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Efficient Intelligence with Applications in Embedded Sensing
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1. Introduction

Despite the fact that computational technology continues to rapidly develop, edge
devices and embedded systems are still limited in terms of their computation resources due
to such factors as power consumption, physical size constraints, and manufacturing cost.
This poses a challenge for critical applications such as mobile robots, cell phones, and AR
and VR devices, which require efficient sensing with sensors and on-board computational
resources. To effectively process the abundance of sensor measurements using resource-
constrained computation platforms, there is a need to limit the computation complexity of
the methods deployed. This is true whether the method is data-driven or principle-driven,
and high efficiency is typically a critical requirement.

This Special Issue is focused on both practical and theoretical technologies in the field
of efficient intelligence and how they can be applied to diverse embedded devices such as
industrial robots, unmanned vehicles, and fuel cells. The ten research papers published in
this Special Issue cover a wide range of topics, including collaborative autonomous naviga-
tion with unmanned surface and aerial vehicles, multi-modal simultaneous localization
and mapping (SLAM), target object tracking, LiDAR point cloud loop closure detection,
motion distortion compensation for LiDAR point cloud, hybrid prognostic methods for
proton-exchange-membrane fuel cells (PEMFC), detection of fabric defects during factory
manufacturing, state recognition of elevator traction machines, efficient object detection
neural networks, accurate pantograph detection for high-speed railways, and vision-based
autonomous forklifts. It is our hope that these published papers will be beneficial for both
academic researchers and relevant industrial practitioners alike.

2. Overview of Contribution

To ensure that an unmanned surface vehicle (USV) can navigate safely in complex
scenarios with many obstacles, Huang et al. [1] proposed a system that involves multiple
agents collaborating together. This system includes an unmanned aerial vehicle (UAV)
that acts as a perceptive agent with a large receptive field, allowing it to detect obstacles
from above and inform the USV of their locations. Next, a graph search-based hybrid
A* planning algorithm generates an obstacle-free trajectory for the USV. This initial tra-
jectory is further optimized by taking into account the dynamic constraints of the under-
actuated USV. By doing so, the planned trajectory is tailored to the USV’s dynamics, making
it easier for the vehicle to follow. Finally, a nonlinear model predictive controller (NMPC)
with the lowest energy consumption constraint is used to control the USV and ensure it fol-
lows the planned trajectory precisely. The effectiveness and efficiency of this collaborative
system have been demonstrated in a simulated environment.

Chen et al. [2] proposed a heterogenous Simultaneous Localization and Mapping
(SLAM) system that combines sensor measurements from LiDAR, cameras, Inertial Mea-
surement Units (IMU), and Global Positioning Systems (GPS). This system has three
component state estimation subsystems: LiDAR-inertial odometry, visual-inertial odom-
etry, and GPS-inertial odometry. The navigation states estimated from these subsystems
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are then fused in a pose graph optimization. This heterogenous hybrid SLAM system is
designed to provide accurate and robust pose estimations, even in complex environments
and difficult situations, such as when there are component sensor failures or intermittent
GPS measurements. Additionally, based on the estimated camera poses from the SLAM
system, an object tracking and localization module has been developed. This object tracking
and localization module utilizes YOLOv4 to detect objects of interest from images captured
by the camera. The detected objects are then tracked across multiple images using L-K
optical flow and a Kalman filter. With the known 6-DoF relative transformation between the
camera and LiDAR, the depth of the object can be obtained by the projected LiDAR points.
This allows for the retrieval of 3D locations of the tracked objects. Experimental results in
real-world scenarios have demonstrated the accurate pose estimation of the sensor rig, as
well as the feasibility of tracking object locations using the presented multi-modal system.

When using odometry systems, there will inevitably be a slight drift in the estimation of
the robot’s position. This is because minor errors in the relative poses between consecutive
frames accumulate over time, leading to significant deviations in the long run. To fix this
problem, loop closures can be used. When the robot reaches a previously visited position,
a loop closure is triggered, and the accumulated drift during that loop can be corrected.
Tian et al. [3] proposed a method to improve loop closure detection in 3D LiDAR scans
by using an object segmentation technique. The method uses a Scan Context descriptor,
which is a global descriptor that records statistics of the 3D structure captured by LiDAR
and stores the descriptors in an indexed KD-Tree. Loop closure candidates are identified as
scans with small descriptor distance to existing scans. To enhance the performance of loop
closure detection in complex environments, the method uses object segmentation to remove
disturbances caused by unstructured objects such as cluttered vegetation. Experimental
results on the KITTI dataset demonstrate that the proposed method outperforms the other
compared methods.

To provide a 360-degree panoramic perception of the environment, mechanical 3D
LiDARs use spinning laser sensors. However, if the LiDAR is moving during the spinning
of the laser sensors, motion distortion can occur in the LiDAR scan. To solve this problem,
Wu et al. [4] proposed a method that fuses IMU and wheel odometer measurements to
compensate for the motion distortion in LiDAR scans. The positional displacement from
the wheel odometer measurements and rotation changes from the IMU measurements are
combined to estimate the 6 degrees of freedom (DoF) pose of the LiDAR. To roughly remove
the motion distortion of a LiDAR scan, the pose estimations are linearly interpolated to
obtain the interpolated poses for individual LiDAR points. Then, the roughly undistorted
LiDAR scans are registered with each other via ICP (Iterative Closest Point), and the
relative poses between the LiDAR scans are calculated. The relative poses obtained from
the registration process are used to further undistort the motion distortion in LiDAR scans.
Extensive experiments have shown that this proposed method is effective and feasible in
compensating for motion distortion in LiDAR scans.

Xia et al. [5] proposed a new method for predicting the long-term voltage degradation
of proton-exchange-membrane fuel cells (PEMFC) using a hybrid prognostic approach.
The voltage measured from the PEMFC is decomposed into two components: the calendar
aging component and the reversible aging component. To predict the overall aging trend
of the PEMFC based on the calendar aging component, an adaptive extended Kalman filter
is used. Additionally, a Long Short-Term Memory (LSTM) neural network is utilized to
predict both voltage components together. The combination of the Kalman filter and LSTM
helps to accurately predict the long-term voltage degradation of PEMFC. Furthermore,
to improve the accuracy of the forecast, a dedicated three-dimensional aging factor is
introduced into the physical aging model. Experimental results show that the proposed
hybrid prognostic method delivers accurate long-term voltage-degradation prediction
results, demonstrating its effectiveness over other methods.

Detecting fabric defects during factory manufacturing is crucial for ensuring high-
quality products. Lin et al. [6] proposed an intelligent and efficient method for detecting
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fabric defects based on the YOLOv5 neural network. To overcome the challenges of de-
tecting small and unbalanced defect patches, they modified the baseline YOLOv5 network
using the Swin transformer backbone. They also incorporated a sliding-window multi-head
self-attention mechanism to enhance accuracy in addition to the convolutional neural net-
work. Furthermore, to improve detection accuracy, even on small defects, they introduced
a detection layer capable of detecting 4 × 4 small targets, enabling detection at four different
scales. To address the issue of imbalanced training samples, they used a generalized focal
loss to help the model learn from positive samples. The proposed neural network was
rigorously tested through ablation studies to analyze the effectiveness of each introduced
network component. The experimental results demonstrate the high detection accuracy
and real-time capability of the proposed neural network, making it a useful tool for fabric
defect detection in factory manufacturing.

The condition monitoring and fault diagnosis of elevator traction machines is incredi-
bly important for ensuring the safety of elevator users. Li et al. [7] proposed a new method
for recognizing the state of a traction machine based on analyzing its vibration signals.
To do this, they use a novel demodulation method that involves time-frequency analysis
and principal component analysis. In order to extract the important modulation character-
istics of the traction machine vibration signal, which can be difficult due to background
noise interference, the researchers employ two methods: Fast Fourier Transform (FFT) and
Short-Time Fourier Transform (STFT). They conduct extensive investigations while the
elevator runs at different speeds, in different directions and with varying weights. The
results show that applying principal component analysis is very helpful for quickly and
effectively monitoring the condition of a traction machine in different scenarios. Overall,
this method can help ensure that elevator traction machines are operating safely.

Yun et al. [8] proposed an effective vision-based method for recognizing objects that
involves two main stages. In the first stage, a lightweight semantic segmentation neural
network called ENet is used to extract the Region of Interest (ROI). This allows the objects
that are not of interest or that are part of the background to be masked out. The areas
that have the potential to contain objects of interest are the only regions that will be
recognized. In the second stage, the masked image from the first stage is processed
through the YOLO neural network to achieve efficient and accurate recognition. While
the results from the first stage may not be perfect, the second stage can still achieve high
accuracy. Experiments on embedded devices have demonstrated that using this two-stage
method for object recognition not only saves power and computation but also significantly
improves accuracy.

High-speed trains rely on a pantograph to provide power by connecting to the power-
lines. The pantograph’s status is critical to the functioning of the high-speed railway (HSR).
To detect and locate the pantograph in images captured by a specific camera, Tan et al. [9]
developed a dedicated detection method that uses YOLOv4. They trained this model on
data collected from real-world scenarios. Since the camera that watches the pantograph is
mounted outside of the train, it can be susceptible to various types of interference, such
as rainwater-induced blurring or dirt on the camera lens. To better understand the health
status of the camera and analyze the interference affecting the performance of YOLOv4
detection, a classification method is proposed. This method counts the number of blobs
appearing in the image to determine if the camera is affected by dirt or blur. In addition,
since the image backgrounds of the photograph can be diverse in different scenarios and
can significantly affect the detection performance of YOLOv4, a method was developed
to infer the categories of complex backgrounds. Overall, this proposed system provides
an effective and efficient way to detect and locate the pantograph on high-speed trains,
despite the challenges posed by environmental factors.

Ren et al. [10] proposed a complete system that enables forklifts to transfer pallets
accurately and efficiently in warehouse environments. This system has three main com-
ponents: pallet monitoring using an RGB surveillance camera, pallet positioning with
an RGB-D camera mounted on the forklift, and a dedicated controller that instructs the
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forklift to manipulate the pallet with high precision. To detect pallets that are far away
from the cameras in the pallet monitoring module, a transformer-based prediction head is
incorporated into the YOLOv5 network. This allows for the detection of small targets that
correspond to only a few pixels. For pallet positioning, deep feature maps are generated
from the RGB-D images and fed into a 3D key points detection network. This network
accurately detects the eight corner points of the pallets’ two square apertures. By fitting the
extracted key points, the pose of the pallet relative to the forklift can be determined. Once
the pose of a pallet is known, the forklift is controlled to transfer the pallet with a trajectory
controller that incorporates forklift motion cycle prediction into the control process. The
proposed system has been extensively tested in real-world warehouse scenarios and has
been shown to be effective and reliable.

3. Conclusions

This Special Issue encompasses a diverse array of topics related to efficient sensing
and intelligence for embedded devices. The advancements showcased in the ten research
papers published within this Special Issue highlight the significance of devising practical
and theoretical technologies to tackle challenges posed by resource-constrained compu-
tation platforms and adverse external interference across various applications, including
robotics, manufacturing, transportation, and energy systems. These cutting-edge solu-
tions strive to enhance the efficiency, accuracy, and robustness of embedded sensing and
intelligence while surmounting physical limitations and diverse environmental obstacles.
The research papers in this collection contribute to the progress of efficient intelligence
technologies, offering valuable insights and inspiration for both academic researchers and
industry practitioners in their quest to develop more advanced and efficient embedded
sensing systems.
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A USV-UAV Cooperative Trajectory Planning Algorithm with
Hull Dynamic Constraints
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Abstract: Efficient trajectory generation in complex dynamic environments remains an open problem
in the operation of an unmanned surface vehicle (USV). The perception of a USV is usually interfered
by the swing of the hull and the ambient weather, making it challenging to plan optimal USV
trajectories. In this paper, a cooperative trajectory planning algorithm for a coupled USV-UAV system
is proposed to ensure that a USV can execute a safe and smooth path as it autonomously advances
through multi-obstacle maps. Specifically, the unmanned aerial vehicle (UAV) plays the role of a
flight sensor, providing real-time global map and obstacle information with a lightweight semantic
segmentation network and 3D projection transformation. An initial obstacle avoidance trajectory
is generated by a graph-based search method. Concerning the unique under-actuated kinematic
characteristics of the USV, a numerical optimization method based on hull dynamic constraints is
introduced to make the trajectory easier to be tracked for motion control. Finally, a motion control
method based on NMPC with the lowest energy consumption constraint during execution is proposed.
Experimental results verify the effectiveness of the whole system, and the generated trajectory is
locally optimal for USV with considerable tracking accuracy.

Keywords: USV-UAV cooperation; trajectory generation; under-actuated constraint; numerical
optimization; hull dynamics

1. Introduction

Unmanned surface vehicles (USVs) are a kind of specific ships with the ability of
autonomous mission execution, which are widely used in various applications, including
marine resource exploration, water resource transportation, patrol and defense in key
areas and river regulation [1,2]. Progress has been made in a large number of research
areas, including environmental perception [3,4], formation control [5,6], navigation [7,8],
and so on. Environmental perception and trajectory generation are the two most important
techniques when the USVs are executing in unknown environments. In particular, when
the environment contains dynamic obstacles, USVs struggle to achieve accurate trajec-
tory planning and tracking due to the lack of effective obstacle information. As a result,
the autonomous navigation system may fail.

During the navigation process of a USV, the sensing devices, such as radar or camera,
are located at a low observation point, which is detrimental to environmental perception
because the adjacent obstacles in the front and behind will block each other. Moreover,
the input of the sensors often contains noise caused by hull shaking on the water. This
makes precise environmental perception a difficult problem for USVs and affects the success
rate of trajectory generation. Usually, simultaneous localization and mapping (SLAM) [9]
technology is required to construct the global map. However, this kind of method requires
a huge computational load, and it is intractable to deal with dynamic objects in the water
environment.

Sensors 2023, 23, 1845. https://doi.org/10.3390/s23041845 https://www.mdpi.com/journal/sensors
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A feasible solution is to design a USV-UAV cooperative system to tackle the above
problems, where the unmanned aerial vehicle (UAV) plays the role as a flying sensor. As
shown in Figure 1, the USV has long cruise capability, but its perception is disturbed
and limited by the circumstance. Hence the UAV flies over the USV, providing more
stable and comprehensive information. Semantic segmentation [10,11] and 3D projection
are used in this paper to transfer obstacle information in the field of vision of the UAV
to the coordinate system of the USV. Semantic segmentation extracts pixel information
of environmental obstacles, and a camera projection model helps to transfer the pixel
information to 3D information. By doing this, global map information around the USV can
be obtained efficiently and in real-time, implying the USV-UAV cooperative system can
improve the perception ability of the USV effectively, allowing the USV to perform tasks in
more complex water circumstances.

Figure 1. An illustration of the USV-UAV cooperative system, where the UAV provides wide obstacles
and map information to guide the USV to generate an obstacle avoidance trajectory.

An initial obstacle avoidance trajectory is firstly generated by a graph-based search
method [12]. However, such a method was originally designed for path searching on vast
geographical scenarios, which does not consider the USV’s dynamic characteristics. On the
other hand, USV is famous for its under-actuated motion characteristics [13], which makes
it hard to be controlled well, even when an optimal trajectory is planned. In this paper, we
design a numerical optimization method to optimize the trajectory. Specifically, we take
the hull dynamic constraints into account when modeling the optimization problem. As a
result, the generated trajectory not only allows the obstacle avoidance rule, but also fits the
motion characteristics of a USV. This makes the generated trajectory easier to be tracked
under the same control conditions.

Finally, a control method with the lowest energy consumption per execution task
is designed under a new numerical optimization problem. It ensures that the power
consumption is optimal when the USV is actuated to track the given optimal trajectory,
which is a very useful technique in real-world applications. The performance of the
trajectory generation and tracking is comprehensively compared and analyzed in the
simulated environments, and it verifies the effectiveness of our proposed novel framework.

In summary, the contributions of this paper are listed as follows.

• A novel USV-UAV cooperative system is proposed, where the UAV acts as a flying
sensor to provide global map information around the USV by semantic segmentation
and 3D projection, providing more comprehensive and effective perception results for
navigation planning.

• A numerical optimization problem is formulated during the trajectory generation
process. It considers the hull under-actuated dynamic constraints and perception of
the UAV, which can generate a fuel-saving trajectory in real-time optimization.
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• The lowest energy consumption control law is proposed to track the generated trajec-
tory efficiently and accurately, and extensive experiments are conducted to verify the
effectiveness of the USV-UAV cooperative system.

2. Related Works

2.1. Trajectory Planning for USV

Trajectory planning aims to automatically generate an obstacle avoidance trajectory
for a USV when the local or global map is given. Among existing methods, the mainstream
trajectory planning methods are mainly divided into two categories, i.e., path search and
trajectory generation.

There are two research directions for the path search methods, including graph search
and random sampling. Typical graph search methods include the A* [14] and Dijkstra [15]
algorithm, as well as their derivatives [16]. These methods mainly discretize the known
map into interconnected grids and find the shortest path according to the heuristic param-
eters. The disadvantage of this kind of method is that the search dimension in the large
map is expanding, and the calculation time shows a rapid upward trend. Among random
sampling methods, typical varieties include RRT [17] and its derivatives [18], which dy-
namically find feasible paths by randomly sampling points in the map and constructing
random exploratory trees. The method can show better performance for large maps, but its
shortcomings are also very obvious. It is easy to be guided to a locally optimal solution,
and it is difficult to generate feasible paths in narrow areas when system’s computing
resources are limited. The common problem of the above methods is that the generated
path curvature is discontinuous, and trajectory smoothing is needed afterward.

For the trajectory generation methods, curve interpolation methods, such as B-spline [19],
are commonly used to smooth the trajectory. The smoothness of the trajectory and motion
state is guaranteed by the continuity theorem of higher-order derivatives of a curve. Mean-
while, numerical optimization methods are also widely used, such as minimum snap [20]
and near-optimal control [21].

Some methods can also combine path search with trajectory generation, such as
domain reduction-based RRT* [22] and Hybrid A* [23]. In this paper, the proposed method
belongs to the numerical optimization method . It adds the dynamic and kinematic
constraints of unmanned craft in the trajectory generation part so that the generated
trajectory is more in line with the dynamic characteristics of the hull.

2.2. The USV-UAV Cooperative System

With the rapid development of automation and artificial intelligence technology, un-
manned aerial vehicle (UAV) technology has made significant progress in recent years.
Compared with USV, the advantage of UAV is that it has a broader field of vision and faster
movement speed and can provide more comprehensive and effective data information for
USV. In addition, UAV has the advantages of flying height and that its communication
ability is less affected by the environment. It can be used to provide communication relay
services for multiple USVs located in different positions. Due to the strong complemen-
tarity between USV and UAV in perception, communication, operation time, and other
aspects, researchers have focused on the coordination of having UAV serve USV and have
successfully verified that this method can effectively solve the problem mentioned above of
self-awareness of a USV. Ref. [24] focused on the search and rescue of USVs in flood scenes
and proposed a collaborative mode of manipulating a UAV to establish the global map first,
providing complete map information and target localization for subsequent USV planning.
Ref. [25] proposed a cooperative formation control algorithm for a single USV and multiple
UAVs. The method is based on the leader-follower distributed consensus model, and the
position and orientation of each boat are determined by the RGB image color-space features
acquired by the UAV camera. Ref. [26] considered the strong search capability of the UAV
in the air, combined with the actual target strike capability of the USV, and proposed a
two-stage cooperative path planning algorithm on the water and underwater based on
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the particle swarm optimization algorithm. Ref. [27] proposed an effective game incentive
mechanism for the task assignment problem in the cooperative operation of USVs and
UAVs, which reduced the task cost and improved the task efficiency. Ref. [28] proposed
that the LVS-LVA framework to be applied the cooperative motion control of USV-UAV.

Although, most of these methods are cooperative ways to provide UAV environmental
data and perceptual information for the navigation task of a USV. With the development
of computer vision technology, the accuracy and robustness of the perception algorithm
they use need to be improved. In addition, they did not consider the trajectory of the USV
and its tracking control link, and the proposed collaborative framework can not be fully
applied to the autonomous navigation task of USVs.

3. Cooperative Trajectory Generation

In the USV-UAV cooperative system, the USV has a stable environmental self-supporting
ability, and the UAV is flexible and environmentally adaptable. In the process of au-
tonomous navigation of the USV, relying on the wide field of vision and strong environ-
mental perception provided by the UAV, it can generate a more reasonable trajectory and
skillfully avoid various kinds of obstacles.

3.1. Environmental Perception and 3D Projection

Environmental perception is vital when the USV is performing in unknown water
areas. Different observation angles have a significant influence on the observed results. As
shown in Figure 2, the USV and UAV have different angles of view. The USV observes the
environment from a horizontal perspective, which may lead to serious visual occlusion,
whereas the UAV performs environmental perception from a top-down perspective, which
enables more accurate map-view information.

(a) USV angle of view (b) UAV angle of view

Figure 2. Perspective difference between USV and UAV.

Concerning the accuracy of obstacle recognition and the calculation efficiency, we use
semantic segmentation technology [29,30] based on deep learning to extract pixel-level
obstacle information from the image data obtained by the UAV’s camera. For a given image,
the position, shape and size of the obstacles in the environment can be judged by assigning
each pixel with a two-categorical label: ‘0’ indicates a safety area and ‘1’ denotes an area in
which the obstacles are located.

In this paper, we use DeepLab [10] as the semantic segmentation network and replace
the backbone with MobileNet [31]. On the one hand, it reduces the amount of computation.
On the other hand, in the process of feature extraction, with the help of the atrous spatial
pyramid pooling (ASPP) module, it can effectively improve the global receptive field and
the recognition effect. The overall network architecture is illustrated in Figure 3.

10
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(a) Input image (c) ASPP module(b) MobileNet backbone
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Figure 3. The network architecture of the semantic segmentation algorithm deployed on the UAV.

After obtaining the pixel coordinates of obstacles in the image, it needs to convert the
obstacle coordinate information into a unified global coordinate. We define the coordinate
system of the UAV as U, the camera coordinate system as C, and the global coordinate
system as G. Thus the transformation from U to C can be represented by TUC = [R|T] ∈
R4×4, where R is the rotation matrix and T is the translation matrix. TGU · TUC denotes the
transformation matrix from G to C. Assuming that the coordinates of the obstacle point m
in the pixel coordinate system are (u, v), according to the imaging principle of the pinhole
camera model, the relationship between its position in the camera coordinate system can
be expressed as ⎧⎪⎨⎪⎩

u = fx ·
x
z
+ cx

v = fy ·
y
z
+ cy,

(1)

where fx and fy denote the focal length in the x and y direction and cx and cy are the
positions of the origin of the image plane, which can usually be regarded as the center of
the image. Thus, the relationship between the 3D points in the global coordinate system
M = (x, y, z) and the pixel coordinate system m = (u, v) is denoted by

s ·

⎡⎢⎢⎣
u
v
1
1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
fx 0 cx
0 fy cy
0 0 1
0 0 s

⎤⎥⎥⎦ · TGU · TUC ·

⎡⎢⎢⎣
x
y
z
1

⎤⎥⎥⎦, (2)

where s is the scaling factor, which can be regarded as the depth information of each pixel.
In this paper, a binocular camera carried by the UAV is used to obtain the pixel depth s.
Through this way of 3D coordinate projection, the pixel information sensed by the UAV in
real-time can be projected into the global coordinate system, forming the 3D perception
ability of the USV to the environment.

3.2. Initial Trajectory Generation

In order to generate an obstacle avoidance trajectory, this paper applies the Hybrid A*
algorithm [23] to provide an initial path, as shown in Algorithm 1. Given the initial state of
the USV (s = (x0, y0, ϕ0)) and the navigation target state (e = (x f , y f , ϕ f )), the algorithm
first puts the initial state into the open list. Then it iteratively reads the node with the
lowest cost in the open list as the current parent node, and generates the next child node
according to the current node state, system motion mode and obstacle map. Unlike the
A* algorithm, the Hybrid A* algorithm adds the orientation dimension to the coordinate
system. Therefore, the criteria for reaching the target state is that the distance between
the coordinates of the node and the target point is less than the threshold of the reaching

11



Sensors 2023, 23, 1845

distance, and the collision-free Reeds–Shepp curve can be generated through the node state
and the target point state.

Algorithm 1 Trajectory Search with Hybrid A*
Input: x0, x f , map
Output: Trajectory T
1: Function Search(x0, x f , map)
2: open ← φ, close ← φ
3: open.push(x0)
4: while open is not φ do
5: xn ← open.pop()
6: close.push(xn)
7: if xn.near(x f ) then
8: if reedsheep(xn, x f ) then
9: return path(x f )

10: else
11: for xsucc ∈ successor(xn) do
12: if xsucc.safe() and not exist(xn, close) then
13: g ← g(xn) + g(xsucc, xn)
14: if not exist(xsucc, open) or g < g(xsucc) then
15: pred(xsucc) ← xn
16: h(xsucc) ← Heuristic(xsucc, x f )
17: if not exist(xsucc, open) then
18: open.push(xsucc)
19: else
20: open.rewrite(xsucc)
21: return null

4. Trajectory Optimization and Tracking

The USV is an under-actuated robot operation system where the number of control
variables of the system is less than the degrees of freedom of the system. In the trajectory
optimization process, if the dynamic constraints of this under-actuated characteristic are
added to the optimization process, an optimal trajectory more in line with the characteristics
of ship motion can be generated.

4.1. Trajectory Optimization with Dynamics

The motion model of the USV is a mathematical model with 6 degrees of freedom
when it is complete. For simplicity, we can ignore the motion of the hull in the heave, roll
and pitch directions, and simplify it into a 3-degrees of freedom with surge, sway and
yaw, represented by x, y and ϕ. The mathematical expression of the hull dynamics can be
expressed as {

η̇ = J(η)ν

Mν̇ = τ − C(ν)ν − Dν,
(3)

where η = (x, y, ϕ) ∈ R3×1 denotes the state variables, and ν = (u, v, r) ∈ R3×1 denotes
the speed variables. J ∈ R3×3 is the transition matrix, and C ∈ R3×3 is the Coriolis
centripetal force matrix. M ∈ R3×3 is the inertial matrix, and D ∈ R3×3is the damping
matrix. τ = (τu, 0, τr) ∈ R3×1 is the thrust matrix. For a catamaran, the thrust matrix can
be expressed as {

τu = T1 + T2

τr = (T1 − T2) · B,
(4)

12
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where T1 and T2 are the thrusts of two propellers, and B is their distance. The USV can be
viewed as a linear time-invariant (LTI) system. Its state variables X and control variable τ
can be represented by {

X = [x, y, ϕ, u, v, r]T

τ = [τu, 0, τr]
T .

(5)

The system dynamics are as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = ucos(ϕ)− vsin(ϕ)

ẏ = usin(ϕ) + vcos(ϕ)

ϕ̇ = r

m11u̇ − m22ur + d11u = τu

m22v̇ − m11ur + d22v = 0

m33ṙ + (m22 − m11)uv + d33r = τr.

(6)

Based on Hybrid A*, the global trajectory is optimized twice with the following
constraints, including position, velocity, angular velocity and control input, as well as
waypoint state constraints. The reference waypoint state is the sub-optimal trajectory
obtained by considering the vehicle model, which can only provide the simulated optimal
information of obstacle avoidance, heading speed and other controls. In this paper, we
consider the state vector error in the optimization objective function as a soft constraint.
The final optimization objective can be represented as

min
1
2
{

N

∑
i=0

[(Xi − Xre f
i )TWx(Xi − Xre f

i ) + τT
i Wττi] +

N

∑
i=1

(τi − τi−1)
TWu(τi − τi−1)}, (7)

where Xre f
i denotes the reference state variables generated by Hybrid A*, and Wx =

diag{50, 50, 20, 15, 15, 15}, Wτ = diag{5, 0, 5} and Wu = diag{3, 0, 3} represent the positive
definite, cost and weight matrices, respectively. Moreover, to ensure adequate accuracy in
the trajectory, we choose 0.05 s as the sampling period.

We adopt the methods of minimizing the control quantity and minimizing the contin-
uous control difference to ensure that the global trajectory generated by optimization can
take into account the trajectory index factors, such as the smoothing of the control quantity
and the minimization of the energy consumption at the same time. The overall algorithm
flow is shown in Algorithm 2.

Algorithm 2 Global Trajectory Optimization
Input: X0, X f , path
Output: X
1: Function OptiTraj(X0, X f , path)
2: for i = 0 to N do
3: if i == 1 then
4: X(i) = X0
5: else if i == N then
6: X(i) = X f
7: else
8: X(i).x = pathi.x
9: X(i).y = pathi.y

10: X(i).ϕ = pathi.ϕ
11: Set constraints C
12: Set Objective Function J
13: Optimize(J, path, C, X)
14: return X
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4.2. Tracking Control with NMPC

Nonlinear model predictive control (NMPC) [32] is famous for its ability to improve
local tracking precision. It performs periodic real-time optimization according to the
prediction time window to achieve the purpose of iterative control to reduce tracking
error. Through the numerical optimization algorithm proposed above, the global trajectory
based on the kinematic and dynamic constraints of the USV can be obtained, in which the
reference control quantity can be obtained. Therefore, the trajectory optimization uses the
error index of control quantity as the optimization target. Setting the current time as tj and
the prediction time window as Wn, the optimization problem in terms of NMPC can be
formulated as

min
1
2

tj+Wn

∑
i=tj

[(Xi − Xre f
i )TWmpcx(Xi − Xre f

i ) + (τi − τ
re f
i )TWmpcτ(τi − τ

re f
i )

+(τi − τi−1)
TWmpcu(τi − τi−1)],

(8)

where the first term represents the error between the state variable and the reference state
variable, which is mainly used to improve the accuracy of state tracking and maintenance
in the process of real-time control. The second term represents the error between the control
variable and the reference control variable. This term is used to meet the index of the
lowest energy consumption. Although this problem has been considered in detail in the
context of optimization objectives in global trajectory planning, secondary planning in local
tracking control can achieve better results. The third term can improve the smoothness
of input variables in actual control and meet the needs of practical application control.
Wmpcx = diag{10, 10, 4, 2, 2, 2}, Wmpcτ = diag{2, 0, 2} and Wmpcu = diag{4, 0, 4} represent
the positive definite, cost and weight matrices, respectively. And considering the control
requirements of real-time operation and stability, we choose Wn to be 30, 0.05 s as the
sampling period, and the cycle of the NMPC algorithm call to be 0.1 s.

5. Experimental Analysis

In this section, we perform simulation experiments using the open source Otter USV
simulator [33] within the ROS environment. The Otter USV simulator is a catamaran 2.0-m
long, 1.08-m wide and 1.06-m high. When fully assembled, it weighs 65 kg, and has the
ability to be disassembled into parts weighing less than 20 kg, such that a single operator
can launch the Otter from a jetty, lake, beach or riverbank. A PX4 drone autopilot is used as
the UAV, which is mounted with a monocular camera. The Otter USV is traveling within a
200 × 100 square meter area, with many blocks placed therein as obstacles. We set up several
different obstacle terrains to test the crossing ability of the USV-UAV cooperative system.

5.1. Obstacle Recognition Ability

Firstly, we perform experiments on the ability of obstacle recognition by the USV
monocular camera. The semantic segmentation algorithm is used to recognize objects.
Several terrains are randomly placed in the virtual environment. Some of the segmentation
results are shown in Figure 4, from which we can see that the proposed light-weight
segmentation network can successfully identify obstacles in the environment. Although
there are some empty areas in the middle or on the edges of the obstacles, the basic shape of
the obstacles has been preserved. In the post-processing stage, image expansion can be used
to increase the safe collision avoidance area and ensure the reliability of navigation. After
that, 3D projection can be performed to convert the pixel information into 3D information
in a global coordinate system.
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Figure 4. Obstacle recognition results of different terrains.

5.2. Trajectory Generation Performance

The trajectory generation result is illustrated in Figure 5, from which we can see that
the generated trajectory not only meets the collision avoidance condition, but also conforms
to the hull’s kinematic characteristics. In the experiment, the Otter is an under-actuated
USV and cannot provide direct lateral thrust during its operation. This requires that the
running trajectory of the USV must be smooth enough, because too many bends will bring
instability to the motion control of the USV and lead to the failure of path trajectory. The
corresponding results can be seen in the subsequent path tracking control experiments.

Figure 5. Global trajectory generation performance of the USV-UAV cooperative system.

The changing trend of the state and control quantity of the USV with time for the
generated trajectory can be found in Figure 6. Overall, the quantities show a relatively
gentle trend, especially for the x and y quantities, which verifies the smoothness of the
trajectory. Higher order quantities such as u, v and yaw also present a gentle trend. Those
are sufficient to show the effectiveness of the trajectory optimization method.

We also performed an ablation study on the proposed method. As shown in Figure 7,
the LOP and GP+LOP methods are compared. LOP denotes the trajectory generation
with local optimization planning, which means the global map provided by the UAV is
unknown. Due to the limited perception field of the USV, it will take action to perform
local trajectory planning unless it is near the obstacle. GP+LOP denotes global planning
without trajectory optimization, which means the global map is known while trajectory
optimization is not performed. Without the optimization stage, the generated trajectory
shows a twisted shape, which is not optimal. GOP+LOP denotes the proposed method.
In the lower left-corner of each sub-figure, the total length of the generated trajectory is
shown. Our method obtains the shortest planned path with the best smoothness.
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Figure 6. The changing trend of the state and control quantity of the USV with time.

Length: 56.34m Length: 55.32m Length: 52.85m

(a) LOP (b) GP+LOP (c) GOP+LOP

Figure 7. Trajectory generation comparison with different methods. LOP: trajectory generation
with local optimization planning (global map provided by the UAV is unknown); GP+LOP: global
planning without trajectory optimization; and GOP+LOP: the proposed method.

Here, we also compare the three methods quantitatively in Table 1. The indexes, such
as RMSE, max error, speed and time, are evaluated by driving the hull to move. With the
trajectory optimization method, the generated trajectory is more in line with the kinematic
characteristics of the hull. As such, the tracking error, execution speed and control time
achieve optimal values compared with other methods.

Table 1. Quantitative comparison of different trajectory generation methods.

Method
Length RMSE Max Error Speed Time
(m) (m) (m) (m/s) (s)

LOP 56.34 0.120 0.3045 1.513 0.0667
GP+LOP 55.32 0.118 0.3047 1.608 0.0697
GOP+LOP 52.85 0.113 0.2312 1.675 0.0506
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5.3. Tracking Control Performance

To further verify the effectiveness of the proposed NMPC tracking control module,
extensive comparative experiments are conducted. As shown in Figure 8, GOP+LP denotes
the tracking control method without optimization, i.e., the plain PID with adjusted parame-
ters. The proposed NMPC shows better tracking control performance qualitatively and
quantitatively. There is no prediction time window for GOP+LP, so there will be many
minor adjustments, resulting in an actual motion trajectory that is not smooth.

RMSE: 0.135m
Max error: 0.3829m

RMSE: 0.114m
Max error: 0.2312m

(a) GOP+LP (b) GOP+LOP

Figure 8. Tracking control performance comparison. GOP+LP denotes the tracking control
method without optimization, i.e., the PID control. GOP+LOP denotes the proposed method with
NMPC control.

The execution states of different tracking control methods are visualized in Figure 9,
from which the plain PID control shows unstable tracking states. Especially for the control
input, the τr shows a divergent trend, which may lead to the input variable exceeding the
controllable range and adversely affecting the motion control of the USV.

Figure 9. Execution state comparison of motion tracking control.

The quantitative comparison of tracking control methods can be found in Table 2,
from which the proposed method shows better performance than GOP+LP (i.e., plain
PID control). The proposed method not only achieves a smaller tracking control error,
but also drives the USV at a quicker speed. Those particularly prove the effectiveness of
the combination of motion control and trajectory generation with hull dynamics.
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Table 2. Quantitative comparison of tracking control methods.

Method
RMSE Max Error Speed
(m) (m) (m/s)

GOP+LP 0.135 0.3829 1.327
GOP+LOP 0.113 0.2312 1.675

6. Conclusions

In this paper, a USV-UAV cooperative trajectory planning algorithm is proposed to
overcome the problem of USV navigation in complex and multi-obstacle environments
with an unknown global map. The proposed cooperative system is simple yet practical. In
our method, the UAV acts as a flying sensor, providing a global map to the USV in real-time
with semantic segmentation and 3D projection. Afterward, a graph search-based method
is applied to generate an initial obstacle avoidance trajectory. An optimization method
that considers the kinematic characteristics of the hull is proposed to make the trajectory
more in line with the situation. Finally, an NMPC control method is applied to ensure high
precision motion control of the USV. The proposed method has excellent performance and
strong practicability in ocean engineering. In future work, we will verify the feasibility
of the method in physical experiments and try to study the heterogeneous cooperation
scheme of multi USV-UAV systems.
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Abstract: This paper proposes a real-time, versatile Simultaneous Localization and Mapping (SLAM)
and object localization system, which fuses measurements from LiDAR, camera, Inertial Measurement
Unit (IMU), and Global Positioning System (GPS). Our system can locate itself in an unknown
environment and build a scene map based on which we can also track and obtain the global location of
objects of interest. Precisely, our SLAM subsystem consists of the following four parts: LiDAR-inertial
odometry, Visual-inertial odometry, GPS-inertial odometry, and global pose graph optimization. The
target-tracking and positioning subsystem is developed based on YOLOv4. Benefiting from the use
of GPS sensor in the SLAM system, we can obtain the global positioning information of the target;
therefore, it can be highly useful in military operations, rescue and disaster relief, and other scenarios.

Keywords: SLAM; multi-sensor fusion; object tracking and localization

1. Introduction

For autonomous unmanned systems, SLAM technology can observe the surrounding
stationary environment and build a 3D map of the environment through sensors such
as cameras and LiDARs installed on the robot [1]. For dynamic scenes, SLAM-based 4D
reconstruction technology can reconstruct 4D (3D+time) dynamic scenes with rigid moving
objects [2–4]. However, the complexity of the actual scene means the SLAM system, with
only positioning and mapping functions, is unable to meet the needs of many scenarios
such as military operations, emergency rescue, and disaster relief. Besides, autonomous
unmanned systems are often required to obtain positioning and environmental maps at the
same time. It is necessary to develop an intelligent multifunctional perception system with
self-positioning, mapping, target tracking, and positioning functions to search for objects
of interest within the field of view and obtain the target location.

In order to improve the state estimation accuracy of SLAM systems, a large number of
multi-sensor fusion methods have been used, such as the fusion of camera and IMU [5–8],
LiDAR and IMU [9–11], and a combination of all of them [12–14]. The sensors used in
these methods can be divided into local pose estimation sensors such as camera and IMU
and global pose estimation sensors such as GPS and magnetometer. However, they all
have their advantages and disadvantages, so the single use of a certain type of sensor
limits the SLAM system in practical application [15–17]. The short-term results are more
credible for local pose estimation sensors, but they have two shortcomings. One is that
their pose estimation results do not have a global coordinate system, so the method is not
reusable. The second is that when the system runs for a long time, there will be an inevitable
cumulative drift. Although the loop closure detection method can correct the accumulated
error in the SLAM system, problems such as difficult matching, a large amount of data,
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and limited application scenarios still exist. The frequency of global pose estimation sensors
is not high, so they cannot provide much continuous observation information. Furthermore,
their measurement noise is relatively large; therefore, they cannot be directly used for pose
estimation. However, they have global observation coordinates and are not affected by
time accumulation. Therefore, fusing different sensors is an important method to enhance
pose estimation accuracy.

For targeting, YOLOv4 [18] provides a high-speed and accurate target detection
network model. The optical flow method and Kalman filtering are often used for target
tracking. In terms of application, J.A. [19] proposes an automatic expert system, based
on image segmentation procedures, that assists in safe landing through recognition and
the relative orientation of the UAV and platform. Dr. Krishna [20] specified detection and
tracking algorithms in terms of extracting the features of images and videos for security
and scrutiny applications. We tend to fuse other sensors such as LiDAR or Radar to locate
the target because monocular cameras lack depth information. Yifang [21] proposes the
use of RADAR and Infrared sensor (IR) information for tracking and estimating target
state dynamics. To project image-based object detection results and LiDAR-SLAM results
onto a 3D probability map, Gong et al. [22] combine visual and range information into a
frustum-based probabilistic framework.

For the above reasons, this paper proposes an online positioning, mapping, and target-
tracking and location system based on camera, IMU, solid-state LiDAR, and GPS. Specifi-
cally, our SLAM system consists of the following four parts: a LiDAR-inertial subsystem
(LIS), Visual-inertial subsystem (VIS), GPS-inertial subsystem (GIS), and global pose graph
optimization (PGO). The LIS and VIS are tightly coupled, and there exists loose coupling
between them. The combination of them can improve the accuracy and robustness of the
whole system. Finally, the LIS and VIS results are sent to the PGO system for global pose
graph optimization to eliminate accumulated drifts. Due to our distributed structure design
of tightly coupled internal and loose coupled external subsystems, our system dramatically
improved its robustness even in cases where one of the subsystems fails. In addition,
a LiDAR–Camera fusion localization method is proposed based on conventional target
detection and tracking. The global position of the target is obtained in real-time based on
our SLAM.

To test the effectiveness of our system, we built the necessary sensor equipment
and collected many scene-rich datasets, including high-altitude UAV aerial photography
datasets, ground vehicle datasets, and ground handheld datasets. Considering that there
are relatively few datasets that include the sensors we use, we open source all collected
datasets for other researchers to use. Finally, we conduct extensive experiments on our
dataset to test our system. Experiments show that our system can perform the expected
function well with good accuracy and robustness.

The main contributions of this paper are as follows:

1. We propose a high-precision, high-robust multi-sensor fusion online SLAM system;
2. We propose an online target-tracking and localization system based on SLAM results

to meet the needs of various natural complex scenes;
3. We collect relevant datasets using our equipment and make the datasets available for

other researchers to use.

2. Method

Here, we first introduce the block diagram of our system and then introduce our
SLAM subsystem and target-tracking and localization subsystem in detail, respectively.
Specifically, we first introduce our three subsystems, namely VIS, LIS, and GIS. Then, we
describe how to alleviate cumulative drift using global pose graph optimization. Finally,
we introduce the object tracking and localization subsystem and demonstrate how to use
SLAM system results to obtain the global position of the object.

22



Sensors 2023, 23, 801

2.1. The Overview of Our System

An overview of our system is shown in Figure 1, which includes a multi-sensor
fusion SLAM system and an object tracking and location subsystem. The SLAM system
is divided into the following three parts: data preprocessing, three internal subsystems
running in parallel, and the final pose-graph optimization. The data preprocessing step
preprocesses the input image, IMU, and LiDAR data, including image feature extraction,
IMU pre-integration, and LiDAR plane-feature extraction. Then, it will send the results to
the three subsystems, i.e., VIS, LIS, and GIS. There is an interaction between the VIS and LIS
subsystems. That is, they both provide each other with the current estimated state, which
can improve the accuracy and robustness of the whole system. Specifically, for VIS, we refer
to the practice of sliding-window-based nonlinear optimization in VINS-Mono [6]. Since
the depth of visual feature points of VIS usually has a large uncertainty, inspired by [12],
we register the LiDAR point cloud to the image to assist image depth extraction, which
significantly improves the accuracy of VIS for feature point depth estimation. For LIS,
the large number of LiDAR point clouds leads to significant challenges in the computing
performance, so we refer to the approach of ES-IEKF in FAST-LIO2 [10] and use the fast
Kalman filter algorithm to accelerate the calculation. For GIS, we use the IMU data for
state propagation and the GPS observation data to correct the IMU results to obtain a
high-frequency GPS signal equal to the IMU frequency. Finally, we fuse the results of VIS,
LIS, and GIS for pose graph optimization to correct the cumulative drift.

Slide Window OptimizationPnP Reprojection
Error

LiDAR Input
10HZ

Plane-featue
Extration 

Compsent  
Dedistortion

Point-to-plane
Residual Error-state Iterated Kalman Filter

PredictPredict
IMU Input  

200HZ
Pre-

integration

Camera Input  
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Depth
Registration

GNSS Input  
4HZ Error-state Kalman Filter

Data Pre-process 3 sub-system PGO

Pose G
raph O

ptim
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Object Tracking and Location

Point Cloud

System
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utput

Point Cloud
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Figure 1. The overview of our system.

Target tracking and localization rely on local point cloud maps and poses of keyframes
provided by the SLAM system. First, we detect targets on the image, and track them
between consecutive frames using a Kalman filter. Subsequently, we filter the point clouds
that fall in the detection frame based on the external parameters of the camera and LiDAR,
using Euclidean clustering to filter the portion of the closest target as the target point cloud.
Laser points may not occupy the ground target within the camera’s field of view because
the laser point cloud becomes sparse with increasing distance. Therefore, we consider using
a local point cloud map instead of a single frame of laser points as our input to compensate
for the sparsity of the laser point cloud. Finally, the real-time global position of the tracked
target is calculated based on the key poses.
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2.2. Visual Inertial Subsystem

The pipeline of VIS is similar to VINS-Mono [6], and the system block diagram is
shown in Figure 1. For VIS, we define the world coordinate system as {W}, and the state
variables of the IMU coordinate system are represented in {W} as

xi =
[

RW
bi

pW
bi

vW
bi

bωi bai

]T
, (1)

where RW
bi

∈ SO(3) is the rotation matrix, pW
bi

∈ R
3 is the position, vW

bi
is the velocity, bωi

and bai are the IMU biases. The IMU motion model is as follows:

pW
bk+1

= pW
bk
+ vW

bk
Δtk

+
∫∫

t∈[tk ,tk+1]

(
RW

t (at − bat − na)− gW
)

dt2,

vW
bk+1

= vW
bk
+

∫
t∈[tk ,tk+1]

(
RW

t (at − bat − na)− gW
)

dt,

qW
bk+1

= qW
bk
⊗

∫
t∈[tk ,tk+1]

1
2

Ω(ωt − bωt − nω)q
bk
t dt,

(2)

where

Ω(ω) =

[ −�ω�× ω

−ωT 0

]
, �ω�× =

⎡⎣ 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

⎤⎦,

qW
bk

is the quaternion represent of RW
t , at is the acceleration reading from IMU, na is the

acceleration noise of IMU, ωt is the angular velocity reading from IMU, nω is the angular
velocity noise of IMU, Δtk is the duration between the time interval [tk, tk+1].

For the input image, VIS first detects the Fast-corner [23] and then uses the KLT
algorithm [24] for optical flow tracking. Since the inverse depth of visual features optimized
by VIS has great uncertainty, we accumulate the LiDAR point clouds of recent frames
and then project them onto the image to assist depth estimation. Specifically, as shown
in Figure 2, we use the transformation between LiDAR and camera coordinate system
TC

L = [RC
L | pC

L ] to project the LiDAR point cloud onto the camera image. Then we find the
nearest three projected LiDAR points on the image plane for a visual feature by searching a
two-dimensional K-D tree. At last, we use these three points to fit a plane and back-project
the visual feature onto this plane as its 3D point, which is shown in Figure 3. It can be
seen that for most visual feature points, we can accurately estimate their corresponding 3D
points. It is very beneficial in improving the accuracy of the VIS.

LiDAR depth point

LiDAR depth point project on image

Visual feature point on image

Visual feature depth point estiamtation

Figure 2. Visual feature depth registratoin with LiDAR points.
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(a) (b)

Figure 3. (a) The visual features on the image. (b) The estimated 3D points of visual feature. It’s clear
that lots of visual features can get accurate estimates of their 3D points.

In the back-end sliding window optimization, the camera pose and the depth of feature
points will be optimized as state variables. Unlike the almost completely independent
design of LIS and VIS in [12], we use the current state value xL predicted by LIS as the initial
state of VIS. The factor is added to the back-end optimization process of VIS, as shown in
Figure 4. It is well known that the robustness and accuracy of LIS are higher than VIS, so
this design can improve the performance of VIS, thereby making a more accurate estimate
of the initial pose for the next LIS.

M
arginalization

k

k

k+1

k+1

k+2

k+2

k+3

Visual Landmarks

Sliding window Optimization

Co-visiable Constrain

Camera KeyFrame Pose

LiDAR Prior Pose

IMU Preintegration Constrain

Figure 4. The factor graph of our visual inertial subsystem.

2.3. LiDAR Inertial Subsystem

Our LIS is modified from [10]. Specifically, as shown in Figure 1, we use Iterate
Kalman Filter based on error-state to fuse IMU and LiDAR observations. Benefiting from
the improvement of Kalman Gain K in [10], this algorithm can run in real-time without
causing excessive computational burden with the increase in LiDAR observation points.
The iteratively optimized Kalman filter algorithm has been proved by [25] to have the same
results as the least squares algorithm using Gauss-Newton, so our LIS also guarantees the
accuracy of the algorithm.

When receiving a scan from LiDAR, we first extract the plane feature points and then
use the poses obtained from inertial integration to remove the motion distortion of the point
cloud. We use the IMU state propagation Equation (2) to obtain an up-to-date estimate
of the current LiDAR pose. However, unlike [10], thanks to the existence of our VIS, we
can continue to use IMU data to estimate the current LiDAR pose based on the latest pose
estimated by VIS. This method can improve the accuracy of our LIS.

After obtaining the pose estimation of current scan, we need to calculate the distance
from the extracted plane feature points to the fitted plane, which is same as in [10]. However,
in practical applications, the LIS has a significant drift in height, i.e., the z axis. So we
add a ground constraint to solve this problem and can flexibly choose whether to use this
constraint for different scenes. Our ground detection algorithm is simple but effective.
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Expressly, we assume that the ground is an almost horizontal plane, which is almost always
satisfied indoors and holds outdoors in the vast majority of cases. Then we accumulate the
last few frames of LiDAR point clouds in the LiDAR coordinate system {L}. We assume that
the distance h between LiDAR installation height and the ground is unchanged. For cars
and handheld devices, this assumption is generally valid. Then we filter out all point
clouds whose height is in [h − δ, h + δ], and ground points are almost included. As shown
in Figure 5 shows the ground point cloud detected by our algorithm. It can be seen that
our algorithm can detect the ground well.

(a) (b)

Figure 5. (a) The visual image view. (b) The ground point clouds(white) detected by our LiDAR
inertial subsystem. It’s clear that the ground point clouds can be segmented successfully.

Then we use the RANSAC algorithm to fit ground plane in these point clouds and get
the equation of the ground equation in {L}. We can get

(xL
d − pL

d ) · nL
d = 0, (3)

where xL
d is point on ground plane, pL

d is point on the plane and nL
d is the plane normal vector

in the {L}. Since world coordinate system {W} is aligned with gravity g = [0, 0,−g]T , we
can easily get the actual ground equation in our world coordinates as

(xW
t − pW

t ) · nW
t = 0, (4)

where pW
t = [0, 0,−h0] and nW

t = [0, 0, 1]T , and h0 is the distance from the origin of our
{W} coordinate system to the ground.

In the same way, we use the current LiDAR pose TW
L to convert this actual ground

equation into the current frame LiDAR coordinate system {L}. We can get

(xL
t − pL

t ) · nL
t = 0. (5)

Next, we define the detected plane [nL
d ; pL

d ], the real plane [nL
t ; pL

t ], and the error
between them is added to the optimization of LIS to alleviate the z axis drift. First we use a
rotation matrix R ∈ SO(3) to rotate nL

t to x axis, that is[
1 0 0

]�
= RnL

t . (6)

Then we use this rotation matrix to rotate nL
d , that is[

xL
d′ yL

d′ zL
d′
]�

= RnL
d . (7)

We define the variables to measure the orientation error between the detected ground
equation and the actual ground equation as
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α = arctan
yL

d′

xL
d′

, β = arctan
zL

d′√
xL

d′
2
+ yL

d′
2

. (8)

Define the variables to measure the translation error of these two planes as

γ = pL
t · nL

t − pL
d · nL

d . (9)

We define e = [α, β, γ]T as the final ground residual, which can well constrain the
error of our system in the directions of roll, pitch, and z. This improvement on the final LIS
can be seen in our later experiments.

2.4. GPS Inertial Subsystem

We add a GPS-inertial subsystem to better prepare for back-end pose graph optimiza-
tion. In this subsystem, we use the Error-state Kalman Filter to integrate the state obtained
by IMU and the state of GPS observations. This fusion can obtain a high-frequency pose
output at IMU frequency. The reason for this design is that the frequency of GPS data is
relatively low, and it cannot accurately time matched with the output of the VIS or LIS [9,15]
both use the assumption of uniform motion to interpolate GPS data. However, in the case
of high-speed and non-uniform motion, this assumption will cause the interpolation results
to contain large noise, which reduces the accuracy of back-end pose graph optimization.
Specifically, we use Equation (2) to predict the IMU state and define the error of the state x

prediction as
δx =

[
δRW

b δpW
b δvW

b δbω δba

]�. (10)

For GPS data, it is defined in WGS84 coordinate system. Same as [15], we first convert
the data to ENU coordinate system as our state. Assuming that the position of our GPS
sensor in the IMU coordinate system {b} is pb

GPS, then we can get GPS data to observe the
origin of IMU coordinate system pW

GPS as

pW
GPS = pW

b + RW
b pb

GPS. (11)

Using Equation (11) we can get the Jacobian matrix of GPS observations for the error
state δx as

xGPS =
[

I 0 −RW
b �pb

GPS�× 0 0
]�. (12)

Referring to the error-state Kalman filter equation in [26], we can get the result of the
fusion of GPS and IMU, which is more accurate than the interpolation of GPS data using
the assumption of uniform motion.

2.5. Pose Graph Optimization

After all three subsystems complete their estimation tasks, their results are sent to
the final pose graph optimization system for processing. In the pose graph optimization
system, we select keyframes for the input of VIS and LIS and use iSAM2 [27] to optimize
the pose graph. Precisely, we will count the pose changes between the latest keyframes
in the relative pose map of the current input frame. If the rotation or translation part of
the pose transformation exceeds the threshold we set, then we will use it as an optimized
keyframe. Thanks to our GIS, it uses GPS and IMU to perform Error-state Kalman Filter to
get high-frequency GPS observations, which makes a GPS observation constraint almost
available for each keyframe. However, the GPS signal usually has a large error when
occluded, which reflected in our GIS system is the output covariance PGPS is relatively
large. We filter the results of PGPS < θP to add to pose graph. As shown in Figure 6, it is
the block diagram of pose graph optimization system.
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Figure 6. The block diagram of pose graph optimization.

2.6. Targets Detection and Tracking

We use YOLOv4 to detect the targets and track them with the optical flow method and
Kalman filter. We first use the optical flow method to eliminate the deviation of the pixel
coordinates caused by the camera movement of targets and then use the Kalman filter to
predict their position.

2.6.1. L-K Optical Flow

First, the L-K optical flow assumes that the gray value of the same point in space is
constant across images; then, the weighted least squares method is used to estimate the
optical flow field, where the grayscale value of the point a = (x, y) at time t is assumed
to be I = (x, y, t), and the optical flow constraint equation can be derived based on the
following assumptions:

∇I · V a + It = 0, (13)

where ∇I = (Ix, Iy) denotes the gradient of the image at point a; and Va = (u, v) is the
optical flow at point a. Assuming that the optical flow is the same at each point in a
local neighborhood centered at point a, search for the displacement that minimizes the
matching error in this block, i.e., define Equation (14) for this neighborhood, and minimize
its function value as follows:

F(x, y) = ∑
(x,y)∈Ω

W2(x, y) [∇I · V a + It], (14)

where Ω denotes the local neighborhood of point a and W(x, y) denotes the weight function.
The optimal solution of equation Equation (14) is obtained as follows:

A = [∇I(x1),∇I(x2), · · · ,∇I(xn)],

W = diag[W(x1), W(x2), · · · , W(xn)],

b = −[It(x1), It(x2), · · · , It(xn)].

(15)

The final equation can be solved:

V =
[

ATW2 A
]−1

ATW2b. (16)

The simple L-K optical flow method cannot manage a situation where the UAV is
moving quickly at a high altitude. Moreover, it will generate significant computational
errors due to the large motion, which will not only affect the algorithm’s accuracy but also
reduce the overall computing speed. In this paper, we employ the pyramid-based L-K
optical flow method, whose principle is described as follows: First, the optical flow and
affine transformation matrices are calculated for the image of the highest layer. The result of
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the calculation of the previous layer initializes the calculation of next layer. The optical flow
and affine transformation matrices are calculated based on the initialization. This process
is repeated until the original image layer is reached. The final result will be computed
depending on this coarse-to-fine filtering process.

2.6.2. Kalman Filter Update Objective

In the case of a video that needs to be tracked, the state vector can be expressed as
follows:

X =
[

cx cy w h vx vy vw vh
]
, (17)

where cx, cy are centers, w, h are the width and height of the bounding box, and vx, vy, vw, vh
are the speed of their change. Note that cx, cy are corrected in Section 2.6.1. We can predict
Xt based on Xt−1:

x′ =Fx + μ, (18)

P′ =FPF� + Q, (19)

where F is called the state transfer matrix, P is the covariance of tracking at the moment
t − 1, and Q is the noise matrix of the system. The observed and predicted values are
considered to apply to the same target if they satisfy the following two conditions:

• The current detection frame is expanded with enough overlap area with the prediction
frame;

• The Reid score is higher than a specific value.

Finally the tracker is updated with predicted (x′) and observed values, as follows (y):

y =z − Hx′, (20)

S =HP′H�
+ R, (21)

K =P′H�
S−1, (22)

x =x′ + Ky, (23)

P =(I − KH)P′, (24)

where the observation matrix Z = [ cx cy w h ].

2.6.3. LiDAR Vision Fusion Targeting

To calculate the point cloud falling in the bounding box, we first calculate the pixel
coordinates of the laser point in the image as follows:[

ccam
i
1

]
=Tc

b(T
w
b )

�
[

c
map
i
1

]
, (i = 1, 2, 3, . . . , NA), (25)

pcam
i =

⎡⎣ ui
vi
1

⎤⎦ =
Icam

w′
i

ccam
i =

1
w′

i

⎡⎣ u′
i

v′i
w′

i

⎤⎦, (i = 1, 2, 3, . . . , NA), (26)

where c
map
i = [xi, yi, zi]

� is the point in the local point cloud map and NA is the amount
of point clouds, Tw

b = [Rw
b | pw

b ], Tc
b = [Rc

b | pc
b], pcam

i is the pixel coordinate of the point
cloud, and Icam ∈ R

3 × 3 is the intrinsic matrix of the camera.
Suppose there are n trackers in the current image. We filter the point clouds

Ccam = {ccam
i |i = 1, 2, 3, . . . , NA},Cmap = {c

map
i |i = 1, 2, 3, . . . , NA} in the occupancy

detection frame and use Euclidean clustering to classify the points in the map point cloud
(Cmap)′ into n classes. Moreover, the center of the point cloud O = {oi|i = 1, 2, 3, . . . , n} is
the target object’s location. The largest rectangle that can wrap the point cloud represents
the outline of the target.
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3. Physical Experiment Analysis

Considering that there is no open dataset that can satisfy all the sensors used by our
algorithm simultaneously, we built our hardware equipment and collected a large number
of scene-rich datasets to verify our algorithm. First, we will introduce our hardware equip-
ment and the collected datasets. Then, based on the collected dataset, we experimentally
verify the improvements made in our system relative to [6,9]. Specifically, our experiments
included the improvement of VIS by registering feature depth with LiDAR and improve-
ments related to leading ground constraints into LIS. Then, we tested the improvement of
the positioning and mapping accuracy of the SLAM system by adding a GPS to pose graph
optimization on datasets of different scales.

We set up two experiments for the target localization system on the ground and in the
air, respectively. The ground experiment mainly verifies the Ray-vision fusion’s relative
localization effect without providing the global localization error. After that, we conducted
aerial experiments while measuring the global positioning error at different distances based
on our SLAM. All experiments were performed on the same system with an Intel® Core™
i7-9700 CPU @ 3.00GHz × 8 and Nvidia GTX 1080ti.

3.1. Hardware and Dataset of Our System

The hardware of our system is shown in Figure 7, which includes a global shutter
camera, a LiVox AVIA LiDAR (FoV of 70.4◦ × 77.2◦), a GNSS-INS module, a power supply
unit, and an onboard computation platform (equipped with an Intel i5-8400 CPU and 16
GB RAM).

(a) (b)

Figure 7. (a) The front view of our hardware. (b) The back view of our hardware. The total weight of
our device is below 3 kg.

We collected various datasets with rich scenes. Specifically, we used two large-scale
datasets collected by drones at an altitude of about 100 m, which we call HZ-odom and
HZ-map. In the ground scene, we fixed the device to the electric bicycle and collected
several datasets, including two large-scale datasets, which we named ZJG-gym and ZJG-
nsh. Three medium-sized datasets, which we name ZJG-lib, YQ-odom, and YQ-map. We
also collected two hand-held datasets of small-scale scenarios on the ground and named
them CSC-build and CSC-road. The specific information of each dataset is in Table 1, which
includes the duration of the dataset, the length of the trajectory, whether they include a
return to the origin, and the difficulty level.
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Table 1. Dataset detail.

Dataset Duration (s) Length (m) Loop Closure Difficulty Level

HZ-odom 280 2380 No Difficult
HZ-map 367 3068 No Difficult
ZJG-gym 612 2761 Yes Difficult
ZJG-nsh 576 1668 Yes Difficult
ZJG-lib 239 866 Yes Medium

YQ-odom 306 1718 Yes Medium
YQ-map 256 1298 Yes Medium

CSC-road 80 117 Yes Easy
CSC-build 73 86 Yes Easy

3.2. Feature Depth Registration of VIS

In this experiment, we focus on the improvement achieved by including the depth
registration of visual feature points using LiDAR point cloud in our VIS system. Since our
VIS system is adapted from VINS-Mono [6], we mainly compare the results of our VIS
system for depth registration of visual feature points with [6]. During the experiment, our
LIS subsystem only runs the point cloud preprocessing part. It does not use its running
results to add priors to VIS. The block diagram of our VIS in the experiment is shown in
Figure 8.

IMU Input  
200HZ

Pre-
integration

Camera
Input  
20HZ

Feature
Tracker

Depth
Registration

LiDAR
Input  
10HZ

Plane-
featue

Extration 

Camera KeyFrame Pose

M
arginalization

Compsent  
dedistortion

Point Cloud

PnP Reprojection
Error

k+3 k+2 k+1 k

Visual Landmarks

Sliding window Optimization

Co-visiable Constrain IMU Preintegration Constrain

Figure 8. The block diagram of our VIS experiment.

We conducted experiments on YQ-map ground dataset. In this dataset, the vehicle
runs at a constant speed most of the time; therefore, the IMU is close to degenerating.
Moreover, the vehicle has many 90° turns, which means the visual constraints of the
VIO may easily fail, and this feature can lead to scale drift problems. For fairness of
the experiment, we turned off the loop closure detection thread of VINS-Mono and only
compared the accuracy of the odometry. Furthermore, we set VINS-Mono and our VIS
system to be identical in terms of front-end feature extraction, back-end sliding-window
keyframes, and optimization time. Since the YQ-map dataset returns to the origin, we
use the distance from the endpoint to the start point to judge the accuracy. The result is
shown in Figure 9. Due to the depth registration of visual feature points, we can see that
our system has better scale consistency and higher accuracy than VINS-Mono. This result
is easy to explain: our VIS outperforms VINS-Mono due to the extra scale gained by adding
LiDAR point clouds to the depth registration of visual feature points.

In addition, to test the improvement of the absolute accuracy of VIS by performing
depth registration, we also conduct experiments on large-scale dataset ZJG-gym and use
GPS trajectories as ground truth. The comparison results of our VIS and VINS-Mono are
shown in Figure 10. We can see that our VIS and GPS trajectories are in better alignment.
We use the root mean square error (RMSE) results to measure the result accuracy. The RMSE
of our VIS is 5.03 m, while VINS-Mono is 7.92 m.
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Figure 9. The result of our VIS and VINS-Mono on YQ-map dataset. It goes back to origin.

(a)

(b)

Figure 10. (a) The trajectory alignment of our VIS and GPS on ZJG-gym dataset. (b) The trajectory
alignment of VINS-Mono and GPS on ZJG-gym dataset. It is clear that our VIS has a better result.

3.3. Ground Constraint of Our LIS

In this experiment, we focus on the improvement by adding ground constraints to
our LIS subsystem. Since our LIS system is adapted from FAST-LIO2 [10], we mainly
compare the results of our LIS system with ground constraints and [10]. Specifically, in the
experiments, we run our LIS alone without VIS’s prediction.

We conducted our experiments on ZJG-lib dataset, which has many horizontal grounds.
Specifically, our LIS system uses the same parameter configuration as FAST-LIO2, including
the point cloud downsampling density, the number of iterative Kalman filtering, etc. Then
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in the experiment, we focus on the z axis drift. The result is shown in Figure 11. From the
figure, we can see that due to the ground constraints we added, our LIS system has almost
no drift in the height direction, while FAST-LIO2 shows a significant drift in height. This
result is easy to explain. For ZJG-lib dataset, the LiDAR installation location is close to the
ground with a height of 0.8 m. Therefore, the incident angle of the LiDAR scanning distant
ground points is small, which reduces the accuracy of the point cloud scanned by LiDAR
and increases the drift in altitude of FAST-LIO2.

Figure 11. (a) The map result of FAST-LIO2 on ZJG-lib dataset. (b) The map result of our LIS with
ground constraint on ZJG-lib dataset. (c) The path result of FAST-LIO2 and our LIS. It is clear that
due to the ground constraint, our LIS has less drift than FAST-LIO2.

3.4. Pose Graph Optimization of Our System

In this experiment, we focus on the improvement of our entire SLAM system due to
the addition of global pose graph optimization. To demonstrate the cumulative trajectory
drift suppression that occurs when incorporating a GPS, we conducted experiments on
large-scale datasets in the air and on the ground. Specifically, we used multiple large-scale
datasets to examine the improvement of our system by fusing GPS data.

First, we conduct experiments on an aerial dataset with HZ-map dataset, in which
the drone carries equipment to collect data at an altitude of 100 m. Because of the poor
weather conditions when collecting the data, the aircraft in the air is highly unstable, so
this dataset presents a considerable limitation in terms of the accuracy and robustness of
the SLAM system. Here, we compare the localization and mapping of our system with
VINS-Mono and FAST-LIO2 systems, and the results are shown in Figure 12. Since our
system fuses GPS data, there is better consistency in positioning and mapping results in
large-scale scenes. However, due to the turbulence of the drone at a high altitude in this
dataset, VINS-Mono fails and does not provide meaningful results.

In order to better test the accuracy and robustness of our algorithm, we also conducted
experiments on many other datasets and used the GPS trajectory as the ground truth. We
show the root mean square error (RMSE) results in Table 2 and some trajectory results
in Figure 13. The compared algorithms are the separate VIO system VINS-Mono [6],
the separate LIO system FAST-LIO2 [10], and the state-of-the-art LIVO systems R2LIVE [13]
and R3LIVE [28], which are most similar to our system. It is clear that our system achieves
the best accuracy and the most robust performance. Interestingly, after R2LIVE [13] and
R3LIVE [28] are integrated with cameras, some data sequences have a lower precision than
FAST-LIO2 [10]. This is expected because incorporating visual information in situations
that are not conducive to camera work may reduce accuracy. Therefore, visual information
is usually incorporated in LIO systems mainly to increase the robustness of the whole
system. In addition, R2LIVE [13] and R3LIVE [28] failed on both HZ-map and HZ-Odom
datasets, which are run in harsh high-altitude environments. Their two subsystems, VIO
and LIO, are tightly coupled. Once a subsystem state is incorrectly estimated, it will have
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a devastating impact on the entire system. Because our VIO and LIO subsystems are
loosely coupled, the collapse of one subsystem will not affect the regular operation of the
whole system.

(a) (b) (c)

Figure 12. (a) The image view of our HZ-map dataset. (b) The trajectory of GNSS, FAST-LIO2 and
our system. VINS-Mono failed due to the aggressive motion. (c) The map built by our system aligned
with Google Earth. As a result of the GNSS fusion in our system, we obtain a highly accurate result.

Table 2. RMSE translation error w.r.t GPS.

Algorithm HZ-Map HZ-Odom YQ-Map YQ-Odom ZJG-Gym ZJG-Nsh ZJG-Lib CSC-Road CSC-Build

VINS-Mono [6] Failed Failed 50.23 2.34 7.92 6.38 39.00 0.57 0.66
FAST-LIO2 [10] 15.20 0.96 1.80 1.34 3.30 1.88 3.22 0.35 0.43

R2LIVE [13] Failed Failed 1.70 12.18 3.36 1.95 3.46 0.26 0.37
R3LIVE [28] Failed Failed 1.68 1.37 2.95 2.04 3.78 0.28 0.34

Ours 0.72 0.55 0.75 0.75 2.94 0.97 1.60 0.24 0.29

(a) (b) (c)

Figure 13. (a) The trajectory results on ZJG-nsh dataset. (b) The trajectory results on YQ-map dataset.
(c) The trajectory results on YQ-odom dataset.

3.5. Robustness Evaluation of SLAM System

First, we evaluate the robustness of our system when subject to severe motion. HZ-
map is a dataset of drones flying in the air. During automatic flight, the plane experiences
sudden stops, turns, and other actions. As shown in Figure 14, the plane has a large number
of drastic pitch and yaw angle changes. It can also be seen from the previous experiments
that VINS-Mono, R2LIVE, and R3LIVE all failed. Our VIS subsystem also failed. However,
the other two subsystems still usually work, which showes the excellent robustness of our
system.
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Figure 14. The Euler Angles of HZ-map dataset, which has an aggressive motion.

Then, we tested the performance of our system when the sensor failed on YQ-map
dataset. As shown in Figure 15a, we selected three locations uniformly throughout the
trajectory and disabled the camera, LiDAR, and GPS to detect the impact on the system.
The experimental results are shown in Figure 15b. When one or two sensors fail, our system
can operate normally and obtain relatively accurate trajectory results. Running only the
VIO system leads to poor trajectory results only when both the GPS and LiDAR fail. This
experiment proves that our system has good robustness.

(a) (b)

Figure 15. (a) Three locations throughout the trajectory to disable the camera, LiDAR, and GPS.
(b) The trajectory result of our system when one or more sensors are closed.

3.6. LiDAR-Vision Fusion Relative Localization

One person was arranged in an open outdoor scene as the target to be located in
the experiment. The person holds RTK, as shown in Figure 7, facing a dynamic target
walking arbitrarily within 10–40 m of the device’s field of view (as shown in Figure 16). We
randomly select some locations as checkpoints and use the laser to measure the distance
between the target and the sensor module to compare with the localization results and
evaluate the relative localization accuracy of the algorithm. The experimental results are
shown in Table 3.
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(a) (b)

Figure 16. Two test screenshots are shown. (a) The results of image detection and tracking. The target
is marked with a green box, and the point cloud in (b) is also marked with a green box to indicate the
spatial position relative to the perception module.

Table 3. Relative Positioning error.

No. x (m) y (m)
√

x2 + y2 (m) Truth (m) Error (m)

1 15.19 −1.70 15.285 15.30 0.015
2 18.63 −2.43 18.788 19.20 0.412
3 24.76 3.56 25.015 25.0 −0.015
4 25.96 −3.68 26.220 26.30 0.0.8
5 28.82 −9.97 30.496 30.50 0.004
6 35.84 −1.41 35.868 35.90 0.032
7 26.47 4.33 26.821 26.80 −0.021

mean - - - - 0.073

As seen from the results in Table 3, the proposed LiDAR-Camera fusion positioning
method in this paper has high measurement accuracy: the relative positioning error is
provided in centimeters when the target is less than 40 m away from the measurement unit.
As GPS is usually only accurate to the meter level; therefore, it is essential first to ensure
that the relative positioning accuracy is as high as possible to maintain the lowest possible
error when converting the object’s position to the world coordinate system. The following
describes the global positioning experiment for the target.

3.7. SLAM Based Global Localization

We chose to perform this experiment in the air, keeping with the system’s actual
application scenario. Again, we chose people as targets to evaluate our algorithm. As shown
in Figure 17, our UAV flies to a distance of 10 m, 30 m, 60 m, and 90 m from the target for
ground reconnaissance, while on the other hand, the target on the ground carries a GNSS
receiver that moves at least ten meters along a given trajectory. At this point, the UAV is
stationary or follows the target in motion, keeping the target in view. Once the separation
distance exceeds 60 m, it is difficult to observe the target in the image with the naked eye.
Therefore, we retrained the detection model using the Visdrone Dataset [29] and our small
air-to-ground target dataset (Table 4).

Table 4. Comparison of Visdrone and our Dataset.

Image Object Detection Scenario Images Categories Avg. Labels/Categories Resolution (m) Occlusion Labels

Visdrone [29] drone 10209 10 54.2 k 2000 × 1500 �
Ours drone 3625 2 13.1 k 1440 × 1080 �

On the other hand, the laser point cloud at high altitudes would be sparse in terms of
measuring the distance to the target. Therefore we use the local point cloud map provided
by our SLAM system for the calculation instead of the single frame. In addition, our
SLAM system also provides the UAV pose corresponding to the local point cloud, which
can be used to calculate the global positions of the targets. It is worth mentioning that
our framework locates all targets in the field of view in real time. However, to facilitate
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the evaluation of the results, we only count the localization error of one of the targets
(Figure 18). The RTK conversion on our target path point to the coordinates under the
takeoff point ENU coordinate system is used as ground truth. The distance between the
localization result and its closest ground truth is used as the error to evaluate the algorithm.

Figure 17. Schematic diagram of the aerial reconnaissance experiment. The image on the left is the
actual aerial image (about 30 m apart), the red box is the target’s position, and the image on the right
indicates the relative position relationship between the UAV and the target.

Figure 18. The display image of the tracking effect. (a) shows the real-time tracking result, and after a
target is selected, the target is indicated by a red ball in (b). The green in (b) represents ground truth,
and the white color is the aircraft’s trajectory calculated by our SLAM.

We collected data using a UAV and verified our algorithm offline. The target position
was inferred in 71.5 ms in one round of the experiment.The experimental results are shown
in Table 5. Even at high altitudes where the sensors moved violently, our algorithm tracked
the target stably and maintained high positioning accuracy. Especially at medium and
long distances of 90 m, where the target occupied only a dozen pixel values, our system
maintained an error of about one meter.

Table 5. Global Positioning error.

Distance (m) Amount Min (m) Max (m) Median (m) SD (m) MAE (m)

10 (±1) 268 0.16 1.86 0.63 0.30 0.70
30 (±1) 200 0.26 3.63 0.99 0.54 1.08
60 (±2) 216 0.07 2.19 0.71 0.35 0.74
90 (±3) 158 0.02 3.91 1.09 0.59 1.11

4. Discussion Conclusions

In the case of GPS denial, UAV self-positioning and target detection technology can
play a very influential role in the military and rescue fields that require reconstructing the
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target area’s ground scene quickly, obtaining the corresponding GPS position, and marking
the category and real-time position of some critical targets.

This paper proposes a robust, versatile self-localization mapping and target-tracking
localization system. Our SLAM system fuses multiple local and global sensors, including
camera, LiDAR, IMU, and GPS, and thus has the advantages of high local accuracy and no
global drift. Our SLAM system consists of three subsystems, VIS, LIS, and GIS. The three
subsystems are tightly coupled, and the subsystems are loosely coupled through infor-
mation sharing. This system architecture not only ensures the system’s accuracy but also
improves the system’s robustness. We built our experimental equipment, collected many
air and ground datasets, and conducted detailed experimental verification and analysis.
The experimental results prove that our SLAM system has higher accuracy and better
robustness than the current SOTA system. We also introduce a LiDAR-Camera Fusion
object tracking and localization algorithm. We first used the retrained YOLOv4 to detect the
target’s position on the image and used LK optical flow and the Kalman filter to track the
targets. We used LiDAR to recover the depth Information of the Target. Our target-tracking
and localization system can effectively detect the target of interest and perform global
localization of the target based on the results of the SLAM system. We conducted extensive
experiments on our collected datasets, and the results show that our system performs the
expected functions well. In the future, we will research real-time online tightly coupled
GPS data and the high-altitude detection of small targets.
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Abstract: Place recognition is an essential part of simultaneous localization and mapping (SLAM).
LiDAR-based place recognition relies almost exclusively on geometric information. However, geomet-
ric information may become unreliable when faced with environments dominated by unstructured
objects. In this paper, we explore the role of segmentation for extracting key structured information.
We propose STV-SC, a novel segmentation and temporal verification enhanced place recognition
method for unstructured environments. It contains a range image-based 3D point segmentation
algorithm and a three-stage process to detect a loop. The three-stage method consists of a two-stage
candidate loop search process and a one-stage segmentation and temporal verification (STV) process.
Our STV process utilizes the time-continuous feature of SLAM to determine whether there is an
occasional mismatch. We quantitatively demonstrate that the STV process can trigger false detections
caused by unstructured objects and effectively extract structured objects to avoid outliers. Compari-
son with state-of-art algorithms on public datasets shows that STV-SC can run online and achieve
improved performance in unstructured environments (Under the same precision, the recall rate is
1.4∼16% higher than Scan context). Therefore, our algorithm can effectively avoid the mismatch-
ing caused by the original algorithm in unstructured environment and improve the environmental
adaptability of mobile agents.

Keywords: place recognition; loop closure; simultaneous localization and mapping (SLAM); unstruc-
tured objects; point cloud segmentation; temporal verification

1. Introduction

As the first step towards the realization of autonomous intelligent systems, simultane-
ous localization and mapping (SLAM) has attracted much interest and made astonishing
progress over the past 30 years [1]. Place recognition or loop closure detection gives SLAM
the ability to identify previously observed places, which is critical for back-end pose graph
optimization to eliminate accumulated errors and construct globally consistent maps [2,3].
Benefiting from the popularity of cameras and the development of computer vision, vision-
based place recognition has been widely studied. However, cameras inevitably struggle to
cope with illumination variance, poor light conditions, and view-point change [4]. Com-
pared with camera, LiDAR is robust to such perceptual variance and provides stable loop
closures. Thus, LiDAR-based recognition has drawn more attention recently. LiDAR-based
place recognition is achieved by encoding descriptors directly from geometric information
or segmented objects. Then, similarity is assessed by the distance between descriptors,
such as multi-view 2D projection (M2DP) [5], bag of words (BOW) [6], scan context (SC) [7],
pointnetvlad [8], and overlapTransformer [9]. Descriptors are extracted from local or global
geometric information (3D point clouds). Segmatch [10], semantic graph based place recog-
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nition [11], semantic scan context (SSC) [12], and RINet [13] leverage the segmented objects
to define descriptors.

In this paper, we define relatively large regular objects as structured objects (buildings,
ground, trunks, etc.) and others as unstructured objects (vegetation, small moving objects,
noise points, etc.). In fact, vegetation is most likely to appear on a large scale and obscure
structured information. Thus, we mainly consider unstructured scenes dominated by
vegetation. One key issue faced by the above methods is that outliers will occur when two
places show similar features due to large scale vegetation. As shown in Figure 1, large
scale tree leaves will significantly increase the similarity of different places and reduce
the influence of other critical objects in the scene, resulting in similar descriptors between
different places. This type of unstructured environment often causes perception aliasing
and limits recall rate. Finally, the SLAM system is severely distorted, and the mobile
agent cannot perceive the environment correctly. Therefore, designing a place recognition
algorithm that is robust in unstructured-dominated environments is of great importance
for enhancing the environmental adaptability of autonomous intelligent systems (such as
self-driving vehicles and mobile robots) and promoting the development of autonomous
driving, field survey, etc.

Figure 1. Example of false positive detected by Scan context and triggered by our temporal verification
module. Top figures: frame 4058 and 4180 of KITTI sequence 00. The vegetation on the right side
makes them difficult to distinguish. Since the ground truth distance between these two frames is
148.64 m, they should not be considered as loop closure. Middle figures: colormap corresponding
to scan context before segmentation. Bottom figures: segment scan context of corresponding frame
represented by colormap. The left side of colormap indicates the preserved buildings, and the empty
right side indicates that the vegetation has been removed. After segmentation, these two frames
become distinguishable. If we directly use Scan context, the distance between them is 0.1488, resulting
in false positive. Our segment scan context acquires a distance up to 0.327, thus, avoiding outliers.

In [14], segmentation is first proposed to deal with certain conditions, such as forest,
and demonstrates potential for removing non-critical information. Inspired by this, here,
we intend to enhance scan context with segmentation to make it suitable for unstructured
environments. At the same time, considering the time continuity of SLAM and the occasion-
ality of outliers, we use a piecewise thought. Specifically, temporal verification is exploited
to candidate loop to decide whether to trigger re-identification module. Thus, reducing the
time consumption of the whole system.

In this paper, we present segmentation and temporal verification enhanced scan
context (STV-SC). We first design a range image-based segmentation method. Next, we
explain why segmented point clouds can differentiate between structured and unstruc-
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tured objects. Then a three-stage search process is proposed for effective false positives
avoidance. The STV process checks temporal consistency to determine whether triggering
re-identification module. If triggered, we will segment point clouds and remove unstruc-
tured objects of the matching frames. Finally, outliers will be filtered out by the similarity
score recomputed by segmented descriptors.

The main contributions of this paper are as follows:

• We propose a range image-based 3D point cloud segmentation method introducing
both geometry and intensity constraints for unstructured objects removal.

• An efficient three-stage loop detection algorithm for fast loop candidate search is
proposed while leveraging the STV process for perception aliasing rejection.

• Thorough experiments on KITTI dataset [15] show that our method outperforms scan
context and other state-of-the-art approaches. The algorithm is also integrated to a
SLAM system to verify online place recognition ability.

This paper is structured as follows. Section 2 reviews the related literature of place
recognition in both vision and LiDAR manners. Section 3 introduces the 3D point cloud
segmentation algorithm proposed, followed by segment scan context and three-stage search
algorithm. Then, the experimental test and its discussion are described in Section 4. Finally,
a conclusion is made in Section 5.

2. Related Works

Depending on the sensing devices used, place recognition can be grouped into vision-
based and LiDAR-based methods. Visual place recognition has been well researched and
made significant advancement in the past. Generally, visual approaches represent scene
features by extracting multiple descriptors, such as Oriented Fast and Rotated BRIEF
(ORB) [16] and Scale-Invariant Feature Transforms (SIFT) [17], to construct a dictionary
and then leverage bag of words (BOW) [6] model to measure distance between words that
belong to different frames. Recently, a learning-based approach has been used for loop
detection [18,19]. NetVlad [18] designed a new generalized VLAD layer and implemented
it into CNN to achieve end-to-end place recognition. DOOR-SLAM [20] has verified this
method in real world SLAM system. However, image representation usually leads to
performance degradation when encountering scenes with light illumination and view-
point change. To overcome such issues, researchers intended to develop robust visual place
recognition methods [21–23] to fit change light and season. In spite of this, these methods
can only handle certain scenes.

Unlike a camera, LiDAR is robust to environmental changes stated before, while being
rotation-invariant. Now, LiDAR-based recognition is still an advanced and challenging
problem for laser SLAM systems. LiDAR methods can be further categorized into local
descriptors, global descriptors, and learning-based descriptors. Fast point feature histogram
(FPFH) [24], keypoint voting [25], and Combination of Bag of Words and Point Feature [6]
are state-of-art approaches based on local hand-crafted descriptors. FPFH [24] is coded by
calculating key points and their neighbors’ underlying surface properties, such as normal
and curvature. Through reordering dataset and caching previously computed values, FPFP
can reduce run time and apply to real-time systems. Wang et al. [25] proposed a new 3D
regional descriptors based on gestalt features and then certain number of neighbors will be
voted by key points to do a similarity score. Bastian et al. [6] used Normal-Aligned Radial
Features to build a dictionary for bag of words model and realized robust key points and
scene matching.

However, local descriptors rely on the acquisition of key points and the calculation of
geometric features around key points, which usually lose a lot of information and lead to
false matching. Especially for unstructured outdoor objects (e.g., trees), key points from
such objects are unreliable.

In contrast, global descriptors are independent of key points and leverage the global
point clouds. Multi-view 2D projection (M2DP) [5] is a novel global descriptor from
multi-view 2D mapping of 3D point cloud. This descriptor is designed by the left and
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right singular vectors of each mapping’s density signature. Giseop et al. [7] divided the
3D space into 2D bins and coded each bin by the maximum height of points in this bin.
Then, the global descriptor is represented as a two-dimensional matrix called Scan context.
The matching of frames is performed by calculating the cosine distance between scan
context in column-wise way. Scan context outperforms existing global descriptors and
shows remarkable rotation invariance, which allows it to handle reverse loops. Based on
scan context, ref. [26] explored the value of intensity. By integrating both geometry and
intensity information, they developed intensity scan context and proved that intensity can
reflect information of different objects. Meanwhile, they proposed a binary search process,
which reduces the computation time significantly.

In recent years, learning based methods have been proposed gradually. Segmatch [10]
first segments different objects from original point clouds and then extracts multiple
features from each object, such as eigenvalue and shape histograms. Finally, they utilized a
learning-based classifier to matching objects of different scenes. Kong et al. [11] leveraged
semantic segmentation to build a connected graph by the center of different objects and used
CNN network to match scenes by judging the similarity of graphs. Refs. [12,27] proposed
semantic scan context, which encodes each bin by semantic information. However, learning-
based method is usually computationally expensive for the training process and cannot
adapt to various outdoor environments due to the limitation of training data.

Global descriptors show excellent performance, but still cannot handle ambiguous
environment caused by unstructured objects and generate outliers. In this paper, inspired
by [14], we utilize segmentation to remove unstructured objects of scenes, but remain
global information and key structured objects. Then we apply segmented point clouds
to scan context and construct segment scan context, which makes different places more
distinguishable and effectively prevents perceptual aliasing.

3. Materials and Methods

3.1. System Overview

An overview of the proposed framework is demonstrated in Figure 2. First, the system
acquires original 3D point clouds from LiDAR and codes it into scan context. Then, sub-
descriptor is designed and put into KD-Tree, which is an indexed tree data structure used
for nearest neighbor search in large-scale high-dimensional data spaces. A fast k-Nearest
Neighbor (kNN) search is then implemented to find nearest candidates from KD-Tree.
Then, by calculating minimum distance between query scan context and candidate scan
contexts, we can tell whether there is a candidate loop closure. If it exists, our STV process
is conducted. The temporal verification will determine whether to trigger re-identification
procedure. Finally, once the temporal verification is met, we consider it to be a true loop.
Otherwise, we will segment the original point cloud and then use the segmented scan
context to calculate new distance. The re-identification procedure utilizes this distance to
judge whether a loop is found. The detailed description of these modules is given below.

3.2. Segmentation

The segmentation module includes two submodules, ground removal and object
segmentation. Scan context encodes each bin by taking the maximum height, hence ground
points are usually useless and will lead to the increased similarity of different scenes in
flat areas. On the other hand, the presence of numerous unstructured objects, such as
trees, grass, and other vegetation, will cover the structured information, generating similar
descriptors between different places. Meanwhile, it is evident that noises generally do not
persist in a certain position over time. Thus, they generally appear scattered and form
small-scale objects. Here, we use object segmentation to remove unstructured information
in the environment and retain key structured information to prevent mismatches.
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Figure 2. The pipeline of the proposed STV-SC framework. Grey dotted box above: the two-stage
fast candidate loop closure search process, including a k-Nearest Neighbor (kNN) search process and
a similarity scoring process. Grey dotted box below: our STV process.

We denote each frame of point cloud from the LiDAR as P = {p1, p2, . . . , pn}. For fast
cluster-based segmentation, the 3D point cloud is projected into a Mr × Mc 2D range image
R for point cloud ordering, where

Mr =
360◦

Resh
, Mc = Nscans. (1)

Resh is the horizontal resolution and Nscans is the line number of LiDAR. Each value of the
range image is represented by the Euclidean distance from the sensor to the corresponding
point cloud in 3D space. Then, we use a column-wise approach for ground point evaluation
on the range image like [28], while leveraging intensity for validation.

After removing the ground, we perform a range image-based object segmentation
to classify point clouds into distinct clusters, which is based on [29] but with some im-
provements according to the characteristics of LiDAR. Specifically, we integrate geometry
and intensity constraints for clustering. Previous study [30] showed that different objects
exhibit different reflected intensity. Since intensity can be obtained directly from LiDAR,
it can serve as an additional layer of validation for clustering. We can judge whether two
points pa and pb belong to object Ok by the following mathematical expression. Meanwhile,
we set (a1, a2) and (b1, b2) as their coordinates in the range image, respectively:

pa, pb ∈ Ok

s.t. ||a1 − b1|| = 1 or ||a2 − b2|| = 1

θ > εg

||I(pa)− I(pb)|| < εi

θ = arctan
d2 sin γ

d1 − d2 cos γ

I(p) = κ(ψ(p), d). (2)

In (2), as shown in Figure 3, d stands for the range value from LiDAR to 3D point
cloud. θ is the angle between the line spawned by pa, pb and the longer one of OA and OB.
εg and εi are predefined thresholds. Additionally, ψ(p) denotes the intensity of point p and
κ is an intensity calibration function using distance, which can be obtained by practice.

Noticed that as the first-layer judgment, geometry constraint plays a major role. As the
second-layer of validation, intensity prevents objects of different types from being clustered
together, i.e., under-segmentation.
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Figure 3. Interpretation of geometry constraint for segmentation. (a): three parking cars and laser
beams from sensor S. The red line represents the line spawned by two adjacent points. (b): geometric
abstraction of (a). pa and pb represent two adjacent points.

Moreover, due to the fixed angle between laser beams, points distributed near the
sensor are relatively dense, while points far away are sparse. If a fixed geometric threshold
is used, we cannot balance the distant and near points. Specifically, if a large threshold is
used, the distant points will be over-segmented, and if a small threshold is used, the nearby
points will be under-segmented. Thus, in the near area, using a large εg can prevent
different objects from being grouped together, while using a small εg in the far area can
avoid the same object being segmented into multiple objects.

To achieve more accurate segmentation at different distances, we design a dynamic
adjustment strategy. Threshold will be dynamically adjusted as

εg = εi
g −

R(x, y)
p

q, (3)

where p denotes step size and q is the decay factor. εi
g stands for the initial value of εg.

Finally, a breadth-first search based on constraints in (2) is conducted on range image
for object clustering. The idea of our segmentation comes from the fact that unstructured
objects (mainly vegetation) are filled with gaps, such as leaves. When the laser beams
pass through the gaps, the range difference will become large, which will cause large scale
vegetation to be separated into small clusters. In the meantime, noise is also a small object.
Therefore, we can distinguish structured and unstructured objects by the size of the clusters.
In this paper, we treat clusters with more than 30 points or occupying over 5 laser beams
as structured objects. As shown in Figure 4, noises, ground, and vegetation are removed,
while structured parts, such as buildings and parking cars, are preserved.

Figure 4. Visualization of the segmentation process. (a): original point clouds of one frame. Vege-
tation, small moving object, and noise are present. (b): segmented point clouds, which shows that
unstructured vegetation, noise, etc., are removed.
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3.3. Segment Scan Context

Scan context [7] encodes the scene with the maximum height and then represents it by
a 2D image. Figure 5a is the top view of original point clouds. Taking the LiDAR as the
center, Nr rings are equidistantly divided in the radial direction. In the azimuth direction,
Ns sectors are divided by equal angles. The area where rings and sectors intersect are
called bins. For each bin, a unique representation of the maximum height of point clouds
within it is used. Therefore, we can project the 3D point clouds into a 2D matrix of Nr × Ns,
called scan context. Let Lmax represents the maximum sensing range of the LiDAR, then

the gaps of rings and sectors are
Lmax

Nr
and

2π

Ns
, respectively. By adjusting them, we can set

the resolution of scan context.

(a) (b)

Figure 5. Description of scan context. (a): top view of a LiDAR scan, which is separated into bins by
rings and sectors. (b): colormap of our segment scan context.

However, since scan context uses the maximum height as the unique encoding, it
usually results in perceptual aliasing when facing large scale unstructured objects. Like trees
on both sides of road, they usually have the same height. Therefore, when encountering
scenes dominated by unstructured objects, we merely maintain key structured information
obtained via point cloud segmentation. Denote point clouds of a segmented LiDAR scan as
P seg, segment scan context D is expressed by

D = (dij) ∈ R
Nr×Ns , dij = φ(P seg

ij ). (4)

P seg
ij are points in a bin with ring index i and sector index j and φ denotes the function

to obtain the maximum height of all point clouds in this bin. Particularly, if there is no
point in the bin, its value is set to zero. Visualization of our segment scan context is in
Figure 5b. After segmentation, descriptors exhibit discrete blocks representing different
structured objects.

3.4. Three-Stage Search Algorithm

After projecting original point clouds into scan context, the matching process is dedi-
cated to calculating the minimum distance between the descriptor Dt obtained at time t
and the D = {D1, D2, . . . , Dt−1} stored previously. Then, the distance determines whether
there is a loop closure. In order to achieve fast search and effectively prevent mismatches,
we design a three-stage search and verification algorithm.

Stage 1: Fast k-Nearest Neighbor search. Obviously, searching in the database directly
using scan context will generate numerous decimal operations, which will slow down
the search speed. Here, we perform fast search by extracting sub-descriptors. First, scan
context is binarized as follows. Let B denotes the matrix after binarization:

B(x, y) =

{
0, if D(x, y) = 0,
1, otherwise.

(5)
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Then, for each row r of B, we count the number of non-empty bins by calculating
L0 norm:

ν(ri) = ‖ri‖0. (6)

Finally, we construct a one-dimensional sub-descriptor H = (ν(r1), ν(r2), . . . , ν(rn))
that fulfills rotation invariance. By putting H into KD-Tree, we can achieve fast kNN search
and provide k candidates for the next stage.

Stage 2: Similarity score with column shift. This step will directly use the correspond-
ing scan context to find the nearest frame from the candidates obtained in stage 1. Let Dq

denotes the scan context of query scan. Dc denotes one candidate scan context. A column-
wise accumulation of cosine distances is used to measure the distance between Dq and Dc.
The distance is:

ϕ(Dq, Dc) =
1

Ns

Ns

∑
i=1

(
cq

i · cc
i

‖cq
i ‖ · ‖cc

i ‖
), (7)

where cq
i and cc

i are the i-th column of Dq and Dc, respectively. In practice, mobile agents
may revisit one place from different view-points. To achieve rotation invariance, we conduct
a column shift process as

ϕmin(Dq, Dc) = min
j∈[1,Ns ]

ϕ(Dq, Dc
j ), (8)

where Dc
j means shift Dc by j columns and ϕmin represents the final smallest value. If ϕmin

is lower than the predefined threshold εl , then we obtain a candidate Dc for next stage.
Stage 3: Temporal verification and re-identification (STV process). To effectively pre-

vent the generation of false positives, we design a temporal verification module for this
candidate loop. Since the detection process of SLAM is continuous in time, the nodes near
a true loop also have high similarity. Furthermore, true loops usually exist continuously,
while outliers are sporadic. Therefore, we adopt a piecewise idea to verify candidate
loop pair:

T (Dm, Dn) =
1

Nt

Nt

∑
k=1

ϕmin(Dm−k, Dn−k), (9)

where Nt means the quantity of frames involved for temporal verification. If T less than
a threshold εt, we treat it as a true loop. Otherwise, we regard this frame as ambiguous
environment and the re-identification module with our segment scan context will be
triggered. Specifically, we segment original point clouds and calculate distance between
segment scan context of candidate loop pair. Since we have obtained the shift value in the
previous stage, we can directly use the result in Equation (8) to calculate the new distance:

ϕseg(Dsegq, Dsegc) = ϕ(Dsegq, Dsegc
j∗ ), (10)

where j∗ represents the shift value when ϕmin(Dq, Dc) reaches. Finally, if ϕseg still less than
a threshold εs, we group it into inliers; otherwise, we discard it.

Algorithm 1 depicts our search process in detail, where num_di f f represents the
minimum interval between two frames that can become a loop closure. min_dis means
minimum distance.
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Algorithm 1 Tree-stage search process

Require: Original point cloud P of current frame at time t.
Require: Scan context Dq of current frame at time t.
Require: Sub-descriptors of the previous frames in KD-Tree.
Require: Previous scan contexts D stored before t

1: k ← 50, q ← index of current frame.
2: num_di f f ← 50, min_dis ← 100,000.
3: Build the sub-descriptor H of the current frame (Equations (5) and (6)) and insert it into

KD-Tree.
4: if q > k then
5: Find k nearest candidates in KD-Tree (kNN search).
6: for i = 1 to k do
7: ii ← frame index of ith candidate.
8: if ii − q > num_di f f then
9: Calculate the distance ϕ between frame q and ii (Equations (7) and (8)).

10: if ϕ < min_dis then
11: min_dis ← ϕ, Dc ← Dii.
12: end if
13: end if
14: end for
15: if min_dis < εl then
16: Temporal verification of Dq and Dc (Equation (9)).
17: if τ < εt then
18: Loop found!
19: else
20: Segment P to get P seg (Equation (2)).
21: Construct segment scan context Dseg (Equation (4)).
22: Calculate the distance ϕseg between Dsegq and Dsegc (Equation (7)).
23: if ϕseg < εs then
24: Loop found!
25: end if
26: end if
27: end if
28: end if

4. Experimental Results and Discussion

In this section, we conduct a series of experiments to verify the effectiveness of our
STV process for unstructured scenes. Moreover, the discussion regarding each experiment
is also presented. The performance of our algorithm is compared with other state-of-art
global descriptors. All experiments are performed on a computer equipped with an Intel
Core (TM) i5-10210U CPU. To compare with Scan context [7] and test online capability, our
algorithm is implemented both in MATLAB and C++.

4.1. Experimental Setup

We select four sequences (00, 05, 06, and 08) from the KITTI dataset [15], all of which
contain a large number of typical scenes dominated by unstructured objects (mainly vegeta-
tion). As shown in Figure 6, these outdoor scenes provide sufficient experimental resources
for our algorithm.

49



Sensors 2022, 22, 8604

(a) (b)

(c) (d)

Figure 6. Typical scenes from KITTI sequences. (a) sequence 00; (b) sequence 05; (c) sequence
06; and (d) sequence 08. These scenes are dominated by unstructured objects, which can easily
cause mismatches.

In order to show higher accuracy and exhibit the application value of the algorithm,
our parameter settings are similar to scan context-50 [7]. This means that in the first stage
we will select 50 nearest neighbors, while ensuring real-time performance. If the ground
truth Euclidean distance of matched pair is less than 4m, we consider it to be an inlier. Since
εl and εt have the same physical meaning, we make them equal in the experiment. Other
parameter values used are listed in Table 1.

Table 1. Parameter List.

Parameter Value

Maximum radius (Lmax) 80
Number of rings (Mr) 20

Number of sectors (Ms) 60
Segmentation threshold (εg) 60
Segmentation threshold (εi) 0.5

Re-identification threshold (εs) 0.2–0.3
Frames of temporal verification (Nt) 2

4.2. Statistical Analysis

To illustrate that our STV process can increase the distinguishability in scenes with
large scale unstructured objects and effectively avoid the occasional mismatches brought
by such scenes. We perform a statistical analysis.

The 4000∼4400th frames of KITTI sequence 00 contain a lot of places dominated
by vegetation. Many of these frames are highly susceptible to mismatches, which are
discovered through our temporal verification module.

We first carry out analysis on the structured and unstructured objects of the selected
400 frames to demonstrate that the segmentation module described in Section 3.2 can indeed
separate unstructured objects from structured objects. Figure 7 presents our statistical
results. We can find that the clustering number of structured objects after segmentation is
much less than that of an unstructured one. The mean values in Figure 7a,b demonstrate
a difference of about 30 times. We represent the size of a cluster by the number of points
included. Figure 7c,d show that the former tend to be larger clusters, while the latter are
small in size due to gaps in vegetation or noises. Generally, structured clusters are more
than 10 times larger than unstructured clusters. Therefore, we naturally think of using the
size of the cluster to remove vegetation, etc. In subsequent experiments, we will retain
clusters with more than 30 points or occupying over 5 laser beams as structured objects.
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(a) (b)

(c) (d)

Figure 7. Comparison of segmentation results between structured and unstructured objects. (a,b): Dis-
tribution of the number of unstructured and structured clusters in each frame, respectively. (c,d): Dis-
tribution of the average size of unstructured and structured clusters in each frame, respectively.

Second, we compare the similarity scores of these 400 pairs of false positives before
and after segmentation. As shown in Figure 8, the scores between different places are
significantly increased after removing the unstructured objects, as vegetation always has a
high degree of similarity. It means improved distinguishability between false loop closures.
This allows our algorithm to directly discard mismatches when encountering such places.

Figure 8. Comparison of false loop pairs’ similarity scores before and after segmentation.

4.3. Dynamic Threshold Evaluation

In our segmentation algorithm, as the first step judgment, the geometric threshold
plays a more critical role in accurate segmentation. According to the characteristics of laser
beams, we design a dynamic adjustment strategy of εg, as shown in Equation (3), which can
prevent under-segmentation of near objects and over-segmentation of far objects compared
with the fixed geometric threshold.

Here, we use the control variable method to test the influence of the dynamic threshold
on the experimental results, so as to provide a parameter reference for next experiment.
Specifically, we compare the precision and recall rates of fixed and dynamic thresholds with
different initial values of εg. Experiments are performed on KITTI sequences 00 and 08,
which can provide more convincing references due to their large number of complex and
typical unstructured scenes. From the results in Table 2, we can see that under the same
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initial value, the dynamic threshold tends to achieve higher recall and precision rates than
the fixed one. Moreover, we can conclude that the initial value of εg is best set between 50
and 60.

Table 2. Precision and recall rates of different εg, p and q.

Parameter Sequence 00 Sequence 08

εi
g(°) p q Precision Recall Precision Recall

50 - - 0.875 0.653 0.998 0.916
55 - - 0.880 0.707 0.998 0.916
55 20 0.5 0.881 0.711 0.998 0.916
60 - - 0.894 0.714 0.946 0.912
60 10 1 0.915 0.714 0.998 0.916
65 - - 0.720 0.714 0.934 0.919
65 10 1 0.809 0.714 0.948 0.918

Therefore, in the following experiments, we set parameters of dynamic threshold as
εi

g = 60, p = 10 and q = 1.

4.4. Precision Recall Evaluation

We leverage precision-recall curves to comprehensively evaluate the performance
of our STV-SC method in environments where large scale unstructured objects exist.
The performance of our place recognition algorithm is compared with Scan context [7] and
M2DP [5], since both are state-of-art global descriptors and neither specifically considers
unstructured scenes. In particular, our algorithm is enhanced from Scan context, so the per-
formance comparison with Scan context in unstructured environments is quite important.

As shown in Figure 9, the experiments are conducted on sequences 00, 05, 06, and 08.
Since sequence 08 only has reverse loop, it can verify that our algorithm maintains the
rotation invariance of Scan context.

Our proposed algorithm outperforms other approaches in all sequences. This is be-
cause in the suburban where the roads are surrounded by trees, the geometric information
for place recognition is limited. For example, the frames we mentioned in Section 4.2, Scan
context will cause mismatches due to the existence of vegetation. However, our method
can mitigate the impact of vegetation and avoid many mismatches caused by unstructured
objects. That is, under the same recall rate, STV-SC can obtain higher precision rate. As for
sequence 08, M2DP performs poorly due to its inability to achieve rotation invariance.
However, our algorithm achieves improved performance while maintaining rotation invari-
ance. The residual outliers come from jungles with few or no structured objects or scenes
where the structured parts are still very similar so that the geometric information can no
longer meet the requirements of place recognition.

In the application, we pay more attention to the recall rate under high precision. Table 3
shows the recall of sequences 00, 05, and 06 at 100% precision. Since sequence 08 is more
challenging, we take the recall rate when the precision is 90%. It is obvious that our method
outperforms other approaches which do not consider unstructured objects. Compared with
the original Scan context, the recall rate of our STV-SC algorithm on different sequences
is increased by 1.4% to 16%. In particular, in sequence 08, an environment with a lot of
vegetation. Other algorithms often have poor performance, while our algorithm improves
the recall rate by more than 15%.
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(a) (b)

(c) (d)

Figure 9. Precision-recall curves on KITTI dataset. (a) sequence 00; (b) sequence 05; (c) sequence 06;
and (d) sequence 08. The performance of the algorithms is measured by the area enclosed by the
curves and the coordinate axes.

Table 3. Recall at 100% precision on KITTI 00, 05, and 06; Recall at 90% precision on KITTI 08.

Sequence 00 Sequence 05 Sequence 06 Sequence 08

Methods Precision Recall Precision Recall Precision Recall Precision Recall

Scan Context 1.000 0.870 1.000 0.900 1.000 0.956 0.900 0.550
STV-SC 1.000 0.912 1.000 0.931 1.000 0.970 0.900 0.714
M2DP 1.000 0.896 1.000 0.761 1.000 0.890 0.900 0.020

4.5. Time-Consumption Analysis

Compared to Scan context, our method adds segmentation and temporal verifica-
tion (STV) process. Since the re-identification module does not require search and shift
actions, the main time consumption of STV is concentrated in the segmentation module.
In the meantime, subject to temporal verification, re-identification process is not always
triggered, but only used when encountering ambiguous environment. As the main time-
consuming module, segmentation uses a range image-based breadth-first search, whose
time consumption is fairly small.

Under the same conditions as Scan context-50 [7], we record the place recognition
time consumption (cost time of STV-SC) for more than 100 triggered frames in Figure 10.
Even at the peak, the time consumption is less than 0.4 s. The average time consumption
of these 120 frames is 0.316 s (the original scan context is 0.201 s under 0.2 m3 point cloud
downsampling), which is within a reasonable range (2–5 HZ on Matlab).
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Figure 10. Time-consumption result of 120 triggered frames on KITTI 00. In the case of triggering
re-identification, the average time consumption of the whole system is 0.316 s.

4.6. Online Loop-Closure Performance

Now, we show the online performance of our STV-SC algorithm. Our algorithm is
integrated into the well-known LiDAR odometry framework LOAM [31]. Specifically,
our method is used as the loop closure detection module of LOAM, then the detected
loop is added to the pose graph as an edge. GTSAM [32] is applied for back-end graph
optimization. Finally, a drift-free trajectory is obtained. The experiments run on Robot
Operating System (ROS Melodic) and perform on KITTI 00.

The white dots in Figure 11 represent examples of detected loop closures. As shown
in the estimated trajectory, our method can effectively detect loop closures and eliminate
drift errors in real time, even in unstructured-dominated environments.

Figure 11. Online loop-closure performance of STV-SC on KITTI 00. Left figure shows the trajectory
without loop closure detection and pose graph optimization. The trajectory in the white circle exhibits
noticeable drifts. Right figure shows the trajectory after pose graph optimization.

5. Conclusions

In this paper, we have proposed STV-SC, a new Scan context-based place recogni-
tion method that integrates segmentation and temporal verification process, which gives
the original algorithm the ability to handle unstructured environments and enhances
the stability of mobile agents in special and complex environments. By summarizing the
characteristics of unstructured objects, we design a novel segmentation method to distin-
guish unstructured and structured objects according to the size of clusters. In addition,
for more accurate segmentation we adopt a geometric threshold that varies with range
value. In the matching part, we design a three-stage algorithm. Based on the temporal
continuity of SLAM system, if temporal verification is not satisfied, the re-identification
module will be triggered. Thus, effectively avoiding mismatches caused by unstructured
objects. Comprehensive experiments on the KITTI dataset demonstrate that our segmenta-
tion method can effectively distinguish different types of objects. STV-SC achieves higher
recall and precision rates than Scan context and other state-of-art global descriptors in
vegetation-dominated environments. Specifically, it is considered that under the same
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precision, the recall rate can be improved by 1.4∼16% by our algorithm in different datasets.
Meanwhile, the average time consumption of STV-SC is 0.316 s which is within a reasonable
bound and proves that the our algorithm can be run in the SLAM system online.
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Abstract: To improve the motion distortion caused by LiDAR data at low and medium frame rates
when moving, this paper proposes an improved algorithm for scanning matching of estimated
velocity that combines an IMU and odometer. First, the information of the IMU and the odometer
is fused, and the pose of the LiDAR is obtained using the linear interpolation method. The ICP
method is used to scan and match the LiDAR data. The data fused by the IMU and the odometer
provide the optimal initial value for the ICP. The estimated speed of the LiDAR is introduced as the
termination condition of the ICP method iteration to realize the compensation of the LiDAR data.
The experimental comparative analysis shows that the algorithm is better than the ICP algorithm and
the VICP algorithm in matching accuracy.

Keywords: motion distortion; IMU; sensor fusion; odometer; ICP

1. Introduction

Exact pose estimation is the key technology for mapping, location, and navigation in
the field of the mobile robot [1], which can provide the message of the robot’s position and
gesture in real time. Sensors used to obtain robot pose estimates include LiDAR, cameras,
wheel encoders, IMUs, etc. According to the different sensors the robot is equipped with,
SLAM technology is divided into visual SLAM and laser SLAM. Although the sensor used
in visual SLAM has low cost and rich image information, it has a great impact on the normal
operation of the camera under weak- or no-light conditions. What is more, because the
image information is too rich, the algorithm requires high processor performance. Now, the
mainstream mobile robots are still dominated by laser sensors [2], such as the unmanned
delivery vehicle of JD and the “prime” unmanned delivery vehicle of Amazon.

A 2D LiDAR estimates the pose of the sensor by scan-matching two adjacent frames of
laser data [3]. However, only relying on 2D laser SLAM to estimate the pose of the robot has
many limitations. The frequency of the system output estimated pose is low, and the running
time becomes longer, which will generate a large cumulative error and eventually affects the
positioning and map construction of the robot. A cartographer algorithm [4] is developed
using a SICK radar, and the frame rate can reach more than 100 Hz. The motion distortion can
be ignored, so there is no distortion correction algorithm module. However, the frame rate
of most LiDAR is around 10 Hz. Without distortion correcting, there will be distortion error
appearing in LiDAR data, which is hard to eliminate through loopback detection and back-end
optimization, etc. The research on this issue has great practical significance. Many domestic
and foreign works have been conducted on removing motion distortion and false match of
LiDAR data in recent years. Yoon et al. [5] proposed an unsupervised parameter learning
in the Gaussian variational inference setting, which combines classical trajectory estimation
of mobile robots and deep learning on rich sensor data to learn a complete estimator via
the deep network. However, it requires a large amount of calculation, the captured laser
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data cannot complete feature extraction or matching when the environment is not clearly
structured, and the real-time and robustness are poor. Therefore, it is only suitable for small
indoor scenes with clear structure instead of open large outdoor scenes. Hyeong et al. [6]
proposed an ICP (Iterative Closest Points, iterative closest point) outlier rejection scheme to
compare the laser data of the scanned environment and select matching points and reject
the algorithm that does not match parts. The ICP algorithm needs to be provided with an
initial value, and the matching accuracy of the ICP algorithm directly depends on whether the
initial value is accurate. However, in the process of acquiring the surrounding environment,
the laser is often accompanied by the motion of the robot. Especially when the laser frame
rate is small, the captured laser data will produce motion distortion, and there will be a large
error with the real environment over time. Xue et al. [7] proposed a simultaneous fusion of
IMU, wheel encoder, and LiDAR to estimate the own motion of a moving vehicle. However,
this method does not propose a countermeasure for discontinuous laser scanning. Bazet and
Cherfaoui [8] proposed a method for correcting errors caused by time stamp errors during
sensor data acquisition, but this scheme assumes that the scanning angle of the laser is fixed
and the quadratic interpolation assumption is too simplistic, which cannot meet the complex
outdoor environment. Hong et al. [9] proposed a new approach to enhancing ICP algorithms
by updating speed, which estimates the speed of the LiDAR through ICP iterations, and uses
the estimated speed to compensate for scan distortion due to motion. Although it considers
the motion of the robot into consideration, its assumption of uniform motion is too ideal; for
low-frame rate LiDAR, the assumption of uniform motion does not hold.

Aiming at the above problems, this paper proposes an improved algorithm for esti-
mated speed scan matching that integrates an IMU and odometer. This algorithm is called
Iao_ICP (ICP that integrates IMU and Odometer) in this paper. The main contributions of
this paper are as follows: (1) The algorithm uses the linear interpolation method to obtain
the pose of LiDAR, which solves the alignment problem of the discontinuous laser scan
data. (2) The data fused by the IMU and the odometer provides a better initial value for the
ICP, and the estimated speed of the LiDAR is introduced as the iterative value of the ICP
method to realize the termination condition of LiDAR data compensation.

The rest of the paper is organized as follows: Firstly, the causes of motion distortion in
the traditional ICP algorithm are analyzed. Secondly, the incremental information of the
wheel odometer and the angular velocity information of the IMU are integrated into the
pose estimation. Finally, through data sets and physical experiments, the effectiveness of
the proposed algorithm in removing motion distortion and improving the accuracy of map
construction is demonstrated.

2. Causes of LiDAR Motion Distortion

The mechanical LiDAR is driven by an internal motor to rotate the radar ranging core
360◦ clockwise to obtain the surrounding environment data. Each frame of laser data is
encapsulated by the data information obtained by a certain number of discrete laser beams,
and the laser data of each frame is not obtained instantaneously. The data distortion of
LiDAR is related to the motion state of the robot which carries LiDAR. When laser scanning
is accompanied by the motion of the robot, the laser data of each angle is not obtained
instantaneously. When the scanning frequency of the LiDAR is relatively low, the motion
distortion of the laser frame caused by the motion of the robot cannot be ignored [10].

The current domestic LiDAR rotation frequency is about 5–10 Hz. When the robot
carrying the LiDAR is stationary, the measurement data of the LiDAR has no error, but in
the SLAM system, the robot is often in a state of motion. Take the environment shown in
Figure 1 as an example. It can be seen that the distance data of each laser beam are collected
in different poses, as shown in the pose of points A and B. Suppose the robot is moving
at a constant speed, the solid curved arrow indicates that the LiDAR rotation direction is
clockwise, and the solid long straight arrow indicates that the LiDAR moves from point A
to point B along the X direction. Then, in the case of no motion distortion correction during
this period, the LiDAR data will have a motion distortion error of Δx.
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Figure 1. The acquisition process of one frame of LiDAR data.

As described above, when the robot obtained a frame of LiDAR data, the laser is obtained
at point A, and the laser is obtained at point B. However, when general LiDAR drives package
data, it is assumed that all laser beams of a frame of LiDAR data are obtained in the same
pose and instantaneously, that is, all laser beams are obtained from point A data. Its pose
actually produces motion changes, and each laser point is generated on a different reference
pose, which eventually causes the environmental distortion of the laser collection. As Figure 2
shows, the left picture is the actual environment, while the dotted line in the picture on the
right is the true value, and the solid line is the LiDAR data with motion distortion.

Figure 2. LiDAR motion distortion.

3. Principle of ICP Algorithm

The ICP algorithm [11] was first developed by Beals and McKay in 1992. The ICP
algorithm is essentially an optimal registration method based on the least-squares method.
ICP first matches each point of the target laser data with the closest point of the reference laser
data and finds the rotation matrix R and translation matrix p, which are used to convert the
two. Afterward, the laser matching is iteratively optimized by repeatedly generating pairwise
closest points until the convergence accuracy requirements for correct registration are met.
The ICP algorithm first needs to determine an initial pose, and the selected initial value will
have an important impact on the final registration result. The algorithm may fall into a local
optimum instead of a global minimum if the initial value is not chosen properly.

Given X = {x1, x2, · · · , xNx} as a frame of laser data, P =
{

p1, p2, · · · , pNp

}
as the

laser data of adjacent frames, and T = {T1, T2, · · · , Ti} as the transformation matrix of
laser data of adjacent frames, xi and pi indicate the coordinates of the laser spot, Nx and
Np indicate the number of laser dots, and i indicates the frame number of laser data. This
paper defined a minimizing objective Function (1) to transform P through the coordinates,
and cover the maximum to X [11].

E(R, p) =
1

Np
∑Np

i=1 ‖ xi − Rpi − t ‖2 (1)
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The resulting transformation matrix T can be described as (2):

T =

[
R p
0 1

]
(2)

The processing steps of the given objective function are shown as follows:
Step1: Solving the mean value of LiDAR data X and P:

Ux =
1

Nx
∑Nx

i=1 Xi, Up =
1

Np
∑Np

i=1 Pi;

Step2: Remove the translation of LiDAR data X and P to distributed laser data around
the mean value:

x′i = xi − Ux, p′i = pi − Up

Step3: Define matrix, and make SVD decomposition of it, where H is the matrix to be
decomposed by SVD, U and V are the two non-singular matrices decomposed, and σ1, σ2,
and σ3 are the three singular values decomposed, respectively:

H =
Np

∑
i=1

x′i p′Ti = U

⎡⎣σ1 0 0
0 σ2 0
0 0 σ3

⎤⎦VT

Step4: Calculate the solution of the objective function:

R = UVT, p = ux − Rup

Since the ICP algorithm uses the closest point as the corresponding point, the initial
result may be different from the real environment. However, the results converge to the
base environment by repeating this process. The LiDAR scan data for frame i, namely, X,
are shown in Figure 3a. The LiDAR scan data for frame i + 1, namely, P, are shown in
Figure 3b. The first step of ICP iteration is shown in Figure 3c. The closest point between
X and P is found as Figure 3d shows. The first matching estimated transformation and
updated P by p′i = T1 pi, which is shown in Figure 3e. The X and P matched after many
iterations, as Figure 3f shows. Final pose estimation is solved through the transformation
of T = TnTn−1 · · · T2T1(i = 1, · · · , n), namely:

xi = TnTn−1 · · · T2T1 pi = Tpi (3)

Figure 3. The principle of ICP algorithm. (a) Frame i (b) Frame i + 1 (c) Start matching (d) Find
adjacent (e) First match (f) After multiple iterations of matching.

4. Estimation Speed Scan Matching Algorithm Based on IMU and Odometer

A wheeled odometer and IMU are introduced to compensate for motion distortion
of laser data caused by robot moves. Direct measurement of displacement and angle
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information through a wheel odometer or direct measurement of angular velocity and
linear acceleration through an IMU [12], then integrate them, respectively, to obtain the
displacement and angle information. In the ideal conditions, the wheel odometer or IMU
has a high-precision local pose estimation ability because of the high pose update frequency
(higher than 200 Hz) of the above sensors, which can accurately reflect the motion of the
robot in real time [13]. What is more, these two types of sensors are completely decoupled
from the robot state estimation, which can prevent the introduction of errors. However,
on the one hand, during the actual movement of the robot, the wheels will slip and the
accumulated error will occur, which leads to a certain deviation in the obtained odometer
angle data when only the encoder is used, and the error increases with the running time
and the stroke increases. On the other hand, the linear acceleration accuracy of the IMU is
poor, though it has high angular velocity measurement accuracy, and the local accuracy
of the quadratic integral is still very poor, which leads to a certain deviation of obtained
displacement data. Therefore, this paper proposes the Iao_ICP algorithm, and the algorithm
framework is shown in Figure 4. First, the information of the IMU and the odometer is
fused, and the pose of the LiDAR is obtained using the linear interpolation method to
remove most of the motion distortion. Then, scan matching of LiDAR data is conducted
using the ICP method. Data fused by the IMU and odometer provide a better initial value
for ICP, and estimated speed is introduced as a termination condition for iteration of the
ICP method [14]. The matching result is used as the correct value, and the error value of the
odometer is obtained. The error value is evenly distributed to each point, and the position
of the laser point is corrected again, so as to further determine the pose of the laser point.

Figure 4. The architecture diagram of the Iao_ICP algorithm.

4.1. Pose Estimation with Fusion of IMU and Odometer

The chassis control system of the mobile robot reads the IMU data and the odometer
data. Each time the IMU data are read, the odometer data can also be obtained without
considering the problem of time synchronization. That means the IMU pose queue and
odometer pose queue maintain strict alignment, which can directly fuse both to generate
a new pose queue. However, the update frequency of low-cost LiDAR is generally only
5–10 Hz, which leads to the new pose queue after fusion cannot maintain strict alignment
with the pose queue of laser frames. Although there is no way to obtain the pose of the
laser frame directly from the fused pose queue since the pose queues of the two are not
strictly aligned, the pose of the laser frame can be obtained by linearly interpolating the
fused pose queue. Below are the detailed steps to obtain the estimated pose based on the
linear interpolation method by fusing the IMU and odometer data:

Step1: As the start time of the current laser frame, the end time of the current laser
frame, and the time interval between two laser beams have been known. Odometer data
and IMU data are stored in a queue in the same chronological order, and the team leader is
the earliest. There are oldest odometer and IMU data timestamps, and latest odometer and
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IMU data timestamps. First, solve the new queue generated by fusing odometry and IMU
data within the above timestamps. The fusion expressions are shown below:⎧⎨⎩

Odom_Imu_List[i].x = OdomList[i].x
Odom_Imu_List[i].y = OdomList[i].y
Odom_Imu_List[i].θ = ImuList[i].θ

(4)

In the formula, Odom_Imu_List [i] is the fused pose data at the ti moment, OdomList [i]
is the odometer pose data at the ti moment, ImuList [i] is the IMU pose data at the ti moment,
and x, y, and θ are the X-axis data, Y-axis data, and angle data in the pose data, respectively.

Step2: Solve the emission pose corresponding to each laser in the current frame of
laser data, namely, to solve the robotic pose at the time of {ts, ts + Δt, · · · ts + iΔt · · · te}. It
is reasonable to assume that the robot moves at a uniform speed during the data update of
the fusion of two adjacent frames due to the high update frequency of odometer data and
IMU data. Linear interpolation can be used on this assumption, as shown in Figure 5.

Figure 5. Linear interpolation of laser pose.

Suppose there are corresponding fused pose queues at the time of l, k for laser data,
but not at the time of s, and the value of s is greater than l, and less than k. Then, solve the
pose of robot ps, pm, pe corresponding to the three moments ts, tm, te (ts < tm < te). The
pose of the first laser beam can be calculated with the Formula (5). In the same way, the
emission pose of the last laser beam and the laser beam at the middle time can be obtained.⎧⎨⎩

pl = Odom_Imu_List[i]
pk = Odom_Imu_List[k]
ps = pl +

pk−pl
k−l (s − l)

(5)

Step3: Following the method in the Step2, pm and pe can be solved. Further as-
sumed, the robot performs uniform acceleration motion during a frame of laser data. Thus,
the pose of the robot is a quadratic function of time, as Figure 6 shows. Thus, using
the known robot pose ps, pm, pe as the independent variable, a quadratic curve function
P(t) = At2 + Bt+C(ts < t < te) can be obtained by interpolation, and A, B, C are the coef-
ficients of the quadratic function. Next, the value of every time {ts, ts + Δt, · · · ts + iΔt · · · te}
can be substituted into a curve, and the pose of each laser point data in global coordinate
system {pts , pts+Δt, · · · pts+iΔt · · · pte} can be obtained.

Figure 6. Pose function graph.

Step4: The relative pose (array form) of the laser point in the global coordinate
system is converted into a pose change matrix. Then, convert the coordinate information
in the radar coordinate system xi to the coordinates in the global coordinate system, as
Formula (6) shows.

x′i = V2T(pi)xi (6)
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In the above Formula (6), function V2T (pi) is a whole, indicating that the relative
pose in the form of an array pi is converted into a pose transformation matrix in the
form of a matrix. By the coordinate information in radar system xi left multiplication
corresponding matrix pi, the coordinate of the radar coordinate system xi can be translated
into the coordinate in the global coordinate system x′i , because pi is the pose in the global
coordinate system.

Step5: According to the coordinates of the scanning point corresponding to each laser
beam in the global coordinate system x′i , the laser data of the laser scan point in the LiDAR
coordinate system can be solved with Formula (7).⎧⎨⎩

x′i =
(

px, py
)

range =
√

px·px + py·py
angle = atan2

(
py, px

) (7)

For the first equation above, px, py are the coordinates of the ith frame of laser data in
the LiDAR coordinate system on the X- and Y-axis, respectively.

For the second equation above, the coordinates px and py on the x and y axes of the
laser xi frame in the laser coordinate system are known. The distance point xi from the
origin of the laser coordinate system can be found according to the “Pythagorean Theorem”.

For the third equation above, px and py have been found, and the angle between point
xi and X-axis can be solved according to inverse trigonometric functions. The specific
implementation process of the algorithm is shown in Algorithm 1.

Algorithm 1: A Pose Estimation Algorithm Based on IMU and Odometer

Input: Odometer pose queue OdomList[i], IMU pose queue, and laser pose queue xi
Output: laser pose queue Xn

1: for i = 1:n do

2: Odom_Imu_List[i].x = OdomList[i].x;
Odom_Imu_List[i].y = OdomList[i].y;
Odom_Imu_List[i].θ = ImuList[i].θ; //fuse the data of odometer and IMU pose queue, then
put into Odom_Imu_List[i]

3: end for

4: ps = LinerInterp(Odom_Imu_List[ts]);
pm = LinerInterp(Odom_Imu_List[tm]);
pe = LinerInterp(Odom_Imu_List[te]); //Perform linear interpolation on the fusion pose of the

start, end and intermediate moments, LinerInterp() is function used to make linear interpolation

5: P(t) = P(t) = At2 + Bt + C; //Substitute ps, pm, pe into above formula in order, and the
coefficients of quadratic curve functions A, B, C can be solved.

6: for i = 1:n do

7: pi = Ai2 + Bi + C; //solve the pose of each laser point in global coordinate system pi

8: x′ i = V2T(pi)xi =
(

px, py
)
; //obtain the pose of each laser point in the global coordinate system x′ i

9: Xn = (range, angle) =
(√

px ∗ px + py ∗ py, atan2
(

py, px
))

; //compose a new laser point set Xn

10: end for

4.2. Estimated Velocity and Laser Data Pose Compensation

To remove the motion distortion of the laser point cloud data, the speed of the robot
needs to be estimated. Since the scanning period of LiDAR is about 0.1 s, it can be assumed
that the speed of the robot is constant during this scanning period, and Vi is used to indicate
the velocity in the LiDAR coordinate system at ti time. Firstly, estimate the velocity Vi from
the relative motion transformation between two adjacent frames of laser data Xi and Xi−1,
supposing that n indicates the number of laser points of laser data Xi. The time interval
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between two adjacent frames of laser points is Δt. x0 , x1 , · · · , xn is the laser point of laser
Xi, txj − txj−1 = Δts (j = 0, 1, · · · , n − 1).

Therefore, the estimated velocity Vi is:

Vi =
T2V

(
T−1

i−1Ti

)
Δt

≈ 1
Δt

lg T−1
i−1Ti (8)

In Formula (8), T−1
i−1Ti is a whole, indicating the pose difference of the robot from i−1

time to i time in the radar coordinate system, and T2V
(

T−1
i−1Ti

)
indicates a way to convert

the pose difference from matrix form to array form.
The pose of frame i and laser point j is:

T(ti + jΔts) = Ti·V2T(Vi·jΔts)= TiejΔts Vi (9)

In Formula (9), jΔts is the duration of laser point cloud data in frame i from laser point
0th to laser point j.

Vi is the origin velocity of laser point data in frame i.
Vi·jΔts is the pose difference of frame i laser data cloud from laser point 0th to laser

point k.
V2T(Vi·jΔts) is the conversion of relative pose difference from array form to matrix form.
Ti·V2T(Vi·jΔts) is to obtain the pose of laser point j in frame i by using frame i of laser

point cloud data right-multiplied by the pose difference from the initial pose of the 0th
laser point.

Substitute the above Formula (9) into Formula (3), the laser point cloud data collec-
tion Xi is converted into X∗, and X∗ is the laser point cloud data collection after speed
compensation.

X∗
=

{
ejΔtsVi pj | j = 0, 1, · · · , n

}
(10)

For some types of LiDAR, it takes 100 ms to perform a scan with a scan angle of 360◦,
which takes the estimation of robot motion later than the actual movement. To prevent this
kind of delay, a backward compensation scheme can be used. Take the time corresponding
to the last laser point as the reference time, the corresponding time of each laser point can
be converted. With the above conditions, Formula (9) can be revised into:

T[ti − (n − j)Δts] = Tie(n−j)Δts(−Vi) (11)

Formula (10) can be revised into:

X =
{

e(n−j)Δs(−Vi)xj | j = 0, 1, · · · , n
}

(12)

The specific implementation process of the algorithm is shown in Algorithm 2.
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Algorithm 2: Estimating velocity and removing motion distortion from laser point cloud data

combined with ICP

Input: the queue of laser pose Xn
Output: motion transformation matrix of adjacent laser frames T

1: V = Vi //speed initialization

2: do

3: TΔts = eΔts(−Vi) //the motion transformation matrix T is estimated by the speed of the two
adjacent frames of laser light

4: for j = 1 : n do //traverse all laser points in the current laser frame

5: TjΔts = T(j−1)ΔtsTΔts //calculate the motion transformation matrix of each laser point

6: xij = TjΔtsxij //Motion transformation for each laser point

7: end for

8: T = ICP
(

X
−1, Xi, T

)
//iterative matching via ICP

9: V = Vi //renew the value of velocity

10: Vi = 1/Δlg T //do the next round of speed estimation

11: While ||V − Vi|| > e //when the speed error value is greater than the threshold e, execute the
loop

5. Positioning Accuracy Evaluation of Laser Odometry after Motion Distortion Calibration

This experiment utilizes the sequences b0_2014_07_11_10_58_16 (denoted as 1©),
b0_2014_07_11_11_00_49 (denoted as 2©), and b0_2014_07_21_12_42_53 (denoted as 3©) in
the Cartographer public dataset. The laser odometry accuracy of the Iao_ICP algorithm and
the original Cartographer algorithm is quantitatively evaluated by executing this. Figure 7
shows the mapping effect of the Iao_ICP algorithm on the sequence. The processor of the
test equipment is Intel (R) Core (TM) i5−5200 CPU 2.20 GHz and it has 8 GB RAM.

Figure 7. Mapping based on the b0_2014_07_11_11_00_49 sequence.

The analysis is performed by comparing the data calculated by the Iao_ICP algorithm
with the Cartographer data set. Table 1 lists the absolute trajectory errors calculated by
these two algorithms [15]. In addition, the Iao_ICP algorithm was used to calculate the
relative trajectory error and compared with the relative trajectory error of the original
Cartographer algorithm.
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Table 1. Comparison results of absolute trajectory error between Iao_ICP algorithm and Cartographer
algorithm.

Sequence Algorithm RMSE (m) Average (m) Maximum (m) Minimum (m)

1© Iao_ICP 0.0179 0.0103 0.01356 0.0011
Cartographer 0.023 0.0147 0.01428 0.0024

2© Iao_ICP 0.0166 0.0091 0.1510 0.0008
Cartographer 0.0197 0.0096 0.1663 0.0011

3© Iao_ICP 0.0158 0.0089 0.1233 0.0003
Cartographer 0.0193 0.0092 0.1349 0.0012

Using sequence 1© for testing, the comparison of the relative trajectory error results
obtained is shown in Figure 8.

Figure 8. Comparison of relative trajectory errors of sequence 1©. (a) Cartographer, improvement
scheme, and real trajectory comparison (b) Local trajectory map (c) Absolute trajectory error of
Cartographer (d) Absolute trajectory error of the improved scheme.

The obtained comparison of relative trajectory error results is shown in Figure 9 by
using a sequence for testing.
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Figure 9. Comparison of relative trajectory errors of sequence 2©. (a) Cartographer, improvement
scheme, and real trajectory comparison (b) Local trajectory map (c) Absolute trajectory error of
Cartographer (d) Absolute trajectory error of the improved scheme.

The obtained comparison of relative trajectory error results is shown in Figure 10 by
using a sequence for testing.

Figure 10. Comparison of relative trajectory errors of sequence 3©. (a) Cartographer, improvement
scheme, and real trajectory comparison (b) Local trajectory map (c) Absolute trajectory error of
Cartographer (d) Absolute trajectory error of the improved scheme.
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From the sequence 1© test results, it can be seen that, from the RMSE index, the
root-mean-square error of the Iao_ICP algorithm is 0.0179 m, and the root-mean-square
error of the original Cartographer algorithm is 0.0230 m. Compared with the original
Cartographer algorithm, the root-mean-square error of the Iao_ICP algorithm is reduced
by 22.06%. The average error of the Iao_ICP algorithm is 0.0044 m smaller than that of the
original Cartographer algorithm. The maximum absolute trajectory error of the original
Cartographer algorithm is 0.1428 m in this sequence, and the maximum absolute trajectory
error of the Iao_ICP algorithm is 0.1357 m. The minimum absolute trajectory error of the
Cartographer original algorithm is 0.0024 m, and the minimum absolute trajectory error
of the Iao_ICP algorithm is 0.0011 m. It can be seen from the above data that the Iao_ICP
algorithm has a smaller relative trajectory error than the original Cartographer algorithm
in sequence 1©.

6. Physical Experiment Analysis

This experiment uses a small wheeled differential car as the mobile robot platform.
As shown in Figure 11, the platform configuration is as follows: wheeled robot,

embedded development board, 16-line RS-LIDAR-16 scanner, IPMS-IG IMU. Among them,
the wheeled robot is driven by four wheels and two motors. The embedded development
board uses STM32f103 as the main controller, and it is also equipped with a motor driver
module and an MPU6050 module. RS-LiDAR-16 adopts a hybrid solid-state LiDAR,
which integrates 16 laser transceiver components. The measurement distance is up to
150 m, the measurement accuracy is within ±2 cm, the number of output points is up to
300,000 points/s, the horizontal angle is 360◦, the vertical measurement is 360◦, and the
angle is ±15◦. IMU integrates three-axis acceleration and angular velocity sensors, which
can measure the real-time pose of the robot, and has the advantages of high precision, high
frequency, low power consumption, and strong real-time performance. This experiment
realizes the conversion of 3D LiDAR to 2D LiDAR by projecting the 16-line data of 3D
LiDAR onto a fixed plane. Since the real motion trajectory of the robot cannot be accurately
obtained in the real scene, this experiment judges and tests the cumulative error of the
robot pose during the mapping process of the Iao_ICP algorithm according to the loopback
effect. The movement of the robot is controlled by the handle in this experiment.

Figure 11. Mobile experiment platform.

The real environment is a rectangular hall corridor with a length of about 43 m, a width
of about 51 m, and a building area of about 2193 m2, as shown in Figure 12 above. It is easy
to measure the actual size of the object and compare the data with the mapping accuracy
of the test algorithm. Due to the cabinets, building supports, stair entrances, elevator
entrances, and other objects in the environment have a strong structure, the effectiveness
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and robustness of the algorithm for eliminating laser motion distortion and mapping
accuracy can be tested in the above environment. There are also the following reasons:
the test scene is relatively large, and there are long straight corridors, transparent glass,
flowing crowds, and other factors in the environment that may easily interfere with the test
of mapping. The smooth marble floor increases the accumulation of pose errors during the
movement of the robot.

Figure 12. Experimental real scene.

To compare the mapping accuracy of the Iao_ICP algorithm and the original Cartogra-
pher algorithm, 10 highly structured objects were selected in the test scene for measurement
and analysis. Figures 13 and 14 are the mapping effect of the original Cartographer algo-
rithm and the mapping effect of the Iao_ICP algorithm. First, the actual size of the object is
measured by a handheld laser rangefinder. The map measurements displayed in the rviz
plugin for algorithmic mapping are measured. Finally, the relative error and absolute error
of the two algorithms are calculated. The measurement data and error values of the above
two algorithms are shown in Tables 2 and 3 below. Figure 15 is a comparison chart of the
relative error of the two algorithms.

It can be seen from Figures 13 and 14 that the original Cartographer algorithm has a
large pose error product in this experimental scene. Although a loop can be formed, the
effect of eliminating local errors on the map is not good. The Iao_ICP algorithm removes
motion distortion from most laser data by fusing wheel odometer and IMU information.
At the same time, the laser scan data are compensated by estimating the speed of the robot
and ICP algorithm. The Iao_ICP algorithm not only effectively removes motion distortion,
but also eliminates the accumulation of pose errors caused by tire slippage during robot
motion. Figure 14 shows that the map constructed by the Iao_ICP algorithm has no
confusion, no burrs, and clear structural features. It can clearly express the surrounding
environment information, and the map ghost is small. It can be seen that the mapping
effect of the Iao_ICP algorithm is better than that of the original Cartographer algorithm.
Combined with the error data analysis in Tables 2 and 3, and Figure 15, it can be seen that
the average relative error of the Iao_ICP algorithm is much smaller than that of the original
Cartographer algorithm, and the relative error is mostly concentrated below 1%. The error
is stable, and there is no mutation.
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Figure 13. Mapping effect of Cartographer.

Figure 14. Mapping effect of Iao_ICP.

Table 2. Cartographer original algorithm mapping error table.

Measuring Point
Measured Value

(cm)
Figure Measured

Values (cm)
Absolute Error

(cm)
Relative Error (%)

1 284.700 288.074 −3.374 −1.185107
2 195.000 186.400 8.600 4.410256
3 712.200 709.709 2.491 0.349761
4 812.000 803.200 8.800 1.083743
5 271.000 263.200 7.800 2.878228
6 136.300 130.840 5.460 4.005869
7 272.300 264.320 7.980 2.930591
8 76.500 85.895 −9.395 −12.281045
9 629.200 627.426 1.774 0.281945
10 402.700 397.230 5.470 1.358331
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Table 3. Iao_ICP algorithm mapping error table.

Measuring
Point

Measured Value
(cm)

Figure Measured
Values (cm)

Absolute
Error (cm)

Relative Error
(%)

1 284.700 283.700 1.000 0.351246
2 195.000 197.540 3.460 1.774358
3 712.200 712.363 −0.163 −0.022886
4 812.000 819.340 −7.340 −0.903940
5 271.000 270.928 0.072 0.026568
6 136.300 133.549 2.751 2.018341
7 272.300 270.116 2.184 0.802056
8 76.500 77.744 −1.244 −1.626143
9 629.200 626.829 2.371 0.376827

10 402.700 404.365 −1.665 −0.413459

Figure 15. Line chart of relative error comparison of two algorithms.

7. Conclusions

For the problem of removing laser motion distortion, in the case of wheel slippage and
accumulated error, the traditional method of directly measuring displacement and angle
information based on the wheel odometer, and the odometer angle data obtained by the
encoder, will have a certain deviation. In addition, with the traditional method of directly
measuring the angular velocity and linear acceleration based on the inertial navigation unit,
and then integrating the displacement and angle information, due to the poor accuracy of
the linear acceleration of the IMU, the local accuracy of the quadratic integration is still
very poor. Therefore, the displacement data obtained will also have a certain deviation.
The Iao_ICP algorithm proposed in this paper uses the linear interpolation method to
obtain the pose of the LiDAR, which solves the alignment problem of discontinuous laser
scan data. Data fused by IMU and odometer provide a better initial value for ICP. The
estimated speed is introduced as the termination condition of the ICP method iteration to
realize the compensation of the LiDAR data. The experiment uses a small wheeled mobile
robot to collect data and compare and analyze results in a corridor environment to verify
the original Cartographer algorithm and the Iao_ICP algorithm. Finally, the experimental
data show that the algorithm proposed in this paper can effectively remove laser motion
distortion, improve the accuracy of mapping, and reduce the cumulative error.
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Abstract: Durability and reliability are the major bottlenecks of the proton-exchange-membrane fuel
cell (PEMFC) for large-scale commercial deployment. With the help of prognostic approaches, we
can reduce its maintenance cost and maximize its lifetime. This paper proposes a hybrid prognostic
method for PEMFCs based on a decomposition forecasting framework. Firstly, the original voltage
data is decomposed into the calendar aging part and the reversible aging part based on locally
weighted regression (LOESS). Then, we apply an adaptive extended Kalman filter (AEKF) and long
short-term memory (LSTM) neural network to predict those two components, respectively. Three-
dimensional aging factors are introduced in the physical aging model to capture the overall aging
trend better. We utilize the automatic machine-learning method based on the genetic algorithm to
train the LSTM model more efficiently and improve prediction accuracy. The aging voltage is derived
from the sum of the two predicted voltage components, and we can further realize the remaining
useful life estimation. Experimental results show that the proposed hybrid prognostic method can
realize an accurate long-term voltage-degradation prediction and outperform the single model-based
method or data-based method.

Keywords: prognostics; proton-exchange-membrane fuel cell; hybrid method; degradation prediction;
remaining useful life

1. Introduction

Owing to the global energy crisis and environmental pollution that humans face,
fuel-cell technology has attracted more and more attention from researchers as well as
commercial companies. With the advantages of clean, high energy efficiency, and low
operating temperature [1,2], the proton-exchange-membrane fuel cell (PEMFC) has been
considered as one of the most attractive energy devices for future power applications.
However, the durability and the high cost of PEMFC have been the bottlenecks of its
large-scale commercial deployment. During operation, the components of the fuel cell,
including the proton-exchange-membrane (PEM), the bipolar plate, the gas diffusion
layer (GDL), the catalyst layer, and a membrane will degrade due to different working
conditions and load cycling [3]. The performance of PEMFC suffers from multiple failure
mechanisms, such as conductivity loss, catalyst reaction activity, and mass transfer [4]. The
performance of a PEMFC system is characterized by its efficiency and cyclability, which
are highly influenced by membrane properties [5]. Shanmugam et al. [6] developed a
new block copolymer membrane with a lower self-discharge rate. The cyclability with
slight capacity decay showed its chemical stability for long-term operation. Rajput et al. [7]
synthesized a graphene oxide composite membrane which has better mechanical and
thermal stability. Furthermore, working under highly dynamic conditions, especially
in automotive applications, will accelerate the aging process of PEMFC and increase the
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probability of failure occurrence [8]. The International Energy Agency reported that the
cost of commercial fuel cell stack is less than 10,000 USD/kW in 2017 [9]. The maintenance
costs drastically decreased from 40 EUR Ct/kWh in 2012 to 20 EUR Ct/kWh in 2017.

The balance of plant (BOP), which mainly consists of an air-supply system, hydrogen-
circulation system, water-and-heat-management system and control system, maintains the
stable and safe operation of the stack [10]. The degradation mechanism is too complicated
to be fully understood with the current technology. To extend the fuel-cell lifetime and
reduce its maintenance cost, the management and control strategy of the PEMFC has
become a hot research topic. The prognostic method provides a potential solution to
extending the PEMFC lifespan [11,12]. As the prerequisite for the maintenance of PEMFC,
an effective prognostic method can estimate the state of health (SOH) of the fuel cell and
predict the system’s future evolution. By prognostic methods, the degradation process of
PEMFC can be investigated and modeled [13] to guide the maintenance services of fuel cells
before failures occur. The prognostic methods of PEMFC can generally be divided into three
categories [2,14]: the model-based method, the data-based method, and the hybrid method.

The model-based method uses the mechanism degradation model or the empirical
degradation model to realize the prognostics of PEMFC. The mechanism model adopts
mathematical equations to describe the internal aging process, with the advantages of less
training data and strong generality. However, it suffers from a large computational burden
and a high complexity of the degradation mechanism [4,14]. Zhang and Pisu [15] built
the catalyst degradation model to describe the relationship between operating conditions
and the degradation rate of electrochemical surface area (ECSA). Dhanushkodi et al. [16]
developed a diagnostic method to characterize the catalyst component durability. Based on
the Pt/C catalyst degradation mechanism [17], Polverino and Pianese [18] proposed the
dissolution-mechanism model and the Ostwald-ripening-mechanism model to estimate
ECSA. However, the validity of the mechanism model needs to be verified by the experi-
mental data, and the adjustment of model parameters depends on expert experience. The
empirical degradation model with less computational burden is easier to deploy in online
applications. Jouin et al. [19] proposed a PEMFC prognostic method based on logarithmic,
polynomial, and exponential empirical equations. Bressel et al. [13] proposed a typical
semi-empirical prognostic method that brings polarization curves into consideration. Li
et al. [20] proposed an estimation algorithm for lithium-battery SOC in electric vehicles
based on an adaptive unscented Kalman filter (AUKF). Zhang et al. [1] realized internal
characterization-based prognostics for fuel cells based on a Markov-process algorithm.

Data-based methods can be conducted without considering the complex mechanism of
PEMFC and can improve the prediction accuracy as long as sufficient monitoring data are
available. Silva et al. [21] developed a long-term prediction model for PEMFC based on the
adaptive neuro-fuzzy inference system (ANFIS). The wavelet decomposition is proposed
in [22] to improve short-term prediction accuracy. In [23,24], the echo state network (ESN)
is adopted for forecasting the degradation process. Ma et al. [25] adopted a long short-
term memory network (LSTM) to predict the degradation voltage, which identified the
superiority of the LSTM network compared with the relevance vector machine (RVM) and
the Elman network. Yang et al. [12] proposed an RUL prediction method for the bearing’s
degradation process based on LSTM. However, the data-based method suffers from poor
generality in practical deployment and there is a shortage of training data because of the
costly and time-consuming PEMFC aging test.

The hybrid method is established by combining the advantages of the model-based
method and the data-based method through different strategies [26]. It is usually more
accurate and robust than a single method at the cost of a more complex structure and
a higher computational burden [2]. Peng et al. [11] realized the RUL estimation for
a turbofan engine based on the convolutional neural networks (CNN) and long short-
term memory (LSTM) structures. Li et al. [27] used a linear-parameter-varying model
to build the virtual stack voltage as the health indicator and the degradation trend was
predicted by ensemble ESN. Ma et al. [28] fused the extended Kalman filter (EKF) and
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LSTM algorithms to realize a more accurate prediction result. EKF is used to estimate
the system state and then the prediction of LSTM is regarded as the observation for EKF.
Based on ANFIS [21], Liu et al. [26] realized the long-term degradation trend prediction
and the remaining useful life (RUL) estimation is achieved by AUKF. The membership
function is optimized automatically by a particle swarm optimization (PSO) algorithm.
The methods above mainly focus on developing new prediction structures. However,
the long-term prediction accuracy of those methods still cannot meet expectations: the
prediction effectiveness under automotive load cycling needs to be improved.

The voltage-recovery phenomenon occurs periodically after the characterization
test and it significantly influences the prediction accuracy. The investigation into this
phenomenon can reveal the aging process of fuel cells and support appropriate mainte-
nance strategies. Jouin et al. [29] combined the global power-aging model and power-
recovery model based on the particle filter (PF) algorithm to forecast voltage degradation.
Morando et al. [30] used the wavelet filter to decompose the stack voltage into two parts
and make predictions based on ESN. With the introduction of the self-healing factor,
Kimotho et al. [31] realized the prediction of the voltage-aging process after each charac-
terization. Deng et al. [32] proposd a novel empirical model based on the PF algorithm
for the remaining useful-life prediction of a lithium-ion battery. The authors separated the
local degradation process from the global degradation process to capture the degradation
and regeneration phenomena. Zhou et al. [33] divided the voltage data into stationary
and non-stationary sequences. Then, the autoregressive and moving average (ARMA)
model and time-delay neural network (TDNN) were utilized to predict the degradation
voltage. However, the prediction of those models is not robust or accurate enough, as the
voltage-recovery phenomenon possesses strong nonlinearity.

Since the PEMFC degradation-process mechanism has not been fully investigated yet,
the model-based method’s prediction accuracy cannot meet expectations. The data-based
method cannot give a satisfying prediction with enough long-term forecasting horizon.
Moreover, the voltage-recovery phenomenon is still a problem for most of the prognostic
methods. Thus, it is of great significance to explore a hybrid method to combine the
advantages of those two methods to better predict the PMEFC degradation process. In
addition, the parameter-adjustment process requires a lot of manual intervention which
is very time-consuming. Therefore, it is meaningful to realize model construction and
hyperparameters optimization automatically.

A hybrid prognostic method for PEMFC based on the decomposition forecasting
framework is proposed in this paper. Specifically, the original voltage data is decomposed
into the calendar aging components and the reversible aging components based on the
locally weighted regression method (LOESS). Then, we apply the calendar aging model
based on an adaptive extended Kalman filter (AEKF) and the reversible aging model based
on LSTM to predict the two voltage components, respectively. In this way, the aging process
of the PEMFC, including the voltage-recovery phenomenon, can be better forecasted. The
final predicted voltage is derived from the sum of the two predictions, and we can further
realize RUL estimation. The main contributions of this paper are summarized as follows:

(1) We establish the decomposition forecasting framework to predict the long-term volt-
age degradation of PEMFC. After the decomposition by LOESS, we apply the AEKF
algorithm and the LSTM neural network to predict those two components, respec-
tively. This framework can combine the AEKF method’s advantage of predicting
overall aging trends and the LSTM model’s advantage of strong nonlinear-modeling
ability. An iterative structure is adopted to realize the long-term degradation volt-
age forecasting.

(2) Based on the physical aging model, we develop three-dimensional aging factors
to better characterize the fuel cell’s aging state. Considering the voltage-recovery
phenomenon, we adopt a sliding-window strategy during the training of the LSTM
network to improve the prediction accuracy of the model.
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(3) The automatic machine-learning (AutoML) method based on the genetic algorithm is
adopted to optimize the hyperparameters of the LSTM network automatically, which
can improve the prediction accuracy and training efficiency.

The remaining contents of this paper are organized as follows. In Section 2, the
decomposition forecasting framework is introduced, followed by the configurations of the
AEKF model and the LSTM network. The prediction results and discussions of our method
are presented in Section 3. Finally, the conclusion is summarized in Section 4.

2. Methodology

2.1. The Decomposition Forecasting Framework

The framework of the proposed hybrid prognostic method for PEMFC is shown
in Figure 1. First of all, the original voltage data were decomposed into the calendar
aging part and the reversible aging part by LOESS. Then, we established the calendar
aging model based on the AEKF algorithm to predict the overall aging trend for PEMFC.
The genetic algorithm was applied to identify the parameters of physical aging model
from the polarization curve. The three-dimensional aging factors were introduced in
physical aging model to better depict the degradation trend. Next, based on the LSTM
network, we built the reversible aging model to capture the voltage-recovery information.
AutoML approach was adopted in the training phase of LSTM for the hyperparameters
tuning automatically. In addition, the iterative structure was utilized to realize long-term
degradation forecasting [30]. The final prediction of the aging voltage can be obtained by
combining the two predicted components and we can further realize RUL estimation.

Voltage decomposition
by LOESS

AutoML algorithm 

Automatically adjust the 
hyperparameters;

Polarization curve dataOriginal voltage data 

Reversible aging part

EKF algorithm

Calendar aging part

Calendar voltage 
prediction

Reversible voltage 
prediction

Long-term voltage 
prediction

Physical aging model

Initialization ;
State update;
Measurement update;

LSTM neural network

Parameter identification

Training

Training

Prediction

Prediction

Data collecting

Data processing Reversible aging model

Calendar aging model Final prediction 

Figure 1. The decomposition forecasting framework of the proposed hybrid method.
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2.2. Dataset Analysis

The dataset we used in this paper comes from IEEE PHM 2014 Data Challenge [34],
conducted and collected by FCLAB. The FC1 has a constant current of 70 A while 10%
triangular current ripples with the frequency of 5 kHz are added to the 70 A current
for FC2. The monitoring data were obtained during the aging test, including voltage,
operating parameters, electrochemical impedance spectroscopy (EIS) measurement, and
polarization curve. The test bench was adapted for 1 kW fuel cell stack. To master the fuel
cells’ running conditions accurately, the experimental operating parameters of the PEMFC
can be regulated and measured as shown in Table 1. The gas-humidification subsystem
is composed of the two boilers placed upon the stack. Air and hydrogen flow through
respective boilers before reaching the stack. Only the air boiler is heated to obtain the
required relative humidity. The hydrogen boiler is kept at room temperature due to the
need for dry anode gas. The cooling water subsystem dominates the temperature of the
stack. The stack voltage is selected as the health indicator of PEMFC degradation since it
can be measured easily and it is suitable for online applications [33]. Since the degradation
process of fuel cells is slow, the dataset was down-sampled with the interval of one hour to
reduce the computational burden. Each considered fuel-cell stack consisted of five cells.
The length of FC 1 and FC 2 are 991 h and 1020 h, respectively.

Table 1. PEMFC stack and experimental operating parameters.

Parameter Control Range

Number of cells 5
Active area 100 cm2

Load current 70 A (FC1)/63–77 A (FC2)
Operating hours 991 h (FC1)/1020 h (FC2)

Air flow rate 23 L/min
Hydrogen flow rate 4.8 L/min

Coolant flow rate 2 L/min
Pressure of anode and cathode 1.3 bar

Stack temperature 55 ◦C
Relative humidity 50%

In Figure 2, it is easy to see that the voltage always increases after the characterization
test, which is marked by black circles. This is the voltage-recovery phenomenon mainly
caused by the interruption of continuous testing during the rest periods [29]. During this
time, the water content and distribution of the catalysts return to the previous state, which
contributes to ECSA and the proton transfer. The interruption time for characterizations
is scheduled weekly, at about 48 h, 185 h, 348 h, 515 h, 658 h, and 823 h for FC1 and 35 h,
182 h, 343 h, 515 h, 666 h, and 830 h for FC2. In addition, it can be noticed in Figure 2 that
sudden voltage drops occurred in the dashed boxes, which are regarded as faults during
the aging test.
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Figure 2. The voltage-degradation curves of FC1 and FC2.
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2.3. Voltage Decomposition
Locally Weighted Regression

Motivated by the idea of decomposition forecasting, the original voltage data is
decomposed into the calendar aging part and the reversible aging part by LOESS. LOESS
is a nonparametric method for regional regression analysis, which mainly divides the
samples into small windows and performs polynomial fitting on them. Repeating this
process continuously, we can finally obtain the regression curve. The points near the fitting
point have a greater impact on the regression curve and the weight is constructed by the
tricube weight function [35]. The weight of fitting points is defined as follows:

wi =

⎧⎨⎩
(

1 − | x−xi
Δ(x) |3

)3
, | x−xi

Δ(x) | ≤ 1

0, | x−xi
Δ(x) | ≥ 1

(1)

where Δ(x) is the size of the window, xi is the fitting point, and x is the center of the
window. The weighted regression can be carried out based on the weighted least-square
method.

After the original voltage Vst(t) was filtered by LOESS, we could obtain the calendar
aging component Vc(t). Then, the original voltage Vst(t) was subtracted from Vc(t) to
obtain the reversible aging component Vr(t). Thus, the fuel-cell stack voltage can be
divided into two parts:

Vst(t) = Vc(t) + Vr(t) (2)

As shown in Figure 3, we adopted an iterative structure to realize the long-term
time series forecasting [30]. When forecasting h steps ahead, we used the value ŷk+1 just
forecasted by a one-step prediction model as part of the input variables for forecasting the
next step, where uk represents the input. We continued in this manner until the desired
prediction horizon was reached. In particular, prediction errors accumulated through this
strategy, which may lead to a divergence in results [36].

…

…

Figure 3. Iterative structure.

2.4. Calendar Aging Model Based on AEKF
2.4.1. Physical Aging Model

Previous studies have shown that the polarization curve changes regularly as the
operation of PEMFC continues [37], which enables us to build a degradation model based
on it. The empirical model of the polarization curve introduced in [13] can be expressed as
Equation (3).

Vc(t) = N
(

Eocv − i(t)R − aT ln
(

i(t)
i0

)
+bT ln

(
1 − i(t)

iL

)) (3)

where Vc is the calendar aging voltage, which represents the approximate part of the stack
voltage, N is the number of cells, i is the stack current, T is the operation temperature, a is
the Tafel constant, b is the concentration constant, Eocv is the open-circuit voltage, R is the
total resistance, i0 is the exchange current, and iL is the limiting current.

According to the study in [13], only R and iL vary with the operating time obviously
during the aging test. Parameters Eocv and i0 changed a little, so they can be assumed as
constant values. The increase in R may result from the polymer membrane’s degradation
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and the plates’ corrosion [38]. The decrease in iL is related to the ripening of the platinum
particles and poor hydrophobicity of GDL, which accounts for the reduction in the mass
transfer [39]. Therefore, an aging factor α is introduced to describe the change in the aging
parameters (R and iL), since they have similar change speeds [13,26]. The empirical aging
parameters can be expressed by Equation (4):⎧⎨⎩

R = R0(1 + α(t))
iL = iL0(1 − α(t))
α(t) = βt, β(t) = γt

(4)

where α(t) represents the degradation state of the fuel cell, β(t) represents the fuel-cell
degradation rate, and γ(t) is the derivative of β(t). We notice that a constant β(t) will lead
to a linear change in the degradation state α(t), which will reduce the prediction accuracy
of the model. Therefore, we introduced another factor, γ(t), so that the degradation rate
β(t) can change with time to better forecast the variation in the aging trend. As a result, the
three-dimensional aging factors consist of α(t), β(t), and γ(t).

Combining Equations (3) and (4), we can obtain the expression of the physical aging
model as follows:

Vc(t) = N
(

Eocv − R0(1 + α(t))i(t)− aT ln
(

i(t)
i0

)
+bT ln

(
1 − i(t)

iL0(1 − α(t))

)) (5)

The degradation process of a fuel cell is nonlinear and can be expressed as Equation (6):{
xk = f (xk−1) + wk−1
yk = g(xk, uk) + vk

(6)

where xk is the aging state at kth sampling time, uk−1 is the input(current), yk is the system
output (stack voltage), wk and vk represent the process and measurement noises which are
assumed to obey Gaussian distribution with zero mean and variances of Q and R, and f (·)
and g(·) are functions used to describe the degradation model.

To better forecast the aging trend of PEMFC, here we introduce three-dimensional
aging factors which can be expressed as Equation (7):

xk = [αk, βk, γk]
T (7)

where αk is the value of degradation state at kth sampling time, βk is the degradation rate
at kth sampling time, and γk is the derivative of β. Since uk = ik, yk = Vc,k, the discrete
time-state-space equation for PEMFC can be expressed as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎡⎣ αk
βk
γk

⎤⎦ =

⎡⎣ 1 Δt 0
0 1 Δt
0 0 1

⎤⎦⎡⎣ αk−1
βk−1
γk−1

⎤⎦+ wk−1

yk = N ·
[

Eocv − R0(1 + αk)ik − aT ln
(

ik
i0

)
+bT ln

(
1 − ik

iL0(1−αk)

)]
+ vk

(8)

where Δt represents the sample period. Here, the parameters, including Eocv, R0, a, b, i0,
and iL0, need to be identified to initialize our calendar aging model.

In order to avoid overfitting, Akaike information criterion (AIC) can be used to
measure the fitting results of the proposed model [40]. In general, AIC can be expressed as:

AIC = 2k − 2 ln(L) (9)
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where k is the number of parameters and L is the likelihood function.
Let n be the number of observations and SSR represent the sum of the squares of the

residuals; then, AIC becomes:

AIC = 2k + n ln(SSR/n) (10)

SSR = ∑ (yi−ŷi)
2 (11)

AIC criterion is used to judge the goodness and the efficiency of the degradation
models with two and three parameters (i.e., degradation state, its first derivative, and its
second derivative). It can be seen from the Table 2 that AIC of the degradation model with
three parameters is less than that of the model with two parameters. The smaller the AIC
value, the better the model performance. Therefore, we chose three parameters to build our
degradation model.

We regard the mean value of the state estimation as the optimal state estimate, and the
point estimation of the trend components can be calculated by the system output matrix.
Therefore, we can combine it with the prediction result of LSTM to obtain the final voltage
prediction.

Table 2. AIC of the degradation models with different parameters for FC1 and FC2.

Stack Training Data
Numbers of Parameters

2 3

FC1
55% −3677 −4257
70% −2687 −2774
80% −1792 −1818

FC2
55% −3564 −3845
70% −2347 −2479
80% −1545 −1622

2.4.2. Parameter Identification

We identified the parameters of our calendar aging model from the polarization curve
data. Considering the multi-parameters and nonlinearity of the physical aging model,
we chose the genetic algorithm to realize the parameter identification [39]. The aging
factor αk remains at zero since the polarization curve was measured at the beginning of the
operation.

The genetic algorithm first initializes the values randomly, and then it performs
selection, crossover, and mutation operations on individuals [41] according to the fitness
function f f itness. The optimal solution can be obtained through the iteration of the algorithm.
The fitness function can be expressed as follows:

ffitness (Eocv, R0, a, b, i0, iL0) = ∑
k

[
Vc,k − V̂c,k

]2 (12)

where Vc,k is the observed voltage and V̂c,k is the estimated voltage. Eocv, R0, a, b, i0, and
iL0 are the parameters that need to be identified.

2.4.3. Extend Kalman Filter

In this paper, we applied the AEKF algorithm to deal with the nonlinearity of the
fuel-cell system and to predict the calendar aging voltage. The traditional Kalman-filter
algorithm assumes the process noise and the measurement noise as Gaussian white noise
with zero means. However, it is difficult to obtain the statistical characteristics of noise in
practice. Therefore, the AEKF method is introduced to correct the variance in those noises
adaptively, to reduce the impact of unknown noise [42].
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For the iterative calculation of our model, the Jacobian matrix can be obtained by
linearizing the system with the first-order Taylor formula [39], as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

A =
∂ f (xk−1)

∂x

∣∣∣∣
x=x̂+

k−1

Ck =
∂g(xk ,uk)

∂x

∣∣∣∣
x=x̂−

k

(13)

The algorithm of the discrete adaptive extended Kalman filter consists of four steps:
initialization, state update, measurement update, and noise update, which are shown
as follows:

1. Initialization: x̂+0 = E[x0], P+
0 = E

[(
x0 − x̂+0

)(
x0 − x̂+0

)T
]
, where E[·] is the mathe-

matic expectation.
2. State update: x̂−k = Ax̂+k−1 + wk−1, P−

k = AP+
k−1 AT + Qw, where x̂−k is a-priori state

estimate at step k, and P−
k is a priori estimate error covariance.

3. Measurement update: Lk = P−
k CT

k
(
CkP−

k CT
k + R

)−1, x̂+k = x̂−k + Lkεk, P+
k = (I− LkCk)P−

k ,
where εk = yk − g

(
x̂−k , uk

)
, Lk is the Kalman gain at step k, x̂+k is a posteriori state estimate at

step k, P+
k is a posteriori estimate error covariance at step k.

4. Noise update: Πk = 1
M ∑k

i=k−M+1 εiε
T
i , Qw = LkΠkLT

k , Rv = Πk − CkP−
k CT

k , where
Πk represents the mapping variance in error, and M represents averaging moving
window of size.

2.5. Reversible Aging Model Based on LSTM
Long Short-Term Memory Networks

Through previous voltage decomposition, we can obtain the reversible aging voltage
Vr which is the time-series sequence. The recurrent neural network (RNN) has a strong
non-linear modeling ability for time-series data, which has achieved great success and
wide application in natural language processing (NLP) [43] and time-series problems [44].
With the novel construction of the input gate, the forget gate, and the output gate, the
LSTM network can overcome the problem of gradient disappearance or explosion from
which traditional RNN suffers [25,35]. The LSTM network is applied to capture the voltage
recovery information based on the reversible aging components in this paper. Figure 4a,b
illustrates the LSTM architecture and the single cell of LSTM, respectively.

(a)
(b)

Figure 4. (a) LSTM architecture. (b) The single cell of LSTM.

Every time step, the LSTM unit receives the input from the current state Xt and the
previous hidden state ht−1, as Figure 4b shows. The expression of the input gate can be
written as:

it = σ(Wxixi + Whiht−1 + bi) (14)
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The forget gate ft determines which input information should be ignored from the
history memory and it is defined as:

ft = σ
(

Wx f xt + Wh f ht−1 + b f

)
(15)

Meanwhile, the candidate value of the memory state C̃t is defined as:

C̃t = tanh(Wxcxt + Whcht−1 + bc) (16)

Combining Equations (14)–(16), we can obtain the expression to update the cell state:

Ct = ft � Ct−1 + it � C̃t (17)

The output gate ot is responsible for the final output and it is used to update the
hidden state ht based on the current cell state Ct. They can be written as follows:

ot = σ(Wxoxt + Whoht−1 + bo) (18)

ht = ot � tanh(Ct) (19)

where σ is the activation function and we choose the sigmoid function, Wxi, Whi, Wx f , Wh f ,
Wxc,Whc, Wxo, and Who are the weight matrices of each gate, bi, b f , bc, and bo are the bias
vectors, � means multiplied by the elements.

The residual components of the voltage data were smoothed by LOESS algorithm
again with a window size of 20 to remove random noise or spikes before being sent to
LSTM network. After smoothing to remove the noise, the reversible aging voltage data of
PEMFCs and time information of characterization tests were input into the LSTM network
as features. The network structure consists of four parts: a sequence input layer, an LSTM
layer with the maximum number of 300 neurons in the hidden layer, a fully connected
layer with one response, and a regression layer. The maximum sliding window size is 300;
the loss function is the RMSE; the optimizer is Adam; the epoch size is 200; and the initial
learning rate is 0.005.

We used the reversible voltage data and the time information of characterization from
FC1 and FC2 to build samples for our training process of the network. We selected 50%,
70%, and 80% of the sample data as the training set, and the rest was selected as the test
data set. The network’s output is the reversible voltage at the next time step. Moreover, as
shown in Figure 5, we adopted a sliding-window strategy during the training process of
the LSTM. By setting the sliding window size reasonably, we can use the information from
multiple times together as the feature input of the LSTM to improve the model’s prediction
ability for time-series data.
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Figure 5. Sliding-window strategy during LSTM training.

2.6. AutoML Algorithm

The training of neural networks requires a lot of manual intervention which is very
time-consuming. Here, with the help of the AutoML algorithm, we can realize model
construction and hyperparameters optimization efficiently. Particularly, we apploed the
genetic algorithm for finding appropriate hyperparameters of the LSTM network. The
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genetic algorithm is an optimization method inspired by the evolution process in nature
selection [41].

The hyperparameters, including epochs, the number of neurons, and the sliding
window size, were initialized arbitrarily ranging from 50 to 400, 50 to 300, and 10 to
300 with different intervals, respectively. Each individual in the population represents a
potential solution to the problems to be resolved. The RMSE of LSTM prediction results
in the test data set were used as its fitness value. Operations on individuals, including
selection, crossover, and mutation, were performed to optimize the population. The
parameters of genetic algorithm were set as follows: the population size is 12, the mutation
rate is 0.2, the crossover rate is 0.5, and the iteration number is 5. The training process of
LSTM was repeated until the genetic algorithm reached its maximum iteration.

3. Results and Discussions

The prediction results of our hybrid prognostics method are given in this section.
Firstly, the voltage decomposition result is provided and then we will give and discuss
our calendar aging model for PEMFC. Combined with the reversible aging model, we will
obtain the final prediction.

3.1. Voltage Decomposition

The original voltage data of FC1 and FC2 are decomposed into the calendar aging
part and the reversible aging part based on the LOESS, as shown in Figure 6. The smooth
window size of FC1 is 300 and since FC2 fluctuates more violently, we set it to 500. The
characterization tests (including the polarization curve test and the EIS measurement)
are performed once a week, so the voltage recovery phenomenon appears periodically as
shown in Figure 6c,d, where the red line indicates whether the characterization test was
carried out. We can notice that the degradation of FC2 proves to be faster and more serious
than FC1 because of its severe operating conditions.

0 200 400 600 800 1000
Time (h)

3.2

3.3

3.4

Vo
lta

ge
 (V

) Measured Voltage
Filtered Voltage

(a)

0 200 400 600 800 1000
Time (h)

3.1

3.2

3.3

Vo
lta

ge
 (V

) Measured Voltage
Filtered Voltage

(b)

0 200 400 600 800 1000
Time (h)

-0.04
-0.02

0
0.02

Vo
lta

ge
 (V

)

(c)

0 200 400 600 800 1000
Time (h)

-0.05

0

0.05

Vo
lta

ge
 (V

)

(d)

Figure 6. Voltage decomposition result. (a) Calendar aging voltage of FC1; (b) calendar aging voltage
of FC2; (c) reversible aging voltage of FC1; (d) reversible aging voltage of FC2.

3.2. Calendar Aging Voltage Prediction

Here, we implement the calendar aging model based on the AEKF with the intro-
duction of three-dimensional aging factors (T-AEKF) to better forecast the aging trend for
PEMFC. The initial values of the state x0, covariance matrix P0, process error covariance
matrix Q, and measurement error covariance matrix R were set as follows:
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⎧⎪⎪⎨⎪⎪⎩
x0 = [8e−2, 2e−4, 2e−8]T

P0 = [0.1, 0, 0; 0, 0.01, 0; 0, 0, 0.0001]
Q = [5e−5, 0, 0; 0, 5e−5, 0; 0, 0, 5e−5]
R = 100

Figure 7a,c,e shows the prediction results based on the T-AEKF for FC1 with 55%,
70%, and 80% training data, respectively. Figure 7b,d,f shows the prediction results based
on the T-AEKF for FC2 with 55%, 70%, and 80% training data, respectively. The average
values of the aging factors in the training phase were used for the iterative calculation in
the predicting phase. The blue lines and the red dotted lines stand for AEKF output values
in training and predicting phases, respectively. In Figure 7b,d,f the T-AEKF prediction
result of FC2 is slightly higher than the actual value, which can be ascribed to the abnormal
voltage drop in the training phase as FC2 worked under more severe operating conditions.
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Figure 7. The prediction results based on T-AEKF. (a) FC1 with 55% training data; (b) FC2 with
55% training data; (c) FC1 with 70% training data; (d) FC2 with 70% training data; (e) FC1 with 80%
training data; (f) FC2 with 80% training data.

Figure 8a–c demonstrates the estimation results of aging factors for FC1 with 55%,
70%, and 80% training data, and Figure 8d–f demonstrates the estimation results of aging
factors for FC2 with 55%, 70%, and 80% training data. The blue lines and the red lines
represent the aging factors in the training and the predicting phases, respectively. From
Figure 8, we can see that the aging factor α increases slowly as the β decreases with a
fluctuation tend. The AEKF algorithm can estimate the aging factor α iteratively so as to
update the prediction of the voltage. In the predicting phase, factor γ remains constant.
These results show that with the introduction of three-dimensional aging factors (α, β, γ),
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the proposed calendar aging model can accurately track the overall aging trend both in
training and predicting phases.
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Figure 8. The three-dimensional aging factors of T-AEKF. (a) FC1 with 55% training data; (b) FC1
with 70% training data; (c) FC1 with 80% training data; (d) FC2 with 55% training data; (e) FC2 with
70% training data; (f) FC2 with 80% training data.

Crucially, compared with the real voltage, we note that the spikes and fluctuations
exist at the characterization time point for FC1 and FC2 during the aging test, which is
regarded as the voltage recovery phenomenon. That is why we built the reversible aging
model to capture detailed information for voltage degradation.

3.3. Reversible Aging Voltage Prediction

We deployed the reversible aging model to capture detailed information on the voltage
recovery phenomenon. After the voltage decomposition, the sequence of reversible aging
voltage is fed into the LSTM network, where the output is the reversible voltage at the
next time step. Inspired by [25], we implemented the sliding-window strategy to rebuild
the data structure and to improve the prediction accuracy. Since the interruption time of
characterization tests is known in advance, we input this information into LSTM as one
of the features to make a better prediction, as shown in Figure 6c,d. Additionally, for FC2,
as the sharp voltage drop in the two blue dashed boxes is not caused by the normal aging
process, we smoothed this abnormal data to improve the prediction performance.

A total of 55% and 80% of the data were used for training and the rest of the data was
used for testing. The loss function is the RMSE; the optimizer is Adam. The hyperparame-
ters, including epochs, the number of neurons, and the sliding window size, were initialized
arbitrarily, ranging from 50 to 400, 50 to 300, and 10 to 300 with different intervals, respec-
tively. Then, hyperparameters were optimized by the AutoML algorithm with the iteration
of 5, automatically. The predicted results of the reversible aging voltage superimposed
with the calendar aging voltage will be provided in our final prediction, below.
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3.4. Final Aging Voltage Prediction

We added the calendar aging component and the reversible aging component to obtain
our final aging voltage prediction. The iterative structure is adopted to realize long-term
degradation prediction [21,30]. The predicted values are used as part of the inputs that are
fed into the model for forecasting the next step. To verify the advantages of the proposed
T-AEKF-LSTM hybrid method, the traditional AEKF method, the LSTM method, and
the improved AEKF method based on three-dimensional aging factors (T-AEKF) were
used to make a comparison. For the traditional AEKF method, the initial values were the
same as the T-AEKF method introduced in Section 3.2. For the LSTM method, the hidden
units, epochs, and the sliding windows size were 50, 200, and 20, respectively, which were
obtained by testing the performance of LSTM under different configurations.

The predicted results of FC1 under 55%, 70%,and 80% training sets are shown in
Figure 9a,c,e, respectively. The traditional AEKF method can only give a linear voltage
trend due to its degradation rate remaining constant in the predicting phase. In addition,
we find it likely that a bad prediction results when the final point of the training phase is
near the abrupt voltage. The LSTM method can predict local nonlinearity which contributes
to capturing the voltage recovery phenomenon. However, its output voltage gradually
deviates from the measured voltage as time goes on. The T-AEKF method can predict
the overall aging trend of PEMFC more accurately than the traditional AEKF method.
This decomposition forecasting strategy can prevent the AEKF model from being affected
by short-term disturbance and can make the prediction more robust. In addition, three-
dimensional aging factors help to model and fit the aging process more accurately, since
this scheme can adjust the degradation rate according to the different time. Based on
the T-AEKF method and combined with the reversible aging model, the T-AEKF-LSTM
method can further capture the voltage recovery information. It can predict the periodic
fluctuation in voltage and give a better prediction performance of the aging process for
PEMFC compared with other methods.

The prediction results under the dynamic condition for FC2 with 55%, 70%, and
80% training sets are shown in Figure 9b,d,f. It can be found from Figure 9a,d that the
AEKF method is not robust enough, as its predicted voltage deviates significantly from the
measured voltage. The LSTM method can predict the reversible aging phenomenon after
every characterization but fails to trace the aging trend accurately. However, its short-term
degradation prediction is more accurate than AEKF and T-AEKF. The T-AEKF can trace
the degradation trend better than AEKF but it is not capable of forecasting the reversible
aging process. The proposed T-AEKF-LSTM hybrid method can trace the degradation
trend and predict reversible voltage components more accurately. It can be noticed that the
prediction voltage of the hybrid method will rise slightly at the end of the aging test, which
can be ascribed to the memory of the LSTM network, suggesting the occurrence of voltage
recovery phenomenon at that time. Thus, the periodic fluctuation in voltage after every
characterization test and the nonlinear variation in voltage can be accurately predicted by
our hybrid method.

The root mean square error (RMSE) and mean absolute percentage error (MAPE) are
used to evaluate the long-term voltage prediction performance [26]. The prediction error is
used to evaluate the RUL estimation results. Those criteria are expressed as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (20)

MAPE =
1
N

N

∑
1

|yi − ŷi|
|yi|

× 100 (21)

Error = RUL − RÛL (22)
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where ŷi is the predicted voltage, and yi is the measured voltage. RUL represents the actual
RUL of the PEMFC, and RÛL represents the estimated RUL.
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Figure 9. The prediction results of AEKF, LSTM, T-AEKF, and the proposed method (T-AEKF-LSTM).
(a) FC1 with 55% training data; (b) FC2 with 55% training data; (c) FC1 with 70% training data;
(d) FC2 with 70% training data; (e) FC1 with 80% training data; (f) FC2 with 80% training data.

From the prognostic results for FC1 in Table 3, we can observe that the RMSE and
the MAPE of LSTM remain the worst among the four methods. The RMSE and MAPE
of T-AEKF are always smaller than AEKF due to the introduction of three-dimensional
aging factors as well as the voltage decomposition framework. Since the T-AEKF-LSTM
improved the abilities of modeling the reversible aging process based on an LSTM network,
it has the lowest prediction error in most cases.

Table 3. The prognostic results for FC1.

Data AEKF LSTM T-AEKF
T-AEKF-
LSTM

RMSE
55% 0.0181 0.0338 0.0084 0.0083
70% 0.0152 0.0232 0.0087 0.0092
80% 0.0151 0.0188 0.0102 0.0091

MAPE
60% 0.4673 0.9101 0.1994 0.1913
70% 0.2792 0.5686 0.1821 0.2031
80% 0.4140 0.5214 0.2162 0.2039
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Following the prognostic results for FC2 shown in Table 4, the T-AEKF-LSTM method
has the best performance among the three methods according to its lowest prediction error.
Particularly, in FC2, the RMSE and MAPE of T-AEKF-LSTM are much lower than that of
T-AEKF, while in FC1, the improvements of T-AEKF-LSTM over the T-AEKF method is not
very obvious. A possible explanation may be that the voltage recovery phenomenon of FC2
is more severe than FC1 and it greatly reduces the prediction accuracy of EKF-series-based
approaches. In contrast, the reversible aging model can capture this detailed information
and can significantly improve the prediction performance. The dramatic fluctuation in
voltage can also contribute to the training of the LSTM network. The results above show that
the proposed hybrid prognostics method can give a more robust and accurate prediction
compared with single AEKF or LSTM methods.

Table 4. The prognostic results for FC2.

Data AEKF LSTM T-AEKF
T-AEKF-
LSTM

RMSE
55% 0.0201 0.0295 0.0161 0.0113
70% 0.0211 0.0340 0.0169 0.0126
80% 0.0221 0.0314 0.0194 0.0107

MAPE
60% 0.5149 0.7690 0.4104 0.3027
70% 0.5716 0.8293 0.4244 0.3251
80% 0.5446 0.8506 0.5226 0.2640

3.5. RUL Estimation

In this paper, the prediction results of a 55% training set were used to calculate the
RUL of PEMFC. The degradation degree 4.0% of the initial voltage was selected as the end
of life for fuel cell [33,39]. Since FC2 degrades faster than FC1, 5.0% of the initial voltage
was also used to further evaluate the RUL estimation for FC2.

The RUL prediction results based on AEKF, LSTM, T-AEKF, and T-AEKF-LSTM are
demonstrated in Table 5. The positive and negative values of the prediction error represent
an early prediction or a late prediction, respectively. In order to predict faults in advance,
an early prediction is preferred. From Table 5, the RUL estimation error of the proposed
T-AEKF-LSTM method is within 30 h and always lower than that of other methods, which
indicates that it can give a more accurate RUL estimation among them. The reason for the
missing data is that the prediction performances of those methods are too bad to give the
prediction errors.

Table 5. The RUL prediction results for FC1 and FC2 (55% training data).

Stack
Degradation

Degrees
Actual
RUL

AEKF LSTM T-AEKF
PAM-ARMA
-TDNN [33]

T-AEKF
-LSTM (Ours)

RUL Error RUL Error RUL Error RUL Error RUL Error

FC1 4.0% 247 h 216 h 31 h >446 h - 283 h −36 h 252 h −5 h 244 h 3 h

FC2 4.0% 55 h 204 h −149 h 207 h −152 h 172 h −117 h 156 h −101 h 29 h 26 h
5.0% 359 h >459 h - >459 h - 386 h −27 h 381 h −22 h 348 h 11 h

As demonstrated in Table 5, the RUL estimation error of the proposed method is always
lower than that of the PAM-ARMA-TDNN method [33] for each degradation degree, which ver-
ified the advantages of the proposed method. The results above demonstrate the effectiveness
and robustness of the proposed method under static and dynamic operating conditions.

4. Conclusions

A robust hybrid prognostic method for PEMFC was proposed in this paper. Con-
sidering the voltage recovery phenomenon, a decomposition forecasting framework was
established to predict the long-term voltage degradation for PEMFC. Firstly, the original
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voltage data was decomposed into the calendar aging component and the reversible aging
component based on LOESS. Then, we used the AEKF algorithm to predict the overall
aging trend of PEMFC based on the calendar aging component. Meanwhile, we introduced
three-dimensional aging factors to the physical aging model to better forecast the degrada-
tion trend. Next, the LSTM neural network was applied to capture the voltage recovery
information through the reversible aging component. Particularly, the AutoML approach
based on the genetic algorithm was adopted in the training phase of LSTM for the automatic
hyperparameters tuning. The iterative structure was utilized to realize long-term degrada-
tion forecasting. The final prediction of the aging voltage can be obtained by combining
the two predicted components and we can further realize RUL estimation. We verified the
capability of the proposed hybrid prognostic method by two aging datasets under different
operating conditions. Experiment results show that the proposed decomposition forecast-
ing framework can combine the advantages of the model-based method for predicting
long-term degradation trends and the data-based method for nonlinear modeling ability. In
addition, this hybrid method can realize more accurate long-term degradation prediction
for PEMFC compared with the single AEKF method or LSTM method. Developing online
prognostic methods for PEMFC under high dynamic operating conditions, for example,
in automotive applications, is still the major challenge for the prognostic research and it
needs further exploration.
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Abbreviations

The following abbreviations are used in this manuscript:

AEKF Adaptive extended Kalman filter
AIC Akaike information criterion
AutoML Automatic machine learning
BOP Balance of plant
ECSA Electrochemical surface area
EIS Electrochemical impedance spectroscopy
FC Fuel cell
GDL Gas diffusion layer
LOESS Locally weighted regression
LSTM Long short-term memory (neural network)
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MAPE Mean absolute percentage error
PEMFC Proton-exchange-membrane fuel cell
RMSE Root mean-square error
RNN Recurrent neural network
RUL Remaining useful life
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Abstract: Limited by computing resources of embedded devices, there are problems in the field of
fabric defect detection, including small defect size, extremely unbalanced aspect ratio of defect size,
and slow detection speed. To address these problems, a sliding window multihead self-attention
mechanism is proposed for the detection of small targets, and the Swin Transformer module is
introduced to replace the main module in the original YOLOv5 algorithm. First, to reduce the distance
between several scales, the weighted bidirectional feature network is employed on embedded devices.
In addition, it is helpful to improve the perception of small-target faults by incorporating a detection
layer to achieve four-scale detection. At last, to improve the learning of positive sample instances
and lower the missed detection rate, the generalized focal loss function is finally implemented on
YOLOv5. Experimental results show that the accuracy of the improved algorithm on the fabric
dataset reaches 85.6%, and the mAP is increased by 4.2% to 76.5%, which meets the requirements for
real-time detection on embedded devices.

Keywords: deep learning; computer vision; fabric detection; Swin Transformer; YOLOv5

1. Introduction

Fabric defect detection is a core and important link in the entire textile quality produc-
tion process. At present, the detection effect of existing methods for some small and widely
distributed defects cannot meet the requirements of manufacturers [1]. Thus, it is of great
importance to use accurate and efficient detection methods to improve the detection and
identification of fabric defects.

In the field of fabric defect detection, traditional image processing methods are only
suitable for detecting solid-color fabrics [2–6]. For fabrics with complex texture patterns,
such as printed and jacquard fabrics, defect types are difficult to distinguish, especially
for the detection of small defect targets. Traditional visual processing methods have been
difficult to meet the needs of enterprises. Combining traditional vision techniques with deep
learning for appearance defect detection of various objects has achieved considerable results.
Reference [7] applies supervised learning to fabric defect detection by extracting effective
features. Reference [8] trains a stacked denoising autoencoder based on Fisher’s criterion by
using defective and nondefective samples, and uses the residual threshold to locate defects.
With the development of the multiscale detection network, the detection methods of fabric
multidefects have been proposed one after another. Zhang et al. [9] proposed a method
for automatic location of fabric defects based on YOLO, which can meet the classification
and detection of colored fabrics. Wang [10] proposed a detection algorithm based on the
DeeplabV3+ model, which used the advantages of multiscale target detection and improved
detection accuracy while reducing the network model parameters, as well as the ability to
detect small-sized targets. Good results are obtained in the defect dataset.

In practical production applications, there is the problem of data imbalance in the
defects of fabrics. For example, the number of fabric defect samples is small, some span of
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fabric defect sizes is large, and the number of small defects is large. Reference [11] divides
and synthesizes multiple reconstruction residual images to obtain new defect detection
results. This method can reduce the difficulty of collecting defect samples. Huang et al. [12]
first take untrained fabric data as input. The output of the segmentation model is then used
as raw material for the decision model. This approach requires only a few defect samples
and can train a more accurate detection model.

In this study, we propose an efficient and intelligent detection method for fabric defects.
The main contributions of this paper are as follows:

1. Based on the Transformer structure, we optimize the YOLOv5 v6.1 algorithm with
the Swin Transformer as the backbone, and the introduction of a multiwindow slid-
ing self-attention mechanism complements the convolutional network to improve
classification accuracy.

2. In the neck layer, the BiFPN is used to replace the original FPN to enhance the fusion
of semantic information between different layers, and a small-target detection layer is
added to improve the detection effect of the model on small targets.

3. We introduce the generalized focal loss function to enhance the model’s instance learn-
ing of positive samples, in order to alleviate the problems caused by the imbalance of
fabric samples.

4. Finally, we conducted ablation experiments and an in-depth analysis of the impact
of the above-mentioned improved methods and several attention mechanisms on
detection accuracy and real-time performance. Our proposed method outperforms
current popular object detection models on a self-created fabric dataset.

In the remainder of this paper, the second section summarizes the YOLOv5 algorithm
and the optimization method of this paper. Section 3 presents the fabric dataset, experi-
mental details, and concrete results. The last section is the conclusion of this paper and the
prospect of follow-up work.

2. Materials and Methods

There are generally two target detection methods at present: two stage and one stage [13].
Two stage first generates a series of sample candidate boxes through the algorithm, and then
performs classification through a series of convolution operations. Mainstream two-stage
algorithms include the R-CNN network proposed by Girshick [14] in 2014. The two-stage
network is characterized by high accuracy of positioning and detection, but due to the complex
network structure and poor real-time performance, it is not effective for rapid detection in
the industry. One-stage methods do not need to select the sample candidate frame. They
can directly obtain the coordinates and type of the target, which not only has better real-time
performance, but also has advantages in small-target detection [15–18].

2.1. Structure of the YOLOv5

You only look once [19] (YOLO) is a single-stage target detection algorithm based on
full convolution. YOLO [20] can predict the entire picture and give all the detection results at
one time. The YOLOv5 algorithm is the fifth version of the YOLO algorithm launched by the
Ultralytics LLC team. Its model has the characteristics of simplicity, speed, and portability.

The YOLOv5 algorithm framework consists of the input, the backbone, the neck, and
the prediction. The structure diagram is shown in Figure 1.

The input of YOLOv5 mainly uses two sections: mosaic data enhancement and adap-
tive anchor frame. Mosaic data enhancement can read four pictures at a time; randomly
scale, crop, and arrange each picture; and finally, randomly splice them together. This
can greatly enrich the number of datasets and make the entire network more robust. For
pictures of different sizes, first, the size of the input image is adjusted to a uniform set size,
and in the process of scaling and filling, the original samples are adaptively populated and
then sent to the backbone network.
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Figure 1. Network structure for YOLOv5.

The backbone network consists of a Conv structure and C3 structure. The CSP [21]
structure solves the problem of excessive calculation in reasoning from the perspective of
model structure design. The role of the SPPF layer increases the receptive field through
convolution operations and maximum pooling. This module can strengthen the nonlinear
expression capability.

The feature fusion layer neck adopts the structure of PAN + FPN [22], which fuses
different detection layers with the main feature layer. The FPN only enhances the transmis-
sion of semantic information, but the ability to transmit low-level positioning information
is not strong. On the basis of the FPN, PAN adds a bottom-up pyramid through a 3 × 3
convolution to enhance the transmission of positioning information. On the prediction
side, this module uses GIoU [23] to calculate the loss value of the bounding box [24].

2.2. Swin Transformer Model

The Swin Transformer [25] model consists of multilayer perceptron (MLP), layer
normalization (LM), window multihead self-attention (W-MSA), and sliding window
multihead self-attention(SW-MSA). The structure of the Swin Transformer is similar to the
traditional residual structure, so it can be directly used in convolutional networks. The
Swin Transformer’s structure in the backbone layer is shown in Figure 2.
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Figure 2. Swin Transformer network structure.
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The workflow is as follows: (1) The Swin Transformer first inputs an RGB three-
channel image of size H × W. It divides the input image into 4 × 4 patches through the
segmentation layer, and its feature dimension is divided into h/4 × h/4. (2) In the process
of Stage 1, the dimension of the output is changed to C through linear embedding, and then
dispatches the Transformer block for Stage 2. (3) The purpose of Stage 2 to Stage 4 is the
same. After the 2 × 2 adjacent blocks are spliced through image block patch merging, the
spliced high-dimensional features are then reduced in dimension through a convolution,
and the output dimension becomes 2C. Then, Stage 3 is repeated 6 times, and the output
after dimensionality reduction is 4C. Stage 4 is repeated twice, and the output dimension
becomes 8C.

The standard Transformer encoder consists of a multihead self-attention mechanism
and a multilayer perceptron. It uses the layer norm at the beginning of the module, and
then uses residual connections between each module. Figure 3 shows its structure. For the
Swin Transformer backbone, the layer and calculation formula is:

ẑl = W − MSA (LN (zl − 1)) + zl − 1 (1)

zl = MLP(LN(ẑl)) + ẑl (2)

ẑl + 1 = SW − MSA (LN (zl)) + zl (3)

zl + 1 = MLP(LN(ẑl + 1)) + ẑl + 1 (4)

LN
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LN

MLP

LN

SW-MSA

LN

MLP

z^l

zl

zl-1

zl+1

z^l+1
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Figure 3. Swin Transformer’s backbone network.

In Formulas (1) – (4) above, ẑ represents the feature output by MLP, and zl is the output
feature of W-MAS. W-SMA is a traditional window-partitioned self-attention mechanism,
while SW-MSA represents a multihead self-attention mechanism using shifted window
partitions. By introducing adjacent nonoverlapping windows in the upper layer, the
connection between each layer is increased and the classification accuracy is improved.

2.3. Multiwindow Sliding Self-Attention Mechanism

The self-attention in Transformer is the key module of the algorithm. The traditional
Transformer structure uses a global self-attention mechanism [26], which greatly increases
the amount of computation. The self-attention mechanism based on the local window
proposed by the Swin Transformer can make the computing window evenly divide the
image in a nonoverlapping manner, and the computational complexity of the window
based on H × W image blocks is much smaller than that of the global attention mechanism.

SW-MSA is not limited to different windows for information exchange. As shown in
Figure 4, in the first layer, the normal window division method, but at the l + 1 layer, the
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door division is moved, and the use of the mobile mouthpiece splitting method makes it
possible to connect with each other without overlapping the entrance, greatly increasing
the reception area of the mouth and increasing the special delivery ability.

Layer 1 Layer 1+1

A local window to perform 
self-attention

A patch
 

Figure 4. SW-MSA window moves.

2.4. Multiscale Feature Fusion Feature Pyramid Network

In a convolutional neural network, the feature maps obtained by convolutional layers
with different parameters contain the feature information of different targets. The feature
map obtained after deep convolution has higher resolution, mainly contains position infor-
mation, but lacks semantic information, while the content obtained by shallow convolution
is just the opposite of the former. Therefore, it is necessary to fuse the feature information
of the deep feature map and the shallow feature map. The original YOLOv5 algorithm
bidirectionally fuses the FPN and PAN in the neck layer to extract the information from
different feature layers.

The size of some defects in the fabric is too small, which will cause the feature infor-
mation extracted by YOLOv5 to ignore the small defect information. In order to strengthen
the feature fusion between different scales and increase the detection accuracy, this paper
introduces a weighted bidirectional feature network [27] (bidirectional feature network),
which uses weighted feature fusion and cross-scale connections to obtain multiple levels.
The global features of semantic information can strengthen the recognition accuracy of
small object defects. The structure of the BiFPN is shown in Figure 5.

P7

P6

P5

P4

P3

P7

P6

P5

P4

P3

Figure 5. Structure of BiFPN.

The model is used for multidefect detection, and the target defect size on the fabric
is not the same. Compared with common target detection algorithms (feature pyramid
networks (FPNs)), the BiFPN uses skip connections to lighten the network. An attention
mechanism is added to extract deeper feature information. Feature fusion is performed
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bidirectionally through upsampling and downsampling to improve the feature fusion effect
between different layers.

Feature maps of 3 different sizes are used in the original YOLOv5 network results to detect
objects with inconsistent sizes. When we set the input image size to 640 × 640, after a series of
convolution and sampling operations, the size of the output detection feature map is 20 × 20,
40 × 40, and 80 × 80, which can detect 32 × 32, 16 × 16, and 8 × 8 targets respectively.

Considering that the pixel size occupied by the small fabric defect targets is extremely
small, to further strengthen the detection accuracy of small objects, we improve the algo-
rithm to increase the number of upsamples to improve the lower-level feature information.
Four-scale detection is formed by adding a 160 × 160 detection layer. The improved detec-
tion was shown in Figure 6. For the 640 × 640 input image, the detection layer can detect
the 4 × 4 size target, which further improves the ability to extract small pixel defects in the
fabric image.

Feature 
fusion 

network

160×160

80×80

40×40

20×20

Detection layer

Input 640×640

Downsample

 
Figure 6. Improved four-scale detection layer.

2.5. Improvement of Loss Function

The loss function is obtained by calculating the error between the real frame and the
predicted frame of the positive sample. The loss function of YOLOv5 mainly includes the
classification loss function, the localization loss function, and the confidence loss function.
In fabric defect detection, the area where the defect is located accounts for a small proportion
of the entire fabric image. During training, we regard the area containing the defect as a
positive sample and the normal area as a negative sample, which will lead to defective
samples. The number of defects is much lower than the normal number of samples in the
image area of the fabric. The loss value obtained is mostly the background loss of negative
samples. Therefore, focal loss [28] is often cited to balance the number of foreground and
background detection samples.

However, there are two problems with focal loss. One is that the focal loss function
calculates the positioning quality score (IoU score) and the classification score (classification
score) separately during training, but the two are comprehensively multiplied during testing
as nonmaximum suppression (nonmaximum suppression (NMS)) sorting basis. This method
will lead to a large error between training and testing, which will lead to a decrease in the
performance of the detection model and ultimately affect the detection accuracy.

To solve the above problems, the IoU score is merged with the classification score.
Since the combined category label becomes a continuous value of 0–1, and focal loss only
calculates discrete labels of 0 or 1, this paper introduces generalized focal loss [29] to realize
the fused representation of the IoU score and classification score. Its calculation formula is
as follows:

QFL(σ) = −|y − σ|β ((1 − y) log (1 − σ) +ylog(σ)) (5)

GEL (py1, pyr) = −|y − (y1py1 + yrpyr)|β ((yr − y) log(py1) + (y − yl) log(pyr)) (6)
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y is the overall label of the detection target, and yr and yl are the true values of classification
and regression. py1 and pyr are the predicted values corresponding to the former, and β is
the hyperparameter. Quality focal loss and distribution focal loss make up this function.
Among them, quality focal loss uses hyperparameters to ensure the balance between the
number of categories. Its formula is as follows: σ stands for the predicted value, and y
stands for the quality label between 0 and 1.

3. Experiments

3.1. Experimental Platform

The experiments in this paper are completed in the environment of Table 1.

Table 1. The experimental environment.

Project Hardware Specifications (Software Version)

operating system Ubuntu18.04
CPU AMD Ryzen5 5600X
GPU NVIDIA GeForce RTX 3060TI

Software environment Pytorch 1.7.0, Python3.9, OpenCV 4.6, CUDA 11.6, CuDNN 8.4.0

3.2. Dataset Description

The data set used in the experiment were taken by Alibaba Cloud Tianchi [30] in a
textile workshop in Guangdong Province. After manual sorting and selection, 10,321 pic-
tures were selected, including 8 kinds of defects. They are ColorFly, Singeing, Knot, Warp
Loosening, ColorOut, Warper’s Knot, Hole, and Coarse. An example of each type of fabric
defect is shown Figure 7. The specific number of fabric faults is shown in Figure 8.

ColorFly Singeing Knot

ColorOut Warper's Knot Hole Coarse

Warp Loosening 

 

Figure 7. Examples of different types of fabric defects.
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Figure 8. Statistics of fabric defect types.

Figure 9 illustrates the proportion of fabric defects in the entire fabric area. It can be
seen that in the fabric data set, most of the defects are small-sized defects, and the features
are difficult to capture, and the aspect ratio of the defects is widely distributed, so detection
is difficult.

Figure 9. Proportion of defect size.

For the sake of the training accuracy of the model and to prevent overfitting, this paper
divides the fabric data set into training, validation, and test set. Its division proportion is
80%, 10%, and 10%.

Due to the low number of certain kinds of defects in the original fabric dataset, it may
cause underfitting of this type of defect. In this paper, methods such as flipping, zooming,
adding noise, splicing, and mosaic enhancement are used to expand the number of some
fabric images. The effect of mosaic data enhancement is shown in Figure 10. Combining
four different fabric pictures enables the model to learn various types of features during
each training, thereby improving the detection and generalization capabilities of the model,
and consecutive effects of the imbalance in the number of fabrics.
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Figure 10. Mosaic data enhancement.

3.3. Evaluation Indicators and Experiment

To demonstrate the effectiveness of the modified algorithm for fabric detection, this
experiment adopts precision rate (P), recall rate (R), and mean average precision (mAP) as
evaluation indicators of the model.

The mAP is an index to comprehensively measure the accuracy of model detection, and
it is the most important index in target detection. Its specific calculation formula is as follows:

Precision = TP/(TP + FP) (7)

Recall = TP/(TP + FN) (8)

mAP = ∑AP/C (9)

TP is the number of correctly detected targets, FP is the number of falsely detected
targets, FN is the number of missed detections, C is the total number of defect categories,
and ∑AP is the sum of the precision values of all defect categories.

In addition, this experiment also introduces the frames per second (FPS) and the
parameter size of the model as one of the evaluation indicators of the model performance.
The higher the speed, the more it can satisfy the needs of real-time detection of fabrics.

In the training phase of this model, the input size of the fabric image is changed to
640 × 640, the initial learning rate is set to 0.0005, the optimizer selection is SGD, and the
batch size is changed to 8.

Figure 11 shows the variation of loss value with epoch during training of the bench-
mark network and the improved network. Based on the loss function graph, we know
that the loss decreases rapidly during the 25 epochs of training, and the loss decreases
gradually and becomes smooth after 150 epochs after training. It can be shown that the
network training has not occurred overfitting. The loss of the improved model training
and validation has a higher drop rate, indicating that the training effect of the improved
model is better than the baseline model.
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Figure 11. Loss function graph. (a) Train loss; (b) Val loss.
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3.4. Loss Function Effect Verification

In order to solve the problem of fabric imbalance, this paper first performs mosaic
data enhancement, translation, flip, and other operations on the data to improve the
generalization of the network by increasing the number. Secondly, the generalized focal
loss function is used to enhance the model’s learning of positive samples. In this section,
focal loss and generalized focal loss are introduced in the benchmark network to explore
the impact of the improvement of the loss function on the detection accuracy.

It can be seen from Table 2 that the generalized focal loss function introduced in this
paper can improve the classification effect. The generalized focal loss function increases the
learning weight of positive samples and reduces the learning weight of useless negative
samples, so as to resist the imbalance caused by positive and negative samples. Secondly,
the generalized focal loss function predicts the results through discretization to improve
the value of the IoU.

Table 2. Loss function optimization result.

Algorithm mAP (%)

YOLO 72.3
YOLO + Focal Loss 72.4 (+0.1)

YOLO+ Generalized Focal Loss 72.8 (+0.5)

3.5. Ablation Experiment

Through the ablation experiments on the improved algorithm structure, the effec-
tiveness of our proposed modules and improvements in the performance of fabric defect
detection networks is verified. In this paper, YOLOv5 is used as the benchmark network
and the structure using Swin Transformer as the backbone and introducing the BiFPN
and the small-target detection layer structure called YOLO-SB. On this basis, the network
obtained by removing the BiFPN and introducing generalized focal loss is called YOLO-SL.
On the basis of the BiFPN and small-target layer, the network that only introduces gen-
eralized focal loss is called YOLO-LB. The network introduced by all the improvements
is called YOLO-TLB. The experimental results are shown in Table 3. The mAP results of
different defect types are shown in Table 4.

Table 3. Ablation experiment.

Algorithm
With Swin

T
With Loss

With
BiFPN

mAP@0.5 Recall Weight (MB)

YOLO-LB
√ √

73.8 71.4 14.9
YOLO-SL

√ √
74.6 70.6 18.3

YOLO-SB
√ √

74.8 71.8 20.0
YOLO-

TLB
√ √ √

75.9 73.1 20.1

Table 4. Results for each fabric defect category.

Defect Type
mAP@0.5

YOLOv5 YOLO-LB YOLO-SL YOLO-SB YOLO-TBL

ColorFly 77.6 79.8 76.9 79.1 81.9
Singeing 60.3 68.8 67.5 64.9 66.7

Knot 72.7 68.2 65.8 73.1 73.7
Warp Loosening 58.5 61.7 66.8 66.8 62.6

ColorOut 88.0 89.1 91.2 89.6 91.3
Warper’s Knot 53.6 53.2 59.0 55.4 55.2

Hole 73.7 79.5 78.2 76.9 82.1
Coarse 92.7 90.2 91.3 92.8 93.7

All classes 72.2 73.8 74.6 74.8 75.9
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From the comparison between the baseline network, we can see that after using
the light Swin Transformer backbone network to replace the original backbone layer, the
ability to reshape features and extract local features can be strengthened, and the detection
performance of small fabric defects can be improved. Compared with FPN, the weighted
bidirectional feature network can enhance the feature fusion between different scales,
improve the reuse of features, and facilitate the detection of small fabric defects. On
the second basis, by adding a detection layer for comparison, both the map and recall
rates are increased, indicating that the new detection layer improves the detection effect
of small pixel defects. Comparing the results by YOLOV5 and YOLO-TBL, the recall
rate is greatly improved after adding the generalized focal loss function, and the map
also increases. The network is fully trained on the positive samples, which alleviates the
extremely imbalanced number of background samples and foreground samples. Finally, the
improved method proposed has an mAP of 75.9% and a recall rate of 73.1% in fabric defect
detection. The experiments show that the improved algorithm can achieve high-precision
and high-efficiency fabric defect detection.

In addition, we use a gradient-free algorithm Eigen CAM [31] to generate a network
activation heat map to visually show the effect of improving the ablation. The comparison
of the CAM heat map of the ablation experiment results in this section is shown in Figure 12.

 
(a) (b) (c) (d) 

Figure 12. Heatmaps of different networks in ablation experiments: (a) CAM heat map of YOLO-LB;
(b) CAM heat map of YOLO-SL; (c) CAM heat map of YOLO-SB; (d) CAM heat map of YOLO-TLB.
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3.6. Ablation Experiments with Different Attention Mechanisms

To verify the improvement effect of the moving window-based mechanism proposed
in this paper on the fusion of the YOLOv5 network model and other attention mechanisms,
this paper adds several classic attention mechanisms to the neck layer for comparative
experiments. Table 5 shows the experimental results of different attention. Figure 13 shows
the effect of the CAM heatmap after adding the attention mechanism.

Table 5. Results of different attention mechanisms.

Attention Mechanism Model mAP (%)

YOLO-TLB 75.9
+CBAM [32] 76.1 (+0.2)

+SE [33] 75.1 (−0.8)
+GAM [34] 76.5 (+0.6)

 
Figure 13. Attention of Eigen CAM heatmap.

This attention mechanism can explicitly show the area that the model pays attention to
focus on. From the experimental results, it can be seen that after adding the Transformer’s
self-focus mechanism, mAP has increased, which can effectively strengthen the feature
extraction capability of the model for low-resolution images, help to retain the feature
information of fabric defects, and strengthen the network’s ability to detect features around
small defects. After introducing the GAM attention to the neck, the extraction ability of
small objects is further improved.

3.7. Results Visualization

To more intuitively feel the detection effect of the modified method on defects, we
choose several fabric images to compare the detection results. The left picture is the marked
image, the middle picture is the unimproved YOLO algorithm detection picture, and the
right picture is the modified algorithm detection picture. From Figure 14, the original
YOLO algorithm to detect fabric defects has problems such as false detection of similar
objects, missed detection of small defect objects, or poor detection effect of overlapping
defects. The improved algorithm has a significantly improved detection effect.
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(a)

(b)

(c)  
Figure 14. Some visual detection results. The first picture on the left is the labeled picture, the middle
picture is the detection result of the original YOLOv5 algorithm, and the picture on the right is the
detection result of the improved algorithm: (a) Detection result of the similar appearance of two kinds
of fabric defects; (b) detection result of small target size defects; (c) detection result of overlapping
fabric defects.

3.8. Comparison with State-of-the-Art Methods

To further demonstrate the advantages of the modified model in this paper, different
mainstream target detection networks are trained under the same dataset, and the method
proposed in our paper is compared to five classical target detection algorithms under the
same experiment platform and dataset. The experimental results are shown in Table 6.
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Table 6. Comparison with state-of-the-art methods.

Algorithm Backbone Network Precision (%) mAP (%) FPS

SDD [35] VGG16 50.6 40.2 83.3
Faster R-CNN [36] ResNet50 76.2 65.9 12.5
YOLOv3-Tiny [37] Darknet53 46.1 46.7 113.6
YOLOv4-Mish [38] CSPDarknet 67.8 58.8 111.1

YOLOv5 [39] CSPDarknet 77.0 72.1 90.9
OUR Swin Transformer 85.6 76.5 58.8

Through the comparison of the test results of various classic target networks on the fabric
defect data set, the improved Swin Transformer algorithm proposed in this paper achieves an
average accuracy of mAP of 76.5% and an accuracy of 85.6%. Compared with other detection
methods, the algorithm has certain advantages, and the number of detections per second
reaches 58.8, which meets the needs of enterprises and the actual situation.

4. Conclusions

This paper takes fabric defects as the research object, and realizes the precise location
and classification of fabric defects by improving the algorithm. The YOLOv5 model is
used as the baseline network, and the Swin Transformer encoder is added to the backbone
network of the fabric defect detection model. The multiwindow sliding self-attention is
added to strengthen the weighted bidirectional feature network, and a detection layer that
can detect 4 × 4 small targets is added to the four-scale detection to enhance the detection
of small defects around the extraction of feature information. The generalized focal loss
function is introduced to strengthen the algorithmic learning of positive sample instances
and reduce the missed detection rate. After experimental comparison with the above five
target detection algorithms, compared with the original frame, the modified fabric defect
detection algorithm of the Swin Transformer proposed achieves 76.5% in the mAP and
58.8 FPS in the real-time detection speed, which meets the needs of enterprises.

In subsequent research, we will continue to optimize and improve the fabric defect
method. Under the condition of keeping the detection accuracy basically unchanged, the
number of model calculation parameters and time consumption or the fabric samples
required for training should be reduced so that the model can achieve the same detection
effect in embedded or mobile terminals.
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Abstract: AbstractVibration signal analysis of the traction machine is an important part of the current
rotating machinery state recognition technology, and its feature extraction is the most critical step. In
this study, the time-frequency characteristics of the vibration of the traction machine under different
elevator running directions, running speeds and load weights are analyzed. The novel demodulation
method based on time-frequency analysis and principal component analysis (DPCA) is used to
extract the periodic modulated wave signal. In order to compare different influence of background
noise and unknown frequency influence, the Fast Fourier Transform (FFT) and Short Time Fourier
Transform (STFT) methods are used to extract the characteristics of the traction machine vibration
signal, respectively. Under different load conditions, it is difficult to observe the obvious differences
and similarities of the vibration signals of the traction machine by time-frequency method. However,
the DPCA demodulation method provides a guarantee for the reliability and accuracy of the state
identification of the traction machine.

Keywords: vibration signal; traction machine; feature extraction; state identification

1. Introduction

Elevator is a large-scale complex equipment integrating mechanical, electrical and
control. If it breaks down, it will directly affect the safe and efficient operation of the
elevator. Nowadays, elevators are used more and more frequently in daily life and produc-
tion. Therefore, the number of elevators shows a trend of continuous growth [1], and the
accompanying elevator failure and maintenance problems are becoming more and more
prominent [2,3]. As the power device of the elevator, the traction machine determines
whether the elevator can operate normally. With the vigorous development of science and
technology, the state recognition technology of elevator traction machine is also constantly
improving [4,5].

In recent years, the fault diagnosis technology of elevator traction machine with the
artificial intelligence [6] or image processing [7] has been widely applied and developed.
However, these methods face problems, such as non-universality of diagnostic model, high
cost of model training, and requirement for massive fault samples. In addition, the selection
of fault features is also of great significance to the optimization of diagnosis model.

Traction machine is a complex mechanical structure, which is closely connected by
various parts. Therefore, the state identification of the traction machine can be diagnosed
by various signals, such as vibration, noise, current, temperature, braking torque, speed,
and power. Many useful information is hidden in the vibration signal of the traction
machine [8]. These signal characteristics can reflect the working condition of the equipment.
By analyzing the vibration characteristics of the equipment, the safety operation, accident
prevention and maintenance cost reduction can all be accomplished.

Based on the vibration signals, a lot of research have been done in which signal
feature extraction methods are the most important section of fault diagnosis [9,10]. The
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time domain method and frequency domain method have been commonly used in early
fault diagnosis engineering [11]. Filtering, amplification, statistical feature calculation,
correlation analysis, and other time-domain signal processing are referred to as time-
domain signal analysis. However, it only reflects the change of amplitude with time and
lack frequency bands information. The frequency domain analysis method is to describe
the raw signal in the frequency domain, which is more intuitive than the time domain
analysis method. However, traditional frequency domain analysis might fail to extract
the characteristics information of traction machines due to the heavy background noise
and complicated excitation sources [12]. Therefore, only relying on the frequency domain
analysis method is far from meeting the current requirements of traction machine fault
diagnosis. This brings huge challenges to the status identification and fault diagnosis of
traction machines. Therefore, a time-frequency combination processing method has been
proposed. Short-time Fourier transform (STFT) [13,14] and wavelet transform (WT) [15]
are the common used processing tools with fine time localization and frequency resolution.
These methods are realized by superposition of Fourier transform in different fixed window
length. However, due to lacking self-adaptability, the quality of feature extraction might be
affected by the selection of window function or wavelet basis function.

In addition, the above methods can extract the characteristics of vibration signals, but
the collected vibration signals usually contain background noise and unknown frequency
interference. To eliminate noise component and extract the fault feature information of
raw vibration signals, several demodulation techniques have been applied to past research,
such as Hilbert transform (HT) [16], empirical mode composition (EMD) [17], spectral
kurtosis (SK) [18], nonstationary analysis [19–21], and cyclostationary analysis [22–24].
These methods have been applied to modulation frequency extraction already, which noted
the modulation mechanism in a rotating machine.

Feng et al. [25,26] proposed an adaptive iterative generalized demodulation method
to extract the modulation features in nonstationary analysis. The vibration characteristics
of hydraulic turbine and planetary gearbox have been successfully found in the joint time-
frequency domain. Most vibration signals of traction machine are non-stationary signals,
but they are cyclostationary signals, namely, the correlation function of traction machine
signals is periodic function of time. In view of the cyclostationary analysis theory, a variety
of methodologies have been proposed, in which cyclic modulation spectrum (CMS) and
fast spectral correlation (Fast-SC) are two typical cyclostationary tools [22]. However, they
did not gain its deserved attention because of high computational cost.

Wang et al. [27] improved the cyclostationary methods with an application of Teager
Kaiser energy operator (TKEO), which can enhance fault feature recognition with low
computational burden. Song et al. [28,29] proposed a demodulation method based on
time-frequency analysis (TSA) and principal component analysis (PCA) and applied it
to the modulation frequency extraction of pump and permanent magnet synchronous
motor (PMSM). Moreover, due to dimensionality reduction of time-frequency distribution
matrix, the burden of high computational cost was greatly relieved. The main process of the
algorithm is as follows: Firstly, the raw vibration signal is transformed into time-frequency
domain by STFT. Then, the PCA method is used to reduce the dimensionality of the time-
frequency spectrum in order to extract the eigenvalues of the principal components. Finally,
the principal components are reconstructed to obtain the modulation signals.

Among the above demodulation methods, it could be found that the demodulation
method base on PCA (DPCA) has great potential for applications in traction machine. In
addition, although the fault diagnosis technology of elevator traction machine based on
artificial intelligence or image processing has been widely applied and developed. However,
few investigations have been done to extract and analyze the modulation features of traction.
The modulation mechanism of traction machine has also rarely been involved. These above
issues have greatly hindered the development of elevator fault diagnosis technology.

In this paper, the modulation characteristics of the traction machine vibration signal
were extracted through a demodulation method based on time-frequency analysis and
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principal component analysis (DPCA). The characteristics extracted by DPCA is more
prominent under the interference of background noise and unknown frequency, which
is helpful to the state identification of the traction machine. The principle of signal de-
modulation method and experiential setting are introduced respectively in Section 2. In
Section 3, the vibration signal of the traction machine is processed by FFT, STFT and DPCA
methods. The influence of different working conditions on the vibration of traction machine
is discussed, which shows the superiority of the demodulation technology. Finally, the
conclusions are drawn in Section 4.

2. Methodology

2.1. DPCA Method

To identify the state of machinery, the mainly three steps are as follows: acquisition of
monitoring signals, feature extraction of monitoring signals, and pattern recognition and
diagnosis of the state are carried out. For the traction machine state recognition technology,
the extraction of state features is hard work, which directly affects the accuracy of state
diagnosis and the reliability of early prediction.

The state parameters of the tractor during operation are hidden in the raw signals.
Therefore, the extraction of the state parameters has become an important factor affecting
the accuracy of the state identification. Based on the feature extraction, various signal
processing techniques have been developed, which mainly involved time domain analysis,
frequency domain analysis, time-frequency analysis, etc. [30]. Although the above methods
can extract the features of vibration signals, the collected vibration signals usually contain
background noise and unknown frequency interference. The amplitude demodulation
process (also known as high frequency resonance, resonance demodulation or envelope
analysis) separates low frequency from high frequency background noise [31]. In this
paper, the DPCA method was adopted for feature extraction [28]. DPCA algorithm mainly
includes: time-frequency analysis, principal component analysis and feature extraction.

(1) Time frequency analysis.
When the traction machine operates stably, its key modulation component is mod-

ulation signal. The single component modulation signal of the traction machine can be
expressed in Equation (1), which is mainly composed of modulation signal and carrier signal.

x(t) = xm(t)xc(t) (1)

where x(t) is the amplitude modulation signal of the traction machine, xm(t) is the modula-
tion signal, and xc(t) is the carrier signal.

The time-frequency distribution of the monitoring signal can be expressed in Equation (2).

PX( f , t) =
∞∫

−∞

xm(τ)xc(τ)w(t − τ)e−j2π fτdτ (2)

where PX (f, t) is the time-frequency distribution function of the monitoring signal, and w
(t) is the window function of the STFT.

The STFT of the modulation signal model of the traction machine can be approximated
as follows, as shown in Equation (3).

∞∫
−∞

xm(τ)xcw(t − τ)e−j2π fτdτ ≈ xm(τ)

∞∫
−∞

xc(τ)w(t − τ)e−j2π fτdτ (3)

The time spectrum of the modulated signal is further simplified to obtain Equation (4).

P( f , t) ≈ xm(t)
∞∫

−∞

xc(τ)w(t − τ)e−j2π fτdτ = xm(t)PC( f , t) (4)
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where P (f, t) represents the time-frequency distribution function of the detection signal, PC
(f, t) represents the time-frequency distribution function of the carrier signal.

(2) Principal component analysis.
Principal component analysis is a classical data dimensionality reduction method,

which is mainly realized by the following algorithms.
Firstly, the covariance matrix is solved. The matrix formula is shown in Equation (5).

Pcov = cov(P(t, f )) (5)

where Pcov represents the covariance matrix of the time-frequency distribution matrix, cov()
represents the covariance operator.

Secondly, there is eigenvalue decomposition. As shown in Equation (6).

[V, U] = eig(Pcov) (6)

where eig() represents the eigenvalue decomposition operator. V, U represent eigenvalue
matrix and eigenvector matrix respectively.

Thirdly, eigenvalue selection. The order of the selected eigenvalue is determined by
the maximum value of the difference spectrum, as shown in Equation (7).

k ≥ i|max(δi=(λi−λi+1))
(7)

where k represents the order of the selected eigenvalue, δi represents the difference spectrum
value.

Finally, principal component reconstruction. The corresponding principal component
modulation signal PPCi(t) can be obtained, as shown in Equation (8).

PPCi(t) = P(t, f )ui (8)

(3) Feature extraction.
The principal component analysis method can be used to obtain the principal compo-

nent of the monitoring signal, which includes the low-frequency modulation component
of the monitoring signal. The characteristic modulation frequency can be extracted by
frequency analysis, as shown in Equation (9).

Pi( f ) =
∞∫

−∞

PPCi(t)e−j2π f tdt (9)

2.2. Elevator Traction Machine Parameters

The model of tractor selected in the experiment is GETM3.DM. The detailed parameters
are listed in Table 1.

Table 1. Parameters of elevator traction machine.

Parameter Value

Model GETM3.DM
Moment of inertia [kg·m2] 4.4
Pulley diameter [mm] 400
Rated voltage [V] 513
Rated current [A] 12.6
Rated power [kW] 9.7
Rated speed [rpm] 168
Rated frequency [Hz] 28
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2.3. Equipment Selection

The test system was used for the state identification research of elevator traction
machine, as shown in Figure 1. The instruments included vibration acceleration sensor,
data acquisition instrument, computer, and other auxiliary instruments. The acceleration
sensor was fixed to the traction machine, and the vibration signals collected by the sensor
were transmitted to the data acquisition instrument.

Figure 1. Flow chart of traction machine vibration signal acquisition and analysis.

2.4. Test Conditions

In order to realize the recognition of different states of the traction machine, the test
conditions involved in this paper are listed in Table 2.

Table 2. Test conditions.

Working Condition Classification

Different running directions (a) Elevator up (b) Elevator down
Different operating speeds (a) 1 m/s (b) 2.4 m/s
Different loads (a) no-load (b) 140 kg (c) 325 kg

3. Case Analysis

3.1. Analysis of Influence of Elevator Running Speed on Main Engine Vibration

To compare features extracted by the different signal analysis methods, FFT was used to
transform the time domain signal into spectrum domain. Their peaks value of the spectrum
under different conditions are recorded in Tables 3 and 4. Under the working condition of
1 m/s, the frequency spectrum, time-frequency spectrum, and DPCA result are shown in
Figures 2–4, respectively. Under the working condition of 2.4 m/s, the frequency spectrum,
time-frequency spectrum, and DPCA result are shown in Figures 5–7, respectively.
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With the comparation of the FFT results, it can be found that operating speed has an
impact on the amplitude of the vibration spectrums. The amplitude of each frequency
under low-speed operation (1.0 m/s) was lower than the amplitude of each frequency
under normal operation (2.4 m/s), as shown in Figures 2 and 5. In general, the peak
frequency in vibration spectrum will increase with acceleration of the traction machine.

In the time-frequency spectrum shown in Figure 3, it can be found that the prominent
frequency of the elevator machine at the operating speed of 1 m/s is approximately 25 Hz.
While the prominent vibration frequency under normal speed (2.4 m/s) is approximately
50 Hz, as shown in Figure 6. This characteristic is positively related to the operating speed
of the traction machine, which can be regard as the main feature of elevator vibration. The
vibration level of the traction machine can be evaluated by the amplitude change of this
frequency band in the time-frequency spectrum.

Through comparative analysis, the DCPA results shown in Figures 4 and 7a. The
k refers to the serial number of principle frequency bands selected by Equation (7). The
modulated frequency of elevator traction machine is indicated by f m, which can be found in
each modulation spectrum. It can be observed that when k = 1, the amplitude modulation
difference of f m under two working conditions is 2.58 times. This value is approximate
to the speed ratio under two working conditions. Therefore, the mechanism of vibration
level-up caused by the operating speed-up is the increase of modulation effect in principle
frequency bands.

As a result, for the working conditions with obvious differences, such as the influence
of different operating speeds of the elevator on the vibration signal of the traction machine,
the difference between the two states could be obtained by analyzing the frequency-domain
diagram through the FFT. The time-frequency diagram and the demodulation diagram
can more clearly highlight the difference and complete the identification of the state of the
traction machine.

Table 3. Frequency domain peak value of vibration response at running speed of 1 m/s.

Peak Sequence Number 1 2 3 4 5 6 7

Frequency (Hz) 24.1 64.2 96.3 100.8 117.2 130.0 201.6
Up-drive (m/s2) 1.48 0.51 0.52 1.46 2.91 2.67 0.64

Down-drive (m/s2) 1.46 0.49 0.36 0.79 2.51 3.06 0.82

Table 4. Frequency domain peak value of vibration response in different running directions of elevator.

Peak Sequence Number 1 2 3 4 5 6 7 8

Frequency (Hz) 24.1 48.1 96.3 100.8 144.5 175.8 192.6 223.1
Up-drive (m/s2) 2.00 1.63 2.35 3.15 2.17 0.76 0.96 0.24

Down-drive (m/s2) 1.85 3.60 2.17 3.33 0.66 0.53 0.80 0.25

Figure 2. Vibration spectrum diagram of main engine at elevator running speed of 1 m/s. (a) Motor
with up-drive condition. (b) Motor with down-drive condition.
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Figure 3. Time-frequency diagram of main engine vibration at elevator running speed of 1 m/s.
(a) Motor with up-drive condition. (b) Motor with down-drive condition.

Figure 4. Vibration demodulation diagram of main engine when elevator speed is 1 m/s.

Figure 5. Vibration spectrum of main engine in different running directions of elevator (2.4 m/s).
(a) Motor with up-drive condition. (b) Motor with down-drive condition.
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Figure 6. Time frequency diagram of main machine vibration in different operating directions of
elevator (2.4 m/s). (a) Motor with up-drive condition. (b) Motor with down-drive condition.

Figure 7. Vibration demodulation diagram under different operating conditions (2.4 m/s). (a) Motor
with up-drive condition. (b) Motor with down-drive condition.

3.2. Analysis on the Influence of Elevator Running Direction on the Vibration of Main Engine

The spectrum analysis about different running direction is shown in Figure 5 and
Table 4. It can be found that the vibration response was largest at 100.8 Hz under up-drive
operation, while the largest vibration response under down-drive operation was at 48.1 Hz.

When the frequency was 48.1 Hz, the peak value of the downlink is much larger than
that of the uplink, which was twice that of the downlink. As the frequency was 144.5 Hz,
the peak value of the uplink was much larger than that of the downlink, which was three
times that of the downlink. Except for 48.1 Hz and 144.5 Hz, the characteristic frequency
of the most obvious peak under the two working conditions of the elevator was basically
unchanged, and the height of the main peak slightly changed.

According to the analysis of Figure 6, the frequency (rotation speed) of the elevator
gradually increased from the start to a certain state and then remains stable. After a cycle
of operation, the frequency gradually decreased. Comparing (a) and (b) in Figure 6, it can
be found that the peak value of the uplink was greater than that of the downlink at 145 Hz,
while the difference in other frequency bands were not significant.

From the time-frequency spectrum shown in Figure 6, it can only be concluded that the
difference between the two working conditions was the most significant at the frequency
of 145 Hz. However, it was not enough to support the identification of the elevator’s up
and down conditions. Therefore, based on the spectrum analysis of STFT, the modulation
signal in the vibration signal of the traction machine was extracted by the PCA technology.

The vibration demodulation diagram of the main engine under different operating
conditions of the elevator in Figure 7 was analyzed. When k = 1, there was little difference
between the up-working condition and the down-working condition; when k = 2, the
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frequency modulation of one f m is generated more in the upstream working condition than
in the downstream working condition; when k = 3, a f m frequency modulation is generated
in the downstream working condition more than in the upstream working condition; and
when k = 4, the uplink has a frequency modulation of f m and the downlink has a frequency
modulation of 2f m.

For the up and down working conditions of the elevator, the influence on the traction
machine was not obvious. Only the frequency domain diagram and the time-frequency
diagram cannot accurately distinguish the two working conditions. Therefore, the demod-
ulation method was used to separate the signal from the raw signal, highlight the weak
state characteristic signal, and distinguish the states of different working conditions.

3.3. Analysis of Influence of Elevator Load on Main Engine Vibration

Taking the behavior under the elevator as an example, the measured time domain
diagram was transformed into a spectrum diagram by FFT, as shown in Figure 8.

Figure 8. Vibration spectrum diagram of elevator main engine with different loads. (a) Motor running
under 140 kg load condition. (b) Motor running under 325 kg load condition.

From the Figures 5b and 8 and Tables 4 and 5, it was hard to identify different
working conditions only by using the frequency domain diagram. Then, the time-frequency
spectrums obtained by STFT was analyzed, as shown in Figure 9.

Table 5. Frequency domain peak value of vibration response of elevator with different loads.

Peak Sequence Number 1 2 3 4 5 6 7 8

Frequency (Hz) 24.1 48.1 96.3 100.8 144.5 175.8 192.6 223.1
0 kg 1.85 3.60 2.17 3.33 0.66 0.53 0.80 0.25

140 kg 1.50 3.69 2.40 3.34 0.42 0.56 0.86 0.20
325 kg 1.54 3.20 2.44 3.57 0.33 0.25 0.71 0.28

Figure 9. Vibration time-frequency diagram of down main machine under different loads of elevator.
(a) Motor running under no-load condition. (b) Motor running under 140 kg load condition. (c) Motor
running under 325 kg load condition.
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However, it was also difficult to distinguish the working conditions of different loads
by time-frequency spectrums. Therefore, based on the spectrum obtained by STFT, the
modulation signal in the vibration signal of the traction machine was extracted by the
DPCA method.

From the vibration demodulation diagram of the elevator main engine in Figure 10,
it can be found that the frequency modulation of 2f m was less than that of the other
two working conditions when k = 1, and the frequency modulation of 2f m was less than
that of the other two directions when k = 2. When the load was 325 kg and k = 3, the
frequency modulation of f m was less than that of other working conditions. In addition,
the amplitude corresponding to the common frequency modulation in the three working
conditions increases with the increase of the load.

Figure 10. Vibration demodulation diagram of down main machine under different loads of elevator.
(a) Motor running under no-load condition. (b) Motor running under 140 kg load condition. (c) Motor
running under 325 kg load condition.

According to the working conditions of different loads of the elevator, the influence
on the traction machine is not obvious. It was difficult to distinguish the two working
conditions only through the frequency-domain diagram and the time-frequency diagram.
Therefore, the demodulation method is used to separate the signal from the raw signal,
highlight the weak state characteristic signal, and distinguish the states of different work-
ing conditions.

4. Conclusions

In this paper, the application of the DCPA method provides an alternative way to
realize fast and effective condition monitoring of a traction machine, which could be
extended to detect other background interference and typical faults. The conclusion is
as follows:

(1) For the influence of different operating speeds of the elevator on the vibration signal,
the difference can be obtained by analyzing the frequency-domain diagram through
the FFT. The time-frequency diagram and the demodulation diagram can more clearly
highlight the difference and complete the identification of the state of the traction
machine. The amplitude modulation ratio of f m is approximate to the speed ratio
under working conditions for different speeds;

(2) For the up and down working conditions of the elevator, the frequency domain
diagram and the time-frequency diagram cannot accurately distinguish the two
working conditions. The DPCA demodulation method could highlight the weak state
characteristic signal and distinguish the states of different working conditions;

(3) Under different load conditions, it is difficult to observe the obvious differences and
similarities of the vibration signals of the traction machine by time-frequency method.
However, the DPCA demodulation method can effectively solve the influence of
background noise and unknown frequency interference of the traction machine vibra-
tion signal. With the increase of load, the amplitude modulation of shaft frequency
(f m) increases;

(4) The state identification technology discussed in this paper involved a healthy traction
machine under various operation. The state identification of traction machines with
different faults will be carried out in future work.
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Abstract: Because of the development of image processing using cameras and the subsequent
development of artificial intelligence technology, various fields have begun to develop. However, it
is difficult to implement an image processing algorithm that requires a lot of calculations on a light
board. This paper proposes a method using real-time deep learning object recognition algorithms in
lightweight embedded boards. We have developed an algorithm suitable for lightweight embedded
boards by appropriately using two deep neural network architectures. The first architecture requires
small computational volumes, although it provides low accuracy. The second architecture uses
large computational volumes and provides high accuracy. The area is determined using the first
architecture, which processes semantic segmentation with relatively little computation. After masking
the area using the more accurate deep learning architecture, object detection is implemented with
improved accuracy, as the image is filtered by segmentation and the cases that have not been
recognized by various variables, such as differentiation from the background, are excluded. OpenCV
(Open source Computer Vision) is used to process input images in Python, and images are processed
using an efficient neural network (ENet) and You Only Look Once (YOLO). By running this algorithm,
the average error can be reduced by approximately 2.4 times, allowing for more accurate object
detection. In addition, object recognition can be performed in real time for lightweight embedded
boards, as a rate of about 4 FPS (frames per second) is achieved.

Keywords: autonomous driving; object detection; OpenCV; ENet; YOLO; deep learning

1. Introduction

Currently, with the advancement of artificial intelligence technology, industries in
various fields, ranging from automobiles to the Internet of Things (IoT), are developing. In
these industries, artificial intelligence calculates the input of multiple datasets and converts
it into the required output data [1,2]. Various types of sensors are used to receive data,
among which camera sensors and methods for processing visual information input are
active fields of research [3,4]. Object recognition using visual data as learning data for
deep learning is used in various methods and has been researched in a variety of fields [5].
However, these data are difficult to process in real time using a processor that has small
amount of memory because of the large amount of image data. In addition, to implement
artificial intelligence in daily life a lightweight embedded board must be used. However,
lightweight embedded boards are not suitable for large computation loads, as they have
small memory and power.

The weight reduction of the object recognition algorithm using a camera sensor has
always been an important task to be solved, and research is currently being conducted
in various ways [6]. Various methods of processing images have been developed for
effective implement of algorithms [7]. However, as with all algorithms, there is a trade-
off relationship between accuracy, speed, cost, and amount of computation. The ASM
framework has been studied as an effective method for mining most unlabeled or partially
labeled data to enhance object detection. The ASM framework can be used to build effective
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CNN detectors that require fewer labeled training instances while achieving promising
results [8].

This paper introduces an object recognition algorithm based on deep learning to
accurately recognize objects in real time. YOLO (You Look Only Once), a deep learning-
based object recognition architecture, is currently the most well-known and efficient object
recognition algorithm. However, it is too heavy an architecture to use in real-time on a
lightweight embedded board. Therefore, the ROI (Region of Interest) is set in the input data
to reduce the amount of image processing. Figure 1 shows the overall operation of the algo-
rithm. The ROI can be set using ENet (Efficient Neural network), a semantic segmentation
architecture based on deep learning. The the object of interest can be expressed in a specific
color using semantic segmentation. By binarizing this expression, the remaining parts other
than the recognized object are removed. Because this architecture only recognizes people,
it is useful for removing objects other than people. Running YOLO using masked images
as input data reduces computation and can be used on a lightweight embedded board,
resulting in improved accuracy.

By dividing image processing into two steps in this way, the efficiency can be max-
imized, and the accuracy does not change rapidly in various environments. By setting
the ROI after filtering using segments in the input image, cases that were not recognized
by different variables, such as differentiation from the background, can be excluded, in-
creasing the accuracy. Using two deep learning models allows for implementation with
higher accuracy and faster execution time. When the amount of computation is reduced
and the algorithm is implemented on a lightweight embedded board, its scope of use can
be widened considerably.

Class-specific 
segmentation framesMasking ROI

+

Masked image

Classification
Person: 89% Integrated Image

Captured 
image

Board
(LS1028, LX2160, Window based PC)

Ethernet 
port

Serial 
port

webcam

monitor

Figure 1. Overall structure.

2. Background

2.1. Preliminary Study of the Proposed Method

Deep learning is a technology that trains rules from data using artificial neural net-
works. An artificial neural network composed of a layer of neurons is first trained with
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sample data before being used to make inferences. Deep learning is trained with the help
of a deep artificial neural network composed of multiple layers. As the data pass through a
series of filters in a deep neural network, they can be usefully refined to handle multi-step
information extraction. When analyzing images using deep learning, images are first
classified. After dividing the image into defective and regular components, they are sorted
and assigned by class. The image is then subdivided and each pixel is assigned to a class
before image processing is performed. A significant amount of computation is required to
realize the repeatability of deep learning algorithms, added complexity as the number of
neural network layers increases, and implementation of the data required for training.

R-CNN (Regions with Convolutional Neuron Networks features) [9], an existing
image processing system, creates a bounding box on an object by a method called region
proposal, then applies a classifier to the box to classify it. After classification, it proceeds
through a complex process of adjusting the boxes and removing duplicate detections. The
image is then post-processed to estimate the detection probability of the boxes. Because
these processes need to be trained and optimized independently, the overhead is large,
requiring a significant amount of processing time.

YOLO (You Look Only Once) [10] is a real-time image detection architecture based
on deep learning. Unlike RCNN, YOLO processes images in a single regression without
requiring multiple steps. Using one pipeline, it can detect a target object by looking at the
image once. It finds the coordinate position and probability of the bounding box in the
image pixel. In addition, because the entire image is viewed and processed, it does not
recognize background noise as an object, and as such the background error is small. Fast
YOLO, which consists of a total of 24 convolution layers and two fully connected layers, has
nine convolutional layers. YOLO convolution layers can be trained with datasets. YOLO
uses a framework called darknet to enable training and inference. Figure 2a shows a box
drawn around the recognized object, with its class and probability shown in the kernel.

(a)

(b) (c)
Figure 2. (a) Result of YOLO object detection, (b) result of semantic segmentation, and (c) classes and
labels of semantic segmentation.

Semantic segmentation [11] classifies all pixels in an image into a designated class
to recognize objects. It is currently used in various fields, including self-driving cars and
medical image analysis. The difference between SS and object recognition algorithms such
as YOLO is that the former determine which class the pixels themselves belong to. As a
result, the number of people or objects in the image cannot be counted; only the types of
recognized objects can be identified.
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There are numerous algorithm models for implementing semantic segmentation,
of which the fully convolutional network (FCN) approach [12] is the most well-known.
Because an FCN only consists of convolutional layers, it is not necessary to fix the size
of the input image. In addition, because the filter is learnable and stems from a single
deep learning model, an end-to-end model can be used. Because it processes the entire
image at once, it can be processed quickly. However, it has the disadvantage of lower
the accuracy when the resolution changes during the processing process. ENet (Efficient
Neural Network) [13] is a deep learning-based semantic segmentation structure that uses
an algorithm model called ResNet [14]. Although the existing method requires a large
amount of computation, consumes a lot of power, and has a slow processing speed when
classifying object classes in units of pixels, ENet has developed a new deep neural network
structure that can be performed on an embedded board. ENet is made up of an encoder
and a decoder along with thirteen convolution filters. A sampling operation is used to
solve the problem of resolution loss and increase the accuracy. As shown in Figure 2b,c,
objects within the image can be classified using the color assigned to each class.

2.2. Concepts and Definitions of the Proposed Method

The method devised in this paper involves the design of a more lightweight object
recognition algorithm using the two deep learning models described above. A filter is
created for object recognition in the image. This filter recognizes the pixels an object
occupies in the image, and masks only the object. The more complex the background
excluding the object in the image, the lower the accuracy and the greater the amount of
computation. Therefore, it is possible to reduce the amount of computation by recognizing
the filtered image as an object.

This study conducted further experiments based on previous studies [15]. In the
mentioned study, the authors used two lightweight embedded boards and measured for
memory and time as well as for various elements such as background complexity and
power consumption. They were able to identify efficiency and accuracy by experimenting
with various versions of YOLO that recognize objects.

There have been other studies using YOLO by setting ROI as segmentation. In [16],
the authors used YOLO to set ROI by segmentation and then executed object recognition
with CNN. Similar to the present study, they implemented it in two stages. The structure
was used for interpreting sign language with deep learning. After extracting hand parts
using YOLO, sign language was interpreted by a CNN. When learning by setting ROI, it is
apparent that large amounts of data are not needed and that the speed and success rate
are improved.

3. Implementation

We propose a method to execute the object recognition algorithm in real time on a
lightweight embedded board by writing a lightweight and divisional-sized algorithm. Two
deep learning-based systems were used to reduce the amount of computation and increase
the accuracy and overall structure, as can be seen in Figure 3.

The reason why a model that integrated segmentation and object detection was not
used from the beginning was to divide the code. There is benefit in separating segmentation
and object detection. First, ENet and pre-image postprocessing can be operated on a very
small FPGA board, and YOLO can be run on a better performance FPGA. Combining
segmentation and detection into one model requires an embedded board that performs
much better than is necessary when running each individually. Two boards with relatively
poor performance are much more cost-effective than one high-performance board. In
addition, the communication time between the two FPGA boards is very short (less than
0.1 s), and the communication cost is insignificant because it uses less energy, which is
more effective.
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Figure 3. Overall algorithm used for real-time object detection.

3.1. Semantic Segmentation Object Detection

Figure 4 shows the diagram of the semantic segmentation algorithm using ENet. The
video data received by the webcam are captured as frame units. One frame is captured every
0.03 s on average. The frame is masked using the trained weights. Using trained weights, a
human in an image can be detected and segmented. This allows the ROI to be selected for
object recognition in the image. We used ENet because it is easily trained to detect specific
targets and has higher accuracy. When training ENet, the UP-S31 dataset from the Leeds
Sports Pose dataset with the MPII Human Pose Dataset was used to recognize humans [17].

Currently, with the rapid development of deep learning and computer vision fields,
many highly diverse models are being developed, such as DUC-HDC (Dense Upsampling
Convolution and Hybrid Dilated Convolution) and DCNAS (Densely Connected Neural
Architecture Search). However, it was difficult to find a model that could be be executed
simultaneously in different in operating systems, taking into account the differences in the
board and the host PC and their corresponding execution methods. Pytorch, Mask-RCNN,
and ENet, were judged to be the most stable and widely known for the two operating
systems. Thus, these were the main models tested, and the study was conducted according
to the results.

We tested with pytorch, mask RCNN, and ENet. For a single frame, ENet took 1.75 s,
Pytorch took 4.45 s, and Mask RCNN took 1.22 s. We tested these models on the same
PC based on Windows 10. The input image was 640 × 959 in size and was a jpeg file. In
order to check whether segmentation was performed well, an image containing only one
person was tested. The accuracy was 0.89 for ENet, 0.92 for Pytorch, and 0.84 for Mask
RCNN. Figure 5 shows the results with each algorithm. Eventually, ENet was chosen,
as it was most efficient in terms of time and accuracy. Another model, IC-Net, [18] was
tested as well. The time and accuracy of IC-Net were calculated using the same Cityscapes
dataset. The average FPS (frames per second) rate is the time taken per frame, and can be
calculated by dividing the total time taken to process the image by one. The average FPS of
IC-Net on the host PC was 1.196, and the average FPS rate on the LS1028 board was 0.1402.
Accuracy can be calculated by dividing the total number of people recognized after image
processing by the number of people actually in the image. The accuracy was calculated
as 0.73. Figure 6 shows the results with the different frameworks segmentation algorithm
when using weights trained with the same Cityscape dataset; (a,b) show the results for
ENet, and (c,d) show the results for IC-Net. Although the accuracy of the two models is
similar, there are many differences in terms of FPS. Although the accuracy of segmentation
is low, because image processing is performed again after ROI setting it is not necessary to
sacrifice power or memory consumption for higher FPS and accuracy.
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Figure 4. Algorithm used for semantic segmentation.

(a) (b) (c)
Figure 5. Results of segmentation algorithms: (a) Pytorch, (b) Mask RCNN, (c) ENet.

(a) (b)

(c) (d)

Figure 6. Results for IC-Net and ENet: (a,b) results for ENet; (c,d) results for IC-Net.

Algorithm 1 shows the semantic segmentation algorithm in more detail in the form of
pseudo-code. This algorithm makes it easy to process the image received from the webcam
by dividing it into frames utilizing OpenCV (Open-Source Computer Vision) functions.
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A trained model used in ENet is loaded using Keras and Tensorflow [19,20]. Because the
weights trained in ENet process images with a size of 256 × 256, the initial width of the
image should be 256. To obtain the memory usage within a Python program, the psutil
Python package was used to create a function that outputs the memory in MB.

Algorithm 1: Pseudo-code of semantic segmentation algorithm

1 cap = VideoCapture

2 Model = load model(“model path”)
3 img_wh = 256

4 Function Memory_usage(debug):

5 rss = memory_info() / 2 ** 20
6 print(“Memory usage(MB)”, rss)

7 Function Seg(img):

8 while True do

9 ret, orig_img = cap.read()
10 img = resize(orig_img, (img_wh, img_wh))
11 img_tensor = expand_dims(img, 0)
12 raw_output = model.predict(img_tensor)

13 seg_labels = [array of object detection label results]
14 seg_img = max(seg_labels, axis = 2)
15 mask = zero array of 256 × 256
16 area = 0
17 area_back = 0
18 sum_back = 0
19 v_sum = 0

20 foreach i ∈ (0, 255) do

21 foreach j ∈ (0, 255) do

22 if seg_img[i][j] != 0 then

23 mask[i][j] = 1
24 area += 1

25 else

26 sum_back += img[i][j]
27 area_back += 1

28 mean = sum_back/area_back

29 foreach i ∈ (0, 255) do

30 foreach j ∈ (0, 255) do

31 if seg_img[i][j] = 0 then

32 vsum = vsum + (img[i][j] − mean) ** 2

33 variance = vsum/area_back

34 img_dis = array(img)
35 output = bitwise_and(img_dis, mask)
36 memory_usage()

We created a function that receives the frame image from the webcam as input and
performs segmentation. It first receives the original frame size, then changes the webcam
frame size (which was 640 × 480) to 256 × 256, the width of the initialized image. The
batch dimension can then be set using the NumPY function. ENet loads a model trained to
recognize only humans and runs it. Because the segmentation result is colored based on
the recognized person, only the colored part needs to be extracted for masking. First, the
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labeled part of the result is converted into an array and combined with the image array.
Before masking, the mask array and variables are initialized to calculate the amount of
computation based on the complexity of the background. If the array of the segmented
result image for masking is not 0, the mask array is set to 1 in order to binarize it. Figure 7a
shows the original image, and Figure 7b shows the binarized mask showing only the part
of the image recognized as a person.

(a) (b)
Figure 7. Results of masking: (a) original frame and (b) masked image.

In addition, the area variable is set to 1 whenever a pixel occupied by an object is found
in order to determine how much space the recognized object takes up in the background.
This helps to measure how image background complexity affects the performance of the
algorithm. If the data of the segmented pixel is zero, it means that the pixel has no data
on the segmented object. Therefore, it can be judged as the background of the image. To
calculate the complexity of the background, the pixel value of the original image is added
to obtain the background variance, then 1 is added to area_back. To determine the variance
of the RGB values of the background, first, the average value of the background is obtained,
then the sum of the deviations is computed. The variance can be calculated by dividing
the sum of the deviations by the total number of elements in the entire background. To
create a masked image, the original image is converted into an array, then the mask and the
original image are combined using the bitwise and operation functions in OpenCV. Figure 8
shows the masking result by combining the original image and the mask. The memory
usage function that was previously created is called to determine the computational cost of
this process.

Figure 8. Results of ROI masked image.

3.2. Object Detection with YOLO

Figure 9 shows the structure of the YOLO algorithm, which recognizes an object in an
image that was previously masked using ROI with segmentation. The YOLO model recog-
nizes the masked image, and the box and probability of the recognized object are displayed.
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Figure 9. YOLO algorithm for object detection.

As a first stage target, detection algorithms are implemented in a way that is lightweight
and can be operated quickly and accurately; two algorithms, YOLO, and SSD, were
tested [21] while running region proposal and classification simultaneously. It is not
necessary to use a neural network called RPN (Region Proposal Network) to generate
candidate targets. These algorithms predict target locations and classes directly over the
network. As it is a method for solving the classification and localization problems at
the same time, it can be simulated in high FPS. An efficient deep neural network model
called MobileNets was tested as well [22]. MobileNet is an efficient convolutional neural
network for low power devices. MobileNet utilizes depth-wise separable convolution to
make the model lightweight. Two parameters were used to optimally fit MobileNet in
memory-constrained environments. These two parameters adjust the balance between
latency and accuracy. For better variety in the experiment, Faster R-CNN [23], a two stage
detector, was tested as well. In a two-stage detector, regional proposals and classification
are performed sequentially. The R-CNN algorithm has a limitation in that it is slower
than YOLO. Fast R-CNN greatly reduces iterative CNN computations; however, the region
proposal algorithm becomes the bottleneck. Faster R-CNN uses an RPN (Region Proposal
Network) in the region proposal process to make the existing Fast R-CNN faster. Figure 10
shows the results of three algorithms. They were tested on the same PC based on Windows
10, and the weights were all trained using the Pascal VOC dataset. For simple detection, the
input image was converted to 512 × 512. SDD with Pytorch took 7.6 s, YOLO took 4.24 s,
MobileNet took 0.09 s, and Faster R-CNN took 7.3 s. The run time of the MobileNet model
was overwhelmingly short, while the accuracy between YOLO and Faster R-CNN was
quite similar. However, for the second stage of object detection, it is necessary to operate
with high accuracy. As can be seen from the results, YOLO is the most accurate algorithm,
and is fast as well. Eventually, YOLO was chosen for the second stage of object detection
for subsequent experiments.

(a) (b) (c) (d)

Figure 10. Results for stage one target detection algorithms: (a) YOLO, (b) SSD, (c) MobileNet,
(d) Faster R-CNN.

Algorithm 2 shows the YOLO object recognition algorithm in pseudo-code. YOLO is
an algorithm developed on a C++-based framework called darknet in Linux. However, in
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order to use Tensorflow and various Python packages, darkflow [24], which ports YOLO to
other Tensorflow-based platforms, was used. It is convenient because the number of codes
is reduced and multiple functions can be used. In addition, it is faster than darknet. Using
darkflow in Tiny-YOLO weight executes in 1.3 fps, while darknet takes 0.3 fps [25]. To run
darkflow, the model’s path and weights are first set to be executed in YOLO. We used the
YOLOv3 and Tiny-YOLOv3 weights, as they are stabilized for darkflow. YOLO is being
developed in various ways, such as YOLOv5 and PP-YOLO. However, there were problems
in the process of building and running it on the board, which are currently being resolved.
We plan to present a more advanced architecture in the future. Even if the confidence
threshold is set low, the accuracy hardly changes when setting the ROI. The TFNet class
object was initialized with the previously set values to build the model. Random numbers
were generated to determine the color to be used when displaying the recognized object.

By receiving an image with ROI masked by segmentation as input, the image can be
analyzed with the previously built model using TFNet. The current time is recorded in a
variable called start_time to calculate the processing time and fps. This initializes obj_count,
a variable that counts the number of people to calculate accuracy. In order to show the
result of the analyzed image, the coordinates of the upper part of the recognized object
are stored as the tl variable, and the coordinates of the lower part of the object are stored
as the br variable. The class and probability of the recognized object are stored as the text
variable, so called to make it easily printed into the image.

Algorithm 2: Pseudo-code for YOLO object detection.

1 Options = {
2 model : “model path”
3 load : “weight path”
4 threshold : 0.3
5 }

6 tfnet = TFNet(Options)
7 color = (255 * rand(3) in range (10))

8 Function YOLO(masked):

9 while True do

10 start_time = time()
11 results = tfnet.return_predict(masked)
12 obj_count = 0
13 foreach color, result ∈ (color, results) do

14 tl = (result[’topleft’][’x’], result[’topleft’][’y’])
15 br = (result[’bottomright’][’x’], result[’bottomright’][’y’])
16 label = result[’label’]
17 confidence = result[’confidence’]
18 text = ’: ’.(label, confidence * 100)
19 output = draw_rectangle(masked, tl, br, color, 3)
20 output = put_text(output, text, tl, font, 0.25, 1)
21 obj_count += 1

22 show(’frame’, output)
23 print(’people’, obj_count)
24 print(’FPS’, 1/(time() - start_time))

25 memory_usage()

A box is drawn on the recognized object using the values stored in the variables tl and
bl; then, the class and probability of the object are stated in the upper part of the box. Each
time a box is drawn, one object is added to obj_count to count the number of recognized
objects. In order to display the result again in real-time, the output is displayed using the
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OpenCV function. Figure 11 shows the resulting image recognized as only humans using
YOLO in the ROI set by semantic segmentation. The number of people recognized and the
fps can be calculated and printed. Using the memory usage calculation function written in
the semantic segmentation algorithm, the amount of computation when processing images
using YOLO can be calculated.

detected

Figure 11. Results of YOLO object detection.

4. Experimental Setup and Evaluation

This section describes the image classification neural network target program and eval-
uates the proposed fault detector performance with random test images and fault injections.

4.1. Experimental Environment

Experiments with object recognition algorithms based on semantic segmentation and
YOLO were conducted on the LS1028a [26] and LX2160a [27] boards as well as a Windows
10 PC. The boards were configured as shown in Figure 12. In order to determine whether
the algorithms could be run on multiple operating systems, they were run on a Linux-based
board and a Windows-based board for the experiments. Because these two operating
systems have different methods of executing programs, memory, and performance on each
board, various results were obtained. The LS1028a and LS2160a are processors made by the
NXP company. The LS1028ardb is equipped with two 64-bit ARM Cortex-A72 processors
with a maximum operating speed of 1.3 GHz per core, while the LX2160a is equipped
with sixteen 64-bit ARMv8 Cortex-A72 processors, and the maximum operating speed
per core is 2.2 GHz. They can both manage input/output and communication through an
ethernet port, USB port and serial port. Python code was used for measuring execution
time, memory usage, FPS, and number of detected people. To measure power consumption,
Open Hardware Monitor was for host PC (Windows) and the Powertop tool was used for
the Linux FPGA board.
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Figure 12. Structure of boards and algorithms.

4.2. Execution Time and Accuracy
4.2.1. Methods for Measuring the Accuracy of Deep Learning Models

There are several methods for measuring the accuracy of a deep learning model;
here, we used a confusion matrix [28]. The confusion matrix can be divided into four
states: TP, when the model corrects the correct answer; TN, when the model predicts the
correct answer incorrectly; FP, when the model incorrectly predicts the correct answer as
an incorrect answer; and FN, when the model incorrectly predicts the incorrect answer as
an incorrect answer. Equation (1) is the formula for calculating accuracy:

Accuracy =
TP + TN

TP + TN + FP + FN
. (1)

In addition, precision, recall, and F1-score were calculated for various performance
evaluation certificates. Precision was calculated using Equation (2), recall was calculated
with Equation (3), and F1-score was calculated with Equation (4). The precision, recall, and
the following formulas were used to calculate F1-score. We calculated TP as the number of
people detected by YOLO, FP as the number of detected objects that were not human, and
FN as the number of people that were not detected.

Precision =
TP

TP + FP
, (2)

and
Recall =

TP
TP + FN

, (3)

and
F1-score =

2
1

precision + 1
recall

. (4)

4.2.2. Time and Measurement Accuracy Results of the Proposed Algorithm

Figure 13 shows the results of measurements of time, fps, and the number of people
detected when running only YOLO and when running YOLO and ENet on a Windows 10-
based PC. Because there is a limit when measuring places with a large change in the number
of people in real time, this was experimented with by showing pictures including different
people on a webcam. Changes were measured in terms of FPS, power consumption, and
memory usage while turning seventeen pictures containing different numbers of people
into a slide show with a real-time webcam, which is demonstrated in Figure 14. When
YOLO is used alone, fps and processing time values fluctuate according to the changing
number of people. This means that if the floating population is high, operating YOLO alone
is not be stable. The dispersion of fps can be derived by calculating the average fps and
subtracting each fps value from the average, then adding all differences from the mean and
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dividing by the number of fps values. Here, the average fps is 3.64 and the dispersion of
fps is 0.166. However, it can be seen that the fps and processing time are stable regardless
of the changing number of people when integrating ENet and YOLO, as the average fps is
3.93 and the dispersion of fps is 0.0051.
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Figure 13. Time measurement: (a) YOLO and (b) YOLO executed with ENet.

(a) (b)
Figure 14. Result of detection of numerous people: (a) YOLO executed with ENet and (b) YOLO.

Figure 15 shows the measurement results of average time, fps, accuracy, and error
when using YOLO alone and when using ENet and YOLO together running on a Windows
10-based PC. With far fewer convolutional layers than YOLO and a fast and compact
encoder–decoder structure, ENet’s average processing time was 0.156 s per frame, and the
average fps was 6.41. When only YOLO was used, the average processing time per frame
was 0.281 s and the average fps was 3.645 s. When ENet results were processed with YOLO,
the average time was 0.269 s and the average fps was 3.701.

As can be seen, the method of setting ROI using ENet and processing it as YOLO
input can reduce YOLO’s execution burden as a result of lowering the threshold of YOLO.
The total number of recognition frames was divided by the number of people in the
image and the number of frames correctly recognized to determine the accuracy of the
object recognition algorithms. A clear improvement in accuracy can be seen when using
YOLO and ENet together. Because TP and TN accurately calculated the part where the
number of people matched, the error was calculated to obtain more appropriate accuracy
by comparing the recognized number of people and the actual number of people. When
only YOLO was used, the average recognition error was 7.097, and when ENet and YOLO
were used together, the average recognition error was 2.913. When more people were in the
picture, more errors appeared when using YOLO without ENet. However, when ENet and
YOLO were used together, errors were be reduced and accurate recognition was achieved.
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Algorithms Average time Average fps

ENet 0.156s 6.41
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(a)

(b)

Figure 15. Time and accuracy measurement: (a) time and FPS measurement and (b) accuracy measurement.

4.3. Experimental Results: Memory Consumption

Figure 16 shows the results of measuring the amount of memory used when running
the algorithms on the Windows 10-based PC. Figure 16a shows the memory measurement
of YOLO alone, and Figure 16b shows the memory usage of YOLO and ENet. When
YOLO detects an object, it is judged as a matching object when the threshold is 0.5 or more
through the IoU (Intersection Over Union) of the Bounding Box and the Correct Answer
Box, which contain information about the predicted object. The higher the threshold, the
more consistent the correct answer; it is important to set an appropriate threshold, because
when the reference threshold is too high, the detection rate is lower [29]. It can be seen
that minimal memory is used at a certain threshold. The reason for this is that when
the threshold is too low, there are a lot of objects detected and consume a lot of memory.
However, when the threshold is too high, no objects are detected, and the memory usage is
low. When the threshold is 0.4, the average memory usage is 2.067 GB.

(b)(a)

Figure 16. Relationship between memory usage and threshold: (a) YOLO and (b) ENet and YOLO.

When using ENet and YOLO together, the memory usage is obviously higher than
when using YOLO alone because the models for the two architectures must be loaded
separately. Despite the fact that the number of memory bytes is increased, the error is
greatly decreased. In addition, this method is valid because it can be used effectively on an
embedded board.

4.4. Experimental Results: Background Complexity

Figure 17 shows how the complexity of the background in the picture affects the
calculation when executed on the Windows 10-based PC. The background was considered
to be complicated if the variance was large by calculating the average of the RGB values

134



Sensors 2022, 22, 8890

and the resulting deviation and variance in the background aside from the recognized
person. First, photos with complex backgrounds and people on a white background were
visually selected and entered into the webcam in real time. These were then measured by
dividing the complex background and the simple background into twenty photos each.

Figure 18 shows example images of background complexity. The variance of the RGB
values is 0.047 in Figure 18a and 0.132 in Figure 18b. When the background is simple,
the average FPS is 3.46, the average memory is 2096.937 MB, and the average variance of
the RGB values is 0.0655. When the background is complex, the average FPS is 3.17, the
average memory is 2133.625 MB, and the average variance of RGB is 0.177. Because the
difference in the RGB average variance is large, the complexity of the background can be
distinguished by the variance value. When performing semantic segmentation using ENet,
it can be seen that it is not necessary to exclude the background of the photos. Because the
background is simple, segmentation requires less time and less memory.
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Figure 17. Time measurement result of complexity of background: (a) simple background and
(b) complex background.

(a) (b)

Figure 18. Example image of complexity of background: (a) simple background and (b) complex background.

4.5. Experimental Results: Performance on Boards

Figure 19 shows the measurement results when running on the LS1028a board. The
Tiny-YOLO weights [30] were used because light weights should be used on the board.
Tiny-YOLO is lighter than YOLO; while it has lower accuracy, it is more suitable because
of its small size. When using Tiny-YOLO alone, the average FPS is 1.1 and the average
memory usage is 930.08 MB. Calculating the accuracy using the previous method, the
average accuracy is 0.2569 and the average error is 1.88. The precision is 0.997, recall is
0.539 and F1-score is 0.699. When using ENet and Tiny-YOLO together, the average FPS
is 1.3 and the average memory usage is 1320.08 MB. The mean accuracy is 0.5866 and the
mean error is 1.52. Precision is 0.968, recall is 0.711, and F1-score is 0.828. It can be seen that
FPS, accuracy, and F1-score all improved when ENet was integrated.
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FPS was reduced when running on a much lighter board than a PC. Using Tiny-YOLO
weights, the amount of memory is reduced by almost half; however, it can be seen that
there is a big difference in accuracy between the two algorithms. When more weights
with low accuracy are used, the accuracy is increased by setting the ROI using ENet. For
comparison, in Figure 20, the Windows-based PC was measured using Tiny-YOLO weights.
When using YOLO-Tiny and ENet, the average fps is 17.57 and the average memory usage
is 1290.75 MB. The mean accuracy is 0.544 and the mean error is 1.46. Precision is 0.997,
recall is 0.709, and F1-score is 0.828. When using Tiny-YOLO alone, the average fps is 16.72
and the average memory usage is 642.33 MB. The mean accuracy is 0.263 and the mean
error is 3.44. Precision is 0.977, recall is 0.389, and F1-score is 0.556. It can be seen that
Tiny-YOLO uses less memory and has higher fps than using YOLO alone, while when
ENet is integrated, the accuracy and fps are enhanced and the F1-score increases.
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Figure 19. Measurement results for LS1028a board: (a) Tiny-YOLO and (b) ENet and Tiny-YOLO.
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Figure 20. Time measurement results for Tiny-YOLO: (a) Tiny-YOLO and (b) ENet and Tiny-YOLO.

Figures 21 and 22 show the measurement results when running on the LX2160a board.
Both YOLO weights and Tiny-YOLO weights were used, as this board has more memory
than the LS1028a board. When using YOLO alone, the average FPS is 1.643 and the average
memory usage is 2775.02 MB. By calculating the accuracy using the previous method, the
average accuracy is 0.13 and the average error is 1.72. Precision is 0.937, recall is 0.768, and
F1-score is 0.844. When using ENet and YOLO together, the average FPS is 1.664 and the
average memory usage is 2855.165 MB. The mean accuracy is 0.1553 and the mean error
is 1.25. Precision is 0.973, recall is 0.788, and F1-score is 0.87. When using Tiny-YOLO
alone, the average FPS is 7.967 and the average memory usage is 1527.21 MB. The average
accuracy is 0.178 and the average error is 2.6. Precision is 0.88, recall is 0.629, and F1-score
is 0.87. When using ENet and Tiny-YOLO together, the average FPS is 8.96 and the average
memory usage is 1692.72 MB. The mean accuracy is 0.157 and the mean error is 2.42.
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Precision is 0.943, recall is 0.662, and F1-score is 0.777. It can be seen that when using
ENet and YOLO together, fps is higher and error is lower. Furthermore, the difference in
memory usage is small at 100 MB. When using ENet and Tiny-YOLO, fps values are much
higher than for YOLO alone. The gap between memory usage of ENet with Tiny-YOLO
and Tiny-YOLO alone is small.
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Figure 21. Time measurement result of LX2160 board: (a) YOLO and (b) ENet and YOLO.
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Figure 22. Time measurement result of Tiny-YOLO weight on LX2160 board: (a) Tiny-YOLO and
(b) ENet and Tiny-YOLO.

4.6. Experimental Results: Power Consumption

Figure 23 illustrates the power consumption of each algorithm. They were executed on
the host PC, and the threshold was fixed to 0.4. The power consumption of the architectures
was determined running on an AMD Ryzen 7 3800XT 8-Core Processor with 3.90 GHz,
RAM 32.0 GB, and Windows 10 Pro. The power consumption results are the average value
of the total CPU power used by the architecture when only the CPU is used. The amount of
power used by the architecture to process the same data was measured by putting the using
picture as the input for the same period of time. It was not measured on the boards, because
it was only necessary to compare the validity of the architectures’ power usage. When
using ENet and YOLO, the power consumption is 22.54 W, while when using YOLO alone
is 32.831 W. Executing ENet and Tiny-YOLO consumed 14.14 W, while Tiny-YOLO alone
consumed 26.716 W. It can be seen that using ENet with YOLO reduces power consumption
by approximately 10 W, which is useful for lightweighted embedded boards, as Tiny-YOLO
uses less power than YOLO.
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Figure 23. Power consumption results.

4.7. Experiments in Different Deep Learning Frameworks

To evaluate the effects of the architecture, it was evaluated with various deep learning
frameworks. Figure 24 shows images resulting from the different frameworks. As there are
two types of state-of-the-art target detection algorithms based on CNN, SSD and Faster
R-CNN are assessed. SSD is a one-stage end-to-end target detection algorithm. Faster
R-CNN is a two-stage target detection algorithm, in which the process is divided into two
phases. A lightweighted architecture, MobileNet, is tested as well, as it can be performed
efficiently on the boards. Figure 25 illustrates the time and accuracy measurement of
these frameworks. The results when executing the algorithm using YOLO on the host PC
and the FPGA board were similar in terms of the trends in the two environments; thus,
the experiment was conducted only on the host PC. The time and FPS variance between
the masked input image and the image without masking was 2.1 times faster with SSD,
1.5 times with MobileNet, and 1.4 times with Faster R-CNN. There was not much difference
in the accuracy or F1-scores of the frameworks. However, the average error fell by about
half in each framework. Judging from these results, it can be concluded that the proposed
algorithm is efficient for object detection processing.

(a) (b) (c)
Figure 24. Results for different frameworks: (a) SSD, (b) MobileNet, and (c) Faster R-CNN.
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Algorithms Average 
time 

Average 
fps Accuracy Average 

error
F1-

score

SSD without 
mask 4.2s 0.23 0.53 5.3 0.83

SSD with 
mask 1.91s 0.52 0.56 2.16 0.85

MobileNet
without 

mask
0.12s 8.1 0.51 4.3 0.86

MobileNet
with mask 0.08s 12.6 0.56 2.83 0.87

FasterRCNN
without 

mask
6.1s 0.16 0.65 3.67 0.88

FasterRCNN
with mask 4.23s 0.23 0.67 1.66 0.89

Figure 25. Time and accuracy measurement of different frameworks.

There are several versions of YOLO, which has been developed up to version 7 as
of 2022. YOLOv4, v5, v6, and v7 were tested with the proposed algorithm. YOLOv4 [31]
increased AP (Average Precision) and FPS by 10% and 12%, respectively, compared to v3.
In v4, various deep learning techniques (WRC, CSP etc.) are used to improve performance,
and the CSPNet-based backbone (CSPDarkNet53) is used. YOLOv5 [32] uses the same
CSPNet-based backbone as YOLOv4. It is a PyTorch implementation, not Darknet, which
is different from previous versions. Compared to v4, YOLOv5 is characterized by being
able to configure and implement the environment more easily. YOLO v6 [33] is slightly
harder to use in practice than YOLOv5, and there are not as many established paths
and articles on how to actually use networks for training, deployment, and debugging.
Starting with YOLOv6, it is possible to detect objects of various sizes, with the existing
three scales increased to four. YOLOv7 [34] proposes a trainable bag-of-freebies method
for real-time object detection that can significantly improve detection accuracy without
increasing inference cost. In addition, it uses ’extend’ and ’compound scaling’ methods
for real-time object detectors that can effectively utilize parameters and computation. We
tested the models on an LS1028a board as an example of a lightweight embedded board.
Figure 26 shows the time and fps measurement result with different versions of YOLO.
YOLOv4 took 0.23 s and had 4.31 FPS. YOLOv5 took 0.228 s and had 4.38 FPS. YOLOv6
took 0.229 s and had 4.35 FPS. YOLOv7 took 0.23 s and had 4.2 FPS. The higher versions
had better average time and fps. In addition, it can be seen that all versions above YOLOv3
showed improved results compared to the previous experiment.

Algorithms YOLOv4 YOLOv5 YOLOv6 YOLOv7

Average 
time 0.23s 0.228s 0.229s 0.23s

Average 
fps 4.31 4.38 4.35 4.2

Figure 26. Time and FPS measurement of different versions of YOLO.
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5. Conclusions and Discussion

This paper introduces an ROI masking method using semantic segmentation with
ENet and an algorithm that can execute object recognition in real time on a lightweight
embedded board using YOLO. It uses a webcam to receive real-time image input. Using an
ENet model that has been trained to recognize only humans, image frames are converted
to an appropriate size and then segmented. After binarizing the segmentation result and
masking it for the ROI, the resulting images are used for object recognition with YOLO.

Our results show that using ENet to set the ROI improves accuracy significantly. The
number of errors drops from 7 to 2.9. This algorithm can be judged valid because this
increase in accuracy is achieved while increasing memory usage by only about two times,
while power consumption is reduced from 32.8 W to 22.54 W when using ENet as the
ROI setting. By testing the algorithm in several deep learning framework such as SSD,
MobileNet, and Faster RCNN, we found that the average time required decreased by about
1.5 times, and the number of errors diminished to half. As a result of testing the different
versions of YOLO developed thus far, the results for version 5 were the fastest at 4.38 FPS.
Filtering the input image once using segmentation and then using the result to recognize an
object increases the accuracy and reduces the required amount of computation. In addition,
by dividing the code into two operations, the amount of computation can be further
reduced. If the divided code is shared on different embedded boards to process images
while communicating with each other, a lighter real-time image processing algorithm can
be implemented.

Through this study, it has been found that the efficiency of object recognition can be
greatly increased by using two deep learning models. It is expected that this method can
be used for autonomous driving and IoT, which are fields that currently need to recognize
people using object recognition. In addition, because it can be implemented on a much
lighter and cheaper boards than the boards currently used in object recognition, it can be
seen that the potential for grafting is high. Experimenting with different deep learning
object recognition frameworks and different versions shows that this algorithm can be
implemented flexibly. Therefore, we predict that the method devised here can be used with
several deep learning and machine learning-based object recognition structures currently
being studied.

In the future, research can be conducted into real-time object recognition based on deep
learning to improve the accuracy in various environments and to optimize for operation
on even lighter embedded boards. In addition, research on reducing the overflow that
occurs during real-time image analysis by utilizing communication technologies such as
socket communication can be studied. In addition, because the current object recognition
deep learning algorithm was developed very rapidly in several ways, we plan to study it
further in order to execute it more flexibly in various frameworks and languages according
to the flow.
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Abbreviations

The following abbreviations are used in this manuscript:
YOLO You Look Only Once
ROI Region Of Interest
ENet Efficient Neural network
R-CNN Regions with Convolutional Neuron Networks
FCN Fully Convolutional Networks
CNN Convolutional Neural Network
OpenCV Open-Source Computer Vision
FPS Frames Per Second
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Abstract: As an important equipment for high-speed railway (HSR) to obtain electric power from
outside, the state of the pantograph will directly affect the operation safety of HSR. In order to solve
the problems that the current pantograph detection method is easily affected by the environment,
cannot effectively deal with the interference of external scenes, has a low accuracy rate and can
hardly meet the actual operation requirements of HSR, this study proposes a pantograph detection
algorithm. The algorithm mainly includes three parts: the first is to use you only look once (YOLO)
V4 to detect and locate the pantograph region in real-time; the second is the blur and dirt detection
algorithm for the external interference directly affecting the high-speed camera (HSC), which leads
to the pantograph not being detected; the last is the complex background detection algorithm for
the external complex scene “overlapping” with the pantograph when imaging, which leads to the
pantograph not being recognized effectively. The dirt and blur detection algorithm combined with
blob detection and improved Brenner method can accurately evaluate the dirt or blur of HSC, and
the complex background detection algorithm based on grayscale and vertical projection can greatly
reduce the external scene interference during HSR operation. The algorithm proposed in this study
was analyzed and studied on a large number of video samples of HSR operation, and the precision
on three different test samples reached 99.92%, 99.90% and 99.98%, respectively. Experimental results
show that the algorithm proposed in this study has strong environmental adaptability and can
effectively overcome the effects of complex background and external interference on pantograph
detection, and has high practical application value.

Keywords: high-speed railway; object detection; blob detection; EOR-Brenner; blur and dirt;
complex background

1. Introduction

As an important part of the pantograph-catenary system (PCS), the pantograph is
a special current-receiving device installed on the roof of the high-speed railway (HSR).
When the pantograph is raised, it transmits power from the traction substation to the HSR
through the friction between the pantograph and the contact network, thus providing the
power required for the operation of the HSR. Once a pantograph failure occurs, it will
directly affect the operational safety of HSR [1–3]. Therefore, the current pantograph status
must be accurately assessed through real-time detection of pantographs to ensure the safety
and stability of HSR operation. The PCS is shown in Figure 1.
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Figure 1. Schematic of PCS.

There are two main models of HSR in actual operation, the speed of the two models of
HSR is usually 150–300 km/h when they are running stably, but the images captured by the
high-speed cameras (HSC) equipped with the two models of HSR are slightly different. One
is the image captured by HSR-A as shown in the left image in Figure 2, and the other is the
image captured by HSR-B as shown in the right image in Figure 2. It is worth mentioning
that there are some Chinese messages in the images captured by the HSC in Figure 2, which
contain the basic information of the vehicle and the time information and do not affect
the reader’s understanding of this paper. The same is true for the images captured by the
relevant HSC that appear subsequently in the paper.

Ptop-left xleft , ytop

Figure 2. HSC footage of pantographs.

Although the two models of HSR are equipped with different angles of HSC, they
both have a frame rate of 25 FPS. Therefore, regardless of the operating speed of HSR, the
HSC can only capture 25 pantograph images per second, so the algorithm must process at
least 25 images captured by the HSC per second to meet the real-time requirement. The
region corresponding to the red rectangle in Figure 2 is the region of interest (ROI), and the
pantograph in the ROI is the main research object of this study.

In the current pantograph detection method, Refs. [4,5] proposed the use of Catenary
and Pantograph Video Monitor (CPVM-5C) System for pantograph detection, but in the 5C
system the camera is generally installed at the HSR exit, which cannot detect and monitor
the running HSR in real time. Refs. [6–8] proposed to extract the edges of pantographs
by improved edge detection, wavelet transform, hough transform, etc., so as to realize the
evaluation of pantographs, but this is essentially based on the traditional image processing
method, which is only applicable to pantograph detection when the overall image is clear
and the background is single, which is limited and difficult to meet the complex situation
when the HSR is actually running. Refs. [9–11] proposed to achieve real-time pantograph
detection by simply using a certain improved neural network, whose detection results are
entirely given by the neural network. This method relies heavily on a large number of data
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sets for support, and is prone to a large number of false alarms when the training set is not
rich enough in samples. The data set of certain complex scenes in the operation of HSR is
difficult to obtain, so it is difficult to build a model that covers a large number of rich scene
samples under training, which makes a large interference to the detection results when
disturbed. Refs. [12–15] and others combine deep learning and image processing to greatly
improve the stability of pantograph detection by a single reliance on neural networks, but
there are still major limitations in complex scenes. The proposed methods of [16–18] are
not very practical for complex scenes and external interference, and the complex scenes
that can be overcome are very limited.

In the actual operation of HSR, it is often faced with various complex environments
and changing scenarios. Even for HSR running on the same line, there may be huge
differences in the scenarios encountered in different time periods. This difference is caused
by multiple factors, which is irregular and difficult to predict. Because the occurrence of
these scenes is full of randomness, resulting in a sample set for training neural networks
that cannot cover all situations in all complex scenes and environments. With limited
samples, methods to improve detection accuracy by improving certain neural networks do
not fundamentally address the large number of pantograph state false positives in such
scenarios, and cannot really address the impact of complex scenarios in the actual operation
of HSR. Therefore, this paper focuses on filtering and detecting these complex scenes and
external interference by designing algorithms, so as to achieve a method more in line with
the actual operation of HSR and more widely applicable, reducing or even eliminating
these scenes for neural network real-time detection of a pantograph’s impact.

2. YOLO V4 Locates the Pantograph Region

The Alexey-proposed You Only Look Once (YOLO) V4 is a huge upgrade to the
one-stage detector in the field of object detection [19]. Compared with the previous ver-
sion of YOLO, YOLO V4 replaces the backbone network from the original darknet53 to
CPSdarknet53 on the basis of YOLO V3, which makes YOLO V4 effectively reduce the
amount of computation and improve the learning ability. Meanwhile, YOLO V4 replaces
spatial pyramid pooling (SPP) with feature pyramid networks (FPN), which splices feature
maps at different scales and increases the receptive field of the model, enabling YOLO V4
to extract more details.

Average Precision (AP) and Mean Average Precision (mAP) are important metrics to
measure the performance of the target detection algorithm, while AP-50 and AP-75 are
the AP values when the corresponding Intersection over Union (IoU) thresholds are set
to 0.5 and 0.75. The performance of YOLO V4 and current mainstream object detection
algorithms on two datasets, Visual Object Classes (VOC) and Common Objects in Context
(COCO), is shown in Figure 3.

Figure 3 shows that the YOLO V4 has clear advantages in all aspects. Alexey had
pointed out that the YOLO V4 was the most advanced detector at that time, and even now
it still seems that the YOLO V4 has great advantages and performance [19]. Therefore,
YOLO V4 is used to locate the pantograph region in this study, and the located pantograph
region is passed into the subsequent algorithm. The overall algorithm flow for locating the
pantograph region using YOLO V4 is shown in Figure 4.
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(a)

(b)

Figure 3. Comparison of YOLO V4 with other mainstream neural networks [20–32]. (a) Test results
on VOC2007 + VOC2012. (b) Test results on the COCO dataset.
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Figure 4. YOLO V4 overall algorithm process.
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3. HSC Blur and Dirt Detection Algorithm

3.1. Blurry HSC Screen and Dirty HSC Screen

During the operation of HSR, the HSC is always exposed to the outside of the car,
which makes the HSC extremely vulnerable to interference from the outside. The external
interference affecting the HSC is mainly divided into two kinds: one is the influence of rain
on the pantograph during rainy days, and the other is the influence of the dirt attached to
the HSC lens on the pantograph.

3.1.1. Rainwater

HSR operation needs to face very complicated weather conditions, especially in rainy
days, rainwater will directly affect the imaging of HSC. Figure 5 illustrates the different
degrees of impact of rain on the HSR-A and HSR-B. when HSR is running at high speed,
rainwater tends to cause blurring of the HSC imaging, making the captured pantographs
unclear and thus causing the YOLO V4 to incorrectly assess the pantographs.

(a) (b)

Figure 5. Blurred HSC imaging caused by rainwater. (a) HSR-A. (b) HSR-B.

3.1.2. Dirty

The lens dirt attached to the HSC can generally only be removed by manual cleaning.
As shown in Figure 6, during the period from the time when the lens is dirty to before the
dirt is artificially cleaned, the dirty lens will continue to affect the overall evaluation of the
pantograph by YOLO V4.

(a) (b)

Figure 6. The HSC lens has a lot of dirt attached to it. (a) HSR-A. (b) HSR-B.

3.2. External Factors Cause YOLO V4 to Fail to Locate the Pantograph

When YOLO V4 cannot locate the pantograph due to external interference, the approx-
imate position of the pantograph in the current screen can be inferred from the pantograph
position that was determined in the previous normal screen. When YOLO V4 locates the
pantograph area, it only needs to obtain four parameters of the bounding box in Figure 2
to achieve its accurate positioning. These four parameters are the horizontal coordinates
(xle f t) and vertical coordinates (ytop) of the point (Ptop−le f t) in the upper left corner of the
bounding box, and the width and height of the pantograph. The variation of the four
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parameters of the bounding box positioned by YOLO during normal operation of HSR of
two different models is shown in Figure 7.

Figure 7. Changes of the four parameters of the bounding box when YOLO V4 is positioned normally
without external interference.

As can be seen from Figure 7, whether it is HSR-A or HSR-B, when its normal operation
is not disturbed by external scenes, the pantograph region positioned by YOLO V4 is always
relatively fixed, although there is a small range of jitter. This small-scale jitter is caused
by a combination of factors such as the bumps during the operation of the HSR and the
force changes between the pantograph and the catenary. This jitter does not affect the
approximate position of the pantograph in the image, so when the YOLO V4 is unable to
locate the pantograph area due to external interference, the approximate position of the
pantograph in the current frame can be inferred from the coordinate information obtained
from the previous frame, and subsequent analysis can be performed.

3.3. Improved Image Sharpness Evaluation Algorithm

Brenner algorithm is a classical blur detection algorithm [33], which finally achieves
the evaluation of image sharpness by accumulating the square of the grayscale difference
between two pixel points. Since the gray value of the image at the focal position changes
significantly compared with the telefocused image, and the image at the focal position
has more edge information, a more accurate judgment of the sharpness of the image can
be made using this method. However, the traditional Brenner algorithm cannot meet the
complex scene changes and variable external disturbances that need to be faced during the
operation of high speed rail, so this paper proposes the emphasize object region-Brenner
(EOR-Brenner) algorithm combined with the pantograph region localized by YOLO V4.
The principle of EOR-Brenner is shown in Equation (1).

F = k1FIMG + k2FROI

= k1

img.cols−3

∑
x=0

img.rows−1

∑
y=0

[ f (x + 2, y)− f (x, y)]2

+ k2

xle f t+width

∑
x=xle f t

ytop+height

∑
y=ytop

[ f (x + 2, y)− f (x, y)]2

(1)
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where x is the horizontal coordinate of a pixel point, y is the vertical coordinate of a pixel
point, f (x, y) is the gray value of the pixel point, FIMG and FROI are the sharpness results
of the corresponding region. k1 and k2 are the weights of the corresponding region, and F
is the final result of the improved Brenner algorithm.

Although the ROI occupies a relatively small area of the whole image, the pantograph,
as the key research object, should be given a higher weight to the area where it is located. In
this study, we recommend that k1 can be 2 or 4 times of k2, and the specific choice should be
made flexibly according to the actual operation line of HSR. After the values of k1 and k2 are
determined, the appropriate threshold (λ) is selected based on the calculated EOR-Brenner
to achieve the differentiation and detection of clear and blurred images.

As shown in (2), when the final result F of EOR-Brenner is higher than the set threshold
(λ), the image captured by the current HSC is considered to be clear. If the pantograph
cannot be detected or is detected as abnormal at this time, it can be assumed that the current
detection result is not affected by the blurring of the HSC screen. However, there are still
two situations: (1) the current pantograph is in normal state, although it is not affected by
the blurred screen, but it may be disturbed by other external environment such as complex
background, which leads to the normal pantograph being undetectable or the pantograph
is incorrectly detected as abnormal. (2) The pantograph is really abnormal. At this time, it
is necessary to further evaluate the real state of the pantograph through the subsequent
algorithm, and finally realize the accurate detection of the real state of the pantograph.{

Clear image, F > λ

Blurred image, F < λ
(2)

3.4. Blob Detection Algorithm Detects Screen Dirt

When dirt is attached to a HSC, it is very easy to form blobs. Blobs caused by dirt
have different areas, convexity, circularity and inertia rates, so these attributes can be used
to detect and filter the blobs [34–37], and the number of blobs can ultimately determine
whether the HSC is dirty or not.

The area of the blob (S) reflects the size of the detected blob, while the circularity
derived from the area of the blob (S) and the corresponding perimeter (C) reflects the
degree to which the detected spot is close to a circle, and the calculation of the circularity is
shown in Equation (3):

Valuecircularity =
4πS
C2

(3)

The convexity reflects the degree of concavity of the blob. The convexity of the blob
can be obtained from the area of the blob (S) and the area of the convex hull (H) of the blob,
which is calculated as shown in Equation (4):

Valueconvexity =
S
H

(4)

The inertia rate also reflects the shape of the blob. If an image is represented by f (x, y),
then the moments of the image can be expressed by the Equation (5)

Mij = ∑
x

∑
y

xiyj f (x, y) (5)

For a binary image, the zero-order moment M00 is equal to its area, so its center of
mass is as shown in Equation (6):

{x̄, ȳ} =

{
M10

M00
,

M01

M00

}
(6)

149



Sensors 2022, 22, 8425

The central moment of the image is defined as shown in Equation (7):

μpq = ∑
x

∑
y
(x − x̄)p(y − ȳ)q f (x, y) (7)

If only second-order central moments are considered, the image is exactly equivalent
to an ellipse with a defined size, orientation and eccentricity, centered at the image center
of mass and with constant radiality. The covariance moments of the image are shown in
Equation (8):

cov[f(x, y)] =
[

μ′
20 μ′

11
μ′

11 μ′
02

]
=

[
μ20
μ00

μ11
μ00

μ11
μ00

μ02
μ00

]
(8)

The two eigenvalues λ1 and λ2 of this matrix correspond to the long and short axes of
the image intensity (i.e., the ellipse). Then λ1 and λ2 can be expressed by the Equation (9):

λ1 =
μ′

20 + μ′
02

2
+

√
4μ′2

11 +
(
μ′

20 − μ′
02
)2

2

λ2 =
μ′

20 + μ′
02

2
−

√
4μ′2

11 +
(
μ′

20 − μ′
02
)2

2

(9)

The final inertia rate is obtained as shown in Equation (10):

Valueinertia =
λ2

λ1
=

μ′
20 + μ′

02 −
√

4μ′2
11 +

(
μ′

20 − μ′
02
)2

μ′
20 + μ′

02 +
√

4μ′2
11 +

(
μ′

20 − μ′
02
)2

=
μ20 + μ02 −

√
4μ2

11 + (μ20 − μ02)
2

μ20 + μ02 +
√

4μ2
11 + (μ20 − μ02)

2

(10)

The final selection of the number of blobs is achieved by the area, convexity, circularity
and inertia rate of the blobs, and when the final number of detected blobs is greater than
the set threshold, it can be inferred that the HSC surface is attached to the dirty at this
time, so as to achieve the detection of HSC dirty. For the case shown in Figure 6 the final
detection result is shown in Figure 8.

(a) (b)

Figure 8. The HSC Screen dirty detection results. (a) HSR-A. (b) HSR-B.

3.5. Overall Process of HSC Blur and Dirt Detection Algorithm

As shown in Figure 9, the number of blobs in the current frame is first detected by
the blob detection algorithm, and when the number is greater than the set threshold it
is determined that the reason why YOLO V4 cannot achieve positioning in the current
frame is due to dirt, and if the number of detected spots is less than the threshold value,
the EOR-Brenner is used to evaluate whether the current frame is blurred or not. Finally
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correctly evaluate whether the pantograph detection abnormality in the current frame or
the pantograph cannot be detected is caused by the dirty and blurred HSC.

Figure 9. HSC blur and dirt detection algorithm process flow chart.

4. HSR Complex Background Detection Algorithm

4.1. The Complex Background That HSR Needs to Face

HSR often needs to face a large number of external scene changes and variable terrain,
environment and other influences during actual operation. These external scenes and terrain,
environment, etc. can directly affect the algorithm’s correct assessment of the real state
of the pantograph, and thus a large number of false alarms occur. Compared with blur
and dirt, which directly affect the HSC and thus affect the detection of pantographs,
when these external scenes and terrain environments affect the detection of pantographs,
the images captured by the HSC are still very clear and free of blobs, but their impact on
pantograph detection is mainly due to the HSC imaging when these external disturbances
and pantograph “overlap” together, thus causing a large number of false alarms on the
pantograph state. In this study, we refer to this type of interference as the “complex
background”, and the common complex backgrounds are catenary support devices, the
sun, bridges, tunnels, and platforms of HSR.

In this study, we propose a HSR complex background detection algorithm to achieve
accurate detection of these complex scenes during the operation of HSR, so as to exclude
the influence of these complex background on the pantograph state evaluation.

4.1.1. Catenary Support Devices

As an extremely important part of the whole huge HSR system, the catenary support
device not only plays the role of electrical insulation, but also bears a certain mechanical
load. The contact network support device, as the most frequently appearing background,
as shown in Figure 10 will often affect the normal detection of pantographs.
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(a) (b)

Figure 10. Catenary support device affects pantograph detection. (a) HSR-A. (b) HSR-B.

4.1.2. Sun

As shown in Figure 11, when the sun appears in the pantograph imaging region, the
strong light causes a “partial absence”-like phenomenon in the pantograph.

(a) (b)

Figure 11. Sun affects pantograph detection. (a) HSR-A. (b) HSR-B.

4.1.3. Bridge

Due to the complex geographical environment, when two areas are separated by
rivers, only special or mixed-use bridges can be built over the rivers to provide HSR access.
In more and more cities, numerous viaducts are being built to provide access to HSR.
When the HSR crosses the bridge, it directly affects the detection and positioning of the
pantographs. The effect of bridges on pantographs is shown in the Figure 12.

(a) (b)

Figure 12. Bride affects pantograph detection. (a) HSR-A. (b) HSR-B.

4.1.4. Tunnel

The presence of the tunnel greatly reduces the travel time and shortens the mileage
between the two areas. Figure 13 shows the different images captured by the HSC before
and after the HSR enters the tunnel. When the HSR enters the tunnel and runs stably, as
shown in Figure 13c, the normal monitoring of the pantograph can still be achieved at this
time because the fill light on the HSR is turned on. However, as shown in Figure 13b and
Figure 13d, the dramatic light changes during the short period of time when the HSR enters
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and leaves the tunnel will cause the neural network to fail to achieve accurate positioning
and detection of the pantographs when entering and leaving the tunnel.

(a) (b)

(c) (d)

Figure 13. Tunnels affects pantograph detection. (a) Before the HSR enters the tunnel. (b) The
moment the HSR enters the tunnel. (c) After the fill light is turned on, the HSR runs stably in the
tunnel. (d) The moment the HSR exits the tunnel.

4.1.5. Platform

As shown in Figure 14, when the HSR drives into the platform, the platform will par-
tially overlap with the pantograph region, which affects YOLO’s positioning and detection
of the pantograph, thus causing a large number of false alarms of the pantograph status by
YOLO in the platform.

(a) (b)

Figure 14. Platform affects pantograph detection. (a) HSR-A. (b) HSR-B.

4.2. Tunnel Detection Algorithm Based on the Overall Average Grayscale of the Image

For such false alarms caused by drastic changes in light over a short period of time
that cause YOLO to be unable to detect and locate the pantograph for a short period of time,
they can be excluded by the grayscale change rule of the image. The average grayscale
calculation method of the image is shown in Equation (11):

ḡ =
∑

img.cols−1
i=0 ∑

img.rows−1
j=0 P(i, j)

img.cols ∗ img.rows
(11)
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where P(x, y) is the grayscale of the corresponding pixel point, img.rows is the height of
the image and img.cols is the width of the image.

When the pantograph is running in a relatively clear and clean background, the image
corresponding to each frame will cause the average grayscale of the image to fluctuate
in a small range with the continuous operation of the HSR and the continuous change of
the scene, but there will not be a large change in the average grayscale. Figure 15 shows
the change in the average grayscale of the images taken by the HSC before and after the
different cars enter and exit the tunnel.

Figure 15. Average grayscale variation of images of HSR-A (top) and HSR-B (bottom) when driving
into different tunnels.

As can be seen from Figure 15, when the HSR is running normally outside the tunnel,
the average grayscale of the image only fluctuates in a very small range, and basically
remains relatively stable. When the HSR enters the tunnel, the average gray value of the
captured image drops to about 5 (as shown in Figure 13b, the image is basically black)
because the fill light is not yet turned on and the light inside and outside the tunnel changes
drastically. As the fill light is turned on, after a short period of time to adapt to the HSR
will remain in a stable state in the tunnel and continue to travel, the average gray scale of
the image will remain relatively stable again (as shown in Figure 13d, the image is basically
all white) and the time of the HSR in the tunnel is determined by the speed of the HSR and
the length of the tunnel. When the HSR out of the tunnel, due to run from a relatively dark
environment to a bright environment, the HSC overexposure phenomenon will occur. At
this time the average gray scale of the HSC captured by the image will jump to close to
250 or so.

4.3. Sun Detection Algorithm Based on Local Average Grayscale of Image Pantograph Region

The influence of the sun on the HSR is full of uncertainty. We cannot accurately predict
that a HSR happens to pass by at a certain time on a certain line, and the sun also happens
to appear in the pantograph imaging region of the HSR at this time, and affect YOLO’s
assessment of the pantograph state. Moreover, not all suns are as jealous of pantograph
detection as shown in Figure 11. Figure 16 shows the situation where the sun appears in
some images taken by HSC, but the sun does not affect YOLO’s detection of the pantograph
region.
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(a) (b) (c) (d) (e) (f)

Figure 16. Sun did not affect YOLO detection of pantographs in HSR-A and HSR-B. (a) Case I.
(b) Case II. (c) Case III. (d) Case IV. (e) Case V. (f) Case VI.

The screen of the corresponding scene in Figure 16 after the high speed rail leaves the
area affected by the sun is shown in Figure 17. Furthermore, the average grayscale of the
corresponding scenes in Figures 16 and 17 is shown in Figure 18.

(a) (b) (c) (d) (e) (f)

Figure 17. The corresponding HSC in Figure 16 captures the scene without the sun in the frame.
(a) Case I. (b) Case II. (c) Case III. (d) Case IV. (e) Case V. (f) Case VI.

Figure 18. Average grayscale comparison.

It can be found that the overall average grayscale of the image is not necessarily
increased after the sun appears in the image captured by the HSC. However, when the
sun affects the detection of pantographs, it will definitely cause an increase in the average
grayscale of ROI. When the sun is not present the difference between the overall image and
the average grayscale of the ROI is not significant, but once the sun affects the pantograph,
it will definitely cause a large difference between the two. Using this unique difference, it
is possible to determine whether the pantograph is detected as anomalous in the current
image due to the sun. When the sun affects the pantograph detection, the average grayscale
change of the overall image and ROI and the corresponding difference between the two
average gray levels are shown in Figure 19.
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Figure 19. Average grayscale variation in the corresponding areas of HSR-A (top) and HSR-B
(bottom) during sun influence pantograph detection.

4.4. Background Detection Algorithm for Catenary Support Devices, Bridges, and Platforms Based
on Vertical Projection

Catenary support devices, bridges, and platforms do not have an excessive effect
on the average grayscale of the images captured by the HSC, so for these three common
external disturbances, the choice was made to eliminate the relevant interference by using
vertical projection. As shown in Figure 20a, based on the ROI positioned by YOLO V4, the
left region of interest (L-ROI) and right region of interest (R-ROI) can be positioned. Firstly,
the image captured by the HSC is binarized to highlight the object to be studied, and the
result of binarization is shown in Figure 20b. Then the binary image is passed through
the image to reduce the interference in the image by the opening operation, and the image
after the opening operation is shown in Figure 20c. Finally, the vertical projection of the
L-ROI, ROI, and R-ROI regions is calculated by the result of the open operation as shown
in Figure 21, where the height of the white region of the vertical projection reflects the
number of pixels in the white region on the corresponding horizontal coordinates in the
binary image.

(a) (b) (c)

Figure 20. Image binarization and opening operations. (a) L-ROI, ROI and R-ROI. (b) Binary image.
(c) Binary image after opening operation.
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(a) (b) (c)

Figure 21. Binary image of different regions and the corresponding vertical projections after the
opening operation. (a) L-ROI. (b) ROI. (c) R-ROI.

As shown in Figure 22, the percentage of white areas in the vertical projections of
L-ROI and R-ROI is low when the HSR is operating normally without external disturbance,
while there is a large percentage of white areas in the vertical projections corresponding
to ROI.

Figure 22. Change in the percentage of white areas in the vertical projection of different areas of
HSR-A (top) and HSR-B (bottom) when the HSR is operated without external disturbances.

The impact of the catenary support device on the pantograph detection is much smaller
compared to other complex backgrounds, but the percentage of white areas in the vertical
projection still reflects the changes brought about by this scenario very accurately. The
changes in the percentage of white areas in the vertical projection after different areas in the
L-ROI, ROI and R-ROI are affected by the catenary support devices during the operation of
the HSR are shown in Figure 23.
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Figure 23. Changes in the percentage of white areas in the vertical projections of different areas
of HSR-A (top) and HSR-B (bottom) during HSR operation after being affected by the catenary
support devices.

The effect of bridges on the percentage of white areas in the vertical projection of
different regions during HSR operation is shown in Figure 24. Since the HSC angles of
HSR-A and HSR-B are different, the bridges do not have the same effect on the percentage
of white in the vertical projection areas of L-ROI and R-ROI, but both cause at least one
of the L-ROI or R-ROI to have a huge change in the percentage of white area in the
vertical projection.

Figure 24. Changes in the percentage of white areas in the vertical projections of different areas of
HSR-A (top) and HSR-B (bottom) during HSR operation after being influenced by the bridge.

The effect of the platform on the percentage of white areas in the vertical projection of
the different areas is shown in Figure 25. Furthermore, due to the HSC angle, the impact of
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the platform on HSR-A and HSR-B is different, but both have an impact on at least one of
the R-ROI or L-ROI.

Figure 25. Changes in the percentage of white areas in the vertical projections of different areas of
HSR-A (top) and HSR-B (bottom) during HSR operation after being influenced by the platform.

From Figures 22–25, it can be seen that the percentage of white area in the projection
corresponding to ROI does not change much when subjected to complex background
interference, while the changes of L-ROI and R-ROI are very obvious after subjected to
complex background interference, so this paper mainly detects the presence of complex
background interference by the projection of L-ROI and R-ROI areas.

4.5. Overall Process of HSR Complex Background Detection Algorithm

The overall process of the complex background detection algorithm is shown in
Figure 26. For a pantograph image captured by a HSC, when it cannot be detected or is
detected as abnormal, the complex background detection algorithm is needed to assess
whether the current detection result has the possibility of being affected by the com-
plex background.

The specific process is as follows: First, the change of the average grayscale of the
current image as a whole and the average grayscale of the previous frame as a whole is
used to evaluate whether the detection result may be affected by the drastic change of light
before and after the HSR enters and leaves the tunnel. If not, the relationship between
the overall average grayscale of the image and the average grayscale of the ROI is used to
assess whether the sun may have intruded into the pantograph region and thus influenced
the pantograph detection. If the influence of the sun can still be excluded, the detection of
the catenary support devices, platforms, and bridges is achieved by vertical projection to
finally determine whether the pantograph detection results are influenced by the complex
background at this time.

If the influence of complex background on the detection result is excluded by HSR
complex background detection algorithm, then there are still two possibilities for the
pantograph not to be detected or detected as abnormal: (1) although the current image is
not disturbed by complex background, it may be disturbed by other interference which
leads to misjudgment of the pantograph, (2) the pantograph does appear abnormal. In this
case, the overall algorithm proposed in Section 5.1 of this study is combined to achieve
accurate detection of the real situation of pantographs.

159



Sensors 2022, 22, 8425

�

�

Figure 26. HSR complex background detection algorithm process flow chart.

5. Experiments and Conclusions

5.1. The Overall Process of Pantograph Detection Algorithm

The overall process of the algorithm is shown in the Figure 27, when YOLO V4 cannot
detect the pantograph in a frame or detect it as abnormal, the algorithm gives priority to
detecting it through the HSC blur and dirt detection algorithm, and when the detection
abnormality is ruled out as a result of dirty or blurred screen, then the HSR complex
background detection algorithm to determine whether the detection of abnormalities is
caused by complex background. Finally, we can realize the accurate judgment of the
pantograph state.

Figure 27. pantograph detection algorithm process flow chart.
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5.2. Performance Evaluation of Algorithms under Complex Background Interference

The operation of HSR requires frequent face to the interference and influence brought
by scenarios such as catenary support devices, sun, bridges, platforms, and tunnels to
pantograph detection. The performance of different methods in detecting pantographs in
complex backgrounds is shown in Table 1.

Table 1. Performance of different algorithms when dealing with complex backgrounds.

Method
TM MS + SIFT MS + KF PDDNet SED

Improved
Faster R-CNN

The Method
of This Study

[38] [39] [40] [12] [17] [18]

Whether the pantograph can be detected
correctly under the complex background × × × × × × �

Refs. [12,17,18,38–40] all proposed good methods and ideas in order to improve the
performance of their respective algorithms in complex backgrounds. However, in the
face of more complex background disturbances and effects during the actual operation
of HSR, the relevant algorithms still cannot achieve correct detection of pantographs
under these complex backgrounds. In contrast, the HSR complex background detection
algorithm proposed in this study can well achieve the correct detection and evaluation of
the pantograph state under the relevant scenes. The results in Table 1 show that the method
proposed in this study is more suitable for the real situation and practical needs of HSR,
and performs better under the influence of complex background.

5.3. EOR-Brenner Evaluates the Sharpness of Pantograph Images Captured by HSC

Figure 28 shows the scores of EOR-Brenner on the sharpness of the images captured by
two different models under different conditions. Where Frame 1–Frame 100 corresponds
to the images captured by HSC during normal operation without any disturbance, Frame
101–Frame 200 corresponds to the blurred image caused by rain affecting the HSC, and
Frame 201–Frame 300 is the dirty HSC lens.

Figure 28. EOR-Brenner evaluation results of images captured by HSR-A and HSR-B under differ-
ent conditions.
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Comparing Figure 28, it can be seen that EOR-Brenner gives higher scores than Brenner
for clear pantograph images; for blurred pantograph images EOR-Brenner gives lower
scores than Brenner for image sharpness; and the scores are very close when dirty. At the
same time, EOR-Brenner has higher distinguishability between clear, blurred and dirty
images, while the scores of the original Brenner images are very similar when they are dirty
and clear. The improved EOR-Brenner algorithm is more in line with the real operating
environment of HSR and better meets the actual needs of HSR operation.

5.4. Evaluation of the Overall Performance of the Algorithm in This Study

The combined test results for complex scenes and blurred and dirty cases are shown
in Tables 2 and 3. The red part corresponds to a clear image without interference, the gray
part corresponds to a blurred image, the purple part corresponds to an image affected by
dirt, and the pink part corresponds to an image disturbed by a complex environment.

Table 2. Comprehensive evaluation of the images presented in this article I.

Image Serial
Number

Different Sharpness Evaluation Algorithms

Tenengard
[41]

Laplacian
[42]

SMD
[43]

SMD2
[44]

EG
[45]

EAV
[46]

NRSS
[47]

Brenner
[33]

EOR
-Brenner

Figure 2 left 22.5 4.24 1.81 2.01 9.34 38.18 0.79 252 704
Figure 2 right 31.1 8.25 3.23 5.18 17.26 48.25 0.91 400 876

Figure 5a 9.4 2.18 0.76 0.57 2.31 23.44 0.75 95 55
Figure 5b 10.57 2.49 0.86 0.64 2.46 27.89 0.75 117 64
Figure 6a 31.64 4.45 2.72 2.35 13.92 39.01 0.82 158 228
Figure 6b 32.81 5.52 2.77 2.75 16.32 50.55 0.84 286 476
Figure 10a 26.27 4.55 2.13 2.48 11.98 44.48 0.77 269 686
Figure 10b 39.79 6.76 3.54 5.13 21.42 66.29 0.81 363 767
Figure 11a 24.00 4.56 2.20 2.71 13.62 51.25 0.81 143 310
Figure 11b 14.00 2.54 1.22 1.42 6.77 42.21 0.78 75 285
Figure 12a 42.92 6.78 3.47 3.96 21.19 56.17 0.79 358 613
Figure 12b 31.82 4.84 2.67 3.61 17.03 55.23 0.78 221 346
Figure 13a 27.18 4.12 2.30 2.75 13.49 46.28 0.76 162 356
Figure 13b 10.44 2.21 0.86 0.85 2.43 9.76 0.74 229 230
Figure 13c 20.96 3.70 1.80 1.54 7.97 32.38 0.75 209 342
Figure 13d 10.65 2.34 0.88 0.74 2.38 10.11 0.75 245 246
Figure 14a 46.62 7.53 4.05 6.12 26.28 80.26 0.78 305 924
Figure 14b 39.25 6.14 3.38 3.21 22.02 86.59 0.78 310 551

Table 3. Comprehensive evaluation of the images presented in this article II.

Image Serial Number
Vertical Projection Average Grayscale Number

of BlobL-ROI (%) R-ROI (%) Whole ROI

Figure 2 left 0.5 0.5 135 146 57
Figure 2 right 0.3 0.4 148 154 62

Figure 5a 0.4 0.4 159 175 30
Figure 5b 0.5 0.3 158 179 29
Figure 6a 3.3 1.1 179 190 481
Figure 6b 6.1 0.7 143 149 445
Figure 10a 1.9 38.6 120 114 61
Figure 10b 14.1 72.0 117 116 73
Figure 11a 3.4 0.5 178 212 69
Figure 11b 0.2 0.5 189 221 44
Figure 12a 46.0 44.7 118 122 140
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Table 3. Cont.

Image Serial Number
Vertical Projection Average Grayscale Number

of BlobL-ROI (%) R-ROI (%) Whole ROI

Figure 12b 83.2 67.7 106 100 91
Figure 13a 47.8 69.0 149 154 117
Figure 13b 0 0 2 0 26
Figure 13c 0.5 0.5 52 55 61
Figure 13d 0.5 0.5 250 252 45
Figure 14a 94.3 99.6 112 118 130
Figure 14b 100 7.9 127 141 106

Figure 29 shows the scene of the same HSR running at different times on the same
line. Due to the intermittent heavy rainfall, the blurring of the images caused by the HSC
affected by rain at different moments is not the same. For the same train on the same line
when it is affected differently the results of the clarity algorithm for it are shown in Table 4.

(a) (b) (c) (d) (e) (f)

Figure 29. Scenes taken at different moments of the same HSR in rainy weather. (a) Case I. (b) Case
II. (c) Case III. (d) Case IV. (e) Case V. (f) Case VI.

Table 4. Performance of the same HSR at different times with different levels of disturbance.

Image
Serial

Number

The Actual Time
Corresponding

to the Scene

Different Sharpness Evaluation Algorithms

Tenengard
[41]

Laplacian
[42]

SMD
[43]

SMD2
[44]

EG
[45]

EAV
[46]

NRSS
[47]

Brenner
[33]

EOR-Brenner

Figure 29a 16:49:36 16.30 3.15 1.31 1.09 5.69 32.18 0.77 124 149

Figure 29b 16:51:45 9.16 2.45 0.74 0.54 2.20 28.28 0.74 125 63

Figure 29c 18:59:35 22.53 4.72 1.79 1.73 7.98 46.70 0.78 256 756

Figure 29d 19:22:54 23.29 4.82 1.90 1.93 9.12 40.97 0.79 235 764

Figure 29e 20:57:08 9.46 1.76 0.82 0.69 3.45 29.17 0.76 50 81

Figure 29f 22:41:23 9.94 2.37 0.85 0.62 2.54 32.92 0.74 112 59

As can be seen from Tables 2–4, regardless of the cases in which different complex
backgrounds or external disturbances affect the pantograph detection of different HSR, or
the cases in which the same HSR affects the pantograph detection at different moments due
to changes in the external environment, the EOR-Brenner algorithm proposed in this study
can accurately evaluate the sharpness of these pantograph images under the influence of
disturbances, and the clearer the image, the higher the score. For the blurred pantograph
images, the EOR-Brenner algorithm scores them much lower than the normal pantograph
images, so as to achieve an accurate judgment of the blurred situation. However, it should
be noted that for the images corresponding to Figure 6 when the HSC lens is dirty, a large
number of blobs appear on the lens due to the dirt, which will make the image have more
edge details at this time, so the EOR-Brenner does not score the dirty image low. However,
the number of blobs on the dirty image is much higher than the pantograph images in
other cases, so the number of blobs can achieve accurate detection of dirty images.

For the case of complex background affecting pantograph detection, comparing
Tables 2 and 3, we can see that the average gray scale of the whole image (Figure 13)
before and after entering and leaving the tunnel will suddenly jump to around 0 or 255,
while other disturbances affecting the pantograph will not lead to such a drastic change
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in gray scale value, through this jump in gray scale value can provide a strong basis for
whether the high speed rail is driving into the tunnel, so as to exclude the high speed rail
The effect on pantograph detection when entering and leaving the tunnel. When the sun
affects the pantograph detection (Figure 11) it causes a large difference between the average
grayscale of the ROI and the average grayscale of the whole image, while in other cases
the difference between the average grayscale of the pantograph area and the whole image
is small. Compared with other disturbances, contact network support devices, bridges,
and tunnels, when affecting pantograph detection (Figures 10, 12 and 14), cause the white
percentage of the vertical projection of at least one of the L-ROI region and R-ROI region to
reach more than 35%, while the percentage of the vertical projection of the L-ROI and R-ROI
regions in other scenes basically remains around 1%, with the maximum not exceeding
10%. Accurate detection of these scenes can be achieved by this feature.

The results of the comprehensive test for a variety of scenes at the same time are shown
in Table 5. Meanwhile, we demonstrate the effectiveness of each module by the ablation
experiments shown in Table 6. It is easy to find that the HSR complex background detection
algorithm and HSC blur and dirt detection algorithm proposed in this study can greatly
improve the accuracy of pantograph inspection evaluation when complex background and
external disturbance exist. In general, the algorithm proposed in this study is in line with
the real situation of HSR operation and meets the actual needs of HSR operation, which
has a greater practical application value.

Table 5. Overall algorithm testing.

Serial Number Type of Sample Number of Samples
Total Algorithm

Run Time FPS Precision

I Complex backgrounds only 14,985 304 s 49 99.92%
II Complex backgrounds + Blur 14,999 346 s 43 99.90%
III Complex backgrounds + Dirt 14,974 349 s 43 99.98%

Table 6. Impact of different modules on the overall algorithm.

Precision-I Precision-II Precision-III

The complete algorithm proposed in this study 99.92% 99.90% 99.98%
− HSR complex background detection algorithm 73.97% 84.76% 85.32%

− HSC blur and dirt detection algorithm 96.24% 73.16% 77.13%
− HSR complex background detection algorithm

and HSC blur and dirt detection algorithm 70.36% 57.42% 63.10%

6. Conclusions

The pantograph detection algorithm proposed in this study fully considers the actual
needs of HSR operation, and at the same time conducts a comprehensive and synthesize
analysis of the complex scenarios and external disturbances that need to be faced during
HSR operation. The proposed algorithm achieves precision of 99.92%, 99.90% and 99.98%
on different test samples. At the same time, for three different samples, the processing
speed of the algorithm per second reaches 49 FPS, 43 FPS and 43 FPS respectively, which
meets the requirement of the algorithm to process at least 25 images per second in the actual
operation of HSR. This method solves two major difficulties when using neural network
to realize pantograph detection: firstly, the current pantograph detection method is easily
affected by external interference, and cannot detect and eliminate external interference.
Secondly, because the pantograph samples in complex situations are few and difficult to
collect, the sample set for training the neural network cannot cover all situations, so the
detection accuracy in complex situations is low.
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Abstract: In this research, we present an intelligent forklift cargo precision transfer system to address
the issue of poor pallet docking accuracy and low recognition rate when using current techniques. The
technology is primarily used to automatically check if there is any pallet that need to be transported.
The intelligent forklift is then sent to the area of the target pallet after being recognized. Images
of the pallets are then collected using the forklift’s camera, and a deep learning-based recognition
algorithm is used to calculate the precise position of the pallets. Finally, the forklift is controlled by
a high-precision control algorithm to insert the pallet in the exact location. This system creatively
introduces the small target detection into the pallet target recognition system, which greatly improves
the recognition rate of the system. The application of Yolov5 into the pallet positional calculation
makes the coverage and recognition accuracy of the algorithm improved. In comparison with the
prior approach, this system’s identification rate and accuracy are substantially higher, and it requires
fewer sensors and indications to help with deployment. We have collected a significant amount of
real data in order to confirm the system’s viability and stability. Among them, the accuracy of pallet
docking is evaluated 1000 times, and the inaccuracy is kept to a maximum of 6 mm. The recognition
rate of pallet recognition is above 99.5% in 7 days of continuous trials.

Keywords: computer vision and its practical applications; robotics; deep learning; intelligent systems
and control theory

1. Introduction

Labor shortage and increasing labor cost are serious problems in today’s society. With
the concept of Industry 5.0, it is imperative to promote industrial transformation and
accelerate the automation and intelligent development of equipment in order to reduce the
pressure brought by the rapid rise in labor costs, so more and more intelligent equipment
is used in factories and storage environments [1–3]. Nowadays, the status of logistics
equipment is increasing, and forklifts, as the main force of logistics handling equipment,
have been widely used in many fields, such as factories, ports, and warehouses. However,
as the requirements of the operating environment continue to increase, the handling
equipment can no longer be operated by human hands, especially in special environments,
such as high temperature, and hazardous and explosive environments. Along with the
development of driverless technology, forklifts are also slowly approaching advanced
technologies, such as intelligent identification, wireless transmission, and autonomous
navigation and positioning. Intelligent forklifts can enhance the compound ability of
forklifts, improve the overall operation level of forklifts, and gradually add more added
value. Therefore, intelligent forklifts are the main development direction of forklifts in
the future [2]. The operation of an intelligent forklift is quite straightforward; typically,
it inserts and picks up pallets at one preset area before travelling to another to dump
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them off, accomplishing a full pallet transfer procedure. However, implementing such a
straightforward approach presents numerous specific difficulties:

1. Existing methods are more costly for determining whether a pallet is available at a
certain location, while the recognition rate is low and also susceptible to interference
by environmental factors [4].

2. When the intelligent forklift inserts the pallet, there are problems of high implementa-
tion cost [5], low algorithm robustness and insufficient accuracy for the calculation of
the relative position between the pallet and the forklift.

3. When controlling the intelligent forklift to insert the pallet after the accurate position
is calculated, a fixed control amount is usually used without considering the vehicle
running state, which makes the control process deviate and eventually leads to errors
in the inserting results [6].

We propose a deep learning-based intelligent forklift accurate cargo transfer system to
address the aforementioned issues, as well as to increase the resilience and accuracy of the
system. The system consists of various components with various sensors that cooperate
to finish the pallet transfer operation. We specifically use RGB surveillance cameras to
check whether there is any pallet that need to be transported at the pallet storage location.
Once we determine that there are pallets, we send intelligent forklifts to the area. We
then use the RGB-D (depth) camera that comes with the intelligent forklift to calculate the
precise position of the pallets relative to the forklift. Finally, we use a high-precision control
algorithm to control the forklift. The following three aspects make up the majority of the
system features:

1. To precisely determine whether there are pallets to be transported in the pallet stor-
age area, we employ a Yolov5-based [7] pallet monitoring system and small target
detection module, and its accuracy rate reaches more than 99.5%.

2. To ensure that the final pallet insertion accuracy is within 6 mm, we calculate the
real-time pallet position in relation to the intelligent forklift using the pallet position
recognition system based on 3D Hough network [8].

3. We present a high-precision tracing control approach for intelligent forklifts in order to
increase the control accuracy, and the docking results obtained from 1000 experiments
have an error of no more than 6 mm.

In our warehouse, we employ cameras to monitor pallets and intelligent forklifts to
insert and remove pallets, as shown in Figure 1.

(a) Pallet monitoring situation (b) Pallet insertion

Figure 1. System operation diagram. We have constructed the entire system that is detailed in this
paper in the warehouse. One of the eight cameras in the pallet monitoring system, which can monitor
the presence of pallets in the storage area and mark them with red boxes when they are found, is
illustrated in (a). The intelligent forklift arrives at point (b), determines the location of the pallets,
and then executes the insertion and extraction procedure depicted in the figure after realizing that
the pallets need to be moved.
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In the rest of the paper, we discuss related work in Section 2, describe our system in
Section 3, then present experimental results in Section 4, and give conclusions in Section 5.

2. Related Works and Background

In this section, we discuss the work related to pallet monitoring, pallet position
recognition, and intelligent forklift control.

2.1. Pallet Monitoring

When intelligent forklifts are first put into use, it is usually the human who determines
whether there are pallets to be inserted and picked up at a specific point. Workers usually
hold devices, such as tablet computers or pagers, and send commands to the intelligent fork-
lifts to insert and pick up pallets. However, this approach necessitates human involvement,
which wastes labor and is ineffective.

In some projects, the use of sensor-assisted automatic identification techniques has
begun [9]. In such projects, sensors are typically installed at pallet storage locations to
detect the presence or absence of pallets [10], and the results are then transmitted to the
dispatching system via a network cable so that the intelligent forklifts can determine
whether a pallet needs to be moved at a specific location. However, using this approach in
a large-scale storage environment requires the deployment of sensors at each pallet storage
location, which greatly increases the difficulty and cost of implementation.

Recent studies have looked into using RGB surveillance cameras to detect the presence
or absence of pallets [11]. This recognition is typically based on the conventional image
recognition scheme, which assumes that the appearance of the pallet is mostly visible and
clearly distinguished from its surroundings, and then extracts the pallet from the image
using techniques such as image segmentation, template matching, etc. This method does
not account for the fact that a pallet may have goods covering all or nearly all of its surface,
which makes it easy to mistake a pallet for nothing because the camera cannot gather
enough data on the pallet’s color and contours.

In 2021, Joo et al. proposed a Yolov3-based pallet recognition method [12] which is
designed for the industry and can recognize pallets more steadily than conventional image
recognition techniques. However, the technique necessitates that the camera be placed in
close proximity to the pallet in order to collect data. One camera cannot effectively monitor
a large area of pallets, and the recognition rate is low for pallets with a small pixel share.

2.2. Pallet Position Recognition

Pallet position recognition relative to forklift has always been an industry challenge.
The pallet must frequently be placed manually or mechanically at the exact location (error
less than 1 cm) on the shelf during the initial stages of unmanned forklift use. The intelligent
forklift only needs to get to the fixed position each time to finish inserting and retrieving
the pallet in this situation because the position of the pallet and the shelf is essentially fixed.
This method is not suitable for the automated operation of the plant because it requires too
much accuracy in pallet placement, and if there is a mistake, it is easy to happen that the
forklift cannot insert the pallet and needs manual assistance.

A technique for using auxiliary markers, such as QR codes, for position recognition
has surfaced in the industry as a solution to such issues [13]. The pallets are marked with
additional markers, and an on-board scanning gun is used to find the markers. Because
it can calculate the position of the pallet in relation to the forklift based on the location of
the QR code while entering the pallet information, it has been widely used in the industry.
However, we prefer a method that identifies pallets based on their own shape, texture, and
other information rather than methods that require markings to be posted on each pallet,
which requires a lot of work in the pre-deployment stage.

Garibotto et al. [14,15] proposed a vision-based algorithm to detect the central hole
of a pallet, where the hole features of the pallet are extracted after a pre-segmentation of
the image, and then the geometric model of the pallet is projected onto the image plane
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for position estimation. However, the traditional image approach used by this method to
identify the position of the pallet hole makes it more susceptible to interference. This is
especially true if the shape of the portion of the goods above the pallet is similar to the
shape of the hole position, which is typically a simple rectangle.

2.3. Forklift Precision Control Algorithm

The more common forklift control algorithm is based on the improvement of PID con-
trol [16], and the desired control effect is achieved by adjusting different control parameters
according to the actual usage. However, due to its ease of use and constrained range of
adjustment, this method is difficult to adapt to complex factory or warehouse environments
and frequently exhibits the trait of low control accuracy in use.

Jiang, Zhizheng et al. proposed a Robust H-based forklift control algorithm [17] to
model the dynamics of an electric power steering (EPS) system of an electric forklift. The
standard H control model of the EPS system is transformed to derive the generalized
equation of state for the EPS of an electric forklift. The principle of genetic optimized robust
control is described, and the constraint function of genetic algorithm (GA) is constructed
for the parameter optimization of the weighting function of the H control model, and
the genetic optimized robust controller is derived. The accuracy and robustness of the
forklift control process are effectively enhanced. This method, however, also only focuses
on the function of EPS in forklift control and neglects to design for the actual operating
circumstances during forklift operation or take into account the dynamic adjustment of the
control volume to increase control accuracy.

3. Intelligent Forklift Cargo Precision Transfer System

In a factory or warehouse, intelligent forklifts are needed to accurately insert and
transport pallets, as well as autonomously determine whether there is any pallet in the pallet
storage area that need to be transferred. We introduce an intelligent forklift cargo precision
transfer system to carry out this function, as depicted in Figure 2. In order to determine
whether there is any pallet that need to be transported at the pallet storage location, we
use a standard RGB surveillance camera. The forklift is then dispatched to the area of the
pallet, and the exact position of the pallet is recognized by the RGB-D camera that comes
with the forklift. Finally, according to the recognized exact position, a high-precision control
algorithm is used to control the forklift to insert and pick up the pallets.

Robot Dispatching System

Pallet Recognition

Dispatch Forklift

Pallet Localization

Inserting Pallets

Pallet Monitoring Module

Pallet 
Positioning 

Module

Pallet 
Positioning 

Module

Pallet 
Positioning 

Module

Pallet Localization Pallet Localization

Control
Module

Control
Module

Control
Module

Inserting Pallets Inserting Pallets

Figure 2. The overall flow of the intelligent forklift precision cargo transfer system. RGB camera
captures images of the pallet storage area and transmits them to the pallet monitoring module,
which identifies the pallets and informs the dispatching system. The dispatching system dispatches
forklifts to insert and pick up the identified pallets. The forklift reaches the pallet and uses the pallet
positioning module to identify the pallet position, and after the position is identified, it is handed
over to the high precision control module to control the vehicle to insert and pick up the pallet.
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3.1. Pallet Monitoring Module

Pallet monitoring is the cornerstone of pallet transfer by forklift, and we carry out this
monitoring task using standard RGB monitoring cameras. One advantage of these RGB
cameras is that they are less expensive than photoelectric sensors or RGB-D cameras, and
they are also much easier to deploy due to the fact that one RGB monitoring camera can
cover at least 50 pallet positions. To prevent the influence of items placed on the pallets
on the recognition outcomes, we used the side aperture feature of the pallets, which is
not easily covered up, as the identification mark. We used a Yolov5-based network for
pallet monitoring. However, the size of the pixels occupied by the same pallet in the
same image is different because of the viewing angle when the surveillance camera is
placed. The traditional Yolov5 scheme will easily fail when the pallet is far from the camera
because the pallet’s pixels in the field of view will be small. In order to handle these
situations, we added a small target detection module and a convolutional block attention
module (CBAM).

3.1.1. BackBone Modules

CspDarknet53 [18] is a Backbone structure based on Darknet53 [19], which contains
5 CSP modules. Each CSP module’s convolution kernel is 3 × 3 in size with stride = 2, so it
can function as a downsampling. The input image is 608 × 608, and since Backbone has
5 CSP modules, the pattern of feature map change is 608 → 304 → 152 → 76 → 38 → 19.
After 5 CSP modules, the 19 × 19-inch feature map is obtained.

3.1.2. Neck Module

The feature extractor of this network uses a new enhanced bottom-up pathway
FPN [20] structure that improves the propagation of low-level features. Each stage of
the third pathway takes the feature map of the previous stage as input and processes them
with a 3 × 3 convolutional layer. The output is added to the feature maps of the same stage
of the top–down pathway via lateral connections, and these feature maps inform the next
stage. Adaptive feature pooling is also used to recover the corrupted information path
between each candidate region and all feature levels, aggregating each candidate region at
each feature level to avoid arbitrary assignment.

3.1.3. Small Target Detection

We incorporate a transformer prediction head (TPH) into Yolov5 in order to detect
small targets. A low-level, high-resolution feature map, which is more sensitive to small
objects, is used to generate the added TPH. We also swap out some convolution and CSP
blocks with the transformer encoder block. The transformer encoder block in CSPDarknet53
has more information acquisition advantages than the original bottleneck block. The
first sub-layer in each transformer encoder block is a multi-headed attention layer, and
the second sub-layer (MLP) is a fully connected layer. Each sub-layer is connected by
residuals. The transformer encoder block improves the ability to record various local
details and can also make use of the self-attentive mechanism to unlock the potential of
feature representation.

3.1.4. Convolutional Block Attention Module (CBAM)

CBAM [21] is a simple but effective attention module. It is a lightweight module that
can be integrated into a CNN and can be trained in an end-to-end manner. According
to the experiments in the paper [22], the performance of the model is greatly improved
after integrating CBAM into different models for different classification and detection
datasets, which proves the effectiveness of the module. In images of pallet surveillance,
large coverage areas can contain a high number of interference terms. Using CBAM can
extract attention regions and help the network resist confusing information and focus
attention on useful target objects.
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3.2. Pallet Positioning Module

The relative poses between the target pallet and the intelligent forklift must be iden-
tified after the forklift approaches the target pallet in order to provide precise real-time
pose for the forklift’s control algorithm. In order to accomplish this, we suggest a novel
approach based on a deep 3D Hough voting network. To be more specific, we employ a
RGB-D camera to record the color and depth data of the pallet. We then input the color and
depth data into a feature extraction module to extract the surface features and geometric
information of the pallet. This extracted information is then fed to a key point detection
module Mk to predict the offset of each point relative to our specified key points, which
are typically defined as the 8 corner points of the two apertures of the pallet. Additionally,
we employ a center voting module Mc to predict each point’s offset from the target center
and an instance segmentation module, Ms, to predict the label of each point. Finally, the
obtained 8 key points are used to estimate the pallets’ poses relative to the forklift by the
least squares method. The whole algorithm flow is shown in Figure 3.
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Figure 3. Flow of pallet position recognition algorithm. To predict the translational offsets to the key-
points, center points, and labels of each point, the feature extraction module extracts features from
the RGB-D images. These features are then fed into the Mk, Ms, and Mc modules. The key-points in
the same instances are then voted to the key-points of the instance they belong to after a clustering
algorithm is used to distinguish between the various instances. Finally, a least squares method is
used to fit the bit pose based on the eight extracted key points. Kp is the number of key points.

3.2.1. Key-Point Detection Module

The pallet image is fed to the key-point detection module Mk after feature extraction
to detect key-points on the pallet. The main function of Mk is to predict the Euclidean
translation offset from the visible points to the key-points, and these visible points and
the predicted translation offset work together to finally be able to vote out the key-points.
These voted points are pooled together by a clustering algorithm [23], and the center of the
pool is taken as the final key point.

The loss function of Mk is calculated as follows. Given a set of extracted feature points
{pi}N

i=1, where pi = [xi, fi], xi denotes the 3D coordinates of the points and fi denotes
the point features. Similarly

{
kpj

}M
j=1 is used to denote the selected key points. We use{

o f j
i

}M

j=1
to denote the translation offset of the i-th point with respect to the j-th key point.

Thus, the key point can be represented as kpj
i = xi + o f j

i . To supervise the learning of o f j
i ,

we use the loss function:

Lkey-points =
1
N

N

∑
i=1

M

∑
j=1

∥∥∥o f j
i − o f j∗

i

∥∥∥ (1)

o fj ∗( i) is the true value of the translation offset. M is the number of selected key-
points, which is usually selected as 8 in the system. N is the number of feature points.
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3.2.2. Instance Segmentation Module

In order to handle the case where there are multiple objects in the image, i.e., multiple
goods or other objects in addition to the pallet, it is necessary to segment the other objects
from the pallet in order to extract the key points more accurately. As a result, we present
the Ms instance segmentation module. The instance segmentation module Ms predicts
the semantic label of each point using the extracted point-by-point data. To supervise the
learning of this subject, we employ Focal Loss [24].

Ls = −α(1 − qi)
γ log(qi), where qi = ci · li (2)

with α the α-balance parameter. γ the focusing parameter. ci the predicted confidence
for the i-th point belongs to each class and li the one-hot representation of ground true
class label.

We also employ a center voting module, Mc, to help distinguish between the various
instances. We use a similar module to CenterNet [25], but expand the center points from 2D
points to 3D points. This module is able to predict the Euclidean translation offset of each
point to its object center in order to achieve a better instance segmentation. Similar to the
key-point detection module mentioned above, it can be used to regard the object’s center as
a certain kind of key-point. We denote by Δxi the translational offset of each feature point
with respect to its object center, then the learning of Δxi can be supervised by the following
loss function.

Lc =
1
N

N

∑
i=1

‖Δxi − Δx∗i ‖ (3)

where N denotes the total number of seed points on the object surface and Δx∗ i is the
ground truth translation offset from seed pi to the instance center. It is an indication
function indicating whether point pi belongs to that instance.

3.2.3. Network Architecture

As shown in Figure 3, the first part of the network is a feature extraction module. In
this module, a PSPNet [26] is used to extract the appearance information in RGB images.
PointNet++ [27] extracts the geometric information in the point cloud and its normal
mapping. The two are fused by the DensionFusion block [28] to obtain the combined
features of each point. The next Mk, Ms and Mc consist of shared multilayer perceptrons
(MLPs). We supervise the learning of module Mk, Ms and Mc jointly with a multi-tasks loss:

Lmulti−task = λ1Lk + λ2Ls + λ3Lc (4)

We sample n = 12,288 points for each RGB-D image frame and set λ1 = λ2 = λ3 = 1.0.

3.2.4. Least Squares Fitting

In the least-square fit [29], we denote the final set of 8 key points inferred by the
network as {kpi}M

j=1. The coordinates of this point set are in the camera coordinate system,

and the corresponding set of 8 points in the pallet coordinate system is denoted as
{

kp′i
}M

j=1.
To obtain the bit-pose relationship (R, t) between the pallet and the camera, we will
minimize the set of these two points between the following loss functions.

Lleast−squares =
M

∑
j=1

∥∥∥kpj −
(

R · kp′j + t
)∥∥∥2

(5)

The camera and the intelligent forklift are often fixedly coupled when in use. After
obtaining the relative position of the pallet and the camera, only one step of external
reference conversion needs to be added to obtain the relative position between the forklift
and the pallet.
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3.3. High Precision Control Module

Once the pallet position has been determined, we must accurately control the forklift
to insert the pallet in that position. Traditional forklift control models [30] and algorithms
are overly simplistic, especially the actual running condition of the vehicle and the amount
of dynamic adjustment control are not considered enough, which frequently results in
significant inaccuracies when used in practice. We propose a high-precision trajectory
control method for intelligent forklifts that incorporates forklift motion cycle prediction
into the control process, continuously updates the intelligent forklift prediction model,
and determines the optimal control amount in order to achieve the goal of increasing
control accuracy.

In order to describe the motion of the intelligent forklift in the prediction cycle, a
discrete prediction model based on the forklift model is required. Using the forklift motion
model as the base model, a prediction model for the non-linear optimization problem is
established and a discrete vehicle model in incremental form is performed, as shown:

u(k) = u(k − 1) + Δu(k) (6)

As shown in Figure 4, according to the recurrence relationship of the incremental
model, the i-th future prediction state can be represented by the initial state and the sequence
of i control increments to complete the construction of the non-linear prediction model.

u(t)

x(t)

x(T - 1) x(T)

T - 1 T T + 1 T + 2

u(T - 1)
u(T)

⊕

∆u*(T, T)

t

Figure 4. Incremental model recurrence relationship. Get the value at different times.

Combining the path tracking objective function based on the approximate tracking er-
ror [22], the non-linear prediction model and constraints [31], the path tracking optimization
problem based on the approximate tracking error is constructed as shown:

min J = ∑
(
‖e‖2 + ‖Δu‖2 + ‖u‖2

)
(7)

Additionally, the constraints are added to the optimization problem to obtain the
prediction state and control increment by minimizing the sum of squares of approximate
tracking error, control increment, and control quantity in the prediction cycle to complete
the update of the model and control quantity.

In general, we update the prediction model based on the observed values and the
discrete prediction model, establish the path tracking objective function based on the
approximation error, obtain the optimal control volume, and combine the previous mo-
ment control volume output to the controlled vehicle to complete the high-precision
tracking control.

174



Sensors 2022, 22, 8437

4. Experiment Results

To guarantee that the findings obtained in this article are consistent with the results in
actual use, we run the system through real-world scenarios in order to obtain more realistic
and accurate results.

4.1. Experiments Environment Construction

The whole system consists of three main parts: pallet monitoring module, pallet
positioning module, and high-precision control module. The supporting scheduling system
is not discussed in any detail in this work. The forklift body control algorithm, or the
high-precision control module, does not need to build an experiment environment and can
be tested directly with the forklift.

4.1.1. Pallet Monitoring Module

The monitoring system consists of 8 network RGB cameras and a dispatch server, and
8 network cameras are connected to the server through a switch. We placed 53 pallets in
the field of view of camera 8-th and multiple pallets in different locations and numbers
in the field of view of other cameras, while placing goods on the pallets to simulate real
scenarios. We expect the algorithm to have a good recognition rate for this complex and
variable situation. Figure 5 shows the working situation of the monitoring system.

(a) Position of surveillance camera (b) Installation angle of camera

Figure 5. Pallet monitoring deployment. The surveillance cameras were mounted as high as possible
and angled so that more pallets could be monitored. The network camera was installed at a height
of approximately 3.27 m and the network camera was overhead (with vertical lines) at an angle of
approximately 50 deg.

4.1.2. Pallet Positioning Module

A RGB-D camera was used for pallet position recognition, which was installed in a
fixed position on the forklift and the data were uploaded to the forklift mounted IPC for
position calculation via a network cable. In order to avoid the fork tines of the forklift
from appearing in the image, we adjusted the camera to a suitable position so that it could
see the complete pallet hole position without seeing the fork tines of the forklift. Figure 6
shows the RGB-D camera and its recognition results.
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(a) Position of surveillance camera (b) Installation angle of camera

x, y, z, yaw = (0.000, 0.269, 1.606, -90.019)
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Figure 6. Pallet positioning module deployment. An on-board RGB-D camera was used and the
camera was adjusted to a suitable position. The 8 corner points of the pallet aperture are recognized
and the result of the pose calculation is shown in the upper left corner of the image.

4.2. Experiment Results
4.2.1. Pallet Monitoring Module

In order to test the monitoring effect of pallets from multiple cameras, we placed pallets
at different locations in the 8-way camera field of view for actual testing. Considering that
pallets are likely to be stacked and loaded with goods at customer sites, we placed 2 and
3 layers of pallets in a large number of pallets and placed goods at the top edge of the
pallets. We used the side aperture feature of the pallets, which is not easily concealed, as
the identification mark in order to prevent the influence of the goods on the pallets on the
recognition results. The placement of the pallets under each camera is shown in Figure 7.

Figure 7. Pallet placement under each camera. Different number of pallets with different number of
layers were placed under different cameras and tested repeatedly.

The figure shows how the pallet monitoring system can accurately present the results
of pallet recognition for multiple scenarios. Our algorithm places a red box in the side hole
position of the recognized pallet to show that a pallet was identified. To see the recognition
results more clearly, we use the camera 8-th with the highest number of pallets for analysis.

Before adding the small target detection and CBAM described in 3-A, the recogni-
tion effect of camera 8-th is shown in Figure 8. It is obvious that some pallets located
further away from the camera cannot be detected, which is typically caused by unreliable
recognition brought on by low pixels.
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Figure 8. The recognition effect of camera 8-th. The majority of the pallets in the field of view are
identified, however certain specific pallets are still not.

We have used small target detection and CBAM to solve such problems, and the
recognition effect after addition is shown in Figure 9. It can be clearly seen that the
unrecognized pallets in Figure 8 have been recognized in Figure 9, and all unobstructed
pallets in the field of view are recognized.

Figure 9. Recognition effect after using small target detection and CBAM. All pallets in the field of
view, including multi-layer pallets and cargo pallets, are recognized.

To better reflect the advantages of our algorithm, we list the comparison of existing
algorithms with our algorithm in Table 1.

Table 1. Comparison of pallet monitoring algorithms.

Algorithm Method Advantages Disadvantages

Algorithm in [9] photoelectric sensors High recognition rate High cost
Algorithm in [11] image recognition Low cost Easily disturbed
Algorithm in [12] Deep learning

based on Yolov3
High stability Low recognition rate

for small targets
Our algorithm Deep learning

based on Yolov5
Low cost,

high recognition rate
Algorithm is
complicated

As can be seen from the table, the implementation cost of the photoelectric sensor
method is high; the traditional image method is susceptible to interference; and the deep
learning method based on Yolov3 does not have a high recognition rate for small targets.
Although our method, with low cost, still has a high recognition rate for small targets.
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In order to test the reliability of the system operation, we designed the experiment
for continuous 7 × 24 h non-stop testing. We adjust the position of multi-layer pallets
and goods within the scene before the start of each day’s experiment to ensure that the
conditions are different each time. Following the change, we will count the unobstructed
pallets and enter that number as a parameter in the system. The system will calculate the
recognition rate by comparing the pallets it has identified with the input parameter. Table 2
shows the number of pallets and the recognition rate during the 7-day experiments.

Table 2. Pallet monitoring reliability experiments.

Day Number of Pallets Recognition Accuracy (%)

1 72 99.82
2 70 99.76
3 72 99.68
4 68 99.86
5 71 99.69
6 74 99.58
7 69 99.71

As can be seen in Table 2, the recognition rate is less than 100%, indicating that there
are still cases where individual pallets are not recognized. The recognition rate exceeds
99.5% for about 70 pallets tested continuously for 7 days, including single-layer, multi-layer,
with or without goods. For the situation where a large number of pallets appear under one
camera, recognition can still be performed stably as long as the pallets are not blocked from
each other before (i.e., a reasonable distance between pallets is set). The eight cameras are
able to output data streams together for simultaneous recognition of pallets in the area.

4.2.2. Pallet Positioning Module and High Precision Control Module

In the pallet position recognition module, we use RGB-D camera to collect data from
several different positions and angles of the pallet for calculation, and provide the results
to the intelligent forklift to control the forklift for precise pallet insertion. Since we expect
to obtain the overall accuracy of pallet insertion by the forklift, we do not distinguish
the positional accuracy from the control accuracy; instead, we judge the ultimate total
insertion accuracy.

We collect a lot of data in order to ensure that the findings of our trials covered the
majority of usage cases. Given that the relationship between forklifts and pallets is typically
not fixed before pallets are inserted, we set up a variety of starting positions: the distances
between the pallet hole plane and camera plane are 1 m, 2 m, and 3 m; the horizontal
distances are 0 m, −0.2 m, and +0.2 m; and the relative angles between the camera and
pallet are 0deg, +15 deg, and −15 deg. Additionally, we established two separate heights,
with the pallet placed on the ground being recorded as 0, and the pallet placed on a shelf
that is 40 cm high being recorded as 0.4 m. This is because a single pallet may be placed on
either the ground or a shelf. We carried out pallet docking approximately 10 times for each
scenario, comparing the inaccuracy of each result with the initial result. In other words, we
completed a total of 1000 dockings, of which 550 were for the 1-layer pallets, 180 were for
the 2-layer pallets, and 260 were for the 3-layer pallets.

We have placed the pallets in different positions and layers and recorded the final
error. We recorded the error value of each result compared with the first result and drew
it in Figure 10, where the x-axis represents the number of docking times and the y-axis
represents the result error value.
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Figure 10. Results of pallet insertion experiment. 1-layer pallets test 550 times, 2-layer pallets test 180
times, 3-layer pallets test 260 times, and the maximum error of 6 mm.

Figure 10 shows that the accuracy in both the x-direction and the y-direction can be
controlled to about 5 mm. However, in some circumstances, particularly when dealing
with three-layer pallets, the error will increase to 6 mm because multi-layer pallets produce
more interference than single-layer pallets.

Overall, our pallet docking accuracy can be controlled within ±6 mm and the coverage
range is from 1–3 m and from −15° to +15°. When compared to the measures in the
literature [32], the coverage range is roughly the same, but it does not test for severe
pallet angle deflection. More importantly, the pallet accuracy in the literature [32] is only
±3 cm, which is much lower than our ±6 mm accuracy. Similar coverage and coverage
angle experiments to ours were carried out in the literature [33], but their maximum error
of recognition was 10.5 mm after only 135 experiments, which was 75% higher than our
maximum error of 6 mm. Its mean error and standard deviation are also significantly higher
than ours. Meanwhile, our number of experiments was 7.4 times higher than his, and we
measured the final error after pallet docking, which is the accumulation of recognition
error and control error values, indicating that our identification error values are lower. On
the other hand, the literature [33] used two sensors to achieve the results expressed in the
article, while we obtained better results by using only one RGB-D camera. The experiment
results are shown in Table 3.

Table 3. The effect comparison of three algorithms.

Algorithm Range Max Error (mm) Mean Error (mm) Std Error (mm)

Algorithm
in [32] 1.5–4.5 m 30 n/a n/a

Algorithm
in [33] 2–4 m, 15° 10.5 7 3.9

Our algorithm 1–3 m, 15° 6 3.69 0.3

The data in the table shows that the maximum error of the existing algorithm for
pallet position recognition can be 1–3 cm, which is a risk that the fork tines cannot enter
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the pallet hole for the high-precision pallet insertion action of the forklift. Our module is
able to reduce the maximum error to 6 mm, which fully meets the needs of practical use.
At the same time, our system requires only one RGB-D camera to collect data without the
assistance of other sensors, which is much less costly.This demonstrates that our approach
outperforms the majority of systems now used in industrial settings in terms of accuracy,
resilience, and cost.

According to the above experimental results, the recognition rate of our pallet moni-
toring system has been significantly improved after the addition of small target detection,
and the recognition rate reached 99.5% under 7 days of continuous experiments; our posi-
tion recognition and control algorithms work together to control the forklift interpolation
accuracy within 6 mm in 1000 experiments, which fully meets the requirements of accuracy
in practical use and outperforms existing algorithms in both coverage and accuracy.

5. Conclusions

We propose an intelligent forklift cargo accurate transfer system, which consists
of three main parts: pallet monitoring module, pallet positioning module, and high-
precision control module. The system creatively introduces small target detection into
pallet recognition to improve the recognition rate; using Yolov5-based pallet pose detection
algorithm to improve the coverage and recognition accuracy of the algorithm. For the
whole system, we proved its effectiveness and reliability by actually collecting a large
amount of data. Among them, the recognition correct rate of pallet monitoring module
reaches more than 99.5% in 7 days continuous experiments, and the insertion error of the
intelligent forklift is below ±6 mm after 1000 experiments through pallet positioning and
control algorithm. The performance of the whole system is greatly higher than the existing
common systems, and has been used in factories and warehousing environments on the
ground. We will further investigate the use of lightweight networks to refine our system in
order to reduce computational resource consumption and computation time. In this way,
the cost of commercializing the system can be further reduced.
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