or accelerometer.

In [94], Zhou et al. put forward a cold atomic interference active vibration isolation
system based on linear auto disturbance rejection control (LADRC) algorithm to imple-
ment the effective isolation for the low frequency noise at 0.1 Hz and below. The active
vibration isolation system was compact and stable while offering low frequency and good
performance. The LADRC controller involved two parts, i.e., extended state observer (ESO)
and control law state equation. The ESO in the LADRC controller could directly observe
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the total disturbance of the system and make a timely compensation for such disturbance.
As an active vibration isolation system combining a commercial passive vibration isolation
system with an electronic feedback circuit, the system achieved the effective resonance
frequency of 0.0152 Hz. As a spring-mass system that could generate nearly critical damp-
ing, it could significantly reduce the influence of frequency vibration at 0.1–10 Hz. Within
the frequency range of 0.1–5 Hz, the system reduced the vertical vibration by 1000 times.
Within the frequency range of 0.1–2 Hz, it could suppress the noise to 2 × 10−9 g/

√
Hz.

Meanwhile, the system had a stable oscillation and a natural period of 66 s. Its performance
was better than that of a classic lag compensation filter. The system required the adjustment
to only a few parameters, and could be applied by simply adjusting the feedback gain of
system state error.

Regardless of good performance, an active vibration isolation system still has some
limitations especially when an AIG is used in a noisy environment. A compact vibration
isolation system may only cause the vibration to attenuate by several orders of magnitude.
A large vibration attenuation system may achieve better vibration attenuation, but it weighs
more than one ton, and is not easy to carry because of its large size. Moreover, it has a very
complex structure. Additionally, the system is often limited to a very small dynamic range,
and requires the adjustment and consideration of environmental conditions including
temperature. At the time of resonance, the system could not attenuate or properly suppress,
but actually increase noise.

4.3. Vibration Compensation

The cold atomic interference gravity measurement based on vibration compensation
satisfies the urgent need for the integrated and small weight measuring system [95]. It is
applicable to measuring absolute gravity in the field and on a movable platform. Vibration
compensation is to measure vibrations at the same time AIG is performed, and then after
the measurement adjust the AIG data to compensate for the vibrations. The advantage
is that it is necessary only to measure the vibrations accurately, but not to mechanically
correct for them [62,96].

As shown in Figure 5, the Raman light reflection mirror at the bottom of an AIG in
a vibration compensation scheme is normally installed above a sensor (accelerometer or
seismograph) to monitor the vibration of the platform and evaluate the vibration noise. The
sensor should be installed as close to the reflection mirror as possible, and also accurately
leveled. After passing an analog-to-digital converter and a digital filter, the longitudinal
output signal of a sensor is approximate to the vibration signal of the reflection mirror.
The sensitivity function convolving with the vibration acceleration is used to calculate the
phase shift resulted from vibration within a measurement period. In the end, the phase
shift is compensated in the phase-transition probability curve to reconstruct the fringe and
obtain the actual gravitational acceleration.

Figure 5. Vibration compensation scheme for an AIG.
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In 2009, Merle et al. utilized a low noise seismograph to independently measure the
vibration noise of a portable atomic gravimeter on the ground as detailed in [97]. After
comparing two measurement schemes, i.e., fringe fitting and nonlinear locking, they found
that the average phase of an interferometer could be determined in the phase measurement
even if its phase noise exceeded 2 π. The scanned fringe of vibration noise was fitted
when the interaction happened in a very short period (2T = 100 ms). The sensitivity
of measurement at night reached 5.5 × 10−8 g. In the experiment, they explored the
sensitivity limit of an atomic gravimeter without vibration isolation. This provided an idea
for vibration compensation, so that it was of great significance to the study of portable
atomic gravimeter.

The Le Gouët group of the Observatory of Paris designed the M-Z atomic interference
in [15,98] using vibration compensation. The acceleration signal of a seismograph test
device on a passive vibration isolation platform was utilized to calculate the phase shift
of interference fringe, which was caused by vibration noise in different time periods. In
the data processing, the phase noise caused by vibration noise was deducted. By virtue
of vibration compensation, an atomic gravimeter achieved the sensitivity 1.4 × 10−8 g.
Moreover, the group proposed to compensate the phase of a laser device using the vibration
noise detected by the seismograph, so that the influence of vibration noise on measurement
was reflected in the phase shift of interference fringe in the interaction of atoms and laser.

As described in [99], Barret et al. adopted the complementary working mode of
“cold atomic gravimeter/accelerometer + classic accelerometer” and the vibration noise
correction technology in the gravity measurement experiment in a parabolic flight micro-
gravity environment. They analyzed the probability density of atomic interference signals
to obtain the displacement P0 and amplitude A of atomic interference fringe and solve the
phase of atoms. Subsequently, an accelerometer fixed to the Raman reflection mirror was
employed to measure the vibration acceleration and estimate the fringe period in which
the phase of atoms fell into. The phase of atoms was then corrected. The corrected phase
of atoms corresponded to the resultant acceleration of vehicle acceleration and vibration
acceleration. Therefore, the vehicle acceleration could be directly determined when the
vibration acceleration was known. This experiment had realized a dynamic gravitational
acceleration measurement in a real sense for the first time.

Muquans, a French company, also successfully realized the real-time vibration compen-
sation in its absolute quantum gravimeter (AQG) as presented in [35]. A highly sensitive
accelerometer (Nanometrics Titan) was utilized to measure the vibration of a gravity mea-
surement system. The acceleration data was then filtered and digitalized to compensate
for the phase change caused by vibration, so that AQG could ensure the gravity measure-
ment of high sensitivity even under the effect of severe vibration. In the experiment, the
long-term stability of AQG could be lower than 1 μGal for absolute gravity measurement.

Lautier et al. applied the signal of a classic accelerometer in the real-time phase
correction of an atomic gravimeter, so that it could operate with the best performance when
there was not any isolation platform [100]. Moreover, it overcame the dead time problem
in continuous measurement. Therefore, it was made ready for applications in geophysical
and inertial navigation.

In [52], a rubidium AIG designed by Logan Latham Richardson of the University of
Hannover was tested for low noise environment and simulated high noise environment in
a vibration compensation experiment. A low noise ultra-wide-band seismograph (Trillium
240) was employed for vibration compensation. When the free evolution time was set to
78 ms, its short-term uncertainty increased from 4.4 × 10−6 g/

√
Hz to 9.2 × 10−7 g/

√
Hz.

In the meanwhile, a relatively high noise accelerometer (Nanometrics Titan) was used for
vibration compensation. When the free evolution time was set to 10 ms, its short-term
uncertainty was enhanced from 7.4 × 10−3 g/

√
Hz to 1.0 × 10−4 g/

√
Hz.
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In [62], a seismograph, a reflection mirror and a vibration source were fixed to a large
vibration isolation platform to implement the calibration of transfer function. Subsequently,
the Raman light reflection mirror was placed against the seismograph (CMG-3ESP-C)
to generate a vibration signal. After filtering and integral compensation, the vibration
signal was aggregated with the original interference fringe for correction. The gravitational
acceleration was eventually obtained after correction. The correction was implemented
in the following way: commercial software was used to reconstruct and simulate the
waveform by inversing the transfer function of the seismograph to the reflection mirror. The
Fourier transform was applied to the collected waveform. After correcting the spectrum, the
inverse Fourier transfer was utilized to inverse back the time domain waveform. When the
free evolution time was set to 60 ms, the resolution of the system could reach 32 μGal after
25.6 s integration. As effectively proved in an experiment, the passive vibration isolation
platform could be used to suppress the vibration of most frequencies. The vibration
isolation method could be applied in compensation for the vibration of large amplitude at
given frequencies, and could achieve better vibration isolation than the passive vibration
isolation platform when there was severe vibration in the environment.

At present, studies have been gradually conducted on applying an AIG in dynamic
measurement. As presented in [33], Cheng et al., conducted the absolute gravity measure-
ment of a ship in moored condition. A high precision accelerometer was placed below a
Raman reflection mirror to measure the power spectrum of hull acceleration noise. After
correction by vibration compensation, the sensitivity of gravity measurement reached
16.6 mGal/

√
Hz, and the resolution of gravity measurement within the integral time of

1000 s was 0.7 mGal. Li et al. [101] carried out a lake navigation test for an AIG. Based on
the preliminary vibration isolation with an inertial stabilization platform, an accelerometer
was employed to measure the vibration residual error of the gravimeter. After correction
by vibration compensation, the measurement accuracy reached the mGal level.

The vibration compensation method is technically difficult to implement because of
heavy computing workload. With regard to transfer function, it is easy to inverse the
transfer function of a seismograph or an accelerometer, but difficult to determine the
transfer function of the seismometer/accelerometer to the reflection mirror. In addition,
the inverse Fourier transform is very complex for signal filtering, and very difficult to
implement. The vibration compensation method may achieve the same effect as the passive
vibration isolation method. Compared with the vibration isolation method based on
mechanical structure, the vibration compensation method has a great advantage, that is,
better realizing the high precision gravitational acceleration measurement when there
is any strong external disturbance. Additionally, the vibration compensation method
can satisfactorily optimize the vibration in all frequency bands, and is of great practical
significance to measure the gravitational acceleration in the harsh field environment. The
advantages and disadvantages of the vibration isolation system of the AIG are shown in
Table 2.

Table 2. Comparison of vibration isolation systems for an AIG.

Methods Previous Studies Advantages Disadvantages

Passive vibration isolation
based

Li et al. [76]
Refs. [80,81]

Wu et al. [32]

It does not require external
energy, sensor, actuator or

control system, and can
achieve the greatest vibration

isolation with a simple
structure.

It has very poor performance
for the resonance and

vibration isolation at low
frequency bands, needs a very
long stabilization time, and is

poorly operable.
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Table 2. Cont.

Methods Previous Studies Advantages Disadvantages

Active vibration isolation
based

Hensley J. M. et al. [86]
Freier [87]

M. Schmidt et al. [88]
M. Hauth et al. [16]

Zhou et al. [22]
Zhou et al. [89]
Tang et al. [90]
Luo et al. [91]

Chen et al. [92]
Zhang et al. [93]
Zhou et al. [94]

It may generate lower
resonance frequency, better
vibration suppression effect,

and realize the high precision
of static measurement.

It has a complex system
structural design, is difficult
to eliminate own noise, and
offers the low precision of

dynamic measurement.

Vibration compensation based

S Merlet et al. [97]
Refs. [15,98]

Brynle Barrett et al. [99]
Menoret, V. et al. [35]

Lautier et al. [100]
Logan Latham Richardson

[52]
Xu et al. [62]

Cheng et al. [33]
Li et al. [101]

It can effectively isolate
vibration at all frequency

bands, be strongly resistant to
disturbance, adapt to the

harsh field environment in
applications, and meet the

needs for small and movable
atomic gravimeters in

applications.

It causes a heavy computing
workload, and is difficult to

determine the transfer
function between the
measuring device and

equipment, and to achieve
high precision vibration

isolation.

5. Conclusions and Outlook

An AIG has developed into a significant tool for precision gravity measurement. Its
measurement accuracy, sensitivity and applicability have improved. However, vibration
isolation is one of its key technical problems in the development of an absolute gravimeter.
The performance of vibration isolation system directly affects the measuring results and
observation accuracy of an absolute gravimeter, even up to the mGal level. For this reason,
it becomes a key and difficult point in the development of an absolute gravimeter. Up
to now, an atomic gravimeter has been gradually expanded from static measurement in
a laboratory to dynamic measurement in the field. For the development of small atomic
gravimeters, vibration isolation system is urgently needed to eliminate vibration noise and
enhance measurement accuracy.

The vibration of Raman mirror in AIG and the vibration of reference prism in falling
angle cubic gravimeter are the reasons for their measurement errors, respectively. When
active vibration isolation and passive vibration isolation methods are used, their vibra-
tion isolation principle is the same, that is, to suppress the vibration of Raman optical
mirror/reference prism. However, the principle of vibration compensation is different.
AIG compensates the phase, while the falling angle cube gravimeter compensates the
interference trajectory. Due to the long research time of the vibration isolation method of a
falling angle cubic gravimeter, the method theory is relatively mature, which can provide a
reference for AIG vibration isolation.

Active vibration isolation is currently a mainstream vibration isolation method for a
high precision AIG. It is employed by most atomic interference gravimeters that can achieve
the accuracy up to 10−9 g. To apply the method, many parameters should be adjusted in
the control system. However, an AIG can achieve very high measurement accuracy if these
parameters are properly adjusted. The method is restricted by its complex system design
and higher requirement for small size of gravimeter. Additionally, the noise of instruments
in the active feedback system may introduce an error, which is a major contributor to
inaccurate measurement. For the purpose of higher measurement accuracy, it is very
important to improve the performance of sensor and satisfactorily process vibration signal.

In the vibration compensation method, compensation is directly made for the calcu-
lated interference fringe of vibration signal. When external vibration is more noticeable and
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there are many violent disturbances, the vibration compensation method can achieve better
results than other vibration isolation methods. Presently, vibration compensation is mainly
dependent on the limited sensitivity of an accelerometer used to measure vibration noise.
It still needs further improvement to implement high accuracy measurement of absolute
gravity. Moreover, the accelerometer and the transfer function between accelerometer and
Raman light reflection mirror were not taken into account in the vibration compensation.
The cold atomic interference gravity measurement based on vibration compensation satis-
fies the urgent need for an integrated and small gravity measurement system, and applies
to the measurement of absolute gravity in the field and on a movable platform. It is the
trend of future development.
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