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Recent Progress in the Management of Obesity

Javier Gómez-Ambrosi 1,2,3
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Obesity represents the most prevalent metabolic disease nowadays, posing a signif-
icant public health risk. This situation has led to a better understanding of the systems
that regulate body weight and energy homeostasis. Obesity shortens life expectancy by in-
creasing the risk of developing comorbidities such as type 2 diabetes (T2D), cardiovascular
disease, fatty liver disease, and several types of cancer, among other conditions [1]. Reduced
calorie intake and increased energy expenditure have traditionally been the cornerstones
of the therapeutic strategy for patients living with obesity. Obesity-related comorbidities
can significantly improve even with a small amount of weight loss [2]. This Special Issue
includes some of the most notable progress achieved in recent years in the treatment of
patients with obesity.

A better understanding of the ethiopathology of obesity should represent the pillar on
which to base a good management for this condition. In this sense, in recent years, we have
expanded our knowledge about the wide array of drivers that can facilitate or contribute
to the development of obesity. Compiling most of these factors, the review by Catalán
et al. summarizes many of the obesogens that may explain the increasing prevalence of
obesity worldwide [3]. Besides “classical” direct causes, such as genetic and behavioral
determinants of energy intake and expenditure, the review includes some less appreciated
drivers of the excess adiposity epidemic, such as the microbiota, infectobesity, the influ-
ence of chronobiology, and the roles of endocrine disrupters, urban planning and climate
change. Their review evidences the relevance of the “exposome” in the development and
perpetuation of the obesity epidemic [3]. Archer and Lavie bring an interesting perspective
according to which effective management strategies need a personalized approach that
takes into account the subtyping of obesity phenotypes. They distinguish between acquired
and inherited obesity. The former refers to the development of excessive adiposity after
puberty; because acquired obesity is behavioral in origin, it can be responsive to dietary
and exercise-based therapies. On the other hand, inherited obesity includes all types of
obesities that occur before pubescence (infancy and childhood) and are present at birth,
which would be less susceptible to treatment [4]. Having accessible tools that allow us to
properly phenotype patients with obesity considering their cardiometabolic risk is essential
to establish the most appropriate treatment [1]. In this sense, Sanchez et al. [5] describe
the use of the measurement of skin autofluorescence (SAF), a non-invasive estimator of
advanced glycation endproducts (AGEs), in patients with obesity. Although SAF correlates
with body fat percentage estimated with the CUN-BAE [6], it is not increased in individuals
with obesity, being more related to the presence of cardiometabolic risk factors. The authors
suggest that SAF may represent a useful tool for the identification of individuals with
unhealthy obesity, opening the door to new approaches to managing obesity in clinical
practice [5].

A change in dietary habits is still the first step in the treatment of obesity. With a
focus on components of the Mediterranean diet (MD) that may help to maintain proper
mitochondrial function, Portincasa’s group extensively reviews the benefits of this diet,
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providing cellular and animal models as well as clinical trials in individuals with metabolic
syndrome assessing the efficacy of MD components on mitochondrial structure and activ-
ity [7]. On the other hand, a high intake of ultra-processed food (UPF) has been related
to an increased risk of obesity and obesity-associated comorbidities. It has been debated
for a long time whether ultra-processing itself is harmful or if UPFs just have a reduced
nutritional content. Dicken and Batterham, in an exhaustive review, demonstrate that,
consistently across different studies, adjustment for fat, sugar and sodium intake, or for
adherence to a variety of healthy or unhealthy dietary patterns, has a very limited impact
on the detrimental relationship between UPF intake and a diverse range of health-related
outcomes [8]. These findings cast doubt on the claim that the negative effects of UPFs
can be entirely attributable to their nutritional content and clearly suggest that features of
ultra-processing are significant determinants that have an impact on obesity and on health
in general [8].

Phase angle (PA) could be used as marker of health status in relation to nutrition,
including in patients with obesity, to monitor the efficacy of weight loss and skeletal muscle
mass preservation [9]. Basiri and colleagues show in this Special Issue that a treatment with
nutritional supplements and diet education in addition to the standard care in patients
with overweight or obesity and diabetic foot ulcers has positive ponderal and metabolic
effects, including a tendency towards a lower decrease in PA. Given that an increase in
PA is associated with a reduction in the risk of mortality in patients with diabetes, their
findings may be considered clinically relevant [10].

Having tools capable of reliably predicting weight loss throughout a nutritional in-
tervention has been shown to be very useful during dietary treatment in patients with
overweight or obesity. Markovikj et al. report that a modification of the Wishnofsky
equation, described several decades ago to determine the body mass loss in a dietary
intervention based on the timeframe of energy intake reduction, accurately predicts weight
loss in 100 adults with overweight or obesity under a ketogenic diet [11].

When lifestyle modification fails, and before considering bariatric surgery, pharmaco-
logical interventions should be considered as an alternative therapy for weight loss. In this
sense, achieving a normal weight via long-term drug therapy with appropriate tolerability
and safety has remained a difficult challenge until recently. However, in recent years, new
drugs or combinations of thereof, for example semaglutide and tirzepatide, providing
mean weight loss well above 10% and improving cardiovascular outcomes in patients with
T2D give hope for the future [12]. The scoping review by le Roux’s group reports that the
results of the Semaglutide Treatment Effect in People with Obesity (STEP) trials confirm
the efficacy of once weekly 2.4 mg semaglutide on weight loss in patients with obesity [13].
Although semaglutide produced some gastrointestinal-related side effects, it was in gen-
eral safe and well tolerated. Given the effectiveness of the drug, the authors wonder if
nutritional therapy may have to be redefined and indicated to achieve better health instead
for weight loss [13]. An original study included in the Special Issue carried out by the
same group tried to delve into the mechanisms by which the duodenal-jejunal bypass liner
(endobarrier) induces more pronounced weight loss than a conventional dietary treatment
in patients with obesity and T2D. They conclude that the greater weight loss was due to
mechanisms other than a reduction in energy intake or a change in food preferences [14].

The outbreak of the COVID-19 pandemic and the lockdown that accompanied it had
a very notable impact on our lives, as well as on our health [15]. Due to the lockdown,
health providers were forced to increase the use of telehealth and telemedicine. Gilardini
and colleagues investigated the interest of patients with obesity in taking part in a remotely
delivered multidisciplinary program for weight loss [16]. According to their findings, males
and elder people were more reluctant than females and younger people to be involved in
an online nutritional intervention. They also conclude that the use of telemedicine in the
management of obesity could reduce lost workdays and patient travel time, increasing the
number of subjects who could receive treatment and improving treatment adherence [16].
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Finally, Abeltino et al. describe the usefulness of Personalized Metabolic Avatar (PMA)
to predict the response to a diet [17]. By means of deep learning, they develop a data-driven
metabolic model, derived from the information provided by smart bands and impedance
balances, which allows simulations of diet programs, allowing the setting of customized
targets for obtaining optimal weight [17,18].

We have witnessed progress in the treatment of obesity in recent years with, for
example, the advances mentioned above. However, much remains to be done and further
research must be carried out to improve and optimize the management of patients with
obesity and to increase their quality of life.
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Abstract: The obesity epidemic shows no signs of abatement. Genetics and overnutrition together
with a dramatic decline in physical activity are the alleged main causes for this pandemic. While
they undoubtedly represent the main contributors to the obesity problem, they are not able to fully
explain all cases and current trends. In this context, a body of knowledge related to exposure to
as yet underappreciated obesogenic factors, which can be referred to as the “exposome”, merits
detailed analysis. Contrarily to the genome, the “exposome” is subject to a great dynamism and
variability, which unfolds throughout the individual’s lifetime. The development of precise ways
of capturing the full exposure spectrum of a person is extraordinarily demanding. Data derived
from epidemiological studies linking excess weight with elevated ambient temperatures, in utero,
and intergenerational effects as well as epigenetics, microorganisms, microbiota, sleep curtailment,
and endocrine disruptors, among others, suggests the possibility that they may work alone or
synergistically as several alternative putative contributors to this global epidemic. This narrative
review reports the available evidence on as yet underappreciated drivers of the obesity epidemic.
Broadly based interventions are needed to better identify these drivers at the same time as stimulating
reflection on the potential relevance of the “exposome” in the development and perpetuation of the
obesity epidemic.

Keywords: obesogens; “exposome”; environment; epigenetics; microbiota; antibiotics; viral infection;
sleep; endocrine disruptors; brown adipose tissue; thermogenesis

1. Introduction

If practitioners are asked about the current key public health challenges, in addition
to the COVID-19 pandemic, many will mention obesity among the top priorities. The
prevalence of obesity has tripled during the last decades, imposing an enormous burden
not only on people’s health, but also on society at large with obesity increasing world-
wide [1–3]. Risk factor exposure, relative risk, and imputable disease burden have been
addressed in a comprehensive and standardized way by the Global Burden of Diseases,
Injuries, and Risk Factors Study [4]. A rigorous analysis of the trends and specific levels
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of risk factor exposure together with a quantitative assessment of the plausible human
health effects is of utmost importance. In this context, deep knowledge is required about
when current efforts are being inadequate as opposed to when public health initiatives are
showing fruitful effects. Identifying the ecological factors and external drivers of change
that are currently tipping the balance may prove extraordinarily useful. This approach
represents a biomedical challenge and public health need. Thus, it is worthwhile consid-
ering the conceptual basis to better understand alterations at the population level as well
as their potential interaction with the surrounding with an innovative perspective on, as
yet, underappreciated but conceivable factors. A search for original articles and reviews
published between January 1990 and February 2022 focusing on causes and contributors
was performed in PubMed and MEDLINE using the following search terms (or combi-
nation of terms): “obesity”, “epidemic or pandemic”, “comorbidity or comorbidities”,
“outcomes”, “mortality”, “drivers”, “sedentarism”, “physical inactivity”, “environment or
environmental”, “antibiotics”, “microbiota”, “genetics”, “epigenetics”, “viral infection”,
“infectobesity”, “sleep”, “chronobiology”, “obesogens”, “endocrine disrupters”, “thermo-
genesis”, “urban planning”, “climate change” and “exposome”. Only English-language,
full-text articles were included. Additional articles that were identified from the bibliogra-
phies of the retrieved articles were also used, as well as selected very recent references from
March 2022. Articles in journals with explicit policies governing conflicts-of-interest, and
stringent peer-review processes were favored. Data from larger replicated studies with
longer periods of observation, when possible, were systematically chosen to be presented.
More weight was given to randomized controlled trials, prospective case–control studies,
meta-analyses and systematic reviews.

Up-to-date our thinking on the obesity epidemic has focused mainly on direct causes,
such as genetic and behavioral determinants of energy intake and expenditure [5,6]. The
combination of increased sedentarism and life expectancy have contributed to the obesity
epidemic and its comorbidities with people exhibiting a poorer physical function [7–9].
Exercise produces extraordinarily complex physiological responses at the same time as
inducing changes in cellular energy balance, leading to intensity-dependent activation
of AMP-activated protein kinase (AMPK) in skeletal muscle [7,10], via effects on diverse
intramuscular and hormonal factors adaptations to increased physical activity include
amelioration of the cardiorespiratory fitness, as shown by an augmented maximal oxygen
uptake together with an elevated muscle oxidative capacity promoted by an increased mi-
tochondrial biogenesis and angiogenesis. Elicited signals include enhanced catecholamine
signaling, sarcoplasmic calcium release, changes in mechanical stretch and force, metabolic
alterations, disruptions to the redox state and acid–base balance, increased muscle tem-
perature, and increased circulating adrenaline concentrations. These signals operate on
transmembrane receptors, thereby activating downstream signaling pathways, or directly
stimulate the release of exercise-responsive signaling molecules. Interestingly, exercise
stimulates the secretion of metabolites, extracellular vesicles, and myokines that enable
crosstalk with other organs, like adipose tissue, pancreas, liver, heart, gut, and brain as well
as the vascular and immune systems.

When focusing on the time scale, two quite diverse influences can be distinguished
that exert their effects on ingestive behavior, as well as on other aspects of energy home-
ostasis [11]. The evolutionary time frame, on the one hand, determines the selection of
metabolic and behavioral traits embedded within a concrete genome. Famine, as a con-
tinuous peril to survival, has led to the selection of the so-called “thrifty genes”. Within a
given environmental context, this thriftiness can be manifested at different levels, such as
(i) the ‘energy-sparing’ metabolism to increase efficiency (metabolic), (ii) the proclivity to
quick adipose tissue accretion (adipogenic), (iii) the capability to slow down or even switch
off non-essential processes (physiologic), (iv) the propensity to hastily swallow available
food (gluttony), (v) the proneness towards sedentarism to spare or conserve energy (sloth),
and, finally, (vi) behavioural adaptations that can even result in selfish hoarding to warrant
survival (Figure 1).
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Figure 1. Schematic diagram of the factors involved in energy homeostasis. The classical Venn
diagram shows how in obesity the intersection between increased food intake, nutrient absorption,
and fat accumulation, together with decreased energy expenditure, the main factors determining
energy homeostasis, are simultaneously under the broader influence of the environment as well as
genetics and epigenetics.

The life-course time frame, on the other hand, is responsible for determining the
phenotype. The early embryo’s nutritional environment can exert major influences on its
survival as well as on its short- and long-term physiological milieu. Thereafter, fetuses
are still susceptible to nutritional intake, determined via the utero-placental unit and the
maternal energetic supply. Through childhood, the adaptive plasticity is maintained and
continues into adolescence and adulthood. Thereby, satiety and appetite, which encompass
ingestive behavior, underlie a huge array of adaptations aimed first at survival. Thus,
our “thrifty genes”, the “nutrition transition”, and the “technology-driven sedentariness”
have been the main causes blamed, with regard to the obesity epidemic. However, recent
mounting evidence obtained in diverse scientific settings is challenging this view. This
narrative review reports the available evidence on the potential relevance of the “exposome”
and the impact of yet underappreciated drivers of the obesity pandemic.

2. Emerging Evidence Working as Warning Signs

The past half-century has witnessed a particularly rapid increase in obesity, localized
initially in high-income countries and urban settings, but also spreading, subsequently, to
both low- and middle- income countries, as well as rural areas [3,12]. In this context, a
conceptual framework may need to be put forward, focusing on more profound drivers
embedded within society together with their interaction with biological, psychological, and
socioeconomic processes.

2.1. Genetics

Rare, severe, early-onset monogenic obesity is often opposed to common or polygenic
obesity as polarized and quite distinct entities. Studies for both forms of obesity, however,
report shared genetic and biological underpinnings, thereby highlighting the pivotal role
of the brain in body weight control [6]. New insights come from genome-wide association
studies (GWAS) which are characterized by advanced sequencing technology in huge
sample sizes. Moreover, cross-disciplinary post-GWAS approaches, combining novel
analytical techniques and omics technologies, are opening new ways of understanding,
and fostering the translation of genetic loci into meaningful biological pathways.
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Genome-wide association scans for obesity-related traits have shown small size effects
of the implicated genes that can be even reversed by physical activity [13–17]. Additionally,
obesity appears to spread more through social than family ties [18], thereby further de-
creasing the relative relevance of genetics. On the contrary, the human genome is regulated
via epigenetics whereby concrete ecological exposures bear risk for excess weight and
associated comorbidities [19–24]. Given that survival of organisms is determined by the
adequacy of nutrient intake to parallel energy expenditure, excess adiposity originally
emerged as an advantageous developmental plasticity adaptation encompassing both in-
trauterine and intergenerational effects that bear maladaptive consequences in the current
inappropriate scenario. While maternal nutrition and metabolism were well-established
critical determinants of adult offspring health, adverse offspring outcomes are also report-
edly associated with the father’s diet [25,26], thereby indicating non-genetic inheritance of
paternal influence. In this sense, men with moderate obesity display distinct DNA methy-
lation profiles as well as small non-coding RNA expression in sperm [27]. However, it is
unknown to what extent epigenetic influences on gametes impact on the metabolic profile
of the progeny. Moreover, lately, reproductive performance changes have taken place,
including higher fertility among people with elevated fatness and increasing maternal
age [28]. A noteworthy point is that the mother’s age influences excess weight risk via
its impact on birth weight, whereby older women are at risk of delivering either larger
or smaller babies as would be expected according to their gestational age, a circumstance
that, in turn, augments the chances of originating adults with excess weight. In fact, the
pregnant mother’s age and body mass index (BMI), as well as the father’s, together with
the natal weight, the post-natal weight, and fat depot gain profiles reportedly exert an
impact on the offspring’s life [29].

Assortative mating, i.e., the non-random mating of people as regards their phenotype
and cultural factors, may have further contributed to the obesity epidemic [30]. The shift in
the development of obesity earlier in time allows the univocal identification of partners with
a specific phenotype concerning weight already in the late teens and early twenties [31].
Thus, the increase in excess weight evidenced recently in descendants may also relate
to the impact of both simple and complex interactions on the non-random coupling of
people based on BMI. People with high adiposity may go out with people with a similar
phenotype and may be more comfortable as well as be attracted by persons with the same
physical characteristics rather than by those with a normal weight. In addition, sharing the
same sociocultural interests among people with similar BMI may also take place. Whilst
matching of couples with excess body fat may accentuate the genetic susceptibility in the
progeny, the underlying mechanism is still unclear [32]. Interestingly, married couples
formed by people with elevated BMI already at school age have been shown to tend to
increase alongside the excess weight pandemic, that, in turn, can elevate the progeny’s
susceptibility to obesity [32].

2.2. Microbiome

The gut microbiome has also proven to be a key player in energy homeostasis [33,34],
whereby specific gut microbial communities may be contemplated as another plausible
factor for obesity development. Broad modifications in the gut microbiome have been evi-
denced in people with excess weight, which are reactive to changes in body weight [35–38].
Although a huge interindividual variability has been observed, in obesity, an overall reduc-
tion in microbial diversity, together with a particular decreased amount of Bacteroidetes at
the same time as a consequent elevation of Firmicutes, have been reported. More precisely,
observational obesity studies indicate less gut bacterial diversification with augmented
levels of Bacteroides fragilis, Fusobacterium, Lactobacillus reuteri, and Staphylococcus aureus, at
the same time as a lower representation of Lactobacillus plantarum, Methanobrevibacter, Akker-
mansia muciniphila, Dysosmobacter welbionis, and Bifidobacterium animalis in people living
with obesity as compared to non-obese persons [38,39]. Mechanistically, the microbiome of
people living with obesity has been associated with increasing energy-harvesting efficiency
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from the diet and alterations in gut permeability leading to metabolic endotoxemia, as
well as changes in host gene expression that regulate inflammation, insulin resistance, fat
storage, and fatty liver [40–42]. Latest findings indicate that microbiomes obtained from
people with normal weight and obesity are different in how they interact with the host and
its metabolism [43].

2.3. Infectobesity

Infection is getting more attention as a possible cause or inducing factor of obesity.
The supporting findings come from both epidemiological data and the biological plausi-
bility derived from the direct roles of some viral agents on reprogramming of the host’s
metabolism towards adipogenesis. Over the past decades, evidence has been growing
with regard to an increased incidence in children and adults living with obesity of both
nosocomial and community-acquired infections, suggesting that specific infections may
be involved in the development of obesity [44]. More recently, the COVID-19 syndemic
has further shown how people living with obesity are more likely to become infected with
the coronavirus SARS-CoV-2 and exhibit an elevated risk of hospitalization, complications,
and mortality, in probable relation to an altered immune response to infection, a chronic
low-grade inflammation, together with an increased cardiometabolic risk [45–48].

Viral infections, as well as by other microorganisms, have been put forward as a
plausible explanation for the excess weight epidemic with the concept of “infectobesity”
harbouring the possibility that some viruses and microbes may wield an etiological role
in the development of obesity [49–52]. The specific impact of excess weight on the risk
of infections and the immune response triggered by infections has been addressed in a
small number of studies in the population with obesity [44,53,54]. It is noteworthy that
obesity augments the susceptibility to infections via an impaired immune response [55]. In
addition, excess weight can also affect the pharmacokinetics of antimicrobial drugs as well
as the response to vaccines [56,57]. A direct role on the host’s metabolism reprogramming
towards adipogenesis has been put forward as a causative or inducing factor of obesity. The
existence of circulating antibodies against certain infectious agents (e.g., Chlamydia pneu-
moniae and adenovirus-36) has been associated with the suffering of excess weight [58,59].
Viral agents involved in the genesis of obesity can be classified into five main categories
expanding from Adenoviruses and Herpes viruses to phages, slow viruses of transmissible
spongiform encephalopathies, and other encephalitides, as well as hepatitides. Of all the
viruses analyzed, adenovirus-36 (Ad-36) emerged as an appropriate candidate, according
to clinical and modelling data [60]. Although mechanisms by which this adenovirus may
prompt excess weight development need to be fully unraveled, it has been postulated
that weight gain occurs via a direct adipogenic effect, whereby Ad-36 enters adipocytes
modifying enzymatic and transcriptional factors leading to triacylglycerol accretion, in-
creased oxidative stress, inflammation, and differentiation of preadipocytes into mature
adipocytes [61,62]. A potential link between Ad-36 and obesity-related nonalcoholic fatty
liver disease (NAFLD) development relies on leptin gene expression and insulin sensitivity
reduction, glucose uptake increase, lipogenic and pro-inflammatory pathway activation in
adipose tissue, and macrophage chemoattractant protein-1 elevation [63]. The possibility of
the exchange of components of the microbiota, including the virome and virobiota, should
not be discarded. In this context, the gut microbiota reportedly sustains intrinsic interferon
signaling [63].

Of note, under persistent viral infections, the adaptation of the host’s metabolism
and immunity may be jeopardized. In addition to fructose-rich diets, decreased insulin
sensitivity, chronic systemic low-grade inflammation and mitochondrial alterations, and
gastrointestinal microbiota are reportedly involved in the development and worsening
of NAFLD [64–66]. Due to the affected hepatic metabolism, the secretion of organokines
(adipokines, myokines, hepatokines, and osteokines, among others) can be altered [67].
Changes in the secretion pattern of hepatokines can indirectly or directly contribute to
aggravating NAFLD. In particular, reciprocal alterations with a decrease in fibroblast
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growth factor (FGF) 19 and an increase in FGF21 concentrations have been reported in
obesity [68,69]. Plausible organ-specific changes in the reactiveness to the FGFs are charac-
teristic in excess weight with adipose and hepatic changes taking differing directions in
β-Klotho expression.

2.4. Chronobiology

Energy balance conservation constitutes a dynamic process with circadian rhythmicity
acting as a “timekeeper” playing a decisive role in systemic homeostasis [70]. Under
physiological circumstances, clock-primed biological functions synchronize to anticipate
daily demands to warrant survival. Light exposure, physical activity, and sleep patterns, as
well as meal timing and composition are common factors involved in energy homeostasis.
It is noteworthy that the disruption or desynchronization of these factors can favor the
genesis of a wide number of non-communicable diseases (NCDs), among them obesity and
its comorbidities [71]. Chronological features delineate the integration in time of prediction
by clock genes and metabolic and bioenergetics reactions to nutrients, whereby molecular
chronotypes might be further participating in the genesis of obesity.

The internal clock makes the organism ready for regular physiological functions, such
as eating and sleeping, with alterations in clock priming causing disturbances in biological
rhythms and metabolism [72]. The worldwide obesity prevalence increases and metabolism
alterations concur with sleep debt together with an increase in shift work as well as night
exposure to light [73–76]. Sleep curtailment, as well as alterations in the chronobiology,
foster elevations in BMI and sabotage dietary efforts to diminish adiposity [77]. Lack of
sleep was reportedly followed by augmented hunger, elevated circulating ghrelin concen-
trations, and decreased circulating leptin levels, when their energy intake was restricted, as
opposed to when people were in positive energy balance. Moreover, reduced sleep report-
edly impacts on numerous neuroendocrine signals coordinating substrate use such as the
concentrations of catecholamines, thyroid, cortisol, and growth hormone. Sleep privation
and sleep alterations relate to maladaptation of the hypothalamic–pituitary–adrenal axis,
translating into increased production of glucocorticoids [78,79], which can compromise
the immune system [80] and increase abdominal obesity in the long term [81]. It has been
recently shown that people with excess weight curtailing their sleep regularly experienced
a negative energy balance by extending their sleep duration in a real-life scenario [82]. A
better knowledge of the interaction between circadian rhythm disturbance and energy
homeostasis may help to explain the pathophysiological processes fundamental to weight
gain, thereby paving the path towards identifying novel therapeutic approaches.

2.5. Endocrine Disrupters–Obesogens

The hypothesis relating to the evolutionary origination of well-being and sickness
stems from decades ago [83,84]. Subsequently, diverse epidemiological studies evidenced
the relation between maternal obesity while pregnant and the possibility of the progeny to
develop certain chronic adult diseases or NCDs. Among the plausible underlying mecha-
nisms, early developmental insulin resistance stands out. Additional factors include an
increased placental nutrient transfer and fetal exposure to endocrine-disrupting chemicals
(EDCs), which cross the placenta, exhibit diverse tissular bioaccumulation levels, and
show gender-specific vulnerability, with male fetuses being more vulnerable than female
ones [85,86]. In utero environment modifications may also underlie the transmittable epi-
genetic changes that can endure over various generations, thereby supporting the rationale
for disease development later in life. Accumulating evidence shows that EDCs interfere
with endocrine regulation and metabolism, leading to lifestyle-related cardiometabolic risk
factors [87,88].

Interestingly, EDCs are widespread in the environment and our daily life, with expo-
sure encompassing the air and foods, as well as habitual items as close as personal care
products [89]. Whilst the effects of individual compounds have been extensively studied,
the combination of chemicals needs to be analyzed in more detail to better understand
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the realistic landscape of exposure to EDCs. While a dose-response relationship has not
been clearly established and may not always be predictable, accumulating evidence shows
that already low exposures taking place in daily life may exert a notable impact on the
individual’s susceptibility [90]. Moreover, in utero EDCs exposure exerts transgenerational
effects reaching even the F4 generation [23]. EDCs impinge on pre- and postnatal growth,
metabolism, body weight control, thyroid function, sexual development, puberty, and
reproduction, among others. Though the exact mechanisms of how phenotypic features
are transferred from an exposed organism to the progeny remain largely unknown strong
evidence is mounting regarding a variety of epigenetic mechanisms including differential
methylation of both DNA and histones, together with histone retention, non-coding RNAs
expression and deposition, as well as chromatin organization and structure changes [23].

Obesity is positively associated with the exposure to EDCs [87,91]. The hypothesis
of obesogens in the environment purports that pollutants of a chemical nature have the
capacity to induce excess weight modifying metabolism and homeostatic set-points, affect-
ing appetite regulation, altering lipid metabolism to stimulate adipocyte hypertrophy, and
promoting adipogenic pathways aimed at fat cell hyperplasia, thereby predisposing, initiat-
ing or exacerbating weight gain [92,93]. Phthalates, per- and polyfluoroalkyl substances,
polycyclic aromatic hydrocarbons, bisphenol A (BPA), heavy metals (cadmium, arsenic
and mercury), and pesticides are well-known EDCs [94]. Important concepts regarding the
potential impact of EDC include window and duration of exposure, role of combinations or
mixtures, transgenerational effects, and epigenetic mechanisms. EDCs interrupt hormonal
signaling, alter adipocyte differentiation, and interfere with metabolism, in particular
during early developmental stages for several generations [94]. Various EDCs like BPA,
diethylstilbestrol, phthalates and organotins, to mention a few, can interfere with signaling
by targeting pathways of nuclear hormone receptors (glucocorticoid receptors, sex steroid,
retinoid X receptor, and peroxisome proliferator-activated receptor γ) relevant to adipocyte
proliferation and differentiation. At the adipocyte level, this is achieved by disrupting body
weight homeostasis promoting long-term obesogenic changes with the epidemiological
impact that can be multiplied when the interference takes place in moments of particular
sensitivity like the fetal period and childhood. Thus, individuals exposed to obesogens may
be preprogrammed towards an adipogenic fate worsened by socioeconomic circumstances
favoring unhealthy diets as well as insufficient physical activity that promote poor diet and
inadequate exercise and struggle lifelong to maintain a healthy weight. It is of note that
BPA, polybrominated diphenyl ethers, phthalates, together with perfluoro products have
been steadily increasing their levels in humans establishing a specific connection among
adipogenic phenotypes with exposure and transcriptional network control [95].

The metabolism of xenobiotics is commonly viewed as a process of detoxification,
but occasionally the metabolites of some compounds, which are usually inert or harmless,
can become biologically active [96]. EDCs, in addition to stimulating adipogenesis and
lipogenesis, can also repress lipolytic signaling, thereby inducing altered phenotypes [97].
Neurohormonal regulation of lipolytic rate classically underlies catecholamine-induced
activation and insulin-stimulated suppression [98]. However, a large number of lipolytic
mediators include mitogen-activated protein kinase, AMP-activated protein kinase, atrial
natriuretic peptides, adipokines, and structural membrane proteins [99–105]. Among the
latter ones, aquaglyceroporins (AQP3, AQP7, AQP9, and AQP10) represent a subfamily
of aquaporins participating in glycerol movement across cell membranes. Due to their
glycerol permeability, aquaglyceroporins are involved in energy balance. Glycerol influx
and efflux control in metabolically relevant organs by aquaglyceroporins plays a pivotal
role with the dysregulation of these glycerol channels being associated with metabolic
diseases, such as obesity, insulin resistance, non-alcoholic fatty liver disease, and cardiac
hypertrophy [106]. In fact, glycerol embodies a key metabolite as a substrate for de novo
synthesis of triacylglycerols and glucose as well as an energy substrate for ATP production
via mitochondrial oxidative phosphorylation. Noteworthy, the control of glycerol release
by aquaglyceroporins in adipocytes plays a pivotal role in energy homeostasis reportedly
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associated with NCDs, such as insulin resistance, and obesity [107]. The potential interfer-
ence of EDCs with a number of lipolytic factors deserves further analysis. Furthermore,
EDCs also disrupt activity of brown and beige fat, the thermogenic adipose tissues [108].

Given the habitual exposure to multiple EDCs, the assessment of public health effects
is complicated. In this respect, special care during pregnancy and childhood would be
desirable. Sound knowledge about plausible mechanistic explanations on how specific
exposures in a given environment translate into making individuals more susceptible to
suffer some diseases like obesity [23]. Adequate determination of the surrounding toxicol-
ogy together with its derived health risks might be achieved via advanced computational
and prediction tools, and investigations of both systematic and integrative approaches
further validating novel reliable metabolic biomarkers. Additionally, integration efforts
aimed at mimicking the surrounding’s specific circumstances are needed in new studies
pursuing the evaluation of the effects of EDCs.

2.6. Urban Planning

Interestingly, urban environment characteristics may also contain upstream drivers
of obesity [109,110]. Nonetheless, consideration of the simultaneous combination of en-
vironmental factors is not normally addressed. When looking at the same time at 86 el-
ements characterizing the urban “exposome” relating to BMI via geocoded exposures
including individual home addresses, traffic noise, air pollution, built environment, and
green-space, as well as neighborhood socio-demographic factors, relevant insight can be
obtained. Exposure-obesity associations were identified after adjustment for individual
socio-demographic characteristics. Associations of BMI with the mean neighborhood house
cost, food facilities within a close reach, oxidation capacity of particulate elements, air
pollution, low-income neighborhoods, and one-person households exhibited the strongest
consistency [109]. BMIs were more elevated in low-income neighborhoods, in people with
lower mean house cost, lower proportion of single-people households, and areas with lower
numbers of healthy food facilities. The holistic analysis of the obesogens of the environment
emphasizes the mounting information as regards the relevance of socioeconomics, urban
planning, and air pollution as regards the neighborhood.

2.7. Climate Change

Global warming is a well-known public health challenge and bidirectional influences
regarding adiposity and global warming have been established [111]. Since 1950, car-
bon emissions worldwide have increased at an exponential rate. Transport, construction,
manufacturing, housing, forestry, and agriculture modifications, together with the world
population increase in important obesity rates, can be considered as principal contributors
to carbon emissions. With increasing atmospheric temperature, less adaptive thermoge-
nesis can be expected in people with obesity who may simultaneously be less physically
active, at the same time as increasing their carbon footprint. Thus, over the last centuries
environmental influences like an increase in ambient temperature in relation to climate
change and global warming together with transportation, temperature insulation of both
edifices, and individuals have decreased the necessity of people to generate energy by
inducing thermogenesis. Therefore, it is important to consider the environmental impact
of the rising obesity rates to learn more about how to tackle the excess weight pandemic,
at the same time as how to minimize energy consumption, food waste, greenhouse gas
emissions, in general, and carbon footprint, in particular. Of note, the Mediterranean diet,
which is characterized by low in meat intake, reportedly reduces by 72% greenhouse gas
emissions, by 58% land use, and by 52% energy consumption [111].

In this context, it is important to consider that human fat consists mainly of white
adipose tissue (WAT) and brown adipose tissue (BAT) [112]. Whereas WAT stores energy
surplus and releases it according to the needs of the organism, BAT converts it to heat
playing a role in body temperature control [113–117]. Patches of brown-like adipocytes
that appear in WAT constitute beige fat [118]. Like BAT, beige fat also represents a further
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thermogenic adipose depot with increased levels of thermogenic genes and respiration
rates. Interestingly, beige adipocytes, also termed brite (derived from the contraction of
“brown-in-white”) cells, resemble white adipocytes in the basal state, but are rich in mito-
chondria and release heat when activated in response to thermogenic stimuli [119]. Thus,
beige or brite adipocytes exhibit a distinct gene expression pattern to that of brown or white
fat cells. The worldwide temperature increase might be also playing a role in the obesity
epidemic via a concomitant reduction in BAT activity [120]. BAT as well as beige fat have
been greatly underestimated in adults. For many years the BAT contribution in adults to
energy expenditure both in terms of amount and effectiveness was presumed to be trivial
due to the presence of only marginal brown fat depots [114]. BAT and beige fat express
uncoupling protein 1 (UCP1), which rapidly generates heat when activated. UCP1 is stimu-
lated by cold-exposure and diet leading to increased activity of the sympathetic nervous
system as well as oxidation of huge quantities of glucose and lipids. The identification of
functional BAT in adult humans that can be stimulated by cold exposure has changed our
understanding of cellular bioenergetics, especially with regard to adaptive thermogenesis
in humans [113–117].

Whilst BAT research has mainly addressed its participation in non-shivering ther-
mogenesis, the identification of its highly dynamic secretory capacity has revealed its
endocrine and paracrine function via the release of “batokines” [121]. These plentiful
BAT-derived molecules impinge on the physiology of diverse cell types and multiple or-
gan systems like adipose tissue, skeletal muscle, liver, and cardiovascular system, among
others [122]. Interestingly, the variety of signaling molecules encompassed by batokines
extends from peptides and lipids to metabolites and microRNAs [123]. Further research
in humans aimed at delineating the role of batokines beyond the BAT-mediated energy
expenditure is required. Among the endocrine batokines peptide factors like adiponectin,
FGF21, interleukin-6, neuregulin-4, myostatin, and phospholipid transfer protein, as well
as some microRNAs like miR-92a and miR-99b, stand out, whereas the lipids include
lipokines, bioactive compounds, derived from adipose tissue, that regulate diverse molec-
ular signaling pathways. Recently, an oxylipin, 12,13-dihydroxy-9Z-octadecenoic acid
(12,13-diHOME), has attracted interest. The elevation in serum 12,13-diHOME has been
associated with improved metabolic health with the action of this molecule appears to
be mediated by brown adipose tissue (BAT). Its circulating concentrations are negatively
correlated with BMI and insulin sensitivity. Exposure to cold and physical exercise result
in an increase in circulating levels of 12,13-diHOME, which promotes browning of WAT
and stimulates fatty acid absorption by BAT via stimulating the translocation of the fatty
acid transporters CD36 and FATP1 to the cell membrane [124,125]. Moreover, the existence
of other as yet unidentified factors involved in energy balance regulation should not be
discarded [126,127].

2.8. Plurality of Obesity Epidemics

A noteworthy, elegant cross-species analysis has clearly shown a plurality of epidemics
of excess weight among domestic mammals, even without the presence of the elements
characteristically conceived as the main predetermining factors of the obesity epidemic via
their impact on lifestyle habits like diet and physical activity [128]. These findings indicate
that excess weight genesis over the last decades depends on the confluence of additional
yet underappreciated environmental influences.

3. The “Exposome” as a Plausible Underlying Mechanism of Action

The word “exposome” stands for the assessment over the whole life of a person of
all the exposures and its relationship to disease. This concept has been fostered by the
success in mapping the human genome [129,130]. Of note, the exposure of a person starts at
conception and in utero, continuing over childhood and adolescence (Figure 2). Job-related
insults as well as influences from leisure time and the environment further accumulate
during adulthood progressing up to senescence. Many single nucleotide polymorphisms
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(SNPs) are genetic variants of low penetrance involved in the control of food intake, body
weight, and lipid metabolism, among others.

Figure 2. Conventional versus critical window “exposome” views in assessment of health risk in

humans. The comprehensive portrait of an individual’s “exposome” evolves throughout the lifetime
with the possibility of prioritized exposure factors, during specific time-points or critical windows
as opposed to a standard, random or linear exposure. The diagram emphasizes the relevance of
measurements at different time-points (modified from Fang et al. [131]).

Despite their low penetrance, the SNPs’ high prevalence implies a potential substantial
contribution to the disease burden at the population level. This means that in a concrete
exposure scenario the majority of SNPs, although being of low penetrance, will emerge
because of strong environmental influences. While exposures of the surrounding exhibit an
exceedingly relevant protagonism in the development of NCDs, a clear association is not
easy to unravel. The “exposome” will be best deciphered by obtaining deeper knowledge
on how dietary and lifestyle exposures interplay with the individual’s unique genetic,
epigenetic, and physiologic characteristics translate into disease. In this scenario, the
“exposome” can be contemplated from a conventional point of view, in which insults are
randomly distributed along the whole lifecycle, or with the lens of the critical window
exposure, in which insults are non-randomly allocated to specific time-periods during
life [131]. Improvement in disease etiology identification at the population level will come
from complementing the emphasis on genotyping by a detailed analysis of the plentiful en-
vironmental exposures [132,133], with its accurate assessment remaining a formidable and
pending demand in obesity assessment. Moreover, the development of methods that accu-
rately capture both the external environment as well as the internal chemical background of
the individual are urgently needed (Figure 3). In order to complement the “genome” with
its matching “exposome” the same precision for an individual’s environmental exposure as
we have for the subject’s genome should be pursued.

14



Nutrients 2022, 14, 1597

Figure 3. Characterization of the “exposome”. The “exposome” of a given person represents the
combined exposures from all external sources that reach the internal chemical environment. Specific
biomarkers or potential signatures of the “exposome” might be detected in the bloodstream.

Need for an Integral Consideration of the Collective Impact of Simultaneously Acting Drivers

Contrarily to the genome, the “exposome” is subject to a great dynamism and variabil-
ity, which unfolds throughout the individual’s lifetime. The development of precise ways
of determination that capture the full exposure spectrum of a person is extraordinarily
demanding. These considerations are particularly relevant for children and adolescents
with obesity, given that the increased exposure is expected to translate into larger adverse
effects than weight gain only during adulthood [134,135]. Furthermore, the concept of
epigenetics comprises the study of changes in the organism caused by alterations in gene
expression rather than modifications of the genetic code itself [136,137]. Interestingly, epi-
genetic marks can be affected by air pollution, organic pollutants, exposure to benzene,
metals, and electromagnetic radiation. Other potential environmental stressors capable of
changing the epigenetic landscape include chemical and xenobiotic compounds present in
the atmosphere or water.

Moreover, while responses to certain specific exposures are invariable, to other external
insults responses may change (“resposome”), with disparity depending on genome and
epigenome changes (Figure 4). While some alterations reveal chronicity in exposure,
certain cases reveal a latent response, based on “priming” for a late pathogenesis via
epigenetic changes.

Analysis of the current human “exposome” emphasizes the challenges represented
by the concepts of lifelong exposure and the need to compute all environmental factors
in order to obtain the whole real life exposomic scenario [131]. To overcome these limita-
tions and establish the relation between human health and the “exposome” focusing on
critical-window periods can be combined with data- and hypothesis-driven exposomics.
Moreover, analysis of high-throughput and multidimensional data of both internal and
external exposure factors are welcome [131]. Useful tools to analyze the “exposome” and
foster exposomics should comprise different steps, i.e., (i) the development of biomark-
ers capturing exposure effect, susceptibility to exposure, and disease progression; (ii) the
application of advances that integrate systems biology with environmental big data; and
(iii) exploratory data mining to analyze the relationships between exposure effects, and
other factors that ultimately lead to obesity development and thereby provide potential
mechanistic information (Figure 5). Artificial intelligence will broadly reshape medicine,
thereby improving the experiences of both patients and clinicians. In fact, artificial intelli-
gence is already being applied in an ever-increasing number of medical fields moving from
what might have been considered speculation years ago to reality right now. Progress in
data analysis, including image deconvolutions, non-image data sources, unconventional
problem formulations, sophisticated algorithms, and human–artificial intelligence collabo-
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rations, will reduce the gap between research and clinical practice. While these challenges
are being addressed, artificial intelligence will develop exponentially, making healthcare
more accessible, efficient, and accurate for patients worldwide [138].

Figure 4. Factors influencing the resposome. Schematic diagram on how the genetic predisposition
(genome) interacts with the environmental exposure (“exposome”) to influence an individual’s
genetic and acquired susceptibility shaping its responses (resposome) that yield the ultimate health
outcome as regards body weight control.

Figure 5. Evolution of the individual’s genetic and environmental framework across the lifespan.

Over a lifetime, genetic and environmental influences may change reciprocally with acute and
chronic exposures translating into a specific information with predictive interest as well as effective
biomarkers that may provide mechanistic insight of pragmatic application.

In order to be particularly helpful, “exposome” assessment should combine GWAS
together with epigenome-wide association trials and detailed metabolic-endocrinological
phenotyping of the individuals. Moreover, these combined analyses should be applied at
multiple time-points to establish the potential interaction effect. The large amount of data
on exposures provided by these projects hinders the interpretation of their relationship
with health outcomes and omics. In this regard, similar or parallel databases to genetics
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(OMIN, dbSNP, or TCGA) may be developed for exposomics. Together with handling and
archiving large data volumes, the lack of standard nomenclature, the quality of output
from each analytical platform, or the heterogeneity of data constitute important issues to
be resolved. Given the important public health problem posed by the rise in NCDs like
obesity, the presented proposal of integration of elements that constitute the “exposome”
will strengthen the better comprehension of the intricate underlying mechanisms, thereby
opening pathways to innovative preventive and therapeutic strategies.

4. Conclusions

The more simplistic energy balance model of obesity has been surpassed by epi-
demiological, biological, psychological, and socioeconomic evidence. Far-reaching holistic
modelling of obesity is required in order to establish effective interventions aimed at its
efficient treatment and better prevention. The origins of excess weight are rooted in an
extremely complicated biological network, set within a similarly intricate societal and
environmental organization (Figure 6), which needs to be carefully considered.

Figure 6. Multidimensional view of the complex interaction of the main drivers involved in excess
weight development and obesity-associated comorbidities. OSA, obstructive sleep apnea; MAFLD,
metabolic-associated fatty liver disease; T2D, type 2 diabetes; CVD, cardiovascular diseases.

Analysis of alternative and less researched etiologies is needed. The gut microbiome,
circadian rhythms, and infectobesity, to mention only a few, constitute other candidate alter-
nate etiologies. More multidisciplinary, translational research must analyze the intricacies
of such alternate etiologies, as well as develop unprecedented stratagems for fending off a
multifactorial and plurietiological pathology via, for example, prioritization of root cause
interrogation and group risk assessment. Knowledge gaps persist in this relevant area
whereby a comprehensive, leveraged patient-centered research would be welcome. Due
to the struggle in the coming years to override the key factors steering the present excess
weight epidemic, an inclusive, detailed, pro-active, durable program and fresh perspectives
to unravel the whole panoply of causative factors is needed to outline a feasible counter
reply to manage the defiance imposed by the pandemic. A comprehensive understanding
of the causative factors of obesity might provide more effective management approaches.
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Abstract: The etiology of obesity is complex and idiosyncratic—with inherited, behavioral, and
environmental factors determining the age and rate at which excessive adiposity develops. Moreover,
the etiologic status of an obese phenotype (how and when it developed initially) strongly influences
both the short-term response to intervention and long-term health trajectories. Nevertheless, current
management strategies tend to be ‘one-size-fits-all’ protocols that fail to anticipate the heterogeneity of
response generated by the etiologic status of each individual’s phenotype. As a result, the efficacy of
current lifestyle approaches varies from ineffective and potentially detrimental, to clinically successful;
therefore, we posit that effective management strategies necessitate a personalized approach that
incorporates the subtyping of obese phenotypes. Research shows that there are two broad etiologic
subtypes: ‘acquired’ and ‘inherited’. Acquired obesity denotes the development of excessive adiposity
after puberty—and because the genesis of this subtype is behavioral, it is amenable to interventions
based on diet and exercise. Conversely, inherited obesity subsumes all forms of excessive adiposity
that are present at birth and develop prior to pubescence (pediatric and childhood). As the inherited
phenotype is engendered in utero, this subtype has irreversible structural (anatomic) and physiologic
(metabolic) perturbations that are not susceptible to intervention. As such, the most realizable
outcome for many individuals with an inherited subtype will be a ‘fit but fat’ phenotype. Given that
etiologic subtype strongly influences the effects of intervention and successful health management, the
purpose of this ‘perspective’ article is to provide a concise overview of the differential development
of acquired versus inherited obesity and offer insight into subtype-specific management.

Keywords: inherited; acquired; obesity; diet; exercise

1. Introduction

Obesity is a global health concern [1–5], with the prevalence in the U.S. exceeding
40% in adults and nearly 20% in children and adolescents [6]. Although efforts to stem the
increasing prevalence have been unsuccessful, research has led to a clearer understanding
of its etiology and how obesity impacts cardiometabolic diseases, such as type-2 diabetes
mellitus (T2DM), dyslipidemia, cardiovascular disease, and hypertension [7,8].

Despite these conceptual advances, the development of effective prevention and
management protocols has been less successful. Although lifestyle modifications are the
cornerstone of obesity management, few individuals achieve long-term benefits with ‘one-
size-fits-all’ diet and exercise approaches [9]. We posit that this lack of success is not due to
a deficiency of willpower or adherence by participants and patients but is engendered by
the failure to recognize that the obese phenotype is not a single homogenous condition [10].
To be precise, obesity, despite being an increasingly common phenomenon, has a complex,
idiosyncratic etiology—with inherited, behavioral, and environmental factors determining
the age and rate at which excessive adiposity and cardiometabolic diseases develop.

Thus, because research suggests that that the etiology of an obese phenotype (how and
when it developed initially) strongly influences the short-term effectiveness and long-term
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outcomes of lifestyle interventions [1,3,11,12], successful obesity management necessitates
the subtyping of phenotypes. As such, the purpose of this ‘perspective’ article is to provide
a concise overview of the differential development of acquired versus inherited obese
phenotypes and offer insight into subtype-specific obesity prevention and management.

2. Etiologic Subtypes of Obesity

Although the defining characteristic of obesity is an excess of bodyfat [2,12], the age
and rate at which excessive adiposity develops vary as a result of inherited, behavioral,
and environmental factors. Thus, because the obese phenotype may be engendered at any
point in an individual’s development—from the prenatal period to senescence—research
suggests two broad etiologic subtypes: ‘acquired’ and ‘inherited’ [1,3].

Acquired obesity, also known as ‘adult-onset’, denotes the disproportionate devel-
opment of adiposity after puberty. The genesis of this phenotypic subtype is essentially
behavioral, with physical activity (PA) and subsequent hyperphagia (overconsumption)
being the major determinants. Stated simply, ‘moving too little’ leads to ‘eating too much’
and together these pathologic behaviors lead to acquired obesity and cardiometabolic
diseases, such as T2DM [1].

Conversely, inherited obesity—also known as pediatric or childhood—subsumes all
forms of excessive adiposity that are present at birth or develop prior to pubescence. In-
herited obesity can be further subdivided into ‘non-genetic’ (common) and ‘genetic’ (rare)
obesity. Common inherited obesity is a ubiquitous, complex, quantitative (continuously
distributed) phenotype characterized by altered fat, muscle, and pancreatic beta-cell devel-
opment and function. These structural (anatomic) and physiologic (metabolic) alterations
are engendered during prenatal development, and as such, are largely irreversible [3,11,13].

Genetic obesity refers to Mendelian disorders that result in discrete, qualitative phe-
notypes that display excessive adiposity (e.g., leptin deficiency, Prader-Willi syndrome).
As explained in detail below, because the genesis of common inherited obese phenotypes
differs considerably from the genesis of the genetic inherited phenotype, it is important to
distinguish between these subtypes in prevention, diagnosis, and management. As genetic
obesity is rare [4], and the role of ‘genes’ in common obesity is limited (see Section 3 below),
in this review, we limit our discussion to common (nongenetic) inherited forms of obesity.

3. Nongenetic versus Genetic Inheritance and the Role of Genes in Obesity

We have written extensively on the role of nongenetic inheritance in the development
of obesity and T2DM, and how the conflation of the term ‘inherited’ with ‘genetic’ has led
to confusion [3,14,15]. Given that a detailed exposition of the conceptual and empirical
foundation for our work is beyond the scope of this article, we offer a concise overview
below and direct our readers to select publications [1,3,12–16].

Briefly, the functional unit in biology and biological inheritance is the cell, and because
each cell’s idiosyncratic nature and spaciotemporal context determines gene expression, it
is important to distinguish between nongenetic (cellular) inheritance and the two forms of
genetic inheritance (nuclear and mitochondrial) [3,17–19]. For example, the fundamental
difference between monozygotic (identical) and dizygotic (fraternal) twins is inherent in the
nomenclature—identical twins develop from a single cell (a fertilized egg) whereas fraternal
twins develop from two different cells (two fertilized eggs). Thus, fraternal twins differ in
both cellular and genetic inheritance whereas identical twins do not. Therefore, the greater
phenotypic disparity displayed by fraternal twins is due to differences in the genotypic
expression induced by different cells in concert with inter-twin differences in genotype. Yet
despite the variability in the developmental competence of any given population of eggs,
the functional distinction between cellular and genetic inheritance is ignored routinely by
those who infer genetic causality from ‘twin-studies’ and heritability statistics.

To be precise, our work demonstrated that “there are no ‘genes for’ quantitative (i.e., non-
discrete) phenotypes, such as common obesity and metabolic diseases (e.g., T2DM).” [1]. We further
detailed the “fatal flaws of twin studies” and showed why “estimates of genetic heritability
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are misused, and often meaningless statistical abstractions derived from attempts to impose an
artificial and false dichotomy (i.e., nature vs. nurture (genes vs. environment)) on demonstrably
non-dichotomous biologic processes” [1].

These conclusions—which form the basis for our perspective on the limited role of
‘genes’ in obesity—are most clearly supported by the nonlinear processes that lead to
‘one-to-many’, ‘many-to-one’, and ‘many-to-many’ genotype–phenotype relations. These
processes include reaction norms, phenotypic accommodation, alternative splicing, RNA
editing, chimeric transcripts, protein multifunctionality, epistatic variance, maternal effects,
the metabolic regulation of transcription, and post-translational modifications.

Thus, a ‘great deal of biology’—both established and undiscovered—links an individ-
ual’s genotype, the cellular expression of that genotype, and the development of specific
phenotypes; therefore, as Felder and Lewontin wrote, there is “a vast loss of information
in going from a complex machine [an organism] to a few descriptive parameters [heritability
estimates]” [20]. Moreover, because estimates of genetic heritability are mere statistical as-
sociations, they cannot be used to quantify the relative contributions of presumed etiologic
factors outside of highly controlled animal and plant breeding operations [1,21]. In other
words, ‘correlation does not equal causation’—especially when the relations are nonlinear,
and the fundamental constructs are inherently flawed or misconstrued.

In sum, the emerging field of non-genetic inheritance [17–19] and our work suggests
that genes are “tools of the cell”, and as such, “are merely a necessary but not sufficient component
for the development of obesity/T2DM phenotypes” [14]; therefore, an understanding of the
etiology, prevention, management, and treatment of these phenotypes “will not be found in
the genome” [3].

As detailed below, because the etiologies of acquired and ‘non-genetic’ (common) in-
herited obese phenotypes differ markedly, strategies for their prevention and management
must be subtype-specific.

4. Acquired Obesity: Its Etiology and Response to Intervention

Although the etiology of acquired obesity is often contested [1], there is strong evidence
dating from the mid-20th century that reductions in PA, high physical inactivity (PI), and
excessive sedentary behavior (SB) are strong determinants of this phenotype in both human
and non-human animals [1,12,22–33]. To summarize briefly, first, PA is the major modifiable
determinant of caloric consumption [27,28,31,34–37]. Second, when individuals reduce their
PA, their consumption declines more slowly than their caloric expenditure [27,28,31,34–36].
This leads to relative hyperphagia (overconsumption) and positive energy balance—with
individuals consuming more calories than they expend.

Third, as PA declines, the energetic demands of skeletal muscle decline. This reduces
the number of calories partitioned to skeletal-muscle and increases the number of calories
available for storage in fat-cells (adipogenic partitioning). Fourth, PI decreases skeletal
muscle insulin-sensitivity, which induces hyperinsulinemia (higher levels of insulin) during
and after each meal with concomitant increments in adipogenic partitioning and decrements
in lipolysis. The confluence of PI-induced hyperphagia and hyperinsulinemia causes a
greater percentage of the calories consumed at each meal to be stored and sequestered in
fat cells (reduced lipid turnover) with concomitant increments in body and fat mass.

When PI and excessive SB become habitual, the attendant metabolic perturbations [33]
lead to acquired obesity via increments in fat-cell size, number (hypertrophy and hyper-
plasia, respectively), and ectopic development (fat-cell intrusions into non-adipose tissue).
If the increased demands for insulin production and caloric storage cannot be met by
parallel increments in pancreatic beta-cell functioning and fat-cell plasticity, the declining
skeletal muscle insulin-sensitivity progresses to whole-body insulin-resistance, and over
time, to overt T2DM [38–41]. Evidence for these phenomena was established decades ago,
with the loss of skeletal muscle insulin sensitivity being the initial and primary metabolic
insult in cardiometabolic diseases [38–41]. Thus, PI, high levels of SB, and concomitant
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hyperphagia are the major etiologic factors leading to acquired obesity and cardiometabolic
diseases [1,12,16,30,33,38].

Nevertheless, despite the strong influence of PA on the development of acquired
obesity and T2DM, the management of these metabolic maladies must include dietary
interventions because exercise-only interventions have trivial impacts on body mass and
weight loss, despite clinically important impacts on body composition, and blood glucose
and insulin levels.

5. The Prevention and Management of the Acquired Obese Phenotype

As the genesis and maintenance of the acquired obese phenotype are largely behavioral
(moving less and eating more), prevention entails adequate levels of daily PA and relative
caloric consumption from childhood to senescence. To be precise, 30–60 min of daily PA and
a physical activity level (PAL) reaching 1.7–1.8, are necessary for the primary prevention of
acquired obesity and the maintenance of a reduced (post-obese) phenotype [31,42,43]. Fur-
thermore, in the early stages of development, the acquired subtype is extremely amenable
to interventions emphasizing diet, PA, and exercise; however, it is important to note that de-
spite the demonstrated impact on metabolic (glycemic and lipidemic) control, exercise-only
interventions have a limited impact on weight-loss and body mass [44,45]. Thus, dietary
and caloric restriction must play a dominant role if body mass is to be reduced.

This may be particularly important in patients with obesity and cardiometabolic
diseases, such as dyslipidemia, especially hypertriglyceridemia, hypertension, and elevated
blood glucose levels, including metabolic syndrome and T2DM. These patients require
increased PA and exercise in concert with reductions in caloric intakes, particularly simple
and complex carbohydrates and alcohol—even more so than reductions in fat intake—to
improve both weight and metabolic control [46–48].

It is important to note, however, that if the chronic positive energy balance and
metabolic perturbations induced by PI and excessive SB continue over time, the growth in
the number of fat-cells (hyperplasia), in concert with the degradation of pancreatic beta-cell
function and insulin sensitivity eventually lead to diminished health and responsiveness to
lifestyle interventions. As such, long-standing acquired obesity will resemble the common
inherited obese phenotype in its response to intervention [1,3,12].

6. Inherited Obesity: Its Etiology and Response to Intervention

In contrast to the behavioral genesis of the acquired (adult-onset) phenotype, the com-
mon inherited phenotype is engendered during in utero (prenatal) development. As briefly
explained below, and detailed elsewhere [3,11–15], this subtype exhibits irreversible struc-
tural (anatomic) and physiologic (metabolic) perturbations engendered by the mother’s
behavioral and metabolic phenotypes (e.g., PA levels, adiposity, glycemic control).

Briefly, it is well-established that during pregnancy, a mother’s cells compete for calo-
ries with those of her fetus [3,12,13,16]. Thus, to ensure that the fetus receives the number
of calories it needs for development, pregnancy leads to hormonal changes that induce
insulin-resistance in maternal skeletal muscle. This naturally developing insulin-resistance
increases caloric consumption while decreasing the number of calories partitioned to ma-
ternal skeletal muscle. This leads to increased maternal serum lipid and glucose levels with
concomitant increments in maternal body and fat mass, and caloric transfer to the fetus [3].

For comparison, stunting and common inherited obesity represent opposing ends
of the maternal–fetal competitive continuum and they impact at least three generations:
the mother, the fetus, and the germline of female fetuses. Stunting develops when a
mother’s diet and body-fat stores cannot keep pace with the competitive demands of
her cells and fetal development. This causes fewer fetal muscle, fat, bone, and pancre-
atic beta-cells to be created, and permanently alters the offspring’s structural (anatomic)
and physiologic (metabolic) phenotypes (e.g., shorter height and impaired glucose and
lipid metabolism). These changes are irreversible and substantially increase the risk of
cardiometabolic diseases [49–51].
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Conversely, common inherited obesity is engendered by insufficient maternal PA
and metabolic control which reduces the competition for calories between mother and
fetus. More specifically, when the naturally occurring insulin-resistance of pregnancy acts
in concert with the pathological insulin-resistance induced by maternal PI and excessive
SB, the escalation in insulin-resistance exponentially increases caloric consumption, while
decreasing the number of calories partitioned to maternal skeletal muscle. This causes an
excessive number of calories to be transferred to the fetus—which stimulates a dispropor-
tionate increment in fat-cell size and number, fetal insulin production, and dysfunctional
skeletal muscle development (more structural and less contractile elements) [3,11–15].

These pathologic ‘maternal-effects’ (non-genetic mechanisms of inheritance) are ir-
reversible and produce children who are predisposed to ‘eating more and moving less’,
independent of genotype [3,11–15]. Infants and children with this subtype will consume
more calories than those with normal phenotypes because their excessive fat-cell hyper-
plasia, reduced skeletal muscle function, and hyperinsulinemia, increase the number of
calories stored and sequestered in fat-cells after each meal—both in adipose tissue and
ectopically. Over time, this adipogenic partitioning causes increments in body and fat
mass, and concomitant obesity [1,12,16]. These ‘maternal-effects’ offer a comprehensive
explanation for the inheritance of compromised metabolic phenotypes in both human and
nonhuman animals [3,12–15].

Thus, increments in childhood obesity and adolescent T2DM are most plausibly ex-
plained by the substantial decline in PA and increments in SB over the past 50 years by young
women and mothers [52–54]. As the PI-driven maternal-effects escalated from one gener-
ation to the next, the prevalence of both obesity and T2DM increased markedly [3,11–15].
Our research suggests that these pathological maternal effects also explain the increased
prevalence of obesity and cardiometabolic maladies in nonhuman mammals inclusive of
dogs, cats, laboratory mice, monkeys, and feral moose [1,12].

7. The Prevention and Management of the Inherited Obese Phenotype

The inherited obese phenotype represents a continuum of metabolic perturbations
instantiated during prenatal development. Thus, unlike acquired obesity, the structural
(anatomic) and physiologic (metabolic) perturbations are not a behavioral manifestation,
but are inherent to the phenotype, and therefore, are irreversible. This means that the
prevention of common inherited obesity must begin with the current generation of female
children and adolescents (future mothers). Sufficient increments in pre-pubertal, pubertal,
pre-conception, and prenatal PA will ameliorate or prevent the pathologic maternal effects
that lead to this phenotypic subtype. More specifically, as with the prevention of acquired
obesity, future mothers must perform at least 30–60 min of daily PA and reach a PAL of
1.7–1.8 to prevent the development of common inherited obesity in future generations.

Nevertheless, once instantiated in utero, the structural and physiologic perturbations
engendered by accumulative maternal effects are irreversible. To be precise, the inherited
phenotype exhibits both hypertrophic and hyperplastic obesity (greater fat-cell size and
number) in concert with dysfunctional pancreatic-cell function and reduced muscle-cell
contractility. No behavioral interventions can reduce the number of fat-cells, nor wholly
overcome the reduced muscle-cell function; therefore, individuals with this subtype will
always find it more difficult to ‘move more and eat less’ than individuals with normal or
acquired obese phenotypes.

Importantly, as detailed in the following section, the amount of PA and caloric re-
striction necessary to induce and maintain weight loss may be beyond many individuals’
physical and/or psychological capacity for exercise and caloric deprivation. Thus, the
inherited obese phenotype is less amenable to interventions than the acquired subtype and
in many cases, the best health trajectory achievable will be a ‘fit but fat’ phenotype [7,55–59].
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8. The ‘Metabolic Tipping-Point’ and Its Effect on Intervention

There is a large body of observational and experimental research dating from the
1950s showing that although body mass and composition and concomitant basal energy
expenditure are the major determinants of caloric consumption [60–64], PA is the major
modifiable determinant of consumption, expenditure, and storage [16,27,28,31,34–37,65–68].
Thus, because PA plays an essential role in all aspects of metabolism, we previously coined
the term ‘Metabolic Tipping-point’ to denote the amount of PA necessary to prevent overcon-
sumption and weight gain [1,12]. As briefly explained below, and in detail elsewhere [1,12],
this concept offers a concise framework for understanding the heterogeneity of response of
caloric consumption and body and fat mass to altered levels of PA.

As depicted in Figure 1, PA, body mass, and caloric consumption have complex,
nonlinear relations [16]. When an individual’s PA declines below their lower metabolic
tipping-point (the left side of Figure 1), caloric intake declines more slowly than energy
expenditure (a nonlinear relation). This leads to increments in body fat and mass, and
decrements in skeletal muscle insulin-sensitivity. If habitual, these individuals will develop
acquired obesity and T2DM—dependent on fat-cell plasticity and pancreatic beta-cell
function. Nevertheless, any intervention that increases their PA above their lower metabolic
tipping-point will reduce hyperphagia, positive energy balance, and prevent further gains
in body and fat mass. Nevertheless, as explained in a previous section, caloric restriction is
essential if the excess body mass is to be reduced because interventions that rely exclusively
on PA and exercise have trivial effects on body mass.

Figure 1. Relations between PA, Body Mass, and Energy Intake (adapted from [69]). As PA declines
below the lower metabolic tipping-point into the ‘Sedentary’ range (left panel), energy intake and
energy expenditure become dissociated due to insufficient PA. Body mass begins to increase as energy
balance becomes positive and insulin sensitivity is diminished.

When individuals maintain PA levels between the upper and lower metabolic tipping-
points (the center portion of Figure 1), their body and fat mass remain stable, regardless
of increments and decrements in PA within this range. This occurs because of a linear
relation between caloric consumption and expenditure at moderate levels of PA. Thus, as
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PA increases, caloric consumption increases in parallel. To be precise, the nonlinear relations
below the lower tipping-point explains why decrements in PA lead to increments in body
and fat mass in highly sedentary individuals, whereas the linear relation between PA and
consumption in the range between the upper and lower metabolic tipping-points explains
why increased PA and exercise have little or no effect on body mass in individuals who are
already moderately active.

Conversely, when individuals increase their PA above their upper metabolic tipping-
point (the right side of Figure 1), they experience declines in caloric consumption, basal
energy metabolism, energy expenditure, and body and lean mass. This level of PA is not
sustainable and leads to incomplete recovery, reduced physical performance, injury, and
exhaustion [70].

In summary, the left side of Figure 1 depicts the nonlinear relations between caloric
consumption and expenditure, and the concomitant development of acquired obesity and
T2DM. The center panel depicts the linear relations between PA and caloric consumption
and explains why exercise interventions without caloric restriction will not reduce body
and fat mass. The right side of Figure 1 depicts unsustainable levels of PA that lead to
the loss of body and lean mass. Therefore, it is the transition from a nonlinear to a linear
relation between caloric consumption and expenditure as PA increases from a sedentary
to an active lifestyle that explains the heterogeneity of response to diet and exercise in
individuals with varied levels of baseline PA.

Nevertheless, what Figure 1 does not depict is how an individual’s obese subtype
impacts their metabolic tipping-points. Because the acquired obese phenotype is essen-
tially a behavioral phenomenon, any intervention that increases PA and reduces caloric
consumption will be successful in the early and mid-stages of phenotypic development;
however, the longer the physical inactivity-induced metabolic perturbations continue, the
less amenable to intervention the acquired subtype becomes. In this respect, long-standing
acquired obesity will mimic the inherited subtype in its response.

Conversely, individuals with an inherited subtype represent a continuum of irre-
versible structural (anatomic) and physiologic (metabolic) perturbations that are inherent
to their phenotype. As such, the amount of PA and caloric restriction necessary to reduce
body mass and maintain weight loss depends on where they fall in the continuum of
perturbations—from mild to extreme. The more extreme an individual’s inherited obese
phenotype, the higher their metabolic tipping points, and the greater the amount of PA
and caloric restriction required to prevent overconsumption and achieve and maintain a
healthy weight.

Nevertheless, the physical and psychological burdens induced by large amounts of
PA and severe caloric restriction are beyond the perseverative capacity of most humans.
As such, the long-term maintenance of weight loss becomes an increasingly unachievable
goal as the structural and physiologic perturbations become more severe. Therefore,
the management objective for individuals with inherited subtypes should be along the
continuum of ‘fit but fat’. The refusal to appreciate this reality has led to unrealistic
expectations, management ‘failure’, and the stigmatization of individuals with an inherited
obese phenotype [71,72].

9. Assumptions and Limitations

Our ‘perspective’ is based on several assumptions that may limit our conclusions.
The most critical is that obesity and cardiometabolic diseases are wholly anatomical (struc-
tural) and physiological (metabolic) disorders. Thus, we posit that if psychological, social,
economic, or other non-physiologic phenomena influence obese or diabetic phenotypes,
they must act through cellular mechanisms that cause increments in skeletal muscle-cell
insulin-resistance and its sequelae (e.g., hyperphagia, adipogenic caloric partitioning, and
increased fat-cell mass and number).

Although a large body of experimental evidence demonstrating the causal effects
of PI on skeletal muscle-cell insulin resistance and its sequelae exists, the only support
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for speculations regarding the effects of psychological, social, and economic phenomena
is correlational.

Moreover, we assert that distinguishing between etiology and treatment is critical for
discussions revolving around the roles of PA, genes, diet, and exercise. For example, we
contend that although specific macro-nutrients are not causal to obesity and other disease
states, except as a source of calories (for details please see [69,73–76]), we argue strongly
that caloric restriction with further reductions in carbohydrates are essential protocols for
reducing body and fat mass and the treatment of acquired obesity and T2DM.

Finally, although our work on nongenetic inheritance and the developmental origins
of disease is rigorous, consilient, and supported by voluminous research across species
(please see [12] for details), our theories are novel and may therefore appear controversial to
those unfamiliar with this emerging area of research and science (for reviews see [3,17–19].
Nevertheless, it remains to be seen if our conclusions withstand the ‘test of time’.

10. Summary and Conclusions

The age and rate at which an individual’s obese phenotype develops is a strong
determinant of its response to intervention. Thus, the development of effective man-
agement strategies necessitates a personalized approach that incorporates the subtyping
of obese phenotypes by etiologic status (acquired or inherited). The acquired pheno-
type denotes the development of excessive adiposity after puberty and is essentially a
behavioral phenomenon induced by low levels of PA and concomitant hyperphagia (over-
consumption). Thus, effective prevention and treatment strategies can be based on diet and
exercise [32,47,77]. Although this subtype is amenable to lifestyle interventions in the early
stages of development, the longer the PI, excessive SB, and overconsumption continue, the
less amenable to intervention this subtype becomes.

In contrast, inherited obesity subsumes all forms of excessive adiposity that develop
prior to pubescence (pediatric and childhood). The prevention of non-genetic inherited
obese phenotypes in the next generation necessitates adequate levels of PA by the current
generation of young females, potential mothers, and pregnant women. Nevertheless, once
instantiated during the prenatal period, this subtype has irreversible structural (anatomic)
and physiologic (metabolic) perturbations that are not amenable to intervention because
no amount of diet and exercise can reduce the excessive number of fat cells and adipogenic
partitioning, or significantly improve skeletal muscle function. Therefore, the objective
in the management of inherited subtypes is the development of a ‘fit but fat’ phenotype.
Importantly, because the amount of PA and caloric restriction necessary for the maintenance
of weight loss with an inherited subtype may be beyond the physical and psychological
capabilities of most individuals, it should not be the goal.

In closing, clinicians and investigators must recognize that despite its ubiquity, obesity
is not a homogenous condition. Moreover, because obesity is a complex and idiosyncratic
phenotype determined by inherited, behavioral, and environmental factors, a personalized
approach based on etiologic subtype is essential for successful health management.
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Abstract: There is controversial information about the accumulation of advanced glycation end-
products (AGEs) in obesity. We assessed the impact of total and abdominal adiposity on AGE levels
via a cross-sectional investigation with 4254 middle-aged subjects from the ILERVAS project. Skin
autofluorescence (SAF), a non-invasive assessment of subcutaneous AGEs, was measured. Total
adiposity indices (BMI and Clínica Universidad de Navarra-Body Adiposity Estimator (CUN-BAE))
and abdominal adiposity (waist circumference and body roundness index (BRI)) were assessed. Lean
mass was estimated using the Hume index. The area under the receiver operating characteristic (ROC)
curve was evaluated for each index. Different cardiovascular risk factors (smoking, prediabetes,
hypertension and dyslipidemia) were evaluated. In the study population, 26.2% showed elevated
SAF values. No differences in total body fat, visceral adiposity and lean body mass were detected
between patients with normal and high SAF values. SAF levels showed a very slight but positive
correlation with total body fat percentage (estimated by the CUN-BAE formula) and abdominal
adiposity (estimated by the BRI). However, none of them had sufficient power to identify patients
with high SAF levels (area under the ROC curve <0.52 in all cases). Finally, a progressive increase
in SAF levels was observed in parallel with cardiovascular risk factors in the entire population and
when patients with normal weight, overweight and obesity were evaluated separately. In conclusion,
total obesity and visceral adiposity are not associated with a greater deposit of AGE. The elevation of
AGE in obesity is related to the presence of cardiometabolic risk.

Keywords: adipose tissue; advanced glycation end-products; body composition; cardiometabolic
risk; cardiovascular risk factors; novel targets; obesity; skin autofluorescence
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1. Introduction

Obesity is a multifactorial chronic disease that can shorten the quality of life and
life expectancy of patients due to its high morbidity and mortality [1]. While this is
clearly established, population studies have revealed that more than 30% of patients
with obesity do not present associated metabolic pathology, which has given rise to the
concept of “metabolically healthy obesity” [2]. However, these patients have shown a
higher risk of both diabetes and cardiometabolic disease in the medium–long term. It
has been hypothesized that this is a possible initial phase prior to the development of
comorbidities [3–5].

To date, the trigger for the development of these comorbidities is unknown. However,
among the different hypotheses, the possible role of inflammatory adaptation against tissue
hypoxia produced by the expansion of white adipose tissue is becoming increasingly rele-
vant [6–8]. This continuous hypoxia facilitates a change towards a proinflammatory profile
that enhances the secretion of cytokines such as tumor necrosis factor alpha, interleukin-6 or
hypoxia inducible factor type 1 with the consequent increase in acute phase indicators such
as C-reactive protein and fibrinogen [6,9,10]. These factors are related to the appearance of
both local and systemic insulin resistance, endothelial dysfunction and arteriosclerosis, as
well as a higher rate of cardiovascular events [11,12].

Hypoxia, along with a proinflammatory pattern and oxidative stress, are common
features of obesity, all of which have been associated with increased protein glycation [5].
Taken together, increased advanced glycation end-products (AGEs) have been related to
the formation of atherosclerotic plaques and increased cardiovascular risk [13,14]. Lifeline
cohort studies have shown that increased AGEs are independently related to BMI, age and
HbA1c level [15]. Others have shown its increase in patients with visceral obesity, related
to an increased prevalence of metabolic syndrome [16]. Similarly, our group, has previously
published that the increase in AGE concentration in patients with severe obesity is clearly
at the expense of those with metabolic syndrome, suggesting its determination as a way
of identifying those patients with “metabolically diseased obesity” [17]. However, we are
missing a study specifically designed to assess the impact of obesity, as measured by both
BMI and body fat, on AGE levels. With this objective, and to verify if the accumulation
of AGEs could help us to identify early and easily those people with a higher risk of
metabolic syndrome, we have analyzed the population of the ILERVAS project. This large
cohort included subjects with one or more cardiometabolic risk factors and different weight
ranges.

2. Materials and Methods

2.1. Study Design

In this work, we analyze the information collected in the ILERVAS project (ClinTri-
als.gov Identifier: NCT03228459), a prospective study whose main goal was learning the
prevalence of non-clinical atheromatous disease and occult kidney disease in a cohort
with moderate cardiovascular risk [18,19]. Data were analyzed from 4254 people recruited
between 2015 and 2018. Patients were recruited aged 45 to 70 years, with no previous
cardiovascular event but at least one cardiometabolic risk factor (obesity, hypertension,
dyslipidemia, smoking or first-degree relative with prematurity (<55 years in men, <65
in women) cardiovascular disease (myocardial infarction, stroke and peripheral arterial
disease)). Those with diabetes, chronic kidney disease, active neoplasia, a life expectancy
of less than 18 months and/or pregnancy were excluded.

The ILERVAS project protocol was approved by the ethics committee of the Arnau de
Vilanova University Hospital (CEIC-1410) and written informed consent was acquired from
all subjects. The ethical guidelines of the Declaration of Helsinki and Spanish legislation on
the protection of personal data were also followed.
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2.2. Definition of Cardiovascular Risk Factors

The diagnosis of dyslipidemia was obtained from patients who had an assigned code
for disorders of lipoprotein metabolism and other lipidemias by means of the International
Classification of Diseases (ICD-10) codes, namely E78.0–78.9 (pure hypercholesterolemia,
pure hyperglyceridemia, mixed hyperlipidemia, hyperchylomicronemia, other hyperlipi-
demia, unspecified hyperlipidemia, lipoprotein deficiency, other disorders of lipoprotein
metabolism and unspecified disorders of lipoprotein metabolism). A diagnosis of hyper-
tension was obtained from patients coded for hypertensive diseases using ICD-10 codes,
i.e., I10–I13 (essential hypertension, hypertensive heart disease, hypertensive renal disease
and hypertensive heart and renal disease) and I15 (secondary hypertension).

Prediabetes was defined as a glycated hemoglobin (HbA1c) level between 39 to
47 mmol/mol (5.7 to 6.4%), and normal glucose metabolism as HbA1c <39 mmol/mol
(<5.7%), agreeing with the American Diabetes Association guidelines. Smoking habits
(never, former or current smoker) were also considered. Smokers who quit smoking a
year or more before the visit were considered ex-smokers. As patients with diabetes were
excluded from the ILERVAS project, this diagnosis was not considered a cardiovascular
risk factor in our study.

The antihypertensive and lipid-lowering treatments that were prescribed in the IL-
ERVAS population have been taken from the prescription and billing databases provided
by CatSalut (Catalan Health Service), which were incorporated annually into the SIDIAP
database. Antihypertensive medications include angiotensin-converting enzyme inhibitors,
diuretics, type II aldosterone receptor antagonists, beta-blockers, calcium channel blockers
and other antihypertensives. Lipid-lowering drugs included statins, fibrates, ezetimibe and
omega-3 fatty acids.

2.3. Anthropometric Measures

Both weight and height were analyzed almost without clothing and without shoes
with a precision of 0.5 kg and 1.0 cm, respectively [20]. Waist circumference was measured
between the iliac crest and the lower rib in the horizontal plane with the subject standing
and with a non-elastic tape to a precision of 0.1 cm [21]. To decrease interobserver and
device variability, all anthropometric measures were performed by trained nurses under
standardized conditions. The relative technical error of intra-rater measurement was less
than 1% for height, weight and waist and circumferences.

BMI was obtained by weight (kg) divided by the square of body height (m), and obesity
was classified according to clinical guidelines as BMI ≥30 kg/m2. The percentage of total
body fat was estimated using the Body Adiposity Estimator of the Clínica Universidad de
Navarra (CUN-BAE) using the formula: −44.988 + (0.503 × age) + (10.689 × sex) + (3.172
× BMI) − (0.026 × BMI2) + (0.181 × BMI) × sex) − (0.02 × BMI × age) − (0.005 × BMI2

× sex) + (0.00021 × BMI2 × age), where sex is 1 for women and 0 for men and age is in
years [22].

For the estimation of central adiposity, in addition to waist circumference, the body
roundness index was included. This index, suggested by Thomas et al., is based on a
geometric model defined to quantify body circularity. Those with abdominal fat look like
a perfect circle, compared to those with more linear figures. It was calculated as: WC
(m)/(BMI2/3 × height (m))1/2 [23]. In addition, we evaluated the Hume index for the
amount of lean mass based on the analysis of the body composition of the antipyrine
dilution space through the formula: (0.29569 × weight) + (0.41813 × height) − 43.2933 [24].

2.4. Skin Autofluorescence

SAF was assessed using the AGE Reader™ device (DiagnOptics Technologies, Gronin-
gen, The Netherlands), a computerized non-invasive tool that quantifies AGE deposits
in the forearm via the ultraviolet spectrum [25]. A device calibrated according to the
manufacturer’s recommendations was used. Three analyses were carried out in areas free
of tattoos, cosmetics or with a concentration of freckles or superficial vessels, and their
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mean value (arbitrary units: AU) was taken. Measurements made on the same day showed
an overall Altman error rate of 5.03%, and intra-individual seasonal deviation showed an
Altman error rate of 5.87% [25]. Since AGEs accumulate progressively with aging, there is a
normal sum of AGEs at each age. When this number is higher than expected, the software
classifies the patient as a “high AGE” individual. Therefore, participants in the ILERVAS
project were classified as a group with “normal” and “high” SAF levels.

2.5. Statistical Methods

The Shapiro–Wilk test was used to estimate the normal distribution of the sample.
Quantitative baseline characteristics were analyzed using the Mann–Whitney U test or
Kruskal–Wallis test, and categorical characteristics using Pearson’s chi-squared test. Spear-
man’s correlation was used to assess the relationship between AGE levels and anthropomet-
ric data. Data are expressed as median and interquartile range or n (percentage). Patients
were differentiated based on their elevated and normal SAF results. In addition, patients
were also categorized according to the number of cardiovascular risk factors.

The evaluation of the diagnostic performance of the anthropometric formulas was
carried out by analyzing the area under the receiver operating characteristic (ROC) curves
and the Youden J statistic. The results of the area under the ROC curve were interpreted
following the guidelines stipulated by the scientific community: excellent, between 0.9 and
1.0; good, between 0.8 and 0.9; fair, between 0.7 and 0.8; poor, between 0.6 and 0.7; and not
useful, between 0.5 and 0.6. SSPS software (IBM SPSS Statistics for Windows, version 20.0.,
Armonk, NY, USA) was used for statistical analysis. Statistical significance was determined
with a p value < 0.05.

3. Results

The main clinical and metabolic data according to the presence of SAF levels are shown
in Table 1. The ILERVAS cohort consisted of 1115 (26.2%) individuals with elevated SAF
values. This group of individuals were mainly smokers with a characteristic cardiovascular
risk profile better than participants with normal SAF values. This high SAF group also
received significant undertreatment with antihypertensive and lipid-lowering medications.
However, no differences in the prevalence of obesity, according to BMI, were observed
between groups (30.0 vs. 27.9%, p = 0.189). Similarly, no differences in total body fat
percentage or estimated visceral adiposity and lean body mass were detected between the
groups (Table 2).

Table 1. Central clinical and metabolic data in the ILERVAS cohort according to skin autofluorescence
values.

Normal SAF
(n = 3139)

High SAF
(n = 1115)

p-Value

Women, n (%) 1576 (50.2) 548 (49.1) 0.543
Age (years) 57 (52–63) 57 (54–61) 0.003

Smoking habits (current and former), n (%) 1840 (58.6) 856 (76.8) <0.001
Obesity diagnosis, n (%) 941 (30.0) 311 (27.9) 0.189

Blood hypertension diagnosis, n (%) 1296 (41.3) 390 (35.0) <0.001
Antihypertensive drugs, n (%) 1036 (33.0) 313 (28.1) 0.002
Dyslipidemia diagnosis, n (%) 1635 (52.1) 495 (44.4) <0.001
Lipid-lowering agents, n (%) 555 (17.7) 157 (14.1) 0.006
Prediabetes diagnosis, n (%) 1081 (34.4) 363 (32.6) 0.311

Data are expressed as a median (interquartile range) or n (percentage). Antihypertensive drugs include
angiotensin-converting enzyme (ACE) inhibitors, diuretics, angiotensin-II receptor antagonists (ARA II), beta-
blockers, calcium antagonists and other antihypertensives. Lipid-lowering treatments involve statins, fibrates,
ezetimibe and omega-3 fatty acids.
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Table 2. Data of the anthropometric indices in all individuals according to skin autofluorescence
values.

Normal SAF High SAF p-Value

Total adiposity
BMI (kg/m2) 28.4 (25.7–31.6) 28.1 (24.7–31.8) 0.104

CUN-BAE (%) 35.9 (30.1–42.3) 35.3 (29.1–42.1) 0.132
Visceral adipose tissue

Waist circumference (cm) 101 (94–108) 100 (94–108) 0.19
Body roundness index 5.68 (4.73–6.83) 5.58 (4.50–6.94) 0.127

Lean body mass
Hume index (kg) 49.5 (43.0–56.2) 49.5 (43.4–55.5) 0.693

Data are expressed as a median (interquartile range). BMI: body mass index; CUN-BAE: Clínica Universidad de
Navarra-Body Adiposity Estimator.

Regarding the bivariate analysis, the SAF levels showed a very slight but positive
correlation with the percentage of total body fat (estimated by the CUN-BAE formula) and
abdominal adiposity (estimated by body roundness index) (Table 3). These correlations
disappeared when anthropometric formulas such as BMI and waist circumference were
used. In addition, a negative correlation with lean body mass was also observed. In the
same way, the measures related to obesity and body composition had no power to identify
the patients with higher levels of SAF, being in all cases areas under the ROC curve <0.52
(Figure 1).

Table 3. Bivariate correlations of SAF with anthropometric formulas in the ILERVAS population.

r p

BMI (kg/m2) −0.019 0.221
CUN-BAE (%) 0.080 <0.001

Waist circumference (cm) 0.005 0.746
Body roundness index 0.065 <0.001
Lean body mass (kg) −0.122 <0.001

BMI: body mass index; CUN-BAE: Clínica Universidad de Navarra-Body Adiposity Estimator.

Figure 1. Receiver operating characteristic (ROC) curve analysis in the ILERVAS population to assess
the diagnostic accuracy of obesity indices to identify patients with higher AGEs from those with
normal AGEs.
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We also analyzed SAF levels according to a number of cardiometabolic risk factors
(dyslipidemia, hypertension, history of smoking and prediabetes) in both the total study
population and according the degree of obesity. A progressive increase in SAF levels was
observed in parallel with cardiovascular risk factors in the entire population (Figure 2).
There were also significant differences in terms of skin autofluorescence values according
to the number of cardiometabolic risk factors in subjects with normal weight, overweight
and obesity (Figure 3).

Figure 2. Results of the skin autofluorescence values in the entire population of the ILERVAS project
according to the number of cardiovascular risk factors (a history of smoking habits, hypertension,
dyslipidemia and prediabetes).

Finally, the multivariable logistic regression model in patients with obesity according
to their BMI showed that male sex, degree of obesity and the presence of three or more
cardiovascular risk factors (prediabetes, smoking, hypertension and dyslipidemia) were
independently associated with AGE levels (Table 4).

Table 4. The multivariable logistic regression model for high AGEs in subjects with obesity.

Odds Ratio (95% CI) p

Sex Women Ref.
Men 0.94 (0.79 to 1.11) 0.435

Age (years) 1.00 (0.99 to 1.01) 0.992
Body mass index (kg/m2) 1.03 (1.01 to 1.05) 0.006

Smoking status Never Ref.
Current or former 1.09 (0.092 to 1.28) 0.314

Cardiovascular risk factors 1 Ref.
2 1.15 (0.98 to 1.36) 0.087
≥3 1.28 (1.04 to 1.58) 0.019

Hosmer–Lemeshow test of fit 0.492
Area under the ROC curve 0.74 (0.72 to 0.77) <0.001

42



Nutrients 2023, 15, 203

Figure 3. Results of the skin autofluorescence values in subjects with normal weight (A), overweight
(B) and obesity (C) according to the number of cardiovascular risk factors (history of smoking habits
hypertension, dyslipidemia and prediabetes).

4. Discussion

In our middle-aged Caucasian population cohort, no significant increase in AGEs
(measured as skin autofluorescence) was observed with respect to overall obesity or ab-
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dominal obesity. However, the subcutaneous deposition of AGE seems to be positively
related to the prevalence of cardiometabolic risk factors, both in patients with and without
obesity. Until now, when the relationship between obesity and AGE deposition has been
evaluated, controversial data have been shown. For example, in a study of the child popu-
lation, Lentferink et al. found a correlation of AGEs with the highest standard deviation
of BMI, which disappeared when adjusting for skin type [26]. Likewise, in their study,
Gogas et al. observed a positive correlation of AGEs with BMI, being higher in those with
type 2 diabetes [27].

Visceral adipose tissue has been shown to have a greater inflammatory capacity, so it
would be expected that this confers greater oxidative conditions favoring the formation
of AGEs [28]. Despite this, Den Engelsen et al. did not observe significant differences in
AGEs in those with or without central obesity measured by waist circumference. However,
they demonstrated a progression: from those with healthy normal weight (1.63 ± 0.37 AU),
increasing in those with abdominal obesity (1.74 ± 0.44 AU) and being even higher in
subjects with abdominal obesity and comorbidities (1.87 ± 0.43 AU; p < 0.001) [16]. In the
same study, after a medium follow-up period of 3 years after bariatric surgery, the SAF
values did not change, although there was a marked reduction in weight and remission
of comorbidities.

Elevated AGE levels have been linked to increased cardiometabolic risk, coronary
artery disease and cardiovascular mortality [14,29]. Similarly, increased subcutaneous AGE
content has previously been associated with increased atheromatous plaque burden in the
ILERVAS project [13]. In the present study, we found differences when we assessed patients
according to their cardiovascular risk, with SAF values that progressively increased accord-
ing to the accumulation of cardiometabolic risk factors. Our results are in line with those of
Koyama et al. who found a significant relationship between AGE receptors and metabolic
syndrome, blood pressure, hypertriglyceridemia, and subclinical atheromatosis in both
patients with and without diabetes [30]. Reinforcing the role of metabolic control in AGE
deposition, plasma AGEs were higher in patients with type 2 diabetes and atherosclerotic
disease than in patient with atherosclerotic disease without type 2 diabetes, especially in
those with higher HbA1c levels in recent years (r = 0.46, p < 0.001) [31].

Other cardiovascular risk factors not evaluated in our study, such as chronic kidney
disease or adherence to the Mediterranean diet, also cause an increase in AGE concen-
tration [32]. In fact, studies based on dietary surveys have associated a low intake of
exogenous AGEs with lower insulin resistance, TNF alpha levels, peripheral cell mononu-
clear cells and leptin concentration, as well as higher adiponectin, which ultimately means
less proinflammatory activity [33]. Thus, adherence to the Mediterranean diet, an eating
pattern associated with lower proinflammatory state, has been independently associated
with AGEs, especially in those with a high consumption of vegetables, fruits and low
sugar [34]. In our investigation it is also interesting to note that for the first time the
negative but statistically significant link between the levels of SAF and lean body mass
is shown.

Our research has some limitations. First, we do not use a precise measure of body
composition to correlate with AGEs. However, anthropometric formulas have been vali-
dated with other gold standard tests such as dual-energy X-ray absorptiometry or magnetic
resonance imaging. Second, we used an indirect test based on skin fluorescence to measure
AGEs instead of a direct plasma test, but there is an extensive literature demonstrating
the accuracy of this test compared to skin biopsy or plasma measurements. Third, an
intrinsic characteristic of the ILERVAS study population is that participants have one or
more cardiometabolic risk factors, so care must be taken when generalizing our results to
the general population.

5. Conclusions

In conclusion, total obesity and visceral adiposity are not associated with a higher
AGE deposit. The elevated levels of AGEs detected in subjects with obesity seem more
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related to the presence of cardiometabolic risk factors than to the percentage of body fat.
With all this evidence, the measurement of SAF is a non-invasive test that can be helpful to
identify those patients with unhealthy obesity, which opens the door to a new management
of obesity in clinical practice.
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Abstract: The abnormal expansion of body fat paves the way for several metabolic abnormalities
including overweight, obesity, and diabetes, which ultimately cluster under the umbrella of metabolic
syndrome (MetS). Patients with MetS are at an increased risk of cardiovascular disease, morbidity,
and mortality. The coexistence of distinct metabolic abnormalities is associated with the release of
pro-inflammatory adipocytokines, as components of low-to-medium grade systemic inflammation
and increased oxidative stress. Adopting healthy lifestyles, by using appropriate dietary regimens,
contributes to the prevention and treatment of MetS. Metabolic abnormalities can influence the
function and energetic capacity of mitochondria, as observed in many obesity-related cardio-metabolic
disorders. There are preclinical studies both in cellular and animal models, as well as clinical studies,
dealing with distinct nutrients of the Mediterranean diet (MD) and dysfunctional mitochondria in
obesity and MetS. The term “Mitochondria nutrients” has been adopted in recent years, and it depicts
the adequate nutrients to keep proper mitochondrial function. Different experimental models show
that components of the MD, including polyphenols, plant-derived compounds, and polyunsaturated
fatty acids, can improve mitochondrial metabolism, biogenesis, and antioxidant capacity. Such
effects are valuable to counteract the mitochondrial dysfunction associated with obesity-related
abnormalities and can represent the beneficial feature of polyphenols-enriched olive oil, vegetables,
nuts, fish, and plant-based foods, as the main components of the MD. Thus, developing mitochondria-
targeting nutrients and natural agents for MetS treatment and/or prevention is a logical strategy to
decrease the burden of disease and medications at a later stage. In this comprehensive review, we
discuss the effects of the MD and its bioactive components on improving mitochondrial structure
and activity.

Keywords: obesity; mitochondria; Mediterranean diet; metabolic syndrome; plant-based foods;
polyphenols; polyunsaturated fatty acids

1. Introduction

Trends for obesity and metabolic syndrome (MetS) are dramatically increasing world-
wide and represent the “malnutrition” burden of the disease [1]. Obesity is characterized by
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excessive accumulation of adipose tissue combined with adipocytokine-mediated chronic
inflammation, mitochondrial dysfunction, and the inhibition of antioxidant defenses [2].
Obesity is typically linked to metabolic disorders such as hypertension, dyslipidemia, and
insulin resistance predisposing to type 2 diabetes (T2DM). Such metabolic abnormalities
tend to cluster within MetS [3–5].

Mitochondria contribute to the pathogenesis of obesity-related metabolic disorders.
Mitochondria are essential for cellular energy metabolism, as they generate adenosine
triphosphate (ATP) by oxidizing carbohydrates, lipids, and proteins [6–8]. Mitochondria
produce and eliminate the reactive oxygen species (ROS) [9]. The inability of mitochondria
to produce and maintain sufficient levels of ATP is known as “mitochondrial dysfunc-
tion”, which is the result of an imbalance in nutrient signal input, energy production, and
oxidative respiration [8,10]. Several studies suggest that an excessive intake of nutrients
influences mitochondrial function [11], and that obesity predisposes to mitochondrial
dysfunction [12–15].

Basic, translational, clinical research, epidemiological studies, and society guidelines
find that the adoption of a healthy diet and lifestyle has beneficial preventive and therapeu-
tic effects on obesity and MetS. Among all dietary patterns, the typical Mediterranean Diet
(MD) is high in monounsaturated fatty acids, fiber, antioxidants, and glutathione [16,17].
Since adherence to the MD has been associated with a lower risk of obesity, T2DM, MetS,
coronary heart disease, and cardiovascular mortality [18–23], the MD is considered a
potential remedy for the prevention of obesity-related diseases [24].

In this scenario, the term “mitochondrial nutrients” refers to specific nutrients that can
preserve mitochondrial function. Cellular and animal models, as well as clinical studies,
have investigated the effects of components of the MD on dysfunctional mitochondria
in obesity and MetS. Thus, mitochondria represent a promising target for novel, natural
supplements or functional foods designed for the prevention and treatment of obesity-
related MetS. This is a reasonable strategy to decrease the impact of medications at a later
stage of the disease.

In this review, we will discuss the main features of obesity and MetS with respect to
mitochondrial function, as well as the effects of the MD and its bioactive components on
improving mitochondrial structure and activity [25].

2. Obesity

2.1. Definition

From a physiological perspective, body fat consists of brown and white adipose tissue.
By location, fat is found at the subcutaneous and visceral levels. According to the World
Health Organization (WHO), obesity is defined as the excessive accumulation of fat in the
body [26], as a result of sustained positive-energy balance where energy intake exceeds
energy expenditure [27]. Obesity is considered a disease of body-weight regulation [28].
Expanded visceral adipocytes act as an endocrine organ, releasing adipocytokines ac-
tively involved in metabolic control, inflammation, and tissue repair [29,30], as well as
tumorigenesis [31,32]. Excessive visceral adipose tissue is associated with increased efflux
of long-chain fatty acids from adipocytes resulting in ectopic-fat deposition in the liver,
skeletal muscle, pancreas, and heart. These changes are associated with insulin resistance
and systemic gluco-lipidic toxicity. In a clinical context, obesity is associated with higher
cardiovascular risk, mortality, and morbidity [33–36].

Obesity is typically assessed by the calculation of body mass index (BMI), expressed as
body weight in kilograms divided by the square of height in meters (kg/m2) [37]. Specific
reference standards exist for children by age and sex between the ages of 2 and 20 years. In
adults, BMI is independent of age and sex and is a surrogate marker of fat in the body [36].
In adults, BMI is classified into the following categories: underweight (<18.5 kg/m2), nor-
mal weight (18.5–24.9 kg/m2), overweight (25–29.9 kg/m2), and obese (BMI ≥ 30 kg/m2).
Obesity is further classified as class I (BMI 30–34.9 kg/m2), class II (BMI 35–39.9 kg/m2),
and class III obesity (BMI > 40 kg/m2), also known as severe obesity [38,39].
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Although simple to obtain, the classification based on BMI does not take into ac-
count several subtypes of obesity and the interaction between body composition and
cardiometabolic risk [36,40–45]. For example, the concept of metabolically healthy obesity
(MHO) describes a subtype of obese subjects with limited or no features of cardiometabolic
abnormalities. Conversely, some normal-weight subjects can display an elevated risk of
cardiometabolic disorders, termed “metabolically unhealthy normal weight” [46,47]. The
MHO phenotype displays a normal lipid and pro-inflammatory cytokine profile and insulin
sensitivity [48]. These patients have low visceral adiposity, high cardiorespiratory fitness,
and minimal or absent intima media thickness. Caution is required when classifying MHO
for several reasons. Longitudinal studies show that MHO can evolve into the metabolically
altered obesity (MAO) phenotype [49]. Nearly one-third of MHO patients, according to
fasting glycemia, exhibit impaired glucose tolerance or T2DM following an oral-glucose
tolerance test. Individuals with MHO and MAO have similar patterns of inflammatory
biomarkers such as C reactive protein, fibrinogen, uric acid, leukocyte count, serum amy-
loid A and hepatic enzymes, as well as adipokines such as adiponectin, resistin, leptin, and
angiotensin II. In addition, typical inflammatory gene expression in adipose tissue and the
liver shows comparable patterns in MHO and MAO individuals [45,50–52]. Notably, the
MHO phenotype is associated with accelerated age-related declines in functional ability
and jeopardizes the independence in older age [53].

Another phenotype of obesity is sarcopenic obesity (SO), a condition characterized
by the combination of low skeletal-muscle mass and decreased strength, i.e., “dynapenic”
abdominal obesity [54]. In the obesogenic environment, this condition is becoming more
important when considering the aging population [55,56]. A dangerous link exists between
obesity and sarcopenia, characterized by a mismatch between muscle mass and fat mass
with a negative impact on energy balance. This pathway, in turn, paves the way for weight
gain. In addition, obesity-associated chronic inflammation has a catabolic effect on muscle
mass, facilitating the loss of lean muscle combined with an increased risk for developing
metabolic alterations, cardiovascular disease (CVD), and mortality, at a much higher rate
than sarcopenia or obesity alone [57–59].

2.2. Epidemiology of Overweight and Obesity

Overweight and obesity are chronic non-communicable diseases, and since 1980 their
prevalence has doubled worldwide. Over one-third of the population worldwide is now
classified as overweight or obese. By 2030, nearly 38% of the adult population will be
overweight and another 20% will be obese worldwide [60,61]. In 2015, evidence estimated
that obesity affected around 604 million adults and 108 million children worldwide [62]. In
2015, the prevalence of obesity had become higher among women than men, for all age
groups and at all socio-economic levels. From 1980 to 2015, the most pronounced increase
in the prevalence of obesity (11.1% to 38.3%) was observed in men aged 25 to 29 years in
low-to-middle income countries. Continuous increasing trends of severe types of obesity
is an area of concern. For instance, between the years 2007 and 2018, the age-adjusted
prevalence of class III obesity (BMI ≥ 40 kg/m2) increased from 5.7% to 9.2% [63,64]. As
will be discussed in the next sub-section, obesity is the key component of MetS [65–67], and
for this reason overweight and obese [68–71] populations are at elevated risk of several
metabolic disorders, including insulin resistance, dyslipidemia, hyperglycemia, CVD, and
many specific cancers [37,72–76].

2.3. Metabolic Syndrome

MetS is characterized by specific criteria defined by the National Cholesterol Education
Program Adult Treatment Panel (ATP) III [77] and the International Diabetes Federation
(IDF) [78] (Table 1). The classification is based on the combination of at least three out
of the five following factors: visceral adiposity, increased serum triglycerides, low HDL
cholesterol, arterial hypertension, and elevated serum glucose (Figure 1).
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Figure 1. Criteria for the definition of metabolic syndrome. WC: waist circumference, TG: triglyc-
erides, HDL: high-density lipoprotein, SBP: systolic blood pressure, DSP: diastolic blood pressure,
FPG: fasting plasma glucose.

The estimated prevalence of MetS according to IDF definition is higher than the
prevalence of MetS, according to the ATP III definition [79]. MetS is gaining increasing
epidemiologic relevance [80–82]. According to the Third National Health and Nutrition
Examination Survey, the overall prevalence of MetS was 22%. In 2002 [83], another study
reported a worldwide prevalence of 10–30%, including children and adolescents [84]. An
age-dependent increase was observed from 6.7% to 43.5% to 42.0%, for ages 20 to 29,
60 to 69, and over 70 years, respectively. Ethnic differences exist, with the highest age-
adjusted prevalence among Mexican Americans (31.9%). Among Black Americans and
Mexican Americans, the prevalence of MetS was 57% and 26%, which was higher in women
than men.

Table 1. Criteria for the definition of metabolic syndrome.

National Cholesterol Education Program ATP III [77]
International Diabetes Federation

(IDF) [78]

Any three of the following five abnormalities: Central obesity plus any two of the following four factors:

Obesity Abdominal obesity is defined as a waist circumference ≥102 cm in men
and ≥88 cm in females

Increased waist circumference, with ethnic-specific
waist-circumference cut-off points *

Triglycerides Serum triglycerides ≥ 1.7 mmol/L or drug treatment for
elevated triglycerides

Triglycerides ≥ 1.7 mmol/L or drug treatment for
elevated triglycerides

HDL cholesterol Serum high-density lipoprotein (HDL) cholesterol <1 mmol/L in males
and <1.3 mmol/L in females or drug treatment for low HDL cholesterol

HDL cholesterol < 1.03 mmol/L in men or <1.29 mmol/L in
females or drug treatment for low HDL cholesterol

Hypertension Systolic blood pressure ≥ 130mm Hg, diastolic blood pressure ≥ 85 mm
Hg or drug treatment for elevated blood pressure

Systolic blood pressure ≥ 130 mm Hg, diastolic blood
pressure ≥ 85 mm Hg, or treatment for hypertension

Glucose Fasting plasma glucose (FPG) ≥ 100 mg/dL (5.6 mmol/L) or drug
treatment for elevated blood glucose

FPG ≥ 100 mg/dL (5.6 mmol/L) or previously diagnosed
type 2 diabetes; an oral glucose tolerance test is recommended

for patients with an elevated FPG, but it is not required

* Europid populations: males ≥ 94 cm; females ≥ 80 cm; South Asian populations, Chinese populations, and
Japanese populations: males ≥ 90 cm; females ≥ 80 cm; South and Central American populations: use South
Asian recommendations until more specific data are available; Sub-Saharan African, Eastern Mediterranean, and
Middle Eastern populations: use European data until more specific data are available [85].

52



Nutrients 2022, 14, 3112

The cause of MetS is complex, and the major etiological components are considered to
be genetic, environmental, and lifestyle factors [67,86–90].

Defective cell metabolism is an important contributing factor for MetS because of
an imbalance between nutrient intake and utilization for energy. Diminished fatty-acid
oxidation accelerates elevation in the intracellular aggregation of fatty acyl-CoAs as well as
other fat-derived molecules in the liver, skeletal muscle, and adipose tissue [86]. Patients
with MetS display early evidence of insulin resistance, with initial elevated serum-insulin
levels. At a later stage, and if not properly treated, this condition can progress to T2DM.
Associated conditions with MetS include cholesterol cholelithiasis and liver steatosis [91,92].
Cholesterol cholelithiasis originates from excessive secretion of hepatic cholesterol, which
makes bile supersaturated and prone to the precipitation and aggregation of monohydrate
cholesterol crystals, which grow into stones in the gallbladder [93–97]. The second condition
is non-alcoholic fatty liver disease (NAFLD), recently renamed metabolic dysfunction-
associated fatty liver disease (MAFLD) [98]. NAFLD/MAFLD originates from excessive
intrahepatic influx of circulating long-chain fatty acids, with accumulation of triglycerides
and toxic metabolites in the hepatocytes [69,99–103].

In this metabolically unhealthy scenario, several determining metabolic pathways con-
verge in mitochondria, suggesting that obesity and MetS are associated with mitochondrial
dysfunction, and pointing to a type of metabolic mitochondrial disease [68,69,102,104,105].
In MetS, mitochondrial dysfunction has been identified in various target organs such as
the liver, heart, and skeletal muscle, as well as in tissue and cells such as adipocyte and
pancreatic islet beta cells [106]. Nevertheless, it is still unclear if mitochondrial dysfunction
is the primary cause or a secondary effect of MetS.

3. Mitochondria, Bioenergetics, Obesity, and MetS

3.1. Mitochondria and Bioenergetics

Mitochondria are small intracellular organelles with a double membrane structure,
i.e., the outer mitochondrial membrane (OMM) and inner mitochondrial membrane (IMM),
separated by the intermembranous space [102,107]. Mitochondria are the “powerhouse of
the cell” and the main sites for ATP production. Using beta-oxidation and the citric acid
cycle, mitochondria oxidize the long-chain fatty acids and glucose derived from foods [108].
Starting from chemical bonds in foods, high-energy electrons are produced and captured by
nicotinamide adenine dinucleotide (NAD) and flavin adenine dinucleotide (FAD) and later
reduced to NADH and FADH2 [109]. High-energy electrons are donated to the electron
transport chain (ETC) by NADH and FADH2. The ETC is based in IMM and consists of five
complexes [110,111]. NADH donates electrons to complex I, FADH2 donates electrons to
complex II, and both complexes I and II donate electrons to coenzyme Q (CoQ) [68–71,112].

CoQ is freely diffusible through IMM and provides electrons to complex III and
reduces cytochrome c. Complex IV oxidizes cytochrome c and transfers electrons to oxygen
to produce water. The movement of electrons along the transport chain releases free energy
that is used to pump protons at complex I, III, and IV from the mitochondrial matrix into
the intermembranous space, generating a proton gradient [110,113]. Protons diffuse along
its concentration gradient at complex V, releasing energy that is used to create ATP from
ADP [114]. This process is also known as oxidative phosphorylation (OXPHOS) [115]. Over
90% of the total cellular ATP is generated in the mitochondria, and this pathway is at the
center of energy metabolism [102] and can become dysfunctional in MetS.

3.2. Mitochondria and Reactive Oxygen Species (ROS)

Mitochondria play a key role in ATP production but are also an important source of
physiological levels of intracellular ROS [116]. As electrons pass through the ETC, a small
fraction escape and prematurely react with molecular oxygen, generating superoxide radi-
cals that are spontaneously or enzymatically converted into hydrogen peroxide [117,118].
Furthermore, by undergoing the Fenton reaction, hydrogen peroxide can produce hydroxyl
radicals that are harmful and highly reactive molecules [119,120], which can cause cell
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death by damaging membranes, proteins, DNA, and enzymes [121]. Mitochondria host a
very well-structured antioxidant mechanism that includes the homotetrameric Manganese
(Mn) superoxide dismutase (MnSOD = SOD2), which in mammals is found solely in the
mitochondria at the level of the matrix and intermembrane space [122]. SOD2 converts su-
peroxide radicals to hydrogen peroxide and molecular oxygen. In the presence of reduced
glutathione, hydrogen peroxide is converted to water by the enzyme glutathione perox-
idase, minimizing the production of hydroxyl radical [123]. This process is very highly
efficient and scavenges most of the ROS produced locally in mitochondria. Mitochondria
also play a key role in ROS scavenging from other cellular sources, and mitochondrial
dysregulation can lead to unrestricted ROS generation and cell injury [124–127]. Excessive
production of ROS exceeding cellular antioxidant defense causes cellular macromolecule
damage and affects cellular viability and functions, a process called oxidative stress [128].
Oxidative stress is widely recognized as one of the deciding mechanisms for several disease
processes including MetS [129]. An increase in hydrogen peroxide and superoxide in
cells modifies intracellular signaling and can lead to metabolic reprogramming resulting
in increased fat synthesis and storage [130]. Therefore, increased ROS production with
subsequent oxidative stress may add to the pathogenesis of MetS.

3.3. Mitochondrial Biogenesis

Mitochondria have their own DNA, which encodes for only 22 mitochondrial t-RNA
and some components of the ETC [131]. The key master regulator and transcriptional
activator of mitochondrial biogenesis is the peroxisome proliferator–activated receptor
gamma coactivator-1 α (PGC-1α) [132,133]. Furthermore, by activating various other
transcription factors, PGC-1α stimulates the process of mitochondrial biogenesis involved
in nuclear and mitochondrial gene expression [134]. The induction of mitochondrial
transcription factor A (TFAM) is led by the activation of nuclear respiratory factors 1 and 2
(NRF-1 and NRF-2), transcription factors, and estrogen-related receptors (ERRs) [135,136].
TFAM interacts directly with mitochondrial transcription factor B2 (TFB2M) along with the
mitochondrial genome, to induce mitochondrial gene transcription [137]. Mitochondrial
biogenesis is the physiological response to increased energy demand by AMP-activated
kinase (AMPK) to monitor cellular-energy status [138]. The AMPK system responds
to rises in the AMP:ATP ratio rather than to rises in AMP alone [139]. Increased AMP
mediated by AMPK and elevated NAD+ mediated by Sirtuin-1 pathways can cause PGC1α
activation, which in turn decreases cellular oxidative stress by enhancing the expression
of mitochondrial antioxidant enzymes [140,141]. Hence, PGC1α has become a significant
therapeutic target for MetS [142–146]. Therapeutic approaches focusing on enhanced
mitochondrial biogenesis not only improve mitochondrial efficacy for substrate handling
but also decrease oxidative stress, providing multifactorial benefits [147–149].

3.4. Mitochondrial Dysfunction in Obesity

The pathological expansion of body fat is associated with a chronic status of low-
to-medium grade inflammation, oxidative stress, and insulin resistance [30,150]. These
changes can be paralleled by dysregulation of mitochondrial function and biogenesis.

An excessive intake of nutrients, especially lipids and carbohydrates, can promote
mitochondrial dysfunction. Due to high-calorie intakes, the metabolism is shifted towards
the lipid reservoir, reduced mitochondrial function, and biogenesis, with subsequent pro-
duction of ROS and the progression of insulin resistance in the liver, muscle, and adipose
tissue [8]. By using hypertrophic adipocytes as an experimental in vitro cellular model of
obesity, we showed that lipid accumulation and oxidative stress are associated with im-
paired mitochondrial oxygen consumption and alteration of mitochondrial complexes [105].
In addition, lipolysis, adipogenesis, and adipocyte-derived adiponectin production were
abnormal in adipocytes along with deranged insulin sensitivity [151]. In skeletal muscle
obtained from rodents and humans, the obesity-induced status by a high-fat diet increased
the H2O2-emitting potential of mitochondria, shifting the cellular-redox environment to a
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more oxidized state and decreasing the redox-buffering capacity. These events occurred
in the absence of any changes in mitochondrial respiratory function. Notably, the authors
reported that attenuating mitochondrial H2O2 emission by either treating rats with an
antioxidant-targeting mitochondrial or by genetically engineering the overexpression of
catalase in mitochondria of muscle cells in mice, preserved insulin sensitivity despite the
high-fat diet [152].

The relationship between mitochondrial dysfunction and obesity has been also inves-
tigated in animal models. More precisely, db/db mice and mice on a high-fat diet under
diabetes/obesity conditions displayed a reduction in mitochondrial ATP production and
alterations of mitochondrial structure [153]. In high-fat-diet, obese mice, mitochondrial
dysfunction also occurs in the liver, mediated by a decrease in the expression of carnitine
palmitoyltransferase-1 (CPT-1), citrate synthase, nuclear respiratory factor-1 (NRF-1), and
mitochondrial transcription factor A (TFAM) [154].

The role of obesity in mitochondrial dysfunction has been also investigated in humans [155].
Adipocytes collected from omental and/or abdominal subcutaneous adipose samples of
obese patients showed a reduction in mitochondrial oxygen-consumption rates and citrate
synthase activity, compared to non-obese subjects [13]. Mitochondrial biogenesis, mito-
chondrial oxidative phosphorylation, and oxidative metabolic pathways in subcutaneous
adipose tissue are downregulated in obese subjects, when compared to lean subjects [15].
These effects were accompanied by a reduction in the amount of mtDNA and the mtDNA-
dependent translation system. At the molecular level, obese subjects showed reduced
peroxisome proliferator–activated receptor-α (PGC1-α) expression, as a marker of altered
mitochondrial biogenesis [156].

3.5. Mitochondrial Dysfunction in MetS

Mitochondrial dysfunction is a cardinal hallmark of MetS [69]. In the liver, mito-
chondria are involved in the metabolic pathways of lipids, proteins, carbohydrates, and
xenobiotics [157,158]. Mitochondrial dysfunction is documented in NAFLD/MAFLD, the
most common chronic liver disease [69,102,104,105,159]. In the early stages of NAFLD/MAFLD
the increased intrahepatic influx of circulating FFAs causes early mitochondrial biogenesis
mediated by the activation of PGC1-α and increased β-oxidation rates [160,161]. The high
rate of FFA oxidation and ATP synthesis cause the uncontrolled increase in ROS level
and changes in mitochondrial structure/function such as swelling, alteration in the mito-
chondrial electron transporter chain, mitochondrial DNA (mtDNA) damage, and sirtuin
alteration. Despite the endogenous mitochondrial antioxidant system works to counteract
the oxidative stress, the mitochondrial dysfunction occurs with imbalance between ROS
production and mitochondrial defense mechanisms [162].

As NAFLD/MAFLD progresses, the increased levels of ROS severely impairs mtDNA
function [39] and mitochondrial ATP synthesis promoting further hepatic dysfunction [163–166],
and inflammation [167–170]. At the structural level, the mitochondrial electron transfer
chain seems to be altered as consequence of the excessive accumulation of toxic lipids
and mitochondrial ROS (mtROS) with a direct impact on the permeability of the inner
mitochondrial membrane and increased oxidative damage [171]. At the molecular level,
mitochondrial cytochrome P450 2E1 (CYP2E1), which is responsible for long-chain fatty
acid metabolism, is directly involved in mitochondrial ROS production, and is considered
a fundamental player in NAFLD/MAFLD pathophysiology [172]. Indeed, experimental
studies on non-alcoholic steatohepatitis (NASH) in animal models and in humans, showed
an increased activity of CYP2E1 [173,174]. Besides, mitochondrial enzymatic oxidative
defense mechanisms resulted also impaired in NAFLD and NASH with progressive mito-
chondrial dysfunction. Furthermore, alteration of the expression PGC-1α are associated
with NAFLD pathogenesis and to NASH-hepatocellular carcinoma progression [175].

The relationship between insulin resistance and mitochondrial dysfunction is not
fully understood. Increased production of mtROS has been associated with a high glucose
intake and FFAs accumulation, the two principal factors of insulin resistance. Despite
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the established role of genetic and environmental factors associated with T2DM patho-
physiology, different metabolic abnormalities are directly implicated in the etiology of
T2DM.With ongoing insulin resistance and pancreatic β-cell dysfunction, mitochondrial
dysfunction has been indicated as a principal contributor. The reduction in insulin sen-
sitivity in adipocytes, hepatocytes, and skeletal muscles is related to other complications
such as the increased production of ROS and an accumulation of FFAs, both of which
are associated with mitochondrial dysfunction and impaired mitochondrial biogenesis in
diabetic patients [176–178].

In overweight/obesity and MetS, high fat and carbohydrate intake leads to lipid depo-
sition resulting in the expansion of visceral adipocytes and an excessive influx of circulating
FFAs [36]. The involvement of metabolic abnormalities (e.g., visceral fat accumulation,
insulin resistance, and inflammation) in obesity is closely related to mitochondrial dysfunc-
tion and vice versa [179,180]. In experimental animal models, the accumulation of fat and
formation of adipose tissue in obesity are correlated with increased ROS production. In
addition, obese mice showed a mitochondrial dysfunction phenotype indicated by increas-
ing NADPH oxidase expression and reducing antioxidative enzymes [181,182]. In obese
mice, Choo et al. [183] showed that the number of mitochondria and mtDNA are reduced
in adipocytes. Dysfunctional fatty acid oxidation and mitochondrial respiration were also
observed. Similarly, mitochondrial biogenesis was strongly suppressed in the adipocytes of
obese mice. Mitochondrial ATP production occurred with molecular (PGC-1α/β, estrogen-
related receptor alpha, and PPAR-α) and structural (outer and inner membrane translocases
and mitochondrial ribosomal proteins) alteration in adipose tissue [153].

Two main mechanisms of damage include ATP depletion and excessive ROS produc-
tion. Mitochondrial dysfunction in association with adipose tissue dysfunction, plays a
role in aging [184,185]. Thus, based on the pivotal role of mitochondria in the pathogenesis
of MetS, targeting mitochondrial dysfunction for the treatment of MetS is of great inter-
est. There is growing evidence from animal and human models that sheds light on the
beneficial effects of nutrition-based intervention targeting mitochondria in MetS. Diets
rich in polyphenols such as the MD could represent one of the healthiest approaches for
nutritional intervention for the prevention and/or treatment of MetS.

4. Diet, Features, and Effects

The proper maintenance of metabolic homeostasis is closely related to food and
nutrient intake. Both epidemiological and clinical evidence suggests that dietary patterns
are closely related to the incidence and complications of MetS [186,187]. The Western diet,
characterized by the high intake of refined grains, red meat, and fried foods, is associated
with a greater risk of developing one or more components of MetS [188]. Low-fat diets
such as the vegan diet, characterized by the absence of all animal-based products, if well-
balanced, can promote health and reduce the risk of MetS [189]. A well-balanced diet, such
as the MD is associated with lower incidence and risk of MetS (Table 2).

Table 2. Principal features of Western diet, Vegan diet, and Mediterranean diet.

Western Diet Vegan Diet Mediterranean Diet

Characteristics High fat and sugar
High vegetable Low meat

Low fat High vegetable and olive oil
No meat High plant-based foods

Main components

Red meat Fiber Fiber
(Saturated fat and cholesterol) Grain Antioxidants

Refined grains Cereals Unsaturated fats
Fructose beverage Whole grain

Health consequences

Obesity

Healthy (if balanced)
Deficiency of essential macro and

micronutrients (if unbalanced)
Healthy

Insulin resistance
NAFLD
Diabetes

CVD
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Table 2. Cont.

Western Diet Vegan Diet Mediterranean Diet

Mechanisms

↑ Adipose tissue
↑ Circulating FFAs

↑ Hepatic lipid accumulation
↑ Triglycerides
↑ Cholesterol

↑ Fasting glucose
↑ De novo lipogenesis

↑ VLDL
↑ ER stress

↑ Lysosomal permeabilization
↓ Insulin sensitivity

↓ Circulating FFAs
↓ Hepatic steatosis

↓ Lipolysis
↓ De novo lipogenesis
↑ Insulin sensitivity

↓ Circulating FFAs
↓ Hepatic steatosis
↓ Triglycerides
↓ Cholesterol
↓ Inflammation
↓ Lipolysis

↓ De novo lipogenesis
↓ ROS
↓ CRP

↑ Insulin sensitivity
↓ Inflammatory markers

Effect on Mitochondria

↑ mtROS ↓ mtROS ↓ mtROS
↓ mitochondrial biogenesis ↑ mitochondrial biogenesis ↑ mitochondrial biogenesis
↓ mitochondrial respiration ↑ mitochondrial respiration ↑ mitochondrial respiration

References [188,190,191] [189,192,193] [194–199]

Abbreviation: NAFLD: non-alcoholic fatty liver disease, CVD: cardiovascular disease, FFAs: free fatty acids, ROS:
reactive oxygen species, CRP: C-reactive protein, mtROS: mitochondrial reactive oxygen species, ER: endoplasmic
reticulum, ↑: increased, ↓: decreased.

Mediterranean Diet and Beneficial Effects

The Mediterranean dietary pattern is particularly popular among people living in the
Mediterranean Sea basin. The MD is mainly characterized by a high intake of vegetables,
fruits, nuts, cereals, and whole grains, a moderate intake of white meat such as fish and
poultry, and low intake of dairy products, sweets, red meat, processed meat, and red
wine. Extra virgin olive oil becomes the principal source of fat [200–203] (Figure 2). The
promotion of a healthy lifestyle is an effective strategy is to decrease the risk of MetS
onset by promoting healthy lifestyle. Evidence suggests that the MD possesses antioxidant
and anti-inflammatory properties [25] with protective effects in regard to the disorders
associated with MetS and in the prevention of cardiovascular disease (CVD) [201].

Figure 2. The concept of the healthy food pyramid is based on differences across countries which
include food quality and quantity, social and cultural context, and economical aspects encountered
in the Mediterranean basin. The graphical abstracts provide information about the type of seasonal
food, weekly intake in relation to standard portions, and the role of macro- and micro-nutrients. The
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idea is that of promoting healthy lifestyles among different populations. The importance of regular
physical activity and social relationships is also indicated. The final design of the MD pyramid today
and a brief complementary text for the general public have been developed by the Mediterranean Diet
Foundation Expert Group that includes the Mediterranean Diet Foundation’s International Scientific
Committee expertise, the in situ discussions by a representative group of members that met within
the Barcelona VIII International Congress on the Mediterranean diet, and several other experts who
provided support on the design, editing, and translation to 10 different languages (English, French,
Italian, Spanish, Catalan, Basque, Galician, Greek, Portuguese, and Arabic). With permission from
Cambridge University Press, 2022 [200]. Website http://dietamediterranea.com/en/ (accessed on
4 June 2022).

Studies show that adherence to the MD has protective effects against obesity, stroke,
CVD, hypertension, diabetes, some types of cancer, allergic diseases, and Alzheimer and
Parkinson’s disease [204–215]. The American Diabetes Association and the American Heart
Association both recommend the MD in order to decrease cardiovascular risk factors in
T2DM and to improve glycemic control [216]. In younger subjects, low adherence to the
MD can trigger functional gastrointestinal symptoms, as component of the irritable bowel
syndrome and functional dyspepsia, mainly in younger subjects [217]. Unprocessed plant-
based food such as fruits, vegetables, legumes, seeds, spices, and nuts, rich in polyphenols,
are the principal aspect of the MD with a wide range of biological and pharmacological
effects [218–221]. The polyphenols undergo biotransformation process by gut microbiota
before reaching the liver by the portal vein with beneficial effects either locally (i.e., intes-
tine) and systemically (i.e., liver, brain) [222]. In contrast, the Western diet, high in calories,
is characterized by the high intake of processed macronutrients (cholesterol, fat, protein,
and sugars) and salt (sodium chloride), trans fats, and the low intake of fiber and magne-
sium. In the long term, this diet predisposes to obesity, insulin resistance, T2DM, CVD, and
MetS. At the molecular level, the Western diet stimulates oxidative stress and inflammation
by inducing mitochondrial dysfunction, decreasing the activity of antioxidant enzymes
such as catalase, dismutase, and glutathione peroxidase, and peroxisomal oxidation of fatty
acids [223]. As discussed earlier, the protective effects of the MD are the result of the diet
as a whole, rather than individual components, reinforcing the idea that the interaction
of various dietary components can have a beneficial synergistic effect [222]. However,
several scientific-based evidence about the beneficial effects of individual components of
the MD have been documented. For example, olive oil exerts antidiabetic, cardioprotective,
neuroprotective, and nephroprotective effects due to the presence of tyrosol, oleocanthal,
and hydroxytyrosol [224]. The long-term consumption of olive oil counteracts inflamma-
tion, promotes blood vessels’ relaxation, protects against T2DM, reduces blood pressure,
and increases insulin circulation [225]. The MD contains sea foods and fish rich in by
fatty acids such as docosahexaenoic acid (DHA) and eicosapentaenoic acids (EPAs), which
are metabolized producing 5-series leukotrienes and resolvins (RvE1 and RvE2). These
metabolites possess anti-inflammatory effects in vivo [226]. Red grapes and wine found in
the MD contain the polyphenol resveratrol (3,40,5-trihydroxystilbene), which not only has
cardioprotective, antiaging, and anticarcinogenic effects but also promotes neuroprotective
activities leading to anti-inflammatory, antioxidant, and gene-modulating effects. Resvera-
trol in patients with T2DM modulates the genes that influence mitochondrial function, such
as PGC-1α, which is a key regulator of mitochondrial biogenesis and leads to elevation of
mitochondrial content [227]. Furthermore, resveratrol indirectly activates AMP-activated
protein kinase (AMPK), leading to increased mitochondrial biogenesis, improved glucose
tolerance, insulin sensitivity, physical endurance, and a reduction in fat accumulation [228].
Moreover, due to its structural similarity to the synthetic estrogen diethylstilbesterol, resver-
atrol interacts with estrogen receptors inducing favorable cardiovascular effects. Several
studies have demonstrated that the overall pattern of the MD produces beneficial effects by
reducing the risk of obesity, hypertension, dyslipidemia, glucose metabolism, and CVD
in T2DM patients [229,230]. The MD includes a high consumption of green vegetables
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rich in magnesium, which is a main constituent of chlorophyll. The magnesium present in
chlorophyll plays a crucial role in the metabolism of insulin and glucose by translocating
the phosphate from ATP to protein through its influence on tyrosine kinase activity of the
insulin receptor. Magnesium is one of the cofactors of more than 300 enzymic reactions and
it is important for ATP metabolism. It is also necessary for the regulation of blood pressure,
insulin metabolism, muscle contraction, cardiac excitability, neuromuscular conduction,
and vasomotor tone. The deficiency of magnesium is known to be associated with the
onset of T2DM, while its consumption reduces the intensity of diabetes by sensitizing
insulin [231,232].

The MD also has significant protective effects in MetS [19,233]. Scientific-based ev-
idence suggest that many component of the MD display anti-inflammatory effects by
reducing the activation of NF-κB signaling pathway and the expression of chemokine and
proinflammatory cytokines such as TNF-α, IL-1β, and IL-6 [234]. The decreased expression
of cytokines reduces oxidative stress, low-grade inflammation, and apoptotic cell death in
brain and visceral tissues [235]. Another biomarker for inflammation is C-reactive protein
(CRP), and prolonged intake of the MD diminishes CRP and unusual quantity of cytokines
and adipokines irrespective of weight loss increase [235–237]. Furthermore, the MD is
associated with lower mortality and a decreased incidence of common chronic diseases
such as CVD [238], several cancers [239], T2DM [240], fatty liver disease [241], and some
types of allergies [242] as a result of the inhibition of oxidative stress, reduction in inflamma-
tion, and improved lipid profiles [218,219,243–245]. Along with improving physical health,
long-term adherence to the MD also improves the quality of life and longevity [246,247].

5. MD and Mitochondrial Activity

5.1. Preclinical Studies

The MD is characterized by the high intake of several ingredients with beneficial,
nutraceutical and pharmaceutical properties, involved in the prevention and recovery of
metabolic diseases. This is achieved through different pathways, including the attenuation
of mitochondrial dysfunction (Table 3). Despite the difference in some components of the
MD between different countries, most essential ingredients are the same, such as olive oil,
PUFA (Omega-3), fruits, and polyphenol-rich plants and vegetables.

Table 3. Summary of in vitro and in vivo studies about effects of Mediterranean diet on metabolic
diseases targeting mitochondria.

Compound Study Model Effects Reference

Chlorogenic Acid (CGA) In vitro
OxLDL-treated HUVECs

Oxidative Damage/Mitochondrial
Dysfunction

↑ SIRT1 expression
↓ OxLDL-impaired SIRT1 Level

↓ ROS
↑ SIRT1, AMPK, and PGC-1α

pathway

[248]

Delphinidin In vitro
VEGF-treated HUVECs Post-ischemic neovascularization

↑ NRF1, Tfb2m, Tfam and PolG
↓ Abnormal increase in

mitochondrial respiration,
mtDNA content, and complex IV

activity

[249]

Lycopene (LYC) In vivo
LPS-treated mice Inflammation

↑ SIRT1
↑ PGC1α

↑ Cox5b, Cox7a1, Cox8b, and Cycs
↑ Complexes I, II, III, and IV

[250]

Lycopene (LYC) In vitro
H2O2-treated SH-SY5Y Oxidative stress /Apoptosis

↑ Depolarization
↑ Bcl2
↓ Bax

[251]

5-Heptadecylresorcinol
(AR-C17)

In vitro
H2O2-treated PC-12

Apoptosis/Mitochondrial
dysfunction

↓ ROS
↑ Mitochondrial respiration

↑ ATP
↑ SIRT-3
↑ FOXO3a

↓ H2O2-cell apoptosis

[252]
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Table 3. Cont.

Compound Study Model Effects Reference

Resveratrol In vivo
Mice Insulin resistance/Obesity

↑ SIRT1 activity
↑ PGC-1α activity

↑ Mitochondrial activity
↑ Aerobic capacity

[253]

Resveratrol

In vitro
solubilized complex I

In vivo
Mice

Aging

↑ Complex I activity in vitro
↑ Complex I activity in young

mice
↑ Oxidative stress in old mice

[227]

Resveratrol In vivo
HFD mice Obesity/Ageing

↑ SIRT1 enzymatic activity
↑ PGC-1α deacetylation and

activity
[254]

Butyric acid In vivo
HFD mice Metabolic syndrome

↑ PGC-1α
↑ CPT1b
↑ COX-I
↑ PPAR-δ

↑ Fatty acid oxidation

[255]

Butyrate and its synthetic
derivative FBA

In vivo
mice

In vitro
HepG2 cells

Insulin resistance/Obesity

↑ Oxygen consumption
↑ Citrate synthase activity

↓ H2O2
↑ Aconitase activity
↑ Mfn1, Mfn2, Opa1
↓ Drp1 and Fis1

[256]

Ginger extract (GE)/
6-gingerol

In vivo
mice

In vitro
HepG2 cells

-

↑ mtDNA
↑ OXPHOS

↑ATP
↑ Complex I and IV activity
↑ AMPK-PGC-1α signaling

[257]

Ferulic acid (FA)

In vivo
HFD mice

In vitro
PBMC and EPC

Cardiovascular disease

↑ Mitochondrial biogenesis
markers

↓ Oxidative stress
↓ PBMC apoptosis

↑ PGC-1α

[258]

Different ω-3/ω-6 PUFAs
ratios

In vivo
mice Metabolic syndrome

↓ Metabolic risk factors
↓ p-mTOR

↑ Mitochondrial electron transport
chain

↑ Tricarboxylic acid cycle
↑ Mitochondrial activities

↓ Fumaric acid
↓ Oxidative stress

[259]

Extra virgin olive oil
(EVOO) and
nitrite (NO3)

In vivo
mice NAFLD

↑ HO-1 expression
↑ Complexes II and V

↑ NO2-OA
↓ Cholesterol

↓ LDL
↓ Endothelial dysfunction

↓ Blood pressure
↓ Thrombosis

↓ Hyperglycemia

[260]

Hydroxytyrosol (HT) In vivo
mice Metabolic syndrome

↓ Drp1
↑ Complex I and II

↓ Complex V
↓ PARP

[261]

Hydroxytyrosol (HT)

In vivo
HFD-Megalobrama amblycephala

fish
In vitro

hepatocytes

Hepatic fat deposition

↑ Citrate synthase activity
↑ ATP content

↑ Mitochondria number
↑ PGC-1α, PGC-1β, NRF1 and

TFAM

[262]

Ellagic acid (EA) In vivo
chronic arsenic-rats Diabetes/Cancer

↓ ROS
↓ Mitochondrial damage
↑ Dehydrogenase complex

II-associated activity

[263].

Apigenin (APG)
In vivo

multiwall CNT
(MWCNT)-exposed rats

Kidney toxicity

↑ Succinate dehydrogenase
↓ ROS

↑ Mitochondrial membrane
potential

↓ Mitochondrial swelling
↓ Release cytochrome

[264]

Apigenin (APG) In vivo
aged Mice Muscle Atrophy

↑ Basal oxygen consumption
↑ Complexes I, II, and IV activity

↑ ATP content
↑ PGC-1α, TFAM, and NRF-1
↓ Cyt-C release to cytosol

[265]
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Table 3. Cont.

Compound Study Model Effects Reference

Cocoa Flavanols In vivo
mice

Healthy and
SIRT3-/-mice

↑ Mitochondrial respiration
↑ AMPK phosphorylation

↑ Mitochondria mass
↑ NAD+/NADH

↑ Complex I and IV activity

[266]

Abbreviations: Drp1: mitochondrial fission-related protein, Bak, Bax, and Bad: proapoptotic Bcl-2 members,
Bcl-2 and Bcl-XL: antiapoptotic Bcl-2 proteins, PARP: poly(ADP-ribose) polymerase, HFD: high-fat diet, EVOO:
extra virgin olive oil, HO-1: heme oxygenase-1, NO2-OA: nitro-fatty acids, LDL: low-density lipoprotein, LYC:
lycopene, SH-SY5Y: human neuroblastoma cells LPS: lipopolysaccharides, SIRT1: sirtuin 1, PGC1α: perox-
isome proliferator–activated receptor gamma coactivator-1α, Cox: cyclooxygenase, PBMC: peripheral blood
mononuclear cell, EPC: endothelial progenitor cells, ROS: reactive oxygen species, HUVECs: human umbilical
vein endothelial cells, OxLDL: oxidized low-density lipoprotein, FOXO3a: forkhead box O3 (transcription fac-
tors), HepG2: human liver cancer cell line, OXPHOS: oxidative phosphorylation, NAD+: nicotinamide adenine
dinucleotide, CPT1b: carnitine palmitoyltransferase 1B, COX-1: cytochrome c oxidase I, PPAR-δ: peroxisome
proliferator–activated receptor-δ, FBA: N-(1-carbamoyl-2-phenyl-ethyl) butyramide, MetS: metabolic syndrome,
↑: increased, ↓: decreased.

In vitro studies evaluated the beneficial effects of polyphenol-rich foods on MetS
mediating mitochondrial modulation. In detail, the protective role of chlorogenic acid
(CGA) found in coffee beans and apples against ox-LDL-induced endothelial cells dys-
function as cellular model of atherosclerosis was evaluated using human endothelial cells
HUVECs. CGA displayed mitochondria-mediated effects by enhancing SIRT1 activity
and up-regulating AMPK and PGC-1 expression to maintain mitochondrial biogenesis. In
addition, CGA treatment exhibited a cytoprotective effect by reducing ROS production
in endothelial cells. [248]. Similarly, in endothelial cells with VEGF-induced mitochon-
drial dysfunction, delphinidin (a flavonoid present in red wine and berries) restored the
elevated level of mitochondrial respiration, mtDNA content, and complex IV activity. In
addition, delphinidin increased the expression of NRF1, Tfb2m, Tfam, and PolG, all of
which are involved in the regulation of mitochondrial biogenesis [249]. Lycopene (LYC), a
member of the carotene phytochemical family, present in tomatoes and grapefruits, exerted
an anti-inflammatory effect on mice exposed to LPS through improving mitochondrial
dysfunction. In detail, LYC upregulated the expression of SIRT1, PGC1α, Cox5b, Cox7a1,
Cox8b, and Cycs. In addition, a partial effect of LYC was proved in regulating the expres-
sion of many complexes in the respiratory chain [250]. Another in vitro study using human
neuroblastoma cells SH-SY5Y showed a protective effect of lycopene against H2O2-induced
depolarization of the mitochondrial membrane [251]. LYC increased the expression of Bcl2
and decreased Bax expression [251]. Whole grains also represent an important category in
the MD, with a beneficial impact on metabolic diseases. Especially, 5-heptadecylresorcinol,
a biomarker of whole grain rye consumption, protects against H2O2-induced oxidative
stress in rat pheochromocytoma (PC-12) by activating the SIRT3-FOXO3a signaling path-
way. In addition, it reduced mitochondrial ROS levels and maintained the mitochondrial
respiration and membrane potential, which leads to an increase in ATP production and cell
respiration [252].

Another study found that the antioxidant effect of resveratrol found in grapes, berries,
and cacao is dose- and age-dependent [253]. This polyphenol competes with NAD+ in a
solubilized complex of mitochondria to improve their activity [253]. In addition, resveratrol
prevents metabolic diseases (obesity and insulin resistance) in mice through improving
mitochondrial function via PGC-1α and SIRT-1 activation [227]. These results have also been
confirmed by Baur et al. [254] using a high-calorie-diet mice model which demonstrated
a SIRT-1-dependent effect of resveratrol on the activation of PGC-1α resulting in the
improvement of mitochondrial biogenesis.

By monitoring the increase in CO2 level in skeletal muscle tissue and L6 muscle cells
in butyrate-treated mice, an increase in PGC-1α level accompanied by an increase in CPT1b
and COX-I genes expression was observed. Moreover, the levels of peroxisome proliferator–
activated receptors (PPARs) were also increased in the treated group. Overall, these data
suggest that butyrate (found in legumes, fruits, and nuts) promotes fatty acid oxidation
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and improves mitochondrial function [255]. In addition, butyrate increased citrate synthase
activity, aconitase activity, and oxygen consumption in butyrate-treated mice and FBA-
treated human HepG2 cells, with a decrease in H2O2 yield. In mitochondrial dynamics,
butyrate and FBA upregulated the expression of fusion genes (Mfn1, Mfn2, and Opa1) and
decreased the expression of fission-related genes (Drp1 and Fis1) [256].

Ginger extract and its bioactive compound 6-gingerol promote mitochondrial biogen-
esis and function through improving AMPK-PGC1α signaling in vivo (skeletal muscle,
liver, and BAT) and in vitro (HepG2 cells). Furthermore, 6-gingerol enhanced p-AMPKα,
PGC-1α, NRF1, and TFAM protein expression and stimulated the subunits of OXPHOS
complexes in HepG2 cells [257]. Further study links the role of ferulic acid (FA), the main
active phenolic acid in rice bran, with the improvement of mitochondrial biogenesis and
dynamic by increasing the expression of Pgc-1α, Pgc-1β, Nrf-1, Mfn1, Mfn2, Fis1, and Beclin-
1. In addition, the rice bran enzymatic extract (RBEE) diet upregulated AMPK activity with
enhanced PGC-1α expression in mice. The latter was also observed in peripheral blood
mononuclear cell (PBMC) and endothelial progenitor cells (EPC), in addition to an increase
in fusion MFN1 [258].

The effect of a high omega-3 to omega-6 ratio (ω-3/ω-6) on metabolic syndrome was
investigated in vivo using high-fat-diet mice. A high ω-3/ω-6 ratio significantly decreased
the insulin index, body weight, atherosclerosis markers, and accumulation of hepatic lipid.
These effects were mediated by a reduction in p-mTOR expression, accompanied by an
upregulation of the mitochondrial electron-transport chain and tricarboxylic acid-cycle
pathway, when compared to a diet with a low or moderate ω-3/ω-6 ratio. Therefore, a
diet with a high ω-3/ω-6 ratio displayed an enhancement of mitochondrial complexes
activities, accompanied by an alleviation of fumaric acid and oxidative stress [259]. The
Mediterranean diet also contains a variety of vegetables rich in NO2− and nitrate (NO3).
Sánchez-Calvo et al. analyzed the involvement of nitro-fatty acids (NO2-FA) on the benefi-
cial effects of extra virgin olive oil (EVOO) consumption on an NAFLD experimental animal
model. EVOO and nitrite supplementation improved the function of liver mitochondrial
complexes II and V and exerted antioxidant and anti-inflammatory effects. The authors
concluded that EVOO-NO2− consumption may promote additional nutraceutical effects in
NAFLD patients [260].

Hydroxytyrosol (HT), a polyphenol from olive oil, was effective in the regulation
of multiple HFD-induced MetS, especially those related to mitochondrial dysfunction,
through the modulation of mitochondrial apoptotic pathway in the liver and skeletal mus-
cles. Moreover, HT treatment normalized the down-expression of Complex I and II and the
up-expression of complex V, while Drp1 and PARP were decreased after treatment [261].
HT may also improve mitochondrial biogenesis (increase mtDNA and number of mito-
chondria) through the AMPK pathway, by enhancing the expression of involved genes
(PGC-1α, NRF-1, and TFAM). ATP content and citrate synthase activity were also shown
to increase after HT treatment of HFD (high-fat diet) and LFD (low-fat diet) groups [262].
Another phenolic acid, ellagic acid, which is found in strawberries and walnuts, prevents
metabolic disorders by targeting the mitochondria via two ways: directly, by decreasing
the ROS amounts and mitochondrial damage, or indirectly, by restoring the total dehydro-
genase activity in mitochondria through complex II maintenance [263]. Apigenin (APG),
a flavonoid found in many fruits and vegetables, increased the respiratory complex II
succinate dehydrogenase (SDH) activity on carbon-nanotubes-induced mitochondrial dam-
age. APG acts as antioxidant by decreasing ROS generation in kidney, which leads to a
decrease in MMP collapse [264]. Results were confirmed in another study in old mice
by Wang et al. [265]. In addition, APG improves mitochondrial biogenesis (by increasing
mtDNA, PGC-1α, TFAM, and NRF-1), and the activity of complexes I, II, and IV and ATP
synthesis [265]. Cocoa flavanol supplementation boosted the NAD metabolism, which
stimulates sirtuins metabolism and improved mitochondrial function. These results suggest
that flavanols likely contributed to the observed whole-body metabolism adaptation, with
a greater ability to use carbohydrates, at least partially through Sirt3 [266].
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5.2. Clinical Studies

In subjects with NASH, a six-month treatment with omega-3 showed a regulation of
lipogenesis, ER stress, and mitochondrial function [267]. These effects were mediated by an
overexpression of FABPL and PRDX6, with a reduction in PGRMC1 level. Meanwhile, an
up-representation of PEBP1 and ApoJ was detected after the oral consumption of omega-3,
confirming its role in the modulation of insulin resistance. In addition, FASTKD2, mitochon-
drial proteins related to aerobic-cell respiration, was overexpressed in this situation [267].
A study in patients on 2–3 weeks of a PUFA diet before elective cardiac surgery confirmed
that omega-3 fatty acids from fish oil upregulated the nuclear transactivation of peroxisome
proliferator–activated receptor-γ (PPARγ). This effect improved the mitochondrial oxida-
tion of fatty acid and enhanced the antioxidant effect in the human atrial myocardium [268].
An EPA+DHA diet increases the expression of mitochondrial uncoupling protein 3 (UCP3)
and ubiquinol cytochrome c reductase (UQCRC1) genes, which reduces ROS production.
In addition, this diet improved oxidative phosphorylation activity and the extracellular
matrix (ECM)-related pathways [269]. DHA, an omega 3 fatty acid, present in marine
foods, increases the expression of the genes responsible for integrating fatty acid into
mitochondria, as a new source of energy. In addition, DHA-enriched food consumption
enhanced mitochondrial antioxidant capabilities and decreased mitochondrial ROS produc-
tion [270]. The effect of resveratrol was studied in overweight/T2DM patients. Resveratrol
improves the mitochondrial function through increasing state 3 respiration, while decreas-
ing complex IV [271]. Resveratrol can stimulate the ENDOG gene to further stimulate the
PGC-1α activity in biogenesis and to increase the number of mitochondria [272]. Resvera-
trol combined with epigallocatechin-3-gallate (EGCG) increases complexes III and V and
improves the electron transport chain capacity, in addition to the upregulation of the citric
acid cycle and fat oxidation in muscles during fasting [273]. Furthermore, a mixture of
ancient peat and apple extract exerts a beneficial effect on mitochondrial function and
ATP production, accompanied with a decrease in ROS production and oxidative stress in
resistance-trained [274] (Table 4).

Table 4. Clinical studies in metabolic syndrome assessing the efficacy of MD components on mitochondria.

Authors Year Sample Size
Gender M/F

(Age)
Participants Format, Dose Duration of Study Main Findings

Anderson et al.
[268] 2014 24 16/8

(63.1 ± 8.4; 65.8 ±9.9)
Elective cardiac

surgery for patients

Oral consumption
of EPA and DHA

capsule,
3.4 g/day

2–3 weeks

↑ PPARγ
↑ Mitochondrial

fatty acid oxidation
↑ TxnRd2 enzyme

Capo et al.
[270] 2014 15 15/0

(20.4 ± 0.5)
Exercise-induced
oxidative stress

Beverage enriched
with DHA 2 months

↑ Antioxidant
activity

↓ ROS production
↑ DHA

Yoshino et al.
[269] 2016 20 60 to 85 Large hypertrophic

response

Consumption of 4
pills (1.86g EPA+

1.50 g DHA)
6 months

↑ Respiratory
electron transport

activity
↑ Oxidative

phosphorylation
↑ ECM

organization
↑ UCP3 and

UQCRC1

Most et al.
[273] 2016 38 18/20 (38 ± 2) Subjects with

obesity

Consumption of
282 mg EGCG + 80

mg RES
12 weeks

↑ Complexes III
and V

↑ Citric acid cycle
↑ Respiratory

electron-transport
chain

↑ Fat oxidation

Joy et al. [274] 2016 25 25/0 (28± 5) Resistance-trained
subjects

Consumption of
150 mg (ancient
peat and apple
extract (TRT))

12 weeks

↑ Mitochondrial
ATP production

↓ ROS
↓ Oxidative stress
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Table 4. Cont.

Authors Year Sample Size
Gender M/F

(Age)
Participants Format, Dose Duration of Study Main Findings

Pollack et al.
[272] 2017 30 19/11

(67 ± 7)

Older
glucose-intolerant

patients

Treated with 2−3 g
Resveratrol/day 6 weeks

↑ Mitochondrial
number

↑ Oxidative
phosphorylation

↑ ENDOG
↑ P GC1α

Samara et al.
[267] 2018 60 18–75 years Patients with

NASH

Oral consumption
of n − 3 PUFA
capsules, 0.945

g/day

6 months

↑ ALA, EPA, glyc-
erophospholipids
↓ Arachidonic acid

↑ FABPL
↑ PRDX6
↓ PGRMC1

↑ PEBP1, ApoJ
↑ FASTKD2

de Ligt et al.
[271] 2018 13 13/0

(59.2 to 67.6)
Patients with

overweight/T2DM

Consumption of
150 mg

Resveratrol/day
6 months

↑ State 3
respiration

↓ Complex IV
↑ Mitochondrial

function

Abbreviations: ALA: alpha-linolenic acid, EPA: eicosapenteanoic acid, FABPL: fatty acid binding protein—liver
type, PRDX6: peroxiredoxin 6, PEBP1: phosphatidylethanolamine-binding protein 1, ApoJ: apolipoprotein J,
FASTKD2: FAST kinase domain-containing protein 2, PGRMC1: progesterone receptor membrane component
1 protein, DHA: doxosahexaenoic acid, ECM: extracellular matrix, UCP3: l uncoupling protein 3, UQCRC1:
ubiquinol cytochrome c reductase, EGCG: epigallocatechin-3-gallate, RES: resveratrol, ENDOG: endonuclease G,
↑: increased, ↓: decreased.

6. Summary

Mitochondrial dysfunction can occur along with many diseases, and the dysfunction is
associated with changes in gene expression reflecting on both cell morphology and function.
Key events include disrupted mitochondrial ATP production, impaired metabolism, and
regulation of apoptosis. Altered metabolic homeostasis will also influence the physiological
mitochondrial dynamics. [275]. In the last decade, so-called “mitochondrial medicine” and
“mitochondrial nutrients” have attracted the attention of researchers, with the idea that
improving mitochondrial structure and function is a plausible strategy for MetS prevention
and treatment. It is important to note that the MD is rich in polyphenols and other naturally
derived compounds that have substantial antioxidant properties, the capacity to scavenge
free radicals, and the ability to modulate endogenous antioxidant defense mechanisms.
These effects involve mitochondrial antioxidant enzymes. Due to their antioxidant proper-
ties, polyphenols can reduce the inflammation and mitochondrial dysfunction characteristic
of MetS. Hereby, we discussed the effects of the main nutrients and polyphenols in the
MD on mitochondrial dysfunction in MetS. Preclinical studies (in vitro cellular and in vivo
animal studies) show that the nutrients and polyphenols present in the MD, such as chloro-
genic acid, resveratrol, hydroxytyrosol, and apigenin, exert a vast range of beneficial effects
on mitochondrial dysfunction. Figure 3 summarizes the possible mechanisms, including
the effects on key regulators of mitochondrial function and biogenesis such as SIRT-1,
AMPK, and PGC-1α. In addition, the antioxidant properties of the polyphenols present in
the MD reduced mtROS production and ameliorated mitochondrial damage and apoptosis
in different experimental studies. Several studies reported the health-promoting effects of
the MD due to its high fiber content.

Short-chain fatty acids are the end products of the fermentation of insoluble fiber by
the gut microbiota. Evidence suggests SCFAs can modulate several metabolic disorders
such as obesity, insulin resistance, and T2DM [276]. Butyrate, an SCFA present in the MD,
promotes fatty acid oxidation and improves mitochondrial function. The vegetables, nuts,
and fish characteristics of the MD contain significant amounts of PUFA. The correlation
between PUFA intake (especially ω-3) and decreased cardiometabolic risk has been well-
documented [277]. Additionally, dietary n-3 PUFAs have shown substantial positive
effects on mitochondrial function and structure [278]. These effects seem to be mediated
by a reduction in the expression of p-mTOR, accompanied by the upregulation of the
mitochondrial electron-transport chain and tricarboxylic acid cycle. Several studies in
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humans have demonstrated the beneficial effect of the bioactive compounds present in
the MD on MetS, suggesting advanced health-promoting effects through the targeting of
mitochondria. This could be used to promote additional pharmacological and nutraceutical
effects, especially on the gastrointestinal system and muscle strength.

Figure 3. Potential molecular mechanisms of MD on mitochondrial dysfunction in MetS. The dotted
red line represents inhibitory pathways. Abbreviations: AMPK: AMP-activated protein kinase;
BAX: bcl2-like protein 4; Bcl−2: B-cell lymphoma 2; NRF−1: nuclear respiratory factor 1; PPARs:
peroxisome proliferator–activated receptors; PGC−1α: peroxisome proliferator–activated receptor-
gamma coactivator-1α; SIRT−1: sirtuin 1; TFAM: transcription factor A, mitochondrial.

7. Conclusions

Obesity is closely linked to metabolic disorders that pave the way for organ, tissue,
cellular, and sub-cellular dysfunction. Mitochondria are dynamic cell organelles, which are
essential for energy metabolism and represent cardinal players in obesity and metabolic
disease. Cumulative evidence from pre-clinical studies indicates that the MD is rich in
polyphenols, essential oils, and fiber and plays a beneficial role by stimulating mitochon-
drial biogenesis and exerting an antioxidant effect.

Despite the substantial positive effects reported for the MD and its components in
obesity and MetS, the bioactive mechanisms of the MD on mitochondrial dysfunction
are not fully understood. Therefore, further animal and human studies are necessary to
elucidate the translational aspects of “mitochondrial nutrition” and to fully characterize its
role in the prevention and treatment of obesity-related MetS.
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Abbreviations

ATP Adenosine triphosphate

ATP III Adult Treatment Panel III

AMPK AMP-activated protein kinase

APG Apigenin

ApoJ Apolipoprotein J

BMI Body mass index

Bcl2 B-cell lymphoma 2

Bax BCl2-associated X

CV Cardiovascular

CoQ Coenzyme Q

CoA Coenzyme A

CPT-1 Carnitine palmitoyltransferase-1

CYP2E1 Mitochondrial Cytochrome P450 2E1

CVD Cardiovascular disease

CRP C-reactive protein

CGA Chlorogenic acid

Cox Cytochrome C oxidase

Cycs Cytochrome C

CO2 Carbon dioxide

CPT1b Carnitine palmitoyltransferase 1B

DNA Deoxyribonucleic acid

DHAs Docosahexaenoic acids

Drp1 Dynamin-related protein 1

DHA Doxosahexaenoic acid

ETC Electron transport chain

ERR Estrogen-related receptors

EPAs Eicosapentaenoic acids

EPC Endothelial progenitor cells

EVOO Extra virgin olive oil

ER stress Endoplasmic reticulum stress

EPA Eicosapenteanoic acid

ECM Extracellular matrix

EGCG Epigallocatechin-3-gallate

ENDOG Endonuclease G

FAD Flavin adenine dinucleotide

FFA Free fatty cid

FOXO3a Forkhead box O3 (transcription factors)

FBA
N-(1-carbamoyl-2-phenyl-ethyl)
butyramide

Fis1 Mitochondrial fission protein1
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FA Ferulic acid
FABPL Fatty acid binding protein—liver type
FASTKD2 FAST kinase domain-containing protein 2
H2O2 Hydrogen peroxide
HFD High-fat diet
HUVECs Human endothelial cells
HT Hydroxytyrosol
HepG2 Human liver cancer cell line
HDL High-density lipoprotein
IDF International Diabetes Federation
IMM Inner mitochondrial membrane
IL-1β Interleukin 1 beta
IL-6 Interleukin 6
LYC Lycopene
LFD Low-fat diet
MetS Metabolic Syndrome
MD Mediterranean diet
MHO Metabolically healthy obesity
MAO Metabolically altered obesity
MAFLD Metabolic dysfunction associated fatty liver disease
mtROS Mitochondrial reactive oxygen species
mtDNA Mitochondrial Deoxyribonucleic Acid
Mfn1 Mitofusin-1
Mfn2 Mitofusin-2
MWCNTs Multi-walled carbon nanotubes
NAFLD Non-alcoholic fatty liver disease
NAD Nicotinamide adenine dinucleotide
NRF Nuclear respiratory factors
NRF-1 Nuclear respiratory factor 1
NASH Non-alcoholic steatohepatitis
NADPH Nicotinamide adenine dinucleotide phosphate oxidase
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells
NO2-OA Nitro-fatty acids
OMM Outer mitochondrial membrane
OXPHOS Oxidative phosphorylation
ox-LDL Oxidized low-density lipoprotein
PGC-1α Peroxisome proliferator–activated receptor gamma coactivator-1 α

PUFA Polyunsaturated fatty acid
PPAR-α Peroxisome proliferator–activated receptor-α
PolG DNA polymerase subunit gamma
PC-12 Pheochromocytoma
PBMC Peripheral blood mononuclear cell
PRDX6 Peroxiredoxin 6
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PGRMC1 Progesterone receptor membrane component 1 protein
PEBP1 Phosphatidylethanolamine-binding protein 1
ROS Reactive oxidative atress
RBEE Rice bran enzymatic extract
SO Sarcopenic obesity
SIRT1 Sirtuin 1
SH-SY5Y Human neuroblastoma cells
SDH Succinate dehydrogenase
SCFAs Short-chain fatty acids
T2DM Type 2 diabetes mellitus
TOFI Thin-outside-fat-inside
t-RNA Transfer ribonucleic acid
TFAM Mitochondrial transcription factor A
TFB2M Mitochondrial transcription factor B2
TNF-α Tumor necrosis factor
Tfb2m Transcription factor B2, mitochondria
UCP3 Uncoupling protein 3
UQCRC1 Ubiquinol cytochrome c reductase
VEGF Vascular endothelial growth factor
WHO World Health Organization

References

1. Di Ciaula, A.; Krawczyk, M.; Filipiak, K.J.; Geier, A.; Bonfrate, L.; Portincasa, P. Noncommunicable diseases, climate change and
iniquities: What COVID-19 has taught us about syndemic. Eur. J. Clin. Investig. 2021, 51, e13682. [CrossRef]

2. Chaudhuri, R.; Thompson, M.A.; Pabelick, C.; Agrawal, A.; Prakash, Y.S. Obesity, mitochondrial dysfunction, and obstructive
lung disease. In Mechanisms and Manifestations of Obesity in Lung Disease; Johnston, R.A., Suratt, B.T., Eds.; Academic Press:
Cambridge, MA, USA, 2019; pp. 143–167.

3. Mitchell, T.; Darley-Usmar, V. Metabolic syndrome and mitochondrial dysfunction: Insights from preclinical studies with a
mitochondrially targeted antioxidant. Free Radic. Biol. Med. 2012, 52, 838–840. [CrossRef]

4. Isomaa, B.; Almgren, P.; Tuomi, T.; Forsen, B.; Lahti, K.; Nissen, M.; Taskinen, M.R.; Groop, L. Cardiovascular morbidity and
mortality associated with the metabolic syndrome. Diabetes Care 2001, 24, 683–689. [CrossRef]

5. Reaven, G.M. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 1988, 37, 1595–1607. [CrossRef]
6. Rogge, M.M. The role of impaired mitochondrial lipid oxidation in obesity. Biol. Res. Nurs. 2009, 10, 356–373. [CrossRef]

[PubMed]
7. Osellame, L.D.; Blacker, T.S.; Duchen, M.R. Cellular and molecular mechanisms of mitochondrial function. Best Pract. Res. Clin.

Endocrinol. Metab. 2012, 26, 711–723. [CrossRef]
8. Kusminski, C.M.; Scherer, P.E. Mitochondrial dysfunction in white adipose tissue. Trends Endocrinol. Metab. TEM 2012, 23, 435–443.

[CrossRef]
9. Bournat, J.C.; Brown, C.W. Mitochondrial dysfunction in obesity. Curr. Opin. Endocrinol. Diabetes Obes. 2010, 17, 446–452.

[CrossRef]
10. Brand, M.D.; Nicholls, D.G. Assessing mitochondrial dysfunction in cells. Biochem. J. 2011, 435, 297–312. [CrossRef]
11. Liesa, M.; Shirihai, O.S. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab.

2013, 17, 491–506. [CrossRef]
12. Zorzano, A.; Liesa, M.; Palacin, M. Role of mitochondrial dynamics proteins in the pathophysiology of obesity and type 2 diabetes.

Int. J. Biochem. Cell Biol. 2009, 41, 1846–1854. [CrossRef] [PubMed]
13. Yin, X.; Lanza, I.R.; Swain, J.M.; Sarr, M.G.; Nair, K.S.; Jensen, M.D. Adipocyte mitochondrial function is reduced in human

obesity independent of fat cell size. J. Clin. Endocrinol. Metab. 2014, 99, E209–E216. [CrossRef]
14. Putti, R.; Sica, R.; Migliaccio, V.; Lionetti, L. Diet impact on mitochondrial bioenergetics and dynamics. Front. Physiol. 2015, 6, 109.

[CrossRef]
15. Heinonen, S.; Buzkova, J.; Muniandy, M.; Kaksonen, R.; Ollikainen, M.; Ismail, K.; Hakkarainen, A.; Lundbom, J.; Lundbom, N.;

Vuolteenaho, K.; et al. Impaired Mitochondrial Biogenesis in Adipose Tissue in Acquired Obesity. Diabetes 2015, 64, 313–3145.
[CrossRef] [PubMed]

68



Nutrients 2022, 14, 3112

16. Simopoulos, A.P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases.
Exp. Biol. Med. 2008, 233, 674–688. [CrossRef]

17. Marventano, S.; Kolacz, P.; Castellano, S.; Galvano, F.; Buscemi, S.; Mistretta, A.; Grosso, G. A review of recent evidence in human
studies of n-3 and n-6 PUFA intake on cardiovascular disease, cancer, and depressive disorders: Does the ratio really matter? Int.
J. Food Sci. Nutr. 2015, 66, 611–622. [CrossRef]

18. Huo, R.; Du, T.; Xu, Y.; Xu, W.; Chen, X.; Sun, K.; Yu, X. Effects of Mediterranean-style diet on glycemic control, weight loss and
cardiovascular risk factors among type 2 diabetes individuals: A meta-analysis. Eur. J. Clin. Nutr. 2015, 69, 1200–1208. [CrossRef]

19. Kastorini, C.M.; Milionis, H.J.; Esposito, K.; Giugliano, D.; Goudevenos, J.A.; Panagiotakos, D.B. The effect of Mediterranean diet
on metabolic syndrome and its components: A meta-analysis of 50 studies and 534,906 individuals. J. Am. Coll. Cardiol. 2011,
57, 1299–1313. [CrossRef] [PubMed]

20. Rees, K.; Hartley, L.; Clarke, A.; Thorogood, M.; Stranges, S. ‘Mediterranean’ dietary pattern for the primary prevention of
cardiovascular disease. Cochrane Database Syst. Rev. 2012, 8, CD009825. [CrossRef]

21. Rosato, V.; Temple, N.J.; La Vecchia, C.; Castellan, G.; Tavani, A.; Guercio, V. Mediterranean diet and cardiovascular disease: A
systematic review and meta-analysis of observational studies. Eur. J. Nutr. 2019, 58, 173–191. [CrossRef]

22. Estruch, R.; Ros, E.; Salas-Salvado, J.; Covas, M.I.; Corella, D.; Aros, F.; Gomez-Gracia, E.; Ruiz-Gutierrez, V.; Fiol, M.;
Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin
Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [CrossRef] [PubMed]

23. Dontas, A.S.; Zerefos, N.S.; Panagiotakos, D.B.; Vlachou, C.; Valis, D.A. Mediterranean diet and prevention of coronary heart
disease in the elderly. Clin. Interv. Aging 2007, 2, 109–115. [CrossRef] [PubMed]

24. Laubinger, W.; Dimroth, P. Characterization of the ATP synthase of Propionigenium modestum as a primary sodium pump.
Biochemistry 1988, 27, 7531–7537. [CrossRef]

25. Medina-Remon, A.; Casas, R.; Tressserra-Rimbau, A.; Ros, E.; Martinez-Gonzalez, M.A.; Fito, M.; Corella, D.; Salas-Salvado, J.;
Lamuela-Raventos, R.M.; Estruch, R.; et al. Polyphenol intake from a Mediterranean diet decreases inflammatory biomarkers
related to atherosclerosis: A substudy of the PREDIMED trial. Br. J. Clin. Pharm. 2017, 83, 114–128. [CrossRef]

26. World Health Organization. Fact Sheet: Obesity and Overweight. Available online: http://apps.who.int/bmi/index.jsp?
introPage=intro_3.html (accessed on 15 June 2022).

27. Schwartz, M.W.; Seeley, R.J.; Zeltser, L.M.; Drewnowski, A.; Ravussin, E.; Redman, L.M.; Leibel, R.L. Obesity Pathogenesis: An
Endocrine Society Scientific Statement. Endocr. Rev. 2017, 38, 267–296. [CrossRef]

28. Upadhyay, J.; Farr, O.; Perakakis, N.; Ghaly, W.; Mantzoros, C. Obesity as a Disease. Med. Clin. North Am. 2018, 102, 13–33.
[CrossRef]

29. Nam, S.Y. Obesity-related digestive diseases and their pathophysiology. Gut Liver 2017, 11, 323. [CrossRef]
30. Catalan, V.; Aviles-Olmos, I.; Rodriguez, A.; Becerril, S.; Fernandez-Formoso, J.A.; Kiortsis, D.; Portincasa, P.; Gomez-Ambrosi,

J.; Fruhbeck, G. Time to Consider the “Exposome Hypothesis” in the Development of the Obesity Pandemic. Nutrients 2022,
14, 1597. [CrossRef]

31. Matsuzawa, Y. Therapy Insight: Adipocytokines in metabolic syndrome and related cardiovascular disease. Nat. Clin. Pract.
Cardiovasc. Med. 2006, 3, 35–42. [CrossRef] [PubMed]

32. Tilg, H.; Moschen, A.R. Adipocytokines: Mediators linking adipose tissue, inflammation and immunity. Nat. Rev. Immunol. 2006,
6, 772–783. [CrossRef]

33. Despres, J.P.; Lemieux, I.; Bergeron, J.; Pibarot, P.; Mathieu, P.; Larose, E.; Rodes-Cabau, J.; Bertrand, O.F.; Poirier, P. Abdominal
obesity and the metabolic syndrome: Contribution to global cardiometabolic risk. Arterioscler. Thromb. Vasc. Biol. 2008,
28, 1039–1049. [CrossRef]

34. Deschênes, D.; Couture, P.; Dupont, P.; Tchernof, A. Subdivision of the Subcutaneous Adipose Tissue Compartment and
Lipid-Lipoprotein Levels in Women. Obesity 2003, 11, 469–476. [CrossRef]

35. Abate, N.; Garg, A.; Peshock, R.M.; Stray-Gundersen, J.; Grundy, S.M. Relationships of generalized and regional adiposity to
insulin sensitivity in men. J. Clin. Investig. 1995, 96, 88. [CrossRef]

36. Vecchie, A.; Dallegri, F.; Carbone, F.; Bonaventura, A.; Liberale, L.; Portincasa, P.; Fruhbeck, G.; Montecucco, F. Obesity phenotypes
and their paradoxical association with cardiovascular diseases. Eur. J. Intern. Med. 2018, 48, 6–17. [CrossRef]

37. Gonzalez-Muniesa, P.; Martinez-Gonzalez, M.A.; Hu, F.B.; Despres, J.P.; Matsuzawa, Y.; Loos, R.J.F.; Moreno, L.A.; Bray, G.A.;
Martinez, J.A. Obesity. Nat. Rev. Dis. Primers 2017, 3, 17034. [CrossRef]

38. Aung, K.; Lorenzo, C.; Hinojosa, M.A.; Haffner, S.M. Risk of developing diabetes and cardiovascular disease in metabolically
unhealthy normal-weight and metabolically healthy obese individuals. J. Clin. Endocrinol. Metab. 2014, 99, 462–468. [CrossRef]

39. Wei, Y.; Rector, R.S.; Thyfault, J.P.; Ibdah, J.A. Nonalcoholic fatty liver disease and mitochondrial dysfunction. World J. Gastroenterol.
WJG 2008, 14, 193–199. [CrossRef]

40. Sharma, A.M.; Kushner, R.F. A proposed clinical staging system for obesity. Int. J. Obes. 2009, 33, 289–295. [CrossRef]
41. Blundell, J.E.; Dulloo, A.G.; Salvador, J.; Fruhbeck, G.; BMI, E.S.W.G.o. Beyond BMI—Phenotyping the obesities. Obes. Facts 2014,

7, 322–328. [CrossRef] [PubMed]
42. Fruhbeck, G.; Busetto, L.; Dicker, D.; Yumuk, V.; Goossens, G.H.; Hebebrand, J.; Halford, J.G.C.; Farpour-Lambert, N.J.; Blaak,

E.E.; Woodward, E.; et al. The ABCD of Obesity: An EASO Position Statement on a Diagnostic Term with Clinical and Scientific
Implications. Obes. Facts 2019, 12, 131–136. [CrossRef] [PubMed]

69



Nutrients 2022, 14, 3112

43. Mechanick, J.I.; Farkouh, M.E.; Newman, J.D.; Garvey, W.T. Cardiometabolic-Based Chronic Disease, Addressing Knowledge and
Clinical Practice Gaps: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 75, 539–555. [CrossRef]

44. Donini, L.M.; Busetto, L.; Bauer, J.M.; Bischoff, S.; Boirie, Y.; Cederholm, T.; Cruz-Jentoft, A.J.; Dicker, D.; Fruhbeck, G.;
Giustina, A.; et al. Critical appraisal of definitions and diagnostic criteria for sarcopenic obesity based on a systematic review.
Clin. Nutr. 2020, 39, 2368–2388. [CrossRef]

45. Landecho, M.F.; Tuero, C.; Valentí, V.; Bilbao, I.; de la Higuera, M.; Frühbeck, G. Relevance of leptin and other adipokines in
obesity-associated cardiovascular risk. Nutrients 2019, 11, 2664. [CrossRef] [PubMed]

46. Cuthbertson, D.J.; Wilding, J.P.H. Metabolically healthy obesity: Time for a change of heart? Nat. Rev. Endocrinol. 2021, 17, 519–520.
[CrossRef] [PubMed]

47. Guglielmetti, S.; Bernardi, S.; Del Bo, C.; Cherubini, A.; Porrini, M.; Gargari, G.; Hidalgo-Liberona, N.; Gonzalez-Dominguez,
R.; Peron, G.; Zamora-Ros, R.; et al. Effect of a polyphenol-rich dietary pattern on intestinal permeability and gut and blood
microbiomics in older subjects: Study protocol of the MaPLE randomised controlled trial. BMC Geriatr. 2020, 20, 77. [CrossRef]
[PubMed]

48. Primeau, V.; Coderre, L.; Karelis, A.D.; Brochu, M.; Lavoie, M.E.; Messier, V.; Sladek, R.; Rabasa-Lhoret, R. Characterizing the
profile of obese patients who are metabolically healthy. Int. J. Obes. 2011, 35, 971–981. [CrossRef]

49. Chang, Y.; Ryu, S.; Suh, B.S.; Yun, K.E.; Kim, C.W.; Cho, S.I. Impact of BMI on the incidence of metabolic abnormalities in
metabolically healthy men. Int. J. Obes. 2012, 36, 1187–1194. [CrossRef]

50. Fortuno, A.; Rodriguez, A.; Gomez-Ambrosi, J.; Muniz, P.; Salvador, J.; Diez, J.; Fruhbeck, G. Leptin inhibits angiotensin II-induced
intracellular calcium increase and vasoconstriction in the rat aorta. Endocrinology 2002, 143, 3555–3560. [CrossRef]

51. Alvarez-Sola, G.; Uriarte, I.; Latasa, M.U.; Urtasun, R.; Barcena-Varela, M.; Elizalde, M.; Jimenez, M.; Rodriguez-Ortigosa,
C.M.; Corrales, F.J.; Fernandez-Barrena, M.G.; et al. Fibroblast Growth Factor 15/19 in Hepatocarcinogenesis. Dig. Dis. 2017,
35, 158–165. [CrossRef]

52. Gomez-Ambrosi, J.; Gallego-Escuredo, J.M.; Catalan, V.; Rodriguez, A.; Domingo, P.; Moncada, R.; Valenti, V.; Salvador, J.; Giralt,
M.; Villarroya, F.; et al. FGF19 and FGF21 serum concentrations in human obesity and type 2 diabetes behave differently after
diet- or surgically-induced weight loss. Clin. Nutr. 2017, 36, 861–868. [CrossRef]

53. Bell, J.A.; Sabia, S.; Singh-Manoux, A.; Hamer, M.; Kivimaki, M. Healthy obesity and risk of accelerated functional decline and
disability. Int. J. Obes. 2017, 41, 866–872. [CrossRef] [PubMed]

54. Rossi, A.P.; Fantin, F.; Caliari, C.; Zoico, E.; Mazzali, G.; Zanardo, M.; Bertassello, P.; Zanandrea, V.; Micciolo, R.; Zamboni, M.
Dynapenic abdominal obesity as predictor of mortality and disability worsening in older adults: A 10-year prospective study.
Clin. Nutr. 2016, 35, 199–204. [CrossRef]

55. Donini, L.M.; Busetto, L.; Bischoff, S.; Cederholm, T.; Ballesteros-Pomar, M.D.; Batsis, J.A.; Bauer, J.M.; Boirie, Y.; Cruz-Jentoft, A.J.;
Dicker, D.; et al. Definition and diagnostic criteria for sarcopenic obesity: ESPEN and EASO consensus statement. Clin. Nutr.
ESPEN 2022, 41, 990–1000. [CrossRef]

56. Cauley, J.A. An Overview of Sarcopenic Obesity. J. Clin. Densitom. 2015, 18, 499–505. [CrossRef]
57. Goisser, S.; Kemmler, W.; Porzel, S.; Volkert, D.; Sieber, C.C.; Bollheimer, L.C.; Freiberger, E. Sarcopenic obesity and complex

interventions with nutrition and exercise in community-dwelling older persons—A narrative review. Clin. Interv. Aging 2015,
10, 1267–1282. [CrossRef] [PubMed]

58. Kim, T.N.; Choi, K.M. The implications of sarcopenia and sarcopenic obesity on cardiometabolic disease. J. Cell. Biochem. 2015,
116, 1171–1178. [CrossRef] [PubMed]

59. Tian, S.; Xu, Y. Association of sarcopenic obesity with the risk of all-cause mortality: A meta-analysis of prospective cohort studies.
Geriatr. Gerontol. Int. 2016, 16, 155–166. [CrossRef] [PubMed]

60. De Meyts, P.; Delzenne, N. The Brain—Gut—Microbiome Network in Metabolic Regulation and Dysregulation. Front. Endocrinol.
2021, 12, 760558. [CrossRef] [PubMed]

61. Ladabaum, U.; Mannalithara, A.; Myer, P.A.; Singh, G. Obesity, Abdominal Obesity, Physical Activity, and Caloric Intake in US
Adults: 1988 to 2010. Am. J. Med. 2014, 127, 717–727.e712. [CrossRef]

62. Collaborators, G.B.D.O.; Afshin, A.; Forouzanfar, M.H.; Reitsma, M.B.; Sur, P.; Estep, K.; Lee, A.; Marczak, L.; Mokdad, A.H.;
Moradi-Lakeh, M.; et al. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N. Engl. J. Med. 2017,
377, 13–27. [CrossRef] [PubMed]

63. Hales, C.M.; Carroll, M.D.; Fryar, C.D.; Ogden, C.L. Prevalence of Obesity and Severe Obesity Among Adults: United States,
2017–2018. NCHS Data Brief 2020, 360, 1–8.

64. Centers for Disease Control and Prevention. Overweight and obesity: Adult obesity facts. 2021. Available online: https:
//www.cdc.gov/obesity/data/adult.html (accessed on 28 August 2021).

65. Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.;
Smith, S.C., Jr.; et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation
Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World
Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009,
120, 1640–1645. [CrossRef] [PubMed]

66. Eckel, R.H.; Alberti, K.G.; Grundy, S.M.; Zimmet, P.Z. The metabolic syndrome. Lancet 2010, 375, 181–183. [CrossRef]

70



Nutrients 2022, 14, 3112

67. Poirier, P.; Giles, T.D.; Bray, G.A.; Hong, Y.; Stern, J.S.; Pi-Sunyer, F.X.; Eckel, R.H. Obesity and cardiovascular disease: Pathophysi-
ology, evaluation, and effect of weight loss: An update of the 1997 American Heart Association Scientific Statement on Obesity
and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation 2006,
113, 898–918. [CrossRef] [PubMed]

68. Grattagliano, I.; Di Ciaula, A.; Baj, J.; Molina-Molina, E.; Shanmugam, H.; Garruti, G.; Wang, D.Q.; Portincasa, P. Protocols for
Mitochondria as the Target of Pharmacological Therapy in the Context of Nonalcoholic Fatty Liver Disease (NAFLD). Methods
Mol. Biol. 2021, 2310, 201–246. [CrossRef] [PubMed]

69. Di Ciaula, A.; Calamita, G.; Shanmugam, H.; Khalil, M.; Bonfrate, L.; Wang, D.Q.; Baffy, G.; Portincasa, P. Mitochondria Matter:
Systemic Aspects of Nonalcoholic Fatty Liver Disease (NAFLD) and Diagnostic Assessment of Liver Function by Stable Isotope
Dynamic Breath Tests. Int. J. Mol. Sci. 2021, 22, 7702. [CrossRef]

70. Grattagliano, I.; Montezinho, L.P.; Oliveira, P.J.; Fruhbeck, G.; Gomez-Ambrosi, J.; Montecucco, F.; Carbone, F.; Wieckowski,
M.R.; Wang, D.Q.; Portincasa, P. Targeting mitochondria to oppose the progression of nonalcoholic fatty liver disease. Biochem.
Pharmacol. 2019, 160, 34–45. [CrossRef]

71. Giorgi, C.; Marchi, S.; Simoes, I.C.M.; Ren, Z.; Morciano, G.; Perrone, M.; Patalas-Krawczyk, P.; Borchard, S.; Jedrak, P.;
Pierzynowska, K.; et al. Mitochondria and Reactive Oxygen Species in Aging and Age-Related Diseases. Int. Rev. Cell Mol. Biol.
2018, 340, 209–344. [CrossRef]

72. Lu, Y.; Hajifathalian, K.; Ezzati, M.; Woodward, M.; Rimm, E.B.; Danaei, G. Metabolic mediators of the effects of body-mass
index, overweight, and obesity on coronary heart disease and stroke: A pooled analysis of 97 prospective cohorts with 1.8 million
participants. Lancet 2014, 383, 970–983. [CrossRef]

73. Faienza, M.F.; Chiarito, M.; Molina-Molina, E.; Shanmugam, H.; Lammert, F.; Krawczyk, M.; D’Amato, G.; Portincasa, P.
Childhood obesity, cardiovascular and liver health: A growing epidemic with age. World J. Pediatrics WJP 2020, 16, 438–445.
[CrossRef]

74. Faienza, M.F.; Wang, D.Q.H.; Frühbeck, G.; Garruti, G.; Portincasa, P. The dangerous link between childhood and adulthood
predictors of obesity and metabolic syndrome. Intern. Emerg. Med. 2016, 11, 175–182. [CrossRef]

75. Akil, L.; Ahmad, H.A. Relationships between obesity and cardiovascular diseases in four southern states and Colorado. J. Health
Care Poor Underserved 2011, 22, 61. [CrossRef]

76. Bhaskaran, K.; Douglas, I.; Forbes, H.; dos-Santos-Silva, I.; Leon, D.A.; Smeeth, L. Body-mass index and risk of 22 specific cancers:
A population-based cohort study of 5.24 million UK adults. Lancet 2014, 384, 755–765. [CrossRef]

77. American Heart, A.; National Heart, L.; Blood, I.; Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin,
B.A.; Gordon, D.J.; et al. Diagnosis and management of the metabolic syndrome. An American Heart Association/National
Heart, Lung, and Blood Institute Scientific Statement. Executive summary. Cardiol. Rev. 2005, 13, 322–327.

78. International Diabetes Federation. The IDF Consensus Worldwide Definition of the Metabolic Syndrome. Available on-
line: https://www.idf.org/e-library/consensus-statements/60-idfconsensus-worldwide-definitionof-the-metabolic-syndrome.
html (accessed on 23 June 2022).

79. Ford, E.S. Prevalence of the metabolic syndrome defined by the International Diabetes Federation among adults in the U.S.
Diabetes Care 2005, 28, 2745–2749. [CrossRef]

80. Beltran-Sanchez, H.; Harhay, M.O.; Harhay, M.M.; McElligott, S. Prevalence and trends of metabolic syndrome in the adult U.S.
population, 1999–2010. J. Am. Coll. Cardiol. 2013, 62, 697–703. [CrossRef]

81. Ravikiran, M.; Bhansali, A.; Ravikumar, P.; Bhansali, S.; Dutta, P.; Thakur, J.S.; Sachdeva, N.; Bhadada, S.; Walia, R. Prevalence
and risk factors of metabolic syndrome among Asian Indians: A community survey. Diabetes Res. Clin. Pract. 2010, 89, 181–188.
[CrossRef]

82. Zuo, H.; Shi, Z.; Hu, X.; Wu, M.; Guo, Z.; Hussain, A. Prevalence of metabolic syndrome and factors associated with its
components in Chinese adults. Metab. Clin. Exp. 2009, 58, 1102–1108. [CrossRef]

83. Ford, E.S.; Giles, W.H.; Dietz, W.H. Prevalence of the metabolic syndrome among US adults: Findings from the third National
Health and Nutrition Examination Survey. JAMA 2002, 287, 356–359. [CrossRef] [PubMed]

84. Wang, H.H.; Lee, D.K.; Liu, M.; Portincasa, P.; Wang, D.Q. Novel Insights into the Pathogenesis and Management of the Metabolic
Syndrome. Pediatric Gastroenterol. Hepatol. Nutr. 2020, 23, 189–230. [CrossRef]

85. Alberti, K.G.M.M.; Zimmet, P.; Shaw, J.; IDF Epidemiology Task Force Consensus Group. The metabolic syndrome—A new
worldwide definition. Lancet 2005, 366, 1059–1062. [CrossRef]

86. Gastaldi, G.; Giacobino, J.P.; Ruiz, J. Metabolic syndrome, a mitochondrial disease? Rev. Med. Suisse 2008, 4, 1387–1388. [PubMed]
87. Beuther, D.A. Recent insight into obesity and asthma. Curr. Opin. Pulm. Med. 2010, 16, 64–70. [CrossRef] [PubMed]
88. Strazzullo, P.; Barbato, A.; Siani, A.; Cappuccio, F.P.; Versiero, M.; Schiattarella, P.; Russo, O.; Avallone, S.; della Valle, E.; Farinaro,

E. Diagnostic criteria for metabolic syndrome: A comparative analysis in an unselected sample of adult male population. Metab.
Clin. Exp. 2008, 57, 355–361. [CrossRef] [PubMed]

89. Nisoli, E.; Clementi, E.; Carruba, M.O.; Moncada, S. Defective mitochondrial biogenesis: A hallmark of the high cardiovascular
risk in the metabolic syndrome? Circ. Res. 2007, 100, 795–806. [CrossRef]

90. Huang, P.L. A comprehensive definition for metabolic syndrome. Dis. Model Mech. 2009, 2, 231–237. [CrossRef]
91. Krawczyk, M.; Wang, D.Q.; Portincasa, P.; Lammert, F. Dissecting the genetic heterogeneity of gallbladder stone formation. Semin.

Liver Dis. 2011, 31, 157–172. [CrossRef] [PubMed]

71



Nutrients 2022, 14, 3112

92. Grundy, S.M. Cholesterol gallstones: A fellow traveler with metabolic syndrome? Am. J. Clin. Nutr. 2004, 80, 1–2. [CrossRef]
93. Portincasa, P.; Moschetta, A.; Palasciano, G. Cholesterol gallstone disease. Lancet 2006, 368, 230–239. [CrossRef]
94. Wang, D.Q.H.; Portincasa, P.; Wang, H.H. Bile Formation and Pathophysiology of Gallstones. In Encyclopedia of Gastroenterology,

2nd ed.; Kujpers, E.J., Ed.; Elsevier: Amsterdam, The Netherlands; Academic Press: Oxford, UK, 2020; pp. 287–306.
95. Portincasa, P.; Molina-Molina, E.; Garruti, G.; Wang, D.Q. Critical Care Aspects of Gallstone Disease. J. Crit. Care Med. 2019,

5, 6–18. [CrossRef]
96. Portincasa, P.; van Erpecum, K.J.; Di Ciaula, A.; Wang, D.Q. The physical presence of gallstone modulates ex vivo cholesterol

crystallization pathways of human bile. Gastroenterol. Rep. 2019, 7, 32–41. [CrossRef] [PubMed]
97. Di Ciaula, A.; Wang, D.Q.; Portincasa, P. Cholesterol cholelithiasis: Part of a systemic metabolic disease, prone to primary

prevention. Expert Rev. Gastroenterol. Hepatol. 2019, 13, 157–171. [CrossRef]
98. Mendez-Sanchez, N.; Bugianesi, E.; Gish, R.G.; Lammert, F.; Tilg, H.; Nguyen, M.H.; Sarin, S.K.; Fabrellas, N.; Zelber-Sagi, S.;

Fan, J.G.; et al. Global multi-stakeholder endorsement of the MAFLD definition. Lancet. Gastroenterol. Hepatol. 2022, 7, 388–390.
[CrossRef]

99. Powell, E.E.; Wong, V.W.; Rinella, M. Non-alcoholic fatty liver disease. Lancet 2021, 397, 2212–2224. [CrossRef]
100. Portincasa, P.; Bonfrate, L.; Khalil, M.; Angelis, M.; Calabrese, F.M.; D’Amato, M.; Wang, D.Q.; Di Ciaula, A. Intestinal Barrier and

Permeability in Health, Obesity and NAFLD. Biomedicines 2021, 10, 83. [CrossRef] [PubMed]
101. Di Ciaula, A.; Bonfrate, L.; Portincasa, P. The role of microbiota in nonalcoholic fatty liver disease. Eur. J. Clin. Investig. 2022,

52, e13768. [CrossRef] [PubMed]
102. Di Ciaula, A.; Passarella, S.; Shanmugam, H.; Noviello, M.; Bonfrate, L.; Wang, D.Q.-H.; Portincasa, P. Nonalcoholic Fatty Liver

Disease (NAFLD). Mitochondria as Players and Targets of Therapies? Int. J. Mol. Sci. 2021, 22, 5375. [CrossRef]
103. Di Ciaula, A.; Baj, J.; Garruti, G.; Celano, G.; De Angelis, M.; Wang, H.H.; Di Palo, D.M.; Bonfrate, L.; Wang, D.Q.; Portincasa, P.

Liver Steatosis, Gut-Liver Axis, Microbiome and Environmental Factors. A Never-Ending Bidirectional Cross-Talk. J. Clin. Med.
2020, 9, 2648. [CrossRef]

104. Molina-Molina, E.; Shanmugam, H.; Di Palo, D.; Grattagliano, I.; Portincasa, P. Exploring Liver Mitochondrial Function by
(13)C-Stable Isotope Breath Tests: Implications in Clinical Biochemistry. Methods Mol. Biol. 2021, 2310, 179–199. [CrossRef]
[PubMed]

105. Baldini, F.; Fabbri, R.; Eberhagen, C.; Voci, A.; Portincasa, P.; Zischka, H.; Vergani, L. Adipocyte hypertrophy parallels alterations
of mitochondrial status in a cell model for adipose tissue dysfunction in obesity. Life Sci. 2021, 265, 118812. [CrossRef]

106. Bugger, H.; Abel, E.D. Molecular mechanisms for myocardial mitochondrial dysfunction in the metabolic syndrome. Clin. Sci.
2008, 114, 195–210. [CrossRef] [PubMed]

107. Spinelli, J.B.; Haigis, M.C. The multifaceted contributions of mitochondria to cellular metabolism. Nat. Cell Biol. 2018, 20, 745–754.
[CrossRef] [PubMed]

108. Passarella, S.; Schurr, A.; Portincasa, P. Mitochondrial Transport in Glycolysis and Gluconeogenesis: Achievements and Perspec-
tives. Int. J. Mol. Sci. 2021, 22, 2620. [CrossRef] [PubMed]

109. Walsh, C.T.; Tu, B.P.; Tang, Y. Eight Kinetically Stable but Thermodynamically Activated Molecules that Power Cell Metabolism.
Chem. Rev. 2018, 118, 1460–1494. [CrossRef] [PubMed]

110. Sun, F.; Zhou, Q.; Pang, X.; Xu, Y.; Rao, Z. Revealing various coupling of electron transfer and proton pumping in mitochondrial
respiratory chain. Curr. Opin. Struct. Biol. 2013, 23, 526–538. [CrossRef]

111. Sazanov, L.A. A giant molecular proton pump: Structure and mechanism of respiratory complex I. Nat. Rev. Mol. Cell Biol. 2015,
16, 375–388. [CrossRef] [PubMed]

112. Alcazar-Fabra, M.; Navas, P.; Brea-Calvo, G. Coenzyme Q biosynthesis and its role in the respiratory chain structure. Biochim.
Biophys. Acta 2016, 1857, 1073–1078. [CrossRef] [PubMed]

113. Kuhlbrandt, W. Structure and function of mitochondrial membrane protein complexes. BMC Biol. 2015, 13, 89. [CrossRef]
[PubMed]

114. Watt, I.N.; Montgomery, M.G.; Runswick, M.J.; Leslie, A.G.; Walker, J.E. Bioenergetic cost of making an adenosine triphosphate
molecule in animal mitochondria. Proc. Natl. Acad. Sci. USA 2010, 107, 16823–16827. [CrossRef]

115. Schatz, G. Mitochondrial oxidative phosphorylation. Angew Chem. Int. Ed. Engl. 1967, 6, 1035–1046. [CrossRef]
116. Brookes, P.S. Mitochondrial H(+) leak and ROS generation: An odd couple. Free Radic. Biol. Med. 2005, 38, 12–23. [CrossRef]
117. Venditti, P.; Di Stefano, L.; Di Meo, S. Mitochondrial metabolism of reactive oxygen species. Mitochondrion 2013, 13, 71–82.

[CrossRef]
118. Turrens, J.F. Mitochondrial formation of reactive oxygen species. J. Physiol. 2003, 552, 335–344. [CrossRef] [PubMed]
119. Pastor, N.; Weinstein, H.; Jamison, E.; Brenowitz, M. A detailed interpretation of OH radical footprints in a TBP-DNA complex

reveals the role of dynamics in the mechanism of sequence-specific binding. J. Mol. Biol. 2000, 304, 55–68. [CrossRef] [PubMed]
120. Chen, Y.R.; Zweier, J.L. Cardiac mitochondria and reactive oxygen species generation. Circ. Res. 2014, 114, 524–537. [CrossRef]

[PubMed]
121. Lipinski, B. Hydroxyl radical and its scavengers in health and disease. Oxid. Med. Cell Longev. 2011, 2011, 809696. [CrossRef]
122. Karnati, S.; Lüers, G.; Pfreimer, S.; Baumgart-Vogt, E. Mammalian SOD2 is exclusively located in mitochondria and not present in

peroxisomes. Histochem. Cell Biol. 2013, 140, 105–117. [CrossRef]
123. Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009, 417, 1–13. [CrossRef]

72



Nutrients 2022, 14, 3112

124. Wang, B.; Van Veldhoven, P.P.; Brees, C.; Rubio, N.; Nordgren, M.; Apanasets, O.; Kunze, M.; Baes, M.; Agostinis, P.; Fransen,
M. Mitochondria are targets for peroxisome-derived oxidative stress in cultured mammalian cells. Free Radic. Biol. Med. 2013,
65, 882–894. [CrossRef]

125. Stowe, D.F.; Bienengraeber, M.; Camara, A.K.S. Mitochondrial Approaches to Protect Against Cardiac Ischemia and Reperfusion
Injury. Front. Physiol. 2011, 2, 13. [CrossRef]

126. Stowe, D.F.; Camara, A.K.S. Mitochondrial Reactive Oxygen Species Production in Excitable Cells: Modulators of Mitochondrial
and Cell Function. Antioxid. Redox Signal. 2009, 11, 1373–1414. [CrossRef]

127. Camara, A.K.S.; Lesnefsky, E.J.; Stowe, D.F. Potential Therapeutic Benefits of Strategies Directed to Mitochondria. Antioxid. Redox
Signal. 2010, 13, 279–347. [CrossRef]

128. Storz, G.; Imlay, J.A. Oxidative stress. Curr. Opin. Microbiol. 1999, 2, 188–194. [CrossRef]
129. Bhatti, J.S.; Bhatti, G.K.; Reddy, P.H. Mitochondrial dysfunction and oxidative stress in metabolic disorders—A step towards

mitochondria based therapeutic strategies. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 1066–1077. [CrossRef] [PubMed]
130. James, A.M.; Collins, Y.; Logan, A.; Murphy, M.P. Mitochondrial oxidative stress and the metabolic syndrome. Trends Endocrinol.

Metab. 2012, 23, 429–434. [CrossRef]
131. Wallace, D.C. Mitochondrial genetic medicine. Nat. Genet. 2018, 50, 1642–1649. [CrossRef] [PubMed]
132. Austin, S.; St-Pierre, J. PGC1alpha and mitochondrial metabolism—Emerging concepts and relevance in ageing and neurodegen-

erative disorders. J. Cell Sci. 2012, 125, 4963–4971. [CrossRef]
133. Di, W.; Lv, J.; Jiang, S.; Lu, C.; Yang, Z.; Ma, Z.; Hu, W.; Yang, Y.; Xu, B. PGC-1: The Energetic Regulator in Cardiac Metabolism.

Curr. Issues Mol. Biol. 2018, 28, 29–46. [CrossRef]
134. Islam, H.; Edgett, B.A.; Gurd, B.J. Coordination of mitochondrial biogenesis by PGC-1alpha in human skeletal muscle: A

re-evaluation. Metab. Clin. Exp. 2018, 79, 42–51. [CrossRef]
135. Jornayvaz, F.R.; Shulman, G.I. Regulation of mitochondrial biogenesis. Essays Biochem. 2010, 47, 69–84. [CrossRef] [PubMed]
136. Scarpulla, R.C.; Vega, R.B.; Kelly, D.P. Transcriptional integration of mitochondrial biogenesis. Trends Endocrinol. Metab. 2012,

23, 459–466. [CrossRef]
137. Barshad, G.; Marom, S.; Cohen, T.; Mishmar, D. Mitochondrial DNA Transcription and Its Regulation: An Evolutionary

Perspective. Trends Genet. 2018, 34, 682–692. [CrossRef]
138. Canto, C.; Auwerx, J. PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr. Opin.

Lipidol. 2009, 20, 98–105. [CrossRef] [PubMed]
139. Hardie, D.G. Minireview: The AMP-activated protein kinase cascade: The key sensor of cellular energy status. Endocrinology

2003, 144, 5179–5183. [CrossRef]
140. Kahn, B.B.; Alquier, T.; Carling, D.; Hardie, D.G. AMP-activated protein kinase: Ancient energy gauge provides clues to modern

understanding of metabolism. Cell Metab. 2005, 1, 15–25. [CrossRef]
141. Dominy, J.E., Jr.; Lee, Y.; Gerhart-Hines, Z.; Puigserver, P. Nutrient-dependent regulation of PGC-1alpha’s acetylation state and

metabolic function through the enzymatic activities of Sirt1/GCN5. Biochim. Biophys. Acta 2010, 1804, 1676–1683. [CrossRef]
142. Benton, C.R.; Wright, D.C.; Bonen, A. PGC-1alpha-mediated regulation of gene expression and metabolism: Implications for

nutrition and exercise prescriptions. Appl. Physiol. Nutr. Metab. 2008, 33, 843–862. [CrossRef]
143. Bonen, A. PGC-1alpha-induced improvements in skeletal muscle metabolism and insulin sensitivity. Appl. Physiol. Nutr. Metab.

2009, 34, 307–314. [CrossRef] [PubMed]
144. Kang, C.; Li Ji, L. Role of PGC-1alpha signaling in skeletal muscle health and disease. Ann. N. Y. Acad. Sci. 2012, 1271, 110–117.

[CrossRef]
145. Wu, Z.; Boss, O. Targeting PGC-1 alpha to control energy homeostasis. Expert Opin. Targets 2007, 11, 1329–1338. [CrossRef]
146. Handschin, C.; Spiegelman, B.M. Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeosta-

sis, and metabolism. Endocr. Rev. 2006, 27, 728–735. [CrossRef] [PubMed]
147. Komen, J.C.; Thorburn, D.R. Turn up the power—Pharmacological activation of mitochondrial biogenesis in mouse models. Br. J.

Pharmacol. 2014, 171, 1818–1836. [CrossRef] [PubMed]
148. Valero, T. Mitochondrial biogenesis: Pharmacological approaches. Curr. Pharm. Des. 2014, 20, 5507–5509. [CrossRef]
149. Radika, M.K.; Anuradha, C.V. Activation of insulin signaling and energy sensing network by AICAR, an AMPK activator in

insulin resistant rat tissues. J. Basic Clin. Physiol. Pharm. 2015, 26, 563–574. [CrossRef]
150. Yarnoz-Esquiroz, P.; Olazaran, L.; Aguas-Ayesa, M.; Perdomo, C.M.; Garcia-Goni, M.; Silva, C.; Fernandez-Formoso, J.A.; Escalada,

J.; Montecucco, F.; Portincasa, P.; et al. ‘Obesities’: Position statement on a complex disease entity with multifaceted drivers. Eur.
J. Clin. Investig. 2022, 52, e13811. [CrossRef] [PubMed]

151. de Mello, A.H.; Costa, A.B.; Engel, J.D.G.; Rezin, G.T. Mitochondrial dysfunction in obesity. Life Sci. 2018, 192, 26–32. [CrossRef]
[PubMed]

152. Anderson, E.J.; Lustig, M.E.; Boyle, K.E.; Woodlief, T.L.; Kane, D.A.; Lin, C.T.; Price, J.W., 3rd; Kang, L.; Rabinovitch, P.S.; Szeto,
H.H.; et al. Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and
humans. J. Clin. Investig. 2009, 119, 573–581. [CrossRef] [PubMed]

153. Rong, J.X.; Qiu, Y.; Hansen, M.K.; Zhu, L.; Zhang, V.; Xie, M.; Okamoto, Y.; Mattie, M.D.; Higashiyama, H.; Asano, S.; et al.
Adipose Mitochondrial Biogenesis Is Suppressed in db/db and High-Fat Diet–Fed Mice and Improved by Rosiglitazone. Diabetes
2007, 56, 1751–1760. [CrossRef]

73



Nutrients 2022, 14, 3112

154. Chen, C.C.; Lee, T.Y.; Kwok, C.F.; Hsu, Y.P.; Shih, K.C.; Lin, Y.J.; Ho, L.T. Cannabinoid receptor type 1 mediates high-fat diet-
induced insulin resistance by increasing forkhead box O1 activity in a mouse model of obesity. Int. J. Mol. Med. 2016, 37, 743–754.
[CrossRef]

155. Konopka, A.R.; Asante, A.; Lanza, I.R.; Robinson, M.M.; Johnson, M.L.; Dalla Man, C.; Cobelli, C.; Amols, M.H.; Irving, B.A.;
Nair, K.S. Defects in mitochondrial efficiency and H2O2 emissions in obese women are restored to a lean phenotype with aerobic
exercise training. Diabetes 2015, 64, 2104–2115. [CrossRef]

156. Semple, R.K.; Crowley, V.C.; Sewter, C.P.; Laudes, M.; Christodoulides, C.; Considine, R.V.; Vidal-Puig, A.; O’Rahilly, S. Expression
of the thermogenic nuclear hormone receptor coactivator PGC-1alpha is reduced in the adipose tissue of morbidly obese subjects.
Int. J. Obes. Relat. Metab. Disord. J. Int. Assoc. Study Obes. 2004, 28, 176–179. [CrossRef]

157. Diogo, C.V.; Grattagliano, I.; Oliveira, P.J.; Bonfrate, L.; Portincasa, P. Re-wiring the circuit: Mitochondria as a pharmacological
target in liver disease. Curr. Med. Chem. 2011, 18, 5448–5465. [CrossRef] [PubMed]

158. Grattagliano, I.; Russmann, S.; Diogo, C.; Bonfrate, L.; Oliveira, P.J.; Wang, D.Q.; Portincasa, P. Mitochondria in chronic liver
disease. Curr. Drug Targets 2011, 12, 879–893. [CrossRef] [PubMed]

159. Caldwell, S.H.; Swerdlow, R.H.; Khan, E.M.; Iezzoni, J.C.; Hespenheide, E.E.; Parks, J.K.; Parker, W.D., Jr. Mitochondrial
abnormalities in non-alcoholic steatohepatitis. J. Hepatol. 1999, 31, 430–434. [CrossRef]

160. Szczepaniak, L.S.; Nurenberg, P.; Leonard, D.; Browning, J.D.; Reingold, J.S.; Grundy, S.; Hobbs, H.H.; Dobbins, R.L. Magnetic
resonance spectroscopy to measure hepatic triglyceride content: Prevalence of hepatic steatosis in the general population. Am. J.
Physiol. Endocrinol. Metab. 2005, 288, E462–E468. [CrossRef]

161. Simoes, I.C.M.; Karkucinska-Wieckowska, A.; Janikiewicz, J.; Szymanska, S.; Pronicki, M.; Dobrzyn, P.; Dabrowski, M.; Dobrzyn,
A.; Oliveira, P.J.; Zischka, H.; et al. Western Diet Causes Obesity-Induced Nonalcoholic Fatty Liver Disease Development by
Differentially Compromising the Autophagic Response. Antioxidants 2020, 9, 995. [CrossRef]

162. Oyewole, A.O.; Birch-Machin, M.A. Mitochondria-targeted antioxidants. FASEB J. 2015, 29, 4766–4771. [CrossRef]
163. Longo, M.; Meroni, M.; Paolini, E.; Macchi, C.; Dongiovanni, P. Mitochondrial dynamics and nonalcoholic fatty liver disease

(NAFLD): New perspectives for a fairy-tale ending? Metab. Clin. Exp. 2021, 117, 154708. [CrossRef]
164. Ajaz, S.; McPhail, M.J.; Gnudi, L.; Trovato, F.M.; Mujib, S.; Napoli, S.; Carey, I.; Agarwal, K. Mitochondrial dysfunction as a

mechanistic biomarker in patients with non-alcoholic fatty liver disease (NAFLD). Mitochondrion 2021, 57, 119–130. [CrossRef]
[PubMed]

165. Shannon, C.E.; Ragavan, M.; Palavicini, J.P.; Fourcaudot, M.; Bakewell, T.M.; Valdez, I.A.; Ayala, I.; Jin, E.S.; Madesh, M.;
Han, X.; et al. Insulin resistance is mechanistically linked to hepatic mitochondrial remodeling in non-alcoholic fatty liver disease.
Mol. Metab. 2021, 45, 101154. [CrossRef]

166. Li, Y.; Wu, J.; Yang, M.; Wei, L.; Wu, H.; Wang, Q.; Shi, H. Physiological evidence of mitochondrial permeability transition
pore opening caused by lipid deposition leading to hepatic steatosis in db/db mice. Free Radic. Biol. Med. 2021, 162, 523–532.
[CrossRef] [PubMed]

167. Garcia-Martinez, I.; Santoro, N.; Chen, Y.; Hoque, R.; Ouyang, X.; Caprio, S.; Shlomchik, M.J.; Coffman, R.L.; Candia, A.;
Mehal, W.Z. Hepatocyte mitochondrial DNA drives nonalcoholic steatohepatitis by activation of TLR9. J. Clin. Investig. 2016,
126, 859–864. [CrossRef]

168. Pan, J.; Ou, Z.; Cai, C.; Li, P.; Gong, J.; Ruan, X.Z.; He, K. Fatty acid activates NLRP3 inflammasomes in mouse Kupffer cells
through mitochondrial DNA release. Cell Immunol. 2018, 332, 111–120. [CrossRef]

169. Pirola, C.J.; Garaycoechea, M.; Flichman, D.; Castano, G.O.; Sookoian, S. Liver mitochondrial DNA damage and genetic variability
of Cytochrome b—A key component of the respirasome—Drive the severity of fatty liver disease. J. Intern. Med. 2021, 289, 84–96.
[CrossRef] [PubMed]

170. Malik, A.N.; Czajka, A. Is mitochondrial DNA content a potential biomarker of mitochondrial dysfunction? Mitochondrion 2013,
13, 481–492. [CrossRef] [PubMed]

171. Zhao, R.Z.; Jiang, S.; Zhang, L.; Yu, Z.B. Mitochondrial electron transport chain, ROS generation and uncoupling. Int. J. Mol. Med.
2019, 44, 3–15. [CrossRef] [PubMed]

172. Aubert, J.; Begriche, K.; Knockaert, L.; Robin, M.A.; Fromenty, B. Increased expression of cytochrome P450 2E1 in nonalcoholic
fatty liver disease: Mechanisms and pathophysiological role. Clin. Res. Hepatol. Gastroenterol. 2011, 35, 630–637. [CrossRef]

173. Weltman, M.D.; Farrell, G.C.; Liddle, C. Increased hepatocyte CYP2E1 expression in a rat nutritional model of hepatic steatosis
with inflammation. Gastroenterology 1996, 111, 1645–1653. [CrossRef]

174. Chalasani, N.; Gorski, J.C.; Asghar, M.S.; Asghar, A.; Foresman, B.; Hall, S.D.; Crabb, D.W. Hepatic cytochrome P450 2E1 activity
in nondiabetic patients with nonalcoholic steatohepatitis. Hepatology 2003, 37, 544–550. [CrossRef]

175. Piccinin, E.; Villani, G.; Moschetta, A. Metabolic aspects in NAFLD, NASH and hepatocellular carcinoma: The role of PGC1
coactivators. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 160–174. [CrossRef]

176. Kelley, D.E.; He, J.; Menshikova, E.V.; Ritov, V.B. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes.
Diabetes 2002, 51, 2944–2950. [CrossRef] [PubMed]

177. Jezek, P.; Hlavata, L. Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int. J. Biochem. Cell
Biol. 2005, 37, 2478–2503. [CrossRef] [PubMed]

178. Antonetti, D.A.; Reynet, C.; Kahn, C.R. Increased expression of mitochondrial-encoded genes in skeletal muscle of humans with
diabetes mellitus. J. Clin. Invest. 1995, 95, 1383–1388. [CrossRef]

74



Nutrients 2022, 14, 3112

179. Prasun, P. Mitochondrial dysfunction in metabolic syndrome. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165838. [CrossRef]
180. Lahera, V.; de Las Heras, N.; López-Farré, A.; Manucha, W.; Ferder, L. Role of Mitochondrial Dysfunction in Hypertension and

Obesity. Curr. Hypertens. Rep. 2017, 19, 11. [CrossRef] [PubMed]
181. Furukawa, S.; Fujita, T.; Shimabukuro, M.; Iwaki, M.; Yamada, Y.; Nakajima, Y.; Nakayama, O.; Makishima, M.; Matsuda, M.;

Shimomura, I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest. 2004, 114, 1752–1761.
[CrossRef]

182. Dikalov, S. Cross talk between mitochondria and NADPH oxidases. Free Radic. Biol. Med. 2011, 51, 1289–1301. [CrossRef]
183. Choo, H.J.; Kim, J.H.; Kwon, O.B.; Lee, C.S.; Mun, J.Y.; Han, S.S.; Yoon, Y.S.; Yoon, G.; Choi, K.M.; Ko, Y.G. Mitochondria are

impaired in the adipocytes of type 2 diabetic mice. Diabetologia 2006, 49, 784–791. [CrossRef]
184. Petersen, K.F.; Befroy, D.; Dufour, S.; Dziura, J.; Ariyan, C.; Rothman, D.L.; DiPietro, L.; Cline, G.W.; Shulman, G.I. Mitochondrial

dysfunction in the elderly: Possible role in insulin resistance. Science 2003, 300, 1140–1142. [CrossRef]
185. Lee, H.Y.; Choi, C.S.; Birkenfeld, A.L.; Alves, T.C.; Jornayvaz, F.R.; Jurczak, M.J.; Zhang, D.; Woo, D.K.; Shadel, G.S.;

Ladiges, W.; et al. Targeted expression of catalase to mitochondria prevents age-associated reductions in mitochondrial function
and insulin resistance. Cell Metab. 2010, 12, 668–674. [CrossRef]

186. Steckhan, N.; Hohmann, C.D.; Kessler, C.; Dobos, G.; Michalsen, A.; Cramer, H. Effects of different dietary approaches on
inflammatory markers in patients with metabolic syndrome: A systematic review and meta-analysis. Nutrition 2016, 32, 338–348.
[CrossRef]

187. Keane, D.; Kelly, S.; Healy, N.P.; McArdle, M.A.; Holohan, K.; Roche, H.M. Diet and metabolic syndrome: An overview. Curr.
Vasc. Pharmacol. 2013, 11, 842–857. [CrossRef] [PubMed]

188. Drake, I.; Sonestedt, E.; Ericson, U.; Wallström, P.; Orho-Melander, M. A Western dietary pattern is prospectively associated with
cardio-metabolic traits and incidence of the metabolic syndrome. Br. J. Nutr. 2018, 119, 1168–1176. [CrossRef] [PubMed]

189. Marrone, G.; Guerriero, C.; Palazzetti, D.; Lido, P.; Marolla, A.; Di Daniele, F.; Noce, A. Vegan Diet Health Benefits in Metabolic
Syndrome. Nutrients 2021, 13, 817. [CrossRef]

190. Martinez, K.B.; Leone, V.; Chang, E.B. Western diets, gut dysbiosis, and metabolic diseases: Are they linked? Gut Microbes 2017,
8, 130–142. [CrossRef] [PubMed]

191. Mirmiran, P.; Bahadoran, Z.; Vakili, A.Z.; Azizi, F. Western dietary pattern increases risk of cardiovascular disease in Iranian
adults: A prospective population-based study. Appl. Physiol. Nutr. Metab. 2017, 42, 326–332. [CrossRef] [PubMed]

192. Turner-McGrievy, G.; Harris, M. Key elements of plant-based diets associated with reduced risk of metabolic syndrome. Curr.
Diabetes Rep. 2014, 14, 524. [CrossRef] [PubMed]

193. Shah, B.; Newman, J.D.; Woolf, K.; Ganguzza, L.; Guo, Y.; Allen, N.; Zhong, J.; Fisher, E.A.; Slater, J. Anti-Inflammatory Effects of
a Vegan Diet Versus the American Heart Association-Recommended Diet in Coronary Artery Disease Trial. J. Am. Heart Assoc.
2018, 7, e011367. [CrossRef]

194. Magriplis, E.; Chourdakis, M. Special Issue “Mediterranean Diet and Metabolic Diseases”. Nutrients 2021, 13, 2680. [CrossRef]
195. D’Innocenzo, S.; Biagi, C.; Lanari, M. Obesity and the Mediterranean Diet: A Review of Evidence of the Role and Sustainability of

the Mediterranean Diet. Nutrients 2019, 11, 1306. [CrossRef]
196. Carbone, F.; Ciaula, A.D.; Pagano, S.; Minetti, S.; Ansaldo, A.M.; Ferrara, D.; Belfiore, A.; Elia, E.; Pugliese, S.; Ostilio Palmieri, V.; et al.

Anti-ApoA-1 IgGs predict resistance to waist circumference reduction after Mediterranean diet. Eur. J. Clin. Invest. 2021,
51, e13410. [CrossRef]

197. Finicelli, M.; Squillaro, T.; Di Cristo, F.; Di Salle, A.; Melone, M.A.B.; Galderisi, U.; Peluso, G. Metabolic syndrome, Mediterranean
diet, and polyphenols: Evidence and perspectives. J. Cell. Physiol. 2019, 234, 5807–5826. [CrossRef] [PubMed]

198. Velázquez-López, L.; Santiago-Díaz, G.; Nava-Hernández, J.; Muñoz-Torres, A.V.; Medina-Bravo, P.; Torres-Tamayo, M.
Mediterranean-style diet reduces metabolic syndrome components in obese children and adolescents with obesity. BMC
Pediatrics 2014, 14, 175. [CrossRef]

199. Sayon-Orea, C.; Razquin, C.; Bullo, M.; Corella, D.; Fito, M.; Romaguera, D.; Vioque, J.; Alonso-Gomez, A.M.; Warnberg, J.;
Martinez, J.A.; et al. Effect of a Nutritional and Behavioral Intervention on Energy-Reduced Mediterranean Diet Adherence
Among Patients with Metabolic Syndrome: Interim Analysis of the PREDIMED-Plus Randomized Clinical Trial. JAMA 2019, 322,
1486–1499. [CrossRef]

200. Bach-Faig, A.; Berry, E.M.; Lairon, D.; Reguant, J.; Trichopoulou, A.; Dernini, S.; Medina, F.X.; Battino, M.; Belahsen, R.;
Miranda, G.; et al. Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr. 2011, 14, 2274–2284.
[CrossRef] [PubMed]

201. Willett, W.C.; Sacks, F.; Trichopoulou, A.; Drescher, G.; Ferro-Luzzi, A.; Helsing, E.; Trichopoulos, D. Mediterranean diet pyramid:
A cultural model for healthy eating. Am. J. Clin. Nutr. 1995, 61, 1402S–1406S. [CrossRef]

202. Evert, A.B.; Boucher, J.L.; Cypress, M.; Dunbar, S.A.; Franz, M.J.; Mayer-Davis, E.J.; Neumiller, J.J.; Nwankwo, R.; Verdi,
C.L.; Urbanski, P.; et al. Nutrition therapy recommendations for the management of adults with diabetes. Diabetes Care 2014,
37 (Suppl. S1), S120–S143. [CrossRef]

203. Portincasa, P.; Wang, D.Q.H. Il valore di una dieta “prudente” nell’individuo adulto. Considerazioni per vivere meglio e forse
piu’ a lungo. In Atti e Relazioni Accademia Pugliese delle Scienze; Adda Editrice: Bari, Italy, 2022; Volume LVII, pp. 85–108.

204. Fung, T.T.; Rexrode, K.M.; Mantzoros, C.S.; Manson, J.E.; Willett, W.C.; Hu, F.B. Mediterranean diet and incidence of and mortality
from coronary heart disease and stroke in women. Circulation 2009, 119, 1093–1100. [CrossRef]

75



Nutrients 2022, 14, 3112

205. Gao, X.; Chen, H.; Fung, T.T.; Logroscino, G.; Schwarzschild, M.A.; Hu, F.B.; Ascherio, A. Prospective study of dietary pattern and
risk of Parkinson disease. Am. J. Clin. Nutr. 2007, 86, 1486–1494. [CrossRef]

206. Scarmeas, N.; Luchsinger, J.A.; Schupf, N.; Brickman, A.M.; Cosentino, S.; Tang, M.X.; Stern, Y. Physical activity, diet, and risk of
Alzheimer disease. JAMA 2009, 302, 627–637. [CrossRef]

207. Buckland, G.; Agudo, A.; Lujan, L.; Jakszyn, P.; Bueno-de-Mesquita, H.B.; Palli, D.; Boeing, H.; Carneiro, F.; Krogh, V.;
Sacerdote, C.; et al. Adherence to a Mediterranean diet and risk of gastric adenocarcinoma within the European Prospective
Investigation into Cancer and Nutrition (EPIC) cohort study. Am. J. Clin. Nutr. 2010, 91, 381–390. [CrossRef] [PubMed]

208. Buckland, G.; Travier, N.; Cottet, V.; Gonzalez, C.A.; Lujan-Barroso, L.; Agudo, A.; Trichopoulou, A.; Lagiou, P.; Trichopoulos, D.;
Peeters, P.H.; et al. Adherence to the mediterranean diet and risk of breast cancer in the European prospective investigation into
cancer and nutrition cohort study. Int. J. Cancer 2013, 132, 2918–2927. [CrossRef]

209. La Vecchia, C. Association between Mediterranean dietary patterns and cancer risk. Nutr. Rev. 2009, 67 (Suppl. S1), S126–S129.
[CrossRef]

210. Panagiotakos, D.B.; Polystipioti, A.; Papairakleous, N.; Polychronopoulos, E. Long-term adoption of a Mediterranean diet
is associated with a better health status in elderly people; a cross-sectional survey in Cyprus. Asia Pac. J. Clin. Nutr. 2007,
16, 331–337.

211. Nunez-Cordoba, J.M.; Valencia-Serrano, F.; Toledo, E.; Alonso, A.; Martinez-Gonzalez, M.A. The Mediterranean diet and incidence
of hypertension: The Seguimiento Universidad de Navarra (SUN) Study. Am. J. Epidemiol. 2009, 169, 339–346. [CrossRef]

212. Martinez-Gonzalez, M.A.; de la Fuente-Arrillaga, C.; Nunez-Cordoba, J.M.; Basterra-Gortari, F.J.; Beunza, J.J.; Vazquez, Z.; Benito,
S.; Tortosa, A.; Bes-Rastrollo, M. Adherence to Mediterranean diet and risk of developing diabetes: Prospective cohort study. BMJ
2008, 336, 1348–1351. [CrossRef]

213. Schroder, H.; Marrugat, J.; Vila, J.; Covas, M.I.; Elosua, R. Adherence to the traditional mediterranean diet is inversely associated
with body mass index and obesity in a spanish population. J. Nutr. 2004, 134, 3355–3361. [CrossRef] [PubMed]

214. Tektonidis, T.G.; Akesson, A.; Gigante, B.; Wolk, A.; Larsson, S.C. A Mediterranean diet and risk of myocardial infarction, heart
failure and stroke: A population-based cohort study. Atherosclerosis 2015, 243, 93–98. [CrossRef] [PubMed]

215. Lopez-Garcia, E.; Rodriguez-Artalejo, F.; Li, T.Y.; Fung, T.T.; Li, S.; Willett, W.C.; Rimm, E.B.; Hu, F.B. The Mediterranean-style
dietary pattern and mortality among men and women with cardiovascular disease. Am. J. Clin. Nutr. 2014, 99, 172–180. [CrossRef]

216. Fox, C.S.; Golden, S.H.; Anderson, C.; Bray, G.A.; Burke, L.E.; de Boer, I.H.; Deedwania, P.; Eckel, R.H.; Ershow, A.G.;
Fradkin, J.; et al. Update on Prevention of Cardiovascular Disease in Adults with Type 2 Diabetes Mellitus in Light of Re-
cent Evidence: A Scientific Statement from the American Heart Association and the American Diabetes Association. Diabetes Care
2015, 38, 1777–1803. [CrossRef]

217. Zito, F.P.; Polese, B.; Vozzella, L.; Gala, A.; Genovese, D.; Verlezza, V.; Medugno, F.; Santini, A.; Barrea, L.; Cargiolli, M.; et al.
Good adherence to mediterranean diet can prevent gastrointestinal symptoms: A survey from Southern Italy. World J. Gastrointest.
Pharm. 2016, 7, 564–571. [CrossRef]

218. Khalil, M.; Hayek, S.; Khalil, N.; Serale, N.; Vergani, L.; Calasso, M.; De Angelis, M.; Portincasa, P. Role of Sumac (Rhus coriaria L.)
in the management of metabolic syndrome and related disorders: Focus on NAFLD-atherosclerosis interplay. J. Funct. Foods 2021,
87, 104811. [CrossRef]

219. Khalil, M.; Rita Caponio, G.; Diab, F.; Shanmugam, H.; Di Ciaula, A.; Khalifeh, H.; Vergani, L.; Calasso, M.; De Angelis, M.;
Portincasa, P. Unraveling the beneficial effects of herbal Lebanese mixture “Za’atar”. History, studies, and properties of a potential
healthy food ingredient. J. Funct. Foods 2022, 90, 104993. [CrossRef]

220. Khalil, M.; Khalifeh, H.; Baldini, F.; Serale, N.; Parodi, A.; Voci, A.; Vergani, L.; Daher, A. Antitumor Activity of Ethanolic
Extract from Thymbra Spicata L. aerial Parts: Effects on Cell Viability and Proliferation, Apoptosis Induction, STAT3, and NF-kB
Signaling. Nutr. Cancer 2021, 73, 1193–1206. [CrossRef]

221. Khalil, M.; Bazzi, A.; Zeineddine, D.; Jomaa, W.; Daher, A.; Awada, R. Repressive effect of Rhus coriaria L. fruit extracts on
microglial cells-mediated inflammatory and oxidative stress responses. J. Ethnopharmacol. 2021, 269, 113748. [CrossRef]

222. Farooqui, A.A.; Farooqui, T.; Panza, F.; Frisardi, V. Metabolic syndrome as a risk factor for neurological disorders. Cell. Mol. Life
Sci. CMLS 2012, 69, 741–762. [CrossRef]

223. Fernandez-Sanchez, A.; Madrigal-Santillan, E.; Bautista, M.; Esquivel-Soto, J.; Morales-Gonzalez, A.; Esquivel-Chirino, C.;
Durante-Montiel, I.; Sanchez-Rivera, G.; Valadez-Vega, C.; Morales-Gonzalez, J.A. Inflammation, oxidative stress, and obesity. Int.
J. Mol. Sci. 2011, 12, 3117–3132. [CrossRef]

224. Freeman, B.A.; Baker, P.R.; Schopfer, F.J.; Woodcock, S.R.; Napolitano, A.; d’Ischia, M. Nitro-fatty acid formation and signaling. J.
Biol. Chem. 2008, 283, 15515–15519. [CrossRef]

225. Farooqui, A.A. Phytochemicals, Signal Transduction, and Neurological Disorders; Springer: New York, NY, USA, 2012.
226. Calder, P.C. Polyunsaturated fatty acids and inflammatory processes: New twists in an old tale. Biochimie 2009, 91, 791–795.

[CrossRef]
227. Lagouge, M.; Argmann, C.; Gerhart-Hines, Z.; Meziane, H.; Lerin, C.; Daussin, F.; Messadeq, N.; Milne, J.; Lambert, P.;

Elliott, P.; et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and
PGC-1alpha. Cell 2006, 127, 1109–1122. [CrossRef]

228. Hardie, D.G.; Ross, F.A.; Hawley, S.A. AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol.
Cell Biol. 2012, 13, 251–262. [CrossRef]

76



Nutrients 2022, 14, 3112

229. Scarmeas, N.; Stern, Y.; Mayeux, R.; Luchsinger, J.A. Mediterranean diet, Alzheimer disease, and vascular mediation. Arch. Neurol.
2006, 63, 1709–1717. [CrossRef] [PubMed]

230. Castro-Quezada, I.; Roman-Vinas, B.; Serra-Majem, L. The Mediterranean diet and nutritional adequacy: A review. Nutrients
2014, 6, 231–248. [CrossRef] [PubMed]

231. Wang, J.; Persuitte, G.; Olendzki, B.C.; Wedick, N.M.; Zhang, Z.; Merriam, P.A.; Fang, H.; Carmody, J.; Olendzki, G.F.; Ma, Y.
Dietary magnesium intake improves insulin resistance among non-diabetic individuals with metabolic syndrome participating in
a dietary trial. Nutrients 2013, 5, 3910–3919. [CrossRef]

232. Lu, J.; Gu, Y.; Guo, M.; Chen, P.; Wang, H.; Yu, X. Serum Magnesium Concentration Is Inversely Associated with Albuminuria
and Retinopathy among Patients with Diabetes. J. Diabetes Res. 2016, 2016, 1260141. [CrossRef]

233. Paletas, K.; Athanasiadou, E.; Sarigianni, M.; Paschos, P.; Kalogirou, A.; Hassapidou, M.; Tsapas, A. The protective role of the
Mediterranean diet on the prevalence of metabolic syndrome in a population of Greek obese subjects. J. Am. Coll. Nutr. 2010,
29, 41–45. [CrossRef]

234. Dominguez, L.J.; Di Bella, G.; Veronese, N.; Barbagallo, M. Impact of Mediterranean Diet on Chronic Non-Communicable
Diseases and Longevity. Nutrients 2021, 13, 2028. [CrossRef]

235. Farooqui, A.A. Essential Fatty Acid Metabolism in Metabolic Syndrome and Neurological Disorders. In Metabolic Syndrome;
Springer: New York, NY, USA, 2013; pp. 67–101.

236. Chrysohoou, C.; Panagiotakos, D.B.; Pitsavos, C.; Das, U.N.; Stefanadis, C. Adherence to the Mediterranean diet attenuates
inflammation and coagulation process in healthy adults: The ATTICA Study. J. Am. Coll. Cardiol. 2004, 44, 152–158. [CrossRef]

237. Richard, C.; Couture, P.; Desroches, S.; Lamarche, B. Effect of the Mediterranean diet with and without weight loss on markers of
inflammation in men with metabolic syndrome. Obesity 2013, 21, 51–57. [CrossRef] [PubMed]

238. Georgousopoulou, E.N.; Kastorini, C.M.; Milionis, H.J.; Ntziou, E.; Kostapanos, M.S.; Nikolaou, V.; Vemmos, K.N.; Goudevenos,
J.A.; Panagiotakos, D.B. Association between mediterranean diet and non-fatal cardiovascular events, in the context of anxiety
and depression disorders: A case/case-control study. Hell. J. Cardiol. 2014, 55, 24–31.

239. Couto, E.; Boffetta, P.; Lagiou, P.; Ferrari, P.; Buckland, G.; Overvad, K.; Dahm, C.C.; Tjonneland, A.; Olsen, A.;
Clavel-Chapelon, F.; et al. Mediterranean dietary pattern and cancer risk in the EPIC cohort. Br. J. Cancer 2011, 104,
1493–1499. [CrossRef]

240. Salas-Salvado, J.; Bullo, M.; Estruch, R.; Ros, E.; Covas, M.I.; Ibarrola-Jurado, N.; Corella, D.; Aros, F.; Gomez-Gracia, E.; Ruiz-
Gutierrez, V.; et al. Prevention of diabetes with Mediterranean diets: A subgroup analysis of a randomized trial. Ann. Intern. Med.
2014, 160, 1–10. [CrossRef] [PubMed]

241. Salamone, F.; Li Volti, G.; Titta, L.; Puzzo, L.; Barbagallo, I.; La Delia, F.; Zelber-Sagi, S.; Malaguarnera, M.; Pelicci, P.G.;
Giorgio, M.; et al. Moro orange juice prevents fatty liver in mice. World J. Gastroenterol. 2012, 18, 3862–3868. [CrossRef]

242. Garcia-Marcos, L.; Castro-Rodriguez, J.A.; Weinmayr, G.; Panagiotakos, D.B.; Priftis, K.N.; Nagel, G. Influence of Mediterranean
diet on asthma in children: A systematic review and meta-analysis. Pediatr. Allergy Immunol. 2013, 24, 330–338. [CrossRef]

243. Salas-Salvado, J.; Bullo, M.; Babio, N.; Martinez-Gonzalez, M.A.; Ibarrola-Jurado, N.; Basora, J.; Estruch, R.; Covas, M.I.; Corella,
D.; Aros, F.; et al. Reduction in the incidence of type 2 diabetes with the Mediterranean diet: Results of the PREDIMED-Reus
nutrition intervention randomized trial. Diabetes Care 2011, 34, 14–19. [CrossRef] [PubMed]

244. Wong, C.Y.; Yiu, K.H.; Li, S.W.; Lee, S.; Tam, S.; Lau, C.P.; Tse, H.F. Fish-oil supplement has neutral effects on vascular and
metabolic function but improves renal function in patients with Type 2 diabetes mellitus. Diabet Med. 2010, 27, 54–60. [CrossRef]

245. Seidl, S.E.; Santiago, J.A.; Bilyk, H.; Potashkin, J.A. The emerging role of nutrition in Parkinson’s disease. Front Aging Neurosci
2014, 6, 36. [CrossRef] [PubMed]

246. Martinez-Gonzalez, M.A.; Bes-Rastrollo, M.; Serra-Majem, L.; Lairon, D.; Estruch, R.; Trichopoulou, A. Mediterranean food
pattern and the primary prevention of chronic disease: Recent developments. Nutr. Rev. 2009, 67 (Suppl. S1), S111–S116.
[CrossRef]

247. Sofi, F.; Cesari, F.; Abbate, R.; Gensini, G.F.; Casini, A. Adherence to Mediterranean diet and health status: Meta-analysis. BMJ
2008, 337, a1344. [CrossRef]

248. Tsai, K.L.; Hung, C.H.; Chan, S.H.; Hsieh, P.L.; Ou, H.C.; Cheng, Y.H.; Chu, P.M. Chlorogenic Acid Protects Against oxLDL-
Induced Oxidative Damage and Mitochondrial Dysfunction by Modulating SIRT1 in Endothelial Cells. Mol. Nutr. Food Res. 2018,
62, e1700928. [CrossRef] [PubMed]

249. Duluc, L.; Jacques, C.; Soleti, R.; Andriantsitohaina, R.; Simard, G. Delphinidin inhibits VEGF induced-mitochondrial biogenesis
and Akt activation in endothelial cells. Int. J. Biochem. Cell Biol. 2014, 53, 9–14. [CrossRef]

250. Wang, J.; Zou, Q.; Suo, Y.; Tan, X.; Yuan, T.; Liu, Z.; Liu, X. Lycopene ameliorates systemic inflammation-induced synaptic
dysfunction via improving insulin resistance and mitochondrial dysfunction in the liver-brain axis. Food Funct. 2019, 10, 2125–2137.
[CrossRef]

251. Feng, C.; Luo, T.; Zhang, S.; Liu, K.; Zhang, Y.; Luo, Y.; Ge, P. Lycopene protects human SHSY5Y neuroblastoma cells against
hydrogen peroxideinduced death via inhibition of oxidative stress and mitochondriaassociated apoptotic pathways. Mol. Med.
Rep. 2016, 13, 4205–4214. [CrossRef]

252. Liu, J.; Wang, Y.; Hao, Y.; Wang, Z.; Yang, Z.; Wang, Z.; Wang, J. 5-Heptadecylresorcinol attenuates oxidative damage and
mitochondria-mediated apoptosis through activation of the SIRT3/FOXO3a signaling pathway in neurocytes. Food Funct. 2020,
11, 2535–2542. [CrossRef] [PubMed]

77



Nutrients 2022, 14, 3112

253. Gueguen, N.; Desquiret-Dumas, V.; Leman, G.; Chupin, S.; Baron, S.; Nivet-Antoine, V.; Vessieres, E.; Ayer, A.; Henrion, D.;
Lenaers, G.; et al. Resveratrol Directly Binds to Mitochondrial Complex I and Increases Oxidative Stress in Brain Mitochondria of
Aged Mice. PLoS ONE 2015, 10, e0144290. [CrossRef]

254. Baur, J.A.; Pearson, K.J.; Price, N.L.; Jamieson, H.A.; Lerin, C.; Kalra, A.; Prabhu, V.V.; Allard, J.S.; Lopez-Lluch, G.; Lewis, K.; et al.
Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006, 444, 337–342. [CrossRef]

255. Gao, Z.; Yin, J.; Zhang, J.; Ward, R.E.; Martin, R.J.; Lefevre, M.; Cefalu, W.T.; Ye, J. Butyrate improves insulin sensitivity and
increases energy expenditure in mice. Diabetes 2009, 58, 1509–1517. [CrossRef]

256. Mollica, M.P.; Mattace Raso, G.; Cavaliere, G.; Trinchese, G.; De Filippo, C.; Aceto, S.; Prisco, M.; Pirozzi, C.; Di Guida, F.;
Lama, A.; et al. Butyrate Regulates Liver Mitochondrial Function, Efficiency, and Dynamics in Insulin-Resistant Obese Mice.
Diabetes 2017, 66, 1405–1418. [CrossRef]

257. Deng, X.; Zhang, S.; Wu, J.; Sun, X.; Shen, Z.; Dong, J.; Huang, J. Promotion of Mitochondrial Biogenesis via Activation of
AMPK-PGC1a Signaling Pathway by Ginger (Zingiber officinale Roscoe) Extract, and Its Major Active Component 6-Gingerol. J.
Food Sci. 2019, 84, 2101–2111. [CrossRef] [PubMed]

258. Perez-Ternero, C.; Werner, C.M.; Nickel, A.G.; Herrera, M.D.; Motilva, M.J.; Bohm, M.; Alvarez de Sotomayor, M.; Laufs, U.
Ferulic acid, a bioactive component of rice bran, improves oxidative stress and mitochondrial biogenesis and dynamics in mice
and in human mononuclear cells. J. Nutr. Biochem. 2017, 48, 51–61. [CrossRef] [PubMed]

259. Liu, R.; Chen, L.; Wang, Y.; Zhang, G.; Cheng, Y.; Feng, Z.; Bai, X.; Liu, J. High ratio of omega-3/omega-6 polyunsaturated fatty
acids targets mTORC1 to prevent high-fat diet-induced metabolic syndrome and mitochondrial dysfunction in mice. J. Nutr.
Biochem. 2020, 79, 108330. [CrossRef]

260. Sanchez-Calvo, B.; Cassina, A.; Mastrogiovanni, M.; Santos, M.; Trias, E.; Kelley, E.E.; Rubbo, H.; Trostchansky, A. Olive
oil-derived nitro-fatty acids: Protection of mitochondrial function in non-alcoholic fatty liver disease. J. Nutr. Biochem. 2021,
94, 108646. [CrossRef]

261. Cao, K.; Xu, J.; Zou, X.; Li, Y.; Chen, C.; Zheng, A.; Li, H.; Li, H.; Szeto, I.M.; Shi, Y.; et al. Hydroxytyrosol prevents diet-induced
metabolic syndrome and attenuates mitochondrial abnormalities in obese mice. Free Radic. Biol. Med. 2014, 67, 396–407. [CrossRef]

262. Dong, Y.Z.; Li, L.; Espe, M.; Lu, K.L.; Rahimnejad, S. Hydroxytyrosol Attenuates Hepatic Fat Accumulation via Activating
Mitochondrial Biogenesis and Autophagy through the AMPK Pathway. J. Agric. Food Chem. 2020, 68, 9377–9386. [CrossRef]

263. Keshtzar, E.; Khodayar, M.J.; Javadipour, M.; Ghaffari, M.A.; Bolduc, D.L.; Rezaei, M. Ellagic acid protects against arsenic toxicity
in isolated rat mitochondria possibly through the maintaining of complex II. Hum. Exp. Toxicol. 2016, 35, 1060–1072. [CrossRef]

264. Zamani, F.; Samiei, F.; Mousavi, Z.; Azari, M.R.; Seydi, E.; Pourahmad, J. Apigenin ameliorates oxidative stress and mitochondrial
damage induced by multiwall carbon nanotubes in rat kidney mitochondria. J. Biochem. Mol. Toxicol. 2021, 35, 1–7. [CrossRef]

265. Wang, D.; Yang, Y.; Zou, X.; Zhang, J.; Zheng, Z.; Wang, Z. Antioxidant Apigenin Relieves Age-Related Muscle Atrophy by
Inhibiting Oxidative Stress and Hyperactive Mitophagy and Apoptosis in Skeletal Muscle of Mice. J. Gerontol. A Biol. Sci. Med.
Sci. 2020, 75, 2081–2088. [CrossRef]

266. Daussin, F.N.; Cuillerier, A.; Touron, J.; Bensaid, S.; Melo, B.; Al Rewashdy, A.; Vasam, G.; Menzies, K.J.; Harper, M.E.;
Heyman, E.; et al. Dietary Cocoa Flavanols Enhance Mitochondrial Function in Skeletal Muscle and Modify Whole-Body
Metabolism in Healthy Mice. Nutrients 2021, 13, 3466. [CrossRef]

267. Okada, L.; Oliveira, C.P.; Stefano, J.T.; Nogueira, M.A.; Silva, I.; Cordeiro, F.B.; Alves, V.A.F.; Torrinhas, R.S.; Carrilho, F.J.;
Puri, P.; et al. Omega-3 PUFA modulate lipogenesis, ER stress, and mitochondrial dysfunction markers in NASH—Proteomic and
lipidomic insight. Clin. Nutr. 2018, 37, 1474–1484. [CrossRef]

268. Anderson, E.J.; Thayne, K.A.; Harris, M.; Shaikh, S.R.; Darden, T.M.; Lark, D.S.; Williams, J.M.; Chitwood, W.R.; Kypson, A.P.;
Rodriguez, E. Do fish oil omega-3 fatty acids enhance antioxidant capacity and mitochondrial fatty acid oxidation in human atrial
myocardium via PPARgamma activation? Antioxid. Redox Signal 2014, 21, 1156–1163. [CrossRef] [PubMed]

269. Yoshino, J.; Smith, G.I.; Kelly, S.C.; Julliand, S.; Reeds, D.N.; Mittendorfer, B. Effect of dietary n-3 PUFA supplementation on the
muscle transcriptome in older adults. Physiol. Rep. 2016, 4, e12785. [CrossRef] [PubMed]

270. Capo, X.; Martorell, M.; Sureda, A.; Llompart, I.; Tur, J.A.; Pons, A. Diet supplementation with DHA-enriched food in football
players during training season enhances the mitochondrial antioxidant capabilities in blood mononuclear cells. Eur. J. Nutr. 2015,
54, 35–49. [CrossRef] [PubMed]

271. de Ligt, M.; Bruls, Y.M.H.; Hansen, J.; Habets, M.F.; Havekes, B.; Nascimento, E.B.M.; Moonen-Kornips, E.; Schaart, G.; Schrauwen-
Hinderling, V.B.; van Marken Lichtenbelt, W.; et al. Resveratrol improves ex vivo mitochondrial function but does not affect
insulin sensitivity or brown adipose tissue in first degree relatives of patients with type 2 diabetes. Mol. Metab. 2018, 12, 39–47.
[CrossRef]

272. Pollack, R.M.; Barzilai, N.; Anghel, V.; Kulkarni, A.S.; Golden, A.; O’Broin, P.; Sinclair, D.A.; Bonkowski, M.S.; Coleville, A.J.;
Powell, D.; et al. Resveratrol Improves Vascular Function and Mitochondrial Number but Not Glucose Metabolism in Older
Adults. J. Gerontol. A Biol. Sci. Med. Sci. 2017, 72, 1703–1709. [CrossRef] [PubMed]

273. Most, J.; Timmers, S.; Warnke, I.; Jocken, J.W.; van Boekschoten, M.; de Groot, P.; Bendik, I.; Schrauwen, P.; Goossens, G.H.; Blaak,
E.E. Combined epigallocatechin-3-gallate and resveratrol supplementation for 12 wk increases mitochondrial capacity and fat
oxidation, but not insulin sensitivity, in obese humans: A randomized controlled trial. Am. J. Clin. Nutr. 2016, 104, 215–227.
[CrossRef] [PubMed]

78



Nutrients 2022, 14, 3112

274. Joy, J.M.; Vogel, R.M.; Moon, J.R.; Falcone, P.H.; Mosman, M.M.; Pietrzkowski, Z.; Reyes, T.; Kim, M.P. Ancient peat and apple
extracts supplementation may improve strength and power adaptations in resistance trained men. BMC Complement Altern. Med.
2016, 16, 224. [CrossRef]

275. Srinivasan, S.; Guha, M.; Kashina, A.; Avadhani, N.G. Mitochondrial dysfunction and mitochondrial dynamics-The cancer
connection. Biochim. Biophys. Acta Bioenerg. 2017, 1858, 602–614. [CrossRef] [PubMed]

276. Portincasa, P.; Bonfrate, L.; Vacca, M.; De Angelis, M.; Farella, I.; Lanza, E.; Khalil, M.; Wang, D.Q.; Sperandio, M.; Di Ciaula, A.
Gut Microbiota and Short Chain Fatty Acids: Implications in Glucose Homeostasis. Int. J. Mol. Sci. 2022, 23, 1105. [CrossRef]
[PubMed]

277. Nadtochiy, S.M.; Redman, E.K. Mediterranean diet and cardioprotection: The role of nitrite, polyunsaturated fatty acids, and
polyphenols. Nutrition 2011, 27, 733–744. [CrossRef] [PubMed]

278. Stanley, W.C.; Khairallah, R.J.; Dabkowski, E.R. Update on lipids and mitochondrial function: Impact of dietary n-3 polyunsatu-
rated fatty acids. Curr. Opin. Clin. Nutr. Metab. Care 2012, 15, 122–126. [CrossRef] [PubMed]

79





Citation: Dicken, S.J.; Batterham, R.L.

The Role of Diet Quality in Mediating

the Association between Ultra-

Processed Food Intake, Obesity and

Health-Related Outcomes: A Review

of Prospective Cohort Studies.

Nutrients 2022, 14, 23. https://

doi.org/10.3390/nu14010023

Academic Editor:

Javier Gómez-Ambrosi

Received: 30 November 2021

Accepted: 16 December 2021

Published: 22 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nutrients

Review

The Role of Diet Quality in Mediating the Association between
Ultra-Processed Food Intake, Obesity and Health-Related
Outcomes: A Review of Prospective Cohort Studies

Samuel J. Dicken 1 and Rachel L. Batterham 1,2,3,*

1 Centre for Obesity Research, Department of Medicine, University College London (UCL),
London WC1E 6JF, UK; samuel.dicken.20@ucl.ac.uk

2 Bariatric Centre for Weight Management and Metabolic Surgery, University College London
Hospital (UCLH), London NW1 2BU, UK

3 National Institute for Health Research, Biomedical Research Centre, University College London
Hospital (UCLH), London W1T 7DN, UK

* Correspondence: r.batterham@ucl.ac.uk

Abstract: Prospective cohort studies show that higher intakes of ultra-processed food (UPF) increase
the risk of obesity and obesity-related outcomes, including cardiovascular disease, cancer and
type 2 diabetes. Whether ultra-processing itself is detrimental, or whether UPFs just have a lower
nutritional quality, is debated. Higher UPF intakes are inversely associated with fruit, vegetables,
legumes and seafood consumption. Therefore, the association between UPFs and poor health could
simply be from excess nutrient intake or from a less healthful dietary pattern. If so, adjustment for
dietary quality or pattern should explain or greatly reduce the size of the significant associations
between UPFs and health-related outcomes. Here, we provide an overview of the literature and
by using a novel approach, review the relative impact of adjusting for diet quality/patterns on the
reported associations between UPF intake and health-related outcomes in prospective cohort studies.
We find that the majority of the associations between UPFs, obesity and health-related outcomes
remain significant and unchanged in magnitude after adjustment for diet quality or pattern. Our
findings suggest that the adverse consequences of UPFs are independent of dietary quality or pattern,
questioning the utility of reformulation to mitigate against the obesity pandemic and wider negative
health outcomes of UPFs.

Keywords: obesity; diet; ultra-processed food; NOVA classification; diet quality; dietary pattern;
non-communicable disease

1. Introduction

Obesity (defined as an excess accumulation of fat that may result in adverse health [1])
is a leading cause of poor health, increasing the risk of non-communicable disease (NCD),
all-cause mortality and negatively impacting on quality of life [2–4]. Management strategies
for obesity prevention and treatment are therefore important.

Diet has long been a cornerstone of weight management, with dietary policies being a
core feature of government and health organisation strategies to reduce obesity worldwide.
Indeed, poor diets are a leading cause of preventable obesity-related death and NCD,
including cancer, cardiovascular disease (CVD) and type 2 diabetes (T2DM), accounting for
11 million deaths annually [5,6]. As such, dietary improvements could prevent one in every
five deaths [5]. There is converging evidence that a healthy diet consists predominantly of
whole, plant-based foods, including fruit, vegetables, pulses, nuts, whole grains and oily
fish [7–14]. Such diets, as exemplified by the Mediterranean diet and Dietary Approaches
to Stop Hypertension (DASH), are high in fibre and limit saturated fat, sodium and added
sugar intake. In contrast, Western diets high in refined grains, red and processed meat,
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sweets and sugar-sweetened beverages are rich in saturated fat, sodium and added sugar
and associated with an increased risk of disease [13–17].

Despite the importance of specific nutrients and food groups within overall dietary
patterns for health, it is becoming increasingly clear that other dimensions of diets are
important [18]. In recent decades, a nutrition transition has resulted in a global shift
away from consuming minimally processed foods, and towards ultra-processed alter-
natives [19,20], away from home-prepared dishes, and towards ready-to-eat meals and
snacks [21]. This same period has seen a rapid rise in the global prevalence of obesity in
children and adults [22]. Besides their nutrient content, healthy dietary patterns such as the
Mediterranean diet tend to be minimally processed [15], and unhealthy dietary patterns
such as the Western diet tend to be ultra-processed [11,16,23].

Whether ultra-processed diets are detrimental to health simply because they are of a
poor nutritional quality, or whether the nature and extent of processing itself has health
consequences is an ongoing debate [24]. Several recent systematic reviews, meta-analyses
and reviews have discussed the prevalence of UPF consumption and its impact on health-
related outcomes. However, no reviews to date have considered how dietary adjustment
in prospective cohort studies may alter the significance and magnitude of effect estimates.
This review provides a brief overview of the current state of the literature as well as the
current key discussion points regarding mechanisms of action, before reviewing in detail
the prospective analyses adjusting for dietary quality, which provides important insights
into the relative role of nutrient content compared with ultra-processing on obesity risk
and adverse health-related outcomes.

2. NOVA Classification

Several classification systems have been developed to categorise food and drink based
on levels of processing, including the International Food Information Council, International
Agency for Research on Cancer and NOVA classifications [25]. The most commonly used
is the NOVA classification, which considers the nature, extent and purpose of processing,
not the act of processing itself, to be important [26]. The NOVA food classification consists
of four groups: minimally processed foods (MPF), processed culinary ingredients (PCI),
processed foods (PF) and ultra-processed foods (UPF) (Table 1) [27]. UPFs are industrial
formulations, typically with five or more ingredients including additives, flavourings and
colours that no longer resemble their original constituent ingredients [28]. Nutritional
quality, such as nutrients to limit content, is not a core aspect of the NOVA classification.

In recent decades, the contribution of UPFs to diets worldwide has been increasing
year on year [29]. In the US and UK, over 55% of the average daily energy intake now
comes from UPFs, and those in the highest quintiles consume over 75% of their daily energy
intake from UPFs [30]. Additionally, UPFs are becoming increasingly more prevalent in the
diets of infants, children and adolescents [31,32].
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Table 1. Definition of NOVA classifications, from Monteiro et al., 2019 [28].

Group Definition Examples

1. Unprocessed and
minimally processed foods

Unprocessed foods altered by processes such
as the removal of inedible or unwanted parts,

drying, crushing, grinding, fractioning,
roasting, boiling, pasteurisation, refrigeration,

freezing, placement in containers, vacuum
packaging or non-alcoholic fermentation. Salt,
sugar, oils or fats, or other food substances are
not added. The primary aim is to extend the

life of the food, enabling storage for longer use,
and to make preparation easier or

more diverse.

Fresh, squeezed, chilled, frozen, or dried fruit,
leafy and root vegetables, brown rice, white

rice, corn cob, beans, lentils, chickpeas,
potatoes, sweet potatoes, mushrooms, meat,

poultry, fish, seafood, meat cuts, eggs, fresh or
pasteurised milk or plain yoghurt, fresh or

pasteurised fruit or vegetable juices (with no
added sugar, sweeteners or flavours), grits,

flakes or flour made from corn, wheat, oats, or
cassava, nuts and other oily seeds (with no

added salt or sugar), herbs and spices used in
culinary preparations, such as thyme, oregano

and pepper, tea, coffee, and water.

2. Processed
culinary ingredients

Substances derived from unprocessed and
minimally processed foods, or from nature.

They are created by industrial processes
including pressing, centrifuging, refining,

extracting or mining, and used in the
preparation, seasoning and cooking of group

1 foods.

Oils and fats, sugar and salt.

3. Processed foods

Industrial products made by adding processed
culinary ingredients found in group 2 to group
1 foods, using preservation methods such as
canning and bottling. For breads and cheeses,

non-alcoholic fermentation is used. Food
processing in group 3 aims to increase the

durability of group 1 foods and make them
more enjoyable, by modifying or enhancing

their sensory qualities.

Canned or bottled vegetables and legumes in
brine, salted or sugared nuts and seeds, salted,
dried, cured, or smoked meats and fish, canned

fish (with or without added preservatives),
fruits in syrup (with or without added

antioxidants), freshly made unpackaged
breads and cheeses.

4. Ultra-processed foods

Formulations of ingredients, mostly of
exclusive industrial use, resulting from a series

of industrial processes, many requiring
sophisticated equipment and technology.

Processes enabling the manufacture of
ultra-processed foods include the fractioning of

whole foods into substances, chemical
modifications of these substances, assembly of

unmodified and modified food substances
using industrial techniques such as extrusion,
moulding and pre-frying, frequent application
of additives whose function is to make the final
product palatable or hyper-palatable (‘cosmetic

additives’), and sophisticated packaging,
usually with synthetic materials.

Carbonated soft drinks, sweet or savoury
packaged snacks, chocolate, confectionery, ice
cream, mass-produced packaged breads and

buns, margarines, biscuits, pastries, cakes,
breakfast ‘cereals’, pre-prepared pies and pasta

and pizza dishes, poultry or fish nuggets,
sausages, burgers, hot dogs and other

reconstituted meat products, powdered and
packaged ‘instant’ soups, noodles and desserts.

3. UPFs, Obesity Risk and Health-Related Outcomes

Systematic reviews and meta-analyses of prospective cohort studies and cross-sectional
studies show that UPF consumption is associated with an increased risk of weight gain,
overweight and obesity [33–38], as well as other obesity-related health outcomes [33,34],
including hypertension, type 2 diabetes (T2DM) [38,39], cancer [33], cardiovascular disease
(CVD) [33,34], depression and all-cause mortality [33,35–37,40]. In Europe, a 1% increase
in the national household availability of UPFs is associated with a 0.25% increase in
the national prevalence of obesity, after adjusting for income, physical inactivity and
smoking [41]. Additionally, increases in ultra-processed food and drink volume sales per
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capita are associated with population-level BMI trajectories [42]. The rising contribution of
UPFs to diets worldwide poses a significant threat to addressing the obesity epidemic.

4. Mechanisms and Current Debates around Ultra-Processing: Correlation or
Causation?

There is increasing evidence showing that UPFs are linked with obesity and other
adverse health-related outcomes. However, the potential mechanisms that lead to these
adverse health outcomes are diverse, and still largely debated (readers are directed to other
comprehensive overviews for further reading on potential mechanisms [43–45]). These
mechanisms can be broadly considered as being as a result of nutrient content, or as a result
of ultra-processing [43].

From a nutrient perspective, UPFs have on average a higher energy density (2.3 vs.
1.1 kcal/g) and lower nutrient density than minimally processed foods [44,46]. UPFs tend
to be high in saturated fat, added sugar and sodium [47], with meta-analyses demonstrating
that diets higher in UPFs tend to contain greater intakes of total energy, free sugars and
total and saturated fat, and lower intakes of fibre, protein and some micronutrients [30,48].
The high palatability of UPFs has the potential to promote a faster eating rate and energy
overconsumption [44], with daily energy intake increasing as the proportion of daily energy
intake from UPFs increases (3.47 kcal increase per 1% increase in daily energy intake from
UPFs) [30].

However, aspects of ultra-processing may also increase the risk of obesity and other
adverse health-related outcomes. Textural and structural changes to the food matrix as a
result of ultra-processing can also allow for UPFs to be consumed more quickly [49–51].
Reducing the oro-sensory exposure (OSE) time of a food can delay the onset of satiation [52],
and UPFs have been shown to be less satiating than minimally processed foods [53,54].
The delayed satiation from faster eating rates can promote increased energy intake [55].
Food matrix changes can also alter nutrient bioavailability, and the harm from UPFs may
come from the fact that they tend to be more hyperglycaemic than MPFs [53,54]. Besides
the nutritional quality of UPFs and degradation of the food matrix, the additive content
and excessive heat treatment of UPFs have also been proposed to lead to changes in gut
microbiota and promote inflammation [56,57].

Beyond nutrients and ultra-processing, behavioural aspects of UPFs and the local,
environmental and systemic drivers influencing food choice are also important [58]. The
heavy marketing [59,60], low cost [46], high availability [61] and large portion sizes of
UPFs [43,62] can make them preferable choices over minimally processed options.

5. UPF Removal or UPF Reformulation: The Case for ‘Healthy’ UPFs?

Actions to reduce the risks associated with UPF intake have largely been either refor-
mulation to improve the nutrient profile of UPFs, or avoidance of UPFs altogether. Whether
experts support UPF reformulation or UPF avoidance is dependent on the views regarding
which mechanisms link UPFs with poor health.

Both those in favour of limiting UPFs [63], and those against the NOVA classifica-
tion [64–66], acknowledge that the nutritional quality of UPFs is an important factor. Even
some proponents of NOVA and reducing UPF intake have suggested that the saturated
fat, added sugar and sodium content of UPFs is important, despite this not being a core
aspect of the UPF definition [28]. For example, authors have focussed on the impact of
reducing UPF intake on changes in saturated fat, added sugar and sodium intake and
dietary quality, and the subsequent benefit of these changes on disease risk [67–70]. Critics
of NOVA/supporters of reformulation argue that any link between UPFs and adverse
health is solely due to their nutrient content; that some UPFs are just high in saturated
fat, added sugar and sodium and that some UPFs are not nutritionally inferior, with some
studies showing no difference in saturated fat, added sugar and sodium intakes across
extremes of UPF intake [64,71,72].
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Indeed, many UPFs are nutritionally poor and energy dense, but not all are. Studies
demonstrate that UPFs tend to relate with existing nutrient profile indices, based on
saturated fat, added sugar and sodium content [73]. In comparison with the Nutri-Score
(ranking foods from class A to E, where A is high and E is low nutritional quality) used
across several European countries, the majority of UPFs are class C, D or E, whereas the
majority of unprocessed or minimally processed foods are class A or B [74]. However,
26% of class A foods are UPFs, largely being UPF ready meals or dairy products. Studies
comparing UPFs with other nutrient indices (such as the Nutrient Rich Foods index, based
on the protein, fibre, vitamins, minerals, saturated fat, added sugar and sodium content of
food) show similar findings; most UPFs are low in nutritional quality, but some are high,
and most MPFs are high in nutritional quality, but some are still low in quality [46]. Indeed,
a range of UPFs have been identified as being ‘healthy’, based on nutrient profiling [65].
‘Healthy’ UPFs are often reformulations and plant-based alternatives [65,74], which carry
nutritional claims such as ‘fat free’, ‘reduced salt’, ‘low sugars or ‘added fibre’ according
to European Food Safety Authority guidelines [75]. Other ‘healthy’ UPFs such as fortified
bread have been suggested to be important sources of vitamins and minerals [64,65,76],
and avoidance of such UPFs may result in micronutrient deficiencies [77]. Therefore, two
foods can be defined as having a high level of nutritional quality, but with very different
levels of processing [78].

Given that particular UPFs, such as reformulations, can be considered to be of a similar
or greater nutritional quality than some MPFs, it has been suggested that these UPFs are
therefore healthy and nutritious [65,76]. Experts proposing that reformulations are sufficient
to address all issues surrounding UPFs are making the assumption that the association
between UPF intake and adverse health is mediated solely by their content of specific
nutrients [71]. Experts proposing avoidance of all UPFs and arguing that reformulations
are insufficient to significantly improve health are making the assumption that no UPFs
can be considered to be healthy [79]. Such experts argue that reformulation does not
address aspects of ultra-processing [80–82]; reformulated UPFs still have a degraded food
matrix [83,84], and components of the raw constituent foods are still lost [85].

In summary, there is agreement that energy dense foods high in saturated fat, sodium
and added sugar are harmful to health and should be limited. Such foods also tend
to be ultra-processed, but not all are [73,74]. Despite the mounting evidence showing
the adverse impacts of UPFs, the argument between nutrients and ultra-processing, and
therefore between reformulation or avoidance of UPFs, is ongoing [24,81,82]. Further
research understanding the relative impact of nutrients vs. ultra-processing is therefore
warranted. However, largely overlooked to date, is the fact that many published prospective
cohort studies have already considered the overlap between nutrition and ultra-processing,
performing dietary adjustments of models to delineate the association between UPF intake,
obesity and adverse health-related outcomes.

6. Review of Prospective Studies Adjusting for Dietary Quality

One of the main criticisms against the NOVA classification is that UPFs simply capture
nutrient poor foods high in saturated fat, sodium and added sugar [71,73]. Furthermore, it
is well established that the overall dietary pattern is important for health [10]. Higher UPF
intakes are inversely associated with MPF intake, including fruit, vegetables, cereals, beans,
legumes and seafood intake [30]. Therefore, the association between high UPF intake and
poor health could simply be from excess nutrient intake, or from a less healthful dietary
pattern. If this were the case, adjustment for participants’ dietary saturated fat, sugar and
sodium intake, or adjustment for their overall dietary pattern should explain the significant
associations found between higher intakes of UPF and adverse health-related outcomes in
prospective cohort studies, either rendering the association to be non-significant, or greatly
reducing the size of the association.

Many prospective studies in adults have performed dietary adjustments, with only a
small proportion not adjusting for aspects of dietary quality [86–91]. A greater proportion
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of prospective studies during gestation [92,93], or in children [94–101], have not performed
dietary adjustments. These dietary adjustments can be broadly classed as adjustment for fat
(typically saturated fat), carbohydrate (typically sugar) and sodium, adjustment for dietary
patterns (including Mediterranean diet, Healthy Eating Index (HEI), Alternate Healthy
Eating Index (AHEI), Dietary Guidelines for Americans Adherence Index (DGAI), healthy
and Western dietary patterns and Food Standards Agency Nutrient Profiling System Dietary
Index (FSA-NPS-DI)), or other dietary adjustments (typically for specific food groups such
as fruit and vegetables).

Table 2 presents the 37 longitudinal, observational studies that report some form of
adjustment for diet quality/pattern in their analyses investigating the association between
UPF intake as defined by NOVA, and health-related outcomes (the search process and
criteria for the review is detailed in the Supplementary Materials). Table 2 also presents
the association between UPF intake and health-related outcomes from adjusted models
preceding the dietary adjustment, or where not reported, the adjusted model including the
dietary adjustment.

Across 37 studies, 87 health-related outcomes were assessed using 91 models. Of the
66 models that demonstrate a significant association between UPF and a health-related
outcome, 64 remained significant following adjustment for diet quality or diet pattern.
In total, 136/142 dietary adjustments did not explain the significance of the association
between UPF intake and a health-related outcome. Across four studies, all four models
demonstrated higher UPF intakes were significantly associated with all-cause mortal-
ity [102–105]. No dietary adjustments (15/15) altered the significance of UPF intake with
all-cause mortality. Across 13 models within five studies, 11 were significantly associated
with a CVD outcome [104,105,117–119]. 29/31 dietary adjustments did not alter the signifi-
cance of UPF intake with CVD outcomes. Across two studies, UPF intake was significantly
associated with cancer outcomes in 2/5 models [105,126]. 8/8 dietary adjustments did not
alter the significance of the association between UPF intake and the two cancer outcomes.
In two models significantly associated with T2DM, 7/7 dietary adjustments did not alter
the significance [123,124]. Across nine studies, 23/26 models demonstrated a significant
association between UPF intake and adult and child anthropometrics (weight/body mass
index (BMI)/fat mass index (FMI) gain, other measures of adiposity and risk of over-
weight/obesity) [106–113,115]. 40/43 dietary adjustments did not alter the significance of
these associations.

6.1. Adjustment for Saturated Fat, Sugar and Sodium, and for Dietary Pattern

Table 3 presents the adjustments for saturated fat, sodium and added sugar. Table 4
presents the adjustments for dietary pattern. All but one study retained the significant
association between UPF and the health-related outcome after adjustments for saturated
fat, sodium and added sugar intake. All but two studies retained the significant association
between UPF and the health-related outcome after adjustment for dietary pattern.
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Within the NutriNet-Santé cohort, several studies have performed dietary adjustments
for the associations between UPF intake and all-cause mortality, CVD, overweight/obesity in-
cidence, T2DM, cancer and functional gastrointestinal disorders [102,106,117,124,126,127,129].
Schnabel et al. found a 15% (95% confidence interval: 1.04, 1.27) increased risk of all-cause
mortality per 10% increase in UPF intake in the diet [102]. Adjusting for French dietary
guideline adherence or for both French dietary guideline adherence and for Western dietary
pattern still resulted in each 10% increment in UPF intake being associated with a 14% (1.04,
1.27) or 19% (1.05, 1.35) increased risk, respectively, of all-cause mortality [102].

Srour et al. reported a 12% (1.05, 1.20), 13% (1.02, 1.24) and 11% (1.01, 1.21) increased
risk of CVD, coronary heart disease (CHD) and cerebrovascular disease, respectively, per
10% increase in UPF in the diet [117]. Multiple dietary adjustments did not alter these risk
estimates. First, adjusting for saturated fat, sodium and added sugar intake resulted in
a 13% (1.05, 1.20), 14% (1.03, 1.26) and 12% (1.02, 1.22) increased risk of CVD, CHD and
cerebrovascular disease, respectively [117]. Second, adjusting instead for a healthy dietary
pattern still resulted in an 11% (1.03, 1.19), 11% (1.00, 1.23, p = 0.04) and 10% (1.00, 1.20,
p = 0.04) increased risk of CVD, CHD and cerebrovascular disease, respectively [117]. Third,
adjusting for intakes of sugary products, red and processed meat, salty snacks, beverages,
fats and sauces also still resulted in a 12% (1.04, 1.20), 12% (1.01, 1.24) and 11% (1.01, 1.22)
increased risk of CVD, CHD and cerebrovascular disease, respectively, per 10% increase in
UPF in the diet [117].

In a separate study, Srour et al. reported a 15% (1.06, 1.25) increased risk of T2DM
with each 10% increase in UPF in the diet, which included adjustment for dietary quality
using the FSA-NPS-DI [124]. Again, subsequent dietary adjustments did not alter the
increased risk of T2DM. A 10% increase in UPF in the diet was still associated with a 19%
(1.09, 1.30) increased risk when further adjusting for saturated fat, sodium, sugar and
dietary fibre intake, a 13% (1.04, 1.24) increased risk after adjusting for healthy and Western
dietary patterns, and a 14% (1.04, 1.25) increased risk after adjusting for intakes of red and
processed meat, sugary drinks, fruits and vegetables, whole grains, nuts, and yogurt in
place of the FSA-NPS-DI adjustment [124]. Srour et al. also adjusted for absolute amounts
of unprocessed or minimally processed food intake, which few studies have performed to
date. This adjustment also did not alter the increased risk of T2DM (hazard ratio (HR) per
100g/day increase in UPF intake: 1.05 (1.02, 1.08) [124].

Fiolet et al. reported a 12% (1.06, 1.18) and 11% (1.02, 1.22) increased risk of all cancer
and breast cancer, respectively, per 10% increase in UPF in the diet [126]. Adjustment for
lipids (including fat), sodium and carbohydrate intake had no impact on the risk of all
cancer (HR: 1.12 (1.07, 1.18)) or breast cancer (HR: 1.11 (1.01, 1.21)) per 10% increase in UPF
in the diet, respectively [126]. Adjustment instead for Western dietary pattern also did not
change the 12% (1.06, 1.18) and 11% (1.02, 1.22) increased risks [126].

Beslay et al. reported a greater BMI gain (β: 0.02 kg/m2 (0.01, 0.02)) and increased risk
of overweight (HR: 1.11 (1.08, 1.14)) or obesity (HR: 1.09 (1.05, 1.13)), per 10% increase in
UPF in the diet [106]. Adjusting for healthy and Western dietary patterns did not alter the
greater BMI gain (β: 0.02 kg/m2 (0.01, 0.02)), or increased risk of overweight (HR: 1.10 (1.07,
1.13)) or obesity (HR: 1.11 (1.07, 1.15)), and neither did adjustment for saturated fat, sugar,
sodium and dietary fibre intake, which also resulted in a greater BMI gain (β: 0.02 kg/m2

(0.01, 0.02)), and increased risk of overweight (HR: 1.10 (1.08, 1.13)) or obesity (HR: 1.10
(1.06, 1.14), per 10% increase in UPF intake [106].

Schnabel et al. identified an increased risk of irritable bowel syndrome (IBS) (odds
ratio (OR): 1.24 (1.12, 1.38)) and functional dyspepsia (OR: 1.26 (1.07, 1.48)) when comparing
the highest vs. lowest quartiles of UPF intake [129]. Adjustment for adherence to French
dietary guidelines did not alter the increased risk of IBS (OR: 1.25 (1.12, 1.39)) or functional
dyspepsia (OR: 1.25 (1.05, 1.47)) across extreme quartiles of UPF intake [129].

Four studies within the Seguimiento Universidad de Navarra (SUN) cohort have
adjusted for fat, added sugar and sodium intake, or for dietary pattern. Rico-Campa et al.
demonstrated that the highest vs. lowest quartile of UPF intake was associated with a
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62% (1.13, 2.33) increased risk of all-cause mortality [103]. Adjustment for saturated and
trans fats, added sugar and sodium intake still resulted in a 69% (1.12, 2.56) increased risk
of all-cause mortality. A 58% (1.10, 2.28) increased risk still remained after adjusting for
Mediterranean diet pattern adherence instead [103].

Llavero-Valero et al. reported that the highest vs. lowest tertile of UPF intake was
associated with a 53% (1.06, 2.22) increased risk of T2DM, which was unaltered (HR: 1.50
(1.02, 2.21)) after adjusting for Mediterranean diet pattern adherence [123].

Gómez-Donoso et al. found a 41% (1.15, 1.73) increased risk of incident depression
in the highest vs. lowest quartile of UPF intake, which was still associated with a 33%
(1.07, 1.64) higher risk of incident depression after further adjustment for other covariates,
including Mediterranean diet pattern adherence [132].

Leone et al. identified an increased risk of gestational diabetes in females aged 30 and
over (OR 1st vs. 3rd tertile: 2.05 (1.03, 4.07)), which was unaltered after adjustment for
Mediterranean diet pattern adherence (OR 1st vs. 3rd tertile: 2.06 (1.05, 4.06)) [114].

In the US Third National Health and Nutrition Examination Survey (NHANES III)
cohort, there was a 31% (1.09, 1.58) increased risk of all-cause mortality in the highest
vs. lowest quartile of UPF intake, which remained significant after further adjustment for
dietary quality score using the HEI-2000 (p-trend = 0.001) [104]. However, diet-adjusted
risk estimates were not provided.

In the Italian Moli-sani cohort, the highest vs. lowest quartile of UPF intake was
associated with a 32% (1.15, 1.53) higher risk of all-cause mortality, 65% (1.29, 2.11)
higher risk of CVD mortality, and a 63% (1.19, 2.25) higher risk of ischemic heart dis-
ease (IHD)/cerebrovascular mortality [105]. Adjusting for saturated fat, sugar, sodium
and dietary cholesterol intake resulted in a 28% (1.09, 1.49), 56% (1.19, 2.03) and 33% (0.94,
1.90) increased risk of all-cause, CVD and IHD/cerebrovascular mortality, respectively,
in the highest vs. lowest quartile of UPF intake. Bonaccio et al. also individually ad-
justed for saturated fat, sugar, sodium and dietary cholesterol in turn, with UPF intake
remaining significantly associated with all-cause, CVD and IHD/cerebrovascular mortality
in all adjustments, except for sugar intake and IHD/cerebrovascular mortality (HR: 1.37
(0.98, 1.90)). Adjusting instead for Mediterranean diet pattern adherence resulted in a
26% (1.09, 1.46), 58% (1.23, 2.03) and 52% (1.10, 2.09) increased risk of all-cause, CVD and
IHD/cerebrovascular mortality [105].

In the Framingham Offspring cohort, each additional serving of UPF per day was
associated with a 5% (1.02, 1.08), 9% (1.02, 1.16), 7% (1.03, 1.12) and 9% (1.04, 1.15) increased
risk of overall CVD, CVD mortality, hard CVD and hard coronary heart disease, respec-
tively [118]. Further adjustment for diet quality using the DGAI-2010 still resulted in a 4%
(1.01, 1.07), 9% (1.02, 1.16), 6% (1.02, 1.11) and 9% (1.03, 1.15) increased risk of overall CVD,
CVD mortality, hard CVD and hard coronary heart disease [118].

In the US Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial cohort, the
highest vs. lowest quintile of UPF intake was associated with a 50% (1.36, 1.64) increased
risk of CVD mortality, and a 68% (1.50, 1.87) increased risk of heart disease mortality [119].
Multiple dietary adjustments did not alter this risk; adjustment for saturated fat, added
sugar and sodium resulted in a 48% (1.34, 1.63) and 65% (1.47, 1.85) increased risk of
CVD mortality and heart disease mortality, adjustment for diet quality using HEI-2005
resulted in a 48% (1.35, 1.63) and 67% (1.49, 1.86) increased risk of CVD mortality and heart
disease mortality, and adjustment instead for red meat, processed meat, whole grains, fruit,
vegetables, fibre and dairy intake also still resulted in a 49% (1.35, 1.64) and 66% (1.48, 1.86)
increased risk of CVD mortality and heart disease mortality, respectively [119].

In the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort,
each additional standard deviation (SD) increment in UPF intake per day was associated
with a 0.12 kg (0.09, 0.15) greater increase in weight over 5 years of follow-up, which was
unaltered after further adjusting for Mediterranean diet score (β: 0.12 kg/5 years (0.09,
0.15)) [111]. In sensitivity analyses of fully adjusted models including Mediterranean diet
adherence, UPF intake was associated with a higher risk of overweight/obesity (relative
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risk (RR): 1.05 (1.04, 1.06)) and obesity (RR: 1.05 (1.03, 1.07)) per 1SD increase in UPF
per day. This corresponded to a 15% (1.11, 1.19) higher risk of overweight/obesity in
participants with normal weight and a 16% (1.09, 1.23) higher risk of obesity in participants
with overweight at baseline, when comparing the highest vs. lowest quintiles of UPF
intake [111].

In the China Nutrition and Health Survey (CNHS), consuming ≥50 g of UPF per day
was associated with an increased risk of overweight/obesity (OR: 1.85 (1.58, 2.17)) and
central obesity (OR: 2.04 (1.79, 2.33)), when compared to no UPF intake. Adjustment for tra-
ditional and modern dietary patterns did not alter the increased risks (overweight/obesity,
OR: 1.45 (1.21, 1.74), central obesity, OR: 1.50 (1.29, 1.74)) [108].

In the Seniors Study on Nutrition and Cardiovascular Risk in Spain (Seniors-ENRICA-1),
Sandoval-Insausti et al. found an increased risk of abdominal obesity (OR: 1.62 (1.04, 2.54) in
the highest vs. lowest tertile of UPF intake, which was unaltered after adjustment for Mediter-
ranean diet adherence and fibre and omega-3 fatty acid intake (OR: 1.61 (1.01, 2.56)) [110].

Donat-Vargas et al. identified an increased risk of hypertriglyceridaemia (OR: 2.00
(1.04, 3.85)) and low-HDL cholesterol (OR: 2.04 (1.22, 3.41)), as well as a significant increase
in blood triglycerides (β: 6.11 mg/dL (1.30, 10.91)) when comparing the highest vs. lowest
tertile of UPF intake [136]. Adjustment for unprocessed or minimally processed food
intake did not alter the increased risk of hypertriglyceridaemia (OR: 2.66 (1.20, 5.90)),
low-HDL cholesterol (OR: 2.23 (1.22, 4.05)) or change in blood triglycerides (β: 6.87 mg/dL
(1.48, 12.27)) [136].

In the Pelotas-Brazil 2004 Birth Cohort, Costa et al. found a 0.09 kg/m2 (0.07, 0.10)
greater gain in FMI from ages 6 to 11, per 100 g daily increase in UPF intake [116]. Ad-
justment for other NOVA food groups (minimally processed and processed food, and
processed culinary ingredients intake) significantly increased the associated FMI gain to
0.14 kg/m2 (0.13, 0.15) from age 6 to 11, per 100 g daily increase in UPF intake [116].

In the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort, the highest
vs. lowest quintile of UPF intake was associated with a 0.06 kg/m2 (0.04, 0.08) and
0.03 kg/m2 (0.01, 0.05) greater yearly increase in BMI and FMI, respectively, from the age
of 7 to 24 [115]. Adjustment for saturated fat, sugar, sodium and fibre intake did not alter
the association between UPF intake and increases in BMI (β: 0.07 kg/m2/year (0.04, 0.08))
or FMI (β: 0.03 kg/m2/year (0.01, 0.05)) [115].

Koniecnzna et al. conducted a prospective analysis of the PREDIMED-Plus trial over
the course of 12 months. Each 10% increment in UPF intake was associated with increases
in total (β: 0.09 (0.06, 0.13)) and visceral (β: 0.09 (0.05, 0.13)) fat mass z-scores. Adjusting
for overall repeated measures of saturated and trans fat, sodium, glycaemic index, alcohol
and fibre intake across the 12 month study did not alter the significant association between
UPF intake and increases in total (β: 0.06 (0.03, 0.09) and visceral (β: 0.06 (0.01, 0.10)) fat
mass z-scores per 10% increase in daily UPF intake [109]. Adjusting instead for overall
repeated measures of Mediterranean diet pattern adherence across the 12 month study also
did not alter the association between each 10% increment in UPF intake and increases in
total (β: 0.06 (0.02, 0.09)) and visceral (β: 0.06 (0.01, 0.10)) fat mass z-scores [109].

In the Tianjin Chronic Low-grade Systemic Inflammation and Health (TCLSIH) Cohort
Study, the highest vs. lowest quartile of UPF intake was associated with a 17% (1.07, 1.29)
higher risk of non-alcoholic fatty liver disease (NAFLD) in the age, sex and BMI adjusted
model. After adjustment for other confounders including for a healthy diet score based on
fruit, vegetable, red meat and fish intake, the increased risk associated with the highest vs.
lowest quintile of UPF intake was 19% (1.08, 1.31) [125].

Zhang et al. found a 21% (1.10, 1.33) increased risk of hyperuricaemia in the highest vs.
lowest quartile of UPF intake, which was still associated with a 17% (1.06, 1.30) increased
risk of hyperuricaemia after adjustment for dietary pattern [134].

In a separate study, Zhang et al. reported that each 10% increment in UPF in the
diet was associated with a −0.30 kg (−0.50, −0.09) and −0.0043 kg/kg weight (−0.0073,
−0.0014) yearly reduction in absolute and weight-adjusted grip strength, respectively [138].
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Adjustment for further covariates including a healthy diet score (based on fruit, vegetable,
unprocessed red meat and fish intake), dietary supplement use and protein and milk intake
did not alter the association, with each 10% increment in UPF intake still associated with
−0.32 kg (−0.53, −0.11) and −0.0046 kg/kg weight (−0.0076, −0.0016) yearly reductions
in absolute and weight-adjusted grip strength, respectively [138].

In a combined analysis of the Nurses’ Health Study, the Nurses’ Health Study II and
the Health Professionals Follow-up Study, Lo et al. found a 75% (1.29, 2.35) increased
risk of Crohn’s disease in the highest vs. lowest quartile of UPF intake after adjust-
ing for age, cohort and calendar year. The increased risk was unchanged after further
covariate adjustments, including for diet quality defined by the AHEI-2010 (HR: 1.70
(1.23, 2.35)) [130].

In the Prospective Urban Rural Epidemiology (PURE) cohort, Narula et al. identified
an 82% (1.22, 2.72) increased risk of inflammatory bowel disease (IBD) and a 450% (1.67,
12.13) increased risk of Crohn’s disease in those consuming five or more UPF servings
per day, compared with those consuming less than one serving per day. Adjustment for
AHEI-2010 still resulted in a 92% (1.28, 2.90) increased risk of IBD and a 490% (1.78, 13.45)
increased risk of Crohn’s disease [128].

In the Norwegian Mother, Father and Child Cohort Study, Borge et al. reported that
each 1 SD increase in maternal UPF intake was associated with an increase in absolute (0.38
(0.27, 0.49)) and relative (4.5% (3.3, 4.9)) measures of child attention deficit hyperactivity
disorder (ADHD) symptoms at age 8, using the Parent Rating Scale for Disruptive Be-
haviour Disorders [137]. Adjustment for child Diet Quality Index (based on diet diversity,
diet quality and diet equilibrium [139]) did not alter the associated increase in absolute
(0.25 (0.13, 0.38)) or relative (3.0% (1.5, 4.5)) ADHD symptoms [137].

Three studies have considered the impact of diet quality and dietary pattern using
alternative methods. In the ATTICA cohort, each additional weekly serving of UPF was
associated with a 10% (1.02, 1.21) increased risk of CVD. Kouvari et al. then performed
sub-group analysis based on Mediterranean diet pattern adherence. Participants with
moderate to high adherence to the Mediterranean diet had an attenuated (8% (0.98, 1.19))
risk of CVD per weekly serving of UPF, whereas participants with low adherence to the
Mediterranean diet had an even greater risk of 19% (1.12, 1.25), per weekly serving of
UPF [140].

Bonaccio et al. identified that diet quality (defined by the FSA-NPS-DI) was only
significantly associated with all-cause mortality in high UPF consumers (HR per 1 SD
increase in FSA-NPS-DI: 1.14 (1.05, 1.25), but not in low UPF consumers (HR: 1.00 (0.93,
1.07) (p for interaction = 0.034) in the Moli-sani cohort [141]. The interaction between diet
quality and UPF intake was not significant for CVD mortality.

In the ENRICA study, the highest vs. lowest quartile of UPF intake had a 44% (1.01,
2.07) increased risk of all-cause mortality [91]. Instead of dietary adjustment, Blanco-Rojo
et al. compared the highest vs. lowest intakes of nutrients from UPF intake, including total,
saturated and trans fat, carbohydrates, sugar, sodium and fibre [91]. The nutrient content of
UPFs was not associated with an increased mortality risk, except for trans fat (HR highest
vs. lowest quartile: 1.39 (1.00, 1.92), p = 0.047).

6.2. Adjustment for Fat, Sodium, Carbohydrate and Dietary Pattern

Two studies have simultaneously adjusted for fat, sodium and carbohydrate intake and
for dietary pattern, which are reported in Supplementary Table S1. For cancer outcomes,
Fiolet et al. adjusted for both intakes of lipids (including fat), sodium, and carbohydrates
and Western dietary pattern, resulting in a 13% (1.07, 1.18) and 11% (1.01, 1.21) increased
risk of all cancer and breast cancer per 10% increase in UPF in the diet [126].

Adjibade et al. identified a 21% (1.15, 1.27) higher risk of depressive symptoms per
10% increase in UPF in the diet in the NutriNet-Santé cohort [131]. After adjusting for
intakes of lipids (including fat), sodium, and carbohydrates and for healthy and Western
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dietary patterns, the risk of depressive symptoms per 10% increase in UPF in the diet was
still 22% (1.16, 1.29) [131].

6.3. Adjustment for Fat And/or Sugar and/or Sodium

Some studies have adjusted for one or two components of fat and/or sugar and/or
sodium intake, rather than all three components. One study adjusted for carbohydrate
intake, rather than sugar intake [114]. These adjustments are reported in Supplementary
Table S2. The significant associations between UPF intake and all-cause mortality, over-
weight or obesity, central obesity, T2DM, hypertension, gestational weight gain, neonatal
anthropometrics and blood lipid profiles were unchanged following these dietary adjust-
ments [103,108,113,114,120,123,135,136].

6.4. Adjustment for Other Dietary Components

Other measures used for dietary adjustment are provided in Supplementary Table S3.
Other dietary adjustments include for fried foods, fruit and vegetables, UPF soft drinks,
multivitamin use and excluding bacon, sausage and processed meats from ultra-processed
food intake. These adjustments had no impact on the association between higher intakes
of UPF and risk of all-cause mortality, cancer, overweight/obesity, increased total and
visceral fat mass, increased BMI and FMI, NAFLD, weight and waist circumference gain,
adverse blood lipid profiles, grip strength decline, incident hypertension and renal function
decline [103,104,106,107,109,111,112,115,121,122,125,126,133,136,138].

6.5. Dietary Adjustments That Explain the Association between UPF Intake and
Health-Related Outcomes

To date, only two studies have performed dietary adjustments that explain the associa-
tion between higher UPF intakes and adverse health-related outcomes. In the PREDIMED-
Plus study, each 10% increase in UPF in the diet was associated with a 5% (0.00, 0.09,
p = 0.031) increase in android:gynoid fat ratio z-score during 12 months of follow-up [109].
Adjusting for repeated measures of sodium, saturated and trans fat, alcohol, fibre and
glycaemic index, or adjusting for repeated measures of Mediterranean Diet adherence
during the 12-month follow-up period resulted in a non-significant association between
UPF intake and android:gynoid fat ratio z-score [109].

In the Moli-sani cohort, the highest vs. lowest quartile of UPF intake had a 36%
(1.01, 1.83) higher risk of other cause mortality (any mortality, excluding CVD and cancer).
However, after adjusting for Mediterranean diet score, this became non-significant (1.26
(0.94, 1.69)) [105]. As noted in Section 6.1, the increased risk of IHD/cerebrovascular
mortality also became non-significant after adjusting for saturated fat, sugar, sodium and
dietary cholesterol.

6.6. Adjustment for Total Energy Intake

An ultra-processed diet has been shown to increase energy intake in comparison with a
minimally processed diet [49]. Energy intake may be a mediator of both nutritional aspects
(high energy density and palatability), and of some ultra-processing aspects (a degraded
food matrix influencing oro-sensory exposure and satiety) of UPFs. Adjustment for total
daily energy intake is not only useful to control for measurement error in epidemiological
dietary assessment to improve risk estimation of other dietary measures [142,143], but it
can also provide information on the associated risk between UPF intake and adverse health
outcomes, independent of energy intake [144].

Adjustment for energy intake can be achieved using several methods [145,146]. How-
ever, it has typically been performed by energy-adjusting the UPF independent variable,
either via the residual method (regressing UPF intake onto total energy intake to produce
residuals) or via the nutrient density method (usually as ‘energy intake from UPFs/total
energy intake’, though ‘total weight of UPFs/total food weight’ has also been used to
capture the non-nutritive aspects of UPFs) [146]. Total energy intake is then included
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as a covariate in the model [146]. Some studies instead use absolute UPF intake as the
independent variable, and then include total energy intake in the model.

Table 5 presents the prospective cohort studies performing adjustments for total
energy intake. Forty-seven studies have performed some form of energy adjustment across
131 models. 80 models demonstrate a significant association between energy-adjusted
UPF intake and a health-related outcome. 6/6 models were significantly associated with
all-cause mortality, 12/15 models were significantly associated with any CVD outcome,
3/3 models were significantly associated with T2DM, 15/17 models were significantly
associated with adult weight gain/overweight/obesity, and 15/25 models with gestational
or child anthropometrics. Twenty-one non-significant models with energy adjustment were
from multiple models for child appetitive traits (eight; Vedovato et al. [99]), childhood
anthropometrics and glucose profiles (six; Costa et al. [98]), child asthma and wheezing
(four; Machado Azeredo et al. [101]) and childhood lipid profiles (three; Rauber et al. [95]).
Four studies provided insufficient detail on energy adjustments [87,96,140,147].

6.7. Prospective Studies Reporting Mediation Analyses

Besides being included as a covariate within models, formal mediation analysis can
be used to determine whether dietary components mediate the association between UPF
intake and adverse health-related outcomes [149,150]. Few studies to date have performed
mediation analyses between UPF intake, dietary components and health-related outcomes.

Bonaccio et al. examined the mediating role of nutrients and energy content on all-
cause mortality, CVD mortality and IHD/cerebrovascular mortality [105]. All dietary
factors combined (sugar, saturated fat, dietary cholesterol, dietary sodium and energy con-
tent) significantly accounted for 41.3% ((11.9%, 78.5%), p < 0.001) of IHD/cerebrovascular
mortality risk, but did not account for all-cause mortality (12.8% (1.6%, 56.5%), p = 0.14)
or CVD mortality (11.5% (1.5%, 53.3%), p = 0.15) risk. Sugar content alone accounted for
23.2% ((9.7%, 45.9%), p < 0.001), 18.0% ((7.2%, 38.4%), p = 0.003) and 36.3% ((13.8%, 67.0%),
p < 0.001)) of the associated risk between UPF intake and all-cause mortality, CVD mortality
and IHD/cerebrovascular mortality, respectively. Saturated fat or sodium content did not
account for any of the associated risks.

Fiolet et al. performed mediation analyses for sodium, total lipids, saturated fat,
monounsaturated fat, polyunsaturated fat, carbohydrate and for Western dietary pattern,
with all mediation effects for the association between UPF intake and overall cancer being
less than 2% (all p > 0.05) [126].

Koniecnzna et al. found that repeated measures of saturated fat, trans fat and fibre
explained 11–30% of the associations between UPF intake and increases in measures of
central and overall adiposity over 12 months of follow-up [109]. Repeated measures of
sodium, total energy intake and glycaemic index did not mediate any of the associations.

Costa et al. identified that 58.2% (0.07 kg/m2 (0.05, 0.10)) of the association between
UPF intake and the increase in FMI from age 6 to 11 in children was mediated by energy
content, with the remaining 41.8% being either a direct effect of ultra-processing, or as a
result of unmeasured variables [116].

Vedovato et al. showed that energy intake was a mediator between UPF intake at 4
years of age and the appetite traits, ‘satiety responsiveness’ and ‘food fussiness’, but not
with ‘food responsiveness’, at age 7 [99].

Gomes et al. showed that the percentage of total energy derived from UPFs in the
third trimester was associated with total energy intake in the third trimester, which was
also associated with gestational weight gain in the third trimester [93].
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7. Discussion

This review provides novel insights into the relative impact of nutrient content and
dietary patterns vs. ultra-processing on obesity and adverse health-related outcomes. The
analyses reported here from prospective cohort studies have been largely unexplored to
date. Consistent across many studies, adjustment for fat, sugar and sodium intake, or
adjustment for adherence to a range of healthy or unhealthy dietary patterns has a minimal
impact on the adverse associations between UPF intake and a diverse range of health-
related outcomes. These findings strongly point towards aspects of ultra-processing as
being important factors that impact health, and question the ability to conclude that the
adverse outcomes from UPFs can be solely attributed to their nutritional quality.

A meta-analysis of nationally representative samples demonstrates that diets high
in UPF tend to contain greater intakes of energy, free sugars, total and saturated fat, and
lower intakes of fibre, protein and some micronutrients [30]. The NOVA classification
therefore captures important aspects of nutrient quality, despite this not being a core aspect
of the UPF definition [28]. It is unsurprising therefore, that the detrimental associations
between UPF intake and obesity, CVD and all-cause mortality have been largely attributed
to the poor nutritional quality of high UPF diets [71]. If this were the case, then adjustment
for aspects of dietary quality should explain the associations between UPFs and poor
health outcomes, or at least, explain a significant proportion of the association. However,
the majority of the models from prospective studies retain a significantly increased risk
of poor health from UPF intake, and are also largely unaltered in magnitude, following
dietary adjustment. The findings from this review are in alignment with the results from a
metabolic ward cross-over study, the only randomised controlled trial comparing diets of
differing levels processing [49]. Participants consumed ad libitum, minimally processed or
ultra-processed diets, matched for energy and nutrient content, for two weeks each. The
ultra-processed diet resulted in greater energy intake (+508 ± 106 kcal/day), leading to
weight gain (+0.9 ± 0.3 kg). In contrast, the minimally processed diet resulted in weight
loss (−0.9 ± 0.3 kg), despite diets being matched for energy and nutrient content [49].

The Mediterranean diet, considered to be one of the healthiest dietary patterns for
reducing CVD risk [151], consists predominantly of whole grains, fruits, vegetables, beans,
pulses and legumes, of which, their consumption is inversely associated with UPF in-
take [30]. Therefore, the impact of UPFs on health could just be that they displace more
healthful foods, or that they overlap with pre-established unhealthy dietary patterns. How-
ever, adjustment for Mediterranean diet adherence, for the Western dietary pattern or
for other dietary pattern indices, did not alter the majority of the significant associations
between UPF intake and health-related outcomes, including the increased risk of weight
gain or obesity.

High UPF diets are also characterised by the displacement of minimally processed
foods, as defined by NOVA [30]. Few studies have performed dietary adjustment for other
NOVA food groups. However, in those that have, adjustment for other NOVA food groups
not only did not explain, but in fact, increased the risk associated with UPF intake and FMI
gain from age 6 to 11 [116], and adjustment for unprocessed or minimally processed food
intake did not alter the increased risk of T2DM [124].

Although limited at this stage, these adjustments would suggest that UPF intake has a
direct effect on health-related outcomes, rather than simply displacing healthy foods intake.
This may indicate the importance of considering the nature and extent of food processing
as an important dimension of dietary pattern analysis.

Discussions over the relative importance of nutrient content vs. ultra-processing con-
tinue [24,81]. However, recent reports have not taken into account the dietary adjustments
from prospective studies reported in this review [24,81,152]. The aspects of ultra-processing
that lead to adverse health outcomes are poorly understood, and the findings from this
review highlight the need for research into mechanisms of ultra-processing as being a
priority, in order to determine the long-term potential for UPF reformulation, or need for
elimination to address the growing obesity pandemic. On a case-by-case basis, choosing
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UPF reformulations over high fat, salt or sugar alternatives can be beneficial to reduce
intakes of nutrients to limit, which are known to be associated with poor health [153].
However, given the high prevalence of UPFs within diets [30], if ultra-processing itself
directly results in poor health, then scaling up the case-by-case reformulation approach
to the whole diet still leaves an ultra-processed dietary pattern that displaces minimally
processed foods, and thus will not sufficiently address current health risks. The nutritional
quality of food is important, but is not the sole determinant of the healthiness of a diet [10].
The importance of dietary patterns, food groups and foods as a whole, rather than specific
individual nutrients, has previously been highlighted [8,154]. Indeed, the diversity of
chemicals and nutrients consumed in human diets is vast, yet current nutrient profiling
methods only consider a fraction of the 26,000 or so biochemicals in food [155].

Current dietary policies vary across nations and health organisations. The public
health implications regarding whether UPFs should be reformulated based on nutrient
content or removed from the diet are important. The UK government and Cancer Research
UK currently adopt a reformulation approach to high fat, salt or sugar foods, and do not
consider the nature and extent of processing in their dietary recommendations [156–158].
However, advice to avoid UPFs is becoming increasingly more prevalent. The American
Heart Association now recommends limiting UPF intake [12], and the World Health Organ-
isation and UNICEF recognise the importance of UPF consumption for ending childhood
obesity [159,160]. UPFs are also recognised by the Pan American Health Organisation as
important for reducing health risk, as part of their nutrient profiling model [161]. Some
national dietary guidelines now encourage limiting UPF intake including Brazil [162],
Uruguay [163] and Israel [164]. France is also planning to reduce UPF consumption by 20%
from 2018 to 2021 [165].

This review discusses the results from over 1,000,000 participants across more than
20 different prospective cohorts, covering many countries, demographic profiles and age
groups. The studies in this review utilise dietary assessment methods including 24-hour
dietary records and food frequency questionnaires, that are not designed specifically for
the application of NOVA classification. Similar foods can be classed as ultra-processed
(e.g., pre-packaged bread) or processed (e.g., artisanal bread), which may result in the
misclassification of foods with the dietary assessment methods used. Furthermore, other
important dietary aspects may have not been captured or suitably adjusted for. Most
studies have adjusted for fat, sugar and sodium intake or for overall dietary patterns, which
are important dietary factors for health, and proposed to be explanatory factors for the
associations between UPF intake and health outcomes.

8. Conclusions

Experts for and against the NOVA classification have often focussed on nutrient qual-
ity as an important explanatory link between UPFs, obesity and adverse health-related
outcomes. However, many of the prospective studies published to date have performed
analyses adjusting for nutrient content and overall dietary patterns. These adjustments do
not explain the association between UPFs, obesity and adverse health-related outcomes,
with estimates remaining significant. These findings raise important questions regarding
current policy and future research needs, suggesting that the nature and extent of process-
ing is an important dietary dimension, and whether UPF reformulations can sufficiently
address the growing transition towards high UPF diets and the associated risk of obesity
and poor health.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nu14010023/s1, Table S1: Prospective studies adjusting for fat, sodium and carbohydrate
intake and dietary pattern, Table S2: Prospective studies adjusting for components of fat, sodium and
carbohydrates, Table S3: Prospective studies adjusting for other dietary components.
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Abstract: Nutrition can play an important role in the treatment of chronic wounds such as diabetic
foot ulcers (DFUs); however, diet therapy is not currently part of the standard care for DFUs.
There are numerous controversies about dietary recommendations, especially regarding calories and
macronutrients, for overweight and obese patients with DFUs. This study examined the effects of
nutrition education and supplementation on body composition in overweight and obese patients
with DFUs. Twenty-nine patients with DFUs between the ages of 30 and 70 years were randomly
assigned to either the treatment group (nutritional supplements, diet education, and standard care)
or the control group (standard care). At baseline, the mean body mass index (BMI) was 33.5 kg/m2

for the treatment group and 34.1 kg/m2 for the control group. HbA1c decreased in both groups, with
no significant difference between the groups. On average, patients in the treatment group lost less
lean body mass and gained less fat than the control group ((3.8 kg vs. 4.9 kg) and (0.9 kg vs. 3.6 kg),
respectively). While the interaction between group and time did not reach statistical significance for
any of the study variables after adjustments for confounding variables, the observed changes are
clinically relevant.

Keywords: nutrition education; DFU; nutrition supplementation; body composition; phase angle;
protein; macronutrients; micronutrients; chronic wounds; wound healing; diabetic foot ulcer

1. Introduction

Diabetic foot ulcers (DFUs) are among the most common complications of uncontrolled
diabetes [1]. It has been reported that 25% of patients with diabetes develop DFUs during
their lifetime [2]. DFUs significantly affect the patient’s health and socioeconomic well-
being and negatively affect the quality of life of the patients and their family members [3].
Nutrition can play a key role in the prevention and improvement of the clinical outcomes
of DFUs [4]. In patients with chronic wounds, cellular activity and inflammation in
the healing wound increase metabolic needs; therefore, they require more energy and
a higher nutrient intake. In DFUs, the hypermetabolism nature of the wound, as well as a
decreased sensitivity to insulin, increased counter-regulatory hormones such as cortisol,
catecholamines, and glucagon due to a high level of stress, and not enough energy intake
results in the body utilizing muscle proteins as a source of energy [5,6]. Apart from the
wound itself, the kinetics of whole-body protein metabolism are elevated in diabetes and the
net balance is diminished [7]. Increased protein catabolism and negative nitrogen balance
have been reported in patients with uncontrolled diabetes [8]. Additionally, it has been
reported that energy expenditure is significantly higher in patients with type 2 diabetes, in
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comparison with non-diabetic individuals [9,10]. Despite the higher need for energy sources
and essential nutrients during wound healing, diabetic patients are usually recommended
to follow low-calorie/low-carbohydrate diets to better manage their glycemic indices and
related complications, particularly if they are overweight or obese [11]. However, restrictive
diets could result in an inadequate intake of essential micronutrients, as well as the energy
sources and protein that are vital for wound healing. It has been reported that patients with
DFUs have a significantly lower intake of energy, protein, and micronutrients compared
to dietary reference intakes (DRI), which are designed for a healthy population [12–14]. A
significantly low dietary intake of energy and nutrients has also been shown in overweight
and obese patients with DFUs [15]. Insufficient energy intake can result in muscle wasting,
the loss of subcutaneous tissue, and consequently, poor wound healing [16]. Protein is
responsible for cell proliferation, collagen, and connective tissue synthesis, as well as the
antibody synthesis needed for immune system function [17]; therefore, adequate protein
intake supplemented by non-protein energy sources promotes a positive nitrogen balance,
which is crucial for improving wound healing in DFUs. Although an increased need for
energy and nutrient intake has been established in patients with chronic wounds [18] and
an inadequate intake of energy sources and nutrients has repeatedly been reported in
patients with DFUs, there are still controversies about the nutritional recommendations for
DFU patients, particularly for those who are overweight or obese. This study examined
the effects of nutrition education and supplementation on long-term blood glucose control,
body composition, and phase angle as an indicator of cellular health and cell membrane
integrity in patients with DFUs.

2. Materials and Methods

2.1. Screening and Recruitment

This study was approved by the Institutional Review Board (IRB) of Tallahassee
Memorial HealthCare (TMH, Tallahassee, FL, USA) and Florida State University, and is
registered at clinicaltrials.gov NCT04055064. The study was advertised at the Tallahassee
Memorial Wound Healing Center; interested participants were prescreened by one of the
medical staff or a nurse at the clinic, based on the inclusion/exclusion criteria. The potential
participants were then scheduled for a screening visit with the researcher. Patients were
included in the study if they were between the ages of 30 and 70 years, had a body mass
index (BMI) ≥ 25 kg/m2, had at least one diabetic foot ulcer of grade 1A [19], and were
receiving medications for glycemic control.

Patients were excluded from the study if they were pregnant or lactating, had used
bioengineered tissue within the four weeks before baseline, had high concentrations of
hemoglobin A1C (HbA1c) of > 12%, known immunosuppression, liver failure/cirrhosis,
active malignancy, myocardial infarction or heart failure in the past three months, chronic
kidney disease, underwent radiation therapy for the treatment of their wounds, excessive
use of alcohol according to the standards of the World Health Organization, or were subject
to any physiological or mental condition that might affect the study regimen.

After screening, eligible patients were provided with details of the study and were
asked to sign the consent form if they were interested in participating in the study. Partici-
pants were then randomly assigned to either the control or the treatment group.

2.2. Study Intervention

Standard wound care was provided to all the participants at the TMH Wound Healing
Center. Additionally, patients in the treatment group were asked to consume more low-fat
protein sources with high bioavailability, vegetables, high-fiber carbohydrates, and a lower
amount of simple carbohydrates. Participants were also educated about the different food
groups and were given examples of healthier food items in each group. The nutrition
education was conducted by the researcher (nutritionist) for at least 10 min at baseline
and was then repeated every four weeks for each patient in the treatment group. The
treatment group was also provided with two servings of Boost Glucose Control nutritional
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formula (Nestlé Health Science, NJ, USA) and instructed to consume one supplement
in the morning and one in the afternoon, during the study. Consuming two servings of
supplements provided patients with extra energy, protein, and essential vitamins and
minerals. Table 1 shows the energy and macronutrient contents of the supplement. The
complete nutrient content of the supplement has been published elsewhere [15].

Table 1. Energy and macronutrient contents of one serving (237 mL) of the nutritional supplement.

Nutrient Amount

Calories (kcal) 250
Calories from Fat (kcal) 110

Total Fat (g) 12
Saturated Fat (g) 1.5

Total Carbohydrate (g) 23
Dietary Fiber (g) 3

Sugars (g) 6
Protein 1 (g) 14

1 Includes protein from caseinate and L-arginine.

The supplement used in this study was designed for diabetic patients and contained a
slow-release carbohydrate source called tapioca dextrin, which is digested slowly. Tapioca
is resistant to amylase and prevents a sudden increase in blood glucose [20]. This study
aimed to provide patients with adequate supplements that could help the patients to
meet their extra need for energy and protein and to support them with at least 50% of the
Recommended Dietary Allowance (RDA) recommendations for the essential vitamins and
minerals for wound healing. We anticipated that the combination of nutrition education
and supplements could significantly improve the dietary intake of participants and support
them in meeting their nutrient recommendations.

2.3. Anthropometric and Body Composition Measurement

Height was self-reported, and weight was measured at baseline and every four weeks
during the study, using a stand-on scale (Seca Mechanical Column Scale; Hamburg, Germany).
BMI was calculated from weight and height using the BMI = weight (kg)/Height2 (m2) for-
mula. Body composition was evaluated using a bioelectrical impedance analyzer (BIA)
310 e (Biodynamics Corporation, Seattle, WA, USA) which has been shown to accurately
estimate body cell mass and lean body mass [21]. The within-day and between-day coef-
ficients of variation (CVs)% for hand-to-foot (whole-body) model impedance have been
reported as 0.2% to 0.7% and 0.9% to 1.8%, respectively [22]. Patients were instructed to re-
move their right shoe and sock and lay down on their backs. Their feet were 12 to 18 inches
apart, while their hands were placed palm-down at 6 to 12 inches from the torso. Two
adhesive sensor pads were placed on the right wrist/hand and two on the right ankle/foot.
A small current (800 μA at 50 kHz) was passed through the electrodes to measure fat body
weight (kg), lean body mass weight (kg), and reactance and resistance; the measurements
were used for calculating the phase angle (PA). Fat body weight is the total amount of
stored lipids in the body and consists of subcutaneous and visceral fat. Lean body mass
weight was calculated by subtracting body fat (kg) from total body weight (kg). PA indi-
cates a relationship between electric resistance (R) and reactance (Rc) and is an indicator of
cellular health and function [15,16]. Lower phase angles are correlated with the duration
of disease, inflammation, malnutrition, and mortality in diabetic patients [23–26]. PA was
calculated directly from reactance and resistance, using the PA = arctangent reactance
(ohm)/resistance (ohm) × 180◦/π formula [27].

2.4. HbA1c Measurement

To assess the effects of the intervention on long-term glucose homeostasis, HbA1c
was evaluated at baseline and the end of the study, using the HbA1c Now+ test (Polymer
Technology Systems, Indianapolis, IN, USA).
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2.5. Dietary Assessment

The dietary intake of participants was estimated using 24-hour recall forms. Partic-
ipants were asked about all the foods and beverages consumed during the last 24 h as
well as any prescribed or voluntary use of nutritional supplements. Nutrient intake was
estimated using the Food Processor SQL, version 11.1.480 (ESHA’s Food Processor®, Salem,
OR, USA).

2.6. Statistical Analysis

The Statistical Package for Social Science (SPSS), version 25.0 (SPSS, Inc., Chicago, IL,
USA), was utilized to analyze our data. For all tests, p < 0.05 was set as the statistically
significant level. Population characteristics were evaluated at baseline using descriptive
statistics. An independent sample t-test was used to compare the means of potential
confounding variables between groups at baseline; if the effect was significant, they were set
as covariates in the model. The independent sample t-test was also used for the comparison
of HbA1c concentrations between groups at baseline and the end of the study. All the other
variables were analyzed using multilevel modeling (mixed model), while Bonferroni’s post
hoc test was utilized for pairwise comparisons if the F-statistic was significant.

3. Results

Out of 95 patients who were screened for the study, 42 met the inclusion criteria and
were interested in participating in this study. Thirteen patients were then excluded from
the study, due to a change in their clinic or because of missing their next two appointments.
Laboratory, clinical, and statistical analyses were performed for a total of 29 patients.

3.1. General Characteristics

Descriptive data of the relevant characteristics of the participants at baseline are
outlined in Table 2. There were no statistically significant differences in ethnicity, age,
BMI, HbA1C, duration of diabetes, wound area, or wound age estimation among the
participants of the two groups. Gender distribution differed in the groups; however, the
effects of gender on each variable were evaluated and, if the effect was significant, it
was added to the model as a covariate. Participants in the treatment group had a longer
duration of diabetes, in comparison with the ones in the control group (14.4 ± 8 years vs.
11.7 ± 6 years, respectively), but this difference did not reach statistical significance. No
significant differences were observed between the two groups in terms of the indicators
of socioeconomic status (SES) and other factors that could affect the nutritional status of
patients, such as appetite problems, previous unintentional weight loss, and cultural and
religious dietary restrictions. Living alone, having financial concerns, being employed, and
having food needs were considered indicators of SES. Referrals to registered dietitians (RDs)
were not part of the standard care for patients with DFUs and only 38% of the patients had
visited RDs at least once in the past.

3.2. Dietary Intake of Participants at Baseline and during the Follow-Up

The mean dietary intake of participants in terms of energy and protein was 50% and
48.7% of the recommendations when compared to the minimum recommendations for
energy (30 kcal/kg) and protein (1.2 g/kg) made by the National Pressure Ulcer Advisory
Panel (NPUAP). The mean dietary intake of essential micronutrients for wound healing
was also alarmingly lower than DRI in this population. Details about the change in energy,
protein, and micronutrient intake of the treatment and control group during the study
have been published elsewhere [15]. In summary, the dietary intake of energy did not
change significantly during the study for either the treatment or control group, and the
interaction between time and group was not statistically significant. Compared to NPUAP
recommendations, energy intake increased from 52.0% to 68.0% in the treatment group and
from 43.7% to 57.8% in the control group. The increase in the protein intake of the treatment
group was higher (from 54.5% to 84.9%) than the control group (from 43.1% to 54.7%) when
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it was compared with NPUAP recommendations. The interaction between group and time
was not statistically significant; however, the change in dietary intake of protein in the
treatment group is clinically relevant. Although the treatment group was provided with
an extra 500 kcal of energy and an additional 28 g of protein, they still could not meet the
NPUAP recommendations for energy and protein intake. The dietary intake of copper,
zinc, vitamin A, vitamin C, and vitamin E significantly increased in the treatment group;
however, no significant changes in the dietary intake of the participants in the control group
were observed during the follow-up.

Table 2. Baseline characteristics of participants, according to group.

Variable Treatment (n = 15) Control (n = 14) p-Value

Women/men 7/8 3/11 0.08

Age (year)
Means ± SD 52.9 ± 9.74 53.8 ± 12.8 0.84

Ethnicity
African American/white 4/11 3/11 0.75

BMI 1 (kg/m2)
Means ± SD 33.5 ± 7.98 34.1 ± 6.04 0.84

HbA1C 2

Means ± SD 7.95 ± 2.06 8.40 ± 2.16 0.57

Duration of diabetes
Means ± SD 14.40 ± 8.03 11.7 ± 6.17 0.32

Wound age (months)
Means ± SD 10.97 ± 15.09 10.58 ± 18.27 0.95

Smoking
(yes/no) 3/12 3/11 1.00

1 BMI: body mass index. 2 HbA1C: Hemoglobin A1C.

3.3. Hemoglobin A1c

The concentration of HbA1c decreased at a similar rate in both the treatment and
control groups (0.31% and 0.39%, respectively). At the end of the study, there were no
significant differences between the concentration of HbA1c among the groups; therefore,
supplementation with extra energy sources and nutrients did not have any negative effect
on long-term blood glucose control in patients with DFUs.

3.4. Anthropometrics and Body Composition
3.4.1. Changes in Body Mass Index

The mean BMI at baseline for patients in the treatment and control groups were
33.5 kg/m2 and 34.1 kg/m2, respectively. We examined the potential effects of gender
and age on BMI; however, since their effects were not significant, we did not include them
in the statistical model. The interaction between time and group did not reach statistical
significance for BMI. Therefore, the intervention did not have any negative effects on the
BMI of the patients in the treatment group.

3.4.2. Changes in Lean Body Mass

The mean LBM of the treatment group was slightly lower than that of the control group
(68.2 kg vs. 69.1 kg, respectively) at baseline; however, the difference was not statistically
significant. The effects of gender (p < 0.001), age (p = 0.001), wound age estimation
(p < 0.001), and duration of diabetes (p < 0.001) on the LBM change were significant;
therefore, we added these factors as covariates to the statistical model. Although the mean
LBM of both groups was lowered during the study, patients in the treatment group lost less
LBM than the patients in the control group (3.8 kg vs. 4.9 kg, respectively). The interaction
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between time and group did not reach statistical significance for LBM after adjustments for
the confounding variables; however, the difference is clinically relevant.

3.4.3. Changes in Body Fat Weight

At baseline, there was no significant difference in body fat weight between the two
groups. We examined the potential effects of confounding variables, such as gender
(p = 0.04), duration of diabetes (p < 0.001), and wound age estimation (p < 0.001). All the
significant confounding variables were included as covariates in the model. The body fat
weight changed in the treatment group from 31.7 kg to 32.1 kg and in the control group from
34.3 kg to 35.9 kg. While the interaction between time and group did not reach statistical
significance for body fat weight after adjustments for confounding variables, these changes
are clinically relevant.

3.5. Changes in Phase Angle

The PA for the participants in the treatment group was slightly higher than that
in the control group at baseline; however, the difference was not statistically significant
(7.0◦ vs. 6.8◦, respectively). We examined the potential effects of the confounding variables
age, gender, BMI, duration of diabetes, and wound age estimation. Age was the only
significant variable (p = 0.001); therefore, it was kept in the model as a covariate. After
adjustments for the effects of age, PA was decreased by 0.3◦ in the treatment group and
0.6◦ in the control group during the study period. Even though the difference between
the two groups did not reach statical significance (p = 0.09) for PA, these changes are
clinically relevant.

4. Discussion

The findings of this study showed that supplementing the diet with extra energy
sources and nutrients did not have any negative effects on long-term blood glucose control
or the body composition of overweight and obese patients with DFUs when combined
with nutrition education. Additionally, our results showed that our intervention had some
positive effects on the body composition and PA of DFU patients in the treatment group.
As is similar to the findings in other research [16,28–30], LBM decreased in our participants
during the study; however, our treatment group could maintain LBM better than the control
group. Although the effect was not statistically significant, preventing the loss of LBM
leads to a better nitrogen balance, which is important for the faster healing of chronic
wounds [4,28,31,32]. This could also be one of the reasons that DFUs in our treatment
group healed 12.85-fold faster than in the control group [15].

While we had no intentions to decrease body fat during the healing time, this might
have happened as a result of educating our treatment group about consuming nutrient-
dense foods. The observed increase in protein intake along with receiving an adequate
quantity of micronutrients [12] could have positive effects on regulating patients’ appetite
and decreasing cravings for sugar and sweets in the treatment group. This could be
confirmed by our data, which showed lower sugar intake and no significant increase in
energy intake in the treatment group during the study period, despite their receiving extra
energy (500 kcal/d) through supplements. Our results showed that the mean sugar intake
decreased by 20 g/d in the treatment group and 8 g/d in the control group. This highlights
the importance of nutrition education in changing eating behaviors in this population.

We previously showed that our intervention also significantly decreased inflammation
in the treatment group [33]. Rieu et al. [34] reported that the reduction of low-grade
inflammation (lower IL6 and IL1β) decreased muscle mass loss and increased muscle
protein synthesis by 24.8% (p < 0.05). Therefore, the better preservation of lean body mass
that occurred in the treatment group might have happened partly as a result of decreased
inflammation in the treatment group, due to an increased intake of micronutrients and
antioxidants. Nonetheless, further studies are needed to replicate our findings.
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Although the change in PA did not reach statistical significance for the duration of
the study, scientific evidence has shown that one grade increase in PA is associated with
a 33% reduction in the risk of mortality or renal death in diabetic patients [35]; therefore,
the observed lower decrease in PA in the treatment group relative to the control group is
clinically relevant. Our results showed that HbA1c decreased in both groups during the
study and there were no significant differences between the two groups during the study.
Therefore, supplementing DFU patients with additional energy sources and nutrients
did not have negative effects on long-term glucose control when it was combined with
nutrition education. This confirms that overweight and obese patients with DFUs could
benefit from a generalized diet when it is combined with nutrition education. Nutrition
education for DFU patients should prioritize dietary needs for wound healing. Consuming
nutrient-dense foods should be emphasized for meeting energy and nutrient needs during
wound healing. When the wound is fully healed, calorie restrictions with better nutritional
support may be applied if necessary. Other studies should be conducted using a larger
population, applying a similar approach, to confirm our results. If our observations are
confirmed in similar studies, our method would add new approaches to the treatment of
patients with DFUs.

To our knowledge, this is the first study that evaluates the effects of nutrition educa-
tion and supplementation with extra calories, protein, and micronutrients on long-term
blood glucose control and body composition in overweight and obese patients with DFUs.
The strength of our study was that the patients were educated to choose nutrient-dense
foods in addition to receiving supplements, which made it easier for them to meet their
dietary requirements. It is also important to note that the supplement was tolerated well,
and participants did not report any adverse effects related to the use of the supplement.
One of the limitations of this study was that due to the small population in the area, the
effects of nutrition education or supplementation on the outcome variables could not be
evaluated independently. Additionally, the participants of this study were not provided
with individualized dietary recommendations. Different medications might have differ-
ent effects on blood glucose concentrations and wound outcomes; however, we did not
collect data about the medications used by our participants. Currently, there are no recom-
mendations regarding the dietary intake of energy sources and protein for patients with
DFUs; therefore, the assessment of the dietary intake of our participants was conducted
based on the recommendations from NPUAP, which are for patients with pressure ulcers.
The supplement used in this study was not designed for patients with DFUs; however,
it was the most appropriate manufactured formula that could help our participants to
meet most of their dietary needs. Future research should identify the optimum amounts of
energy sources and nutrients for faster wound healing in diabetic patients with foot ulcers.
Routine visits with a dietitian are essential for assessing the dietary needs of patients and
designing individualized nutrition therapy, which can result in effective clinical outcomes.
Identifying the adequate dietary intake of macro- and micronutrients in diabetic patients
with foot ulcers, especially for those who are overweight or obese, is critical for expediting
the wound-healing process and can make a substantial difference to medical expenses and
quality of life in this population.

5. Conclusions

Dietary recommendations for overweight and obese individuals with DFUs should
prioritize proper wound healing by recommending that patients consume adequate energy
sources and essential nutrients.
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Abstract: Ketogenic diet is often used as diet therapy for certain diseases, among other things, its
positive effect related to weight loss is highlighted. Precisely because of the suggestion that KD can
help with weight loss, visceral obesity, and appetite control, 100 respondents joined the weight loss
program (of which 31% were men and 69% were women). The aforementioned respondents were
interviewed in order to determine their eating habits, the amount of food consumed, and the time
when they consume meals. Basic anthropometric data (body height, body mass, chest, waist, hips,
biceps, and thigh circumferences) were also collected, in order to be able to monitor their progress
during the different phases of the ketogenic diet. Important information is the expected body mass
during the time frame of a certain keto diet phase. This information is important for the nutritionist,
medical doctor, as well as for the participant in the reduced diet program; therefore, the model was
developed that modified the original equation according to Wishnofsky. The results show that women
lost an average of 22.7 kg (average number of days in the program 79.5), and for men the average
weight loss was slightly higher, 29.7 kg (with an average of 76.8 days in the program). The prediction
of expected body mass by the modified Wishnofsky’s equation was extremely well aligned with the
experimental values, as shown by the Bland-Altman graph (bias for women 0.021 kg and −0.697 kg
for men) and the coefficient of determination of 0.9903. The modification of the Wishnofsky equation
further shed light on the importance of controlled energy reduction during the dietetic options of the
ketogenic diet.

Keywords: ketogenic diet; overweight; obesity; modified Wishnofsky equation; modelling

1. Introduction

In recent years, obesity became a serious global health crisis with prevalence increasing
nearly threefold from 1975 to 2016 [1]. Research indicates the connection between obesity
and numerous diseases and health complications, such as cardiovascular diseases, various
types of cancer, type 2 diabetes, hypertension, polycystic ovary syndrome (PCOS), and
many others [2,3]. It is important to emphasize that obesity can be prevented by establishing
a balanced diet, adequate physical activity, and changes in behaviour and lifestyle [4].
Understanding the principles of energy balance is crucial [5] in approaching the global
problem of the western countries: obesity. The concept of energy balance is based on the law
of conservation of energy (energy conservation law: energy state of the organism = entered
energy–expended energy), which states that energy cannot disappear or be created from
nothing, but can only change its forms [6]. The source of energy in human diet are foods
and drinks, with the main energy donors: carbohydrates, proteins, fats, and alcohol and
the energy consumption varies throughout the day, but also throughout the lifespan [7].

Our organism strives for a state of energy balance and possesses regulatory mecha-
nisms for this purpose. Regulation implies a complex physiological control system that
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includes neuronal and hormonal signals from the gastrointestinal tract, pancreas, and adi-
pose tissue that reach the hypothalamus and the autonomic nervous system that innervates
muscles, organs, and adipose tissue [5]. It was proven that this integrated regulatory sys-
tem has stronger protection mechanisms for the loss of body mass than for the prevention
of excess energy accumulation, and therefore there is a greater chance for the success of
increasing body mass than reducing it [8]. The reduction in body mass is the result of a neg-
ative energy balance, i.e., increased energy consumption compared to intake [6]; however,
sole reduction in energy intake does not result in continuous (infinite) and proportional loss
of body mass. Reduction requires temporary changes in diet and physical activity, while
long-term maintenance requires permanent changes, which seems to be more difficult [9]
because studies show that 35 to 80% of individuals, who reduced at least 10% of their initial
body mass, fail to maintain the reduced body mass for more than a year [10].

As successful reduction in body mass is classified, intentional loss of at least 10% of the
original body mass is maintained at that level for at least one year. The criterion of 10% was
set because already then the risk of diabetes and cardiovascular diseases was significantly
reduced [11]. So, with the aim of a better understanding of an observed problem, models
are developed, among which mathematical models were developed to try to understand
the non-linearity of body mass loss during energy reduction as one of approaches in dealing
with obesity. Numerous mathematical models were designed for the purpose of predicting
body mass loss, which differ from each other according to the concept of how energy is
stored and consumed [12]. The first such model, which combined all the knowledge about
calories and energy metabolism developed for predicting the expected body mass based on
the timeframe of energy intake reduction is the Wishnofski model from 1958 [13]. Doctor
Max Wishnofsky researched energy from food, how it is stored in the body, and by what
amount it is necessary to reduce energy intake in order to lose 1 kg of body mass [14].
He designed a regression model that was supposed to serve as a universal measure for
assessing body mass change based on an energy intake reduction in a known time frame
and with a caloric equivalent of one pound of lost or gained body mass of 3500 kcal (for 1
kg–approximately 7700 kcal) [12]:

Weight loss [lb] = Es[kcal/day]· t [days]

3500
[

kcal
lb

] (1)

where:
Es—imposed daily deficit in energy stores (reduced energy intake or increased exercise

generated energy output), [kcal/day];
t—duration of the diet [days].
Studies show that different diet patterns influence diet changes and maintain reduced

body weight [2,15], and one of them is the ketogenic diet, which is characterized by
a significant reduced intake of carbohydrates (<30 g/day) and standard protein intake
(1.2–1.5 g/kg of ideal body weight or 1.0–1.2 g/kg of fat free mass) [16]. This diet is also
often used in diet therapy of obesity, type 2 diabetes mellitus, migraines, polycystic ovary
syndrome, and even epilepsy [17–22]. There are several types of eating patterns within
the keto diet. A standard ketogenic diet implies that fats make up 70% of the daily energy
intake (DEI), proteins 20%, and carbohydrates only 10%. In addition to the standard
one, the cyclic ketogenic diet includes periods of carbohydrate compensation (after every
5 days the diet is followed by 2 days with increased carbohydrate intake), a targeted
ketogenic diet that allows the addition of carbohydrates during periods of intense physical
activity (25 to 50 g half an hour before training), and a high-protein ketogenic diet that is
similar to the standard diet, but the macronutrient intake ratio is changed (fats: proteins:
carbohydrates = 60:35:5) [23].

According to all of the above, the aim of this paper is to demonstrate the usefulness
of the Wishnofsky equation based on collected data of people on a ketogenic diet. Several
requirements were studied, the most important of which is the accuracy of predicting the
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course of body mass loss over a certain period of time, as well as different phases during
the energy restriction and macronutrient intake based on the ketogenic diet guidelines.

2. Materials and Methods

In the study were included 100 healthy adults (31% of them are males) from Skopje,
North Macedonia, enrolled in the program of weight reduction by following keto diet
principles. Their anthropometric data (weight, height, circumferences of: chest, waist (two
places: (i) narrowest part and (ii) at the navel region), hips, biceps, and thighs), diet habits
before the diet, and some basic information related to their food intake were collected in
an individual interview with a nutritionist. During the interview were collected such data
as frequency of consumption of some nutrition dense food (fruit and vegetables) as well
as caloric food (sweets, salty snacks, seeds, and nuts) and beverages (carbonated drinks
vs water). The time of meal consumption was also recorded. The measurements were
collected since April 2022. All respondents signed the agreement that their data can be
used exclusively for scientific purposes, and the principles of the GDPR were respected.

Observed anthropometric parameters of the participants were collected following the
recommendation of Casadei and Kiel [24] and they are given in Table 1.

Table 1. Basic anthropometric parameters of the subjects on the first medical examination.

Observed Parameters
Female (N = 69) Male (N = 31)

Mean ± SD [Min–Max] Mean ± SD [Min–Max]

Age (years) 37.5 ± 11.1 [18–68] 35 ± 11.8 [18–56]
Body height (cm) 163.8 ± 7.2 [147–184] 175.8 ± 7.4 [162–192]

Body mass (kg), W0 78.6 ± 17.2 [12.4–152.5] 103.3 ± 25.3 [60.3–237]
BMI (kg/m2) 32.9 ± 8.5* [25.3–63.5] 38.3 ± 8* [26.3–64.3]

Circumference (cm)
Chest 88.4 ± 11.7 [64–136] 99.8 ± 14 [74–150]

Waist (narrowest part) 90.5 ± 12.9 [67–138] 101.8 ± 14.7 [74–162]
Waist (at the navel) 100.9 ± 13.5 [75–162] 110.7 ± 15.8 [80–164]

Hips 106.7 ± 13.2 [79–172] 114.9 ± 16.2 [80–179]
Biceps 33.8 ± 5.8 [9–62] 37.1 ± 4.1 [29–50]
Thighs 64.9 ± 9.1 [28–97] 68.5 ± 7.6 [56–97]

*: Statistically significant differences (p < 0.05); SD: standard deviation; BMI: body mass index; and W0: body mass
on the beginning of diet program.

In addition to the anthropometric parameters, for each subject, anamnesis was taken
about the basic state of health, as well as the number and type of meals and the time of
consumption. At the first medical examination, the subjects’ body mass, body height, and
circumferences of arm, leg, waist, and hips were measured. The initial body mass index
(BMI) was expressed as the ratio of the body mass to the square of the body height, and the
target body mass for each subject was obtained in the range for the targeted normal BMI
(20–25 kg/m2).

At each follow-up examination, subjects’ body mass and circumference were measured
to monitor progress. In the case of adequate progress, the allowed energy intake is increased,
i.e., the person moves to the next phase of the ketogenic diet. However, if at some point
there is a stagnation of progress or an increase in body mass, the subjects are returned to
the previous phase and their energy intake is reduced.

The Wishnofsky equation was used because it depends on the phase of the body mass
reduction process, and was modified because during the ketogenic diet were included
seven different phases (Table 2) and the average energy nutrient composition for the last
phase is given in the supplementary Table S1 for menus created by a dietitian and medical
doctor.

131



Nutrients 2023, 15, 927

Table 2. Permissible ranges of energy intake with regard to the phase of the ketogenic diet.

Ketogenic Diet Phase (i = 1, . . . , 7) Energy Range (EB), kcal (kJ)

I 750–850 (3140–3560)
IIa 850–950 (3560–3975)
IIb 950–1050 (3975–4395)
III 1100–1200 (4605–5025)
IVa 1300–1400 (5440–5860)
IVb 1350–1450 (5650–6070)
V 1500 (6280)

a, b-different energy levels of the same phase of the ketogenic diet.

According to the energy intake of different phases, the Wishnofsky equation
(Equation (1)) was modified as follows:

W(t) = W0 − 0.454 ∗ ΔEB ∗ t
3500

(2)

Wtj = Wtj−1 − 0.454 ∗ EBi ∗
tj

3500
(3)

where
W0—initial body mass [kg]; W(t)—expected body mass [kg] after t days where the

energy intake was reduced for ΔEB (reduced daily energy intake [kcal/day] compared to
the required one);

Wtj−1—initial body mass for the new ketogenic diet phase (i = 1, . . . , 7), the ketogenic
diet phase (i) can be repeated several times (j = 1, . . . , n) and the last one ends when
Wtj = Wd (desired body mass). When calculating EBi, the mean values of the energy range
of the different phases of the ketogenic diet were used (Table 2).

The flow chart (Figure 1) presents the ketogenic diet implementation process from
the initial body mass (W0) to the desired one (Wd). Patients start with 800 kcal in phase I
until they reach 48% of the difference between initial body mass (W0) and the desired (Wd).
After this phase, the energy intake is increased to 900 kcal (Phase IIa). By reaching 64% of
the difference between initial body mass (W0) and the desired one (Wd), the daily energy
intake is upgraded to 1000 kcal (IIb phase). In phase III, the patient reached less than 80%
of the difference between W0 and Wd, and the daily calorie intake is than 1150 kcal. In
phase IVa, the patient reached less than 85% of the difference (W0–Wd) with 1300 kcal per
day. Phase IVb, starts when the patient reaches 90% of the difference between initial body
mass and desired (W0–Wd) with 1400 kcal per day. The last phase (phase V) increases the
energy intake to 1500 kcal when the achieved body mass is less the 5% from the desired
one.

As variables are indicated values for body masses that were recorded for the patient
after each examination at a certain diet phase, Wtj, j is the number of check controls, while
other primary parameters are: W0 as the initial body weight, Wd as the desired body weight,
and previously mentioned EB as intake of energy during the day.

Patients who are over-weighted, but still not obese, and where the difference between
the initial body mass and the desired one (W0–Wd) is less than 48%, the diet is directed
immediately into the second phase of the diet (i = 2: Phase IIa). If this is not the case, the diet
plan will start with the first phase. The third phase is approached when the patient reaches
80% of the desired weight loss. In the remaining stages, the patient loses the remaining
20% of body mass.
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Figure 1. Flow chart presenting ketogenic diet phases.

In addition to all measurements, the expected body mass during each examination
was also calculated using the Wishnofsky equation (based on the body mass recorded at
the previous examination, the number of days since the previous examination, and the
energy intake in that phase). None of three variables used in the calculation are a constant;
body mass differs each time, and energy intake also changes analogously, i.e., the phase of
the ketogenic diet. The number of days since the previous examination is different for each
person.
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At the end of the research, the data were statistically processed and the actual situation
and progress were compared with the prediction based on the Wishnofsky equation.

All calculations were conducted by use of MS Excel. Calculated were the (i) minimal
and maximal values in the observed data set, (ii) standard measure of central tendency
(mean, mode), and (iii) standard deviation (SD) as a measure of dispersion. Relative
frequencies (as percentage) were used in the display of results related to the eating habits
of people involved in the weight loss program. Box-whiskers plot was used to show the
progress of body mass loss and the reduced body mass index. The Bland–Altman chart
is used to show the effectiveness of predicting body mass using the modified Wishnofsky
equation. A simple linear regression was used to show the agreement of body mass data in
a certain phase of the ketogenic diet with the exact body mass measured during the regular
examination.

3. Results

During the first examination, an interview was conducted (with each subject) in which
data were recorded on the frequency of overweight and/or obesity in the family (Figure 2),
their eating habits, i.e., the frequency and time of eating (Table 3), and certain types of food
(Table 4).

Table 3. Frequency of consumption of certain foods and drinks.

Consumption Per Week 1 (%)

Sweets non <50 g 50–100 g 101–200 g >200 g
Female 5.79 a 26.09 a 23.19 a 37.68 a 7.25 a

Male 9.68 a 38.71 b 16.13 b 16.13 b 19.36 b

Chips non <50 g 50–100 g 101–200 g >200 g
Female 18.84 a 33.33 a 30.44 a 13.04 a 4.35 a

Male 35.48 b 25.81 b 19.36 b 9.68 a 9.68 a

Vegetables non <500 g 500–1000 g 1001–1500 g >1500 g
Female 10.15 a 88.41 a 1.45 a 0 a 0 a

Male 12.90 a 87.10 a 0 a 0 a 0 a

Fruits non <500 g 500–1000 g 1001–1500 g >1500 g
Female 17.39 a 49.28 a 18.84 a 8.70 a 5.80 a

Male 19.35 a 54.84 a 16.13 a 6.45 a 3.23 a

Nuts non <50 g 50–100 g 101–200 g 200–500 g
Female 26.09 a 31.88 a 13.04 a 26.09 a 2.90 a

Male 22.58 a 32.26 a 9.68 a 22.6 a 12.90 b

Seeds non <500 g 500–1000 g 1001–1500 g >1500 g
Female 56.52 a 21.74 a 4.35 a 17.39 a 0 a

Male 54.84 a 22.58 a 6.45 a 16.13 a 0 a

Carb. drinks non <0.5 L 0.5–1 L 1–2 L >2 L
Female 39.13 a 28.99 a 20.29 a 7.25 a 4.35 a

Male 25.81 b 12.91 b 16,13 a 38.71 b 6.45 a

Water 1 non <0.5 L 0.5–1 L 1–2 L >2 L
Female 56.52 a 33.33 a 10.14 a 0 a 0 a

Male 74.19 b 19.35 b 6.45 a 0 a 0 a

1 Per day; carb. drinks: carbonated drinks; different letters for investigated food group indicate significant
differences for the observed consumed amount.
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Table 4. Number of meals and their distribution during the day.

Female (N = 69) Male (N = 31)

Mean ± SD
Mode

[Min–Max]
Mean ± SD

Mode
[Min–Max]

No. of meals 2.8 ± 0.9 3 [1–6] 2.5 ± 1 2 [1–5]
Time of meal consumption (h) *

1st meal 10.6 ± 2.5 10 [4.5–18.5] 11.3 ± 3.9 9 [3–21]
2nd meal 16.8 ± 2.4 17 [11–22] 15.9 ± 2.9 17 [9–21]
3rd meal 19.8 ± 2.6 21 [16–23] 19.5 ± 3.2 21 [13–24]
4th meal 21.3 ± 1.1 20 [20–23] 19.8 ± 0.5 20 [19,20]

* Time is expressed in the form 0–24 h; SD: standard deviation.

Figure 2. Prevalence of being overweight and/or obesity in the family (different lowercase letters:
significant differences in the frequency of overweight or obese family members, within the same
gender; different capital letters: significant difference in the frequency of overweight or obese family
members within different gender).

From the prevalence of obesity in the family, differences in the answers of the male and
female population are visible; however, research by [25] Sattler and associates (2018) shows
that it is weight-based stigmatization with motivation to exercise and physical activity in
overweight individuals in connection with different genders.

Information on the frequency of consumption of certain foods (sweet, salty, and seeds)
and drinks was a source of information on the quality of eating habits (Table 3). Only one
third of female and 48.39% female subjects consumed non or less than 50 g of sweets per
week, while chips (including other salty snacks) were consumed by over 50% of subjects,
regardless the gender is consuming in amounts less than 50 g/week. Unfortunately, it is
a devastating fact that the amount of fruit and vegetables consumed during the week is
limited to small amounts, indicating that energy-rich food, with low nutritional density,
dominates their diet. Higher intake of fruits and vegetables increased weight loss [26]. In
the investigated group, the frequency of consuming vegetables was significantly lower,
although it can be consumed as a side dish, salad, etc. The following finding is related
with the regional consumer habits, including high consumption of nuts and seeds. In the
conversation during the interview, it was clear that seeds and nuts are consumed between
meals in uncontrolled amounts, although the average caloric contribution in 100 g is in the
range of 400–600 kcal [27].

Consumption of beverages shows an exceptional representation of carbonated bev-
erages compared to water, which is consumed most often in the amount of 1–2 L in the
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male population (38.71%). Carbonated mineral water is also included in CO2 beverages.
Over-weighted and obese individuals have higher demand on fluid intake, and improved
hydration is a commonly used strategy by nutritionists to prevent overeating with the goal
of promoting a healthy weight among patients [28]. It is a worrying fact that almost 56.52%
of women and even 74.19% of men in the group of respondents do not consume water on a
daily basis.

However, it is not only the combination of poor nutrition that is related to the problem
of excessive body weight or obesity of the respondents, there is also the number of meals
and their distribution during the day (Table 4).

In order to additionally determine the frequency of the most common number of
meals in the respondents’ answers, the mode value was also calculated. Female subjects
have more meals (mode value is 3 vs. 2 of the male population, respectively). Late meals
dominate (second meal at around 4 pm) while the first meal is extremely late (regardless of
gender, around 10 or 11 am) and a lot of them have late night meals (around midnight).

The participants reduced their daily energy intake, guided by the ketogenic diet
principles. Successful progress of the subjects can be seen in Table 5.

Table 5. Observed parameters on the end of the diet program.

Observed Parameters
Female (N = 69) Male (N = 31)

Mean ± SD [Min–Max] Mean ± SD [Min–Max]

Number of examinations 6.8 ± 4.6 [1–27] 8 ± 6.9 [1–38]
No. of days in the program 79.5 ± 171.6 [41–240] 76.8 ± 155.5 [10–247]

Planned body mass (kg) 64.3 ± 8.2 [52–97] 81.6 ± 12.6 [44–99]
Achieved body mass (kg) 76.7 ± 16.1 [50.7–146] 100.4 ± 24 [60.3–221]

Weight loss (kg) 22.7 ± 13.0 [5.6–55] 29.3 ± 12.6 [8.1–52.5]
BMI (kg/m2) 25.2 ± 3.8 * [20.1–40.9] 27.8 ± 3.4 * [21.6–38.2]

Circumference reduction (cm)
Chest 19.9 ± 8.5 [2–40] 22.4 ± 10 [5–38]

Waist (narrowest part) 20.7 ± 9 [4–42] 24 ± 10 [8–50]
Waist (at the navel) 23 ± 9.9 [5–51] 26 ± 9.5 [8–41]

Hips 22.7 ± 10.9 [3–50] 26.3 ± 10.2 [8–50]
Biceps 9.3 ± 3.6 [2–17] 10.1 ± 2.8 [5–17]
Thighs 13.9 ± 5.2 [3–24] 11.6 ± 4.8 [4–24]

*: Statistically significant differences (p < 0.05); SD: standard deviation; and BMI: body mass index.

Such an approach in body weight reductions requires numerous examinations (6.8 for
females and 8 for male subjects) and a long period of time in the program (79.5 and 76.8 for
female and male subjects, respectively).

The reduction in all measured circumferences is dominantly in the waist and hip
region for both genders (more than 20 cm reduction).

Although the average body mass that was planned and achieved differs for both
genders (Table 5), the success can be seen in Figure 3, indicating the achievement in body
mass loss, as well as for the decrease in the body mass index. The first impression is
that the male subjects failed to achieve the expected body mass index of normal nutrition.
However, the male population more actively accepted physical activity, especially exercise,
and therefore their body mass index is slightly higher due to an increase in muscle mass.
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Figure 3. Box-whisker plots of: (a) reduced body masses of female and male subjects; (b) reduced
BMI for female and male subjects enrolled in the ketogenic reduction diet program. Description of
what is contained in the second panel.

An accurate perception of the expected body weight after a certain time of reduction
in energy intake is necessary for people who are on a weight loss program, but also for
nutritionists who lead the program in order to design the appropriate next step of the
weight management program [29]. Therefore, last results are devoted to the efficiency of
the modified Wishnofsky equation in predicting expected body mass after a certain phase of
their diet. It is suggested to use correlations and regressions to assess the agreement between
the two quantitative measurement methods, as in our case with the experimental values of
body mass, and the predicted one by use of modified equation by Wishnofsky. Correlation
will give an insight into the relationship between one variable and another, but will not
indicate differences, and thus is not an ideal method for assessing comparability between
methods. An alternative is the Bland–Altman graph, which as a basis for quantifying the
agreement between two quantitative measurements offers the study of the relationship of
the mean difference in the limits of agreement. The Bland–Altman graph defines intervals
of agreement, and acceptable limits must be defined in advance, based on the set goals [30].
Our agreement is presented in Figure 4. For both genders, the bias values are very close
to zero (−0.697 kg and 0.021 kg) for male and female measures, respectively. The error
is 0.0614 in prediction of male body mass and 0.058 in predicting female body mass of
a certain phase of the ketogenic diet. A certain proportion of outliers (Figure 4., dots
outside the area of limits of agreement (±1.96 × SD)) is visible, which is dominantly the
result of non-adherence to the principles of the keto diet, and precisely the difference
between the expected body mass (>5%) vs. the measured body mass during the control
examination, which is the indication of relapse. In the supplement material, Figure S1
shows the repetition of ketogenic diet phases for one relapsed participant who started
the program from the beginning for three times. The disproportion between the expected
body mass (calculated by the modified Wishnofsky’s equation) and the measured mass is
evident, and greater than ±5%. Here, it must be emphasized that none of the input data of
the respondents were taken as an outlier (precisely the extreme values, such as the body
weight of 237 kg of a male person) that influence the increase in the error. For this reason,
the regression line of the experimental values of body masses and those obtained by the
modified model is shown (Figure 5).
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Figure 4. Bland–Altman plot for body mass of different phases of ketogenic diet for (a) female and
(b) male subjects.

Figure 5. Compatibility of estimated body masses with the modified Wishnofsky equation (Wt)
during the reduction ketogenic diet and established body masses at the end of the program.

The last efficient test is presented with the regression line of the body masses measured
during the examinations and those predicted by the use of the modified equation of
Wishnofsky (Figure 5), and it is clear that, even with outliers in the data set, there is still an
extremely strong connection between the observed data (R2 = 0.9903).

4. Discussion

In order to avoid the yo-yo effect and preserve weight loss progress, Wing and Phe-
lan [31] defined six key strategies that should be followed: (i) increased level of physical
activity (1 h/day), (ii) change in eating habits in the context of avoiding energy-rich foods
and foods rich in fats, (iii) regular breakfast (latest in 2 h after waking up), (iv) regular
monitoring of body mass, (v) constant eating pattern, and (vi) reacting to minor mistakes by
correcting them in a timely manner so that they do not cause a greater return of lost body
mass and causing a negative impact on the weight loss progress. Theoretically, thebasic
principle of losing weight is quite simple: spend more energy than you take in. However,
while the fact is that we have to reduce our calorie intake, it is important to know the
exact source and amount of calories eaten, and whether the body can be influenced in the
tendency to lose and later to restore the balance. The primary “fuel” of the human body is

138



Nutrients 2023, 15, 927

glucose, i.e., carbohydrates. Therefore, when glucose stores are low, as is the case during a
ketogenic diet, the central nervous system must find an alternative source of energy [4].
Then, the energy source becomes ketone bodies–acetoacetate, beta-hydroxybutyrate, and
acetone. These molecules are the product of ketogenesis that takes place in the mitochon-
drial matrix in the liver. Under normal conditions, they are found in the body in very low
concentrations (<0.3 mmol/L). Given that they are similar in structure to glucose, they
have the ability to use a glucose transporter to cross the blood–brain barrier to be used as
an energy source when they reach a concentration of 4 mmol/L in the body. The described
state of elevated levels of ketone bodies in the body is called “ketosis” [32].

It is believed that this mechanism forces the body, due to the lack of glucose, i.e.,
carbohydrates in the diet, to consume fat reserves and thereby reduce the amount of fat
tissue and total body mass. In addition, Ketone bodies serve as an alternative energy source
for brain metabolism [33]. Bypassing the traditional ways of releasing energy through
glycolysis in favour of using ketone bodies has a significant effect on the body, and although
the entire mechanism is not fully understood, it is clear that bypassing the metabolism
of carbohydrates in the brain can also lead to positive health effects, such as a reduced
frequency of epileptic seizures [5,34].

The ketogenic diet guidelines show that the basis of the diet should be fats. Unsatu-
rated fatty acids are allowed, such as nuts, seeds, avocado, tofu, and olive oil, but a higher
intake of saturated fatty acids is emphasized, such as butter, animal fat, coconut oil, butter,
etc. Proteins are the next macronutrient when considering the share of daily energy intake.
There are no big differences in the recommendations of protein sources, but poultry meat,
fish, and red meat are recommended in larger quantities than eggs, cheese and milk, and
dairy products. In the end, carbohydrates remain [16,23]. As can be seen in our investigated
group, the (i) time of consumption and (ii) the number of meals are also important issues
related to being overweight. A study conducted among Japanese women showed that
those who consumed late dinners or bedtime snacks were more likely to skip breakfast,
which explains the late first meal of the investigated subjects. The same study concluded
that having a late dinner or bedtime snack is associated with a higher probability of being
overweight/obesity [35]. Low-carb vegetables are allowed, i.e., green leafy vegetables,
broccoli, cauliflower, Brussels sprouts, asparagus, peppers, onions, garlic, cucumber, mush-
rooms, etc. In addition to vegetables, fruits contain a high proportion of carbohydrates,
and therefore only berries are recommended [36]. Extensive literature overview in the
meta-analysis conducted by Arnotti and Bamber [26] investigated the fruit and vegetable
consumption in overweight or obese individuals (3719 participants), and it was shown
that the effect was large (−2.81 kg; p < 0.001). Lipid metabolism, which is a key factor in
planning body mass reduction, is an extremely complex process, and models are available
that simulate its development with the aim of understanding its biological processes [37].
The models can also be used to optimize and define sustainable diet indicators where the
ketogenic diet shows success [38,39]. In order to help both nutritionists and people who are
on a weight loss program, a modified model of weight gain from the Wishnofsky equation
was proposed. Having a perception of what to expect after a certain period of reduced
energy intake is more than encouraging for participants in the weight loss program [25].
Decades after Wishnofsky’s equations, different mathematical models were created for
predicting expected body mass in a certain time frame based on the law of conservation
of energy, and those models differ according to differences in the understanding of what
energy consumption entails and what the energy state of the organism entails [40]. The
main requirement of a model is its simplicity and acceptable error [37–39]. Our results
show that the prediction of expected body mass during the reduction keto diet using the
modified Wishnofsky equation is extremely well aligned with the actual progress of people
in the weight loss program, regardless of gender. The modification of the equation that
includes changes in the phases of energy intake during the ketogenic diet is important
because it is not a linear relation of body mass loss, but a non-linear process that is taken
into account in this way. An extremely important factor is the time (t) of a certain phase

139



Nutrients 2023, 15, 927

of the diet in which a person establishes control over eating habits and continues with a
further constant decrease in body weight. Deviations greater than 5.8% in women and
6.1% in men are an indicator of non-adherence to the basic principles of the diet, and are
a corrective factor for the person on a diet and their nutritionist, because one of the goals
is certainly the prevention of the “yo-yo” effect in the respondents. Thus, the so-called
confidence interval values in the Bland–Altman graph will indicate the above and that
the modified Wishnofsky equation did not successfully predict the expected body mass.
This effect was confirmed in his research by Thomas and colleagues [13], who state that
the use of the Wishnofsky’s equation is a rule that is easy to apply, but can lead to an error
in predicting body mass loss; however, in the absence of simple and most understandable
solutions, it is also an acceptable smaller error [39] in the expected value of body mass
during the weight loss program.

As with each method, this model has also a disadvantage: it does not explain the
metabolic adaptations that occur in the body, and it also does not take physical activity as
an input in the calculations. The average BMI for the male population was slightly higher
than 25 kg/m2, but according to the findings of Weber and co-worker [21], ketogenic diet
helped in preserving muscle mass in patients with cancer, and the study of Pasiakos and
coworkers [41] conducted on adults varying levels of dietary protein on body composition
during energy deficit concluded that consuming dietary protein at levels exceeding recom-
mendations may protect fat-free mass during short-term weight loss. The physical activity
in obese people [25] will also affect the increase in muscle mass and consequently affect
the BMI, although BMI does not distinguish muscle and fat mass. The focus is exclusively
on the energy intake and the time frame of its reduction. Given the limited time period of
this research, future research should include physical activity as well as the energy intake
during the stabilization of energy intake after the restriction, because the potential of the
model was confirmed also for those who had phases in which they returned to increased
and inappropriate energy intake.

5. Conclusions

The implementation of supervised body weight loss, with the guidelines of the ke-
togenic diet, is primarily focused on the reduction in carbohydrates and energy. The
proportion of body mass loss is dictated by the sequence of phases of the diet, and with
medical supervision, the third phase (of 1300 kcal) of the diet occurs after 60–80% of the tar-
get body mass loss (Wt-W0). For the patient, cognition of the flow and duration of the diet
itself is extremely important, and it is necessary to use tools such as prediction equations
for body mass loss over a certain period of time. Body mass loss in different phases of the
ketogenic diet can be effectively predicted by applying the equation by Wishnofsky, which
represents a simple mathematical model that relatively accurately predicts the course of
body mass change. It does not require a large number of input variables, which makes
it useful for clinical practice, as well to monitor the progress and helping in creating an
effective program for body weight loss, especially due to the large problem of obesity in
the world.

Given that the modified model of Wishnofksy’s equation is proposed for predicting
body mass reduction, taking into account that the person adheres to the prescribed guide-
lines and certain energy intake, the errors that occur are the result of the selection and
procedures of the subjects, not the model itself. In this paper, an algorithm for the flow of
the phases of the keto diet is generated. Following this algorithm leads to a reliable result
of the desired weight. This is a good start for further research, as the next step would be to
create a program that generates a variety of food and satisfies this algorithm model.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu15040927/s1, Figure S1: Trend of the expected body mass (BM)
and measured body mass for a relapsed individual.; Table S1: Average energy and nutrient content of
the 5th phase of the ketogenic diet.
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Abstract: Obesity is a complex and chronic disease that raises the risk of various complications. Sub-
stantial reduction in body weight improves these risk factors. Lifestyle changes, including physical
activity, reduced caloric ingestion, and behavioral therapy, have been the principal pillars in the
management of obesity. In recent years, pharmacologic interventions have improved remarkably.
The Semaglutide Treatment Effect in People with Obesity (STEP) program is a collection of phase-III
trials geared toward exploring the utility of once-weekly 2.4 mg semaglutide administered subcu-
taneously as a pharmacologic agent for patients with obesity. All the STEP studies included diet
and exercise interventions but at different intensities. This review paper aims to explore the impact
of the behavioral programs on the effect of semaglutide 2.4 mg on weight loss. The results of the
STEP trials supported the efficacy of high-dose, once-weekly 2.4 mg semaglutide on body weight
reduction among patients with obesity with/without diabetes mellitus. Semaglutide was associated
with more gastrointestinal-related side effects compared to placebo but was generally safe and well
tolerated. In all the STEP studies, despite the varying intestines of the behavioral programs, weight
loss was very similar. For the first time, there may be a suggestion that these behavioral programs
might not increase weight reduction beyond the effect of semaglutide. Nevertheless, the importance
of nutritional support during substantial weight loss with pharmacotherapy needs to be re-evaluated.

Keywords: semaglutide; obesity; STEP program; weight loss; weight management; clinical trial; GLP-1

1. Introduction

Obesity is a complex and chronic disease and has a wide array of complications,
including hypertension, hypercholesteremia, type 2 diabetes, cardiovascular disease, and
some cancers [1–6]. Lifestyle interventions, comprising physical activity, reduced caloric
ingestion, and behavioral therapy, have been the principal pillars in the management of
obesity supported by pharmacotherapy and bariatric surgery [7–9]. However, weight
loss maintenance has remained challenging [10]. Pharmacotherapy is usually used for
individuals with a body mass index (BMI) ≥30 kg/m2 or ≥27 kg/m2 with ≥1 coexisting
obesity complication [7–9], but the cost, efficacy, and tolerability curbs its utilization [11].

Only a few obesity medications have received approval by the US Food and Drug Ad-
ministration (FDA), namely naltrexone-bupropion combination, phentermine-topiramate
combination, orlistat, setmelanotide, liraglutide, and semaglutide [12–14]. These medi-
cations, except phentermine-topiramate, are also approved by the European Medicines
Agency (EMA) to be used in Europe [15,16]. The mechanism of actions and the approval
status for these medications are presented in Table 1.
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Table 1. Mechanism of action and approval status of main obesity medications [15,16].

Medication Mechanism of Action
Year of FDA
Approval

Year of EMA
Approval

Naltrexone-
bupropion

Reduces energy consumption
via potential synergistic effects
on pro-opiomelanocortin
neurons.

2014 2015

Phentermine-
topiramate

Phentermine is an
amphetamine-like appetite
suppressant working through
inhibition of noradrenaline
reuptake in the hypothalamus,
while topiramate is an
anticonvulsant, which has
some weight-loss effects, but
its mechanism of action is not
fully understood.

2012 Not approved

Orlistat
Decreases fat absorption by
inhibiting the gastric and
pancreatic lipases.

1999 1998

Setmelanotide

Melanocortin 4 (MC4) receptor
agonist, works by restoring
impaired MC4 receptor
pathway activity caused by
genetic deficits.

2020 2021

Liraglutide

Glucagon-like peptide-1
(GLP-1) receptor agonist that
reduces hunger. Additionally,
increases satiety.

2014 2015

Semaglutide

Glucagon-like peptide-1
(GLP-1) receptor agonist that
reduces hunger. Additionally,
increases satiety.

2021 2022

Semaglutide belongs to the family of glucagon-like peptide-1 analogs. Mechanistically,
semaglutide is an incretin, which blocks glucagon release, postpones gastric clearing,
reduces energy intake, stimulates satiety, and reduces hunger and appetite via peripheral
and central nervous system actions [17]. Semaglutide was initially approved for the
management of type 2 diabetes mellitus [18]. The observation that the GLP-1 analogs
reduce body weight prompted the exploration of this class of medications as drugs to
treat obesity [19–21].

The Semaglutide Treatment Effect in People with Obesity (STEP) program is a collec-
tion of 15 multi-institutional, phase-III, randomized, double-blind, placebo-controlled trials
geared toward the authorization of once-weekly 2.4 mg semaglutide administered subcuta-
neously as an obesity medication. Each trial was designed to investigate the efficacy and
safety of 2.4 mg semaglutide in people with overweight or obesity, taking in consideration
patients’ ethnicities, certain comorbidities, different age groups, or the parallel control arm
interventions. Six of the program trials (STEP 1–4, 6, and 8) were published; the STEP 5
trial has been completed but not yet published, and the remining trials, including STEP
7, have not been completed yet. Herein, we document a narrative review focused on the
clinical summary of the STEP trials, highlight limitations, and outline future directions,
with a specific focus on the potential future role of lifestyle changes in obesity management
involving such effective medications.
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2. The STEP 1 Trial

The STEP 1 trial (ClinicalTrials.gov identifier: NCT03548935) included adults with
obesity or overweight (BMI ≥ 27 kg/m2) with at least one obesity complication [22]. Major
exclusion criteria included diabetes mellitus, HbA1c ≥ 6.5%, or the use of anti-obesity
medications in the past 12 weeks. In a 2:1 ratio, the trial randomized 1961 adults to either
semaglutide or placebo. Semaglutide was administered in a dose-escalated fashion: the
initial once-weekly dose of 0.25 mg was sustained for four weeks; the dose was then
titrated to 0.5 mg, 1 mg, 1.7 mg, and 2.4 mg every four weeks. The 2.4 mg once-weekly dose
was then maintained for 54 weeks. Overall, the duration of the study was 75 weeks; the
treatment (semaglutide or placebo) lasted for 68 weeks, trailed by a follow-up interval of
7 weeks with no medication. The protocol included an unsupervised lifestyle intervention
administered to all participants, consisting of a daily 500 kcal deficit diet and weekly
150 min of physical activity. The average age and BMI of the participants were 46 years
and 37.9 kg/m2, respectively. The majority of the participants were females (74.1%) and of
White ethnicity (75.1%). Less than half of the participants had prediabetes (43.7%).

Semaglutide with lifestyle intervention resulted in more weight loss over 68 weeks
compared to placebo with lifestyle intervention (mean difference (MD) = –12.4%, 95%
confidence interval (CI): −13.4, −11.5). Moreover, the proportions of participants treated
with semaglutide achieving ≥5%, ≥10%, and ≥15% weight loss at week 68 were 86.4%,
69.1%, and 50.5%, respectively. In addition, the semaglutide arm had substantial improve-
ments in various anthropometric (BMI and waist circumference), inflammatory (C-reactive
protein), blood pressure (diastolic and systolic), glycemic (HbA1c and fasting plasma glu-
cose), and lipid (total cholesterol, triglycerides, and low-density lipoprotein cholesterol)
parameters in contrast to the placebo arm. Semaglutide also substantially improved phys-
ical function scores compared to the placebo assessed by the 36-item Short Form Health
Survey (SF-36) and the Impact of Weight on Quality of Life–Lite Clinical Trials Version
(IWQOL-Lite-CT) questionnaire.

The rate of any reported side effect was higher with semaglutide contrasted with
placebo (89.7% vs. 86.4%, respectively). The number of reported serious side effects
was greater in the semaglutide arm compared to the placebo arm. The rate of drug
termination was also greater in the semaglutide arm (7.0% vs. 3.1%), mostly due to
gastrointestinal-related symptoms (4.5% vs. 0.8%). Gallbladder-related symptoms occurred
in 2.6% of patients in the semaglutide arm and 1.2% in the placebo arm. The most commonly
documented side effects in ≥10% of the semaglutide vs. placebo patients were nausea
(44.2% vs. 17.4%), diarrhea (31.5% vs. 15.9%), vomiting (24.8% vs. 6.6%), constipation
(23.4% vs. 9.5%), and nasopharyngitis (21.5% vs. 20.3%). The rates of hypoglycemia, acute
pancreatitis, and injection site reactions were infrequent in the participants who received
semaglutide (0.6%, 0.2%, and 5%, respectively).

In summary, among patients with BMI ≥ 27 kg/m2, the STEP 1 trial concluded that
once-weekly 2.4 mg semaglutide plus usual lifestyle adjustment was more beneficial than
lifestyle interventions alone in reducing body weight and other cardiometabolic risk factors.

3. The STEP 2 Trial

The STEP 2 trial (ClinicalTrials.gov identifier: NCT03552757) included adults with
BMI ≥ 27 kg/m2 and HbA1c ranging from 7% to 10%; all participants were diagnosed
with type 2 diabetes mellitus ≥6 months prior to study screening [23]. In a 1:1:1 ratio, the
trial randomized 1210 participants to 2.4 mg semaglutide, 1.0 mg semaglutide, or placebo.
All the participants in this study had the same lifestyle intervention as the STEP 1 trial.
Semaglutide was administered in a dose-escalated fashion until reaching the targeted
maintenance doses. Overall, the study duration was 75 weeks; the treatment (semaglutide
or placebo) lasted for 68 weeks, trailed by a follow-up period of 7 weeks with no medication.
Participants’ average age and BMI were 55 years and 35.7 kg/m2, respectively. The average
HbA1c and interval of type 2 diabetes mellitus were 8.1% and 8 years. Slightly more than
half of the participants were females (50.9%) and of White ethnicity (62.1%).
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The 2.4 mg semaglutide with lifestyle intervention reduced body weight more than
placebo and lifestyle intervention during the 68 weeks (MD = –6.2%, 95% CI: −7.3, −5.2).
Moreover, the proportions of participants who had ≥5%, ≥10%, and ≥15% weight loss at
week 68 were 68.8%, 45.6%, and 25.8%, respectively. Semaglutide also improved systolic
blood pressure, HbA1c, waist circumference, and physical function scores. In addition,
the analysis of exploratory secondary endpoints revealed beneficial reductions in lipid
(triglycerides, very-low-density lipoprotein cholesterol, and free fatty acids), glycemic
(HbA1c, fasting serum insulin, and fasting plasma glucose), inflammatory (C-reactive
protein), and blood pressure (diastolic) profiles in support of the semaglutide 2.4 mg arm
compared to the placebo arm.

The rate of any reported side effect was greater in the 2.4 mg semaglutide arm con-
trasted with the placebo arm (87.6% vs. 76.9%). Moreover, the number of reported serious
side effects was comparable between both treatment arms. Additionally, the rate of drug
termination was higher in the semaglutide 2.4 mg arm (6.2% vs. 3.5%), mostly secondary to
gastrointestinal-related symptoms (4.2% vs. 1.0%). Gallbladder-related symptoms occurred
in only 0.2% and 0.7% of the semaglutide 2.4 mg and placebo arms, respectively. In contrast
with the placebo arm, the most commonly documented side effects in ≥10% of the semaglu-
tide 2.4 mg patients included nausea (33.7% vs. 9.2%), diarrhea (21.3% vs. 11.9%), vomiting
(21.8% vs. 2.7%), constipation (17.4% vs. 5.5%), and nasopharyngitis (16.9% vs. 14.7%). The
rates of hypoglycemia, acute pancreatitis, and injection site reactions were infrequent in the
semaglutide 2.4 mg arm (5.7%, 0.2%, and 3.0%, respectively).

In summary, among adults with type 2 diabetes mellitus and BMI ≥ 27 kg/m2, the
STEP 2 trial concluded that once-weekly 2.4 mg semaglutide plus lifestyle modification
was better than lifestyle modification alone for weight loss and other cardiometabolic
risk factors.

4. The STEP 3 Trial

The STEP 3 trial (ClinicalTrials.gov identifier: NCT03611582) included adults with
the same inclusion and exclusion criteria as the STEP 1 trial [22,24]. In a 1:1 ratio, the trial
randomized 611 participants to either semaglutide combined with very intensive behavior
therapy or placebo with very intensive behavior therapy. The intensive behavior therapy
was the major difference between STEP 3 compared to STEP 1 and STEP 2 trials [22,23].
It comprised a low-calorie diet during the opening 8 weeks, in addition to concentrated
behavioral therapy sessions and physical exercise during the 68 weeks.

The participants were provided with a low-calorie diet (1000–1200 kcal/day) served
as meal replacements for the first 8 weeks. Then, they were gradually transferred to hypo-
caloric diet (1200–1800 kcal/day) of conventional food for the remainder of the trial. After
eight weeks, the calorie intake was calculated based on randomization body weight unless
the participant’s BMI reached ≤22.5 kg/m2. The recommended caloric intake was then
re-calculated with no energy deficit until the end of the trial.

Physical activity was prescribed from randomization and was tailored to achieve a goal
of 100 min of physical activity/week. Participants were counseled to incorporate moderate-
intensity activities within the exercises and were requested to increase their weekly physical
activity target by 25 min every four weeks to reach 200 min/week. Furthermore, a total of
30 counseling sessions of intensive behavioral therapy were provided over the 68 weeks,
covering various topics related to dietary changes, physical activities, and behavioral
strategies to ensure the appropriate implementation and compliance with the intervention.

Similar to the STEP 1 and STEP 2 trials [22,23], semaglutide was administered in a
dose-escalated fashion until reaching the targeted maintenance dose. The duration of the
study was 75 weeks; the treatment (semaglutide with very intensive behavior therapy or
placebo with very intensive behavior therapy) lasted for 68 weeks, trailed by a follow-up
period of 7 weeks with no medication. The average age and BMI of participants were
46 years and 38 kg/m2, respectively. The majority of the research participants were females
(81.0%) and of White ethnicity (76.1%).
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Semaglutide with very intensive behavior therapy resulted in a more significant weight
loss from baseline to week 68 compared to placebo with very intensive behavior therapy
(MD = –10.3%, 95% CI: −12.0, −8.6). Moreover, the proportions of research participants
who achieved ≥5%, ≥10%, and ≥15% body weight loss at week 68 were 86.6%, 75.3%,
and 55.8%, respectively. The placebo with intensive behavior therapy was also effective,
albeit less so than semaglutide with intensive behavior, in causing ≥5%, ≥10%, and ≥15%
weight loss at 68 weeks in 46.7%, 27.0%, and 13.2% of patients, respectively. Semaglutide
had significant improvements in systolic blood pressure and waist circumference but was
not different in the physical functioning scores compared to the placebo arm. Similar to the
previous STEP trials, the analysis of exploratory secondary endpoints revealed beneficial
reductions in various lipid, glycemic, inflammatory, and blood pressure (diastolic) profiles
in support of the semaglutide arm compared to the placebo arm.

The rate of ≥1 reported side effect was comparable between the semaglutide and
placebo arms (95.8% vs. 96.1%). Moreover, the number of reported serious side effects was
greater in the semaglutide arm contrasted with the placebo arm (9.1% vs. 2.9%). Addi-
tionally, the rate of drug termination was higher with semaglutide (5.9% vs. 2.9%), mostly
secondary to gastrointestinal-related symptoms (3.4% vs. 0.0%). Gallbladder-related symp-
toms took place in only 4.9% and 1.5% of the semaglutide and placebo arms, respectively.
In contrast with the placebo arm, the most common side effects in ≥10% of the semaglu-
tide arm included nausea (58.2% vs. 22.1%), constipation (36.9% vs. 24.5%), diarrhoea
(36.1% vs. 22.1%), vomiting (27.3% vs. 10.8%), and nasopharyngitis (22.1% vs. 24.0%). The
rates of hypoglycemia, acute pancreatitis, and injection site reactions were infrequent among
individuals who received the semaglutide therapy (0.5%, 0%, and 5.4%, respectively).

In summary, the STEP 3 trial concluded that semaglutide plus intensive behavior
therapy, including an initial low-calorie intake and rigorous behavioral therapy, culminated
in clinically meaningful improvements in body weight and other cardiometabolic risk
factors compared with the placebo treatment.

5. The STEP 4 Trial

The STEP 4 trial (ClinicalTrials.gov identifier: NCT03548987) [25] included adults
with the same inclusion and exclusion criteria as the STEP 1 and STEP 3 trials [22,24].
For all research participants (n = 902), semaglutide was administered in a dose-escalated
fashion for a 20-week run-in period (16 weeks of dose intensification starting with 0.25 mg
until reaching 2.4 mg, trailed by 4 weeks of maintenance dose 2.4 mg). Only patients
who were able to tolerate semaglutide 2.4 mg were included in the randomization period,
thus excluding those who could not achieve the top dose of the medication. Overall, the
duration of the study was 75 weeks; the run-in period lasted for 20 weeks, trailed by a
randomization in 2:1 ratio (n = 803) to either 2.4 mg semaglutide or placebo and followed by
a follow-up period of 7 weeks with no medication. The lifestyle intervention was a 500 kcal
deficit diet and 150 min of exercise per week, similar to STEP 1, but less intensive than
STEP 3 [22,24]. The average age and BMI of participants were 46 years and 38.4 kg/m2,
respectively. The majority of the research participants were females (79.0%) and of White
ethnicity (83.7%).

After the 20-week run-in interval, the average weight loss was 10.6%, and several
improvements were witnessed in blood pressure (systolic and diastolic), HbA1c, lipid
parameters, and waist circumference. Between week 20 to week 68, participants random-
ized to ongoing semaglutide continued to lose weight as opposed to those randomized
to the placebo arm who gained weight during the same period (MD = –14.8%, 95% CI:
−16.0, −13.5). Moreover, the continued semaglutide arm achieved significant decreases in
systolic blood pressure (MD = –3.9 mmHg, 95% CI: −5.8, −2.0) and waist circumference
(MD = −9.7 cm, 95% CI: −10.9, −8.5). Furthermore, the physical function scores were
significantly better with continued semaglutide. Similar, to the earlier STEP trials [22–24],
the analysis of exploratory secondary endpoints revealed beneficial reductions in various
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lipid and glycemic profiles in support of the continued semaglutide arm contrasted with
the switched placebo arm.

The rate of any adverse event was greater in the continued semaglutide arm than the
switched placebo arm (81.3% vs. 75.0%). The number of serious side effects was higher in
the continued semaglutide arm contrasted with the switched placebo arm (7.7% vs. 5.6%).
However, the rate of drug termination was comparable between both arms (2.4% vs. 2.2%).
Gastrointestinal and gallbladder-related symptoms took place in 41.9% and 2.8% of the
continued semaglutide arm and in 26.1% and 3.7% of the switched placebo arm. In
contrast with the switched placebo arm, the most commonly documented side effects
in ≥5% of the continued semaglutide arm included diarrhoea (14.4% vs. 7.1%), nausea
(14.0% vs. 4.9%), constipation (11.6% vs. 6.3%), nasopharyngitis (10.8% vs. 14.6%), and
vomiting (10.3% vs. 3.0%). The rates of hypoglycemia, acute pancreatitis, and injection
site reactions were infrequent in the continued semaglutide arm (0.6%, 0%, and 2.6%,
respectively).

In summary, the STEP 4 trial concluded that once-weekly continued 2.4 mg semaglu-
tide after a 20-week run-in interval plus standard lifestyle modifications led to sustained
body weight loss over the next 48 weeks contrasted with individuals who switched to
placebo who started regaining weight.

6. The STEP 5 Trial

The STEP 5 trial (ClinicalTrials.gov identifier: NCT03693430) included adults with the
same inclusion and exclusion criteria as the STEP 1, STEP 3, and STEP 4 trials [22,24–26].
In a 1:1 ratio, the trial randomized 304 participants to either semaglutide with standard
lifestyle modifications of a 500 kcal deficit diet and 150 min of exercise per week or placebo
with standard lifestyle modifications of a 500 kcal deficit diet and 150 min of exercise per
week. Semaglutide was administered in a dose-escalated fashion until reaching the targeted
maintenance dose of 2.4 mg (end of week 20), which was continued until week 104. The
study continued for 111 weeks; the treatment (semaglutide or placebo) lasted for 104 weeks,
trailed by a follow-up period of 7 weeks with no medication. The average age and BMI
of participants were 47 years and 38.5 kg/m2, respectively. The majority of the research
participants were females (78.0%) and of White ethnicity (93.1%).

Semaglutide with standard lifestyle modifications achieved more weight loss from base-
line to week 104 contrasted with placebo with standard lifestyle modifications (MD = −12.6%,
95% CI: −15.3, −9.8). Moreover, the proportions of research participants with ≥5%, ≥10%,
≥15%, and ≥20% weight loss at week 104 with semaglutide were 77.1%, 61.8%, 52.1%, and
36.1%, respectively. In addition, the semaglutide arm had significant improvements in various
cardiovascular risk factors, such as systolic blood pressure (MD = −4.2 mmHg, 95% CI: −7.3,
−1.0), diastolic blood pressure (MD = −3.7 mmHg, 95% CI: −6.1, −2.1), C-reactive protein
(MD = −53.1%, 95% CI: −63.2, −40.0), and waist circumference (MD = −9.2 cm, 95% CI:
−12.2, −6.2). The semaglutide arm also had significant improvements in various metabolic
risk factors, such as HbA1c (MD = −0.33%, 95% CI: −0.41, −0.25), fasting plasma glucose
(MD = −9.2 mg/dL, 95% CI: −12.0, −6.5), fasting serum insulin (MD = −27.4%, 95% CI: −39.3,
−13.3), and triglycerides (MD = −22.0%, 95% CI: −29.8, −13.2).

The rate of any adverse event was greater after semaglutide compared to placebo
(96.1% vs. 89.5%). The number of reported serious side effects was unexpectedly lower
in the semaglutide arm contrasted with the placebo arm (7.9% vs. 11.8%). The rate
of drug termination was similar in the semaglutide and placebo arms (5.9% vs. 4.6%).
Gastrointestinal and gallbladder-related symptoms took place in 82.2% and 2.6% of the
semaglutide arm. In contrast, gastrointestinal and gallbladder-related symptoms took place
in 53.9% and 1.3% of the placebo arm. The rates of hypoglycemia, acute pancreatitis, and
injection site reactions were rare in the semaglutide arm (2.6%, 0%, and 6.6%, respectively).

In summary, the STEP 5 trial concluded that once-weekly semaglutide dose (plus
lifestyle modifications) led to sustained body after two years of treatment, improved
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cardiovascular and metabolic risk factors, and depicted satisfactory safety profile compared
with placebo.

7. The STEP 6 Trial

The STEP 6 trial (ClinicalTrials.gov identifier: NCT03811574) included east Asian
adults, with or without type 2 diabetes, who reported a failed weight loss dietary attempt
and had a BMI ≥ 27 kg/m2 with two or more weight-related medical problems or a
BMI ≥ 35 kg/m2 with at least one weight-related medical problem [27]. The main exclu-
sion criteria were previous or planned anti-obesity treatment or surgery and bodyweight
changes of 5 kg or more in the past 3 months before screening. The Asian ethnicity was the
major difference between STEP 6 compared to the previous STEP trials (the majority were
White) [22–26]. In a 4:1:2:1 ratio, the trial randomized 401 participants to either semaglutide
2.4 mg or placebo, or semaglutide 1.7 mg or placebo. The dose was administered in an
escalated fashion until reaching the targeted doses. All the participants were advised to
follow the standard lifestyle modifications similar to STEP 5 trial. Overall, the duration of
the study was 75 weeks; the treatment lasted for 68 weeks, trailed by a follow-up interval
of 7 weeks with no medication. The average age and BMI of participants were 51 years and
31.9 kg/m2, respectively. All the research participants were Asian (100%), and the majority
were males (63%).

The semaglutide with lifestyle intervention in both doses (2.4 mg and 1.7 mg) re-
duced body weight more than placebo with lifestyle intervention during the 68 weeks
(MD = −11.06%, 95% CI: −12.88, −9.24 and MD = −7.52%, 95% CI: −9.62, −5.43, re-
spectively). Moreover, the proportions of participants who had ≥5%, ≥10%, and ≥15%
weight loss at week 68 with semaglutide 2.4 mg were 83%, 61%, and 41%, respectively.
The treatment arm also showed significant reductions in waist circumference, systolic
blood pressure, and HbA1c. In addition, the analysis of exploratory secondary endpoints
revealed favorable reductions among semaglutide groups in BMI, fasting plasma glucose,
C-reactive protein, and plasminogen activator inhibitor-1, lipid profile (except for high-
density lipoprotein cholesterol). An improvement in the physical function score was noted
in the semaglutide 2.4 mg group. From baseline to week 68, greater reductions in abdominal
visceral fat area were observed in the semaglutide 2.4 mg (−40%) and 1.7 mg (−22.2%)
groups than the placebo group (−6.9%).

The rate of reported adverse events was 86% in the semaglutide 2.4 mg group, 82% in
the semaglutide 1.7 mg group, and 79% in the placebo group. Unexpectedly, the percentage
of serious adverse events was lower in the semaglutide 2.4 mg arm (5%) contrasted with
semaglutide 1.7 mg and placebo arms (7% each). The rate of drug termination was higher
in semaglutide groups (3%) compared to placebo (1%). Gallbladder-related symptoms
took place in only 1% in all groups. Gastrointestinal-related symptoms, which were
mostly mild to moderate, were more common in semaglutide 1.7 mg group (64%) than
semaglutide 2.4 mg group (59%) or placebo group (30%). The rates of hypoglycemia and
acute pancreatitis were 0% in all arms. Injection site reactions were reported in only four
participants in the semaglutide 2.4 mg arm.

In summary, among east Asian patients with BMI ≥ 27 kg/m2, with or without type
2 diabetes, the STEP 6 trial concluded that once-weekly 2.4 mg semaglutide plus lifestyle
adjustment led to significant reductions in body weight, abdominal visceral fat, and other
cardiometabolic risk factors compared with placebo in this population.

8. The STEP 8 Trial

The STEP 8 trial (ClinicalTrials.gov identifier: NCT04074161) was an open label with
treatment arms and double-blinded against matched placebo arms [28]. It included adults
with the same inclusion and exclusion criteria as the STEP 1 trial. In a 3:1:3:1 ratio, the trial
randomized 338 participants to either once-weekly semaglutide (dose-escalation to 2.4 mg
over 16 weeks), or matching placebo, or once-daily liraglutide (dose escalation to 3.0 mg
over 4 weeks), or matching placebo. Both semaglutide and liraglutide are long-acting
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GLP-1 analogs. As a result of the substitution of amino acids that prevents the degeneration
of dipeptidyl peptidase 4 and addition of C18 fatty acids, semaglutide has a half-life of
165 h, whereas liraglutide’s half-life is about 13 h [26]. All the participants in this trial had
the same lifestyle intervention as the STEP 1 trial. The study continued for 75 weeks; the
treatments lasted for 68 weeks, trailed by a 7-week follow-up period with no medications.
The mean age and BMI of participants were 49 years and 37.5 kg/m2, respectively. The
majority of the research participants were females (78.4%) and of White ethnicity (73.7%).

Semaglutide with lifestyle modifications resulted in a more significant weight loss
from baseline to week 68 compared to liraglutide with lifestyle modifications (MD = −9.4%,
95% CI: −12.0, −6.8). Furthermore, the proportions of the semaglutide patients who
achieved ≥5%, ≥10%, ≥15%, and ≥20% body weight loss at week 68 were 87.2%, 70.9%,
55.6%, and 38.5%, respectively. Liraglutide was also effective, albeit less than semaglutide,
in causing ≥5%, ≥10%, ≥15%, and ≥20% weight loss at 68 weeks in 58.1%, 25.6%, 12%,
and 6% of participants, respectively. At week 68, reductions in BMI, waist circumference,
blood pressure, HbA1c, fasting plasma glucose, triglyceride, total cholesterol, very-low-
density lipoprotein cholesterol, and C-reactive protein levels were significantly greater with
semaglutide compared to liraglutide.

The rate of any reported adverse events was 95.2% with semaglutide, 96.1% with
liraglutide, and 95.3% with placebo. The number of reported serious side effects was higher
with liraglutide (11%) compared to semaglutide (7.9%) or placebo (7.1%). Moreover, drug
termination was more common in the liraglutide arm (12.6%) vs. semaglutide (3.2%) and
placebo (3.5%). Gastrointestinal- and gallbladder-related symptoms were reported in 84.1%
and 0.8% with semaglutide, 82.7% and 3.1% with liraglutide, and 55.3% and 1.2% with
placebo. Hypoglycemia and acute pancreatitis were reported only with the liraglutide
group (0.8% both). The injection site reactions were observed with liraglutide (11%) and
placebo (5.9%) but not with semaglutide (0%).

In summary, the STEP 8 trial concluded that once-weekly semaglutide with lifestyle
modifications was significantly superior to once-daily liraglutide with lifestyle modifica-
tions in body weight reduction and other cardiometabolic risk factors improvement.

9. Discussion

The STEP program demonstrated that once-weekly semaglutide with various intensity
of lifestyle modifications was superior to placebo or once-daily liraglutide with lifestyle
modifications in body weight reduction and other cardiometabolic risk factors improve-
ment. The main secondary efficacy endpoints are summarized in Table 2. The STEP 2 trial
included individuals with type 2 diabetes mellitus and obesity [23]. In the STEP 6 trial,
only 25% of the patients had diabetes [27]. Conversely, the STEP 1, 3, 4, 5, and 8 trials
did not include patients with type 2 diabetes mellitus [22,24–26,28], which may explain
the superior weight loss in STEP 1, 3–6, and 8. The purpose of the STEP trials was for
semaglutide 2.4 mg to gain regulatory approval and, as such, the two primary efficacy
outcomes were percentage weight loss and the proportion of individuals achieving ≥5%
weight loss at the endpoint.

In a recent meta-analysis of randomized controlled trials comparing the efficacy of
different obesity medications, it showed that the percentage of bodyweight reduction from
baseline with phentermine-topiramate was 7.97%, naltrexone-bupropion was 4.11%, orlistat
was 3.16%, and liraglutide was 4.68%. Phentermine-topiramate and naltrexone-bupropion
combinations were associated with the most adverse events. Their findings suggested that
semaglutide might be the most effective among all the different obesity medications [15].
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The STEP 4 trial (a withdrawal study) appraised the cessation of semaglutide therapy
after a 20-week run-in interval. STEP 4 showed that individuals who continued semaglutide
therapy had sustained a significant body weight loss contrasted with those who switched to
placebo who started regaining weight [25]. Six of the STEP trials employed a semaglutide
dose of 2.4 mg, except for the STEP 2 and STEP 6 trials, which also had an arm using
semaglutide 1.0 mg and 1.7 mg, respectively. STEP 2 and 6 demonstrated that the higher
semaglutide dose resulted in more body weight loss but also had fewer adverse effects,
reflecting a dose–response effect. The STEP 5 trial had the longest duration of all STEP
trials (104 weeks on medication) and explored the long-term effect of 2.4 mg semaglutide
contrasted with placebo on body weight and various cardiometabolic risk factors over
a two-year period. In the STEP 8 trial, the reduction in body weight was significantly
greater with weekly semaglutide injection when compared to daily liraglutide injection,
accompanied by significant improvements in various cardiometabolic risk factors. The
analysis of exploratory secondary endpoints in all the STEP trials revealed beneficial effects
on blood pressure, glycemic, lipid, inflammatory, and anthropometric parameters.

Overall, semaglutide had a good safety profile without any new safety signals not pre-
viously detected in other GLP-1 analogs. The rate of serious adverse events and proportion
of side effects leading to drug termination was generally similar to other GLP-1 analogs.
The tolerability profile and main adverse events for STEP 1–6 and 8 are presented in Table 3.
The vast majority of the drug-associated adverse events were mild gastrointestinal-related
symptoms. The rates of hypoglycemia, acute pancreatitis, gallbladder-related symptoms,
and injection site reactions were low in the semaglutide groups and often comparable
with the placebo groups. These will, however, need to be monitored in post-market-
surveillance schemes.

The STEP trials have several strengths, including the scientifically robust method-
ologies, as reflected by the phase-III, large-sized, multicentric, double-blind, and placebo-
controlled study designs. Limitations include the unintentional biased gender and ethnicity,
as the vast majority of the recruited research participants were White females. Patients
were recruited from routine clinical services where the usual demographic is reflected in
the trials with a preponderance of females. These sociodemographic factors could have
introduced a bias in the pooled outcomes. However, in the STEP 6 trial, all participants
were east Asian, and the majority were males, and the outcomes were almost similar to
the other STEP trials. Another limitation includes the short-term follow-up interval of
roughly 68 weeks. This limitation was partly addressed in the STEP 5 trial, which provided
a much longer follow-up of two years. However, obesity is a chronic disease and will
require chronic treatment.

All STEP trials included a lifestyle intervention. However, only the STEP 3 trial incorporated
very intensive lifestyle modifications, which included a low-calorie intake during the opening
8 weeks and then an additional 30 weeks of intensive behavioral therapy sessions with registered
dieticians [24]. As a consequence, the patients in the placebo arm lost almost double the amount
of weight recorded in the placebo arms of STEP 1, 2, 5, and 6 [22,23,26,27]. The placebo arm in
STEP 3 lost 5.7% of weight, while the placebo arm in STEP 1 lost 2.4%, STEP 2 lost 3.4%, STEP
5 lost 2.6%, and STEP 6 lost 2.1%. Weight loss in the placebo arm of STEP 4 was 5%, but these
patients were busy regaining weight after being treated with semaglutide for 20 weeks before
being switched to only receiving standard lifestyle modifications. However, the approach of
short-term drug treatment followed by standard lifestyle modifications in STEP 4 appeared as
effective as very intensive lifestyle modification with placebo treatment. It was striking that the
total weight loss achieved at the end of the treatment period in the semaglutide arms for STEP 1
was 14.9%, STEP 3 was 16%, STEP 4 was 17.4%, STEP 5 was 15.2%, STEP 6 was 13.2%, and STEP
8 was 15.8%. Only STEP 3 had very intensive lifestyle modifications, and it was expected that,
similar to SCALE intensive behavior therapy, the addition of the intensive lifestyle modifications
to semaglutide 2.4 mg would have added significantly more weight loss than when semaglutide
2.4 mg was combined with standard lifestyle modifications [29,30]. This raises the question of
whether semaglutide 2.4 mg requires any lifestyle modification to be effective.
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Other successful obesity treatments, such as bariatric surgery, do not appear to require
lifestyle modifications to provide any more weight loss within the first year after surgery [31,32].
This may be due to the subject’s obesity being effectively treated with surgery. The changes
in food intake behavior after successful obesity treatment may not be amplified by giving the
patient a more stringent diet or exercise regimen. If this is true, then the cost of providing effective
obesity care will significantly reduce in the first year because it is often the requirement for
lifestyle modifications, which makes it difficult for practitioners to prescribe obesity treatments.
This does not mean that lifestyle modifications may not be helpful in the longer term because, as
the STEP trials have shown, there are also non-responders and partial responders to semaglutide.
The addition of lifestyle modification may provide additional weight loss to those who only
partially respond to the medication and thus result in substantial additional health gain; for
example, in STEP 3 trial, 75.3% of patients achieved >10% weight loss compared to 69.1%
in STEP 1.

Another major unexplored consequence of >15% weight loss with semaglutide may
be the inevitable lean muscle mass loss. This is also evident after liraglutide and bariatric
surgery [32–35]. The challenge is that patients who consume so few calories because of
the effective medication cannot consume enough protein in their daily intake to stop them
from becoming catabolic and losing muscle. Exercising these patients further may only
result in them becoming more catabolic and losing even more muscle mass [36]. Thus,
nutritional therapies once patients are in a steep negative energy balance may have to focus
on optimizing protein intake to prevent muscle mass loss. This may further improve the
functional gains made by patients if they can achieve 15% weight loss and maintain most
of the lean muscle mass [31,37]. These hypotheses, however, require further testing, as our
suggestions are purely speculation based on the similarities between trials, which used
intensive or less intensive lifestyle changes.

10. Conclusions

In summary, the results of the STEP trials supported the efficacy of high-dose, once-
weekly 2.4 mg semaglutide on body weight reduction among individuals with obesity.
While semaglutide resulted in more gastrointestinal-related side effects, the medication
appeared generally safe and well tolerated. The drug may be so effective that the role
of nutritional therapy may have to be redefined, and a shift away from using nutritional
therapy to achieve more weight loss to rather using nutritional therapy to achieve more
health gain may be required.
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Abstract: The duodenal-jejunal bypass liner (Endobarrier) is an endoscopic treatment for obesity
and type 2 diabetes mellitus (T2DM). It creates exclusion of the proximal small intestine similar
to that after Roux-en-Y Gastric Bypass (RYGB) surgery. The objective of this study was to employ
a reductionist approach to determine whether bypass of the proximal intestine is the component
conferring the effects of RYGB on food intake and sweet taste preference using the Endobarrier as a
research tool. A nested mechanistic study within a large randomised controlled trial compared the
impact of lifestyle modification with vs. without Endobarrier insertion in patients with obesity and
T2DM. Forty-seven participants were randomised and assessed at several timepoints using direct
and indirect assessments of food intake, food preference and taste function. Patients within the
Endobarrier group lost numerically more weight compared to the control group. Using food diaries,
our results demonstrated similar reductions of food intake in both groups. There were no significant
differences in food preference and sensory, appetitive reward, or consummatory reward domain of
sweet taste function between groups or changes within groups. In conclusion, the superior weight
loss seen in patients with obesity and T2DM who underwent the Endobarrier insertion was not due
to a reduction in energy intake or change in food preferences.
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1. Introduction

The impressive weight loss observed after RYGB surgery is caused predominantly
through a reduction in appetite and hence food intake [1,2]. However, a subgroup of
patients also change other aspects of their eating behaviour, including food preference [1].
This shift away from energy-dense sweet and/or fatty foods to less energy-dense options is
thought to be an additional mechanism underlying weight loss [3,4]. The gap in our current
knowledge is which component of the RYGB gut manipulations underlies the observed
changes in dietary behaviour.

The manipulations with RYGB include the formation of a small gastric pouch which is
anastomosed to the proximal jejunum, bypass of the stomach and proximal small intestine
through which the biliopancreatic secretions still flow and mix with food at the jejuno-
jejunal anastomosis and throughout the common channel.

Animal models of the duodenal-jejunal bypass operation have contributed to our
understanding of the role of proximal intestinal bypass on eating behaviour. Mice that
underwent duodenal-jejunal bypass (DJB) surgery exhibited lower sugar intake in a sweet-
seeking task compared to sham-operated mice [5]. The mechanism was thought to involve
disrupted gut-brain signalling in the DJB mice, in which duodenal glucose infusions caused
a higher release of dopamine than jejunal glucose infusions in the dorsal striatum of sham
mice. This effect was significantly diminished in DJB mice [5]. This observation leads to
the hypothesis that bypass of the proximal small intestine might be the component of the
RYGB manipulations responsible for the reduction in the preference for sweet/fatty foods
after surgery.

We adopted a reductionist approach and used the duodenal-jejunal bypass liner
(Endobarrier device, GI Dynamics, Lexington, MA, USA) as a research tool to enable us
to address our hypothesis in humans. The Endobarrier is a 60 cm fluoropolymer sheath
that is inserted endoscopically, anchored at the duodenal bulb and lines 60 cm of the
proximal small intestine. We previously demonstrated in the largest RCT in the field that
the Endobarrier causes superior weight loss to lifestyle modification in people with obesity
and T2DM [6].

The aim of this experimental medicine study was to determine the impact of the
Endobarrier device on food intake, food preferences and taste function in humans.

2. Materials and Methods

2.1. Patients and Study Design

This was a nested mechanistic study within a larger randomised controlled trial
comparing the impact of lifestyle modification with vs. without Endobarrier insertion
in patients with obesity and T2DM [6]. The study took place in two academic centres,
investigational sites—Imperial College London and University of Southampton. Patients
were recruited and followed up in the NIHR Imperial and Southampton Clinical Research
Facilities. A complete description of the trial protocol was previously published [7]. In
brief, the trial was conducted over 2 years (1 year of treatment and 1 year follow up),
160 participants were randomized at a 1:1 ratio to one of the two study arms. For this
nested study, data were collected at 5 time points (mechanistic visits): at baseline (2 weeks
before intervention), 10 days, 6 months, 12 months, and 24 months post-intervention
(Figure 1).

The Endobarrier is an impermeable fluoropolymer sleeve inserted endoscopically
through the duodenum and into the jejunum. The sleeve is open at both ends allowing for
chyme passage from the stomach into the lower jejunum, bypassing nutrient absorption
along its length by creating a barrier between the partially digested food and the absorptive
surface of the small intestine [8]. Implanting the device takes an average of 45 min, and
the implant is performed under general anaesthetic. The device barbs are anchored to
the duodenal bulb 5–10 mm away from the pylorus. The sleeve then extends for 60 cm
through the duodenum by peristalsis movement. Device explant is also done under general
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anaesthesia, taking, on average, 30 min to perform. The participant is usually discharged
to home the same day following recovery from the anaesthetic.

 

 

Figure 1. Trial design.

159



Nutrients 2022, 14, 2141

2.2. Dietary and Physical Activity Counselling

All participants’ dietary history and current dietary behaviour were assessed at base-
line. A qualified dietitian counselled participants regarding their diet and physical activity.
The dietary counselling programme was intended to provide each participant with lifestyle
and behavioural modification information and impart good eating practices. Guidelines for
daily total requirements were between 1200 and 1500 kilocalories for women and between
1500 and 1800 kilocalories for men. Participants were advised to eat regularly every day
(five times/day), to control their portion sizes, to increase their intake of low glycaemic
index (GI) and high-protein foods, and to reduce their intake of foods high in fat, sugar,
and alcohol.

Participants in both groups were advised to include more physical activity in their
daily routine, like walking more every day and climbing the stairs instead of taking the
lift or escalators. They were also asked to start with short periods of low-intensity exercise
and increase the intensity and duration slowly. Their goal was to include 150 min/week of
moderate-intensity and 75 min/week of vigorous-intensity aerobic activity and muscle-
strengthening activities more than two days a week.

2.3. Liquid Diet

All participants followed a liquid diet during the seven days before and 13 days
(±3 days) after the DJBL insertion, or the fourth clinical visit for the control group. The
liquid diet was based on a liquid meal replacement—Fortisip compact® meal replacements
(Nutricia Ltd., Trowbridge, UK): four bottles (125 mL each, energy: 300 kcal; carbohydrates:
49%; fat: 35%; protein: 16%) for women and five bottles for men daily. Allowed in addition
to this were: milk, flavoured milk, water, low-sugar squashes, vegetable juices, tea or
coffee without sugar, unsweetened puree fruit juice, or clear soups. After the liquid diet,
participants in both groups were advised to follow a low-calorie diet.

2.4. Anthropometric Measurements

Weight was measured at all visits, in bare feet, and wearing light clothes. Height
without shoes was recorded at the baseline visit. Body mass index (BMI) was calculated.
Percentage of body composition (fat mass, fat-free mass in kg and %) were obtained using
a bio-electrical impedance analysis machine MC-780MA (TANITA Corporation, Japan).

2.5. Food Intake and Macronutrient Selection

Participants were asked to complete a weighed food diary for 3 days, 2 weekdays and
1 weekend at baseline (2 weeks before intervention), 10 days, 6 months, 12 months, and
24 months post-intervention. Information from the diaries was entered and analysed using
Dietplan7 software (Forestfield Software Ltd. West Sussex, UK) to obtain total daily caloric
intake and percentage contribution from carbohydrates, protein, and fat.

2.6. Assessment of Taste Function
2.6.1. Sensory Domain of Sweet Taste

The detection threshold for sweet taste was measured using the method of constant
stimuli [9]. In brief, 112 polystyrene cups were presented in 8 blocks; each block consists of
14 cups, including 7 concentrations of sucrose and 7 water stimuli randomly organised. An
amount of 15 mL of the sucrose solution and water was presented in each cup. Participants
were asked to taste the solution, swirl it around properly and expel it without swallowing.
Then they were asked to describe the quality of the solution they were testing, if it was
sweet or water. After each stimulus participants were asked to rinse their mouth with water
(the same water used to prepare the solutions) before tasting the next stimulus. Participant
answers were recorded on a template scoring sheet. The detection test was performed on
the morning of the study day after an overnight fast. All solutions were prepared using
water (Caledonian Still Natural Mineral Water, Sainsbury’s Supermarkets Ltd., London,
UK) and sucrose (Sigma-Aldrich, Dorset, UK) and presented at room temperature. Seven
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sucrose concentrations were used (2.1, 6.25, 12.5, 25, 50, 100, and 300 mM). All participants
performed the above-described test at baseline (2 weeks before intervention), at 10 days,
and at 6 months. Participants were asked to come to the research facility at 8 am after
over-night fast. Each visit had a different random arrangement of the cups to minimise
learning and familiarisation.

The data collected from the sucrose detection test allows for the derivation of a
psychometric function, which is a mathematical equation that plots the performance of
participants against the physical aspect (concentration) of the stimulus. The performance
was measured as a percentage of correct responses (responses where the participant was
able to detect the stimulus correctly).

A ‘hit’ was defined as when the participant correctly reported that the stimulus was
different from water when sucrose was presented. A ‘false alarm’ (FA) was defined when
the participant incorrectly reported that the stimulus was different from water when water
was presented. The hit rate for a given sucrose concentration was adjusted for the false
alarm rate to derive a ‘corrected hit rate’ using the following equation:

Corrected hit rate =
P(hit) − P(FA)

1.0 − P(FA)

where P(hit) = the proportion of sucrose trials (cups) of a given concentration that were
hit, and P(FA) = the proportion of water trials that were false alarms. Thus, when the
uncorrected hit rate is equal to the false alarm rate, the corrected hit rate = 0.

Concentration–response curves were fitted to the corrected hit rate values for each par-
ticipant for the three tested occasions (2 weeks pre, 10-days and 6 months post-intervention)
to derive a family of individual psychometric functions using the following logistic equation:

f(x) =
a

1 + 10((log 10(x) − c)∗b)

where log10(x) = log10 concentration, a = the upper asymptote of performance (maximum
performance = 1), b = slope, and c = the log10 concentration at 1/2 a performance (i.e.,
EC50, defined as half-maximal effective concentration). We defined the c parameter as the
threshold because it represents the inflexion point of the psychometric function and thus
optimally represents horizontal shifts in the sensitivity.

Only c-values of the individual curve fits for the participants who had fits that ac-
counted for at least 85% of the variance were compared. C-values were calculated using
Mystat® (Systat® 12) software (Cranes Software International Ltd., Palo Alto, CA, USA).
The shifts in the c parameters between groups and within groups were assessed.

2.6.2. Appetitive Reward Domain of Taste Function

The appetitive reward value of sweet/fat taste was measured using the validated
method of the progressive ratio task [10]. In brief, this is a computer task in which partici-
pants were seated in front of a screen with a plate of 20 chocolate candies (M&M® crispy
candies, Mars UK Limited, Slough, UK), each one containing approximately 4 kcal (energy
contribution: 43.7% sugars, 44.1% fat). They were asked to click on the mouse button
continuously until they received a message on the screen, allowing them to consume their
reward (one M&M’s only). The required number of clicks increased progressively after
each reward (candy). The first ratio was ten clicks with a geometric increase of two (i.e., 10,
20, 40, 80, etc.) for every ratio afterwards. Participants were allowed to terminate the task
at any point by pressing the spacebar button on the keyboard. This test was carried out on
two occasions, two weeks pre- and six months post-intervention. Testing occurred 3 h after
consuming a standardised meal of 250 mL of Fortisip Compacts vanilla flavour, (Energy:
600 kcal, carbohydrates: 74.2 g, fat: 23.2 g, protein: 24 g). The total number of clicks and
clicks in the last completed ratio (breakpoint) were recorded. In addition, the number of
consumed and remaining candies were calculated from the plate after the termination of
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the task to cross-check and validate the participants followed the instructions. Comparisons
between groups and within groups were assessed.

2.6.3. Consummatory Reward Domain of Taste Function

The consummatory reward value of sweet taste was measured using a validated
methodology [9]. In brief, 30 polystyrene cups were presented in 3 blocks; each block
consists of 10 cups, comprising 5 cups of the 5 different sucrose concentrations and 5 cups
of water for rinsing after sweet solutions. Odd number cups contained the sucrose solutions,
and even number cups contained the rinsing water. An amount of 15 mL of the sucrose
solution and water was presented in each cup. All solutions were stored at 4 ◦C and
presented cold for testing. Solutions were prepared using still water (Caledonian Still
Natural Mineral Water, Sainsbury’s Supermarkets Ltd., London, UK: pH 7.4, calcium
27 mg/L, chloride 6.4 mg/L, bicarbonate 103 mg/L, magnesium 6.9 mg/L, sulphate
10.6 mg/L, sodium 6.6 mg/L). Sucrose was from (Sigma-Aldrich, Dorset, UK), five different
concentrations of sucrose were used (0, 50, 100, 200, 400 mM). Two different visual analogue
scales were used to assess the liking of the sweet drinks as follows:

The Hedonic General Labeled Magnitude Scale: This visual analogue scale was used
to rate the pleasantness of the sweetness of the solution relative to any liking feeling they
had ever experienced. This is a vertical scale with the middle anchor representing the
ideal rating (‘Neutral’) with a value of zero (0), and measurements of the most positive
(‘Strongest liking of any kind’) representing the highest value of +100, and most negative
rating (‘Strongest disliking of any kind’) with the least value of −100 located at the lowest
end of the scale.

The ‘Just About Right’ scale: This visual analogue scale was used to compare the
sweetness of the solution as compared to the ideal sweetness of the participant’s preferred
soft drink. This was a vertical visual analogue scale, having a middle point where the ideal
rating was situated (‘Just right: My ideal sweetness in a drink’) which corresponded to the
value of zero (0), while the upper end of the scale measured the most positive (‘Far too
sweet: I would never drink it) corresponded to a value of +100, and the most negative rating
(‘Far too little sweetness: I would never drink it’) which corresponded to a value of −100, and
this was at the lower end of the scale.

All participants performed the above-described test on three occasions: 2 weeks pre-
intervention, 10 days, and 6 months post-intervention. Participants completed this test
after the sensory domain task and still in the fasting state. Each visit had a different random
arrangement of the cups to minimise learning and familiarisation.

2.7. Statistical Analyses

The mixed model analysis was used to investigate the treatment effect on the variables
of interest over time, allowing us to perform both between-groups and within-group
comparisons. The model included fixed effects for the visit (time of assessment), group
(DJBL or control) and their corresponding interaction (group×visit), as well as a random
intercept effect for each patient. The model was adapted to include a third level where
appropriate (for example, sucrose concentrations).

All participants who attended baseline and at least one visit were included in the
analysis. Analysis results are presented in the form of Type-III test results of fixed effects
(p-values) and their subsequent estimates (mean ± SD). Any parameter that produced a
significant result (p < 0.05) in the analysis was considered for post-hoc testing of least-square
means to investigate any potential effect in more detail. The Pearson test was used for
linear regressions. Statistical analysis was completed using IBM statistics SPSS 24, and
graphs were generated using GraphPad Prism version 8.

The trial was approved by the Fulham Research Ethics Committee on 10 July 2014
(reference 14/LO/0871) and conducted in accordance with the Declaration of Helsinki.
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3. Results

3.1. Baseline Characteristics

Forty-seven participants took part in this study, 27 in the Endobarrier group and 20 in
the control group, 55% of the participants were male (Table 1). Within the control group,
1 participant withdrew from the study at visit 5 (10 days after intervention), 4 participants
withdrew at visit 8 (6 months after intervention). Within the Endobarrier group, 2 par-
ticipants withdrew from the study at visit 5 (10 days after intervention), 5 participants
withdrew at visit 8 (6 months after intervention).

Table 1. Baseline characteristics of participants.

Control (n = 20) Endobarrier (n = 27)

Age (years) 54 ± 6 52 ± 8

Sex (M/F) 8/12 18/9

Weight (kg) 101.3 ± 14.4 109.4 ± 18.9

BMI (kg/m2) 36 ± 4 36 ± 5

Bio-impedance body fat (%) 42 ± 8 39 ± 7

HbA1c (mmol/mol) 70 ± 12 76 ± 11

Diabetes duration (years) 7 (1–25) 8 (2–19)

HOMA-IR 5.43 ± 3.6 5.36 ± 1.8
Data are presented as mean ± SD or median (range).

3.2. Body Weight

There was a significant reduction in total body weight within each group at 10 days,
6 and 12 months compared to baseline (p < 0.001) but no significant differences between
groups. At 12 months the Endobarrier group lost 11 ± 5% total body weight vs. 8 ± 8% in
the control group, while at 24 months, the Endobarrier group lost 4 ± 5% vs. 7 ± 7% in the
control group ((p < 0.02, Figure 2).

Figure 2. Percentage weight loss throughout the study. * p < 0.05, *** p < 0.001 compared to baseline
within the same group. Data given as mean ± SD.

3.3. Food (Energy) Intake and Macronutrient Selection

Total daily caloric intake from the three-day food diary was significantly reduced
within both groups at all time points compared to baseline, but there were no significant
differences between the groups (Table 2).

Within the Endobarrier group, there was a significant increase in the % contribution
from carbohydrates at 10 days, a significant increase in the % contribution from protein at
12 months, and a significant decrease in the % contribution from fat at 10 days. Within the
control group, there was a significant increase in the % contribution from carbohydrates at
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10 days, a significant decrease in the % contribution from protein at 10 days and an increase
at 6 months. However, there were no significant differences between groups (Table 3).

Table 2. Total daily caloric intake (kcal).

Group Mixed Model Analysis

Control Endobarrier Effect p-Value

n n

Baseline 17 1740 ± 285 24 1911 ± 506

10 Days 17 1194 ± 203
*** 22 1097 ± 407 *** Group 0.51

6 months 14 1443 ± 321 * 16 1575 ± 410 ** Time <0.001

12 months 13 1504 ± 470 * 13 1423 ± 647 *** Group × Time 0.25

24 months 14 1525 ± 494 12 1788 ± 761

Results presented as mean ± SD. * p < 0.05 ** p < 0.01 *** p < 0.001 compared to baseline within the same group.

Table 3. Percentage contribution of macronutrient to daily energy intake.

Group Mixed Model Analysis

Control Endobarrier Effect p-Value

Carbohydrates (% of Total Caloric Intake)

n

Baseline 17 40 ± 8 24 40 ± 7

10 Days 17 47 ± 2 ** 22 46 ± 6 ** Group 0.83

6 months 14 39 ± 9 16 41 ± 7 Time <0.001

12 months 13 41 ± 9 13 37 ± 8 Group × Time 0.50

24 months 14 40 ± 7 12 42 ± 7

Protein (% of Total Caloric Intake)

Baseline 17 19 ± 4 24 19 ± 5

10 Days 17 16 ± 1 * 22 19 ± 6 Group 0.89

6 months 14 24 ± 5 ** 16 21 ± 6 Time <0.001

12 months 13 21 ± 4 13 22 ± 7 * Group × Time 0.05

24 months 14 22 ± 7 12 19 ± 5

Fat (% of Total Caloric Intake)

Baseline 17 38 ± 7 24 38 ± 6

10 Days 17 37 ± 2 22 35 ± 4 * Group 0.90

6 months 14 36 ± 10 16 36 ± 7 Time 0.50

12 months 13 36 ± 9 13 38 ± 7 Group × Time 0.60

24 months 14 37 ± 8 12 36 ± 7

Results presented as mean ± SD. * p < 0.05 compared to baseline within the same group. ** p < 0.01 compared to
baseline within the same group.

3.4. Sensory Domain of Sweet Taste

There was no significant change in the curves of mean corrected hit rate both within
and between groups at baseline, 10 days, and 6 months post intervention (Figure 3).
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Figure 3. Sweet taste detection. Curves of the mean corrected hit rate over time for (A) controls (blue)
n = 16 and (B) Endobarrier (red) n = 25 groups as a function of sucrose concentration. The EC50
was derived from the c-parameter in the curve fit and represented the concentration at which the
corrected hit rate reaches 50% of the maximum asymptote.

3.5. Appetitive Reward Value of Sweet Taste

There was no significant change in the breakpoint either within or between groups
(p = 0.12 for group × time interaction) (Figure 4).

Figure 4. Breakpoint at the progressive ratio task. Box plot of the breakpoint for chocolate candies in
control (blue) n = 9 and Endobarrier (red) n = 11 groups. The lower and upper boundaries of the box
represent 25th and 75th percentiles, respectively. Lower and upper whiskers represent 10th and 90th
percentiles, respectively. The line in the middle of the box represents the median.

3.6. Consummatory Reward Value of Sweet Taste

There was no significant change in the consummatory reward value of sweet taste both
within and between groups using Just About Right scale (Figure 5) and Hedonic General
Labeled Magnitude Scale (Figure 6) at baseline, 10 days, and 6 months post intervention.
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Figure 5. Just About Right scale ratings of sweet taste. Consummatory reward value of sweet taste
assessed by Just About Right scale for (A) controls n = 19 (blue) and (B) Endobarrier n = 24 (red
groups). Data are presented as the mean rating at each concentration ± SD.

Figure 6. Hedonic general Labeled Magnitude Scale ratings of sweet taste. Consummatory reward
value of sweet taste assessed by the Hedonic general Labeled Magnitude Scale for (A) control n = 19
(blue) and (B) Endobarrier n = 24 (red) groups. Data are presented as the mean rating at each
concentration ± SD.

4. Discussion

This is, to our knowledge, the first experimental medicine study to assess the mecha-
nisms of action of the Endobarrier device on weight loss as a nested study within an RCT.
Patients in the Endobarrier group lost numerically more weight than the control group.
We assessed several measures of dietary behaviour and identified significant changes on
specific aspects within groups but no significant differences between groups.

To date, there has been limited literature on the effect of Endobarrier on food intake.
Using food diaries, our results demonstrated similarly reduced food intake within both
the Endobarrier and the control groups. Similarly, a recent case series study of patients
with obesity and T2DM demonstrated reduced food intake at 36 weeks after the Endobar-
rier implant using a semi-quantitative Food Frequency Questionnaire [11]. In contrast, a
prospective observational study of two groups, a group of patients with obesity and normal
glucose-tolerance, and another group of matched metformin-treated patients T2DM who
underwent Endobarrier implant, demonstrated lower food intake only at one week [12].
This was followed by a return to baseline food intake at explantation (26 weeks), despite on-
going weight loss. This was the only human study so far to use an ad libitum meal to assess
food intake. Of note, this study also did not include a control group for comparison [12].
Among animal models, a study comparing food intake between diet-induced obese rats
after endoluminal sleeve insertion and sham-operated controls showed reduced food intake
in the sleeve group compared to no change in the control group at eight weeks [13].
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Alternative mechanisms of weight loss after Endobarrier have been proposed includ-
ing increased energy expenditure in both human and animal models. We cannot exclude
that the numerically superior weight loss observed among our Endobarrier group might be
attributed to an increase in energy expenditure. Rohde et al. reported an increase in resting
energy expenditure using indirect calorimetry in patients with obesity but not among
patients with T2DM after Endobarrier implant [12]. Similarly, Munoz et al. in their animal
model, demonstrated an increase of 13% in total and 9% in resting energy expenditure
among Endoluminal sleeve treated rats compared to shams [13].

Nutrient malabsorption has been proposed as a possible mechanism of weight loss
after the Endobarrier, due to the bypass of 60 cm of the small intestine. However, when
fat malabsorption was measured using 13C mixed triglyceride breath test in patients with
obesity and T2DM, there was no evidence of reduced intraluminal lipolytic activity sug-
gesting that fat malabsorption does not take place [14]. Similarly, no evidence of food
malabsorption was found in rats treated with an endoluminal sleeve, as measured by the
difference in calories consumed and excreted in the stool using direct calorimetry [13].

Another plausible mechanism that could explain the weight loss in the Endobarrier
group is gut inflammation. The insertion of a foreign body in the intestine could have
triggered a low-grade inflammatory state. Gut inflammation can cause weight loss due
to several mechanisms including increased resting energy expenditure, and the action
of proinflammatory cytokines [15]. Against this hypothesis is the fact that we measured
plasma concentrations of C-reactive protein in the main clinical RCT [6] and were not
found to be elevated after intervention. We would also have expected gut inflammation
to decrease appetite and thus total daily energy intake, but we did not observe this in our
study. In this report we do not present appetite ratings or gut hormone measurements.
Whilst enhanced post-prandial concentrations of plasma GLP-1 and PYY were reported
in some studies [16–18], the magnitude of the increase was modest and the findings
inconsistent [16,19].

Weight regain after Endobarrier explant is reported in several studies. Interestingly,
in the studies that had a control group, the Endobarrier group had the most weight
regain compared to the control group [20]. This was in line with our findings, where the
Endobarrier group had around 7% weight regain compared to 1% in the control group.
Similarly, Villarasa et al., in their recent prospective trial concluded a total percentage
weight loss of about 15% at the time of explantation (48 weeks) followed by weight regain
during the next year, maintaining only 7% of the total weight loss; there was no control
group in this study [17].This rebound demonstrates that the Endobarrier works only
when it is in situ and does not have any long term learning effects on eating behaviour.
One explanation for the magnitude of the rebound might be attributed to the absence of
abdominal discomfort that patients commonly report, resulting in increased meal size,
caloric intake and subsequent weight regain.

The role of the duodenum in food preferences and reward has been investigated in
animal models of the DJB procedure, which like the Endobarrier, involves bypass of the
proximal small intestine [5]. In line with our results, Qu et al. recently demonstrated
that sweet preference was not different between DJB mice and sham-operated mice in a
two-bottle sweet preference test [21]. Reduced preference appeared only after prolonged
exposure to the sweet solutions indicating a learning effect [21]. Similarly, in their animal
model, Zhang et al. demonstrated that DJB mice preferred the flavours of intragastric
infusions of metabolised glucose compared to the flavours of non-metabolised glucose [22].
Nevertheless, the surgical duodenal bypass did not affect the ability of mice to differentiate
(prefer) between the flavours of metabolised versus non-metabolised glucose solutions [22].
The same study also showed that reward circuits in the brain responded to intra-portal
mesenteric infusions of the metabolised glucose only, suggesting a post-absorptive role for
glucose preference and reward.

The absence of changes in food preference and taste function are reminiscent of some
of the studies in humans and animals undergoing RYGB [23,24]. In one of the most
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comprehensive studies in the literature, food preferences did not change in a group of
patients undergoing RYGB, but the subgroup of patients who experiences changes in food
preferences lost more weight [2]. This finding suggests that changes in food preferences
do not take place in everyone but in those that do, they contribute to weight loss as an
additional mechanism.

The strengths of this study include its randomised design, two trial sites, length of
follow-up, multidisciplinary team involved in patients care, and delivery of an intensive
medical intervention throughout the study period. In addition, we used complemen-
tary measures of eating behaviour, including assessment of food intake, taste detection
thresholds, appetitive and consummatory reward value of sweet taste with various sweet
concentrations. Despite the length of the study, the same two dietitians carried out dietary
analyses throughout the study period to reduce variability. In addition, participants in both
groups received the exact behavioural and dietary modification instructions from a single
dietitian throughout the study.

The major limitation in our study was its unblinded design. In addition, in the smaller
mechanistic sub-set of participants having these dietary assessments, the Endobarrier
insertion resulted in numerically superior weight loss, which was not as pronounced as
in the main RCT [6]. There are also inherent limitations to using verbal/written reports,
especially in a trial that is not double-blinded. The problem of under-reporting of food
intake among patients with and without obesity is common when using indirect measures
of food intake [25]. It would have been preferable to measure these aspects of eating
behaviour using a buffet meal or a 24-h residential stay. The study days were long and
included numerous tasks which might have contributed to participant fatigue, which could
have been avoided if the tasks had been performed on separate days. Only sweet taste
assessments were made and not fat or combined sweet/fat (other than the progressive
ratio task). Assessments were generally performed in the fasted state and may have been
different in the post-prandial state, except for the progressive ratio task, which was assessed
post prandially Furthermore, sample sizes declined over time due to drop-out during the
trial. Finally, we did not measure energy expenditure or calorie malabsorption as alternative
mechanisms causing weight loss after the Endobarrier.

5. Conclusions

In conclusion, this experimental medicine study demonstrated that reduction of self-
reported energy intake, changes in food preferences, and sweet taste were not the mech-
anisms underlying the weight loss observed after Endobarrier insertion in people with
obesity and T2DM.

Author Contributions: Conceptualization, W.A.-N., A.R., M.A.G., C.G.P., J.P.B., A.P.G., J.P.T., C.W.L.R.
and A.D.M.; Data curation, M.M.A., W.A.-N., N.A.J. and J.P.B.; Formal analysis, M.M.A., W.A.-N.,
N.A.J., A.P.G., J.P.T., C.W.L.R. and A.D.M.; Funding acquisition, C.G.P., A.P.G. and J.P.T.; Investiga-
tion, M.M.A., W.A.-N., A.R., M.A.G., N.C., G.K.D., C.G.P., J.P.B., A.P.G., J.P.T., C.W.L.R. and A.D.M.;
Methodology, W.A.-N., N.C., C.G.P., N.A.J., J.P.B., A.P.G., J.P.T., C.W.L.R. and A.D.M.; Project admin-
istration, M.M.A., W.A.-N., A.R., M.A.G., B.J., C.G.P., A.P.G., J.P.T., C.W.L.R. and A.D.M.; Resources,
C.G.P., A.P.G. and J.P.T.; Software, C.G.P. and A.P.G.; Supervision, C.G.P., J.P.B., A.P.G., J.P.T., C.W.L.R.
and A.D.M.; Visualization, M.M.A.; Writing—original draft, M.M.A., A.P.G., J.P.T., C.W.L.R. and
A.D.M.; Writing—review and editing, M.M.A., W.A.-N., A.R., M.A.G., B.J., N.C., G.K.D., C.G.P.,
N.A.J., J.P.B., A.P.G., J.P.T., C.W.L.R. and A.D.M. All authors have read and agreed to the published
version of the manuscript.

Funding: This study was funded by the Efficacy and Mechanism Evaluation Programme, a Medical
Research Council and National Institute for Health Research (NIHR) partnership reference 12/10/04.
C.W.R is funded by the Irish Research Council (IRCLA/2017/234) and The Health Research Board
(USIRL-2016-2). A.D.M. has been supported from grants from the JP Moulton Charitable Foundation,
National Institute of Health Research, Imperial College Healthcare Charity and Novo Nordisk; N.C.
has been supported by grants from Wellcome Trust. The Division of Diabetes, Endocrinology and
Metabolism is funded by grants from the UK Medical Research Council (MRC), Biotechnology and

168



Nutrients 2022, 14, 2141

Biological Sciences Research Council, and the NIHR; an Integrative Mammalian Biology Capacity
Building Award; and an FP7- HEALTH-2009–241592 EuroCHIP grant. It is also supported by
the NIHR Biomedical Research Center Funding Scheme. M.A. was funded by the Department of
Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh,
Saudi Arabia.

Institutional Review Board Statement: The trial was approved by the Fulham Research Ethics
Committee on 10 July 2014 (reference 14/LO/0871) and conducted in accordance with the Declaration
of Helsinki.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy.

Acknowledgments: The devices and nutritional supplements were kindly provided free of charge
by GI Dynamics and Nutricia Advanced Medical Nutrition respectively. Infrastructure support was
provided by the NIHR Imperial Biomedical Research Center, NIHR Imperial and Clinical Research
Facility, London, NIHR Southampton Biomedical Research Center UK and NIHR Southampton
clinical research facility, Southampton, UK.

Conflicts of Interest: A.R. received travel fees support from GI Dynamics. A.D.M. has received
honoraria for presentations and advisory board contribution by Novo Nordisk, Boehringer Ingelheim,
AstraZeneca, Johnson & Johnson and research grant funding from Fractyl. A.P.G. reports funding
supported by UK Medical Research Council and Wellcome Trust, outside of the submitted work, was
on a Data Safety Monitoring Board for Novo Nordisk, and has received honoraria for presentations
and advisory board contribution by Janssen, Pfizer, Novo Nordisk, Zafgen, Soleno Therapeutics
Inc, and Millendo Theapeutics Inc, and Merck. C.W.R. is a member of scientific advisory board for
Herbalife, GI Dynamics, NovoNordisk, Keyron, Sanofi, has provided ad hoc consulting for Ethicon
and Fractyl, occasional speaking engagement for MSD, Boehringer Ingelheim and Lilly. J.P.T. received
travel fees support from GI Dynamics. W.A. has received honoraria for presentations and educational
grants from Novo Nordisk. The rest of the authors report no conflicts of interest. “The funders had
no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing
of the manuscript, or in the decision to publish the results”.

References

1. Kapoor, N.; al Najim, W.; Menezes, C.; Price, R.K.; O’Boyle, C.; Bodnar, Z.; Spector, A.C.; Docherty, N.G.; le Roux, C.W. A
Comparison of Total Food Intake at a Personalised Buffet in People with Obesity, before and 24 Months after Roux-en-Y-Gastric
Bypass Surgery. Nutrients 2021, 13, 3873. [CrossRef] [PubMed]

2. Nielsen, M.S.; Rasmussen, S.; Christensen, B.J.; Ritz, C.; le Roux, C.W.; Schmidt, J.B.; Sjödin, A. Bariatric Surgery Does Not Affect
Food Preferences, but Individual Changes in Food Preferences May Predict Weight Loss. Obesity 2018, 26, 1879–1887. [CrossRef]
[PubMed]

3. Miller, G.D.; Norris, A.; Fernandez, A. Changes in Nutrients and Food Groups Intake Following Laparoscopic Roux-en-Y Gastric
Bypass (RYGB). Obes. Surg. 2014, 24, 1926–1932. [CrossRef] [PubMed]

4. Ullrich, J.; Ernst, B.; Wilms, B.; Thurnheer, M.; Schultes, B. Roux-en Y Gastric Bypass Surgery Reduces Hedonic Hunger and
Improves Dietary Habits in Severely Obese Subjects. Obes. Surg. 2012, 23, 50–55. [CrossRef]

5. Han, W.; Tellez, L.A.; Niu, J.; Medina, S.; Ferreira, T.; Zhang, X.; Su, J.; Tong, J.; Schwartz, G.J.; Pol, A.V.D.; et al. Striatal Dopamine
Links Gastrointestinal Rerouting to Altered Sweet Appetite. Cell Metab. 2015, 23, 103–112. [CrossRef]

6. Ruban, A.; Miras, A.D.; Glaysher, M.A.; Goldstone, A.P.; Prechtl, C.G.; Johnson, N.; Chhina, N.; Al-Najim, W.; Aldhwayan, M.;
Klimowska-Nassar, N.; et al. Duodenal-Jejunal Bypass Liner for the management of Type 2 Diabetes Mellitus and Obesity: A
Multicenter Randomized Controlled Trial. Ann. Surg. 2021, 275, 440. [CrossRef]

7. Glaysher, M.A.; Mohanaruban, A.; Prechtl, C.G.; Goldstone, A.P.; Miras, A.; Lord, J.; Chhina, N.; Falaschetti, E.; Johnson, N.A.;
Al-Najim, W.; et al. A randomised controlled trial of a duodenal-jejunal bypass sleeve device (EndoBarrier) compared with
standard medical therapy for the management of obese subjects with type 2 diabetes mellitus. BMJ Open 2017, 7, e018598.
[CrossRef]

8. Ruban, A.; Ashrafian, H.; Teare, J.P. The EndoBarrier: Duodenal-Jejunal Bypass Liner for Diabetes and Weight Loss. Gastroenterol.
Res. Pract. 2018, 2018, 7823182. [CrossRef]

9. Bueter, M.; Miras, A.D.; Chichger, H.; Fenske, W.; Ghatei, M.A.; Bloom, S.R.; Unwin, R.J.; Lutz, T.; Spector, A.C.; le Roux, C.W.
Alterations of sucrose preference after Roux-en-Y gastric bypass. Physiol. Behav. 2011, 104, 709–721. [CrossRef]

169



Nutrients 2022, 14, 2141

10. Miras, A.D.; Jackson, R.N.; Jackson, S.N.; Goldstone, A.P.; Olbers, T.; Hackenberg, T.; Spector, A.C.; le Roux, C.W. Gastric bypass
surgery for obesity decreases the reward value of a sweet-fat stimulus as assessed in a progressive ratio task. Am. J. Clin. Nutr.
2012, 96, 467–473. [CrossRef]

11. Obermayer, A.; Tripolt, N.; Aziz, F.; Högenauer, C.; Aberer, F.; Schreiber, F.; Eherer, A.; Sourij, C.; Stadlbauer, V.; Svehlikova, E.; et al.
EndoBarrier™ Implantation Rapidly Improves Insulin Sensitivity in Obese Individuals with Type 2 Diabetes Mellitus. Biomolecules
2021, 11, 574. [CrossRef] [PubMed]

12. Rohde, U.; Bsc, C.A.F.; Vilmann, P.; Langholz, E.; Friis, S.U.; Krakauer, M.; Rehfeld, J.F.; Holst, J.J.; Vilsbøll, T.; Knop, F.K. The
impact of EndoBarrier gastrointestinal liner in obese patients with normal glucose tolerance and in patients with type 2 diabetes.
Diabetes Obes. Metab. 2016, 19, 189–199. [CrossRef] [PubMed]

13. Muñoz, R.; Carmody, J.S.; Stylopoulos, N.; Davis, P.; Kaplan, L.M. Isolated duodenal exclusion increases energy expenditure and
improves glucose homeostasis in diet-induced obese rats. Am. J. Physiol. Integr. Comp. Physiol. 2012, 303, R985–R993. [CrossRef]
[PubMed]

14. McMaster, J.J.; Rich, G.G.; Shanahan, E.R.; Do, A.T.; Fletcher, L.M.; Kutyla, M.J.; Tallis, C.; Jones, M.P.; Talley, N.J.; Macdonald, G.A.; et al.
Induction of Meal-related Symptoms as a Novel Mechanism of Action of the Duodenal-Jejunal Bypass Sleeve. J. Clin. Gastroenterol.
2020, 54, 528–535. [CrossRef] [PubMed]

15. Elsherif, Y.; Alexakis, C.; Mendall, M. Determinants of Weight Loss Prior to Diagnosis in Inflammatory Bowel Disease: A Retrospective
Observational Study; Gastroenterology Research and Practice: London, UK, 2014; p. 762191.

16. Jirapinyo, P.; Haas, A.V.; Thompson, C.C. Effect of the Duodenal-Jejunal Bypass Liner on Glycemic Control in Patients With Type
2 Diabetes With Obesity: A Meta-analysis With Secondary Analysis on Weight Loss and Hormonal Changes. Diabetes Care 2018,
41, 1106–1115. [CrossRef] [PubMed]

17. Vilarrasa, N.; de Gordejuela, A.G.R.; Casajoana, A.; Duran, X.; Toro, S.; Espinet, E.; Galvao, M.; Vendrell, J.; López-Urdiales, R.;
Pérez, M.; et al. Endobarrier(R) in Grade I Obese Patients with Long-Standing Type 2 Diabetes: Role of Gastrointestinal Hormones
in Glucose Metabolism. Obes. Surg. 2017, 27, 569–577. [CrossRef]

18. de Jonge, C.; Rensen, S.S.; Verdam, F.J.; Vincent, R.P.; Bloom, S.R.; Buurman, W.A.; le Roux, C.W.; Schaper, N.C.; Bouvy, N.D.;
Greve, J.W.M. Endoscopic Duodenal–Jejunal Bypass Liner Rapidly Improves Type 2 Diabetes. Obes. Surg. 2013, 23, 1354–1360.
[CrossRef]

19. Kaválková, P.; Mraz, M.; Trachta, P.; Klouckova, J.; Cinkajzlová, A.; Lacinová, Z.; Haluzíková, D.; Beneš, M.; Vlasáková, Z.;
Burda, V.; et al. Endocrine effects of duodenal–jejunal exclusion in obese patients with type 2 diabetes mellitus. J. Endocrinol. 2016,
231, 11–22. [CrossRef]

20. Koehestanie, P.; de Jonge, C.; Berends, F.; Janssen, I.M.; Bouvy, N.D.; Greve, J.W.M. The Effect of the Endoscopic Duodenal-Jejunal
Bypass Liner on Obesity and Type 2 Diabetes Mellitus, a Multicenter Randomized Controlled Trial. Ann. Surg. 2014, 260, 984–992.
[CrossRef]

21. Qu, T.; Han, W.; Niu, J.; Tong, J.; de Araujo, I.E. On the roles of the Duodenum and the Vagus nerve in learned nutrient preferences.
Appetite 2019, 139, 145–151. [CrossRef]

22. Zhang, L.; Han, W.; Lin, C.; Li, F.; De Araujo, I.E. Sugar Metabolism Regulates Flavor Preferences and Portal Glucose Sensing.
Front. Integr. Neurosci. 2018, 12, 57. [CrossRef] [PubMed]

23. Moizé, V.; Andreu, A.; Flores, L.; Torres, F.; Ibarzabal, A.; Delgado, S.; Lacy, A.; Rodriguez, L.; Vidal, J. Long-Term Dietary Intake
and Nutritional Deficiencies following Sleeve Gastrectomy or Roux-En-Y Gastric Bypass in a Mediterranean Population. J. Acad.
Nutr. Diet. 2013, 113, 400–410. [CrossRef] [PubMed]

24. Vinolas, H.; Barnetche, T.; Ferrandi, G.; Monsaingeon-Henry, M.; Pupier, E.; Collet, D.; Gronnier, C.; Gatta-Cherifi, B. Oral
Hydration, Food Intake, and Nutritional Status Before and After Bariatric Surgery. Obes. Surg. 2019, 29, 2896–2903. [CrossRef]
[PubMed]

25. Hill, R.; Davies, P.S.W. The validity of self-reported energy intake as determined using the doubly labelled water technique. Br. J.
Nutr. 2001, 85, 415–430. [CrossRef] [PubMed]

170



Citation: Gilardini, L.; Cancello, R.;

Cavaggioni, L.; Bruno, A.; Novelli,

M.; Mambrini, S.P.; Castelnuovo, G.;

Bertoli, S. Are People with Obesity

Attracted to Multidisciplinary

Telemedicine Approach for Weight

Management? Nutrients 2022, 14,

1579. https://doi.org/10.3390/

nu14081579

Academic Editor: Javier

Gómez-Ambrosi

Received: 11 March 2022

Accepted: 8 April 2022

Published: 11 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nutrients

Article

Are People with Obesity Attracted to Multidisciplinary
Telemedicine Approach for Weight Management?

Luisa Gilardini 1,*, Raffaella Cancello 1, Luca Cavaggioni 1, Amalia Bruno 1, Margherita Novelli 1,

Sara P. Mambrini 2,3, Gianluca Castelnuovo 4,5 and Simona Bertoli 1,3

1 Obesity Unit—Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic
Diseases, IRCCS Istituto Auxologico Italiano, Via Ariosto 13, 20145 Milan, Italy;
r.cancello@auxologico.it (R.C.); cavaggioni.luca@gmail.com (L.C.); am.bruno@auxologico.it (A.B.);
m.novelli@auxologico.it (M.N.); simona.bertoli@unimi.it (S.B.)

2 Laboratory of Metabolic Research, S. Giuseppe Hospital, Istituto Auxologico Italiano, IRCCS,
28824 Piancavallo, Italy; s.mambrini@auxologico.it

3 International Center for the Assessment of Nutritional Status (ICANS), Department of Food,
Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy

4 Psychology Research Laboratory, Istituto Auxologico Italiano IRCCS, 28824 Piancavallo, Italy;
gianluca.castelnuovo@auxologico.it

5 Department of Psychology, Catholic University of Milan, 20123 Milan, Italy
* Correspondence: l.gilardini@auxologico.it; Tel.: +39-026-1911-2561; Fax: +39-026-1911-2541

Abstract: The forced isolation due to the COVID-19 pandemic interrupted the lifestyle intervention
programs for people with obesity. This study aimed to assess: (1) the behaviors of subjects with obesity
towards medical care during the pandemic and (2) their interest in following a remotely delivered
multidisciplinary program for weight loss. An online self-made survey addressed to subjects with
obesity was linked to the official website of our institute. Four hundred and six subjects completed
the questionnaire (90% females, 50.2 ± 11.6 years). Forty-six percent of the subjects cancelled any
scheduled clinical assessments during the pandemic, 53% of whom had chronic disease. Half of
the subjects were prone to following a remotely delivered lifestyle intervention, especially with a
well-known health professional. About 45% of the respondents were favorable towards participating
in remote psychological support and nutritional intervention, while 60% would practice physical
activity with online tools. Male subjects and the elderly were more reluctant than those female and
younger, especially for online psychological support. Our survey showed an interest on the part
of the subjects with obesity to join a multidisciplinary weight loss intervention remotely delivered.
Male subjects and the elderly seem less attracted to this intervention, and this result highlights that,
even with telemedicine, the approach to weight management should be tailored.

Keywords: obesity; lifestyle intervention; telemedicine; COVID-19 pandemic

1. Introduction

Coronavirus disease 2019 (COVID-19) is a severe acute respiratory syndrome caused
by SARS-CoV-2 that was first discovered in Wuhan, China in December 2019 and rapidly
spread to the rest of the world [1]. The infection is highly transmissible, and the number of
those infected with COVID-19 has now reached more than 364 million patients and over
5,500,000 deaths.

To contrast and contain the pandemic, at the beginning of March 2020, the Italian
Government adopted restriction measurements consisting of a temporary closure of all
nonessential activities, strengthening the measures aimed to increase personal hygiene,
symptom monitoring, early diagnosis, and patient isolation [2]. The lockdown was repeated
in November 2020 and March 2021. All these restrictions required individuals to stay at
home, leading to modifications in lifestyles and daily life habits, especially for those in frail
categories, such as subjects with obesity. In this context, people are prone in buying large
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quantities of ultra-processed, unhealthy food to cope with fear, boredom, or anxiety evoked
by the worldwide pandemic [3,4]. Moreover, in this difficult situation, individuals with
eating disorders may be at a high risk of relapsing or of a worsening of the severity of their
disorder [5,6]. Combined with a decrease in the levels of physical activity registered [7], the
impaired nutritional habits could lead to weight gain. An Italian study in a small cohort
of individuals with obesity showed a significant weight gain 1 month after the beginning
of the lockdown period [8]. The increased risk of weight gain during lockdown and the
evidence that any degree of obesity has been associated with poor prognosis in patients
with SARS-CoV-2 infection [9] have pointed out the importance of ongoing support for
obese subjects to manage the disease during the pandemic. Indeed, in Italy, all non-urgent
medical visits, including clinical practices planned for obesity management, were deferred
to ensure social distancing and reduce the virus spread. Since the resumption of clinical
activities after the lockdowns, the fear of contracting the infection in healthcare places, such
as hospitals and clinics, has grown in people, and there is still a significant reduction in
access to clinical care programs, including metabolic rehabilitation for obesity. The global
COVID-19 pandemic has led to a revolution in many fields, promoting alternative strategies
with the use of technology. In addition to this, the medical sector has also promoted the
usefulness of telehealth and telemedicine, but benefits and barriers in using technology
should be considered when dealing with patients [10]. It is worth noticing that telemedicine
may represent a novel, effective option in obesity management. In fact, it has previously
been demonstrated that video visits with physicians and dieticians can be effective in driv-
ing weight loss compared to the standard care [11,12]. IRCCS Istituto Auxologico Italiano
(https://www.auxologico.it/, accessed on 10 March 2022) is a specialized national center
for obesity care. In Italy, the prevalence of obesity was estimated as 10.9% in 2019, and it is
higher in men (11.7%) than in women (10.3%), with increasing prevalence from the north to
the south of the country [13]. In our institute, we conduct a 3-month multidisciplinary pro-
gram aimed at weight loss in obesity-suffering subjects with the involvement of dieticians,
physicians, psychologists, and exercise physiologists. The intervention includes individual
interviews with the health professionals, nutritional/psychological group sessions, and a
one-hour session of moderate intensity physical activity under the supervision of a physical
trainer [14]. At the end of the rehabilitation, patients were given an appointment for the
regular three months of follow-up visits. During the pandemic, we were forced to stop
this rehabilitation program, and we wondered what the barriers were for the patients with
obesity to perform the intervention with telemedicine. We conducted a self-reported online
survey among the newsletter readers of Istituto Auxologico Italiano from October 2020 to
March 2021 to observe the perception of telemedicine of patients with obesity.

The purpose of this survey was to investigate (1) the behaviors of obese subjects
towards medical care during the pandemic and (2) their opinion on the possibility of fol-
lowing a remotely delivered program for weight loss, including psychological, nutritional,
and physical activity interventions.

2. Materials and Methods

The present study is a cross-sectional design carried out using an online self-made
questionnaire (from October 2020 to March 2021) adopting a Google online survey platform
(Google LLC, Mountain View, CA, USA). A link to the electronic survey is present on the
official website of the IRCCS Istituto Auxologico Italiano (www.auxologico.it, accessed on
10 March 2022) and was shared via the local institute newsletter. Registration to receive
the newsletter is open to everyone, but usually, the subscribers are patients who use
the services of our institute for healthcare. All participants were requested to provide
informed consent through an appropriate checkbox in the survey regarding research
purposes. Participants’ answers were anonymous, in accordance with Google’s privacy
policy (https://policies.google.com/privacy?hl=it, accessed on 20 February 2022). Each
participant was identified by a progressive anonymous number. The self-made survey
included a questionnaire composed by 34 questions broken down into three sections:
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(1) personal anonymous data (age, gender, zip code, education, current work, presence of
chronic diseases, availability of an IT tool, weight, and height); (2) disease management
during the pandemic (we asked if the patient missed scheduled control visits for any health
issue, if they contacted the doctor, and by what means); and (3) obesity management during
the pandemic and opinion on the use of telemedicine (whether the patient is prone to
following a nutritional, psychological, and physical activity program remotely, what is the
best modality, and what are the critical issues).

The text of the questionnaire is linked as an annex (Supplementary Materials S1).
The inclusion criteria were body mass index values ≥ 30 kg/m2 and ages ≥ 18 years.
Participants with lower BMI values were excluded by statistical analysis. The participants
were asked multiple- or single-choice questions or questions whose answers required the
interviewee to enter numeric data. For example: Enter your weight.

The study was conducted in full agreement with the national and international regu-
lations and the Declaration of Helsinki (2000). Participants independently completed an
anonymous online questionnaire, explicitly agreeing to participate in the survey. Partici-
pants’ personal information were made anonymous to maintain and protect confidentiality.
The anonymous nature of the web survey did not allow us to trace in any way sensitive
personal data. Therefore, the present web survey study did not require approval by ethics
committee. Once completed, each questionnaire was transmitted to the Google platform,
and the final database was downloaded as a Microsoft Excel sheet.

Statistical Analysis

Continuous variables were expressed as the mean ± standard deviation (SD) and
categorical data as frequencies and proportions. Differences between groups were calcu-
lated using the Student’s t-test for independent samples and analysis of variance for the
comparison of multiple groups. Frequencies were compared using a χ2 test. All analyses
were performed using SPSS version 26.0 (SPSS Inc., Chicago, IL, USA). A p-value < 0.05
was considered statistically significant.

3. Results

In total, 465 subjects completed the entire questionnaire. Fifty-nine subjects were
only overweight and were excluded. Table 1 showed the characteristics of 406 obese sub-
jects. The subjects were prevalently female, and the age group with the highest frequency
(59.4 percent) was 41–60 years old. The mean BMI was 38.0 ± 6.1 kg/m2. Men had more
severe degrees of obesity compared to women (40.1 ± 5.8 vs. 37.8 ± 5.8 kg/m2, p < 0.05),
had fewer previous diet attempts (more than three diets: 62.5% vs. 83.7%, p < 0.001), and
tended to have more obesity-related chronic diseases (52.4% vs. 68.3%, p = 0.05) than
women. There were no differences in age and education levels between the sexes. The
percentage of subjects with obesity-related chronic diseases increased with age (34% in
subjects aged <40 years (y), 56% in subjects aged 41–60 y, and 71% in subjects aged >60 y,
p < 0.0001) but not with the degree of obesity. The degree of obesity, gender, and education
level were similar across the age groups. Only four subjects (all females) had no electronic
tools, three of whom were >65 years. A sedentary behavior was present in 41%. The most
declared activity by physically active subjects was “walking”.
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Table 1. Characteristics of 406 subjects with obesity who answered the questionnaire.

Participant Characteristics

Age, years 50.2 ± 11.6
Female, % 90

Educational level
Primary school, % 5.4

Secondary school, % 57
University, % 37.5
BMI, kg/m2 38.0 ± 6.1
Class of BMI

Class I (BMI 30–34.9)% 36.3
Class II (BMI 35–39.9)% 29.8
Class III (BMI ≥ 40)% 32.3

Subjects with obesity related chronic diseases, % 54.1
Subjects who practise physical activity, % 59
Subjects with at least one diet attempt, % 96

Subjects with at least one electronic tool, % 99
Data are expressed as mean ± SD or percentage (%).

3.1. Disease Management during Pandemic

The answers given by the participants to the questions about healthcare during pandemic
and their opinions on remote visits are summarized in Table 2. Patients who cancelled or
postponed a scheduled medical examination (46%) were similar in age, sex, and degree of
obesity compared to those who did not but had more frequent chronic diseases (53.2% vs.
37.8%, p < 0.005). Of the subjects who cancelled a visit, fifty-three percent contacted the
medical doctor in another way, especially by phone, mail, and the WhatsApp (WhatsApp
Inc. 2020, Manlo Park, CA, USA). These subjects had more chronic diseases (57.7% vs. 45.7%,
p < 0.05) than those who did not contact the doctor. Only 24% of subjects believed that the
doctor could understand their state of health well through a video consultation, but the
percentage rose to 62% if the subject had already met the therapist in a face-to-face visit.

Table 2. Answers given by the participants to questions about medical care during the pandemic
with relative percentage (%).

Have you cancelled or postponed any scheduled clinical assessments during the pandemic?

No, 53.7%
Yes, 46.3%

Due to the impossibility of a visit during this period, have you contacted your doctor for the
management of your complications in any other way?

No, never, 47.9%
Yes, by WhatsApp or phone message, 12.7%

Yes, by email, 17.1%
Yes, by telephone, 20.7%

Yes, by video consulting, 1.6%

Do you think that, during this period, a remote medical video consultation could help you
have less health risks?

No, 12.8%
Yes, 59.0%

I don’t know, 28.1%

Do you think your doctor can understand your health through a video consultation?

No, 12.8%
I don’t know, 24.5%

Yes, 24.4%
Yes, but only if he has already met me during a face-to-face visit, 37.7%
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3.2. Obesity Management and Telemedicine

Fifty-five percent of subjects were open to following a remotely delivered lifestyle
intervention, 23% only if the health professional was known, 15.4% were undecided, and
6.6% refused. There was no difference in age, sex, degree of obesity, and having a chronic
disease in the four groups (Figure 1). Most patients believed that the cost of the online
lifestyle intervention should be provided by the national health system. Forty-five percent
of the respondents to the survey felt favorably about participating in remote psychological
regular support. Men were more reluctant than women (37.5% of males refused this
type of therapy vs. 18% of females, p < 0.005). Subjects older than 60 years and with
chronic diseases tended to be less disposed toward remote psychological therapy than
younger subjects and those without chronic diseases (Figure 2). Most people would prefer
a video consultation with the psychologist once a week. Another preferred modality is
an online interview as needed. The minority would like to have two talks a week. An
online nutritional intervention would have been accepted by 46% of the subjects. Males
and the elderly were more opposed or indecisive towards this intervention than females
and those younger (Figure 3). According to most, nutritional therapy should take place
by teleconsulting with a dietician once a week. They also welcomed the sending of video
conferencing/written materials concerning diet/nutrition/health. Group activities online
once a week was the least welcome option. About 60% of subjects would practice physical
activity with online tools supervised by a trainer, while 14% are not interested. The subjects
who were more predisposed toward the online program were females and those younger
(Figure 4). Concerning physical activity, most of the samples in the study believed that
the best way to practice physical activity at a distance was real-time online group lessons,
once a week, followed by the reception of training tables and one-on-one meetings via the
video platform with an exercise physiologist. The deterring factors of the possibility of
doing physical activity online were in order of frequency: laziness, no deterrent, the lack
of an appropriate space at home, the difficulty of using electronic tools, and the fear of
getting hurt.

Figure 1. The figure shows the answer to the question: “Would you be like to start an online
multidisciplinary intervention for weight management?”. The responders are divided by age, sex,
degree of obesity, and the presence of chronic diseases.
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Figure 2. The figure shows the answer to the question: “Would you undergo a remotely delivered
psychological intervention?”. The responders are divided by age, sex, degree of obesity, and the
presence of chronic diseases. * p < 0.005 vs. females.

Figure 3. The figure shows the answer to the question: “Would you will join an online nutritional
intervention?”. The responders are divided by age, sex, degree of obesity, and the presence of
chronic diseases.
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Figure 4. The figure shows the answer to the question: “Would you like to practice physical activity
online supervised by an exercise physiologist?”. The responders are divided by age, sex, degree of
obesity, and the presence of chronic diseases.

4. Discussion

Our study is the first investigation detecting habits and behaviors of obese subjects
towards medical care during the pandemic and providing the opinions of subjects with obe-
sity of a remotely delivered program for weight loss, including psychological, nutritional,
and physical activity interventions through telemedicine. The COVID-19 pandemic has
had not only deleterious effects on infected people but also on the non-COVID-19 patients
who have not been able to receive the same level of assistance as before. In Italy, from 15
March 2020, outpatient visits were limited to no deferrable ones, while other appointments
were postponed or cancelled to conserve resources and reduce the risk of viral transmission.
Our survey highlighted that half of the individuals with obesity responders missed all
scheduled medical examinations, especially those with chronic diseases. In according with
this finding, a questionnaire coordinated by the Italian National Institute of Health and
aimed at people over 65 years revealed that 44% of 1200 subjects interviewed were resigned
during the pandemic to missing at least one medical examination (or diagnostic test) that
they would need [15]. Bonora et al. showed that the number of visits for diabetic subjects
performed during the lockdown period was 47.7% lower than in the same month of the
previous 2 years and that the reduction of visits was significantly greater for aged type
2 diabetes patients with heavier complication burdens and complex pharmacotherapies
than for younger ones with less complicated diabetes [16]. A study conducted in North
Carolina (USA) reported that 53% of outpatient cardiology encounters were cancelled in
2020, and individuals who utilized telehealth tended to be younger, with fewer comorbidi-
ties, than those cancelled or referred care [17]. In our survey, patients contacted the doctor,
especially via email and WhatsApp, indicating that these media are replacing telephone
calls. Although about 60% of the survey participants thought that online consulting might
decrease the risk of being infected, only 24% believed that the doctor could perceive their
health conditions without an in-person visit. The percentage increased if the subject met
the health professional during a previous face-to-face visit. Telemedicine could be a huge
opportunity for obesity management during the COVID-19 pandemic, but acceptance by
subjects with obesity could be a critical issue. Obesity is a disease in which physician–
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patient communication is fundamental, and the relationship between the patient and the
health professional is important for the success of the intervention [18].

For this reason, it was important to investigate how remotely delivered interventions
could be perceived in these patients and if there were any phenotypes of patients who were
more reluctant toward telemedicine. Our study demonstrated that more than half of the
subjects with obesity were willing to participate in an online multidisciplinary lifestyle
intervention, but familiarity with the therapist was a conditional factor in the greater
acceptance of the therapy. When we analyzed the perceptions of the three interventions
separately (psychological, nutritional, and physical activity), we found that the subjects
were more reluctant toward online psychological and nutritional therapy than a physical
activity program. Men and the elderly tended to be less interested to an online intervention
than women and those younger. In particular, about 40% of men with obesity refused
online psychological therapy. It is known that men remain less likely than women to
access psychotherapy or participate in lifestyle modification programs, including weight
loss intervention [19,20]. In our cohort, men had a more severe degree of obesity and
associated chronic diseases than women, suggesting that men seek help for their condition
(in this case, were attracted by a survey on a weight loss program) later than women and
when their health is already compromised with other complications. Thus, appealing and
innovative approaches that improve their weight status are needed for men. In a study
investigating men’s experiences and perspectives regarding social support after bariatric
surgery, male patients reported feeling alone and isolated during the weight loss support
groups consisting primarily of women, and they preferred online social support [21]. Other
studies confirmed a positive and good response by men to telemedicine [22,23]. Despite
this, in our study, we found some reluctance by men to participate in an online weight loss
program, especially as regards psychological intervention. Since, as already mentioned
above, physician–patient communication is fundamental in obesity management, a face-
to-face consultant with the healthcare professional is necessary to explain the modalities
and benefits of online lifestyle interventions and to decrease men’s distrust of this type
of approach.

Few studies have examined telemedicine weight loss interventions for older peo-
ple [24]. Telemedicine may have several advantages, eliminating mobility impediments
and the risk of COVID-19 infection. Indeed, older obese subjects have the major risk of
severe disease and/or death from COVID-19. In our study, about 20% of subjects were >60
years old, and they had more chronic diseases than those younger. They were less attracted
to telemedicine, probably because they felt fragile and needed an in-person consultation
with the healthcare professional, including to monitor in their presence their health status.
Furthermore, although most of them had an electronic tool and the educational level was no
different compared to young subjects, it is possible that they had an inability to manipulate
the technology, as well as a cognitive impairment issue.

It is necessary to promote remotely delivered weight loss interventions tailored for
older people that overcome technological and cognitive barriers. The responders chose as
the best mode for a nutritional intervention an online visit with a dietician, while real-time
group lessons were with an exercise physiologist to practice physical activity at home.
The online consultation was probably preferred, because it allows to create interactions
between users through facial expressions and voice tone, confirming how important the
relationship is with a therapist in the nutritional intervention in obesity management. The
online physical activity group lessons have an advantage in that the exercise physiologist
can give a visual demonstration of the exercises and that group members can support
each other. As a matter of fact, telemedicine may represent a novel, effective option when
treating obese patients, but the benefits and barriers in using technology should be carefully
considered [10].

Our findings suggest that we could use a “hybrid” model for the management of
weight loss during the pandemic. From a practical viewpoint, we could speculate on
using a face-to-face consultation for the initial evaluation in order to create a strong patient–
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physician relationship, and the subsequent visits could be performed remotely, interspersed
with traditional visits, especially with frail subjects (i.e., men and elderly). Finally, it is
plausible to use telemedicine in providing physical activity group lessons.

The limitations of this survey are also worthy of discussion: (1) It was a self-reported
survey, and the study group may not be representative of all the population with obesity,
because the survey was addressed and diffused through the newsletter of our institute. In fact,
although the newsletter was open to everyone, some subjects may have been unintentionally
excluded—in particular, those who did not have an electronic tool or the needed knowledge
and skills to carry out the online survey. (2) The gender disproportion confirms the lower
interest of men in weight loss issues than women. (3) Information on a previous SARS-CoV-2
infection was not investigated in this survey. This point may have played a role in patients’
decisions to accept or refuse a remote management approach. (4) The questionnaire did
not investigate the knowledge of the subjects on how to use the technological aspect of
telemedicine. Although almost all the interviewees stated that they have a technological tool
(smartphone, computer, or tablet), this does not mean that they were able to use it. This is
especially true for the elderly and for those with lower education levels.

5. Conclusions

In conclusion, our survey showed an interest on the part of subjects with obesity to
join a multidisciplinary weight loss intervention remotely delivered. Even if with caution,
given a possible bias during the recruitment, we noticed that men and the elderly were
more reluctant than women and those younger to participate in an online nutritional and
psychological intervention. This result highlights once again that, even with telemedicine,
the approach to weight management should be tailored. As our survey revealed an interest
in telemedicine on the part of people with obesity, we can imagine using this approach
also in the post-COVID-19 period. In fact, the implementation of telemedicine in obesity
care could minimize patient travel time and missed work, expanding the possibility of
treatment to a greater number of subjects with obesity in order to sustain higher adherence
to lifestyle changes.
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Abstract: Development of predictive computational models of metabolism through mechanistic
models is complex and resource demanding, and their personalization remains challenging. Data-
driven models of human metabolism would constitute a reliable, fast, and continuously updating
model for predictive analytics. Wearable devices, such as smart bands and impedance balances,
allow the real time and remote monitoring of physiological parameters, providing for a flux of data
carrying information on user metabolism. Here, we developed a data-driven model of end-user
metabolism, the Personalized Metabolic Avatar (PMA), to estimate its personalized reactions to diets.
PMA consists of a gated recurrent unit (GRU) deep learning model trained to forecast personalized
weight variations according to macronutrient composition and daily energy balance. The model
can perform simulations and evaluation of diet plans, allowing the definition of tailored goals for
achieving ideal weight. This approach can provide the correct clues to empower citizens with
scientific knowledge, augmenting their self-awareness with the aim to achieve long-lasting results in
pursuing a healthy lifestyle.

Keywords: metabolism; deep learning; gated recurrent unit; wearables; forecasting; diet plans;
digital nutrition

1. Introduction

The global obesity epidemic has been spreading throughout most countries since the
1980s. Obesity contributes directly to incident cardiovascular risk factors, including dyslipi-
demia, type 2 diabetes, hypertension, and sleep disorders [1–3]. Obesity also leads to the
development of cardiovascular diseases independently of other cardiovascular risk factors.
More recent data highlight abdominal obesity, as determined by waist circumference, as a
cardiovascular disease risk marker that is independent of body mass index [4,5]. Lifestyle
modification and subsequent weight loss improve both metabolic syndrome and associated
systemic inflammation and endothelial dysfunction, leading to a reduction of coronary
artery disease, heart failure, and atrial fibrillation [6–9].

Quantifying lifestyle modifications to decrease cardiovascular risk is nowadays con-
ceivable following the increased use of wearable devices, such as smartwatches, smart
bands and impedance balances. These devices allow the real-time and remote monitoring
of physiological parameters. As measurement and feedback systems become more refined
and personalized, these devices can help people to change their lifestyles and improve
wellbeing. Moreover, they have the potential to be linked into a wide range of lifestyle
support services through community, public and private providers. An important im-
provement in managing the huge variety of wearable and portable devices comes from
web-based applications. Several solutions exist on digital stores, but they mostly suffer
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from incomplete and not well-defined food databases and lack of personalization due to
the scarce integration of the information flux: users must rely on different applications,
furnishing partial and unrelated information about their metabolic state, where energy
intake and expenditure are not directly related. To overcome this issue, we developed a
digital web-based application (ArMOnIA) integrating dietary, anthropometric, and physi-
cal activity data [10]. Data flows from smart devices (smart band and impedance balance)
and diet diaries are collected to build an accurate and personalized estimation of energy
balance (accounting for individual body composition, age, and hydration state). We al-
ready showed, in a single-arm uncontrolled prospective study on self-monitored voluntary
normal or overweight adults, that this application, by simply allowing the visualization
of the energy balance in a dashboard, helps users to significantly decrease their average
energy balance and consequently BMI in a period of 45 days [10]. The data streams pro-
vided by this platform can be analyzed relying on machine learning and artificial neural
networks, with the aim to provide predictive and personalizable computational models of
metabolism. In particular, the problem of the prediction of weight variations traditionally
relies on estimations based on thermodynamic models depending on age, height, gender,
and current weight [11]. However, diet predictors developed through these models have
limited application because they assume weight stability and do not account for factors
such as microbiome, variations in type and expression of genes linked to nutrition, and
quality and quantity of physical activity. Some human genome-scale metabolic models
(GEM), such as Recon3D [12], contain the human gene–protein reaction associations and
can mechanistically predict metabolic fluxes. However, these complex models need long
elaboration times or high-performance computing (HPC) and cannot be embedded in edge
computing (EC) to improve scalability and performance. Moreover, the personalization of
metabolic models remains challenging [13], as they require new methodological approaches
to integrate molecular and physiological data. Data-driven models of human metabolism
would constitute a reliable, fast, and continuously updating model for predictive analytics.
These models could indeed offer crucial data for achieving the best weight forecasts and
the creation of individualized diet and exercise plans. Differently from the well-established
knowledge-driven models, data-driven models can account for all of the metabolic pro-
cesses, from genetic predispositions to current microbiome composition, affecting weight
changes. Relying on this information embedded in the model, they could provide for
personalized weight forecasts and for the creation of individualized diet and exercise plans,
with the aim to achieve long-lasting results in pursuing a healthy lifestyle. To this aim, here
we developed a personalized model of end-user metabolism, the Personalized Metabolic
Avatar (PMA), to estimate its reactions to diets. PMA consists of a gated recurrent unit
(GRU) deep neural network allowing the prediction and simulation of personalized weight
variations according to macronutrient composition [14–16] and daily energy balance [17]
and allowing the generation of tailored diet plans. PMA may be adopted to gradually
improve adoption of healthy habits in a person-specific fashion.

2. Materials and Methods

2.1. Study Population and Protocol

In this single-arm uncontrolled prospective study, a group of four adult volunteers
(three normal and one overweight) recruited from our lab staff self-monitored daily their
weight, diet and step count for more than 300 days using the ArMOnIA app, without
predetermined objectives or intervention. Other assessment data were collected in-person
via digital diaries. The four participants shared their personal data after signing an informed
consent. The protocol is as follows:

• Food diaries: users must register daily the foods eaten during breakfast, lunch, dinner
and snacks.

• Physical activities (PA): users must wear a smart band all day and all night, especially
during physical activities where they have to specify the type of activity performed.
These include: jogging, walking, swimming, working out, general sports, etc. When-
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ever participants forget to track their own activities with the smart band, they must
register them into the ArMOnIA app, where the calories burned from these activities
are evaluated through the compendium [18]. This is also performed for other activities
not monitored by the smart band, such as house cleaning, driving, etc.

• Weight monitoring: users have to weigh themselves barefoot every day after waking up
using an impedentiometric balance.

2.2. Wearables and Devices

The following devices were chosen for tracking anthropometric and PA data:

• MiBand 6, a smart band (Xiaomi Inc.®, Beijing, China), for tracking PA and estimating
calories burned during exercises (walking, running, etc.).

• Mi Body Composition Scale, an impedance balance (Xiaomi Inc.®, Beijing, China), for
tracking anthropometric data such as: weight, resting metabolism, fat rate, muscle
rate, bone mass.

These devices already had been used in three studies on PubMed, and 11 clinical trials
had been performed using MiBand-1. Validation results in estimating RMR can be retrieved
in a recent publication [19].

2.3. Data Collection, Storage and Retrieval through an Ad Hoc Developed Web App and Estimation
of Personalized Energy Balance

A web application (www.apparmonia.com, accessed 21 July 2022) was developed in
Python 3.8 with the libraries Django (https://www.djangoproject.com/, accessed 21 July
2022) and Django_plotly_dash (https://django-plotly-dash.readthedocs.io/en/latest/,
accessed 21 July 2022) for data collection, storage, and visualization of energy balance
through a dashboard [17].

The web application allows for data collection, storage, analysis and visualization.
These are detailed below.

2.3.1. Data Collection

Data provided in-person through a digital diary: food and other activities not included
in the smart band (home activities, music playing, driving, etc.).

Data from the smart band and impedance balance were retrieved through the ZEPP
Life® app (Anhui Huami Information Technology Co., Ltd., Hefei, China).

2.3.2. Data Storage

Retrieved data underwent anonymization and are then stored into a NoSQL database
(MongoDB®, New York, NY, USA, https://www.mongodb.com/, accessed 30 June2022).

2.3.3. Data Retrieval

The quantities retrieved from the database needed for the development of PMA were
the following:

1. w is the weight acquired daily by the Mi Body Composition Scale.
2. mC is the mass expressed in grams of total daily carbohydrate intake, mL is the mass

expressed in grams of total daily lipid intake, and mP is the mass expressed in grams
of total daily protein intake.

3. daily energy balance, EB, calculated according to the formula

EB = EI − TEE, (1)

where EI is the daily energy intake, and TEE is the daily total energy expenditure.
EI is considered as the sum of all ingested calories as retrieved from the following

databases: DIETABIT (www.dietabit.it, accessed 5 July 2022), CREA (www.crea.gov.it,
accessed 5 July 2022), BDA (www.bda-ieo.it, accessed 5 July 2022), and OPENFOODFACTS
(www.it.openfoodfacts.org, accessed 5 July 2022).
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TEE is calculated according to the formula

TEE = RMR + TEA + TEF (2)

where TEA is the thermic effect of activity, RMR is the resting metabolism ratio, both
measured using the values provided by the ZEPP Life® app [19], and TEF is the thermic
effect of food, referring to the energy expenditure related to food consumption [20] (i.e.,
digestion, absorption, assimilation, and storage), dependent on the amount and type of
food consumed, which accounts for about 10% [21] of TEE and is estimated from food data
through the following formula:

TEF = 0.095 · (mc · 3.75) + 0.015 · (mL · 9) + 0.25 · (mP · 4) (3)

2.4. Data Preprocessing

We considered energy balance and food composition as the main drivers of weight vari-
ations [10,22]. As already introduced in Section 2.3, the datasets used for the construction
and testing of the model consisted of the following data:

• Weight: w(t) [kg]
• Energy balance: EB(t) [kcal]
• Daily carbohydrate intake: mc(t) [g]
• Daily protein intake: mp(t) [g]
• Daily lipid intake: ml(t) [g]
• Week cosine: cos( 2

7 πt)
• Week sine: sin( 2

7 πt)

In Figure 1A,B, sample w(t), EB(t) and mc(t), mp(t), ml(t) time series are reported. The
last two terms, week cosine and week sine, were introduced to account for seasonality that
can affect diet and PA habits, as shown in previous studies [23]. So far, in Figure S1, we
showed a violin plot of a representative user reporting the distribution of the energy balance
through all days in a week. As we can see, there is a variation among days confirmed also
by statistical tests (Section S1).

Figure 1. Time series describing user metabolism. (A) Representative time series for weight and EB.
(B) Representative time series for food composition.

We then handled missing values (below 3% of the entire dataset) using the ‘pad’
method, taking values from the previous row. During imputing, test and train were
separated to avoid crosstalk between the two sets.

EB(t) values can be affected by biases due to wrong insertion of food quantities, which
are typically underestimated [24]. To account for these biases, we calculated for each time
point the weekly variation of EBweek(t) and the weekly weight variation of Δwweek(t) and
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fitted with a linear regression model EBweek = a · Δwweek + b (Figure S2). b is the average
bias in the estimation of the energy balance, which was subtracted from the estimated EB(t).

2.5. PMA Development with RNN Network

PMA was shaped as output of a deep recurrent neural network, bridging the evolution
of weight w(t) and mc(t), mp(t), ml(t) (Section 2.4). Recurrent neural networks (RNN) are a
very flexible class of neural networks, widely used to solve problems involving dependent
data, such as time series. Therefore, this type of neural network best suited our application
needs. Among the RNNs, we selected the mono-layer GRU (Section S3 [25]).

Data Preparation

Before deep learning can be used, time series forecasting problems must be re-framed as
supervised learning problems. It is standard practice to use lagged observations (e.g., t − 1)
as input variables to forecast the current time step (t). This is called ‘multi-step forecasting’ [26].
Calling k the lagged observation, the supervised learning dataset is reframed as:

var1(t − k) . . . var7(t − k) . . . var1(t − i) . . . var6(t − 1) . . . var7(t − 1) . . . var1(t)

where the overall time series are renamed with the string varj, where j indicates the variable
considered running from 1 to 7.

2.6. Model Selection

The first step in the development of the PMA is the definition of the architecture of the
RNN used.

For this work, the most suitable architecture found for our application (Figure S3) was
composed of the following layers:

• Input layer: weight and exogenous series such as EB and food composition (carbohy-
drate, protein and lipid content expressed in grams) at previous times with respect
to the output (plus historical values from the time series target). This corresponds
to the xt of Equation (S4), defined as follows: xt = [EB(t − k), mc(t − k), mp(t − k),
mc(t − k), w(t − k), . . . , EB(t − 1), mc(t − 1), mp(t − 1), mc(t − 1), with k the lagged
observation (specific for each user, as explained below).

• Hidden layer: a GRU neural network with the addition of a dropout layer (Section S4 [27,28]).
• Output layer: composed of one output, the weight w (t + 1) at time t + 1.

After that, we needed to choose the best set of hyperparameters (HP) to allow the
model to predict accurately for every dataset used.

HP are the number of neurons, the type of activation function, the batch size, the
number of epochs, the dropout value and the lookback value k (how many time steps
we look back for the forecasting of the time series target). HP tuning was carried out to
find the possible best sets to build the model from a specific dataset and with a specific
goal [29]. HP tuning consists of the scanning of macro-parameters for the reduction of
a loss function. Typically, in time series forecasting, the tuning is carried out to reduce
the root mean squared error (RMSE) of the test-train forecasting (see Equation (4) below).
Nevertheless, for our study, we introduced several constraints in selecting HP to guarantee
correct dynamics of weight variations. In order to do so, we performed a simulation for
7 days (described in Section 2.7), considering diet plans consisting of different EB values:
−1000,−500, 0, 500 and 1000 kcal. HP that did not respect the following conditions
were discarded:

• w(t + 7)− w(t) > 0 for EB = 1000 kcal
• w(t + 7)− w(t) < 0 for EB = −1000 kcal
• w(t + 7)EB=1000 − w(t + 7)EB=−1000 < 10 kg
• w(t + 7)− w(t) has to be an increasing function of EB

187



Nutrients 2022, 14, 3520

After this preselection, the choice of the best set of parameters was then made through
minimization of the RMSE of the test-train forecasting, evaluated according to the formula:

RMSE =

√√√√ n

∑
i=1

(ŷi − yi)
2

n
(4)

In the following, we report in detail the HP parameter scanning sets:
Number of neurons: The number of neurons in the hidden layer for the GRU neural

network has to be adjusted to the solution complexity: the task with a more complex level
to predict needs more neurons. To consider GRU with increasing complexity, the number
of neurons was chosen from the following range: 50, 100, 150 and 200.

Activation function: The activation function of the GRU mono-layer is crucial to com-
pute the input values into output values. We considered eight activation functions to
tune: ‘tanh’, ‘ReLU’, ‘sigmoid’, ‘softplus’, ‘softsign’, ‘selu’, ‘elu’, ‘exponential’. In Figure S4, we
reported the activation functions ‘tanh’ and ‘ReLU’ as the most performant functions in
our datasets.

Batch size: Batch size is the number of training data sub-samples for the input. The
smaller batch size makes the learning process faster at the expense of the variance of
validation dataset accuracy. To minimize the time of the learning process as much as
possible, we set the range of this value with the following values: 8, 16, 32, 64, 128.

Number of epochs: The number of times a whole dataset is passed through the neural
network model is called an epoch. One epoch means that the training dataset is passed
forward and backward through the neural network once. The number of epochs must be
tuned to gain the optimal result: too few epochs typically result in underfitting, while too
many epochs lead to overfitting. Hence, we verified optimal agreement of the test loss
and train loss through the plot of learning curves. Following this visual inspection (see
Section 3.1 and Figure 2), the number of epochs available for tuning was limited to the set:
50, 100, 150, 200.

Figure 2. Train and test loss function (Mean Absolute Error) versus the number of epochs.
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Lookback (k-value): The number of time steps looked back in the prediction is a key value
in multi-step ahead forecasting. The weight trend is strongly influenced by the previous
values. Hence, considering previous time steps in the forecasting of the weight is necessary
to reduce as much as possible the errors committed in the prediction. However, a higher
value could bring unwanted results, such as decreasing the performance of the forecaster
both in terms of accuracy and computational speed. Following these considerations, we
considered for tuning, as a trade-off, the range: 7, 6, 5, 4, and 3.

Dropout rate: The dropout layer is a regularization layer. As its name suggests, it
randomly drops a certain number of neurons in a layer. The dropped neurons are not used
anymore. The percentage of neurons to drop is set in the dropout rate. A high value may
be too severe for the application. To avoid this problem, the dropout rate was chosen from
the following range: 0.2, 0.4 and 0.6 [30].

Seasonal terms: For each user, the seasonal term could influence the weight variation.
For this reason, in the tuning, we considered whether the addition of the week cosine and
week sine terms among the input variables would lead to an increase in the performance of
the model or not.

Metrics and optimization algorithm: In the tuning, “Mean Absolute Error” (MAE) was
used as the GRU loss function, and “ADAM” as the optimization algorithm.

2.7. Walk-Forward Validation and Simulation

In time series modeling, the predictions over time become less and less accurate.
Walk-forward validation (WFV) is a more realistic approach consisting of continuously
re-training the model with actual data as they become available for further predictions.
Since the training of GRU neural networks is not too time-consuming, WFV is the most
preferred solution to obtain the most accurate results.

Following the same criteria of the WFV, we defined the walk-forward simulation
(WFS). The only difference between the two approaches is that in WFS, we used forecasted
values as input rather than actual data. The WFS’s workflow is shown in Table 1.

Table 1. Concept of WFS.

t Input (t k) … Input (t 3) Input (t 2) Input (t 1) … w (t 4) w (t 3) w (t 2) w (t 1) w (t)
t + 1 known … known simulated simulated … known known known known predict
t + 2 known … known simulated simulated … known known known predict
t + 3 known … simulated simulated simulated … known known predict
t + 4 known … simulated simulated simulated … known predict
… … … … … … … … … … … …
t + n simulated … simulated simulated simulated … predict

l l I I h lColumns represent input values at time t. Input (t − k); . . . ; Input (t − 1) represent covariates, while w (t − k);
. . . ; w (t) represent the target variable (weight). Rows represent predictions at time t + 1, t + 2, . . . , t + n. ‘known’
means that the value is taken from the dataset of actual values, ‘simulated’ indicates that the value is an input of a
simulated diet plan, ‘predict’ indicates that the value is predicted from the neural network.

A limit of WFV and WFS is the fact that the re-training phase forces the start of
forecasting or simulation only from the last acquired time step. However, if there was a need
to simulate effects of variations of EB or food composition beginning from other starting
points, our approach was to avoid the re-training phase. This approach is particularly
useful when input data are scarcely sampled in the training set and WFS cannot give
correct responses.

2.8. Computer Performance

For the study, a PC with the following characteristics was used: Windows 10 Enterprise,
Intel(R) Core(TM) i5-8500 CPU @ 3.00 GHz, 8 GB RAM, Intel(R) UHD Graphics 630.
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2.9. Python Libraries

The setup used for this study was composed of the following libraries: tensorflow CPU
== 2.8.0 (https://pypi.org/project/tensorflow-cpu/, accessed 5 July 2022), keras == 2.8.0
(https://keras.io/, accessed 5 July 2022), pandas == 1.0.5 (https://pandas.pydata.org/, ac-
cessed 5 July 2022), numpy == 1.22.2 (https://numpy.org/, accessed 5 July 2022), matplotlib
== 3.5.2 (https://matplotlib.org/, 5 July 2022), seaborn == 0.10.1 (https://seaborn.pydata.
org/, accessed 5 July 2022), pymongo == 3.11.4 (https://pymongo.readthedocs.io/en/
stable/, accessed 5 July 2022) and scikit-learn == 0.24.2 (https://scikit-learn.org/stable/,
accessed 5 July 2022).

3. Results

3.1. Selection of the Optimal Models through Grid Search of GRU Parameters and RMSE Overall
Minimization on the Cohort of Users

As a starting point, we selected the four time series and carried out HP tuning
(Section 2.6) following reduction of the RMSE of the values predicted using the test-train
method with a 7-day test dataset. The optimal hyperparameters (HP) defined the individual
model, called PMA, which is reported in Table 2 for each user:

Table 2. Results of the hyperparameter tuning for each user.

User
Number of

Neurons
Activation
Function

Dropout
Rate

Epochs Batch Size Lookback
Seasonal

Terms
RMSE

0 100 ReLU 0.2 50 32 7 No 0.47
1 200 ReLU 0.2 200 128 4 No 0.49
2 150 ReLU 0.2 50 64 5 No 0.31
3 100 ReLU 0.2 50 128 5 No 0.4

We can observe from the table that the PMA differed among users with the exception
of the activation function (‘ReLU’), the dropout rate (0.2), and the seasonal terms that gave
no additional improvement to PMA. This is probably because the size of the training set
spanned through a time period (i.e., winter and summer) during which well-defined habits
did not arise. We also checked the test-train plots for all users (Figure 2). They showed no
evident presence of overfitting, guaranteeing the goodness of the model.

3.2. Weight Forecasting: Model Results, WFV and WFS

In this section, we report the forecasting results of the most performant GRU for the
weight forecasting and for the WFV and WFS.

The training set for the weight forecasting was selected as 90% of the overall dataset
(about 330 days), yielding an RMSE averaged on the four users of 0.59 ± 0.076.

However, predictions of 30 days, albeit with good results, could be subjected to
additional uncertainty because they did not account for additional variables that could
affect actual weight variations over such a long period of time (abdominal bloating due
to excess food ingestion, water retention, constipation). Therefore, we carried out train-
test forecasting for each user considering an interval of 7 days. The results are shown
in Figure 3.

Test-train RMSE carried out with a test dataset length of one week yielded an averaged
value for the four users of 0.41 ± 0.05, showing a 30% decrease. Moreover, RMSE for each
user stayed below 0.5. Despite these improved results, it is well known that in time series
modeling, the predictions over time become less and less accurate (Section S6). Therefore,
WFV was the most preferred solution to obtain the most accurate results by re-training the
model with actual data as they became available for further predictions. This technique
could be used to perform simulations, namely WFS (Section 2.7).

The WFV and WFS for the PMA were thus performed within a week to evaluate the
RMSEs with respect to the true values (Figure 4). A major improvement was obtained with
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this validation method, yielding an average RMSE of 0.42± 0.1 for the WFV and 0.48± 0.18
for the WFS. As expected, the results from the WFV were better than those from the WFS
(RMSEWFV < RMSEWFS). Nevertheless, the WFS showed optimal results allowing it to be
used with specific applications, such as, for example, the simulation of diet plans.

Figure 3. Test-train forecasting for all users (U0, U1, U2 and U3) with the relative root mean
squared value.

Figure 4. Comparison between actual data and WFV and WFS results for User 2.
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3.3. Simulation of the Personalized Effects of Diet Plans on Weight

WFS can be used to simulate personalized diet plans and to predict metabolic re-
sponses after the introduction of new food and PA habits (determining variations in EB
and macronutrient composition). To test the performance of the model in new simulated
conditions, dietary plans were obtained by constraining the EB value to be constant at a
particular level, and the effect of these variations on the weight of each user was simulated.

In detail, a basic simulation was carried out varying EB in the following range:
−1000,−500, 0, 500, 1000 kcal (Figure 5A), with standard percentage contributions of
carbohydrate, protein, and lipid intake (50/20/30%), respectively, included in acceptable
macronutrient distribution ranges (AMDR) [31]. The values of macronutrient intakes were
calculated by converting their percentages into grams [32]; then, the total caloric intake
was evaluated by inverting Equation (1). From the simulations, we can observe that an
energy deficit of 500 kcal per day yielded an average weight loss of −0.4 ± 0.2 kg in a
week, while an energy surplus of 500 kcal yielded an average weight gain of 0.77 ± 0.63 kg
in a week, and that differences existed among users. To summarize simulation results
and to cancel out random effects in the daily weight variation due to water retention or
constipation, we fitted the simulated trends with a parabolic fit as shown in Figure 5A and
estimated the w value representing the weight value at the end of the week. In Figure 5B,
individual weight variations in function of the simulated EB values are reported. These
differences could be parametrized for each user by retrieving the coefficient of the relation
Δw = m · EB + q (Table 3). Here, q represents the weight variation at EB = 0, which is,
therefore, expected to be equal to zero. The q value can furnish an average value of eventual
residual biases in data collection, yielding a systematic error in the determination of EB.
It provided a quality factor of food insertion, which was the highest for User 2. m is a
parameter linked to metabolic plasticity, expressed in Kg

Kcal , representing the rate of weight
variation per unbalanced calorie. A higher value indicates a higher metabolic plasticity
and/or a more active metabolism. This parameter can thus be used to develop a metabolic
taxonomy of the users. In our use case, users 0 and 2 showed higher metabolic plasticity
than users 1 and 3.

Figure 5. Effects of diet plans on user metabolism. (A) WFS performed at different EB values on the
data of User 2, keeping constant the percentage of macronutrient intake (50%, 20%, 30%, respectively).
Weight data were fitted with a second order polynomial. (B) Weight variation Δw calculated from the
first and last values of the fit of the second grade versus the EB value and for each user.
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Table 3. Metabolic plasticity m and quality factor q for each user.

User Metabolic Plasticity (m) [
kg

kcal ] Quality Factor (q) [kg]

0 1.56·10−3 0.77
1 0.47·10−3 −0.13
2 2.03·10−3 0.26
3 0.30·10−3 −0.06

3.4. Personalized Diet Plan: Use Case

In this use case, rather than performing a toy diet plan, we tested an actual personal-
ized diet plan on User 2 to achieve weight loss in a healthy way supervised by a professional
nutritionist considering blood analyses, food and activity habits.

In Figure 6, the actual weight variations (black), the prediction made by WFS using
as exogenous data the actual data (red), and the WFS using as exogenous values the
data retrieved from the personalized diet plan (green) are shown. The RMSE of the
prediction was 0.26 (showing that the technique had good performance), and the weight
loss approximately of Δw = 1.5 kg following the tailored diet plan provided to the user,
which was in accordance with the predetermined goal defined by the nutritionist (rapid
weight loss). This tool can thus allow us to compare the expected and actual effects of the
diet on the weight variations and to test several nutritional plans in terms of energy balance
and macronutrient composition.

Figure 6. Personalized nutritional intervention plan for User 2. In the first 7 days, the actual weight
trend is shown (black line, gray shaded area). Along this trend, WFS for the personalized plan
is reported (green line). As a control, WFS when covariates retained the actual values is reported
(red line).

4. Discussion

Obesity and its metabolic complications are the most serious public health challenges
of the 21st century. The prevalence of obesity has tripled in many countries of the EU [33]. In
the current pandemic, the issue of obesity has become more prominent [34], highlighting the
need for its prevention. Evidence that relates to obesity is biased towards its causes rather
than strategies for prevention, which have not yet been widely replicated or delivered at a
scale offering clear options for public health strategies. Finding and implementing solutions
require new models able to implement healthy lifestyles and prevent illness by relying on
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devices that can be used in daily life, reducing the burden on hospitals. Here, we relied
on an application able to retrieve, pre-process and analyze spontaneous and voluntary PA,
diet, and anthropometric quantities from a set of wearables and home-portable devices
provided to the end-user. These data drove the development of a personalized model of the
end-user metabolism, the PMA, able to estimate his/her personalized reactions to diet, PA,
and environmental and psychological factors. The PMA was integrated into the IoT-reliant
infrastructure, allowing it to perform simulations and predictions to gradually improve
adoption of healthy habits.

In this manuscript, we have shown how GRU-based deep neural networks are a good
solution to predict in an accurate way the weight for the day after (the WFV showed an
average RMSE lower than 0.5), and to simulate personalized diet plans to help reach ideal
weights in an healthy way, avoiding excessive variations in habitual diet or PA and keeping
weight and nutrient balance in the normal range following guidelines. We tested the PMA
by using WFS to predict the weekly weight variations of four users subjected to varying
energy balance constraints, and we also converted a true nutritional plan developed by a
professional nutritionist in a WFS to test the effect on a user, with the aim of evaluating if
the metabolic response of the subject could achieve weight loss.

The principal strength of the PMA with respect to established knowledge-driven
models resides in the fact that the developed data-driven model can take into account all
of the processes involved in metabolism having an influence on weight variations, from
genetic predispositions to current microbiome composition. Nutrigenomics (also known as
nutritional genomics) is broadly defined as the relationship between nutrients, diet, and
gene expression [35] having a deep influence on individual metabolism [36]. ‘Microbiome’,
also called ‘gut microbiota’ [37], is a complex and dynamic population of microorganisms
that exert a marked influence on the host metabolism during homeostasis and disease.
Multiple factors contribute to the establishment of the human gut microbiota during infancy,
and diet is considered as one of the main drivers in shaping the gut microbiota across one’s
lifetime. The data-driven nature of the PMA allows it to integrate the complexity of these
metabolic processes without the requirement of deterministic or statistical models, which
make generalizable claims in trying to describe human metabolism for all human subjects,
or for certain subsets of the population. If this is the objective, the distribution needs to be
accurately sampled from the population on which the claim is made, and the number of
subjects has to be adjusted to improve the significance of the prediction. Here, the claim
is different, because we did not realize a single general model, but four distinct models
of metabolism, personalized for each individual. We modeled personal metabolism as a
black box in which the input was energy balance and macronutrient composition, and the
output was weight. In this framework, the statistical unit, rather than the subject, is the
daily response of individual weight to the different input stimuli. This allowed us to make
forecasts based on a high number of available data (~300 per person). We were able to gain
a feel for these peculiar PMA features by comparing its performance with available weight
predictors [11]. Nowadays, available weight predictors use general information such as age,
sex, height and current weight to forecast weight variations by setting a predefined value
of energy balance. As shown in Table 4, these types of data, based on a statistical model
describing average features of the analyzed sample population, intrinsically do not allow
an actual personalized prediction. The PMA instead allows descriptions of personalized
metabolic responses for users, as quantified by the standard deviation of the predictions
(0.2 kg), which is almost 10 times that of weight predictors (0.034 kg).

In Figure 7A,B, we can observe how the statistical model (blue points) predicts a
weekly weight loss for an EB = −500 kcal, which shows slight variations with starting
BMI, age or sex. While Users 0, 1 and 3 were well aligned with the general population, we
observed that User 2 deviated from the general trend. This was indeed the subject with the
highest metabolic plasticity in the systematic simulation performed in Section 3.3.
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Table 4. Comparison of weight predictions between statistical and data-driven models (PMA).

User Age Sex
Height

(cm)
wi [kg]

Δw (PMA)
[kg]

Δw (Statistical
Model) [kg]

0 27 M 183 88.7 0.3 ± 0.37 0.31 ± 0.031
1 52 M 186 74.25 0.4 ± 0.25 0.38 ± 0.038
2 44 M 175 73.45 0.72 ± 0.12 0.35 ± 0.035
3 51 F 160 55.25 0.27 ± 0.21 0.4 ± 0.04

Figure 7. (A) Δw calculated with PMA and with statistical models with respect to age of users. (B)
Δw calculated with PMA and with statistical models with respect to BMI of users. For the statistical
model, an error of 15% was considered, while for PMA, it was considered as an error of the RMSE of
the WFS.

These anomalous values of metabolic plasticity can be due to several factors, ranging
from microbiome diversity to a different nutri-genotype. Additionally, hormonal equilibria
and systemic diseases can have a huge influence [38]. This difference with the general
trend highlights how a personalized approach, in this particular case, is fundamental in
assessing tailored weight loss in response to nutritional treatments. A correction of the
metabolic plasticity with microbiome composition and diversity or with nutrigenomic
characteristics would be an important advancement in understanding the factors leading
to the reshaping of individual metabolism. The clinical relevance of the results presented
in the manuscript resides in the possibility to understand if metabolic adaptations due
to microbiome variation or general metabolism reprogramming due to treatments or
nutritional interventions are occurring, and how to change them through simulations in
order to fulfill desired results. Applications can be envisioned for obesity and nutritional
disorder treatments, and to generate diet plans in synergy with treatments in cancer and
other diseases.

Other than personalization, an additional strength of the PMA resides in the informa-
tive content of the inputs: information such as food composition allows better prediction of
the metabolic response. Indeed, to reach ideal goals such as weight loss, a correct subdivi-
sion of the basic nutrients is fundamental in the generation of a diet plan. It is in principle
possible also to include other important variables, going from micronutrient composition
of the diet and the use of integrators to sleep quality.

The PMA is also scalable not only in terms of its inputs, but also in terms of outputs,
allowing it to contextually predict changes in variables of interest other than weight (e.g.,
fat and lean mass, resting heart rate).

Therefore, the PMA could become a powerful support tool for nutritionists, dieticians,
physicians, etc. Hence, it has the potential to lay the foundations for truly ‘personalized
nutrition’ approaches, using these predictions to identify metabolic impairments and plan
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actions in advance, and to simulate the metabolic response to several diet plans to achieve
the desired results without compromising the body’s wellness. The generated diet and
activity plans could be delivered to users by front-end components with a virtual assistant
helping patients to monitor their behavior and improve their adherence to optimal actions.
However, the PMA has some critical issues. First, the prediction of weight with unknown
conditions, such as for extreme diet plans (e.g., the ketogenic type), could lead to inaccurate
predictions because the PMA may lack training on that data. The PMA could overcome
these problems by relying on continuous training day after day. Moreover, noise caused
from wrong data insertion could alter the quality of predictions. Another point is that, at
the current stage of development, the PMA requires data collection for at least 2 months to
achieve good performance. To improve data collection, automatic food detection methods
through mobile phones [39], which are continuously evolving, could overcome this limit
by reducing manual compilation and decreasing the burden on users.

5. Conclusions

This study shows that the integration of several IoT devices and a diet registry into a
single web app able to merge all acquisitions into a single visualization dashboard, with a
deep learning analysis of user metabolism through the realization of PMA, provides im-
portant information to realize optimal weight forecasting and the personalized generation
of diet and activity plans. Relying on this information, appropriate clues can be obtained
to empower citizens with scientific knowledge and validated instruments, augmenting
their self-awareness with the aim to achieve long-lasting results in the pursuit of a healthy
lifestyle. An important advancement could be the integration, as input in the PMA, of
novel developed biomarkers of lipid metabolism (such as membrane lipids and membrane
fluidity of red blood cells) to study the effects and influence of dietary molecules on their
outcomes [40–44]. Moreover, innovative and promising anthropometric markers tracked
with wearable devices, such as VO2max and heart rate variability (HRV), can improve the
performance of weight forecasting [45–47]. These integrations could explain and cluster
the different responses given by the PMA, furnishing insights into the factors able to shape
individual metabolism.
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Abstract: Nutrition is a cross-cutting sector in medicine, with a huge impact on health, from car-
diovascular disease to cancer. Employment of digital medicine in nutrition relies on digital twins:
digital replicas of human physiology representing an emergent solution for prevention and treatment
of many diseases. In this context, we have already developed a data-driven model of metabolism,
called a “Personalized Metabolic Avatar” (PMA), using gated recurrent unit (GRU) neural networks
for weight forecasting. However, putting a digital twin into production to make it available for
users is a difficult task that as important as model building. Among the principal issues, changes to
data sources, models and hyperparameters introduce room for error and overfitting and can lead to
abrupt variations in computational time. In this study, we selected the best strategy for deployment
in terms of predictive performance and computational time. Several models, such as the Transformer
model, recursive neural networks (GRUs and long short-term memory networks) and the statistical
SARIMAX model were tested on ten users. PMAs based on GRUs and LSTM showed optimal and
stable predictive performances, with the lowest root mean squared errors (0.38 ± 0.16–0.39 ± 0.18)
and acceptable computational times of the retraining phase (12.7 ± 1.42 s–13.5 ± 3.60 s) for a pro-
duction environment. While the Transformer model did not bring a substantial improvement over
RNNs in term of predictive performance, it increased the computational time for both forecasting
and retraining by 40%. The SARIMAX model showed the worst performance in term of predictive
performance, though it had the best computational time. For all the models considered, the extent of
the data source was a negligible factor, and a threshold was established for the number of time points
needed for a successful prediction.

Keywords: metabolism; deep learning; gated recurrent unit; long short-term memory; transformer;
wearables; forecasting; diet plans; digital nutrition; digital twin; SARIMAX

1. Introduction

Over the past few decades, precise diagnosis and personalized treatment have become
increasingly important in healthcare [1]. Nutrition, as an important factor of personalized
treatments, has a huge impact on health, from cardiovascular disease to cancer [2,3].
Nutritional habits have been linked to stronger immunity, a lower risk of noncommunicable
diseases (such as diabetes and cardiovascular disease) and increased life expectancy [4,5].

Increased knowledge of the effects of nutrition on pathophysiologies of diseases,
achieved with new diagnostic and monitoring technologies spanning from -omics [6,7]
to wearable devices [8], has offered innovative solutions for personalized treatments.
Among the most striking innovations, digital twins (DTs), which are digital replicas of
human physiology, represent an emergent solution for prevention and treatment of many
diseases [9,10]. DT technology holds the promise of starkly reducing the cost, time and
manpower required to test effects of dietary and physical-activity plans, to run clinical trials
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and to create personalized diets for citizens and patients. DT models are built on data flows
sourced from connected biomedical devices on the Internet of Things (IoT) and collected
through digital web-based applications integrating dietary, anthropometric and physical
activity data, such as the one developed by our research group [11]. Artificial intelligence
algorithms have shown good performance in analysis of biometric signals [12,13]. The
data streams provided by these data acquisition platforms can be analyzed with data-
driven models of human metabolism, such as the personalized metabolic avatar (PMA) [14]
developed by our group, to estimate personalized reactions to diets. The PMA consists of a
gated recurrent unit (GRU) deep-learning model trained to forecast personalized weight
variations according to macronutrient composition and daily energy balance. This model
can perform simulations and evaluations of diet plans, allowing definition of tailored goals
for achieving ideal weight. However, putting PMAs into production and transforming them
in a reliable, fast and continuously updating model for predictive analytics is a difficult
task. Among the principal issues, challenges can arise from changes to data sources, models
and model parameters, which introduce room for error and overfitting and can lead to
abrupt variations in computational time. To overcome these issues, here, we selected the
best strategy for deployment in terms of predictive performance and computational time.
Among statistical models, we selected, as a representative, the SARIMAX (Seasonal Auto-
Regressive Integrated Moving Average with eXogenous factors) model: the most complete
for multivariate forecasting. Among deep-learning models, we selected recurrent neural
networks (RNNs), such as gated recurrent units (GRUs) [14] and long short-term memory
(LSTM) networks, and a new model recently introduced, the Transformer model [15],
which has shown great results both in natural language processing and in time-series
forecasting [16]. Moreover, we have tested the influence of the data number retrieved,
which, in real settings, can vary in range from user to user, on the models. These efforts are
necessary to put these models into production to augment citizens’ self-awareness, with
the aim of achieving long-lasting results in pursuing a healthy lifestyle.

2. Materials and Methods

2.1. Study Population

In this single-arm, uncontrolled-pilot prospective study, a group of 10 voluntary adults
(60% females and 40% males, 3 overweight and 7 normal), recruited among our lab staff,
self-monitored daily their weight, diet and activities completed for at least 100 days, as
explained in a previous work [11]. The participants shared their personal data after signing
informed consent.

2.2. Wearables and Devices

To track anthropometric data, the following devices were used:

• The MiBand 6, a smartband of Xiaomi Inc.® (Beijing, China), for estimating calories
burned during exercise (walking, running, etc.).

• The Mi Body Composition Scale, an impedance balance of Xiaomi Inc.® (Beijing,
China), for tracking weight and RMR.

These devices were already used in 4 studies on PubMed, and 11 clinical trials have
been performed using the MiBand1. Validation results in estimating RMR can be retrieved
in recent publications [4]. For tracking the food diary for each participant, a website app
(ArMOnIA, https://www.apparmonia.com, accessed on 7 February 2023) developed by
our group was used for the storing of food data. These data had already been validated in
two other studies [11,14].

2.3. Datasets

As already shown in [14], for the development of the deep-learning models imple-
menting PMAs, the following data were used:

• var1: Weight: w(t) [kg]
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• var2: Energy Balance (EB): Eb(t) [kcal]
• var3: Carbohydrates: mc(t) [g]
• var4: Proteins: mp(t) [g]
• var5: Lipids: ml(t) [g]

Where varj stands for variable j, with j = 1, . . . , 5.
In Figure 1a,b, the representative time series of the five selected quantities are reported.

  
(a) (b) 

Figure 1. Weight, EB (a) and food composition (b) time series (for user 2).

We reframed the time-series forecasting problem as a supervised learning problem,
using lagged observations (including the seven days before the prediction, e.g., t − 1, t − 2,
t − 7) as input variables to forecast the current time step (t), as already explained in [12].
The inputs of our model were var1(t − 7), . . . , var5(t − k), . . . , varj(t − i), . . . , var5(t − 1),
with i = 1, . . . , 7 indicating the lagged observation and j = 1, . . . , 5 indicating the input
variable. Therefore, the total number of inputs for the PMA was 7·5 = 35. In this notation,
the output of the PMA is var1(t), i.e., the weight at time t.

The dataset fed to the SARIMAX model is described in the next section.

2.4. Description of Models

As explained in the introduction, DDMs are divided into two types: statistical and
deep-learning models. To select the best option for the development of the PMA, we chose
to compare 4 different models:

SARIMAX:
The SARIMAX model (Seasonal Auto-Regressive Integrated Moving Average with

eXogenous factors) is a linear regression model: an updated version of the ARIMA model.
It is a seasonal equivalent model, like the SARIMA (Seasonal Auto-Regressive Integrated
Moving Average) model, but it can also deal with exogenous factors, which are accounted
for with an additional term, helping to reduce error values and improve overall model
accuracy. This model is usually applied in time-series forecasting [17].

The general form of a SARIMA(p,d,q)(P,D,Q,s) model is

Θ(L)pθ(Ls)pΔdΔD
s wt = Φ(L)q ϕ(Ls)QΔD

s εt (1)

where each term is defined as follows:

1. Θ(L)p is the nonseasonal autoregressive lag polynomial;
2. θ(Ls)p is the seasonal autoregressive lag polynomial;
3. ΔdΔD

s wt is the time series, differenced d times and seasonally differenced D times;
4. Φ(L)q is the nonseasonal moving average lag polynomial;
5. ϕ(Ls)Q is the seasonal moving average lag polynomial.
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When dealing with n exogenous values, each defined at each time step, t, denoted as
xi

t for i ≤ n, the general form of the model becomes

Θ(L)pθ(Ls)pΔdΔD
s wt = Φ(L)q ϕ(Ls)QΔD

s εt + ∑n
i=1 βixi

t, (2)

where βi is an additional parameter accounting for the relative weight of each exoge-
nous variable.

In Supplementary Materials (Section S1), additional details about the model are reported.
We implemented this model on Python using the StatsModels library (https://www.

statsmodels.org/stable/index.html, accessed on 7 February 2023), with the SARIMAX (https:
//www.statsmodels.org/0.9.0/generated/statsmodels.tsa.statespace.sarimax.SARIMAX.html,
accessed on 7 February 2023) class.

For the SARIMAX model, var2, var3, var4 and var5 (i.e., EB and macronutrients) are
considered as exogenous variables, with the weight as output. Considering our dataset
structure, the exogenous variables at time t correspond to the inputs for the forecasting
of the weight at time t + 1. However, in the SARIMAX equation, the exogenous term is
considered at the same time, t, with respect to the output. To overcome this issue, we shifted
the exogenous values of ΔT = 1 day with respect to weight. In this way, the exogenous term
changed as follows: ∑n

i=1 βixi
t−1.

LSTM:
Long short-term memory (LSTM) networks [18], a variant of the simplest recurrent

neural networks (RNNs), can learn long-term dependencies and are the most widely used
for working with sequential data such as time-series data [19–21].

The LSTM cell (Figure 2) uses an input gate, a forget gate and an output gate (a
simple multilayer perceptron). Depending on data’s priority, these gates allow or deny data
flow/passage. Moreover, they enhance the ability of the neural network to understand
what needs to be saved, forgotten, remembered, paid attention to and output. The cell state
and hidden state are used to gather data to be processed in the next state.

Figure 2. An LSTM cell, where σ is the sigmoid function.
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The gates have the following equations:

1. Input Gate:
i = σ(Wiht−1 + Wiht), (3)

2. Forget Gate:

f = σ
(

Wf ht−1 + Wf ht

)
, (4)

3. Output Gate:
o = σ(Woht−1 + Woht), (5)

4. Intermediate Cell State:
g = tanh

(
Wght−1 + Wght

)
, (6)

5. Cell State (Next Memory Input):

ct = (g ∗ i) + ( f ∗ ct−1), (7)

6. New State:
ht = o ∗ tanh(ct), (8)

with Xt as the input vector, ht as the output vector, W and U as parameter matrices and f as
the parameter vector.

We implemented the LSTM network using the TensorFlow Keras library (https://
www.tensorflow.org/api_docs/python/tf/keras, accessed on 7 February 2023), which
implements an LSTM cell as an available class on Python (https://www.tensorflow.org/
api_docs/python/tf/keras/layers/LSTM, accessed on 7 February 2023), which we added
into a model as a monolayer neural network.

GRU:
The gated recurrent unit, just like the LSTM network, is a variant of the simplest RNN

but with a less complicated structure. It has an update gate, z, and a reset gate, r. These two
variables are vectors that determine what information passes or does not pass to output.
With the reset gate, new input is combined with the previous memory while the update
gate determines how much of the last memory to keep.

The GRU has the following equations:

1. Update Gate:
z = (Wzht−1 + Uzxt), (9)

2. Reset Gate:
r = (Wrht−1 + Urxt), (10)

3. Cell State:
c = tanh(Wc(ht−1 ∗ r) + Ucxt), (11)

4. New State:
ht = (z ∗ c)((1 − z) ∗ ht−1), (12)

A GRU cell is shown in Figure 3.
A more accurate description can be found in the Supplementary Materials (Section S3)

of a previous work [14].
As for the LSTM network, we implemented the GRU in TensorFlow using a GRU

cell (https://www.tensorflow.org/api_docs/python/tf/keras/layers/GRU, accessed on 7
February 2023) implemented into a monolayer neural network.
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Figure 3. A GRU cell, where σ is the sigmoid function.

Transformer:
LSTM and GRUs have been strongly established as state-of-the-art approaches in

sequence modeling and transduction problems such as language modeling and machine
translation [22–26] because of their ability to memorize long-term dependency. Since they
are inherently sequential, there is no parallelization within training examples, which makes
batching across training examples more difficult as sequence lengths increase. Therefore, to
allow modeling of dependencies for any distance in the input or output sequences, attention
mechanisms have been integrated in compelling sequence modeling and transduction
models in various tasks [24,27]. Commonly [28], such attention mechanisms are used in
conjunction with a recurrent network. In 2017, a team at Google Brain® developed a new
model [15], called “Transformer”, with an architecture that avoids recurrence and instead
relies entirely on an attention mechanism to draw global dependencies between inputs
and outputs. This architecture uses stacked self-attention and pointwise, fully connected
layers for both the encoder and the decoder, shown in the left and right halves of Figure 4,
respectively. In Supplementary Material (Section S2), a more accurate description of the
model is reported.

Figure 4. Transformer architecture. In supplementary material (Section S2), an accurate description
of the architecture is reported.
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The implementation of the model in Python followed the Transformer starting code
shared by the Google Brain team (https://keras.io/examples/timeseries/timeseries_
transformer_classification/, accessed on 7 February 2023).

2.5. Model Selection and Comparison
2.5.1. Implementation and Selection of Models

For each selected model, parameter scanning was performed, and the best model was
selected. Below, procedures are indicated according to models.

SARIMAX:
Augmented Dickey–Fuller (ADF) tests, applied to a weight time series, yielded

p-values larger than α = 0.05 for 90% of the overall participants. Therefore, we transformed
the weight time series into a stationary one that performed first-order differentiation. The
ADF test, repeated on preprocessed series, confirmed stationarities for all of the transformed
time series. Following this adjustment, the terms d and D were each set to 1.

We started with fitting a SARIMAX model for all the datasets available, considering
the ranges in Table 1.

Table 1. Parameter range for the selection of the best SARIMAX model.

p q d P Q D S

(1–9) (1,2) (1,2) (1–5) (1,2) (1,2) (7)

In the literature, the most common way to find the best parameters for SARIMAX
models is based on a simple grid search following the Akaike information criterion (AIC)
and the Bayesian information criterion (BIC), respectively. These criteria help to select the
model that explains the greatest amount of variation using the fewest possible independent
variables, using maximum likelihood estimation (MLE) [29], and they both penalize a
model for having increasing numbers of variables, to prevent overfitting.

Therefore, we ranked the models according to the lowest AIC values. The first 5 models
were then trained on the datasets, and the root mean squared error (RMSE) scores were
calculated. The model with the lowest RMSE was then selected.

The LSTM and GRU Models:
Hyperparameter tuning with the aim of minimizing loss function was carried out to

select the best deep-learning model [14]. Typically, in time-series forecasting, tuning is
carried out to reduce the RMSE of test-training forecasting.

Considering that the LSTM and GRU models had the same configuration and the
same hyperparameters, we proceeded with both to parameter scanning in the range shown
in Table 2.

Table 2. Hyperparameter range for the selection of the best GRU and LSTM models.

Units Epoch Batch Size Dropout Activation Function Optimizer

(50, 100, 150) (50, 100, 150) (8, 16, 32) (0.2) (‘ReLU’) (‘adam’)

We selected the best model via considering the lowest RMSE obtained from a predic-
tion on the same training-test sets.

Transformer:
The implementation of this model into Keras was like that of the other two neural

networks, with some exceptions for the hyperparameters. We considered a grid search that
would take into account the range of the hyperparameters shown in Table 3.

205



Nutrients 2023, 15, 1199

Table 3. Hyperparameter range for the selection of the best Transformer model.

Head Size Num Heads Epoch Batch Size Dropout
Activation
Function

Optimizer

(64, 128, 256) (2, 4, 8) (50, 100, 150) (8, 16, 32) (0.2, 0.25) (‘ReLU’) (‘adam’)

Differently from LSTM and GRU, there are two more parameters: head size, which is
the dimensionality of the query, key and value tensors after the linear transformation, and
num heads, which is the number of attention heads.

In this case, we also chose the best model via minimizing the RMSEs on the training-
test sets.

2.5.2. Performance of Models with Datasets of Varying Length

Following model selection and parameter optimization, we compared the mod-
els, considering, as a quality index, the RMSE, which indicates errors in weight predic-
tion with a test-set length of 7 days, considering a training set of more than 100 days
(mean ± SD = 161.3 ± 22.4) for each participant.

In addition, since scarcity of data is a common problem in deployment of PMAs in
production, we tested the models in more realistic settings. We thus divided the dataset
of each participant into 9 independent groups of 15 days. Then, we evaluated the RMSE
on a test set with a length of 1 day for each group (with a training set of 14 elements). The
final RMSE was the average of these 9 RMSEs. An ANOVA followed by a Tukey test was
applied for pairwise comparison of RMSEs.

2.5.3. Computational Time

In addition to prediction performance, the computational times were calculated for
the retraining and prediction phases for the four models.

A Kruskal–Wallis test followed by a Dunn test was applied for pairwise comparison
of computational times.

2.6. Computational Requirements and Python Libraries

Computational requirements were minimal in order to allow deployment on virtual
machines available on the web. The code for the development of the models was run
in Google Colab with the default settings (free plan). The code requires the following li-
braries: tensorflow = 2.9.2 (https://pypi.org/project/tensorflow/, accessed 7 February 2023),
pandas = 1.3.5 (https://pandas.pydata.org/, accessed 7 February 2023), numpy = 1.21.6
(https://numpy.org/, accessed 7 February 2023), matplotlib = 3.2.2 (https://matplotlib.org/,
7 February 2023), seaborn = 0.11.2 (https://seaborn.pydata.org/, accessed 7 February
2023), statsmodels = 0.12.2 (https://www.statsmodels.org/stable/index.html, accessed
on 7 February 2023), scipy = 1.7.3 (https://pypi.org/project/scipy/, accessed on 7 February
2023), bioinfokit = 2.1.0 (https://pypi.org/project/bioinfokit/0.3/, accessed on 7 Febru-
ary 2023), scikit-learn = 1.0.2 (https://scikit-learn.org/stable/, accessed 7 February 2023)
and scikit-posthocs = 0.7.0 (https://scikit-posthocs.readthedocs.io/en/latest/, accessed on
7 February 2023).

3. Results

3.1. Selection of the Optimal Model

We started with optimizing parameters for each selected model and each participant,
as explained in par. 2.6.1.

For the GRU, LSTM and Transformer models, we considered an Adam optimizer and,
as a loss function, the mean absolute error (MAE), defined with the formula

MAE =
∑n

i=1|yi − xi|
n

, (13)
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where yi is the actual value and xi is the prediction.
In Table S1, the selected parameters for each user are reported for each type of model.

As shown in [14], we trained a model for each user to adapt it to the personalized charac-
teristics of metabolism.

3.2. Comparison between Models

As explained in par. 2.6.2, to compare model performance, we used the RMSE of the
prediction of the test set for each participant. Datasets were structured to make the training
and test set homogeneous, ensuring that the models learned from the same data and tested
their knowledge under identical conditions. In Figure 5, we report the forecasting with
each model for a single participant.

 
Figure 5. Predictions of test set of user 0, for all models.

From a visual inspection, the GRU and LSTM models follow the variations of weight
more accurately while the SARIMAX model shows the worst result. In Figure 6, we
show the RMSEs, grouped based on models, for each participant. Indeed, there is an
evident difference between the SARIMAX model and the others, confirming that neural
networks outperform statistical models in time-series forecasting. On the other hand, the
deep-learning models show comparable RMSEs to each other.

Hence, the Transformer model did not demonstrate improvement with respect to the
GRU or LSTM models, having, on the contrary, slightly worse results.

To quantify these observations, we carried out an ANOVA among the RMSEs of the
models, showing a p-value lower than α = 0.05

(
4.31·10−4) and confirming that there was

at least one model different from the others. We then performed a Tukey test for pairwise
comparison, and the results, reported in Table 4, confirmed that the SARIMAX model
is different from the others (adjusted p-value lower than α), while there is no statistical
difference among the other three models, yielding a p-value bigger than α.
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Figure 6. RMSEs for each model versus users.

Table 4. Tukey test results: Diff represents the mean difference between the pair of groups; Lower
and Upper the lower and upper difference between the pair of groups, respectively; q-value is a
value that provides a means to control the positive false discovery rate (pFDR); and p-value is the
probability of obtaining test results at least as extreme as the result observed, under the assumption
that the null hypothesis is correct.

Group 1 Group 2 Diff Lower Upper q-Value p-Value

SARIMAX LSTM 0.458859 0.152600 0.765117 5.706676 0.001490
SARIMAX GRU 0.467519 0.161261 0.773778 5.814384 0.001196
SARIMAX Transformer 0.397567 0.091309 0.703826 4.944415 0.006675

LSTM GRU 0.008660 −0.297598 0.314919 0.107708 0.900000
LSTM Transformer 0.061291 −0.244967 0.367550 0.762261 0.900000
GRU Transformer 0.069952 −0.236307 0.376210 0.869969 0.900000

3.3. Analysis of the Performance with a Limited Dataset Length

As explained in Section 2.6, PMAs often operate on datasets with limited length. For
example, diet diaries are often compiled for a limited amount of time. Therefore, we carried
out a test to show the performances of these models, considering a limited dataset of
15 days. The model was trained to predict the weight for the day afterward.

To acquire a reliable index of the performance of each model, we tested the models on
nine subsets of data in the original dataset for each participant. In this way, we could refer
to a mean RMSE for each model and for each participant.

In Figure 7, the RMSE distribution of each model is reported (each point represents
a user). From a visual inspection, we can conclude that, again, the SARIMAX model
displays the worst results, while the others have similar performances. To confirm this
observation, we carried out an ANOVA (p-value = 0.019) followed by a Tukey test. The
pairwise comparison showed that only the SARIMAX model presented accuracy that was
statistically different from that of the deep-learning models.

3.4. Performance versus Data Length

The results reported in the previous section show how the model provided accurate
solutions for few data. In this section, we analyze changes in performance with decreasing
data length. We considered the following subsets: 100% of the dataset and 100, 80, 60, 40
and 30 days. In Figure 8, we report the RMSE versus the data length for each participant
and for each model, with error bars representing the standard deviations (SDs).
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Figure 7. Distribution of RMSEs for each model and for each participant for a forecasting of 1 day,
with a training set of 14 days for nine subsets, where * stands for a p-value < 0.05. ns: not significant.

 

Figure 8. Mean RMSEs and deviation standards for each model for different dataset lengths, with a
7-day forecasting. In the inset at right, an enlargement of the deep-learning RMSEs is reported.

While the SARIMAX model showed an important decrease in performance as data
length decreased, the others were characterized with stable performances, also with data
collected only for thirty days.
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3.5. Computational Time

In the evaluation of the performance of a model in a production environment, we must
consider another important parameter: the computational cost, expressed in time. This
computational time is the sum of the (re)training time and the forecasting time, since in a
production environment, the model must be retrained every time and data are gathered in
real time. In Table 5, we report, for each model, the computational time, the (re)training
time and the forecasting time. The times are averaged based on the number of participants.

Table 5. Time costs for the training and forecasting (of 7 days) mean for each model, averaged based
on 10 participants.

Model Computational Time Standard Deviation Retraining Time Forecasting Time

SARIMAX 1.83 s 1.06 s 1.56 ± 1.05 s 0.29 ± 0.03 s
LSTM 13.5 s 3.60 s 12.6 ± 3.30 s 0.92 ± 0.33 s
GRU 12.7 s 1.42 s 12.0 ± 1.22 s 0.86 ± 0.26 s

Transformer 48.6 s 10.7 s 47.9 ± 10.7 s 0.85 ± 0.13 s

It is possible to observe how the GRU and LSTM models each require about 1/5 of the
time requested to retrain and forecast with the Transformer model but 10× more time than
that of the SARIMAX model. Therefore, a major burden of the Transformer model resides
in the retraining time, since it requires more complex operations than the others.

To quantify these observations, a Kruskal–Wallis test was carried out [30] among
the models, since a Shapiro–Wilk test [30] had confirmed that distributions would not be
normal. The test yielded a p-value < 0.05, showing the presence of a statistical difference
between the models. Therefore, a posthoc test (Dunn test [31]) was carried out to investigate
the pairwise comparison. The test showed no statistical difference between the GRU and
LSTM models, confirming that they have similar performances (Figure 9), which are better
than that of the Transformer model.

 

Figure 9. Computational time distribution for each model, with pairwise comparison, where * stands
for a p-value < 0.05. ns: not significant.
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4. Discussion

Obesity and cardiovascular disease, as the most serious public health challenges of the
21st century, are strongly conditioned through dietary habits. Digital health can help people
to monitor themselves and prevent these diseases. The advent of wearable devices and the
evolution of smartphone technology have allowed the development of an infrastructure
able to retrieve data that could be used for the development of what is defined as a “Digital
Twin”: a digital representation of human physiology. With this technology, it is possible to
import digital health into the lifestyles of citizens, promoting a healthy lifestyle, since people
would be in conditions to better know their own physiologies and responses to nutrition
and physical activity. Here, we relied on the ArMOnIApp application, which is able to
fetch, preprocess and analyze spontaneous and voluntary physical activities (PAs), dietary
measures and anthropometric measures from a set of commercial wearables and other
smart devices provided to the end user [11]. These data led to the development of a model,
the PMA, that is able to give personalized responses for each end user, such as personalized
reactions to the introduction of a particular food in their diet [14]. Here, we compared
predictive and computational performances of several models, with the aim of providing
useful parameters to put the PMA into production. Moreover, we tested the influence of
the data number retrieved, which, in real settings, can vary in range from user to user, on
the four models. In a production environment, the practice of automating deployment,
integration and monitoring of machine-learning (ML) models is called MLOps [32], and this
automation is crucial to increase the speed at which organizations can release models into
production. MLOps also involves ensuring continuous quality and dynamic adaptability
of projects throughout the entire model lifecycle [32].

To make an efficient and accurate PMA, data must be retrieved in real time. Therefore,
web applications must be structured to continuously fetch new data as they are made
available with devices, and to control data quality using algorithms. To include these
functionalities, we relied on our web application, ArMOnIApp [11]. Moreover, ML models
require automation of model retraining, and in this framework, the time cost for this
procedure has an important role to optimize end performance. To this aim, we evaluated
the time necessary for retraining of and prediction for the most used and reliable forecasting
models. The results (summarized in Table 6) show how the GRU and LSTM models require
about 1/5 of the computational time of the Transformer model, despite this time being
more than 10 times that of the SARIMAX model.

Table 6. In this table, the overall results are summed up for each model, reporting each mean value
and its associated SD.

Model RMSE RMSEreduced Computational Time Retraining Time

SARIMAX 0.85 ± 0.37 1.95 ± 2.30 1.83 ± 1.06 s 1.56 ± 1.05 s
LSTM 0.39 ± 0.18 0.48 ± 0.24 13.5 ± 3.60 s 12.6 ± 3.30 s
GRU 0.38 ± 0.16 0.45 ± 0.30 12.7 ± 1.42 s 12.0 ± 1.22 s

Transformer 0.45 ± 0.25 0.66 ± 0.28 48.6 ± 10.7 s 47.9 ± 10.7 s

On top of these optimizations, there is a need to monitor quality of predictions. To this
aim, we outlined a workflow to evaluate the performances of different models with varying
data lengths. We found out that the SARIMAX model, though being the fastest, had the
worst RMSE, with a great variability among users. This RMSE, being four times higher
than that of the GRU or LSTM model, penalizes the SARIMAX model in the deployment of
the PMA. In terms of the RMSE, the Transformer model had a better performance than the
SARIMAX model as well, but was comparable with RNNs. However, the time cost was the
highest (four times higher than for the GRU/LSTM model), and this criticality has a strong
impact on production development.

According to the performances and computational times, we can conclude that the
PMAs built on the GRU or LSTM model show optimal predictive performances with accept-
able computational time, making them the best candidates for a production environment.
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Another issue is the need to compare the effectiveness of training several ML models
specialized in different groups versus training one unique model for all the data. To address
this issue, planning to create a unique model accounting for the metabolisms of a cohort of
participants will require an increased number of participants.

Before these models are put into production, several ethical concerns must be moreover
addressed. In regard to privacy concerns, collection and storage of personal health data by
wearable devices can potentially compromise users’ privacy if this information is shared
with third parties without their consent. In this study, we retrieved health data from the
Zepp API, where users have explicitly consented to data sharing. The privacy policy can
be retrieved on the Zepp website (https://www.zepp.com/privacy-policy, accessed on 24
February 2023). There are, in any case, security risks. Wearable devices are often connected
to the internet, making them vulnerable to hacking and data breaches. This can result
in sensitive personal data being stolen or compromised, potentially leading to identity
theft or other forms of fraud. In addition, discrimination is an issue to be addressed,
since use of wearable devices and data collected can potentially lead to discrimination
against individuals with pre-existing health conditions or disabilities. This can result in
denial of insurance coverage or job opportunities. Finally, there are social implications:
use of wearable devices to track personal data can promote unhealthy obsessions with
self-monitoring. These issues have been constantly monitored in pilot and clinical studies,
but protocols must be developed and optimized before the use of these systems on a large
scale is allowed. Some of these protocols already exist or are under research [33,34].

5. Conclusions

Putting the PMA into production can produce diets and activity regimens that are
specifically tailored to users’ needs. Thanks to the PMA, pertinent hints can be found to
provide citizens and nutritionists with scientific knowledge and reliable tools, enhancing
their self-awareness and assisting them in their quests for healthy lifestyles. An important
development might be inclusion of newly developed lipid metabolism indicators (such
as membrane lipids and fluidity of red-blood-cell membranes) as input in the PMA to
research the impacts and influences of dietary components on their results [35–39]. Ad-
ditionally, cutting-edge and promising anthropometric markers, such as VO2max and
heart rate frequency, monitored using wearable technology can enhance the accuracy of
weight predictions [40]. These integrations could group and cluster various PMA responses,
providing insights into these variables that could affect an individual’s metabolism. An-
other important advancement may come from the advent of quantum computing and the
achievement of quantum supremacy [41], which will revolutionize ML models, including
the PMA, via increasing their performances and reducing their computational times.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu15051199/s1, Table S1: The results of the tuning of each model
are reported in the table, in particular for the SARIMAX model the parameters are the following:
(p,dq)x(P,D,Q,S); for the LSTM and GRU: (units, epochs, batch size, dropout); for the Transformer:
(head size, num heads, epochs, batch size, dropout); Section S1: SARIMAX architecture; Section S2:
Transformer architecture; Section S3: Models’ parameters.
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