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1. Introduction

Advanced intelligent control (AIC) is a rapidly evolving and complex field that poses
significant challenges. It is a practically important field and has potential applications. In
this context, this Special Issue aims to foster advancements in science and technology by
addressing the theoretical and practical aspects of intelligent control techniques and their
applications using advanced intelligent control in robots. The main purpose of this Special
Issue is to gather in-depth research and explore new trends in the design, control and
applications of the real-time control of intelligent sensor systems. These trends include the
use of advanced intelligent control methods and techniques, as well as the integration of
innovative multi-sensor fusion techniques into robots. These advancements are combined
with various technologies such as computer vision; virtual and augmented reality (VR&AR);
and intelligent communication including remote control, adaptive sensor networks, human–
robot (H2R) interaction systems and machine-to-machine (M2M) interfaces.

This Special Issue highlights intelligent decision support systems (IDSS), including
remote sensing and its integration with DSS, GA-based DSS, fuzzy set DSS, rough set-based
DSS, intelligent-agent-assisted DSS, process mining integration in decision support, adap-
tive DSS; computer-vision-based DSS and sensory and robotic DSS in AIC in robots. This
Special Issue is an extension of the previously published successful Special Issue entitled
“Advanced Intelligent Control” and the book entitled “AIC through VIPRO Platforms”.

Special attention is paid to the utilization of new and emerging technologies with AIC
that apply complex robotic systems, such as enhanced IoT technologies and applications
in the 5G densification era; bio-inspired techniques for future manufacturing enterprise
control; a cyber-physical systems approach to the cognitive enterprise; the development of
the IT Industry 4.0 concept; industrial systems in the digital age; cloud computing; robotics;
and automation. This Special Issue addresses applications such as human aid mechatronics,
military applications, rescue robots, firefighting robots, rehabilitation robots, robot-assisted
surgery, and domestic robots.

2. Review of the Contributions in This Special Issue

AIC in robots is an interdisciplinary field which combines and extends theories and
methods from control theory, computer science, and operations research areas with the aim
of developing controllers which are highly adaptable to significant unanticipated changes.
In line with this goal, in this Special Issue, 21 papers have been carefully selected through a
rigorous review process.

The first paper, entitled “Nonlinear Intelligent Control of Two Link Robot Arm by
Considering Human Voluntary Components” [1], investigates a nonlinear intelligent control
system of a two-link robot arm by considering the human voluntary components and the

Sensors 2023, 23, 5699. https://doi.org/10.3390/s23125699 https://www.mdpi.com/journal/sensors
1



Sensors 2023, 23, 5699

feed-forward characteristics of a human multi-joint arm. The proposed feedback controller
uses the multi-joint viscoelasticity of the human arm, while the feed-forward controller
is based on a support vector machine (SVR), and the stabilization controller is based on
operator theory. The viscoelastic properties of the multi-joint arm are measured and analyzed
through experiments. To reduce the influence and uncertainty caused by interference inside
the controlled object, the control system is designed based on the operator theory. The
experimental results of using a feed-forward controller based on a mechanical model are
compared with those using a feed-forward controller based on an SVR.

“Rethinking Sampled-Data Control for Unmanned Aircraft Systems” [2] explores the
recent advancements and challenges at the intersection of real-time computing and control
and develops innovative reconsidered sampling strategies that can improve performance
and resource utilization. The proposed design framework can efficiently integrate the
computational and physical characteristics of the system, increase robust performance
and avoid the pitfalls of event-triggered sampling strategies. The paper focuses on com-
paring the control performance of a multicopter Unmanned Aircraft System (UAS) using
different sampling strategies varying in terms of the “co-design” of computing resources
(sampling rate) and the holistic system performance. The unique benefits of the proposed
co-regulation strategy on control performance, computational efficiency and system ro-
bustness in comparison to the traditional fixed-periodic, event-triggered and self-triggered
controllers are highlighted. A co-regulation strategy is implemented to provide insight into
how to design co-regulated systems for control engineers. The pitfalls of event-triggered
and self-triggered sampling strategies on UASs are discussed. Quantitative evaluations
of all of these strategies are conducted based on evaluation metrics that could reflect both
control performance and computing costs.

“Indirect-Neural-Approximation-Based Fault-Tolerant Integrated Attitude and Posi-
tion Control of Spacecraft Proximity Operations” [3] investigates Fault-Tolerant Integrated
Attitude and Position Control of Spacecraft Proximity Operations in the presence of un-
known parameters, disturbances and actuator faults. The authors propose a controller
which combines a relative attitude control law and a relative position control law, which
are designed by adopting neural networks (NNs) to approximate the upper bound of the
lumped unknowns. The indirect neural approximation is used to approximate the upper
bound of the lumped unknowns. A simulation study on a 6-DOF spacecraft is conducted,
and the results indicate that the proposed neural adaptive fault-tolerant controller can
achieve superior performance and good uncertainty rejection capability, which guarantees
the successful implementation of the spacecraft proximity operation.

“Intelligent Tracking of Mechanically Thrown Objects by Industrial Catching Robot
for Automated In-Plant Logistics 4.0” [4] aims to accelerate the transportation process and
increase productivity through the optimized utilization of in-plant facilities. The authors
develop a 3D simulated environment which enables users to throw objects with any mass,
diameter or surface air friction properties in a controlled internal logistics environment. To
observe trajectories more accurately, they create an enormous dataset of thrown object trajec-
tories to train an encoder–decoder bidirectional Long Short-Term Memory network (LSTM)
deep NN using multi-view geometry among simulated cameras. This research contributes
an enhanced intelligent tracking algorithm that can predict the remaining 3D intercep-
tion positions of a thrown object by observing its initial flight trajectory. To demonstrate
the proposed method, the training and testing results obtained via the encoder–decoder
bidirectional LSTM deep NN, trained through 1000/3000 throws with 50/100/300 epochs
and 100/200 neurons, are analyzed.

“Control Design for Uncertain Higher-Order Networked Nonlinear Systems via an
Arbitrary Order Finite-Time Sliding Mode Control Law” [5] proposes a novel Sliding Mode
Control Law by considering uncertainties including parametric variations and matched
bounded disturbances. The topology of the system network of one leader and four followers
sharing information under the action of the distributed control protocols is illustrated. The
consensuses in the positions, velocities and accelerations among the followers and leader
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are displayed, with the corresponding convergences of position errors, velocities error
and acceleration errors. The simulation results confirm that the newly designed law is an
interesting candidate for higher-order uncertain systems.

“The Hybrid Position/Force Walking Robot Control Using Extenics Theory and Neu-
trosophic Logic Decision” [6] investigates Hybrid Position/Force Walking Robot Control
by applying the method to a hexapod walking robot. The authors apply the Extenics theory
and Extension set to obtain clear separation of the properties and specific characteristics
of the control methods required by the hexapod robot. The result is then used with Neu-
trosophic logic and DSmT (Dezert Smarandache Theory) to create a decision algorithm
between kinematic and dynamic regulators for each leg of the hexapod robot during its
walking phases. A control probability graph and equations are used to create the decision
algorithm. A Matlab Simulink simulation study is conducted to demonstrate the proposed
hybrid control algorithm.

“Model Predictive Control of a Novel Wheeled–Legged Planetary Rover for Trajectory
Tracking” [7] develops an innovative Wheeled–Legged Planetary Rover for Trajectory
Tracking, and a hybrid serial–parallel topology is utilized to realize a rigid–flexible coupling
mechanism. The control strategy for the wheeled–legged rover includes a trajectory tracking
module based on model predictive control, the steering strategy and the wheel speed
allocation algorithm. A cosimulation model is established in both NX/Motion and Simulink
software to verify the control strategy.

Smart Vehicle Path Planning Based on Modified PRM Algorithm [8] proposes a pseudo-
random sampling strategy with the main spatial axis as the reference axis, optimizing the
generation of sampling points, removing redundant sampling points, setting the distance
threshold between road points, adopting a two-way incremental method for collision de-
tections and optimizing the number of collision detection calls to improve the construction
efficiency of the roadmap. The proposed PRM is verified and analyzed using a ROS-based
test platform. Compared with the basic PRM algorithm, the modified PRM algorithm has
advantages in terms of the speed with which the roadmap is constructed, path planning
and path length.

“Human–Robot Cooperative Strength Training Based on Robust Admittance Control
Strategy” [9] designs a stiffness adjusting law of the admittance model based on the biome-
chanics of knee joints. The designed control law can guide the user to use force correctly
and reduce the stress on the joint soft tissue. It not only avoids excessive compressive force
on the joint soft tissue, but also enhances the stimulation of quadriceps femoris muscles.
A novel sitting and lying lower limb rehabilitation robot (LLR-II) is developed. To verify
the function, feasibility and effectiveness of the proposed lower limb flexion and extension
strength training, eight stroke survivors were selected to participate in the test experiment
using the LLR-II robot. The experiment results show that the designed controller can
effectively reduce the possibility of joint soft tissue injury and enhance the stimulation of
the quadriceps, and this active training method is effective for exercising the quadriceps.

“sEMG-Based Gain-Tuned Compliance Control for the Lower Limb Rehabilitation
Robot during Passive Training” [10] develops a surface-electromyography-based gain-
tuned compliance control (EGCC) strategy for a lower limb rehabilitation robot based
on the mapping function relationship between the normalized surface electromyography
(sEMG) signal and the gain parameter. The experimental results demonstrate that the
adoption of the EGCC strategy could significantly enhance the compliance of the robot
end-effector by detecting the sEMG signal and improving the safety of the robot in different
training modes. This indicates that the EGCC strategy has good application prospects in
the rehabilitation robot field.

“Research on Monocular-Vision-Based Finger-Joint-Angle-Measurement” [11] consid-
ers an industrial monocular-vision-based knuckle-joint-activity-measurement system, with
a short measurement time and the simultaneous measurement of multiple joints, applied
to an existing computer-vision detection system. An Experimental Platform is designed
to acquire high-quality multi-angle light-source-irradiated multivariate images. Through
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the PC image-processing algorithm, the images can be processed to segment finger-joint
identifiers for the subsequent calculation of the finger-joint angle and length. Nine healthy
male volunteers were recruited for the experiment, and three different finger-joint angles
were detected using TS–HOMLDM to verify the monocular-vision-based finger-joint-angle
measurement system. The experimental results show that the average angular deviation in
the flexion/extension of the knuckle is a minimum of 0.43◦ and a maximum of 0.59◦, and
the average angular deviation in the adduction/abduction of the knuckle is a minimum of
0.30◦ and a maximum of 0.81◦, which are all less than 1◦.

“Navigation Path Based Universal Mobile Manipulator Integrated Controller” [12]
proposes a versatile integrated controller which is able to execute motion planning in a
stable manner in various environments with simultaneous control, leading to great benefits
with regard to the execution time compared to the traditional sequential control method. To
validate the proposed method, an experiment for motion planning towards the given target
coordinates using the mobile manipulator robot in a simulation environment is conducted.

“Prediction of Metal Additively Manufactured Surface Roughness Using Deep Neural
Network” [13] considers robotized product manufacturing technology by introducing
3D printing into the manufacturing process based on a prediction of Metal Additively
Manufactured Surface Roughness using a deep neural network (DNN). It proposes a
methodology to improve the quality of AM products based on data analysis through
various analysis methods such as data pre-processing and DNN combined with sensor
data used to predict surface roughness in the proposed methodology. The usefulness and
feasibility of the proposed methodology are proved by the experimental data collected
from the gas metal arc welding (GMAW)-WAAM system applied to a robotized product
manufacturing technology.

“Method of Changing Running Direction of Cheetah-Inspired Quadruped Robot” [14]
establishes a dynamic model of a quadruped robot and a two-level stability index system,
including a minimum index system and a range index system. A two-level stability index
system, including a minimum index and range index, is developed based on the dynamic
model of the robot, and the optimization variables, including leg landing points, trunk
movement trajectory and posture change rule, are determined.

“A Self-Collision Detection Algorithm of a Dual-Manipulator System Based on GJK
and Deep Learning” [15] introduces AI technology into a control system based on the
Gilbert–Johnson–Keerthi (GJK) algorithm. A dataset and trained deep neural network
(DLNet) are generated to improve the detection efficiency. By combining DLNet and the
GJK algorithm, a two-level self-collision detection algorithm (DLGJK) is developed to
solve real-time self-collision detection problems in a dual-manipulator system with fast-
continuous and high-precision properties. The experimental results show that compared
to that with the global use of the GJK, the DLGJK significantly increases the detection
efficiency in both single detection and working-path detection.

“Spherical Wrist Manipulator Local Planner for Redundant Tasks in Collaborative Envi-
ronments” [16] proposes a path planner for manipulators to execute tasks with a redundant
number of joints executing redundant tasks in workspaces shared with dynamic obstacles
such as humans. An intuitive parameterization of the end-effector (EE) angular motion, which
decouples the rotation of the third joint of the wrist from the rest of the angular motions, is
presented. The path planner is developed by considering that the rotation of the third wrist
joint must be decoupled from the rest of the EE angular motion, the resulting EE manipulator
dynamics should behave as a linear dynamical system, the collision avoidance strategy must
consider the entire surface of the manipulator and all the local planner parameters must have
a physical meaning. The approach enables industrial and medical applications, in which
robot stiffness and dexterity can greatly improve task efficiency.

“Detecting Machining Defects inside Engine Piston Chamber with Computer Vision
and Machine Learning” [17] develops robotic industrial applications for automotive man-
ufacturing with the main goal of replacing the visual inspection performed by a human
operator with a computer vision application. A machine leaning algorithm which has
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conventional processing and a prediction method that uses a machine learning model is
established. The results demonstrate that the robustness of image processing applications
from the field of manufacturing can be considerably improved by replacing the classic
method with the machine learning algorithm, which ensures greater flexibility in devel-
oping the backbone of the application, mainly consisting of PLC communication, socket
services and a human–machine interface.

“Synchronous Control of a Group of Flying Robots Following a Leader UAV in an
Unfamiliar Environment” [18] investigates a quadrotor drone group which follows an au-
tomatically flying leader with drones equipped with low-end cameras. This provides a
considerable number of resources necessary to help people trapped in dangerous environ-
ments without risking the health or lives of rescuers. The main innovation is the structure
of the multi-agent group of UAVs, with inexpensive followers without data exchange be-
tween actors and computational power requirements. The obtained results suggest that the
organization of such tasks in an automatic system is realistic and, most importantly, effective.

“Improvement of Hexacopter UAVs Attitude Parameters Employing Control and
Decision Support Systems” [19] conducts tests on Hexacopter Unmanned Aerial Vehicles
to verify their operational parameters, hover flight, drone stability and reliability, including
the aerodynamics and robustness at different wind speeds. The flight parameters extracted
from the sensor systems, comprising accelerometers, gyroscopes, magnetometers, barome-
ters, GPS antenna and EO/IR cameras, are analyzed. An innovative hexacopter platform
architecture in two variants, equipped with avionic components and sensors, is developed.
The results of the tests carried out both in the laboratory and in situ during the start–stop
maneuvers of the hexacopter engines are described and discussed.

“A Hybrid Stacked CNN and Residual Feedback GMDH-LSTM Deep Learning Model
for Stroke Prediction Applied on Mobile AI Smart Hospital Platform” [20] develops a stroke
prediction model by combining AI techniques with the existing Internet of Medical Things
(IoMT) on a Mobile AI Smart Hospital Platform to improve the quality of medical care that
patients receive remotely at home. A mobile AI engine that implements AI-based cloud
computing complexities, especially in real-time environments of AI technologies, is presented.
A Hybrid LSTM with a Dense-Layer Deep Learning Model for Stroke Prediction is proposed.
The algorithm is lightweight for the proposed mobile AI engine and facilitates continuous
diagnostics and accurate GMDH–LSTM-based EEG signal prediction for IoMT-simulated
inputs. The innovative AI mHealth app achieves high accuracy determined by a stacked
CNN which reaches 98% for stroke diagnosis. The GMDH neural network proves to be a
good technique for monitoring EMG signals, with an average accuracy of 98.60% and an
average of 96.68% for signal prediction, and by extending the GMDH model and a hybrid
LSTM with a dense-layer deep learning model, the accuracy can reach an average of 99%.

“Implementation of a Real-Time Object Pick-and-Place System Based on a Changing
Strategy for Rapidly-Exploring Random Tree” [21] implements a six-degree-of-freedom
(DOF) robot with an external camera and a two-finger gripper through an ROS-based
real-time Pick-and-Place System and an improved Rapidly Exploring Random Tree (RRT)
algorithm, named the Changing Strategy RRT (CS-RRT) algorithm. By implementing the
proposed CS-RRT algorithm in the Open Motion Planning Library and according to the
imported URDF file, MoveIt can perform motion planning for different robot manipulators;
thus, the proposed method can be easily applied to other six-degree-of-freedom (DOF)
robots using the ROS-based real-time Pick-and-Place System.
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Abstract: An object pick-and-place system with a camera, a six-degree-of-freedom (DOF) robot
manipulator, and a two-finger gripper is implemented based on the robot operating system (ROS)
in this paper. A collision-free path planning method is one of the most fundamental problems that
has to be solved before the robot manipulator can autonomously pick-and-place objects in complex
environments. In the implementation of the real-time pick-and-place system, the success rate and
computing time of path planning by a six-DOF robot manipulator are two essential key factors.
Therefore, an improved rapidly-exploring random tree (RRT) algorithm, named changing strategy
RRT (CS-RRT), is proposed. Based on the method of gradually changing the sampling area based
on RRT (CSA-RRT), two mechanisms are used in the proposed CS-RRT to improve the success
rate and computing time. The proposed CS-RRT algorithm adopts a sampling-radius limitation
mechanism, which enables the random tree to approach the goal area more efficiently each time the
environment is explored. It can avoid spending a lot of time looking for valid points when it is close
to the goal point, thus reducing the computing time of the improved RRT algorithm. In addition,
the CS-RRT algorithm adopts a node counting mechanism, which enables the algorithm to switch
to an appropriate sampling method in complex environments. It can avoid the search path being
trapped in some constrained areas due to excessive exploration in the direction of the goal point,
thus improving the adaptability of the proposed algorithm to various environments and increasing
the success rate. Finally, an environment with four object pick-and-place tasks is established, and
four simulation results are given to illustrate that the proposed CS-RRT-based collision-free path
planning method has the best performance compared with the other two RRT algorithms. A practical
experiment is also provided to verify that the robot manipulator can indeed complete the specified
four object pick-and-place tasks successfully and effectively.

Keywords: rapidly-exploring random tree (RRT); path planning; robot manipulator; object pick-and-place;
collision-free; robot operating system (ROS)

1. Introduction

Due to the presence of various objects in the working environment, path planning for
robots is one of the most important topics in robotics research and is widely discussed [1–4].
If the robot does not have a good path planning method to choose a collision-free path,
various collision situations may occur. Once a collision occurs, unpredictable or large losses
may be caused. Therefore, many researchers devote themselves to the field of collision-
free path planning. Based on differential search methods, path planning algorithms are
divided into three categories: search-based, heuristic-based, and sampling-based. The
A* algorithm proposed by Hart et al. is a search-based path planning algorithm [5]. It

Sensors 2023, 23, 4814. https://doi.org/10.3390/s23104814 https://www.mdpi.com/journal/sensors
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first models the environment and then determines objective node information to avoid
ineffective exploration of the environment and find a better solution efficiently. However,
when exploring high-dimensional spaces or wide environments, the computing time of
the A* algorithm increases significantly. The ant colony system proposed by Dorigo et al.
is a heuristic-based path planning algorithm [6]. It finds a better solution through a
function, iteration by iteration, in each exploration of the environment. However, the
convergence speed of the heuristic-based algorithm cannot be guaranteed. Due to the
long computing times of search-based and heuristic-based path planning algorithms, they
are not suitable for real-time system applications. The probabilistic roadmap algorithm
proposed by Kavraki et al. is a sampling-based path planning algorithm [7]. The advantage
of the sampling-based algorithm is that it reduces the burden of modeling the environment
by using sampling points to scatter the entire space into a partial area of the environment.
This makes it easy to represent all the features of the environment. It can handle the path
planning of robots in high-dimensional spaces. However, the search efficiency and success
rate of the probabilistic roadmap will decrease when there are dense obstacles in space. The
rapidly-exploring random tree (RRT) proposed by LaValle is also a sampling-based path
planning algorithm [8]. It combines the advantages of sampling and searching abilities
in the environment. Random trees will randomly expand new nodes in the environment.
This algorithm not only inherits the advantages of the fast search speed of the probabilistic
roadmap algorithm but can also perform a wide range of exploration in the environment,
which is more powerful to deal with the online path planning of high-dimensional spaces.

Although the basic RRT algorithm can find a better path in the search space relatively
quickly, it still has some problems that need to be improved, such as spending a lot of time
exploring some invalid areas. Therefore, there have been many studies aimed at improving
the basic RRT algorithm. For example, Wang et al. proposed an RRT algorithm based
on a node control mechanism [9]. Based on this mechanism, the node expansion of the
random tree is constrained by defined conditions, which reduces the generation of invalid
nodes and thus finds a better solution more efficiently than most RRT algorithms, especially
in narrow areas of the search space. Kang et al. proposed an RRT algorithm based on a
goal-oriented mechanism [10]. It improves the search efficiency by increasing the sampling
probability of the search point that is near the target. In addition, the sampling strategy
is appropriately switched through the node counting mechanism to adapt to the complex
environment. In addition, sometimes the RRT algorithm will overfocus on the goal area,
which makes it difficult to find a path when encountering a complex environment. On
the other hand, if the algorithm only focuses on improving its adaptability, it will not be
fast enough to find a path to the goal in simple environments. Therefore, there are still
many ways to improve the path planning for robot applications. In order to improve
the computing time and environmental adaptability of the existing RRT algorithm, an
improved RRT algorithm is proposed in this paper.

Path planning is important for any robot. In addition, we can find a wide range of
industrial applications for robot pick-and-place operations on robot manipulators [11–13].
This research includes the discussion of path planning, object picking and placing, collision
avoidance, and control of the robot manipulator. Many improved RRT algorithms have
been used in robot manipulators to achieve good results. However, most of them only
established a simulated environment to present simulation results. In order to illustrate
the proposed RRT algorithm, let a real robot manipulator perform object pick-and-place
tasks in real time. The robot operating system (ROS) is used to design and integrate the
hardware and software of an object pick-and-place system. Since ROS can transmit or
receive different types of data at the same time through “messages” and “services”, it is
one of the most popular platforms for research in robotics. Moreover, MoveIt, which is
open-source motion planning software, has been widely used in industry and research. It
is easy to integrate with ROS to set up new robots, and it is already available for more than
150 robots. Therefore, in the design of motion planning, MoveIt is used to complete the
required motion of the robot manipulator.

8
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There are six sections in this paper. In Section 1, the background is introduced. In
Section 2, an implemented object pick-and-place system based on ROS is described. In
Section 3, three sampling strategies used in the RRT algorithms are described. In Section 4,
a basic RRT algorithm and an improved RRT algorithm based on an existing RRT algorithm
are described. In Section 5, an experimental environment with four pick-and-place tasks
is setup, and some simulation and actual experimental results are presented to illustrate
that the implemented object pick-and-place system using the proposed RRT algorithm can
allow a robot manipulator to pick and place objects in real time. Finally, conclusions and
future work are described in Section 6.

2. ROS-Based Object Pick-and-Place System

The system architecture diagram of the implemented ROS-based object pick-and-place
system is shown in Figure 1. The input of this system is the RGB image captured by
Microsoft Azure Kinect DK (a RGB-D camera), and the outputs are the control commands
of Universal Robots UR5 (six-degree-of-freedom (DOF) robot manipulator) and Robotiq
2F-85 (a two-finger parallel gripper). Azure Kinect DK has the features of a wide field
of view and easy installation; it is directly installed on a bracket to capture images on
the table. UR5 has some features, such as a light weight, a user-friendly interface, and
collision detection capability. The related unified robot description format (URDF) files for
the specific MoveIt applications are also provided. These features make experiments easy
to perform and avoid collisions between the robot manipulator and surrounding objects
during the experiment. Robotiq 2F-85 is easily integrated into robot manipulators. It has
the feature that it can avoid damage to the gripper itself and prevent the robot manipulator
from injuring the object during the grasping task.

 

Figure 1. System diagram of the proposed ROS-based object pick-and-place system.
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The object detection module is implemented by the you only look once (YOLO) algo-
rithm [14] to obtain the position information of the object on the table from the captured
RGB image. The task strategy module is used to decide the destination of the robot ma-
nipulator when a pick-and-place task is given. The path planning module is implemented
by the improved RRT algorithm, which can quickly select a collision-free path so that the
robot manipulator and the two-finger gripper can successfully complete the given tasks
in real-time.

In the system integration of the proposed pick-and-place system, ROS is used to handle
the communication between each module. The robot motion information is calculated
by MoveIt through ROS. The version of ROS Melodic with Ubuntu 18.04 is used. MoveIt
is an open-source motion planning software that is a state-of-the-art implementation of
robot motion and path planning. Thus, it is used for the motion planning of the robot
manipulator. MoveIt provides a variety of functional packages for users to choose from and
integrates various functional plugins such as kinematics, collision detection, and motion
planning so that it can provide the desired motion planning for various robots. Moreover,
MoveIt is a package of ROS, and it is highly integrated with ROS so that the results of
motion planning by MoveIt can be easily transmitted to the robot manipulator through
ROS. Users can use the 3D visualization tool RViz to visually present the motion planning
results in the ROS. For MoveIt, the unified robot description format (URDF) and semantic
robot description format (SRDF) are used to describe robots. The proposed RRT algorithm
is designed for the robot manipulator UR5 in this paper, but it can be used for the other six
DOF robot manipulators. MoveIt imports the URDF file to set the parameters of the robot
and the simulated environment, then sends a request to the default library, the open motion
planning library (OMPL), to design a suitable motion trajectory. After calculating a path,
MoveIt will divide this path into the same distances and add information such as speed,
acceleration, and the consumed time of the robot at each piece of the path. In addition,
OMPL is the main library of sampling-based planning algorithms, which includes many
modules of common RRT algorithms. Because of its modular program design, it is easy
for users to add custom motion planning algorithms. Therefore, MoveIt is adopted as the
motion planning software for the robot manipulator in this paper.

As shown in Figure 1, the image information is sent by the object detection module,
and the motion information is calculated by MoveIt through ROS. Since ROS can transmit
or receive different data through messages and services, the proposed system integrated
through ROS can be applied to various input and output devices, so it has good appli-
cability. In the communication mode between the object detection module, task strategy
module, MoveIt, and UR5, there are mainly three two-way communication services in the
implemented pick-and-place system, which are, respectively, named Service1, Service2,
and Service3.

In order to ensure that the task strategy module can indeed receive the object posi-
tion information from the object detection module, Service1 is used to make the control
command of the task strategy module for the robot manipulator to move only after it has
received the object position information. The nodes of the server and client of Service1 are
the task strategy module and the object detection module, respectively. The request sent by
the task strategy module to the server has a status value of 0 (false) or 1 (true) while the
control command is received. The response is given by the object detection module as the
client after it receives the request for the object coordinates (x, y) on the table. The nodes of
the server and client of Service2 are the task strategy module and MoveIt, respectively. The
request sent by the task strategy module as the server is the target position (x, y, z) of the
end effector and the quaternion of the robot manipulator pose (w, x, y, z). The response
given by MoveIt as the client after receiving the request is the result of forward and inverse
kinematics and the motion trajectory obtained by RRT. The nodes of the server and client of
Service3 are MoveIt and UR5, respectively. The request sent by MoveIt as the server is the
joint motion trajectory of the robot manipulator. The response given by UR5 as the client
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after receiving the request is a status value of 0 (false) or 1 (true), depending on whether
UR5 is busy or not.

3. Sampling Strategy

Random sampling is the sampling strategy used by the basic RRT algorithm. The
algorithm randomly samples the entire space to determine sampling points. The simulation
result of 1000 random samplings in a 200 × 200 two-dimensional space is shown in Figure 2,
where the black point is the goal point. It can be seen that the sampling points randomly fall
throughout the entire space. For the RRT algorithms, random sampling can fully explore
the environment, find a path from the start point to the goal point, and avoid obstacles in
the environment. However, due to its randomness, it spends a lot of time exploring invalid
areas in most environments. Therefore, many improved sampling strategies were proposed
to reduce computing time.

 

Figure 2. Schematic illustration of random sampling in a two-dimensional space.

Goal-biased sampling is an improved sampling strategy over random sampling. By
adding a random variable rand and set: if rand is less than the specified probability p, then
the point will be selected as a sampling point. Otherwise, use the original random sampling
method to randomly sample the space. This sampling strategy causes the random tree
of the RRT algorithm to take the goal point to sample with a certain probability. In this
case, random trees can approach the goal area faster and reduce computing time while
maintaining random sampling to fully explore the environment. The simulation result
of 1000 goal-biased sampling points in a 200 × 200 two-dimensional space is shown in
Figure 3. It can be seen that more sampling points fall within the goal area.

 

Figure 3. Schematic illustration of goal-biased sampling in a two-dimensional space.
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Bounded sampling is a sampling strategy to limit the sampling area to a radius from
the goal point and let the random tree explore toward the goal area. The simulation result
of 1000 bounded sampling in a 200 × 200 two-dimensional space is shown in Figure 4. It
can be seen that the sampling points are limited within a radial space centered on the goal
point. Compared with the RRT algorithm using a goal-biased sampling strategy, the RRT
algorithm using bounded sampling can make the random tree explore the goal area stably.
By gradually reducing the sampling radius, this algorithm can find a path to the goal point.
However, since such bounded sampling may be overly focused on exploring towards the
goal area, random trees can easily get trapped in some complex environments.

 

Figure 4. Schematic illustration of bounded sampling in a two-dimensional space.

4. Changing Strategy RRT Algorithm

In the design of the sampling-based path planning method, two items, such as com-
puting time and path length, are usually considered. For offline path planning, the path
length is usually the main consideration. On the other hand, for online path planning,
computing time is the priority consideration. Real-time object picking and placing tasks
require online path planning, so we mainly focus on how to reduce the computing time of
the improved RRT algorithm.

The basic RRT algorithm, as a sampling-based path planning method, is mainly de-
signed to perform random sampling in the configuration space [15]. A schematic illustration
of the basic RRT algorithm for finding a path from a starting point (S) to a goal point (G)
in a two-dimensional space is shown in Figure 5. It can be seen that the random tree fully
explores the environment. The advantage of this method is that it does not require model-
ing the entire environment. Such path planning algorithms can explore two-dimensional
spaces faster than other path planning algorithms. Therefore, it is suitable for solving the
path planning problem in complex or constrained environments.

 
Figure 5. Schematic illustration of the basic RRT algorithm for finding a solution in a two-dimensional space.
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The proposed algorithm is named changing strategy RRT (CS-RRT), which is improved
on the basis of the method of gradually changing the sampling area based on RRT (CSA-
RRT) [9]. The pseudocode of the CSA-RRT algorithm is shown in Algorithm 1. It needs
to calculate the distance Dmax between the two nodes q f ar and qgoal , where q f ar is the
node farthest from the goal point qgoal . Since the tree only has the initial node qstart at
the beginning, the algorithm will initially use qstart as q f ar to calculate Dmax, which is the
initial sampling radius R of bounded sampling. When the dimension of the space is s, the
maximum distance Dmax is calculated by:

Dmax =
√
(qgoal(1) − q f ar(1))

2 + . . . + (qgoal(s) − q f ar(s))
2 (1)

The CSA-RRT algorithm uses the random sampling method to randomly select a sam-
pling point qrand in the space. The distance Drand between qrand and qgoal is calculated by:

Drand =
√
(q goal(1) − qrand(1))

2 + . . . + (q goal(s) − qrand(s))
2 (2)

Compare the distance between Drand and R to make sure that the sampling point
qrand is inside R. If Drand is less than R, then qrand is considered a valid sampling point.
Conversely, if Drand is greater than R, it means that qrand is outside R, and the algorithm
will resample until qrand is inside R. If a new node qnew is successfully added to the random
tree in an iteration, it means that there is no obstacle between qnew and the nearest node
qnear. When the new point qnew is closer to the goal point qgoal , it becomes the nearest node.
At this time, the value of R is changed to the distance from the new nearest node qnew to the
goal point qgoal . Conversely, it means that an obstacle is encountered during the expansion
process. At this time, a step size ε of k times is added to R, which means that the sampling
area is expanded so that the random tree can avoid nearby obstacles. The value of k is a
positive integer for adjusting the sampling radius, which needs to be manually adjusted
according to the complexity of the environment. This allows the algorithm to explore the
direction of qgoal as much as possible while having the ability to randomly explore the
environment. The comparison results of the CSA-RRT algorithm and the 10% goal-biased
RRT algorithm are shown in Figure 6. It can be seen that the CSA-RRT algorithm can reduce
the generation of invalid nodes more than the goal-biased RRT algorithm.

  
(a) (b) 

Figure 6. Schematic illustration of the comparison results of the two RRT algorithms. (a) 10% goal-biased
RRT algorithm. (b) CSA-RRT algorithm.

The CSA-RRT algorithm has the advantage that the invalid nodes of the CSA-RRT
algorithm are much lower than those of the goal-biased RRT algorithm. However, the
computing time of the CSA-RRT algorithm is not much faster than that of the goal-biased
RRT algorithm. After observation, we found that although the sampling radius R will
gradually shrink as qnew gets closer to the goal area, thereby reducing the generation of
invalid points. However, on the other hand, because of the reduction in R, qrand selected by
random sampling becomes more and more difficult to fall within R. As shown in Figure 7,
when the new point qnew is close to the goal point qgoal , R will become smaller and smaller.

13



Sensors 2023, 23, 4814

This results in a very small chance that the sampling point qrand will fall within R. As a
result, the CSA-RRT algorithm spends a lot of time doing computation at certain stages.
Therefore, the CSA-RRT algorithm has the advantage of generating fewer invalid nodes,
but it still cannot significantly reduce the computing time of path planning. This becomes
more apparent when sampling in larger environments.

Algorithm 1: CSA-RRT algorithm

1. T ← InitTree(qstart);
2. R ← Dmax;
3. for i = 1 to n do

4. qrand ← RandomSample();
5. if Distance(qrand,qgoal) > R then

6. continue;
7. end if

8. qnear ← NearestNeighbor(qrand, T);
9. qnew ← Extend(qrand,qnear, ε);
10. if CollisionFree(qnear,qnew) then

11. AddNewNode(T,qnew);
12. R ← Distance(qnew,qgoal);
13. else

14. R ← R + k × ε;
15. continue;
16. end if

17. if Distance(qnew,qgoal) < ρmin then

18. return T;
19. end if

20. end for

21. return Failed;

 

Figure 7. Schematic illustration of the sampling point. It is difficult to fall within the sampling radius
R when the new point is close to the goal point.

A sampling-radius limitation mechanism is adopted to solve this problem that qrand
is difficult to fall into R when qnew is close to qgoal . An additional statement is used to
determine whether the random tree is approaching qgoal . Whenever qnew is added to the
random tree, R and Dmax are compared before the next sampling. If R is greater than one-
fifth of Dmax, it means that the random tree is still far away from qgoal . Thus, it continues to
use the random sampling of the CSA-RRT algorithm to select qrand. On the other hand, if
R is smaller than one-fifth of Dmax, it means that the random tree is close to qgoal . At this
time, a sampling-radius limitation mechanism based on bounded sampling is adopted to
limit the sampling area within the radius R from the goal point. In this way, the problem
that qrand cannot successfully fall within R when it is close to the goal point can be solved.
This makes the proposed CS-RRT algorithm not only quickly find valid nodes but also
reduce the computing time of path planning. In the case of two-dimensional simulations,
the CS-RRT algorithm improves by about 0.5 times compared with the CSA-RRT algorithm.

In addition, the CSA-RRT algorithm has the advantage that it can quickly find an
initial path to the goal area. However, as shown in Figure 8, if the CSA-RRT algorithm
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is performed in a complex environment and the value of k is not adjusted properly, the
tree may be trapped due to focusing too much on the goal point. As a result, the random
tree keeps expanding in the same area but cannot find an escape path until the number
of node expansions of the algorithm reaches the maximum limit of expansions and fails.
In order to solve this problem, a node counting mechanism is adopted to appropriately
switch the sampling strategy to an appropriate sampling method in complex environments.
It can avoid the search path being trapped in some constrained areas and improve the
adaptability of the proposed CS-RRT algorithm to various environments.

Figure 8. Schematic illustration of CSA-RRT algorithm trapped in a complex environment with a
restricted region.

The CSA-RRT algorithm with the node counting mechanism will calculate the distance
Dmin from the node qmin that is closest to the goal point qgoal and set the node count variable
nodecnt to zero during initialization. As shown in Algorithm 2, in the sampling stage, the
algorithm will choose which sampling method to use according to the value of nodecnt. If
nodecnt is less than the set threshold, the sampling method of CSA-RRT is used to make
the random tree quickly extend to the goal point. Otherwise, the random sampling method,
which fully explores the environment, is used.

Algorithm 2: SelectSample( nodecnt,qgoal ,R );

1. if nodecnt < 20 then

2. qrand ← RandomSample();
3. if Distance(qrand,qgoal) > R then

4. continue;
5. end if

6. else

7. qrand ← RandomSample();
8. end if

9. return qrand;

After completing the collision detection stage in each iteration, the algorithm calculates
the Euclidean distance Dnew from qnew to qgoal , no matter if qnew is successfully added to
the random tree. After this, compare Dnew with Dmin in the CheckEnvironment() function.
The pseudocode of the CheckEnvironment() function is shown in Algorithm 3. If Dnew is
smaller than Dmin, then nodecnt is set to zero. At this time, qnew is closer to qgoal , which
means that the tree is approaching the goal area, so there is no need to change the sampling
strategy. After that, change qnew into qmin as the basis for the next check of the expansion
status. On the other hand, if Dnew is greater than Dmin, it means that qnew is not closer
to qgoal . At this time, nodecnt+1. If Dnew continues to be greater than Dmin for the next
few times, it is considered that the random tree is trapped in the current area. Then the
algorithm will switch the sampling method to random sampling in the SelectSample()
function to try to escape the current area until Dnew is smaller than Dmin. In addition, an
upper limit is set to avoid the algorithm wasting too much time using random sampling to
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explore the space. Therefore, when nodecnt reaches the set upper limit, it will reset to zero
immediately. A schematic illustration of node count adjustment is shown in Figure 9.

  

(a) (b) 

Figure 9. Schematic illustration of two different node number adjustments. (a) The new node is close to
the goal point. (b) The new node is far from the goal point.

Algorithm 3: CheckEnvironment( Dnew, Dmin, nodecnt )

1. if Dnew < Dmin then

2. Dmin ← Dnew;
3. nodecnt ← 0;
4. else

5. nodecnt ← nodecnt + 1;
6. end if

7. if nodecnt > 100 then

8. nodecnt ← 0
9. end if

In short, the proposed CS-RRT algorithm is based on the CSA-RRT algorithm and uses
the sampling-radius limitation mechanism and the node counting mechanism to solve the
problems existing in the CSA-RRT algorithm. The sampling-radius limitation mechanism
allows the random tree to finish the sampling stage more quickly when it is close to the
goal area, so that the proposed CS-RRT algorithm can further reduce the computing time.
The node counting mechanism makes the algorithm avoid overfocusing on the goal area, so
the proposed CS-RRT algorithm also has good adaptability to the environment. The results
of the proposed CS-RRT algorithm performed in two different environments are shown in
Figure 10. When encountering simple environments, as shown in Figure 10a, the proposed
CS-RRT algorithm can quickly find a path. When encountering complex environments,
as shown in Figure 10b, the proposed CS-RRT algorithm can also prevent trapping by
switching sampling strategies. Comparing the results shown in Figure 8, we can see that
the CSA-RRT algorithm is trapped in this environment. With these improvements, the
proposed CS-RRT algorithm indeed not only reduces computing time but also improves
environmental adaptability.

  

(a) (b) 

Figure 10. Schematic illustration of the performance of CS-RRT algorithm in two different environments.
(a) A simple environment with many obstacles. (b) A complex environment with a restricted region.
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5. Simulation Results and Experimental Results

5.1. Simulation Results of Robot Manipulator

The simulation setup of the robot manipulator and experimental environment is shown
in Figure 11. In order to demonstrate the performance of the motion planning of the robot
manipulator based on the proposed CS-RRT algorithm, a series of tasks (Task 1~Task 4)
is designed, and then the success rates and average computing time after 50 experiments
of each algorithm, the proposed CS-RRT, CSA-RRT, and the 10% goal-bias RRT algorithm,
provided by the open motion planning library (OMPL), are compared. The tasks are
described as follows:

  
(a) (b) 

Figure 11. Schematic illustration of experimental environment. (a) The robot manipulator and experi-
mental environment. (b) An object will be randomly placed inside the red circle.

Task 1: The implemented pick-and-place system uses the YOLOv4 algorithm to obtain
the position of Object A on the table and then commands the robot manipulator
to grasp the Object A. This task verifies the motion planning performance of
algorithms in an open space without obstacles.

Task 2: The implemented pick-and-place system commands the robot manipulator to
place the grasped object at a certain location on the upper layer of the cabinet. The
sides of the cabinet can be considered obstacles for the movement of the robot
manipulator. This task verifies the motion planning performance of algorithms
from open space to restricted space.

Task 3: The implemented pick-and-place system commands the robot manipulator to
move from the upper layer of the cabinet to the lower layer and grasp the Object
B that was placed on the lower layer of the cabinet. This task verifies the motion
planning performance of algorithms in two restricted spaces.

Task 4: The implemented pick-and-place system commands the robot manipulator to
move from the lower layer of the cabinet to the grasping position in Task 1 and to
place the grasped object. This task verifies the motion planning performance of
algorithms from a restricted space to an open space.

Figure 12 illustrates the motion flow from Task 1 to Task 4. Note that the gray and
orange robot manipulators indicate the initial and finish positions of each task, respectively.
Four simulation results for each task are illustrated as follows:
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(a) (b) 

  
(c) (d) 

Figure 12. Schematic illustration of the experimental scenarios for four tasks. (a) The motion flow of the
manipulator in Task 1. (b) The motion flow of the manipulator in Task 2. (c) The motion flow of the
manipulator in Task 3. (d) The motion flow of the manipulator in Task 4.
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In the experimental scenarios of Task 1, as shown in Figure 12a, the robot manipulator
is commanded to move from its initial position to grasp the object on the table. Figure 13a,b
are bar graphs of the success rate and the average computing time of the three algorithms
executed 50 times in Task 1, respectively. From the results in Figure 13, it can be seen that
the success rate and the average computing time of the proposed CS-RRT and the 10%
goal-biased RRT are the same. We infer that the proposed CS-RRT needs to compute the
sampling radius at each iteration. Therefore, searching in an open space without obstacles,
does not have the advantage of taking less computing time. In addition, CSA-RRT makes
it difficult for the sampling points to fall within the sampling radius when they are close
to the goal area. Therefore, the computing time of the CSA-RRT is higher than that of the
proposed CS-RRT.

  

(a) (b) 

Figure 13. Experimental results of three algorithms in the scenarios of Task 1. (a) Success rate. (b) Aver-
age computing time.

Remark: The experiment sets the maximum path planning time to 1 second because it is
basically not regarded as real-time motion planning after more than 1 second.
In addition, the robot manipulator may rotate a full circle and cause damage to
surrounding objects due to the randomness of the RRT algorithms. Thus, we
restrict each axis of the robot manipulator to rotating between plus and minus
180 degrees.

In the experimental scenarios of Task 2, as shown in Figure 12b, the robot manipulator
is commanded to move from the finished position of Task 1 to a specific position on the
upper layer of the cabinet to place the grasped object. Although moving in a straight
line is the fastest way to reach the destination, it will collide with the sides of the cabinet.
Therefore, for the robot manipulator to reach its destination safely, it needs a collision-free
path to avoid collisions with the sides of the cabinet. Task 2 tests the motion planning
performance of algorithms from an open space to a restricted space. From the results shown
in Figure 14, it can be seen that the proposed CS-RRT has the highest success rate and the
shortest average computing time. Therefore, the proposed CS-RRT has better performance
than the other two algorithms when planning a motion in a restricted environment.

In the experimental scenarios of Task 3, as shown in Figure 12c, the robot manipulator
is commanded to move from the upper layer of the cabinet to a specific position on the
lower layer of the cabinet. Since the robot manipulator has entered the upper cabinet, the
environment of the two restricted areas in Task 3 is more complex than that in Task 1 and
Task 2. In this experiment, we found that the default step size ε using OMPL is too small.
As a result, the random tree of the three algorithms grows slowly, and the motion planning
cannot be completed within the specified time. Therefore, the step size ε is increased by
three times in Task 3. In other words, the expansion distance of each iteration of the random
tree is increased. From the results shown in Figure 15, we can see that the proposed CS-RRT
has the highest success rate and the shortest average computing time too. Therefore, the
proposed CS-RRT has better performance than the 10% goal-biased RRT algorithm and
CSA-RRT when planning in a complex environment.
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(a) (b) 

Figure 14. Experimental results of three algorithms in the scenarios of Task 2. (a) Success rate. (b) Aver-
age computing time.

  
(a) (b) 

Figure 15. Experimental results of three algorithms in the scenarios of Task 3. (a) Success rate. (b) Aver-
age computing time.

In the experimental scenarios of Task 4, as shown in Figure 12d, the robot manipulator
is commanded to move from the lower layer of the cabinet to the top of the table. This task
verifies the motion planning performance of algorithms from a restricted space to an open
space. From the results shown in Figure 16, we can see that the success rate and the average
computing time of the proposed CS-RRT and 10% goal-biased RRT are the same. However,
the average computing time of CSA-RRT under Task 4 is still longer than that of CS-RRT
and 10% goal-biased RRT. Judging from the fact that the success rate of all three algorithms
is 100 percent, we infer that once the robot manipulator comes out of the cabinet, there are
multiple ways to move to the destination. Since the restricted area is near the initial point in
Task 4, once the robot manipulator leaves the restricted area, all three algorithms can easily
find a collision-free path to the destination in an open space with only a few explorations.

Based on these results shown in Figures 13–16, the simulation results of three algorithms
in the four scenarios of Tasks 1~4 are summarized in Table 1. Compared with goal-biased
RRT and CSA-RRT, the implemented pick-and-place system based on the proposed CS-RRT
algorithm has a higher success rate and requires less computing time. We can see that the
results of CS-RRT are similar to those of the 10% goal-biased RRT when planning is performed
in non-complex environments, such as Task 1 and Task 4. However, the advantages of the
proposed CS-RRT in terms of success rate and computing time can be seen when planning is
performed in complex environments with space restrictions, such as Task 2 and Task 3.
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(a) (b) 

Figure 16. Experimental results of three algorithms in the scenarios of Task 4. (a) Success rate. (b) Aver-
age computing time.

Table 1. Simulation results of three algorithms in the four scenarios of Tasks 1~4.

Success Rate (%) Average Computing Time (Second)

Task Goal-Biased RRT CSA-RRT CS-RRT Goal-Biased RRT CSA-RRT CS-RRT

Task 1 100 100 100 0.015 0.019 0.015

Task 2 94 96 98 0.097 0.096 0.071

Task 3 94 94 96 0.143 0.087 0.083

Task 4 100 100 100 0.013 0.016 0.013

Average 97 97.5 98.5 0.067 0.0545 0.0455

5.2. Experimental Results of Real Robot Manipulator

In the practical experimental demonstration, a real pick-and-place system with a depth
camera (Microsoft Azure Kinect DK), a six DOF robot manipulator (UR5), and a two-finger
parallel gripper (Robotiq 2F-85) is presented to illustrate the efficiency of the proposed CS-RRT
algorithm applied in the pick-and-place system. The camera is installed above the table
and the YOLOv4 algorithm is used to obtain the position coordinates of Object A, which is
randomly placed on the table. Code runs on the robot with ROS implemented in Python.
The communication method of ROS Services is used to ensure that the task strategy module
actually receives the coordinate information and MoveIt is used to execute the motion planning
results of the proposed CS-RRT algorithm to complete the four pick-and-place tasks described
in the previous section. The video of the demonstration of the real pick-and-place task can be
viewed on this website: https://youtu.be/lcdy2byIG_g (accessed on 20 January 2023). The
snapshots of the real robot manipulator performing Task 1, Task 2, Task 3, and Task 4 are,
respectively, shown in Figures 17–20. The procedure can be described as follows:

Step 1: Obtain the position coordinates of object A randomly placed on the table through
the camera installed above the table and the YOLOv4 algorithm.

Step 2: Move to the top of Object A.
Step 3: Move downward to grasp Object A.
Step 4: Move upward from the table.
Step 5: Move to the outside of the upper layer of the cabinet.
Step 6: Move into the upper interior of the upper layer of the cabinet.
Step 7: Move downward to place Object A.
Step 8: Move to the outside of the upper layer of the cabinet.
Step 9: Move to the outside of the lower layer of the cabinet.
Step 10: Move to the top of Object B in the lower layer of the cabinet.
Step 11: Move downward to grasp Object B.
Step 12: Move to the outside of the lower layer of the cabinet.
Step 13: Move to the top of the initial position of Object A, where it was originally placed

on the table.
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Step 14: Move downward to place Object B on the table.
Step 15: Move to the top of the object placed on the table.
Step 16: Return to the initial position of the robot manipulator.

  
(a) (b) 

  
(c) (d) 

Figure 17. Snapshot of the robot manipulator during the object pick-and-place in Task 1. (a) Initial
position. (b) Move to the top of Object A. (c) Move downward to grasp Object A. (d) Move upward
to the top of the table.

(a) (b) 

(c) (d) 

Figure 18. Snapshot of the robot manipulator during the object pick-and-place in Task 2. (a) Move to
the upper layer of the cabinet. (b) Reach the outside of upper layer of the cabinet. (c) Move into the
upper interior of the cabinet. (d) Move downward to place Object A.

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 19. Snapshot of the robot manipulator during the object pick-and-place in Task 3. (a) Move
back to the outside of the upper layer of the cabinet. (b) Move to the outside of the upper layer of the
cabinet. (c) Move to the outside of the lower layer of the cabinet. (d) Reach the outside of the lower
layer of the cabinet. (e) Move to the top of Object B, placed in the lower layer of the cabinet. (f) Move
downward to grasp Object B.
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 20. Snapshot of the robot manipulator during the object pick-and-place in Task 4. (a) Move
back to the outside of the lower layer of the cabinet. (b) Move to the outside of the lower layer of
the cabinet. (c) Reach the top of the initial position of Object A where it was originally placed on the
table. (d) Move downward to place Object B on the table. (e) Move to the top of the object placed on
the table. (f) Return to the initial position of the robot manipulator.

6. Conclusions and Future Work

An ROS-based object pick-and-place system is implemented, and a CS-RRT algorithm
is proposed so that the robot manipulator can efficiently pick-and-place objects in real time.
There are three main contributions in this paper. (1) Path planning for robots is one of the most
important topics in robotics research. In the research on robot manipulators for picking and
placing objects in a constrained environment, most of the research only completed simulation
results to verify the effectiveness of their path planning methods. Many improved RRT
algorithms have been proposed, but they are rarely applied to actual robot manipulators for
object pick-and-place tasks in real time. Both simulation and actual experiments are used to
demonstrate that the proposed CS-RRT algorithm and the implemented system can allow
the robot manipulator to effectively avoid obstacles and pick-and-place objects in real time.
(2) Some disadvantages of existing RRT algorithms are addressed, and two mechanisms of
sampling radius counting, and node counting are adopted in the proposed CS-RRT algorithm.
The sampling-radius limitation mechanism, by limiting the sampling radius, can make the
random tree finish the sampling stage faster when the tree is close to the goal point. It can
reduce the computing time of the proposed CS-RRT algorithm. The node counting mechanism
allows the algorithm to switch to an appropriate sampling method in a complex environment.
It can avoid excessive exploration in the direction of the goal point so that the random tree
does not trap itself in constrained areas. It can make the proposed CS-RRT algorithm have
better environmental adaptability. In addition, an experimental environment with four object
picking and placement tasks has been established. Experimental results show that the object
pick-and-place system based on the proposed CS-RRT algorithm has a higher success rate
and lower computing time compared with the other two path planning algorithms. (3) The
robot operating system (ROS) is used to implement the object pick-and-place system. By
implementing the proposed CS-RRT algorithm in the open motion planning library (OMPL),
MoveIt can be used to plan the motion of the robot manipulator. According to the imported
URDF file, MoveIt can also perform motion planning for different robot manipulators, so the
proposed method can be easily applied to different robot manipulators.

There are two parts to the future work: (1) In the part of switching strategy and step
size adjustment, switching sampling strategy can improve the adaptability of the proposed
algorithm to the environment, but its own parameters need to be manually designed according
to the environment. In addition, the step size also needs to be chosen according to the
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environment. Therefore, some optimization methods can be used in the future to select
appropriate parameters for the switching strategy and step size according to the environment.
(2) In the part of the sampling method where the distance needs to be calculated. In the
path planning of the six-dimensional joint space of the robot manipulator, more parameters
are needed to calculate the distance, which increases the computing time of the proposed
algorithm. Therefore, the number of calculation distances can be reduced in the future to
reduce the computing time needed to meet the system requirements.
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Abstract: Artificial intelligence (AI) techniques for intelligent mobile computing in healthcare has
opened up new opportunities in healthcare systems. Combining AI techniques with the existing
Internet of Medical Things (IoMT) will enhance the quality of care that patients receive at home
remotely and the successful establishment of smart living environments. Building a real AI for mobile
AI in an integrated smart hospital environment is a challenging problem due to the complexities of
receiving IoT medical sensors data, data analysis, and deep learning algorithm complexity program-
ming for mobile AI engine implementation AI-based cloud computing complexities, especially when
we tackle real-time environments of AI technologies. In this paper, we propose a new mobile AI
smart hospital platform architecture for stroke prediction and emergencies. In addition, this research
is focused on developing and testing different modules of integrated AI software based on XAI
architecture, this is for the mobile health app as an independent expert system or as connected with a
simulated environment of an AI-cloud-based solution. The novelty is in the integrated architecture
and results obtained in our previous works and this extended research on hybrid GMDH and LSTM
deep learning models for the proposed artificial intelligence and IoMT engine for mobile health
edge computing technology. Its main goal is to predict heart–stroke disease. Current research is
still missing a mobile AI system for heart/brain stroke prediction during patient emergency cases.
This research work implements AI algorithms for stroke prediction and diagnosis. The hybrid AI
in connected health is based on a stacked CNN and group handling method (GMDH) predictive
analytics model, enhanced with an LSTM deep learning module for biomedical signals prediction.
The techniques developed depend on the dataset of electromyography (EMG) signals, which provides
a significant source of information for the identification of normal and abnormal motions in a stroke
scenario. The resulting artificial intelligence mHealth app is an innovation beyond the state of the
art and the proposed techniques achieve high accuracy as stacked CNN reaches almost 98% for
stroke diagnosis. The GMDH neural network proves to be a good technique for monitoring the EMG
signal of the same patient case with an average accuracy of 98.60% to an average of 96.68% of the
signal prediction. Moreover, extending the GMDH model and a hybrid LSTM with dense layers deep
learning model has improved significantly the prediction results that reach an average of 99%.

Keywords: artificial intelligence; mobile health; stroke monitoring; iomt-stacked convolutional neural
networks; GMDH neural networks; Deep LSTM; biomedical EMG signal processing

1. Introduction

The proposed architecture aims to develop, analyze and incorporate artificial intel-
ligence and deep learning technology and extend our previous research on mobile AI
telemedicine platforms [1] to harness the findings of research and development in the fields

Sensors 2023, 23, 3500. https://doi.org/10.3390/s23073500 https://www.mdpi.com/journal/sensors
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of biomedical signal processing (ECG, EMG/ECG). In the sense of emergency, artificial
intelligence, and tracking in a healthcare setting, this article is intended to create adaptive,
collaborative, and creative artificial intelligence and intelligence technologies for patients.

Artificial intelligence (AI) technologies in Smart health living hospitals for connected
and mobile health AI edge computing integrated with telemedicine systems have opened up
new opportunities in healthcare systems and complex diseases. Predictive analytics [1–4]
and intelligent mobile edge computing in healthcare [5–9] help patients manage their
treatments, especially for stroke monitoring and predictive analytics [5,9], which is a
complex problem due to real-time detection of patient cases and real-time biomedical
sensor signal streaming of each person independently. The intelligent mobile health
application aims to help stroke patients record their episode once it occurs based on EMG
signals. However, classifying real-time EMG signals [10–12] is a complex task, especially
due to problems with patient muscle signal feedback. This research paper introduces a new
predictive analytics model for stroke prediction using technologies of mobile health, and
artificial intelligence algorithms such as stacked CNN, GMDH, and LSTM models [13–22].
A new prototype of a mobile AI health system has also been developed with high-accuracy
results, which are going to be discussed in this paper. The main motivation is automating
classification and intelligent emergency assistance for patients who suffer strokes.

Deep learning (multiple layer neural networks) enables end-to-end learning, where
higher dimensional features (e.g., the correlation between multi-bio signal measurement
datasets) are input directly to the neural network. IoMT devices such as ECG, and EMG
send information directly so that signals can be analyzed and used as input for mobile
devices and intelligent telemedicine platforms.

In addition, stroke prediction research is still missing a real-time AI-based heart
diagnosis and stroke prediction system to be developed as an AI-based platform to be
used, especially in the new era of smart hospitals and artificial intelligent technologies in
European hospitals [23–31].

The experiments presented in this paper discuss the measurements of the EMG dataset
and signal prediction results. The focus is on using IoMT implemented within the frame-
work of a novel deep learning telemedicine platform for an AI smart hospital setting that
can deliver care to stroke patients. This platform can be used as a portable patient/person
assistive emergency tool and as a telemedicine hospital support system as well as an
inter-hospital support system for larger hospital associations due to the flexible system
model. Several deep learning models have been introduced in research [32–40], targeting
cardiovascular and stroke diseases.

The experiments presented in this paper discuss the measurements of the EMG dataset
and signal prediction results. We are focused to use IoMT implemented within a framework
of novel deep learning telemedicine platform for AI smart hospital settings that can deliver
care to stroke patients and people in a smart health environment. This work proposed the
following artificial intelligence platform and deep learning techniques applied for stroke
patients’ emergencies:

1. An innovative automated proposed biomedical deep learning cloud platform for
stroke patients’ emergencies and remote using stacked convolutional neural networks
the proposed solution offers complete intelligent healthcare services inside homes,
for elderlies, families, and emergency care services. The main goal is heart stroke
prediction, monitoring, and diagnosis. The AI-connected health platform includes
deep learning models to the cloud and a mHealth module to send alerts.

2. The innovative artificial intelligence telemedicine platform for stroke prediction and
emergency situations. That depends on statistical methods for EMG signal tracking
and prediction such as group handling methods (GMDH) neural network [8,9] for pa-
tient stroke real-time prediction. The GMDH deep learning model is further enhanced
with LSTM deep learning module [18,19].

3. A new real-time CNN-stroke and heart and BAN-IOT: a deep learning model for signal
deep feature extraction and classification within big data streaming environment
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4. A new mobile AI engine prototype has been developed and tested for the proposed
AI techniques.

The paper consists of four sections as follows: the introduction consists of background
and related work. Section 2 presents related works, Section 3 discusses materials and
methods used, explains EMG signal processing features extraction, explains the stacked
CNN deep learning technique, and presents the usage of GMDH neural networks for
stroke prediction, along with extended LSTM prediction results. Section 4 presents experi-
mental results and the simulated AI mobile app and Section 5 discusses conclusions and
future work.

2. Related Works

AI has been in development for decades, but only recently become good enough for
people to notice, mostly due to advances in other industries besides health care. The rise
of intelligent machines is approaching, and the world, especially the healthcare industry,
is far from prepared for what is to come. Mobile health [19,24] applications are receiving
increased attention largely due to the global penetration of mobile technologies. It is esti-
mated that over 85% of the world’s population is now covered by a commercial wireless
signal, with over 5 billion mobile phone subscriptions [11]. Tarik Taleb et al. [12] present
a study on MEC (mobile edge computing) [9,19,24,33] that discusses the major enabling
technologies in this domain. It explores MEC deployment considering both the perspectives
of individual services as well as a network of MEC platforms supporting mobility. It also
delves into an analysis of a MEC. reference architecture and its main deployment scenarios
that can offer multitenancy support for application developers. R. Yongbo Li et al. [14] have
developed MobiQoR: for Pushing the Envelope of Mobile [9,19,20,24,33] Edge Computing
Via Quality-of-Result Optimization. Fang, S.H. et al. [16] proposes a deep learning mecha-
nism to identify the transportation modes of smartphone users. The proposed mechanism
is evaluated on a database that contains more than one thousand hours of accelerometer,
magnetometer, and gyroscope measurements from five transportation modes including
still, walking, running, bike, and vehicle.

Oguz Karan [5], presented an ANN model applied to smartphones to diagnose di-
abetes. In this study, a three-layered multilayer perceptron (MLP) feedforward neural
network architecture was used and trained with the error backpropagation algorithm. Peter
Pes [6], developed a smartphone-based decision support system (DSS) for the management
of type 1 diabetes in order to improve quality of life. Jieun Kim [16], proposed a case-based
reasoning [19,24,41–48] approach to matching the user needs and existing services, identi-
fying unmet opportunistic user needs, and retrieving similar services with opportunities
based on Apple smartphones. Swapna et al. [38] have worked on EEG signal generation
and heart rate in cardiac diseases, however, they did not address stroke prediction issues.
Complications of acute ischemic stroke from a medical perspective, but without addressing
prediction issues were addressed. Park et al. [39] have developed an intelligent stroke
monitoring system during sleeping cases only but not for outdoor multi-event systems.
Aminova et al. [40] have developed a single-channel EEG predictor for cognitive function
after stroke and not using EMG as a pre-stroke prediction system. Z. Yang [41] proposed a
model of an IoT-cloud [42,45] based wearable ECG monitoring system for smart healthcare.
Satija et al. [48] presented continuous cardiac health monitoring with signal quality-aware
IoT-enabled [42,43,47,48] ECG telemetry system. Ihsanto et al. [7] proposed depthwise sep-
arable convolutional (DSC) NNs for the cardiac arrhythmia categorization. The MIT-BIH
arrhythmia database was utilized for the assessment of the proposed ensemble CNNs’ per-
formance. The proposed algorithm could classify the data into sixteen classes. In addition
to that, the sensitivity was 99.03%, specificity was 99.94%, positive predictive was 99.03%,
and accuracy was 99.88%. Predictive analytics in healthcare decision-making [3,47,48]
deals with information retrieval to predict an unknown event of interest, typically a future
event. Using technology that learns from data to predict these unknown events could drive
better decisions.
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3. Materials and Methods

The architecture of the proposed intelligent hospital for the connected health modules
is presented in Figure 1. It consists of a wearable sensors module that sends signal streams
for signal processing modules and mobile AI health for stroke prediction. It can be con-
nected to the cloud, as seen in the following figure, in order to accomplish effectively the
aims of the research. The smart hospital stroke system, which integrates recent advances
in artificial intelligence and predictive computing with telemedicine applications, is a
continuously growing field in telemedicine. A stroke can cause sudden death and is a
matter of urgency. It is one of America’s leading causes of death. Heart/brain stroke, for
these reasons, is an emergency and must be treated promptly before any complications
occur. Recent research shows that a smart hospital heart/stroke system is at the forefront
of current research, especially in the field of chronic diseases and emergency conditions
such as heart attacks. Today, however, an intelligent patient control screening device is
lacking. In addition, such a system needs smart algorithms for patient stroke prediction
and emergencies to warn better diagnostic decisions and fast patient care response in the
process. In this paper, a modern intelligent hybrid architecture is proposed. The most
important activities and actions in this innovative architecture for smart hospital-connected
health approach are concentrated around the individual person/patient.

Figure 1. The artificial intelligence architecture for smart hospital connected health.

The proposed Mobile AI Health Agent receives all necessary inputs from medical
sensors, and sensors operating on EMG, as will be explained in this article, but it can be
extended to other biomedical sensors for stroke and heart diseases [24]. On the other hand,
after the sensors’ data and information are processed and results are obtained, they are
delivered to the individual under tracking.

The proposed architecture of Figure 1 is also integrated with set of DSS tools for
explainable artificial intelligence (XAI)-based human-centric (HC) applications, as shown
in Figure 2, where a medical decision support system (MDSS) is proposed. It is directed to
cover concrete individualized needs of the patient under treatment, medication, or social
care, as well as on-hand competence of concrete sub-division in a medical institution taking
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care of this personal case. Here, the block of comparatively static diagnostics contains a
personalized toolset dedicated to primary diagnosis, predictive state classification, assign-
ments, and individual recommendations (A), based on a set of DSS tools built on the basis
of XAI.

 
Figure 2. Concept of the XAI-based HC tools for MDSS. Blocks A, B and C are described in details in
the related paragraphs in this section.

The next block of dynamic diagnostics online is dedicated to individualized observa-
tion of the individual under permanent healthcare service and is responsible for person-
alized surveillance, all prescribed procedures, and active recommendations (B) for both
actors: the patient, and health professionals as well.

The third block is similar to the second, but it is equipped with additional tools for
offline modeling of proposed procedures in case any uncertainty appears. So, the output of
this block (C) contains all recommended procedures of surveillance, results of the in vitro
modeling, and recommendations concerning all possible emergency activities.

Figure 3 illustrates the relation between the XA_ tools concept and it is integrated into
our mobile AI smart hospital platform, where all digital data and evaluations are ready
to be analyzed and pre-processed using deep learning [4,11,13–15] and feature extraction
methods [28] for both Artificial intelligence telemedicine for smart ai hospital heart/stroke
health units and IoT-edge cloud AI biomedical sensors processing [23–25,28]. On the other
hand, after the sensors’ data and information are processed and results are obtained, they
are delivered to the individual under tracking (A), this is where this paper presents most
of the research article. The next block of XAI architecture dynamic diagnostics online is
dedicated to individualized observation of the individual under permanent health care
service and is responsible for personalized surveillance, all prescribed procedures, and
active recommendations (B) for both actors: a patient, and health professionals as well.

The main and most important activities and actions in this human-centric approach
are concentrated around the individual on TIER 1 (on the left side of Figure 3). Here, DSS
receives all necessary inputs from ordinary body sensors, sensors operating on information
based on individual’s location (location-based sensors) and for the first time involved
Soft sensors dealing with information about environment. TIER 2 consists of fuzzy logic
modules, which are not yet implemented in this paper. It will be considered for future work.

29



Sensors 2023, 23, 3500

Figure 3. XAI general architecture consists of TIER1, TIER2, and TIER3. TIER 1 has been implemented
as AI software modules for the proposed mobile AI smart hospital system.

3.1. Mobile AI Smart Hospital Platform: Artificial Intelligence Materials and Methods for Stroke
Prediction at Home Care Emergencies Scenarios

An innovative automated biomedical deep learning cloud platform for stroke patients’
emergencies and remote monitoring is presented in this section. Figure 4 illustrates the
possible implementation of the system for home care stroke emergencies. Personalized
early risk detection and intervention solutions for prevention and treatments based on
early risk detection are paramount for people facing increased health and social risks. As
shown in Figure 3, the proposed solution offers complete intelligent healthcare services
inside homes, for the elderly, families, and emergency care services. The main goal is for
heart/brain stroke prediction, monitoring, and diagnosis. The platform [24] includes deep
learning models and a mHealth module to send alerts. Two important techniques, stacked
convolutional and pooling layers for biomedical sensors signal correlations are presented
in this section.
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Figure 4. Ubiquitous intelligent IOT smart health/brain stroke deep learning platform.

3.2. Stacked Convolutional and Pooling Layers for Biomedical Sensors Signal Correlations

This section exploits the usage of convolutional layers, as shown in Figure 5 and their
ability to extract several activation maps per signal, thus enabling us to deeply extract the
correlated signal features.

 

Figure 5. Proposed deep learning architecture: stacked convolutional and pooling layers for biomedi-
cal sensors signal correlations.
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Thus, the usage of stacked convolutional and pooling layers has been introduced that
act as deep convolutional networks for extracting hidden signal features. A Softmax layer
is then added to evaluate the model’s ability to classify input signals. The extracted features
can later be used as input to another learning model that will act directly on the constructed
feature vectors. Figure 5 illustrates the architecture of the tested CNN deep learning model.

The model has been tested in a scenario with a significant number of patients, sending
biomedical real-time feedback through interconnected IoT devices and biomedical sensors,
such as EMG, ECG, BAN, and IMU signals. The CNN model architecture is given as follows:

Convolutional Layer: It aims to extract deep features of the input signal through
several activation filters. The network extracts deep features by applying 1-D filters through
the input signal and then outputs a different shape of the input signal. Pooling Layer: It
aims to lower the dimensionality of the big data streamed to the convolutional layer and its
output, reduces computation time, and helps the network converge. Max pooling has been
used along with batch normalization. Fully Connected Layer: It flattens the output from
higher dimensions down through a fully connected network of neurons, and then reduces
its dimension. Multiple fully connected layers are used to feed the Softmax experimental
classifier. The proposed stacked CNN network time measurements are shown in Table 1.

Table 1. Network time measurements.

Operation Time Cost (Seconds)

Feedforward during training 0.152 s

Total Training for 500 Epochs 240 s (4 min)

Sample Extraction and Prediction 0.025 s

10 million Samples on 8 Nodes 25 s per Node

Datasets Used

Dataset Name: EMG Lower Limb Dataset
The EMG Lower Limb dataset includes different 24 patients, performing three different

actions, each patient is classified as binary normal, and abnormal.
Dataset Characteristics:

Signal Type Time Series
Number of Instances per Channel ~12,000 Sample
Number of Channels 5 Channels

Dataset Name: mHealth Dataset
The mHealth dataset includes 10 different subjects performing 12 different actions, it

also includes different measurements of subject kinematic information.
Dataset Characteristics:

Signal Type Time Series
Number of Instances per Channel ~160,000 Sample
Number of Channels 24 Channels

EMG Physical Action dataset [48]
EMG dataset contains
4 subjects
2 main binary classes normal and aggressive
10 human activities
Aggressive: elbowing, front kicking, hammering, heading, kneeing, pulling, punching,

pushing, side kicking, slapping
Normal: bowing, clapping, handshaking, hugging, jumping, running, seating, stand-

ing, walking, waving
Almost 10,000 samples for each activity
Number of features: 8 muscles
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R-Bic, R-Tri, L-Bic, L-Tri, R-Thi, R-Ham, L-Thi, L-Ham

3.3. Stroke Prediction Using GMDH-Type Neural Network Enhanced with LSTM Module

This section describes the use of group method data handling (GMDH) to predict
the value of the signal time series. For this, a multi-layered parametric iteration GMDH
algorithm with polynomial reference functions is implemented.

It is a sorting out of gradually complex models generated from Kolmogorov–Gabor
polynomial (Figures 6 and 7).

Figure 6. GMDH training preprocessing.

Figure 7. GMDH data preprocessing.
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We transform the input signal into a supervised problem, therefore making the GMDH
able to predict its behavior. The graph below (Figure 8) shows a sample signal that will be
later transformed into a supervised problem to feed the neural network.

 

Figure 8. Sample of the original EMG signal.

The best model is chosen by the minimum of a specified external criterion characteris-
tic, thus making it equivalent to an artificial neural network with polynomial activation
functions for neurons.

The values of the previously shown signal are then transformed into a supervised
problem as follows:

[xi−1, xi] → [y] | where y = xi+1

We then feed the resulting feature matrices and their corresponding labels to the neural
network to start the training process. The developed GMDH deep learning model [30] is
built based on the reference function, then during the training process based on the selected
external criterion the neurons are eliminated during the training process and the best model
is created.

A selection criterion exists to perform the neurons dropout at each layer thus per-
forming the select-and-drop training process. Selection criteria are: validation score, bias,
validation score, and bias. As seen in the graph, specific neurons are selected based on the
criterion and are dropped out in the next layer training process.

The training process of the neural network is stopped based on two criteria: error is
not decreasing anymore, or the neural network has reached its maximum number of layers.

Least mean squared error (LMSE) is used as a loss function. The maximum number of
layers for the network is defined externally before the training process.

The resulting feature matrices and their corresponding labels are then fed to the
neural network to start the training process. Several transfer functions are available for
the polynomial neural network; the transfer function is used as an activation function
for regression problems using GMDH-type neural network. A GMDH can formulate an
optimization of the structure based on the current transfer function, each transfer function
is also adaptively created by another self-organizing process.

3.4. A Proposed Hybrid LSTM with Dense Layers Deep Learning Model for Stroke Prediction

LSTM is a special kind of RNN [15,22], which shows outstanding performance on a
large variety of problems. It maintains state (memory) across very long sequences, basic
architecture is shown in Figure 9, because LSTM is very sensitive to the data ranges we
applied data normalization and scaling in the input and output. We used standard scaling
for the input. It can be solved using linear activation in the output layer.
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Figure 9. Basic LSTM deep learning gates [15,22].

A novel Stroke prediction algorithm is proposed based on EMG signals prediction.
The proposed solution employs a novel architecture consisting of multiple LSTM recurrent
dense networks as shown in Figure 10. Experimental evaluations show superior EMG
prediction performance compared to previous works. Measurements with different deep
learning methods such as combining CNN with LSTM show that the proposed algorithm
meets performance requirements for continuous and real-time execution on IoMT devices.
In contrast to many GMDH deep learning-based approaches, the proposed algorithm is
lightweight for the proposed mobile AI engine, and therefore, brings continuous diag-
nosis and prediction with accurate GMDH–LSTM-based EMG signal prediction to IoMT
simulated inputs.

The first part chooses whether the information coming from the previous timestamp
is to be remembered or is irrelevant and can be forgotten. In the second part, the cell tries
to learn new information from the input to this cell. At last, in the third part, the cell passes
the updated information from the current timestamp to the next timestamp.

In this article, we have built a hybrid LSTM model concatenated with dense layers.
The LSTM modules are based on the basic parts of LSTM gates, each of which consists of
three parts, the first part is called forget gate, the second part is known as the input gate
and the last one is the output gate [15,22].

The detailed hybrid model LSTM/dense deep learning model is shown in Figure 10.
For more illustrations as shown below. Its input_output takes all the EMG 8 channels
of the EMG physical action dataset [47,48]. Our input features shape is (1, 256) for each
8-muscle signal.

 
In addition, output classes are one-shot encode vectors with shape (None, 20).
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Figure 10. Hybrid LSTM and dense deep learning layers for EMG signals with 8 channels input.

LSTM Training Results:

• Hyperparameters

• Batch size = 256
• Epochs = 100
• Starting learning rate = 0.0001

• After 100 epochs from the 50

• Training loss: 0.1890
• Training accuracy: 0.9365
• Validation loss: 0.2364
• Validation accuracy: 0.9238

• End learning rate: 1.0000 × 10−9

3.5. Data Preprocessing

Two methods have been used to preprocess the data
The first one is called feature scaling, these methods do not aim to extract new infor-

mation from the data, it changes the scale of it only.
The user’s biofeedback signal is extracted on a server that is monitoring human health

conditions based on emerging wireless mobile technologies with wireless body sensors.
Different datasets have been used for the experiments. The first contains EMG signals
with two target classes: normal and aggressive. This task is considered a time series data
classification problem.

Table 2 shows the EMG physical action dataset includes 4 different patients, perform-
ing 10 different actions, each patient is classified as binary normal or abnormal.

Table 2. EMG physical action dataset specifications.

Signal Type Time Series

Number of Instances per Channel ~10,000 Sample

Number of Channels 8 Channels

Number of patients 4 patients
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The second method produces new features from the data such as RMS. We tested the
two methods with different models and this section needs more investigation.

- Feature Scaling:
- Standard Scaling:

Standardize features by removing the mean and scaling to unit variance.
This is a 2D vis. For the effect standard scaling at 8 channels of Subject 1 at normal

state while handshaking.

- Robust Scaling

Scale features using statistics that are robust to outliers.

- Min–Max Scaling

It essentially shrinks the range such that the range is now between 0 and 1 (or −1 to 1
if there are negative values).

- Normalizer

The normalizer scales each value by dividing each value by its magnitude in n-
dimensional space for n number of features (Figure 11). This is a 3D vis. For the effect
normalization at 3 channels of Subject 1 at normal state while handshaking.

  1.0  −1.0 

Figure 11. This is a 3D vis. For the effect normalization at 3 channels of Subject 1 at normal state while
handshaking. The aim of this figure is to picture the way the data are pre-processed by representing
three dimensions out of eight.

Wavelet transforms are some of the more efficient techniques for processing nonsta-
tionary signals such as biomedical signals (e.g., EMG). Wavelet transforms the signal into
its time–frequency domains. There are two types of wavelet analysis, discrete wavelet
transform (DWT) and continuous wavelet transform (CWT). Figure 11. The subfigure on
the left corresponds to feature scaling process while the subfigure on the right corresponds
to standard scaling. Standardize features by removing the mean and scaling to unit variance
in order to process the signals easier.

Both of them consume little time for signal processing. CWT is more consistent, but
DWT has proven efficiency in analyzing nonstationary signals, although it yields a high-
dimensional feature vector. In our research, discrete wavelet transform (DWT) is used
for analyzing the EMG signal and extracting significant features which are very useful in
identification of healthy, myopathic, and neuropathic subjects.

Seven features of the EMG signal are taken into consideration in this research. Root
mean square (RMS), mean absolute value (MAV), zero crossing (ZC), slope sign change
(SSC), and standard deviation (SD). Each one of these features is used as input to the
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classification process which is the next phase after the feature extraction process. The EMG
MAV feature window size and values sample are presented in Figure 12.

Figure 12. EMG MAV feature window size and values sample.

A Daubechies wavelet function [34] of degree four (db4) was applied on each frame
of the EMG signals in training and testing data so that the next step is to extract time and
time–frequency features from the resulting processed signal (Figure 13).

 

Figure 13. Real-time EMG muscle sample raw data in time ms [14–16].

This will be the main expert system engine for suggested initial diagnosis and emer-
gency calls to the nearest hospitals for overall patient management and safety. It will
depend on neural networks and case-based reasoning technologies.

The first step in our system is the sensor collects data. Mobile sensing process is shown
in Figure 14, where mobile device evaluates data. Then, mobile device sends aggregated
data to the telemedicine server. Then, telemedicine server evaluates data and informs
physicians about our upcoming developments in artificial intelligence expert system.
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Figure 14. Mobile sensing, sensor collects data, mobile device, and telemedicine server.

In this research, analyzing data of stroke based on EMG sensors, as shown in Figure 15
of muscle readings to enable extracting best features. Then, significant features for efficient
classification are selected since it determines the success of the pattern classification system.
However, it is quite problematic to extract the best feature parameters from the EMG
signals that can reflect the unique feature of the signal to the motion command perfectly.
Hence, multiple feature sets are used as inputs to the EMG signal classification process.
Some of the features are classified as time domain, frequency domain, time–frequency
domain, and time-scale domain; these feature types are successfully employed for EMG
signal classification. The next step is the signal classification phase.

 
Figure 15. Real-time patient EMG data acquisition process by shimmer sensor [14–16].

The data acquisition process (Figure 15) consists of both real-time methodology as
experiments conducted by German researchers at the Brandenburg University [14–16], and
comparison to the offline dataset of the UCI and the Ain Shams University researchers [3]
for different EMG signals channels samples, different colors, at different scaling.

The EMG signals are known for their uniqueness in every subject. An EMG sample
consists of five channels:

(1) RF: Rectus Femoral
(2) BF: Biceps Femoral
(3) VM: Vastus Medial
(4) ST: Semitendinosus
(5) FX: Knee Flexion
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Several feature combinations have been tested for obtaining the optimal signal results,
which total 128 features. The number of classes of motions is 20, which consists of 10 normal
and 10 aggressive physical actions.

The following are normal: bowing, clapping, handshaking, hugging, jumping, run-
ning, seating, standing, walking, and waving. the following are aggressive: elbowing,
front-kicking, hammering, heading, kneeing, pulling, punching, pushing, side-kicking,
and slapping.

Figure 16 shows a sample of normal and abnormal EMG signals [14–16]. Seven
features have been selected to obtain optimal results in signal classification. A sample of
extracted features with the final selected features is shown in Table 3.

Figure 16. Real-time EMG signals sample histogram of normal and abnormal signals for different
EMG signals channels samples at different scaling.

Table 3. Final selected features.

Abv. Name of Feature Definition

IEMG Integrated EMG IEMG =
N
∑

i=1
|Xi|

MAV1
Modified mean
absolute value type 1

MAV1 = 1
N

N
∑

i=1
wt|Xi|, wt =

{
1 if 0.25N ≤ i ≤ 0.75N

0.5, otherwise

RMS Root Mean Square RMS =

√
1
N

N
∑

i=1
X2

i

AAC Average Amplitude
Change AAC = 1

N

N−1
∑

i=1
|Xi+1 − Xi|

ZC Zero Crossing ZC =
N−1
∑

i=1
[sgn(Xi × Xi+1) ∩ |Xi − Xi+1| ≥ treshold]

WAMP Willison Amplitude WAMP =
N−1
∑

i=1
[ f (|Xn − Xn+1|)]

WL Waveform length WL =
N−1
∑

i=1
|Xi+1 − Xi|
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Integrated EMG IEM
Modified Mean Absolute Value 1 MAV1
Root Mean Square RMS
Average amplitude change AAC
Zero crossing ZC
Willison amplitude WAMP
Waveform length WL

The following datasets were used:
Dataset Name: EMG lower limb dataset
The EMG lower limb dataset includes different 24 patients, performing three different

actions, each patient is classified as binary normal, and abnormal.
Dataset Name: mHealth dataset
The mHealth dataset includes different 10 subjects performing different 12 actions, it

also includes different measurements of subject kinematic information.
Both of the datasets are being used in the experiment for evaluating the model speed

and accuracy in handling case-by-case. One patient sends two signal channels per time:
the EMG signals reading and the ECG signals reading.

So, each patient has a multi-dimensional vector describing his input X = [EMG Signal
Samples, ECG Signal Samples].

4. Results

Accuracy reached 85% with the following characteristics: A learning rate of L = 0.0001
Binary Cross Entropy Loss (BCE) function for loss measurement. The accuracy in-

creased to 92% by using each supplied signal feature as a CNN input. The total test time
was 5 s for 4 test subjects and there were a total of 24.576 test signal samples.

There are two approaches for distributing deep learning models on the cloud, as
shown below.

1. Model Parallelism:

In this paradigm, there is only one model distributed on different machines or different
GPUs. For example, different layers may be assigned to different machines. This paradigm
is useful for big models.

2. Data Parallelism:

In this paradigm, the model is copied between more than one machine. Each model
runs on a different subset of the data.

Figure 17 shows a graphical explanation of the two paradigms. All computations are
completed based on model parallelism.

 

Figure 17. Model and data parallelism.

The following properties of the GMDH-type polynomial network have been used
during the test:
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Activation Function Linear
Selection Criterion Validate and Bias
Epsilon Training Error 0.001

The proposed mobile AI smart hospital platform consists of two main parts, the first
one uses the stack CNN as AI cloud-based and the other GMDH and LSTM modules are
used for the mobile AI app. For the first one, its main objective is presented as a new
real-time CNN-stroke and Stroke and BAN-IOT: a deep learning model for signal deep
feature extraction and classification within a cloud streaming environment. First, the use of
stacked CNN is for handling the big data streaming of several signals sent from wearable
sensors and body area networks (BAN) that include a variety of signals that do not correlate
with each other on a shallow feature level. Scenario: Table 4 shows a sample of the EMG
8 channels.

Table 4. Shows a sample of the EMG 8 channels data included in the dataset [48].

Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6 Channel 7 Channel 8

−8.3532 2.5062 −2.406 −1.821 −1.1889 0.39931 −9.4774 −2.199

−7.073 2.1373 −2.6182 −2.0345 −1.3689 1.0842 −8.8761 −1.4746

−7.6434 2.3723 −2.4497 −2.2773 −1.4443 2.2408 −9.8723 −1.0962

−8.0995 2.4517 −2.7688 −2.4155 −1.4903 1.8016 −9.8628 −1.1314

−8.3307 2.3913 −3.0164 −2.1852 −1.394 0.44444 −9.9628 −1.2333

−8.7935 2.8082 −2.7473 −1.9383 −1.3229 1.0435 −9.7058 −1.2769

−8.9454 2.8268 −2.7351 −1.6787 −1.1889 1.8488 −9.6066 −1.2535

−9.4027 2.9628 −2.6491 −1.4568 −1.0424 1.6883 −9.5739 −0.95139

−8.9815 3.116 −2.4038 −1.4401 −1.0382 1.2073 −10.205 −0.69609

−9.1775 2.8138 −2.6836 −1.4903 −1.0173 1.1904 −10.231 −0.37467

−8.64 2.7076 −2.63 −1.4819 −0.90424 1.2918 −9.992 −0.19502

−8.7625 3.7808 −3.0071 −1.0717 −0.55259 1.8689 −9.5166 −0.17589

−8.5805 3.7717 −2.9237 −0.7619 −0.40607 1.9708 −9.4467 −0.1193

−8.6582 3.6193 −2.9164 −0.51073 −0.20513 1.7172 −9.9153 −0.43692

−8.6379 3.6099 −2.9593 −0.29304 −0.029304 1.2985 −9.9256 −0.4833

−8.4253 3.5899 −2.7716 −0.15489 0.066981 1.0929 −9.9872 −0.69676

- EMG Signal
- ECG Signal
- BAN Signal
- IMU Signal

Case Characteristics:
One patient sends two signal channels per time: 1—EMG signals reading
2—ECG signals reading
So, each patient has multi-dimensional vector describing his input

X = [EMG Signal Samples, ECG Signal Samples]

This model has been tested on mHealth [ref.] dataset, and on the EMG lower
limb dataset.

Accuracy increased to reach 92% by using each supplied signal feature as a CNN input.

Total test time = 5 s for 4 test subjects
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Total test signal samples = 24.576 signal samples

Concerning the processing time of GMDH it has taken nearly 30 min for the training.
(2) The evaluation method has tested different modules for the overall new smart

hospital platform, as AI-based software implementation only.
Performance and results on cloud platform (GCP): Table 5 shows the performance and

validation accuracy that has been achieved in our experiments, when implementing the
stacked CNN, using two Nvidia GPUs. The use of AI-based cloud simulating the smart
hospital platform.

Table 5. The performance and validation accuracy for the stacked CNN-cloud-based experiments.

Framework Time to Train
Inference

Time
Achieved Validation

Accuracy
Number of GPUs Scaling Efficiency

Keras 2 min 40 μs 98% 1 -

Keras + Tensoflow 2.3 min 45 μs 97.96% 2 88.88%

Tests have been conducted on 10 different physical action signals, the test samples
have been divided almost evenly, 5k samples for training and ~5k samples for testing
the prediction.

Table 6, below, shows the characteristics and scores for a selected subject, where
10 aggressive different actions are predicted using the GMDH-type neural network.

On average, among the selected subjects the model is able to predict accurately 96.02%
of the signal in low time.

The table below shows the characteristics and scores for the previously selected subject,
10 normal different actions are predicted using the GMDH-type neural network.

As shown in Table 6, different experiments have been conducted by training the
GMDH deep learning model on different input sizes of EMG channels. As illustrated
different layers have different accuracies, according to input sizes of EMG 4 channels, EMG
8 channels, and EMG of mHealth dataset. On average, the selected subject’s model is able
to predict accurately 96.85% of the signal in low time.

Table 6. Model average prediction accuracy on the selected subjects was 96.85%.

Channels Layers RMSE NRMSE R-Squared Train Time (s) Test Time (s)

EMG 4 channels 7 355.257 0.039 98.60% 0.08924 0.000844717

EMG 8 channels 7 96.517 0.013 97.61% 0.08548 0.000657558

EMG m health channels 7 134.699 0.015 97.47% 0.07976 0.000873566

EMG 4 channels 3 29.893 0.007 97.23% 0.04030 0.000925303

2 14.610 0.009 96.78% 0.01175 0.000540018

EMG 8 channels 3 61.059 0.011 96.41% 0.02851 0.000662088

2 2.203 0.032 96.15% 0.01576 0.000739336

EMG m health channels 3 233.189 0.025 96.13% 0.03011 0.000577211

2 27.089 0.026 96.08% 0.01697 0.000613451

50 148.183 0.014 95.99% 0.59829 0.000548363

Averages 110.27012 0.0191853 96.85% 0.09962 0.000698161

The following plots demonstrate two selected actions from the previously conducted
test experiments, 1 normal action, and 1 aggressive action.

As shown in Table 7, different experiments have been conducted by training the
GMDH deep learning model on different input sizes of EMG channels. As illustrated
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different layers have different accuracies, according to input sizes of EMG 4 channels, EMG
8 channels, and EMG of mHealth dataset.

Table 7. On average, among the selected subjects the model is able to predict accurately 96.02% of the
signal in low time.

Channels Layers RMSE NRMSE R-Squared Train Time (s) Test Time (s)

EMG 4 channels 7 232.583 0.028 97.12% 0.07720 0.00047

2 171.787 0.018 96.98% 0.01279 0.00055

EMG 8 channels 7 220.009 0.024 96.96% 0.08461 0.00090

EMG m health channels 7 204.746 0.025 96.85% 0.10477 0.00059

3 191.501 0.020 96.68% 0.02523 0.00074

2 213.642 0.021 96.06% 0.01341 0.00082

EMG 4 channels 3 265.888 0.027 95.94% 0.02851 0.00083

7 304.756 0.031 95.43% 0.09501 0.00066

EMG 8 channels 3 262.885 0.027 95.34% 0.03835 0.00100

EMG m health channels 3 347.536 0.032 92.82% 0.03151 0.00095

Averages 241.53331 0.0252804 96.02% 0.05113833 0.000750542

The graphs from Figure 16 show the following: original signal in red, read from the
EMG sensor; predicted signal in orange, using the GMDH-type neural network; overlapped
signals, to show prediction visual accuracy, in both blue and green, and finally, the cross-
correlation between the two signals. It can be clearly seen how visually both signals
(predicted and original) are almost equal.

The graphs from Figure 18 show the following: original signal in red, read from the
EMG sensor; predicted signal in orange, using the GMDH-type neural network; overlapped
signals, to show prediction visual accuracy, in both blue and green, and finally, the cross-
correlation between the two signals. It can be clearly seen how visually both signals
(predicted and original) are almost equal.

Figure 18. Plot of aggressive action for selected subject.

We show the same graph but for a normal action below (Figure 19).

44



Sensors 2023, 23, 3500

Figure 19. Plot of normal action for selected subject.

In addition, based on the previous plot it can be clearly seen how visually both signals
(predicted and original) are almost equal.

The previous graph shows a prediction sample of an aggressive action (Figure 20),
and the following graph shows a closer look at the signal prediction details (Figure 21).

Figure 20. Signal prediction closer results: sample aggressive action prediction.

It can be clearly seen how the signal-predicted values are close to the original val-
ues, most of the values differ by a small value that will not change the behavior of the
signal when analyzed, thus preserving the information needed for further analysis and
classifications.

Next, we will show each subject test scores and then show a generalized average score
for the model with training statistics.

The aggressive action/normal action test scores for Subject 1/Subject 2 are shown in
Tables 8–11.
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Figure 21. A closer look at the signal prediction details.

Table 8. Aggressive action test scores for Subject 1, the overall average reaches 90.01%, after training
of adjusting different layers with different EMG signals channels as used before in Table 4 and Table 5,
respectively.

Subject 1

Layers RMSE NRMSE R-Squared Train Time (s) Test Time (s)

3 522.285 0.043 86.46% 0.03084 0.00056
2 148.729 0.024 90.79% 0.01768 0.00083
2 552.910 0.036 90.79% 0.01298 0.00066
2 48.896 0.027 91.09% 0.01208 0.00059
7 234.463 0.027 90.15% 0.08429 0.00067
2 621.693 0.040 92.03% 0.01433 0.00072
7 491.597 0.038 89.49% 0.09936 0.00037
3 424.720 0.036 89.46% 0.04247 0.00083
3 209.147 0.023 87.80% 0.02835 0.00093
2 370.014 0.030 92.07% 0.02202 0.00114

Averages 362.4453 0.0324189 90.01% 0.03644128 0.000729

Table 9. Normal action test scores for Subject 1, the overall average reaches 81.43%, after training of
adjusting different layers with different EMG signals channels as used before in Table 4 and Table 5,
respectively.

Subject 1

Layers RMSE NRMSE R-Squared Train Time (s) Test Time (s)

3 7.683 0.019 95.33% 0.03059 0.00088
7 110.723 0.024 90.46% 0.09436 0.00065
3 205.429 0.022 89.36% 0.02513 0.00083
2 84.455 0.029 89.12% 0.01444 0.00089
7 85.226 0.020 87.21% 0.10529 0.00076
3 193.760 0.036 86.41% 0.03894 0.00092
2 99.943 0.051 74.39% 0.01358 0.00158
2 22.388 0.112 68.79% 0.01468 0.00144
3 7.941 0.196 66.66% 0.02479 0.00083
2 7.983 0.171 66.57% 0.02555 0.00075

Averages 82.55306 0.067997 81.43% 0.03873329 0.0009532
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Table 10. Aggressive action test scores for Subject 2, the overall average reaches 96.2%, after training
of adjusting different layers with different EMG signals channels as used before in Table 4 and Table 5,
respectively.

Subject 2

Layers RMSE NRMSE R-Squared Train Time (s) Test Time (s)

3 262.885 0.027 95.34% 0.03835 0.00100
7 232.583 0.028 97.12% 0.07720 0.00047
7 304.756 0.031 95.43% 0.09501 0.00066
2 171.787 0.018 96.98% 0.01279 0.00055
7 220.009 0.024 96.96% 0.08461 0.00090
3 191.501 0.020 96.68% 0.02523 0.00074
3 347.536 0.032 92.82% 0.03151 0.00095
7 204.746 0.025 96.85% 0.10477 0.00059
3 265.888 0.027 95.94% 0.02851 0.00083
2 213.642 0.021 96.06% 0.01341 0.00082

Averages 241.53 0.0252804 96.02% 0.05113833 0.00075054

Table 11. Normal action test scores for Subject 2, the overall average reaches 96.68%, after training of
adjusting different layers with different EMG signals channels as used before in Table 4 and Table 5,
respectively.

Subject 2

Layers RMSE NRMSE R-Squared Train Time (s) Test Time (s)

7 355.257 0.039 98.60% 0.08924 0.00084
7 96.517 0.013 97.61% 0.08548 0.00066
7 134.699 0.015 97.47% 0.07976 0.00087
3 29.893 0.007 97.23% 0.04030 0.00093
3 61.059 0.011 96.41% 0.02851 0.00066
2 2.203 0.032 96.15% 0.01576 0.00074
3 233.189 0.025 96.13% 0.03011 0.00058
2 27.089 0.026 96.08% 0.01697 0.00061

50 148.183 0.014 95.99% 0.59829 0.00055
7 252.557 0.028 95.10% 0.08081 0.00075

Averages 134.06 0.0210994 96.68% 0.10652237 0.00071871

The confusion matrix of the GMDH model is shown in Figure 22 is generated. Different
metrics generated by the neural network of results are shown in Figure 23. This is to show
for classification of whether the action is aggressive or normal a combination of results
between normal action test scores and aggressive action test scores in order to more clearly
see the results from these two cases. Additionally, the classification report represented
below helps us to better understand the metrics taken into consideration for this example
(Table 12).
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Figure 22. The confusion matrix generated.

 
(a) (b) 

Figure 23. The accuracy evaluation (a) and f1 score over epochs (b).
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Table 12. The classification report.

Action Precision Recall F1-Score Support

Aggressive_Elbowing 0.99 1.00 0.99 1881

Aggressive_Frontkicking 0.97 1.00 0.99 1861

Aggressive_Hamering 1.00 1.00 1.00 1949

Aggressive_Headering 1.00 1.00 1.00 1949

Aggressive_Kneeing 1.00 0.99 1.00 1964

Aggressive_Pulling 1.00 0.98 0.99 1921

Aggressive_Punching 0.99 1.00 1.00 1876

Aggressive_Pushing 1.00 1.00 1.00 1867

Aggressive_Sidekicking 1.00 0.98 0.99 1953

Aggressive_Slapping 1.00 0.99 1.00 1926

Normal_Bowing 1.00 1.00 1.00 1915

Normal_Clapping 1.00 1.00 1.00 1949

Normal_Handshaking 1.00 0.96 0.98 1943

Normal_Hugging 1.00 1.00 1.00 1900

Normal_Jumping 0.99 1.00 1.00 1930

Normal_Running 1.00 1.00 1.00 1939

Normal_Seating 1.00 1.00 1.00 1949

Normal_Standing 1.00 1.00 1.00 1894

Normal_Walking 1.00 1.00 1.00 1949

Normal_Waving 0.96 1.00 0.98 1877

accuracy 1.00 38,392

macro avg 1.00 1.00 1.00 38,392

weighted 1.00 1.00 1.00 38,392

In Figure 23, section (a) presents the accuracy evaluation and (b) presents f1 score

F = 2· precision·recall
precision + recall

Accuracy =
tp + tn

tp + tn + f p + f n

In Figure 24, section (a) the loss function is represented while in section (b) the learning
rate is represented. We can see that the learning rate is constant and equal to 10−3.
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(a) (b) 

Figure 24. The loss function (a) and the learning rate (b).

In Figure 25, the precision is represented regarding epochs (a) and in section (b) the
recall is presented also regarding epochs.

 
(a) (b) 

Figure 25. The precision (a) and the recall (b) represented by epochs.

Precision =
tp

tp + f p

Recall = tp
tp+ f n , where tp = true positive, tn = true negative, fp = false positive,

fn = false negative
In contrast to many GMDH deep learning-based approaches, the proposed algorithm

is lightweight for the proposed Mobile AI Engine, and therefore, brings continuous diag-
nosis and prediction with accurate GMDH-LSTM-based EMG signal prediction to IoMT
simulated inputs. The highest precision of parallel LSTM achieves 99.9% and the average
reaches 93.65%. Figure 26a shows LSTM Model training visualization, while Figure 26b
shows LSTM accuracy curves and Figure 26c shows the overall hybrid LSMT model results.
The main advantage of the parallel LSTM model is that it is more stable than the GMDH
deep learning model, as it has been trained on the 8 EMG channels directly. In addition,
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the parallel LSTM model is more suitable for the implementation of the mobile health app.
However, the GMDH deep learning is good as a standalone predictive model for mathe-
matical modeling EMG signal predictions. In contrast to many GMDH deep learning-based
approaches, the proposed algorithm is lightweight for the proposed mobile AI engine, and
therefore, brings continuous diagnosis and prediction with accurate GMDH–LSTM-based
EMG signal prediction to IoMT simulated inputs. The highest precision of parallel LSTM
achieves 99.9% and the average reaches 93.65%. The main advantage of the parallel LSTM
model is that it is more stable than the GMDH deep learning model, as it has been trained
on the 8 EMG channels directly. Additionally, the parallel LSTM model is more suitable for
the implementation of the mobile health app. However, the GMDH deep learning is good
as a standalone predictive model for mathematical modeling EMG signal predictions. The
GMDH could predict most of the signals tested accurately with a high R2 score, below is a
table of the general prediction scores tested on both normal and aggressive action signals.

Figure 26. The parallel LSTM method (a) visualization of LSTM model training, (b) LSTM accuracy
curves, (c) Overall results of LSMT hybrid model.

It can be seen that the ability of the GMDH to predict more event-based signals with
more peaks and more aggressive spectrum, is higher than normal signals with lower peaks
and less aggressive spectrum.

The main disadvantages of the GMDH model are that: the peaks of the signal for the
GMDH predictive model vary from channel to channel of the EMG signal. In addition, the
GMDH training algorithm takes a lot of memory for training and may crash, it crashes at
using memory above 13 GB and it is not suitable for real industry applications of the mobile
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AI health app. GMDH is a self-organizing approach by which gradually complicated
models are generated based on the evaluation of their performances on a set of multi-input–
single-output data. However, it is good for modeling the predictive analytics modeling
of the stroke prediction system. It can be tested in the future for cloud computing or AI
high-performance computing side. However, the hybrid parallel LSTM model is suitable
for the mobile AI app implementation in python.

5. Discussion

The GMDH could predict most of the signals tested accurately with a high R2 score,
and below is a table of the general prediction scores tested on both normal and aggressive
action signals (Table 13).

Table 13. Prediction scores.

Score/Action Set Normal Actions Aggressive Actions

RMSE 141.3881606 391.8395819

NRMSE 0.039652622 0.033451407

R-Squared 88.02% 90.54%

It can be seen that the ability of the GMDH to predict more event-based signals with
more peaks and more aggressive spectrum is higher than normal signals with lower peaks
and less-aggressive spectrum. Below are two different plots for a normal signal and an
aggressive signal (Figures 27 and 28).

Figure 27. Normal action signal sample.

Figure 28. Aggressive action signal sample.

Concerning the mobile GMDH algorithms analysis and time series data forecasting:
As we know time series data are a sequence of data taken in multiple time stamps.

There are two main goals of processing time series data. The first task is to try to classify
the data into predefined subcategories. The second task is to predict the future of the input
data using the current data. There are multiple algorithms to process and forecast time
series data (parametric and nonparametric algorithms). These include:

• Univariate time series forecasting
• Multivariate time series forecasting multi-step time series forecasting
• Deep networks based on the group method of data handling

GMDH networks are the first feedforward deep learning neural network (since 1969).
It consists of a family of inductive algorithms that use automatically generated architecture
and parametric optimization methods.
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Given a training set, layers are incrementally growing by regression analysis, then
pruned with help of a validation set. The number of layers and units can be learned in a
problem-dependent fashion. When the architecture consists of a multilayer procedure, it
becomes equivalent to the artificial neural network with a polynomial activation function
of neurons.

GMDH only: We tried to follow the same conditions described in the previous report
for training and testing but we faced some problems due to missing information in the
report so we tried our best to reproduce the previous results which takes a lot of time and
effort. We depended on the python implementation “GmdhPy”.

There are multiple ways we can define our inputs and our outputs given that we have
four people. Every person has 20 actions given by 8 channels. At the same time, we have
extracted 39 features from this data as described in previous reports. This gives us a huge
space for experiments. We did not test all the possibilities, we only focused on the most
obvious ones. We framed the problem as univariate time series forecasting. So the input is
one channel for one subject. For example, we took the fourth subject with his first channel
(RBic) and tried to predict the future of this channel as shown in Figure 29.

 

Figure 29. GMDH mobile AI signal sample prediction.

There are multiple hyper-parameters that should be studied in the future such as how
many readings from the past should we depend on and the hyperparameters of the GMDH.

We took 10 readings from the past and tries to predict the next one in the future.
As our scope was to develop a fast and stable model for the deployment we considered

these settings:

ref_functions = (‘linear_cov’),
criterion_type = ‘validate’,
criterion_minimum_width = 5,
stop_train_epsilon_condition = 0.001,
layer_err_criterion = ‘top’,
l2 = 0.5,
manual_best_neurons_selection = True,
min_best_neurons_count = 30,

Calculating the root mean square error in time series data forecasting is very critical.
So, we considered the time shift that happened in the data generation. So, GMDH achieved
a train score of 1103.42 RMSE and a test score of 968.80 RMS

We see that the predicted signal has higher peaks than the original signal as shown in
Figure 30. The problem with the GMDH-only setup is that the network did not keep the
previous information from the previous time steps or residual connections. As described in
this paper, when GMDH is combined with some information from the previous time steps
it can give better performance with residual connections results as shown in Figure 31.
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Figure 30. GMDH with predicted signal of higher peaks than the original signal when no residual
connections or previous time steps are included.

Training and testing:

 

Figure 31. GMDH with predicted signal of better results of predicted signal with residual connections
or previous time steps are included.

The number of subjects samples is four subjects, three male and one female. Three of
them are because Subject 2 has noisy data.

We found that there is a pattern between the action and the aggressiveness, for example,
when you are running this state is classified as normal. The upper body returns normal signals
but the lower body returns high peak signals. Although in the aggressive class, for example,
the lower and upper body return relatively high peak signals, as illustrated in Figure 32.

  

Figure 32. EMG signals aggressive class gives high peaks during analysis.
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In Figure 33, the subject is in an aggressive move, he is doing an elbowing move. We
found that all eight channels have the same pattern of highly distributed points in all the
graphs with some concentration in the middle.

 

Figure 33. EMG signals of all 8 channels have the same pattern of highly distributed points during
elbowing motion examples.

Long Short-Term Memory Network (LSTM):
Maintain state (memory) across very long sequences. Temporal information was used

because LSTM is very sensitive to the data ranges we applied. Data normalization and
scaling were used in the input and output. We used standard scaling for the input. It can
be solved using linear activation in the output layer.

A novel stroke prediction algorithm is proposed based on EMG signals prediction.
The proposed solution employs 612 a novel architecture consisting of a group method
of data handling and multiple LSTM recurrent neural networks. Results: Experimental
evaluations show superior EMG prediction performance compared to previous works.
Measurements with different deep learning methods as combining CNN with LSTM show
that the proposed algorithm meets performance requirements for continuous and real-
time execution on IoMT devices. Conclusion: In 616 contrast to many compute-intensive
deep learning-based approaches, the proposed algorithm is lightweight for the proposed
mobile AI engine, and therefore, brings continuous diagnosis and prediction with accurate
GMDH–LSTM-based EMG signal prediction to IoMT simulated inputs.

Mobile open architecture. We adopted an open architecture to make it easy for any
researcher. They will be able to add their own model to the mobile in an easy way. Most
mobile apps are currently closed systems, meaning that the researcher cannot add his/her
model without many changes. Any model can be added instead of our trained models.

Findings: The first idea about the data, it has a huge variance and the data are not
zero, meaning there are two levels of classification. The first level is normal or aggressive.
This level depends on the activities which the subjects are doing to differentiate between
the two classes. In the second level, for every state from level 1 (normal or aggressive), the
subject was doing 10 activities for normal and 10 activities for aggressive.

To conclude, the signal for both classes normal and aggressive was processed and
there were observed differences that helped us extract characteristics such as integrated
EMG, modified mean absolute value 1, root mean square, average amplitude change, zero
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crossing, Willison amplitude, and waveform length. Great results were obtained by using a
deep learning model, the new GMDP deep learning model.

Bearing all these things in mind, a model that can detect these two sides of behavior
may help people that suffered a stroke to communicate easier and interact more with the
environment. Even though this study was intended to help patients of a hospital, there
may be applications in the security domain field in order to predict aggressive behavior.

In addition, a new hybrid LSTM/dense deep learning architecture has been added
with detailed experimental results for EMG stroke prediction and as compared to GMDH,
it is better as a parallel model that takes as input all the EMG 8 channels with high
results; however, the GMDH algorithm can be easily deployed as mobile AI app with high
accuracies. More results need to be tested in future work for parallel inputs to the GMDH
algorithm. However, both models achieve high stroke prediction accuracies. Additionally,
a single LSTM module has been integrated into the GMDH algorithm for enhancing the
mobile AI implementation for stroke prediction.

6. Conclusions and Future Work

Artificial intelligence (AI) technologies in smart health patients’ safety and care for
connected health and intelligent diagnostics and predictive health ai edge computing
integrated within smart hospital environments, have opened up new opportunities in
healthcare systems and complex disease predictions and early detection for issues such
as heart and stroke diseases. Smart hospital technologies [21–27] are a steadily growing
field in artificial intelligence (AI), biomedical big data analytics [44–47] Internet of Medical
Things (IoMT). Heart diagnosis and stroke prediction have urgent patient cases that may
cause problems such as cardiovascular diseases [28–31], heart attacks, and brain strokes.
It may also cause sudden death. These are the leading cause of death in the Middle East,
Europe, and the United States. For these reasons, heart and stroke diseases are considered
emergency cases. In the recent research of artificial intelligence technologies in the health-
care domain, what we witness is high competition and new revolution [1–3]. However,
today’s AI research and development of technologies in the fields of heart diseases diag-
nosis [16–20] and stroke prediction research are still missing a real-time AI-based heart
diagnosis and stroke prediction system to be developed as AI-based platform R&D to be
used in the industry and the new era of smart hospital developments [21–27]. This research
paper innovation introduces a new AI system design that consists of an integrated real-time
IOT-AI smart heart/stroke platform to be in the future inside hospitals as a new IoMT-
AI-based heart/stroke platform and as an independent mobile AI telemedicine system
for stroke prediction. Artificial intelligent IOT hospital edge-connected health diagnostic
and predictive systems integrated with telemedicine services for both elder patients with
chronic and brain stroke cases aim to help heart/brain stroke patients to discover their
disease once it occurs based on EEG/ECG/EMG signals. However, classifying real-time
ECG/EMG signals [14,15] is a complex task, especially for patient muscle signal feedback
problems. This proposal introduces an integrated artificial intelligence telemedicine plat-
form including AI software for heart disease diagnosis, and AI software for brain stroke
diagnosis and prediction. The highest precision of parallel LSTM achieves 99.9% and
the average reaches 93.65%. AI/DL telemedicine services could be useful for the nearest
hospital and patients’ telemonitoring at-home care services. In this research paper, we
have only presented some innovative research results for the full mobile AI system cycle,
and some real implementations in simulated tests. Our solution is more innovative than
previous research on stroke prediction using only single deep learning or some sample
stroke cases such as during sleeping, as discussed previously in the paper in Section 2.

This research article also presents an overall state-of-the-art artificial intelligence mo-
bile health system architecture for stroke that can be implemented by AI and IoT companies
such as Dell technologies for real-life scientific implementations. The main focus is on
predictive analytics and edge computing solutions in healthcare and emergency situations.
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Predictive analytics deals with information retrieval to predict an unknown event
of interest, typically a future event. Using technology that learns from data to predict
these unknown events could drive better decisions. This research paper utilizes the con-
cepts of deep learning (GMDH) for signal predictions for mobile edge computing future
implementations of complete solutions in a smart health home living scenario.

This research paper has successfully presented several steps in the predictive analytics
process: identification of the problem and a determination of the outcomes and objectives
is a crucial first step. The first data of the model used EMG from both real-time and
offline datasets.

Future work may include different ways to process the signal, and data processing
time concerning the processing time of GMDH it has taken nearly 30 min for the training,
but the networking connections are out of the scope of this article and we are honored to
present them in the future work of next phase of app implementation. Additionally, other
deep learning model architectures will be presented in order to achieve better precision in
classification. In addition, for the XAI decision-based tools, extended parts of TIER 2 and
TIER 3 of fuzzy logic and surveillance-based systems will be considered for future works.
Additionally, future work may include different ways to process the signal, and other deep
learning model architectures in order to achieve better precision in classification.
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Abstract: Today, there is a conspicuous upward trend for the development of unmanned aerial
vehicles (UAVs), especially in the field of multirotor drones. Their advantages over fixed-wing
aircrafts are that they can hover, which allows their usage in a wide range of remote surveillance
applications: industrial, strategic, governmental, public and homeland security. Moreover, because
the component market for this type of vehicles is in continuous growth, new concepts have emerged
to improve the stability and reliability of the multicopters, but efficient solutions with reduced costs
are still expected. This work is focused on hexacopter UAV tests carried out on an original platform
both within laboratory and on unrestricted open areas during the start–stop manoeuvres of the
motors to verify the operational parameters, hover flight, the drone stability and reliability, as well as
the aerodynamics and robustness at different wind speeds. The flight parameters extracted from the
sensor systems’ comprising accelerometers, gyroscopes, magnetometers, barometers, GPS antenna
and EO/IR cameras were analysed, and adjustments were performed accordingly, when needed.
An FEM simulation approach allowed an additional decision support platform that expanded the
experiments in the virtual environment. Finally, practical conclusions were drawn to enhance the
hexacopter UAV stability, reliability and manoeuvrability.

Keywords: sensor systems; remote control and communication; UAV; simulation

1. Introduction

DRONE is a generic name for a whole family of aerial, land, water, and underwa-
ter platforms. The term DRONE is an English acronym, one of the definitions being
Dynamic Remotely Operated Navigation Equipment. The following main categories of
vehicles belong to the DRONE family are as follows: UAV—unmanned aerial vehicle,
UGV—unmanned ground vehicle and UUV—unmanned underwater vehicle.

Aerial drones are also found under other names: UAV—unmanned aerial vehicle,
UAS—unmanned aerial system, RPAS—remotely piloted aircraft system and ROAV—remotely
operated air vehicle.

UAVs fall into two main categories: fixed wing (airplane) and rotorcraft (single
rotor—helicopter, or at least two rotors—multicopters). Recently (2020–2022), a third
category of UAVs has seen rapid development: fixed-wing UAVs with vertical takeoff and
landing (VTOL) capabilities [1–3], which combine the capabilities of an aircraft with those
of a multirotor UAV, with either electric or combined propulsion [4–6] (electric with internal
combustion engine) to extend flight range and develop superior flight performance, with
the aim of being able to carry large payloads over long distances.

The main purpose for which UAVs were originally developed was their use in military
applications and special operations. Subsequently, they have been widely developed and
employed in an increasing number of civilian applications: law enforcement surveillance
missions, firefighting assistance, securing borders, strategic and governmental targets,
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detecting illegal hunting, measuring landslides, monitoring incidents involving crowds of
people, inspecting large industrial facilities, large buildings and constructions, oil and gas
pipelines, inspection of continuous-flow machinery in quarries (to monitor temperatures in
the area of high-friction pits using thermal imaging cameras), inspection of petrochemical
installations (to detect cracks, fissures and leaks in pressure vessels using thermal imaging
cameras) and, more recently, (2020–2022) home parcel delivery [7,8], warehouse stock
management [9,10] using specialized software, passenger transport, air travel, etc.

Multirotor drones have seen continuous development over the past ten years as the
need for this type of platform has grown continuously, and they are employed in a wide
range of activities and fields such as inspection of large industrial installations [11,12],
large buildings and constructions, oil and gas pipelines [13,14], inspection of continuous-
flow machinery in quarries (to monitor temperatures in the area of high-friction pits
using thermal imaging cameras), inspection of petrochemical installations (to detect cracks,
fissures and leaks that may occur in pressure vessels using thermal imaging cameras [15,16]),
etc. They can be equipped with a wide range of electromagnetic spectrum sensors [17,18],
gamma ray sensors [19], biological sensors [20–22] and chemical sensors [23,24], which
provide remote sensing functions.

Electromagnetic sensors include visual spectrum, infrared or near-infrared cameras
and radar systems. Some other electromagnetic wave detectors such as microwave and
ultraviolet spectrum sensors are less used. Biological sensors can detect the presence of
various microorganisms and other biological factors in the air. Chemical sensors employ
laser spectroscopy to analyse the concentration of each element in the air.

A UAV possesses almost all the characteristic strengths of a manned aircraft, in addi-
tion to surmounting the physical limitations of the pilots and thus preventing the human
error. The absence of the pilot from the cockpit allows drones to be operated at their perfor-
mance limit, thus increasing endurance, payload, altitude ceiling and manoeuvrability.

Likewise, current advances in microelectronics and proximity/optical sensors [25,26],
coupled with the availability of detailed geographic information systems mapping [27–29],
contributed to the development of micro-UAVs [30] that can be operated autonomously at
very low altitudes within dense urban locations and provide accurate intelligence data.

This paper aims to treat the category of multicopters UAVs, specifically the category
of hexacopter drones. Given the upward trend in the aviation industry in the field of
unmanned aerial vehicles (UAVs), especially in the field of multirotor drones [31–34],
whose advantage over fixed-wing aircraft (airplanes) is that they can hover at a fixed
point, which obviously allows their use in remote surveillance applications of different
types of targets, the use of UAVs in the field of surveillance is also a key issue, and, at
the same time, taking into account that the market for components for this type of vehicle
is constantly growing and developing, with increasingly lower costs. Due to their cost
efficiency and numerous possibilities for use in a wide range of civil, commercial and
industrial applications (inspection of power lines, inspection of road infrastructure, bridges,
inspection of oil pipelines, inspection of industrial facilities of strategic interest, e.g., oil
refineries, nuclear power plants, inspection of disaster areas), multirotor UAVs have already
been the subject of study for more than a decade. Since then, numerous research studies
have been carried out on the modelling [33–35] and design of actuation, command and
control systems [36] and the development of various design solutions [37,38]. Despite the
abundance of the scientific literature, the topicality of the subject remains high, due to the
subtle balance between the sensor features and involved outlays.

This paper is structured as follows: Section 2 encompasses a synthetic and critical
overview of the latest developments in hexacopter drones design, sensors equipment and
experimental procedures but also regarding numerical evaluation of the drone stability
and reliability. Section 3 depicts a novel hexacopter platform architecture in two variants,
equipped with avionic components and sensors. In Section 4, the results of the carried-out
tests, both in the laboratory and in situ, during the start–stop manoeuvres of the hexacopter
engines are described and discussed, and it also discusses the necessary corrective measures
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that were taken accordingly to check and assure the reliability of the hexacopter. Section 5
encompasses an extended FEM decision support study to investigate if resonances of the
structural components interfere with the operational frequencies in order to avoid flight
instabilities. The structural integrity of the hexacopter in case of a drop event was assessed,
and the influence of the air pressure at different wind speeds was also investigated in respect
to the hexacopter flight path accuracy. The accomplishments are summarized in Section 6,
where conclusions are drawn and perspectives for the future work are highlighted.

The novelty of the work consists of a new perspective of comparative analyses of
the performance of the hexacopter drone in different equipment variants in terms of
battery, propellers, avionics components and engines employed by carrying out sim-
ulations using devoted simulation platforms. These studies also allowed us to estab-
lish the appropriate criteria for choosing the best combination of the propulsion sys-
tem, consisting of a battery, such as an electronic speed controller (ESC), or a brush-
less DC motor (BLDC)—propeller—depending on the size of the drone frame, in order to
achieve maximum efficiency (range vs. maximum carried payload).

Another original viewpoint covered in the article is the extended CFD study of the
behaviour of the hexacopter drone during stationary flight at a fixed point (hover), which
deals with several aspects, namely, ensuring the stability of the hexacopter drone during
stationary flight manoeuvres at hover, development of a complete and complex simula-
tion model for all types of CAE analysis, validation of the FEM (finite element model)
computation model, synchronization of the results obtained analytically, experimentally
and numerically and the use of the results obtained from the FEM study to improve flight
parameters such as rotor speeds.

2. Related Work

2.1. Latest Developments in Hexacopter Drones Design

Darvishpoor et al. [39] present in a complex review many different configurations,
flight mechanisms and applications in which drones are currently employed. The UAVs
are categorized, and their characteristics, advantages and drawbacks are discussed. This
study also presents vertical takeoff and landing (VTOL) hexacopter drones in a flat config-
uration, used by the last mile delivery drone, the HexH2O seaplane drone, an antidrone
hexacopter, which uses a net to capture rogue drones; power tower cleaning hexacopters;
and agriculture, inspection, survey and mapping hexacopters.

Delbecq et al. [40] presents a generic methodology that analyses the sizing aspect of the
multicopter drones with electric propulsion, which allows configuration optimization for
different applications. The study starts from a set of algebraic equations based on scaling
laws and models that have resemblances. In the next phase, the optimization of the drone
sizing is analysed through a proposed methodology. The obtained results are validated
by comparing the characteristics of existing multirotors and performance predictions of
these configurations which were performed taking into account different flight types and
payload variants.

In the case of the classic hexacopter, studies have been carried out on mounting the ro-
tors under certain tilt angles, this modification allowing the hexacopter to be fully actuated
in the sense that all six degrees of freedom associated with the three translational and three
rotational movements become independently controllable. These types of platforms are still
the subject of study, making it difficult to explain which type of structure is suitable for a
particular type of application. One of the proposed approaches to obtain a structure close to
the one already mentioned is to develop a scheme to optimize the construction design of the
drone. Aspects related to the design and optimization of hexacopter drones can be found
in several variants proposed by Gupta et al. [41], Suprapto et al. [42], Setiono et al. [43],
Verbeke et al. [44], Abarca et al. [45] and Arellano-Quintana et al. [46].

Work performed by Ferrarese et al. [47], Ryll et al. [48] and Tadokoro et al. [49], re-
spectively, present an analytical characterization of the relationships between the dynamic
properties of the drone, the arrangement of the rotors and their pitch angles. The results
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obtained are then taken into account when formulating the design aspects of the hexa-
copter and the manoeuvrability of the fully powered drone is analysed after the rotors are
placed under a certain tilt angle. The following aspects are addressed: the effect of the
rotor placement is analysed using the dynamic model of the hexacopter and the dynamic
manipulability measure (DMM)—an index measuring the omnidirectional acceleration. An
adapted version of the DMM suitable for a hexacopter is introduced. The DMM evaluates
the input–output relationship between the thrust developed by the rotors and the accel-
eration of the vehicle and the introduction of a new type of structure, namely, symmetric
coplanar tilted rotor (SCTR). The DMM method applied to the hexacopter in the new SCTR
structure is considered suitable for the evaluation of the integral drive property of the
multirotor structure. Finally, issues of optimizing the hexacopter construction design are
considered by Rajappa et al. [50].

Köse et al. [51] presented an interesting approach that combines modelling and sim-
ulation for different drone configurations, employing an original software combination
between Solidworks–PID Simulink and SPSA (Simultaneous Perturbation Stochastic Ap-
proximation) to develop an algorithm for optimizing flight parameters and studying
different flight regimes for a certain fixed length of the motor support arms.

Mehmood et al. [52] depict the manoeuvrability of a fully powered hexacopter over all
six degrees of freedom by installing all the propellers under the same pitch angle. In order
to evaluate the manoeuvrability, a biaxial propeller tilt was considered to allow for two
possible study situations, i.e., inward and/or lateral propeller tilt. Over a wide range of tilt
angles, it was discovered, for all six degrees of freedom, that inward tilt of the propellers
either results in decreased drone manoeuvrability or provides less optimal gains at a low
cost of efficiency of the propulsion system.

Budinger et al. [53] present several models to estimate the performances of the main
components of multirotor drones with electric propulsion. The mathematical models
described in the paper facilitate the employment of design and optimisation tools. Using
the current available technologies, these models can be employed for the preliminary
design of new sensor systems. Alternate developing methods were utilized to find an
analytical model built on datasheet records (propellers) and on FEM simulations records
(landing gear). Thus, the dimensional assessment simplifies the selection of the primary
individual parameters and increases the assessment of the models.

The present paper comprises an original design and deployment of the hexacopter, the
extended experimental study, the choice and integration of avionics components, command
and control, video acquisition, telemetry data and the explanations regarding the future
development of an equipment variant for the command and control of the hexacopter out
of direct line of sight (BVLOS).

2.2. Sensors Equipment

In addition to the propulsion system, the sensors with which the drone is equipped
play a critical role in terms of manoeuvrability, stability, command and control of the drone.
The sensors also capture information from the surrounding environment (images, video,
GPS location, photogrammetry, LIDAR), depending on the specific missions or activities
that the drone is meant to perform.

Hussein and Nouacer [54] provide a source design pattern for building new drone
systems, which includes blocks of the drones and relations between them that are dis-
tributed into four main groups: flight navigation, flight control, flight management and
mission supervision.

Cao et al. [55] treat the examination of low power transmission lines using multicopter
drones, in terms of making the right decision, cantered on data fusion acquired from a
multisensor system. The information fused refers to the main aspects affecting the UAV
parameters (flight speed), wind velocity, errors of the navigation positioning and size
of the drone frame. A method called MFD-LPTL (multisensor fusion data analysis for
low power transmission lines) is presented. This method’s main purpose is to conceive a
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model for secure distance prediction between the drone and the power lines. Based on the
multisensor data fusion, combining data from various sensors including radars, LIDAR
and camera models, a statistical model which uses the autonomous avoidance navigation
of the problems was applied.

Severin and Soffker [56] treat the problem of optimization of the sensors used for
altitude estimation mounted on multicopter drones employed for spraying the vineyards.
The study makes a comparison between a variety of low-cost sensors for measuring the
distance between the drone and ground level, sensors which are most appropriate for
vineyard-spraying drones. The signals were acquired from ultrasound, radar and Doppler
sensors and were filtered using a Kalman filter. The study describes a variety of measures
employed to improve the assessed altitude of the drone and to enhance the trustworthiness
regarding the relative altitude approximation of the multicopter drone.

In Pena et al.’s [57] WILD HOPPER UAV study, a 600 L platform designed for forest
firefighting is presented. The paper reveals a multilayer steadiness system for enhanced sta-
bility of the drone during the flight in severe conditions. WILD HOPPER is equipped with
a range of sensors which include thermal cameras, geolocalization and navigation systems:
satellite navigation and a new technology based on visual attitude estimation methods.

The study presented by Ravin et al. [58] explains the extraction and analysis of GPS
data from three different drone manufacturers, followed by analysis and representation
of the positioning data as flight paths. GPS-related data from any drone’s flight is of vital
importance as it helps in establishing a legal framework for operating a drone in a country’s
airspace. In terms of sensors, all these data are obtained from the GPS antenna/antennae
mounted on the drone.

To be able to fly, a multicopter drone needs a flight controller, which is the brain
of the drone. In terms of sensors, this flight controller consists of an AHRS (attitude
and heading reference system) IMU (inertial measurement unit), which is a device that
integrates multiaxes accelerometers, gyroscopes and magnetometers to provide estimation
of the drone’s orientation in space, providing measurements of pitch, roll and yaw. When
the drone flies in an environment where GPS signal can be acquired, to ensure the reliability
and highest performance, a sensor that includes an AHRS, as well as a GNSS receiver,
which utilizes the GPS, GLONASS, BeiDou and Galileo satellite constellations, provide the
best navigation system.

If the drone needs to be flown BVLOS (beyond visual line-of-sight) without being
reliant on GPS, it is mandatory to have mounted on the drone a fully calibrated and
temperature compensated AHRS IMU sensor under all dynamic conditions. In order to
compensate for the three-axis movement of the drone based on user’s input, the flight
controller needs PID (proportional-integral-derivative) controllers or combinations of these
(PI, PD and so on).

The study performed by Sree Ezhil et al. [59] concentrates on the efficacy of PID
controllers in maintaining the stability of a multicopter drone. The results showed that
by altering the gain values based on the different conditions of the disturbances, one can
achieve a stabile drone. During further testing, it was observed that by adjusting PID gain
values, the stability of the drone can be achieved within a specific fixed measure of time for
a changing number of disturbances, even in tough conditions, which include wind speed
and change in direction.

Madokoro et al. [60] illustrate in a comprehensive study a drone with advanced mobil-
ity on which four prototype brackets were developed. These prototypes include optimized
sensors, devices and a camera, which work together as an integrated system platform. The
sensors and communication system were employed as a new platform for atmospheric
measurements at in situ locations, including the development of a wireless communication
system for long distances and also a system for monitoring and visualizing in real-time
the in situ local area measurements. The study was focused on gathering data regarding
atmospheric phenomena and related environmental information, especially particulate
matter (PM), as a major cause of air pollution. The obtained results were satisfactory,
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though, as a forthcoming design, based on regular flight measurements, and it is necessary
to validate the resilience of the suggested system and its stability for long-term operation.

The novelty of the present study, from the sensors point of view, is the relatively
economical and largely accessible equipment of the hexacopter, in two versions, in terms of
avionics equipment, respectively photo/video acquisition components and telemetry data
transmission and reception.

2.3. Experimental Procedures

Megayanti et al. [61] describe the mathematical modelling and implementation of a
command-and-control system for a hexacopter employed to monitor radioactive–chemical–
nuclear contamination using fuzzy logic. For accurate tracking of a trajectory, the hexa-
copter requires a high-performance altitude and attitude controller for its in-flight move-
ment, since in conditions of external disturbances it introduces wind. In the first step, the
dynamic equation of the hexacopter is developed using Newton–Euler equations, and
in the second step, a solution consisting of a PID controller combined with fuzzy logic
is proposed in order to include correction signals to eliminate positioning errors of the
hexacopter when moving. Before implementation on the drone, the effectiveness of the
proposed method was verified using a software-in-the-loop (SITL) robotic operating system
(ROS) simulation environment together with the Matlab matrix calculation utility. Based on
the numerical simulation and experimental results and using the fuzzy–PID intervention
algorithm, the following parameters were improved: faster transient response hexacopter
trajectory tracking performance, smaller errors in maintaining the steady state of the system,
faster settling times to transient changes and better and more robust static and dynamic
performance under disturbances introduced by different wind speeds.

Sharipov et al. [62] implemented a mathematical model of a hexacopter control system.
Employing the Matlab/Simulink environment, it was possible to mathematically simulate
the dynamics of the forces acting on the hexacopter rotors by inserting external disturbances:
wind forces alongside one of the hexacopter axis. The block for estimating the model
parameters is programmable and performs the computations using the theoretical formulae
developed previously. Other aspects also treated in the paper were the problems associated
with the selection of the optimal control for the hexacopter when flying along the path
in the occurrence of wind. The attitude of the hexacopter in flight is adjusted using PID
controllers because stabilization must be provided on all the axes of the drone during
flight. Thus, four PID controllers must be implemented: one controller for roll motion
stabilization, the second controller for pitch motion stabilization, the third controller for
yaw motion stabilization and the fourth controller for hexacopter altitude stabilization. The
stabilization of the hexacopter at a certain altitude was considered by Toledo et al. [63]. The
Ziegler–Nichols method is employed to adjust the parameters of the PID controllers.

Wen Fu-Hsuan et al. [64] present an analysis and management strategy for hexacopters
during fixed-point hovering manoeuvres in the event of one or more engine failures. The
study suggests keeping the deviation between input and output values unchanged by
reallocating the thrust forces to the rotors. Simulations are performed on a hexacopter in
different fixed-point flight modes [65]. Linear dynamics problems of the hexacopter are
analysed and subsequently numerically validated for the unique nonlinear dynamics. If
failure of one of the hexacopter motors occurs, the study proposes an allocation matrix
to reallocate the lift forces to the functional motors. The study takes into account seven
cases of engine failure; the conclusions derived from analytical analysis show that reduced
control for emergency landing is achievable in four scenarios at the linear level, and for the
other three scenarios, the drone is completely uncontrollable. To demonstrate the validity
of the recommended algorithm, the paper also presents numerical simulations.

Derawi et al. [66,67], Poksawat et al. [68] and Zheng et al. [69] present the mathe-
matical modelling, estimation, attitude (drone position) control and altitude control of a
hexacopter. Their works present the following contributions: First, mathematical mod-
elling is performed, based on which the equations of the hexacopter model are obtained.
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Again, the problem of rigid solid dynamics is pointed out by the study being performed
on a hexacopter with an “X” configuration. The modelling is carried out employing the
homogeneous transformation matrix, the Euler angles (φ—roll, θ—pitch, ψ—yaw) and the
two reference systems, one associated to the drone frame and one inertial, grounded. It also
introduces certain notions about the aerodynamic forces and moments that act on the drone
frame. The dynamic model of the hexacopter illustrates the translational and rotational
motions in response to the thrust generated by each rotor. A new approach for real-time
drone attitude estimation is proposed by Benzemrane et al. [70] and Benzerrouk et al. [71]
using a complementary nonlinear observer based on a special orthogonal group of rotation
matrix SO (3)—special orthogonal—compared to the conventional extended Kalman filter
(EKF). The works propose an attitude controller based on a PI and PID inner–outer loop
structure, aiming to lead to faster response and improved strength at transitory response,
while the altitude controller proposed in the paper is based on a standard closed-loop PID
control system. The hexacopter employed in the tests is equipped with low-cost sensors
(an inertial measurement unit (IMU) sensor modelled by Neumann and Bartholmai [72],
and Sushchenko and Beliavtsev [73] and a barometric pressure sensor). Finally, through
the experiments performed (flight manoeuvres inside a building and flight manoeuvres
performed in outdoor free space, also taking into account the effects of disturbing fac-
tors, in particular, wind), Heise et al. [74], Dong et al. [75] and Lee et al. [76] demonstrate
the efficacy of the suggested attitude of the observer, and Seah et al. [77] determine the
attitude controller and altitude controller in real flight conditions, both in indoor and
outdoor environment.

All the analysed papers present theoretical and laboratory-performed tests. In order to
demonstrate the full functionality of the proposed hexacopter, the present work addresses
a compound laboratory and in situ test procedure, comprising both ground and flight tests
in a new perspective.

2.4. Multirotor Drones Stability Assessment Based on FEM Approach

When discussing the hexacopter stability [78–82], aspects related to the structural
components of a hexacopter platform have to be considered. In the case of FEM analysis,
this frequently focuses on structural stiffness and stability and requires a detailed assess-
ment of the hexacopter model in a synergic connection between the virtual CAD model
and FEM codes. The results matter not only in the decision-making process regarding the
design of the hexacopter structure but also to the flight stability and the position control on
the trajectory.

Reducing the drag force remains one of the main challenges in UAV aerodynam-
ics research, as battery consumption can be significantly reduced if the drag decreases.
Felismina et al. [83] analyse the aerodynamic behaviour of a quadcopter equipped with
a seeding device in order to determine the appropriate bank angles (0◦, 15◦ and 30◦) for
take-off and drone flight evolution during the seeding operation. Moreover, the work
aims to define a suitable flight plan to increase the battery range. Aerodynamic results
demonstrate that for take-off, the 30◦ tilt represents the most favourable aerodynamic
position, due to the lower drag force that occurs during climb. In terms of the drone’s
behaviour during seeding, the 0◦ tilt is the one that creates a lower frontal drag and a lower
drag force coefficient, respectively.

Lei et al. [84] discuss the aerodynamic performance of a hexacopter with different
rotor spacings. The hovering flight efficiency of the drone is analysed by performing
experimental tests and numerical simulations. A number of indices characterising the
aerodynamic performance of the hexacopter are analysed theoretically, followed by tests
and simulations on a hexacopter drone with different rotor-spacing ratios in relation to
propeller size (i = 0.50, 0.56, 0.63, 0.71, 0.83). Using a custom-conceived test platform, the
thrust, power load and hover flight efficiency of the hexacopter were obtained. Finally,
CFD simulations were performed to obtain the fluid flow, pressure and velocity contour
distributions of the hexacopter. The results show that the aerodynamic performance of the
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hexacopter drone varies by changing the rotor spacing. It was also observed that the thrust
force increased by 5.61% and the overall efficiency increased by about 8.37% at i = 0.63 for
the working mode (2200 RPM), indicating that the rotor spacing ratio at i = 0.63 achieved
the best aerodynamic performance.

The design and development of a hexacopter capable of lifting a high payload has
been investigated by Suprapto et al. [42] to ensure a stable attitude in flight. The eval-
uation focusses on the frame displacement and stress analysis to ensure the expected
payload. In [85], experimental and CFD simulation tests for a small size UAV model to
test wind influences at low speeds were reported. The study is comprehensive, but the
prototype geometry as well as the flow regimes were found to be below the common level
of UAV applications.

The flow regimes of air streams from the upper to the lower surface at different fixed-
point flight altitudes were simulated and analysed by Zheng et al. [86] for plant protection
applications. Although the study is substantial, the results are particular to the field of
agricultural engineering.

In conclusion, many FEM simulation attempts have been reported on hexacopters,
but the most interesting results for this type of platform have been achieved by software
developers to demonstrate the capabilities of the solvers, as simulation in this case is
still considered a challenge. In the case of the six rotors, the rotational domains of the
propellers are so close to each other that the narrow space induces even more modelling
and computational difficulties. From this point of view, the current research aims to bring a
new perspective to the scientific literature.

3. Hexacopter Platform Architecture

The proposed hexacopter is presented in two equipment variants (v1 and v2), with
two different sets of avionics equipment. Variant 1 (v1) (Figure 1) illustrates the Tarot ZYX-
M avionics kit composed of the following: Tarot ZYX-M flight controller (AP—autopilot),
5V/12V voltage distribution module, GPS antenna sensor, status LED and radio receiver
Turnigy 9X 8C v2 sensor on eight channels, frequency 2.4 GHz. A Turnigy Multistar 4-cell
LiPo battery in 4S1P configuration with a capacity of 6600 mAh was employed as the drone
power source. The radio control is model Turnigy TGY 9X, mode 2 with nine transmission
channels, which is paired with the Turnigy 9X 8C v2 radio receiver mounted on the drone.
For this variant, no data transmission–reception equipment was endowed for telemetry and
video signals from drone to the operator. This variant is employed only for the preliminary
testing of the normal operational parameters, on the ground and during the flight of the
hexacopter, without a detailed analysis of the flight outputs.

  
(a) (b) 

Figure 1. Variant v1 of the hexacopter. (a) Equipment; (b) Radio control.

Figure 2 depicts the second version of the hexacopter, composed of the flight controller
AP Pixhawk 2.4.8 sensor, a PPM protocol encoder sensor that allows the encoding of eight
signals using the pulse width modulation (PWM) protocol in a single signal employing the
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pulse position modulation (PPM) procedure; loudspeaker, for AP status beeps; fail-safe
on/off switch for protection against accidental starting of the motors; data transmitter
telemetry transmitter YRRC at the 433 MHz frequency and 1000 mW power for the trans-
mission of telemetry data on the ground, paired with the signals telemetry on the ground
receiver, model YRCC, which transmits the video signal on 32 channels at a 5.8 GHz fre-
quency; 600 mW power, for video signal transmission from the GoPro Hero 4 model camera
mounted on the three-axis rotation gimbal, Tarot T4-3D model; a 12-channel RadioLink
R12DS radio receiver; 2.4 GHz frequency for radio command reception from the transmitter
built into the control box at the ground operator; GPS signal reception antenna; and the
ReadytoSky model.

  

Figure 2. Variant v2 of the hexacopter.

Both variants were mounted on the same hexacopter frame structure, made of carbon
fibre and consisting of two central plates of the frame between which six supported arms
are fixed. At the arm ends, the motors and electronic speed controllers are mounted on
six special supports. The landing gear is composed of two tubular structures mounted
in the form of the letter T at a specific angle to the end plate of the frame. At the bottom
of the lower plate, a bracket is mounted for fixing the battery. In the v1 variant, an
additional support is mounted on the right arm of the landing gear for fixing the video
transmitter. The carbon fibre provides the drone frame with elasticity, i.e., increased
resistance to deformations, stresses, bending and a reduced structural mass of the platform.
However, a drawback arises from the fact that carbon fibre attenuates the strength of the
transmitted/received radio signal. That is why it is necessary to carefully choose the
location of the radio/video signal transmission–reception equipment on the hexacopter or
its proximity by mounting spacers.

Figures 3–5 depict the described design details both focused on components and
on the entire equipment assembly for variants v1 and v2 (with 4S1P LiPo battery, 14.8 v,
12,000 mAh).

  
(a) (b) 

Figure 3. Hexacopter variant v1. (a) Components; (b) Assembly.
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Figure 4. Connections diagram for hexacopter variant v1.

 
Figure 5. Hexacopter assembly for variant v2.

The block diagram of the hexacopter platform architecture is presented in Figure 6
illustrating the main components of the hexacopter, respectively the command-and-control
ground station and the relationships between them. Hexacopter telemetry data are trans-
mitted via a YRCC transmitter equipped with an antenna operating at 433 MHz. On the
ground, an YRCC receiver is equipped with an antenna paired with the one placed on
the hexacopter and at the same operating frequency. The receiver can be connected to a
mobile device (tablet or smartphone) or a laptop, on which a GCS (ground control station)
platform is installed.

The two components of the telemetry kit are illustrated in Figure 7: the transmitter
mounted on the drone and the receiver in two connection options (Samsung tablet and HP
Omen laptop), on which the Mission Planner GCS was installed.

The video signal from the hexacopter is either stored on the GoPro camera’s internal
microSD card (when it has to operate in record mode) or transmitted in real time to the
ground by means of the following chain: the GoPro camera is connected to the Tarot T4-3D
gimbal via a special dedicated connector; the video signal is then transmitted to a 32-channel
antenna operating in the 5645–5945 MHz frequency range. This communicates with a dual
receiver (two built-in antennas for better signal reception) on 32 channels, on the same
frequency of 5.8 GHz, and the image is displayed on a 7” HD monitor. Following laboratory
tests, for optimal operation of the transceiver chain, the transmitter was set to channel 4
(5645 MHz), and the receiver was set to channel 5 (5885 MHz), according to the frequency
matrices in the specifications of each component. Figure 8 illustrates the composition and
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location of the video transceiver system from the hexacopter to the operator. The HD video
monitor with the built-in receiver is shown in the tripod-mounted version, but it can also
be mounted on the operator’s radio remote control for easy observation of real-time images
and gimbal control to obtain the desired frame during the surveillance, reconnaissance,
investigation and shooting missions.

 
Figure 6. Blocd diagram of hexacopter platform.

  

Figure 7. Arrangement of the telemetry kit on the drone and on the ground.

The Pixhawk 2.4.8 flight controller (FMUv2) installed on the hexacopter v2 version,
with the interfaces to various peripheral equipment, are illustrated in Figure 9.

The flight controller hardware components are the following:

- System-on-Chip STMicroelectronics STM32F427 Cortex-M4F 32-bit main microcon-
troller, operating frequency 180 MHz, RAM: 256 KB SRAM (L1), 2 MB Flash memory
for writing instructions.

- System-on-Chip STMicroelectronics STM32F100 Cortex-M3 32-bit, 24 MHz operating
frequency, 8 KB SRAM (L1), 64 KB Flash memory for writing instructions.
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- Embedded sensors on the motherboard: • a 3-axis STMicroelectronics L3GD20H 16-bit
gyroscope sensor; • a 14-bit STMicroelectronics LSM303D accelerometer/magnetometer
sensor; • an Invensense MPU-6000 3-axis accelerometer/gyroscope sensor; • a TE
Connectivity MEAS MS5611 barometer sensor.

 

Figure 8. Video signal transmission–reception chain from hexacopter to the operator.

 
 

Figure 9. Pixhawk 2.4.8 flight controller and the peripheral connection interfaces.

Also connected to the flight controller is an external GPS antenna/bus module
consisting of a Ublox M8N GPS receiver sensor and a Honeywell HMC5883L digital
compass sensor.

For the subsequent analysis of the flight parameters both on the ground and in flight an
ArduCopter firmware, version v4.x, was employed and installed on the Pixhawk 2.4.8 AP
motherboard. A laptop and a tablet were utilized for the ground control station on which
the mission planner platform was installed and employed. In the v2 version, the drone
powering was achieved with three Turnigy batteries, LiPo type with four cells, in 4S1P
and 4S2P configurations, maximum supported current 12-24C, with capacities 12,000 mAh,
16,000 mAh and 20,000 mAh.

The hexacopter presented in the two variants, equipped with avionics components
and sensors, can be employed in a wide range of civil applications, as well as in the field of
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homeland and national security. The solutions developed represent a relatively economic
option in terms of the component acquisition costs and integration.

4. Laboratory and In Situ Measurement Results and Discussion

Tests were carried out, both those on specialized online platforms specifically tailored
for the multirotor drone segment as well as extended laboratory, ground and flight tests to
confirm the optimal real-world operation of the hexacopter, in accordance with the original
design; practical realization of the hexacopter; and choice and integration of avionics
components, command and control, video acquisition and telemetry data, taking into
account a future development of a variant of equipment for command and control of the
hexacopter out of direct line of sight (BVLOS).

4.1. Laboratory Tests

To ensure that all the components were correctly chosen and the hexacopter will
perform as expected, preliminary laboratory tests were conducted using dedicated built
test stands and testing equipment.

Aside from the mentioned sensors, the electronic speed controller (ESC) sensor must
be considered due to its major importance when discussing motors functionality. The
basic function of an ESC is to control the motor speed based on the PWM (pulse width
modulation) signal that the AP sends to the motor, which is too weak to drive the brushless
DC motor directly (Figure 10). This is achieved by the pilot operating the speed stick in the
range 0–100%, and the ESC will send the power commanded by the pilot to the motor. In
addition, some ESCs also perform other functions: dynamic braking, battery short-circuit
protection, motor start protection and power supply (battery disposal circuit) for the radio
receiver or servo motors. Unlike a general ESC, the ESC for brushless motors can act as an
inverter, converting the direct current received from the battery into three-phase alternating
current (AC), which is then applied to the motor. The ESC also determines the direction of
rotation of the motor.

 
(a) (b) 

Figure 10. The ESC architecture and simplified diagram of ESC operation. (a) ESC general architec-
ture; (b) Simplified diagram of ESC operation.

The simplified diagram of ESC, depicted in Figure 10b, employs real-time operation.
The main features and parameters of the ESC mounted on the hexacopter are as follows:
it is equipped with specially optimized firmware for disc-type motors and a special core
program for rapid throttle response, and the refresh rate of the throttle signal supported is
up to 621 Hz, making the ESC perfectly compatible with various flight controllers (if the
refresh rate is higher than 500 Hz, then the ESC control signal is the nonstandard throttle
signal); it is equipped with driving efficiency technology (DEO), which effectively reduces
the ESC operating temperature by about 20%, improves the flight time and brings a better
throttle linearity and good stability—thus the operating efficiency improves by maximum
10%. In addition, its MOSFETs have extra-low resistance, offering high performance and
great current endurance, with a continuous output current of 40 A and a burst of 60 A up
to 10 s.
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The most important components of the ESC, as presented in Figure 11, are the mi-
crocontroller, the driver for the gateway between the autopilot (AP) and the MOSFETs
and the MOSFETs, respectively. As illustrated previously, the hexacopter is equipped with
six Hobbywing XRotor 40A Opto ESCs sensors, each of these being connected to each of
the six BLDC motors.

  

Figure 11. Hobbywing XRotor 40A Opto ESC.

To determine the thrust force, and therefore the efficiency of the propulsion system,
laboratory tests were carried out using the Mayatech MT10PRO 10KG test stand. A
Turnigy LiPo battery, 20,000 mAh capacity, 4 cells in 4S1P configuration, voltage 14.8 V, was
employed to power the ESC–motor–propeller assembly. The Tx–Rx chain was provided by
a 2.4 GHz radio remote control, model RadioLink AT10II, and a 12-channel receiver, model
RadioLink R12DS. The test configuration is shown in Figure 12.

  

Figure 12. Propulsion system efficiency test stand configurations.

Using a tachometer, in the same test configuration, the maximum speed of the rotor
assembly was determined, obtaining a maximum value of 13418 RPM (Figure 13).

 
Figure 13. Measurement of the rotor assembly maximum RPM.

The thrust force, current consumption, battery voltage and mechanical power were
measured using the test stand (Figure 12), and the rotational speed using the tachometer
(Figure 13). The results are plot in the graphs presented in Figure 14.
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Figure 14. Propulsion system tests results. (a) Propulsion system efficiency; (b) Traction force as a
function of RPM; (c) Current consumption based on RPM; (d) Mechanical power versus RPM.

Therefore, the results obtained were as follows:

- The maximum thrust force produced by the rotor assembly, measured on the stand,
was approximately 1.718 Kgf ≈ 16.84 N.

- Maximum speed measured by the tachometer—13418 rpm.
- The efficiency of the propulsion system decreases with increasing rpm. In the idling

zone, at 30–40% rpm, the efficiency reaches a value of 13–14 g/W (≥6 g/W—high-
efficiency drone). In the 50–75% rpm range, which is equivalent to operating the
drone in hover and light horizontal manoeuvres, the efficiency decreases to a value of
6.49 g/W (≥6 g/W—high-efficiency drone). In the speed range of 85–100%, the
efficiency further decreases to a minimum value of 4.96 g/W (4 ÷ 6 g/W—low-
efficiency drone).

- With increasing speed, the current consumption increases proportionally, reaching a
measured current value at 100% speed of 21.6 Ah.

- The mechanical power produced also increases to a value of 346.2 W at 100% speed.

The optimum operating temperature of the BLDC motors is of critical importance as
high temperatures can lead to premature engine damage and failure. Thus, it is necessary to
test the operating temperatures at idle, midthrottle and maximum throttle to determine the
RPM ranges where their performances are at best. During the tests on the test stand, motors
temperatures at different RPM ranges were measured employing a FLIR E86 thermal
imaging camera (Figure 15).

By analysing the results, the following points of interest were found:

- At idle, with the throttle stick at 30%, for a 3–5-min interval, the motor temperature
reached 40 ◦C.

- At idle, with the throttle stick at 50% for 3–5 min, the motor temperature reached 60 ◦C.
- In maximum mode, with the throttle stick at 100%, for 3–5 min, the temperature

reached over 200 ◦C, which means that it is only desirable to operate the drone in
maximum mode for very short periods, around 10–15 s, to avoid these temperature
increases in the motor windings, which can eventually lead to burn-out and thus their
permanent damage.
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Figure 15. Measurement of motor temperature during operation on the test stand, within 5–100%
throttle range.

4.2. Online Testing Platforms Results

In order to find the best configuration to ensure a stable flight with the best range
within safe flight conditions, several variants of equipment, including sensors, propellers
and batteries, were tested using online platforms specialized in the multirotor drone
segment. This section presents the best results for the proposed hexacopter in terms of
stability and flight range employing the xcopterCalc simulation platform, one of the most
popular tools in terms of configuration simulations for multirotor drones.

Similar results for the hexacopter were obtained for both variants, were two different
flight controllers and avionics components were employed, Tarot ZYX-M and Pixhawk 1,
respectively, as presented above. Figure 16 illustrates the results obtained in variant 1 of
the hexacopter, where Tarot ZYX-M flight controller and subsequent avionics components
were utilized. The configuration used was as follows:

- Frame size is 695 mm and is made of carbon fibre epoxy resin with a total mass of
only 833 g, while providing increased shock and vibration resistance.

- The propellers were 13” with 5.5” pitch—the size of the drone frame limits the mount-
ing of propellers with a maximum diameter of 13”.

- Four-cell LiPo battery capacity—16 Ah, in 4S2P configuration with 12-24C C-rating,
14.8 V nominal voltage.

- Flight testing of the HDT was simulated at an altitude of about 85 m above sea level
(Bucharest altitude), at a temperature of 22 ◦C and at an atmospheric pressure of
1010 hPa (757.5 mmHg).

- Electronic speed controllers (ESC) can withstand a maximum current of 40A and have
an internal resistance of approximately 0.0006 Ohm and a mass of 26 g each.

- The hexacopter has a three-axis rotating and stabilizing gimbal; it has a mass of 178 g
and consumes approximately 0.05 A.

- Tarot 4006/620KV BLDC motors produce 620 rpm/V and have an internal resistance
of 0.126 Ohm and a mass of 82 g each.
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Figure 16. Results obtained after running the simulation using xcoperCalc platform.

After running the simulation, the following results were obtained, as illustrated in
Figure 16.

The following conclusions were drawn:

- Load on the battery (load) is 8.49C (which means a continuous load below 12C A of
the battery, i.e., 8.49 × 16A ≈ 136A < 12 × 16 ≈ 192A).

- A considerable increase in flight time to 15.1 min for combined flight and 20 min for
hover flight, compared to lower capacity batteries used in previous tests.

- For optimum motor performance, a slight increase in efficiency from 84.1% to 84.2%
is obtained; for fixed-point flight, a speed of 4116 rpm is obtained. The motor speed
increases from 48% to 56% of capacity (which is a good result), a power-to-mass ratio
of 151.4 W/kg, an efficiency of 77.5% and a temperature of only 31 ◦C. However, as
an element to be taken into account, an increase in power (at engine input) to 321.9 W
(but only at maximum engine speed) is noted.

- The thrust-to-mass ratio in this case is 2.3:1 (>1.8—very good value).
- The specific thrust of the propellers is 6.67 g/W, so high efficiency.
- Additional equipment with a mass of about 3.6 kg can be attached.

Figure 17 depicts two graphs (a) and (b), obtained after running the simulations, show-
ing data regarding flight distance, speed and engine characteristics at maximum speed.

  

Figure 17. Online tests. (a) Range estimator; (b) Motor characteristics at full throttle.

The following conclusions were summarized:

- The maximum speed is 40 km/h, and the ascent rate of 7.1 m/s;
- The maximum flight time (without drag) is about 20 min;
- Maximum flight time (with drag) decreases to 15.1 min;
- The maximum flight distance (without drag) is approximately 7600 m;
- The maximum flight distance (with drag) is approximately 4400 m;
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- The best performance for the hexacopter is achieved within the speed range 17 ÷ 31 km/h;
- From Figure 16, it can be observed that the engines succeeded to operate in all speed

ranges at an acceptable temperature of maximum 55 ◦C, which is very good for flight
stability and proper functioning of the avionics and airborne sensors.

4.3. In situ Ground and In-Flight Experiments

The results presented in this section were attained from tests carried out for the hexa-
copter v2 configuration, equipped with the Turnigy 12000 mAh 12-24C LiPo 4S1P battery.

4.3.1. Hover Flight

The purpose of these tests is to ensure, verify and prove the appropriate functioning
of the hexacopter in the proposed configuration, both in terms of the structural design and
the avionics components, especially the employed flight controller. These tests are divided
into two main categories: ground and flight tests. The purpose of the ground test is to
ensure that the drone’s structure and avionics systems comply with the requirements so
that the hexacopter will perform the flight as expected.

Ground Test

This test consists of:

- Inspection of the structural integrity of the drone. Each joint of the structural elements
is checked and must be well secured to ensure its rigidity.

- Checks of the weight and the drone equilibrium. These checks provide information on
the location of the actual centre of gravity in respect to all three axes X, Y and Z. The
centre of gravity location affects the performance and stability of the drone in flight.

- Examination of the avionic systems operation: controller, navigation, power supply,
video system, telemetry data transmission system and wiring. All data concerning the
operating limits of the equipment must be memorized in order to avoid undesirable
events such as maximum drone range, maximum operating range of the radio controls,
battery capacity, power consumption of the various electronic components, maximum
authorized flight altitude and legislative aspects concerning the operation of the drone
in certain areas, depending on the geographical layout. In the case of autonomous
flight following a preprogrammed route, the flight controller has programmed the
flight scenario, the flight parameters and the failsafe measures required in the event of
emergencies such as the loss of radio link between the drone and the operator, battery
voltage falling close to the critical value and a motor shutdown.

- Test of the motor’s operation by simple on/off commands to ensure the rated static
performance based on throttle stick position, increasing the speed incrementally
up to 10–15% and checking their operation, oscillations, noises, proper propeller
rotation directions.

- Telemetry data link tests between the drone and the mission planner ground control
station. This ensures the stability of the radio link between the drone and the operator.
With the help of the control station, the operator can either plan autonomous flights
on preprogrammed routes or intervene in the control of the hexacopter in emergency
conditions if the radio control is not used.

- Weather condition checks: wind speed, temperature, precipitation and atmospheric
pressure. This is an extremely important step in planning a flight, as there are limita-
tions to operating the hexacopter.

For the GCS, the mission planner platform was employed, whose main interface is
illustrated in Figure 18a, which also shows the map of the test location. Figure 18b depicts
the HUD window, which provides valuable data for the operator during flight stage and
also during ground operations.
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(a) (b) 

Figure 18. Mission planner ground control station. (a) Main window; (b) HUD window.

Figure 19 pictures the test stands, the ground control station and the test location,
while Figure 20 encompasses details during the execution of the hexacopter manoeuvres:
take-off, climb, hover, descent and landing.

 

Figure 19. Employed open area test rigs.

  

 

Figure 20. Hexacopter in stationary flight at a fixed point—flight stages.
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Images of the drone on the ground and in flight received from the GoPro Hero
4 camera mounted on the hexacopter are illustrated in Figure 21, while Figure 22 represents
the mission planner interface with the layout of the hexacopter on the test location map
and the video received from the GoPro camera on the built-in dual receiver monitor.

 

Figure 21. Drone-mounted GoPro camera footage, on the ground and in flight.

 

Figure 22. Mission planner interface. Images acquired by GoPro camera mounted on the hexacopter.

Hover Flight Tests

After the completion of the ground experiment, the hexacopter was tested in stationary
flight. The tests were carried out in a plain area without obstacles around, within a radius
of 5 km, in order to avoid the occurrence of unpleasant events such as drone crash, property
destruction or person injuries. Regarding the wind speed at the test site, days with low
wind speed of 1–2 m/s were chosen, measured with an anemometer (Figure 23).

 

Figure 23. Wind speed measurement with anemometer.

In this manoeuvre, after the operator has given the command to increase the engine
speed, the speed stick is kept in the 50–75% rpm range (for the hexacopter configuration),
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and the lift force required to lift the drone off the ground and keep it stationary is obtained.
The lift force is created by the rotation of the six rotors, which revolve at the same rpm
during the vertical climb, while the hexacopter tries to stabilize its attitude. During the
vertical lift, until the altitude set by the operator is reached and in respect to the command
given by the operator, the hexacopter attitude PIDs apply corrections to maintain the
position of the drone within the values of the commanded parameters. When stabilizing
the hexacopter at a given altitude, the operator keeps the speed stick in the appropriate
speed range, and the PID altitude controller applies the necessary corrections to the thrust
of the engines to maintain the drone at the desired altitude.

The general architecture of the closed-loop PID controller is depicted in Figure 24.

 

Figure 24. Closed-loop PID scheme—general approach.

In the case of the physically designed hexacopter equipped with a three-axis gimbal
and a photo/video camera, the drone must be able to maintain its position at a fixed point
in order to carry out surveillance, reconnaissance and photography missions. For this
purpose, when using the manual radio control by the ground operator, it is recommended
to operate it in the following modes: stabilize, in which the PID controllers automatically
adjust pitch and roll; alt hold, in which the PID controllers automatically adjust pitch and
roll and maintain drone altitude; and RTL (return to land) for emergency cases. Loiter can
also be employed (semiautonomous flight—the PID controllers automatically adjust the
drone’s altitude and position; the hexacopter uses GPS for movement), PosHold (similar
to loiter mode, but when the roll and pitch sticks are not centred, the operator controls
the two movements) and land (the hexacopter descends and lands directly, without re-
turning to the take-off point). Auto mode is utilized for autonomous movement along
a predefined flight path. For PID controller tuning procedures, AUTOTUNE mode is
employed after sensor calibration procedures (accelerometers, gyroscopes, magnetometers)
and initial tuning.

In the case of fixed-point tests, take-off was performed in stabilize mode, which was
then switched to alt hold mode and subsequently to RTL mode.

4.3.2. Hexacopter Flight Parameters Extracted from Sensors during Hover Flight

The drone was raised up to an altitude of 8.5 m. The EKF subsystem is responsible
for generating attitude, velocity, position and altitude estimates for the drone so that
the navigation and control systems can operate correctly. EKF takes the inputs from
IMU, GPS and BARO sensors and integrates them to provide these assessments, one
of which is the estimated altitude. This is then passed to the vehicle’s altitude control
system, which attempts to align to the target altitude in altitude-controlled flight modes.
Figure 25 plots the altitude reached by the drone in blue, the commanded altitude in red
and the altitude measured by the barometer in green. It can be noticed that there are
no significant differences between the three values. The maximum recorded difference
between programmed and measured values is less than 1 m, representing less than 10% of
the real value.
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Figure 25. Hexacopter programmed and recorded altitude.

The graph extracted from the MAVExplorer platform (Figure 26a) depicts the altitude
at which the drone was lifted and the ambient temperature at the test site in Fahrenheit
degrees. The graph presented in Figure 26b shows the in situ atmospheric pressure (Pa)
extracted from the data measured by the barometer with which the drone AP is equipped.

  
(a) (b) 

Figure 26. Hexacopter measured parameters. (a) Altitude and ambient temperature; (b) Ambient
atmospheric pressure.

For optimal operation of the hexacopter, radio control calibration was initially per-
formed using the GCS mission planner. The minimum maximum PWM signal duration
limits for the employed channels by the RadioLink AT10II radio control, mode 2 (motor stick
is located on the left side), operate within the range 1000–2000 μs. The channels are assigned
as follows: Channel 1 (CH1)—roll, Channel 2 (CH2)—pitch, Channel 3 (CH3)—throttle,
Channel 4 (CH4)—yaw, Channel 5 (CH5)—flight modes (stabilize, alt hold and RTL),
Channel 6 (CH6)—engine kill switch mode.

The PWM signal is utilized to control the pulse width modulation signal for each
electronic speed controller that is connected to each of the six motors. The PWM signal is a
periodic square wave signal with a period of 20 ms, which means it has a refresh rate of
50 Hz. Each cycle of the PWM signal lasts for 1–2 ms high level (1000–2000 μs), which is
the control value of that channel. In the case of speed, 1000–1100 μs corresponds to 0 speed
of the hexacopter, and 1900–2000 μs corresponds to maximum speed.

Prior to ground and flight manoeuvres, laboratory tests were performed on the motors
without propellers to verify their operation within parameters. Figure 27a illustrates the
command given by the operator from the radio control, in the range 1083–1916 μs, as it was
previously calibrated, and Figure 27b shows the response of the ESC-controlled motors
in respect to the operator’s command to increase speed. It can be noted that the engines
operate within the appropriate parameters, with values between 1000–1950 μs, and respond
directly to the command given by the operator.
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(a) (b) 

Figure 27. Tests performed on the motors without propellers. (a) Speed command given by the
operator; (b) Engine response to the operator command.

Figure 28a depicts the altitude of the test site, which is 79–80 m above sea level (mean
sea level). The peaks of the graph represent the altitudes to which the hexacopter was
lifted during the manoeuvres. In Figure 28b, the geographic coordinates of the location
(maximum altitude of the hexacopter stationary at the fixed point—8.5 m) are illustrated.

  
(a) (b) 

Figure 28. The altitude of the test site. (a) Operating altitude of the in situ location; (b) Test location.

The results were processed with the mission planner and MAVExplorer platforms.
Figure 29a depicts the command given by the ESCs to the drives in response to the operator
moving the speed stick in the 50–75% range. The motor increases the rotational speed to a
value at which the hexacopter becomes detached from the ground and begins to lift until
the operator clamps the stick at a certain percentage of the speed. The operation of the
motors is observed in the range 1000–1725 μs, as the rotational speed range does not reach
100%, leaving room for additional manoeuvring if needed. It is noticed that there are small
delays in response times between 100 and 200 μs, representing less than 10%, possibly
due to the natural frequencies of the motors or the structural elements on which they are
mounted. High vibrations can cause wrong accelerometer altitude and horizontal position
estimations, leading to problems in maintaining altitude. The hexacopter may start an
uncontrolled lift manoeuvre without the operator being able to intervene. Position control
problems in flight modes such as loiter, PosHold and auto may also occur. Vibrations are
best visualized by plotting the VibeX, VibeY and VibeZ values in the VIBE menu. These
represent the raw vibration values before being filtered by the accelerometers. Vibration
levels below 30 m/s2 are normally acceptable. Levels above 30 m/s2 can cause problems,
and levels above 60 m/s2 nearly always cause position or altitude maintenance problems.
The graph in Figure 29b shows acceptable vibration levels that are consistently below
30 m/s2 and around 13 m/s2.
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(a) (b) 

Figure 29. Results processed with the online platforms. (a) Engines response to the lift command;
(b) Accelerometer (0) vibration recordings.

Similar results in terms of accelerometer vibrations (0) were found when performing
another flight under similar conditions with the hexacopter, as shown in Figure 30a.

  

(a) (b) 

Figure 30. Vibration and clipping. (a) Accelerometer (0); (b) Clipping.

The phenomenon of accelerometer clipping, which means that the accelerometers
have been exposed to a level of vibration that exceeds their full measurement range, is
illustrated in Figure 30b. These are feedback signals to the control loop; therefore, if they
are not operating in optimal parameters, the attitude control cannot be maintained. This
phenomenon usually occurs when the drone collides with a hard object, such as crashing
or landing on a hard surface. If the value increases during the flight, it is recommended
to rebuild the damping system by fitting double adhesive strips or soft rubber mounts
to allow the three-axis movement and avoid inducing vibration in the flight controller
housing, which is then transmitted to the on-board sensors. In the case of the studied
hexacopter platform, it was observed to have a value of 0.

To illustrate the operation of gyroscopes, in Figure 31a, the measured raw values of the
rotational speeds in rad/s of the gyroscopes are represented. Very low values are recorded
because the hexacopter does not pitch, roll or yaw during the ascent to the fixed-point hover
altitude, but only compensates in very small increments the constant attitude. Because the
controller has two IMUs, namely (0) and (1), both graphs are plotted comprising data from
both subsystems. As expected, the measured values of both IMUs gyroscopes are identical,
indicating the appropriate operation of these sensors. In the case of the GPS signal received
by the GPS antenna, which has the Ublox M8N GPS built-in receiver, in Figure 31b, the
accuracy of the received GPS signal is presented. HAcc indicates a horizontal positioning
accuracy of 0.5–1.2 m, VAcc indicates a vertical positioning accuracy of 0.55–1.45 m and
SAcc indicates a velocity measurement accuracy of up to 0.2–0.4 m/s. NSats indicates the
number of satellites received, up to a maximum of 15.
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(a) (b) 

Figure 31. Gyro rotational speeds and accuracy of data received from GPS satellites. (a) Gyro
rotational speeds in rad/s for IMU (0) and (1); (b) Accuracy of data received from GPS satellites.

While operating in one of the autonomous modes (loiter, RTL, auto, etc.), GPS position
errors can cause the hexacopter to “feel” that it is in a different location than the correct one,
which can lead to the drone flying aggressively to correct its perceived erroneous location
information. These “errors” appear in both tlogs and dataflash logs as a decrease in the
number of visible satellites and an increase in the horizontal HDop accuracy value.

Hdop values less than 1.5 are very good, and values above 2 could indicate that
the GPS positions are not correct. Decreasing the number of satellites below 12 leads
to erroneous measurements of the hexacopter position and speed relative to the ground.
A significant change in these two values often accompanies a change in GPS position.
Figure 32 proves that the number of received satellites is 15 and the horizontal position
accuracy is 0.65–0.71 m, so both values correspond to a parameterized operation of the GPS
signal receiving equipment from satellites.

 
Figure 32. Accuracy of HDop positioning data received from GPS satellites.

Figure 33 shows a graph recording the relative speed of the hexacopter to the ground,
based on the information received from the GPS. Given that the UAV performs the ascent
and hover manoeuvre at a fixed point with small position adjustments, it can be seen that
the value of this velocity is generally close to 0 m/s.

Mission planner, via the IMU batch sampler menu, has the option to record high-
frequency data from IMU sensors to the flash data log on the flight controller. These data
can be analysed after the flight to diagnose vibration-related problems using graphs created
employing fast Fourier transforms (FFTs). A common feature of these plots is a peak at
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the “propeller blade crossing frequency”, that is, the frequency at which the blade passes
over the arms and causes an acceleration in the frame. In the graphs presented in Figure 34
with data collected from accelerometers and gyroscopes, there are, however, certain noises
corresponding to the eigenfrequencies of the motors. The accelerometer and gyroscope data
show on the vertical axis the amplitude and on the horizontal axis the natural rotational
frequency of the motors. The amplitude is not scaled to a useful value, so we cannot tell
whether the levels of these values are high or low, which means that the graph is only
useful for determining the frequency of vibrations. Vibrations at frequencies higher than
300 Hz can lead to attitude or position control problems. In this case, peak frequencies are
observed at 40 Hz/2400 rpm, 47 Hz/2820 rpm, 95 Hz/5700 rpm, 130 Hz/7800 rpm and
153 Hz/9180 rpm.

 
Figure 33. Relative speed of the drone to the ground.

 

Figure 34. Vibration frequencies induced by motors rotation.

It is possible to filter out these noises in order to increase the hexacopter performance
and to allow a better parameter tuning by activating the harmonic notch filter(s). The
harmonic notch filter is designed to match the frequency of the noise introduced by the
engine rotation. Its value changes as the motor rotates by means of interpreting the value
of the engine acceleration. The frequency is scaled up from the hover frequency and will
never drop below this frequency. However, during a dynamic flight, it is quite common
to reach low motor operating frequencies during propeller rotation. To address this, it is
possible to modify the reference value in order to scale the filter to a lower frequency.

For the operation of the hexacopter beyond visual line of sight (BVLOS), the necessary
components for implementation on the drone have been acquired. Ground and flight
tests can be carried out to demonstrate their ability to control the hexacopter via 3G/4G
LTE mobile networks. These include the Raspberry Pi 3B board, IR camera + EO camera
and 4G LTE modem. Other hexacopter flights in different flight regimes, both manual
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and autonomous, can be carried out to test the drone limits. This research focused on the
behaviour of the drone in stationary flight at a fixed point.

5. FEM Decision Support

The hexacopter was conceived to provide a robust structure for transporting large pay-
loads. The aim of this approach is to ensure the stability of the hexacopter during stationary
flight manoeuvres, to set out a composite simulation model for different analysis types and
to validate the computational model in order to synchronize analytical, experimental and
numerical results. FEM model reduction, efficiently tuning the discretization parameters
with the available computational resources, was also a computational goal.

The problem in the case of six propellers is that the rotating domains are close to each
other, and the narrow space causes modelling and computational convergence issues. The
results obtained from the FEM study were employed to optimize flight parameters, such as
the rotor speed. Another important target of CFD simulations is the power requirements
and the evaluation of the lift and drag forces.

Hover flight is one of the most important flight regimes of the hexacopter, when the
UAV requires maximum stability. In package delivery tasks, the fixed-point turbulences
are essential, as they may act in the close proximity to buildings or even to the ground,
especially in urban areas. This was considered when creating the flow domain around the
hexacopter. The air pressure under the hexacopter is higher the closer the hexacopter is to
the ground. It is therefore important to know the air pressure values so that the hexacopter
remains stable. On the hexacopter frame, the pressure increases correspondingly as it
approaches the ground or a target. Some of the turbulences are redirected on the drone
components and on the rotors. The hexacopter can work in areas with dust, sand and even
snow, which can then interact with the vehicle. This is another reason why the CFD study
is essential to ensure the stability and safe operation of the hexacopter.

5.1. CFD Approach

The proposed study consists of three main steps: geometry modelling and defeaturing,
followed by the CFD computations to extract the lift and drag forces on each propeller and
then the evaluation of the displacements on the mechanical structure of the hexacopter for
the worst-case scenario. The results were compared with the analytical ones. The workflow
is represented in Figure 35a, encompassing the five environmental settings: lateral wind
speed of 0 m/s, 4 m/s, 10 m/s, 15 m/s and 20 m/s (Figure 36a) and the CFD enclosure
(Figure 35b). For all cases, the maximum rotational velocity of the propellers of 6500 rpm
was considered. The final step is the fluid–structure interaction to evaluate the effect of the
air fillets on the hexacopter structure.

 
(a) (b) 

Figure 35. Fluid dynamics simulation. (a) CFD approach; (b) Enclosure.
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v = 0 m/s 

v = 4 m/s 

 

v = 10 m/s 

 

v = 15 m/s 

v = 20 m/s 

Figure 36. Velocity profile and dissipated turbulences for no wind and lateral wind scenarios.
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The CFD simulation model explored a transient regime, and a corresponding mesh
size was determined considering the Curant number. To avoid the numerical instability,
this number must be 1 [87].

Co = vmax· dt
dx

= 1 (1)

where vmax is the maximum velocity in the flow domain, dt is the time increment and dx is
the finite element size.

The CFD model comprises nearly 2,900,000 elements with controlled inflation lay-
ers, named selections and multiple sizing options. The quality of the mesh was con-
trolled, taking into account the skewness criterion, and the flow regime was based on the
realizable k- ε flow model, employing advanced scalable wall functions and near-wall
treatment interfaces.

In Figure 36, the contours of the velocities and pressures in the vertical plane are
plotted, and the streamlines at rotor level for all the turbulent flows are processed. The
influence of the wind on the fluid flow of the propellers occurring in the vertical plane can
be observed, and the dissipation of the central turbulence is significant. The turbulence is
deflected by the crosswind progressively for the cases v = 4 m/s, v = 10 m/s, v = 15 m/s
and v = 20 m/s, respectively. The reaction thrust forces of the six propellers were between
0 and 38 N in absolute values. The lift forces were exported in a static analysis, and
the spatial orientation of the hexacopter structure was evaluated as a function of the air
pressure caused by the created turbulences, the rotational speed of the six rotors and the
acceleration of the hexacopter.

The velocity streamlines were processed in Figure 37, as well as the contour plot of the
air pressure on the six drone rotors for the case of 10 m/s side wind speed. The maximum
air pressure of 383 Pa on the rotors is low, but the influence on the hover flight attitude is
further investigated in this paper in a fluid–structure interaction approach. The vortices
and joint interferences at the small rotor spaces are compressed by the side wind, increasing
the power consumption. The wind produces the movement of the coupled turbulences in
the same direction, and this may cause the vibration of the rotors. The consequence is that
a power increase and changes of the attack angle are necessary in order to maintain the
desired hover flight. The aerodynamic efficiency is also ensured by high trust forces and
small power consumption. These parameters were also reported by the CFD analysis.

 

Figure 37. Streamlines and pressure contours on the rotors.

Figure 38 depicts the graph of the drag force on propeller 1 (0.552486 N) computed in
the CFD simulation and the same force calculated analytically (0.5605 N). The difference
is lower than 1.5%. The same comparison is performed for the lift force on propeller
3 (29.6611 N) as the output of the CFD simulation and by means of hand calculations
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(29.1486 N) employing the same analytical model. The difference remains low, of approx-
imately 1.72% between the two methods. This validates the CFD computational model
and the accuracy of the simulation results. The advantage of the results obtained in the
virtual model is that they give access to information difficult to acquire by experiments in
the entire CFD domain.

  

Figure 38. Drag and lift forces -numerical vs. analytic computation.

Finally, a static analysis was completed, and the maximum displacement of the rotors
and the frame have been processed in Figure 39. The static analysis on the hexacopter
structural elements revealed that the directional deformation in the YZ plane caused by
pressure distribution and the thrust forces resulting from the transient CFD computation
at t = 0.25s in case of 10 m/s lateral wind is 0.51 mm. From this perspective, the structure
is robust and does not influence the stability and the manoeuvrability of the hexacopter
during hover.

Figure 39. Maximum displacements on Y axis after 0.25s hover flight time.

Optimization of flight control parameters can be performed in respect to the CFD
simulation results, namely, to the lift forces on the rotors (Z-axis), as well as the forces in
the Z and Y directions, during hover.

5.2. Dynamic Analysis and Hover Stability

The dynamic analysis focused on both the modal analysis and a drop test simulation
to verify the stability and the structural integrity of the hexacopter at impact, as detailed in
Figure 40.
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Figure 40. Hexacopter dynamic analysis using FEM.

The purpose of the modal analysis is to determine the eigenvalues for the drone’s
structural elements and the propeller in order to design the hexacopter control system ac-
cordingly, to ensure the structural stability of the drone for the operational rotational speed
of the propellers in surveillance, photography or recording operations. An orthotropic
elastic epoxy carbon woven (230 GPa) prepreg material (Tsai-Wu) was employed for the
hexacopter structural elements and the rotors. For reaching a realistic behaviour of the
system, the mass of the assemblies and individual components of the hexacopter were
carefully checked as recorded in Table 1.

Table 1. Mass of the hexacopter components.

Hexacopter Component Mass (kg)

Frame 0.833
Brushless electric motor 0.082

Electronic speed controller 0.026
13′ ′ Propeller 0.014

Avionics and accessories 0.763
12 Ah Battery 12 Ah 1.080

Figure 41 illustrates an efficient model in terms of computational time and mesh
quality, based on shells and beams processed in the ANSA preprocessing system in order
to combine different advanced discretization strategies.

Figure 41. FEM model.

The structure has two symmetry planes, and this is underlined in the modal response.
In Figure 42, only relevant eigenvalues have been processed. Thus, the first mode shapes
are bending modes in the vertical plane, followed by bending modes in the vertical plane
combined with torsion in the horizontal plane. Participation factors were analysed to select
the dominant vibration modes. For this purpose, ten mode shapes were calculated, with the
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normalization of the eigenvectors in respect to unity. The modal analysis of the hexacopter
main structural components proves that there are no eigenfrequencies in the operational
range; therefore, no problems arise from this point of view for controlling the attitude or
position of the drone.

  
f1 = 8.256 Hz (495.36 rpm)  f4 = 14.27 Hz (856.2 rpm) 

  
f6 = 15.478 Hz (928.68 rpm) f7 = 16.639 Hz (998.36 rpm) 

 

f1 = 45.866 Hz (2751.96 rpm) f2 = 47Hz (2820 rpm) 

Figure 42. Mode shapes of the structural components and of the propeller.

The study also confirms that the amplitude peak at 47 Hz (Figure 34, Section 5) corre-
sponding to 2820 rpm is caused by the natural frequency of the propellers that are overlapping
the manoeuvring frequency. This can lead to high stresses at the propeller hub and may cause
them to exceed the material yield strength or simply reduces the fatigue strength of the rotors.
Considering that the manoeuvring speed range [58.34 Hz/3500 rpm—66.67 Hz/4000 rpm]
is at least 24% higher than the rotor eigenvalues, it can be assumed that no resonances
can occur for the manoeuvring regime of the hexacopter, but only for the fixed-point sta-
tionary regime. The maximum rotor speeds for different flight conditions in the range
[6500–8000 rpm] should be mindfully chosen, as resonances may occur on the third and
fourth rotor eigenvalues, but the amplitudes are expected to be low.

The resonant rotational speeds have to be avoided and can be taken into account when
monitoring the hover flight parameters. High-order frequencies may interfere with the
flight parameters in manoeuvring mode, but this was not observed during the experiments.

The hexacopter performance can also be improved by removing the resonances
induced by the drives rotation from the operational range using dynamic harmonic
notch filters.

5.3. Hexacopter Drop Test

The aim of this test in a virtual environment was to assess the possible damage of the
hexacopter frame in the occurrence of a crash or an accidental landing on a stiff plate from
a height of 20 m. All contacts between the components were considered rigid to avoid the
mitigation effects. Because of the computationally intensive procedure, the simulation was
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stopped after the impact, before the complete kinetic energy consumption. Figure 43 depicts
large displacements after the impact, but the stresses are not high due to the robust design.

Figure 43. Drop test results at 0.1s after the impact.

The fact that the postimpact stresses remain acceptable were reflected during the ex-
periments, when the drone dropped somehow similarly. The hexacopter deforms strongly,
but the original shape of the hexacopter can be recovered, even if large displacements can
be observed. Experiments upheld the conclusions of the simulation test results when the
hexacopter dropped from a lower height but on a less rigid soil (Figure 44).

 
Figure 44. Hexacopter impact during field tests.

Impact simulations confirmed that when the hexacopter accidentally falls from a
height of 20 m, the drone’s structure undergoes significant deformations, but no failure
occurs. Maximum deformations arise on the vertical and horizontal struts in the joint areas.
Due to the fact that the maximum strains are not high, the hexacopter structure can be
recovered, as observed during field experiments. In this study, the hexacopter rigging was
not considered; only the behaviour of the structural elements was taken into account. It
was also observed that the rotors are much stiffer than in the solutions reported in the
literature, confirming the robust design of the structural elements of the drone.

6. Conclusions and Future Work

This study was conducted employing two hexacopter variants in which the sensor
system was analysed and synchronized so that the drone’s performance in stationary fixed-
point flight was continuously improved. The flight parameters extracted from the tests
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were analysed, and the necessary corrective measures were taken accordingly to verify
if the platform operates at optimal parameters, but also for stationary flight manoeuvres
at hover, in average atmospheric conditions: temperature of 10–30◦, 1–2 m/s wind and
no precipitation.

The peculiarity of this work lies in the combination of experiments (both in the
laboratory and in situ) with the FEM analysis in an original approach. The study also
involved the development of a mathematical model for analytical calculation, not included
in the paper, to determine the aerodynamic performance, as well as the verification of
the solution of the hexacopter platform architecture. Only excerpts from the analytical
computation were included in the discussion of the CFD simulation results for comparison
purposes. Test outcomes were assessed, and conclusions regarding the numerical results
were synchronized with the experimental ones.

Regarding the hexacopter frame, it may be concluded that having a smaller distance
between the rotors can improve the aerodynamic performances of the hexacopter by
increasing the interference between the propellers. Similarly, the effects of interference
between propellers are progressively reduced with the increase in rotor positioning. Thus,
the homogeneity of the distribution of the airfoils and the shape and symmetry of the
vortex are essential conditions for the hexacopter to generate better lift forces. These must
be deeply understood in the sense that the simulation required to create flow domains may
result in values slightly lower than the experimental, real values.

FEM simulations are essential for achieving the aerodynamic stability and ensuring
low power consumption and stable flight behaviour at high wind speeds, as well as
achieving the ability of the vehicle to carry high payloads and increased operational areas
of the hexacopter. These are mandatory requirements when launching a new, powerful
hexacopter on the market. The simulation study can be continued by considering the
hexacopter speed during manoeuvres and adjusting the rotational speeds of the propellers
according to the experimental data.

The experiments completed employing the online platforms revealed a major draw-
back regarding the accuracy of the provided data. The deviation margin in respect to the
real values was around ±15%; thus, when making the configurations and integrating the
components, this error margin must be considered by choosing high-quality components
and sensor systems to compensate this value.

The data extracted from sensors mounted on the drone illustrated good results in terms
of altitude, attitude, GPS, vibrations, response of the motors, temperature, atmospheric
pressure and ESC readings, respectively. The hexacopter parameters acquired during
hover flight allowed the remark regarding the accelerometers’ behaviour that they are not
significantly affected by vibration during operation. Further adjustments to the current
hexacopter-mounted sensors are underway to achieve even better results in terms of altitude
and attitude estimation, positioning error compensation, engine control and command,
telemetry data transmission, video signal transmission and radio interference compensation.
Work regarding adding other sensors such as anemometers, LIDAR, acoustics and IR
cameras is also in progress. Today, BVLOS is of major importance; thus, a variant of
the BVLOS sensors kit is currently under development and will be mounted and tested
on the hexacopter.
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Abbreviations

The following abbreviations are used in this manuscript:

AHRS Attitude and heading reference system
AP Autopilot
BLDC Brushless DC electric motor
BVLOS Beyond visual line-of-sight
CAD Computer-aided design
CFD Computational fluid dynamics
DRONE Dynamic remotely operated navigation equipment
EKF Extended Kalman filter
EO/IR Electro-optical/infra-red
ESC Electronic speed controller
FEM Finite element method
FFT Fast Fourier transforms
GIS Geographic information system
GNSS Global navigation satellite system
GPS Global Positioning System
IMU Inertial measurement unit
LIDAR Light detection and ranging
MFD-LPTL Multisensor fusion data analysis for low-power transmission lines
MOSFET Metal–oxide–semiconductor field-effect transistor
PID Proportional–integral–derivative
PPM Pulse position modulation
PWM Pulse width modulation
ROAV Remotely operated air vehicle
ROS Robotic operating system
RPAS Remotely piloted aircraft system
SITL Software-in-the-loop
SPSA Simultaneous perturbation stochastic approximation
UAS Unmanned aerial system
UAV Unmanned aerial vehicle
UGV Unmanned ground vehicle
UUV Unmanned underwater vehicle
VTOL Vertical takeoff and landing
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Abstract: This paper describes the implementation of a solution for detecting the machining defects
from an engine block, in the piston chamber. The solution was developed for an automotive manufac-
turer and the main goal of the implementation is the replacement of the visual inspection performed
by a human operator with a computer vision application. We started by exploring different machine
vision applications used in the manufacturing environment for several types of operations, and how
machine learning is being used in robotic industrial applications. The solution implementation is
re-using hardware that is already available at the manufacturing plant and decommissioned from
another system. The re-used components are the cameras, the IO (Input/Output) Ethernet module,
sensors, cables, and other accessories. The hardware will be used in the acquisition of the images, and
for processing, a new system will be implemented with a human–machine interface, user controls,
and communication with the main production line. Main results and conclusions highlight the
efficiency of the CCD (charged-coupled device) sensors in the manufacturing environment and the
robustness of the machine learning algorithms (convolutional neural networks) implemented in
computer vision applications (thresholding and regions of interest).

Keywords: computer vision; sensors; machine learning; industry; manufacturing; robotics

1. Introduction

Computer vision applications are being used intensively in the public area for tedious
tasks, e.g., surveillance and license plate detection and reading, as well as in robotics
applications for tasks, e.g., object detection, quality inspection, and human machine
cooperation [1–3].

In the initial stages of development, implementing a computer vision application
(machine vision or robotic vision versions) was considered an exceedingly challenging
task. With the increase of the processing power, new hardware development, and new,
efficient, and performant image sensors, the development of such applications was made
significantly easier [4,5].

A huge boost in popularity for the image processing and computer vision application
was achieved with the increase in popularity of Python programming language and the
implementation of various image processing frameworks such as OpenCV (for C++ initially
and Python afterwards) and the development of machine learning and deep learning
frameworks [6,7].

Solutions implemented in the robotic manufacturing environment are based on cam-
eras using CCD sensors and industrial systems, which consider the computer vision
application as a black box providing a status. This approach proved to be robust and
efficient. The needs of industry are now growing different and becoming more complex.
The control systems also need to integrate with computer vision applications to provide
full control for the production process [8,9].

The current global and geopolitical context from the last years, the tendency for ac-
celerated car electrification, and recent innovation from Industry 4.0 have encouraged car
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manufacturers to integrate more computer vision applications in the production process.
Applications are mostly used for counting parts and ensuring traceability, e.g., barcode
readings, QR code readings, OCR, and defect detection in distinct stages of the manufactur-
ing process, e.g., painting, assembly, and machining. In this environment more complex
applications can be found, e.g., high precision measurement tools based on computer vision,
complex scanning, and applications based on artificial intelligence (machine learning) [10].

The solution presented in this paper is based on the integration of a CCD sensor
camera with a robotic control system that is also able to provide all the information needed
in the robotic manufacturing environment for traceability and planning while detecting
complex defects in real time. Two algorithms are used for detecting a class of defects inside
the cylinder chamber of an engine block. The main role of the computer vision algorithms is
the reducing the number of input features for the convolutional neural network by isolating
the region of interest (walls of the cylinder chamber). The convolutional neural network
scope is to process the newly generated image for providing a decision.

The future actions of the entire robotic system that manipulates these mechanical parts
depends on the results provided by the visual inspection system. Moreover, based on the
global results obtained on the entire visual inspection process, reprogramming or even
reconfiguration of the robotic systems involved in the manufacturing process of mechanical
parts will take place [11].

In order to implement this solution, the goal was to develop a computer vison system
that is able to detect machining defects from the cylinder chamber of the engine block. This
was achieved by developing the following steps:

• The system with reused parts.
• A new system architecture based on the available parts.
• A new software architecture to match the industrial standards.
• A new user interface for the software application.
• Integrating and updating the software development kits of the camera and input/output

ethernet module.
• An algorithm to isolate the region of interest in the acquired image.
• A machine learning algorithm able to receive an input in the format generated by the

previous computer vision algorithm.

2. Related Work

Defect detection technologies are used in the manufacturing industry for identifying
the surfaces (spots, pits, scratches, and color differences) and internal parts (defects holes,
cracks, and other flaws) of the products having problems. Computer vision defect detection
applications must be fast, non-destructive, and accurate, and they have become widely
used in the recent years. Zhou et al. [12] developed an artificial imaging system for the
detection of discrete surface defects on vehicle bodies using a three-level scale detection
method for extracting the defects that might appear on the vehicle surface. The method
distinguishes the defect location, comparing the features of the background from the defect
images, which allows for detection in concave areas or areas with abrupt changes in the
surface style lines, edges, and corners. It extracts defects that are hardly perceived by the
human eyes.

In various computer vision industrial applications, the basic setups for image acquisi-
tion are similar. For example, in the automotive manufacturing industry, a basic computer
vision application is needed a light source alongside a camera and a computer powerful
enough to process the acquired image. As light sources, LEDs are mostly used. LED light
sources offer high efficiency and versatility when it comes to triggers and dimming control.
Infrared light sources used with monochrome industrial cameras (or as infrared panels)
as well as multiple light sources are frequently used. For settings and environment closer
to the laboratory, in the majority of the computer vision application, cameras and light
sources are placed in a light absorbing room where the lighting can be controlled. A special
application, e.g., an assembly robot, may require a special camera. In this case, the light
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source and the camera will be attached to an actuator (servomotor, robotic arm, etc.). Indus-
trial cameras contain CCD (charge-coupled device) or CMOS (complementary metal-oxide
semiconductor) sensors and the lenses are chosen having in focus the environment and
the vision application. Trying to achieve real time processing, the software algorithms
must be executed on powerful machines. Algorithms are developed by customizing to
each particular application and each hardware configuration (camera and lighting). For
detecting different defects of a car after the painting process, a four-camera setup can be
used to achieve stable light and multiple cameras (e.g., five cameras) to acquire the same
affected area from multiple angles (light conditions different). In the acquired images, the
region on interest will be isolated, several specific filters for noise reduction will be also
applied, in addition to a feature extraction algorithm (specific to the vision application) for
isolating the different defects detected [11].

When a certain amount of data can be acquired and used, then a deep learning model
training supervised learning is adopted instead of a conventional recognition based on
feature descriptors. A classification module, an integrated attention module with an image
segmentation module, is used for weekly supervised learning. The classification module
extracts the defect features from the image. The integrated module has as a purpose the
detection of different irregular defects (e.g., for metal pieces) which can appear after casting
or shaping processes. The segmentation module is used to determine if a pixel from the
image is associated to a defect area [13].

Other common defect detection methods are ultrasonic testing, osmosis testing, and
X-ray testing [14]. The ultrasonic methods are used in the detection of defects in the internal
structure of the product under test (like X-ray testing). These methods are based on filtering
for feature extraction and the ability to describe the identified defect.

Alongside common methods, in recent years, deep-learning defect detection methods
have been used in various applications. Some of these algorithms are based on the use of a
deep neural network, e.g., a convolutional neural network, residual networks, or recurrent
neural networks. Computer vision defect detection applications have shown good accuracy
in binary defect detection [15].

In their paper, Zhonghe et al. [16] address the state of the art in defect detection-based
machine vision, presenting an effective method to reduce the adverse impact of product
defects. They claim that artificial visual inspection is limited in the field of applications
with possible dangerous consequences in the case of a failure because of the low sampling
rate, slow real-time performance, and the relatively poor detection confidence.

The replacement of artificial visual inspection is machine vision, which can cover the
whole electromagnetic spectrum, from gamma rays to radio waves. Machine vision has
a great ability to work in harsh environments for a long time and greatly improves the
real time control and response. Therefore, it can improve many robotic manufacturing
processes to support industrial activities. In this paper, the proposal for an industrial visual
inspection module consists of three modules: optical illumination, image acquisition, and
the image processing and defect detection module. It is stated that an optical illumination
platform should be designed. Then, CCD cameras or other acquisition hardware should be
use in such a way that the information carried by them to the computer should have an
extremely high quality. Finally, either classical image processing algorithms or better, deep
learning algorithms should be used, which are able to extract the features and perform the
classification, localization, segmentation, and other image operations, image processing
being the key technology in machine vision. In industry, this architecture can be used as a
guideline for designing a visual inspection system. It is given as an example in the paper
for inspecting surface characteristics in designing a highly reflective metal surface.

Wang Liqun et al. [17] focused on the idea of detecting defects using deep learning.
They also based their research on convolutional neural networks for training and learning
big sets of image acquisition data and they claim that it can effectively extract the features
and classify them accurately and efficiently. They use PatMax software, which can rec-
ognize twenty-five different filter shapes, and determines the location of the filter while
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being 99% accurate. The process first collects the information from the camera, reads the
image preprocessed result and trains on the processed images, then establishes a complete
information model and obtains the target image. A diffuse bright led backlight illumina-
tion is used. Light sensitive components were used for image acquisition, and a wavelet
smoothing was used for image preprocessing, after which Otsu threshold was used to seg-
ment the image. In the end, the support vector machine classifier was designed for defect
classification. The goals should be high precision, high efficiency, and strong robustness.
Therefore, the system needs an excellent coordination of the three modules. The features
are afterwards matched with the template, and the quality of the assembly process is judge
according to the matching result. Difficulties remain in detecting component defects due to
the variety of vehicle parts which have different shapes, and due to the fact, the defects are
very diversified. Moreover, the image structure of the parts is more complex, incorporating
irrelevant factors around the image and a lot of noise, which makes feature extraction
difficult. The authors managed to improve the VGG16 network model structure by adding
the inceptionv3 module, increasing the width of the model based on depth. Their resulted
accuracy was improved from 94.36% up to 95.29%, which is almost 1% more accurate
than previously.

Zehelein et al. [18] presented in their paper a way of inspecting the suspension dampers
on the autonomous driving vehicles between inspections. Their theory claims that in a
normal vehicle, the driver always monitors the health state and reliability of a vehicle,
and that it could be dangerous for an autonomous driving vehicle to not be monitored
between inspections. To solve this problem, they discussed one of the problems in defect
diagnosis while driving, namely the robustness of such a system concerning the vehicle’s
configuration. The main problems are the variable factors, such as tire characteristics, mass
variation, or varying road conditions. They decided to combine a data driven approach with
a signal-based approach, which led to a machine learning algorithm which can incorporate
the variations in different vehicle configurations and usage scenarios. In their paper, it is
stated that they used a support vector machine for classifying signal features, and they
also needed features that can distinguish between different health states of the vehicle.
Convolutional neural networks can deal with multidimensional data and demonstrate
good feature extraction, which makes them perfect for the job. They used the driving data
of the longitudinal and lateral acceleration as well as the yaw rate and wheel speeds. Using
FFT (fast Fourier transform), input data were shown to give the best results regarding
classification performance.

The authors were not able to check the real time implementation of the system because
there is not a specific value for the computing power of an automotive ECU (electronic
control unit). Therefore, the algorithm might not run optimally for every vehicle on the
market [19]. They also propose the feature extraction method and divide the defects into
three categories (pseudo-defects, dents, and scratches) using the linear SVM (scan velocity
modulation) classifier. Their detection results were close to the accuracy of 95.6% for dents
and 97.1% for scratches, while maintaining a speed of detection of 1 min and 50 s per
vehicle. They state that their system could be improved using deflectometry techniques for
image defect contrast enhancement, or by improving the intelligence of the method, but the
latter could slow down the detection speed. Moreover, if they could use parallel computing
techniques on graphic processing units, the speed of detection could be further improved.

A conventional computer vision approach is implementing the following algorithm [20,21]:

• Image acquisition
• Circle and point edge detection
• Length and radius measurements
• Feature collection
• Matching features
• Generate the verdict and store it in a database

A drawback of this approach would be the high processing time of the high-resolution
input image and the volatile environment from where the image is acquired, which will lead
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to a repeatability issue in the image due to dynamic shapes and contrast of the emulsion
marks [22].

In this paper, a description of a combination between a conventional approach and a
machine learning approach is given.

3. Solution Overview

3.1. Process and Issue Description

The purpose of the inspection machine is to detect a certain class of defects, to sort
the engine blocks on the production line, and to wash the bottom part of the block using a
special system for removing dirt, dust, and other mechanical process impurities. When a
defect is detected, the engine block is removed trough a conveyor from the production line.
In the washing process, some special solvents and emulsions are used.

The CCD sensor camera was configured to match a high range of environment con-
ditions with a fixed exposure, fixed gain, and a special set of lenses. The specification of
the lens used are further described in Figure 1. The implementation completes the already
installed inspection machine by adding a new station with the purpose to automate the
visual inspection performed until now by the operator. The complete layout of the process
can be observed in Figure 2.

Figure 1. Fujinon lens dimensions.

The next step after washing will be the drying and cleaning of the block with an
airflow through the bottom part and the cylinder chambers. The drying process leaves
behind dried cleaning emulsion, which will make the automated inspection more difficult.
In Figure 3a,b, the traces of dried emulsion can be observed on a flawless cylinder chamber.
Figure 4a,b describes the defect to be automatically detected from the cylinder chamber
alongside dried emulsion.

The engine block is made from cast iron with green sand insertions. In the process of
filling the mold with liquid metal, some environment factors can interact with the product
in an unwanted way. The damaged sand core can generate inclusions inside or at the
surface of the part. Another defect is generated by the impossibility of removing all the
gases from the mold when the liquid metal takes contact with the surface of the mold. This
process involves generating blowholes.
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Figure 2. Architecture of the washing and sorting machine on the production line.

 
(a) (b) 

Figure 3. No defects in the cylinder chamber. In (a,b) can be observed a part with no defects and
dried emulsion marks indicated by the arrows.
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(a) (b) 

 
(c) (d) 

 
(e) 

Figure 4. Defects in the cylinder chamber. In (a–e) parts with machining defects can be observed.
(a) presents a barely observable defect and (b–e) presents a more prominent one.

3.2. Architecture Description

Figure 5 describes the system architecture including the sensor. The solution was im-
plemented using a single camera capturing an image of the area that needs to be inspected.
For moving the camera, a PLC that is controlled directly by the main inspection machine
was used. When the PLC receives the trigger, a stepper motor is actuated. The camera is
hovered over each of the cylinders for acquisition and is connected to the stepper motor
with a coupling in order to create a linear movement. When the camera is in position, the
acquisition and processing system is triggered.
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Figure 5. System architecture of the video inspection operation.

For ensuring a more increased degree of repeatability in the image acquisition, an
infrared LED flash is used. The LED is controlled by the acquisition system. The main
controller used for acquisition and processing is represented by a Jetson Nano development
kit, which has a high computing power, especially in artificial intelligence applications.
The Jetson interacts with the PLC trough an industrial remote I/O module from Brainbox
by controlling it over ethernet. The Brainbox module also triggers the LED flash. The
control of the CCD camera is also implemented over Ethernet, in this case POE (power over
Ethernet) because the camera is also powered by the ethernet switch.

3.3. Hardware Description

For implementing the computer vision solution, the following hardware components
were used:

• Nvidia Jetson Nano controller with 4 GB RAM memory, 128 core GPU, an ARM Cortex
A57 Quad-Core CPU

• The Imaging Source DMK 33GX290e Monochrome Camera
• ED-008 Ethernet to Digital I/O Brainboxes module
• EffiLux LED Infrared Light flash EFFI-FD
• Industrial compliant POE Ethernet Switch

The Jetson controller is connected to the Ethernet switch alongside the camera with a
CCD sensor and remote I/O module. The LED Flash is connected with a pull-up resistor
(24 V) to the remote I/O module and is controlled via ethernet requests by the Jetson controller.

3.4. Software Description

The application was implemented using Python programming language. All the
used hardware components integrate Python software development kits provided by the
manufacturer. Therefore, the choice of programming language for implementation came
naturally. The human–machine interface was implemented using the PyQt framework
(PyQt5-Qt5 version 5.15.2, developed by Riverbank Computing, open-source), which is a
Python wrapper of the open-source framework Qt developed by the Qt company. Software
was designed to cover all of the manufacturing necessities, e.g., logging, user management,
process handling, and so on [21–30]. In Figure 6, a complete sequence diagram of the
process can be observed.
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Figure 6. Process sequence diagram.

3.5. Processing Algorithm Description

The processing algorithm has two main parts: the conventional processing and the
prediction using a machine learning model. As input, the algorithm takes a grayscale
image with a resolution of 1920 × 1200. In the conventional processing, the ROI of the
inner chamber of the cylinder is extracted by the algorithm, normalized, and a gaussian
filter is applied. After applying the filter, an adaptive thresholding is also performed by the
algorithm because the defects have a lower grayscale level and can be isolated this way.
When the defects are isolated by the thresholding, they are marked with a contour function.
This function returns the area of the detected contours (each contour detected represents a
possible defect).

The area can be evaluated for establishing a verdict. The conventional processing
works verry well when there are no significant traces of cleaning emulsion on the cylinder.
When the emulsion becomes mixed with dust, traces become increasingly noticeable
and with a lower grayscale level. Because of that, the thresholding is no longer able to
distinguish between traces of emulsion and actual defects [22–30].

The second part of the processing algorithm is the convolutional neural network
implemented using the PyTorch framework. The first layer takes as input the three RGB
channels of the image and splits it in eight features for the next layer. The second layer
is a max pooling layer with a kernel size of 3 × 3 and with padding enabled for looping
through the entire image. Third layer is another convolutional layer, similar to the first
layer, followed by a fully connected layer [31–33].

The spatial size of the output is obtained:

W − K + 2P
S

(1)

where W is the volume input size, K is the kernel size of the convolutional layer neurons,
S represents the stride, and P is the amount of zero padding at the borders of the neural
network [20].

A typical pooling layer is calculated with the following formula:

f (x, y) = max1
a,b=0 S2x+a, 2y+b (2)
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The activation functions for the convolutional layers are ReLu (rectified linear unit),
applying the following non-saturating activation function for removing the negative values
from the activation map by setting them to zero [20].

f (x) = max(0, x) (3)

In Figure 7, an architecture of the neural network is proposed [19–30].

Figure 7. Convolutional network architecture.

Hyper-parameters:

• Input channels—3
• Convolutional layers—5
• Fully connected layer—1
• Batch size—8
• Epochs—30
• Output channels—2

4. Results

The model was trained using old defective engine blocks as well as on fixed periods
of time with new batches of images evaluated by the model as defects. The false defects
were labeled as no defects in the dataset and the actual defects were added in the dataset.
The model did not perform very well, as can be observed in the results, due to the high
number of features that needed to be extracted and processed before setting a verdict.

The architecture presented in Figure 7 has five convolutional layers with max pooling
and a fully connected layer. The end image now has a resolution of 60 × 37 with 128 unique
features. In Figure 8, we can see that the loss function generated during training with the
new model has better performance and is able to detect the defects much faster.
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Figure 8. Training progress of the convolutional neural network. The X-axis describes the loss
function value can be observed. The Y-axis shows the corresponding epoch.

Below, the training results can be observed:

• Accuracy on training set: 100%
• Accuracy on test set: 100%
• Loss at the end of the training: 0.13

The main indicators tracked during commissioning was the number of the false
detections reported by the neural network and the rate of detection for real defects. The
number of false detections was initially high due to emulsion marks and system calibrations
(refer to Figure 9). After the dataset was established and the system calibrated, the indicator
decreased substantially, below a desired threshold such that we can consider that the
algorithm is reliable enough.

Figure 9. Evolution of false detections.
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It was observed that after including images with prominent marks of emulsion and
with small imperfections generated by improper lighting (camera stabilization), the number
of false detections decreased considerably (refer to Figures 10 and 11).

Figure 10. Evolution of detections. Blue line represents the real number of defects provided to
algorithm and the green line represents the defects detected by the algorithm over 8 days.

Figure 11. False detection evolution after final training.

Table 1 also shows the type of defects detected during operation in relation to false
detections and real defects. It can be observed that the highlight is still on the emulsion
marks resulting from the washing and drying process in the presence of the dust or other
impurities, this being the main false detection generator.

Table 1. This table shows the evolution of detections.

Number of Parts False Detections Actual Defects Error Type Defect Type Remarks

1200 100 10 Emulsion marks Machining defect Tests performed

1160 50 0 Emulsion marks N/A N/A

1193 52 0 Emulsion marks N/A N/A

1203 37 0 Emulsion marks
and lighting issues N/A N/A

1210 10 0 Highly intense
emulsion marks N/A N/A

1205 1 1 Highly intense
emulsion marks Machining defect Tests performed
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There is a lot of research being conducted on how different algorithms are responding
to already established datasets. The main approach used involves software pre-processing,
the use of a convolutional neural network for feature extraction, and in some cases another
network for classification [34–42].

This solution is uses only hardware pre-processing (camera as sensors and environ-
ment related) and one convolutional neural network for feature extraction and classification.
The setup proved to be sufficient and robust for the needed classification.

5. Conclusions

From the point of view of robotics applications developed in the automotive industry,
the robustness of image processing applications from the manufacturing area can be
increased considerably by using a machine learning algorithm to replace the classic method
of processing with filters, hardware, complicated optics, and complex software algorithms.
The machine learning algorithm can replace the classic approach and thereby ensure greater
flexibility in developing the backbone of the application, e.g., PLC communication, socket
services, and human–machine interface, so indispensable in this environment.

The weak point of this implementation remains the dependency on a sufficient and a
correct dataset. By ensuring that we have the correct data to work with, we can develop
and train a robust application for use in the manufacturing environment.

The advantage of using such an approach is that other implementations, e.g., commu-
nication, HMI, logging, and others, can be abstracted and reused in new implementations.
The training of the algorithm can also be abstracted and reused. The flexible part needs to
remain the architecture of the neural network and the dataset used.

Based on the work presented in this paper, a new application is already in development.
The scope of the new implementation is to detect the presence of a safety pin inside the
piston locking mechanism. This operation will be performed using three cameras which
are triggered simultaneously for acquisition, a new architecture for the neural network,
and different hardware to support a more complex application.
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Abstract: An increasing number of professional drone flights require situational awareness of aerial
vehicles. Vehicles in a group of drones must be aware of their surroundings and the other group
members. The amount of data to be exchanged and the total cost are skyrocketing. This paper presents
an implementation and assessment of an organized drone group comprising a fully aware leader and
much less expensive followers. The solution achieved a significant cost reduction by decreasing the
number of sensors onboard followers and improving the organization and manageability of the group
in the system. In this project, a group of quadrotor drones was evaluated. An automatically flying
leader was followed by drones equipped with low-end cameras only. The followers were tasked
with following ArUco markers mounted on a preceding drone. Several test tasks were designed and
conducted. Finally, the presented system proved appropriate for slowly moving groups of drones.

Keywords: drone; UAV; multi-agent; ArUco; markers; group of drones; machine vision

1. Introduction

Due to global technological development and commercial opportunities, vast growth
in the unmanned aerial vehicle market has been observed. Software, control systems,
structures, and methods of analyzing the environment with drones are developing. There
are high hopes for using drones for rescue and medical purposes. Thanks to the commer-
cialization of the drone market, emergency services receive professional tools that make
their work faster, easier, and safer. Often, after a fire, earthquake, or collapse, it is difficult
or even impossible to assess the level of damage and determine the necessary action based
on external observations. Using drones equipped with multispectral observation heads
is recommended to monitor the situation inside buildings. Unmanned aerial vehicles,
transmitting live, high-definition images, e.g., from a collapsed building or mining collapse,
minimize the risk and do not expose rescuers to unnecessary danger while simultaneously
offering first aid.

In rescue operations, particular attention is paid to the time needed to provide help.
Drones searching for injured persons often cannot carry additional cargo in the form of
essential materials such as bandages, medications, or even water. This paper presents
a system of underequipped “follower” drones tracking a “leader” drone. The leader is
equipped with systems enabling the identification and avoidance of obstacles and the
location of the injured, in order to immediately provide the necessary means of survival for
the victims of disasters (Figure 1). An example application of a group of drones is a mobile
crop-monitoring system employing several drones in a group carrying optical sensors [1].
A comprehensive review listing other multi-agent system applications was presented in [2].

The project aimed to investigate whether it is possible to send several drones into
unknown surroundings and control them via UAV “leader” tracking using ArUco tags.
This seems to be the simplest and least expensive method, providing a considerable num-
ber of resources necessary for survival to people trapped in hard-to-reach or dangerous
environments without risking the health or lives of rescuers. The main innovation is the
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structure of the multi-agent group of UAVs, wherein raising the number of inexpensive
followers increases neither the data exchange between actors nor the computational power
requirements.

 

 

Figure 1. Assumptions of the designed system.

2. Related Works

Regarding autonomous flights, the research can be divided into two areas. The first
typically focuses on improving and increasing the efficiency of control algorithms. The
second deals with teaching UAVs that have previously been operated in manual mode to
“learn by heart”, recreating the required trajectory with corrections from external threat
monitoring systems. Of course, there are many commercial structures wherein it is possible
to use GPS. However, we are more interested in scenarios wherein the environment and
surroundings through which one is to move are unknown, and it is impossible to estimate
the position based on GNSS systems. Many works have indicated that solutions involving
laser scanners, RGB-D sensors, or ultrasonic sensors mounted on the UAV board are
fundamental and most effective. There are also solutions employing a synthetic aperture
radar in addition to optical sensors [3].

It should be noted, however, that such solutions take up much space on the supporting
structure of the drone, and their weight makes it impossible to take on additional cargo.
Another approach is the simultaneous monitoring and remote control of each vehicle in the
group [4]. Theoretically, it is possible to plan a trajectory for multiple drones in a constraint
area [5]. However, in a natural environment, flights are only collision-free for a short time,
because of unexpected disturbances. In the case we tested, i.e., small drones that can carry
a small load, each gram of equipment is essential. According to many research results, the
best solution is to track another UAV leader [6–11]. A multifunctional group of drones can

118



Sensors 2023, 23, 740

be achieved by providing situational awareness by mounting sensors on the leader drone
only [12] and a variety of mission sensors onboard group-member vehicles [13], e.g., to
deliver enhanced scanning capabilities to infrastructure inspection systems [14] or build
models of ancient sites [15].

A group of UAVs can be controlled by one of multiple formation strategies and
techniques [16]; for rescue missions within disaster management systems, these include:
virtual structure [17,18], consistency algorithm [19], behavior-based control [20], and leader–
follower techniques. There are many advantages of using biological models, behavior-based
formation control, and tracking, which give custom roles to particular agents [21–23]. How-
ever, these models can be adapted to swarms of vehicles and require constant agent-to-agent
or agent-to-ground communication. In our case, we needed to bring a group of drones to a
destination without putting additional tasks in their way. In the leader–follower formation,
the followers can stay passive without any communication link. Various proposals exist for
keeping the group together and moving forward in a leader–follower formation [24–27].
Many have introduced novel methods, algorithms, and ideas for controlling agents and the
group. One of these, a linear consistency algorithm based on the leader–follower technique,
was presented in [28]. It comprised a method of tracking the leader’s position, heading, and
speed. In [29], a virtual piloting leader algorithm was designed. It successfully coped with
a leader failure but required high computational power onboard all the agents. Further, a
distributed UAV formation control method was designed in [30]. However, the applied
higher-order consistency theory required a preorganized communication topology.

A summary of the simulations and applications of the leader–follower technique
highlights a significant disadvantage: a high dependence on the leader. Any failure of
the leader affects the mission. Another problem is the substantial computational power
requirement when the number of agents rises. In this work, we addressed the second issue
as this project’s main innovation, since the structure of the leader and followers does not
change according to the number of agents in the group.

Visual passive markers are commonly used in every area of life. The visual pattern
was first proposed in 1948 by two students, Bernard Silver and Norman Joseph Woodland.
Due to the lack of appropriate technology, it was almost 30 years later that the barcode was
used commercially and automatically.

Currently, markers are commonly used to mark goods, position machines in produc-
tion, or read the position and orientation of medical devices during minimally invasive
treatment, primarily due to their low production cost (Figure 2).

Figure 2. Eight existing marker systems. Top, from left to right: ARToolKit, Circular Data Matrix,
RuneTag, ARToolKit Plus. Bottom, from left to right: QR code, barcode, ArUco, Cantag.
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One of the best-known passive markers is a QR code [31]. A large amount of infor-
mation can be stored under one tag, making it suitable for data transfer. In addition, they
are resistant to damage, which means that depending on the percentage of damage to the
entire code, it is possible to read at least part of the data contained in it.

Another type of tag is one used to track objects. ARTag and Artoolkit are characterized
by the speed of detection and easy tracking, but they are not immune to changes in lighting.
The ArUco marker was designed with similar technology. Its advantage is that it generates
a small percentage of false-positive recognition, while the method of its encoding increases
the effective recognition distance and the number of bit conversions. Some works indicate
that these are the most effective candidates for use in AR [32,33]. ArUco markers proved
to be solid reference points for mobile test beds [34] and stationary test benches [35]. The
markers provided a reliable reference for position and attitude determination, which could
be enhanced by setting the markers in three-dimensional patterns [36]. The accurate
positioning of the markers allows their application as characteristic points to support
simultaneous localization and mapping systems [37]. We applied ArUco markers as
reference points in our previous research on a drone automatic landing system [38].

Researchers from the University of Michigan built a square-shaped AprilTag with a
barcode, similar to QR codes and ArUco. A significant problem with their use seems to be
the low recognition speed. Olson et al. proposed an updated version of AprilTag called
AprilTag2, which resulted in increased detection speed [39]. Another modification was a
circular ring marker that was tested for efficiency but lacked feature recognition [40].

The CircularTag, WhyCon, RUNE-Tag, and TRIP tags present a different approach.
These round tags allow for high positioning accuracy but involve a complex, system-
intensive detection algorithm [41–45].

3. Materials and Automatic Control Algorithm

3.1. Test System Design

A classic X-shaped quadrotor was used for the tests. A Raspberry Pi 4 minicomputer
was used as the system for the implementation of the detection and tracking program. Due
to the desire to reduce costs, a HAMA C400 in Full HD 1080p webcam with a 70◦ visual
angle was responsible for recording the image. The design was based on our previous
research experience with drone airframes and flight controllers [46].

In the initial part of the study, a test of the limit values of the system was carried out
(Figure 3). The main parameters that were determined during the tests were the maximum
effective detection distance of the marker (Tables 1 and 2), the maximum marker detection
angle (change in marker position in the field of view of the camera), and the possibility of
marker detection depending on its position in the camera’s field of view at the horizontal
level. The marker detection was checked 2 m from the camera, in order to represent
a system working in limited space. The effective detection angle of the markers at the
horizontal level was 38◦ (Figure 4).

  

Figure 3. The marker identification rate versus distance.
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Table 1. Measurement results at 770 lx light intensity.

Marker Size [cm] Max Distance [cm] Max Angle L [◦] Max Angle R [◦]

3 × 3 174 38.5 30
6 × 6 320 45 43

12 × 12 586 50.5 56

Table 2. Measurement results at 63.7 klx light intensity.

Marker Size [cm] Max Distance [cm] Max Angle L [◦ ] Max Angle R [◦ ]

3 × 3 132 40 30
6 × 6 257 46 44

12 × 12 574 52 57

 
Figure 4. Effective camera field of view.

Three sizes of ArUco marker (3 cm × 3 cm, 6 cm × 6 cm, and 12 cm × 12 cm) were
tested at different light intensities (770 lx and 63.7 klx).

Based on the obtained results, it was concluded that the attempts to track the markers
in flight would be carried out only for markers with dimensions of 12 × 12 cm. This was
due to the quick recognition of the marker and the ability to maintain tracking more easily
at greater distances (maximum over 5.5 m) and with more pronounced changes in the
leader’s course (52 left and 57 right in clear weather conditions), allowing the drones to
follow the leader on more complicated routes.

3.2. Marker Detection Algorithm

The primary purpose for which the Aruco markers were designed was to quickly
determine the three-dimensional position of the camera relative to a single marker. Here,
the Hamming coding algorithm was applied. The tag detection algorithm was optimized
for a low false-detection rate. We could distinguish five stages of the detection process
(Figure 5). After the entire algorithm is completed, the marker ID and the rotation and
translation vectors are generated (to determine the position of the marker).
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Figure 5. Marker detection process.

The Hamming encoding of the internal tag matrix provides one-bit error correction
detection on each binary line. Unique tag identifiers are included in the directory, which
can be placed in the ArUco module or created by the user. Once the tag ID is detected, the
solvePnP (Perspective-n-Point) function is used for each corner of the tag. This function
returns a list of all the possible solutions (a solution is a <rotation vector, translation vector>
couple). Then, after solving the equation (Equation (1)), the 3D location of the point in is
determined based on the 2D image.

s

⎡⎣u
v
1

⎤⎦ =

⎛⎝ fx γ cx
0 fy cy
0 0 1

⎞⎠⎡⎣r11 r12 r13
r21 r22 r23
r31 r32 r33

t1
t2
t3

⎤⎦
⎡⎢⎢⎣

XG
YG
ZG
1

⎤⎥⎥⎦ (1)

where the vector

⎡⎣u
v
1

⎤⎦ describes the position of the point on the image (u, v);

⎛⎝ fx γ cx
0 fy cy
0 0 1

⎞⎠
and

⎡⎣r11 r12 r13
r21 r22 r23
r31 r32 r33

t1
t2
t3

⎤⎦ stand for the optics parameters; and XG, YG, and ZG describe the

point in space based on the camera reference system. After placing the plane over the four
points, the algorithm determines rotation vectors and translation between the camera and
marker planes.
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3.3. Automatic Control Algorithm

The “leader” drone is tracked automatically. The algorithm applied works continu-
ously in real time. By detecting the marker, the drone determines its center and locates it by
taking into account the center of the field of view. On this basis, it determines the direction
in which it must move and the speed it should maintain to avoid losing the marker from
the field of view (Figure 6).

Figure 6. All conditions of the marker position. (a) desired distance—no action; (b) too far—move
forward; (c) too close—move backward; (d) desired vertical position; (e) too low—move up; (f) too
high—move down; (g) desired horizontal position; (h) too right—move left; (i) too left—move right.

The first column shows the drone’s behavior in the case of forward and backward
movement (movement along the X-axis). In this case, the determining factor for the drone’s
behavior is the detected marker (Figure 6a) size. If the detected marker covers a smaller
area than the assumed area (Figure 6b), the drone receives the command “move forward”,
because the marker is too far away. Case (Figure 6c) describes a situation wherein the
detected marker is too large, which means that the distance between the “leader” drone
and the tracking drone is too small. Therefore, the drone receives the command to “move
backward” and changes its position to obtain the optimal position.

The drone’s behavior along the Z-axis is shown in the second column. The decisive
factor for the command sent to the FC is the position of the indicator’s center (Figure 6d).
When the center of the marker is above the center of the field of view, the drone receives
information that it is too high and must decrease the flight altitude (Figure 6e), while when
the marker is below the center indicated in the image, the drone receives information that
it is too low and must increase the flight altitude (Figure 6f).

The situation is similar for determining the required flight trajectory according to the
Y-axis (Figure 6g). When the center of the marker is on the left side of the image center, the
drone receives the command to “move to the right” (Figure 6h), while when the marker is
on the right side of the image center, it receives the command “move to the left” (Figure 6i).
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A PI controller was used to eliminate overshoots. The proportional and integral
coefficients were determined and applied to the following algorithm:

In the first step, the difference between the marker area and the arithmetic average
of the declared marker size range ( f berror) in relation to close range (Fbc), away range
(Fba), the declared max and min values of the distance between the drone and the marker
(fbrange), and the marker area (Area) was calculated (Equation (2)).

In the second step, the difference between the marker area and the arithmetic av-
erage of the declared marker size range ( f berror2) in relation to Fb back speed (Fbb), Fb
forward speed (Fbf ), and the declared maximum speed values (fbspeedrange) was calculated
(Equation (3)).

Finally, a speed value (Fbspeed) in relation to the proportional term (P), the integral
term (I), the previous loop error (Pfberror), fberror, and fberror2 was calculated (Equation (4)).

In addition, to avoid exceeding the speed limits for the follower drone, we decided to
protect it using a conditional statement (Equation (5)).

f berror = area − f bc + f ba
2

(2)

f berror2 =
( f berror − f bc) ∗ ( f b f − f bb)

f ba − f bc
+ f bb (3)

f bspeed =
P ∗ f berror2 + I ∗ ( f berror2 − p f berror)

100
(4)

f bspeed =

⎧⎨⎩
−2 f bspeed < −2

f bspeed f bspeed ∈ [−2, 2]
2 f bspeed > 2

(5)

The program code performing the controller function is shown in detail in Figure 7.

Figure 7. Programmatic implementation of the control algorithm.

4. Results

Due to the desire to use the reconnaissance drone tracking system in unfamiliar
surroundings, we did not consider the speed of following the “leader” drone. The main
element of the test was to determine the forward speeds at which the flight would be
smooth without losing the marker. For this purpose, the ArUco marker was installed on an
IRIS 3DR UAV. The IRIS 3DR could plan the mission’s route and the speed of movement.
The measurements were conducted for the three selected speeds using a 12 × 12 cm marker,
which had the highest recognizability (Figure 8).
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Figure 8. Flight in a straight line behind the leader. The bottom right image was taken by the camera,
showing the detected marker.

The research was divided into two parts. The first study was designed to determine
the minimum corridor necessary for a safe flight. The corridor was calculated by having
the drones repeatedly follow the leader moving at a constant speed in a straight line. The
speeds were selected based on the limitations of the data processing steps for routing and
decision making by the leader drone.

The determined properties were superimposed on a single chart, while the initial
position of the leader was compared to the location at which the tracking drones started
the tracking process to facilitate the route analysis of the individual followers (Figure 9).

(a) 

Figure 9. Cont.
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(b) 

 
(c) 

Figure 9. Position of the drones relative to the leader in the XY plane at different speeds: (a) 1.75 m/s;
(b) 1.95 m/s; (c) 2.2 m/s.

The results were obtained by subtracting each axis’s leader and follower route pa-
rameters. The data obtained this way were averaged using the arithmetic mean as the
best approximation of the actual value. In contrast, to calculate the average “dispersion”
of individual results around the mean value, the standard deviation from the mean was
calculated with the following Equations (6)–(8).

X =
∑k

i=1
(∣∣xLi − xFi

∣∣)
k

(6)
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Y =
∑k

i=1
(∣∣yLi − yFi

∣∣)
k

(7)

σ =
∑k

i=1(xi − μ)2

N
(8)

where |xLi − xFi | and
∣∣yLi − yFi

∣∣ are the absolute values of the distance between the leader
and the follower in a given plane.

At the specified speeds, no tracking loss of the ArUco tag was registered, and the
leader’s tracking was smooth. Table 3 shows values for the mean distance to the marker on
the XY plane and the standard deviations at a speed of 1.75 m/s.

Table 3. The average distance and standard deviation between the follower and leader routes at a
speed of 1.75 m/s.

Follower 1 Follower 2 Follower 3 Follower 4 Follower 5 Follower 6

Arithmetic average (m) 0.7626 0.7181 0.7087 0.7243 0.1868 0.1341
Standard deviation (m) 0.2785 0.2907 0.2807 0.3680 0.0996 0.0776

Rejecting the last two measurements, which were much better than the others, and
averaging the obtained results, the minimum safe corridor that would allow the drones to
follow the leader had a diameter of 0.7284 m, with an SD of 0.3045 m.

In the case of measurements at 1.95 m/s, the average value of the safe corridor was
lower and amounted to a surprising 0.1326 m, with an SD of 0.053 m. The distance values
of the individual drones from the leader in the XY plane are presented in Table 4. Only five
followers were included in this dataset, because the data from one flight were corrupted.

Table 4. The average distance and standard deviation between the follower and leader routes at a
speed of 1.95 m/s.

Follower 1 Follower 2 Follower 3 Follower 4 Follower 5

Arithmetic average (m) 0.1379 0.1369 0.0499 0.1896 0.1489
Standard deviation (m) 0.039 0.0696 0.0171 0.0798 0.0549

Comparable results to those obtained at 1.75 m/s can be seen in the third measurement
at 2.2 m/s. The average safe corridor value was 0.7025 m, with an SD of 0.3044. The distance
values of the individual drones from the leader in the XY plane are presented in Table 5.

Table 5. The average distance and standard deviation between the follower and leader routes at a
speed of 2.2 m/s.

Follower 1 Follower 2 Follower 3 Follower 4 Follower 5 Follower 6

Arithmetic average (m) 0.7223 0.6343 0.0837 0.7511 0.0675 0.1830
Standard deviation (m) 0.2929 0.2622 0.0452 0.3582 0.0283 0.2008

In the next step, we decided to examine how the tracking drones behaved when
following the leader along the programmed route. A route in the form of a rectangle with
sides of 4 m and 2.5 m was chosen. The leader’s set speeds were 1.7 m/s, 2 m/s, and
2.75 m/s (Figure 10).

127



Sensors 2023, 23, 740

(a) 

 
(b) 

Figure 10. Cont.
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(c) 

Figure 10. The 3D position of the drones relative to the leader at different speeds during flight around
the perimeter of the rectangle: (a) 1.7 m/s; (b) 2 m/s; (c) 275 m/s.

It can be noticed in the attached graphs that at the speeds of 1.7 m/s and 2 m/s, the
tracking drones did not lose the leader over the entire route, while at the speed of 2.75 m/s,
four out of five tracking attempts ended the marker being lost from sight (Table 6).

Table 6. The average distance and standard deviation between the follower and leader routes at a
speed of 1.7 m/s during flight around the perimeter of the rectangle.

Follower 1 Follower 2 Follower 3 Follower 4

Arithmetic average [m] 0.1655 0.1982 0.1896 0.2312
Standard deviation [m] 0.1113 0.1160 0.1126 0.0934

In the case of flights at a speed of 1.7 m/s, the followers’ routes were closest to the
leader’s route (average distance 0.1948 m, SD 0.1114 m). Satisfactory results were also
achieved at a speed of 2 m/s. According to Table 7, all followers moved at similar distances
from the leader’s route. The value of the average safe corridor, in this case, was 0.2418 m,
and the SD was 0.1475.

Table 7. The average distance and standard deviation between the follower and leader routes at a
speed of 2 m/s in flight around the perimeter of the rectangle.

Follower 1 Follower 2 Follower 3 Follower 4 Follower 5

Arithmetic average (m) 0.2334 0.2301 0.2276 0.2642 0.2537
Standard deviation (m) 0.1109 0.1129 0.1506 0.1827 0.1802

Figure 9c shows tracking blackouts for followers 1, 3, 4, and 5, which ended the mission
early (for safety reasons, a landing procedure was established when the marker was lost).
Due to only one drone completing the task, the mean values and standard deviations were
not counted. In addition, it was recognized that the leader’s flight speed of 2.75 m/s in
open space disqualified the possibility of using such speeds in missions.
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5. Discussion

Preliminary tests determined the boundary conditions at which the system operated
satisfactorily. The best recognition results for ArUco markers in terms of the distance
from the camera were obtained at the marker size of 12 × 12 cm (5.86 m), while for the
sizes of 6 × 6 cm and 3 × 3 cm, detection was possible at distances of 3.2 m (45% less
than the best result) and 1.74 m (70% less than the best result), respectively. In addition,
the best angular recognition results were also achieved for the 12 × 12 cm marker. The
achieved marker deflection angles, at which the marker was still detectable, of 50.5◦ left
and 56◦ right exceeded the recognition capabilities of the system for the 6 × 6 cm and
3 × 3 cm markers by 11.5% and 22.8% (46◦ left and 44◦ right) and 23.1% and 47.4% (40◦ left
and 30◦ right), respectively. The results of the tests carried out under the conditions of a
sunny day (63.7 klx) did not differ significantly from those of the tests carried out under
shaded conditions (770 lx). The only significant differences were observed in the marker
recognition distance, which increased by an average of 15% with a lower light intensity. In
addition, the maximum angle of view of the camera at which marker recognition was still
possible was set at 38◦.

Our major research task was to determine the flight parameters at which the tracking
process would be continuous and smooth while maintaining the flight trajectory as close as
possible to that set by the leader. Two scenarios were provided for in the research. The first,
i.e., a straight flight behind the leader at a constant speed, was used to optimize the tracking
system and determine the optimal speed of the leader. Six repetitions of the flight behind
the leader were carried out for the first speed adopted for the tests—1.75 m/s. The fifth and
sixth attempts achieved the best results, with an average distance of 0.1868 m and 0.1341 m,
respectively, from the leader’s flight trajectory on the 8 m planned route. The results from
these two measurements were so favorable (78% lower than the rest of the average results
obtained in this experiment) that we decided not to take them into account in the tests
determining the average safe corridor that must be provided for the follower to complete
the mission. Such a discrepancy in the results could have been due to the ideal weather
conditions (windless day) in which these two flights were performed. The flights of the
other four followers were similar to each other. The average distances from the leader’s
flight trajectory were 0.7626 m, 0.7181 m, 0.7087 m, and 0.7243 m, respectively. In the case
of flights at a speed of 1.95 m/s, particularly satisfactory results were obtained, with an
average distance from the leader’s trajectory of 0.1326 m. The resulting distance was less
than 3 cm in the consecutive tests with a leader flight speed of 2.2 m/s and 1.75 m/s.

In the second scenario, flights were carried out along a planned rectangular route.
This test was performed in order to check the traceability of the tag in the proposed system.
The leader’s speeds were pre-determined for the tests, just as in the first part of the study.
Thus, the leader was moving at speeds of 1.7 m/s, 2 m/s, and 2.75 m/s. In the case of the
first two speeds, the average distances from the leader’s trajectory were similar (0.1948 m
for the speed of 1.7 m/s and 0.2418 m for 2 m/s), while the third speed turned out to be
too high for the followers to keep up with the leader. Out of five attempts, only one was
successful, and the follower reached the route’s endpoint with an average distance from
the leader’s trajectory of 0.22 m.

According to the results of the conducted research, it can be assumed that rescue
missions carried out based on the proposed system could be successful. The obtained
results suggest that the organization of such tasks in an automatic system is realistic and,
most importantly, effective. Of course, there are some limitations to the use of such a
procedure. The main problem is the aerodynamic drag surface of the ArUco marker.
Despite good tracking results, difficulties resulting from strong gusts of wind (which
cannot be ruled out in open-air operations) substantially reduced the usefulness of the
entire system. In closed rooms, the detection of all markers at no more than 150 cm from the
“leader” UAV was achieved with 100% efficiency, while the detection of the same markers
in an open space under windy weather conditions was occasionally unsuccessful, and a
new procedure for finding the marker was required. In addition, it seems reasonable that a
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communication system should be created for the leader, connecting it to a tracking drone
to avoid losing the marker. In such a case, the leader could receive information in the form
of a “STOP” command, which would remain until the follower rediscovered the marker.

The great advantage of the system is that it can move freely in limited spaces where it
is impossible to use GNSS navigation systems. The achieved tracking speeds corresponded
to the movement of drones in an unknown space with the continuous analysis of the sur-
rounding image. High speeds are not required in such situations, but high maneuverability
is expected, which is ensured using a multi-rotor platform.

Another advantage of the proposed solution is the possibility of cascading drones
depending on the amount and weight of the equipment needing to be transported. The
only modification that would have to be made is that each tracking drone would have to be
equipped with an ArUco marker and would become a “guide” for the next tracking drone.

The flight duration for this type of task is related to the battery used. If an extended
flight time is required, a battery with a larger capacity must be used. However, it should be
remembered that as the power reserve of batteries increases, their weight also increases,
which is crucial considering the possibility of transporting equipment necessary to save
lives and protect health.

In further studies on this project, we plan to replace the ArUco markers with infrared
diodes. With such a modification, drones could track the leader even in conditions without
lighting. In addition, it would eliminate problems resulting from the resistance to move-
ment set by the marker. Another option to improve the system is to mount the camera on a
gimbal placed on the drone. The proposed solution would reduce the probability of losing
the tracked marker resulting from a sudden direction change by the leader.

Additionally, tests should be carried out in closed rooms, for which this system was
also designed, to verify the system. In this way, we would limit the impact of external
factors (such as gusts of wind, precipitation, or dust) on the entire system. Determining
the characteristics of the follower and leader movement in closed rooms would contribute
to creating a list of minimum requirements that must be met to use the system safely and
effectively in rescue missions.

6. Conclusions

The proposed system could prove effective in the assumed scenarios of rescue missions.
Our research found that its use in closed spaces and outdoors was possible and practical.
The system had certain limitations, such as the impossibility of its use in intense winds
or during missions conducted in complete darkness. The system’s capabilities could be
increased, and it could be used in the dark. Using such a system would substantially reduce
the cost of multiple-vehicle drone operations, but the most significant advantage of this
solution is its minimization of the threat to the lives and health of rescuers who would
otherwise have to perform the mission independently. Its main benefit is the innovative
way of organizing the group of robots within a leader–follower formation without active
communication between agents in the group or between the agent and the ground control
station. This results in a considerably lower cost of expanding the group with further
agents, which we identified as one of the primary drawbacks of leader–follower formations.
Moreover, the system can be used immediately, without prior preparation, saving the time
usually needed to perform reconnaissance and decide on how to carry out a mission.
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Abstract: Standard industrial robotic manipulators use well-established high performing technolo-
gies. However, such manipulators do not guarantee a safe Human–Robot Interaction (HRI), limiting
their usage in industrial and medical applications. This paper proposes a novel local path planner
for spherical wrist manipulators to control the execution of tasks where the manipulator number of
joints is redundant. Such redundancy is used to optimize robot motion and dexterity. We present an
intuitive parametrization of the end-effector (EE) angular motion, which decouples the rotation of
the third joint of the wrist from the rest of the angular motions. Manipulator EE motion is controlled
through a decentralized linear system with closed-loop architecture. The local planner integrates a
novel collision avoidance strategy based on a potential repulsive vector applied to the EE. Contrary to
classic potential field approaches, the collision avoidance algorithm considers the entire manipulator
surface, enhancing human safety. The local path planner is simulated in three generic scenarios:
(i) following a periodic reference, (ii) a random sequence of step signal references, and (iii) avoiding
instantly introduced obstacles. Time and frequency domain analysis demonstrated that the developed
planner, aside from better parametrizing redundant tasks, is capable of successfully executing the
simulated paths (max error = 0.25◦) and avoiding obstacles.

Keywords: robotics control; local path planner; task redundancy; collision avoidance strategy;
human–robot interaction

1. Introduction

Industrial robotic manipulators use well-established technologies that guarantee high
performances in terms of velocity and accuracy. Indeed, typical values of repeatability
and joint velocity for industrial manipulators are approximately 0.01 mm and 300◦/s,
respectively [1]. Despite the clear capabilities of industrial robots, their usage is still very
much limited to applications where their workspace is exclusive and humans’ presence
is forbidden. The standard regulatory ISO 10218-1/2:2011 [2] and ISO/TS 15066:2016 [3]
provide requirements, specifications, and guidelines to ensure safety for industrial and
collaborative robotic applications and work environments. Nowadays, most industrial
robots work inside fences that physically limit the access of humans into the workspace.
However, certain tasks such as robotic surgery require the robot to share its workspace
with humans. The need for physically close interaction between humans and machines
has motivated many groups, both in academia and industry, to study new strategies for
safe Human–Robot Interaction (HRI) [4,5]; the followed strategies for a safe HRI can be
categorized as post-contact or pre-contact measures.

Post-contact safety measures serve to mitigate the effects of a collision once it has
already occurred. Post-contact measures include soft and smooth designs of any potential
contact points on the robot structure and the use of integrated sensing capabilities mea-
suring the intensity of such impacts [6,7]; post-contact measures are used to minimize the
impact of a collision but also intentional contacts [8,9].

Sensors 2023, 23, 677. https://doi.org/10.3390/s23020677 https://www.mdpi.com/journal/sensors
135



Sensors 2023, 23, 677

On the other hand, pre-contact strategies use perceptive systems to provide online
environment information to the robotic manipulator to generate collision-free trajectories.
Path planning algorithms can be classified into: (i) global path planning algorithms, and (ii)
local path planning algorithms. Global path planning algorithms solve an optimization
problem searching for a free-collision path from an initial configuration to the desired
one [10]. Global planners are usually able to find the optimal path in a finite amount of
time; however, their computational time requirements can be a limiting factor in dynamic
environments. On the other hand, local planners provide a local trajectory to the robotic
arm based on the final goal and the local environment information at a certain time.
Local planners require much less computational time to be executed and generally cannot
guarantee that the generated trajectories will reach the final goal. Local planners are
therefore adequate for tasks characterized by having a highly changing objective trajectory
(e.g., teleoperation) or highly dynamic environment (e.g., collaboration with humans). Most
of the local path planners in literature are based on and/or are inspired by the artificial
potential field foundational method introduced by Khatib et al. in [11]. The artificial
potential field method assigns a repulsive potential to the obstacles and an attractive
potential to the desired goal configuration. Potential field-based methods have proved to
effectively avoid collisions in real-time applications [12].

Robotic manipulators executing tasks in non-structured, dynamic environments must
guarantee both a safe interaction with the environment and a safe execution of the objective
task, especially in critical tasks such as the ones performed by surgical robots. Many
such tasks are characterized by having an axis of redundancy aligned with the last joint
of the robotic manipulator. Assuming that basic machining operations, such as milling
and drilling, only require 5-DoF, the anthropomorphic robot becomes adequate and the
task optimizable. The optimization method can be used to exploit the redundancy that
certain tasks have. Singularities, joint limits, and collisions were optimized for redundant
manipulators [13]. Lukić et al. proposed the optimization of the Cartesian stiffness of a
kinematic redundant robot with a null space projection. However, they only considered
maintaining position without any specified orientation, which is not the case for machining
operations [14]. Several research groups have studied approaches to exploit redundancy
in industrial applications. Zanchettin et al. [15] implemented a redundancy resolution
criterion that maximizes the manipulator maneuverability to exploit the redundant degree
of freedom available on drilling tasks. In [16], Guo et al. presented a novel method based on
the Jacobian matrix for computing a performance index based on the stiffness of the robot
during machining applications. These studies also paved the way for the use of robotic arms
in redundant tasks related to medical scenarios, such as in Focused Ultrasound Surgery [17]
or for teleoperation control of a 7-DoF robot manipulator for Minimally Invasive Surgery
(MIS) [18].

The manipulation needs, found in the application described in [17], have motivated
the development of the novel local planner presented in this work. In this specific robotic
scenario, an anthropomorphic manipulator (i.e., an anthropomorphic arm with a spherical
wrist) is equipped with a transducer able to stimulate human tissue through ultrasound
energy for treating tumors in moving organs. The ultrasound energy is concentrated in a
focal spot located along the central axis of the transducer. Hence, the pose of this rotation
axis, combined with the manipulator end-effector (EE) linear position, determines the focal
spot positioning (i.e., 5-DoF task due to symmetrical tool). The remaining DoF can be used
to accomplish secondary tasks such as cable management. Similarly, there are many other
scenarios where the position of the joint Jt does not affect the main task, as in welding
applications. Hence, it would be useful to describe the EE angular movement decoupling
the rotation of the third wrist joint Jt from the rest of the angular motions.

Aim and Organization of the Work

This work aims to develop a local planner that optimizes and simplifies the safe usage
of robotic manipulators equipped with a spherical wrist executing redundant tasks in
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workspaces shared with dynamic obstacles (e.g., humans). The proposed path planner is
based on the following features: (i) the rotation of the third wrist joint Jt must be decoupled
from the rest of the EE angular motion, (ii) the resulting EE manipulator dynamics should
behave as a linear dynamical system, (iii) the collision avoidance strategy must consider
the entire surface of the manipulator, and (iv) all the local planner parameters must have a
physical meaning.

The present work has four main sections. In Section 2, we first present the theoretical
formulation that leads to the local planner and then describe the methods used to validate
the proposed local planner making use of an ad hoc simulator. In Section 3, we present and
discuss the results of the performed simulations. Finally, we summarize the conclusions
in Section 4.

2. Materials and Methods

2.1. Local Planning for Redundant Collaborative Tasks: Theoretical Formulation

In this subsection, we present a new parametrization of the pose of the end-effector in
a spherical wrist manipulator that more naturally represents the fundamental degrees of
freedom of redundant tasks. The parametrization decouples the rotation of the third wrist
joint Jt from the rest of the EE angular motion. We then present the theoretical computation
of the disturbance vector DEE based on the collision avoidance strategy. Finally, we present
the control law used to implement the local path planner.

2.1.1. Task Parametrization: Separation of the Redundant Axis

The kinematic model of the robotic manipulator depends on the structure of the
manipulator [19]. The spherical wrist represents one of the most widely employed joint
configurations and its structure is presented in Figure 1. Figure 1 also represents the manip-
ulator base and the manipulator EE reference system following the Denavit–Hartenberg
convention [19]. This robotic structure has two important properties: (i) the pose of the
zEE axis depends only on the joints before Jt and (ii) the rotation along zEE can be inde-
pendently controlled by means of the Jt. These properties do not depend on the entire
robotic structure, but they are intrinsic proprieties of the spherical wrist. We propose a
parametrization that separates the EE angular movement into two rotations: (i) a rotation
along the axis perpendicular to both the z-axis of the initial orientation, zs, and the target
orientation, zt, and (ii) a rotation of the joint Jt to the desired rotation along the z-axis.

Figure 1. Kinematic model of a 6-DoF manipulator with focus on the spherical wrist, where the
center of the spherical wrist (W) and the end-effector (EE) reference system are presented; a possible
manipulator base reference system (B) is also represented.

In Figure 2, we present a generic motion of the z-axis together with the described
parameters and rotation angles (i.e., θ and γ) along their respective axes of rotation. Fig-
ure 2b,c illustrate the parallel and perpendicular views concerning the plane defined by the
zs and zt vectors. Figure 2b presents the θ angle rotation along the xθ axis perpendicular
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to the zs and zt plane. On the other hand, the rotation along the yγ axis performs the
out-of-plane rotation. The yγ axis is defined to be perpendicular to the xθ axis and to the
projection of zθEE into the plane spanned by the θ angle. In the following equations, we
formalize the described definitions of the rotation axes xθ and yγ.

xθ = zs × zt (1)

yγ = zθEE × xθ (2)

Figure 2. (a) Schematic representation of the z-axis overlapping motion for reaching the vector zt

starting from zs. The angles θ and γ are defined relative to the rotation axis xθ and yγ. (b) Section of
the plane defined by the vectors zt and zs spanned by the θ angle. (c) Section of the plane spanned by
the γ angle perpendicular to the xθ and zθEE vector.

We can then compute the zEE at any instant applying the following ordered rotations
to the starting z-axis (zs).

zEE = Ryγ
(γ)Rxθ(θ)zs (3)

The notation Ra(b) refers to the rotation along the a-axis by an angle b. Based on the
definitions of the rotation axis we will use the equation 3 to express the angular motion of
the EE; the following expression can be used to compute the reference angle θr (Equation (3))
while, by definition, the reference angle γr is always zero.

θr = cos−1
(

zT
s zt

)
(4)

More specifically, starting from a random zs and using Equations (1)–(3), we can
compute the zEE by multiplying zs for two different rotation matrices. A first rotation
is performed along xθ, which is the axes and the angle needed to align zs and zt (target
orientation). A second rotation is performed along yγ, which is the axes (perpendicular to
the plane containing xθ and the projection of zEE) and the angle needed to align zt with zEE.

Note that the definition of xθ guarantees that θr is always larger than or equal to
zero. Given a measured EE orientation, such orientation can be expressed in the described
parametrization by applying the following equation where γr is the reference target angle
(i.e., the angle needed to reach the target orientation), whereas γ is the state variable that
evolves (i.e., the real angle).

γr = sin−1
(

xT
θzEE

)
(5)

θ = cos−1
(

zT
s zθEE

)
(6)

Finally, we compute the last joint Jt directly applying the manipulator inverse kine-
matics. It is worth noting that the angle position qt of the joint Jt does not influence the
z-axis overlapping motion.

138



Sensors 2023, 23, 677

Singularity Handling

The described rotation axis is not well defined when zs and zt are parallel. The xθ axis
can be chosen as an arbitrary vector contained in the mutually perpendicular plane. If the
scalar product zs · zt = −1, an EE rotation is requested to achieve the desired orientation.
This freedom of choice can be used to avoid robotic wrist singularity [19]. Hence, setting
the xθ axis as the rotation axis of the joint J f allows performing the EE rotation through
only its joint angle. By doing so, the second joint Js does not perform any movement, thus
allowing it to avoid the robotic wrist singularity.

2.1.2. Disturbance Computation for Collision Avoidance

Inspired by the artificial potential field method [11], we propose to introduce a distur-
bance vector modifying the planned trajectory based on the distance information between
obstacles Oi, i = 1, . . . , N, and each manipulator link. Each obstacle contributes to such a
disturbance vector introducing a virtual force FEEi

and one virtual torque TEEi
. For each ob-

stacle Oi, we define the distance between an obstacle and the manipulator as the minimum
distance between the obstacle and each of the M manipulator links. We then compute the
virtual force FEEi

generated by the obstacles using the following piece-wise function.⎧⎪⎪⎪⎨⎪⎪⎪⎩
FEEi

= FMAX − (FMAX−FW )
dD

dm
Oi

; if (
∣∣∣∣∣∣dm

Oi

∣∣∣∣∣∣< dD)

FEEi
= FW − FW

(dW−dD)

(
dm

Oi
− dD

)
; if (dD <

∣∣∣∣∣∣dm
Oi

∣∣∣∣∣∣< dW)

0; if (
∣∣∣∣∣∣dm

Oi

∣∣∣∣∣∣> dW)

(7)

In Figure 3, we present the two linear zones: the” warning” and” danger” zones
resulting from the proposed Equation (7). In these zones, each obstacle acts as linear
springs with different stiffness (i.e., greater stiffness in the” danger” zone). Four parameters
characterize the function: (i) the starting distance of the” warning” zone dW , (ii) the starting
distance of the “danger” zone dD, (iii) the obstacle force FW generated at dW , and (iv) the
maximum obstacle force FMAX generated at zero distance.

Figure 3. Virtual force generated by an obstacle at a given distance in the environment. The force is
proportional to the distance, with different stiffness constants, based on the zone (i.e., “warning” and
“danger” zones).

We use the virtual forces computed to generate a virtual torque. We compute the
virtual torque as the direct sum of the following two torque components: (i) the torque
perpendicular to the zEE axis (Tp

EEi
) and (ii) the torque along the zEE axis (Ta

EEi
). The virtual

torque Ta
EEi

is non-zero only when the minimum distance dm
Oi

is associated with the last
manipulator link. The following equation presents the computation of the virtual torque
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Ta
EEi

based on the force FEEi vectors components perpendicular to the zEE axis and the

application lever arm, normalized with the maximum lever arm (i.e., Tl
2 , Tl being the

thickness of the last manipulator link).

Ta
EEi

=
2
Tl

((
I3x3 − zEEzT

EE

)(
pOi

− EE
))

×
(

I3x3 − zEEzT
EE

)
FEEi (8)

We compute the virtual torque Tp
EEi

perpendicular to the zEE axis as the cross-product
between FEEi and the normalized lever arm along the zEE.

Tp
EEi

=
1∣∣∣∣zT

EE(EE − W)
∣∣∣∣ (zEEzT

EE

(
pOi

− EE
))

× FEEi (9)

Finally, we sum the force and torque contribution of each obstacle obtaining the overall
virtual force and torque.

FEE = ∑
i

FEEi
(10)

TEE = ∑
i

TEEa
i
+ ∑

i
TEE

p
i

(11)

Once we have the virtual torque TEE computed in the base manipulator frame, we can
express it using the transformation that we present below.

Ts
EE =

⎡⎣ xT
θ

yT
γ

zT
EE

⎤⎦TEE (12)

If we compose the virtual force and torque expressed by the Cartesian and custom
axis, respectively, we obtain the disturbance vector DEE.

DEE =

[
FEE

Ts
EE

]
(13)

It is worth noting that other virtual forces/torque may be superimposed based on
contact forces/torques to implement an impedance/admittance control. The measurement
of the actual contact force/torque can be provided by external sensors, such as the sensitive
and protective skin presented in [6,20] and/or standard load cells.

2.1.3. Control Law

The state vector X, defined below, represents the manipulator EE pose and it is com-
posed of the Cartesian coordinates of the EE and the angle:

X = [x y z θ γ qt]
T (14)

The decoupled nature of the state variables allows using a decentralized Multiple
Input Multiple Output (MIMO) linear dynamical system to control the dynamics of X.
Each state variable is controlled through a Single Input Single Output (SISO) system with a
closed-loop architecture. Figure 4 depicts the structure of the SISO control system (i.e., equal
for the six state variables) and it introduces the state vector reference Xr and disturbance
vector DEE.
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Figure 4. Schematic of the SISO linear system which controls the dynamic evolution of each state
variable. The inputs are the reference state vector and the disturbance vector. The saturation for state
velocity and disturbance is also reported.

Whenever the disturbance and velocities are not saturated, the system behaves linearly.
Under those conditions, we can use the superimposition principle to write the transfer
function from the inputs Xr and DEE to the output X, as follows:

X =
1

D
K s + 1

Xr +
1
K

D
K s + 1

DEE = F(s)Xr +
1
K

F(s)DEE (15)

The transfer function F(s) controls the dynamics of the state vector, parametrized
through the damping D and spring K parameters (i.e., the pole of the closed-loop system
is D

K ). Both systems inputs equally influence the X dynamics with different static gains:
1 for the reference Xr and 1

K for the disturbance DEE. The SISO control system includes
two saturations: (i) one saturates the state variable velocity and (ii) the other saturates the
maximum amplitude of the disturbance. We define the following linear velocity saturation
function. ⎡⎣ .

xs
.
ys.
zs

⎤⎦ =
Sl∣∣∣∣∣∣[ .

x
.

y
.
z
]T

∣∣∣∣∣∣
⎡⎣ .

x
.
y
.
z

⎤⎦ (16)

Similarly, we define the following saturation function for the EE angular velocity ω.

ω =
[
xθ yγ zEE

]⎡⎢⎣
.
θ
.
y
.
z

⎤⎥⎦ (17)

⎡⎢⎣
.
θs
.
γs.
qts

⎤⎥⎦ =
[
xθ yγ zEE

]−1
(Sa

ω

||ω||
) (18)

We used just two saturation parameters to saturate the EE velocity to maintain the
motion direction unchanged, following industry standards [1]. On the other hand, we may
use individual saturation constants for each state variable of the disturbance signal.

2.2. Validation Methodology of the Theoretical Formulation: Simulations

In this subsection, we present the architecture, the simulation environment, and the
tests that we used to validate the proposed local planner. A fundamental element of the
simulator is the collision and proximity simulator (CPS). The CPS was developed and
used by the authors in [21]. The local planner simulator parameters, used to validate the
local planner, are presented in the following subsection, together with the representative
simulated scenarios.
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2.2.1. Simulator
Simulator Architecture

In Figure 5, we present the general architecture of the proposed local path planner.
When a new desired EE pose is provided to the path planner, the reference block computes
the state variable’s reference Xr and the axes xθ and yγ. The reference angle θr is calculated
using Equation (3), while the references for qtr

are computed using the manipulator inverse
kinematics. The linear state variables do not need computation because they directly
correspond to EE Cartesian coordinates. The inputs of the MIMO controller are the state
variable reference Xr, the DEE disturbance vector, and the measure of the state variables
¯
X provided by the block f2. The measure of the EE Cartesian coordinate and the joint
angle qt are directly provided by the manipulator controller. The DEE disturbance vector is
computed based on the CPS information, as presented in the following subsection. The
input of the disturbance block is the current manipulator joints angle necessary to bring
the virtual manipulator in the simulator. The output of the MIMO block is the state vector
X, which is transformed into a manipulator joint trajectory qref by means of f1. Block f1
uses the manipulator inverse kinematics to compute the references of the joints before Jt is
obtained from X. The reference signal to the manipulator qref is obtained by adding the
state variable qt to the previously calculated joint reference.

Figure 5. General architecture of the local path planner.

Collision and Proximity Simulator

The collision and proximity simulator is written in C++ language and is based on
the Bullet Physics engine [22], following the performance analysis conducted in [23]. The
software architecture of the simulator is based on client–server architecture; thus, different
applications can interface with the CPS through a simple dedicated interface (e.g., socket
applications). To reduce the computational time for collisions and proximity algorithm
detection, we simplified the geometries of the manipulator links. The use of a simplified
version of the manipulator links is a common practice in the development of collision
simulators [24]. The working environment is displayed through an open-source viewer
that can be turned off to reduce the CPS computational time. Given a set manipulator pose,
the CPS outputs a list of information related to each manipulator link. In particular, the
CPS output reports the minimum distance dOi (with point of application pOi

and vector
vOi

) between each manipulator link and each obstacle in the virtual working environment.

Simulator Parameters

In this work, we use a model of an ABB IRB120 (Zurich, Switzerland) as a representa-
tive example of an industrial manipulator with a spherical wrist. The simulator runs in
Matlab (MathWorks Inc., Natick, MA, USA) and interfaces with our CPS software [20]. The
model of the manipulator is equipped with a tool with maximum thickness, Tl , of 92.8 mm.
The dynamics of the manipulator actuator are neglected in the performed simulation. The
local planner requires two tuning steps: (i) the tuning of the MIMO system, which controls
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the dynamics of the manipulator, and (ii) the tuning of the collision avoidance strategy.
The MIMO system is defined by the following parameters: (i) the spring parameter K, (ii)
the damping parameter D, and (iii) the velocity and disturbance saturation functions. The
spring parameter K is set to 1 to not amplify or attenuate the disturbance DEE. The desired
linear manipulator dynamics are set to have a settling time (5%) of 3 s (i.e., a pole of the
closed loop at 1 rad/s). The pole of the linear system is controlled by the ratio between K
and D; therefore, the damping parameter D is set to 1. The saturation thresholds for the
linear and angular velocities are set to 100 mm/s and 10◦/s, respectively. The disturbance
saturation for the linear state variable is set to 100 N, whereas 30 N/mm is set for the angu-
lar state variable. These settings lead to 100 mm and 30◦ of maximum displacement from
Xr, since the spring parameter K is 1 when obstacles appear in the workspace. The collision
avoidance strategy is only defined by the parameters of Equation (7), which determine the
virtual forces generated by obstacles. The parameters set in the simulations are 300 and 100
mm for the dw and dD, respectively, while the forces are set to 25 N (FW) and 100 N (FMAX).

2.2.2. Validation Scenarios

Three generic scenarios have been simulated using the previously described simulator.
In the first scenario, the local planner is used to follow a periodic signal as would happen,
for example, for a medical robot that needs to adapt its motion to the human breath.
Secondly, the local planner is requested to follow a random sequence of step signals that
could represent, for example, a set of motions required for welding or teleoperating a
robot. Finally, a set of scenarios are simulated to validate the suitability of the local planner
to avoid collision with obstacles. It is worth noting that given the linear nature of the
local planner, the superimposition principle can be applied to separately investigate the
manipulator’s EE response to the reference signal Xref and the disturbance DEE. The
robot references generated by the local planner in all cases have been analyzed both in
the time and frequency domains. The time domain analysis compares the EE trajectories
with the related reference and nominal signals. The nominal signals are computed by
exciting the nominal linear system (i.e., F(s)) with the related reference signals. The EE
linear motion analysis is performed only by studying the state variable x. This is possible
because the Cartesian coordinates are decoupled. On the other hand, angular motion
requires a complete EE angular movement investigation (i.e., roll, pitch, and qt angles).
The frequency analysis is performed by comparing the spectrum of the joint reference
qref with the spectrum of nominal dynamics (which uses the RPY parametrization). This
serves to investigate how the inverse kinematics affect the joint reference qref spectrum,
also evaluating its suitability for standard manipulator actuator joints. All the simulations
are performed ensuring no velocity saturation occurs.

Periodic Signal

The reference signals used for the periodic signal following the scenario are generated
using the roll, pitch, and yaw (RPY) parametrization performed in local axes. The 6-DoF
sinusoidal trajectories are composed of three harmonic frequencies (i.e., 0.4, 0.2, and 0.1
rad/s), both for the linear and angular coordinates. We have used the following reference
trajectories for the EE Cartesian position and orientation.⎡⎣EEx

r
EEy

r
EEz

r

⎤⎦ = 50

⎡⎣sin(0.4t)
sin(0.2t)
sin(0.1t)

⎤⎦+

⎡⎣300
0

200

⎤⎦ (19)

⎡⎣Rr
Pr
qtr

⎤⎦ = 25

⎡⎣sin(0.4t)
sin(0.2t)
sin(0.1t)

⎤⎦ (20)
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Sequence of Step Signals

A sequence of 100 6-DoF step reference signals has been randomly generated using
the roll, pitch, and yaw (RPY) parametrization in local axes. It is worth noting that the roll
and pitch angles define the pose of the target axis zt, whereas the yaw angle is directly
related to the angle position qt of the joint Jt [18]. The EE Cartesian position for the 6-DoF
step reference is randomly generated in a cube with 200 mm side centered.

Figure 6 reports angular motion from an initial to the desired orientation of the
manipulator’s EE (depicted in blue). In red, the time evolution of the EE orientation
sampled at 0.1 s is reported. The inset represents the θ dynamical response for the depicted
angular motion at [300, 0, 200]T mm, whereas the EE orientations are randomly generated
using RPY parametrization with a maximum amplitude of 25◦.

Figure 6. Angular motion from an initial to the desired orientation of the manipulator’s EE (depicted
in blue). In red, the time evolution of the EE orientation sampled at 0.1 s is reported. The inset
represents the θ dynamical response for the depicted angular motion.

Close-Obstacle Collision Avoidance

The collision avoidance strategy is assessed by inserting obstacles (represented as
spheres) in the workspace without varying the EE reference position ([300, 0, 300]T mm
with zero RPY angles). Six different configurations of obstacles are chosen as the case
studies. The first three simulations include a single obstacle positioned at different zb

coordinates (i.e., 350, 450, and 550 mm) with xb = 300 mm and yb = −150 mm. The other
simulations include multiple obstacles (i.e., 2 and 4 spheres) to assess the superposition
of the proposed collision avoidance strategy. Two simulations are performed with two
obstacles: one has the obstacles on the same side of the manipulator, yb = −150 mm) and
the other has the obstacles on opposite sides, one in yb = −150 mm and one in yb = 150
mm). The last simulation is performed in a symmetric configuration with four obstacles
placed around the manipulator at different zb coordinates.
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3. Results

3.1. Time Domain Analysis Results

In Figure 7, we report the evolution of x, the nominal dynamics, and the relative step
reference signal xr. As can be observed, the dynamics of x follow the nominal dynamical
response with the tuned settling time. Indeed, the maximum error between the real and
nominal dynamics is negligible (i.e., ∼6–10 mm). Figure 6 shows the angular motion
trajectory (in red), sampled at 10 Hz, from a starting orientation to a target orientation (in
blue). In the absence of any disturbances, the motion of the zEE axis evolves along the
plane defined by the zs and zt vectors, driven by the state variable θ. As can be seen in
Figure 6, the θ dynamics are equal to the desired and nominal dynamics tuned with the
K and D parameters. The angle position qt belongs to X; thus, it evolves identically to
the nominal response. Hence, the linear and angular EE motions are linked to a linear
dynamical system with the imposed settling time for step references. Figure 8a,b report the
dynamic evolution of the coordinates x and qt, their nominal dynamics, and the relative
signals reference (see Equations (19) and (20)). The roll and pitch dynamics are reported in
Figure 8c,d, respectively. The graphs present an almost perfect match between the nominal
and real dynamics; indeed, the errors between them are 0.08 and 0.25◦ for roll and pitch
angles, respectively.

Figure 7. Dynamic evolution of the x coordinate with the relative reference and nominal signals.

3.2. Frequency Domain Analysis Results

The results of the frequency analysis for step and sinusoidal paths are reported in
Figure 9a,b, respectively. The graphs report the mean and the maximum spectrum of the
joint’s references qref and the mean spectrum of the nominal dynamics (parametrized with
RPY angle). Figure 9a shows that the mean and maximum qref spectra are very similar
to the spectrum of the nominal dynamics. Therefore, the non-linearity introduced by the
manipulator inverse kinematics does not significantly affect the qref spectrum. On the other
hand, differences between the nominal spectrum and qref spectrum can be observed for
the sinusoidal path. The manipulator inverse kinematics introduces some components
multiple of the exciting input frequencies (i.e., ultra-harmonic frequencies), highlighted in
Figure 9b. Nevertheless, the non-desired ultra-harmonic frequencies are attenuated after
the linear system band-pass, becoming negligible with the increase in frequency. Indeed,
the maximum value of the qref spectrum is 19.87 (100%), whereas the maximum values
after 1 rad/s and 1 Hz are 0.23 (1.16 %) and 0.02 (0.10 %), respectively. Therefore, the
dynamics of the joint reference qref are suitable for typical robotic manipulator actuator
joints, since its band-pass is larger than 1 Hz [1,25].
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Figure 8. Dynamic evolution of x (a), qt (b), roll (c), and pitch (d) variables compared with the
nominal dynamics and the relative reference signal for the sinusoidal input.

Figure 9. (a) Frequency analysis for the step path. The spectra of the mean and the maximum
qref signal are presented, compared with the spectrum of the nominal dynamics highlighting the
band-pass frequency of F(s). (b) Frequency analysis for the sinusoidal path. The spectra of the mean
and the maximum qref signal are depicted, compared with the spectrum of the nominal dynamics
highlighting some notable frequencies.
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3.3. Close-Obstacle Collision Avoidance

Figure 10 report the initial poses of the validation scenarios. The xb coordinate is fixed
to 300 mm for all the simulated obstacles, as can be observed in Figure 10a. This choice
allows us to describe the EE movements through just two of the state variables (y and γ)
without loss of generality. Indeed, the forces produced by the obstacles are principally
exerted along yb. These forces cause a torque along the xb axis because the lever arm
is mainly along zb. Subject to this potential field, the resultant EE motion is mainly a
translation along yb and a rotation along xb. We have decided to describe this rotation with
the state variable γ, responsible for the collision avoidance strategy. The results presented
in Figure 10 show how the value of γ increases and the value of y decreases when the
obstacle zB coordinate increases. As could be expected, the local planner responds to the
configuration presented in Figure 10d, where the obstacle is closer to the manipulator’s
wrist than to the manipulator EE, by separating the wrist from the obstacle and keeping
the EE close to the Cartesian reference position (i.e., yr = 0).

Figure 10. (a) Lateral view of the robotic manipulator with one obstacle. The direction of the base
reference system axes is also reported. (b) The initial (I.) and final (F.) pose of the manipulator when
the obstacle is placed at 350 mm on the zB coordinate. (c) The initial and final pose of the manipulator
when the obstacle is placed at 450 mm on the zB coordinate. (d) The initial and final pose of the
manipulator when the obstacle is placed at 550 mm on the zB coordinate.

Figure 11 illustrates the resulting dynamics of the state variables y, γ, qt, and the time
response of the minimum distance for the three performed simulations with one obstacle.
Figure 11a,b present that the fastest change of the state variables happens when the obstacle
is at 550 mm due to the initial obstacle distance (i.e., 58 mm versus 85 mm, as highlighted in
Figure 11d). During the initial phase, the distance constantly increases because the angular
disturbance saturation is active (the torque is 50.09 N/m at 1 s on state variable γ). The
resulting response allows us to conclude that the state variable’s responses can be esteemed
as a saturated linear dynamical response with different steady-state values. Figure 11c
shows that the state variable qt remains zero for the obstacle at 550 mm given that the
obstacle is closer to the penultimate manipulator link than to the last manipulator link.
Figure 12 reports the final poses of the validation scenarios. Figure 12a reports the results
of the simulations with two obstacles on the same side of the manipulator. The final value
of the state variables y and γ is larger than those achieved in the one-obstacle simulations,
as expected given the addictive nature of the collision avoidance strategy. The results of the
simulation with obstacles on different sides of the manipulator are presented in Figure 12b,
resulting in a negative y due to the proximity of the lower obstacle to the EE. Finally,
the results of the four obstacles simulation presented in Figure 12c show no significant
manipulator motion, as can be expected from the symmetrical obstacle configuration.
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Figure 11. Dynamic evolution of the y (a), γ (b), qt (c) state variables and time response (d) of the
minimum distance for the three performed simulations with one obstacle.

Figure 12. (a) Initial and final pose of the manipulator when two obstacles are placed on the same
manipulator side. (b) The initial (I.) and final (F.) pose of the manipulator when two obstacles are
placed on different manipulator sides. (c) The initial and final pose of the manipulator with four
symmetric obstacles.

4. Conclusions

The described local planner provides a more natural way of describing 5-DoF tasks
by using a parametrization of the EE orientation that decouples the rotation of the third
wrist joint Jt from the rest of the EE angular motion. The developed parametrization
represents the physical behavior of the manipulator in a decoupled manner, facilitating
both the interpretation and the tuning of the control parameters. Indeed, θ represents the
in-plane rotation along the minimal path, the γ angle represents the out-of-plane rotation,
and qt is the position of the third joint of the spherical wrist. The proposed local planner,
based on a decentralized MIMO linear system with closed-loop architecture, has been
demonstrated to allow the imposition of the EE dynamics to behave as a first-order linear
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system, facilitating any desired tuning of the EE dynamic response. Approaches using robot
redundancy allow us to solve and locally optimize the robot path planning in a dynamic
non-structured environment where the manipulator employs potential field approaches.
In this regard, the presented approach enables industrial and medical applications where
robot stiffness and dexterity can greatly improve task efficiency. It is worth noting that
the proposed parametrization can be easily adapted to control 7-DoF manipulators by
adding the elbow angle introduced in [26,27] into the state vector X. Additionally, the
proposed local planner integrates a custom collision avoidance strategy that has proven to
successfully deform the reference trajectory to maintain the manipulator separated from
surrounding obstacles. The proposed collision avoidance strategy has proven to enhance
human safety with a computationally efficient and simple-to-tune disturbance vector that
does not require setting control points onto the robotic manipulator.
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Abstract: Self-collision detection is fundamental to the safe operation of multi-manipulator systems,
especially when cooperating in highly dynamic working environments. Existing methods still face
the problem that detection efficiency and accuracy cannot be achieved at the same time. In this
paper, we introduce artificial intelligence technology into the control system. Based on the Gilbert-
Johnson-Keerthi (GJK) algorithm, we generated a dataset and trained a deep neural network (DLNet)
to improve the detection efficiency. By combining DLNet and the GJK algorithm, we propose a two-
level self-collision detection algorithm (DLGJK algorithm) to solve real-time self-collision detection
problems in a dual-manipulator system with fast-continuous and high-precision properties. First,
the proposed algorithm uses DLNet to determine whether the current working state of the system
has a risk of self-collision; since most of the working states in a system workspace do not have a
self-collision risk, DLNet can effectively reduce the number of unnecessary detections and improve
the detection efficiency. Then, for the working states with a risk of self-collision, we modeled precise
colliders and applied the GJK algorithm for fine self-collision detection, which achieved detection
accuracy. The experimental results showed that compared to that with the global use of the GJK
algorithm for self-collision detection, the DLGJK algorithm can reduce the time expectation of a
single detection in a system workspace by 97.7%. In the path planning of the manipulators, it could
effectively reduce the number of unnecessary detections, improve the detection efficiency, and reduce
system overhead. The proposed algorithm also has good scalability for a multi-manipulator system
that can be split into dual-manipulator systems.

Keywords: self-collision detection; dual-manipulator system; artificial intelligence; deep neural
network; GJK algorithm

1. Introduction

Robots, especially manipulators, now play a significant part in medical [1,2], aerospace [3,4],
industrial production [5,6], and other industries as a result of the ongoing advancements in
science and technology, helping people solve problems by delivering distinct advantages.
In recent years, with a deepening of the application of manipulators in various fields,
the complexity of tasks has gradually increased, and many tasks require the cooperative
operation of dual or multiple manipulators, such as the extraction and transportation of
heavy objects [7]. In this context, research on the collaboration of multiple manipulators is
of great significance, and the collision detection of manipulators is an indispensable part [8].
The working environment of a multi-manipulator system is typically more complex than
that of a single manipulator, except for the collision detection between a manipulator
and obstacle, and the self-collision problem caused by the overlapping workspace of
manipulators should also be considered.

The purpose of collision detection is to find a collision that may occur during ma-
nipulation tasks and avoid collision in the subsequent path planning [9]. At present, the
mainstream collision-detection methods of manipulators can be categorized into two types:
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physical sensor-based and geometric simulation-based [10]. Sensor-based methods utilize
physical sensors, which are usually implanted directly inside or outside the robot manipu-
lators, and these methods are generally applicable to dynamic workspaces with external
obstacles or human-machine interactions. External cameras are involved sometimes, as
authors in [11] placed a dual-depth vision camera to detect the contact position when the
manipulator collides with external obstacles. In addition, a torque sensor is also applicable
for collision detection. In ref. [12], collision was detected by comparing the deviation
between the calculated torque of kinematics and the measured torque of actual joints. The
authors of [13] studied the feasibility of collision detection by using the change in the joint
motor current value before and after collision, without using an additional physical joint
sensor. In paper [14], external acceleration sensors were used to monitor the vibration of
the manipulator in real-time, detect the collision of the manipulator through the abnormal
vibration frequency, and determine the position and direction of the collision. Although
physical sensor-based methods have clear advantages in many scenarios, these methods are
costly and cannot be used in simulation studies. Collision detection in simulation scenes
uses more geometric simulation-based methods.

The geometric simulation-based methods employ various shapes of the bounding box
to envelope the manipulator and obstacle in the simulation environment and calculate
the spatial position relationship between bounding boxes with respective algorithms to
determine whether collision occurs between colliders [15,16]. The geometry-based method
is applicable to situations where coordinates of each manipulator joint and obstacles in
Cartesian space are known, such as manipulator path planning. For example, in [17], a
manipulator collision constraint for subsequent path planning was established by using
the geometric simulation method. Almost all geometric simulation-based methods can be
divided into two steps: the establishment of the colliders and the detection of the collision
relationship of colliders. The selection of the collider shape directly affects the accuracy
of collision detection and the difficulty of the algorithm. Since the geometric simulation
method requires real-time continuous modeling for fast-continuous collision detection, it
has high requirements for the computing power of control system. Most current collision
detection in simulation environments uses a regular-shaped bounding box to envelop the
manipulator as the colliders. The authors in [18] used a sphere bounding box envelope
manipulator for collision detection in path planning, while those of [19,20] used Oriented
Bounding Box (OBB) in their studies. Since collision-detection algorithms are simpler for
regular-shaped colliders, these regular-shaped bounding boxes can optimize the modeling
and computing speed by simplifying the collider structure and improve the detection
efficiency at the cost of a loss of the detection accuracy. This also leads to the problem that
all existing methods using regular-shaped colliders have insufficient detection accuracy in
manipulator systems with irregular surfaces.

Considering that there is a demand for high precision self-collision detection, in this
paper, we used irregular shapes when modeling colliders. Therefore, we used the fine
collision-detection algorithm to perform self-collision detection, and the Gilbert-Johnson-
Keerthi algorithm (GJK algorithm) [21] is one of those algorithms. The GJK algorithm is an
algorithm proposed and continuously improved by Gilbert, Johnson, and Keerthi to quickly
detect the distance between two convex polyhedrons [22]. It can output the Euclidean
distance of two convex polyhedrons after a finite number of iterations and determine
whether a collision occurs from the overlap perspective [23]. Since its introduction, the GJK
algorithm has been widely used in various collision detection scenes due to its universality
and high accuracy. The authors of [24] proposed a contact-detection and resolution frame-
work based on the GJK algorithm in the Discrete Element Method (DEM), which improves
computational compatibility. Meanwhile, those of [25] proposed a GJK-TD method to solve
the problem of precision instability that may exist in the application of the GJK algorithm
in the DEM. The authors of [26] proposed a method to calculate mesh porosity (volume
and area) based on the GJK algorithm for fluid flow modeling. Those of [27] applied the
GJK algorithm to the field of robotics to optimize the gripping force of the robotic arm on
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the target object, via the accurate calculation of the distance between convex objects. The
authors of [28] used the GJK algorithm for collision detection in Unmanned Aerial Vehicle
(UAV) swarm trajectory planning and improved the distance operator by combining the
usage scenarios. After simulation and actual robot validation, the GJK algorithm of the
original authors was selected for self-collision detection in our research. However, the fine-
detection algorithms represented by the GJK algorithm all face a problem. With an increase
in the number of convex polyhedrons and vertices, those algorithms require more time to
complete the detection, which cannot meet the requirement of a real-time control system.

Along with artificial intelligence (AI) technologies, most recent delegates, such as deep
learning and deep reinforcement learning, are widely deployed in robotics. Benefiting
from the excellent feature-extraction capability of deep learning, collision problems at
hand have a new solution. Many studies combined neural networks with sensor-based
methods. The authors in [29] proposed a deep neural network to learn the collision
signal in a torque sensor dataset and extract the collision features of the torque signal,
which eventually resulted in high detection performance and real-time generalization
capability. The article [30] presented an algorithm based on convolutional neural network
and momentum observers, to learn the characteristics of joint motor current values when a
collision occurs in a manipulator, saving torque sensors while achieving good detection
results for various hard and soft collisions. The authors of [31] used joint-position sensors
and deep neural networks to detect collisions by learning the offset signals of the joint
positions before and after the manipulator collision. The powerful decision-learning
capability of deep reinforcement learning has also been applied to manipulator path
planning; the authors in [32] proposed Deep Deterministic Policy Gradient (DDPG) and
Twin Synchro-Control (TSC) algorithms to achieve the fast-continuous path planning
of a dual-manipulator system for multiple tasks. Moreover, those of [33] presented a
single robot arm path planning algorithm using a Twin Delayed Deep Deterministic Policy
Gradient (TD3) with Hindsight Experience Replay (HER) for a smoother path. With the
aforementioned applications, we hope that AI technology can also make progress in the
self-collision detection of a dual-manipulator system.

In this paper, we propose corresponding solutions to the above problems: (a) the GJK
algorithm was introduced to solve the problem of insufficient accuracy of self-collision
detection. (b) By introducing AI technology, a two-level self-collision detection algorithm is
proposed, which improves the efficiency of detection. To improve the accuracy of collider
modeling, the regular shaped bounding box was not applied in our research. We chose
appropriate convex point sets on the surface of the manipulators, and the point sets were
divided into multiple convex polyhedrons as the colliders of self-collision detection. It is
worth noting that this paper represents the first use of deep learning for the self-collision
detection of a dual-manipulator system under geometric simulation. A deep neural net-
work, DLNet, was trained to improve the detection efficiency of the GJK algorithm. First,
we generated all working states for the dual-manipulator system in its workspace and
detected self-collision with the GJK algorithm in these states. Therefore, we obtained the
self-collision state dataset of the workspace. Then, we used the dataset for training DLNet,
which can be applied directly to judge self-collision risk. Finally, the trained DLNet and GJK
algorithm were combined into a two-level self-collision detection algorithm, the DLGJK
algorithm, to solve the real-time self-collision detection problem in a dual-manipulator
system with fast-continuous and high-precision properties. The DLGJK algorithm takes
the joint motor configuration of each manipulator as input and has autonomous judgment
capability. DLNet firstly outputs a Boolean result for self-collision risk. For the working
state with a self-collision risk, the DLGJK algorithm enters the second level of detection,
which comprises calling the GJK algorithm to perform self-collision detection. The experi-
mental results show that compared to that with the global use of the GJK algorithm, the
DLGJK algorithm significantly increases the detection efficiency in both single detection
and working-path detection. In particular, the time expectation for single detection of the
workspace was reduced by 97.7%. At the same time, it was proven in experiments that the
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DLGJK algorithm can be applied to a multi-manipulator system, which can be split into
dual-manipulator systems.

The rest of this paper is organized as follow: in Section 2, we introduce the multi-
manipulator system used in this paper and introduce its kinematic modeling and the
generation of colliders with high accuracy. In Section 3, we introduce the GJK algorithm
and the process of collision detection mediated by the GJK algorithm. In Section 4, we
introduce the process of the DLGJK algorithm and generate the training dataset. Then, we
introduce the structure of DLNet and train it. In Section 5, we provide the experimental
results, and the conclusion is given in Section 6.

2. Multi-Manipulator System and Collider Modeling

2.1. Kinematic Modeling of Multi-Manipulator System

As shown in Figure 1, the research in this paper was based on a mobile handling
robot with four-manipulators attached. The four manipulators were named LS, LF, RF,
and RS, which represents the left side arm, left front arm, right front arm, and right side
arm, respectively. The load capacity of each manipulator could reach 50 kg. The robot
uses SolidWorks for structural design and is manufactured in strict accordance with the
design parameters.

 

Figure 1. Front view of four-manipulator system.

There are two modes for the robot control program to control the manipulators. The
first is that the manipulators move according to the specified path, and each working
state in the path performs self-collision detection during path planning. The second is
the real-time control mode, in which the control program controls the free movement of
the manipulators in real time at the frequency of 50 times/s. In this mode, it is necessary
to perform self-collision detection based on the working state in the command before
each command is sent. Only the command without self-collision will be sent to the robot.
With this demand, geometric simulation-based self-collision detection is more suitable for
this paper.

In real-time motion planning, there is a risk of collision between two adjacent manip-
ulators. The four-manipulator system can be divided to three dual-manipulator systems,
LF-RF, RF-RS, and LF-LS. We illustrate the self-collision detection algorithm with the LF-RF
dual-manipulator system.
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As shown in Figure 2, each manipulator consists of four joints: the lifting joint (pris-
matic joint), shoulder joint, elbow joint, and wrist joint, and the wrist joint is attached to
a replaceable end-effector. The configuration of the joint motor is shown in Table 1. The
self-collision in the dual-manipulator system is influenced by the lift joint and shoulder
joint: LF1 represents the LF lifting joint motor value, LF2 represents the LF shoulder joint
motor value, RF1 represents the RF lifting joint motor value, and RF2 represents the RF
shoulder joint motor value.

Figure 2. Single manipulator joint motor position.

Table 1. Motor configuration of single manipulator.

Motor Position Operating Range Motor Stepping Amount

Lifting joint motor 0~500 mm 10 mm
Shoulder joint motor −90◦~90◦ 0.5◦

Elbow joint motor −90◦~90◦ 0.5◦
Wrist joint motor −90◦~90◦ 0.5◦

The D-H parameters in mechanical engineering are the four parameters associated with
a particular convention, for attaching reference frames to the links of a spatial kinematic
chain or robot manipulator. In this paper, as shown in Figure 3, we used the D-H method in
MATLAB to model the four-manipulator system. The base coordinate system is named T0.
The origin of T0 is the center of the robot chassis. We took the vertical direction pointing
upwards as the positive direction of the T0-Z axis and the robot’s moving forward direction
as the positive direction of the T0-X axis.
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Figure 3. D-H model of four-manipulator system and base coordinate system T0.

It should be noted that the four-manipulator system in this paper has only one base
coordinate system, T0, while each manipulator has its own joint coordinate system, Ti

(i > 0). We took RF as an example, and the base coordinate system T0 and RF joint coordinate
system RF-T1, RF-T2 are shown in Figure 4. The D-H parameters of RF and LF are shown
in Table 2.

Figure 4. Front view of T0 and RF joint coordinate system RF-T1, RF-T2.
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Table 2. D-H parameters of RF and LF.

Manipulator Link θi/(
◦) di/mm ai/mm αi/(

◦)

RF

l1RF 90 d1
RF + 780 125 90

l2RF θ2
RF − 90 351 346 −90

l3RF θ3
RF 182 0 90

l4RF θ4
RF 0 0 0

LF

l1LF 90 d1
LF + 780 −125 90

l2LF θ2
LF + 90 351 346 −90

l3LF θ3
LF 182 0 90

l4LF θ4
LF 0 0 0

Based on the D-H parameters, the kinematic model of each manipulator was estab-
lished, and the pose transformation matrix between two links i and i + 1 was obtained
as follows:

i−1
i T =

⎡⎢⎢⎣
cos θi − sin θi cos αi sin θi sin αi ai cos θi
sin θi cos θi cos αi − cos θi sin αi ai sin θi

0 sin αi cos αi di
0 0 0 1

⎤⎥⎥⎦ (1)

To calculate the transformation relationship between Ti and T0, we established the
pose transformation matrix of the i-th link in space as follows:

0
i T = 0

1T1
2T2

3T · · · i−1
i T (2)

2.2. Collider Construction of Manipulators

Conventional geometric simulation-based methods use regular-shaped bounding
boxes, such as spheres, cylinders, and cubes as colliders. The modeling of these colliders is
simple, and the algorithm for distance calculation is relatively simple. For example, the
distance between spheres can be converted to calculate the distance between the centers
of spheres, and the distance between cylinders can be converted to calculate the distance
between axes [34]. However, this modeling method of the colliders will affect the modeling
accuracy at the irregular outer surface, thereby affecting the self-collision detection accuracy
at these positions. If the distances between colliders are large and the loss of accuracy at
these positions is acceptable, these methods can be used for collision detection.

Different from other studies, there were irregular outer surfaces at the joints of the
manipulators used in this paper. These irregular surfaces were only a few millimeters away
from the other manipulator in many working states. Therefore, these positions were the
focus areas of this paper. Our task requirements exceeded the detection accuracy of con-
ventional geometric simulation-based methods, resulting in undetected self-collisions that
have occurred or false self-collision warnings. These conventional methods are not suitable
for our manipulators, and we needed to study a method with higher detection accuracy.

To improve the detection accuracy, we selected a certain number of points on the
surface of each manipulator to envelop them. The selected points of each manipulator were
accurately measured, calculated using the SolidWorks (version 2021) modeling software
and confirmed on the actual robot. After the high-precision collider modeling of the
manipulators, the distance calculation method based on the regular-shape collider cannot be
used, and thus, we introduced the GJK algorithm. Since the GJK algorithm can only detect
the collision relationship between convex shapes, as shown in Figure 5, each manipulator
was divided into multiple convex colliders. All colliders of manipulators were established
in their own T2 coordinate system.
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Figure 5. The point set of RF colliders.

In order to detect the spatial position relationship between the colliders of each ma-
nipulator, these colliders needed to be converted from T2 to T0. Therefore, the pose
transformation matrix of each manipulator needed to be calculated. Taking RF as an
example, from Equation (1) we can obtain:

0
1TRF =

⎡⎢⎢⎣
0 0 1 0
1 0 0 125
0 1 0 dRF

1 + 780
0 0 0 1

⎤⎥⎥⎦ (3)

1
2TRF =

⎡⎢⎢⎣
cos(θRF

2 − 90) 0 − sin(θRF
2 − 90) 346 cos(θRF

2 − 90)
sin(θRF

2 − 90) 0 0 346 sin(θRF
2 − 90)

0 −1 cos(θRF
2 − 90) 351

0 0 0 1

⎤⎥⎥⎦ (4)

Then, from Equation (2) we can obtain the transformation matrix between the RF-T2

and T0 as follows:

0
2TRF = 0

1TRF1
2TRF =

⎡⎢⎢⎣
0 −1 sin(θRF

2 ) 351
sin(θRF

2 ) 0 cos (θRF
2 ) 346 sin(θRF

2 ) + 125
− cos (θRF

2 ) 0 0 −346 cos (θRF
2 ) + dRF

1 + 780
0 0 0 1

⎤⎥⎥⎦ (5)

According to the robot forward kinematics, with the manipulator joint motors angle
data, we can calculate the matrix 0

2T in real-time:

pos0 = 0
2T · pos2 (6)

According to Equation (6), we can convert the coordinates of the colliders from T2

to the uniform base frame T0, where pos0 represents the generated point set of colliders
in T0 and pos2 represents the generated point set of colliders in T2. Hence, during the
movement of the system, we can obtain the point sets representing corresponding colliders
in T0 in real-time.
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3. GJK Algorithm for Dual-Manipulator Self-Collision Detection

3.1. Introduction of GJK Algorithm
3.1.1. Minkowski Difference

Before introducing the GJK algorithm, we first introduced the Minkowski difference.
Assuming A and B are two convex polyhedrons in Cartesian space, a is a vector in A and b
is a vector in B. The Minkowski difference between A and B is defined as:

A − B = {a − b|a ∈ A, b ∈ B} (7)

We named the convex polyhedron formed by A − B as C, C = A − B. The distance
between A and B can be expressed as follows:

d(A, B) = min{‖ x − y ‖ : x ∈ A, y ∈ B} (8)

assuming that v(C) represents the point nearest to the origin in C and satisfies the follow-
ing equation:

‖v(C)‖ = min{‖ x‖ :x ∈ C} (9)

According to Equations (8) and (9), we obtained:

d(A, B) = v(C) (10)

Which proves that calculating the minimum distance between A and B can be trans-
lated into determining whether C contains the origin.

In other words, if there is a collision between convex polyhedron A and B, the convex
polyhedron C (C = A − B) must contain the origin. This is a very important property of
the Minkowski difference in convex polyhedron collision detection.

3.1.2. Basic Principle of GJK Algorithm

Before describing the basic principle of the GJK algorithm, we needed to understand
two definitions.

Definition 1: Point P belongs to the convex polyhedron C. For a given direction vector d, if point
P satisfies equation:

d · P = max{d · V|V ∈ C} (11)

then point P is called the support point of C in direction d. The function to find the support point is
called the support function, written as S(C), the finding direction is written as Vdir.

Definition 2: For convex polyhedron C, a simplex is a convex tetrahedron formed by any four
vertices in C. If the selected vertices are different, the simplex formed is also different. Selected
vertex q is constructed by S(C) along different Vdir and satisfies the equation:

q = S(C)(A, Vdir)− S(C)(B, Vdir) (12)

The GJK algorithm uses the Minkowski difference property described in Section 3.1.1 to
compute the minimum distance between two convex polyhedrons. For convex polyhedron
A and B, the GJK algorithm iteratively searches the point with the closest distance to the
origin in C (C = A − B). The GJK algorithm generates a simplex in every iteration process,
and the simplex generated at the k-th iteration process is denoted as Wk. vk is the point
nearest to the origin in Wk and can be calculated by choosing the Johnson operator [21] or
the improved operator [28,35,36] depending on the situation. If vk is the origin, then Wk
contains the origin, which means that C contains the origin, and thus, a collision occurs
between A and B. If vk is not the origin, then the algorithm updates Vdir according to the
rule and obtains the new vertex qk+1, replacing a vertex in Wk with qk+1 to get Wk+1 and
continue to determine whether Wk+1 contains the origin.
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The GJK algorithm terminates the loop in two cases:

(a) vk is the origin, A and B collide, and the GJK algorithm is exited;
(b) The dot product of qk+1 and Vdir is less than zero (dot(Vqk+1O, Vdir) < 0), at this time,

the simplex containing the origin cannot be found in C, no collision occurs between A
and B, and the GJK algorithm is exited.

3.2. GJK Self-Collision Detection for Dual-Manipulator System

As shown in Figure 6, by inputting the real-time joint motor configuration (height
data and angle data) of the dual-manipulator system, the transformation matrix between
T0 and T2 are obtained. After converting all colliders to a unified coordinate system, the
GJK algorithm determines the real-time self-collision detection results of the colliders. The
collision mark is recorded as CheckGJK, which is equal to 1 when a self-collision occurs.

Figure 6. Flowchart of GJK algorithm self-collision detection.

4. DLGJK Algorithm

4.1. Structure of DLGJK Algorithm

Figure 7 shows the flowchart of the DLGJK algorithm. The DLGJK algorithm consists
of DLNet and the GJK algorithm, and the input of the DLGJK algorithm is the real-time
joint motors configuration of the dual-manipulator system. First, the DLGJK algorithm uses
DLNet to make a judgment, and if there is no self-collision risk, the DLGJK algorithm is
directly quit; if there is a risk of self-collision, the DLGJK algorithm calls the GJK algorithm
to perform self-collision detection, and the GJK algorithm will detect whether self-collision
occurs in the current working state.

Figure 7. Flowchart of DLGJK algorithm self-collision detection.

The overall workflow of collision detection consists of two layers; the first layer is
DLNet for risk checking, the second layer is GJK for risky situations, which are determined
as such from first layer DLNet.

The segment judgment process of DLNet is closer to human thinking. When we judge
whether there is a collision between manipulators, we present the judgment that there is
no self-collision risk for manipulators with a long distance. As the distance between the
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manipulators gets closer and closer, we will present the judgment that there is a risk of
self-collision and that self-collision detection is needed. After DLNet learns the relationship
between workspace self-collision states and joint motors data, the motors data can replace
the distance as the judgment basis of DLNet, so that DLNet can imitate our thinking logic
for self-collision risk judgment.

Ideally, the working state of the dual-manipulator system and the self-collision detec-
tion result of the DLGJK algorithm should contain the following three cases:

As shown in Figure 8, the system has no self-collision risk and no self-collision occurs:
the DLNet judges that there is no self-collision and the DLGJK algorithm returns the
information that no self-collision is detected.

 
Figure 8. Dual-manipulator LF-RF without risk of self-collision.

As shown in Figure 9, the system has a self-collision risk, but no self-collision occurs:
the DLNet judges that there is a self-collision risk and the GJK algorithm does not detect
a self-collision, finally the DLGJK algorithm returns the information that no self-collision
is detected.

As shown in Figure 10, a self-collision occurs in the system: the DLNet judges that
there is a risk of self-collision, the GJK algorithm detects a self-collision, and finally the
DLGJK algorithm returns the information that a self-collision occurs.

Therefore, the DLNet must be accurate in judging the no-self-collision working state.
That is, if DLNet judges that there is no risk of self-collision, the dual-manipulator system
must be in a no self-collision state; if the DLNet judges that there is a risk of self-collision, the
system may have a self-collision. Then, the DLGJK algorithm must call the GJK algorithm
for self-collision detection and returns the final result. The implementation logic will be
introduced in the Section 4.3.

161



Sensors 2023, 23, 523

 
Figure 9. Dual-manipulator LF-RF with risk of self-collision.

 
Figure 10. Dual-manipulator LF-RF with self-collision.
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4.2. Structure and Training of DLNet
4.2.1. Gathering DLNet Training Data

In order to obtain the dataset required for training the DLNet, it is necessary to generate
the workspace data of the dual-manipulator system. As described in the previous section,
the self-collision of the system studied in this paper is mainly affected by the motor motions
of the lifting joint motors (LF1, RF1) and shoulder joint motors (LF2, RF2). According to
the value ranges and step amounts of LF1, LF2, RF1, and RF2, the dual-manipulator system
workspace dataset is generated exhaustively, and the GJK algorithm is called to perform
self-collision detection on all data. Finally, the self-collision state dataset of the workspace
in the format [LF1, LF2, RF1, RF2, CheckGJK] is obtained, written as the Space-Col dataset.

The study of the Space-Col dataset shows that for the dual-manipulator system used
in this paper, when LF2 and RF2 are constant and the height difference between LF1 and
RF1 is unchanged, the values of LF1 and RF1 have no effect on the self-collision state. That
means only three variables: the height difference between LF1 and RF1, the LF2, and the
RF2 can represent the relative states between two manipulators. As shown in Figure 11,
the above conclusion means that, under the condition that the angle of the shoulder joint
motors is unchanged, two manipulators lifting or falling the same height at the same time
will not change the self-collision state.

 

Figure 11. Dual-manipulator LF-RF lift the same height at the same time.

The height difference between LF1 and RF1 is denoted as the Hvalue. We used the
Hvalue to replace LF1 and RF1 in the Space-Col dataset. After the data were de-duplicated,
the training dataset in the format of [Hvalue, LF2, RF2, CheckGJK] was obtained and
written as the DL-Train dataset.

4.2.2. Structure and Parameters of DLNet

The DL-Train dataset was used to train the DLNet. According to the characteristics of
the dataset, we used a five-layer fully connected neural network to construct DLNet. The
x-input of DLNet is the Hvalue, LF2, and RF2, and the y-input is CheckGJK. The output
of the network is the probability of self-collision of the dual-manipulator system in the
respective working state, denoted as OutDL.

The DLNet includes the input-layer, hidden-layer, and output-layer. The number
of neurons in the input-layer is set to three (x-input) and the number of neurons in the
output-layer is set to one (OutDL). The trial-and-error method was used to determine
the number of hidden-layers and the number of neurons in the hidden-layers. The final
number of hidden-layers was determined to be three, and the numbers of neurons were 12,
24, and 6, respectively. As shown in Figure 12, the final topology of DLNet was determined
to be 3:12:24:6:1.
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Figure 12. Topology and model structure of DLNet.

For the selection of the activation function, the ReLU function that enables faster
network training was selected as the activation function of hidden-layers, while the output
of the output-layer is essentially a binary problem; therefore, the Sigmoid function, which
is more suitable for the binary problem, was selected as the activation function of the
output-layer. Since the DL-Train dataset features are clearly distributed, after experimental
verification, the Stochastic Gradient Descent (SGD) was selected as the optimization method
and the BinaryCrossEntropyLoss (BCELoss) function was selected as the loss function.

It is worth noting that since the DL-Train dataset actually contains all the working
states of the dual-manipulator system used in this paper, it is unnecessary to consider the
overfitting problem. As long as the DLNet can learn the DL-Train dataset well, it can judge
all working states of the dual-manipulator system. Model training proceeds until the loss
value converges, and the loss changes in the training process are shown in Figure 13. In this
paper, accuracy was not an important indicator for evaluating the DLNet training results.
We will select a threshold in the following part and process the network output to achieve
100% accuracy in judging no self-collision working states.

Figure 13. Change in the loss value during DLNet training.
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4.3. Judgment Logic of DLNet for Self-Collision

As described in Section 4.1, the DLNet must be accurate in judging the no-self-collision
working state. The output value (OutDL) of the DLNet is the predicted value of self-collision
in the current working state. The value of OutDL has a range of [0, 1], where OutDL = 1
means that no self-collision occurs and OutDL = 0 means that self-collision occurs. The
closer the OutDL is to 0, the higher the probability of self-collision occurring. Associating
the model x-input with the OutDL, we obtained the DLNet output dataset in the format
[Hvalue, LF2, RF2, OutDL], written as the DL-Out dataset.

As the self-collision judgment basis of the DLNet, we need to select a critical threshold
(K) between 0 and 1. If 0 < OutDL ≤ K, the DLNet judges that there is a self-collision risk;
if K < OutDL ≤ 1, the DLNet judges that there is no self-collision risk. The selection of K
with this logic should satisfy the following requirements:

0 ≤ OutDL ≤ K, the DLNet judges that there is a risk of self-collision, and at this
time, the dual-manipulator system should be in a state with a risk of self-collision or a
self-collision has occurred, and the final detection result of the DLGJK algorithm needs to
be given by the GJK algorithm.

K < OutDL ≤ 1, the DLNet judges that there is no risk of self-collision, and at this time,
the dual-manipulator system should be in a state without self-collision risk, and the final
detection result of the DLGJK algorithm is directly given by the DLNet.

Thus, the key point is: for a selected K, for all data in the DL-Out dataset that
satisfy K < OutDL ≤ 1, the detection result given by the GJK algorithm (CheckGJK) should
be equal to 1. Therefore, the verification method for whether this K satisfies the require-
ments is as follows: determine all data in the DL-Out dataset that meet K < OutDL ≤ 1,
map these data to the DL-Train dataset, and verify whether all corresponding CheckGJK
values are equal to 1. If the CheckGJK values of all data are equal to 1, this K satisfies
the requirements.

For the DLNet, the range of K to satisfy the requirements should be an interval
belonging to (0, 1). As shown in Figure 14, the search process for K can gradually approach 1
through dichotomy and finally find the K that satisfies the requirements.

Figure 14. Flowchart for finding the K-value that satisfies the requirements.

Assuming that the minimum satisfying K is Kmin, as shown in Figure 15, the selected
K gradually approaches from Kmin to 1, and the DLNet is more and more cautious in
judging self-collision. At the same time, the self-collision judgement distance of colliders
will be larger and larger, and the GJK algorithm will be called more often for self-collision
detection. We can adjust the judgement distance of DLNet for self-collision by adjusting K.
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Figure 15. The detection distance increases with an increase in K.

The pseudo-code of the DLGJK algorithm for self-collision judgment of the LF-RF
dual-manipulator system (Algorithm 1) is as follows:

Algorithm 1 DLGJK self-collision detection of the LF-RF dual-manipulator system

1. Input: motor data, containing motor data of 8 joints of the system.
2. Extract [LF1, LF2, RF1, RF2].
3. Hvalue ← LF1-RF1.
4. Call the DLNet, input [Hvalue, LF2, RF2]
If OutDL > K:
Return no self-collision occurs in the system, exit DLGJK algorithm;
If OutDL ≤ K:
Continue to execute the next step.
5. Call GJK algorithm, input [LF1, LF2, RF1, RF2]
If GJK algorithm detects no self-collision:
Return no self-collision occurs in the system, exit DLGJK algorithm;
If GJK algorithm detects the occurrence of self-collision:
Return self-collision occurs in the system, exit DLGJK algorithm.

The four-manipulator system used in this paper can be regarded as three dual-
manipulator systems and can perform self-collision detection simultaneously in the control
system. Since the initial distance and relative position between each pair of manipulators
are different, the DLNet and K (the K below refers to Kmin) should be retrained for different
dual-manipulator systems. The pseudo-code of the DLGJK algorithm for self-collision
detection of the four- manipulator system (Algorithm 2) is as follows:

Algorithm 2 DLGJK self-collision detection of the four-manipulator system

1. Input: motor data, containing motor data of 16 joints of the system.
2. Extract [LF1, LF2, RF1, RF2], [RS1, RS2, RF1, RF2], [LS1, LS2, LF1, LF2].
3. Apply DLGJK algorithm simultaneously for three groups of dual-manipulator systems:

DLGJK algorithm detection for LF-RF, input [LF1, LF2, RF1, RF2]:
If self-collision is detected:

Return LF-RF occurs self-collision, exit DLGJK algorithm;
If no self-collision is detected:

Return LF-RF no self-collision;:
DLGJK algorithm detection for RS-RF, input [RS1, RS2, RF1, RF2]

If self-collision is detected:
Return RS-RF occurs self-collision, exit DLGJK algorithm;

If no self-collision is detected:
Return RS-RF no self-collision;:

DLGJK algorithm detection for LS-LF, input [LS1, LS2, LF1, LF2
If self-collision is detected:

Return LS-LF occurs self-collision, exit DLGJK algorithm;
If no collision is detected:

Return LS-LF no self-collision;
4. If no self-collision occurs in the three groups of dual-manipulator systems, then no self-collision
occurs in the four-manipulator system, exit DLGJK algorithm.

166



Sensors 2023, 23, 523

5. Experiment and Discussion

5.1. Experimental Platform and Simulation Environment

The research in this paper was based on a mobile handling robot with four manipula-
tors. The simulation system environment is Windows 10 × 64, Intel i5-11600KF 3.90 GHz,
DDR4 64.0 GB, NVIDIA GeForce RTX 3070 Ti, and 1T SSD. The deep-learning environment
is based on the python3.9 pytorch framework, version 1.11.0. The robot control program
was written on QT Creator platform, version 5.15.2, and the programming language is C++.
The simulation software is Webots, version 2021b.

The simulation environment should be as close as possible to the real physical environ-
ment, so that the simulation manipulator can reflect the situation of the real manipulator in
real time and ensure that the algorithms and data in the simulation environment can be
used in the real environment. We directly imported the output model of SolidWorks into
Webots to ensure a high degree of unity among the SolidWorks model, Webots model, and
real robot. After our measurement and test, there was no visible error between the physical
environment robot and the simulation environment robot. Figure 16 shows the Webots
simulation model.

 
Figure 16. Webots model of four-manipulator handling robot.

5.2. Single Detection Time of DLGJK Algorithm
5.2.1. Single Detection Time of DLNet and GJK Algorithm

In this section, we calculated the single-detection time by dividing the detection time
of the dataset by the amount of data in the dataset. We took RF-LF as an example; since the
DL-Train dataset had covered the entire workspace of RF-LF, we used the DLNet to detect
the DL-Train dataset ten times. For a comparison, we used the GJK algorithm to detect
the Space-Col dataset ten times as well, in order to control variables; data with the same
amount as the DL-Train dataset were randomly selected from the Space-Col dataset for the
GJK algorithm. The results of ten detection times are shown in Table 3.
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Table 3. Dataset collision detection time of DLNet and GJK (ten detection times).

Algorithm 1 2 3 4 5 6 7 8 9 10

GJK 15,020.7985 s 15,024.0230 s 15,011.7995 s 15,001.7229 s 15,003.6697 s 15,033.8485 s 15,046.9780 s 15,007.4476 s 15,021.8630 s 15,024.3327 s

DLNet 1.5952 s 1.5773 s 1.5603 s 1.6240 s 1.6471 s 1.5634 s 1.6002 s 1.6001 s 1.5970 s 1.6033 s

As shown in Table 4, the average single-detection time of DLNet (TDL) is 0.12 μs,
and the average single-detection time of the GJK algorithm (TGJK) is 1129 μs, and the
judgment speed of DLNet for self-collision is much faster than the detection speed of
the GJK algorithm, which is one of the reasons why the DLGJK algorithm can improve
detection efficiency.

Table 4. Single self-collision detection time comparison of DLNet and GJK.

Algorithm Dataset Data Amount Average Dataset Detection Time Average Single-Detection Time

GJK 13,292,742 15,019.6483 s 1129 μs
DLNet 13,292,742 1.5969 s 0.12 μs

5.2.2. Theoretical Single-Detection Time of DLGJK Algorithm

According to the working logic of the DLGJK algorithm, the single-detection time
of DLGJK algorithm should be discussed in different situations: for the working states
without a self-collision risk, the single-detection time of the DLGJK algorithm is denoted
as T1, T1 = TDL = 0.12 μs; for the working states with a self-collision risk or self-collision
occurrence, the single-detection time of the DLGJK algorithm is denoted as T2, T2 = TDL +
TGJK = 1129.12 μs, with the results recorded in Table 5. We could observe that the DLGJK
algorithm takes much less time than the GJK algorithm in a single detection for the state
without a self-collision risk and does not increase the detection time for the state with a
self-collision risk.

Table 5. Single self-collision detection time of DLGJK.

Working Conditions Time-Consuming Equation Single-Detection Time

No self-collision risk T1 = TDL 0.12 μs
With self-collision risk T2 = TDL + TGJK 1129.12 μs

5.2.3. Actual Single-Detection Time of the DLGJK Algorithm

For the workspace of the RF-LF dual-manipulator system, the single-detection time
of the DLGJK algorithm should be calculated as the time mathematical expectation of its
single detection, denoted as:

E(TDLGJK) = T1(1 − P) + T2P (13)

P is the probability of the DLGJK algorithm calling GJK algorithm in a single detection.
We used the DLGJK algorithm and DL-Train dataset to detect the self-collision states of
the RF-LF workspace. In the DLGJK algorithm, the first-level frequency is the frequency
of calling DLNet, which is called globally during algorithm execution; the second-level
frequency is the frequency of calling the GJK algorithm, which is called according to the
judgment result of DLNet.

Compared to the global use of the GJK algorithm, the probability of the DLGJK
algorithm calling the GJK algorithm and the time expectation of a single self-collision
detection are shown in Table 6.
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Table 6. RF-LF workspace self-collision detection time expectation of Global GJK and DLGJK.

Algorithm Number of Times Calling GJK P Single Detection-Time Expectation

Global GJK 13,292,742 100% E(TGJK) = TGJK = 1129 μs
DLGJK 306,463 2.3% E(TDLGJK) = T1 × 97.7% + T2 × 2.3% = 26.09 μs

We can observe that for the RF-LF system, compared to that with the global use of the
GJK algorithm, the single self-collision detection time when using the DLGJK algorithm is
reduced by 97.7%, and the number of times calling the GJK algorithm (DLGJK second-level
frequency) is effectively reduced, which reduces the system overhead.

For the four-manipulator system, we used the same method to calculate the single-
detection time expectation for LF-LS and RF-RS, and the results are shown in Tables 7 and 8.

Table 7. LF-LS workspace self-collision detection time expectation of Global GJK and DLGJK.

Algorithm
Number of Times

Calling GJK
Single-Detection Time P Single-Detection Time Expectation

Global GJK 13,292,742 TGJK(LF-LS) = 1134 μs 100% E(TGJK) = TGJK(LF-LS) = 1134 μs

DLGJK 471,702 T1(LF-LS) = TDL(LF-LS) = 0.12 μs
T2(LF-LS) = TDL(LF-LS) + TGJK(LF-LS) = 1134.12 μs 3.5% E(TDLGJK)(LF-LS) = T1(LF-LS) × 96.5% + T2(LF-LS)

× 3.5% = 39.81 μs

Table 8. RF-RS workspace self-collision detection time expectation of Global GJK and DLGJK.

Algorithm
Number of Times

Calling GJK
Single Detection Time P Single-Detection Time Expectation

Global GJK 13,292,742 TGJK(RF-RS) = 1131 μs 100% E(TGJK) = TGJK(RF-RS) = 1131 μs

DLGJK 450,981 T1(RF-RS) = TDL(RF-RS) = 0.12 μs
T2(RF-RS) = TDL(RF-RS) + TGJK(RF-RS) = 1131.12 μs 3.4% E(TDLGJK)(RF-RS) = T1(RF-RS) × 96.6%

+ T2(RF-RS) × 3.4% = 38.57 μs

Since the collision detection of each group of dual-manipulator systems is calculated
in parallel in the robot control system, as 39.81 μs, the maximum values of E(TDLGJK),
E(TDLGJK)(RF-RS), and E(TDLGJK)(LF-LS) are taken as the time expectation of the DLGJK algo-
rithm single detection for the four-manipulator system. As shown in Figure 17, compared
to that when using the GJK algorithm globally, using the DLGJK algorithm can signifi-
cantly reduce the single-detection time expectation, improve the detection efficiency, and
effectively reduce the number of times calling the GJK algorithm.

Figure 17. Single-detection time expectation of system workspace.
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For the real-time control system, the single-detection time of the DLGJK algorithm
meets the requirement, and the detection speed far exceeds the standard for most of the
working states.

5.3. DLGJK Algorithm Self-Collision Detection for Working Path

Self-collision detection is an important process of path planning for multiple ma-
nipulators. In this part, we use the DLGJK algorithm to detect the working path of the
dual-manipulator system and the four-manipulator system. The global GJK algorithm can
also be used for comparison.

For the dual-manipulator system, a working path consisting of 800 motion-state
sequences in the actual task of RF-LF is used. For the four-manipulator system, we also used
a working path consisting of 800 motion-state sequences, which is a total of 2400 motion-
state sequences for the three groups of dual-manipulator systems. The experimental results
are shown in Figure 18.

Figure 18. Number of detections for manipulator working path.

During the movement of the RF-LF, the GJK algorithm is called 800 times when the
GJK algorithm is used globally, while it is called 156 times when the DLGJK algorithm is
used. When using the DLGJK algorithm, the number of self-collision detections is reduced
by 80.5%.

During the movement of the whole system, the GJK algorithm is called 2400 times
when the GJK algorithm is used globally and 496 times when the DLGJK algorithm is used.
In the case of using the DLGJK algorithm, the number of self-collision detections is reduced
by 79.4%.

The experimental results show that for the system used in this paper, since most of the
working states in the working path have no self-collision risk, compared to that when using
the GJK algorithm globally, the DLGJK algorithm improves detection efficiency by saving
the number of detections with no self-collision risk. At the same time, it can effectively
reduce the time spent on self-collision detection and reduce the system overhead.

6. Conclusions

To solve the problem of real-time self-collision detection with high-precision in a multi-
manipulator control system, we propose a two-level self-collision detection algorithm based
on the GJK algorithm and deep learning, the DLGJK algorithm. The proposed algorithm
has made great progress in the accuracy and efficiency of self-collision detection. When
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applying the DLGJK algorithm for self-collision detection, the DLNet is firstly used to
independently judge whether there is self-collision risk in the current working state of the
system. For the working state without a self-collision risk, the GJK algorithm is not called;
for the working state with a self-collision risk, the DLGJK algorithm enters the second level
of detection such that the GJK algorithm is called to perform self-collision detection.

For the dual-manipulator system, the experimental results show that the DLGJK
algorithm takes much less single-detection time than the GJK algorithm for the working
state without self-collision and does not increase the detection time for the working state
with a self-collision risk. For the system workspace, compared to that with the global use
of the GJK algorithm, DLGJK algorithm can reduce the single-detection time expectation
by 97.7%. For the working path, the DLGJK algorithm effectively reduces the number of
self-collision detections, which improves the detection efficiency and reduces the system
overhead in self-collision detection.

The proposed approach also has good scalability for multiple-manipulator systems
that can be divided into dual-manipulator systems, and we used a four-manipulator system
to verify this.
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Abstract: The rapid change of motion direction during running is beneficial to improving the
movement flexibility of the quadruped robot, which is of great relevance to its research. How to
make the robot change its motion direction during running and achieve good dynamic stability is a
problem to be solved. In this paper, a method to change the running direction of the cheetah-inspired
quadruped robot is proposed. Based on the analysis of the running of the cheetah, a dynamic model
of the quadruped robot is established, and a two-level stability index system, including a minimum
index system and a range index system, is proposed. On this basis, the objective function based on
the stability index system and optimization variables, including leg landing points, trunk movement
trajectory, and posture change rule, are determined. Through these constraints, the direction changes
with good dynamic stability of the cheetah-inspired quadruped robot during running is realized by
controlling the leg parameters. The robot will not roll over during high-speed movement. Finally, the
correctness of the proposed method is proven by simulation. This paper provides a theoretical basis
for the quadruped robot’s rapid change of direction in running.

Keywords: quadruped robot; change of running direction; dynamic model; stability index system;
simulation analysis

1. Introduction

Most quadrupeds have the ability to run fast. For example, the cheetah is the fastest-
running land animal in the world, and its speed can reach 104.4 km/h [1]. Antilocapra
americana can run very fast, up to 100 km/h, and has good endurance [2]. In particular, to
catch a fast-moving target or escape quickly, the running direction of the creature is not
constant, thus its running is no longer a plane motion but a motion in a 3D space. Therefore,
for the quadruped robot, how to achieve a rapid change of motion direction in running is a
problem to be solved [3].

Many researchers have studied the movement mechanism of the quadruped during
running [4]. For example, Kamimura et al. [5] hypothesized that the three characteristics of
the small vertical movement of their center of mass, small whole-body pitching movement,
and large spine bending movement enhance the running ability of the cheetah. The
hypothesis was then verified by a model with a spine joint and a torsional spring. In
addition, the running of bipedal creatures, such as birds [6,7] or humans [8,9], has also
been studied. On this basis, many researchers have studied the running of bio-inspired
quadruped robots. To make the quadruped robot have good dynamic performance in
running, the research mainly focuses on structural design [10,11], a control algorithm based
on the dynamic model [12–14], an energy transfer mechanism [15], and environmental
adaptability [16–18]. In terms of prototype, the most representative quadruped robot with
running ability is the Cheetah robot developed by the Massachusetts Institute of Technology
(MIT). Based on the research on the design principles for highly efficient legged robots and
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hierarchical controllers, the running speed of the Cheetah robot can reach 6 m/s and has
good dynamic performance [19–22]. In addition to quadruped robots, many researchers
have studied the running of biped robots [23,24] and hexapod robots [25,26], and have
achieved good research results.

Creatures often do not run in only one direction, and they have the ability to move
at high speed in 3D space [27,28]. The research on the motion abilities of bio-inspired
robots has also expanded from plane motion to 3D space [29,30]. For examples, Di Carlo
et al. [22] presented the implementation of model predictive control (MPC) to determine
ground reaction forces for a torque-controlled quadruped robot, and the developed MIT
Cheetah 3 can realize a full 3D gallop. Sullivan et al. [31] studied the effects of varying
step width on the 3D running stability of a bipedal amputee-inspired robot. The research
results showed that to obtain narrower step widths, as seen in human locomotion, a roll
and yaw control would be needed. In addition to controlling the motion parameters of
the robot itself, the robot can change motion direction during running by using auxiliary
mechanisms. For example, Kim et al. [32] were inspired by a basilisk lizard’s ability to run
and steer on water surfaces for a hexapedal robot, which can steer on water by rotating
its tail, and the controlled steering locomotion was stable. Kohut et al. [33] presented a
running robot that used aerodynamic forces to turn. The research results showed that the
robot is capable of stably turning in a 1.2 m radius at 1.6 ms, and the aerodynamic steering
is superior for high-speed turns at high forward velocity. In particular, jumping is also a
high-speed movement. Many researchers have studied the structure [34–36] and control
algorithms [37,38] of the robot so that it can achieve fast steering when jumping.

For quadruped robots with running ability, the existing research mainly focuses on
running in a plane. Research on the high-speed motion mechanism of the quadruped
robot in 3D space is relatively rare. The difficulty of research on the 3D running of robots
is mainly reflected in two aspects: the motion of the robot in 3D space involves many
dynamic performance indices and variables to be optimized, and the coupling degree
between them is high [39]; conversely, the change of direction in the high-speed motion
of the robot can easily cause sudden changes in performance indices [40]. Guaranteeing
the stable high-speed movement of the robot is difficult. To make the robot achieve good
dynamic stability in high-speed steering, taking the steering running of the cheetah as a
reference, a method of changing the running direction of a bio-inspired robot is proposed in
this paper. A two-level stability index system, including minimum index system and range
index system, is established based on the dynamic model of the robot, and the optimization
variables, including leg landing points, trunk movement trajectory, and posture change
rule, are determined. Then, the optimal leg input parameters can be obtained based on the
improved bee colony algorithm. The analysis results show that the robot can turn quickly
while running and has good dynamic stability by using the proposed method.

The remainder of the paper is structured as follows. Section 2 establishes the dynamic
model and stability index system, and presents the optimization method of leg parameters.
Section 3 shows examples to illustrate the feasibility of the method. Finally, Section 4
discusses the results. This paper provides a theoretical basis for the realization of rapid
steering in the running of the quadruped robot.

2. Methods

2.1. Research Objectives

Cheetahs often need to change movement direction frequently during hunting. When
the cheetah runs in a plane, the angle of leg adduction/abduction is almost zero. When
the cheetah needs to change the motion direction during high-speed movement, the ad-
duction/abduction angle is large. Figure 1a shows θ1 and θ2 are the angles between the
leg and the vertical direction in the front view, which are 36.6◦ and 64.2◦, respectively, in
the illustrated state. With the cooperation of muscle-driving forces, the cheetah can realize
steering movement during running. In particular, for the movement gait, cheetahs use a
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rotatory gallop with the footfall order of right fore, left fore, left hind, and right hind during
curve running [41].

 
(a) (b) 

Figure 1. (a) Moment when the cheetah changes its movement direction during running. The
legs of the cheetah have larger adduction/abduction angles than the cheetah moving in one plane.
(b) 3D model of the cheetah-inspired quadruped robot. The hip joint has 2 DOFs, and the knee joint
has 1 DOF.

The 3D model of the cheetah-inspired quadruped robot is shown in Figure 1b. The
hip joints of each leg have 2 degrees of freedoms (DOF) for adduction/abduction and
flexion/extension movements. The axes of the two hinges intersect. The knee joint has
1 DOF for flexion/extension movement. In addition, the leg is in point contact with the
ground, which can be equivalent to a 3-DOF ball pair. At this time, each leg has 6 DOFs
and no constraints on the trunk. By controlling the leg postures and driving forces of
the cheetah-inspired robot, the robot can simulate the cheetah to change motion direction
quickly during high-speed motion.

2.2. Establishment of Dynamic Model

During running, the cheetah’s two forelegs land first and its two hindlegs land
later [41]. For simplicity, the two forelegs are assumed to land simultaneously. When
the trunk moves to the lowest point, both forelegs leave the ground at the same time, and
both hindlegs land. The trajectory of the trunk during the turning of the robot in the leg
landing phase is shown in Figure 2a. When the forelegs of the robot land on the ground, its
trunk moves along the trajectory O1O2 (O1 is the position of the center of mass of the trunk
at the moment when the forelegs land, and O2 is the lowest point of the trunk). When the
center of mass of the trunk reaches O2, the movement direction of the trunk is changed,
and the robot leaves the ground along the trajectory O2O3 (O3 is the position of center of
mass of the trunk at the moment when the hindlegs leave the ground). In the following
text, the “trunk descending phase” and “trunk ascending phase” refer to the above two
processes. Trajectories O1O2 and O2O3 are not coplanar, and the trajectory is not necessarily
a straight line. The mechanism diagram of the cheetah-inspired quadruped robot is shown
in Figure 2b. The coordinate origin of the fixed coordinate system O0–X0Y0Z0 coincides
with the projection point of the lowest point O2 of the trunk motion trajectory on the ground.
The directions of the coordinate axes are shown in Figure 2b. The coordinate origin of the
moving coordinate system Ot–XtYtZt coincides with the geometric center of the trunk, and
the friction between the legs and the ground during the movement is ignored.
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(a) (b) 

Φ Φ

Figure 2. (a) Trajectory of the trunk of the cheetah-inspired quadruped robot in the process of
changing the motion direction in the leg landing phase. The trajectory O1O2 of the center of mass of
the trunk in the descending phase and the trajectory O2O3 in the ascending phase are not coplanar.
(b) Mechanism diagram of the cheetah-inspired quadruped robot.

First, the motion law of the trunk must be determined. Trajectories O1O2 and O2O3
can be expressed as

St(x, y, z) = St

(
n

∑
q=0

dqitq,
n

∑
q=0

eqitq,
n

∑
q=0

fqitq

)
, i = 1, 2 (1)

where t is the time, aq, bq, and cq are the polynomial coefficients, and (x1, y1, z1) and
(x2, y2, z2) are the coordinates of points O1 and O2, respectively. Equation (1) can also reflect
the change of velocity and acceleration of the trunk by derivation. In particular, some
boundary conditions are known. For example, at the moment when the forelegs of the
robot land on the ground and the trunk reaches the lowest point O2, the position and the
velocity of the center of mass of the trunk are known. The velocity of the trunk at point O1
is also known according to the motion parameters of the previous cycle (a running cycle
is defined from the moment of robot landing to the next landing moment). Therefore, a
coupling relationship between the polynomial coefficients may exist.

During the movement of the trunk along trajectories O1O2 and O2O3, the posture of
the trunk can be represented by the ZYX Euler angle.

Q =

⎛⎜⎜⎝
cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ x
sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ y
−sβ cβsγ cβcγ z

0 0 0 1

⎞⎟⎟⎠, (2)

where “s” and “c” refer to “sin” and “cos”, respectively, and α, β, and γ are the Euler
angles of the motion coordinate system Ot–XtYtZt relative to the fixed coordinate system
O0–X0Y0Z0. The change of trunk posture can be expressed as a polynomial function:

Φt(α, β, γ) = Φt

(
n

∑
q=0

aqitq,
n

∑
q=0

bqitq,
n

∑
q=0

cqitq

)
i = 1, 2 (3)

Similarly, boundary conditions can be set according to actual requirements to reduce
the number of polynomial coefficients to be optimized.
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If the position and the posture of the trunk are determined, the leg posture can be
reflected through the contact points between the legs and the ground. Taking the foreleg
landing as an example, the contact points can be determined by four parameters, h1, h2, dk,
and ϕk, as shown in Figure 2b. h1 and h2 are the distances from the two landing points to
the intersection S of A3A4 (A3 and A4 are the two landing points of forelegs) and the Z0
axis, respectively. dk is the distance from the coordinate origin of O0–X0Y0Z0 to S. ϕk is the
angle between A3A4 and the positive direction of the Z0 axis. At this time, the coordinates
of the two landing points A3 and A4 can be expressed as

Ai =
[
(−1)ihi sin ϕk 0 dk + (−1)ihi cos ϕk

]
i = 3, 4 (4)

The calculation method of the landing points is the same for the case of hindleg
landing. The kinematic equation of the i-th leg can be expressed as

0Tt =
0Ti1

i1Ti2
i2Ti3

i3Tti, (5)

where

0Ti1 =

⎛⎜⎜⎝
cθi1cθi2 cθi1sθi2sθi3 − sθi1cθi3 cθi1sθi2cθi3 + sθi1sθi3 li1 + li3cθi1cθi2
sθi1cθi2 sθi1sθi2sθi3 + cθi1cθi3 sθi1sθi2cθi3 − cθi1sθi3 li3sθi1cθi2
−sθi2 cθi2sθi3 cθi2cθi3 li2 − li3sθi2

0 0 0 1

⎞⎟⎟⎠,

i1Ti2 =

⎛⎜⎜⎜⎜⎝
sθi4 −sθi4 0 li4cθi4

sθi4 cθi4 0 li4sθi4

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎠, i2Ti3 =

⎛⎜⎜⎜⎜⎝
cθi5 0 sθi5 0

sθi5 0 −cθi5 0

0 1 0 0

0 0 0 1

⎞⎟⎟⎟⎟⎠, i3Tti =

⎛⎜⎜⎜⎜⎝
cθi6 −sθi6 0 li5cθi6

sθi6 cθi6 0 li5sθi6

0 0 1 li6
0 0 0 1

⎞⎟⎟⎟⎟⎠
θi1, θi2, and θi3 are the rotation angles of the ball pair. θi4 is the rotation angle of the knee
joint. θi5 and θi6 are the rotation angles of hinges 2 and 1, respectively, as shown in Figure 1b.
(ai1, bi1) is the position vector of point Ai in the fixed coordinate system O0–X0Y0Z0, li1 is
the length of link AiBi, li2 is the length of link BiCi, and (ai2, bi2) is the position vector of
point Ci in the moving coordinate system Ot–XtYtZt. For Equation (5), when the position
and the posture of the trunk and the position of the landing points are determined, the joint
angle θij (j = 1, 2, . . . , 6) can be obtained by numerical solution. At this time, the position
vector of any point on the link can be expressed as

rip = ripx
→
i + ripy

→
j + ripz

→
k (6)

On the basis of solving the kinematics, the dynamic model of the robot should be
established. By calculating the first and second derivatives of Equation (5), the angular
velocities and angular accelerations of the joints can be expressed as⎧⎨⎩

.
θij = f1(Vt, Wt)|Vt =

(
vtx, vty, vtz

)
, Wt =

( .
α,

.
β,

.
γ
)

..
θij = f1(Vt, Wt, At, Tt)|At =

(
atx, aty, atz

)
, Tt =

( ..
α,

..
β,

..
γ
) , (7)

where V t and Wt are the velocity and the angular velocity of the trunk, respectively; At and
Tt are the acceleration and the angular acceleration of the trunk, respectively.

By calculating the first and second derivatives of Equation (6), the velocity and the
acceleration of the joint points and centers of mass of the links can be obtained as

Vij =
6

∑
j=1

(
aijθij + bij

.
θij

)
=

6

∑
j=1

(
aijF(α, β, γ, x, y, z) + bij

.
F(α, β, γ, x, y, z)

)
(8)
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Aij =
6

∑
j=1

(
cijθij + dij

.
θij + eij

..
θij

)
=

6

∑
j=1

(
cijF(α, β, γ, x, y, z) + dij

.
F(α, β, γ, x, y, z) + eij

..
F(α, β, γ, x, y, z)

)
(9)

On this basis, the angular velocity and the angular acceleration of each link can be
obtained by

Vi,j+1 = Vi,j + ωi × Li (10)
.
Vi,j+1 =

.
Vi,j +

.
ωi × Li + ωi × (ωi × Li) (11)

where Vi,j and
.
Vi,j are the velocity and the acceleration of the j-th joint of the i-th link,

respectively. Vi,j+1 and
.
Vi,j+1 are the velocity and the acceleration of the (j + 1)-th joint of

the i-th link, respectively. ωi and
.

ωi are the angular velocity and the angular acceleration
of the i-th link, respectively. Li is the direction vector of the i-th link.

The driving torques can be obtained by establishing the Lagrange dynamic equation.
The total kinetic energy of the robot can be expressed as

Ek =
2

∑
i=1

2

∑
j=1

(
1
2

0Vij
Tmij

0Vij +
1
2

0ωij
T 0 Iij

0ωij

)
+

(
1
2

0Vt
Tmt

0Vt +
1
2

0ωt
T 0 It

0ωt

)
, (12)

where mij and mt are the masses of the j-th link of the i-th leg and the trunk, respectively.
0Vij and 0ωij are the velocity and the angular velocity of the j-th link of the i-th leg in the
fixed coordinate system, respectively. 0Vt and 0ωt are the velocity and the angular velocity
of the trunk in the fixed coordinate system, respectively. 0Iij and 0It are the moment of
inertia in the fixed coordinate system, which can be expressed as

0 Iij(t) =
0Tij(t)

ij Iij(t)
0Tij(t)

T , (13)

where 0Tij(t) is the transformation matrix of the j-th link of the i-th leg (or the trunk) in the
fixed coordinate system. The total potential energy of the robot can be expressed as

Ep =
2

∑
i=1

2

∑
j=1

(
mijghij

)
+ mtght, (14)

where hij and ht are the distances from the center of mass of the link and the trunk to the
ground, respectively, which can be obtained by kinematic analysis.

The trunk of the robot has 6 DOFs when two legs land at the same time. The drives are
installed at the hip and knee joints of the legs because the ball pair formed by the contact
between the legs and the ground is passive motion. At this time, the Lagrange dynamic
equation can be written as

τij =
d
dt

∂Ek

∂
.
qij

− ∂Ek
∂qij

+
∂Ep

∂qij
, (15)

where qij = (θi1, θi2, θi3, θi4, θi5, θi6), and
.
qij =

( .
θi1,

.
θi2,

.
θi3,

.
θi4,

.
θi5,

.
θi6

)
.

Through the method detailed above, the dynamic model of the cheetah-inspired
quadruped robot moving at a high speed in 3D space can be established.

2.3. Establishment of Stability Index System

On the basis of establishing the dynamic model, the stability index system must be
set up so that the robot has good dynamic performance by optimizing the leg parameters.
A two-level stability index system is proposed, including a minimum index system and
range index system.
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The indices contained in the minimum index system should be as small as possible
during robot movement. It includes the total inertia moment, the angular velocity of
the trunk, the zero moment point (ZMP), and the energy consumption of the robot in a
motion cycle.

(1) Total inertia moment. During the high-speed movement of the robot, it should
maintain good stability without overturning and rolling over. During the descending and
ascending phases of the trunk, the mean and the variance of the total inertia moment and
the total inertia moment of the robot at the moment of leaving the ground should be as
small as possible. The total inertia moment at the k-th time can be expressed as

MIk =
2

∑
i=1

2

∑
j=1

(
rijk × Fijk + Mijk

)
+rtk × Ftk + Mtk, (16)

where Fij and Ft are the inertia forces of the j-th link of the i-th leg and the trunk, respectively.
rij and rt are the vectors of the center of mass of the j-th link of the i-th leg and the trunk in
the fixed coordinate system, respectively. Mij and Mt are the inertia moments. The above
indices can be expressed as⎧⎪⎪⎪⎨⎪⎪⎪⎩

D =
∣∣∣∀D

(
Mij(t)

)
− ∀D

(
Mkp

)∣∣∣
E =

∣∣∣∀E
(

Mij(t)

)∣∣∣
V = End

(
Mij(t)

) , (17)

where D, E, and V represent the mean, the variance, and the end value, respectively.
(2) Angular velocity of the trunk. A small total inertia moment can make the robot have

a small angular acceleration, but further ensuring that the trunk has a small angular velocity
at the moment of leaving the ground is still necessary to prevent the robot from turning
during a long flight time. The angular velocity of the robot can be obtained according to
Equations (10)–(11).

(ωr, αr) = g
(

θij,
.

Φ,
..
Φ
)

(18)

(3) ZMP. ZMP can be expressed as [42]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

XZMP =

4
∑

i=1
mij

( ..
yij+g

)
xij+mt(

..
yt+g)xt−

4
∑

i=1
mij

..
xijyij−mt

..
xtyt

4
∑

i=1
mi

( ..
yij+g

)
+mt(

..
yt+g)

YZMP = 0

ZZMP =

4
∑

i=1
mij

( ..
yij+g

)
zij+mt(

..
yt+g)zt−

4
∑

i=1
mij

..
zijyij−mt

..
ztyt

4
∑

i=1
mi

( ..
yij+g

)
+mt(

..
yt+g)

(19)

where (xij, yij, zij) and (xt, yt, zt) are the position coordinates of the center of mass of the j-th
link of the i-th leg and the trunk in the fixed coordinate system, respectively.

(4) Energy consumption. The energy consumption of the robot in high-speed motion
should be as small as possible. The total energy consumption can be expressed as

C =
∫ T

0

2

∑
i=1

3

∑
j=1

∣∣Pij(t)
∣∣dt =

∫ T

0

2

∑
i=1

3

∑
j=1

∣∣τij(t)ωij(t)
∣∣dt, (20)

where Pij is the instantaneous power of the j-th joint of the i-th leg, τij is the joint torque,
and ωij is the joint angular velocity.

The indices contained in the range index system are considered to meet the re-
quirements within given ranges. This includes the driving torques of the legs and the
leg swing angle.

179



Sensors 2022, 22, 9601

(1) Driving torques. The mean value of the discrete points of the driving torques for
different joints should be in a small range. In this way, motors with the same model can be
selected, reducing the difficulty of robot prototype development and control. The variances
of the joint torque should also be in a small range to ensure the smoothness of torque
changes, and prevent excessive torque changes from affecting the service life of the motor.
The above indices can be expressed as{

D =
∣∣∣∀D

(
τij

)− ∀D
(

τkp

)∣∣∣
E =

∣∣∀E
(
τij

)∣∣ , (21)

where D and E represent the mean and the variance, respectively.
(2) Leg swing angle. The leg swing angle refers to the angle between the line between

the hip joint and the landing point and the vertical direction. If the leg swing angle is too
large, the robot easily loses stability due to small friction. Therefore, the leg swing angle
should be smaller than the given values. The leg swing angle can be expressed as

Ψ =

(
arccos

z(Ri6)− z(Ri1)

y(Ri6)− y(Ri1)

)
, (22)

where Rij is the position vector of the j-th joint of the i-th leg.
Through the above analysis, a two-level stability index system including the minimum

index system and the range index system is established. Among them, the constraints for
total inertia moment, angular velocity of the trunk, ZMP, and leg swing angle determine
the feasibility of robot motion, and the constraints for energy consumption and driving
torques determine the performance advantages of robot long-term movement. The stability
index system provides a basis for the subsequent optimization of the motion parameters of
the robot.

2.4. Leg parameter Optimization Method

According to the analysis results of the biological mechanism in Section 2.1, the
leg postures and the driving torques of the robot during high-speed movement must be
determined, which can be obtained through optimization.

The optimization variables include leg posture parameters and trunk motion parame-
ters. The former includes h1i, h2i, dki, and ϕki (I = 1, 2), as shown in Figure 2b. The latter
includes the polynomial coefficients shown in Equations (1) and (3). In particular, the
polynomial coefficients are different in the descending and ascending phases of the trunk.

The optimization objective function can be expressed as

Z = Min
n
∑

i=1
wi fi(x1, . . . , xn)

s.t.Γ
(23)

where

f1 = (D|MIk| − min(D|MIk|))/(max(D|MIk|)− min(D|MIk|))
f2 = (E|MIk| − min(E|MIk|))/(max(E|MIk|)− min(E|MIk|))
f3 = (End(|MIk|)− min(|MIk|))/(max(|MIk|)− min(|MIk|))
f4 = (|D(ZMP, Ai Ai+1)| − min|D(ZMP, Ai Ai+1)|)/max(|D(ZMP, Ai Ai+1)| − min|D(ZMP, Ai Ai+1)|)
f5 = (|E(ZMP, Ai Ai+1)| − min|E(ZMP, Ai Ai+1)|)/max(|E(ZMP, Ai Ai+1)| − min|E(ZMP, Ai Ai+1)|)
f6 = (C − minC)/(maxC − minC)

f 1 and f 2 represent the mean and variance of the discrete points of the total inertia moment
of the robot in the descending and ascending phases, respectively. f 3 represents the total
inertia moment of the robot at the moment when it leaves the ground. f 4 and f 5 represent
the mean and the variance of the distance from the ZMP to the line between the two
landing points, respectively. f 6 represents the energy consumption. In particular, Equation
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(3) is derived, and the zero angular velocity of the trunk at the end of the descending
and ascending phases can be taken as the boundary condition instead of being listed as
the objective function. The relationship between polynomial coefficients and time can be
obtained and used as the constraints for optimization. This can ensure that the angular
velocity of the trunk of the robot is zero when it leaves the ground, and that the robot
has good stability. fi (i = 1, 2, . . . , 6) should be as small as possible, which corresponds to
the minimum index system. wi is the weight coefficient, which is determined by analytic
hierarchy process (AHP). The weight coefficient can be expressed as

wi =
w0

j
n
∑

j=1
w0

j

, (24)

where w0
i are the values obtained by adding rows after the standardization of the judgment

matrix. In particular, the consistency of the judgment matrix must be checked to ensure
that the scoring of experts is logical and does not appear contradictory. Consistency index
can be expressed as

CR =
λmax − n/n − 1

RI
, (25)

where λmax is the maximum eigenvalue of the judgement matrix, and RI is an average
random consistency index, which can be obtained by looking up the table.

For Equation (23), Γ is the constraints, which can be expressed as{ ∣∣∣∀D
(
τij

)− ∀D
(

τkp

)∣∣∣ ≤ ZDand
∣∣∀E

(
τij

)∣∣ ≤ ZE

Ψ ≤ Ψo
, (26)

where the first formula indicates that the mean and the variance of the driving torques
should meet the range requirements, and ZD and ZE are the given reference values. The
second formula indicates that the angle between the leg and the ground should be less than
the given value Ψ0. Equation (26) is consistent with the range index system.

For the above optimization variables and objective functions, an improved bee colony
algorithm is applied in this paper, and the optimization is shown in Algorithm 1. First,
the initial ranges of optimization variables Q, the kinematic feasible region O (make sure
the trunk is in the workspace), and the maximum value Z(i)max and minimum value
Z(i)min of the objective function are given. A set of optimization variables W(j) is taken
from the initial range Qrange, and each item in the optimization objective function Z(j)
and the motion parameters O(j) are calculated based on bee colony algorithm HG

rule and
range constraints M. By judging the value of the objective function, Qrange, Z(i)min, and
Z(i)max are updated and assigned to Qrange

new ,Z((i))min
new, and Z(i)max

new , respectively, to obtain
the approximate accurate values. While carrying out the accurate dimensionless processing
of the objective function, the design efficiency is improved through the accurate constraints
of the ranges. On this basis, values are taken from Qrange

new , the objective function Z(j) is
calculated, and Qrange

new ,Z(i)min
new, and Z(i)max

new are simultaneously updated to improve the
constraint accuracy continuously. In particular, when the ratio of the total number of cycles
to the current number of cycles is a positive natural number, the result obtained by the
previous generation calculation is used as a reference to reduce the ranges by multiplying
the scale coefficient k (k < 1) to improve the calculation efficiency. Finally, the minimum
value of the objective function is obtained, and the optimization variables are output.
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Algorithm 1 Leg parameters optimization

Nomenclature: Q% Ranges of optimization variables
W% Optimization variables
Z% Optimization objective function
O% Kinematic feasibility constraints
M% Range constraints
HG

rule% Bee colony algorithm

1: Set Qrange, Orange, Z(i)min,Z(i)max, and M
2: For j=1, . . . ., N1
3: Select W(j) from Qrange

4: Calculate Z(j) and (j) by HG
rule andM

5: If O(j) ∈Orange

6: Update Qrange,Z(i)min and Z(i)max by Z(j)
7: Q

range
new = Qrange , Z(i)min

new Z(i)min and Z(i)max
new = Z(i)max

8: End If

9: End For

10: For j = 1, . . . ., N2
11: Select (j) fromQrange

new
12: Calculate Z(j) byHG

rule and M
13: Update Q

range
new , Z(i)min

new and Z(i)max
new by Z(j)

14: If N2/ N*

15: Update Q
range
new

16: End if

17: Calculate Z by Z(i)min
new and Z(i)max

new
18: If Z ≤ Zbest
19: Copy Z into Zbest
20: End if

21: End For

In particular, for the above optimization process, parallel calculation is used in the
process of employed bees, on-looker bees, and scout bees to find honey sources, and the
extreme value of the objective function is dynamically updated after the calculation for each
kind of bee is completed. At the same time, the dynamic parameters for the scout bees are
added, and the working threshold of the scout bees is adjusted dynamically according to
the convergence of the objective function. The above process can improve the convergence
speed and enhances the ability of global optimal search.

3. Results

3.1. Examples

To prove the feasibility of the method proposed in this paper, two examples are given.
The structural parameters of the robot are shown in Table 1. The variable (a2, b2) represents
the coordinates of the hip joint in the moving coordinate system Ot–XtYtZt, as shown in
Figure 2b. The thigh and the calf legs are cylinders, and the section radius r and length h
are given in Table 1. For example 1, the known parameters are shown in Table 2. v1 and v2
are the velocities of the trunk at points O1 and O3, respectively; (x1, y1, z1) and (x2, y2, z2)
are the coordinates of points O1 and O2, respectively. Φ0 is the trunk posture angle at the
moment of landing. Ψ0, ZD, and ZE are the given values shown in Equation (26).

Table 1. Structural parameters of the cheetah-inspired quadruped robot.

Size of
Thigh/[r, h]/m

Size of
Calf/[r, h]/m

Size of
Trunk/m

Mass of
Thigh/Kg

Mass of
Calf/Kg

Mass of
Trunk/Kg

(a2, b2)/m

0.02/0.24 0.02/0.28 0.18 × 0.2 × 0.6 0.2 0.3 1.8 (0.12, 0.26)
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Table 2. Known values during optimization for example 1.

v1/(m/s) v2/(m/s) (x1, y1, z1)/m (x2, y2, z2)/m Φ0/◦ Ψ0/◦ ZD/ZE/(Nm)

(0, 0, 0.22) (1.73, 0.87, 3.26) (0.13, 0.35, −0.2) (0, 0.3, 0) (25, 10, 0) 60 5.0/10

To ensure the motion stability of the robot, the trunk movement trajectory and posture
change rule are assumed cubic functions, and the polynomial coefficients need to be
determined. In the descending phase of the trunk, the trajectory equation and the posture
equation of the trunk have 12 undetermined polynomial coefficients. The position and
the velocity of the trunk at O1 and O2 are known, the angle and angular velocity of the
trunk at O1 and O2 are known, and the trunk does not rotate around the Zt axis. By
substituting the boundary conditions into Equations (1) and (3), all polynomial coefficients
can be expressed as functions of time. In the ascending phase of the trunk, the position
and the velocity of the trunk at O2, the velocity direction of the trunk at O3, the trunk
angle and the angular velocity at O2, and the trunk angular velocity at O3 are known. The
relationship between the undetermined coefficients and the movement time can also be
obtained by substituting the boundary conditions into Equations (1) and (3). However, not
all polynomial coefficients can be expressed in time. Two coefficients in Equation (1) and
three coefficients in Equation (3) still need to be determined. To sum up, the optimization
variables involved in the trunk motion to be determined include t1 (movement time of
trunk in the descending phase), t2 (movement time of trunk in the ascending phase), a12,
a22, d12, d22, and d32. The optimization variables also include leg landing point parameters
h1i, h2i, dki, and ϕki. The initial ranges of the optimization variables are listed randomly
in Table 3. The weight coefficients are w1 = 0.0755, w2 = 0.0464, w3 = 0.5984, w4 = 0.1305,
w5 = 0.0623, and w6 = 0.0869. For the hierarchical bee colony algorithm, the number of
honey sources is 100, the number of leading bees is 100, and the maximum number of
iterations is 100. The optimization results obtained by the method proposed in this paper
are shown in Table 3.

Table 3. Initial parameter ranges and optimization results for example 1.

Initial ranges

h11/m h21/m dk1/m ϕk1/◦ h12/m h22/m dk2/m

[0, 0.2] [0, 0.3] [−0.1, 0.1] [0, 180] [0, 0.6] [0, 0.6] [−0.1, 0.4]

ϕk2/◦ t1/s t2/s a12 a22 d12/◦ d22/◦ d32/◦

[0, 180] [0.5, 1] [0.1, 0.5] [10, 61] [0, 15] [−15, 0] [10, 45] [−30, 30]

Optimization
results

h11/m h21/m dk1/m ϕk1/◦ h12/m h22/m dk2/m

0.17 0.04 0.08 74.12 0.10 0.33 −0.02

ϕk2/◦ t1/s t2/s a12 a22 d12/◦ d22/◦ d32/◦

53.29 0.8 0.3 17 7.55 −13 32.69 20

Figure 3a,b show the motion sequence when the robot changes motion direction during
running. In the descending phase of the trunk, the two forelegs of the robot are in contact
with the ground, and the center of mass of the trunk moves 243.72 mm in 0.8 s. In the
ascending phase of the trunk, the two hindlegs of the robot are in contact with the ground,
and the center of mass of the trunk moves 492.58 mm in 0.3 s. Figure 3c shows the trajectory
of the center of mass of the trunk. When the forelegs of the robot touch the ground, the
motion direction vector of the trunk is (0, 0, 1). At the moment when the hindlegs of the
robot leave the ground, the motion direction vector of the trunk is (1.74, 0.5, 1.84). From
the top view, the included angle of the direction vector is 28.08◦, and the running direction
of the robot changes clearly. Figure 3d shows the change of trunk posture. The proper
change of body posture is conducive to keeping the good dynamic stability of the robot. The
angles of the robot around the three axes at the moment of leaving the ground are −13.01◦,
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32.69◦, and 19.81◦. The changes of angular velocities obtained by the method described
in Section 2.4 are shown in Figure 3e. The angular velocity of the robot at the moment of
leaving the ground is zero, and the trunk of the robot will not rotate significantly in the flight
phase. Figure 3f shows the positions of the landing points of the legs. In the descending
phase of the trunk, the coordinates of the landing point of the two forelegs are (200, 0, and
243.81 mm) and (−62.01, 0, and −107.17 mm). In the ascending phase of the trunk, the
landing point coordinates of the two hindlegs are (−151.93, 0, and 0.04 mm) and (−32.88, 0,
and 99.98 mm). The leg landing points are no longer symmetrical along the Z0 axis, and
the legs have evident adduction/abduction angles. The maximum leg swing angles of the
forelegs are 41.04◦ and 41.09◦, and the maximum leg swing angles of the hindlegs are 45.09◦
and 41.00◦. This outcome is consistent with the analysis results of the movement mechanism
of the cheetah when it turns during running, as shown in Figure 1a.

The dynamic performance of the cheetah-inspired quadruped robot during steering
is shown in Figure 4. The change of the total inertia moment of the robot is shown in
Figure 4a. In the descending phase of the trunk, the amplitude of the total inertia moment
of the robot is small and changes gently. When the trunk reaches the lowest point O2, the
total inertia moments of the robot along the three axes are 0.99, −0.12, and −0.73 N·m.
In the ascending phase of the trunk, the total inertia moment increases substantially but
then decreases rapidly because the robot needs to obtain a large acceleration in a short
time. When the trunk reaches point O3, the total inertia moments of the robot along the
three axes are −4.64, 0.94, and −0.31 N·m. Figure 4b shows the changes of the total inertia
moment before and after optimization. “B” and “A” refer to before and after optimization,
respectively. E(MtI), m(MtI), and V(MtI) represent the end value, the mean, and the variance
of the total inertia moment, respectively. The total inertia moment before optimization
is calculated by substituting the initial parameters. Figure 4b shows that the total inertia
moment decreases considerably after optimization. In the descending phase of the trunk,
the maximum reductions of E(MtI), m(MtI), and V(MtI) after optimization are 54.22%,
47.79%, and 78.96%, respectively. In the ascending phase of the trunk, the maximum
reductions of E(MtI), m(MtI), and V(MtI) after optimization are 99.6%, 97.7%, and 99.9%,
respectively. The dynamic stability of the robot is remarkably improved. Figure 4c shows
the distance from ZMP to the connecting line between the two landing points during the
descending phase of the trunk. The average value of the distance is 9.08 mm. ZMP is near
the connecting line of two points. The deviation is small compared with the size of the
robot, and the robot has good dynamic stability. Figure 4d shows the mean and variance of
driving torques. “J-1,” “J-2,” and “J-3” represent hinges 1, 2, and 3, respectively, as shown
in Figure 1b. The maximum difference between the mean values of driving torques of the
different joints is only 2.8 N/m, and the driving torques change smoothly with a slight
difference in amplitude. Moreover, the energy consumption of the robot during movement
is 27.96 J. The above analysis results reveal that the optimized indices that are contained in
the minimum index system are very small, and the indices contained in the range index
system are within reasonable ranges. The robot has good dynamic stability by using the
parameters of the leg postures and the driving torques obtained by the method proposed
in this paper.

For example 1, the robot turns left during running from the top view, thus the projec-
tion of the motion direction vector on the ground of the robot at the moment of leaving the
ground is counterclockwise relative to that of the robot at the moment of landing. To prove
the feasibility of the method proposed in this paper further, an example of the robot turning
to the right is given. The known values remain unchanged, as shown in Table 2. The initial
range of optimization variables and optimization results are shown in Tables 4 and 5.
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(a) (b) 

(c) (d) 

 
(e) (f) 

Figure 3. (a) Motion sequence of the robot in the descending phase of the trunk for example 1.
(b) Motion sequence of the robot in the ascending phase of the trunk for example 1. (c) Movement
trajectory of the trunk for example 1. In the descending and ascending phases of the trunk, the
trajectories are cubic functions. (d) Changes of trunk posture for example 1. In the descending
phase of the trunk, the angle changes of the trunk around the three axes are 25◦, 10◦, and 0◦. In
the ascending phase of the trunk, the angle changes of the trunk around the three axes are 38.01◦,
−22.69◦, and −20.00◦. (e) Changes of trunk angular velocity for example 1. The angular velocity
of the robot at the moment of leaving the ground is zero. (f) Landing points of the forelegs and the
hindlegs for example 1.
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(a) (b) 

 
(c) (d) 

Figure 4. (a) Change of the total inertia moment of the robot in the descending and the ascending
phases after optimization for example 1. (b) Changes of the total inertia moment of the robot before
and after optimization for example 1. The maximum reduction of the end value, the mean, and the
variance of the total inertia moment of the robot after optimization are 99.6%, 97.7%, and 99.9%,
respectively, and the decreases are evident. (c) Change of ZMP during the descending phase of the
trunk for example 1. ZMP changes near the connecting line of the landing points of two legs, showing
good stability. (d) Mean and variance of the driving torques for example 1. The maximum difference
of the mean value is 2.8 N·m, and the maximum variance is 7.16 N·m. The driving torques are within
reasonable ranges.

Table 4. Known values during optimization for example 2.

v1/(m/s) v2/(m/s) (x1, y1, z1)/m (x2, y2, z2)/m Φ0/◦ Ψ0/◦ ZD/ZE/(Nm)

(0, 0, 0.25) (−1.60, 0.80, 3.00) (0.13, 0.35, −0.2) (0, 0.3, 0) (25, −10, 0) 60 5.0/10

Table 5. Initial parameter ranges and optimization results for example 2.

Initial ranges

h11/m h21/m dk1/m ϕk1/◦ h12/m h22/m dk2/m

[0, 0.3] [0, 0.2] [−0.1, 0.1] [0, 180] [0, 0.6] [0, 0.6] [−0.1, 0.4]

ϕk2/◦ t1/s t2/s a12 a22 d12/◦ d22/◦ d32/◦

[0, 180] [0, 1] [0, 0.5] [10, 61] [0, 15] [−15, 0] [−45, −10] [−30, 30]

Optimization
results

h11/m h21/m dk1/m ϕk1/◦ h12/m h22/m dk2/m

0.02 0.25 −0.13 0.05 0.03 0.15 0.001

ϕk2/◦ t1 t2 a12 a22 d12/◦ d22/◦ d32/◦

44.67 0.8 0.22 26.86 10 −15 −12 12.88
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The optimization results for example 2 are shown in Figure 5. Figure 5a,b show the
motion sequence of the robot for example 2. In the descending phase of the trunk, the center
of mass of the trunk moves 243.72 mm in 0.8 s. In the ascending phase of the trunk, the
center of mass of the trunk moves 337.3 mm in 0.22 s. Figure 5c shows the change of trunk
posture. Similarly, the angular velocity of the trunk at the moment of leaving the ground
is zero. Figure 5d shows the positions of the landing points of the legs. The maximum
leg swing angles of the forelegs and hindlegs are (53.30◦, 48.10◦) and (33.75◦, 27.71◦),
respectively. The dynamic performance of the cheetah-inspired quadruped robot during
steering is shown in Figure 5e,f. Figure 5e shows the changes of the total inertia moment
before and after optimization. Similarly, the total inertia moment before optimization is
calculated by substituting the initial parameters. Compared with those before optimization,
in the descending phase of the trunk, the maximum reductions of E(MtI), m(MtI), and V(MtI)
after optimization are 45.8%, 46.9%, and 68.8%, respectively. In the ascending phase of the
trunk, the maximum reductions of E(MtI), m(MtI), and V(MtI) after optimization are 98.89%,
90.2%, and 97.57%, respectively. Moreover, the total inertia moments of the robot around
the three axes at the moment of leaving the ground are −4.7069, −0.5166, and −3.9464 N·m
within small ranges. This finding shows that the robot has good dynamic stability. Figure 5f
shows the mean and the variance of the driving torques. The maximum difference between
the mean values of driving torques of the different joints is only 5.88 N/m, and the variance
is not too large.

3.2. Simulation

Two examples are simulated with Webots to verify that the robot can turn quickly
while running and has good dynamic stability, and the simulation videos are shown in
Supplementary Materials. Each example contains two continuous running cycles. The
structural parameters of the robot are consistent with theoretical calculation. Since the robot
has a long flight time during running, the stability of the robot is directly reflected by the
rotation angle of its trunk. For simulation example 1, the robot turns left continuously while
running. Taking the joint angles and driving torques obtained by theoretical calculation as
input for the first running cycle, the input parameters of the robot in the second running
cycle can be calculated by the same method. The top view of the motion sequences of the
robot in two cycles is shown in Figure 6a. O1, O2 and O3 refer to the position of the center of
mass of the trunk shown in Figure 2a, and O4 refers to the highest point of the robot in the
flight phase. The robot rotates 28.08◦ around the vertical axis in both cycles, and the motion
direction changes substantially. The trunk rotation angles corresponding to Figure 6a is
shown in Figure 6c. In the descending and ascending phases of the trunk of the robot
in the first running cycle, the trunk rotation angles are exactly the same as those shown
in Figure 3d. From one perspective, it proves the correctness of theoretical calculation;
conversely, it can also show that the robot moves according to the predetermined rules in
the descending and ascending phases of trunk, without movement failure, such as rollover.
In the flight phase, the trunk posture of the robot almost remains unchanged. The maximum
rotation angles of the trunk in two cycles around the three axes are −2.95◦, 3.75◦, and 3.32◦.
This finding shows that the robot has small angular velocity at the moment of leaving the
ground, which can be seen in Figure 6e, and it also proves the correctness of the proposed
two-level stability index system. For simulation example 2, the top views of the motion
sequences of the robot and the trunk rotation angle are shown in Figure 6b,d, respectively.
The robot rotates −28.08◦ around the vertical axis in both cycles. In the descending and
ascending phases of the trunk of the robot in the first cycle, the trunk rotation angles are
exactly the same as those shown in Figure 4c. In the flight phase, the maximum rotation
angles of the trunk in two cycles around the three axes are 1.88◦, 0.92◦, and −3.72◦. The
change of the angular velocity of the trunk corresponding to simulation example 2 is shown
in Figure 6f, and the angular velocity of the robot at the moment of leaving the ground
in two cycles is approximately zero. The rotation angles of the trunk in the flight phases
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and the angular velocity of the trunk at the moment of leaving the ground are within small
ranges, and the robot shows good dynamic stability.

(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 5. (a) Motion sequence of the robot in the descending phase of the trunk for example 2.
(b) Motion sequence of the robot in the ascending phase of the trunk for example 2. (c) Changes of
trunk posture for example 2. In the descending phase of the trunk, the angle changes of the trunk
around the three axes are 25◦, −10◦, and 0◦. In the ascending phase of the trunk, the angle changes of
the trunk around the three axes are −40.01◦, −12◦, and 12.88◦. (d) The landing points of the forelegs
and hindlegs for example 2. (e) Changes of the total inertia moment of the robot before and after
optimization for example 2. The maximum reductions of the end value, the mean, and the variance of
the total inertia moment of the robot after optimization are 98.9%, 90.2%, and 97.6%, respectively, and
the decreases are evident. (f) Mean and variance of the driving torques for example 2. The maximum
difference of the mean value is 5.88 N·m, and the maximum variance is 6.12 N·m. The driving torques
are within reasonable ranges.
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Figure 6. Cont.
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(e) 

(f) 

Figure 6. (a) Top view of the motion sequences of the robot for simulation example 1. The robot
rotates 28.08◦ around the vertical axis in both cycles, and the direction of motion changes considerably.
(b) Top view of the motion sequences of the robot for simulation example 2. The robot rotates −28.28◦

around the vertical axis in both cycles. (c) Change of trunk posture for simulation example 1. The
changes of the maximum rotation angles of the trunk in the flight phase are −2.95◦, 3.75◦, and 3.32◦.
(d) The change of trunk posture for simulation example 2. The changes of the maximum rotation
angles of the trunk in the flight phase are 1.88◦, 0.92◦, and −3.72◦. (e) Change of trunk angular
velocity of the trunk for simulation example 1. (f) Change of trunk angular velocity of the trunk for
simulation example 2.

The above simulation results show that the proposed method in this paper can make
the trunk posture of the robot stable and achieve good dynamic stability in high-speed
steering motion by controlling the leg postures and the driving torques. The cheetah-
inspired quadruped robot does not overturn or roll over due to excessive velocity and
change of movement direction, so that the movement fails.

4. Discussion

In this paper, the main research objective is to propose a method to maintain the
dynamic stability of the robot during steering running. Therefore, a two-level stability
index system, including a minimum index system and a range index system, is proposed
based on the dynamic model, and optimization objective functions are established based
on the index system. The optimization variables include not only leg posture parameters,
but also the trunk movement trajectory and posture parameters. Through the coordination
of leg postures and driving torques obtained by the improved bee colony algorithm, the
legged robot can achieve good dynamic performance [42–44]. The method proposed in this
paper can make the quadruped robot achieve fast steering in running, and the following
factors need to be considered.
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(1) Changes in trunk posture. Figures 3 and 5 show that the posture of the trunk
changes during the descending and ascending phases. If the trunk is forced to remain
horizontal without a posture change, although the trunk looks more stable, keeping the
total inertia moment within a small range at the moment of the robot leaving the ground is
difficult. The robot turns over evidently in the flight phase, which leads to motion failure.
Figure 7a shows the change of the total inertia moment of the robot when the trunk is
forced horizontally. The total inertia moments of the robot at the moment of leaving the
ground are −26.43, 5.41, and 7.40 N·m. They are substantially larger than those shown
in Figures 4 and 5. Moreover, the change of the trunk angle should be reasonable. For
example, Figure 7b shows a set of calculated results for trunk angle changes. Although the
total inertia moment of the robot corresponding to Figure 7b is within a reasonable range
and the robot is stable, the pitch angle of the robot at the moment of leaving the ground is
41.28◦, which is not conducive to the stability of the robot in the next cycle. Figures 3d and
5c show that the pitch angle of the trunk is relatively small at the moment of leaving the
ground, and this is conducive to the robot maintaining good dynamic stability.

 
(a) (b) 

Figure 7. (a) Change of the total inertia moment when the trunk is forced horizontally. The maximum
value of the total inertia moment is 27.97 N·m, which is much greater than the value shown in
Figure 4a. (b) A possible trunk posture change rule. Although the corresponding total inertia
moment is within a reasonable range, the maximum pitching angle of the trunk is 41.28◦, which is
not conducive to the stability of the robot.

(2) Coupling of multiple parameters. High-speed motion in 3D space has many
dynamic stability indices, and the coupling degree between indices is high. For example, a
large coupling relationship exists between the steering angle, the velocity, the total inertia
moment of the robot at the moment of leaving the ground, and ZMP. When the velocity
of the robot at the moment of leaving the ground increases—that is, when the forward
distance of the robot in a cycle increases—or the steering angle is too large, always staying
near the connecting line the landing points of the two legs is difficult for the ZMP of the
robot and the total inertia moment increases, thus the robot has difficulty maintaining good
stability. For example, when the velocity of the trunk increases from 3.5 m/s to 5 m/s at
the moment of leaving the ground, the total inertia moment after optimization remarkably
increases from 6.16 N·m to 14.21 N·m. Although it can increase the movement time of the
trunk in the ascending phase to reduce the total inertia moment, the difficulty of obtaining
the optimal solution increases. Therefore, the motion parameters of the robot must be
reasonably determined to achieve continuous, stable motion.

(3) Determination of weight coefficients. For the optimization objective function shown
in Equation (23), the weight coefficients influence the results. For the examples shown in
Section 3.1, the weight coefficients are determined by AHP. f 3 and f 4 have a great influence
on dynamic stability, and their weight coefficients are large; f 1, f 2, f 5, and f 6 have minimal
influence on dynamic stability, and their weight coefficients are relatively small. If the
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weight coefficients are changed to wi=1/i, the optimization results show that the total
inertia moments of the robot after optimization at the moment of leaving the ground are
−21.31, 4.35, and −5.29 N·m. The dynamic stability clearly deteriorates. Therefore, using
experts’ experience to determine the importance of the indices to determine the weight
coefficients is reasonable.

However, due to the complexity of the optimization objective functions and the large
number of optimization variables, the current optimization efficiency cannot meet the
real-time requirements. The robot needs to complete the motion planning in advance under
the known terrain to achieve complex high-speed movement. In the future, on the basis
of the method proposed in this paper, the data set can be established and the method to
maintain the dynamic stability of the robot during steering running based on deep neural
network can be further proposed. The efficiency of the algorithm will be further improved,
making it possible for the robot to complete high-speed steering movement in real time.

5. Conclusions

The steering of the quadruped robot during high-speed running is of great importance
for improving its movement flexibility. However, too many optimization variables, high
coupling of multiple performance indices, and high velocity make the research difficult.
Therefore, taking the cheetah-inspired quadruped robot as the research object, the method
of changing the running direction of the robot was proposed to make the robot turn quickly
in the process of high-speed movement and have good dynamic stability. (1) On the basis
of establishing the dynamic model of the cheetah-inspired quadruped robot running, a two-
level dynamic stability index system was proposed, including a minimum index system and
a range index system, which cover almost all of the indices that affect the dynamic stability
of the robot. (2) The optimization objective function based on the dynamic stability index
system and optimization variables are determined. Then, the optimal values were obtained
based on the improved bee colony algorithm. By controlling the leg posture parameters
and the corresponding driving torques, the robot can change the motion direction during
high-speed movement. (3) According to the method proposed in this paper, two examples
were given: The robot turned 28.08◦ to the left and −28.08◦ to the right during forward
running when viewed from the top view. The calculation results showed that the total
inertia moment of the robot was in a small reasonable range, and the angular velocity of
the robot at the moment of leaving the ground was approximately zero, which proved that
the robot had good dynamic stability. The simulation results show that there is no obvious
change in the posture of the trunk of the robot during the flight phase, and the robot can
land stably, which also proved the correctness of the method. The method proposed in this
paper can provide a theoretical basis for the realization of high-speed movement of the
robot in 3D space and had good applicability.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s22249601/s1, Video S1: Simulation results of rapid steering in the
running of the quadruped robot.
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Abstract: In recent years, manufacturing industries (e.g., medical, aerospace, and automobile) have
been changing their manufacturing process to small-quantity batch production to flexibly cope with
fluctuations in demand. Therefore, many companies are trying to produce products by introducing
3D printing technology into the manufacturing process. The 3D printing process is based on additive
manufacturing (AM), which can fabricate complex shapes and reduce material waste and production
time. Although AM has many advantages, its product quality is poor compared to conventional
manufacturing systems. This study proposes a methodology to improve the quality of AM products
based on data analysis. The targeted quality of AM is the surface roughness of the stacked wall.
Surface roughness is one of the important quality indicators and can cause short product life and
poor structure performance. To control the surface roughness, the resultant surface roughness needs
to be predicted in advance depending on the process parameters. Various analysis methods such
as data pre-processing and deep neural networks (DNN) combined with sensor data are used to
predict surface roughness in the proposed methodology. The proposed methodology is applied to
field data from operated wire + arc additive manufacturing (WAAM), and the analysis result shows
its effectiveness, with a mean absolute percentage error (MAPE) of 1.93%.

Keywords: wire + arc additive manufacturing; surface roughness; deep neural network; arc welding

1. Introduction

Additive manufacturing (AM) is a production method in which raw materials such as
thermoplastics, ceramic powders, paper, plastic films, or metals are stacked layer by layer.
Due to the characteristics of this process, AM has several advantages: (1) manufacturing
products with complicated shapes; (2) producing small-quantity batches quickly; and (3)
saving materials compared to subtractive manufacturing methods [1–3]. AM can be pro-
cessed via various forms, such as extrusion, jetting, light polymerization, sintering, directed
energy deposition (DED), lamination, and powder bed fusion (PBF) [4]. Among them,
metal AM (i.e., DED, PBF) is attracting more attention since many machinery components
should be produced with metal.

When focusing on metal AM, PBF uses high-energy power sources such as lasers or
electron beams to melt or sinter material powder. The cost of the equipment and materials
for PBF is high, and production speed is relatively low. In analogy to PBF, DED uses a
focused energy source. However, in DED, the material is simultaneously melted as it is
deposited by a nozzle, which helps to reduce material waste. One of the representative
forms of DED is wire + arc additive manufacturing (WAAM), which uses metal wire as
the feedstock and an arc as an energy source. Since the material in WAAM is deposited
through a metal wire, the amount of metal used can be minimized. In addition, arc welding
requires cheaper equipment than PBF or other DED methods. Despite its many advantages,
WAAM is one of the lesser-known metal AM technologies. However, it has huge potential
for large-scale metal AM applications across various industries.

Sensors 2022, 22, 7955. https://doi.org/10.3390/s22207955 https://www.mdpi.com/journal/sensors
195



Sensors 2022, 22, 7955

Although WAAM has many benefits, most companies still hesitate to adopt it into
their processes due to certain drawbacks. Additive processes based on arc welding can
raise many problems, such as spatter, porosity, undercutting, deformation, cracks, and
slag. In addition, the surface quality of layers stacked by WAAM is poor. The high heat
energy of arc welding induces high residual stress and distortion, which deteriorates part
accuracy and surface roughness. Therefore, additional post-processing, such as machining,
is necessary, which leads to increased manufacturing costs.

To improve the quality of WAAM products and to reduce additional processing costs, it
is important to control the surface roughness. Unlike the conventional definition of surface
roughness used in the cutting process, surface roughness in WAAM is defined as the side
of the wall built by stacked layers (see Figure 1). Since WAAM products are produced
as stacked layers through welding, they can have harsh surface conditions compared to
products produced by cutting, also known as the stair-stepping effect [5].

Figure 1. Surface roughness of WAAM product.

To reduce the additional finishing processes required for the surface roughness of
stacked layers, additional layers must be deposited as flat as possible. The shape of the
additionally stacked layers is decided by process parameters such as voltage, current, and
feed rate [2,5–7]. In a case where a proper set of process parameters has been defined, the
stair-stepping effect of the wall in WAAM can be reduced. In finding the near-optimal
process parameters, it is necessary to predict the resultant surface roughness depending on
the process parameters. This study proposes a methodology to predict surface roughness
when an additional layer is stacked under a specific set of process parameters. The proposed
method consists of data pre-processing to utilize raw data as input/output variables for
the predictive model and implements machine learning algorithms such as DNN to predict
surface roughness. Different statistical methods such as correlation analysis are also applied
to verify the effectiveness of the prediction model. The usefulness and feasibility of the
proposed methodology are proved by the experimental data collected from the gas metal
arc welding (GMAW)-WAAM system. The remainder of the paper is organized as follows:
Section 2 reviews the related work to analyze the influence of process parameters on surface
roughness and on predictions of surface roughness. Sections 3 and 4 presents the data
analysis-based predictive modelling approach to predict surface roughness, and Section 5
provides conclusions and directions for future work.

2. State of the Art

This section discusses the previous works related to surface roughness measurement
and the process parameters affecting surface roughness during AM processes as well as
some prediction models for surface roughness.
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2.1. Definition of Surface Roughness

In general, surface roughness is defined as regular or irregular unevenness on a surface.
Product surface embodies a complex microshape made of a series of peaks and troughs
of varying heights, depths, and spacings. In the case of large components, the effect of
surface roughness can be negligible since it only affects small areas within micron ranges.
However, surface roughness is more critical as more components are being miniaturized [8].
Therefore, many research works have tried to define surface roughness precisely and to
control it during manufacturing.

Surface roughness can be measured by various methods depending on different
definitions [9–13]. The mostly used measurement method for surface roughness is the
average distance between the surface and mean surface profiles (see Figure 2). As shown
in Figure 2, the shaded area should be summed and divided by the length L to calculate
the surface roughness.

Figure 2. Calculation of surface roughness using surface profile.

Lee [9] suggested surface waviness by calculating the effective area (EA) ratio from
the cross-section of an orthogonally cut wall. The EA ratio is calculated by dividing the
whole area of the cross-section of a wall by the area of the largest inscribed rectangle. Since
surface waviness is calculated from one cross-section of the wall, it is challenging for it to
represent the general surface roughness of the whole side of the wall. To overcome this
limitation, some research works have tried to obtain as much data from the wall surface as
possible. Some researchers [10,11] measured surface roughness by calculating the distances
between the surface profile points and the above mean plane defined by the surface profile.
Since more wall points are considered when calculated using 3D scanner data to measure
surface roughness, the surface roughness is more accurate. Since the surfaces of the walls
in WAAM products are highly uneven, considering more points when measuring surface
roughness is desirable. Therefore, this study uses cloud points from the surface measured
by a 3D scanner.

2.2. Process Parameters Related to Surface Roughness

Chan et al. [14] conducted a study regarding the effect of surface roughness on prod-
uct life. According to this study, surface roughness causes a reduction in product life
expectancy. Sahin [15] explained the effects of surface roughness on product performance,
such as tensile strength and fatigue strength. Dawood et al. [11] analyzed the influence
of surface roughness on microstructures and mechanical properties. According to these
works, surface roughness is one of the most important factors of product quality, and it
should be controlled carefully. Considering WAAM, the surface roughness becomes more
prevalent at a macroscale, so the fineness of the walls created by WAAM is not as important.
The important aspect of surface roughness in WAAM is that the uneven surface caused by
the stair-stepping effect requires more post-processing. However, more post-processing
cannot guarantee sufficient wall thickness.
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Some research works are dedicated to finding the relation between the control variables
of processing and surface roughness. Xiong et al. [5] studied the influence of process
parameters on surface roughness in the case of gas metal arc welding (GMAW). In this study,
process parameters such as the inter-layer temperature, wire feed speed, and travel speed
are shown to be closely related to surface roughness. Galantucci et al. [16] analyzed the
effect of the process parameters on surface roughness in fused filament fabrication (FDM)-
based AM via the design of the experiments. This study proved that the surface roughness
deteriorates with increasing slice height and raster width. In other work, the five shape
measurements of beads (layer thickness, build angle, raster angle, raster width, and air gap)
seem to be essential variables to change surface roughness [17]. Strano et al. [18] studied
the effect of layer thickness on surface roughness for steel 316 alloy parts made by selective
laser melting (SLM). Zhou et al. [1] chose four important parameters (layer thickness,
printing saturation, heater power ratio, and drying time) when developing a prediction
model for surface roughness since those are highly effective. Yamaguchi et al. [19] studied
the effect of heat input and argon gas on surface roughness. This study showed that
increasing the heat input deteriorates the surface roughness and that argon gas helps
surface roughness more than other shield gases. Bhushan and Sharma [6] investigated the
impact of welding factors such as rotational speed and welding speed regarding the surface
roughness of friction stir-welded AA6061-T651. Their results showed that the rotational
speed of 1400 rpm and the welding speed of 20 mm/min resulted in the finest surface
roughness. Chinchanikar et al. [7] carried out an investigation regarding the effects of
different combinations of process parameters (rotational speed and feed rate) on surface
roughness when welding aluminum 6063 alloy. Dinovitzer et al. [2] analyzed the influence
of travel speed and current on surface roughness. According to this analysis, increasing
travel speed and decreasing current worsen the surface roughness. From the previous
works, it is proven that various process parameters effect surface roughness, and this study
focuses on two of them (i.e., feed rate and travel speed) as control variables.

2.3. Prediction of Surface Roughness

Swarna and Arumaikkannu [20] proposed a non-contact method for estimating the
surface roughness in SLM-customized implants using an artificial neural network (ANN).
The ANN developed in the study was used to predict surface roughness after training
using scan data from a femur bone. The prediction accuracy reached 97.2%. Ahn et al. [21]
developed a prediction model to estimate the surface roughness of a whole area and the
distribution of the surface roughness in a sampled area using interpolation. Strano et al. [18]
predicted the surface roughness by considering the stair-stepping effect for SLM specimens,
thus helping to minimize the need for post-processing. Boschetto et al. [22] developed
an ANN model to determine the surface roughness of FDM parts. The model is used to
optimize the effect of process parameters in the product development stage. Wu et al. [23]
proposed a data fusion approach to predict surface roughness in FDM processes. This
study combines three kinds of sensor data (vibration, temperature of the extruder and
table, melt-pool temperature) with various artificial intelligence (AI) models. Vahabli and
Rahmait [17] also used an ANN model to predict surface roughness. Chen and Zhao [24]
adopted a backward propagation neural network (BP-NN) to predict surface roughness.
Xia et al. [25] developed a prediction model to predict the surface roughness in WAAM
processes. This study calculated the surface roughness using a laser scanner and combines
three kinds of parameters (welding speed, wire feed speed, and overlap ratio) with a
genetic algorithm–adaptive neuro fuzzy inference system (GA-ANFIS). The prediction
model shows its performance with a MAPE of 14.15%. Yaseer and Chen [26] investigated
the layer roughness in WAAM processes. This study explored a layer-roughness prediction
method based on multilayer perceptron (MLP) and random forest combined with weaving
path. Their results show that random forest achieved better performance in terms of MAPE,
the value of which is about 5.64%.
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As described in the previous literature, many studies have tried to predict surface
roughness depending on process parameters and using various methods in the finishing
process. Recently, some researchers have tried to predict surface roughness in situ; however,
to our knowledge, using previously stacked layers as input data has not been considered.
Studies predicting the surface roughness of stacked layers in situ during WAAM are
still lacking. Therefore, this study focuses on developing a prediction model for surface
roughness in situ during WAAM by considering process parameters and previously stacked
layers using an AI model.

3. Prediction Model of Surface Roughness

The stair-stepping effect can be minimized by properly setting process parameters
such as current, voltage, and feed rate. However, there are numerous possible combinations
that only use three parameters. In finding the near-optimal ones, it is necessary to be able
to predict the surface quality depending on a set of process parameters. Then, each set
should be assessed and compared to search for the best process setting. This section will
show how the surface roughness can be predicted depending on various process parameter
settings. Finding the best set of process parameters among many candidates will be carried
out in future work.

3.1. Measurement of Surface Roughness

The first step in predicting surface roughness is to define it precisely. As previously
described, the surfaces of walls made via WAAM are harsher than those of a conventionally
manufactured (i.e., cutting, drilling, punching, etc.) product. However, the basic concept of
measuring the surface roughness is same. The important difference from the conventional
definition of surface roughness is that the surface roughness of the wall in the WAAM
product is generated layer by layer at the macrolevel. Since the surface roughness is
redefined whenever a new layer is stacked in the WAMM process, the surface roughness in
this study is defined between two consecutive stacked layers, as shown in Figure 3.

 

Figure 3. (a) Surface of WAAM product between second and third layers. (b) Reconstruction of
WAAM product between second and third layers by CMM.

The method used for measuring surface roughness is depicted in Figure 4. The main
concept of defining surface roughness is to measure the variation in the surface profile
between consecutively stacked layers. The starting and ending point between two layers is
set to the widest area of each layer when the WAAM wall is cut orthogonally. The actual
profile is obtained using a coordinate measuring machine (CMM, model: Hexagon Romer
Arm 7525SIE) as points clouds (see Figure 4b).
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Figure 4. (a) Schematic diagram of cross-section of WAAM product. (b) Reconstruction of surface
profile of both sides of a WAAM product between second and third layers by CMM.

Generally, the surface roughness is measured using one cross-section cut from the
wall (See Figure 3 red in B and Figure 4 red in B). So that it is limited to representing the
whole surface area of the wall (See Figure 4). In this study, the surface profile measured
by CMM is expressed as three-dimensional coordinates ((xk,L,yk,L,zk,L) for the left-wall
side and (xk,R,yk,R,zk,R) for the right-wall side) of the point clouds extended from one
cross-section and can include the characteristics of the whole surface area of the wall (see
Figures 3a and 4b). The numerical equation to calculate the surface roughness between two
layers, which considers the wall’s whole surface area, is formulated as Equation (1).

Surface rouhgness = (

∑n
k=1(yk,L−yL)

2

n +
∑m

k=1(yk,R−yR)
2

m
2

(1)

where yk,L is the observed y coordinate value of the kth point cloud on the left surface
profile of the wall. The index of k ranges from 1 to n since there are n points on the left side
of the wall. Additionally, yL is the mean of the y-values for the point clouds on the left
surface. On the other hand, yk,R is the observed y-values of the right-side surface profile of
the wall. The point clouds on the right side of the wall consist of m points. The deviation in
the left side of the wall is calculated by subtracting the observed yk,L value of each point
from the mean (yL) and then squaring and adding all of them and then dividing by the
total number of observed point clouds from the surface profile on the left. The deviation in
the right side of the wall also follows the same method. The surface roughness is measured
as the mean of the deviation in both sides since the manufactured wall is composed of a
left and right side.

3.2. Experimental Set-Up

The experimental setup in this study is based on gas tungsten arc welding–cold metal
transfer (GMAW)-CMT, as shown in Figure 5. This system consists of a robot manipulator
(Fanuc ArcMate 120iC) and a welding power source (Fronius TPS 400i) equipped with a
welding torch (Fronius WF 25i Robacta Drive). The process parameters were controlled
using the robot and power-source controllers. A coordinate measuring machine (CMM)
was also installed to obtain 3D point clouds of the wall surface between two stacked layers.
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Figure 5. Environment of the experimental set-up.

A wall made by (GMAW)-CMT was built on a stainless steel 316 L substrate with
the dimensions 6 × 2 × 0.25 inches. A bead deposition experiment was conducted on
the substrate using stainless steel 316 L as a wire material, and the deposition direction
was unaltered. Both middle sides of the substrate were clamped to the stage to prevent
distortion, and wire was fed at an angle of 30◦ from the top surface towards inside.

Since the welding is processed by a robot arm, there can be positioning accuracy prob-
lems. The wall roughness should be controlled at the macrolevel in this work. Therefore,
processing errors caused by robot arm movement are not considered in this paper.

3.3. Data Collection and Pre-Processing
3.3.1. Process Parameters

The process parameters of (GMAW)-CMT deposition are shown in Table 1. The
dynamic (or controlling) process parameters are newly set whenever the next layer is
deposited. The static parameters are fixed until the process is finished. The travel speed
can vary from 1 to 12,000 cm/min, with one-unit increments. The feed rate can be set from
100 to 1000 cm/min and changes in increments of 10 units. The deposited layer is cooled to
100 ◦C before the next layer is stacked to reduce the influence of heat.

Table 1. WAAM process parameters.

Parameters Unit Values

Dynamic process
parameters

Travel speed cm/min 1~12,000
Feed rate cm/min 100~1000

Static process
parameters

Previous layer
temperature

◦C 100

Arc length (bead to
arc distance) mm 5

Wire diameter mm 1.2
Wire feeding angle Degree 30

Shielding gas % 100
Flow rate L/min 20

3.3.2. Bead Shape

As mentioned in Section 2.2, process parameters (travel speed and feed rate) highly
influence the surface roughness. In addition, the bead shape (angle, width, height, and
bead location (layer)) of the previous layer (see Figure 6) also plays an important role
in shaping newly stacked layers, deciding the surface roughness. Therefore, this study
considers the bead shape and dynamic process parameters in Table 1 as the input data to
develop an AI model for predicting the surface roughness. According to previous studies,
the hardness of the bottom layer deposited using a WAAM process is not constant due to
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mechanical properties. Therefore, the substrate and bottom layer are not used at actual
worksites [27–29]. Thus, only the data for the beads deposited above the first layer of the
wall are used in model development (Figure 6).

Figure 6. Schematic diagram of bead shape.

In Figure 6, W represents the width, which is the widest distance between each layer.
Each layer’s height (H) is the distance from the top of the previous layer to the top of the
next layer. The angles for both sides (θLe f t, θRight) of each layer are measured based on the
narrowest area between two stacked layers.

3.3.3. Data Collection

To collect experimental data regarding dynamic process parameters and bead shape,
27 thin walls with five layers were fabricated using the (GMAW)-CMT system. The three
combinations of dynamic process parameters shown in Table 2 are set to deposit the layers.

Table 2. WAAM dynamic process parameters.

Combination No. Feed Rate Travel Speed

1 480 30
2 560 31
3 650 33

The process for collecting and pre-processing data such as the dynamic process pa-
rameters and bead shape is shown in Figure 7.

Figure 7. Pre-process and process for data collection.
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Generally, the bead shape is measured by one cross-section of the wall so that it has a
limited capability in representing the whole-wall characteristics. To improve this limitation,
point clouds of the surface profile are cut into 50 cross-sections at regular intervals for each
wall. The surface profile of each cross-section composed of point clouds is converted to
one line using the smoothing method (see lower image of Figure 7). Then, using each
cross-section, the bead shape is measured as described in Section 3.3.2. The mean of the
bead shape of all cross-sections represents the bead shape of the whole area of each wall.
Next, the input and output data used to train the model are defined by the measured bead
shape, dynamic process parameters, and surface roughness.

3.4. Model Development
3.4.1. Definition of Input Data and Output Data and Normalization

To develop an AI model, defining the input and output data is a prerequisite. The
collected data (explained in Section 3.3), such as the dynamic process parameters and bead
shape of the previously stacked layer, are adopted as the features of the input layer of the AI
model, and one resulting property (surface roughness between the consecutively stacked
layers of a wall) is adopted as the output-layer variable (refer Table 3). Collected structural
data, samples of dynamic process parameters, bead shape, and surface roughness obtained
from the experiments are described in Table 3.

Table 3. Input and output structure.

Input Data
Output

Data

Index
# of Thin

Wall
Layer

θL
(◦)

θR
(◦)

Width
(mm)

Height
(mm)

Travel
Speed

(cm/min)

Feed Rate
(cm/min)

Surface
Roughness

1 1 2nd 102.11 101.94 6.95 2.06 30 480 1.0363
2 1 3rd 100.98 99.87 6.91 3.73 31 560 1.1303

80 27 3rd 99.37 100.2 7.36 2.76 31 560 1.0393
81 27 4th 100.05 99.29 7.46 2.76 31 560 1.0474

The first two columns in Table 3: ‘Index’ and ‘Number of thin walls’, represent an
index of the two consecutive layers processed in each wall. In each wall, there are four
consecutive layers. The third column indicates the data measured from the processed layer
in the previous deposition, and the bead shape is expressed from the fourth column to the
seventh. The eighth and ninth columns show the dynamic process parameters for the layer
currently being processed. The last column is for the output value of the surface roughness
between the previous layer and the layer currently being processed under the given process
parameter are in (the eighth and ninth columns).

Normalization is performed for each variable since the measured values have different
value ranges. The aim is to reduce the influence of the deviations caused by the differences
in the measurement range of each variable. In addition, normalization can reduce the
learning time of machine learning models and prevent decreases in accuracy caused by
heavy computations [30]. In this study, the robust scaler normalization is used, where it is
represented in Table 4.
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Table 4. Data normalization.

Input Data
Output

Data

Index
# of Thin

Wall
Layer

θL
(◦)

θR
(◦)

Width
(mm)

Height
(mm)

Travel
Speed

(cm/min)

Feed Rate
(cm/min)

Surface
Roughness

1 1 −0.5 −0.69 −3.19 0.64 0.65 −1 −8 1.0363
2 1 0 −0.76 3.4 0.23 0.05 0 0 1.1303

80 27 0 −0.14 −0.4 −0.35 0.14 0 0 1.0393
81 27 0.5 0 −0.4 −0.1 −0.12 0 0 1.0474

3.4.2. DNN Model Development

There are various kinds of machine learning models. ANN is a single-layer perceptron
structure, which has limitations in solving nonlinear problems. To cover this limitation,
a deep learning model with multiple hidden layers using backpropagation is proposed.
Recently, DNN has been widely used in various areas and has shown good performance.
Hence, the authors adopted a DNN-based model. DNN is one of the core models of deep
learning and has a structure comprising multiple hidden layers. It has the advantages of
understanding the complex structure of large datasets and learning various non-linear
relationships. The proposed structure is shown in Figure 8. The structure of DNN can
vary according to the hyper parameters (number of hidden layers, optimizer, learning rate).
Therefore, finding the best structure for DNN requires trial and error.

Figure 8. Schematic diagram of the deep neural network for the prediction of surface roughness.

4. Model Evaluation

To evaluate the prediction performance of the used DNN model, mean absolute
percentage error (MAPE) and root mean squared error (RMSE) are adopted as performance
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measures (refer to Equations (2) and (3)). Since MAPE represents the averaged difference in
the percentage between real and predicted values, a lower value means better performance.
The range of MAPE ranges from 0 to 100. RMSE is used to represent the precision of the
model, and a lower value means the better precision. The range of RMSE become from 0 to
∞. The formulae for MAPE and RMSE are as expressed in Equations (2) and (3).

MAPE =
100
n

n

∑
t=1

∣∣∣∣ At − Ft

At

∣∣∣∣ (2)

RMSE =

√√√√ n

∑
t=1

(At − Ft)
2

n
(3)

In Equations (2) and (3), At represents the actual surface roughness calculated by
CMM data, and Ft is the surface roughness predicted by the used model. The whole data
set is split into 80% training data and 20% testing data. The training data set is only used to
learn the model, and the testing data set is used to see how well the model performs under
the new process parameter settings. Table 5 shows the results of the performance measures
depending on the tested prediction models. Some conventional predictive models, such as
regression and support vector regression (SVR), are also tested to compare them with DNN.

Table 5. Results of performance comparison.

Model Model Parameters Result

Regression Degree Mape (%) Rmse

1 Linear 67.33 0.97
2 Polynomial(quadratic) 7.75 0.13
3 Polynomial(cubic) 18.08 0.3

SVR C Degree Epsilon Kernel Mape (%) Rmse

1 1 3 0.1 rbf 8.31 0.109
2 1.3 2 0.1 Poly 8.43 0.111
3 1.5 4 0.1 sigmoid 12.2 0.183

DNN
Activation
Function

Layer Drop Out
Weight

Initialization
Optimizer

Learning
Rate

Epoch Mape (%) Rmse

1 Relu (7, 64, 32, 28, 1) 0.2 He initialization RMSprop 1 × 10−2 10,000 10.45 0.145
2 Relu (7, 64, 32, 16, 1) None He initialization Adam 1 × 10−4 15,000 1.93 0.03
3 Relu (7, 32, 16, 1) 0.3 He initialization SGD 1 × 10−3 30,000 11.39 0.16

From Table 5, the prediction accuracy of the polynomial (quadratic) regression model
gives the best results, with an MAPE of 7.75 % and an RMSE of 0.126. As a result, linear
regression is not enough to explain the data set, and polynomial (cubic) regression is over-fit
on the training data set. SVR does not achieve large variance of accuracy depending on the
hyper parameters of the model. However, the error rate of SVR has an MAPE of 8.31%, but
that it still is not enough to explain the data set. On the other hand, the prediction accuracy
of the DNN model with the following hyper parameters: Activation function = Relu;
Layer = (input layer (7), hidden layer (64, 32, 16), and output layer (1); value in () means
number of nodes of each layer); Drop out = None; Weight initialization = He initialization;
Optimizer = Adam; Learning_rate = 1 × 10−4; and Epoch = 15,000, gives the best result,
with MAPE = 1.93% and RMSE = 0.03. Figure 9a shows the residual error between the
actual surface roughness and the predicted surface roughness as a graph. To validate
the prediction accuracy of the second DNN model with the highest one, the correlation
between the real value and the value predicted by the DNN model is plotted. Correlation
analysis is commonly used to infer the relationship between two variables. The value of the
Pearson correlation shows a positive correlation when the value of each variable increases
or decreases together. When the value of one variable increases and the value of the other
variable decreases, it shows a negative correlation. When the value of one variable change
and the value of one variable remains the same, it means there is no correlation between
the two variables. The correlation coefficient, ‘r’, always satisfies −1 ≤ r ≤ 1. In the case
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of no correlation, the value of r is close to 0. When r is more than 0.6 or less than −0.6,
the correlation between the variables is strong. In the DNN model used in this study, the
correlation coefficient between the actual and predicted value is r = 0.97, which means that
they have a strong correlation. Figure 9b shows the relationship between the actual surface
roughness and the predicted surface roughness as a graph.

Figure 9. (a) Residual error plot of real values and predicted values. (b) Scatter plot of real values
and predicted values.

5. Conclusions and Discussion

Concerning the comparison with related work, the proposed method is able to predict
surface roughness in situ. If the surface roughness can be reduced in situ by predicting the
surface roughness depending on the process parameters, there will be less post-processing,
and material waste will be reduced. To achieve this, some studies have proposed AI
models based on process parameters. Some of the researchers who have tried to predict
surface roughness in situ have used process parameters (welding speed, wire feed speed,
and overlap ratio). However, there have been few investigations of the bead geometry
of previously stacked layers, which has a huge potential to reduce surface roughness.
Additionally, researchers have previously defined surface roughness using the top surface
of a bead. However, the surface roughness of the side of a bead also requires post-processing
in multi-layer processes.

Therefore, this paper proposed a prediction model for surface roughness between
consecutively stacked layers in a thin wall produced via WAAM that depended on process
parameters and the bead shape of the previously processed layer using DNN. The targeted
WAAM process was a (GMAW)-CMT system that could monitor and collect dynamic
process parameters. Two kinds of dynamic parameters (travel speed and feed rate) are
focused on the (GMAW)-CMT process. The bead shape was measured by the CMM that
was installed and maintained a 3D position as point clouds in a thin wall. These data are
used as input data in the used DNN model, which can predict surface roughness under
given process parameters. Commonly, when measuring surface roughness, one cross-
sectional of bead is used. This has limitations in representing the whole area of a wall. To
cover this limitation, we propose an extension of the cross section to the whole area of the
wall using point clouds with a smoothing method. In addition, robust scaler was adopted
to reduce the influence of the deviations caused by the difference in the measurement range
of each variable during the analysis.

Some conventional predictive models such as regression and SVR were also adopted,
and the prediction performances were compared with the used DNN model. According to
the experimental results, the DNN model showed the best performance among them. The
best DNN model has predication accuracy of about 98%, with a high correlation between the
real and predicted values. Using the developed model, surface roughness can be estimated
when a new layer is stacked under a diverse combination of bead shapes and dynamic
process parameters. In the process results achieved under a specific operation parameter,
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the best operation parameter can be searched. Then, a search algorithm or reinforced
learning should be adopted. This will be carried out in other authors’ future research.
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Abbreviations

AI artificial intelligence
AM additive manufacturing
ANN artificial neural network
BP-NN backward propagation neural network
CMM coordinate-measuring machine
DED directed energy deposition
DNN deep neural networks
EA effective area
FDM fused filament fabrication
GA-ANFIS genetic algorithm–adaptive neuro fuzzy inference system
GMAW-CMT gas metal arc welding–cold metal transfer
MAPE mean absolute percentage error
MLP multi-layer perceptron
PBF powder bed fusion
RMSE root mean squared error
SLM selective laser melting
SVR support vector regression
WAAM wire + arc additive manufacturing
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Abstract: The lower limb rehabilitation robot is a typical man-machine coupling system. Aiming at
the problems of insufficient physiological information and unsatisfactory safety performance in the
compliance control strategy for the lower limb rehabilitation robot during passive training, this study
developed a surface electromyography-based gain-tuned compliance control (EGCC) strategy for the
lower limb rehabilitation robot. First, the mapping function relationship between the normalized
surface electromyography (sEMG) signal and the gain parameter was established and an overall
EGCC strategy proposed. Next, the EGCC strategy without sEMG information was simulated and
analyzed. The effects of the impedance control parameters on the position correction amount were
studied, and the change rules of the robot end trajectory, man-machine contact force, and position
correction amount analyzed in different training modes. Then, the sEMG signal acquisition and
feature analysis of target muscle groups under different training modes were carried out. Finally,
based on the lower limb rehabilitation robot control system, the influence of normalized sEMG
threshold on the robot end trajectory and gain parameters under different training modes was
experimentally studied. The simulation and experimental results show that the adoption of the EGCC
strategy can significantly enhance the compliance of the robot end-effector by detecting the sEMG
signal and improve the safety of the robot in different training modes, indicating the EGCC strategy
has good application prospects in the rehabilitation robot field.

Keywords: sEMG; lower limb rehabilitation robot; compliance control; training mode; MOTOmed;
continuous passive motion; straight leg raise; feature analysis

1. Introduction

Lower limb motor dysfunction is a common sequela of stroke patients. The elderly is
a high-risk group for stroke, and as the population ages, the incidence of stroke increases
dramatically [1,2]. The plasticity of the human brain and central nervous system is the basis
of rehabilitation medicine. Through the training exercise of specific tasks and the use of the
motor relearning program of the nervous system, the motor function of the patient’s lower
limbs can be effectively restored [3–5]. Rehabilitation robotics, as an emerging technology
developed in the rehabilitation field, has advantages in clinical and biomechanical mea-
surements compared with conventional therapy [6]. In addition, the rehabilitation robot
is relatively easy to manage and control, which can help patients perform predetermined
training actions accurately and repeatedly and improve the effectiveness of rehabilitation
treatment [7]. In recent years, the design and control strategies of rehabilitation robots have
become research hotspots in the fields of rehabilitation engineering and robotics.

With the development of robotics and rehabilitation theory, various lower limb reha-
bilitation robots have been designed. Lower limb rehabilitation robots are mainly divided
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into exoskeleton type and end-effector type [8]. In the exoskeleton robot system, there is a
one-to-one correspondence between the robot and human joints. The exoskeleton robot
system can be worn on the human body and usually has a compact structure [9]. The lower
limb exoskeleton robot MotionMaker adopts the integrated design of the seat and lower
limb motion mechanism, which can carry out passive, semi-active, and active training
modes [10]. Li et al. designed a lower limb exoskeleton rehabilitation robot which can
assist the patient in carrying out gait training [11]. Feng et al. designed a lower limb reha-
bilitation robot for passive training of stroke patients, and the moving seat can be adjusted
or separated from the robot to meet the rehabilitation demands of patients at different
stages [12]. Akdoğan et al. produced a therapeutic exercise robot Physiotherabot, which
can perform active and passive movements and learn specific exercise movements [13].
In the end-effector robot system, pedals or platforms are used to generate limb motion
from the distal end of the lower limb without requiring alignment between the robot and
human joints. Wang et al. designed a rigid-flexible end-effector lower limb rehabilitation
robot, which consists of a rigid mobile device and a flexible drive system, which can realize
the adduction/abduction and internal/external rotation movement of the lower limb [14].
Bouri et al. developed a parallel robot Lambda that can be used to guide the movement of
the lower limb and carry out rehabilitation training of the hip, knee, and ankle joints [15].
Saglia et al. developed a 3-UPS/U parallel mechanism, which can perform rehabilitation
training of the human ankle joint [16].

According to the active participation degree of patients, rehabilitation training can be
divided into three categories: passive training, semi-active training, and active training [17].
In the passive training process, the rehabilitation robot guides the affected limb to move
along a predetermined trajectory for rehabilitation training [18]. For the passive training
modes of lower limb rehabilitation robots, the typical ones include MOTOmed training
mode, continuous passive motion (CPM) training mode, and straight leg raise (SLR)
training mode [19–22]. In the MOTOmed training mode, the end trajectory of the robot is
a circular trajectory; In the CPM training mode, the end trajectory of the robot is a linear
trajectory; In the SLR training mode, the end trajectory of the robot is an arc trajectory. In
order to improve the safety and comfort of patients during passive rehabilitation training,
numerous studies have been conducted on the compliance control strategy of the lower limb
rehabilitation robot. Wang et al. [23] proposed a fuzzy sliding mode variable admittance
controller based on safety evaluation and supervision for the cable-driven lower limb
rehabilitation robot, which can switch between active training mode and passive training
mode and adjust the parameters of the admittance controller. Li et al. [24] designed a
multi-modal control scheme for exoskeleton rehabilitation robots, including robot-assisted
mode, robot-dominant mode, and safety-stop mode, and verified the effectiveness of the
scheme in upper-limb and lower-limb exoskeleton robot systems. Zhou et al. [25] proposed
a trajectory deformation algorithm, which can realize the desired trajectory planning of
participants based on the interaction force in the process of human-robot interaction and
improve robot compliance and motion smoothness. Chen et al. proposed a reference
trajectory adaptive compliance control algorithm, which combines impedance control and
motion trajectory planning [26]. Huo et al. developed a lower limb exoskeleton impedance
modulation strategy, which can provide proper power and balance assistance during sit-
to-stand movements [27]. Compared with the position control strategy, the compliance
control strategy is beneficial in avoiding excessive force between the human and the robot
and has a wider application in the field of rehabilitation robots [28].

The sEMG-based control strategies of the lower limb rehabilitation robot mainly
include the sEMG-based continuous control strategy and the sEMG-triggered control strat-
egy [29]. Many studies have been carried out on the sEMG-based continuous control
strategy, in which the lower limb motion intention recognition is performed using the
sEMG signal and torque assistance proportional to the sEMG signals is provided to gen-
erate the desired motions. Khoshdel et al. proposed an sEMG-based robust impedance
control strategy for the lower limb rehabilitation robots and the sEMG signals were used
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to estimate the exerted force [30]. Yao et al. developed an adaptive admittance control
scheme consisting of an admittance filter, an inner position controller, and an sEMG-driven
musculoskeletal model [31]. Xie et al. proposed an adaptive trajectory planning method
based on sEMG signals and interactive forces for lower limb rehabilitation robots and
planned three periodic trajectories using sEMG signals [32]. Different from the sEMG-based
continuous control, the robot assistance is triggered when the sEMG signals reach a certain
threshold in the sEMG-triggered control strategy. Meng et al. proposed an active interactive
controller based on motion recognition and adaptive impedance control. Using the root mean
square (RMS) feature of the sEMG signal integrated with the support vector machine (SVM)
classifier, it can predict the motion intention of the lower limbs and trigger robot assistance [33].
Lin et al. designed an sEMG-triggered controller for the artificial muscle-driven lower limb
rehabilitation robot, and the methods of discrete wavelet transformation and the support
vector machine are used to predict the lower limb movement intention [34]. Compared with
force and position signals, the sEMG signals can reflect the activity level of specific muscle
groups, which can monitor and control the movement of limbs in more detail [35].

However, the above-mentioned compliance control strategies for lower limb rehabil-
itation robots using sEMG signals are mainly aimed at active training scenarios. Existing
passive training control strategies mainly rely on force and position information and lack the
intelligent sEMG-based compliance adjustment function, resulting in an unsatisfactory safety
performance of lower limb rehabilitation robots [36]. Moreover, in the passive training process
of lower limbs, the essential purpose of adopting different training modes is to perform
specific training effects on different muscle groups. The fusion of the force, position and sEMG
signals in the compliance control strategy, monitoring the muscle activation degree in real
time, and controlling the motion of the robot, encompass a significant problem to be solved in
the control strategy development of the lower limb rehabilitation robot [36].

Aiming at the problems above, based on the hybrid end-effector lower limb reha-
bilitation robot (HE-LRR) developed in our research group [37], this paper proposes an
sEMG-based gain-tuned compliance control (EGCC) strategy. In the passive training pro-
cess, the lower limbs follow the robot end effector to move in three-dimensional space. The
human body keeps the lower limbs relaxed and does not actively contract muscles. The
sEMG signal collected under this condition is intended to monitor the muscle condition
and protect the patient by enhancing robot compliance. The rationality of the control
strategy is verified through simulation and experimental research under three training
modes: MOTOmed, CPM, and SLR. The rest of this paper is organized as follows. Section 2
contains the introduction of the configuration design of the HE-LRR. The EGCC strategy
is proposed in Section 3. The simulation research of the EGCC strategy without sEMG
information is performed in Section 4. In Section 5, the sEMG acquisition and feature
analysis are carried out, and the EGCC strategy comprehensive experiment is conducted.
Section 6 presents the conclusions and prospects for the EGCC strategy.

2. Robot Configuration

There are mainly three types of lower limb movement for the human body, namely
moving in the sagittal plane, stepping in the coronal plane, and turning around the longi-
tudinal axis of the human body [38]. HE-LRR is designed in accordance with ergonomic
considerations, which includes a base frame, a hybrid (2UPS+U)&(R+RPR) mechanism,
and a pedal unit. Here U, P, R, and S represent a universal pair, a prismatic pair, a revolute
pair, and a spherical pair, respectively. Figure 1 shows the virtual prototype of the HE-
LRR and the pedal unit. The HE-LRR allows people to sit or lie on the opposite side
of the machine while their feet are connected to the robot end effector, and they receive
rehabilitation training.
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Figure 1. (a) The virtual prototype of the HE-LRR; (b) structure of pedal unit.

According to the simplified rotation characteristics of the hip joint where two rotation
axes are orthogonal, the parallel part of the lower limb rehabilitation robot is designed as a
(2-UPS+U) mechanism, including two UPS branches and one U branch chain. Using linear
actuators, the parallel part is driven to rotate around the cross axis, thereby assisting the
lower limbs in achieving rehabilitation training in the sagittal and coronal planes. In order
to realize the rotary motion of the knee joint, the RPR branch chain is introduced into the
parallel part, and the linear actuator is used as the driving unit. Rehabilitation training
requirements for patients with multiple degrees of freedom can be met by the coordinated
movements of (2-UPS+U)&(R+RPR) mechanisms. The (R+RPR) mechanism is superior to
rotary motor driving, and it can reduce the mass and inertia of the kinematic joint of the
robot and increase its bearing capacity.

The pedal unit is composed of a foot pedal, a pedal shaft, connecting plates, a tension
compression sensor, and an angle sensor. The foot pedal is utilized to guide the distal end
of the lower limb to move while the pedal shaft is used to connect the pedal unit with
the hybrid mechanism. The tension compression sensor is embedded in the pedal unit to
record the man-machine contact force, and the angle force is installed on the connecting
plate to acquire the angle information of the pedal unit.

3. EGCC Strategy

There are two typical impedance control strategies applied in rehabilitation robots: the
force-based impedance control strategy and the position-based impedance control strategy.
Although the force-based impedance control strategy can realize force tracking, the con-
troller relies on the dynamic characteristics between the robot and the environment, making
it difficult to implement control in practice. Compared with the force-based impedance
control, the position-based impedance control has more stable performance [39,40]. In this
section, the passive training of the lower limb rehabilitation robot adopts a position-based
impedance control strategy. The impedance control model is as follows:

MdΔ
..
X + BdΔ

.
X + KdΔX = F (1)

where, Md, Bd, Kd are the target inertia matrix, damping matrix, and stiffness matrix of the
impedance model; F is the man-machine contact force acting on the robot end effector; ΔX
is the position correction amount of the robot end effector.

Using Laplace transformation, the position correction amount in the Laplace domain
can be derived as follows:

ΔX(s) =
F(s)

Mds2 + Bds + Kd
(2)

where, s is the complex number frequency parameter.
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The block diagram of the position-based impedance control is shown in Figure 2. The
man-machine contact force F passes through the impedance control model to generate the
position correction amount ΔX, which is superimposed on the reference position Xr to
generate the desired position Xd, which is sent to the position controller after the inverse
kinematics solution, so that the actual position tracks the desired position.

 

Figure 2. Position-based impedance control strategy diagram.

The above position-based impedance control strategy is suitable for not only control-
ling the robot to move along a preset trajectory, but also maintaining a certain flexibility
during the movement. The method is to convert the end contact force into the position cor-
rection amount through the impedance control model. In order to improve the compliance
and safety of the control strategy, the sEMG information needs to be integrated into the
above position-based impedance control strategy. The modified EGCC strategy diagram is
shown in Figure 3.

 
Figure 3. EGCC strategy diagram for the HE-LRR.

From the original sEMG signal of the patient’s target muscle group to the gain parame-
ter, it needs to go through two processes: data preprocessing and function mapping. In the
process of data preprocessing, the high-frequency and low-frequency signals are filtered
out of the sEMG signal through the band-pass filter, and then the time-domain features
with the intuitive physical significance are obtained through feature extraction. The root
mean square (RMS) can reflect the average power of the sEMG signal, so the RMS feature
value is used to evaluate the characteristics of the sEMG signal, and the calculation formula
is as follows:

RMSj =

√√√√ 1
W

W

∑
i=1

x2
i (3)
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where j represents the j-th segment in the original sEMG data sequence, xi is the i-th original
data in the segment data, and W is the sliding window width.

In order to improve the generalization ability of the model, the sEMG signals after feature
extraction need to be normalized. The normalization calculation formula is as follows:

RMSn =
RMS − RMSmin

RMSmax − RMSmin
(4)

where RMS represents the sEMG signal after feature extraction; RMSmin and RMSmax are
the minimum and maximum values of RMS, respectively; RMSn is the normalized sEMG
signal. RMSmin and RMSmax are constants in different training modes and can be obtained
through sEMG signal acquisition and feature analysis (see Section 5.2). Here the gain
parameter G is set to be 1, that is, the sEMG signal is not included in the control strategy
during the sEMG acquisition experiment.

After the normalization processing, the normalized sEMG signals RMSn of different
muscle groups can be obtained according to Equation (4) respectively. In the “Function
mapping” block, the maximum value of the muscle groups’ normalized sEMG signals is
compared with the threshold value of the normalized sEMG signal RMSt, and the gain
parameter G can be calculated according to the following equation:

G =

{
1 RMSn ≤ RMSt

a(RMSn − RMSt)
2 + 1 RMSn > RMSt

(5)

When the normalized sEMG signal does not exceed the threshold value, the gain
parameter is equal to 1. Otherwise, there is a quadratic functional relationship between the
gain parameter and the normalized sEMG signal. Thus, in the passive training process of
the lower limb rehabilitation robot, the position correction amount is jointly affected by
the inertia parameter, damping parameter, stiffness parameter, and gain parameter. When
the normalized sEMG threshold is constant, the maximum value of the gain parameter G
is determined by the parameter a. If the parameter a is too large, the position correction
amount will be too large, it will become more difficult for the robot end effector to move
near the set trajectory, and the patient will not be able to receive standardized rehabilitation
training. If the parameter a is too small, the position correction amount is too small, and
the robot end effector will have no apparent sEMG-based compliance enhancement effect
in the EGCC strategy. Therefore, the parameter a should be kept within a moderate range.

4. Simulation and Results

4.1. Impedance Control Parameter Influence Analysis

In the passive training process, it is important to select appropriate inertia parameters,
damping parameters, and stiffness parameters when applying the impedance control
model. Therefore, it is necessary to analyze the influence of impedance control parameters
on the control performance. The transfer function of the impedance control model is:

G(s) =
ΔX(s)
F(s)

=
1

Mds2 + Bds + Kd
(6)

For the convenience of analysis, considering the impedance control model in a single
direction, Equation (6) can be simplified to Equation (7):

G(s) =
1

ms2 + bs + k
(7)

where, m, b, and k are the inertia parameter, damping parameter, and stiffness parameter,
respectively. Equation (7) is transformed into the standard form:

G(s) =
1
k

ω2
n

s2 + 2ξωns + ω2
n

(8)

214



Sensors 2022, 22, 7890

where, ωn is the undamped natural frequency; ξ is the damping ratio.
The response curves of position correction amount under different inertia parameters

are shown in Figure 4. The simulation parameters are set to {F = 1 N, b = 0.10 N·s/mm,
k = 0.25 N/mm}. When m = 0.001 N·s2/mm, ξ > 1, the system is in the overdamped state;
when m = 0.01 N·s2/mm, ξ = 1, the system is in the critically damped state; when m = 0.02,
0.03 N·s2/mm, ξ < 1, the system is in the underdamped state. The response curves of the
position correction amount under different damping parameters are shown in Figure 5.
The simulation parameters are set to {F = 1 N, m = 0.01 N·s2/mm, k = 0.25 N/mm}. When
b = 0.20 N·s/mm, ξ > 1, the system is in the overdamped state; when b = 0.10 N·s/mm,
ξ = 1, the system is in the critically damped state; when b = 0.03, 0.05 N·s/mm, ξ < 1, the
system is in the underdamped state. When the system is in the overdamped or critically
damped state, the response curve has no overshoot and oscillation, and the rise time and
settling time of the critically damped system are shorter than those of the overdamped
system. When the system is in the underdamped state, as the damping ratio decreases, the
overshoot increases and the settling time becomes longer.

 

Figure 4. Response curves of position correction amount under different inertia parameters
(m: N·s2/mm; b: N·s/mm; k: N/mm).

 
Figure 5. Response curves of position correction amount under different damping parameters
(m: N·s2/mm; b: N·s/mm; k: N/mm).

The response curves of the position correction amount under different stiffness parame-
ters are shown in Figure 6. The simulation parameters are set to {F = 1 N, m = 0.005 N·s2/mm,
b = 0.06 N·s/mm}. When k = 0.12 N/mm, ξ > 1, the system is in the overdamped state;
when k = 0.18 N/mm, ξ = 1, the system is in the critically damped state; when k = 0.24,
0.30 N/mm, ξ < 1, the system is in the underdamped state. With the change of the stiffness
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parameter, it is found that the steady-state value of the response curve changes significantly.
As the stiffness parameter increases, the steady-state value decreases, that is, the position
correction amount becomes smaller, thus the robot’s compliance worsens.

 
Figure 6. Response curves of position correction amount under different stiffness parameters
(m: N·s2/mm; b: N·s/mm; k: N/mm).

Through the above analysis, applying the impedance control model to the passive
training of the rehabilitation robot is to improve the compliance of the rehabilitation robot
and achieve the purpose of protecting the patient. The response curve needs to show no
overshoot and no oscillation. In addition, the settling time should be shortened as much as
possible. Therefore, the impedance model parameters should be set to the critically damped
state. Since the steady-state value of the position correction amount is only affected by the
stiffness parameter, the stiffness parameter can be reduced to increase the robot’s compliance.

4.2. Impedance Control Strategy Simulation

When simulating the passive training impedance control strategy, it is necessary to
add the impedance control model on the basis of the previous position control simulation.
In the simulation environment, the man-machine contact force is set to be:{

Fy = sin t + sin 2t + sin 4t
Fz = cos t + cos 2t + cos 4t

(9)

where, Fy and Fz are the components of the man-machine contact force in the Y-direction
and Z-direction, respectively.

In the MOTOmed training mode, the reference trajectory of the robot end effector is
a circular trajectory. The reference trajectory parameters are set to {the center coordinates
(x0, y0, z0) = (0, −670, 470) and the radius r = 90.00 mm}. The impedance model parameters
are selected from a set of parameters in the critically damped state: {m = 0.01 N·s2/mm,
b = 0.10 N·s/mm, k = 0.25 N/mm}. The comparison between the reference trajectory and
the simulated trajectory of MOTOmed training is shown in Figure 7a. It can be seen that
under the action of the man-machine contact forces Fy and Fz, the simulated trajectory has
a certain degree of offset compared with the reference trajectory, the coordinate where the
maximum position offset occurs is (0, −689.77, 567.59) and the maximum offset is 9.73 mm
(Y-direction: −0.32 mm, Z-direction: 9.72 mm). In the CPM training mode, the reference
trajectory of the robot end effector is a beeline trajectory, and the coordinates of the starting
point and the end point are set to be (0, −575, 300) and (0, −775, 300), respectively. The
impedance control parameters and the contact force function are the same as those of the
circular trajectory. The comparison between the CPM training reference trajectory and the
simulated trajectory is shown in Figure 7b. Compared with the reference trajectory, the
coordinate of the maximum position offset on the simulated trajectory is (0, −602.70, 309.72)
and the maximum offset is 9.73 mm (Y-direction: −0.33 mm, Z-direction: 9.72 mm). In the
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SLR training mode, the reference trajectory of the robot is an arc trajectory, the coordinate
of the starting point of the reference trajectory is (x0, y0, z0) = (0, −822.5, 613.5), and the
coordinate of the end point is (x0, y0, z0) = (0, −639.8, 326.3), the radius r = 892.00 mm. The
comparison between the SLR training reference trajectory and the simulated trajectory is
shown in Figure 7c. Compared with the reference trajectory, the coordinate of the maximum
position offset of the simulated trajectory is (0, −774.39, 567.70), and the maximum offset
is 9.73 mm (Y-direction: −0.32 mm, Z-direction: 9.72 mm). From the above analysis, it
is found that in the three training modes, the maximum offset values of the simulated
trajectories are the same, which is related to the same settings of man-machine contact force
and impedance control parameters in the simulation.

Figure 7. Reference trajectories and simulated trajectories under different training modes: (a) MO-
TOmed training; (b) CPM training; (c) SLR training; (m: N·s2/mm; b: N·s/mm; k: N/mm).

The contact force and position correction amount in Y-direction are shown in Figure 8a.
It can be seen that within the simulation time of 0–10 s, the Y-direction contact force
fluctuates within a certain range, and at the time of 6.80 s, the contact force reaches the
maximum value of 2.23 N. The fluctuation trend of the position correction amount in the
Y-direction is consistent with that of the contact force, but there is a certain delay between
the position correction amount and the contact force. At the moment of 7.20 s, the position
correction amount reaches the maximum value of 6.74 mm. The contact force and position
correction amount in the Z-direction are shown in Figure 8b. Within the simulation time of
0–10 s, the position correction amount lags behind the contact force. At the time of 6.28 s,
the contact force in the Z-direction reaches the maximum value of 3.00 N. At the moment of
6.63 s, the Z-direction position correction amount achieves the maximum value of 9.72 mm.
By comprehensive analysis of the above results, the time at which the maximum position
offset occurs is 6.63 s in the three training modes. The maximum offsets in the three training
modes are the same, indicating that the position offset is determined by the man-machine contact
force and not affected by the training mode. Through the above simulations of MOTOmed
training, CPM training, and SLR training, it can be shown that under the action of man-machine
contact force, the rehabilitation robot shows a certain compliance by generating the position
correction amount to adapt to changes of the man-machine contact force.
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Figure 8. The comparison of the contact force and the position correction amount in different directions
(a) Y-direction; (b) Z-direction.

5. Experimental Verification

5.1. Robot Prototype and Control System

The control system of the lower limb rehabilitation robot consists of the controlling
unit, the driving unit, the actuating unit, the sensing unit, the sEMG acquisition unit, and
the power unit, as shown in Figure 9.

 

Figure 9. Frame diagram of lower limb rehabilitation robot control system.

The biosignal acquisition tool (PLUX wireless biosignals S.A., Biosignals Researcher,
Lisbon, Portugal) collects sEMG signals in real-time through electromyography electrodes
pasted on the target muscle groups of the lower limbs and transmits the signals to the
upper computer (DELL Technologies Co., Ltd., Vostro 5370, Round Rock, TX, USA) through
Bluetooth. Filter processing and feature value calculation are carried out within the set
time period, and the feature value is transmitted to the controller through the Ethernet. The
industrial controller (Advantech Technology Co., Ltd., IPC610, Suzhou, China) is used as
the controller. In addition to receiving instructions from the upper computer in real-time, it
can also receive signals from the tension compression sensor (HY chuangan Technologies
Co., Ltd., HYLY-019, Bengbu, China) and the angle sensor (BEWIS Sensing Technologies
Co., Ltd., BWK220, Wuxi, China). At the same time, the controller sends instructions to the
DC motor driver (Magicon Intelligent Technologies Co., Ltd., MC-FBLD-6600, Shenzhen,
China), and drives the linear actuators (Suzhou Yuancheng mingchuang Electromechanical
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Equipment Co., Ltd, LEC606, Suzhou, China) to perform telescopic movement. The linear
actuator has a built-in incremental encoder, which can record the motion position of the
DC motor to facilitate the position-based closed-loop control of the linear actuator. Angle
sensors, tension compression sensors, and DC motor drivers require 12 V or 24 V DC
voltage, which is provided by the power unit.

The prototype of HE-LRR was manufactured and integrated with the control system,
which is shown in Figure 10. Universal casters with brakes are installed at the bottom
of the base frame to facilitate the movement of the robot and improve the stability during
rehabilitation training. The patient’s feet are placed on the foot pedal to carry out the reha-
bilitation training. During the implementation of this study, five healthy participants (age:
24–31 years old; height: 1670–1870 mm; thigh length: 405–455 mm; calf length: 385–420 mm)
were recruited to take part in the experiment following the procedures for healthy participants
as approved by the China Rehabilitation Research Center (CRRC-IEC-RF-SC-005-01), and
the basic information of the participants is listed in Table 1. There were no known muscular
or neurological disorders among the healthy participants. All participants completed the
experimental protocol safely and reported no physical discomfort.

 

Figure 10. Prototype of the HE-LRR and the control system.

Table 1. Basic information of the participants in the experiments.

Number Age (year) Height (mm) Thigh Length (mm) Calf Length (mm)

1 31 1790 430 405
2 28 1720 430 400
3 24 1870 455 420
4 30 1670 405 385
5 28 1690 415 400

The experimental procedure is shown in Figure 11. In the subsection of Signal Ac-
quisition and Feature Analysis, the experimental processes include signal acquisition
preparation, signal acquisition, signal preprocessing. and signal characteristic analysis. In
the subsection of EGCC Strategy Comprehensive Experiment, the research is carried out in
the order of the determination of model parameters, experimental verification, comparative
analysis of experimental results. and experimental conclusion.
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Figure 11. Flowchart of the experimental procedure.

5.2. Signal Acquisition and Feature Analysis

Before the sEMG signal acquisition experiment, the biceps femoris (BF), rectus femoris
(RF), tibialis anterior (TA), and peroneus longus (PL) were selected as the target muscle
groups of the lower limbs, and the surface electrodes were pasted on the corresponding skin
positions of the muscle groups. The positions of the four target muscle groups of the lower
limbs and the sensor sticking positions are shown in Figure 12. In the sEMG signal acquisition
process, the subjects were given instructions to keep their lower limbs relaxed and not to
contract their muscles actively. Their feet followed the robot end effector to move in space.
Each subject participated in 12 groups of experiments for each training mode (MOTOmed,
CPM or SLR). Impedance parameter settings in the 12 groups of experiments are shown in
Table 2. In each group of experiments, the subjects performed 10 cycles of training.

The sampling frequency of the sEMG acquisition unit is 1000 Hz, and the sampling
period is 1 ms. The collected original sEMG signals are in the range of 0–10 μV. After
passing through the band-pass filter with a passband of 10–500 Hz, the feature value is
extracted from the filtered sEMG signal and the RMS feature value is used for the time-
domain quantitative analysis of the sEMG signal. Figure 13 shows the sEMG signals before
and after RMS feature extraction. It can be seen that the signal characteristic of violent
fluctuations is eliminated after RMS feature extraction. At the same time, the sEMG signal
after the RMS feature extraction can well reflect the change trend of the original signal
(before RMS feature extraction) and shows good regularity and stability. The maximum
RMS values of the sEMG signal of the subjects in different training modes are extracted
and statistical analysis is carried out to obtain the average value and standard deviation.

 

Figure 12. (a) Target muscle groups and sensor sticking positions; (b) MOTOmed training mode;
(c) CPM training mode; (d) SLR training mode.
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Table 2. Impedance parameter setting in the 12 groups of experiments.

Group Number Inertia Parameter (N·s2/mm) Damping Parameter (N·s/mm) Stiffness Parameter (N/mm)

1 0.001 0.10 0.25
2 0.01 0.10 0.25
3 0.02 0.10 0.25
4 0.03 0.10 0.25
5 0.01 0.03 0.25
6 0.01 0.05 0.25
7 0.01 0.10 0.25
8 0.01 0.20 0.25
9 0.005 0.06 0.12

10 0.005 0.06 0.18
11 0.005 0.06 0.24
12 0.005 0.06 0.30

 
Figure 13. sEMG signals before and after RMS feature extraction.

Figure 14 displays the maximum RMS values of the sEMG signal in different training
modes. In the MOTOmed training mode, under the condition of different impedance
control parameters, the maximum RMS values of the four muscle groups are shown in
Figure 14a. It can be seen that when the damping parameter and stiffness parameter are
fixed values (b = 0.10 N·s/mm, k = 0.25 N/mm), the RMS values of the four muscles are
at a higher level under the underdamped state (m = 0.02, 0.03 N·s2/mm) and the RMS
values of the four muscles are at a lower level when under the overdamped or critically
damped state (m = 0.001, 0.01 N·s2/mm). Similarly, when the inertia parameter and stiffness
parameter are fixed values (m = 0.01 N·s2/mm, k = 0.25 N/mm), the four muscles obtain
relatively high RMS values of the sEMG signals in the underdamped state. When the inertia
parameter and damping parameter are fixed values (m = 0.005 N·s2/mm, b = 0.06 N·s/mm),
the maximum RMS values of the muscle groups except for the PL muscle increase with the
increase of the stiffness parameter. This is because when the stiffness parameter increases,
the offset degree of the robot in response to the action of the man-machine contact force
decreases, and the compliance of the HE-LRR robot is reduced, resulting in the situation
where the muscle activation level cannot be released and maintained at a high level.

In the CPM training mode, under different impedance control parameters, the max-
imum RMS values of the four muscle groups are shown in Figure 14b. It can be seen
that different muscles can obtain higher RMS values in the underdamped state, which is
similar to the MOTOmed training mode. The difference is that the maximum RMS value is
8.26 ± 0.25 μV (TA muscle) in the CPM training mode, while the maximum RMS value is
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9.24 ± 0.23 μV (BF muscle) in the MOTOmed training mode. In the SLR training mode, un-
der different impedance control parameters, the maximum RMS values of the four muscles
are shown in Figure 14c. It can be seen that, when m = 0.005 N·s2/mm, b = 0.06 N·s/mm,
k = 0.30 N/mm, the maximum RMS value of the sEMG signal is 8.30 ± 0.24 μV (BF muscle),
and when m = 0.005 N·s2/mm, b = 0.06 N·s/mm, k = 0.24 N/mm, the maximum RMS value
is 7.89 ± 0.28 μV (RF muscle).

 

Figure 14. Maximum RMS value of sEMG signal in different training modes (a) MOTOmed mode;
(b) CPM mode; (c) SLR mode (m: N·s2/mm; b: N·s/mm; k: N/mm).

Comprehensive analysis, when the participants participate in the three training modes
in a relaxed state, the RMS range of sEMG for target muscle groups is 0–9.24 μV in MO-
TOmed training, the RMS range of sEMG is 0–8.26 μV in CPM training, and the RMS range
of sEMG is 0–8.30 μV in the SLR training (since the minimum values of RMS of different
subjects were close to zero, here the lower bound value of the RMS range is determined
to be zero). In the MOTOmed training mode, RMSmin and RMSmax are determined as
0 μV and 9.24 μV; in the CPM training mode, RMSmin and RMSmax are determined as 0 μV
and 8.26 μV; in the SLR training mode, RMSmin and RMSmax are determined as 0 μV and
8.30 μV. The feature analysis results show that there exists a difference in the RMS range
under different training modes, which proves that adopting different training modes can
carry out targeted rehabilitation training for different muscle groups, so as to achieve a
better effect of lower limb rehabilitation training. In particular, after RMS feature extraction,
the regularity and stability of the sEMG signals are further improved, which can meet the
needs of the EGCC strategy. Moreover, taking the maximum RMS values in this subsection
as the reference values for normalization processing can improve the generalization ability
of the EGCC strategy.

5.3. EGCC Strategy Comprehensive Experiment

In order to verify the control effect of EGCC strategy, validation experiments were
carried out under different training modes. The participants kept their lower limbs in a
relaxed state during the training process. After normalization processing, the normalized
sEMG threshold was set at 0.50, 0.75, and 1.00, respectively. The inertia parameter m, damp-
ing parameter b, and stiffness parameter k in the EGCC strategy were set at 0.01 N·s2/mm,
0.10 N·s/mm, and 0.25 N/mm, respectively. For the convenience of comparison, the
coefficient a was set to be 5 in the following EGCC strategy comprehensive experiment.
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The experimental results of the actual end trajectory and gain parameter of the lower
limb rehabilitation robot under different training modes are shown in Figure 15. It can be
seen that in the MOTOmed training mode, the actual trajectories in the three groups of
experiments deviate to a certain extent compared with the reference trajectory (Figure 15a).
When the normalized sEMG threshold is 0.50, 0.75, and 1.00, the maximum values of
the position correction amount are 17.22 mm, 12.03 mm, and 8.33 mm, respectively. As
can be seen from Figure 15b, when the normalized sEMG thresholds are 0.50 and 0.75,
the gain parameter fluctuates locally. When the normalized sEMG threshold is 0.50, the
maximum value of the gain parameter is 2.09. When the normalized sEMG threshold is
0.75, the maximum value of the gain parameter is 1.24, which shows that the decrease of
the normalized sEMG threshold is beneficial in improving the compliance of HE-LRR.

In the CPM training mode, when the normalized sEMG thresholds are 0.50, 0.75, and
1.00, the maximum values of the position correction amount are 21.75 mm, 13.71 mm, and
7.69 mm, respectively, while the maximum values of the gain parameter are 2.09, 1.24, and
1.00, respectively. In the SLR training mode, when the normalized sEMG thresholds are
0.50, 0.75, and 1.00, the maximum values of the position correction amount are 16.98 mm,
11.74 mm, and 5.92 mm, and the maximum values of the gain parameter are 2.08, 1.27, and
1.00, respectively. Comparing the results in the three training modes, although the max-
imum values of the position correction amount are different, the gain parameters are
relatively close to each other. This is because when the normalized sEMG thresholds are
0.50, 0.75, and 1.00, the gain parameters have a maximum value of 2.25, 1.3125, and 1.00,
respectively, which enables the position correction amount of the lower limb rehabilitation
robot to be maintained within a certain range to prevent secondary damage caused by
excessive offset.

In addition, it can be seen from Figure 15b,d,f that the gain parameter is larger than
1.00 in a relatively short time. Since there is a clear functional relationship between the
gain parameter and normalized sEMG threshold, it shows that the normalized sEMG can
recover below the threshold in a short time. This is due to the fact that as the gain parameter
increases, the position offset occurring in the direction of the man-machine contact force
increases and the compliance of the lower limb rehabilitation robot is enhanced, which is
conducive to the recovery of muscle activation. When the normalized sEMG threshold is set
as 1.00, the EGCC strategy can be used to identify abnormal sEMG signals and increase the
compliance of the lower limb rehabilitation robot to protect the participant. In conclusion,
the EGCC strategy can play a significant role in regulating the compliance of the lower
limb rehabilitation robot and increasing the safety of the participant.

Figure 15. Cont.
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Figure 15. EGCC experimental results of HE-LRR. (a) Actual trajectories in the MOTOmed training
mode; (b) gain parameters in the MOTOmed training mode; (c) actual trajectories in the CPM training
mode; (d) gain parameters in the CPM training mode; (e) actual trajectories in the SLR training mode;
(f) gain parameters in the SLR training mode.

6. Conclusions and Future Work

Aiming at the problems of insufficient physiological information and unsatisfactory
safety performance in the existing compliance control strategies for the lower limb reha-
bilitation robot during passive training, this paper developed an sEMG-based gain-tuned
compliance control strategy and carried out simulation and experimental research based
on this control strategy. The main conclusions are as follows:

(1) The EGCC strategy without sEMG information was simulated and analyzed. The influ-
ence of impedance control parameters on the position correction amount of the robot end
effector was studied through simulation, and the change rules of the robot end trajectory,
man-machine contact force and position correction amount analyzed, providing a basis
for establishing a gain-tuned control strategy fusing the sEMG information.

(2) The experimental acquisition and feature analysis of sEMG signals were carried out
to determine the influence of impedance control parameters on the RMS values of
sEMG under different training modes and the normal range of RMS values. The
preprocessed sEMG has good regularity and stability, which can provide a reference
for the normalization processing of sEMG signals in the EGCC strategy.

(3) Based on the lower limb rehabilitation robot control system, the control effect of EGCC
strategy was studied in different training modes. The influences of the normalized
EMG threshold on the robot’s end trajectory and the gain parameter were analyzed.
The results prove that EGCC strategy can play a significant role in improving the
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compliance and safety of the lower limb rehabilitation robot, which validates the
rationality of the EGCC strategy.

Although the control strategy in this paper was verified in the end-effector robot
system, the basic methodology can also be applied in the exoskeleton lower limb robot
system. There are still some shortcomings in the current research work, for example, the
simulation and experimental research of the EGCC strategy were mainly carried out in
three training modes: MOTOmed, CPM, and SLR, and the normalized sEMG threshold
was required to be set manually. Future research work will be committed to solving
the problems of the EGCC strategy validation in various training modes as well as the
autonomous learning and optimization of the EGCC strategy model.
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EGCC Electromyography-based gain-tuned compliance control
sEMG Surface electromyography
CPM Continuous passive motion
SLR Straight leg raise
SVM Support vector machine
HE-LRR Hybrid end-effector lower limb rehabilitation robot
BF Biceps femoris
RF Rectus femoris
TA Tibialis anterior
PL Peroneus longus
RMS Root mean square
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Abstract: A stroke is a common disease that can easily lead to lower limb motor dysfunction in the
elderly. Stroke survivors can effectively train muscle strength through leg flexion and extension
training. However, available lower limb rehabilitation robots ignore the knee soft tissue protection of
the elderly in training. This paper proposes a human–robot cooperative lower limb active strength
training based on a robust admittance control strategy. The stiffness change law of the admittance
model is designed based on the biomechanics of knee joints, and it can guide the user to make
force correctly and reduce the stress on the joint soft tissue. The controller will adjust the model
stiffness in real-time according to the knee joint angle and then indirectly control the exertion force of
users. This control strategy not only can avoid excessive compressive force on the joint soft tissue
but also can enhance the stimulation of quadriceps femoris muscles. Moreover, a dual input robust
control is proposed to improve the tracking performance under the disturbance caused by model
uncertainty, interaction force and external noise. Experiments about the controller performance and
the training feasibility were conducted with eight stroke survivors. Results show that the designed
controller can effectively influence the interaction force; it can reduce the possibility of joint soft tissue
injury. The robot also has a good tracking performance under disturbances. This control strategy
also can enhance the stimulation of quadriceps femoris muscles, which is proved by measuring the
muscle electrical signal and interaction force. Human–robot cooperative strength training is a feasible
method for training lower limb muscles with the knee soft tissue protection mechanism.

Keywords: rehabilitation robot; human–robot interaction; admittance control; robust control; active
strength training

1. Introduction

The independent walking ability of the elderly is the basic premise to ensure the quality
of life [1]. However, limb weakness increases with age and the impact of cardiovascular
disease often leads to physical disability in the elderly [2]. According to statistics, there are
more than millions new incident stroke cases worldly in every year, and there is a high
probability of losing walk ability among the survivors [3,4]. Facing such a large number of
disabled people, more rehabilitation physicians and rehabilitation training equipment are
needed to help them regain lower limb strength, stand up again and return to society [5,6].
As a new type of intelligent medical robot, rehabilitation robot can effectively improve
limb disabilities caused by aging or sequela and their therapeutic effect has been proved by
many clinical experiments [7–9].
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Muscle weakness is well established as the primary impairment that affects walk-
ing after stroke, and strength training can effectively promote the recovery of muscle
strength [10,11]. The effectiveness of strength training has also been proven by some resis-
tance training [12,13]. The quadriceps femoris is the biggest human skeletal muscle at the
front of the thigh, and it plays a vital role in extending the knee, flexing the hip and main-
taining an upright position. Leg flexion and extension is a strength training exercise that can
effectively enhance the quadriceps, so the research of related equipment has also attracted
much attention. The American Harley Company proposed a rehabilitation device X-10,
which uses variable pressure technology to reduce the pain in the patient’s treatment and
improve the patient’s joint mobility [14]; Another similar device is a sitting rehabilitation
device developed by King Wangut University of Technology, which is suitable for home
training but only has one free rotation and a small range of motion [15]. They all belong to
the same type of rehabilitation equipment using a moving platform. They send the terminal
force and joint torque into the control feedback loop to ensure the safety of training respec-
tively, but the training effect on the hip joint is not obvious. The University of Tsukuba and
a partner company developed an exoskeleton robot called HAL, which can directly provide
active or passive lower limb flexion and extension training to bedridden patients. The
range of motion and the walking ability of the patients is improved after training, but the
strength of the quadriceps femoris does not change significantly [16,17]. Italy and Poland
developed a new 3-DOF bionic exoskeleton, which can be used for rehabilitation after joint
surgery, ligament, and cartilage injuries [18].

In robot-assist active training fields, the robot needs to be able to extract the patient’s
motion intention according to the interaction information and assist the patient to complete
the training action. The effectiveness of impedance control and force-position hybrid con-
trol have been verified on the rehabilitation machine LOKOMAT, and these methods have
improved the interactivity of human–machine cooperative training [19]. Wu et al. devel-
oped an admittance control strategy induces the active participation of patients [20]; an
optimization method based on admittance control was proposed to compensate the weight
and friction of the exoskeleton [21]. A lower rehabilitation robot called LOPES II allows
different active training intensities through admittance control [22]. Impedance controllers
are also applied in robot-assist active training for joint or lower limb rehabilitation [23,24].
Some researchers use sEMG (surface electromyography) or EEG (electroencephalography)
signals for guiding rehabilitation robots to complete active training [25–27]. Courtney et al
developed an algorithm for adjusting functional electrical stimulation to help patients
taking active training [28].

Including the research mentioned above and other we can find, none have mentioned
the protection of the knee soft tissue. However, the physiological functions of the elderly
gradually degenerate, and soft tissues such as the meniscus, cartilage and ligaments are
relatively fragile [29,30]. For the main user groups of rehabilitation therapy, it is necessary to
avoid damage to their joint soft tissues during rehabilitation strength training. The National
Strength and Conditioning Association has studied knee joint biomechanics during the
human squat and pointed out the conclusion. That is, the tibiofemoral compressive force
will peak at 130 degrees of knee flexion, and the menisci and articular cartilage bear
significant amounts of stress [31]. Soft tissue such as ligaments are at great risk of injury at
this moment [32]. Patellofemoral compressive force, tibiofemoral compressive force and
tibiofemoral shear force will gradually decrease with knee extension, while quadriceps
muscle activity will peak at approximately 80 to 90 degrees of knee flexion and remain
relatively stable thereafter [33,34]. In the human–machine cooperative leg flexion and
extension training, it is necessary to timely control the interaction force depending on the
knee joint angle in order to reduce the possibility of joint soft tissue injury.

In this paper, a human–machine cooperative leg flexion and extension training based
on a robust admittance control strategy is proposed, which fully considers the protection of
knee soft tissue based on biomechanics. The performance device is the sitting and lying
lower limb rehabilitation robot (LLR-II) developed by our team. In this training, LLR-II
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responds according to the interaction force and assists the patient performs a full lower
limb flexion and extension similar to a leg press. Compared with single knee flexion and
extension training, this training can maintain and improve the mobility of each joint of
the lower limbs, and can effectively exercise the muscles of the hips, knees and ankles.
Firstly, according to the biomechanics of the knee joint, the change law of the stiffness of
the main admittance model is designed, and the flexibility of the training is increased by
the subsidiary admittance control. The controller will adjust the model stiffness according
to the joint angle during the training, and it could avoid excessive compressive force on
the soft tissue and increase the stimulation of the quadriceps. Then, the joint tracking
performance is improved by two-input robust motion control by compensating the motion
control disturbances caused by model uncertainty, interactive forces, and external noise.
Finally, the testing experiment of this human–machine cooperative leg flexion and extension
training is conducted.

2. LLR-II Rehabilitation Robot

The LLR-II is an intelligent robotic system that can intervene early and provide a variety of
rehabilitation training and more details can be found in our published papers [35,36]. LLR-II
can be divided into four modules which include two symmetrical training modules, a seat
module and an electric control module, as shown in Figure 1. The LLR-II is assembled by
connecting the underframe of each module and each module can be moved independently
for installation and transportation. The right training module is equipped with a touch
display and an emergency stop button and the width between the two training modules can
be adjusted according to the user’s body shape. The height of the seat module is adjustable
and it can help medical staff transfer patients. In addition, in order to adapt to different
people, the length of the upper and lower mechanical legs can be adjusted through the
internal electric linear actuator.

 
Figure 1. Structure of LLR-II.

2.1. Structural Design of LLR-II

The mechanical leg of LLR-II is a three joint series mechanical mechanism, and the
three joints correspond to the hip, knee and ankle joints of the human body, respectively.
Its joint drive train is composed of flange structures, as shown in Figure 2. The high torque
motors of the hip and knee joints adjust the fixed positions through timing belts, which
are located at the bottom of the training module and the rear end of the mechanical leg
respectively. Hip and knee joint transmission structures are similar, and both of them are
consist of a synchronous pulley, a reducer and a torque sensor (Figure 2a). The ankle joint
equips with a frameless motor, and the integration of the ankle joint is effectively improved
by directly connecting the motor and the reducer (Figure 2b).
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(a) (b) 

Figure 2. Section view of joint drivetrain: (a) knee joint and (b) ankle joint.

The electric control system of LLR-II can be divided into four parts as follows: central
control section, drive control section, sensor feedback section and human–robot interaction
section (Figure 3). The central control section mainly includes the host computer and
related data acquisition equipment, which is responsible for the advanced operations
and coordinates other parts. The drive control section is mainly composed of the joint
motor, the electric linear actuator and the related communication control equipment. The
sensor feedback section mainly includes the torque sensor, the angle sensor of the joint, the
six-dimensional force sensor and the potentiometer. The interaction operation is mainly
realized through a touch display screen. In addition, the LLR-II also has multimedia
functions such as virtual reality and voice control.

Figure 3. Electric control system. The arrow represents the direction of information transmission.

2.2. Mechanical Leg Model Analysis

The mechanical leg of LLR-II is a series manipulator working in the sagittal plane, and
its physical model can be simplified as a 3R structure, as shown in Figure 4.
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Figure 4. Mechanism model of the mechanical leg.

Establish a global coordinate system {O-X0Y0Z0} at the hip joint rotation center point
A. B and C represent the rotation centers of the knee and ankle joints respectively. q1, q2 and
q3 are the joint variables of the three rotating joints, l1, l2 and l3 respectively represent the
distance between the rotating joints, l0 represents the distance between the counterweight
mess center and the hip rotating joint; R1, R2 and R3 represent the distance between the
link mass center and the rotation center, respectively. The kinematic model of LLR-II is
the same as the standard 3R mechanism, and its kinematics forward and inverse solutions
can be calculated by the D-H method and geometric method. The results are shown in
Equations (1) and (2) below:

T =

⎡⎢⎢⎣
nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
cos q123 − sin q123 0 l3 cos q123 + l2 cos q12 + l1 cos q1
sin q123 cos q123 0 l3 sin q123 + l2 sin q12 + l1 sin q1

0 0 1 0
0 0 0 1

⎤⎥⎥⎦, (1)

q1 = Atan2(K, ±√
1 − K2)− Atan 2(A, B)

q2 = Atan2(B − l1 sin q1, A − l1 cos q1)− q1
q3 = Atan2(ny, nx)− q1 − q2

, (2)

where
A = px − l3nx
B = py − l3ny

K =
A2+B2+l2

1−l2
2

2l1
√

A2+B2

q1...i = q1 + . . . + qi

.

The dynamic equation of the mechanism can be obtained through the Lagrangian
equation, and the controlled system model of the robot can be obtained as follows:

M(q)
..
q + C(q,

.
q)

.
q + g(q) + JT(q)F = u, (3)

where M(q) is a diagonal matrix consisting of the inertia matrix and drive train inertia.
C(q,

.
q) represents the matrix of Coriolis and centrifugal forces and g(q) represents the

gravitational vector.
..
q,

.
q and q are the joint acceleration, velocity and position vectors. J(q)

is the Jacobian matrix of the mechanism and F represents the human–robot interaction
force. u is the control input vector.

Unlike the standard 3R structure, this mechanism has a counterweight used for light-
ening the motor load, as the yellow line shown in Figure 4. The leg length adjustment
function is adjusting the position of the rotation center point A and it means that the relative
position of the link mass center point R1 in the global coordinate system will change under
the influence of the counterweight and the leg length change. The Lagrangian quantity
change caused by the mass center position change will exacerbate the system uncertainty
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in the dynamic control. Therefore, it is necessary to calculate the mass center position of
the link l1, as shown in Equation (4) below:

R1 =
m(l1 − l0)− 2m0l0

2m + 2m0
, (4)

where m0 is the mass of the counterweight and m is the mass of the first link (without
counterweight). In Lagrangian dynamics, the change of the mass center position will
directly change the translational kinetic energy and gravitational potential energy of the
first link, and the moment of inertia in the angular kinetic energy term also needs to be
recalculated according to Equation (4) after length adjustment.

3. Robust Admittance Control Strategy

The control strategy of the rehabilitation robot is different from the general industrial
robot; it needs to fully consider human–robot interactions to ensure the safety of patients.
Rehabilitation robots should be able to respond to different levels of interaction and maxi-
mize the movement potential of patients. Biomechanical research has shown that pushing
force should be avoided when the knee is flexed at a wide angle, and there is also an efficient
training range for the quadriceps. In addition, due to the large interactive force of the active
training, it has high requirements for the robustness of the control algorithm. Therefore,
a robust admittance control strategy for lower limb strength training is proposed, which
combines robust control and admittance control. The strategy block diagram is shown
in Figure 5. This strategy indirectly controls the user’s force through variable stiffness
admittance control, and it can avoid excessive compressive force on the joint soft tissue and
increase muscle group stimulation. Dual input robust control adds an error compensation
term that can be used for compensating force interference, and it improves the tracking
performance of the machine joints.

 

P

P

X

F

q q q

u

F
q

F e e

Figure 5. Admittance robust control block diagram.

3.1. Variable Stiffness Admittance Control

Admittance control is a control strategy that describes the relationship between force
and motion through a spring damping model, and both admittance control and impedance
control use the same model. The input and output of admittance control are force and
position, respectively. The end force of the series robot can be easily obtained by force
sensors, so this method is often used in human–robot interactions. The admittance control
strategy proposed in this paper includes two control laws, and its function is shown in
Figure 6. The effect of the main control law is changing the model stiffness according to the
knee joint angle; it can protect the knee joint and increase the stimulation of the quadriceps
muscle (the stiffness change is plotted on a trajectory with color mapping in Figure 6, the
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bright part indicates high stiffness). The subsidiary control law allows a small deviation
of the training trajectory, which increases the flexibility of the training action. When the
user’s vertical force will lead to a large deviation of the trajectory, the subsidiary control
law will ensure the trajectory by resisting the user’s force (as arrows shown in Figure 6).

 

Figure 6. Working schematic diagram of admittance controller.

The input of the subsidiary admittance control is the interaction force Fy(s) in the
vertical direction, and the output is the end position Py(s) in the vertical direction. Its
transfer function is shown in Equation (5):

G(s) =
Py(s)
Fy(s)

=
1

Mdys2 + Bdys + Kdy
, (5)

where Mdy, Bdy and Kdy represent inertia, damping and stiffness. The system will compare
the expected position with the set offset threshold. If output exceeds the set allowable offset,
the excess part will be limited. Two outputs of the subsidiary control and main control will
be sent to the trajectory generator, and the generator will obtain the actual end position
based on vector calculation before inverse kinematics. With smaller model parameters, the
compliant and constrained training trajectory can be achieved.

The model of main admittance control is a second-order model with varying stiffness
along the motion trajectory and the output

..
P is the desired end acceleration. When receiving

an interaction force exceeding the threshold, the end of the machine will accelerate. When
the interaction force is deficient, the end of the machine will decelerate to stop according to
the admittance parameters. Its control law is designed as follows:

Mdx
..
P + Bdx‖

.
X‖2 + Kvar(q2)D = Fx, (6)

where Fx is the extracted effective interaction force; D is a constant with the same dimension
as the end position;

.
X represents the end velocity vector of the robot. Mdx and Bdx are the

inertia and damping of the model and the model stiffness Kvar is a piecewise function of
the knee joint angle, designed as follows:

Kvar =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k1 +

(k2−k1)[L(q2)−L0]
2

[L1−L0]
2 − 120

◦ ≤ q2 < −100
◦

k2+k3
2 − k3−k2

2 cos(π L(q2)−L1
L2−L1

) − 100
◦ ≤ q2 < −90

◦

k3 − k4 exp
[
k5

L(q2)−L
L−L2

]
− 90

◦ ≤ q2 ≤ 0
◦

.

L(q2) is a function of the knee joint angle and leg length; it represents the end position
of the robot. L0, L1 and L2 represent the end position scalars of the robot when the knee joint
is at −120◦, −100◦ and −90◦; L represents the total length of the training trajectory. The
constant coefficients ki (i = 1, 2 . . . ) are all parameters of this function and the amplitude of
stiffness can be adjusted by changing these parameters.

In this training process, the motion range of the knee joint is −120◦ to 0◦, which covers
80% normal motion range of the human body. The purpose of this design is to stretch the
muscles of the knee joint and maintain joint mobility. In addition, the controller will adjust
the model stiffness in real-time according to the knee joint, and this can protect the knee
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soft tissue and increase the stimulation effect on the quadriceps. At the beginning of the
training (120◦ of knee flexion), the model stiffness is set at a low level. This is because,
in this angle range, it will put greater stress on the knee soft tissue when the leg extends
with resistance forces. Training in this situation for a long time might cause damage to the
knee joint. When the knee joint is flexed to 100◦, the model stiffness begins to rise rapidly.
When the knee joint is flexed to 90◦, the stiffness reaches the highest level, which marks the
training entering the strong stimulation phase. At this stage, the force of the lower limbs
mainly depends on the contraction of the quadriceps femoris, and the training effect can be
improved by correctly exerting force in this stage. In the final stage, the stiffness decreases
slowly with a negative exponential trend. Considering the lower limb is not easy to exert
force when it is close to full extension, this design can extend the stimulation movement
and ensure that the user can complete the leg extension.

3.2. Dual Input Robust Control

Robot dynamics control needs to solve the tracking error problem caused by external
disturbance or model inaccuracy. For most of the series robots, the model inaccuracy
mainly comes from the uncertainty of the dynamic parameters (the deviation between the
theoretical reference model and the actual model). This uncertainty is generally changeless
and can be reduced by optimizing parameters through classical algorithms. The model
structure of the LLR-II is rather special as the first link mass center position becomes a
variable under the influence of the counterweight structure and the length adjustment.
Therefore, the parameters of the dynamic model will change greatly after the mechanical
leg length adjustment because the mass center change will lead to the change of Lagrangian
variables. That is to say, the parameter uncertainty of the LLR-II model is also a variable.
Although the reference model will be updated according to Equation (4), there is still a
deviation from the actual model. Adding to the influence of the large fluctuation interaction
force, common classical algorithms cannot adapt to such variable parameter systems.

This paper proposes a dual input robust control considering the s interactive force
effect, and it is used for reducing the influence of model uncertainty, noise interference and
the impact of interactive forces on machine tracking performance. The design control law
is as follows:

u = M̂(q)a + Ĉ(q,
.
q)v + ĝ(q) + ĴT

(q)F̂ − Kr, (7)

where M̂, Ĉ, ĝ and Ĵ are estimated values defined by the corresponding symbols (theoretical
reference value); K and Λ are two constant positive gain matrices; v, a and r are defined
as follows: ⎧⎨⎩

v =
.
qd − Λe

a =
.
v =

..
qd − Λ

.
e

r =
.
q − v =

.
e + Λe

.

Another simplified form of the control input can be obtained by linearizing the param-
eters of Equation (4):

u = Y(q,
.
q, a, v)θ̂+ Z(q)π̂ − Kr, (8)

where the functions Y and Z are the regressors of the first three terms and the fourth terms
on the left side of Equation (4). θ̂ and π̂ are the parameter vectors of the corresponding
estimated model (two control inputs). Substituting Equation (8) into Equation (4) and
linearizing the parameters, the designed closed-loop system equation can be obtained:

M(q)
.
r + C(q,

.
q)r + Kr = Y(θ̂− θ) + Z(π̂ − π). (9)

As mentioned above, considering the uncertainty of model parameters, the following
design is made:

θ̂ = θ0 + δθ; π̂ = π0 + δπ, (10)

where θ0 and π0 are the constant vectors of the corresponding parameter vectors (the theo-
retical calculation values); δθ and δπ are two design control terms used for compensating
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the disturbance caused by uncertainty. For the above uncertainty (the difference between
the actual value and the calculated value), it can be expressed as:

‖θ̃‖ = ‖θ− θ0‖ ≤ ρ; ‖π̃‖ = ‖π − π0‖ ≤ σ, (11)

where θ̃ represents the parameter uncertainty of the dynamic model and π̃ represents the
uncertainty of the link length and the interaction force. Selecting the upper bound constants
σ and ρ. The designs of δθ and δπ are as follows:

δθ =

⎧⎨⎩ −ρ YTr
‖YTr‖ ‖YTr‖ > ε

−ρ YTr
ε ‖YTr‖ ≤ ε

, (12)

δπ =

⎧⎨⎩ −σ ZTr
‖ZTr‖ ‖ZTr‖ > η

−σ ZTr
η ‖ZTr‖ ≤ η

, (13)

where ε and η are two positive constants used to ensure the continuity of the design term.
In order to analyze the stability of the designed closed-loop system by the Lyapunov

second method, the following Lyapunov function is selected:

V =
1
2

rTM(q)r + eTΛKe. (14)

Taking the derivative of Equation (14) along the system (9):

.
V = − .

eTK
.
e − eTΛTKΛe + rTY(θ̃+ δθ) + rTZ(π̃ + δπ). (15)

According to the Lyapunov second method, if a Lyapunov function derivative along
the system direction is strictly negative definite, it can be determined that the system is
asymptotically stable. No matter what state the system starts from, the error will eventually
converge to zero. However, in order to ensure Equation (15) is negative definite, additional
constraints need to be found. First, rewrite Equation (15) into the following form:

.
V = −ATQA + rTY(θ̃+ δθ) + rTZ(π̃ + δπ), (16)

where AT = [eT ,
.
eT
], Q = diag[ΛTKΛ, K]. Although the first term of Equation (16) can be

determined to be semi-negative definite, there are four possible combinations of the last
two terms. Since the structures of these two items are similar, the last item is used as an
example for analysis. First, when ‖ZTr‖ > η, according to the Cauchy-Schwartz inequality
we can obtain:

(ZTr)
T
(π̃ + δπ) = (ZTr)

T
(π̃ − σ

ZTr
‖ZTr‖ ) ≤ ‖ZTr‖(‖π̃‖ − σ) < 0. (17)

When ‖ZTr‖ ≤ η, we can be obtained:

(ZTr)
T
(π̃ + δπ) ≤ (ZTr)

T
(σ

ZTr
‖ZTr‖ − σ

ZTr
η

) = −σ

η
‖ZTr‖2

+ σ‖ZTr‖. (18)

When the designed item is in the state of Equation (17), the judgment condition is
satisfied. When the design item is in the state of Equation (18), Equation (18) can be
regarded as a quadratic function about ‖ZTr‖. Its maximum value ση/2 at ‖ZTr‖ = η/2
can be obtained, and then the conditions for guaranteeing the Equation (15) is negative
definite can be obtained.

According to the designed terms δθ and δπ, two maximum values ση/2 and ρε/2 can
be obtained respectively. It is not difficult to find that if ATQA is always greater than the
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sum of these two maximum values, Equation (16) is less than zero forever in all cases (four
combinations). In other words, when Equation (19) is satisfied:

ATQA > (ση + ρε)/2. (19)

Using the matrix eigenvalue relation ATQA ≥ λmin‖A‖2 (where λmin is the minimum
eigenvalue of the matrix Q), the constraints that guarantee Equation (15) is negative definite
could be obtained:

‖A‖ > [(ση + ρε)/2λmin]
1/2. (20)

When Equation (20) is satisfied,
.
V can be guaranteed to be less than zero. Therefore,

according to Lyapunov second method, the tracking error of system (9) under the designed
control law is uniformly ultimately bounded. That is to say, selecting appropriate coef-
ficients in Equations (12) and (13) can ensure that the error continuously approaches a
sufficiently small upper error bound, and a good tracking performance could be obtained.

4. Experiment

In order to verify the function, feasibility and effectiveness of the proposed lower limb
flexion and extension strength training, eight stroke survivors were selected to participate
in the test experiment using LLR-II. Every subject confirmed the protocol of the experiment,
and research was carried out following the principles of the Declaration of Helsinki. All ex-
periments were conducted under the premise of ensuring the subject’s safety, and sufficient
time was given to familiarize the subjects with LLR-II before the formal experiment. The
training trajectory is a straight line passing through the hip joint and parallel to the ground,
and its starting point and length are determined according to the user’s leg length and knee
joint rotation range. The knee joint angle range of all training trajectories in experiments
was consistent. Due to the height difference of subjects, the horizontal position coordinates
of the training trajectory are also different. For normalized analysis, the horizontal position
in this part is represented by percentage of total track length.

To test the controller performance on guiding users to generate the force, the training
interaction force was recorded through the six-dimensional force sensor. In the experiment,
each subject was required to maintain higher training speed in three groups of training.
Figure 7 shows the changes in knee joint angle q2, model stiffness Kvar and effective
interaction force Fx during training. In the experiment, the adjustment constant coefficients
ki (i = 1, 2 . . . ) of Kvar are set to 0.3, 0.8, 2.5, 1.5, 6. The average of the end interaction force
was calculated, and error bars were plotted based on its standard deviation, as the red line
and the orange area shown in the figure. With the stiffness change based on the knee joint
angle, the interaction force also displayed a similar trend. Although the strength levels of
different subjects were inconsistent, the data results show that the controller has achieved
the function of guiding the user to make forces.

To analyze the tracking performance of the dual input robust controller, joint angle
data in training were recorded as shown in Figure 8. Observing average error curves, it
can be found that the absolute values of each joint steady-state error are close to about 0.5◦.
The result shows that the controller has good tracking ability, and it is in line with the final
boundedness proved before. Moreover, it can be found that the two joint errors (orange
and purple lines) and error bars (yellow and green areas) appear to be fluctuations in the
half of the trajectory. The maximum standard deviation of the hip joint is 0.29◦, while the
knee joint is 0.16◦. This is due to the rapid force increase when the subject tries to adapt to
the model stiffness change. The interaction force influence is different to two joints, but the
controller can make adjustments to adapt to different sudden interference. It shows that
the designed robust controller has strong robustness.
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Figure 7. Performance testing of admittance control.

Figure 8. Joint tracking performance.

The EMG signal is a physiological indicator that can directly reflect neuromuscular
activity [37–39]. This experiment verifies the effectiveness of this strength training by
collecting the quadriceps EMG signal during training. The quadriceps femoris is divided
into rectus femoris, vastus medialis, vastus lateralis and vastus intermedius. Since the
vastus intermedius is located in the deep part of the muscle group, only the EMG signals of
the other three muscles were collected in this experiment. EMG device information and
electrode patch positions are shown in Figure 9. The positions of the electrode patches are
selected under the doctor’s guidance.

 
Figure 9. Parameters of EMG device and electrode patch positions.
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Figure 10 shows the changes in the EMG signals and terminal interaction force of each
muscle during a 10-min training. In order to extract the features of EMG signals, the original
data was processed by high and low-pass filtering, absolute value taking and smoothing,
respectively. The interaction force collected by the force sensor was also plotted in the
figure. It can be found that all the data in the training action area are significantly higher.

Figure 10. Changes of EMG and interaction force during the training (Dashed line for value reference).

5. Discussion

The model stiffness of the admittance controller can be adjusted in real-time according
to the knee joint angle during training, thereby avoiding excessive compressive force
on the knee joint soft tissue and enhancing the muscle stimulation. Through the result
of the controller performance experiment, it can be found that the model stiffness Kvar
changes strictly depending on the knee joint angle according to the designed function
during training, as the blue line shown in Figure 7. Under the effect of stiffness adjustment,
the subject only needs about 90 N to maintain the target training speed when the knee
joint flexes more than 90◦. This shows that this controller successfully guides users to
avoid making forces in the posture that soft tissue is the main bearing object. Meanwhile,
the quadriceps femoris enter the most active area when the knee extends to about 90◦,
and all subjects reported that the training speed at this stage was significantly slowed
down. This is due to the change in stiffness, which led to the reduction of the model
output acceleration. In order to maintain the training speed, the average interaction force
of subjects can reach around 200 N. The results above show that designing a variable
stiffness admittance model can indirectly control the terminal interaction force, and it can
reduce the possibility of joint soft tissue injury and enhance exertion force in the effective
training range. Moreover, the designed robust admittance control can ensure joint tracking
performance even under the strong influence of interaction force, and it makes the robot
meet the task requirements of this active strength training. In experiments, the peak value
of the terminal interaction force was basically above 200 N. The EMG peak value of the
vastus lateralis muscle was around 150 uV; the peak value of the vastus medialis muscle
was around 75 uV; the peak value of the rectus femoris muscle is around 45 uV. The signal
performance of these muscles is consistent with the results of related lower body training
studies [33], and obvious signal increase means that the quadriceps femoris is in an active
state. These prove that the target muscle group has received effective stimulations under
this active strength training method.

240



Sensors 2022, 22, 7746

There are some limitations in this study and they need to be further studied. Firstly, we
design a robust admittance controller strategy to guide users to generate the force correctly
during training, and it can be regarded as a method of avoiding soft tissue bearing too much
stress under the biomechanics theory support. However, we are unable to provide accurate
data on the reduction of soft tissue stress or the actual contribution of this method so far. We
planned to conduct a controlled experiment, but it may put control group subjects at risk
of injury. We believe that we still need to find a non-invasive method for measuring joint
stress to provide strong proof for our work. On the other hand, we selected eight stroke
survivors for testing under the recommendation of doctors, and we obtained the result
that this training provides effective stimulation to the target muscle group through the
sEMG information. Obviously, the sample data are not enough to conclude stronger results,
and we ignored to study of the intervention of this training to different types of stroke
survivors. Although we believe that the training efficiency can be increased (compared
to other same type training) by guiding users to generate forces intensively in an efficient
range, there is still a lack of clinical trial data that can quantify the rehabilitation effect
of this strength training. We have to recognize that the work shown in the paper is still
preliminary research, and more testing experiments need to be carried out later.

We think the rehabilitation robot research should not only consider the training effect
but ignore the potential hidden dangers, especially for the elderly group of stroke survivors.
In the robot-assist rehabilitation field, few researchers have focused on knee joint protection.
This research presents a solution as an attempt to this research gap, but its clinical effect
needs a long-term follow-up observation. However, this research still proposes a new
point to robot-assisted training: potential negative factors should be considered in order to
provide better rehabilitation medical devices for the elderly.

6. Conclusions

In order to avoid an excessive compressive force on the joint soft tissues and increase
the stimulation to the target muscle during the leg flexion and extension training, this
paper proposes a human–robot cooperative lower limb active strength training based on a
robust admittance control strategy. The robust admittance control strategy mainly includes
variable stiffness admittance control and dual input robust control. The variation law of
admittance model stiffness is designed according to the knee joint biomechanics. The main
controller can adjust the stiffness of the model in real-time according to the angle of the
knee joint and indirectly control the exertion force of users; the subsidiary admittance
control can increase the training flexibility and compliance. Dual input robust control can
improve joint tracking performance under the influence of the disturbance caused by the
model uncertainty, interactive forces, and external noise. The experiment results show that
the designed controller can effectively reduce the possibility of joint soft tissue injury and
enhance the stimulation of the quadriceps, and this active training method is effective for
exercising the quadriceps. In order to evaluate the efficacy of this strategy, it will be applied
to more clinical experiments in future works.
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Abstract: As the demand for service robots increases, a mobile manipulator robot which can perform
various tasks in a dynamic environment attracts great attention. There are some controllers that
control mobile platform and manipulator arm simultaneously for efficient performance, but most of
them are difficult to apply universally since they are based on only one mobile manipulator model.
This lack of versatility can be a big problem because most mobile manipulator robots are made by
connecting a mobile platform and manipulator from different companies. To overcome this problem,
this paper proposes a simultaneous controller which can be applied not only to one model but also to
various types of mobile manipulator robots. The proposed controller has three main characteristics,
which are as follows: (1) establishing a pose that motion planning can be carried out in any position,
avoiding obstacles and stopping in a stable manner at the target coordinates, (2) preventing the
robot from collision with surrounding obstacles while driving, (3) defining a safety area where the
manipulator does not hit the obstacles while driving and executing the manipulation accordingly.
Our controller is fully compatible with Robot Operating System (ROS) and has been used successfully
with three different types of mobile manipulator robots. In addition, we conduct motion planning
experiments on five targets, each in two simulation worlds, and two motion planning scenarios
using real robots in real-world environments. The result shows a significant improvement in time
compared to existing control methods in various types of mobile manipulator and demonstrates
that the controller works successfully in the real environment. The proposed controller is available
on GitHub.

Keywords: mobile manipulator; motion planning; simultaneous control; path analysis; ROS

1. Introduction

With the development of artificial intelligence and control technology, the era has
come when the service robot directly interacts with humans. The service robot is expected
to have an important role in our daily life [1]. However, a current service robot is mostly
only used in the same way as a mobile robot, or manipulator robot. A converged platform,
in which the manipulator is loaded onto the mobile robot, is called a mobile manipulator,
and since it can accomplish unstructured tasks in dynamic environments, it maximizes the
use of the robots and is of especially great value in the service area [2]. This is the reason
for the current research on mobile manipulators.

There are two types of mobile manipulator controllers, one for sequential control and
the other for simultaneous control. Today, most of the mobile manipulator controllers in a
real environment such as the field of industry use sequential control. This control method,
which is shown in the Figure 1a, controls the manipulator and moves its end-effector to
the goal pose after it moves the mobile robot to the manipulable location in a single goal
pose. This is due not only to legal reasons, including safety concerns, but also to maintain
precision and dexterity [3,4]. On the other hand, the simultaneous control method, which is
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shown in the Figure 1b, calculates the desired pose of a mobile robot to a single goal pose, as
well as calculating how to manipulate the end-effector to reach the goal pose while the robot
moves to the corresponding desired pose. After that, it executes the algorithm controlling
both the mobile robot and the manipulator at the same time. Simultaneous control of the
mobile manipulator has a great advantage for efficiency, and work is continuously being
carried out in this area [5–7].

  
(a) (b) 

Figure 1. (a) Flowchart of the algorithm controlling mobile manipulator sequentially. (b) Flowchart
of the algorithm controlling the mobile manipulator simultaneously.

Meanwhile, because of its complexity, the typical simultaneous controller is designed
to control one fixed structured mobile manipulator [8]. However, most of the mobile
manipulator robots currently used do not come from one company in the form of a fin-
ished product, but are used by combining the mobile platform and the manipulator arm
of different companies. This increases the possibility of each user using different mobile
manipulator platforms and this situation makes it hard to apply existing simultaneous
controllers built on a single model. This paper proposes the Navigation path-based Uni-
versal Mobile Manipulator Integrated Controller (NUMMIC), which is a type of kinematic
controller. NUMMIC is able to control the mobile platform and manipulator simultane-
ously by simply changing a few parameters to overcome the existing kinematic controller’s
limitations. Since most of the existing kinematic controllers need as detailed as possible
characteristics of models for precise operation, it is challenging to use it with various types
of mobile manipulators. However, in NUMMIC, the parameters required by the algorithm
are minimized for stable simultaneous control. Accordingly, it can be applied to various
types of mobile manipulators. Here, the only hardware it requires is a mobile manipulator
which has a single arm on a mobile platform with Light Detection and Ranging (LiDAR)
and Inertial Measurement Unit (IMU) sensor, and the software required is the Unified
Robot Description Format (URDF) [9], available on ROS [10] for each part. Any mobile
manipulator that satisfies these conditions can be used by the proposed controller with a
few parameter revisions. This is possible because the controller performance is based on
the platform’s navigation control and does not need other sensors except for LiDAR and
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IMU sensors during motion planning. Also, it tunes the lower-level kinematic controller
rather than directly controlling the hardware at the lower end.

NUMMIC, which is suggested in this paper, is composed of three substructures: a
Manipulation Enabled Pose (MEP) setting based on a LiDAR sensor, an optimized end-
effector default pose, and a Manipulation Safety Section (MSS) setting based on path
curvature. These substructures elaborately control the move_base package [11] and the
MoveIt package [12], which are publicly provided by the ROS as mentioned, and make
simultaneous control of the mobile manipulator of the target object possible in different
environments and positions. Since the entire controller is operated by coordinating the
lower kinematic controller packages, the controller is easily compatible with various mobile
manipulators which have different specifications.

The specific structure of NUMMIC can be found in Figure 2. For a detailed explanation
of the substructures, the desired pose, which is called Manipulation Enabled Pose (MEP), is
needed. This pose which allows the mobile manipulator to be controlled simultaneously
using global path is found by MEP setting based on LiDAR sensor. The second substruc-
ture, the optimized end-effector default pose, derives the location in which there is least
deviation of time, regardless of the position of the target object and its designation as a ma-
nipulator’s default pose. This idea is based on the fact that, in the operating environment,
the manipulator’s manipulation is restricted to limited directions. The last substructure,
the Manipulation Safety Section (MSS) setting based on path curvature, supports the safe
simultaneous control of the mobile manipulator. According to its control algorithm, manip-
ulation is operated at the same time as the mobile platform moves. If the manipulation is
being executed or has already completed its execution and the platform moves with the
stretched manipulator, the possibility of colliding with obstacles near the path will become
much higher. To prevent this, an algorithm from this substructure locates the area which is
in no danger of colliding with nearby objects and only performs the manipulation when
the mobile platform passes through the area. This area is called the Manipulation Safety
Section (MSS).

Figure 2. Diagram of NUMMIC’s substructures.

In summary, this work suggests the controller, NUMMIC, for simultaneous control
of the mobile manipulator. NUMMIC is able to perform in a stable manner the motion
planning towards the target object in any environment when its target coordinates are
given. This process takes less time compared to the sequential control algorithm, due to
the simultaneous control of the mobile platform and the manipulator. Since this NUMMIC
controller coordinates the move_base and MoveIt packages, which can be used publicly at
ROS, it can be applied to various manipulator robots with different specifications if some
parameters in the controller are modified.

To validate our proposal, we present an experiment for motion planning towards
given target coordinates using the mobile manipulator robot in a simulation environment.
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To show the motion planning in different environments we use two different maps with
various obstacles for the simulation and designate various points in the map as target
coordinates. Also, to show that NUMMIC can be used in mobile manipulators with different
specifications, we run the simulation with three different types of mobile manipulator:
one in which UR3 [13] of universal robot is attached to Husky UGV [14] from Clearpath
corporation, another one which has a UR5 [15] manipulator with the same mobile platform,
and a third that has Kinova corporation’s Gen3 lite [16] manipulator on Jackal UGV [17].
Finally, we conduct an experiment using NUMMIC with a mobile manipulator, in which
Husky UGV is attached to a UR3 manipulator in a real environment.

In Section 2 we explain existing approaches to mobile manipulator control. In Section 3
we describe the structure of NUMMIC in detail, including (1) its three substructures (2)
the architecture based on ROS using these substructures. We present the experiments
in both simulation and within a real environment, discussing the results obtained in
Sections 4 and 5. Lastly, the conclusions of the evaluation and future works are presented
in Section 6.

2. Related Work

Because of the mobile manipulator’s capability, various related studies are conducted
on the premise that it is used at different fields. The many fields of application include
industry [18,19], which is mentioned above, but also construction [20], agriculture [21–23],
disaster [24], and healthcare [25,26].

For a robot to execute complex works in these different fields and environments, it
needs a highly qualified manipulation ability. In particular, the efficient control of the
mobile manipulator in unstructured dynamic environments is important, but this issue
is not completely solved. In Reference [27], it minimizes execution time for the pick-up
task by deriving the optimal trajectory of joint space, applying a random profile approach
(RPA). There are some works whose methods of control focus on the manipulator’s end-
effector. [28]. One of those works carries out sampling of the waypoint with the end-
effector’s target position and orientation trajectory and implements an optimized planner
using the Genetic Algorithm for continuous movement of the mobile manipulator. The
work in [29] efficiently generates a path without collision in complex environments by
suggesting the Optimized Hierarchical Mobile Manipulator Planner (OHMP), which is
composed of two steps: two-dimensional mobile motion planning and three-dimensional
manipulator motion planning. Recently, due to the development of deep learning, research
into mobile manipulator control using reinforcement learning is also being conducted.
In [30], the authors suggest a system in which the mobile manipulator robot learns action-
related places through experience-based learning with the environment. In Reference [31],
they offer a mobile manipulator system with a more efficient framework by decoupling the
state-of-the-art deep reinforcement learning control and visual perception.

The controller suggested in this research works as a controlling move_base, which is a
package for navigation and MoveIt, the manipulator control package, on the upper level.
There are some studies to find improved action by the selection in which it uses an existing
controller in normal situations and replaces the motion with a new controller or adjusts the
existing one in particular situations. In Reference [32], the controller normally uses move-
base to drive the mobile robot and then when the robot faces the narrow space, it regenerates
appropriate waypoints for passing the space. Also, in the work of Reference [33], the author
suggests an algorithm which executes a more efficient exploration using Gmapping [34] and
the move-base package. Moreover, in the same context, other studies are conducted which
extend the function of move_base with a higher-level controller [35–37] or uses the MoveIt
package [38–40] for operation in specific higher-level environments. Although it is not
related to replacing or tuning the controller itself, as with reference [41], there are also some
studies on user-friendly interfaces, replacing RViz [42], the 3D visualization tool which
gives order to the existing move_base, and MoveIt packages, to a VR-based interface. In the
case of the controllers suggested in the studies mentioned, they are activated by replacing
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or tuning the existing ROS packages in certain environments but have the limitation that
they have to be controlled with RViz or terminals. However, in this paper, the authors
make a Virtual Reality-based control interface in which the user has access intuitively at
higher level. This seems consistent with the approach direction that suggests a higher-level
controller which gives order to a lower one without directly handling the lower kinematic
controller of the move-base and MoveIt packages.

3. Controller Description

The objective of the controller is to control the mobile manipulator simultaneously in
various environments. For its successful operation, when the mobile manipulator receives
the position of the target object, it should firstly be able to calculate the pose where it can
execute the manipulation towards the target and move to the corresponding pose. The flow
chart of NUMMIC for this operation can be found in Figure 3.

Figure 3. Execution flowchart of NUMMIC.

Following the order of the flow chart, after receiving the available position of the
target, NUMMIC sets the navigation path through the global path planner [43] in the
move-base package with scan data from the LiDAR sensor attached at the mobile platform.
If MEP, a position where the manipulation for the target on navigation path is successfully
executed, is specified, the mobile platform of the mobile manipulator can be located on the
MEP controlled using move-base. This process is based on some parameters of the mobile
manipulator and the information about the position of the target.

At the same time, two additional processes are required for the efficient and stable
control of the mobile manipulator, which are the designation of the manipulator’s default
pose and the setting for MSS using path’s curvature analysis. The designation of the
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suggested default pose is based on the idea that the generated trajectory at manipulation is
likely to be a straight line since the mobile manipulator is aligned to face the target object
when it stops at MEP. The default pose proposed in this paper is a point where, no matter
what value the z-coordinate of the target object has, deviation of the distance from default
pose’s coordinate to the target, i.e., the trajectory of end-effector during manipulation, is
minimized and the manipulator does not hit the surrounding obstacles. Since the state of the
manipulator not performing any action while the mobile manipulator drives is defined as
the default pose, there is no part related to the calculation of default pose in NUMMIC flow
chart of Figure 3. As seen in Figure 2, although the part suggesting an optimized default
pose exists in parallel with other substructures, it is decided in advance by the parameters
of mobile manipulator and used in NUMMIC rather than being performed in the main
operation of NUMMIC. This default pose is calculated with the manipulator’s workspace
and some parameters including mobile robot’s footprint, and by using it to control the
manipulator it can reduce the average planning time for target objects in various locations.

The setting for MSS using path’s curvature analysis, like MEP generating algorithm,
uses a navigation path to find the area with a high risk of collision between the manipulator
and surroundings while the mobile robot drives. This operation can also be seen in the flow
chart of Figure 3 through the Calculate path curvature block on the rightmost side following
the Set navigation path. The global path generated by the global path planner from move-
base is split into steps according to the granularity value, and it analyzes the curvature at
each path’s interval using the difference of radian values at these steps. It distinguishes the
area where there is a possibility of the mobile manipulator colliding with nearby obstacles
or not depending on the analyzed curvature, the width of mobile manipulator, and the
manipulation distance. Finally, it performs the manipulation only if there is MSS, the area
which has no risk for the manipulator to collide with the surroundings on its path between
the mobile manipulator and the target object according to the path analysis.

3.1. Manipulation Enabled Pose (MEP) Setting Based on LiDAR Sensor

In this part, the executed operations are as follows: (1) setting the MEP for the manip-
ulation towards the given target and control the mobile platform for the movement to the
pose, (2) stopping the MEP using the algorithm which controls the velocity proportional to
distance and (3) rotation control based on P-controller to perfectly align the target and the
mobile manipulator. These three operations are executed sequentially.

To set the MEP, the controller calculates the Manipulable Area. Manipulable Area is
an area in which the mobile manipulator can manipulate the target. The controller then
generates a global path to the target using move-base and makes the mobile manipulator
drive along the path. Here, the calculation of the Manipulable Area is as follows. A pose is
assumed in which the mobile manipulator stopping at MEP performs the manipulation
towards the target. Figure 4 shows the pose in the simulation. Here, the first joint from
the manipulator’s base link becomes the central axis of the recommended workspace.
Using the characteristics of NUMMIC algorithm, only values of x and z coordinates in
3-dimensional space during the manipulation are needed since the coordinates of the base
link of the mobile manipulator and the target are aligned after the control of the mobile
platform. Assuming the radius of the manipulator’s recommended workspace to be dm,
z-coordinates of target be tz, and z-coordinates of manipulator’s first joint from the ground
be mz, the angle between the line from the target, which is perpendicular to the ground,
and the line extended from target to manipulator’s first joint is as follows:

θ = cos−1
( |tz − mz|

dm

)
(1)

The definition of the distance on the x-axis from the base link of the mobile platform
to the first joint of the manipulator as dbm, rm, a radius of Manipulable Area is as follows:

rm = dm sin θ + dbm (2)
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Thus rm, the radius of Manipulable Area is a distance between the perpendicular foot
of a point where the target meets the recommended workspace to the ground, and the
perpendicular foot of a base link to the ground.

 

Figure 4. Schematic representation for the correlation between mobile manipulator’s recommended
workspace, target, and rm.

Second, the controller stops the mobile manipulator when it is determined that the
mobile manipulator has entered the Manipulable Area while driving along the path. If
a signal is sent instantaneously, a significant error occurrs since the controller controls
the mobile robot with move-base. To prevent this, the suggested controller in this paper
defines the area equivalent to twice the radius of the Manipulable Area as sigmoid distance
proportional speed control area and adjusts the velocity of the mobile platform in this
area. The velocity decelerates along the shape of the sigmoid function in proportion to the
distance from the target point. When vx is the translational velocity of mobile platform, vmax
is the maximum velocity of mobile platform, vstop is the velocity when mobile platform is
stopped, and d is the distance between the mobile platform and the MEP, then the formula
of the sigmoid function is as follows.

vx =
vmax − vstop

e−d + 1
+ vstop (3)

To converge to the velocity vstop when it reaches the target point, the function is shifted
to the positive direction as follows:

vx =
vmax − vstop

e−d+6 + 1
+ vstop (4)

Finally, assuming the radius of predefined sigmoid distance proportional speed control
area to be rsa, the coefficient to decelerate after entering the area is revised.

vx =
vmax − vstop

e−
12
rsa d+6 + 1

+ vstop (5)

In order to verify how the mobile platform of the mobile manipulator is controlled
through the above Formula (5), a graph is drawn assuming the specific situation. Because
the maximum speed of Husky UGV which is used in the experiment of the paper is 1 m/s,
vmax is set at 1 m/s and the targeting velocity at stop is set at 0 m/s. Then, assuming that
rsa about particular target A is 1.2 m, a graph of the corresponding sigmoid function is
drawn as Figure 5. From this graph, it can be expected that as the mobile manipulator goes
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beyond the sigmoid distance proportional speed control area and approaches the target, its
speed will decrease and stops in a stable manner at MEP.

Figure 5. A distance-velocity graph for applying sigmoid distance proportional speed control at a
point 1.2 m away from the target with a mobile platform which has a maximum speed of 1 m/s.

After the mobile platform is stopped by the sigmoid distance proportional speed
control algorithm, it rotates the platform to face toward the coordinates of target object.
This rotational control is composed of simple P-control which multiplies the gain value to
the difference of mobile platform’s yaw value and target one, and this gain can be modified
according to the needs of the user at NUMMIC’s configuration, even though it is specified
to 0.25 as default.

The final pose of the mobile manipulator becomes the MEP through a series of control
processes for detailed alignment of the mobile platform including the designation of MEP
by target coordinates and specification of the mobile manipulator, stop at the position,
and rotational control. The graphical explanation about MEP can be found in Figure 6.
Figure 6a shows where the MEP is located on the path, based on the creation of a navigation
path which has the position of target object from the mobile manipulator as goal on RViz.
Figure 6b shows the Manipulable Area, a circular area with radius rm that has the target
object as a center when the mobile manipulator is located closer to the target object, and
the sigmoid distance proportional speed control area with radius 2rm which also has target
object as a center. In this case, the intersection of the navigation path from the mobile
manipulator to target object and the Manipulable Area becomes the position of the MEP.

 
(a) (b) 

Figure 6. Schematic description of the Manipulation Enabled Pose (MEP). (a) shows where the
MEP is located on the navigation path. (b) shows the Manipulable Area and the sigmoid distance
proportional speed control area according to rm.
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3.2. Optimized End-Effector Default Pose

The default pose of the end-effector suggested in this paper is a pose in which there
is no collision when the mobile manipulator drives, and it does not lose much time in
the planning of the manipulation, whatever value the target’s z-coordinate has. The
z-coordinate of the suggested pose is assumed to be k, and distance at x-axis from the
base link of manipulator to the front footprint value on move-base of the mobile platform
to be d f m, which can be described as Figure 7. Figure 7a represents dm, the radius of
mobile manipulator’s recommended workspace, d f m, the distance on the x-axis from the
manipulator’s base link to the front footprint of the mobile platform, and dbm, the distance
on x-axis from the mobile manipulator’s base link to the manipulator arm’s base link.
Figure 7b represents an arbitrary position of the target (blue point) and the expected
position of default pose (green point on the green line) through a circle with the first joint
from the manipulator’s base link as the origin and dm as the radius. A red point is the target
which has a minimum z value among the target, and a purple point is the target which
has a maximum z value. This range can be modified by controller’s parameter values. X,
expected planning trajectory distance value from default pose to the target object, can be
derived as follows:

X =

√(
x − d f m

)2
+

(√
d2

m − x2 − k
)2

(6)

 

(a) (b) 

Figure 7. Schematic description of the position for the default pose. (a) represents dm, dfm, dbm on the
simulation mobile manipulator model. (b) represents the expected position of default pose (green
point) in a simplified drawing.

To find a default pose required by the controller, the formula should be expressed as
the mean value and variance of continuous probability variable as follows:

Edistance(X) =
∫ −d f m

−dm
x

√(
x − d f m

)2
+

(√
d2

m − x2 − k
)2

dx = m (7)

Vdistance(X) =
∫ −d f m

−dm
(x − m)2

√(
x − d f m

)2
+

(√
d2

m − x2 − k
)2

dx (8)

When the Vdistance(X) is minimum, k becomes the z-coordinate of manipulator’s de-
fault pose. Although the above expression is suitable for understanding the concept of
suggested default pose, it is difficult to calculate the desired k value due to its complexity.
Thus, for ease of calculation, we exchanged the values of x and y-axis, and the values
in the range of integrals are replaced by discrete ones which take into consideration the
manipulator’s operating range and limits in control. The revised formula is given below.
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Here, zmax is the value in which the maximum height for the mobile manipulator to perform
manipulation is subtracted by the z-coordinate value of manipulator’s first joint from the
base link, and zmin is the value in which the minimum height for manipulation is subtracted
by the z-coordinate value of manipulator’s first joint.

X2 =

√
(x − k)2 +

(√
d2

m − x2 − d f m

)2
(9)

Edistance(X2) =
∫ zmax

zmin

x

√
(x − k)2 +

(√
d2

m − x2 − d f m

)2
dx = m2 (10)

Vdistance(X2) =
∫ zmax

zmin

(x − m2)
2

√
(x − k)2 +

(√
d2

m − x2 − d f m

)2
dx (11)

As in Expressions (6)–(8), when the Vdistance(X2) is minimum, k becomes the z-coordinate
of manipulator’s default pose (zmin ≤ k ≤ zmax). Finally, the k value which is derived from
the above calculation is designated as the z-coordinate of the default pose and d f m, the
distance to the front footprint of the mobile platform based on the manipulator’s base link
is designated as the x-coordinate of the default pose. After defining the y-coordinate as
the nearest point to 0 where the manipulator can move satisfying these two values, and
inputting the orientation value so that the end-effector looks at the front of the mobile
manipulator in the corresponding position, the default pose is set.

3.3. Manipulation Safety Section (MSS) Setting Based on Path Curvature

For successful simultaneous control of the mobile manipulator in various environ-
ments which include obstacles, it is necessary to prevent the manipulator from colliding
with its surroundings. For this reason, in this paper, we analyze the global path where
the mobile manipulator drives and make the manipulator decide whether there is a large
curve that it might bump into when it is stretched forward along the path from the current
position to the target. Assuming the radius of Manipulable Area about specific target of
mobile manipulator to be rm, the width of the mobile platform to be wm, and the mobile
manipulator to be a material particle that moves along the global path, the curvature radius
ρ about the differential length of the path is required.

Generally, this curvature radius ρ, which is decided by the arc between two adjacent
points of the trace, is expressed as follows:

ρ =
ds
dθ

(12)

Meanwhile, the global path from move-base is in the form of an array composed
of numerous x and y coordinates. Differential length, which is called path step in this
paper, can be decided using the difference between the sequential values of these x and y
coordinates. Each of these path steps has a certain distance value and they are preset in
advance which can be checked at the configuration of move-base package. This differential
length is called path granularity, which refers to ds of above Formula (12). dθ can also
be derived from the angular difference of each continuous path step. The equation for
calculating the curvature radius by applying the above is as follows:

ρ =
path granularity

di f f erence o f path step angular
(13)

Using curvature radius ρ and width of mobile platform wm, the area where the manip-
ulator does not collide with nearby obstacles while the mobile platform passes specific path
step with its stretched arm can be calculated. This area corresponds to the space between
the arc of a circle whose radius is equal to the curvature radius ρ plus half of wm, and the
arc of a circle whose radius is same as the value, ρ is subtracted by half of wm. This is
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described as the green space at Figure 8. If the curvature of the path is large enough for
the end-effector to be outside the green space when the manipulation is executed at that
moment, the path step, which includes the base link (a green dot inside the mobile platform
in Figure 8) of the mobile manipulator, is treated as not belonging to MSS. Algorithm 1 is a
pseudo-code based on Python for deciding the MSS by global path.

Figure 8. Schematic description for the calculation of Manipulation Safety Section (MSS).

After distinguishing the MSS and the section which is not on the global path from the
mobile manipulator’s start point towards the target, if only the MSS exists on the remaining
path from the path step, which is closest to the location where the mobile manipulator
is driving, to the target, manipulator’s planning will be executed. Through the process,
mobile manipulator can be controlled by simultaneous control without collision in complex
environments including obstacles.

3.4. ROS-Based Architecture

NUMMIC is implemented through the Python scripts based on ROS, and it controls
a whole mobile manipulator with move_base, which controls the mobile platform, and
MoveIt, which controls the manipulator, solving inverse kinematics. The structure of
NUMMIC packages on ROS is shown as Figure 9.

Controller.launch executes the nodes at the same time which are required for operating
NUMMIC package through python scripts inside the script folder. default_pose_cal.launch
executes the python script which calculates the position of proposed default pose using the
value inside controller_param.yaml for the user to control the default pose that is proposed
in this paper before operating NUMMIC. controller_param.yaml file obtains the specification
of the mobile manipulator and additional setting parameters related to the operation of
the controller and sends them to each node through rospy.get_param function. A brief
description about input and additional parameters at controller_param.yaml file can be
found in Table 1. goal_nav.py, goal_nav_stop_combine.py, and orientation_check.py are the
Python scripts for the MEP setting, stop at MEP, and detailed rotational control after
stopping. curvature_check.py sends the decision about MSS and its result to manipulation.py.
manipulation.py executes the manipulation to locate at the proposed default pose, which
is calculated in advance by the manipulator based on MSS, or at virtual goal pose, which
is to reach the target coordinates for the end-effector or manipulator when the mobile
platform is stopped at MEP. default_pose_calculator.py calculates the position of default pose
which will be used with this controller according to the parameter values set by the user.
Figure 10 represents how the communication using the topics works in the process in which
NUMMIC controls the mobile manipulator through the external move-base package and
MoveIt package on ROS. The proposed controller is released as an open-source repository
on GitHub [44].
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Algorithm 1: Determining the Manipulation Safety Section (MSS) from curvature of global path

Data:
Path data: path_msg [[path_msg[0]x, path_msg[0]y], [path_msg[1]x, path_msg[1]y], . . . [path_msg[N − 1]x,
path_msg[N − 1]y]]; Path granularity: pg; Width of mobile robot: wm; Radius of Manipulable Area: rm

Result: Manipulation Safety Section (MSS) on the global path

1 path  [] 
2 path_angular  [] 
3 path_angular_modified  [] 
4 MSS  [] 
5 path_step  N  1 
6 path_offset round( ) 

# Get path data 
7 for i  0 to path_step do: 
8      path.append([ , ])  
9 end for 

# Calculate path step angular 
10 for i  0 to path_step—1 do: 
11        path[i + 1][0]—path[i][0] 
12        path[i + 1][1]—path[i][1] 
13      angular  atan2( , ) 
14      if angular  0:                                                   # Match the signs of the angular 
15           angular   + angular 
16      end if 
17      path_angular.append(angular) 
18 end for 

# Get difference of path step’s angular 
19 for i  0 to path_step—2 do: 
20      angular_modified  path_angular[i + 1]—path_angular[i] 
21      if angular_modified  : 
22           angular_modified   + angular_modified 
23      elif angular_modified  : 
24           angular_modified  —angular_modified 
25       end if 
26      if i  ((path_step—2)—path_offset):            # Exclude the path step belonging to Manipulable Area 
27           angular_modified  0 
28      end if 
29      path_angular_modified.append( angular_modified ) 
30 end for 

# Get MSS 
31 for i = 0 to path_step—2 do: 
32      if path_angular_modified[i]  0: 
33           radius_of_curvature  0 
34      else:  
35           radius_of_curvature = ( /path_angular_modified[i])  
36      end if 
37      if radius_of_curvature  0:                        # Position with True values on this array is MSS 
38           MSS.append(True)  
39      elif sqrt(radius_of_curvature —(radius_of_curvature   : 
40           MSS.append(True)  
41      else: 
42           MSS.append(False)  
43      end if 
44 end for 
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Figure 9. Structure of NUMMIC Package based on ROS.

Table 1. Parameters that can be set in controller_param.yaml of NUMMIC Package, and brief descrip-
tion about them.

Parameter Description

/first_joint_height z-axis distance from ground to manipulator’s first joint (m).

/between_base_link x-axis distance from mobile robot’s base_link to manipulator’s base_link (m).

/recommended_reach Manipulator’s recommended workspace (m).

/mobile_robot_width Width of the mobile robot (m).

/base_link_offset Height of the mobile robot’s base_link (m).

/orientation_kP_value kP value in orientation control.

/refresh_cycle Global path refresh cycle (s).

/granularity The step size to take between points on a given navigation trajectory (m).

/m_bl_to_ft x-axis distance from manipulator’s base link to front footprint (m).

/z_max Maximum z value in manipulation (m).

/z_min Minimum z value in manipulation (m).

 

Figure 10. Topic exchanges between nodes in NUMMIC package based on ROS.

257



Sensors 2022, 22, 7369

4. Experimental Setup

Prior to the experiment evaluating the suggested controller, we would like to explain
the simulation world for the experiment, give a detailed specification of mobile manipulator,
and the parameter values of NUMMIC and navigation package.

4.1. Simulation Worlds and Robotics Platforms

The simulation is performed for three different mobile manipulator platforms in two
different worlds. Each simulation world, corresponding map files, and target coordinates
are described at Figure 11. Among them, the simulation experiment in the first world
involves the mobile manipulator, which always moves from the origin when motion plan-
ning for each target. Throughout this experiment, we can evaluate the mobile manipulator
with the suggested controller on whether it can perform the motion planning from a fixed
point to different places, avoiding the obstacles. The experiment in the second world
involves the mobile manipulator that moves from MEP of previous target when it executes
the motion planning for each target. Throughout the experiment, it is possible to verify
that mobile manipulators existing in various locations can once again carry out motion
planning towards different locations while avoiding obstacles. Also, since Test world #2
has a room-like structure in the middle, the mobile manipulator should pass through a
narrow gap and exit the structure for motion planning toward Target 3 after Target 2. The
experiment in such an environment is required to determine whether a collision exists
during driving, which is important in a word of mobile manipulator using simultaneous
control, and also it will be possible to verify the usefulness of the decision for MSS at
the controller.

 

Figure 11. Appearance of Test worlds for each simulation tests, their map files, and [x, y, z] coordinates
of target points.
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As mentioned previously, the mobile manipulators used for the experiments are three
different types: Husky UGV with UR3 (Husky_UR3), Husky UGV with UR5 (Husky_UR5),
and Jackal UGV with Kinova Gen3 lite (Jackal_Kinova). The hardware specifications of
each mobile manipulator can be found in Figure 12. In addition, there are some remarks
for each mobile manipulator used in the experiment. First, Husky_UR3 and Husky_UR5
share the same mobile platform but since Husky_UR3 has a bracket structure between
the mobile platform and the manipulator, and Husky_UR5 does not. The height of the
first joint from the manipulator’s base link is higher at Husky_UR3. Second, for the UR
series provided by Universal Robots, there is a recommended reach separate from the
maximum reach, but the Gen3 lite model from Kinova does not have the recommended
reach described in the manual. Thus, when we used NUMMIC in the case of the UR series,
the recommended reach value described in the manual was used for the parameters, but in
the case of Gen3 lite, we reduced the appropriate value in the maximum reach and used it
as recommended reach.

 

Figure 12. Hardware specifications of three mobile manipulators.

4.2. NUMMIC Parameters

In order to perform simultaneous control successfully for the mobile manipulator,
it is necessary to put a proper parameter value according to the specifications of the
mobile manipulator to be used. Although each parameter value is described sufficiently
in the previous Section 3.4, this section will further explain why these values are added
by the specifications. Parameters for each mobile manipulator used for experiments are
represented at Table 2.

In the case of /first_joint_height, Husky_UR3 and Husky_UR5, using similar manipula-
tor and the same mobile platform, should have almost same value, but as described above,
Husky_UR3 has a larger value due to the difference in bracket structure. The Jackal_Kinova
model has the lowest platform height but its value is higher because of the structural
characteristics of the manipulator. For the/between_base_link parameter, Husky_UR3 and
Husky_UR5 have the same value because the bracket structure mentioned earlier only
affects the height, and Jacal_Kinoval’s is close to 0 since the manipulator is attached to the
center of the mobile platform. The values of /recommended_reach,/mobile_robot_width, and
/base_link_offset are input based on the hardware specification manual, and since only for
Jackal_Kinova model /recommended_reach value is not listed on the manual, the parameter
which is obtained by subtracting the arbitrary value from the maximum value is used. High
/orientation_KP_value will reduce the time to control rotation but reduce the accuracy of
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motion planning, and vice versa. In this experiment, the same value is applied to all mobile
manipulator models for variable control. Also, the /refresh_cycle value is the same for each
model due to variable control, even though reducing the value can affect better driving
with more system loading. /granularity and/m_bl_to_ft are written based on the parameter
values in the move_base package of mobile platforms used for each mobile manipulator.
Therefore, for models using the same Husky UGV, the same parameter value is applied
on the NUMMIC. In the case of /z_max and /z_min, the user can enter any value as long
as the mobile manipulator specification allows it, but here, the value corresponding to the
limit value of the specification is added. /z_max is the z value that the manipulator can
extend beyond the footprint of the mobile platform as much as possible, and /z_min is the
height value of LiDAR sensor attached to the mobile platform. The reason why /z_min is
set in this way is that if /z_min is smaller than the height of LiDAR, the LiDAR sensor may
be covered by manipulator and interfere with driving.

Table 2. Parameter values of NUMMIC package for each mobile manipulator used in experiments.

Parameters Husky_UR3 Husky_UR5 Jackal_Kinova

/first_joint_height 0.533 0.474 0.52

/between_base_link 0.331 0.331 0.01

/recommended_reach 0.45 0.75 0.71

/mobile_robot_width 0.67 0.67 0.43

/base_link_offset 0.13 0.13 0.065

/orientation_KP_value 0.25 0.25 0.25

/refresh_cycle 3 3 3

/granularity 0.025 0.025 0.02

/m_bl_to_ft 0.169 0.169 0.25

/z_max 0.95 1.204 1.184

/z_min 0.312 0.312 0.25

4.3. Other Parameters

Since NUMMIC is operated at upper level of the move_base stack and MoveIt package,
fine-tuning of these packages is significant for successful operation. In particular, the ad-
justment of parameters related to navigation plays a major role for the mobile manipulator
to move successfully and efficiently to the MEP. In fact, this process should be delicately
determined according to different specifications of each mobile manipulator and the config-
uration of the map, but in this paper, only the minimum parameter values are modified
based on the default value in GitHub code supporting for each mobile platform from their
companies. Because a duration of time, the time spent on Manipulation for evaluating
algorithms in this paper is measured from the moment when the mobile manipulator enters
the sigmoid distance proportional speed control area until the manipulation is completed.
Fine-tuning of the parameter values might improve the total driving time or position error
of end-effector but considering that the results of each algorithm are compared in this paper,
the overall conclusion will be maintained.

Thus, we use Navfn [45] for the global path planner, and DWA planner [46] for
the local path planner [47] based on navigation parameters in the repository for Husky
UGV [48] and the repository for Jackal UGV [49]. Inflation_radius and min_vel_x values
are modified slightly. For successful manipulation without collision at any points near
the wall, the inflation_radius value is fixed at 0.1. Also, at Test world #2, to check whether
designation of MSS is successfully carried out, the mobile manipulator should pass through
the narrow gap between walls. Thus, we modify min_vel_x value to −0.1 and make the
mobile platform temporarily move backward to pass the gap easily. The pose estimate
of the mobile manipulator robot is performed by AMCL [50] that the most commonly
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used Monte-Carlo Localization (MCL) algorithm implemented on ROS. With the MoveIt
package, the basic setting is performed based on the URDF of each manipulator arm using
the supported MoveIt Setup Assistant [51]. Here, KDL Kinematics Plugin [52] was chosen
for the kinematics solver.

5. Experimental Results

This section covers the analysis of the results of experiment for verifying our proposed
controller’s performance. In Section 5.1 we analyze the results for a total of 45 times of the
manipulation test with three different mobile manipulators from Target 1 to 5 in the Test
world #1 simulation environment. In Section 5.2 we repeat the previous motion planning
test in Test world #2 and analyze the results. Lastly, in Section 5.3, we conduct two different
motion planning scenarios four times each with an actual Husky_UR3 mobile manipulator
robot in real environments and analyze the results for this experiment.

5.1. Experiment #1: Simulated Robots in Test World #1

Table 3 shows the comparison of the average duration of time value with respect to the
result of motion planning for each target using Conventional algorithms and the NUMMIC
suggested in this paper. The first algorithm for comparison is the sequential controller (SC)
which controls the mobile manipulator in a sequential manner. This controller executes
the manipulation after its mobile platform has completely finished moving. Because it
is possible to compare performance with NUMMIC when it can do motion planning for
various points in the map, only the idea of MEP of NUMMIC algorithm is applied in the
process of driving the mobile platform. The second algorithm, simply combined only with
move_base and MoveIt (OMM), controls only the mobile platform and manipulator arm
simultaneously and does not contain the velocity control which is used with NUMMIC for
stability in the motion planning process and MSS decision. Duration is a measure of the
time between when the mobile manipulator enters the sigmoid distance proportional speed
control area and when the manipulation is completed. The reason why duration is defined
in this way is that when the overall motion planning time is calculated, the duration of time
varies significantly, depending on the distance from the origin to target, thus it is difficult
to compare each time for different control methods. Table 4 represents the average values
of the Euclidean distance error of x-axis, y-axis, and x-y plane for target coordinates and
the mobile manipulator’s end-effector at the end of motion planning separately for each
pre-mentioned algorithm. The reason why the error value about z-axis is not in the table
is that the error on z-axis is always maintained at 0 compared to the errors on x-axis and
y-axis which changed significantly by each algorithm.

Table 3. The result comparing the average values of duration using different algorithms for each
mobile manipulator in Test world #1.

Average Duration of Time (S) SC OMM NUMMIC

Husky_UR3 26.2 10.97 16.22
Husky_UR5 25.01 9.2 14.99

Jackal_Kinova 23.12 8.59 12.68

Table 4. The average values of error of end-effector after motion planning using different algorithms
for each mobile manipulator in Test world #1.

Average Error (cm) SC OMM NUMMIC

x y ED * x y ED x y ED

Husky_UR3 0.7 0.54 0.95 3.32 3.34 5.28 0.68 0.46 0.83

Husky_UR5 0.9 0.42 1.03 6.42 4.06 8.18 0.62 0.72 0.99

Jackal_Kinova 1.14 1.04 1.68 6.2 4.66 8.05 1.58 1.18 2.17

* Euclidean distance.
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The result shows that the duration was reduced by about 41% for every mobile manip-
ulator robot when we use NUMMIC for motion planning compared to the motion planning
with the existing Sequential Controller. The simultaneous control of only move_base and
MoveIt can reduce the time more drastically than the method proposed in this paper, but
accuracy of motion planning becomes significantly lower. In fact, the control method using
only move_base and MoveIt is about +400 to +700% which is a huge surge compared to
Sequential Controller. On the other hand, NUMMIC has fewer errors than that of the
controller with only move_base and MoveIt, which has −12% of decreasing error or +29%
increasing error with Sequential Controller.

The reason for this result seems to be closely related to which process the errors in
this experiment mainly come from. Since every error is shown on the x-axis and the y-axis,
not on the z-axis, it is estimated that the errors in the end-effector position are caused
mostly by the navigation process. There are various factors for the cause of errors in the
navigation process including the error from the localization between the map file and
driving environment, the error by the slip of wheel, and the error that occurs when starting
and stopping. These navigation errors affect the motion planning of the mobile manipulator
to make errors, and in the case of OMM, which has a particularly large error, it seems
that a larger error has accumulated during the stopping at the MEP. Here, it suddenly
stopped without velocity control in the sigmoid distance proportional speed control area,
which is one of the NUMMIC’s internal algorithm. Therefore, it takes less duration than
NUMMIC, but a large slip occurs during a sudden stop and causes a large error in the
end-effector position. On the other hand, in the case of NUMMIC, when entering a preset
area, it stops in a stable manner at the MEP by sigmoid distance proportional speed control.
This process makes a little time loss but it is still faster than Sequential Controller and, in
terms of accuracy, it is not significantly different from Sequential Controller.

5.2. Experiment #2: Simulated Robots in Test World #2

The overall procedure is similar with previous Section 5.1. Table 5 compares the
average value of duration for each target by algorithm, and Table 6 represents the average
value of the Euclidean distance of the x-axis, y-axis, and x-y plane for the target coordinates
and the mobile manipulator’s end-effector after motion planning is completed by each
algorithm. However, there is a noticeable point which differs between Tables 3 and 4 in
Section 5.1. In the case of the control method with OMM applied to Husky_UR5, when the
motion planning toward Target 3 from the position of Target 2 is executed, the manipulator
always hits the wall and fails to execute. Thus, the tables below show the average value
except for that result.

Table 5. The result comparing the average values of duration by different algorithms for each mobile
manipulator in Test world #2.

Average Duration of Time (S) SC OMM NUMMIC

Husky_UR3 23.92 9.98 15.25
Husky_UR5 24.73 11.37 15.5

Jackal_Kinova 22.72 8.19 13.49

Table 6. The average values of error of end-effector after motion planning by different algorithms for
each mobile manipulator in Test world #2.

Average Error (cm) SC OMM NUMMIC

x y ED * x y ED x y ED

Husky_UR3 0.36 0.66 0.79 5.3 5.68 8.12 0.32 0.62 0.72

Husky_UR5 0.38 0.58 0.77 1.88 2.58 3.62 0.62 0.84 1.15

Jackal_Kinova 1.7 1.52 2.48 4.22 4.86 6.77 1.52 1.08 2.14

* Euclidean distance.
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Through the table, the experiment conducted in the Test world #2 shows similar
results to 5.1 for all mobile manipulator robots. For NUMMIC, the duration is reduced by
about 38% compared to the existing Sequential Controller. And for the method with only
move_base and MoveIt, the duration greatly decreases compared to NUMMIC but there is
a problem that the error on the end-effector position becomes too large.

Additionally, there are several results that can be established with this experiment.
One of them is the collision between the manipulator and the wall during the motion
planning from Target 2 to Target 3 with Husky_UR5 and the controller with only move_base
and MoveIt, which are mentioned previously. This controller simply controls the mobile
platform and the manipulator arm simultaneously without any additional tuning, and it
might cause serious problem in the motion planning process. In the case of the manipulator
of Husky_UR3 and Jackal_Kinova, there isn’t any collision because of their short reach,
but Husky_UR5’s manipulator, which has relatively long reach, can hit the obstacles. This
situation can be seen in Figure 13a. In the second scene of the figure, the mobile manipulator
reaches out its arm and tries to pass through a narrow gap in the third scene, resulting in a
collision, which causes a completely distorted costmap, as in fourth and fifth scene. With
NUMMIC, as shown in Figure 13b, this collision does not occur because it goes through
the process of determining the MSS through the global path. In fact, it does not implement
the manipulation because there is an area with the risk of collision on the remaining global
path until the second scene of Figure 13b. However, from the third scene, which depicts the
mobile robot passing a narrow gap, it starts the manipulation and successfully completes
the motion planning for the target point in the fifth scene.

 
(a) 

 
(b) 

Figure 13. Both snapshots (a,b) show the process of motion planning from Target 2 to Target 3 in
Test world #2 using Husky_UR5. (a) uses only move_base and MoveIt, and (b) uses the proposed
NUMMIC controller.

In addition, although the tendency for the result values of each controller is maintained,
the case with Jackal UGV always shows less duration and greater error compared with
Husky UGV. This result seems to be because Jackal UGV itself has a higher maximum speed
than Husky UGV, and the linear and angular accelerations in [48,49] GitHub repository
which are referred to in this paper are set according to this property.
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5.3. Experiment #3: Real Robot in a Real Environment

Lastly, we conducted Experiment #3 with a real Husky_UR3 robot to check whether
NUMMIC works in real-world environment without any problems. The hardware specifi-
cation of Husky_UR3 and the NUMMIC’s parameter values are identical to the ones from
the previous simulation. The map file of an actual environment is shown in Figure 14. This
experiment is composed of two scenarios. In the first scenario, T01_Target [3, 0, 0.533] is
designated as target coordinates based on the T01_Start point and the motion planning with
NUMMIC is executed. Four motion planning experiments are repeated for the same point,
and after each planning is completed, a laser point is applied to the end-effector to lower the
foot of the perpendicular to measure which point is manipulated. In the second scenario,
T02_Target [2.795, −7, 0.587] is set as target coordinates based on the T02_Start point and
the motion planning with NUMMIC is done. In this scenario, the mobile manipulator must
turn a corner before motion planning the target because of the structure of the hallway. In
the same manner, four motion plannings are repeated for the same target, and the error
between the position of end-effector and target coordinates is measured by the foot of the
perpendicular in which a laser point is applied to the end-effector.

 
Figure 14. Map file of a real environment for the experiment. Each blue point, named T01_Start and
T02_Start, represents the starting point of the mobile manipulator in the first and second scenarios.
Each red point, named T01_Start and T02_Start, represents the target point of the mobile manipulator
in the first and second scenarios.

Figure 15 shows the motion planning from T01_Start to T01_Target point sequentially.
Since there is no collision risk zone on the path to the target, manipulation is performed at
the same time as driving (Second scene of Figure 15). After that, when it enters within a
specific distance from the target point, the motion planning is successfully performed by
the distance proportional speed control using sigmoid function and stopping at the MEP.
Figure 16 depicts motion planning from T02_Start to T02_Target point. In this scenario,
there is a high-curvature point on the path, which is an area at risk of collision, thus before
passing the section, the manipulator maintains the default pose (second scene of Figure 16)
and the moment it passes the section, it starts manipulation (third scene of Figure 16).

In this way, the NUMMIC operates as designed, but in terms of accuracy, the result
is clearly worse than that of the simulation. Table 7 compares the average values of the
error between the target coordinates and the mobile manipulator’s end-effector position
after finishing each motion planning experiments: T01 and T02. In an actual experiment,
since there is an uneven floor or an error on the manipulation that does not appear in the
simulation, the error in the z-axis occurred even if it is not large compared to that in the x-y
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plane. Therefore, errors are also stated based on all x, y, z axes and Euclidean distance in
three dimensions.

 

Figure 15. Snapshots of the experiment in the first scenario at real environment.

Figure 16. Snapshots of the experiment in the second scenario at real environment.

Table 7. The error values of end-effector position after motion planning in a real environment. T01 is
the result of the first scenario, and T02 is the result of the second scenario.

Average Error (cm) x y z Euclidean Distance

T01 2.3 2.1 0.075 3.62
T02 3.08 8.05 0.15 9.2

However, similar to the previous simulation, this result is estimated to have accumu-
lated larger errors in the navigation process rather than derived from NUMMIC itself. In
fact, prior experiments show that a significant number of errors are caused by problems
from the navigation process. Since more varied non-systematic errors are easier to inter-
vene in in real environments, the increase in errors in real environments compared to the
simulation is a phenomenon that occurs in most navigation-related experiments. In the
experiment of T02, which has particularly larger errors than in the simulation, most of the
causes seem to have been due to the localization process between the map and the real
environment, and this can be estimated in relation to the direction in which the error is
large. T01 shows a relatively uniform error in the x-axis and y-axis, but the error of the
y-axis in T02 is much larger than that of the x-axis. This is because in the T02 scenario the
robot drives on a straight hallway and this environment lacks a point to grasp the feature,
which creates a large error in the direction due to the characteristics of the localization
algorithm. Thus, we can conclude that although NUMMIC operates in the same way as the
simulation, due to the characteristic of the real environment, a larger error is accumulated in
the navigation stage, which focuses on localization, and the manipulation stage. We expect
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that the errors in the entire motion planning process can also be overcome by installing
additional sensors or algorithms to reduce errors from the localization stage.

6. Conclusions

In this paper, we proposed the NUMMIC for the mobile manipulator robot, which
is able to execute in a stable manner motion planning in various environments with
simultaneous control and has more time benefits than the traditional sequential control
method. Here, the various environments mean that the mobile manipulator can work
under various surroundings including obstacles, while also meaning that the controller can
be used in different types of mobile manipulator model. What makes it possible are the
structural characteristics of NUMMIC, which is composed of the designation of the MEP
that selects a stable position for manipulation at different environments, the designation
of the default pose position of the manipulator to help manipulation efficiently, and the
safety check for the manipulator during the motion planning toward target. These three
aspects control the mobile platform and the manipulator arm by tuning the move_base
and MoveIt packages. Thus, any mobile manipulator platform can use this controller
only if it is a mobile manipulator, the mobile platform is attached to a single manipulator
arm with LiDAR and IMU sensor, and it has a URDF about the robot. This controller
was tested in simulations by two different maps and three mobile manipulator platforms
which have different specifications and confirmed that it operated in any environment in a
stable manner. Also, in the test with real robots, the overall operation was similar to the
simulation results, even though there were some errors caused by the localization process.

In the future, we will focus on reducing errors in motion planning which are inferred
from the localization process and the grasping algorithm. For those, we suppose that the
process for obtaining data about the grasped object using an additional camera on the wrist
near the manipulator’s end effector is needed. Using NUMMIC, it will be able to reduce
the error in motion planning with the method continuously checking whether it can grasp
the target object at current MEP or not when the camera captures the target object while
the robot moves to MEP for grasping. Also, if the grasping algorithm is added to the final
process of NUMMIC using the data, this simultaneous controller for mobile manipulator
can be used instantly for work such as pick and place in various environments.
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Abstract: The quantitative measurement of finger-joint range of motion plays an important role in
assessing the level of hand disability and intervening in the treatment of patients. An industrial
monocular-vision-based knuckle-joint-activity-measurement system is proposed with short mea-
surement time and the simultaneous measurement of multiple joints. In terms of hardware, the
system can adjust the light-irradiation angle and the light-irradiation intensity of the marker by
actively adjusting the height of the light source to enhance the difference between the marker and the
background and reduce the difficulty of segmenting the target marker and the background. In terms
of algorithms, a combination of multiple-vision algorithms is used to compare the image-threshold
segmentation and Hough outer- and inner linear detection as the knuckle-activity-range detection
method of the system. To verify the accuracy of the visual-detection method, nine healthy volunteers
were recruited for experimental validation, and the experimental results showed that the average
angular deviation in the flexion/extension of the knuckle was 0.43◦ at the minimum and 0.59◦ at the
maximum, and the average angular deviation in the adduction/abduction of the knuckle was 0.30◦ at
the minimum and 0.81◦ at the maximum, which were all less than 1◦. In the multi-angle velocimetry
experiment, the time taken by the system was much less than that taken by the conventional method.

Keywords: monocular vision; human joint angle measurement; visual detection method; hand disability

1. Introduction

The quantitative measurement of hand-joint range of motion (ROM) is important
for clinicians to assess a patient’s level of hand disability and the effectiveness of inter-
vention therapy. In the clinical setting, knuckle goniometers are often used to measure
ROM due to their ease of use, portability, and affordability. However, these devices
are time-consuming for single-joint angle measurements and do not allow simultaneous
multi-joint angle measurements. Many experts and scholars have conducted in-depth
research in the field of knuckle-angle measurement, including wearable-sensor-based
knuckle-angle-measurement methods and vision-based knuckle-angle-measurement meth-
ods. Okuyama et al. developed a finger-joint-angle-measurement system based on flexible
polymer sensors [1]. The system measures the flexion/extension movement of fingers by
installing flexible polymer sensors on the surfaces of fingers, which can realize the detec-
tion of joint-angle changes during daily grasping movements. A three-dimensional (3-D)
finger-motion-measurement system based on a soft sensor was proposed by Park et al. [2].
Changcheng et al. designed an integrated mechanical-sensor detection system, consisting
of an angle-measurement device and a measurement circuit in order to achieve finger-joint
measurement [3]. The effectiveness of the system was verified by joint-angle measurement,
motion-law evaluation and object-grasping experiments, and the experimental results
showed that the root mean square (RMS) of the DIP, PIP, and MCP angle-measurement
errors were 0.36, 0.59, and 0.32 degrees, respectively [3]. It has been found that these
wearable-sensor-based finger-joint-angle measurement methods have high accuracy in
measuring finger joint angles, but the difficulty in wearing them has not been effectively
solved in clinical applications for patients with hand motor dysfunction [4–10].
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Vision-based knuckle-angle-measurement systems could realize the dynamic measure-
ment of multi-joint angles without involving direct physical contact between the doctor
and the patient’s hand. Vision-based measurement systems work by first capturing an
image of the entire hand and then using computer-vision techniques to estimate the hand
posture [11–15]. Commercial devices (such as Leap Motion) are currently used for hand-
angle measurement [16,17] and, recently, they have been used in virtual-reality headsets
(such as Facebook’s OculusQuest and Microsoft’s HoloLens2) equipped with hand tracking
for human–computer interaction. The two main problems faced by current vision-based
hand-posture estimation systems are the low accuracy of the knuckle-angle measurement
and the high level of restriction on the camera view [18]. Lee J.W. et al. proposed a method
of measuring finger-joint angles and finger forces in the process of maximum cylindrical
grip using a multi-camera photogrammetric method with markers and a pressure-sensitive
film, respectively [19]. The experimental results showed that this method can be used to
judge the extension/flexion direction of the knuckle.

An industrial monocular-vision-based knuckle-angle-measurement system based on
the existing computer-vision detection system is proposed in this paper [20]. This knuckle-
angle-measurement system consists of a hardware system, a vision system, and a control
system. The hand visual markers in the hardware system can simplify the difficulty of
knuckle identification, and the use of high-resolution cameras can greatly improve the
accuracy of the knuckle-angle detection. The active multi-angle light-detection system
consisting of the control system, hardware system, and specified light source can adjust
the light-irradiation angle and light-source-irradiation intensity to the marker by adjusting
the height of the light source, thus enhancing the difference between the marker and the
background, making the marker easy to the segment from the background and simplifying
the marker-segmentation process.

2. Biological Structure of Human Fingers and Their Movement Characteristics

2.1. Structural Composition of the Human Hand

The human hand consists of the index finger (IF), middle finger (MF), ring finger
(RF), little finger (LF), and thumb (TUM). The IF, MF, RF, and LF consist of one degree of
freedom (DOF) distal phalangeal (DIP), one DOF proximal phalangeal (PIP), and two-DOF
metacarpophalangeal (MCP) and two-DOF carpometacarpal (CMC) joints, respectively. The
thumb consists of a one-DOF distal phalangeal joint (IP), a two-DOF metacarpophalangeal
joint (MCP), and a two-DOF carpometacarpal joint (TM) [21], as shown in Figure 1.

Figure 1. Structural components of the human hand.

270



Sensors 2022, 22, 7276

2.2. Finger-Movement Characteristics

The movement of hand joints is mainly manifested by the abduction/adduction and
flexion/extension movements of the four fingers and the thumb. The movement of human
fingers has the following characteristics: (1) the DIP and PIP joints of the four fingers other
than the thumb are bound to each other and meet; (2) when the MCP joint of the four
fingers other than the thumb is flexed, the adjacent MCP joint is also flexed. According to
the Evaluation of Rehabilitation Therapy, the ROM of the human finger joint and traditional
measurement methods can be determined, as shown in Figure 2.

Figure 2. Human finger-joint range of motion and measurement methods.

3. Experimental-Platform Construction

Machine-vision technology has been developed, including hardware and software,
but in the computer-vision measurement system, the design and layout of the lighting
system is still a pivotal link, which can often significantly affect the performance of the
vision-measurement system. A good illumination system can greatly enhance the difference
between the measurement target and the measurement background, improve the system
imaging, and make the target easier to identify and segment, thus simplifying the time
and hardware cost required for program calculation. The different arrangements of light-
source systems in the field of defect detection are often divided into passive multi-angle
illumination-detection methods and active multi-angle illumination-detection methods.
Considering the different characteristics of the two lighting methods, the active multi-angle
lighting-detection method was selected as the light source arrangement method in the
experimental platform.

3.1. Design of Experimental Platform

The core of the active multi-angle light-source detection method is the machine-vision-
detection part; therefore, the quality of the acquired images and the speed of the image
processing have a greater impact on the visual-detection effect. The quality of the camera
hardware determines the quality of the image acquisition, and a high-performance, high-
resolution camera can produce image data containing clear features under the irradiation of
a highly stable light source, while a clear image is the basis for ensuring the stable operation
of the image-processing algorithm and the detection effect of the system, which shows
that the selection and design of the detection hardware are also particularly important.
Based on the finger-joint-angle-measurement-system scheme, the actual system built in
this study is shown in Figure 3. In Figure 3, Figure 3a represents the angle detection in
the finger flexion/extension state, and Figure 3b represents the angle detection in the
finger abduction/adduction state. Through this platform, high-quality multi-angle light-
source-irradiated multivariate images can be acquired; subsequently, through the PC
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image-processing algorithm, these can be processed to segment the finger-joint identifiers
in the image for the subsequent calculation of the finger-joint angle and length.

 
                   (a)                                       (b) 

Figure 3. Finger-joint-angle-detection platform.

3.2. Light-Source Selection and Solution of the Single-Reflection Matrix

Industrial cameras are at the core of the vision-inspection system, and their main role
is to convert the optical signal into an electrical signal and transmit it to the processing
unit. As the most important part of the industrial camera, the light-sensitive element is of
two main types: CCD (charge-coupled element) and CMOS (complementary metal oxide
semiconductor). Furthermore, CCD technology is more widely used. Industrial cameras
have many important parameters, such as resolution, shutter time, external trigger, frame
rate, etc. Therefore, the vision-inspection system should take into account the needs of
the inspection task to select the most appropriate camera. Depending on the interface
type of the camera, it can be divided into USB, GigE, and camera link. Considering the
advantages of the data-transmission speed, ease of use, and data-transmission distance, the
GigE interface camera in Basler ace was selected.

In the inspection system, the choice of industrial lens directly affects the quality of
the captured image. The industrial-lens parameters, such as interface type and CCD size,
should be matched with the industrial camera. In addition, the aperture of the lens controls
the light intake of the industrial camera, which exerts a direct impact on the brightness
of the image; the focal length directly affects the size of the field of view, representing the
vertical distance from the imaging plane to the center of the lens. Considering these lens
characteristics, the lens selected in this study was TEC-V7X.

The light source is another important component of the visual inspection system,
which is to determine the key to clear and stable imaging. The choice of the light source
should highlight the object to be detected. According to the classification of light-emitting
devices in the light source, the light source can be divided into fluorescent lamps, LED
lamps, halogen lamps, etc., of which LED lamps are the most common. The light source
selected for this paper was the ring light source of model R50-26-13, developed by Huakang
Technology Company.

The transformation of the camera coordinate system, x-y-z, into the two-dimensional
image coordinate system, u-v, is shown in Equation (1).⎡⎣ u

v
1

⎤⎦ = s

⎡⎣ fx γ u0
0 fy v0
0 0 1

⎤⎦[ r1 r2 t
]⎡⎣xW

yW
1

⎤⎦ (1)
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where

⎡⎣ fx γ u0
0 fy v0
0 0 1

⎤⎦ is the internal reference matrix of the camera and
[

r1 r2 t
]

is

the external reference matrix of the camera. This leads to the formula for calculating the
single-response matrix of the camera and the conversion formula for converting the pixel
coordinates of the image to world coordinates as:⎧⎪⎪⎨⎪⎪⎩

H = s

⎡⎣ fx γ u0
0 fy v0
0 0 1

⎤⎦[ r1 r2 t
]
= sM

[
r1 r2 t

]
sX = H−1x

(2)

where H is the single-response matrix, x is the pixel coordinate in the image, and X is the
world coordinate.

The above coordinate-system-conversion Equation (2) is used to obtain the single
response matrix H from the pixel-coordinate system to one of the plane-coordinate systems
(W) in space. Using H, two points in the pixel-coordinate system can be converted into W.
The distance s1 between two points in W is calculated, after which a ruler is used to directly
measure the actual distance s2 between the corresponding two points in W. The error result
of comparing s1 and s2 is 0.073 mm. However, when the relative distance between W and
the camera changes, the error between s1 and s2 becomes dramatically larger. Therefore,
during the finger-joint-angle measurement, the position of the detection plane relative to
the camera should always be constant, and H should be updated in time when the distance
of the camera relative to the detection plane changes.

4. Vision-Based Finger-Joint-Angle-and-Length-Detection Method

The finger-joint angle-and-length-detection method proposed in this paper is a joint-
angle-detection method for visual-identifier-segmentation reprocessing. The method
mainly consists of finger-joint-identifier pasting and image acquisition, visual identifier
segmentation, the edge detection of visual identifiers, and joint-angle calculation based on
the different joint identifiers of the finger. In the visual-identifier-segmentation method,
the HSV color-space-conversion method and image-threshold segmentation method were
adopted in this study to segment the finger-joint identifiers in the image. In the finger-joint-
angle-calculation method, the inner and outer edge Hough straight-line-detection method
and the least-squares method of fitting a straight line are used. Therefore, a finger-joint-
angle image produces 2 × 2 joint angles and lengths, and the method that is ultimately
closest to the real joint angle was selected as the finger-angle detection method for this
paper by comparing the four joint angles with the real joint angle.

4.1. Vision-Based Finger-Joint-Angle-and-Length-Detection Method

When detecting the angle of each finger joint, firstly, the position of each finger bone
in the image is identified and, secondly, the position and joint angle of each finger joint
by the intersection point and the angle between each finger bone are identified. A finger-
joint identifier for which it was easy to perform image segmentation was used for the
identification of finger phalanges in the image. The finger-joint identifiers of different
scales are shown in Figure 4a, and the most suitable finger-joint identifier was selected by
comparing the accuracy of the angle detection of the identifiers at different scales. Figure 4b
shows the method of attaching the finger-joint identifiers.
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       (a)                    (b) 

Figure 4. Finger-joint markers and their method of attachment.

Since the light-source intensity and light-irradiation angle have a significant impact on
the segmentation and extraction of finger-joint markers, the height of the light source can be
adjusted to alter the light-irradiation angle and the light-source-irradiation intensity of the
markers, enhancing the difference between the markers and the background, making it easy
to segment the markers from the background and simplifying the marker-segmentation
process. The image-acquisition method based on the active multi-angle light-source detec-
tion method is shown in Figure 5: (a) represents high angle lighting; (b) represents medium
angle lighting; (c) represents low angle lighting.

         (a)                    (b)                        (c) 

Figure 5. Image-acquisition method based on the active multi-angle light-source-detection method.

4.2. Visual Marker Segmentation Methods

To obtain a better finger-joint-angle-detection algorithm, this paper uses the HSV
color-space-conversion method and the image-threshold-segmentation method to extract
the target finger-joint identifier in the image and different edge-detection algorithms to
obtain the identifier edge coordinates and then calculates each finger-joint pinch angle by
two different finger-joint-angle-detection algorithms.

(1) HSV color-space-marker-segmentation extraction with Canny edge detection

In HSV color space, H denotes color, S denotes shade when S = 0 only grayscale image,
and V denotes light and dark, indicating the brightness of the color [22,23]. The conical
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model of HSV color space can be formed by erecting and flattening the central axis of
the RGB-color-space 3D coordinates. The RGB–HSV color-space-conversion equations are
shown in Equations (3)–(5).

V =max(R, G, B) (3)

S =

{
V−min(R,G,B)

V V �= 0
0 other

(4)

H =

⎧⎨⎩
60(G − B)/(V − min(R, G, B)) V = R

120 + 60(B − R)/(V − min(R, G, B)) V = G
240 + 60(R − G)/(V − min(R, G, B)) V = B

(5)

In Equations (3)–(5), R, G, and B denote the three components of the three-dimensional
coordinate axes in the RGB color space. The setting ranges of the three components of HSV
are H: 100~130, S: 150~255, V: 130~255. The results of the specified color-region extraction
are shown in Figure 6b. Canny edge detection is currently a commonly used edge-detection
algorithm. It was proposed by John Canny in 1986 [23]. It is a multi-stage algorithm
consisting of image-noise reduction, the computation of the image gradient, non-maximal
value suppression, and threshold screening. Its formula for image-gradient calculation for
edge detection is shown in Equation (6).{

G =
√

G2
x + G2

y

θ = atan2
(
Gy, Gx

) (6)

The θ in Equation (6) represents the gradient angle range of −π~π, which can be
approximated as four angles, 0◦, 45◦, 90◦, and 135◦, representing the horizontal, vertical,
and two diagonal directions, respectively. The Canny operator edge-extraction results are
shown in Figure 7c.

 

(a)  (b)  

Figure 6. Grayscale conversion of the original image with the histogram.

   
(a) Original image (b) HSV marker segmentation image (c) Marker edge-detection image 

Figure 7. HSV marker segmentation and edge detection.

275



Sensors 2022, 22, 7276

(2) Image thresholding method with edge-contour extraction

The use of image segmentation to separate the target region from the background
region can prevent the need to conduct a blind search on the image and greatly improve the
processing efficiency of the image [24,25]. Threshold segmentation based on the grayscale
histogram is simple to compute and is suitable for grayscale images where the target and
background are distributed in different grayscale ranges, as shown in Figure 7 for the
histogram of the original image.

The image-segmentation formula based on different thresholds is shown in Equation
(7), where T is the gray threshold; f (xi,yi) is the gray level of the detected image point,
and A and A are the set gray level of the current position image. In this study, the gray
level of the target image was set as 0, and the gray level of the other images was set as
255. The above operation was performed simultaneously by scanning the image by a line
from two directions using a raster scan, which can prevent missing image information for
various reasons, as shown in Figure 8a for the image after threshold segmentation. Next,
the image contours were detected by the fine-contours function in OpenCV and, finally, the
contours of the target identifier were filtered out automatically based on the similarity of
the contour-enclosing area. The results of the target-identifier contour detection are shown
in Figure 8b.

g(xi, yi) =

{
A if f (xi, yi) > T
A if f (xi, yi) � T

(7)

  
(a) Threshold-segmentation result (b) Marker-contour-detection result 

Figure 8. Image-thresholding segmentation and contour-detection results.

4.3. Joint-Angle-Calculation Method Based on Different Joint Identifiers of the Finger

(1) Hough straight-line detection method for inner and outer edges

The Hough transform was improved by Richard Duda in 1972. The method transforms
a point in the data space into a curve in the ρ-θ parameter space so that points with the
same reference-quantity characteristics intersect in the reference space after transformation.
Subsequently, the detection of the characteristic straight line is completed by judging
the accumulation degree at the intersection point. The expression formula of a straight
line in the data space is shown in Equation (8), where k denotes the slope and b denotes
the intercept.

y = kx + b (8)

The standard straight-line Hough transform uses the following parametric straight-
line formula, as shown in Equation (9), where ρ is the perpendicular distance from the
origin to the line and θ is the angle between ρ and the x-axis.

x cos θ + y sin θ = ρ (9)
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When different points on a straight line in the data space are transformed into a family
of sinusoidal curves intersecting at p points in the parameter space, the detection of a
straight line in the data space can be achieved by detecting the local maximum p points
in the parameter space. The results of the detection of the inner and outer Hough straight
lines for the target identifier are shown in Figure 9. Figure 9a represents the detection
results of the Hough line on the outside of the HSV segmentation; Figure 9b represents
the detection results of the Hough line inside the HSV segmentation; Figure 9c represents
the detection results of the Hough line outside the threshold segmentation; and Figure 9d
represents the detection results of the Hough line inside the threshold segmentation. The
inner- and outer-edge Hough straight-line-detection method detects four straight lines on
the inner edge and four straight lines on the outer edge of each identifier, after which the
angle of each knuckle on the inner side of the identifier and the angle of each knuckle on
the outer side are calculated using the finger-joint-angle-calculation method, and finally,
the angle of each knuckle is found as θi =

θiw+θin
2 (i = 1, 2, 3).

  
(a) (b) 

  
(c) (d) 

Figure 9. Inner and outer Hough straight-line detection results.

(2) Least-squares fitting of the target identifier profile

The least-squares method was discovered by Legendre in the 19th century and takes
the form shown in Equation (10). In Equation (10), yi is the observed value, i.e., multiple
samples, and y is the theoretical value, i.e., the assumed fit function. Sε2 is the objective
function, i.e., the loss function, and the objective of the least-squares method is to model
the fit function when the objective function is minimized.

Sε2 = ∑(y − yi)
2 (10)

To fit the four joint identifiers in the image as four straight lines, this paper assumes
that the number of contour coordinates of each joint identifier is n. Assume that the
equation of the straight line is y = ax + b, where a is the slope of the line and b is the intercept
of the line. The least-squares method is used to solve for a and b, whose formulas are
shown in Equation (11). The results of the least-squares method for fitting the straight line
to the pixel points of the target identifier are shown in Figure 10. Figure 10a represents the
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line-fitting result of the HSV-segmentation least-squares method. Figure 10b represents the
line-fitting result of the threshold-segmentation least-squares method.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

b =

(
N
∑

i=1
x2

i

)(
N
∑

i=1
yi

)
−
(

N
∑

i=1
xi

)(
N
∑

i=1
xiyi

)
N
(

N
∑

i=1
x2

i

)
−
(

N
∑

i=1
xi

)2

a =
N
(

N
∑

i=1
xiyi

)
−
(

N
∑

i=1
xi

)(
N
∑

i=1
yi

)
N
(

N
∑

i=1
x2

i

)
−
(

N
∑

i=1
xi

)2

(11)

  
(a) (b) 

Figure 10. Least-squares linear-fit results.

(3) Finger-joint-angle-calculation method

The relevant lines of finger-joint markers can be obtained by the above linear-detection
methods. According to these lines, the head and tail coordinates of the four relevant lines
of the four joint markers can be obtained, after which the angle between the joints of the
fingers can be calculated by the formula of the angle between the two-dimensional vectors,
as shown in Equation (12).

θi = arccos

⎛⎝ →
a i ·

→
b j

‖ai‖ ·
∥∥aj

∥∥
⎞⎠ (12)

In Equation (12),
→
a i and

→
b j are the vectors of two adjacent phalangeal identifiers and

θi is the knuckle-joint angle. The finger-joint-angle measurements using different methods
are shown in Table 1. The experiments showed better results with high-angle illumination.
The results obtained for the detection of the human-hand model in the case of high-angle
illumination are shown in the Table 1. HSV–HOISLM represents the HSV + Hough outer-
and inner-straight-line method; HSV–LSFLKADM represents HSV + the method of least-
squares-fitting linear-knuckle-angle detection; TS–HOMLDM represents the threshold
segmentation + Hough outer medial linear-detection method; TS–LSFLM represents the
threshold-segmentation + least-squares-fitting-line method; and TKAM represents tradi-
tional knuckle-angle measurement, as shown in Figure 2.

As can be seen from Table 1, the accuracy and reliability of the visual-based finger-
joint-angle measurement method were demonstrated by comparing the measurement
results of multiple visual-finger-joint-angle-measurement methods with those of the con-
ventional finger-joint-angle measurement method, in which the angular deviation between
the visual-based finger-joint-angle-measurement results and the conventional finger-joint-
angle-measurement results were in the range of 0◦ to 2◦. The maximum deviation in
the comparison with the conventional knuckle-angle-measurement method was 2◦, the
knuckle where the maximum deviation was located was the DIP joint, and the visual-angle-
measurement method that caused the maximum deviation was the HSV–LSFLKADM.
The visual-angle-measurement method with the smallest mean value of the deviation of
the finger-joint angle in comparison with the traditional finger-joint-angle measurement
method was the TS–HOMLDM; therefore, this method was selected as the finger-joint-
detection method for this paper.
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Table 1. Finger-joint angles measured by different methods.

HSV + Hough Outer-
and Inner-Straight-Line

Method

HSV +
Least-Squares-Fitting

Linear-Knuckle-Angle-
Detection
Method

Threshold
Segmentation + Hough

Outer Medial
Linear-Detection

Method

Threshold-
Segmentation +

Least-Squares-Fitting-
Line

Method

Traditional
Knuckle-Angle
Measurement

MCP 145.02◦ 144.76◦ 144.95◦ 144.59◦ 145◦
PIP 111.03◦ 109.38◦ 110.48◦ 111.26◦ 110◦
DIP 111.83◦ 114.07◦ 112.09◦ 112.34◦ 112◦

Length of
proximal
phalanx

26.94 mm 28.24 mm 27.37 mm 27.32 mm 27 mm

Length of
middle phalanx 25.53 mm 25.53 mm 25.64 mm 25.26 mm 26 mm

Mean Angle
deviation 0.407◦ 0.967◦ 0.207◦ 0.670◦

5. Experimental Verification

In this study, nine healthy male volunteers aged between 20 and 25 were recruited
for the experiment, and three different finger-joint angles were detected using the TS–
HOMLDM for visual identifiers with widths of 1.5 mm, 2 mm, and 2.5 mm, respectively, to
verify the monocular vision-based finger-joint-angle measurement system (MVBFJAMS)
proposed in this paper to measure the accuracy of the test in comparison with the traditional
inspection method and to determine the most appropriate visual identifier width. To ensure
the reliability of the experiment, we invited professional physicians to measure different
volunteer knuckle angles using the traditional method first, after which our group members
measured different volunteer knuckle angles using MVBFJAMS. To verify the accuracy of
the MVBFJAMS for finger-joint-angle measurement during finger extension/contraction, a
control experiment was conducted using the conventional measurement method and the
visual measurement method. This paper also verifies the speed of the knuckle detection
by the visual inspection method by comparing the time used to detect and record 30 joint-
angle data by the traditional method and the visual-inspection method. Table 2 shows the
knuckle-joint-retention angles for different volunteers with different markers to verify the
accuracy of the visual-detection method. The finger-bone-length data are not given because
the actual joint position of the finger was uncertain.

Table 2. Knuckle-retention angles under different markers in different volunteers.

MCP (◦) PIP (◦) DIP (◦)

Knuckle-hold angle
under each marker

145 110 115
160 130 110
150 165 130

The detection method in Figure 3a was adopted for the volunteers, and the detection
results for the knuckle accuracy of the different volunteers at different scales of visual
markers were obtained, as shown in Table 3.
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Table 3. Results of different volunteers’ visual-detection angles.

Volunteer
Mark on the

Scale
MCP (◦) PIP (◦) DIP (◦)

Length of
Proximal

Phalanx (mm)

Length of
Middle

Phalanx (mm)

volunteer 1

1.5 mm
144.72 109.31 115.42 45.52 30.23
160.10 130.12 109.21 44.07 31.45
149.48 165.72 130.31 45.31 30.21

2 mm
145.21 109.10 114.42 46.21 31.03
161.71 132.22 109.71 44.71 30.15
151.31 167.28 130.02 45.49 29.24

2.5 mm
144.72 108.91 115.92 46.71 29.02
160.40 128.93 109.27. 43.93 30.51
147.32 164.89 133.22 46.44 29.91.

volunteer 2

1.5 mm
145.31 110.21 114.71 47.22 33.47
159.27 130.31 111.31 47.31 32.17
150.32 164.44 139.74 46.28 31.95

2 mm
143.31 110.72 116.71 46.93 33.36
160.44 129.10 110.23 47.32 32.78
150.77 165.69 131.21 48.91 34.19

2.5 mm
146.21 110.79 114.49 48.31 35.66
162.99 131.44 111.22 47.76 34.54
150.55 167.21 131.59 47.77 31.22

volunteer 3

1.5 mm
144.81 110.47 115.69 43.17 27.49
160.77 130.21 110.48 44.21 26.36
150.06 165.56 131.81 42.89 28.91

2 mm
144.31 111.81 114.01 44.33 29.36
161.17 130.79 112.58 46.96 27.22
150.97 163.84 130.91 45.89 26.54

2.5 mm
146.79 110.11 115.98 43.22 27.77
160.89 129.33 111.39 45.10 29.99
150.34 166.79 130.44 45.78 26.53

volunteer 4

1.5 mm
145.32 110.17 114.87 45.17 30.24
160.17 130.22 109.97 44.54 29.77
150.27 164.90 131.07 45.98 29.31

2 mm
146.32 110.54 115.94 43.33 27.45
159.12 130.84 110.95 44.54 26.79
149.71 165.55 128.77 42.59 26.34

2.5 mm
146.71 110.21 116.19 43.24 28.79
160.77 131.44 108.22 45.77 27.32
151.45 165.99 130.97 43.35 28.23

volunteer 5

1.5 mm
145.21 109.55 115.94 40.22 23.33
160.56 129.53 109.84 41.57 24.35
150.41 165.77 129.92 43.98 23.47

2 mm
145.99 109.21 116.31 42.22 25.22
160.77 131.74 109.55 41.31 24.51
150.22 166.33 130.44 39.45 23.91

2.5 mm
145.97 109.22 115.33 40.58 25.33
161.44 130.55 110.89 41.32 24.56
148.97 165.33 131.75 43.77 22.22
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Table 3. Cont.

Volunteer
Mark on the

Scale
MCP (◦) PIP (◦) DIP (◦)

Length of
Proximal

Phalanx (mm)

Length of
Middle

Phalanx (mm)

volunteer 6

1.5 mm
145.31 109.12 114.33 40.12 30.21
160.33 130.22 109.22 44.45 29.22
150.22 165.72 130.33 43.43 27.34

2 mm
145.33 110.47 115.33 39.65 28.79
161.43 130.99 109.44 41.76 30.33
150.67 165.33 131.65 42.22 30.67

2.5 mm
146.12 110.22 115.48 45.97 30.15
158.91 130.21 110.77 42.71 31.33
149.23 163.47 131.22 42.45 29.78

volunteer 7

1.5 mm
145.33 110.32 116.12 36.45 27.13
159.31 130.07 110.77 36.84 26.56
150.21 165.22 129.22 37.32 26.32

2 mm
146.71 110.42 113.41 34.78 25.72
160.12 130.65 110.89 37.77 28.23
151.14 164.31 130.22 37.96 27.45

2.5 mm
145.42 110.31 114.21 39.03 29.81
161.31 128.64 109.01 39.76 25.33
152.12 166.21 129.13 38.78 25.91

volunteer 8

1.5 mm
145.32 110.77 114.57 43.15 27.49
160.74 129.22 110.10 41.33 28.27
151.12 165.33 129.38 44.54 27.39

2 mm
145.72 110.31 116.66 42.56 29.72
159.21 131.72 110.07 42.33 27.59
150.56 166.77 130.33 41.12 28.23

2.5 mm
145.32 110.07 115.21 44.45 30.02
157.42 131.72 110.99 41.75 29.67
150.22 166.23 129.25 45.39 28.37

volunteer 9

1.5 mm
145.31 110.23 115.76 35.46 23.57
160.22 130.74 110.55 34.90 24.88
159.31 165.21 130.90 37.04 24.42

2 mm
146.13 111.31 114.31 36.24 25.56
158.91 129.10 110.12 39.35 23.78
149.01 165.12 131.14 37.67 24.33

2.5 mm
143.21 109.22 115.33 38.91 24.89
160.33 131.55 107.32 37.33 26.33
151.33 165.77 129.22 37.57 23.91

From Tables 2 and 3, the deviations from the mean knuckle angle at different scale
markers, shown in Figure 11, can be calculated.

As shown in Figure 11, the minimum-knuckle-angle mean deviation was 0.27◦ and
the maximum-knuckle-angle mean deviation was 1.38◦ for the nine volunteers using visual
identifiers at different scales. The knuckle-angle deviations for the nine volunteers using
visual identifiers at a scale of 1.5 mm were 0.43◦, 0.47◦, 0.58◦, 0.27◦, 0.45◦, 0.5◦, 0.5◦, 0.59◦,
and 0.51◦, which were much smaller than the mean deviation of the knuckle angle when
using other scales of visual identifiers. Therefore, the scale of a 1.5-millimeter visual marker
was chosen as the test condition for the subsequent experiments. To verify the accuracy of
the finger-abduction angle, three different finger-abduction-joint angles were measured
using visual measures on nine volunteers, and the accuracy of the angles was verified using
conventional methods. The results of the measurement of the three different abduction-joint
angles are shown in Table 4.
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Figure 11. Deviation from the mean value of knuckle angle at different scales.

Table 4. Measurement results of abduction/adduction knuckle angle.

Volunteer
Knuckle-Angle
Measurement

Measuring Angle (◦)
Mean Knuckle-Angle

Deviation (◦)

volunteer 1
Vmm 25.73 39.21 40.39

0.63Tmm 25 40 40

volunteer 2
Vmm 24.32 39.03 40.41

0.68Tmm 25 40 40

volunteer 3
Vmm 23.91 40.71 40.51

0.77Tmm 25 40 40

volunteer 4
Vmm 24.41 39.93 40.33

0.33Tmm 25 40 40

volunteer 5
Vmm 25.22 39.35 40.61

0.49Tmm 25 40 40

volunteer 6
Vmm 24.12 38.77 41.12

0.61Tmm 25 40 40

volunteer 7
Vmm 24.52 39.79 40.22

0.30Tmm 25 40 40

volunteer 8
Vmm 24.91 38.54 40.89

0.81Tmm 25 40 40

volunteer 9
Vmm 24.33 40.95 40.87

0.83Tmm 25 40 40

In Table 4, Vmm represents the visual measurement method and Tmm represent
the traditional measurement method. As shown in Table 4, the maximum and minimum
knuckle-angle deviations of the nine volunteers were 0.81◦ and 0.30◦, respectively. The
mean values of the knuckles were 0.63◦, 0.68◦, 0.77◦, 0.49◦, 0.33◦, 0.61◦, 0.30◦, 0.81◦, and
0.83◦, respectively. Table 5 shows the average time taken to measure and record the angle
data of 30 joints for the 9 volunteers using the traditional method and the visual-detection
method (including the time to paste the visual marker).

Table 5. Time taken to measure and record data for 30 joint angles under different methods.

Method of Knuckle-Angle Detection
Time Taken to Measure and Record Knuckle

Angles for 30 Times (s)

TMM 51.75
VMM 421.21
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From Table 5, it can be seen that the time taken by the vision-based knuckle-angle-
detection method is much less than that of the conventional knuckle-angle-detection
method. This result was produced because the vision-based knuckle-angle-detection
method not only enables the simultaneous measurement of multiple knuckles compared
to the conventional knuckle-angle-detection method, but also increases the speed of the
knuckle measurement and the speed at which the knuckle-angle data are recorded.

6. Conclusions

To solve the problems that the joint-angle measuring instrument takes more time to
measure the angle of single joints in clinical medicine, and cannot measure the angles
of multiple joints at the same time, a vision-based finger-joint-angle-measuring system
was designed on the basis of the original visual-inspection system. The system consists
of a hardware system, a control system, and a vision system. The active multi-angle-light-
source-detection system composed of a control system and a hardware system can simplify
the recognition process of visual markers by adjusting the height of the light source. The
vision system is composed of an industrial camera and the knuckle-angle-detection method
proposed in this paper. The knuckle-angle-detection method proposed in this paper is
composed of finger-joint-marker pasting, image acquisition, visual-marker segmentation,
visual-marker edge detection, and joint-angle calculation based on different finger-joint
markers. In this study, each component of the method was analyzed and verified by
experiments. These experiments proved that in the case of high angle illumination, the
TS–HOMLDM should be adopted, and the visual marker with the scale of 1.5 mm was
selected, since it had the highest measurement accuracy. The shortcomings of the current
proposed MVBFJAMS are also very obvious. Firstly, the system requires a Basler ace
camera, a TEC-V7X industrial lens, an R50-26-13 light source, and a computer, which makes
it much more expensive than traditional knuckle-measurement methods and sensor-based
methods; furthermore, the system can only achieve two-dimensional inspection at present.

The system is still in the experimental stage and has high requirements for the detection
environment for light sources. Considering the complexity of the clinical environment,
in order to improve the anti-interference capability of the system, we intend to add an
opaque housing to the exterior of the device in the future in order to maintain the stability
of the testing environment. In the next phase, we intend to add another depth camera
to this system and fuse the texture information from the normal camera with the depth-
camera depth information to build a model of the detector’s hand. Using this approach,
three-dimensional detection can then be achieved to detect the angle of each finger joint of
the hand. In the meantime, we will further validate the accuracy of the system through
clinical trials, as well as the accuracy of the assessment of the level of handicap and the
effectiveness of the intervention treatment.
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Abstract: Path planning is a very important step for mobile smart vehicles in complex environments.
Sampling based planners such as the Probabilistic Roadmap Method (PRM) have been widely used
for smart vehicle applications. However, there exist some shortcomings, such as low efficiency, low
reuse rate of the roadmap, and a lack of guidance in the selection of sampling points. To solve the
above problems, we designed a pseudo-random sampling strategy with the main spatial axis as
the reference axis. We optimized the generation of sampling points, removed redundant sampling
points, set the distance threshold between road points, adopted a two-way incremental method for
collision detections, and optimized the number of collision detection calls to improve the construction
efficiency of the roadmap. The key road points of the planned path were extracted as discrete control
points of the Bessel curve, and the paths were smoothed to make the generated paths more consistent
with the driving conditions of vehicles. The correctness of the modified PRM was verified and
analyzed using MATLAB and ROS to build a test platform. Compared with the basic PRM algorithm,
the modified PRM algorithm has advantages related to speed in constructing the roadmap, path
planning, and path length.

Keywords: smart vehicle; probabilistic roadmap algorithm; pseudo-random sampling; collision
detection; path smoothing

1. Introduction

In recent years, smart vehicles have received more attention with the development
of emerging technologies such as cloud computing, big data, and the full-scale launch of
5G construction [1,2]. Smart vehicles have significant effects in relieving driving pressure,
avoiding traffic jams, and reducing environmental pollution [3] Path planning and motion
control are significant and complex navigation tasks in smart vehicles. Path planning
technology is the basis of smart vehicles to make motion decisions and navigate position-
ing [4,5]. To achieve successful path planning and motion control to be able to reach a target
safely, smart vehicles must be provided with the ability to perceive and detect obstacles to
be avoided [6]. Many sensors are installed on the body of smart vehicles, which ensure that
they can perceive and interpret information gathered from the environment to determine
position, direction to the target, position of obstacles, and navigation in both structured or
unstructured environments [7].A smart vehicle is expected to perform these tasks with the
safest and shortest path, reaching the target in the shortest time, and ultimately performing
the specified task without the intervention of humans. Path planning in smart vehicles
refers to determining how the smart vehicle reaches its target point safely to ensure obstacle
avoidance. Smart vehicle path planning is described as a multi-objective optimization prob-
lem as it requires the generation of appropriate trajectories as well as obstacle avoidance in
the environment [8].

The methods of smart vehicle path planning can be classified in different ways.
Ayawli et al. [7] categorized them into nature-inspired computation methods, traditional
methods, and hybrid methods. Methods and strategies that imitate natural phenomena
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are described as nature-inspired computation methods. Meanwhile those that have noth-
ing to do with imitating nature phenomena are described as the conventional method.
Approaches that combine two or more strategies are described as hybrid methods. Nature-
inspired computing consists of a metaheuristic algorithm that simulates, based on nature
phenomena given by natural science [9]. A number of researchers have attempted to solve
the problem of mobile robotics path planning by using nature-inspired algorithms including
genetic algorithms (GA) [10,11], artificial neural networks (ANN) [12,13], simulated anneal-
ing (SA) [14], ant colony optimization (ACO) [15], particle swarm optimization (PSO) [16],
and artificial bee colonies (ABC) [17].In order to take advantage of the strengths of some
methods while reducing the effects of their disadvantages, some researchers combine two
or more methods to provide an efficient hybrid path planning method for controlling
smart vehicles. These approaches include APF combined with GA [18], APF combined
with PSO [19], and fuzzy logic combined with Kalman filtering [20,21]. Conventional path
planning methods have been used for many years. These methods mainly rely on distance
information from the object to the smart vehicles, repulsive force and attractive force clus-
tering, or graphical map calculations to determine the path planning of smart vehicles.
Even though conventional methods of path planning are computationally expensive, they
are easy to implement. Conventional methods mainly consist of the rapidly-exploring
random tree (RRT) algorithm [22], probabilistic roadmap algorithm (PRM) [23], artificial
potential field (APF) [24,25], sliding mode control (SMC) [11,26], A * algorithm [27], D *
algorithm [28,29], and simultaneous localization and mapping (SLAM) [30].

PRM is one of the most popular sampling based planners. PRM is a space planner
that uses multiple-query planning. The key idea in PRM is to distribute the nodes across
the space and then connect these nodes using simple local planning and straight lines to
form a graph roadmap. By connecting the available space, the PRM succeeds in exploring
a faster path by reducing the search to a graph [31]. However, PRM has shortcomings,
including lack of orientation in the selection of sampling points, low reuse rate of the
roadmap, and low search efficiency. Moreover, due to the random sampling of nodes
in PRM, there exists a narrow passage problem that generates an unconnected graph.
To enhance the efficiency of sampling-based algorithms, Kantaros et al. [32] introduced
bias into the sampling process. Vasile et al. [33] maintained sparsity of generated samples.
Sparseness was also explored by Dobson and Berkis for PRM using different techniques [34].
Amato et al. [35] proposed parallelizing strategies; the PRM method has massive inherent
parallelism, which can be easily and best exploited. Berkis et al. [36] used the probabilistic
roadmap method (PRM) with bidirectional rapidly exploring random trees (BI-RRT) as the
local planner to solve multiple queries for motion planning problems with single query
planners. Kurniawait et al. [37] designed an improved PRM algorithm, which was based
on obstacle boundary sampling and evaluated the optimal feasible region to optimize the
dispersion of random sampling of the PRM algorithm. Esposito et al. [38] proposed a
processing algorithm for optimizing probabilistic roadmaps. Dealing with the format of
convex cells in free space with a number of nodes that requires a lot of computation, this
algorithm could simplify the computation required for this step by sparse decomposition.
Gao Junli et al. [39] proposed to combine the deep reinforcement learning twin-delayed
deep deterministic policy gradient algorithm with the traditional PRM algorithm as a new
path planner, and the experimental results showed that this incremental training mode
could significantly improve search efficiency. Moreover, this new path planner effectively
improved the generalization of the model. Chen Gang et al. [40] proposed an improved
PRM method. Based on a virtual force field, a new sampling strategy of PRM was proposed
to generate a configuration that is more appropriate for practical application in free space.

RAVANKAR et al. [41] proposed a method for global planning using a hierarchi-
cal hybrid PRM and the APF method, using a decomposition method of node distri-
bution that used map segmentation to generate regions of high and low potential, and
proposed a method to reduce the dispersion of sample sets during roadmap building.
Xu Zhenfan et al. [42] changed the sampling strategy so that nodes were incrementally
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added and evenly distributed in the exploration region to produce the best viewpoints
and PRM enabled the planner to quickly search for alternative paths and avoid dynamic
obstacles for safe exploration.

Aiming to improve the shortcomings of the PRM algorithm, the main innovation of
this paper is that we propose a pseudo-random sampling strategy with the main spatial
axis as the reference axis, set the distance threshold between road points, and adopt a
two-way incremental method for collision detections. We aim to find the shortest path
between the start point and target point and shorten the time of the planning path. The key
road points of the path are extracted as discrete control points of the Bessel curve. We use
Bezier curve to make the path smoother, whereas the path is more like the actual driving
condition of the smart vehicle.

2. Modified PRM Algorithm

2.1. PRM Algorithm

The PRM algorithm includes sampling and query phases.
Sampling phase: the PRM algorithm randomly samples in the planning space and

judges the reasonableness of the sampling points by the local planner. By repeating the
sampling times n to generate a collection of valid waypoints V traversing the V, the
algorithm connects all the feasible paths between the waypoints to expand to the whole
planning space and forms the waypoint graph. V = {v1, .v2, . . . , vn} denotes the set of
waypoints; E =

{
vi, vj

∣∣vi, vj ∈ V
}

denotes the set of edges between waypoints.
Query phase: the start point qinit and target point qgoal are put into the wayfinding

graph G(V, E), and the algorithm enters the path search phase. We use the graph search
algorithm in the wayfinding graph G(V, E) to find a collision-free path connecting the start
point qinit and target point qgoal .

2.2. Pseudo-Random Sampling

In the PRM algorithm, the number of sampling points generated by the random
sampling strategy increases with an increase in planning space. It is difficult to achieve a
global uniform distribution and easy to create redundancy in sampling points. There is a
considerable probability that the shortest path occurs in the area where the starting point
and target point connects. This region is regarded as a focused sampling region, referred to
as the spatial principal axis region.

To construct the spatial principal axis information, we set the coordinates of the
starting point to be S(xs, ys) and the coordinates of the target point to be G

(
xg, yg

)
. Length

L and declination of the spatial principal axis θ was denoted by:

L = ‖G − S‖2 (1)

θ =
π

2
− arctan

∣∣yg − ys
∣∣∣∣xg − xs
∣∣ (2)

We designed the spatial principal axes with the length L, and number of sampling
points n, then obtained the longitudinal sampling spacing Nd, as:

Nd =
L
n

(3)

Referring to the random sampling method, the sampling points were symmetrically
distributed in the sector area near the main axis of space, and sampling points Pi,j(x, y)
were calculated as follows:

x = xs + rd × cos(θ + φj) (4)

y = ys + rd × sin(θ + φj) (5)

rd = i × Nd, i = [1, 2, . . . , n] (6)
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where (xs, ys) indicates the starting point of the intelligent vehicle; rd indicates the sampling
radius; sampling radius is centered on the starting point; φj ∈ [−φm, φm] indicates the angle
of deflection of the sampling point and; φm indicates the maximum deflection angle. It is
used to control the angle of the sector sampling area, that is, the range of lateral sampling.

According to Figure 1a,b, the sampling points are symmetrically distributed on both
sides of the main spatial axis, and sampling range is controlled by the maximum deflection
angle φm. With the increase of φm, the sampling points spread in all directions along
the main spatial axis. To make the sampling point distribution more uniform, the lateral
sampling range is adjusted along the main axis of space, and sampling range is adjusted
in increments using Δφ = φm/n. The distribution of sampling points after adjustment is
shown in Figure 1c,d.

    
(a) (b) (c) (d) 

Figure 1. Sampling method based on spatial principal axis: (a) φm = 10, (b) φm = 20, (c) φm = 10,
and (d) φm = 20.

Integrating the characteristics of uniform sampling, we counted the number of sam-
pling points p in free space and the effective sampling rate of the horizontal sampling layer
is defined as R:

R =
p
N

(7)

where N indicates the total number of samples in the current sampling layer and the size
of the effective sampling rate R reflects the connectivity of the current sampling layer. The
larger R is, the better the connectivity of the sampling layer. If R is too small, this means
that most of the sampling points in the sampling layer have fallen into the obstacle space.
If the sampling layer edge subsequently has the same sampling interval, the chance of
sampling points falling into the obstacle space will increase.

In order to improve the ability of the sampling points in avoiding obstacles, we
introduced random increments Δr to adjust the sampling interval of sampling points.
Based on Figure 1d, we adjust the size of the random increment Δr to get Figure 2. As
the value of the random increment Δr increases, the sampling points tend to approach
random distribution. With a decreasing value of Δr, the sampling points tend to approach
uniform distribution.

Referring to Figure 3, hollow dots indicate the sampling points before adjusting the
sampling spacing, solid dots indicate the adjusted sampling points, red markers repre-
sent the sampling points falling into the obstacle space, and black markers represent the
sampling points in the free space. The effective sampling rate of the front sampling layer
is low (R = 0.3), the radius fluctuation rate (R = 0.8) of the subsequent sampling layer
is adjusted, and the sampling points avoid the obstacles by using the pseudo-random
sampling strategy, which improves the quality of sampling point generation.
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(a) (b) (c) 

Figure 2. Pseudo-random-based sampling method: (a) Δr = r, (b) Δr = 0.5r, and (c) Δr = 0.25r.

The sampling radius after adding random increments Δr is shown in Equation (8):

r′d = rd + Δr (8)

 

Figure 3. Schematic of sampling point adjustment.

2.3. Bidirectional Incremental Collision Detection

Collision detection is used to determine whether the connected line segments between
the sample points intersect with the obstacle space, and the sample points are connected
to each other by collision detection to form a roadmap G(V, E). The traditional PRM
algorithm usually takes an incremental detection strategy. According to a fixed step size,
the planner selects discrete points and detects whether the point falls into the obstacle
space. To improve the efficiency of collision detection execution, we combined this incre-
mental detection method with the dichotomous method, proposing a two-way incremental
detection strategy.

First, the two-way incremental detection method judges the reasonableness of the first
and last connected sample points (Figure 4a). Then, we end the detection if the sample
points belong to the obstacle space. If the sample points belong to the self-use space, we
select the test point in both directions gradually along the first and last connected sample
points and judge the reasonableness of the test point. If the selected test point belongs
to the obstacle space, the detection is stopped to discard the path, as shown in Figure 4b.
The sample points are connected to each other by collision detection, and finally form a
roadmap G(V, E).

2.4. Neighbouring Layer Connection Strategy

In the roadmap G(V, E), the threshold distance between road points is an important
factor affecting the efficiency of roadmap construction. The path formed by connecting road
points in the same sampling layer is not conducive to shorten the global path length. Taking
the distribution characteristics of the longitudinal sampling layer into account, we set the
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connection threshold of the longitudinal sampling spacing LTH to screen the paths that met
the threshold conditions and make the connection between road points from the full con-
nection to adjacent sampling layer connection, improving roadmap construction efficiency.

  
(a) (b) 

Figure 4. Schematic diagram of two-way incremental detection strategy: (a) reasonable path and
(b) illegal path.

The sampling points generated based on the pseudo-random sampling strategy
(N = 20) were selected to obtain the roadmap constructed under the drive of two con-
nection strategies, as shown in Figure 5. Figure 5a shows the wayfinding graph generated
by the full connectivity strategy, with the red solid line representing the filtered paths.
Figure 5b indicates the wayfinding graph generated by the neighbouring layer connectivity
strategy. In terms of time consumption, the composition time using these different connec-
tion strategies was 0.906 s and 0.437 s, respectively, and the latter optimized composition
efficiency by 48.2%.

  
(a) (b) 

Figure 5. Comparison of road signs: (a) full connection and (b) neighbouring layer connection.

3. Path Smoothing

In this paper, Bessel curves were chosen to smooth the paths planned by the modified
PRM algorithm.

The n order Bessel curve expressions were defined as:

B(t) =
n

∑
i=0

Pibi,n(t), (t ∈ [0, 1]) (9)

where Pi represents the n + 1 control point of the Bessel curve and bi,n(t) represents the
Bernstein basis function. The value of this function is shown in Equation (10):

bi,n(t) = Ci
nti(1 − t)n−i =

n !
(n − i) !i !

ti(1 − t)n−i , i = 0, 1, 2, . . . , n (10)
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In this paper, a 4th order Searle curve was chosen, and the formula is as follows:

B(t) = (1 − t)4P0 + 4P1(1 − t)3t + 6P2(1 − t)2t2 + 4P3(1 − t)t3 + P4t4, t ∈ [0, 1] (11)

The curvature of the Bessel curve at any point κ(t) is:

κ(t) =
|B′(t)× B′′ (t)|

|B′(t)|2
(12)

Assuming that the planning path path = {Pn} consists of a series of discrete points
(n ≥ 5), the discrete points are used as the control points Pi of the Bessel curve, and the
curvature of the Bessel curve κ(P) can be obtained according to Equation (12):

κ(P) =
P′

xP′′
y − P′

yP′′
x

(P′
x

2 + P′
y

2)3/2 (13)

The curvature of the Bessel curve at the starting point is κ(0):

κ(0) =
3|(P1 − P0)× (P2 − P1)|

4(P1 − P0)
3 (14)

In this specific implementation, the key waypoints of the path searched by the modified
PRM algorithm were extracted, discrete control points of the Bessel curve Pi were obtained
by discretizing the line between key waypoints, and the discrete points were interpolated
and fitted by Equation (9) to realize the smoothing of the path.

4. Simulation Test and Analysis

To verify the composition and path planning efficiency of the modified PRM algorithm,
MATLAB (MATLAB2018b, MathWorks. Inc., Natick, MA, USA) was used to build a
simulation experiment platform and a ROS (ROS1.0, Willow Garage. Inc., Menlo Park,
CA, USA) experimental platform was used to verify the correctness of the modified PRM
algorithm. Our computer configurations included: a Windows 10 operating system, 512 GB
hard disk, and 8 GB RAM.

4.1. Comparison of Algorithm Composition Efficiency

The planning space of the known map is shown in Figures 6 and 7. The two algorithms
kept the same total number N = m × n of sampling points in the sampling phase, where m
and n represent the number of horizontal and vertical sampling points of the algorithm,
respectively. We focused on the planning path length and roadmap construction time and
repeated the test several times (recorded 10 times). The results are shown in Table 1 in
mean values.

  
(a) (b) 

Figure 6. Planning results of the basic PRM algorithm (N = 60): (a) roadmap and (b) planned path.
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(a) (b) 

Figure 7. Planning results of the modified PRM algorithm (N = 60): (a) roadmap and (b) planned path.

Table 1. The results of algorithm comparison.

Algorithm Name Number of Sampling Points N Path Length/m Composition Time/s

PRM algorithm
30 582.1 0.958
60 602.6 3.269
90 615.4 10.393

Modified PRM algorithm
30 593.3 0.404
60 590.6 2.056
90 578.7 5.196

Taking sampling points N = 60 as an example, we analyzed the results of the roadmap
construction (Figures 6a and 7a). The sampling points were widely distributed in the PRM
algorithm and there were many redundant sampling points. On the other hand, for the
roadmap constructed by the modified PRM algorithm (Figure 7a), the location selection of
the sampling points had a certain orientation, mainly distributed along the main axis of
space, and there were fewer redundant sampling points.

In Figures 6 and 7 and Table 1, it is shown that when the number of sampling points
N is 30, the length of the planned path increases by 1.9% and composition time is reduced
by 57.8%. When the number of sampling points N is 60, the length of the planned path is
reduced by 1.9% and composition time is reduced by 37.1%. When the number of sampling
points increase to 90, the length of the planned path is reduced by 5.9% and composition
time is reduced 50%. It shows that the changes in path length according to different number
N are not consistent. Compared with the PRM algorithm, there is no great advantage
in path length for the modified PRM algorithm. However, the modified PRM algorithm
showed great advantages in decreasing the construction time of the roadmap; the efficiency
of constructing maps was significantly improved.

In Figure 8, keeping all other conditions equal, when the number of fold points of the
path increased, path smoothness gradually improved as the number of sampling points
increased. The overall trend of the path remains unchanged, indicating that the quality of
the path solution solved by the modified PRM algorithm is stable.

To obtain Figure 9, we used the Bessel curve to deal with Figure 8b, the solid blue line
indicating the modified PRM algorithm planning path and the black hollow circle logo
representing the key road points, used as the Bessel curve control points. The path obtained
after the smoothing process (shown by the red line) was more consistent with intelligent
vehicle driving road conditions.

4.2. Comparison of Path Planning Efficiency

To verify the path planning efficiency of the modified PRM algorithm, the basic PRM
algorithm was used as the comparison algorithm for the case test, where Case A is a square
maze and Case B is a narrow channel. The success rate was measured by a ratio of the
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number of successful path searches to total search number. The results of the case test are
shown in Figures 10 and 11 and Table 2.

   
(a) (b) (c) 

Figure 8. Comparison of planning results of modified PRM algorithm: (a) N = 30, (b) N = 60, and
(c) N = 90.

Figure 9. Path smoothing diagram.

 
(a) PRM algorithm 

 
(b) Modified PRM algorithm 

Case A: Square maze 

 
(a) PRM algorithm 

 
(b) Modified PRM algorithm 

Case B: Narrow channel 

Figure 10. Comparison of algorithm planning results.
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Figure 11. Algorithm success rate comparison.

Table 2. Comparison results of algorithm efficiency.

Algorithm Case Sampling Points N
Basic PRM Algorithm Modified PRM Algorithm

Path
Length/m

Running
Time/s

Success
Rate/%

Path
Length/m

Running
Time/s

Success
Rate/%

A

30 883.14 0.23 28.57 \ \ 0
60 869.63 0.89 100 839 0.62 90.91
90 861.86 2.18 100 819.91 1.12 100

B

30 \ \ 0 \ \ 0
60 812.1 0.28 9.09 735.51 0.29 45.45
90 734.53 0.43 36.36 729.45 0.73 72.73

Referring to Figure 10, in the experiment of Case A, the number of sampling points
falling into the obstacle space was comparable in both algorithms, but the sampling points in
the self-use space were widely distributed in the PRM algorithm, which caused redundancy.
In the modified PRM algorithm, the sampling points were concentrated on both sides
of the main axis of the space, which improved the utilization of sampling points. In the
experiment of Case B, most of the sampling points in the PRM algorithm fell into the
obstacle space, and there were very few sampling points in the self-use space, which
affected the quality of the path solution. In the modified PRM algorithm, the sampling
points were distributed along the main axis of the space, and the larger number of sampling
points in the self-use space provided the possibility of seeking a better path solution.

In Table 2 and Figure 11, for Case A, the modified PRM algorithm could not success-
fully plan the path when the number of sampling points was low (N = 30). When the
number of sampling points increased to 60 (N = 60), the differences between the two algo-
rithms in path length, running time, and success rate were not obvious. When the number
of sampling points increased to 90 (N = 90), the modified PRM algorithm was better than
the basic PRM algorithm in path length and running time. For Case B, when the number of
sampling points was low (N = 30), both algorithms could not successfully plan the path,
and as the number of sampling points increased, the modified PRM algorithm had a higher
success rate in path planning and the quality of the path solution was more reliable.

4.3. ROS Simulation Test

In order to further verify the implementability of the modified PRM algorithm, simu-
lation tests were designed, based on the ROS experimental platform. The composition of
the ROS trolley is shown in Figure 12.
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Figure 12. ROS car composition.

We mainly addressed the path planning problem of smart vehicles in a two-dimensional
environment, using the function package provided by the ROS experimental platform to
implement the LIDAR map building function. The test site is shown in Figure 13, and the
SLAM map building effect is shown in Figure 14. Based on this environmental map, we
defined the localization result of ROS itself as the starting point and specified the target
point. The modified PRM algorithm was executed and the path planning results are shown
in Figure 15.

 

Figure 13. Field map.

 

Figure 14. SLAM map.

 
(a) (b) 

Figure 15. Path planning: (a) wayfinding map and (b) planning path.

From the simulation results, a road map was established in the SLAM map by the
modified PRM algorithm. Meanwhile, the modified PRM algorithm planned a path suc-
cessfully connecting the starting and target point, verifying the feasibility of the modified
PRM algorithm.
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5. Conclusions

In order to improve the overall quality of the PRM algorithm in path planning, a
pseudo-random sampling method based on uniform sampling was designed to optimize
the quality of sampling point generation. Random increments were introduced to adjust
the fluctuation range of sampling points to effectively avoid the obstacle space. Due to
the disadvantage of a low rate of roadmap construction, a two-way incremental collision
detection strategy was used to set the connection threshold between road points to reduce
the number of collision detection calls. Finally, the correctness of the modified PRM
algorithm was verified and analyzed using MATLAB and ROS test platforms. The test
results showed that the modified PRM algorithm has obvious advantages in enhancing the
stability of the roadmap, shortening the length of the planned path, and improving the
search rate of the algorithm. However, the majority of current algorithms, including the
modified PRM algorithm, are model-driven, and face many limitations. These algorithms
need to be further researched. Data-driven and cloud-network fusion technologies could
be added to these algorithms to achieve better path planning and obstacle avoidance in
smart vehicles.
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Abstract: Amid increasing demands for planetary exploration, wide-range autonomous exploration
is still a great challenge for existing planetary rovers, which calls for new planetary rovers with novel
locomotive mechanisms and corresponding control strategies. This paper proposes a novel wheeled–
legged mechanism for the design of planetary rovers. The leg suspension utilizes a rigid–flexible
coupling mechanism with a hybrid serial–parallel topology. First, the kinematic model is derived.
Then, a control strategy for the wheeled–legged rover that includes a trajectory tracking module
based on the model predictive control, the steering strategy, and the wheel speed allocation algorithm
is proposed. After that, three groups of cosimulations with different trajectories and speeds, and
experiments are carried out. Results of both the simulations and experiments validate the proposed
control method.

Keywords: mobile robot; advanced intelligent control; wheeled–legged; trajectory tracking; model
predictive control

1. Introduction

The planetary rovers that were deployed for the exploration of the moon and Mars,
such as Curiosity and Perseverance, are purely wheeled robotic systems [1,2]. They adopt
the passive rocker–bogie suspension configuration. There are two identical linkage mech-
anisms on each side of the rover, which consist of a rocker and a bogie. A differential
mechanism is adopted to connect the two linkage mechanisms. One wheel is fixed at one
end of the rocker, while the bogie has two wheels that are mounted on the other end of
the rocker. Recently, China’s Zhurong Mars rover adopted an active rocker–bogie suspen-
sion. There was a novel angle-adjusting mechanism between the two rockers to generate a
wheel-step motion that could help the rover avoid wheel slip sinkage [3]. Although many re-
markable achievements have been made in the field of planetary exploration, the capability
of wide-range autonomous exploration is still a great challenge for planetary rovers.

The hybrid leg–wheel mechanism can be used in the design of planetary rovers.
Legged–wheeled robots have the merits of being both wheeled and legged robots. They can
robustly deal with uncertainties or disturbances caused by the unstructured discontinuous
terrain encountered during planetary exploration. Moreover, they have a relatively high
locomotion efficiency. There are three categories of leg–wheel robotic systems that differ
according to leg morphology [4]. The first one is the serial leg configuration. For example,
the Jet Propulsion Laboratory (JPL) developed an articulated–wheeled lunar robot called
ATHLETE [5]. Each leg was a 6R (rotational joint) serial mechanism with six degrees of
freedom (DOFs). It could roll over flat smooth terrain on rotating wheels and could also
use the wheels as feet to walk over irregular and steep terrain. Grand et al. [6] addressed
a wheeled–legged robot called Hylos, which had 16 actively actuated DOFs, with each
leg combining a two-DOF leg and the steering and rotation DOFs in the wheel. Smith
et al. [7] presented the PAW, a four-legged vehicle with a T-shaped body and compliant
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legs. Each leg had two DOFs, including a passive prismatic joint. The second one was
a leg with a parallel topology. Xu et al. [8] proposed a parallel legged–wheeled robotic
system called BIT-NAZA, which had four parallel platforms with six DOFs and a 6-UPU
(universal–prismatic–universal joints) configuration. There were four active wheels that
were mounted on the feet of the parallel legs. Compared to their serial counterparts, parallel
legged–wheeled systems usually have more payload and stiffness [9]. In addition, the
actuators of the parallel leg system can be installed on the body, and the inertia of the
moving part of the leg can be reduced. The electric devices comprising the actuator, such
as the encoder and the torque sensor, can be easily protected [10]. Finally, there is the third
category of hybrid wheeled–legged robots, namely transformable wheeled–legged vehicles,
such as the Whegs series [11,12], Quattroped [13], Wheel Transformer [14], TurboQuad [15],
and STEP [16]. For these robots, the wheel and leg morphology can be switched via the
active joints. Transformable leg–wheel robots often adopt simple mechanical structures to
simplify the control strategy. Thus, the stability and maneuverability of hybrid robots are
inevitably sacrificed [17].

In spite of the excellent kinematic characteristics of the leg mechanisms discussed
above, they cannot be directly applied to extraterrestrial exploration rovers because of
the existence of special requirements such as maneuverability and security. For example,
planetary rovers such as Curiosity [18] have additional wheels and legs to maintain a high
level of security to overcome the tough terrains of the outer planet. Exploration rovers
must have a fault tolerance feature to ensure the safety of the vehicle. These rovers can
continue to move and carry out exploration missions even if one or multiple actuators are
not working. For instance, the wheeled–legged rover ShearpTT [19] adopted self-locking
gears in the actuator design for the suspension. There are two benefits to this: The first
one is that the rover would not fall down when the actuator in the knee joint is invalid.
The other is that the rover can support its own weight through the self-locking mechanism
without the need for additional electrical energy due to the motor brake.

Legged suspension can change the center of gravity, the body posture, the distribution
of contact forces, and even raise wheels to negotiate obstacles. Hence, controlling wheeled–
legged robots is more complex than traditional exploration rovers with rocker–bogie
suspension, especially in terms of trajectory tracking. Lamon et al. [20] proposed a control
method for three-dimensional trajectory tracking. Furthermore, feedback control based on
stereo vision efficiently improved the accuracy of trajectory tracking [21,22]. For rovers
with independent front and rear steering and four wheels that are driven independently,
path tracking becomes more complicated. Krid et al. [23] developed a dynamics-based
tracking controller on a horizontal plane using a linear quadratic regulator (LQR). LQR
controllers are able to track the line trajectory with quite a good accuracy. However, there is
an obvious decrease in the accuracy with regard to steering. In contrast, model predictive
control (MPC) can handle complex trajectories [24]. The control algorithm based on MPC
can be derived in a recursive form, which is computationally more efficient than the other
methods. The computing efficiency is a key evaluation index for planetary rovers because
there are very limited computing resources in space. Though the MPC method has been
applied to wheeled robots [25,26], there are some differences for wheeled-legged robots.
First, wheeled-legged robots possess terrain-adaptive capabilities [27]. The leg length can
be adjusted by changing the knee joint angle even if the wheel is always under the hip joint.
The attitude angles of the robot can be controlled through changing the leg lengths. Thus,
the terrain-adaptive capability needs to be involved in the trajectory tracking when the
robot runs across irregular terrains. Second, having wheels that drive independently can
lead to an uneven speed distribution, resulting in the occurrence of wheel slip [28]. For
wheeled–legged rovers, the pose of the body, the wheel–soil contact force, and the height of
the gravitational center can all be adjusted by coordinating the motion of the hip and knee
joints when the wheeled–legged robot moves over rough terrain [29]. Both the motion of
the hip and knee joints affect the motion characteristics of the wheel, resulting in slippage.
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Therefore, it is necessary to provide a suitable speed for each wheel that is based on the
motion characteristics of the whole robot on rough terrain.

In this paper, a novel wheeled–legged mechanism called TAWL is proposed for the
design of planetary rovers. The leg suspension utilizes a rigid–flexible coupling mechanism
with a hybrid serial–parallel topology. A kinematic model is derived first. Then, a control
strategy for a wheeled–legged rover is proposed that includes a trajectory-tracking module
based on MPC, the steering module, and the wheel speed allocation module. After that,
a cosimulation model is established in both NX/Motion and Simulink software to verify
the control strategy. Finally, experiments are also carried out to validate the proposed
control method.

The remainder of the paper is organized as follows: Section 2 reports the hardware de-
sign and the kinematics of the rover; Section 3 details the control strategy; Section 4 presents
the simulations, experiments, and the discussion of the results; and finally, Section 5 offers
the conclusions.

2. Hardware and Kinematics of the Rover

2.1. Mechanical Structure

There are two aspects that need to be considered for leg design: First, the leg inertia
must be as low as possible. Each leg has four DOFs, as illustrated in Figure 1, namely
the hip abduction/adduction (HAA) joint, the hip flexion/extension (HFE) joint, the hip
endo/exorotation (HEE), and the knee flexion/extension (KFE) joint. The HEE joint can
also be used to steer the wheels. To reduce the rotational inertia of the robot’s legs, the
actuators of the HFE and KFE joints are coaxially located at the hip. The KFE joint is
actuated by a pantograph mechanism. In addition, to increase the driving torques of the
HFE and KFE joints, a gear reducer stage was adopted at each of their output shafts. Second,
compliant mechanisms are necessary for legged robotic systems to handle uncertainties
or disturbances such as ground contact collisions. A telescopic structure with a passive
damped spring was used for the leg design. In addition, there are two spring ball plungers
that trigger the spring–damper mechanism. When the impact force from the ground
exceeds the threshold value of the spring ball plunger, the spring–damper mechanism
works to dissipate the impact energy. After that, the lower leg returns to its original length
with the restoring force of the spring.

 
Figure 1. The leg–wheel structure.
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The TAWL robot has four identical legs with wheels. The four legs are mounted to
the torso in an axially symmetric distribution, as depicted in Figure 2. Its four hip joints
are located on a circle with a diameter of 1.2 m. From a biological view, to obtain highly
dynamic characteristics in the longitudinal direction, the ratio of the length to the width of
the torso should be more than 1. However, the wheeled mode is the primary motion mode
for the TAWL robot. An axially symmetrical arrangement was adopted for the robot design
so that the robot would have all-directional locomotion capability in both the wheeled
and legged modes (walking or trotting). Furthermore, this arrangement also increases the
number of legged locomotion modes. There are at least three leg configurations for legged
locomotion, i.e., the M-configuration, O-configuration, and X-configuration.

 
Figure 2. The TAWL robot.

2.2. Perception and Control System

There are two types of sensors: proprioceptive and exteroceptive sensors. Propriocep-
tive sensors contain the joint encoder, the joint torque sensor, and the inertial measurement
unit (IMU), as seen in Figure 3. All of the joint angles are precisely measured by absolute
encoders. Since the angle measures of each motor are absolute, the robot does not have to be
homed at startup. The IMU sensor is mounted on the body and is responsible for the poses
of the robot’s torso. Exteroceptive sensors include visual and nonvisual sensors, which
are employed to measure environmental information such as the geometrical parameters
of the terrain and ground contact forces. Here, a stereo vision system was attached to the
front part of the main body. Furthermore, an independent computer was implemented
to deal with the vision algorithms. To improve the reliability, we did not assemble force
sensors for ground contact force measurements to the end of each leg. We established a
distribution measurement model and then evaluated the ground contact forces using the
measurement data from the joint torque sensors.

An onboard main controller was used to run the entire control program. The main
controller communicates with 20 servo drives and 16 joint torque sensors in real time via
the EtherCAT industrial network protocol (Bechoff, Verl, Germany). The measurement data
from the IMU sensor are transferred into the main controller according to the RS-485 serial
data standard. The main controller communicates with the visual controller by means of
the ADS (automation device specifications) protocol. The TAWL robot’s control software
was developed using the TwinCAT software platform (Bechoff, Verl, Germany), a real-time
PC-based control system. In addition, there are two on-board lithium batteries that the
robot can use to run for about 1.5 h.

302



Sensors 2022, 22, 4164

 
Figure 3. The perception and control system.

2.3. Kinemactics of the Rover

The body frame {OB—XBYBZB} of the whole robot is located at the center of the plane
and is composed of the centers of four hip joints. We established the D-H coordinate
systems in Figure 4 for each leg. Because each leg has the same kinematic structure, the D-H
parameters of the four legs are also the same. {O0—x0y0z0} is the base frame of each leg
(i.e., the leg frame), which is located at the center of the hip joint. {O4—x4y4z4} is the wheel
frame of each leg. The D-H parameters are shown in Table 1. Therefore, the transformation
matrix from frame i − 1 to i for the ith limb can be written as

i−1
i T =

⎡⎢⎢⎣
cθi −sθicαi sθisαi aicθi
sθi cθicαi −cθisαi aisθi
0 sαi cαi di
0 0 0 1

⎤⎥⎥⎦ (1)

where s and c denote the sine and cosine functions.

Figure 4. The coordinate systems of the rover.
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Table 1. The D-H parameters.

θi di αi ai

1 θ1 0 π/2 0
2 θ2 0 −π/2 L1 = 87.5
3 θ3 0 0 L2 = 350
4 θ4 0 0 L3 = 310

For the ith leg, the transformation matrix from the wheel frame to the leg frame is
written as

0
4Ti = 0

1Ti1
2Ti2

3Ti3
4Ti =

(
R P
0 1

)

=

⎛⎜⎜⎝
−s34 −c34 0 −L3s34 − L2s3
c34c2 −s34c2 −s2 c2(L1 + L3c34 + L2c3)
c34s2 −s34s2 c2 s2(L1 + L3c34 + L2c3)

0 0 0 1

⎞⎟⎟⎠,
(2)

where s34 = sin(θ3+θ4), c34 = cos(θ3+θ4), s2 = sinθ2, c2 = cosθ2, s3 = sinθ3, and c3 = cosθ3.
Here, θ1 = π/2 and P = (Px, Py Pz)

T . are the positions of the wheel center with respect to
the leg frame.

When P is given, the rotational angle of each joint, θ2, θ3, and θ4, can be obtained as

θ2 = atan(Pz/Py
)
, (3)

θ3 = −atan
(

C
A2 + B2 + C2

)
− atan

(
B
A

)
, (4)

θ4 = −atan
(

G√
E2 + F2 − G2

)
− atan

(
F
E

)
− θ3 (5)

where
A = 2PxL2

B = −2(
√

Py2 + Pz2 − L1)L2

C = (
√

Py2 + Pz2 − L1)
2
+ L2

2 + Px
2 − L3

2

E = 2PxL3

F = −2L3

(√
Py2 + Pz2 − L1

)
G = (

√
Py2 + Pz2 − L1)

2
+ Px

2 + L3
2 − L2

2

3. Control Strategy

In this section, a control architecture for the wheeled–legged rover is proposed, as
depicted in Figure 5. The control strategy consists of a planning layer, a controller layer,
and a physical layer. First, the planner layer generates the reference trajectory. A planned
path is generally composed of discrete points that come from the operator or the planner,
which is based on a vision system. Using these points, a Bezier curve was adopted to
produce a reference trajectory that included the time information. Thus, the derivation of
the reference trajectory yielded the reference velocity. Second, the controller layer includes
an MPC module, a steering module, and a wheel speed allocation module. The MPC
module calculates the optimal control inputs through the last control inputs and the current
state variables. The state variables can be estimated by a data fusion algorithm such as a
Kalman filter and a particle filter, which is based on the proprioceptive and exteroceptive
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sensors in the robotic system. Considering that the main purpose was to verify the trajectory
tracking algorithm, the state variables, including the position and velocity of the robot,
were measured by the vision motion capture system directly in the present experimental
study. In addition, to eliminate the accumulated errors, a PID control method was added
in the loop. Then, the steering module provided the speed and the steering angle of each
wheel. After that, the wheel speed allocation algorithm was presented to avoid a wheel
slip. Next, the leg joint angles were obtained through the inverse kinematics of the rover.
Third, the physical layer received the steering angles, the wheel speeds, and the leg joint
angles and sent these orders to servo drives.

TAWLwi
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ω
δ

i ivα β γ ω θ θ

B
x
B
z

v

ω

x y α β γ

B B
y zv v

B
zω

B
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B
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III. Physical layer
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Figure 5. The rover’s control strategy.

3.1. Locomotive Equations

The rotation matrix from the body frame {B} to the world frame {W} is written as

W
B R(α,β,γ) =

⎛⎝cγcβ cγsβsα − sγcα cγsβcα + sγsα
sγcβ sγsβsα + cγcα sγsβcα − cγsα
−sβ cβsα cβcα

⎞⎠, (6)

where α, β, and γ are the fixed rotational angles with respect to the x, y, and z axes of the
world frame, respectively.

Furthermore, the velocity of the centroid of the robot can be denoted by

VW
cm =

⎛⎝ .
x
.
y
.
z

⎞⎠ =

⎛⎝cγcβ cγsβsα − sγcα cγsβcα + sγsα
sγcβ sγsβsα + cγcα sγsβcα − cγsα
−sβ cβsα cβcα

⎞⎠VB
cm, (7)

where VW
cm and VB

cm are the velocities of the body centroid for frames {W} and {B}, and

VB
cm =

(
vB

x , vB
y , vB

z

)T
.

The yaw angle of the robot with respect to the body frame, γB, can be written as

tan γ = tan γBcα/cβ (8)

where γ is the yaw angle in frame {W}.
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Thus, we have
.
γ = ωB

z cα/cβ. (9)

Aordingly, the kinematic equation for the trajectory tracking is obtained as

.
X =

⎛⎝ .
x
.
y
.
γ

⎞⎠ =

⎛⎝cγcβ 0
sγcβ 0

0 cα
cβ

⎞⎠(
vB

x
ωB

z

)
+

⎛⎝cγsβsα − sγcα cγsβcα + sγsα
sγsβsα + cγcα sγsβcα − cγsα

0 0

⎞⎠(
vB

y
vB

z

)
(10)

where X = (x, y, γ)T , u =
(
vB

x , ωB
z
)T , and

.
X =

( .
x,

.
y,

.
γ
)T

= f (X, u, t). At a reference

point on the trajectory, we have Xr = (xr, yr, γr)
T ,

.
Xr = f (Xr, ur, t) =

( .
xr,

.
yr,

.
γr

)T , and

ur =
(
vB

xr, ωB
zr
)T .

Therefore, expanding Equation (10) in the Taylor series around the reference point
(Xr, ur) and discarding the high order terms yields

.
X = f (Xr, ur, t) +

∂ f (X, u, t)
∂X

|(Xr , ur)(X − Xr) +
∂ f (X, u, t)

∂u
|(Xr , ur)(u − ur) (11)

where

∂ f (X, u, t)
∂X

|(Xr , ur)=

⎛⎜⎜⎝
∂ f1(X,u,t)

∂x
∂ f1(X,u,t)

∂y
∂ f1(X,u,t)

∂γ
∂ f2(X,u,t)

∂x
∂ f2(X,u,t)

∂y
∂ f2(X,u,t)

∂γ
∂ f3(X,u,t)

∂x
∂ f3(X,u,t)

∂y
∂ f3(X,u,t)

∂γ

⎞⎟⎟⎠

=

⎛⎝0 0 −sγrcβvB
xr + (−sγrsαsβ − cγrcα)vB

y + (−sγrsβcα + cγrsα)vB
z

0 0 cγrcβvB
xr + (cγrsαsβ − sγrcα)vB

y + (cγrsβcα + sγrsα)vB
z

0 0 0

⎞⎠,

∂ f (X, u, t)
∂u

|(Xr , ur)=

⎛⎜⎜⎝
∂ f1(X,u,t)

∂vB
x

∂ f1(X,u,t)
∂ωB

z
∂ f2(X,u,t)

∂vB
x

∂ f2(X,u,t)
∂ωB

z
∂ f3(X,u,t)

∂vB
x

∂ f3(X,u,t)
∂ωB

z

⎞⎟⎟⎠=

⎛⎝cβcγr 0
cβsγr 0

0 cα/cβ

⎞⎠.

Accordingly, the state space equation can be denoted by

.
X̂ = A(t)X̂ + B(t)û (12)

where X̂ = (x − xr, y − yr, γ − γr)
T ,

.
X̂ =

( .
x − .

xr,
.
y − .

yr,
.
γ − .

γr
)T , û = (ûv, ûω)

=
(
v − vB

xr, ω − ωB
zr
)T , A(t) = ∂ f (X,u,t)

∂X |(Xr , ur), and B(t) = ∂ f (X,u,t)
∂u |(Xr , ur). X̂ is the er-

ror with respect to the reference trajectory, and û is its associated perturbation control input.
Using forward differences, the approximation of

.
X can be obtained as the following

discrete-time form:
X̂(k + 1) = GkX̂(k) + Hkû(k) (13)

where Gk = TAk + I, and Hk = TBk. T and k are the sampling period and the sampling
time. I is the identity matrix.

3.2. Trajectory Tracking Model Based on MPC
3.2.1. Objective Function

A controller was designed for the wheeled–legged robot to track the desired trajectory
precisely and stably. By changing the current and future inputs of the control system, the
optimization problem is the minimization of a predicted performance cost, which is a
quadratic function of the states and control inputs as follows:

J(t) =
Np

∑
i=1

X̂T(t + i|t)QX̂(t + i|t) +
Nc−1

∑
j=1

ΔûT(t + i|t)RΔû(t + i|t) + ρε2, (14)
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where Np and Nc are the prediction and control horizons, respectively. Here, Q and R are
the weighting matrices; ρ is the weight coefficient, and ε is the relaxation factor.

Let

ξ(k|t) =
(

X̂(k|t)
û(k − 1|t)

)
, (15)

we obtain
ξ(k + 1|t) = Âkξ(k|t) + B̂kΔû(k|t), (16)

η(k|t) = Ĉkξ(k|t), (17)

where Âk =

(
Gk Hk
0 I

)
, and B̂k =

(
Hk
I

)
.

Furthermore, Equations (16) and (17) can be rewritten as the following matrix form:

Y(t) = Ωξ(t) + ΦΔU (18)

where

Y(t) =

⎛⎜⎜⎜⎜⎜⎜⎝

η(k + 1|t)
η(k + 2|t)

· · ·
η(k + Nc|t)

· · ·
η(k + Np|t)

⎞⎟⎟⎟⎟⎟⎟⎠, Ω =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Ĉk Âk
Ĉk Â2

k
· · ·

Ĉk ÂNc
k· · ·

Ĉk Â
Np
k

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, ΔU =

⎛⎜⎜⎝
Δu(t|t)

Δu(t + 1|t)
· · ·

Δu(t + Nc|t)

⎞⎟⎟⎠, and

Φ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ĈkB̂k 0 0 0
Ĉk ÂkB̂k ĈkB̂k 0 0

· · · · · · . . . · · ·
Ĉk ÂNc−1

k B̂k Ĉk ÂNc−2
k B̂k · · · ĈkB̂k

Ĉk ÂNc
k B̂k Ĉk ÂNc−1

k B̂k · · · Ĉk ÂkB̂k
...

...
. . .

...
Ĉk Â

Np−1
k B̂k Ĉk Â

Np−2
k B̂k · · · Ĉk Â

Np−Nc−1
k B̂k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Equations (14) and (18) yield

J(t) = ΔUT(t)RΔU(t) + YT(t)QY(t) + ρε2

= ΔUT(t)RΔU(t) + (ΦΔU(t))TQ(ΦΔU(t))
+2(Ωξ(t))TQ(ΦΔU(t)) + (Ωξ(t))TQ(Ωξ(t)) + ρε2.

(19)

Here, Ωξ(t) is not affected by the inputs and can thus be discarded. Therefore, the
objective function is rewritten as a standard quadratic form:

J(t) =
(
ΔUT(t) ε

)
H(t)(ΔUT(t) ε)

T
+ F(t)(ΔUT(t) ε)

T, (20)

where

H(t) =
(

ΦTQΦ + R 0

0 ρ

)
, F(t) =

(
2(Ωξ(t))TQΦ 0

)
.

3.2.2. Constraints

There are some constraints when the wheeled–legged robot carries out trajectory
tracking tasks. The amplitude of the control input u and control input increment Δu satisfy

umin(t + k|t) ≤ u(t + k|t) ≤ umax(t + k|t), k = 0, 1 · · · Nc − 1, (21)

Δumin(t + k|t) ≤ Δu(t + k|t) ≤ Δumax(t + k|t), k = 0, 1 · · · Nc − 1, (22)
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where umin and Δumin are the predefined lower bounds, and umax and Δumax are the prede-
fined upper bounds. Furthermore, the variable to be solved in the objective function are
the control increment in the control horizon. Therefore, the constraints need be converted
into the product form of the control increment and the transformation matrix.

The following relationship exists:

u(t + k|t) = u(t + k − 1|t) + Δu(t + k|t). (23)

Furthermore, Equation (23) can be reformulated as a matrix form:

U(t) = EΔU(t) + U(t − 1) (24)

where

U(t) =

⎛⎜⎜⎜⎝
u(t|t)

u(t + 1|t)
...

u(t + Nc − 1|t)

⎞⎟⎟⎟⎠, E =

⎛⎜⎜⎜⎝
I 0 0 0
I I 0 0
...

...
. . .

...
I I I I

⎞⎟⎟⎟⎠,

ΔU(t) =

⎛⎜⎜⎜⎝
Δu(t|t)

Δu(t + 1|t)
...

Δu(t + Nc − 1|t)

⎞⎟⎟⎟⎠, U(t − 1) =

⎛⎜⎜⎜⎝
u(t − 1)
u(t − 1)

...
u(t − 1)

⎞⎟⎟⎟⎠.

Moreover, from Equations (19) and (23), we obtain

Umin(t) ≤ EΔU(t) + U(t − 1) ≤ Umax(t), (25)

where

Umin(t) =

⎛⎜⎜⎜⎝
umin(t|t)

umin(t + 1|t)
...

umin(t + Nc − 1|t)

⎞⎟⎟⎟⎠, Umax(t) =

⎛⎜⎜⎜⎝
umax(t|t)

umax(t + 1|t)
...

umax(t + Nc − 1|t)

⎞⎟⎟⎟⎠.

For the control increment, we have

ΔUmin(t) ≤ ΔU(t) ≤ ΔUmax(t), (26)

where

ΔUmin(t) =

⎛⎜⎜⎜⎝
Δumin(t|t)

Δumin(t + 1|t)
...

Δumin(t + Nc − 1|t)

⎞⎟⎟⎟⎠, ΔUmax(t) =

⎛⎜⎜⎜⎝
Δumax(t|t)

Δumax(t + 1|t)
...

Δumax(t + Nc − 1|t)

⎞⎟⎟⎟⎠.

Accordingly, Equations (20), (25) and (26) yield the following quadratic programming
problem

J(t) =
(
ΔUT(t) ε

)
H(t)(ΔUT(t) ε)

T
+ F(t)(ΔUT(t) ε)

T,
s.t. Umin(t) ≤ EΔU(t) + U(t − 1) ≤ Umax(t),

ΔUmin(t) ≤ ΔU(t) ≤ ΔUmax(t).
(27)

Sving Equation (27) in each control cycle leads to a series of control increments in the
control time domain:

ΔU∗(t) =
(
Δu∗(t|t) Δu∗(t + 1|t) · · · Δu∗(t + Nc − 1)

)
, (28)
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Furthermore, the first element in the sequence was adopted for the actual control increment

u∗(t|t) = u(t − 1|t) + Δu∗(t|t). (29)

Finally, by repeating the above process in each control cycle, the desired trajectory is tracked.

3.3. Streering Strategy

Using the aforementioned MPC method, we can obtain the optimal control inputs,
u∗(t|t) = (

vB
x , ωB

z
)
. Furthermore, the speed and the steering angle of each wheel need to

be derived. In the present study, the steering strategy in which all of the wheels make the
uniform circular motion was adopted, as seen in Figure 6.

R

lr

rf

rr

vlf

vrf

vlr

vrr

vx

Rlf

lf

Rrf

Rrr

Rlr

dΔ
v

zω

Figure 6. The steering strategy.

The point M is the steering center and the steering radius of the robot R is

R =
vB

x
ωB

z
, (30)

where ωB
z �= 0. Furthermore, the steering radii of the four wheels are written as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Rr f =

√
( L

2 − Δd)
2
+ (R − L

2 )
2

Rl f =

√
( L

2 − Δd)
2
+ (R + L

2 )
2

Rrr =

√
( L

2 + Δd)
2
+ (R − L

2 )
2

Rlr =

√
( L

2 + Δd)
2
+ (R + L

2 )
2

. (31)

According to Ackermann’s principle, the wheel speeds and the steering angles are
obtained as follows: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ωr f =
ωB

z Rr f
Rw

ωl f =
ωB

z Rl f
Rw

ωrr =
ωB

z Rrr
Rw

ωlr =
ωB

z Rlr
Rw

(32)
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
δr f = sign(k) tan−1

L
2 −Δd

R−L/2

δl f = sign(k) tan−1
L
2 −Δd

R+L/2

δrr = −sign(k) tan−1
L
2 +Δd

R−L/2

δlr = −sign(k) tan−1
L
2 +Δd

R+L/2

(33)

where ωr f , ωl f , ωrr, and ωlr are the wheel speeds, and δr f , δl f , δrr, and δlr are the steering
angles. Here, sign(k) is a signum function, and sign(k) = −1 when the wheel rotates clock-
wise; sign(k) = 1 when the wheel rotates anticlockwise. When ωB

z = 0 in Equation (30),
the four steering angles are all zero, i.e., δr f = δl f = δrr = δlr = 0.

3.4. Wheel Speed Allocation (WSA)

The WSA module calculates the suitable speed for each wheel according to the motion
characteristics of the whole robot on rough terrain.

First, according to the kinematic equations, the linear velocity of the wheel center and
the angular velocity of the lower leg (i.e., Frame 4) in Figure 4 are written as

(
viw
ωiw

)
=

(4
BRi

4
BRiSiw

0 4
BRi

)(
vB

i0
ωB

i0

)
+ 4

0Ri Ji

⎛⎜⎜⎜⎜⎝
.
θi1.
θi2.
θi3.
θi4

⎞⎟⎟⎟⎟⎠, (34)

where Siw is the position vector of the wheel center with respect to the body frame; 4
BRi

is the rotation transformation matrix from the body frame to frame 4; 4
0Ri is the rotation

transformation matrix from the leg frame to frame 4; Ji is the Jacobian matrix with respect
to the leg frame; i = 1–4 denotes the leg number; and vB

i0 and ωB
i0 are the linear and angular

velocities of the leg frame with respect to the body frame, which are given by(
vB

i0
ωB

i0

)
=

(
ωB × (O0i − M)

ωB

)
, (35)

where ωB is the angular velocity of the body.
Second, the ideal (no-slip) linear velocity of the wheel center comes from the driving

motor and the rotation of the lower leg, which can be denoted by

||viw|| = (ωiwz + ωid)Rw, (36)

where ωiwz is the projection of ωiw on the direction of the wheel axis.
Accordingly, the rotational speeds of the wheel motors are obtained by

ωid =
||viw||

Rw
− ωiwz. (37)

4. Results and Discussion

4.1. Simulations

The numerical program of the control strategy was first developed using MATLAB
software. Then, the joint simulation model was established by SIMULINK and UG Motion
software. UG motion software provides the joint angles as well as the pitch and roll angles
for each control block. In the meantime, the control blocks calculate the joint angles and
wheel speeds and provide them to the virtual prototype. There are some system and control
parameters that can be grouped into three categories, namely the input parameters, the
output parameters, and the control parameters, as seen in Table 2. The input parameters
include the points on the reference path, the desired yaw angle of the robot body, and the
desired linear and angular velocities of the robot body. The output parameters are the
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linear and angular velocities of the robot body from the MPC and the steering angles and
the wheel speeds. In addition, there are control parameters, including the prediction and
control horizons, the weight coefficient and the relaxation factor, and the PID parameters to
control the linear and angular velocities of the robot body.

Table 2. The system and control parameters.

Categories Terminology Definition

Input parameters
xw

cr, yw
cr Points on reference path

γw
r Desired yaw angle of body

vB
xr, ωB

zr Desired linear and angular velocities of body

Control parameters

Np, Nc Prediction and control horizons
ρ, ε Weight coefficient and the relaxation factor

kp1, ki1, kd1
PID parameters for control of the linear velocity
of body

kp2, ki2, kd2
PID parameters for control of the angular velocity
of body

Output parameters
u∗(t|t) = (

vB
x , ωB

z
)

The linear and angular velocities of the body
δr f , δl f , , δlr Steering angles
ωid. Rotational speeds of the wheel motors

First, the WSA module was verified. For the simulation, the terrain included two
trapezoid and two arc obstacles. The posture as well as the linear and angular velocities of
the body, the joint angles and the angular velocities of the joints, and the driving speeds
of the wheels were all measured using the virtual model in UG Motion software. Note
that the terrain with the obstacles led to the changes of rover attitude angles (α, β). Here,
the terrain-adaptive algorithm in [27] was adopted to control the rover attitude. With this
algorithm, the robot attitude was almost kept unchanged in irregular terrains. Then, the
practical linear velocity of the wheel centers and the practical angular velocity of the wheels
were calculated according to Equations (36) and (37). Therefore, the slip percent could be
obtained from

μ =
((ωid + ωiwz)Rw − vi)

(ωid + ωiwz)Rw
× 100%, (38)

where Rw is the radius of the wheel; ωid is the practical angular velocity of the wheel, which
can be measured by the wheels’ encoders; and vi is the practical linear velocity of the wheel
center. Figure 7 shows the comparison of the slippage percentages with and without the
WSA module. Without the WSA module, the slippage reached up to 0.25, while with the
WSA, the maximum of the slippage was less than 0.13. It was found that wheel slip was
obviously decreased by the WSA component.

Second, the trajectory tracking based on MPC was verified. An arc trajectory with a
radius of 30 m in the plane was selected for the validation simulation. In the simulations,
there were three speeds, i.e., 0.1 m/s, 0.2 m/s, and 0.4 m/s. The control parameters for
the simulations of the linear trajectory were: Np = 6; Nc = 3; ρ = 10; ε = 0 for the lower
limit and ε = 10 for the upper limit. The PID parameters for the linear velocity were set as:
kp1 = 2, ki1 = 1, kd1 = 0. Since there was only a linear velocity in the body frame, the PID
module for the control of angular velocities did not work. Figures 8–10 show the trajectory
tracking results for three speeds. It was found that the robot could track the corresponding
target values within a short period of time under the three different speeds. There was a
large increase in trajectory errors at the beginning of the tracking process. The reason for
this is that the initial direction of the target speed was the same as the x axis in the global
coordinate system. There was an obvious delay before the actual speed reached the target
value, and the speed error was relatively larger at the beginning. Furthermore, it was found
that there were obvious overshoots in the velocity responses from the MPC method in the
beginning. These overshoots facilitated trajectory tracking, and thus, the forward velocity
of the robot could approximate the desired value quickly. In the meantime, the overshoot
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increased as the desired speed increases. The overshoot at 0.4 m/s was the largest one
among the three forward speeds. It should also be noted that the final velocity response
errors increased as the target speed increased. However, as a whole, the trajectory errors
for the three speeds were all relatively small, validating the MPC module and the whole
control strategy.

×

 
×

 
(a) (b) 

×

 

×

 
(c) (d) 

Figure 7. Slippage in simulations: (a) leg 1; (b) leg 2; (c) leg 3; (d) leg 4.

  
(a) (b) 

Figure 8. The simulation results (v = 0.1 m/s): (a) trajectory; (b) velocity.
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(a) (b) 

Figure 9. The simulation results (v = 0.2 m/s): (a) trajectory; (b) velocity.

  
(a) (b) 

Figure 10. The simulation results (v = 0.4 m/s): (a) trajectory; (b) velocity.

To further validate the control strategy, a more complicated trajectory, i.e., an S-type
trajectory was selected for the tracking simulations. The S-type trajectory consisted of two
semicircles with a radius of R = 20 m, which can be described as follows:

xw
cr =

{
R sin(ωzt), 0 ≤ t < Ts
R sin[−ωz(t − Ts)], Ts ≤ t ≤ 2Ts

, (39)

yw
cr =

{
R − R cos(ωzt), 0 ≤ t < Ts
2R − R cos(ωzTs)− R cos[−ωz(t − Ts)], Ts ≤ t ≤ 2Ts

, (40)

γw
cr =

{
ωzt, 0 ≤ t < Ts
ωzTs − ωz(t − Ts), Ts ≤ t ≤ 2Ts

, (41)

where vx = 0.4 m/s; ωz = vx/R; Ts = π/ωz. During the simulation, the control parameters
were set as: Np = 6; Nc = 3; ρ = 10; ε = 0 for the lower limit and ε = 10 for the upper limit.
The PID parameters for the linear velocity were set as: kp1 = 0.7, ki1 = 0, kd1 = 5. Figure 11
gives the comparisons of the theoretical and real trajectories and velocities. It was found
that the robot could track well the reference trajectory and the reference velocity when
running along the S-type trajectory. Furthermore, the errors in the x and y coordinates were
very small, the relative error of which were less than 2% and 1.75%, respectively, as seen in
Figure 12.
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(a) (b) 

Figure 11. S-type trajectory and velocity: (a) trajectories; (b) velocities and errors.

  
(a) (b) 

Figure 12. Coordinates and errors for S-type trajectory: (a) x coordinate; (b) y coordinate.

In addition, tracking simulations for high speeds were also carried out. Two speeds,
i.e., vx = 2 m/s and 4 m/s, were chosen, which were ten times as large as the speeds in
the previous simulations. A circle trajectory with a radius of R = 35 m was selected for the
simulations, which can be described by⎧⎨⎩

xw
cr = R sin(ωzt)

yw
cr = R − R cos(ωzt)

γw
r = ωzt

, (42)

where ωz = vx/R. The control parameters for the simulations of the linear trajectory were
set as: Np = 6; Nc = 3; ρ = 10; for the lower limit and ε = 10 for the upper limit. The
PID parameters for the linear velocity were set as: kp1 = 2, ki1 = 1, kd1 = 0. Figure 13
gives the changes of the real velocities. It was found that the robot could still track the
reference velocity after a relatively short time. Moreover, with the control, the robot could
track the reference trajectories of both the x coordinate and the y coordinate, depicted in
Figures 14 and 15. Compared to the lower speed, the position errors increased. However,
the relative errors of the position points were small. The maxima of the relative position
errors at 2 m/s and 4 m/s were less than 3% and 8.5%, respectively.
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(a) (b) 

Figure 13. Velocity results with higher speeds: (a) velocity; (b) error of velocity.

  
(a) (b) 

Figure 14. x Coordinates with higher speeds: (a) x coordinate; (b) error of x coordinate.

  
(a) (b) 

Figure 15. y Coordinates with higher speeds: (a) y coordinate; (b) error of y coordinate.

4.2. Experiments

To further verify the control strategy, an experimental setup based on the NOKOV
vision motion capture system was established that consisted of six cameras, as shown in
Figure 16. An L-type tool was used for the benchmark calibration of the vision system.
After there were enough cameras placed around the robot, the c vision capture system
was calibrated. The L-type tool was mounted on the body, as seen in Figure 17. There are
four markers on the L-type tool. The cameras recognize the markers, and thus, the vision
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frame (i.e., the global coordinate system) can be established. According to the geometrical
relationship between the mounting location of the L-type tool and the robot’s body frame,
the initial transformation matrix between the vision frame and the body frame could
be obtained. Serval markers were bonded to the body of the rover, and thus, the body
coordinate system could be established in the world coordinate system. Therefore, the real
motion trajectory of the rover could be measured in real time and sent to the rover control
system. To clarify the effectiveness of the WSA module, a terrain with a flat surface and
two trapezoids was employed in the experiments. Since the terrain included obstacles,
the terrain-adaptive algorithm [27] was adopted, similar to the simulations. During the
experiments, the control parameters for the MPC module were set as: Np = 6; Nc = 3; ρ = 10;
ε = 0 for the lower limit and ε = 10 for the upper limit. The PID parameters for the control
of linear velocities were set as: kp1 = 8, ki1 = 0, kd1 = 0.2. Figure 18 shows the slippage in
the experiments. Note that the slippages of Leg 1 and 4 (Leg 2 and 3) are almost the same
because they suffer the same terrain condition. It was found that the average slippage of
all of the legs demonstrated an obvious decrease after WSA control, up to 20%. Figure 19
shows the experimental results of trajectory tracking. As it can be seen, the rover could
strictly track the reference trajectory. The deflection with respect to the reference trajectory
was less than 2% F.S., which is a relatively small error. Accordingly, the control strategy
was validated by the experiments.

 
Figure 16. The experimental setup.

B
WT

Figure 17. The calibration of the vision frame.
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×

 

×

 
(a) (b) 

×

 

×

 
(c) (d) 

Figure 18. Slippage in the experiments: (a) Leg 1; (b) Leg 2; (c) Leg 3; (d) Leg 4.

  
(a) (b) 

Figure 19. Experimental trajectory tracking results: (a) x axis; (b) y axis.

5. Conclusions

In this paper, a novel wheeled–legged planetary rover with four legs was proposed,
and each leg had four DOFs with an actuated wheel. The articulated legs utilized a
serial–parallel hybrid configuration, and it had the merits of both serial and parallel
mechanisms. Moreover, the legs had a rigid–flexible coupling structure that could conform
to unstructured terrain using both active and passive compliance. The kinematics equations
of the rover were derived. Then, a control scheme including trajectory tracking, the steering
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strategy, and the WSA module was proposed. A trajectory tracking model based on MPC
that could handle the line and arc trajectory with quite a good accuracy was established.
In addition, the WSA was introduced into the control strategy to decrease the slippage.
After that, to validate the control method, three groups of cosimulations, i.e., tracking
an arc trajectory, tracking a S-type trajectory, and trajectory tracking with high speeds
were carried out. Finally, trajectory tracking experiments were conducted through a vision
motion capture system. It was found that the average slippage of all of the legs decreased
obviously after WSA control, with a slippage up to 20% in our experiments. Moreover, the
rover could strictly track the reference trajectory. With respect to the reference trajectory, the
deflection was found to be less than 2% F.S., which is a relatively small error. Accordingly,
the proposed control strategy was thoroughly verified by the simulations and experiments.
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Abstract: This paper presents a hybrid force/position control. We developed it for a hexapod walking
robot that combines multiple bipedal robots to increase its load. The control method integrated
Extenics theory with neutrosophic logic to obtain a two-stage decision-making algorithm. The first
stage was an offline qualitative decision-applying Extenics theory, and the second was a real-time
decision process using neutrosophic logic and DSmT theory. The two-stage algorithm separated the
control phases into a kinematic control method that used a PID regulator and a dynamic control
method developed with the help of sliding mode control (SMC). By integrating both control methods
separated by a dynamic switching algorithm, we obtained a hybrid force/position control that took
advantage of both kinematic and dynamic control properties to drive a mobile walking robot. The
experimental and predicted results were in good agreement. They indicated that the proposed hybrid
control is efficient in using the two-stage decision algorithm to drive the hexapod robot motors
using kinematic and dynamic control methods. The experiment presents the robot’s foot positioning
error while walking. The results show how the switching method alters the system precision during
the pendulum phase compared to the weight support phase, which can better compensate for the
robot’s dynamic parameters. The proposed switching algorithm directly influences the overall control
precision, while we aimed to obtain a fast switch with a lower impact on the control parameters. The
results show the error on all axes and break it down into walking stages to better understand the
control behavior and precision.

Keywords: hybrid position/force control; sliding mode control; decision method; neutrosophic logic;
extension set

1. Introduction

Worldwide, practical robot applications are diversifying more and more in the new
world of robotics, automation, and artificial intelligence [1]. Researchers and engineers are
working on developing solutions and solving problems for all kinds of robots. This research
will enhance human motion and workspace investigation through different sensors and
automate tasks for unattended robots [2]. Into this category falls every type of robot
control method that can improve robot control and behavior, with or without autonomous
capabilities [3]. For a robot to be capable of accomplishing a designated task, it must reject
most of the uncertainties and disturbances within the work environment. The robot must
also handle information from several sensors and fuse the data to reach a close decision to
the truth value.

Most mobile robots combine kinematic and dynamic control methods to solve such a
problem, each designated for certain joints in the robot structure. However, for a highly
versatile robot structure, a hybrid position/force method is used. Although the technique
is not new, having begun with Raibert and Craig [4], it has the attention of robotic control
research, and it continues to bring adaptability to the robots using it. In recent years,
different approaches have been researched. Zhang et al. [5] created a hybrid control method
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that could adjust the joint dynamic parameters online. The process allowed rough modeling
of the robot parameters and left the fine-tuning to the control algorithm. A similar approach
used a neural network to autocalibrate the control parameters [6]. Still, not all hybrid
methods can use mechanical parameters because they increase the system’s complexity.
For a robot with a simple structure for which the kinematic or dynamic equations are easier
to define, a classic approach to hybrid control can be easier to implement. Some examples
include the hybrid method with impedance control [7] or even the backstepping method
with a Hamilton controller [8]. Applications of the hybrid control method can be found in
all types of robots, from a robot used for mechanical tests [9] to an upper limb rehabilitation
robot [10]. Because of its versatility, the hybrid position/force control was chosen as the
primary control method for the walking robot.

As we know, hybrid control combines a kinematic control method for joints that do
not require compensation of weight and inertia and a dynamic control method that can
handle these parameters and reject environmental disturbances. The kinematic approach is
used for positioning control of the robot and the dynamic approach for the force and torque
control. Consequently, a classic proportional-integrative-derivative (PID) regulator was
chosen for the position control and a sliding mode control (SMC) method [11] for the force
and torque control. The main reason for using a SMC method was its robustness in the
presence of external disturbances and uncertainties. Many scientists have used the control
method to improve industrial robot trajectory [12], mobile robot trajectory in dynamic
environments [13], n-link serial manipulator control [14], balance control of a two-wheel
robot [15], and even airplane fuselage inspection [16]. SMC is not a perfect control method,
and it has drawbacks, one of which is the chattering effect that it can introduce. New
research is published every year [17] on eliminating the chattering impact in a general
manner or for a specific robot structure or purpose.

Using multiple regulators or control methods on the same robot structure can separate
the robot joints statically into two categories, starting with the design of the control law.
However, this is not desirable if one needs to build a versatile robot. Hence, a real-
time decision method must determine the degree of freedom (joints) controlled by each
method. A combination of techniques and control methods was thus selected. The first
one, Extenics [18] or extension logic [19], entails defining the control parameters and robot
properties or abilities and is used by scientists to configure problem-solving algorithms [18]
and even design toys for children with special needs [20].

For the proposed robot structure, Extenics helped ease the process of organizing the
parameters of each control method and provided the offline means of solving potential
conflicts, uncertainties, or mismatching of sensor data and regulators.

Neural networks [21,22] were considered for the decision method, but the process
of training the network was too extensive for the proposed robot. Another possibility
was using swarm optimization [23] to predict what the robot needs in terms of control
methods. This also overcomplicated the control system, and it should be handled in future
work. For the presented robot, neutrosophic logic [24] and the Dezert–Smarandache Theory
(DSmT) [25] were chosen. DSmT combined with Extenics is used to manage decision
making [20] and provides excellent results by combining the mapping process of Extension
logic with the sensor fusion of DSmT in uncertain and contradictory conditions. As an
extension of fuzzy logic, neutrosophic logic and DSmT have been used by researchers to
develop applications [26] for aviation parking [27], multi-UAV surveillance [28], obstacle
avoidance in unknown environments [29], and environmental detection and estimation [30].

A different approach in designing the decision algorithm of a hybrid system is using
time triggers or an event-driven mechanism [31] with an event generation mechanism [32]
to ensure control of the system at the precise times of important defined events. This
approach is safe for robots in a known environment, but it can fail or make inconsistent
decisions for robots moving inside unknown and unstructured environments.

To develop a mobile walking robot, one can reference many highly advanced robots,
some designed by renowned institutes [33], that use dynamic control methods to provide
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stability and error rejection for the control architecture. While efficient mathematical
solutions [34] are desired for a control law to give it low computational requirements, these
can be difficult to obtain when the robot model is complex. Moreover, the dynamic control
of any robot must overcome external disturbances [35] and reject any influence from other
sources, including within the sensor information.

Here, we propose and describe a mobile walking robot hybrid position/force control
that can be used within a group of linked robots. The research aim to obtain a control
algorithm and method using both kinematic and dynamic control methods and an intelli-
gent switching method between them. As a result, several experiments were conducted
to improve the performance of the developed hybrid control, taking advantage of the
extension set and neutrosophic logic. The extension set and neutrosophic logic were used
to enhance the decision making required by the hybrid control, the first as an offline set
of characteristics to extend the system’s definition, and the second as an online switching
mechanism that works with uncertain and contradictory information. The resulting hy-
brid control using a two-stage decision algorithm was a robot control method that took
advantage of the best properties of the kinematic and dynamic control laws while the
robot was fulfilling its tasks in uncertain environments. The data fusion provided by
the neutrosophic theory in contradictory or uncertain conditions improved the decision
switching mechanism, while the overall reference tracking of the robot did not decrease.
The computational requirements of the proposed hybrid control were reduced because of
the kinematic control method when the robot did not require dynamic compensation.

The paper is divided into six main sections. Section 2 provides a visual description
of the robot used in the experiments. Section 3 presents the offline decision using the
extension set, while Section 4 presents the decision method based on neutrosophic logic
that takes advantage of DSmT [25]. The hybrid control is presented in Section 5 with an
in-depth analysis of the kinematic (Section 5.1) and SMC dynamic (Section 5.2) control
methods. Sections 6 and 7 contain the conducted experiments and simulations with the
obtained results. In the end, Section 8 presents this paper’s conclusions.

2. System Description

Figure 1 presents the robot structure. The robot was a hexapod [36], and its design
was selected to avoid stability problems. Future research will consider the stability of a
single bipedal mobile walking robot. As can be seen, the robot platform was divided into
three modules, resulting in a modular robot that could be further extended or reconfigured.
Figure 1b presents the kinematic structure of the hexapod robot leg. Each leg had three
degrees of freedom, ensuring the 3D positioning of the foot.

 

 
(a) (b) 

Figure 1. The robot structure: (a) the hexapod walking robot; (b) kinematic structure of the robot leg.
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In the robot structure, aluminum was considered for rectangular bars with height,
width, and length dimensions hi × wi × li and weight mi. hi and wi with the dimensions
of hi = 3 cm and wi = 3 cm. Table 1 presents the robot dimensions used in the testing and
simulations presented throughout the paper.

Table 1. Robot values.

Dimension Value

r1 0.05 [m]

l1 0.1 [m]

m1 0.25 [kg]

r2 0.25 [m]

l2 0.5 [m]

m2 1.25 [kg]

r3 0.35 [m]

l3 0.7 [m]

m3 1.76 [kg]
li and ri represent, respectively, leg segment dimensions and the distance from the joint axis to the center of mass
for each leg segment, and mi is the segment’s mass.

3. Extenics Theory and Extension Set Applied to Robots

Extenics is a scientific field that uses modeling and formal methods to extend elements
or physical objects. The models and methods are then used to solve contradictory problems
that cannot be solved in their defined form and conditions [37,38].

Because contradictory problems are omnipresent in any field, Extenics aims to define
a set of methods that allows solving contradictory issues using virtual simulation with the
help of computers.

The central parts of extension theory are the base element theory, extension set theory,
and extension logic [39].

The fundamental element used to describe objects in extension theory is defined as:

M = (Om, cm, vm) (1)

where M is the object element for which Om is the object, cm is the characteristic, and vm
is the measure. If one characteristic exists, the other matter element can be of only one
dimension. If the object has more characteristics, however, the multidimension matter
element is be defined as:

M =

⎡⎢⎢⎢⎣
Om, cm1, vm1

cm2, vm2
...

...
cmn, vmn

⎤⎥⎥⎥⎦ = (Om, Cm, Vm). (2)

If a hybrid control is used, then a multidimension matter element is used, described
by many characteristics specific to the chosen control methods.

For a hybrid position/force control, the following matter element can be defined:

R0 =

⎡⎢⎢⎢⎢⎢⎢⎣

Robot Control Control Type Hybrid Control
Overall Computation Speed Good
Refference Tracking Speed Very Good
Refference Tracking Error Very Good

Inertia Compensation Good
Disturbance Rejection Good

⎤⎥⎥⎥⎥⎥⎥⎦. (3)
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By using Extenics principle 2.2 [40], which Ren et al. [18] used to design low carbon
products, the object from Equation (3) can be extended and decomposed into two matter
elements for which O1 and O2 are defined as kinematic control and dynamic control,
respectively. The two objects have the same characteristics as the primary object (called
“hybrid control”) but with different values:

R1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Robot Control, Control Type
{

Kinematic Control
PID Control

}
Overall Computation Speed, Very Good
Refference Tracking Speed, Very Good
Refference Tracking Error, Good

Inertia Compensation, Very Poor
Perturbance Rejection Poor

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4)

R2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Robot Control, Control Type
{

Dynamic Control
PID Sliding Control

}
Overall Computation Speed, Average
Refference Tracking Speed, Good
Refference Tracking Error, Very Good

Inertia Compensation, Very Good
Perturbance Rejection Very Good

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5)

As can be seen, the two matter elements from Equations (4) and (5) describe the control
types, the kinematic and the dynamic, briefly. The matter elements are customized for
control types, but numerous other features can be added for which the matter characteristics
are different according to the desired control type.

The contradiction between the two control types is found using the matter element
characterization. The kinematic type has a better computational speed for a real-time
controller. Still, when a robot is subject to inertial forces, it has worse positioning error and
tracking speed. On the other hand, the dynamic control method takes into consideration
the inertial forces that act on a robot and has a better tracking error. However, although the
tracking error is better, the tracking speed is worse. The overall computational speed is
greatly diminished, owing to the many calculations inside the control loop.

As a simple reference trajectory, an ideal trajectory of the foot (Figure 2) was used.
When a robot foot has the role of support (the unbroken line in Figure 2), precise control is
needed that considers the weight and inertia of the robot, so the robot’s position does not
oscillate on the vertical axis during the support phase. Additionally, the joints of a robot
leg must complete or partially support the overall robot weight, including the other legs in
the advancing stage. The dotted line in Figure 2 represents the leg balance trajectory when
a robot takes a step for which the positioning is not required to be precise but must be fast
and smooth. During the second motion phase, the leg joints support only their leg weight.

Figure 2. A simple trajectory for the robot foot.
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Knowing the gross characterization of the two types of trajectories that a robot foot
takes, the problem of choosing the control type is solved by checking the properties of the
two matter elements defined by Equations (4) and (5).

Thereby, to control the robot during the uniform pull and weight support phase, the
matter element R2 was chosen. Its properties provided better precision in tracking the
position reference and considered the robot’s inertia to compensate for the robot’s weight
and inertial motion forces.

When the robot foot must follow a curve in space during the advancing phase, the
robot’s weight was not supported by it, so we used matter element R1. The R1 properties
better corresponded to the robot motion criteria. The kinematic controller was used when
the robot needed to make a forward or reverse motion that was not in direct contact with the
support plane. High positioning precision was not required for the advancing movement,
only a faster speed to position the foot as quickly as possible on the next support point.

One of the properties of the two matter elements is “overall computation speed,”
which indicates how many mathematical operations are needed to compute the actual
reference for each separate joint. Therefore, a kinematic controller is much more efficient in
computational requirements, performing fewer mathematical operations than a dynamic
one. Results have indicated that a kinematic controller supplies not only a better tracking
speed but also minimal resource consumption.

When defining and separating the control type that is best for the job, a real-time
switching method was required. Thus, with the help of neutrosophic logic, the robot leg
phase was determined, based not on reference values but on sensor information. According
to the data calculated by Extenics theory on which type of control law to use, a hybrid
control could be obtained to resolve the transition problem between kinematic and dynamic
control laws. As an offline result, it could be reiterated for future datasets to enhance control
properties or add a second layer of details and properties.

4. Neutrosophic Logic in Robot Control

As defined in [41], neutrosophic logic is the foundation of neutrosophic mathematics.
Neutrosophic logic works with neutrosophic sets that generalize fuzzy sets and describe
neutrosophic elements. The elements are based on <A>, <anti A>, and <neutral A>, where
<A> is an attribute, <anti A> is the opposite of the attribute, and <neutral A> is the neutral
area between <A> and <anti A>.

In neutrosophic logic, every affirmation Af is T% true, I% undetermined (uncertain),
or F% false. Therefore, we can say Af (T, I, F), where T, I, and F are standard or non-standard
subsets of the interval ]−0, 1+[ [41].

If U is the work universe and M is a set included in U, then one element x from U is
written as x (T, I, F) according to set M and belongs to the same set in the following way:
element x is t% true in set M; element x is i% undetermined in set M (either true or false);
and element x is f% false in set M. The value of t varies in T, i varies in I, and f varies in
F [42,43].

As described in the current paper, the robot control diagram presented used both
kinematic and dynamic elements. At a specific time, the robot used only one of the control
methods to maximize and optimize computing and motion speed or the positioning error.
A precision element was needed to switch between the two control types. Using Extenics
and extension theory, the contradictory elements were defined to separate the two control
types between which the decision algorithm switched using neutrosophic theory.

The classic neutrosophic theory [25] chooses between the two control methods. The
general equation is presented in Relation (6) and defines the generalized basic
belief assignment:

m(C) = ∑ A, B ∈ DΘ

A ∩ B = C

m1(A) · m2(B), ∀C ∈ DΘ (6)
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where DΘ is a hyperpower set from the frame Θ = {θ1, θ2, . . . , θn} of n exhaustive elements
and A, B ∈ 2Θ. The basic belief assignment is (·) : 2Θ → [0, 1] , where
2Θ = {∅, θ1, θ2, θ3, θ1 ∪ θ2, θ1 ∪ θ3, θ2 ∪ θ3, θ1 ∪ θ2 ∪ θ3} when Θ = {θ1, θ2, θ3}.

In the case of the presented robot, two belief assignments were assigned to the two
observers. The two observers were the force and proximity sensors that must determine
which type of control was required at one time.

The experimental data for the two observers are presented in Table 2. These values
divided the sensors’ measurement interval in a decision percentage, where the force sensor
was more likely to decide on a dynamic control (75%) than the proximity sensor (65%). The
rate was reversed for the kinematic control and was the same for the uncertain interval.

Table 2. Observer experimental data.

θ
Force Sensor

m1 (θ)
Proximity Sensor

m2 (θ)

θD * 0.75 0.65

θC ** 0.2 0.3

θD∪θC *** 0.05 0.05
* θD = dynamic control; ** θC = kinematic control; *** θD∪θC is the indeterminate area.

The values meant that the decision could be computed with a certain approximation
by using Equation (6) if the robot was in contact with the support surface, according to the
data received from the sensors, and a decision was made whether it would switch from one
control type to another. The kinematic control type was used in the foot balancing phase
and the dynamic control type in the support phase. The decision was made between the
two contradictory objects, defined with the help of Extenics and extension theory.

Table 3 presents the cases in which the meutrosophic values m1(θD), m1(θC), m2(θD),
m2(θC), m1(θD∪θC), or m2(θD∪θC) can be found in any combination for A and B to corre-
spond to Equation (6), meaning that A∩B = C. The results were obtained using Equation
(6) and represent the neutrosophic probabilistic values of truth (certainty of a valid value),
falsity (assurance of a false value), uncertainty (the unknown state between two possible
outcomes), and contradiction (two observers provide contradictory information with high
certainty for both).

Table 3. The experimental data after using Equation (6).

C = A∩B m (C)

ϕ 0 -

θD 0.5575 Truth value for θD and falsity value for θC

θC 0.085 Truth value for θC and falsity value for θD

θD∪θC 0.0025 Uncertainty between θC and θD

θD∩θC 0.355 The contradiction between θC and θD

The values from Table 3 were computed in Equation (7).

m(φ) = 0

m(θD) = m1(θD)× m2(θD ∪ θC) + m1(θD ∪ θC)× m2(θD) + m1(θD)× m2(θD) = 0.5575

m(θC) = m1(θC)× m2(θD ∪ θC) + m1(θD ∪ θC)× m2(θC) + m1(θC)× m2(θC) = 0.085

m(θD ∪ θC) = m1(θD ∪ θC)× m2(θD ∪ θC) = 0.0025

m(θD ∩ θC) = m1(θD)× m2(θC) + m1(θC)× m2(θD) = 0.355

(7)

where m(θD) and m(θC) are the probabilistic values of certainty to choose a certain control
law; m(θD∪θC) is the probabilistic uncertainty value of the two sensors; and m(θD∩θC) is
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the probabilistic contradiction values between the two sensors. As a test, when all five
values are added, their sum must be equal to 1 (100%): m(ϕ) + m(θD) + m(θC) + m(θD∪θC) +
m(θD∩θC) = 1.

Using the computed values, each observer’s decision (force and proximity sensor) had
a certain probability that each of the two control systems required to control the robot.

Table 4 presents all cases presented in Figure 3a,b for the force sensor and proximity
sensor where X and α were defined according to the sensor type.

Table 4. Control probability.

C = A∩B A (Force Sensor) B (Proximity Sensor) m (C) Control Type

ϕ ϕ ϕ 0 Robot stopped

θD

θD θD∪θC
0.5575 Dynamic Control

θD∪θC θD

θD θD

θC

θC θD∪θC
0.085 Cinematic ControlθD∪θC θC

θC θC

θD∪θC θD∪θC θD∪θC 0.0025 Uncertainty

θD∩θC
θD θC 0.355 Contradiction
θC θD

  
(a) (b) 

Figure 3. Control-deciding graphs: (a) force sensor graph; (b) proximity sensor graph.

For the last two cases in Table 4, the C= θD∪θC or C= θD∩θC uncertainty in decision
making was due to the sensor values, leading to a contradiction. If, in the case of uncertainty,
the control type running at that time could be kept, in the case of contradiction between
sensor data, a decision must be made on which control should be used. Because the
contradiction could appear only under specific conditions, a decision was made to use the
same type of control as the robot in the case of uncertainty.

One exceptional or typical case is the robot stepping on very uneven ground. The
force sensor indicates that the foot is on the floor, but the proximity sensor does not provide
the same conclusion since it reads a value greater than the reference threshold. Therefore,
the decision should be to switch to a dynamic controller. On the other hand, if a kinematic
control is used and the foot is subject to external factors, the force sensor records high
peak values in short periods, leading to the chattering effect. The algorithm switched from
kinematic to dynamic control for any case of uncertainty. To prevent additional chattering
effects, the algorithm switched the control method when the force sensor retained its
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contradictory value for a minimum Δt time interval. The time threshold provided a
precision control law in uneven terrain and contradictory cases between input sensors
and observers.

A supplementary condition was required in addition to the selected requirements
for the control type. The condition was bound to the way the robot moves. Because the
dynamic control was slower to compensate for high errors and its stationary points were
unnecessary, we chose the control law based on robot kinematics to save computing time.

One could argue that the switching control law is unnecessary and uses simple triggers
that act as switching mechanisms. However, a simple control switch cannot decide between
options when the information received is inaccurate, which is one of the main reasons the
neutrosophic switching mechanism was chosen and used.

5. The Walking Robot Leg Control Architecture

To control a walking robot, one has to design a control law for each leg, and the control
has many walking phases that depend directly on the reference signal of the foot. Therefore,
the design of a general control law is needed to control foot position and the motor’s torque
according to the computed reference and to use the sensor signal (force and proximity) for
environmental interaction and detection.

Figure 4 presents the general control diagram for one leg of the walking robot. The
graph contains a reference generation block to generate the foot trajectory using detailed
data chosen to test the control law.

Figure 4. The general control diagram.

The reference generation was made in the operational space, and the data were
converted to the joint space from the operational space by using inverse kinematics. An
inverse kinematics algorithm based on the Jacobian transpose was used and is presented in
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Equation (8). Compared to other algorithms, it provides a reference speed for the leg joint
motors and not the angular position reference.

1. Δe = egoal − ereal

2. J JTde = J × JT × Δe

3. α = ΔeT×J JTde
J JTdeT×J JTde

4. Δθ =
(
α × JT × Δe

)T

. (8)

The speed reference value cannot be used to control the robot joints by the dynamic
controller because the dynamic controller needs the angular reference for all the degrees
of freedom it controls, and this is the reason why the angular values for each joint were
computed using the foot position as the origin. The equations are:

q1 = arctan
(

Mx
My

)
q2 = 2 × arctan

(
sinq2

sin2q2+cos2q2
+ cosq2

)
q3 = arctan

(
− sinq3

cosq3

) (9)

where the sine and cosine values are given by

cosq2 = (Mz−l1)×(l2+l3cosq3)+Mx×l3sinq3

(Mz−l1)
2+Mx2+My2 ,

sinq2 =
√

1 − cos2q2,

cosq3 =
(Mz−l1)

2+Mx2+My2−l2
2−l2

3
2l2l3

,

sinq3 =
√

1 − cos2q3.

(10)

For Equation (9) to be valid and to condition the leg posture, additional conditions
were added:

1 : i f My = 0 then q1 = 0

2 : q1 ∈ (−π
2 , π

2
)

3 : q3 ≤ 0
. (11)

The two sensors’ data (proximity and force) were used as input signals for the neu-
trosophic block to decide. Because generated information was used, the two sensors were
simulated. Therefore, the proximity sensor had a function based on the calculated distance
from the foot to the support surface considered a plane, but to which a sinusoidal signal
was added to generate the measurement error of the sensor. Regarding the force sensor,
the foot–ground interaction was simulated using the system from Figure 5. The simulation
was achieved with the help of a damper and a spring.

 
Figure 5. Interaction between the robot and ground surface.
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The equation used for contract modeling and determining the reaction force of ground
interaction was the classical one:

Ftot = −(
k · x + c · .

x
)

(12)

where k and c are the constants of the spring and damper, respectively.
Having the two parameters, reaction force and proximity distance, as inputs for the

decision method, the two control methods are defined in the following sections.

5.1. The Kinematic Control Method

This method used the data provided by the computing algorithm of inverse kinematics
(Figure 6) and fed the output to the PI (proportional-integration) regulator that drove the
robot joint motors.

 

Figure 6. The kinematic control diagram.

As previously described in the Extenics method, the control method has fewer calcula-
tions. Still, the positioning error is not the best because of the inverse kinematics method. It
does not consider the inertial force that the robot experiences during the actual motion.

The main component of the controller is the Jacobian matrix:

J =

⎡⎣ −s1(l2s2 + l3s23) c1(l2c2 + l3c23) l3c1c23
c1(l2s2 + l3s23) s1(l2c2 + l3c23) l3s1c23

0 −l2s2 − l3s23 −l3s23

⎤⎦ (13)

where si = sin(θi), ci = cos(θi), sij = sin(θi + θj), and cij = cos(θi + θj).
The matrix was computed from the direct kinematics equations and was used to find

the foot position in the operational space:

M(x, y, z) =

⎡⎣ c1(l2s2 + l3s23)
s1(l2s2 + l3s23)
l1 + l2c2 + l3c23

⎤⎦. (14)

The entire kinematic control loop was based on the Jacobian matrix. First, the matrix
containing the actual angular joint position was calculated. After it followed its transpose
matrix and the operational space reference position, the positioning error Δθ was obtained.

The positioning error was sent to two PI (proportional-integrative) feedback control
loops for controlling the angular speed and motor torque. Thereby, the torque control for
each joint was obtained, and the switch from one controller to another (from the kinematic
control to the dynamic one, and vice versa) was more accessible since they both used torque
to control the robot joints.
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The transpose Jacobian method is not new and is based on using the transpose matrix of
the Jacobian instead of the inverse matrix. Therefore, Δθ was computed using Equation (15):

Δ
.
q = αJTe (15)

for specific values of constant α.
The transpose-Jacobian-matrix-based algorithm presented in Equation (8) eliminated

stability problems. The algorithm was also chosen because it had a higher computation
speed than the control values of other algorithms, even if the computed values were not as
precise as the inverse-Jacobian-matrix-based method [44].

Because the method of solving the inverse kinematics problem uses the Jacobian
matrix, the final results are always formed by angular speeds that the robot joints must
follow. Therefore, the control is suitable for PI and PID regulators and for controlling
angular velocities. The downside is that the method cannot be used to compute a dynamic
control reference since it needs a precise joint angular value. In contrast, if the values given
by the Jacobian-based inverse kinematic problem are integrated, the result is not as accurate
as is required.

5.2. The Dynamic Control Method

The dynamic control method used the same reference data as the kinematic one. Nev-
ertheless, it computed the torque reference of the motors considering kinematic parameters,
the inertial ones provided by the inertia matrix, and the Coriolis and gravity force effects
supplied by the Coriolis and gravity matrices.

Figure 7 presents the dynamic control diagram. The most critical control blocks are
shown, including those that compute the inertial parameters and values used by the slide
control block. The three control blocks that formed the dynamic controller from Figure 7
were the PID error controller, the fuzzy controller, and the slide control. The first block
passed the positioning error through a PID controller so that the control method could
consider the error variations. Using the PID error controller data, the fuzzy amplification
was obtained through the membership functions presented in Figure 8a,b. The command
torque for each motor joint could be calculated after computing the fuzzy gain, using the
inertial data and the reference values [45].

 

Figure 7. The dynamic control scheme.

All the control values were computed from the presented robot structure, characteris-
tics, structural weights, and measurements.

For Figure 8a,b the abbreviations are N = Negative, P = Positive, ZE = zero, S = Small,
M = Medium, B = Big, and V = Very. For the membership functions, Table 5 presents
the values for the membership parameters so the gain value Kfuzzy could be chosen. The
membership functions that provided the gain were selected according to the values of the
two parameters s and

.
s, where s represents the error through the PID error controller and

.
s
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is its derivate. A constant gain was not desired for each case, leading to a standard-step
fuzzy controller, but a function-based one was selected.

  
(a) (b) 

Figure 8. Membership functions: (a) member function for input s; (b) member function for input
.
s.

Table 5. The output fuzzy gain computation.

s NB NM NS Z PS PM PB
.
s S < −2 −2 < =S < −1 −1 < =S < 0 S = 0 0 < S< = 1 1 < S< = 2 2 < S

NB
.
s < −10 S VS S M B VB VB

N −10 ≤ .
s < 0 M S VS S M B VB

Z
.
s = 0 B M S VS S M B

PS 0 <
.
s ≤ 10 VB B M S VS S M

PB 10 <
.
s VB VB B M S VS S

Using Table 5 data, the parabola in Figure 9 was considered for computing the Kfuzzy
gain, according to the two inputs s and

.
s. The parabola equation was computed from

Equation (16):
y(x) = 2x2 + 50, (16)

and we modified it to introduce the fuzzy parameters:

K f uzzy
( .
s
)
= 2

( .
s − 10 · s

)2
+ 50. (17)

Figure 9. Parameter Kfuzzy for s = 0 and
.
s between −20 and 20.
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Equation (15) now provides the Kfuzzy parameter in the dynamic control.
The sliding control was made with the help of the slide control block (Figure 7). The

control type was inspired by Shafiei [12] and modified to match the robot kinematic struc-
ture used, a design with three degrees of freedom instead of the two used by Shafiei [12].
Following that, the dynamic equations that allowed the dynamic controller’s development
are presented.

The basic dynamic control equation was:

H(q)
..
q + C

(
q,

.
q
) .
q + G(q) + τd = τ. (18)

From Equation (18), the signal for motor torque control was calculated. All the
parameters from Equation (18) are required to be known. The unknown values are the
torque τ, the matrices H (inertial parameters), C (Coriolis and centrifugal forces), and G
(gravity effect), which are given by the following equations, in which the angles θ from the
joint space are equal to the ones in the operational space:

H = M =

⎡⎣ M11 M12 M13
M21 M22 M23
M31 M32 M33

⎤⎦ (19)

where M is the inertial parameters matrix.
The inertial matrix parameters can be computed using the following:

T(θ,
.
θ) = 1

2
.
qT · M · .

q = 1
2 ∑i,j Mij(q)

.
qi

.
qj ≥ 0,

T(θ,
.
θ) = 1

2 m1(

.
−
x

2

1 +

.
−
y

2

1 +

.
−
z

2

1) +
1
2 m2(

.
−
x

2

2 +

.
−
y

2

2 +

.
−
z

2

2) +
1
2 m3(

.
−
x

2

3 +

.
−
y

2

3 +

.
−
z

2

3) +
1
2 Iz1

.
θ2

1 +
1
2 Iz2

( .
θ1 +

.
θ2

)2
+

1
2 Iz3

( .
θ1 +

.
θ2 +

.
θ3

)2

−
x1 = 0,

.
−
x1 = 0,

−
y1 = 0,

.
−
y1 = 0,

−
z1 = r1,

.
−
z1 = 0,

−
x2 = r2sinq2·cosq1,

.
−
x2 = −r2sinq1 − sinq2· .

q1 + r2cosq1·cosq2· .
q2,

−
y2 = r2sinq2·sinq1,

.
y2 = r2cosq1·sinq2· .

q1 + r2sinq1·cosq2· .
q2,

−
z2 = l1 + r2cosq2,

.
z2 = −r2sinq2· .

q2,
−
x3 = cosq1(l2sinq2 + r3sin(q2 + q3)),
−
y3 = sinq1(l2sinq2 + r3sin(q2 + q3)),
−
z3 = l1 + l2cosq2 + r3cos(q2 + q3),.

−
x3 = −sinq1(l2sinq2 + r3sin(q2 + q3))

.
q1 + cosq1(l2cosq2 + r3cos(q2 + q3))

.
q2 + r3cosq1cos(q2 + q3)

.
q3,

.
−
y3 = cosq1(l2sinq2 + r3sin(q2 + q3))

.
q1 + sinq1(l2cosq2 + r3cos(q2 + q3))

.
q2 + r3sinq1cos(q2 + q3)

.
q3.

−
z3 = −(l2sinq2 + r3sin(q2 + q3))

.
q2 − r3sin(q2 + q3)

.
q3,

Ixi =
mi
12
(
w2

i + h2
i
)
, Iyi =

mi
12
(
l2
i + h2

i
)
, Izi =

mi
12
(
l2
i + w2

i
)

(20)

where
−
xi,

−
yi,

−
z i,

.
−
xi,

.
−
yi,

.
−
z i are the coordinates of the center of mass for each element of a leg,

and, respectively, their first derivate; and Ixi, Iyi, and Izi represent the inertia tensors of each
leg element.

By using inertia matrix requirement parameters, the inertia matrix elements were
computed by the following equations:
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M11 = r2
2m2 + r2

3m3 + l2
2m3 +

1
12 l2

1m1 +
1
12 w2m1 +

1
12 l2

2m2 +
1
12 w2m2 +

1
12 l2

3m3 +
1

12 w2m3+

2l2r3m3sin(q2 + q3)− cos2(q2)
(
l2
2m3 + r2

2m2
)− r2

3m3cos2(q2 + q3),

M12 = 1
6 l2

2m2 +
1
6 w2m2,

M21 = 1
6 w2m3 +

1
6 l2

3m3,

M22 = r2
2m2 + l2

2m3 + r2
3m3 +

1
12 w2m2 +

1
12 l2

2m2 +
1
12 l2

3m3 +
1
12 w2m3 + 2l2r3m3[sinq2sin(q2 + q3)+cosq2cos(q2 + q3)],

M23 = 2l2r3m3[sinq2 · sin(q2 + q3) + cosq2 · cos(q2 + q3)],

M31 = 1
6 l2

3m3,

M32 = 1
6 w2m3 +

1
6 l2

3m3 + 2r2
3m3,

M33 = r2
3m3 +

1
12 l2

3m3 +
1
12 w2m3.

(21)

The Coriolis matrix was computed using the following equation:

Cij
(
q,

.
q
)
=

3

∑
k=1

Γijk
.
qk =

1
2

3

∑
k=1

(
∂Mij

∂qk
+

∂Mik
∂qj

− ∂Mkj

∂qi

)
.
qk (22)

for which the Γijk parameters are:

Γ111 = Γ122 = Γ123 = Γ132 = Γ133 = Γ212 = Γ213 = Γ221 = Γ222 = Γ231 = Γ312 = Γ313 = Γ321 = Γ323 = Γ331 =

Γ333 = 0,

Γ112 =

(
2l2m3r3(sinq2cos(q2 + q3) + cosq2sin(q2 + q3)) + 2l2

2m3cosq2sinq2+

+2m2r2
2cosq2sinq2 + 2m3r2

3cos(q2 + q3)sin(q2 + q3)

)
.
q2,

Γ113 =
(
2l2m3sinq2cos(q2 + q3) + 2m3r2

3cos(q2 + q3)sin(q2 + q3)
) .
q3

Γ121 =

(
2l2m3r3(sinq2cos(q2 + q3) + cosq2sin(q2 + q3)) + 2l2

2m3cosq2sinq2+

+2m2r2
2cosq2sinq2 + 2m3r2

3cos(q2 + q3)sin(q2 + q3)

)
.
q1,

Γ131 =
(
2l2m3sinq2cos(q2 + q3) + 2m3r2

3cos(q2 + q3)sin(q2 + q3)
) .
q1

Γ211 = −
(

2l2m3r3(sinq2cos(q2 + q3) + cosq2sin(q2 + q3)) + 2l2
2m3cosq2sinq2+

+2m2r2
2cosq2sinq2 + 2m3r2

3cos(q2 + q3)sin(q2 + q3)

)
.
q1,

Γ223 = 2l2m3r3(sinq2cos(q2 + q3)− cosq2sin(q2 + q3))
.
q3,

Γ232 = 2l2m3r3(sinq2cos(q2 + q3)− cosq2sin(q2 + q3))
.
q2,

Γ233 = 4l2m3r3(sinq2cos(q2 + q3)− cosq2sin(q2 + q3))
.
q3,

Γ311 = −(
2l2m3sinq2cos(q2 + q3) + 2m3r2

3cos(q2 + q3)sin(q2 + q3)
) .
q1,

Γ322 = −2l2m3r3(sinq2cos(q2 + q3)− cosq2sin(q2 + q3))
.
q2,

Γ332 = −2l2m3r3(sinq2cos(q2 + q3)− cosq2sin(q2 + q3))
.
q2.

(23)

The last part of the dynamic equation is given by Equation (24), which computed the
gravity effect matrix on the robot leg:

G(q) = N
(
q,

.
q
)
=

∂U
∂q

=

⎡⎢⎣
∂U
∂q1
∂U
∂q2
∂U
∂q3

⎤⎥⎦ (24)

where

U(q) = m1x1g + m1y1g + m1z1g + m2g(x2 + y2 + z2) + m3g(x3 + y3 + z3)
= m1r1g + m2g(l1 + r2cosq2 + r2sinq2(sinq1 + cosq1))+

+m3g(l1 + l2cosq2 + r3cos(q2 + q3) + (sinq1 + cosq1)(l2sinq2 + r3sin(q2 + q3)))
(25)

and its derivative components are:
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∂U
∂q1

= m2r2gsinq2(−sinq1 + cosq1) + m3g(−sinq1 + cosq1)(l2sinq2 + r3sin(q2 + q3))

∂U
∂q2

= m2g(−r2sinq2 + r2cosq2(cosq1 + sinq1))

+m3g[−l2sinq2 − r3sin(q2 + q3) + (sinq1 + cosq1)(l2cosq2 + r3cos(q2 + q3))]
∂U
∂q3

= m3g[−r3sin(q2 + q3) + r3cos(q2 + q3)(sinq1 + cosq1)].

(26)

Using the dynamic control equations, the PID sliding control can be developed, which
computes the torque τ used in the joint motor torque control so that the position vector q
can track the desired trajectory qd. The tracking error vector is defined as:

e = qd − q. (27)

Sliding motion control requires a sliding surface, given by Equation (28), and contains
both the derivative term and the integral one:

s =
.
e + λ1e + λ2

∫ t

0
edt (28)

where λi is a positive diagonal matrix; it turns out that, for s = 0, a stable sliding surface
is obtained (as shown by Shafiei in [12]). The dynamic robot equations can be written by
using the sliding surface equation:

H
.
s = −Cs + f + τd − τ (29)

where

f = H
( ..
qd + λ1

.
e + λ2e

)
+ C

(
.
qd + λ1e + λ2

∫ t

0
edt

)
+ G. (30)

The control module input becomes:

τ = f̂ + Kvs + Ksgn(s) (31)

where

f̂ = Ĥ
( ..
qd + λ1

.
e + λ2e

)
+ Ĉ

(
.
qd + λ1e + λ2

∫ t

0
edt

)
+ Ĝ. (32)

Equation (32) represents a force estimation f, and Kvs = Kv
.
e + Kvλ1e + Kvλ2

∫ t
0 edt

is the outer PID loop; Kv and K are positive diagonal matrices built so that the stability
conditions are fulfilled and guaranteed. The sgn(s) function is the sign function. The
function can also be written as:∣∣∣ f̃

∣∣∣ = ∣∣∣∣H̃( ..
qd + λ1

.
e + λ2e

)
+ C̃

(
.
qd + λ1e + λ2

∫ t

0
e dt

)
+ G̃

∣∣∣∣ ≤ F (33)

where f̃ = f − f̂ , H̃ = H − Ĥ, and G̃ = G − Ĝ. The vector F is:

F =
∣∣∣H̃( ..

qd + λ1
.
e + λ2e

)∣∣∣+ ∣∣∣∣C̃(
.
qd + λ1e + λ2

∫ t

0
e dt

)∣∣∣∣+ ∣∣∣G̃∣∣∣. (34)

To control the system states
(
e,

.
e
)

and to reach the sliding surface s = 0 in a limited
time by staying on the surface, the control law should be formulated so that Condition (35)
is fulfilled:

1
2

d
dt

[
sT Hs

]
< η

(
sTs

) 1
2 , η >0. (35)
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Using the sign function in the control law, high oscillations in the control torque are
found as the undesired phenomenon called chattering. To overcome this drawback, a
saturation function was used (36) for the discontinuous part of the control law:

sat
(

s
ϕ

)
=

⎧⎨⎩
1 s ≥ ϕ
s
ϕ −ϕ < s < ϕ

−1 s ≤ −ϕ

⎫⎬⎭. (36)

As a result, a layer φ around the sliding surface was obtained so that, when the robot
foot trajectory was inside the layer, it remained there. The values of λ1, λ2, K, and Kv were
adjusted to better position the mobile walking robot foot.

6. Hybrid Control Simulation

The simulation was built with the help of MATLAB Simulink software to test the pro-
posed methods and control laws. Figure 10 presents the diagram of the main components
of the hybrid controller. The reference generation block for the OXYZ axis in the Cartesian
space is shown in Figure 11, and the constant generation block defining the walking robot is
presented in Figure 12. All the values were sent to a reference system on the robot structure,
illustrated in Figure 1b. The foot’s vertical position was at a distance of 1.1 m from the
origin set on the robot platform, not the foot.

 
Figure 10. MATLAB Simulink diagram for the hybrid control.

The three lines in Figure 11 represent the reference system as follows: the top signal
(green line) is the reference for the robot foot on the OZ axis, the trapezoidal signal (blue
line) is the reference for the robot foot on the OX axis, and for the OY axis, a zero-value
signal was used (purple line). These three datasets represent the Cartesian position of the
robot foot for a complete cycle of a leg’s walking step. The reference on the OY axis is
the heading direction of the robot and has a trapezoidal shape because the foot is moving
relative to the robot platform.
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Figure 11. Foot reference signals.

 

Figure 12. Constant values.

Figure 13 shows the diagram corresponding to the sliding control method made in
MATLAB Simulink in which all the described elements are found. With their help, the
command signal for the three joint motors was calculated.

Algorithm 1 controlled the kinematic control block. It computed the angular speeds
using the Jacobian matrix and the formula from Equation (8), which provided the angular
reference speed.

Figures 14 and 15 present the simulation diagrams for the two sensors used in deter-
mining which control law should be used at a particular moment in time according to the
switching algorithm based on neutrosophic logic.

Using what was presented in Section 4 regarding the neutrosophic decision, the
neutrosophic control switching block was implemented. It is illustrated in Figure 16 with
its inputs and outputs. The two inputs already described are shown, bringing proximity
and force information into the switching mechanism. In addition to these two, there was a
third input called stable-state, and it provided the block with additional information. When
the robot was homing or reached specific points, it was controlled only by the kinematic
control law. The solution was chosen to save computing power and provide a higher speed
for arriving at the initial position (homing phase).
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Figure 13. The sliding control diagram made in MATLAB Simulink.

Algorithm 1 The kinematic control block

function [Mx, My, Mz, qd]= fcn(Ref _X, Ref _Y, Ref _Z, A1, L2, L3, q1, q2, q3)
fi1 = q1; fi2 = q2; fi3 = q3;
J11 = −sind(fi1)× (L2 × sind(fi2)+L3 × sind(fi2 + fi3));
J12 = L2 × cosd(fi1)× cosd(fi2)+L3 × cosd(fi1)× cosd(fi2 + fi3);
J13 = L3 × cosd(fi1)× cosd(fi2 + fi3);
J21 = cosd(fi1)× (L2 × sind(fi2)+L3 × sind(fi2 + fi3));
J22 = L2 × sind(fi1)× cosd(fi2)+L3 × sind(fi1)× cosd(fi2 + fi3);
J23 = L3 × sind(fi1)× cosd(fi2 + fi3);
J31 = 0;
J32 = −L2 × sind(fi2) −L3 × sind(fi2 + fi3);
J33 = −L3 × sind(fi2 + fi3);
Jb =[J11 J12 J13; J21 J22 J23; J31 J32 J33];
Mx = cosd(fi1)× (L2 × sind(fi2)+L3 × sind(fi2 + fi3));
My = sind(fi1)× (L2 × sind(fi2)+L3 × sind(fi2 + fi3));
Mz = L2 × cosd(fi2)+L3 × cosd(fi2 + fi3)+A1;
M_err =[Ref _X − Mx; Ref _Y − My; Ref _Z − Mz];
JJTde = Jb × Jb′xM_err;
qd = alpha × Jb′ × M_err;
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Figure 14. Proximity sensor simulation.

 

Figure 15. Force sensor simulation.

 

Figure 16. Neutrosophic switching diagram.

The actual neutrosophic switching block followed the detailed conditions
already described.
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7. Experimental Results

Following the simulation results, we observed several things. One of them was that,
to successfully simulate the control law, which was bounded by the interaction between
the support surface and the robot, different conditions were needed by the decision and
control methods. This case was observed during the support phase, for which the robot leg
must hold the entire robot weight and carry out the forward robot motion. The force and
proximity sensors must have values that assumed the support surface contact in actual case
conditions. In contrast, in simulation conditions, if the positioning control error placed the
robot foot slightly above the support surface, then the sensors could affect the control laws
and the entire system. Consequently, the switching mechanism was built with the condition
that switched the control law when there was permanent contact with the support surface.
An example is the homing motion of the foot, for which the robot was controlled only
through the kinematic control method.

Figure 17 presents the reference and position tracking for the robot foot in the oper-
ational space in Cartesian coordinates on the OX axis. The positioning error on the OX
axis is shown in Figure 18. The movement represents the forward direction of motion for
the robot and its legs. Thus, three steps are presented, for which the trapezoidal shape of
the signal represents the forward and retreat motion relative to the robot platform. The
movement was computed according to the reference system relative to the robot platform.
Because the reference was considered in the robot’s operational space, the first coordinate
system was selected at the point where the first joint of the robot was placed.

 

Figure 17. Foot reference and position tracking on the OX axis.

 
Figure 18. Foot positioning error on the OX axis.
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On average, the error on the OX axis was below 1 cm, but there were some spikes in
the error signal. The high amplitude errors were due to the sudden change in the reference
speed, which was used in controlling the angular velocity through the torque of the joint’s
motor. The high amplitude errors were found at the points where the reference changed its
path slope and control type. The error had a more continuous shape when the kinematic
control was in place, and in the case of the dynamic control, the error tended to oscillate.

Figure 19 presents the robot foot’s reference, positioning, and error signals on the OY
axis. The reference value was zero, and the positioning error was less than 1 mm. On
the other two axes, spikes were found in the error signal at the moment when the control
law changed.

 
Figure 19. Foot tracking position on the OY axis.

Figure 20 presents the diagram for the reference and positioning signals of the robot
foot on the OZ axis, which corresponds to the perpendicular axis on the support surface,
meaning the vertical motion. The diagram presents the foot position during the leg’s swing
phase. The leg was positioned on the vertical axis so it would not hit an obstacle or the
support surface. Also, the vertical trajectory of the foot was in the support phase, for
which the reference was zero. The foot followed a continuous and uniform reference value
during the swing phase. In the support and moving-forward phase, a positioning error
was observed. The error may have been due to the platform weight compensating at the
moment the robot foot crossed the point of intersection with the platform center of the
vertical gravity axis. The positioning error became zero on the OZ axis.

 
Figure 20. Foot reference and position tracking on the OZ axis.

Figures 17–21 present, in the same time frame, the motion of the robot leg stepping
three times to move the robot forward. The diagrams show all motion stages for the robot
foot to complete a step. They present reference and tracking signals. The homing occurred

342



Sensors 2022, 22, 3663

in the first second of the simulation, and a high error was observed. In the time interval of
[2–5 s], the leg moved on the vertical axis and forward, controlled by the kinematic control
law to reach a new position for the foot. In the next second of the virtual experiment at
[5–6 s], the control method reached the vertical reference position to allow the robot leg to
support the robot’s weight. Between 6 and 9 s, the leg moved backward in relation to the
robot platform and was controlled by the dynamic SMC method. A different error pattern
is observed in Figures 18 and 21, considering that the robot leg supported the weight at
this stage. After this stage was completed, the next step continued in the same manner,
excluding the homing sequence.

 

Figure 21. Foot positioning error on the OZ axis.

In Figure 21, a maximum error of 4 cm was found at the amplitude peaks and an
average value of 1 cm. The high amplitude values appeared as described above when the
control laws were switched, which is the subject of future work to stabilize the system at the
switch. The error peaks were also due to the sudden shape-change of the reference signal.
By changing from a curve signal to a straight line, the derivative part of the controller
received an extremely high value, which in turn affected the control signal. The influence
should be attenuated or removed entirely in future work.

8. Conclusions

To summarize and conclude the results, Figure 22 presents the robot foot trace in a
3D space with the reference pattern. All three steps overlap in the same diagram. The
coordinates are given in the Cartesian space. The first stage that was easily found was the
homing curve, seen in the lower section of the image. The maximum error was found at the
start or end of a step, where the reference system must be improved to avoid sharp changes
of direction. For the simulation, a fixed Cartesian coordinates system was considered, with
the origin placed in the first joint where the robot top platform joined with to the robot leg.
The shape of the horizontal motion was not uniform. The trajectory had minor errors in
the range of millimeters and hundreds of micrometers when the control method was not
changed, and we considered the shape of the foot trajectory as close to the reference.

Overall, as presented, the dynamic controller was better at following a continuous
reference than a simple positioning kinematic controller. Although the positioning was
more precise when a dynamic-based controller was used, sudden changes were added in
the reference value when changing from a linear trajectory to a half ellipse. Since these were
the points where the decision algorithm should also switch the used control method, these
points of interest became essential areas of disturbance in the system. We will dedicate
our attention to mitigating the reference and switching effects in the reference-tracking
algorithm in future work.
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Figure 22. Foot trace in Cartesian coordinates.

The dynamic controller tended to be slower than the kinematic controller in compen-
sating for the disturbance, but it did not override the PI kinematic controller. Moreover, the
PI kinematic controller oscillated around the reference value when the robot leg was sub-
jected to exterior forces. The gravitational acceleration acted upon the entire leg when high
gains were used inside the control loops to lower the reference tracking time. It resulted
in a high tracking error on the vertical axis during the kinematic control. The reference
tracking time was considered the time difference between the change to the kinematic
control method and until the foot reached the target point, with an error small enough to
consider that the position was reached. The target position was chosen near the support
surface but far enough for the leg to lower its speed before hitting the surface.

A PI kinematic-based controller was used during the swing motion of the robot leg
because high precision was not required to move the robot foot. Instead, a constant foot
speed was needed to reach the point of contact with the support surface in a short time. In
addition, along with the positioning precision, the controller did not need to compensate
for the gravity and inertial forces during the leg and robot motion and could have severe
and undesired consequences in the support phase. Therefore, we concluded that a dynamic-
based controller was required to compensate for all the inertial forces and to better track
the reference.

Finally, the proposed hybrid control efficiently used the two control methods for the
mobile walking robot leg. The biggest problem was found during the transition between
the two control techniques.

The main conclusion of the paper was on the decision algorithm side. By having a two-
stage decision, the information that could be analyzed offline between simulations defined
the outline of the critical decision in each case or phase of the robot. The final algorithm
distinguished between robot motion phases and rejected contradictory conditions at the
online stage.

The consequence of the presented hybrid force/position control with a two-stage
decision algorithm was that it can successfully be used and further developed for other
types of robots or tasks.

Our future work will focus on studies for removing the high peaks of positioning error.
At the same time, new, improved simulations are required to visualize the leg motion cycle.
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Glossary

θi robot leg join rotation
θref robot joint angular position reference
θreal robot joint angular position measured by angular sensors
Δθi leg joint positioning error
ωi joint angular speed
ΔωI joint angular speed error
ri distance from the previous joint axis to the ith leg segment center of mass
li length of the ith leg segment
mi mass of the ith leg segment
Pref position reference of the robot foot
Preal real position of the robot foot
J Jacobian matrix
Jij Jacobian matrix element with coordinates i (row) and j (column)
Fsim simulated ground reaction force
Freal real force given by force sensors placed on robot foot
Fground ground reaction force
d distance from robot foot to the ground given by proximity sensors
si sin(θi)
ci cos(θi)
sij sin(θi + θj)
cij cos(θi + θj)
τP joint torque computed by position control
τF joint torque computed by force control
τ joint torque selected by the decision algorithm
qi leg joint used by the dynamic control method
s sliding surface error in terms of SMC
SMC sliding motion control
Om extension theory object
cm extension theory characteristic
vm extension theory measure
m (C) the neutrosophic generalized basic belief assignment
Dθ a hyperpower set
θC neutrosophic kinematic state
θD neutrosophic dynamic state
θD∪θC neutrosophic uncertain state
θD∩θC neutrosophic contradiction state
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Abstract: The authors proposed an arbitrary order finite-time sliding mode control (SMC) design
for a networked of uncertain higher-order nonlinear systems. A network of n + 1 nodes, connected
via a directed graph (with fixed topology), is considered. The nodes are considered to be uncertain
in nature. A consensus error-based canonical form of the error dynamics is developed and a new
arbitrary order distributed control protocol design strategy is proposed, which not only ensures the
sliding mode enforcement in finite time but also confirms the finite time error dynamics stability.
Rigorous stability analysis, in closed-loop, is presented, and a simulation example is given, which
demonstrates the results developed in this work.

Keywords: arbitrary order sliding mode; networked system; finite-time systems; nonlinear system

1. Introduction

In consensus, locally communicating agents reach an agreement which is mostly met
via distributed control strategies [1]. These agreements (consensus) finds very impressive
applications in formation control [2–4], sensor networks [5], smart grid applications [6], and
rendezvous control of non-holonomic agents [7,8]. In the context of consensus, cooperative
control has been one of the main areas of research, which is subdivided into two main classes
called the leaderless control (for instance; [9]), and the leader–follower control [10,11].
In the leader–follower systems, a distributed control strategy is generally designed for
the followers to follow the leader, which shares information through a properly defined
network topology. Thus far, the leader–follower problems and their solutions via various
methodologies, for electro-mechanical (or second-order) systems, is extensively addressed
in the existing literature (see, for example; [12–19]). Das and Lewis [14,15] developed
distributed laws of adaptive nature for the cooperative tracking of single and double
integrator systems in uncertain scenarios. Nonetheless, the requirement of knowing the
Laplacian matrix’s non-zero eigenvalue limits its applicability. Cooperative control of
higher-order uncertain networked systems was an expansion of [14,15] in Brunovsky form.

The authors, in [11], presented a second-order sliding mode control (SOSMC) technique
for the consensus of a network of higher-order nonlinear systems. Their presented results
were excellent. However, a distributed law was developed to compensate the bounded
uncertainties caused by inputs and states, which raises theoretical concerns. Furthermore,
asymptotic convergence does not ensure consensus accuracy. In [20], second-order linear
networked systems were designed to compensate matched and mismatched uncertain
disturbances. The researchers, in [13], studied a second-order linear network system under
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an unknown disturbance. Furthermore, second-order SMC based distributed laws were
proposed for uncertain second-order linear networked systems in [21] that resulted in
finite time error stabilisation. Their presented results were satisfactory; nevertheless, they
were confined to linear systems with matching uncertainty. Furthermore, this algorithm
demonstrated sensitivity to perturbations during the reaching phase.

An integral SMC law with an extended observer and neural networks was developed
to estimate and compensate the uncertain disturbance of matched type, respectively.
A distributed control approach based on integral sliding modes (ISM) and subject to fixed
topology and the directed graph was devised for uncertain nonlinear networked systems
under matched uncertainties [22]. This technique alleviates the reaching phase, resulting
in increased robustness. It was, nonetheless, confined to electromechanical systems. In
terms of applications, Ref. [23] proposed adaptive formation control algorithms for a class
of non-holonomic mobile robots. These approaches mainly focused on the stability of
a network of linear and nonlinear second-order agents even in bounded uncertainties.
However, their performance can be affected due to the existence of all system dynamics in
the sliding manifold.

To maintain the convergence of finite-time consensus mismatches at zero, a distributed
control system based on a terminal sliding mode control (TSMC) technique was devised.
However, the existence of the singularity in the surface may reduce its significance [24,25].
In [12], an uncertain network of first-order Multi Input Multi-Output (MIMO) systems
was focused where neural networks (NNs) were utilized for the uncertain dynamic
estimation. In order to alleviate the approximation error, a robustness signal was also
used. Nevertheless, it was ultimately bounded. The control researcher, in [26], investigated
uncertain MIMO second-order networked systems with a fixed topology and undirected
graph and developed a distributed TSMC, based on Chebyshev Neural Networks (CNNs),
to compensate the external disturbances and uncertain dynamics. An approach based on
NNs was designed to estimate the uncertain input channels and drift terms and compensate
the uncertainties. Nevertheless, this strategy was influential in the asymptotic stability of
tracking error dynamics to the limited neighborhood of the origin. Ref. [27] investigated
networked MIMO higher-order systems for synchronization applications. While applying
NNs, these MIMO agents were controlled through the unknown non-singular control gains.
The limits of the error dynamics may not have been easily decreased by modifying the
controller gains. The control gains must be properly selected to guarantee the asymptotic
convergence. Ref. [28]’s methodology was enhanced in [29] by including a neuro-adaptive
sliding mode strategy. However, this led to several limitations, such as the fact that the
boundedness of the approximated NNs’ weights cannot always be ensured using the
proposed tuning laws. Additionally, ensuring the boundedness of the control input is
quite challenging.

At this stage, it was realized to develop a terminal sliding mode like a strategy that
must confirm finite time error dynamics convergence and show robustness to cross-coupling
of the agents and matched disturbances from the very beginning. Therefore, this paper
studies the cooperative tracking control of higher-order nonlinear systems subject to
uncertainties like parametric variations and matched bounded disturbances. The distributed
control laws are developed on novel sliding surfaces of the error dynamics. The designed
sliding manifold, which involves some discontinuous terms of the errors, seems analogous
to the proportional-integral type, which helps in the elimination of the critical reaching
phase. Consequently, robustness is guaranteed from the very start. Having established
sliding modes, the error dynamics seem analogous to terminal attractor like in [30] which
exhibits finite convergence. Thus, all the error dynamics converge in finite time, which
results in high precision. In addition, our proposed work solves the theoretical shortcoming
of [11] and the uncertain terms are now depending on the states information of the agents.
The rest of the paper is organised as follows: Section 2 is about the problem formulation and
mathematical preliminaries. In Sections 3 and 4, the detailed controller design procedure
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and the stability analysis are discussed, respectively. The illustrative example is mentioned
in Section 5. Finally, Section 6 concludes the article.

2. Problem Formulation

Definitions

In this study, a network of n + 1 nodes is considered which share information via a
directed graph (with fixed topology). These networked nodes include one leader and n
followers. The followers are assumed under the action of uncertainties. The following state
space equations represent the dynamical model of an ith follower:

ẋij =xij+1

ẋin = fi(xi) + gi(xi)ui + Δi(xi, t)
(1)

where i = 1, 2, . . . , n, j = 1, 2, . . . , n − 1, xi = [xi1, xi2, . . . , xin]
T ∈ �n is the measurable state

vector, Δi(xi, t) is the uncertainty, ui represents the control input which is to be applied
to the system, and fi and gi are the system distribution and drift functions, respectively.
For the sake of the detailed description, the following assumptions are made:

Assumption 1. It is assumed that gi(xi) ∀ xi ∈ �n is non singular, which will guarantee the
controllability of each network agent.

Assumption 2. The uncertainty Δi(xi, t) is assumed to be norm bounded i.e.,

||Δi(xi, t)|| ≤ Ci (2)

where i = 1, 2, . . . , n, ||.||, and Ci represents Euclidean norm and a positive constant, respectively.

The leader is governed by the following state space model:

ẋ0r =x0r+1,

ẋ0n = f0(t, x0)
(3)

where r = 1, 2 . . . , n − 1, x0 = [x01, x02, . . . , x0n]
T ∈ �n is state vector of the leader and

f0(t, x0) is the continuous bounded function, which derive the leader. Suppose that
the origin is an equilibrium for f0(t, x0) i.e., f0(t, 0) = 0 and the nonlinear function
f0(t, x0) (leader driving force) is considered to be bounded and smooth. The vector set
V = {V0,V1, . . . ,Vn} represents the relationship between the leader and the follower nodes
while G = {V , E} is the related directed graph in which node i can transfer data with
node j, but node j cannot send back the information to node i. On the other hand, in an
undirected graph, both way communication takes place. The mathematical expression for
the adjacency matrix is given as follows:

Ai =

⎡⎢⎢⎢⎢⎢⎣
0 0 . . . 0

a10 a11 . . . a1n
a20 a21 . . . a2n
... . . .

. . .
...

an0 an1 . . . ann

⎤⎥⎥⎥⎥⎥⎦
Subgraph Ḡ = {V̄ , Ē} can be obtained by dropping the first row and first column of

the above adjacency matrix; thus, one has
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Āi =

⎡⎢⎢⎢⎣
a11 a12 . . . a1n
a21 a22 . . . a2n

. . . . . .
. . .

...
an1 an2 . . . ann

⎤⎥⎥⎥⎦
The Laplacian matrix for the followers topology is defined to be L̄ = D̄ − Ā ∈ �n×n,

where D = diag[d̄1, d̄2, . . . , d̄n] with d̄i = ∑n
j=1 aij. In addition, note that aij = 0 if (Vj,Vi) �∈

E and aij = 0 otherwise. The matrix B̄ = diag[b1, b2, . . . , bn] shows the connection between
the followers and the leader with bi = 0 if the follower is not connected to the leader and
bi = 1 in case of the connection to the leader. A is time-invariant throughout the paper.
Since we are considering a directed graph, matrix A is not necessarily to be symmetric.
In contrast, in the case of the undirected graph, the symmetry is necessary for A. L̄ + B̄
must be non-singular for the distributed control of all the networked agents. Similarly, D̄
remains non-singular.

The main objective of the current work is that the follower states must have consensus
with the leader states (in other words, the followers must follow the leader). In order to
complete the task, the consensus error between the leader and the ith follower must be
forced to zero. Therefore, the consensus error is defined as follows:

eik =
n

∑
j=1,j �=i

aij(xik − xjk) + bi(xik − x0k) (4)

where k = 1, 2, .., n. Based on the consensus error Equation (4), the consensus error
dynamics can be expressed as follows:

ėi1 = ei2

ėi2 = ei3

...

ėin =

(
n

∑
j=1,j �=i

aij + bi

)(
fi(x) + gi(x)ui

)
−

n

∑
j=1,j �=i

aij

(
f j(x) + gj(x)uj

)
− bi f0(x, t) + hi(x, t)

(5)

with

hi(x, t) =

(
n

∑
j=1,j �=i

aij + bi

)
Δi(x, t)−

n

∑
j=1,j �=i

aijΔj(x, t)

representing the uncertainty terms in lumped form. In this equation, it is clearly shown
that the uncertainties depends only on the system states.

Remark 1. The compact form of (5) can also be written in the following form:

Σ̇1 =Σ2

Σ̇2 =Σ3

...

Σ̇n =
(

L̄ + B̄
)(

f (x) + g(x)u + Δ(x, t)− 1̄ f0(t, x)
)

(6)

where
Σ1 = [e11, e21, e31, . . . , en1],

Σ2 = [e12, e22, e32, . . . , en2],
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...

Σn = [e1n, e2n, e3n, . . . , enn],

and f (x) = [ f1(x1), f2(x2), . . . , fn(xn)]T, g(x) = diag[g1(x1), g2(x2), . . . , gn(xn)],
1̄ = [11 . . . 1]T, u = [u1, u2, . . . , un]T and Δ(t, x) = [Δ1(t, x1), Δ2(t, x2), . . . , Δn(t, xn)]T.

Now, the problem at hand becomes an error regulation problem which will, in other
words, provide a consensus among the leader and n followers. The task can be accomplished
by a robust nonlinear sliding mode strategy which will nullify the effects of uncertain terms
and will ensure finite time error dynamics convergence. In the following section, a novel
finite-time sliding mode strategy is presented.

3. Control Problem Design

The main task here is to drive the error dynamics (5) states to the equilibrium in
the presence of disturbances. To achieve this goal, a novel sliding surface based sliding
mode control protocol is presented. The proposed sliding surface helps in the finite time
convergence of the consensus error dynamics (5) to equilibrium and also establishes finite
time sliding mode. The newly proposed sliding surface, for follower i, can be defined
as follows:

si = (ein +
n−1

∑
j=1

aijeij) +
∫ t

0

n

∑
j=1

(
bij|eij|αij sign(eij) + cij|eij|βij sign(eij)

)
dτ (7)

In expanded form, this surface can be defined as follows:

si = ein + ai1ei1 + ai2ei2 + . . . + ai(n−1)ei(n−1)

+
∫ t

0
(bi1|ei1|αi1 sign(ei1) + . . . + bin|ein|αin sign(ein)

+ci1|ei1|βi1 sign(ei1) + . . . + cin|ein|βin sign(ein)
)

dτ

(8)

Remark 2. In the above Equation (8), the terms αi and βi are chosen as follows [31]:

αi−1 =
αiαi+1

2αi+1 − αi
, βi =

βiβi+1

2βi+1 − βi

where αn+1 = 1, αn = α and βn+1 = 1, βn = β, α, β ∈ �. In addition, αi ∈ (0, 1) and
βi ∈ (1, 1+ ∈) where ∈> 0.

By taking the derivative of the above equation, one may obtain the following expression:

ṡi = ėin + ai1 ėi1 + ai2 ėi2 + . . . + ai(n−1) ėi(n−1)

+ (bi1|ei1|αi1 sign(ei1) + . . . + bin|ein|αin sign(ein)

+ci1|ei1|βi1 sign(ei1) + . . . + cin|ein|βin sign(ein)
) (9)

Substituting the values from (5) in (9), it becomes as follows:
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ṡi = (
n

∑
j=1,j �=i

aij + bi)( fi(x) + gi(x)ui)

−
n

∑
j=1,j �=i

aij( f j(x) + gj(x)uj)− bi f0(x, t) + hi(x, t)

+ ai1ei2 + ai2ei3 + . . . + ai(n−1)ein

+ bi1|ei1|αi1 sign(ei1) + . . . + bin|ein|αin sign(ein)

+ ci1|ei1|βi1 sign(ei1) + . . . + cin|ein|βin sign(ein)

(10)

Now, our objective is to calculate the equivalent control law [29], to ensure the
Filippove sense solutions [32] in sliding modes. Posing ṡi = 0 and calculating for ui,
while, assuming hi(x, t) = 0, one may obtain

ui(eq) =
(
(

n

∑
j=1,j �=i

aij + bi)gi

)−1 ×
(
−(

n

∑
j=1,j �=i

aij + bi) fi

+
n

∑
j=1,j �=i

aij( f j + gjuj) + bi f0(x, t)

− ai1ei2 − ai2ei3 − . . . − ai(n−1)ein

− bi1|ei1|αi1 sign(ei1)− . . . − bin|ein|αin sign(ein)

−ci1|ei1|βi1 sign(ei1)− . . . − cin|ein|βin sign(ein)
)

(11)

This control component governs the system trajectories exactly on the sliding surface
si = 0 [1]. To ensure the robustness against uncertainties of a matched kind, the overall
control law is considered as an algebraic sum of the aforementioned equivalent control
component and a discontinuous control component i.e.,

ui = ui(eq) + ui(dis) (12)

where
ui(dis) = −Kisign(si) (13)

with Ki being the switching gain. Thus, the final distributed control protocol can be
obtained by putting (11) and (13) in (12). The control law defined in (12) ensures the
convergence of system states to zero in finite time. The following stability analysis presents
the detailed presentation of sliding mode enforcement and the finite-time convergence of
the system states.

4. Stability Analysis

Now, at this stage, it is necessary to present the stability of the proposed control
protocol in a close loop under the effect of the uncertainty. Therefore, the following theorem
is stated.

Theorem 1. The finite sliding mode can be enforced along the nonlinear sliding surface (8) by the
control protocol (12). If the switching gain is chosen as follows

Ki ≥ |hi(x, t)|+ η,

the trajectories of (5) also converge in finite time to the equilibrium.

Proof. A Lyapunov function of the following form is considered to prove the theorem:

vi(si) =
1
2

s2
i (14)
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The time derivative of (14) along (10) becomes

v̇i(si) = si ṡi

v̇i(si) =si

(( n

∑
j=1,j �=i

aij + bi

)
( fi(x) + gi(x)ui) −

n

∑
j=1,j �=i

aij( fi(x) + gi(x)ui)

− bi f0(x, t) + hi(x, t) + ai1ei2 + ai2ei3 + . . . + ai(n−1)ein

+ bi1|ei1|αi1 sign(ei1) + . . . + bin|ein|αin sign(ein)

+ ci1|ei1|βi1 sign(ei1) + . . . + cin|ein|βin sign(ein)
)

(15)

Incorporating (12) in (15) (with components in (11) and (13)), it reduces to

v̇i(si) = si(hi(x, t)− Kisign(si))

v̇i(si) = sihi(x, t)− siKisign(si) (16)

Using the identity sisign(si) = |si|, (16) becomes

v̇i(si) = sihi(x, t)− Ki|si|

v̇i(si) ≤ |si||hi(x, t)| − Ki|si|
v̇i(si) ≤ −|si|(Ki − |hi(x, t)|) (17)

The sliding mode along (8) can be ensured, if one chooses

Ki − |hi(x, t)| ≥ ηi > 0 (18)

Ki ≥ |hi(x, t)|+ ηi

where ηi refers to small positive constants. Thus, using (18), (17) becomes

v̇i = −ηi|si|

v̇i ≤ −
√

2ηivi
1/2 (19)

The time ts taken for the trajectory of the proposed system to reach the sliding surface
can be found by integrating (19) as

ts ≤ 1
2η̄i

ln
(

η̄iv
1
2 si(0)

)
: where η̄i =

√
2ηi

This equation certifies the finite time convergence of sliding mode along (8) [33]. The
establishment of sliding mode along (8) means that the system trajectories now evolve on
the manifold si = 0. Thus, one may have

ein + ai1ei1 + ai2ei2 + . . . + ai(n−1)ei(n−1)

+
∫ t

0
(bi1|ei1|αi1 sign(ei1) + . . . + bin|ein|αin sign(ein)

+ci1|ei1|βi1 sign(ei1) + . . . + cin|ein|βin sign(ein)
)

dτ = 0

(20)

Equation (20) can also be written as
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ėin + bin|ein|αin sign(ein) + cin|ein|βin sign(ein)

+ (ai(n−1) ėi(n−1) + bi(n−1)|ei(n−1)|αi(n−1) sign(ei(n−1))

+ ci(n−1)|ei(n−1)|βi(n−1) sign(ei(n−1)) + . . . + ai1 ėi1

+ bi1|ei1|αi1 sign(ei1) + ci1|ei1|βi1 sign(ei1) = 0

(21)

Equation (21) holds only if

ėin + bin|ein|αin sign(ein) + cin|ein|βin sign(ein) = 0

ėi(n−1) +
bi(n−1)

ai(n−1)
|ei(n−1)|αi(n−1) sign(ei(n−1))

+
ci(n−1)

ai(n−1)
|ei(n)|βi(n−1) sign(ei(n−1)) = 0

...

ėi1 +
bi1
ai1

|ei1|αi1 sign(ei1) +
ci1
ai1

|ei1|βi1 sign(ei1) = 0 (22)

These equations in (22) are finite time stable terminal attractors [30], which confirm
that eij → 0 in finite time and stays at zero for all subsequent times. This proves the
theorem.

5. Illustrative Example

This design strategy presented above is validated in this section via the simulation
study of a numerical example. The example is conducted according to the topology shown
in Figure 1, which consists of one leader and four followers. The leader and the followers,
considered here, are governed by third-order uncertain systems. In addition, the agents
are operated under uncertainties of the matched kind. The descriptions of the considered
systems are presented in the following study.

Figure 1. Topology of the system network of one leader and four followers.

5.1. Systems Description

The dynamics of the leader are

ẋ01 =x02

ẋ02 =x03

ẋ03 =− x02 − 2x03 + 1 + 3 sin(2t) + 2 cos(2t)

(23)
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The governing equations of the followers are written as follows:

ẋ13 = x12 sin(x11) + cos2(x13) + (0.1 + x2
12)u1 + ξ1

ẋ23 = −x21x22 + 0.01x21 − 0.01x2
21 + (1 + sin2(x21))u2 + ξ2

ẋ33 = x32 + sin(x33) + (1 + cos2(x32))u3 + ξ3

ẋ43 = −3(x41 + x42 − 1)2(x41 + x42 + x43 − 1)− x42

− x43 + 0.5 sin(2t) + cos(2t) + (1 + 0.5x2
42)u4 + ξ4

(24)

where the term ξi represents the matched uncertainties in the follower dynamics. That is,
ξ1 is matched uncertainty in follower 1 and so on.

Since the graph is directed, so the Laplacian and adjacency matrices are written
as follows:

A =

⎡⎢⎢⎢⎢⎣
0 0 0 0 0
0 0 1 1 1
0 0 0 1 0
1 0 1 0 0
1 0 0 0 0

⎤⎥⎥⎥⎥⎦ L̄ =

⎡⎢⎢⎣
3 −1 −1 −1
0 1 −1 0
0 −1 1 0
0 0 0 0

⎤⎥⎥⎦
and

B̄ = diag[0, 0, 1, 1]

The main task here is that the followers should follow the leader trajectory. For achieving
this task, one needs to design a controller by following the steps mentioned in the previous section.

5.2. Controller Design

Since four followers and one leader are considered, the consensus errors, which will
be steered to zero, are therefore defined as follows:

eij =
4

∑
j=1

aij(xi1 − xj1) + bi(xi1 − x01); i = 1, 2, 3, 4

The related sliding manifolds are defined as follows:

si = ei4 + ai3ei3 + ai2ei2 + ai1ei1+∫ t

0
bi1|ei1|αi1 sign(ei1) + . . . + bi4|ei4|αi4 sign(ei4)

+ ci1|ei1|βi1 sign(ei1) + . . . + ci4|ei4|βi4 sign(ei4)dτ

(25)

where i = 1, 2, 3, 4.
The expression for controllers are given below

u1 =
(
(

4

∑
j=1,j �=i

a1j + b1)gi

)−1 ×
(
−(

4

∑
j=1,j �=i

a1j + b1) f1 +
4

∑
j=1,j �=i

a1j( f1 + g1u1)

+ b1 f0(x, t)− a11e12 − a12e13 − . . . − a13e14

− b11|e11|α11 sign(e11)− . . . − b14|e14|α14 sign(e14)

−c11|e11|β11 sign(e11)− . . . − c14|e14|β14 sign(e1n)
)

− u1(dis)

(26)
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u2 =
(
(

4

∑
j=1,j �=i

a2j + b2)g2

)−1 ×
(
−(

4

∑
j=1,j �=i

a2j + b2) f2+
4

∑
j=1,j �=i

a2j( f2 + g2u2)

+ b2 f0(x, t)− a21e22 − a22e23 − . . . − a23e24−
b21|e21|α21 sign(e21)− . . . − b24|e24|α24 sign(e24)−
c21|e21|β21 sign(e21)− . . . − c24|e24|β24 sign(e24)

)
− u2(dis)

(27)

u3 =
(
(

4

∑
j=1,j �=i

a3j + b3)g3

)−1 ×
(
−(

4

∑
j=1,j �=i

a3j + b3) f3 +
4

∑
j=1,j �=i

a3j( f3 + g3u3)

+ b3 f0(x, t)− a31e32 − a32e33 − . . . − a33e34−
b31|e31|α31 sign(e31)− . . . − b34|e34|α34 sign(e34)−
c31|e31|β31 sign(e31)− . . . − c34|e34|β34 sign(e34)

)
− u3(dis)

(28)

u4 =

(
(

4

∑
j=1,j �=i

a4j + b4)g4

)−1

×
(
−(

4

∑
j=1,j �=i

a4j + b4) f4 +
4

∑
j=1,j �=i

a4j( f4 + g4u4)

+ b4 f0(x, t)− a41e42 − a42e43 − . . . − a43e44−
b41|e41|α41 sign(e41)− . . . − b44|e44|α44 sign(e44)−
c41|e41|β41 sign(e41)− . . . − c44|e44|β44 sign(e44)

)
− u4(dis)

(29)

These distributed control algorithms are used in the closed-loop, and the consensus
with the leader trajectories is met, which will be discussed below.

5.3. The Simulation Results’ Discussion

The network of the four followers agents and one leader, which we are sharing
information through the network topology shown in Figure 1 are simulated under the
action of the distributed control protocols designed above. The leader and followers
were initialized from different initial conditions, and the controller’s gains were chosen
according to the values reported in Table 1. The simulations are performed in the MATLAB
environment while using an S-function. The numerical solver is used with a fixed step
Euler Method with a step size of 0.01 s.

All the followers were operated under the influence of time-varying sinusoidal disturbances
to show the robustness of the proposed distributed control protocols. The consensus in positions,
velocities, and accelerations among the followers and leader is displayed in Figures 2–4,
respectively. The corresponding position errors convergence, velocities error convergence,
and accelerations’ errors convergence are shown in Figures 5–7, respectively. It is obvious that
the consensus armong the states of leader and followers is quite fascinating even in the presence
of disturbances.
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Table 1. Parameters of the controllers used in the simulation.

α11 α12 α13 α14 α21 α22 α23 α24

0.5 0.2 0.02 0.22 0.12 0.32 0.12 0.02

α31 α32 α33 α34 α41 α42 α43 α44

0.3 0.32 0.42 0.22 0.12 0.12 0.21 0.22

β11 β12 β13 β14 β21 β22 β23 β24

0.01 0.22 0.22 0.32 0.22 0.32 0.12 0.42

β31 β32 β33 β34 β41 β42 β43 β44

0.5 0.02 0.42 0.22 0.2 0.52 0.42 0.52

b11 b12 b13 b14 b21 b22 b23 b24

15 21.2 15.2 15.2 25.2 8.2 15.2 6.2

b31 b32 b33 b34 b41 b42 b43 b44

10 20.2 25.2 81.2 14.2 4.2 25.2 23.2

c11 c12 c13 c14 c21 c22 c23 c24

5.4 25.2 15.2 35.2 45.2 18.2 15.2 25.2

c31 c32 c33 c34 c41 c42 c43 c44

5.6 2.2 15.2 5.2 25.2 8.2 22.2 6.2
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Figure 2. Position consensus of the four followers with leader position trajectory.
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Figure 3. Velocity consensus of the four followers with leader velocity trajectory.

Figure 8 shows the control effort history of each control input. Under the proposed
control algorithm, one may obtain almost noise-free control, which reduces chattering
(because the noises also cause chattering). The relevant sliding manifolds, which ensure
that sliding mode from the very start (as shown in Figure 9) converges to zero in finite time,
which ensures the robustness of the designed controller. Having looked at the simulation
results, it is evident that the newly designed control protocols offer excellent benefits in
terms of robust consensus established from the beginning, which is an appealing attribute
of the proposed design. Hence, it is important to conclude that this protocol design is
suitable for the consensus of higher-order systems operating under uncertain conditions.
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Figure 4. Acceleration consensus of the four followers with leader acceleration trajectory.
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Figure 5. Position errors’ convergence.
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Figure 6. Velocity errors’ convergence.
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Figure 7. Acceleration errors’ convergence.
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Figure 8. Control inputs’ history.
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Figure 9. The sliding manifolds convergence from the very start time.

6. Conclusions

In this paper, a network of higher-order nonlinear uncertain agents was considered.
The network topology was fixed and was based on a directed graph. The main task was
to meet consensus among the leader and n followers. For this purpose, consensus error
dynamics were developed, and a novel sliding surface, analogous to proportional-integral
type, was considered. The designed control protocol was capable enough to establish
sliding mode along the designed sliding surface from the very beginning. In sliding mode,
the error dynamics evolved with full states, which were governed by terminal attractors [27].
This confirmed the finite-time consensus errors convergence to equilibrium. This finite
time convergence generally results in high precision. In addition, robustness was enhanced
from the very beginning because of the reaching phase elimination. Rigorous mathematical
stability analysis is presented, and the simulation results are presented to illustrate the
benefits of the newly designed distributed control protocols. The results confirmed that the
newly designed law is an interesting candidate for higher-order uncertain systems.
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Abstract: Industry 4.0 smart manufacturing systems are equipped with sensors, smart machines, and
intelligent robots. The automated in-plant transportation of manufacturing parts through throwing
and catching robots is an attempt to accelerate the transportation process and increase productivity
by the optimized utilization of in-plant facilities. Such an approach requires intelligent tracking and
prediction of the final 3D catching position of thrown objects, while observing their initial flight
trajectory in real-time, by catching robot in order to grasp them accurately. Due to non-deterministic
nature of such mechanically thrown objects’ flight, accurate prediction of their complete trajectory
is only possible if we accurately observe initial trajectory as well as intelligently predict remaining
trajectory. The thrown objects in industry can be of any shape but detecting and accurately predicting
interception positions of any shape object is an extremely challenging problem that needs to be
solved step by step. In this research work, we only considered spherical shape objects as their3D
central position can be easily determined. Our work comprised of development of a 3D simulated
environment which enabled us to throw object of any mass, diameter, or surface air friction properties
in a controlled internal logistics environment. It also enabled us to throw object with any initial
velocity and observe its trajectory by placing a simulated pinhole camera at any place within 3D
vicinity of internal logistics. We also employed multi-view geometry among simulated cameras
in order to observe trajectories more accurately. Hence, it provided us an ample opportunity of
precise experimentation in order to create enormous dataset of thrown object trajectories to train an
encoder-decoder bidirectional LSTM deep neural network. The trained neural network has given the
best results for accurately predicting trajectory of thrown objects in real time.

Keywords: real-time trajectory prediction; mechanically thrown objects; internal logistics; smart
manufacturing systems; multi-camera simulation; many-to-many time series forecasting; encoder-
decoder bidirectional LSTM deep neural networks

1. Introduction

Smart manufacturing system is a modern form of production system which consists of
industrial robots, numerically controlled machines, sensors, and standalone systems such as
inspection machines. It uses semi-dependent workstations and material handling systems
designed to efficiently manufacture more than one type of part ranging from low to medium
volume [1]. The use of computer-controlled machines and robots in the production segment
of manufacturing industries promises a variety of benefits ranging from high utilization to
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high productivity volume [2]. Replacing people with industrial robots is the long lasting
demand of production systems. In order to cope up with this demand, industrial robots
are going to be common in factories day by day, and a lot of work has been carried out in
this dimension. However, still there is big horizon to explore in the domain of intelligent
industrial robots. There is no single definition of intelligence, but the main features that
characterize intellectual ability are judgment and adaptation of environment as well as
on-the-spot solving of newly occurring problems. The work at hand is a step towards
this dimension. Realizing the importance of manufacturing systems especially internal
logistics (transportation of parts during manufacturing within the plant), it investigates
a new approach for material transport within flexible manufacturing systems by a throw
and catch technique implemented by intelligent industrial robots sensing through multiple
cameras.

The aim of this research work is to explore the fastest way of transportation of parts as
well as the optimum usage of the workspace of manufacturing plants, which can ultimately
reduce manufacturing costs. Being the most direct connection between two places, the
approach of throw and catch should be the fastest possibility for transportations. The basic
principle of this transport approach is that a work piece in manufacturing plant is thrown
by a robot to the subsequent workstation where it has to be caught by another robot. The
catching is performed with a gripper so that the work piece can be handled variably in
further production process steps. This approach is shown in Figure 1.

Figure 1. Automated in-plant logistics in industry 4.0 by intelligent throwing-catching robots at
different workstations (using different altitude routes).

By applying throw-catch approach for transportation of objects in production systems,
the fully automation can be achieved in flexible manufacturing systems which lead to the
following advantages:

• Fast transportation
• Productivity increase
• Flexibility
• Optimized utilization of facilities
• Improved safety

The hurdle to implement this approach in industries so far is lack of intelligence in
catching robot, as in industrial applications there are many kinds of unsymmetrical objects
that can be thrown. Also, the exact position, angle and acceleration of thrown objects is not
always known. Furthermore, air resistance and gravitational force are additional factors
that influence the flight trajectory of such thrown objects. Due to these non-deterministic
parameters, it is not possible to exactly determine the catching location of such thrown
objects.
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The flight trajectory of a mechanically thrown object can be observed by using optical
sensors (i.e., cameras). However, there can be observational errors depending upon the
number and positioning of the cameras. We can minimize this observational error if we
have multi-camera view by appropriate number of cameras placed at optimum positions
in internal logistics settings. Furthermore, enough experimentation of throws is required in
order to gain a large dataset to train a supervised machine learning algorithm. In order to
gain such dataset, we developed a 3D simulated environment in which a spherical object
of any properties (such as mass, diameter, surface air friction, etc.) can be thrown with
any initial parameters (initial position, acceleration, throwing angle, etc.) and its trajectory
can be captured by a simple pinhole camera placed anywhere within the simulated 3D
environment. We used a pinhole camera model for our simulation since perspective
projection of most of the modern cameras can be described well by the pinhole camera
model [3]. We also employed multi-view geometry among simulated cameras in order
to observe trajectories more accurately. Hence it provided us an ample experimentation
opportunity in order to create enormous dataset of thrown object trajectories to train any
machine learning algorithm.

LSTM deep neural networks provided best results in forecasting time series data [4–7]
such as the flight trajectory data in our research problem. However, this algorithm had
never been applied in this particular problem of predicting mechanically thrown objects’
trajectories. The reason is that such algorithms are data hungry and they need an enormous
training in order to have good learning (this is not always possible physically due to
limitations of practical settings). However, our simulation made it possible to have enough
experimentation of throwing objects with multiple variations as well as having sufficiently
captured images within very short time period of thrown object’s flight. Moreover, during
experimentation, the observed trajectory’s intercepting positions are more accurate by
applying multi-view geometry.

Our trained encoder-decoder bidirectional LSTM deep neural network has given the
best results for predicting trajectory of thrown objects in real time. During testing of our
model, the actual intercepting positions of the trajectory are compared with predicted
intercepting positions. The next section presents the research work carried out in both
academia and industries in this particular problem. Then, in Section 3, our proposed
methodology is explained in detail. Afterwards, Section 4 gives testing results to assess
successfulness of our work. Finally, Section 5 concludes this research work and gives some
future directions.

2. Related Work

The first attempt to apply throwing and catching robots for internal logistics was made
in 2006 [8] as a collective attempt by department of Electrical Engineering of Reinhold
Würth University Germany and the PMD technologies Germany. This approach has
advantages of high flexibility and few resources requirement [9]. Since the acceptance of
approach is still not very high for real applications today, certain challenges have to be
solved to make it applicable. Such challenges, as summarized in [8], are as follows:

• Mechanically throwing or shooting of objects;
• Tracking of the catching device;
• Catching mechanically thrown objects;
• Detecting thrown object on its trajectory

Work already conducted in production systems with respect to each challenge is
described below.

2.1. Mechanically Throwing or Shooting of Objects

Heinz Frank and his team developed a prototype [10] of a mechanical throwing device
responsible for throwing circular objects in production systems. Through this device,
the characteristics for the acceleration of the objects can be modified only by mechanical
settings. With this device, circular objects with masses up to 70 g are thrown with speeds up
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to 10 m/s over distances up to 3 m. The spring of this throwing device can be compressed
with a hydraulic jack and it can be released with a solenoid. Different accelerations of
circular object can be set by variation in compression strength and that can be made by
changing the distance between the bearing and solenoid.

In [11], Smith, C. and Christensen, H.I. have demonstrated a mechanical ball launcher
which was used to throw soft juggling type ball with nearly 6 m/s velocity and they used
it in their ball catching experiments where it was placed at the distance of approximately
4 m from the catching robot. Heinz Frank continued this work with cylindrical objects
and, in [12], he along with his team introduced another throwing device that could throw
cylindrical shaped objects over distances of about 3 m. In this throwing device, a pneumatic
cylinder drives over an arm with leverage which can accelerate the object. The speed of
throwing can be controlled with the pressure for the cylinder. It is able to throw cylinders
with masses up to 100 g and of diameters up to 100 mm. Moreover, the cylinders thrown
through this device maintain stable orientation and high targeted precision.

2.2. Tracking of the Catching Device

In [8], Objects to be transported are thrown in x-direction towards catching device.
So, in order to catch objects, the capturing device only needs to move in two motion
axes (y-axis and z-axis). 3D video camera is attached on capturing device. It can detect
thrown object within its field of observation in intervals of 20 ms so with a flight time of
300 ms, 15 positions can be collected with this camera within the range of 3 m. It means,
position is measured by camera after nearly 200 mm distance in x-axis (Δx). The accuracy
in measurement of position can be judged by distance to the camera. As the distance of
object from camera reduces, there is more precision in camera measured position of object.
These factors are considered to track catching device. In [13], Cartesian robot is proposed
as capturing device. This robot can move in y and z-axis. The vision is made is through a
single camera mounted at top of robot. As the ball comes nearer to robot, its more precise
capturing position can be predicted. Hence, the robot is moved accordingly to capture the
object.

2.3. Catching Mechanically Thrown Objects

To catch fast flying objects in production systems, grippers are required which should
have the closing time of less than 10 ms [13]. These grippers can have one or many jaws so
that objects of many shapes can be captured. In [14], two types of grippers are proposed to
capture flying objects in production systems. First type of grippers is that which use kinetic
energy of the flying object to close the gripper. When the flying object enters into the jaw of
gripper, it impacts a ram which pushes the lever and the lever closes the gripper without
any reaction-delay. After that, object can be released by a linear drive in slow movement
through the slope. The second type of grippers is mechanical in nature. With such grippers,
the jaw is closed by a pre-stressed rotary spring. The closing movement is released by a
ram. When flying object enters into jaw of gripper, the ram is pushed that pulls lever and
rotary spring catches the flying object. This gripper is better for light weight objects. It is
the kind of gripper that is used as a capturing device for a Cartesian robot in [13].

2.4. Detecting Mechanically Thrown Object on Its Trajectory

There are several challenges for tracking of thrown objects such as continuously chang-
ing background, aerodynamic stability and dynamic appearance throughout flight [15]. In
order to meet these challenges, a lot of work had already been carried out. Most of the work
is in sports domain such as soccer [16,17], cricket [18,19], basketball [7,20], tennis [21], and
ping-pong playing robots [22–25]. Some work is also carried out for catching robots such
as the work in [26] for a ball catching robot where a ball 8.5 cm in diameter was wrapped
in retro-reflective foil and its flight trajectory was observed through stereo triangulation
by two cameras mounted as the eyes of a catching humanoid robot. The reflective foil
made ball more fluorescent, and hence it was easily detectable by humanoid robot. The
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EKF (extended Kalman filter) was used for prediction based upon the flight interception
positions judged 0.16 to 0.2 s before catch. That humanoid robot caught 80% successful
catches, whereas a successful catch was made whenever the prediction was within range
of 15 mm error. However, the total numbers of test trajectories were not specified in that
article. A similar work was also conducted in [27] where the article claim 98% successful
catches by robot capable of catching tennis ball within error range of approximately 10 cm
(i.e., 100 mm).

Except for ping-pong playing robots, all of the other above-mentioned work involves
non-mechanical throws. The work of ping-pong playing robots such as [22–25] involves
mechanical throw of ball as ping-pong ball is served mechanically by robotic arm. Mechan-
ically thrown objects in production systems are unsymmetrical and not absolutely identical.
So, their trajectories are influenced by different factors such as different conditions during
the acceleration, the influence of the gravitation and aerodynamic resistance. Therefore, for
catching such objects, the trajectory of objects must be observed online during the flight [8].
Some efforts have already employed in this regard. The work in [28] used 3D video range
camera to observe flight trajectory. Such a camera employs PMD (photonic mixer device)
principle which uses 3D optical detection to measure time-of-flight and it was developed
by PMD Technologies. Such high-speed 3D camera was based on 64 × 48 pixel photonic
mixer device (PMD) sensor array and enables 3D distance measurements to be made with
50 fps speed. Using PMD, the distance data is acquired using time-of-flight principle with
invisible near-infra-red light.

There is very limited work that is specifically carried out for tracking mechanically
thrown objects regarding robotic throw catch approach. Those works involve object throws
through a mechanical launcher. For example, the work in [29–31] used single camera on
the catching side and trajectory of thrown objects was predicted by combination of two
methodologies for determination of 3D positions of a thrown object during its trajectory.
The first methodology was applied in early phase of trajectory and used measurement of
the initial parameters (angles, position and velocity) of the thrown object. The speed of
the object was measured by six photoelectric sensors placed at 40 mm vertical distance
on an aluminum frame. While calculating the velocity along the approaching axis, aero-
dynamic resistance had also taken into account. Hence by simply applying model of flight
kinematics, 3D positions of object are predicted at specific time intervals in the initial phase
of flight. In the next phase of flight trajectory, back-projection of 2D image object position
to 3D real world position was made. This back-projection methodology was not used in
earlier phase of flight trajectory since good accuracy (in determination of 3D position of
ball) cannot be achieved when the object is far from the camera.

The work in [32,33] used stereo vision to collect samples of mechanically thrown
tennis ball trajectories. However, they enabled researchers to measure positions of ball
in camera-related coordinate system with millimeters of accuracy (even outliers in some
measurements). They used KNN regression approach for forecasting on 2D points of cam-
era coordinates. In their experiments they achieved nearly 30 mm precision in predicting
future position of ball. Work in [34] used a simple neural network containing only one
hidden layer. This NN was trained using 15 simulated trajectory training sets whereas each
set had 10 sample trajectories obtained in nearly 2.5 m long flight of tennis balls that was
mechanically thrown. The training was made using MATLAB Neural Networks Toolbox.
The mean error was nearly 24 to 26 mm between measured values and prediction results in
simulated environment.

Other mechanically thrown object’s flight prediction experiments were made by [35–38]
using stereo vision based observational data as input to a forecasting algorithm responsible
for generating trajectory using deterministic motion model further governed by genetic
programming algorithm. Their algorithm was tested through MSE (mean square error) in
chosen frames 60 to 80 and in only 20 test trajectories. The average MSE in 20 trajectories
was 5.4 mm. Although this average MSE was good, it was based upon just 20 testing
trajectories. As well, the error was calculated within selected frames and does not reflect

369



Sensors 2022, 22, 2113

the error of whole flight trajectory. The work carried out regarding mechanically thrown
object’s trajectory tracking is summarized in the next section.

2.5. Limitations in Existing Work of Mechanically Thrown Objects Tracking

The limitations in existing work of mechanically thrown objects tracking are summa-
rized in Table 1.

Table 1. Limitations in existing work of mechanically thrown objects tracking.

Ref. Year Trajectory Type
Prediction
Algorithm

Results (Accuracy) Limitation(s)

[22] 2020

Mechanical ball throws using
ping-pong playing robot. Observe
its flight through 3 cameras (right,

left and auxiliary) of speed 169
FPS

Dual Neural
Network

300 trajectories for the training set
and 30 trajectories for the test set.
The test results in absolute mean

error of 36.6 mm and standard
deviation of 18.8 mm

Limited training and testing

[23] 2020
Mechanical ball throw using
ping-pong playing robot and
observe its flight (0.8 to 1.2 s)

through 4 RGB cameras of speed
180 FPS (Frames Per Second)

attached at ceiling

Variational
auto-encoder deep

NN

614 trajectories for the training set
(90% training and 10% for

validation) and 35 trajectories for
the test set. Prediction’s absolute
mean error converges to nearly

40–60 mm based upon
observations in first 40–50 frames

of flight trajectory.

Error is high but could be
improved with more training

trajectories
[24] 2019

[25] 2020

[29] 2010

Ball throws using mechanical
device. Observe its actual

positions in flight with the help of
photoelectric sensors. Flight is

also captured by single camera of
87 FPS speed.

Observations of ball
positions through

photoelectric sensors
and Size based
Tracking of ball

through 2D
coordinates in image

plane are further
passed to EKF for

prediction of final 2D
impact point on

DST-Touch screen

The accuracy was measured in 17
test throws only and for final 2D
impact position (on a DST-Touch

kit) only. The average error
deviation of final impact position

was 1.20 mm to 3.98 mm.

(1) It is assumed that the line of
sight is perpendicular to the
camera’s measuring plane

(2) Photoelectric sensors were
used to get actual
interception position of ball
whereas in practical
industrial scenarios such
sensors are not easily
implementable

[30] 2009

[31] 2008

[32] 2016

Ball throws using mechanical
device. Observe its flight

trajectory through stereo vision of
2 cameras (left and right) of

spatial resolution 2048 × 2048 and
speed was not specified in their

articles.

kNN
(k-Nearest Neighbor)

Regression

2048 real-world trajectories were
saved in the database and then
testing were performed on 150
trajectories. First 40 frames ball

positions were used during
testing and after applying KNN

the prediction was within 30 mm
for 92% of trajectories.

Error is high but could be
improved with:
(1) More training and better

pattern recognizer (such as
deep neural networks)

(2) Increasing the number of
observations (i.e., frames)
for prediction[33] 2015

[34] 2013

The mechanical throws were
simulated using physical motion

model. Each sample trajectory
was obtained in nearly 2.5 m long

flight of tennis ball.

Neural Network with
one hidden layer was

used to train 15
simulated trajectory
sets whereas each set

had 10 sample
trajectories

The mean error was nearly 24 to
26 mm between measured values

and prediction results in
simulated environment.

Being results in simulated
environment, this error is high.
Also very limited training and

testing

[35] 2017
Ball throws using mechanical

device. Observe its flight
trajectory through stereo vision of

2 cameras (left and right) of
spatial resolution 2048 × 2048 and
speed was not specified in their

articles.

Deterministic motion
model further

governed by genetic
programming

algorithm

Their algorithm was tested
through MSE (Mean Square Error)
in chosen frames 60 to 80 only and

in only 20 test trajectories. The
average mean square error (MSE)

in 20 trajectories was 5.4 mm

Average MSE was good but it was
based upon just 20 testing

trajectories as well as the error
was calculated within selected

frames (60 to 80) and it does not
reflect the error of whole flight

trajectory

[36] 2018

[37] 2019

[38] 2017

3. Proposed Methodology

As described in previous section, the majority of existing work for mechanically
thrown object tracking, had chosen a tennis ball as the thrown object for development
and validation of proposed ideas in order to implement robotic throw catch transportation
approach in industry for small sized objects. This is due to the well-known aerodynamic
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properties of this object as there is already a number of scientific literature available that
explored the aerodynamic properties of the tennis ball; a review of such exploration is given
in [39]. Another reason is that detecting and accurately predicting interception positions
of any shape object, during its flight, is an extremely challenging problem that needs a
step-by-step solution. So, following this tradition, this research work also used tennis ball
as mechanically thrown object.

This work consists of four sequential stages. In the first stage, a novel simulating
environment is prepared that facilitates to throw any spherical object, in controlled logistics
environment, and observe its trajectory by placing a simulated camera at any place within
that 3D vicinity. It helped us to capture thrown object’s trajectory by placing camera
at any place and finally the best camera positions are derived based upon the captured
trajectory’s error. In the second stage, the best multi-camera setup is derived in a real
world environment by placing cameras at optimum positions (derived in last stage) and
also applying multi-view geometry among them. Then, in next stage, best derived multi-
camera setup is used for thousands of experiments to prepare a comprehensive dataset of
trajectories and in final stage an encoder-decoder Bi-LSTM deep neural network is trained.
The overall proposed methodology is visually illustrated in Figure 2 and explained in detail
in following subsections.

Figure 2. Proposed methodology.

3.1. Simulation

The 3D vicinity of internal logistics environment is simulated in MATLAB as a cube
with both positive and negative axis in all three dimensions. This simulation facilitates
to throw spherical objects of any mass, diameter or surface air friction in a controlled
environment. It also enabled us to throw object with any motion model and observe its
trajectory by placing simulated pinhole camera anywhere within 3D vicinity of internal
logistics in flexible manufacturing systems which is usually 3 to 5 m [8].
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In fact, the perspective projection of most of the modern cameras can be described
well by the pinhole camera model [5] and that is the reason for choosing pinhole camera
model for implementation of virtual cameras in this simulation. It is to be noted that, in
our simulation, virtual camera can capture trajectory with any frame rate but we used the
frame rate of 60 fps in order to give it compatibility with real world experimental camera’s
frame rate. Other properties of virtual camera (such as focal length, pixel pitch which is per
pixel area on camera’s sensor, resolution of captured image etc.) are set as real world used
camera (i.e., IDS UI-1220RE-M-GL) properties.

All simulation used parameters are taken from our real-world experiments. In those
experiments, the tennis ball is mechanically thrown towards Y-axis (towards catching
robot) and the distance between throwing and final catching point is about 3 m. The initial
position of ball is assumed at (0, 0, 0) in simulation. The ball’s radius is set as 32.2 mm (as
in real world) and its coloris green in order to give the appearance of a real-world scene.
Few visually captured trajectories, in our simulated throwing experiments are shown in
Figure 3.

  
(a) (b) 

  
(c) (d) 

Figure 3. Last frame of trajectory (along with previous trajectory trace) when captured through four
different simulated cameras. (a) One side camera view. (b) Other side camera view. (c) Throwing
side camera view. (d) Catching side camera view.

3.2. Experimental Setup and Simulation Testing

We used a self-developed mechanical device for throwing tennis ball. This device
throws ball by using kinetic energy that is produced by stretching a spring. The launching
device is shown in Figure 4a. The launching speed of thrown ball is 23 m/h (i.e., 10.282 m/s)
which is measured with the help of a radar gun shown in Figure 4b.
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(a) (b) (c) (d) 

Figure 4. Real world experimental setup. (a) Ball throwing device. (b) Radar gun to measure
launching speed. (c) Used camera (UI-1220RE-M-GL). (d) Trajectory captured through throw side
camera.

The used cameras are “UI-1220RE-M-GL” by IDS imaging development systems. This
camera has sensor size of 1/3 inch, sensor area of 4.512 × 2.880 mm, focal length of 6 mm
and per pixel area of 0.006 mm. It has the maximum capturing speed of 87 fps and its
captured image has resolution of 752 × 480.

Before starting exhaustive simulated experiments for deriving best camera positions,
the authenticity of our simulation was checked through a comparison experiment with
exactly same parameters in real and simulated setups. There is always some distortion or
deviation from ideal projection whenever a scene is captured by real world camera. It is
due to several reasons but the prominent ones are lens quality and perspective projection
effects such as an infinitely wide real-world plane is mapped onto the finite image area of
lens. However, in spite of the deviational margin of results from ideal projection, the results
from real and simulated experiments should be similar which authenticates the simulation.

The flight trajectory of thrown tennis ball was captured by placing a single camera
at catching side in real world experiment. The exact measurements of camera and ball’s
starting positions were (−262 mm, 2964 mm, 678 mm) and (0, 0, 0), respectively. The
camera was oriented towards starting position of ball and exact measurements of orien-
tation parameters are as follows: roll or tilt (orientation around x-axis) was measured as
23.40◦ degrees (clockwise), pitch or pan (orientation around z-axis) was measured as 25.13◦
degrees (anti-clockwise) and the yaw i.e., rotation around y-axis (the rotation of camera
plane with respect to real world plane) was measured at 1.06◦ degrees (anti-clockwise). The
same parameters were set in simulation experiment.

The tennis ball is mechanically thrown and the distance between throwing and final
catching point is about 3 m. As mentioned earlier, the launching speed of thrown ball
(measured through radar gun) was 23 m/h (i.e., 10.282 m/s). The launching angles of
thrown ball can be named as alpha (left/right angle along x-axis) and beta (up/down
angle along z-axis). The ball is thrown straight so ideally the alpha should be zero but in
real world experiments the real value of alpha with precise measurement is 0.5 degrees.
Similarly, the launching position makes the beta angle as 17 degrees. Knowing initial speed
of ball and its throwing angles (alpha and beta), we can estimate the spherical coordinates
(v, θ, ϕ) of initial velocity; where v is the initial speed of ball, θ is the azimuth angle (angle
from the positive x-axis in xy plane) and ϕ is the inclination angle (angle from the positive
y-axis in the yz plane). These spherical coordinates of initial velocity of ball (i.e., v, θ, ϕ) can
be calculated as given in Equations (1)–(3).

Launching speed (v) = 23 miles/h

i.e., V = 23 × 0.44704 m/s = 10.282 m/s (1)

Azimuth angle (θ) = 90 − alpha = 90 − 0.5 = 89.5◦ (2)

Inclination angle (ϕ) = 90 − beta = 90 − 17 = 73◦ (3)

The cartesian coordinates of the initial velocity i.e., (Vx, Vy, Vz) of thrown ball can be
calculated using trignometric laws as given in Equations (4)–(6).

Vx = V· sin(ϕ)· cos(θ) = 0.088 m/s (4)

373



Sensors 2022, 22, 2113

Vy = V· sin(ϕ)· sin(θ) = 9.830 m/s (5)

Vz = V· cos(ϕ) = 3.002 m/s (6)

In simulation, a tennis ball is launched with above initial parameters and its 3D
trajectory is generated using standard ballistic motion model which also considers air
density and spin of the ball under room temperature [40]. In our case, we used air density
of 1.294 kg/m3 which is at 20 degree centigrade (similar to our lab temperature). The mass
of ball, assumed in simulation, is the exact mass of our used tennis ball and that is 56 g.
Similarly, the simulation used radius of tennis ball is 32.2 mm which is its real world radius.
At starting point of ball, the time t = 0, so we can represent initial velocity by V(0) and if
we ignore all forces (except gravity and drag) influencing the flight then the velocity (in
any dimension) of ball at a particular time t (i.e., V(t)) and can be calculated by Equation
(7) and the future velocities of ball can be derived by simple ballistic motion equation as
shown by Equation (9).

V(t) = V(0) + g × t −
t∫

T=0

k × v2 dT (7)

where g = [0, 0, 9.8] (8)

i.e., V(t + Δt) = V(t) + (a(t) + g)× Δt (9)

If the starting position of ball, i.e., at time t = 0, is assumed at (0, 0, 0) then every next
position of ball (in any direction) can be calculated from current position (at time t) by
using the following formula given in Equation (10).

Pos(t + Δt) = Pos(t) + V(t)× Δt. (10)

When the trajectory is captured by real world camera, the total flight of moving ball
is captured in 17 frames of movie which is captured at the speed of 60 fps. If we also
consider the launching position of ball (i.e., 0,0,0) then the total 3D interception positions
of flight trajectory are 18. The same parameters were used for simulation and hence the
total flight time is 283.33 ms. The tennis ball is mechanically thrown and its 3D trajectory is
captured through real camera whereas in simulation the trajectory is generated through
ballistic motion model and it is captured by simulated camera working under pinhole
camera model principles. In both real and simulated experiments, the tennis ball is thrown
with the same initial velocities as mentioned by Equations (4)–(6). Both simulated and real
cameras capture the full trajectory of thrown ball in 17 frames under the same capturing
frame rate of 60 fps. The exact differences at each interception position (along X, Y and Z
axes) are shown through graphs in Figure 5a–c, respectively.

The comparison of results (illustrated in Figure 5) has shown the close resemblance of
real and virtual camera’s reconstructed trajectories as there are few millimeters differences
between the three measured axis’ values for corresponding interception positions of flight
trajectory. It is also observed that reconstructed trajectories (by both real and simulated
cameras) had wider difference (from corresponding actual position values) in early stages
of flight and the error reduces in later stages of flight; that is, as the thrown object gets
closer to camera (which is mounted at catching side).
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(a) 

 
(b) 

(c) 

Figure 5. (a) Comparison of X-axis values (in actual and reconstructed trajectories by real & simulated
camera). (b) Comparison of Y-axis values (in actual and reconstructed trajectories by real and
simulated camera. (c) Comparison of Z-axis values (in actual and reconstructed trajectories by real
and simulated camera).
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3.3. Best Multicamera Setup Derivation

After testing simulation, we can trust its trajectory results obtained by throwing same
object (i.e., tennis ball) and employing simulated camera at any position and orientation
within the simulated 3D vicinity of smart manufacturing plants. The process of deriving
best multi-camera setup is divided into three phases. The first phase is to guess the areas
where the best results can be found.

Assuming the starting position of ball as (0,0,0) and moving towards +ve Y-axis, it
covers nearly the distance of 2.5 m (i.e., 2500 mm). So, seeing this, we set the initial 3D
experimentation range for simulated camera placement. This initial range is −500 mm to
3500 mm for Y-axis, −500 to 1500 mm for Z-axis and −1500 mm to 1500 mm for X-axis. In
order to guess best resultant areas, the simulated experimentation should be performed by
placing camera at every 500 mm apart position within the selected 3D initial range. It is to
be noted that these limits are chosen as the reasonable limits and can be changed (based
upon initial experimentation results). For example, the Z-axis limit is chosen as −500 to
1500. But if the best results are obtained at Z-axis value of −500 then it shows a possibility
to get better results beyond this value which ultimately extend the experimentation range
so that Y-axis value of −1000 should also be considered (and even this process can be
continued further). It gives the justification for choosing the above-mentioned axis limits in
initial experimentation.

As the object is thrown straight and moves within a small X-axis value range (i.e., 0 to
25.3 mm), so the trajectories captured by placing the camera at particular (X, Y, Z) position
and (−X, Y, Z) position are nearly symmetrical which implies that results obtained at these
positions have minute difference. As only guess has to be made within this first phase
that which area is better to do refined experimentation, so such minute difference can be
neglected for initial experimentation and only positive X-values can be considered. The
initial experimentation results have shown that minimum error was obtained at throwing
and catching side cameras. So, further experimentation is carried outby placing cameras at
250 mm apart distances from initially guessed area. The results of these further experimen-
tation eventually give us best resultant area which require refined experimentation to find
out best capturing camera positions.

As we have to carry out refined experiments in the initially guessed area so we also
include earlier neglected negative x-axis area also and now within this area, we performed
refined experiments by placing camera at each 100 mm apart camera position. Finally,
we got four best capturing cameras positions based upon the minimum trajectory error
between actual and observed trajectory. We named those four best camera positions as C1,
C2, C3 and C4 and they are precisely shown in Figure 6.

 
Figure 6. Identified best capturing cameras positions.
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It should be noted that the minimum trajectory error is observed when the thrown ob-
ject trajectory is captured from throwing and catching side cameras at reasonable distances.
This is due to the fact that the size of the thrown ball changes significantly in videos when
captured from those positions, and this significant change helps in proper identification of
distance of ball from camera. Furthermore, reconstructed X-coordinate and Z-coordinates
of ball are derived from the distance between camera and ball, so significant change in size
of ball are required for proper reconstruction of all three coordinates of the real position of
the ball.

Finally, in the last phase, different combinations of these best positioned cameras are
employed in real world settings in order to derive best multi-camera setups in terms of
maximum accuracy of final touch point 3D position error. It is the last position of ball
which is measured on DST (dispersive signal technology) touch screen placed on catching
side. Two-camera combinations are made in a way that they must contain both throw and
catch side cameras in order to get more accurate results. Since it is necessary to include
throw and catch side cameras so there are only four possible combinations of these cameras
for two cameras setups. Similarly, there are four possible combinations to make three
cameras setup. All of these two and three camera setups are shown in Table 2 along with
their obtained experimental results which are given as average value of 50 ball throwing
experiments.

Table 2. Final touch point accuracy by different multi-camera setups (results based upon average of
50 real world experiments).

Multicamera Setups

Final 3D Interception Position Error
(Average Error—in mm)

X-Axis Y-Axis Z-Axis

C2 + C4 2.5 1.7 5.4

C1 + C4 1.9 5.2 2.0

C2 + C3 2.5 6.5 3.1

C1 + C3 2.8 4.5 1.5

C1 + C2 + C4 1.5 5.0 1.9

C1 + C2 + C3 2.3 4.5 1.7

C2 + C3 + C4 1.1 2.0 1.4

C1 + C3 + C4 0.9 1.8 1.6

The results shown in last row, by three cameras setup (i.e., C1 + C3 + C4), are the
best ones. So, this setup is considered as best derived multicamera setup which is used in
simulation for preparing training dataset of throws.

3.4. Preparing Throws Datasets and Training Intelligent Tracking Models

The best derived three cameras setup is employed in simulated environment and
3000 throwing experiments were performed (with very minute variation in throwing
parameters). For each throwing experiment, two time series are recorded. The first one
consists of actual 3D interception positions of thrown ball and second consists of 3D
interception positions of balls as perceived by observing cameras. There are 17 moving
3D interception positions of ball in its trajectory when cameras captured 283 ms of flight
trajectory of ball at capturing speed of 60 frames per second. So, there are total 18 captured
video frames (including first frame when ball is placed at starting position (i.e., 0,0,0). We
need to prepare a training dataset of throws where, in each dataset throw, first few 3D
interception positions are cameras observed interception positions and last ones are actual
3D interception positions. So, considering this point, we used first 13 interception positions
as perceived by cameras (it captured approximately first 200 ms of flight trajectory) and
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last five interception positions are actual 3D positions of ball (covering around 83 ms of last
part of flight trajectory). We need to train an intelligent tracking model that gets input as
camera perceived 3D interception positions of first 200 ms of thrown ball flight trajectory
and predict next 83 ms of flight trajectory consisting of last five actual interception positions
of the thrown ball. It provides enough time to instruct motor of modern catching robot
to place catching gripper at predicted final 3D interception position. A sample throw of
training dataset is shown in Figure 7.

Figure 7. Sample dataset throw.

The main contribution of this work is to propose an enhanced intelligent tracking
algorithm that can predict remaining 3D interception positions of thrown object by seeing
its initial flight trajectory. It is a pure time series prediction problem and LSTM deep
neural networks work best for such problems. In particular, this is a many-to-many
time series prediction problem where both input and output vectors consists of multiple
time-step data values and each value further consists of three values (X, Y, and Z axis
coordinate). The encoder-decoder LSTM is usually used for such many-to-many time series
prediction problem. We have particularly used encoder-decoder bidirectional LSTM deep
neural networks for this problem and they proved to be so much accurate as depicted by
prediction results. The bidirectional LSTM preserves timeseries information both from
forward and backward sequential contexts.

The encoder bidirectional LSTM creates an internal representation of the input se-
quence whereas the decoder bidirectional LSTM interpret this internal representation and
responsible for predicting corresponding outputting sequence. The training is performed
on 90% of throws dataset and model is validated on remaining 10% of dataset. The initial
learning rate is set as 0.005. The model learned best with ‘Adam’ optimizer. We trained
model (in Keras) using different number of epochs and neurons. For example, one of the
training codes which we coded in Keras (Python deep learning API) is shown in Figure 8.

378



Sensors 2022, 22, 2113

 

Figure 8. Coding (carried out in Keras) for training one of our encoder-decoder BiLSTM.

This code used the input shape as (13.3), it is due to the fact that each of our training
dataset throw has 18 three dimensional points and first 13 points of observed flight trajectory
are given as input to encoder BiLSTM which consists of 100 neurons as input to each of its
LSTM (i.e., forward and backward LSTMs). This encoder BiLSTM returns output as five
points (i.e., the remaining five points of flight trajectory) that are received by RepeatVector
which feeds them repeatedly as input to decoder BiLSTM which further has 100 neurons as
input to both of its forward and backward LSTMs. The code also depicts that the output is
of five time steps distributed where each time step value has three features (i.e., X, Y, and Z
coordinates). The decoder BiLSTM in fact uses the value from RepeatVector, the hidden
state from previous output and the current input. The return sequence of decoder BiLSTM
is set as “true” since the output is in the form of time steps. The RepeatVector is used for
only repeating the encoder LSTM output and it has no parameter to train. For example, see
the summary of above-mentioned model in Figure 9.

 
Figure 9. Summary of trained model (whose coding given in Figure 8).

The Figure 9 shows that RepeatVector has no parameter to train and it can also be
seen, from summary, that each of the encoder and decoder bidirectional LSTM (BiLSTM)
has 200 input neurons which is due to the fact that BiLSTM has two LSTMs and we have
given 100 neurons as input to each LSTM.

The experimentation of training and testing such models is carried out at different
volumes of training dataset throws. Also, we trained and tested multiple encoder-decoder
BiLSTM deep neural networks (with different number of neurons and epochs) in order to
check their accuracy. We gradually increased the volume of training dataset which consists
of simulation throws. Initially a model is trained using only 200 training throws dataset. It
used 100 epochs (during training) and 100 neurons as input. In Figure 10, the loss along
epochs is shown during its training. The prediction results, in root mean square error
(RMSE) and mean absolute error (MAE), in 50 tested throws are also shown in this figure.
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Figure 10. Training and testing results by encoder-decoder bidirectional LSTM deep NN (trained
through 200 throws with 100 epochs and 100 neurons).

Then, we trained similar models using 1000 throws dataset. As mentioned earlier, for
every model training we used 90% dataset for training and 10% for validation. Figures 11–13
show the training and testing (on 50 tested throws) performance results when encoder-
decoder Bidirectional LSTM models are trained on 1000 throws datasets with varying
number of epochs and neurons. The comparative analysis of all three of these models
shows that over fitting can occur when we cross certain epoch limit and, in this particular
case, we got the best results with 50 epochs.

Figure 11. Training and testing results by encoder-decoder bidirectional LSTM deep NN (trained
through 1000 throws with 300 epochs and 200 neurons).

Figure 12. Training and testing results by encoder-decoder bidirectional LSTM deep NN. (trained
through 1000 throws with 200 epochs and 100 neurons).
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Figure 13. Training and testing results by encoder-decoder bidirectional LSTM deep NN (trained
through 1000 throws with 50 epochs and 100 neurons).

Finally, we trained the complete dataset of 3000 throws. Figures 14–16 show the
training and testing (on 50 tested throws) performance results when encoder-decoder
Bidirectional LSTM models are trained on complete dataset of 3000 throws with varying
number of epochs and neurons. The comparative analysis of testing graphs of all of these
three models shows that we get best results when model is trained using 80 epochs and
with an input of 100 neurons to each LSTM in encoder-decoder bidirectional LSTM. This
model is the best intelligent model (with maximum prediction accuracy) in our case. In
next section, the testing results of this model are presented with a greater number of tested
throws.

 
Figure 14. Training and testing results by encoder-decoder bidirectional LSTM deep NN (trained
through 3000 throws with 300 epochs and 200 neurons).

 
Figure 15. Training and testing results by encoder-decoder bidirectional LSTM deep NN (trained
through 3000 throws with 100 epochs and 100 neurons).

 
Figure 16. Training and testing results by encoder-decoder bidirectional LSTM deep NN (trained
through 3000 throws with 80 epochs and 100 neurons).
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4. Results and Discussion

The encoder-decoder BiLSTM deep neural network trained on complete dataset of
3000 throws, with 100 neurons and trained through 80 epochs has presented best results
and hence considered as our proposed intelligent tracking model for automated industrial
catching robots responsible for in-plant logistics through throwing an catching manufactur-
ing parts. Hence, we further test this trained intelligent tracking model on different throws
datasets. Figure 17a–c shows prediction error graphs for three test datasets of 50, 100, and
200 throws, respectively.

  
(a) (b) (c) 

Figure 17. Prediction error results by applying proposed model for different datasets of test throws.

These graphs show the accuracy of predicted values through our intelligent model.
The obtained results are within the range of 2 mm error. In Figure 18, the graphs are shown,
against each axis value, for 3D interception positions of a tested throw.

 

Figure 18. Comparison among predicted and ground truth values in a tested simulated throw.
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The first 13 are cameras observed values. The last five are actual (i.e., ground truth)
values and predicted values (obtained through our trained intelligent model). The good
overlap between predicted values and ground truth again represents the accuracy of our
intelligent tracking model.

5. Conclusions and Future Work

The automated in-plant logistics for smart manufacturing systems of Industry 4.0 can
be implemented through throwing and catching robots for fast transportation of small
sized materials, containers, or packages. However, it needs to enhance the intelligence of
existing catching robots by more accurate tracking of mechanically thrown objects. This
work includes the development of a 3D simulated environment which enabled one to
throw object of any mass, diameter, or surface air friction in a controlled internal logistics
environment. It also enabled us to throw objects with any initial velocity and observe their
trajectory by placing simulated pinhole camera at any place within a 3D vicinity of the
internal logistics space. Moreover, the multi-view geometry can also be employed among
simulated cameras in order to observe trajectories more accurately. The simulation further
enabled us to derive the best multicamera setup and, after that, a dataset of 3000 throws
was prepared using that setup in simulated environment. An intelligent tracking model is
proposed using encoder-decoder bidirectional LSTM approach. The model predicts final
part of thrown object flight trajectory by observing its initial flight through cameras and
in real-time. This model is trained using prepared dataset and its prediction results are
compared with ground truth values in simulated test throws. The trained neural network
has given best results for accurately predicting the final part of mechanically thrown object
trajectory in real time.

This research work only considered tracking of spherical shaped mechanically thrown
objects as their 3D central position can be easily determined in video frames. In future, we
have planned to extend this work for other regular shaped objects in order to implement it
practically in industry for automated in-plant fast transportation of small sized materials
such as containers, food, or pharmaceutical products.
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Abstract: In this paper, a neural adaptive fault-tolerant control scheme is proposed for the inte-
grated attitude and position control of spacecraft proximity operations in the presence of unknown
parameters, disturbances, and actuator faults. The proposed controller is made up of a relative
attitude control law and a relative position control law. Both the relative attitude control law and
relative position control law are designed by adopting the neural networks (NNs) to approximate
the upper bound of the lumped unknowns. Benefiting from the indirect neural approximation,
the proposed controller does not need any model information for feedback. In addition, only two
adaptive parameters are required for the indirect neural approximation, and the online calculation
burden of the proposed controller is therefore significantly reduced. Lyapunov analysis shows that
the overall closed-loop system is ultimately uniformly bounded. The proposed controller can ensure
the relative attitude, angular velocity, position, and velocity stabilize into the small neighborhoods
around the origin. Lastly, the effectiveness and superior performance of the proposed control scheme
are confirmed by a simulated example.

Keywords: neural adaptive control; fault-tolerant control; integrated attitude and position control;
spacecraft proximity operations; indirect neural approximation; Lyapunov analysis

1. Introduction

Nowadays, with the rapid development of sensing and control technologies, space
missions have become increasingly complicated. The spacecraft proximity operation plays
an important role in various space missions, such as rendezvous and docking, active debris
removal, and on-orbit servicing. The relative attitude and position control is a critical
technique for spacecraft proximity operations. During the proximity operations, the chaser
and target are inevitably affected by uncertain parameters and disturbances. Even worse,
the parameters of the target may be fully unknown for noncooperative proximity operations.
In addition, the chaser also frequently suffers from actuator faults due to the harsh space
environment. The presence of unknown parameters, disturbances, and actuator faults
bring great difficulty to the relative attitude and position control of spacecraft proximity
operations. Traditionally, the spacecraft relative attitude and position control systems
are often designed independently. However, the inherent couplings between the relative
attitude and position are neglected in this way and these controllers cannot be directly
applied to the spacecraft proximity operations, especially when high control accuracy is
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required. The integrated attitude and position control based on the six-degree-of-freedom
(6-DOF) dynamic model of spacecraft proximity operations is an effective solution to
this problem.

Until recently, many relevant results have been reported for the integrated attitude
and position control of spacecraft proximity operations. Singla et al. [1] designed a model
reference adaptive output feedback control law for the spacecraft rendezvous and docking
under measurement uncertainties. Kristiansen et al. [2] presented three nonlinear control so-
lutions for the 6-DOF spacecraft coordination control based on the integrator backstepping
and passivity-based control, respectively. In [3,4], an integrated nonlinear optimal control
approach was developed for the spacecraft proximity operations. Zhang and Duan [5]
proposed a robust adaptive backstepping control scheme for the integrated translational
and rotational motion of spacecraft with actuator misalignment. In [6,7], several robust op-
timal sliding mode control methods were carried out for the coupled attitude and position
maneuvers of spacecraft. Sun and Huo [8] designed a 6-DOF integrated adaptive back-
stepping controller for the spacecraft proximity operations under uncertainties. In [9,10],
integrated robust adaptive control approaches were developed for the relative position
tracking and attitude synchronization for spacecraft rendezvous. In [11,12], disturbance
observer-based robust control approaches were proposed for the spacecraft proximity and
docking with input saturation. Hu et al. [13] presented a robust fault-tolerant tracking
control scheme for the spacecraft proximity operations by utilizing the adaptive sliding
mode control technique. Wang and Ji [14] designed two backstepping control schemes
for the relative motion control of spacecraft rendezvous based on the input-to-state stable
property and finite-time control technique, respectively. In [15], an adaptive nonlinear state
feedback control method was proposed for the fault-tolerant constrained pose control of
cooperative spacecraft rendezvous and docking. Zhou et al. [16] developed an adaptive
sliding mode method for the robust attitude and position tracking of spacecraft proximity
operations by integrating with an unscented Kalman filter. In [17–19], several adaptive
nonsingular terminal sliding mode control laws were designed for the fixed-time, 6-DOF
tracking control of noncooperative spacecraft fly-around missions. In addition, there have
been also some research studies concerned with 6-DOF integrated controls in spacecraft
based on the dual quaternion representation [20–27].

It should be noted that most of the above controllers require prior knowledge of nomi-
nal model information for feedback. Nevertheless, the physical parameters of the chaser
and the target may be fully unknown in some extreme cases. The intelligent approximation
is an efficient tool to construct the model-free controllers, owing to the powerful learning
capability of the neural network (NN) and fuzzy logic system. By adopting the NNs or
fuzzy logic systems to approximate the lumped unknowns, the intelligent control does not
need any model information for feedback. In [28,29], robust adaptive backstepping NN
control strategies were presented for the spacecraft rendezvous and docking with input
saturation. Sun et al. [30] developed an adaptive fuzzy backstepping controller for the pose
tracking of spacecraft rendezvous and proximity maneuvers under uncertainties. However,
all of the above intelligent controllers involve a large number of adaptive parameters, which
restricts their applications in practical engineering, especially considering the onboard
computer has limited online calculation capability.

Motivated by the above discussions, this paper proposes a neural adaptive fault-
tolerant control scheme for the integrated attitude and position control of spacecraft prox-
imity operations in the presence of unknown parameters, disturbances, and actuator faults.
The proposed controller is made up of a relative attitude control law and a relative position
control law. In comparison with most of the existing investigations, the main contributions
of this research are summarized as follows:

• Both the relative attitude control law and relative position control law are designed
by integrating with the neural approximation. Benefiting from this design, the pro-
posed controller is model-free and strongly robust against the lumped unknowns in
6-DOF dynamics;

388



Sensors 2022, 22, 1726

• Rather than the conventional intelligent approximation [28–30], in which the NNs and
fuzzy logic systems are introduced to directly approximate the lumped unknowns,
the indirect neural approximation is exploited in this paper by adopting the NNs
to approximate the upper bound of the lumped unknowns. In this way, only two
adaptive parameters are required for the indirect neural approximation, and the online
calculation burden of the proposed controller is therefore significantly reduced;

• Lyapunov analysis shows that the overall closed-loop system is ultimately uniformly
bounded. The proposed controller can ensure that the relative attitude, angular veloc-
ity, position, and velocity stabilize into the small neighborhoods around the origin.

The remainder of this paper is arranged as follows: Section 2 describes the problem
and gives some preliminaries. Section 3 introduces the control methodology and provides
the Lyapunov analysis. Section 4 performs a simulated example. Lastly, Section 5 presents
the main conclusions of this study.

2. Problem Statement and Preliminaries

2.1. The 6-DOF Dynamics of Spacecraft Proximity Operations

Consider the spacecraft proximity operation system depicted in Figure 1, in which a
chaser is approaching a freely tumbling target. P denotes the desired docking point, which
is fixed with respect to the target. Three coordinate frames are introduced to describe the
6-DOF dynamics of the spacecraft proximity operation. They are the earth-centered inertial
frame FI , the chaser’s body-fixed frame Fc, and the target’s body-fixed frame Ft, respectively.

 

Figure 1. Diagram of the spacecraft proximity operation system.

The modified Rodrigues parameters (MRPs) are utilized to represent the attitude
orientation of the chaser. Then, the attitude and position dynamics of the chaser can be
expressed in frame Fc as ⎧⎪⎪⎨⎪⎪⎩

.
σ = G(σ)ω,
J

.
ω + S(ω)Jω = Γτuτ + dτ ,

.
r = v − S(ω)r,
m

.
v + mS(ω)v = Γ f u f + d f ,

(1)

where G(σ) = 1
2

(
1−σTσ

2 I3 + S(σ) + σσT
)
∈ R

3×3. σ ∈ R
3, ω ∈ R

3, r ∈ R
3, and v ∈ R

3

are the attitude, angular velocity, position, and velocity of the chaser with respect to the
earth center in frame Fc. uτ ∈ R

3 and u f ∈ R
3 are the control torques and forces produced
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by the actuators. dτ ∈ R
3 and d f ∈ R

3 are the disturbance torques and forces acting on the
chaser. J ∈ R

3×3 and m ∈ R denote the inertia matrix and mass of the chaser. The notation
S(ω) stands for the skew-symmetric matrix of ω, denoted as

S(ω) =

⎡⎣ 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

⎤⎦. (2)

where Γτ = diag{γτ1, γτ2, γτ3} and Γ f = diag
{

γ f 1, γ f 2, γ f 3

}
are the actuator health factor

matrices, with 0 ≤ γτi ≤ 1 and 0 ≤ γ f i ≤ 1 (i = 1, 2, 3). The case γτi = 1 and γ f i = 1
means the corresponding control torque and force are healthy. The case 0 < γτi < 1 and
0 < γ f i < 1 means the corresponding control torque and force are partially faulty. The
case γτi = 0 and γ f i = 0 means the corresponding control torque and force are completely
failed. In this paper, the chaser is assumed to be fully actuated with 0 < γτi ≤ 1 and
0 < γ f i ≤ 1 (i = 1, 2, 3).

Similarly, the attitude and position dynamics of the target can be expressed in frame
Ft as ⎧⎪⎪⎨⎪⎪⎩

.
σt = G(σt)ωt,
Jt

.
ωt + S(ωt)Jtωt = hτ ,

.
rt = vt − S(ωt)rt,
mt

.
vt + mtS(ωt)vt = h f ,

(3)

where σt ∈ R
3, ωt ∈ R

3, rt ∈ R
3, and vt ∈ R

3 are the attitude, angular velocity, position,
and velocity of the target with respect to the earth center in frame Ft. hτ ∈ R

3 and h f ∈ R
3

are the disturbance torques and forces acted on the target. Jt ∈ R
3×3 and mt ∈ R denote

the inertia matrix and mass of the target.
According to the geometric relationship in Figure 1, the position and velocity of the

point P with respect to the earth center in frame Ft can be expressed as{
rp = rt + pt,
vp = vt + S(ωt)pt,

(4)

where pt is the constant position vector of the point P with respect to the target in frame Ft.
The relative attitude, angular velocity, position, and velocity of the target with respect to
the chaser can be defined in frame Fp as⎧⎪⎪⎪⎨⎪⎪⎪⎩

σe = σ ⊗ σ−1
t =

(1−σT
t σt)σ−(1−σTσ)σt−2S(σt)σ

1+σT
t σtσTσ+2σT

t σ
,

ωe = ω − R(σe)ωt,
re = r − R(σe)rp,
ve = v − R(σe)vp,

(5)

where R(σe) = I3 +
8S2(σe)−4(1−σT

e σe)S(σe)

(1+σT
e σe)

2 ∈ R
3×3 is the rotation matrix from frame Ft to

frame Fp. The matrix R(σe) has the property
.

R(σe) = −S(ωe)R(σe).
Note that

.
rp = vp − S(ωt)rp and

.
ωt = −J−1

t S
(
RT(ω − ωe)

)
JtR

T(ω − ωe) + J−1
t ωt.

Substituting (1), (3), and (4) into (5), the relative attitude and position dynamics of the
target with respect to the chaser can be obtained in frame Fp as

.
σe = G(σe)ωe, (6)

J
.

ωe = Γτuτ + ζτ , (7)
.
re = ve − S(ω)re, (8)

m
.
ve = Γ f u f + ζ f , (9)
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where ζτ and ζ f are the lumped unknowns in the relative attitude and position dynamics,
given as

ζτ = −S(ω)Jω + S(ω)Jωe − JR(σe)J−1
t S

(
RT(σe)(ω − ωe)

)
JtR

T(σe)(ω − ωe)− dτ + JR(σe)J−1
t hτ , (10)

ζ f = −mS(ω)ve − mS2(ω − ωe)R(σe)pt − mR(σe)S(pt)J
−1
t S

(
RT(σe)(ω − ωe)

)
JtR

T(σe)(ω − ωe)

+d f − mR(σe)h f
mt

+ mR(σe)S(pt)J
−1
t hτ .

(11)

Remark 1. From the 6-DOF dynamic model of spacecraft proximity operations (8) and (9), the
relative translational motion of the target with respect to the chaser is heavily affected by the relative
rotational motion due to the inherent coupling between the relative attitude and position.

2.2. Purpose

The purpose of this research is to design a controller for the spacecraft proximity
operation system such that relative attitude σe, angular velocity ωe, position re, and velocity
ve can stabilize into the small neighborhoods around the origin, even in the presence of
unknown parameters, disturbances, and actuator faults.

2.3. Neural Approximation

Lemma 1. Ref. [31] For any continuous nonlinear function f (Z), Z ∈ R
n, it can be approximated

by a radial basis function NN (RBFNN) as

f (Z) = W∗TΦ(Z) + ε(Z), (12)

where W∗ ∈ R
N is the ideal RBFNN weight, Φ(Z) = [φ1(Z), φ2(Z), . . . , φN(Z)]

T is the basis
function vector, ε(Z) is the identification error satisfying |ε(Z)| ≤ ε, ε is a positive constant, and N
is the number of RBFNN nodes. Moreover, ϕi(Z) is commonly chosen as the Gaussian function

ϕi(Z) = exp
(
−‖Z − ci‖2/w2

i

)
, i = 1, 2, . . . , N, (13)

where ci = [ci1, ci2, . . . , cin]
T ∈ R

n, and wi are the center and width of the Gaussian function, respectively.

3. Control Design Methodology

3.1. Architecture of the Whole Control Design

The structure of the proposed neural adaptive fault-tolerant control scheme is shown
in Figure 2. Specifically, the proposed controller is made up of a relative position control
law and a relative attitude control law. Both the relative position control law and relative
attitude control law are designed by adopting the NNs to approximate the upper bound
of the lumped unknowns. The ultimate uniform boundedness of the overall closed-loop
system is achieved through Lyapunov analysis.
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Figure 2. Architecture of the whole control design.

3.2. Relative Attitude Control Design

First, consider the relative attitude subsystem described as (6) and (7). Introduce the
following filtered error:

s1 = ωe + α1σe, (14)

where α1 > 0. Evaluating the time differentiation of s1 yields

J
.
s1 = Γτuτ + ξτ , (15)

where ξτ = ζτ + α1G(σe)ωe. Define the input variable Zτ =
[
σT

e , ωT
e
]T. By Lemma 1, the

lumped uncertainty can be expressed as

ξτ = W∗T
τ Φτ(Zτ) + ετ(Zτ), (16)

where W∗
τ ∈ R

N×3 is the ideal RBFNN weight, Φτ(Zτ) ∈ R
N is the Gaussian basis function

vector, ετ(Zτ) ∈ R
3 is the approximation error satisfying ‖ετ(Zτ)‖ ≤ ετ , ετ is a positive

constant, and N is the number of RBFNN nodes. Note that ‖W∗
τ‖ ≤ Wτ . Substituting it

into (16) yields
‖ξτ‖ ≤ ‖W∗

τ‖‖Φτ(Zτ)‖+ ‖ετ(Zτ)‖
≤ bτΦτ ,

(17)

where bτ = max
{

Wτ , ετ

}
is an unknown constant, and Φτ = ‖Φτ(Zτ)‖+ 1 is a known

function. Then, the relative attitude control law is designed as

uτ = −k1s1 − η1b̂τΦ2
τs1, (18)

where k1 > 0, η1 > 0, and b̂τ is the estimation of bτ . Moreover, the adaptive updating law
is designed as

.
b̂τ = −μ1b̂τ + η1Φ2

τ‖sτ‖2, (19)

where μ1 > 0.

Theorem 1. When the relative attitude control law (18) and the adaptive updating law (19) are
employed to the relative attitude subsystem described as (6) and (7), the overall closed-loop system is
ultimately uniformly bounded and the relative attitude σe, and angular velocity ωe can stabilize
into the small neighborhoods around the origin.

Proof. Introduce the following Lyapunov function:
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V1 =
1
2

sT
1 Js1 +

1
2γτmin

b̃2
τ , (20)

where γτmin = min{γτ1, γτ2, γτ3}, and b̃τ = bτ − γτminb̂τ denotes the estimation error of
bτ . Evaluating the time differentiation of V1 yields

.
V1 = sT

1 J
.
s1 − b̃τ

.
b̂τ

= sT
1 (Γτuτ + ξτ)− b̃τ

.
b̂τ .

(21)

Substituting the relative attitude control law (18) and the adaptive updating law (19),
we have

.
V1 = sT

1

(
Γτ

(
−k1s1 − η1b̂τΦ2

τs1

)
+ ξτ

)
− b̃τ

(
−μ1b̂τ + η1Φ2

τ‖sτ‖2
)

= −γτmink1‖s1‖2 − η1bτΦ2
τ‖s1‖2 + sT

1 ξτ + μ1b̃τ b̂τ .
(22)

Consider the following inequalities:

sT
1 ξτ ≤ bτΦτ‖s1‖2 ≤ η1bτΦ2

τ‖s1‖2 +
1

4η1
, (23)

μ1b̃τ b̂τ =
μ1

γτmin
b̃τ

(
bτ − b̃τ

)
≤ μ1

2γτmin

(
b2

τ − b̃2
τ

)
. (24)

Substituting (23) and (24) into (22) yields

.
V1 ≤ −γτmink1‖s1‖2 − μ1

2γτmin
b̃2

τ +
1

4η1
+ μ1

2γτmin
b2

τ

≤ −κ1V1 + ϑ1,
(25)

where κ1 = min
{

2γτmink1
λmax(J)

, μ1

}
, and ϑ1 = 1

4η1
+ μ1

2γτmin
b2

τ . Solving inequality (25), we fur-
ther have

V1 ≤
(

V1(0)− ϑ1

κ1

)
e−κ1t +

ϑ1

κ1
. (26)

Combining with the definition of V1, it follows that the overall closed-loop system is
ultimately uniformly bounded, and the error signals s1 and b̃τ can stabilize into the small
neighborhoods around the origin. Considering the definition of s1, this further implies that
the relative attitude σe and angular velocity ωe can stabilize into the small neighborhoods
around the origin. The proof of Theorem 1 is thus finished. �

3.3. Relative Position Control Design

Then, consider the relative position subsystem described as (8) and (9). Introduce the
following filtered error:

s2 = ve + α2re, (27)

where α2 > 0. Evaluating the time differentiation of s2 yields

m
.
s2 = Γ f u f + ξ f , (28)

where ξτ = ζτ + α2(ve − S(ω)re). Define the input variable Z f =
[
σT

e , ωT
e pT

e , vT
e
]T. By

Lemma 1, the lumped uncertainty can be expressed as

ξ f = W∗T
f Φ f

(
Z f

)
+ ε f

(
Z f

)
, (29)

where W∗
f ∈ R

N×3 is the ideal RBFNN weight, Φ f

(
Z f

)
∈ R

N is the Gaussian basis

function vector, ε f

(
Z f

)
∈ R

3 is the approximation error satisfying ‖ε f

(
Z f

)
‖ ≤ ε f , ε f
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is a positive constant, and N is the number of RBFNN nodes. Note that ‖W∗
f ‖ ≤ W f .

Substituting it into (29) yields

‖ξ f ‖ ≤ ‖W∗
f ‖‖Φ f

(
Z f

)
‖+ ‖ε f

(
Z f

)
‖

≤ b f Φ f ,
(30)

where b f = max
{

W f , ε f

}
is an unknown constant, and Φ f = ‖Φ f

(
Z f

)
‖+ 1 is a known

function. Then, the relative position control law is designed as

u f = −k2s2 − η2b̂ f Φ2
f s2, (31)

where k2 > 0, η2 > 0, and b̂ f is the estimation of b f . Moreover, the adaptive updating law
is designed as

.
b̂ f = −μ2b̂ f + η2Φ2

f ‖s f ‖2, (32)

where μ2 > 0.

Theorem 2. When the relative position control law (31) and the adaptive updating law (32) are
employed to the relative position subsystem described as (8) and (9), the overall closed-loop system
is ultimately uniformly bounded and the relative position re, and velocity ve can stabilize into the
small neighborhoods around the origin.

Proof. Introduce the following Lyapunov function:

V2 =
1
2

msT
2 s2 +

1
2γ f min

b̃2
f , (33)

where γ f min = min
{

γ f 1, γ f 2, γ f 3

}
, and b̃ f = b f − γ f minb̂ f denotes the estimation error of

b f . Evaluating the time differentiation of V2 yields

.
V2 = msT

2
.
s2 − b̃ f

.
b̂ f

= sT
2

(
Γ f u f + ξ f

)
− b̃ f

.
b̂ f .

(34)

Substituting the relative position control law (31) and the adaptive updating law (32),
we have

.
V2 = sT

2

(
Γ f

(
−k2s2 − η2b̂ f Φ2

f s2

)
+ ξ f

)
− b̃ f

(
−μ2b̂ f + η2Φ2

f ‖s f ‖2
)

= −γ f mink2‖s2‖2 − η2b f Φ2
f ‖s2‖2 + sT

2 ξ f + μ2b̃ f b̂ f .
(35)

Consider the following inequalities:

sT
2 ξ f ≤ b f Φ f ‖s2‖2 ≤ η2b f Φ2

f ‖s2‖2 +
1

4η2
, (36)

μ2b̃ f b̂ f =
μ2

γ f min
b̃ f

(
b f − b̃ f

)
≤ μ2

2γ f min

(
b2

f − b̃2
f

)
. (37)

Substituting (36) and (37) into (35) yields

.
V2 ≤ −γ f mink2‖s2‖2 − μ2

2γ f min
b̃2

f +
1

4η2
+ μ2

2γ f min
b2

f

≤ −κ2V2 + ϑ2,
(38)

where κ2 = min
{ 2γ f mink2

m , μ2

}
and ϑ2 = 1

4η2
+ μ2

2γ f min
b2

f . Solving inequality (38), we fur-
ther have
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V2 ≤
(

V2(0)− ϑ2

κ2

)
e−κ2t +

ϑ2

κ2
. (39)

Combined with the definition of V2, it follows that the overall closed-loop system is
ultimately uniformly bounded, and error signals s2 and b̃ f can stabilize into the small
neighborhoods around the origin. Considering the definition of s2, this further implies that
the relative position re and velocity ve can stabilize into the small neighborhoods around
the origin. The proof of Theorem 2 is thus finished. �

Remark 2. In the conventional intelligent approximation [28–30], the NNs and fuzzy logic systems
are introduced to directly approximate the lumped unknowns, and the number of the adaptive
parameters is 2 × 3N. Alternatively, the indirect neural approximation is exploited in this paper
by adopting NNs to approximate the upper bound of the lumped unknowns. In this way, only
two adaptive parameters, b̂τ and b̂ f , are required for the indirect neural approximation, and the
online calculation burden of the proposed controller is therefore significantly reduced. Actually, the
indirect neural approximation makes the proposed controller more suitable for practical engineering,
especially considering the onboard computer has limited online calculation capability.

Remark 3. According to Theorems 1 and 2, the proposed controller can ensure the relative attitude,
angular velocity, position, and velocity stabilize into the small neighborhoods around the origin.
From (26) and (39), it follows that the small neighborhoods around the origin are adjustable. If we
set the parameters α1, α2, k1, and k2 as large as required, the small neighborhoods can be made
sufficiently small.

Remark 4. It is noteworthy that the RBFNN utilized for intelligent control in this paper can also
be replaced by some other approximation tools, such as recurrent NNs, wavelet NNs, and fuzzy
logic systems. Moreover, adaptive dynamic programming is an effective methodology for the optimal
control of unknown nonlinear systems with the help of critic NNs [32–35]. Future investigation
building on this research will focus on extending the present results by embedding them with an
adaptive dynamic programming approach.

4. Simulated Example

A simulated example is performed to illustrate the proposed control scheme. The
sampling frequency for feedback is set as fs = 20 Hz. The initial attitude, angular velocity,
position, and velocity of the chaser are given as σ(0) = [0, 0, 0]T, ω(0) = [0, 0, 0]T rad/s,
r(0) = [1, 1, 1]T × 7.078 × 106 m, and v(0) = [2, 3,−2]T m/s. The initial relative attitude,
angular velocity, position, and velocity of the target with respect to the chaser are given as

σe(0) = [0.2,−0.4, 0.3]T, ωe(0) = [0.02,−0.02, 0.02]T rad/s, re(0) =
[
50
√

2, 0,−50
√

2
]T

m,

and ve(0) = [0.5,−0.5, 0.5]T m/s. Moreover, the constant position vector of the desired
docking point with respect to the target in frame Ft is given as pt = [0, 5, 0]T m. The inertia
matrices of the chaser and the target are chosen as

J =

⎡⎣ 38 −2.5 −5.5
−2.5 44 −2.7
−5.5 −2.7 36

⎤⎦ kg · m2, (40)

Jt =

⎡⎣ 3336 −135.4 −154.2
−135.4 3184 −148.5
−154.2 −148.5 2423

⎤⎦ kg · m2. (41)
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The masses of the chaser and the target are chosen as m = 58.2 kg, and mt = 5425.6 kg. The
inertia matrices and the masses are assumed to be fully unknown for the control design.
The disturbance torques and forces acted on the chaser and the target are chosen as

dτ = hτ =

⎡⎣ 1 + sin(πt/125) + sin(πt/200)
1 + sin(πt/125) + sin(πt/250)
1 + cos(πt/125) + cos(πt/250)

⎤⎦× 10−5 Nm, (42)

d f = h f =

⎡⎣ 1 + sin(πt/125) + sin(πt/200)
1 + sin(πt/125) + sin(πt/250)
1 + cos(πt/125) + cos(πt/250)

⎤⎦× 10−4 N. (43)

Due to the actuator saturation, the acceptable maximum control torques and forces
are set as

|uτi| ≤ 2 Nm,
∣∣∣u f i

∣∣∣ ≤ 200 N, i = 1, 2, 3. (44)

In addition, the actuator faults are also considered. The actuator health factor matrices
are given as

Γτ = diag{0.8 + 0.1 sin(0.1t), 0.8 − 0.1 cos(0.3t), 0.7 − 0.2 sin(0.2t)}, (45)

Γ f = diag{0.7 + 0.1 sin(0.2t), 0.6 + 0.2 cos(0.1t), 0.8 + 0.2 cos(0.1t)}. (46)

The commonly used proportional-derivative (PD) controller is employed for perfor-
mance comparisons. The compared PD controller is also made up of a relative attitude
control law and a relative position control law. The relative attitude control law is de-
signed as

uτ = −kp1σe − kd1ωe, (47)

where kp1 > 0 and kd1 > 0. Moreover, the relative position control law is designed as

u f = −kp2re − kd2ve, (48)

where kp2 > 0 and kd2 > 0.
The parameters of the proposed neural adaptive fault-tolerant controller are given as

α1 = 0.5, α2 = 0.5, k1 = 20, k2 = 20, μ1 = 1, μ2 = 1, η1 = 0.1, and η2 = 0.1. Seven nodes
are selected for the hidden layer of the RBFNN. The parameters of the RBFNN are selected
as ci = [−3,−2,−1, 0, 1, 2, 3]T, and wi = 6. The initial values of the adaptive parameters
are set as b̂τ = 0 and b̂ f = 0. Additionally, the parameters of the compared PD controller
are given as kp1 = 12, kp2 = 16, kd1 = 12, and kd2 = 16.

The translational motion of the chaser and the target for proximity operation is pro-
vided in Figure 3. It is clearly seen that the chaser, under both the proposed neural adaptive
fault-tolerant controller and the compared PD controller, can quickly approach the tar-
get, and the spacecraft proximity operation can be well accomplished. Specifically, the
simulation results of the proposed neural adaptive fault-tolerant controller are given in
Figures 4–7. Figure 4 shows the time profiles of the relative attitude and angular velocity
under the proposed controller. The time profiles of the relative position and velocity under
the proposed controller are presented in Figure 5. Figure 6 gives the time profiles of the
control torques and forces of the chaser under the proposed controller. The changing
curves of two adaptive parameters under the proposed controller are depicted in Figure 7.
Moreover, the simulation results of the compared PD controller are given in Figures 8–10.
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Figure 3. Translational motion of the chaser and the target for proximity operation.

Figure 4. Relative attitude and angular velocity under the proposed controller.

Figure 5. Cont.
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Figure 5. Relative position and velocity under the proposed controller.

Figure 6. Control torques and forces of the chaser under the proposed controller.

Figure 7. Two adaptive parameters under the proposed controller.
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Figure 8. Relative attitude and angular velocity under the PD controller.

Figure 9. Relative position and velocity under the PD controller.

From Figures 4, 5, 8 and 9, it is revealed that the steady-state relative errors under
the PD controller are much larger than those under the proposed controller. Meanwhile,
the PD controller has the obvious unexpected overshooting problem, which the proposed
controller does not have. The proposed controller can achieve superior performance, even
in the presence of unknown parameters, disturbances, and actuator faults. Nevertheless,
the performance of the PD controller is relatively poor, due to the existence of lumped
unknowns in 6-DOF dynamics. Benefiting from the indirect neural approximation, the
proposed controller is robust against unknown parameters and disturbances and is also
insensitive to actuator faults. Figures 6 and 10 reveal that the control torques and forces
of the chaser can always satisfy the actuator saturation constraints during the spacecraft
proximity operation. From Figure 7, it can be inferred that the two adaptive parameters are
bounded and change with time smoothly.
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Figure 10. Control torques and forces of the chaser under the PD controller.

Furthermore, some crucial indexes are introduced to quantitatively compare the per-
formance between the proposed controller and the PD controller. Specifically, the integrated

absolute errors (IAEs) are defined as IAEσ =
3
∑

i=1

∫ t
0 |σei(τs)|dτs, IAEω =

3
∑

i=1

∫ t
0 |ωei(τs)|dτs,

IAEr =
3
∑

i=1

∫ t
0 |rei(τs)|dτs, and IAEv =

3
∑

i=1

∫ t
0 |vei(τs)|dτs, which evaluates the steady-

state response performance of the controller. Moreover, the integrated time absolute

errors (ITAEs) are defined as ITAEσ =
3
∑

i=1

∫ t
0 τs|σei(τs)|dτs, ITAEω =

3
∑

i=1

∫ t
0 τs|ωei(τs)|dτs,

ITAEr =
3
∑

i=1

∫ t
0 τs|rei(τs)|dτs, and ITAEv =

3
∑

i=1

∫ t
0 τs|vei(τs)|dτs, which evaluates the tran-

sient response performance of the controller. The total time for performance comparison
is set as t = 120 s. The IAEs and ITAEs under the proposed controller are IAEσ = 3.64,
IAEω = 1.70, IAEr = 424.95, IAEv = 116.73, ITAEσ = 28.16, ITAEω = 15.83,
ITAEr = 4480.8, and ITAEv = 1265.6. By contrast, the IAEs and ITAEs under the PD
controller are IAEσ = 3.75, IAEω = 2.33, IAEr = 797.86, IAEv = 243.22, ITAEσ = 30.55,
ITAEω = 25.12, ITAEr = 13900, and ITAEv = 4695.2. It is not difficult to find that the
IAEs and ITAEs under the PD controller are much larger than those under the proposed
controller. This means that the proposed controller can achieve better steady-state and
transient responses than the PD controller.

In summary, the simulation results indicate that the proposed neural adaptive fault-
tolerant controller can realize superior performance and good uncertainty rejection capabil-
ity, which guarantees the successful implementation of the spacecraft proximity operation.

5. Conclusions

This paper aimed to propose a neural, adaptive, fault-tolerant control scheme for the
integrated attitude and position control of spacecraft proximity operations in the presence
of unknown parameters, disturbances, and actuator faults. The proposed controller is made
up of a relative attitude control law and a relative position control law. Both the relative
attitude control law and relative position control law were designed by adopting the NNs to
approximate the upper bound of the lumped unknowns. By introducing the indirect neural
approximation, the proposed controller is more suitable for practical engineering, especially
considering the onboard computer has limited online calculation capability. The ultimate
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uniform boundedness of the overall closed-loop system can be achieved through Lyapunov
analysis. The proposed controller can ensure the relative attitude, angular velocity, position,
and velocity stabilize into the small neighborhoods around the origin. Lastly, simulation
results indicate the effectiveness and superior performance of the proposed control scheme.
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Abstract: Unmanned aircraft systems are expected to provide both increasingly varied functionalities
and outstanding application performances, utilizing the available resources. In this paper, we
explore the recent advances and challenges at the intersection of real-time computing and control
and show how rethinking sampling strategies can improve performance and resource utilization.
We showcase a novel design framework, cyber-physical co-regulation, which can efficiently link
together computational and physical characteristics of the system, increasing robust performance
and avoiding pitfalls of event-triggered sampling strategies. A comparison experiment of different
sampling and control strategies was conducted and analyzed. We demonstrate that co-regulation
has resource savings similar to event-triggered sampling, but maintains the robustness of traditional
fixed-periodic sampling forming a compelling alternative to traditional vehicle control design.

Keywords: resource-aware control; co-regulation; feedback scheduling; time-varying system

1. Introduction

The design of efficient, intelligent, and safe unmanned aircraft systems (UASs) is
challenging, especially as onboard resources are stretched to maximize performance [1].
Emerging UASs are equipped with complex suites of computing (cyber) and mechatronics
(physical) systems. They are expected to provide both highly varied functionalities, out-
standing application performances, and remain safe, all within the available resources [2].
Computing and timing are key factors determining holistic system behavior [3,4] and, hence,
must be first-class design parameters in such intelligent control systems. To optimize the
use of computing resources—autonomy and control algorithms and associated resource
requirements need to be considered simultaneously, or “co-designed” [5].

In this article, we focus on comparing the control performance of a multicopter UAS
under different sampling strategies varying in the level of a “co-design” of computing
resources (sampling rate) and holistic system performance. Specifically, we examine tra-
ditional fixed-periodic control [6], event-triggered control [7], self-triggered control [8],
and a new hybrid sampling strategy we developed—“cyber-physical co-regulation” [9].
Cyber-physical co-regulation incorporates computational resource allocation alongside
traditional control performance in a single model [9]. Cyber and physical controllers can
then be co-designed to meet holistic performance requirements. The computational effector,
sampling rate, is adjusted in response to off-nominal conditions in the controlled system,
and the physical effector adjusts control outputs corresponding to the current (changing)
sampling rate. To analyze the influences from computing and timing, the controllers are all
designed based on a unified optimal control strategy—linear quadratic regulator (LQR).
Our previous work focused on co-regulation design methodologies [10], co-regulated
system stability analysis [11], co-regulated controller design [12], and proof-of-concept
demonstrations of control and computing features of co-regulation design on a simple
inverted pendulum system [13]. In this work, we focus on a detailed analysis of control and
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computing for UASs. We conducted a thorough comparison of control performances and
computational efficiencies among different sampling strategies on an UAS to demonstrate
how computing and timing can affect control. We highlight the unique benefits of our
proposed co-regulation strategy on control performance, computational efficiency, and sys-
tem robustness over the traditional fixed-periodic, event-triggered, and self-triggered
controllers. We propose new evaluation metrics for analyzing UAS control and computing
performances. We discuss the implementation of a co-regulation strategy to provide insight
to control engineers on how to design co-regulated systems. Moreover, a more thorough
discussion on the pitfalls of event-triggered and self-triggered sampling strategies on UAS
is presented. Quantitative evaluations for all of these strategies were conducted based on
evaluation metrics that could reflect both control performance and computing costs.

2. Motivating Example

In a traditional fixed-periodic, computer controlled system, the control laws and
their associated sampling or execution rates are intrinsically linked [6]. The sampling rate
is typically overdesigned—selected to account for the worst-case anticipated noise and
response characteristics, giving the system a safety margin [14]. The behavior of the control
loops, and the relation between the control performance and controller execution rate, such
as the results in [15], suggest that static resource allocation may not be optimal for system
performance when computing resources are limited. Intuitively, a controller of a plant
operating close to its equilibrium may only require a much lower sampling rate than a plant
operating far from its equilibrium point [16]. In size, weight, and power constrained vehicle
systems running control tasks and a myriad of other tasks, such as perception, learning,
planning, and data processing—redistributing these computing resources at runtime is key
to maximize the overall system performance [15,16].

Figure 1 illustrates three possible resource allocation strategies for a simplified surveil-
lance multicopter in which a flight control task and a perception task are executed con-
currently and share a fixed amount of computing resources. The plots depict an example
response from the simulation for illustration purposes. The flight control task in this ex-
ample is for the UAS to track a series of waypoints and the control system response in
each subfigure depicts the cross tracking error with respect to the reference waypoint in
meters. Assume that the processor has a limited amount of resources that can allow only
one task to run at a higher rate and the other at a lower rate during runtime. The lower rate
and higher rate tasks respectively correspond to lower and higher resource consumption.
In typical priority-driven scheduling, the highest priority task is given system resources—
CPU cycles [17]. A task’s priority, in most safety-critical systems, is dependent on the task’s
period, particularly for hard real-time tasks, such as control and perception [17].

Figure 1a,b show two static (fixed-rate) resource allocation strategies; Figure 1c shows
a simple dynamic (variable-rate) resource allocation policy. In Figure 1a, the control
task is consistently executed at a high rate, while the perception task is executed at a
low rate because of the limited computing resources. This leads to a good control task
performance, but potentially poor perception performance. In contrast, in Figure 1b,
the control system performance deteriorates because a major portion of the computing
resources are allocated to the perception task. The control task has to be executed at a low
rate; thus, the system response becomes slow. In Figure 1c, the resources are dynamically
allocated, in a closed-loop fashion, according to plant dynamics and performance to the
control and perception tasks. The benefits of this dynamic resource allocation are that it
has good control performance and efficient and effective resource usage. Thus, the system
computational resources are efficiently allocated to different tasks in a closed-loop fashion,
which can increase the holistic system performance.
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(a) (b) (c)

Figure 1. Different resource allocation strategies for UAS (example response for illustration pur-
poses). (a) static high-rate control with low-rate perception; (b) static low-rate control with high-rate
perception; (c) dynamic resource allocation for control and perception tasks.

Figure 2 provides an example of this dynamic resource allocation design on a UAS.
When flying from an initial position to waypoint 1, in a dynamically quiescent environment,
the planning and control task should consume fewer resources as the UAS moves closer
to its target (less trajectory tracking error). The resources are more efficiently applied
to improve perception, reasoning, or data collection activities. In contrast, when flying
from waypoint 1 to waypoint 2, the UAS should “pay more attention” (i.e., reallocate
resources) to the planning and control task to navigate itself to the target while avoiding
obstacles in the congested environment. During this time, higher level reasoning and
perception tasks can wait, while resources are reallocated to control, planning to improve
tracking performance.

Figure 2. Dynamic resource reallocation of a UAS.

To enable a resource-aware controller capable of adjusting performance and resources
as needed, we developed a feedback control-based model for controller tasks, in which com-
puting resources and control performances are jointly considered. The co-regulated systems
are capable of dynamically reallocating resources to control tasks based on system states
in a closed-loop fashion, while the control task could provide an adjustable performance
depending on the dynamically reallocated resources at runtime. In this paper, we con-
duct a comparative experiment based on a multicopter UAS to analyze the computational
and physical control performances of co-regulation and the conventional fixed-periodic,
event-triggered, and self-triggered sampling and control strategies. Results show that the
co-regulated UAS preserves the resource savings similar to event- and self-triggered control
strategies, but maintains the high-quality control performance and system robustness as a
fixed-periodic control strategy.
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3. Background

Here, we provide a brief overview of dynamic resource allocation and its relationship
to intelligent control. We then narrow down to resource allocation in control systems,
focusing on how computational resources, in the form of a sampling rate, have traditionally
been allocated.

3.1. Dynamic Resource Allocation

Although dynamic physical resource allocation in the form of mutable or reconfig-
urable structures has been studied, we focus on dynamic cyber resource allocation (i.e.,
CPU time, memory). This approach offers system adaptability to available resources when
performance requirements of a running application are changed, or the current allocation
is not sufficiently close to optimal [18]. Strategies, such as voltage and frequency scaling
CPUs [19], dynamically adjust CPU clock rates, thereby adjusting the actual physical CPU
time any task gets. A side-effect of these strategies is a corresponding change in power
consumption. Rate-adaptive and rhythmic tasks [20] adjust the CPU schedule to obtain a
similar result leaving remaining CPU cycles to be reallocated elsewhere, thereby forfeiting
power savings. A framework called “time bands”, in contrast, reallocates tasks to different
levels of time granularity [21]. To know when, and how much to adjust resources, the above
must be connected to a measure of “quality of service” and other performance metrics [22].
This was addressed most recently by applying reinforcement learning to design an optimal
resource allocation system [23].

These methods have largely remained divorced from the specifics of control and
UAS, or otherwise do not incorporate such systems into their models. In contrast, most
recently, attention has been given to building formal resource architectures and controllers
for computer systems utilizing knowledge gained in the control community, specifically for
robust control [24]. Our work complements and enhances this work, but takes the approach
of directly integrating computational resources into control-specific models, allowing for
the co-design of both computational and physical controllers.

3.2. Overview of Sampling Strategies

Controllers are designed to meet performance specifications for the system and are
executed on a digital computer. In this paradigm, allocating CPU cycle/time takes the form
of different sampling strategies resulting in the sampled-data control class of systems [14].
If we consider the sampling period as a control variable, the predominant design amounts
to open-loop control of periodic execution, or fixed-periodic sampling. The period is
typically chosen according to worst-case conditions, leading to inefficient implementations
in terms of processor usage, communication bandwidth, energy, etc. As in the UAS example,
executing the control tasks are under a fixed period, when states and the environment are
quiescent waste computational resources that could be used for reasoning, decision-making,
or adaptation.

The inefficient allocation of resources in fixed-periodic sampling motivates research
in aperiodic sampling strategies [13]. Aperiodic sampling in the control is exemplified by
event-triggered control where control actuation instances are performed when needed [13].
In event-triggered control, a control cycle is only executed when the triggering condition
is violated [8]. These aperiodic sampling strategies can greatly conserve computational
resources, but suffer from the disadvantages of event-triggered systems. The triggering
condition needs to be continuously monitored and, thus, more sampling instances may
be required. Moreover, the cases where trigger conditions are not met cannot be dis-
tinguished from failure in detecting/communicating the event [13,17]. This reduces the
robustness of event-triggered control strategies in dynamical environment and network
conditions, and makes developing a mathematical foundation for this class of controllers
challenging [13,25].

The research in self-triggered control provide a new type of sampling strategy, time-
varying periodic sampling [13]. Time-varying periodic sampling achieves the benefits of
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periodic methods in terms of design, but because the sampling period changes, it conserves
computational resources similar to aperiodic control strategies [13]. In self-triggered control,
the time for next sampling and control instance is precomputed during the current control
cycle using previously received data and knowledge of system dynamics [8]. In [9], we
introduced a new hybrid time-varying periodic sampling strategy that can dynamically
vary the sampling period at runtime, depending on computing demands and system
state feedback. This allows computational and physical resources to be dynamically
reallocated as needed. Therefore, going beyond the traditional classification of Riemann
and Lebesgue sampling approaches in [25], we reclassify computer control systems into
three categories: fixed-periodic sampling, aperiodic sampling, and time-varying periodic
sampling, as shown in Figure 3.

Figure 3. Three categories of control systems.

4. Control under Different Sampling Strategies

Consider a linear control system model in a general form,

ẋ = Ax + Bu. (1)

where x ∈ R
n is the state and u ∈ R

m is the control input. We introduced the control design
for each of the sampling categories in Figure 3 based on this general model. To analyze
the performance of different sampling strategies, we employed a unified discrete linear
quadratic regulator (DLQR) algorithm for fixed-periodic, event-triggered, self-triggered,
and a co-regulated controller design.

4.1. Category I—Fixed-Periodic, or Time-Triggered Control

For a fixed sampling interval Td, we can discretize the system model (1) as

x[k + 1] = Φx[k] + Γu[k]. (2)

For the common state-feedback control [14], the control input can be denoted as
u[k] = −Kx[k], where the control gain K can be designed to meet the performance criteria.
For the DLQR algorithm, the control gain, K, can then be decided by choosing appropriate
Q and R matrices.

4.2. Category II—Event-Triggered Control

Event-triggered control consists of two elements—a feedback controller that computes
the control input and a triggering mechanism that determines when the control input has
to be updated again [8]. To implement event-triggered control in a computer, the controller
needs to sample the system at a fixed base-period Td (internal sampling interval) to decide if
a new control update is needed [26]. Generally, a triggering parameter needs to be designed
to execute a control instance to guarantee system stability. This triggering parameter
should be designed depending on the system model. In this paper, we have adapted the
event-triggered controller in [27] to our multicopter UAS and used it as the basis for results
comparison. This algorithm updates the control signal once the UAS states deviate more
than a certain threshold from a desired value.

407



Sensors 2022, 22, 1525

4.3. Category III—Self-Triggered Control

Event-triggered is reactive; it requires constant monitoring of a triggering condition.
Self-triggered control, on the other hand, is proactive and computes the next sampling
and control instance ahead of time [8]. At each sampling instant, the control signal values,
as well as the next sampling instance time, are both calculated based on the current state.
To implement self-triggered control in a computer, an inter-execution time Td is required to
work as the time span unit that, when combined with the calculated next control time step
k∗, the exact time for the next sampling and control instance can be achieved as k∗Td. Similar
to event-triggered control, a triggering parameter is needed to decide the appropriate next
control instant to guarantee system stability. In our comparison test, we leverage the
self-triggered control algorithm in [27]. This algorithm determines the subsequent control
updates based on the prior ones, obviating the necessity for continual measurement error
monitoring [13].

4.4. Cyber-Physical Co-Regulation

Cyber-physical co-regulation is a time-varying periodic sampling and control strategy,
it can adjust system performance by simultaneously co-regulating the control input and its
required computing resources. We augmented a traditional state space control model as in
Equation (1) with a model of the computational control task. This resulted in an augmented,
stacked state-space system model

ẋ = Ax + Bu

ẋc = uc
(3)

where c denotes “computational”. The term “computational” refers to the state of the
resource, and in this case, xc refers to the physical system’s control task execution rate,
which is regulated by the computational control input uc.

Figure 4 shows the co-regulation method developed for the multicopter UAS control
in our previous work [10]. The computational system monitors the physical state error
at runtime and dynamically reallocates computational resources (i.e., sampling rate) in
reaction to physical performance. When the physical state error increases, the compu-
tational controller increases the sampling rate; when error decreases, the sampling rate
decreases [13]. The physical system then executes the control task and adjusts the physical
system performance according to the time-varying sampling rate. The physical controller
is designed to provide performance guarantees for the UAS when working under the
time-varying sampling rate.

Figure 4. Co-regulation block diagram [10].
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Because of the dynamically changing sampling rate at discrete intervals, the discrete
system matrices Φ and Γ are not static and need to be recalculated at each time step k.
The resulting discrete-time-varying system model is then [13],

x[k + 1] = Φ[k]x[k] + Γ[k]u[k] (4)

and the control input is
u[k] = −K[k]x[k] (5)

The controller is designed using a sequence of DLQR control gains for a sequence of
sampling rates [14]. The control gains are mapped with different sampling rate values,
and are then deployed corresponding to the current sampling rate [13]. This control design
is referred to as a “gain-scheduled DLQR (GSDLQR)” and is described in Table 1 [10,12],
with stability results demonstrated in [11]. In this work, we primarily focused on a compar-
ative analysis of the control and computing features among different sampling strategies.
Although advanced methods for UAS nonlinear control [28] exist, we leveraged a unified
linear DLQR control algorithm for different sampling strategies to simplify the control
design and highlight the performance differences brought by different sampling strategies.

Table 1. Scheduled Gains at different sampling rates [10].

Rate xc Gain K[k]

xc = xc,min Hz K[k] = DLQR @xc,min Hz

xc = 10 Hz K[k] = DLQR @10 Hz

xc = 11 Hz K[k] = DLQR @11 Hz

...
...

xc = xc,max Hz K[k] = DLQR @xc,max Hz

Co-regulation, as with event- and self-triggered strategies, needs to know when to
take the next sample [13]. We structured this as a feedback computational controller that
calculates the coupled control input uc, which dynamically modifies the sampling rate
in response to the system’s dynamics. In prior work [10], we defined a control law for
computational systems as

uc[k] = Kcp

(
x[k]− xre f [k]

)
− Kc

(
xc[k]− xc,re f [k]

)
. (6)

In response to physical state error, the coupling gain Kcp was employed to increase
the sampling rate of the system. The gain Kc, conversely, directs xc in the direction of the
desired reference sampling rate xc,re f . We applied an optimization approach introduced
in [10] to determine values for the gain values Kcp and Kc. As a result, the discrete-time
computational system model for the current sampling instance k can be denoted as [13]

xc[k + 1] = xc[k] +
1

xc[k]
uc[k]. (7)

Thus, based on the current state of the plant, the next sample instance time can be
determined using Equations (6) and (7).

To implement the co-regulation strategy in the software, we needed to add constraints
to the computational system model (7) to limit the sampling rate values, xc, to a set Σ that
contained a finite number of possible values. Σ = { f1, f2, . . . , fN} is a pre-defined finite
set that contains stable sampling rate values as prescribed operating points. This limits
the sampling rate of the co-regulated system to a finite number to simplify the analysis.
The bounds and the resolution of the values in Σ can be customized depending on the
application. The general rule to generate Σ is to:

409



Sensors 2022, 22, 1525

1. Set the upper bound based on the system computational bandwidth given all other
computing tasks;

2. Set the lower bound to the rate where system performance degrades beyond accept-
able limits, or otherwise is unstable;

3. Set the resolution based on the system dynamics and application scenarios, which
can guarantee system stability and accommodate performance requirements, such as
disturbance rejection, dynamic response, etc.

In the software implementation, the GSDLQR gain matrices are saved as a look-up
table. In each control cycle, the appropriate DLQR gain matrix that maps with the current
sampling rate is leveraged to compute the control signal. Then the next sampling rate
value is calculated by the computational control model based on the current state feedback.
The control task execution rate is decided by the computational controller based the the
real-time state feedback. The software implementation of the co-regulation algorithm is
summarized in Algorithm 1.

Algorithm 1: Cyber-physical co-regulation.

Result: Physical control input u[k]
Control task rate xc[k + 1]

Input: x[k], xre f [k], xc[k], xc,re f [k], Kcp, Kc, Σ
Output: u[k], xc[k + 1]
while Algorithm is running do

if t = tlast + 1/xc[k + 1] then
//Update the control instance time
tlast = t;
//Calculate the physical control input
K[k] = DLQR @ xc[k]Hz;
u[k] = −K[k](x[k]− xre f [k]);
//Calculate the computational control input
uc[k] = Kcp

(
x[k]− xre f [k]

)
− Kc

(
xc[k]− xc,re f [k]

)
;

//Calculate the following tasks execution rates
xc[k + 1] = xc[k] +

(
1

xc [k]

)
uc[k];

xc[k + 1] = closest value in Σ;
Return: u[k], xc[k + 1];

The novelty of the co-regulation approach is in its coupling of computational and
physical systems via equations of motion rather than incorporating the delays of motion
into the models used for task scheduling. That is, at the feedback control level, computa-
tional and physical resources are balanced dynamically rather than at a higher planning
level [9]. Co-regulation does not replace traditional planning, but supplements it by reactive
reallocation of resources within the reference trajectories commanded by the planner [9].

Co-regulation, conceptually, can be applied to a wide variety of control problems,
including nonlinear controllers, and there are currently two main approaches to designing
them. The most widely applicable are methods such as the presented gain scheduling
framework that are generalizable to virtually any control strategy as long as multiple
sampling-rate-targeted controllers can be designed. In this paradigm, co-regulation be-
comes a switched system with associated performance guarantees [12]. More generally,
however, smoother, more robust controllers can be developed as long as a single control
law that works for a wide range of sampling rates can be found. As an example, for attitude
control of a CubeSat, we introduced a control strategy based on propagating the Riccati
equations forward in time (rather than the traditional “backward in time”) [9]. In that
paradigm, the controller evolves alongside the sampling rate and discrete-time-varying dy-
namics. Such strategies are more difficult to design since they rely on discrete-time-varying
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dynamics (due to the time-varying sampling rate) and developing such control laws is an
active area of research. Minimum sampling rates to ensure good performance are highly
dependent upon the speed of the system dynamics, and experimentally, we observed that
single co-regulated control laws tend to evolve more slowly without an associated sampling
rate prediction mechanism or trajectory. As a result, our existing controllers of this type
are applied to systems with slower dynamics (e.g., CubeSat). In contrast, the presented
gain scheduling paradigm, due to its switching nature, is better applied in systems with
faster dynamics. Eventually, we envision an all-encompassing framework for designing
co-regulated controllers dependent upon the speed of the system dynamics, expected
computational capabilities, expected computing task sets, and resource requirements.

5. Evaluation Metrics

We intend to quantify both physical and computational characteristics of the system
in order to more holistically evaluate system performance. Physical evaluation metrics
primarily assess performance of the plant’s response to references and the actuation effort
required to achieve it. Computational evaluation metrics primarily assess the computational
resources allocation for control task, which include the number of sampling and control
instances during the test cycle.

5.1. Physical Evaluation Metrics

Our first metric is the time averaged square of physical state error (PSE),

PSE =
1

ttot

n

∑
i=0

(
xi − xre f

)2
ti. (8)

This metric provides an all-encompassing look into how well all states are being regu-
lated. Because average error does not address control inputs that may saturate actuators, we
introduce an additional metric, maximum state error (MSE), which evaluates the maximum
deviation of the plant states from the reference,

MSE = max
(

xi − xre f

)2
. (9)

For control effort, we introduced a metric capturing the time weighted average of the
square of the control input (i.e., control effort (CE)),

CE =
1

ttot

n

∑
i=0

u2
i ti (10)

where ttot is the total simulation time (in seconds), ti is the length of time for the ith
simulation step, n is the total number of simulation steps, ui = u[k] = const. on kTd ≤
t < (k + 1)Td. This metric provides an indicator of energy and power usage. We also
introduced a metric to quantify the energy cost W for the UAS in one entire flight test

process. The power required to produce a given thrust is P =
√

T3

2ρA , where T is the rotor
thrust, A is the area of the spinning propeller, and ρ is the air fluid density [10]. Then the
energy cost W in the whole process can be denoted as

W =
1

ttot

n

∑
i=0

P ti, (11)

as an additional way to evaluate the controller efficiency.

5.2. Computational Evaluation Metrics

On the computational side, we evaluated the sampling and control task resource
utilization by counting the number of sampling instances and control instances, respec-
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tively, during the test time. Let ksample represent the execution cycle (time index) of the
sampling task, incrementing each time the sampling task runs. We introduce the sampling
computational time (SCT) metric as

SCT = ksample. (12)

Similarly, we define the control computational time (CCT) metric as

CCT = kcontrol , (13)

where kcontrol represents the execution cycle (time index) of the control task.

6. Results

In this section, we deploy different sampling strategies on a multicopter UAS nonlinear
simulation and compare the resulting flight control performances and resource consump-
tion. The UAS state consists of the vehicle’s position (x, y, z)T , velocity in R

3, orientation in
roll (φ), pitch (θ) and yaw (ψ) angles, and angular rate of change in yaw [12]

xp = (x, y, z, φ, θ, ψ, ẋ, ẏ, ż, ψ̇)
T .

A lower-level attitude controller was integrated with the UAS, which accepts the
desired thrust (T), roll angle (φ), pitch angle (θ), and body yaw rate (r) as inputs [12]. Thus
the control input for the UAS is up = (φ, θ, r, T)T . The equations of motion of the UAS
model are ⎡⎣ p̈n

p̈e
p̈d

⎤⎦ = − T
m

⎡⎣cos φ sin θ cos ψ + sin φ sin ψ
cos φ sin θ sin ψ − sin φ cos ψ

cos φ cos θ

⎤⎦+

⎡⎣0
0
g

⎤⎦
where m is the total mass of the UAS, and g is gravity [12]. These nonlinear equations of mo-
tion were employed to build the high-fidelity UAS flight simulation. The controllers were
designed using a linearized state-space system model, such as (1), by linearizing the model
at a stable hover equilibrium point. To compare and analyze the control performances and
resource consumption among different sampling strategies, we developed fixed-periodic,
event-triggered, self-triggered, and co-regulated controllers for this UAS and conducted
the tests in unified environments. We leveraged the nonlinear equations of motion of the
UAS to build this high-fidelity test environment to simulate the UAS performances when
operated under different strategies.

6.1. Simulation Setup

The comparison test was conducted in a simulation environment that was built in
Matlab R2017a on a 2.3 GHz Intel i5 processor computer. The control and computational
performances of the UAS were recorded and quantified using the evaluation metrics in
Section 5. The UAS parameters are specific to the “Ascending Technologies Hummingbird”
and are listed in Table 2. More detailed specs of the UAS can be found in [29]. To study
the effects of computing and timing, the fixed-periodic, event-triggered, self-triggered,
and co-regulated controllers were all designed based on a unified optimal DLQR control
algorithm with unified parameters. The controller parameters Q and R were manually
tuned, and are shown in Table 2. The selection of computational gain Kcp and kc parameters
for co-regulation are based on the optimization scheme in [10] that targets minimizing a
cost function composed of terms measuring resource usage, control performance, and en-
ergy consumption.
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Table 2. System constants.

Parameter Value Parameter Value

g 9.80665 m/s2 m 0.515 kg
Q I10×10q R I4×4r
q = [130 130 130 150 150 150 2 2 2 1]T r = [180 180 180 3]T

Kcp = [1 1 1 1 1 1 1 1 1 1] Kc = 1

The sampling rate of the fixed-periodic control was set to 10 Hz as it could provide a
sufficient control performance for this multicopter UAS. The internal sampling interval Td
for event- and self-triggered control was set to 10 Hz, the resulting discrete system model
and control gain matrix were the same as the fixed-periodic control. The triggering param-
eters for this multicopter UAS model were manually tuned as σ = 0.9 (event-triggered
control) and μ = 0.6 (self-triggered control) based on the system response to perform the
“best” trade-off among resource utilization and control performance. The selected trigger-
ing parameters were located in the range where the system stability for the multicopter
UAS model could be guaranteed [27]. For co-regulation, the reference sampling rate xc1,re f
was set to 1 Hz as the minimum resource we allocated to the control task. The time-varying
control gain K[k] was calculated at runtime to provide performance guaranteed control.

6.2. Test Results

We compared the system performances of fixed-periodic control, event-triggered
control, self-triggered control, and co-regulation in a UAS waypoint in the following
scenario. In the first test, we set a single reference waypoint for the UAS to test the step
response. The initial state of the UAS was set to a stable hover at one meter above the
origin of the inertial frame, the single reference waypoint was set to two meters away in
the x direction. Each test was timed for a total of 15 s, and we manually added a wind
disturbance of 0.2 N in the positive x direction from 7 to 9 s.

In this work, we assumed the magnitude and direction of the wind disturbance was
constant to simplify the analysis. In an extended trajectory with varying disturbances,
the system will adapt as “error” from the controller increases. The results are depicted in
Figure 5, and quantified by evaluation metrics in Table 3. The “Position (x)” in Figure 5
depicts the UAS moving trajectory in the x direction in meters, which reflects the UAS
flight control performance. Those transient responses in “Position (x)” that have smaller
deviations from the reference (2 m) exhibited better performances. The controllers were
designed as waypoint followers, which took position information as references. Waypoint
following is the most ubiquitous type of multicopter control strategy in deployment.

The system performances from different sampling and control strategies are compared
and depicted in Figure 5. In general, fixed-periodic control provides the “gold standard”
of control performance but also utilizes the most computing resources [13]. Thus, a per-
formance that is closer to the fixed-periodic controller generally indicates better control.
The number of sampling and control instances reflects the resource consumption. Higher
computational efficiency is exemplified by sparser instances. When compared with fixed-
periodic control (Figure 5a), event-triggered control (Figure 5b) can save computational
resources at the cost of significantly degraded control performance. The event-triggered
controlled UAS has a 20% longer settling time and a 60% higher overshoot than when
being controlled by the fixed-periodic controller. For the self-triggered control performance
(Figure 5c), more computational resources can be saved since both sampling instances and
control instances are reduced. In terms of physical control performance, self-triggered
control has a similar settling time to event-triggered control, but has a 10% lower overshoot.
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(a) (b) (c) (d)

Figure 5. Performance comparison of fixed-periodic, event-triggered, self-triggered control,
and co-regulation. (a) fixed-periodic DLQR; (b) event-triggered control; (c) self-triggered control;
(d) co-regulation.

The co-regulated controller (Figure 5d) provided the best balance of control and com-
putational performances among all sampling strategies. On the control side, co-regulation
could achieve a nearly identical physical control performance compared with the fixed-
periodic control, which retained significant advantages over event- and self-triggered
controllers. On the computational side, co-regulated control required the fewest sampling
instances, providing the greatest computational efficiency. In this test, the fixed-periodic,
event-triggered, self-triggered, and co-regulated controllers all responded similarly to
disturbances. Uniquely, however, when a disturbance occurred, the sample rate of the
co-regulated controller quickly increased, allowing the system to promptly respond to the
state deviation induced by the disturbance and maintain robust performance.

In Table 3, we show quantified results for the comparison test based on evaluation
metrics. The results are normalized to provide a more straightforward comparison. The
physical control performances best illustrate the PSE and MSE metrics; fixed-periodic
control and co-regulation can provide approximately the same level of control perfor-
mances, significantly better than event-triggered and self-triggered strategies. The control
performances in the fixed-periodic control and co-regulation also lead to better energy
efficiency presented by lower CE and lower W. The computational system performances
are best illustrated by the SCT and CCT metrics. In all cases, the decrease of SCT and CCT
metrics denoting less computational resources were allocated to the sampling and control
task. The fixed-periodic DLQR controller consumed the most computational resources
among all strategies. The event-triggered and self-triggered controllers could perform
considerable savings in computing resources as a trade-off for degraded physical control
performances. Event-triggered control consumed the least control instances during this test
process. However, since it required consistently monitoring of the system states, the compu-
tational resource consumption for state sampling was the highest. Co-regulation consumed
the least resource in sampling, and the physical control performance was far better than
event-triggered and self-triggered strategies. From the results, co-regulation provided the
most significant computing resources savings with minimal loss of physical performance.
That is, the co-regulated system could achieve an (approximately) identical physical system
performance as the fixed-rate controllers while saving significant computational resources
similar to event-triggered and self-triggered controllers.
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Table 3. Evaluation metrics of different sampling and control strategies (the lower value denotes
better performance).

Control Strategy
Physical Computational

MSE PSE CE W CCT SCT
Fixed-periodic 1.0000 1.0000 1.0000 1.0000 3.2609 2.7778
Event-triggered 2.1752 2.4783 1.0917 1.0426 1.0000 2.7778
Self-triggered 1.7726 2.3041 1.0778 1.0376 1.3478 1.1481
Co-regulation 1.0031 1.0270 1.0002 1.0001 1.1739 1.0000

PSE : physical state error; MSE: maximum state error; CE: control effort; W: energy cost; SCT: sampling computa-
tional time; CCT: control computational time.

Figure 6 demonstrates a top view of the UAS waypoint following performance un-
der disturbances. This can provide a more straightforward comparison of how the UAS
responds to disturbance under different sampling strategies. Two consecutive reference
waypoints are set to 1 m away in the x direction, then 2 m away in the y direction. A distur-
bance of 0.3 N is set in the positive x direction when the UAS moves towards the second
waypoint. The results show that all four sampling strategies can provide robust perfor-
mances against the disturbance. However, fixed-periodic control and co-regulation show
better robustness to disturbances as the trajectory deviation caused by disturbances are
smaller than event-triggered and self-triggered controllers.

Figure 6. Waypoint following performance under disturbances.

7. Discussion

The primary benefits of the co-regulation strategy in computing resource saving
and physical control performance were discussed, based on the comparison test results.
Moreover, the proposed co-regulation design has some unique advantages, from the design
prospective, when compared with event-triggered and self-triggered control strategies. It
can overcome the disadvantages of not being able to distinguish lack of new information
from detection/communication failures in an event-triggered control. For self-triggered
systems, the only information provided at each time step is the next sampling instance.
Co-regulation has the advantage of knowing precisely when the next sampling instant will
be unless it is changed. That is, in the absence of a computational control law, it reverts to a
fixed-rate control—a strong robustness characteristic.

Event-triggered and self-triggered control algorithms add additional tuning and trig-
gering parameters, which can bring extra uncertainties in the control performance. Thus,
the system robustness can be reduced when compared with fixed-periodic and co-regulated
controllers. During the test process, we found event-triggered and self-triggered control
algorithms are very sensitive to parameter changes; that is, a tiny change in the triggering
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parameter can lead to huge changes in system performance. The UAS step responses
under different triggering parameter values are recorded. Figure 7a,b, shows the UAS
performance difference when the triggering parameter (σ) value is changed from 0.7 to
0.9, the resulting number of control instances decreases from 27 to 22, but the control
performance is dramatically changed.

(a) σ = 0.66 (b) σ = 0.77

Figure 7. Event-triggered control performances with different σ values.

In self-triggered control, the system performance is even more sensitive to triggering
parameter changes. Figure 8a,b shows the UAS performance difference when the triggering
parameter μ value changes from 0.7 to 0.9, the resulting number of control instances
decreases from 30 to 26, and the control performance is greatly affected.

The performances of event/self-triggered controllers can become more robust when
we select more conservative triggering parameters. However, the sampling and control
instances will increase to approximately the same level as a high-rate fixed-periodic con-
troller, which will lose the advantages in conserving computing resources. On the other
hand, less conservative triggering parameters of event-triggered and self-triggered con-
trols can lead to more savings of resources at the cost of decreased system robustness.
Co-regulation, as opposed to event/self-triggered control strategies, can provide much
more robust and consistent system performances when we change either Q and R param-
eters for the physical system controller or Kcp and Kc parameters for the computational
system controller.
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(a) μ = 0.7 (b) μ = 0.9

Figure 8. Self-triggered control performances with different μ values.

Recent research studies have provided more advanced designs for event-triggered and
self-triggered controls, where better trade-offs among resources and performances could be
achieved. An important issue surrounding event-triggered and self-triggered controls is the
complexity of the algorithms used for the online implementation that decides the sampling
interval [30]. Such complex calculations can be challenging to real-time implementations,
especially for applications where fast system dynamics are required. However, the co-
regulation scheme calculates the sampling rate trajectory by a separate computational
controller that can be executed extremely fast (complexity O(1)) with negligible resource
consumption, such as a PID controller [9]. The physical controller can also be customized
depending on different application requirements. The proposed GSDLQR algorithm for co-
regulated systems can be implemented as a lookup table, which can be executed fast enough
to meet real-time requirements in highly dynamic applications [10]. By detaching the
computational and physical system, co-regulation can provide a higher degree of freedom
for system design, as well as a highly robust framework that can provide performance
guarantees for different application scenarios. Though discussed in the context of UAS in
this work, co-regulation design is broadly applicable to cyber-physical vehicle and robotics
systems, particularly those where careful allocation of resources is desirable (e.g., size,
weight, and power constrained vehicles). More detailed information of a co-regulated
control algorithm [10,12] and co-regulated system stability analysis [11] can be found in
our previous work. Our future work will focus on extending the co-regulation design to
different vehicle and robotic systems.

8. Conclusions

In this paper, we analyzed the trade-offs between computing resource utilizations,
represented by sampling rate and control performance, to further explore an opportunity
for more intelligent design strategies for UAS, to accomplish more with fewer resources.
We conducted a comparison test of different sampling strategies to demonstrate how
computing and timing can affect control performance. We highlighted the benefits of our
proposed cyber-physical co-regulation strategy in overcoming the drawbacks of event-
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triggered and self-triggered controllers, while saving far more resources compared with
traditional fixed-periodic strategies.

To make UAS more intelligent, they need the ability to adjust behavior (performance)
and resources to meet increasing demands in uncertain environments. This type of rethink-
ing of the foundations of autonomy is required to build the next generation of autonomous
robotic systems. Co-regulation does exactly this, and can form the core of a new intelligent
control system to meet this challenge. We anticipate this will make autonomous robotic
systems more efficient, robust, and capable of adapting to changes.
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Abstract: This paper proposes a nonlinear intelligent control of a two link robot arm by considering
human voluntary components. In general, human arm viscoelastic properties are regulated in
different manners according to various task requirements. The viscoelasticity consists of joint
stiffness and viscosity. The research of the viscoelasticity can improve the development of industrial
robots, rehabilitation and sports etc. So far, some results have been shown using filtered human
arm viscoelasticity measurements. That is, human motor command is removed. As a result, the
dynamics of human voluntary component during movements is omitted. In this paper, based on the
feedforward characteristics of human multi joint arm, a model is obtained by considering human
voluntary components using a support vector regression technique. By employing the learned model,
a nonlinear intelligent control of two link robot arm is proposed. Experimental results confirm the
effectiveness of this proposal.

Keywords: nonlinear intelligent control; support vector regression; feedforward control; human arm
viscoelastic

1. Introduction

In recent years, in the medical and welfare fields, human resources with appropriate
skills are required for treatment/surgical support for patients and long-term care for the
elderly. However, the shortage of human resources due to the declining birthrate and aging
population has become a problem. As one of the solutions to the above problems, it is
conceivable to adopt robots as a labor force. In the future, the places where robots will
be active in society will increase not only in factories, but also in facilities and general
households where they have contact with humans, so it is necessary to operate robots in
cooperation with humans. Therefore, it is desirable that the robot has an excellent man-
machine interface, has an affinity with humans, and has the same kinetic characteristics
as humans.

Multi-joint viscoelastic properties are attracting attention as an elucidation of human
motion control principles. Human arm multi-joint viscoelasticity is the characteristic of the
arm joint when the human arm comes into contact with the outside world. The torque that
moves a human skeletal joint is generated by the difference in tension between the leading
and competing muscle groups. The above tension difference is caused by the activity of
muscles controlled by commands from the central nervous system. Muscle control is used
not only to generate the joint torque required for exercise, but also to change the stiffness
of joints during exercise and at rest. The hardness of the joints mentioned above plays
an important role in stabilizing posture and interacting with the outside world [1]. For
example, when a person performs a movement to move a cup, the target is mediated
by the arm. In addition to interacting with objects, it is also affected by the multi-joint
viscoelasticity of this arm. In other words, it is thought that humans perform the desired
movement by adjusting the multi-joint viscoelasticity so that the operating environment
interacts with the arm and the object. Therefore, learning the work is not only learning
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the work procedure, but also learning how to control the viscoelastic properties of the
above-mentioned musculoskeletal system and contact with the outside world. Exploring
the mechanism of adjusting the joint mechanical impedance of the musculoskeletal system
is to elucidate the motor control principle of the brain that controls complex multi-joint
movements, quantitatively understands the deterioration of movements caused by nerve
and muscle disorders, and has human-friendly mechanical interfaces. It can be said that it
is an important issue in the development of [2].

Based on the above, many studies on human arm multi-joint viscoelasticity have been
conducted [3–11]. In 1998, Gomi et al. proposed a method for estimating the viscoelasticity
of the human arm during exercise using a Kalman filter [12]. Furthermore, Deng et
al. focused on the numerical instability caused by the Kalman filter’s digit loss, and he
proposed the adaptation of the UD decomposition method as a solution. Based on these
previous studies, Wang proposed motion control of a robot arm considering human arm
multi-joint viscoelasticity, and its effectiveness was confirmed by simulation [13]. On the
other hand, there is no example of applying human arm multi-joint viscoelasticity to the
control of an actual robot arm. The problem in applying it to robot arm motion control is
the reproduction of voluntary motion components. The voluntary movement component
is a feedforward (FF) component output from a model based on experience in the brain
when exercising. In the research to actually estimate the multi-joint viscoelasticity of the
human arm, the estimation is performed after removing the above voluntary movement
components with a filter. Therefore, in order to apply the multi-joint viscoelasticity of
the human arm to the robot arm, it is necessary to reproduce the voluntary movement
component with a feedforward controller.

In this study, we focus on the reproduction of the above voluntary movement com-
ponents. Specifically, we aim to design a feedforward controller that has high control
performance in the control of the robot arm. Since the feedforward controller proposed
in the previous research is designed based on a mechanical model, there is a concern
that the control performance will deteriorate due to modeling errors when conducting
actual machine experiments. Therefore, in this research, we use Support Vector Regression
(SVR) [14–18], which is a kind of machine learning methods, to design the feedforward
controller to reduce the modeling error and improve the tracking performance. The control
system is designed based on operator theory [19–24] to compensate for the interference and
uncertainty inside the controlled object that exist when controlling the robot arm. Finally,
in order to confirm the effectiveness of the proposed control system, we conduct an actual
machine experiment and verify its effectiveness.

In summary, the contributions of this paper are as follows: the viscoelastic properties
of the multi-joint arm are measured and analyzed through experiments. Based on the
characteristic of multi-joint arm viscoelastic, a controller to simulate the human body is
designed, and support vector regression is used for feedforward control.

In what follows, in Section 2, as a mathematical preparation to avoid complicating
this paper, Lagrange’s equation of motion used for modeling and SVR theorems used in
the design of feedforward control are explained. In Section 3, as a preparation for setting
the problem, we introduce the human arm multi-joint viscoelasticity, robot arm modeling
and the configuration of the experimental equipment used, and then raise the problem.
Section 4 explains the proposed control system, where we explain the design method for
the feedback controller using multi-joint viscoelasticity of the human arm, the feedforward
controller based on SVR, and the stabilization controller based on the operator theory.
Section 5 first describes the experimental conditions and the SVR parameter determination
method based on actual machine experiments. After that, experiment is conducted to
confirm the effectiveness of the feedforward controller based on SVR. In the absence of a
feedforward controller, the experimental results of using a feedforward controller based on
a mechanical model and the experimental results of a feedforward controller based on SVR
are compared. Section 6 describes the conclusions of this study.
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2. Mathematical Preparation

In this section, Lagrange’s motion equation, which is necessary when deriving a
mechanical model of a robot arm, is explained.

2.1. Lagrange’s Equation of Motion

When deriving the equation of motion of an object, Newton’s equation of motion is
generally used, but in the case of a complicated mechanical system, it is often difficult to
derive it by Newton’s equation. Lagrange’s Equations are often used in the analysis of
mechanical systems because they can solve the equations of motion of complex mechanical
systems more efficiently than Newton’s equations of motion. However, note that the
derived solution does not change from Newton’s equation because it is essentially based
on the same physical law as Newton’s equation of motion. In this section, we derive
Lagrange’s equation of motion. It is divided into three sections.

2.1.1. Generalized Coordinates and Nonholonomic Constraints

In order to show the dynamic behavior of mass system and rigid system, it is necessary
to select physical variables appropriately. In this section, we discuss the mass point system
for simplicity, but the same idea is possible for systems including rigid systems. Generally,
positions are expressed using plaque points in orthogonal coordinate systems, cylindrical
coordinate systems and spherical coordinate systems, but here we consider coordinates
that are convenient for expressing the position (arrangement) of the entire plaque point
system and defined it as generalized coordinates. A set of generalized coordinates may
include parts of a Cartesian or spherical coordinate system, but may also use angles, lengths,
distances, and so on.

Now, considering any geometrical arrangement that a given mass system can take, a
generalized coordinate system is said to be perfect when any of these arrangements can be
represented by giving coordinates. Also, the set of generalized coordinates corresponds to
continuous fluctuations in some of the coordinates, whether one of them is removed and
all the rest are fixed, or all but some of them are fixed. It is said to be independent when a
continuous change in its geometrical arrangement can remain. Taking some generalized
coordinates for a very wide class of mass and rigid systems, including robot manipulators
such as akrobot, which is the subject of this study. The number of independent coordinates
in it is often constant despite changes in the permissible arrangement, which is then called
the degree of freedom of the system.

A mass system has less degrees of freedom when it receives a geometric constraint.
If the geometric constraint can be expressed analytically by generalized coordinates and
an equation that depends only on time, the constraint is nonholonomic. Now, suppose
choosing (x1, x2, . . . , xm) as the complete generalized coordinate system for a mass system,
the coordinate system is not independent, there are p holonomic constraints such as:⎧⎪⎪⎨⎪⎪⎩

h1(x1, x2, . . . , xm, t) = 0
h2(x1, x2, . . . , xm, t) = 0
. . . . . . . . . . . .
hp(x1, x2, . . . , xm, t) = 0

. (1)

When these constraints are independent, there are n = m − p independent coordinates
out of m coordinates. The mass system has n degrees of freedom. Therefore, suppose
that a generalized coordinate system (q1, q2, . . . , qn) that is completely and independent
from the beginning is selected for the mass system of n degrees of freedom. In addition, if
part of a complete generalized coordinate system (x1, x2, . . . , xm) is (q1, q2, . . . , qn), then the
remaining p of the former are determined by Equation (1). Assuming that the mass system
consists of N mass points, it is expressed that the position vector ri of any mass point mi is
determined by the generalized coordinate system (q1, q2, . . . , qn).

ri = ri(q1, q2, . . . , qn, t) = ri(q, t) (2)
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The velocity vi of this mass point is

vi =
d
dt

ri =
n

∑
j=1

∂ri
∂qj

q̇j +
∂ri
∂t

. (3)

This time derivative q̇ = (q̇1, q̇2, . . . , q̇n) is called general acceleration.
Since the generalized position coordinate system (q1, q2, . . . , qn) is complete and inde-

pendent, the set of infinitesimal variations of coordinates (δq1, δq2, . . . , δqn) is also complete
and independent. Therefore, the variation of the position ri of the quality point mi is
represented by the variation δq1 of the generalized coordinates.

δri =
n

∑
j=1

∂ri
∂qj

δqj (4)

Next, assuming that the force f i is acting on each mass point mi, the increment of
all the work done by f i is calculated under the variational δri of the arrangement of the
mass system.

N

∑
i=1

f T
i δri =

N

∑
i=1

n

∑
j=1

f T
i

∂ri
∂qj

δqj =
N

∑
i=1

(
n

∑
j=1

f T
i

∂ri
∂qj

)
δqj (5)

The jth on the right side represents the force component in that direction obtained
from the infinitesimal variation δqi of one of the generalized coordinates qj, and this force
is called the generalized force.

Fj =
N

∑
j=1

f T
i

∂ri
∂qj

(6)

Using the generalization force, (5) is expressed as,

N

∑
i=1

f T
i δri =

n

∑
j=1

Fjδqj. (7)

2.1.2. Hamilton’s Principle

If the momentum vector of the mass point mi is set as pi, the equation of motion of the
mass point system is expressed as

f i −
d
dt

pi = 0 (8)

Note that with the nonholonomic constraint, this equation is redundant and can be
expressed for any variation δri.

N

∑
i=1

(
f i −

d
dt

pi

)T
δri = 0. (9)

However, since δri is generally not independent, (8) is (9). Therefore, we derive
Hamilton’s principle from (9) and derive n independent equations of motion equal to n
degrees of freedom.

N

∑
i=1

f T
i δri (10)

In general, the equation represents the sum of the work done by the forces acting on all
mass points in the mass system, but it is divided into a part due to conservative force and a
part due to non-conservative external force. That is, the potential energy corresponding
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to the conservative force is V(q), the generalized force is Fj, and (10) is expressed as the
following equation.

N

∑
i=1

f T
i δri = −δV +

n

∑
j=1

Fiδqj (11)

The first term on the right side is the decrease in potential energy, and the sec-
ond term is the work done by the external force. Substituting (11) into (9) gives the
following equation.

− δV +
n

∑
j=1

Fiδqj −
N

∑
i=1

f i −
dpT

i
dt

δri = 0 (12)

Here, the third term on the left side can be rewritten as

− dpT
i

dt
δri = −

N

∑
i=1

d
dt

(
pT

i δri

)
+

N

∑
i=1

pT
i

d
dt

δri. (13)

Also, assuming that the mass fluctuation of each mass point of the target mass point
system does not occur in the time interval considered, the variation of the total kinetic
energy is

δK =
N

∑
i=1

pT
i

d
dt

δri. (14)

Substituting (14) into the right side of (14) palce yields

− dpT
i

dt
δri = −

N

∑
i=1

d
dt

(
pT

i δri

)
+ δK. (15)

Substituting (15) into (12) yields,

δK − δV +
n

∑
j=1

Fiδqj −
N

∑
i=1

d
dt

(
pT

i δri

)
= 0. (16)

This equation holds for any time interval [t1, t2] we are thinking of, so that the variation
of position δri(t1) = 0 and δri(t2) = 0. This is possible because the generalized coordinate
system is perfect, and when (16) is integrated over the interval [t1, t2], the fourth term on
the right side disappears and the following equation holds.

∫ t2

t1

(
δ(K − V) +

n

∑
j=1

Fiδqj

)
dt = 0 (17)

Equation (17) is called Hamilton’s principle for a nonholonomic mass system with n
degrees of freedom.

2.1.3. Lagrange’s Equation of Motion

In order to derive an independent equation of motion equal to n degrees of freedom
from Hamilton’s theorem, we introduce a physical quantity called Lagrangian as in the
following equation.

L = K − V (18)

where K is the kinetic energy and V is the potential energy. Since V is the potential energy,
it is a function of only the generalized coordinate q̇j, but K is a function of q̇j, qj and time t.
Lagradian L can be written as,
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L = L(q̇, q, t). (19)

The variation is

δL =
n

∑
j=1

(
∂L
∂q̇j

δq̇j +
∂L
∂qj

δqj

)
. (20)

Substituting this into (17) yields,

∫ t2

t1

n

∑
j=1

(
∂L
∂q̇j

(
d
dt

)
δq̇j +

∂L
∂qj

δqj + Fiδqj

)
dt = 0. (21)

Here, if the first term on the left side is integrated by parts, it can be seen that (21)
becomes,

∫ t2

t1

n

∑
j=1

(
− d

dt

(
∂L
∂q̇j

)
+

∂L
∂qj

+ Fi

)
δqjdt = 0. (22)

Since (22) must hold for any variation δqj, the following n equations must hold for the
time interval t ∈ [t1, t2]. This is the equation of motion of the mass system described in
generalized coordinates q = (q1, . . . , qn), and is called the equation of motion of Lagrange.

d
dt

(
∂L
∂q̇j

)
− ∂L

∂qj
= Fj (23)

Many of the equations of motion of mass and rigid systems with nonholonomic
constraints can be derived by using Lagrange’s equation of motion with the following steps.

• Select a complete and independent generalized coordinate system.
• Identify non-conservative generalization forces.
• Find the kinetic energy and potential energy to construct the Lagrangian.
• Substitute Lagrangian into Lagrange’s equation of motion and write down the equa-

tion of motion concretely.

2.2. Support Vector Regression

Support vector regression is an application of a support vector machine to a regression
problem [14–18]. Support vector regression is called SVR and support vector machine is
called SVM. SVM is a typical method of binary classification and has a high prediction for
unknown data. It has been reported that it is possible to construct a classifier (function)
with measurement accuracy. SVM uses methods such as margin maximization and kernel
tricks for identification hyperplane design, and SVR is an adaptation of these methods to
regression problems. Therefore, SVR has features such as high generalization performance
and effectiveness even for those with non-linear input/output relationships. This section
describes the procedure for deriving the regression function and the kernel function used
for the regression function.

2.2.1. Derivation of Regression Function

This section describes the procedure for deriving the regression function based on
SVR. The regression function of SVR is expressed by the following equation.

f (x) = ωTφ(x) + b (24)

Let f (x) be the regression function, x be the input vector, ω be the regression coefficient
of the feature space, φ be the feature function of SVR, and b be the bias term. The regression
function is determined from the training data using an SVM-based method. In order to
determine the regression function, it is necessary to derive the regression coefficient φ
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and the bias term b. Let (xi, yi) be the input/output training data used to determine the
function of (24). Here, the slack variable is introduced as follows. ε is a setting parameter.

ξ+i =

{
0 (yi − f (xi) ≤ ε)

yi − f (xi)− ε (yi − f (xi) > ε)

ξ−i =

{
0 (yi − f (xi) ≥ −ε)

−ε − yi + f (xi) (yi − f (xi) < −ε)

(25)

By using the slack variables ξ+i and ξ−i , SVR is formulated as follows.

min
ω,b,ξ

[
1
2

ωTω + C
n

∑
i=1

(
ξ+i + ξ−i

)]
(26)

It is assumed that the constraint condition⎧⎨⎩
yi − ωTφ(xi)− b ≤ ε + ξ+i , i = 1, . . . , n
ωTφ(xi) + b − yi ≤ ε + ξ−i , i = 1, . . . , n

ξ+i , ξ−i ≥ 0, i = 1, . . . , n
(27)

is satisfied. Here, C is the setting parameter and n is the number of training data. (26)
maximizes the following objective function by introducing the Lagrange multiplier λ+

i , λ−
i ,

μ+
i , μ−

i .

Lp =
1
2

ωTω + C
n

∑
i=1

(
ξ+i + ξ−i

)
−

n

∑
i=1

(
μ+

i ξ+i + μ−
i ξ−i

)
−

n

∑
i=1

λ+
i

(
ε + ξ+i − yi + ωTφ(xi) + b

)
−

n

∑
i=1

λ−
i

(
ε + ξ−i + yi − ωTφ(xi)− b

)
(28)

Since the optimal solution is the point where the partial derivative of Lp with respect
to ω, b, ξ+i , and ξ−i becomes 0, the following equation holds for the optimal solution.

∂Lp

∂ω
= ω −

n

∑
i=1

(
λ+

i − λ−
i
)
φ(xi) = 0 (29)

∂Lp

∂b
=

n

∑
i=1

(
λ−

i − λ+
i
)
= 0 (30)

∂Lp

∂ξ+i
= C − λ+

i − μ+
i = 0 (31)

∂Lp

∂ξ−i
= C − λ−

i − μ−
i = 0 (32)

from (29), ω is

ω =
n

∑
i=1

(
λ+

i − λ−
i
)
φ(xi) (33)

Therefore, (24) is rewritten as

f (x) =
n

∑
i=1

(
λ+

i − λ−
i
)
φ(xi)

Tφ(x) + b (34)
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Substituting (29), (31) and (32) into (28) results in the following dual problem.

max
λ−

i ,λ+
i

Lp = max
λ−

i ,λ+
i

[
−1

2

n

∑
i=1

n

∑
j=1

(
λ+

i − λ−
i
)(

λ+
j − λ−

j

)
φT(xi)φ

(
xj
)

+
n

∑
i=1

yi
(
λ+

i − λ−
i
)− n

∑
i=1

ε
(
λ+

i + λ−
i
)] (35)

λ+
i and λ−

i are

n

∑
i=1

(
λ+

i − λ−
i
)
= 0, 0 ≤ λ+

i , λ−
i ≤ C (36)

Using the kernel function,

K
(
xi, xj

)
= φ(xi)

Tφ
(
xj
)

(37)

(35) becomes

maxλ−
i ,λ+

i

[
− 1

2 ∑n
i=1 ∑n

j=1
(
λ+

i − λ−
i
)(

λ+
j − λ−

j

)
K
(
xi, xj

)
+∑n

i=1 yi
(
λ+

i − λ−
i
)− ∑n

i=1 ε
(
λ+

i + λ−
i
)] (38)

The regression function is obtained from (39) using the kernel function.

f (x) =
n

∑
i=1

(
λ−

i − λ+
i
)
K(xi, x) + b (39)

2.2.2. Kernel Function

This section introduces the kernel function used for the regression function. As
mentioned above, by using the kernel function, a complicated model can be realized
without explicitly calculating φ(x). However, not all functions can be used as kernel
functions, and it is generally necessary to satisfy Mercer’s theorem. The necessary and
sufficient condition for a continuous object and square-integrable function K(x, x′) to have
the following expansion for the eigen λi ≥ 0 and the eigenfunction φi is an arbitrary
square-integrable function.

K
(
x, x′

)
=

∞

∑
i=1

λiφi(x)Tφi
(
x′
)

(40)

The following conditions are satisfied for g.∫
χ×χ

K
(
x, x′

)
g(x)g

(
x′
)
dxdx′ ≥ 0 (41)

Any function that satisfies the above theorem can be used as a kernel function. In
addition, there are many kernel functions that satisfy Mercer’s theorem, and the model
learned by changing the kernel function is completely different. Various kernel functions
have been proposed according to the application, but this section introduces the basic
kernel functions that are used very frequently. There are three basic kernel functions:

K(xi, x) = xT
i x (42)

K(xi, x) =
(

xT
i x

)d
(43)

K(xi, x) = exp

(
−‖xi − x‖2

2σ2

)
(44)

428



Sensors 2022, 22, 1424

The above equations represent a linear kernel, a polynomial kernel and an RBF kernel,
respectively. The parameter σ in the RBF function in (44) is expressed as yi as the output
data, N as the total number of data, and y as the average value of the output data.

σ2 =
1
N

N

∑
i=1

(yi − ȳ)2 (45)

A linear kernel is a simple kernel function derived when φ(xi) = xi , but it is often
used when a simple model is desired. Both the polynomial kernel and the RBF kernel
are capable of implementing non-linear models. Since the above two kernel functions
can further adjust the complexity of the model by parameters, in many cases, they are
adaptively determined for the data by using cross-validation methods or the like.

3. Problem Setup

In this section, the problem setup will be described after explaining the human arm
multi-joint viscoelasticity required and the robot arm used in this study.

3.1. Human Arm Multi-Joint Viscoelasticity

Human arm multi-joint viscoelasticity is a characteristic that determines the “hardness”
of a person’s arm joint. The torque that moves a human skeletal joint is generated by the
difference in tension between the leading and competing muscle groups. The above tension
difference is caused by the activity of muscles controlled by commands from the central
nervous system. On the other hand, muscle control is used not only to generate the joint
torque required for exercise, but also to change the “hardness” of joints during exercise
and at rest. When both muscle groups between the joints have high tension, the human
arm joint becomes “hard”. However, when the tensions of both muscle groups are small,
the human arm joint becomes easy to move. The above-mentioned “hardness” of joints
has an important role in interaction with the outside world in work and stabilization in
posture maintenance.

The behavior of the human musculoskeletal system is often modeled as a spring-
damper mass system, including the inherent characteristics of individual muscles and
the characteristics of the reflex system. Since the human musculoskeletal system actually
has complicated characteristics, the expression method is not unified, but in general, the
coefficient of the spring characteristic is the elasticity (stiffness) and damper characteris-
tic of the musculoskeletal system. The coefficient is called viscosity. The coefficient of
change in force with respect to change in acceleration is almost determined by the inertia
of the musculoskeletal system, so it is called inertia (mass). These three coefficients are
collectively called the mechanical impedance parameter of the musculoskeletal system.
Among the mechanical impedance parameters, the stiffness is mainly caused by the elastic
properties of the muscle, which changes according to the activity level of the muscle. In the
“equilibrium position control hypothesis” [25,26], there are models of the musculoskeletal
motor system, utilizing the servo system composed of its elastic characteristics and reflec-
tion. It is thought that motion and external force are generated by giving the equilibrium
position as a motor command. It can also be said that “learning work” is not only learning
the work procedure, but also learning how to control the viscoelastic properties of the
above-mentioned musculoskeletal system and come into contact with the outside world.
Therefore, exploring the adjustment mechanism of the joint mechanical impedance of the
musculoskeletal system is to elucidate the movement control principle of the brain that
controls complicated multi-joint movements. It can be said that it is an important issue
for quantitative understanding of deterioration of movement caused by nerve and muscle
disorders and development of human-friendly mechanical interface.
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3.2. Robot Arm

In this section, we will introduce the robot arm, which is the experimental device
handled in this study, and then explain the derivation of the dynamic model. Finally, we
will introduce the hardware configuration of the experimental equipment.

3.2.1. Experimental Device

In this research, we conduct an experiment using the two-degree-of-freedom horizontal
robot arm that imitates a human arm. Figure 1 shows the horizontal multi-joint robot. It
is characterized by using lightweight aluminum for each link and driving each link by a
direct drive method.

Figure 1. Robot arm used in this research (Mechanical part).

The self-made buffer circuit used in the experimental equipment of the robot arm is
shown in Figure 2. This circuit consists of two boards, the first stage has an input connector
for a rotary encoder and an output connector for connecting to a PCI board. The motor
controller for the Link 2 motor is also screwed to his first stage, but the power system
is separate. In the second stage, the width of the input/output voltage differs between
the PCI board and the motor controller, so an amplifier circuit composed of operational
amplifiers is built.

Figure 2. Robot arm used in this research (Electric part).
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3.2.2. Mechanics Modeling

The dynamic model of the two-link robot arm that is the control target is shown
in Figure 3. Lagrange’s equation of motion is used to derive the dynamic model. The
equations of motion of Lagrangian and Lagrange are shown below.

L = K − V (46)

d
dt

(
∂L
∂ẋ

)
− ∂L

∂x
= F (47)

K is kinetic energy, V is potential energy, x is generalized coordinates and F is generalized
force. The mechanical model derived from Lagrange’s equation of motion shown in (47) is
expressed as the following equation [27]. (48) represents link 1 and (49) represents link 2.

m11θ̈1 + m12θ̈2 +
∞

∑
j=1

{
m14(j)v̈2j

}
+ f1 + B1θ̇1 = τ1 (48)

m12θ̈1 + m22θ̈2 +
∞

∑
j=1

{
m24(j)v̈2j

}
+ f2 + B2θ̇2 = τ2 (49)

Link1

Link2

Figure 3. Robot arm used in this research (Conceptual diagram).

The parameters used in (48) and (49) are shown in the following equations and Table 1.

Table 1. Parameters of each link.

ρ1 Link1 density [kg/m3]
ρ2 Link2 density [kg/m3]
L1 Link1 length [m]
L1 Link2 length [m]
A1 Link1 cross-sectional area [m2]
A2 Link2 cross-sectional area [m2]
Is Moment of inertia of rotor [kg/m2]
JL Moment of inertia of set collar [kg/m2]
Jm Moment of inertia of rotor [kg/m2]
τ1 Torque applied to Link1 [N·m]
τ2 Torque applied to Link1 [N·m]

431



Sensors 2022, 22, 1424

m11 = Is + Ime + Ie + meL2
1 +

∫ L1

0
ρ1 A1x2

1dx1 +
∫ L2

0
ρ2 A2

⎧⎨⎩L2
1 + x2

2 +

(
∞

∑
j=1

φ2j(x2)v2j

)2

+2L1x2 cos(θ2)− 2L1

∞

∑
j=1

φ2j(L2)v2j cos(θ2)

}
dx2

m12 = Ie +
ρ2 A2L3

2
3

+
∫ L2

0
ρ2

{
x2

2 +

(
∞

∑
j=1

φ2j(x2)v2j

)2

+ L1x2 cos(θ2)−L1 cos(θ2)

(
∞

∑
j=1

φ2j(x2)v2j

)}
dx2

m14(j) = Ie +
∫ L2

0
ρ2 A2

{
x2φ2j(x2) + L1φ2j(x2) cos(θ2)

}
dx2

m22 =
∫ L2

0
ρ2 A2

⎧⎨⎩x2
2 +

(
∞

∑
j=1

φ2j(x2)v2j

)2
⎫⎬⎭dx2

m24(j) =
∫ L2

0
ρ2 A2x2φ2j(x2)dx2

f1 = 2ρ2 A2
(
θ̇1 + θ̇2

) ∞

∑
j=0

v2j v̇2j + L1
(
2θ̇1 + θ̇2

)
θ̇2 cos(θ2)

∞

∑
j=0

ρ2 A2

∫ L2

0
φ2j(x2)dx2v2j

+ 2L1
(
θ̇1 + θ̇2

)
sin(θ2)

∞

∑
j=0

ρ2 A2

∫ L2

0
φ2j(x2)dx2v̇2j −

(
ρ2 A2L1L2

2
2

+ meL1L2

)
θ̇2 sin(θ2)

f2 = 2ρ2 A2
(
θ̇1 + θ̇2

) ∞

∑
j=0

v2j v̇2j + L1θ̇2
1 cos(θ2)

∞

∑
j=0

ρ2 A2

∫ L2

0
φ2j(x2)dx2v2j

+

(
ρ2 A2L1L2

2
2

+ meL1L2
2 + meL1L2

)
θ̇2

1 sin(θ2)

(50)

3.2.3. Hardware Configuration

Figure 4 shows a schematic diagram of the experimental equipment. Motor 1 is TOYO
TECHINICA DM-008D25F, motor 2 is maxon RE25 series 118752, encoder 1 is NEMICON
38H-4096-2MC and encoder 2 is NEMICON 18M-1024-2MC. The control program is written
in C#. The command value calculated by the PC is DA-converted by PCI3521, then
amplified twice by the buffer circuit and input to the servo amplifier. The voltage value is
converted into a current value by the servo amplifier, and the current drives the motor to
operate each link. The angle of each link is measured by capturing the number of pulses
obtained from the encoder into a PC using the pulse counter board PCI6204.

3.2.4. Problem Setup

Human arm multi-joint viscoelasticity is,

• Elucidation of the motor control principle of the brain that controls complex multi-joint
movements,

• Quantitative understanding of motor deterioration caused by nerve and muscle disorders,
• It is considered to be an important factor in the development of human-friendly

mechanical interfaces, and many studies have been conducted up to now.

Among them, there are many studies on the estimation of human arm multi-joint
viscoelasticity and there are few examples of application to mechanical interfaces as in
the third entry. The challenge in applying it to machine interfaces is the reproduction of
voluntary movement components. The voluntary movement component is a feed-forward
component output from a model based on experience in the brain when exercising.
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Figure 4. Proposed control system.

Humans suppress disturbances with feedforward controls composed of the cerebellum.
It is believed that the body is controlled by a feedback controller. The voluntary movement
component represents the above feedforward component, and the human arm multi-joint
viscoelasticity represents the feedback component. In the research to actually estimate the
multi-joint viscoelasticity of the human arm, the estimation is performed after removing
the above voluntary movement components with a filter. Therefore, when applying the
multi-joint viscoelasticity of the human arm to the motion control of the robot arm, it is
indispensable to reproduce the voluntary motion component. In the previous research,
the motion control of the robot arm by the two-degree-of-freedom control system has
been introduced using multi-joint viscoelasticity. A feedforward controller based on a
mechanical model has the advantage that it is easy to design if the modeling of the system is
completed, but it is easily affected by modeling errors. It may cause deterioration of control
performance when conducting an actual machine experiment. In fact, in this study as well,
when a control experiment using a feedforward controller based on a mechanical model
was conducted, good control results can not be obtained due to things that are not taken into
consideration during modeling, such as the influence of the dead zone of the motor driver.
Therefore, in this research, we propose a feedforward controller based on SVR, which is
one of machine learning methods. SVR is an application of SVM to a regression problem,
and has features such as high generalization performance and effectiveness for non-linear
input/output relationships. In addition, by learning the input/output relationships of the
entire system including the motor driver as training data, it is possible to create a model
that includes modeling errors and parts that were not considered during modeling. In this
research, we design a feedforward controller using SVR and confirm its effectiveness in
actual machine experiments.

4. Control System Design

This section shows the proposed control system design method. Figure 5 shows the
proposed control system. We design a two-degree-of-freedom control system by simulating
the control system of the human body introduced in Section 3. The multi-joint viscoelasticity
measured from humans is applied to the feedback controller C. The feedforward controller
F based on SVR is also designed. In addition, in order to eliminate the influence and
uncertainty due to interference inside the controlled object, the control system is designed
based on the operator theory.
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Figure 5. Block diagram of the proposed control system.

4.1. Controller Design Based on Multi-Joint Viscoelasticity

The follow-up controller C based on multi-joint viscoelasticity is shown by the follow-
ing equation.

C(e) = Dė + Re (51)

R represents an elastic matrix and D represents a viscoelastic matrix. By applying this
multi-joint viscoelastic matrix to a feedback controller, we aim to reproduce the same
motion as humans. The elastic matrix and the viscosity matrix are 2-by-2 matrices and can
be expressed as follows.

R =

(
R11 R12
R21 R22

)
D =

(
D11 D12
D21 D22

) (52)

The multi-joint human arm viscoelasticity used in this paper is shown in Figure 6. The
combined movement of Link1 and Link2 produces translational movement, as shown in
Figure 7.

(a) Multi-joint human arm elasticity. (b) Multi-joint human arm viscosity.

Figure 6. Multi-joint human arm elasticity and viscosity.

4.2. Feedforward Controller Design Based on SVR

This section describes the design method of the feedforward controller based on SVR.
Since SVR is one of the regression analysis methods, it is necessary to select training data.
PD control is performed for the target trajectory used in the experiment in this study, and
the input voltage applied to the motor driver of each link, the angle of each link and the
angular velocity of each link at that time are measured as training data. The training data
is shown in Figure 8.

SVR learning is performed based on the results shown in Figure 8. Since the angular
velocity of link 2 was greatly affected by the measurement noise, the data filtered by the
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RC filter was trained as training data. In addition, the controller to be designed calculates
an appropriate input voltage for the target angle and angular velocity. Therefore, the
input/output relationship of the data to be learned by the SVR is the angle and angular
velocity at the input and the voltage at the output. Note that it is the opposite of the normal
input/output relationship.

Figure 7. Multi-joint viscoelasticity.

(a) Angle of link 1. (b) Angular velocity of link 1. (c) Input voltage of link 1.

(d) Angle of link 2. (e) Angular velocity of link 2. (f) Input voltage of link 2.

Figure 8. Training data of Link 1 and Link 2.

4.3. Control System Design Based on Operator Theory
4.3.1. Elimination of Uncertainty and Interference

The nominal model P̂, which eliminates uncertainty and interference from other
variables, can be expressed by the following equation.

P̂ =

{
m̂11θ̈1 + B1θ̇1 = τ1
m̂22θ̈2 + B2θ̇2 = τ2

(53)
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Using this nominal model, the operators S and R are designed to eliminate the effects
and uncertainties caused by interference inside the controlled object [13]. By designing the
controllers S and R as SP̂ = I, R = I, the uncertainty of the model and the influence of
interference inside the controlled object can be eliminated, where I is an identity map. The
following equation holds from the nonlinear feedback system shown in Figure 5.

u∗(t)− S(y)(t) + SN̂D̂−1(u)(t) = R(u)(t)

u∗(t) = S(y)(t)− SP̂(u)(t) + R(u)(t)

= P̂−1(y)

(54)

At this time, y(t) = P̂(u)(t), which shows that the uncertainty of the model and the
influence of interference inside the controlled object can be eliminated. Equivalent feedback
loops before and after removing uncertainty and interference are shown in Figure 9.

(a) Control system before eliminating interference.

(b) Control system after eliminating interference.

Figure 9. Control system before and after eliminating interference .

4.3.2. Guarantee of Stability

In this section, the control system is designed based on operator theory, and the
stability of the proposed control system is guaranteed. Specifically, based on operator
theory, we design stabilization controllers A and B−1 that satisfy the Bezout equation
AN̂ + BD̂ = I. The right decomposition of the nominal plant P̂ from which interference
and uncertainty have been removed gives the following equation.

N̂ =

⎧⎨⎩
m̂11ÿ1 + B1ẏ1 = ω1
m̂22ÿ2 + B2ẏ2 = ω2
θ1 = y1, θ2 = y2

(55)

D̂−1 =

{
ω1 = τ1
ω2 = τ2

(56)

The parameters used are shown below.

m̂11 = Is + Ime + Ie + meL2
1 +

∫ L1

0
ρ1 A1x2

1dx1

+
∫ L2

0
ρ2 A2

{
L2

1 + x2
2 + 2L1x2

}
dx2

m̂22 =
∫ L2

0
ρ2 A2x2

2dx2

(57)
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Operator A is designed as follows:

AN̂ = kI (58)

From the Bezout equation, B can be expressed as follows.

B = (1 − k)D̂−1 (59)

k is a design parameter. By constructing a nonlinear feedback system as shown in Figure 9b
using operators A and B, the BIBO stability of the control system can be guaranteed.

5. Experiment

In this section, in order to confirm the effectiveness of the proposed control system,
we verify it with an experimental device.

5.1. Experimental Conditions

Table 2 shows the parameters of the experimental equipment. The initial angle and
target angle are the same as the angles used when the multi-joint viscoelasticity estimation
was performed. Also, the sampling time was set to 0.01 s.

Table 2. Laboratory equipment parameters.

ρ1 Link1 density 8030 kg/m3

ρ2 Link2 density 8030 kg/m3

L1 Link1 length 0.2 m
L1 Link2 length 0.2 m
A1 Link1 cross-sectional area 127.5 mm2

A2 Link2 cross-sectional area 25 mm2

Is Moment of inertia of rotor 7.33 × 10−6 kg·m2

JL Moment of inertia of set collar 8.71 × 10−9 kg·m2

Jm Moment of inertia of rotor 1.08 × 10−6 kg·m2

E2 I2 Flexural rigidity of the arm 359 N·m2

C1 Attenuation coefficient 1.88 × 10−5

B Viscous friction coefficient 2.1 × 10−3 N·s/m
Kt1 Torque constant of motor 1 0.38 N·m/A
Kt2 Torque constant of motor 2 0.0234 N·m/A

5.2. Selection of Hyperparameters of SVR

In this section, we select the hyperparameter c of SVR. There are three hyperparameters
in SVR, and it is known that the regression model changes depending on the parameters.
In this research, we focus on c among hyperparameters, experiment by changing the value
of c step by step, and select the parameter with the best result. As the content of the
experiment, for the proposed control system, only the hyperparameter c of the feedforward
controller based on SVR is changed to 0.01, 0.05, 0.1, 1, 7, 10, and 100, and the experiment
is performed. After that, the error between the experimental result and the target value
is derived and evaluated by RMSE (root mean squared error). RMSE is expressed by the
following equation.

RMSE =

√
1
n

n

∑
i=1

( fi − yi)
2 (60)

Since the closer the RMSE is to 0, the smaller the error is, we select the hyperparameter
c that minimizes the RMSE. The RMSE changes with different values of c, shown as Table 3.
The experimental results are shown in Figure 10. Looking at the result of link 2, we can see
that the control result changes depending on the value of hyperparameter c. When c = 100,
it can be seen from Figure 10 that a large overshoot occurs. If c is set to a large value, SVR
is closer to the hard margin. While it is possible to create an accurate regression model that
reflects most of the training data, it has the characteristic that noise during training data
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measurement is easily reflected in the regression model. Therefore, when a large value
such as c = 100 is set, a regression model that reflects the measurement noise contained in
the training data is created, and it is considered that the overshoot shown in Figure 10a
occurred. On the other hand, it can be confirmed that when c is made smaller, the above
overshoot decreases and almost disappears at the time of c = 0.1. It can be seen that when c
is set to 0.1 or less, a slight delay occurs at the time of 3s to 4s due to the effect of the output
from the SVR controller becoming smaller. Since the value of c = 0.1 is also the minimum
in the evaluation of RMSE, the c of link 2 is set to 0.1 in this study. For link 1, c is selected
as 0.1 in the same way as link 2.

Table 3. RMSE results with different value of c.

The Value of c RMSE (Link 1) RMSE (Link 2)

100 0.0263 0.0263
10 0.0214 0.0166
7 0.206 0.0131
1 0.0200 0.0108

0.1 0.0188 0.0065
0.05 0.0226 0.0069
0.01 0.0250 0.0085

(a) c = 100 (Link2) (b) c = 100 (Link1) (c) c = 10 (Link2) (d) c = 10 (Link1)

(e) c = 7 (Link2) (f) c = 7 (Link1) (g) c = 1 (Link2) (h) c = 1 (Link1)

(i) c = 0.1 (Link2) (j) c = 0.1 (Link1) (k) c = 0.05 (Link2) (l) c = 0.05 (Link1)

(m) c = 0.01 (Link2) (n) c = 0.01 (Link1)

Figure 10. The experimental results.
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5.3. Experimental Results

In this section, we conduct experiments to confirm the effectiveness of the proposed
control system and introduce the results. Specifically, in order to confirm the effectiveness of
the proposed SVR-based feedforward controller, it is effective to compare the experimental
results of the feedforward controller based on the dynamic model without the feedforward
controller with the experimental results of the proposed method. In addition, the control
systems other than the feedforward controller are the same, and the performance of the
feedforward controller is compared. Figure 7 shows the elastic ellipsoid of the hand
calculated from the multi-joint viscoelasticity used in the feedback controller. As in the
previous section, RMSE is used for comparison of experimental results, and the best result
is the experimental result with the smallest RMSE. Table 4 shows the RMSE results.

Table 4. RMSE results.

FF Controller RMSE (Link 1) RMSE (Link 2)

None 0.0271 0.0142
Mechanical model 0.0273 0.0136

SVR 0.206 0.0174

Figure 11 shows a comparison of the control results between the feedforward controller
without the feedforward controller and the feedforward controller based on the dynamic
model. In the result of link 2, it can be confirmed that the tracking performance is improved
from 2.5 s to 3 s . The result of RMSE is also smaller in the feedforward controller based on
the dynamic model than in the case without the feedforward controller, and the effectiveness
of the feedforward controller can be confirmed. On the other hand, for Link 1, no significant
improvement is seen in the control results, and the analysis results by RMSE did not change
much. The cause is thought to be the error that occurred during modeling.

(a) link 1. (b) link 2.

Figure 11. Comparison of FF without controller and dynamic model with FF controller.

Figure 12 shows a comparison of the control results between the feedforward controller
without the feedforward controller and the feedforward controller based on SVR. It can
be confirmed that the tracking performance is improved for both link 1 and link 2. The
analysis result by RMSE is also smaller in the feedforward controller based on SVR than
in the case without the feedforward controller, and the effectiveness of the feedforward
controller can be confirmed.
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(a) link 1. (b) link 2.

Figure 12. Comparison of FF without controller and SVR FF with controller.

Figure 13 shows a comparison of the control results of the feedforward controller
without the feedforward controller, the feedforward controller based on the dynamic model
and the feedforward controller based on the SVR. Comparing the control results of the
feedforward controller based on the dynamic model and the feedforward controller based
on SVR, it is confirmed that the feedforward controller based on SVR follows the target
value more for both link 1 and link 2. The RMSE value is also lower in the feedforward
controller based on SVR, and it can be seen that the feedforward controller based on SVR
has better tracking performance numerically. It is considered that this is because it was
possible to create a model closer to the experimental equipment by creating a model from
the training data of the actual machine experiment using SVR.

(a) link 1. (b) link 2.

Figure 13. Comparison of all control results.

Figure 14 shows the target value of the hand position coordinates and the actual
output. With the proposed control system, we are able to confirm the follow-up of the hand.
From the above, we are able to verify the effectiveness of the feedforward controller based
on the proposed SVR method in actual machine experiments.
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Figure 14. Multi-joint arm movement trajectory.

6. Conclusions

In this study, we propose a two-degree-of-freedom control system using multi-joint
viscoelasticity, and conduct a motion control experiment of a two-link robot arm. Focusing
on the feedforward controller in the two-degree-of-freedom control system, we propose a
feedforward controller based on SVR, which is one of machine learning methods. Finally,
the effectiveness of the proposed method is verified by an actual machine experiment. The
controller is designed as a multi-joint arm like one and it is based on the characteristic of the
human arm multi-joint viscoelasticity. The characteristic is analyzed from the experiment.

In the future, some intelligent control as well as adaptive control methods [28–30] can
be considered to further improve the current work.
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