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Preface to “Various Deep Learning Algorithms in

Computational Intelligence”

We are very proud of the meticulous editing of this reprint, titled “Various Deep Learning

Algorithms in Computational Intelligence,” which compiles journal articles and showcases a

diverse range of contributions from authors representing various fields across the globe. Our

gratification stems from achieving our objective of gathering different perspectives, enabling us to

comprehensively explore Deep Learning (DL) from multiple disciplines.

The above is highly important, since DL has garnered significant attention in science, industry,

and academia due to its essential nature, which draws inspiration from the functioning of the

human brain and the concept of learning. Unlike traditional and machine learning methods, deep

learning techniques emulate the human brain’s neural networks at a lower scale, allowing them

to process and analyze substantial quantities of unstructured data. The remarkable proficiency of

deep learning in unveiling intricate structures within extensive datasets genuinely resembles the

extraordinary aptitude of the brain to recognize patterns and form complex connections. This

unique characteristic allows DL to excel in modeling and solving complex problems across various

scientific and technological fields. Just as the brain learns from experience, DL architectures learn

through algorithms from data by adjusting numerous parameters during training to optimize their

performance and accuracy. This concept of learning and adaptation is fundamental to DL’s success.

The publication of this reprint serves as an excellent opportunity to disseminate current

knowledge beyond academic boundaries, reaching a diverse audience encompassing academics,

professionals, and the general public. This wide readership fosters the potential for meaningful

connections to established projects and the cultivation of collaboration for future research endeavors.

Finally, I express my gratitude to everyone involved in the publication of this reprint and the

Special Issue. I extend my appreciation to the reviewers that helped to improve all the contributions,

the editors, and the assistant staff for their valuable help in upholding the highest quality standards

for the published scientific papers. I want to give special recognition to the Managing Editor for their

exceptional efforts in overseeing this Special Issue and the reprint.

Oscar Humberto Montiel Ross

Editor
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Editorial

Various Deep Learning Algorithms in Computational Intelligence

Oscar Humberto Montiel Ross

Centro de Investigación y Desarrollo de Tecnología Digital, Instituto Politécnico Nacional,
Mexico City 07738, Mexico; oross@ipn.mx

Deep Learning (DL) is an essential topic of increasing interest in science, industry, and
academia. Unlike traditional and machine learning methods, DL methods can process large
volumes of unstructured data discovering intricate structures in large data sets. It is rapidly
becoming a tool for modeling and solving complex and difficult problems in different fields
of science and technology. For example, in medicine for breast cancer, COVID-19 detection
and diabetes detection and prediction; in autonomous vehicles in various tasks such as
perception, mapping and localization; in astronomy, for classifying and detecting stars and
galaxies; in the design of future wireless networks, and others. Although DL has been
successfully applied in many fields and there are some theoretical developments, there
are still many challenging problems in theory and applications that need to be solved for
improving these techniques. For instance, it is important to find new methods to train the
massive number of parameters required by DL architectures, solve overfitting and transfer
learning problems, and others.

This Special Issue was dedicated to contributing to the state-of-the-art progress on
DL with theoretical, practical, and creative insights that provided vanguard solutions to
challenging problems or could demonstrate competitive performance. The participation of
the community in sending works to this Special Issue was high and important, and after a
rigorous peer-reviewing process only fourteen papers were accepted to be published. Next,
we mention in chronological publication order the accepted works.

The first contribution was the “Optimization of Convolutional Neural Networks Ar-
chitectures Using PSO for Sign Language Recognition” paper by Jonathan Fregoso, Claudia
I. Gonzalez, and Gabriela E. Martínez [1]. Here, the authors presented an approach to
designing convolutional neural network architectures using the particle swarm optimiza-
tion algorithm (PSO), where they face the challenge of finding the optimal parameters of
convolutional neural networks, particularly the number of layers, the filter size, the number
of convolutional filters, and the batch size. They evaluated two different approaches to
perform the optimization. In the first one, the parameters obtained by PSO were kept under
the same conditions in each convolutional layer, and the classification rate gave the objec-
tive function evaluated by PSO. In the second one, the PSO generated different parameters
per layer. The objective function was composed of recognition rate in conjunction with
the Akaike information criterion; the latter helps to find the best network performance
but with the minimum parameters. Finally, they tested the optimized architectures with
three study cases: sign language databases where the Mexican Sign Language alphabet
was included, the American Sign Language MNIST, and the American Sign Language
alphabet. The authors found that the proposed methodologies achieved favorable results
with a recognition rate higher than 99%, showing competitive results compared to other
state-of-the-art approaches.

The paper “Multicriteria Evaluation of Deep Neural Networks for Semantic Segmen-
tation of Mammographies” by Yoshio Rubio and Oscar Montiel [2] studied the critical
problem of breast segmentation for automatic and accurate analysis of mammograms
to increments the probability of a correct diagnostic while reducing the computational
cost, which was done through an extensive evaluation of deep learning architectures for

Axioms 2023, 12, 495. https://doi.org/10.3390/axioms12050495 https://www.mdpi.com/journal/axioms
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semantic segmentation of mammograms, including segmentation metrics, memory re-
quirements, and average inference time. They used different combinations of two-stage
segmentation architectures composed of a feature extraction net (VGG16 and ResNet50)
and a segmentation net (FCN-8, U-Net, and PSPNet). The author used examples from the
mini–Mammographic Image Analysis Society (MIAS) database for the learning phase. The
experimental results showed that the best net scored a Sørensen–Dice similarity coefficient
of 99.37% for breast boundary segmentation and 95.45% for pectoral muscle segmentation.

In the paper “RainPredRNN: A New Approach for Precipitation Nowcasting with
Weather Radar Echo Images Based on Deep Learning” by Do Ngoc Tuyen, Tran Manh Tuan,
Xuan-Hien Le, Nguyen Thanh Tung, Tran Kim Chau, Pham Van Hai, Vassilis C. Gerogiannis,
and Le Hoang Son [3], the authors proposed a novel approach named RainPredRNN, which
combines the UNet segmentation model and the PredRNN_v2 deep learning model for
precipitation nowcasting with weather radar echo images. They found that it is possible to
reduce the number of operations of the RainPredRNN model by leveraging the abilities
of the contracting–expansive path of the UNet model. Consequently, the result offers the
benefit of reducing the processing time of the overall model while maintaining reasonable
errors in the predicted images. They validated their proposed mode through experiments
on real reflectivity fields collected from the Phadin weather radar station in Dien Bien
province in Vietnam. Some credible quality metrics, such as the mean absolute error (MAE),
the structural similarity index measure (SSIM), and the critical success index (CSI), were
used for analyzing the performance of the model. It was certified that the proposed model
had produced improved performance, about 0.43, 0.95, and 0.94 of MAE, SSIM, and CSI,
respectively, with only 30% of training time compared to the other methods.

The paper “Cubical Homology-Based Machine Learning: An Application in Image
Classification” by Seungho Choe and Sheela Ramanna [4] contributed with a cubical
homology-based algorithm for extracting topological features from 2D images to generate
their topological signatures; they propose a score metric to measure the significance of the
subcomplex calculated from the persistence diagram (topological signatures). Additionally,
they used gray-level co-occurrence matrix (GLCM) and contrast limited adapting histogram
equalization (CLAHE) to obtain additional image features to improve the classification
performance; finally, they discussed the results of our supervised learning experiments
of eight well-known machine learning models trained on six different published image
datasets using the extracted topological features.

In the study, “Towards Predictive Vietnamese Human Resource Migration by Machine
Learning: A Case Study in Northeast Asian Countries”, the authors Nguyen Hong Giang,
Tien-Thinh Nguyen, Chac Cau Tay, Le Anh Phuong, and Thanh-Tuan Dang [5] presented
a forecast of Vietnamese labor migration using the kNN, RFR, and BPNN models. The
data collected in the study included 29 observations from 1992 to 2020. With the support
of the collected data, the paper analyzed the role of labor exports in Vietnam’s socio-
economic development and compared this export labor with that of other Asian countries.
After that, they compared the three algorithms based on the results of their statistical
accuracy indicators. This research highlighted the likely future contexts of labor migration
between Vietnam and East Asia, including Korea, the Republic of China (Taiwan), and
Japan. Furthermore, this research could assist the government of Vietnam in enacting new
regulations for Vietnamese migrant workers to boost the socio-economic situation.

In “Lexicon-Enhanced Multi-Task Convolutional Neural Network for Emotion Dis-
tribution Learning”, by Yuchang Dong and Xueqiang Zeng [6], the authors dealt with
the problem of emotion analysis behind massive human behavior such as text, pictures,
movies, and music. To address this problem, they proposed a text emotion distribution
learning model based on a lexicon-enhanced multi-task convolutional neural network
(LMT-CNN). The overall architecture of the LMT-CNN model has three major modules:
semantic information, emotion knowledge, and multi-task prediction. They constructed
the input of the multi-task prediction module from the outputs of the first two modules.
Then, they predicted the final emotion distribution through a fully connected layer. They
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presented extensive comparative experiments on nine commonly used emotional text
datasets, showing that the proposed LMT-CNN model is superior to the compared EDL
methods for both emotion distribution prediction and emotion recognition tasks.

In “A Schelling Extended Model in Networks—Characterization of Ghettos in Wash-
ington D.C”, Diego Ortega and Elka Korutcheva [7] proposed a method to bridge the gap
between Sociophysics models and the measure of segregation by geographic information
systems (GIS) techniques. Their procedure relies on capturing the ghettos’ location with a
segregation model and basic data from the city in situations where detailed data cannot
be completely reliable. This is a novel approach to the segregation field. They started
by using basic GIS information from the region of interest to define a network and then
ran an extended Schelling model on this framework. Their enhanced version considered
the economic contribution to segregation, including terms for the housing market and
the financial gap between the population. The result was the location of ghettos on the
network, which could be mapped into their corresponding city areas. Finally, the predicted
ostracized regions were compared to the ones characterized as ghettos by spatial analysis
(SA) and machine learning (ML) algorithms. For the real case study of Washington D.C.,
the obtained accuracy was 80 ± 7%.

In “Hybrid Deep Learning Algorithm for Forecasting SARS-CoV-2 Daily Infections and
Death Cases” by Fehaid Alqahtani, Mostafa Abotaleb, Ammar Kadi, Tatiana Makarovskikh,
Irina Potoroko, Khder Alakkari, and Amr Badr [8], the authors used a hybrid deep learning
algorithm to predict new cases of infection which is crucial for authorities to get ready for
early handling of the virus spread. The hybrid deep learning method was used to improve
the parameters of long short-term memory (LSTM). To evaluate the effectiveness of the
proposed methodology, the authors collected a dataset based on the recorded cases in the
Russian Federation and Chelyabinsk region between 22 January 2020 and 23 August 2022.
In addition, five regression models were included in the conducted experiments to show the
effectiveness and superiority of their proposed approach. The achieved results showed that
their proposal could reduce the mean square error (RMSE), relative root mean square error
(RRMSE), mean absolute error (MAE), coefficient of determination (R Square), coefficient of
correlation (R), and mean bias error (MBE) when compared with the five base models. The
results confirmed the effectiveness, superiority, and significance of the proposed approach
in predicting the infection cases of SARS-CoV-2.

In “Score-Guided Generative Adversarial Networks” by Minhyeok Lee and Junhee
Seok [9], a generative adversarial network (GAN) that introduces an evaluator module
using pre-trained networks was proposed, and it was called a score-guided GAN (Score-
GAN). The module was trained using an evaluation metric for GANs, i.e., the Inception
score, as a rough guide for the training of the generator. Using another pre-trained network
instead of the Inception network, ScoreGAN circumvented the overfitting of the Inception
network such that the generated samples do not correspond to adversarial examples of the
Inception network. In addition, they used evaluation metrics only in an auxiliary role to
prevent overfitting. When evaluated using the CIFAR-10 dataset, ScoreGAN achieved an
Inception score of 10.36 ± 0.15, corresponding to state-of-the-art performance. To generalize
the effectiveness of ScoreGAN, the model was evaluated further using another dataset,
CIFAR-100. ScoreGAN outperformed existing methods.

In the paper “Improved Method for Oriented Waste Detection”, Weizhi Yang, Yi Xie,
and Peng Gao [10] investigated automated waste classification and image-related problems
when using robotic arms. Here, the authors, to solve the problem of low-accuracy image
detection caused by irregular placement angles of robotic arms, proposed an improved
oriented waste-detection method based on YOLOv5 by optimizing the detection head of
the YOLOv5 model. This method generated an oriented detection box for a waste object
at any angle. Based on the proposed scheme, they further improved three aspects of
the performance of YOLOv5 in the detection of waste objects: the angular loss function
was derived based on dynamic smoothing to enhance the model’s angular prediction
ability, the backbone network was optimized with enhanced shallow features and attention
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mechanisms, and the feature aggregation network was improved to enhance the effects of
feature multi-scale fusion. The experimental results showed that the detection performance
of the proposed method for waste targets was better than other deep learning methods. Its
average accuracy and recall were 93.9% and 94.8%, 11.6% and 7.6% higher than the original
network, respectively.

In “Two Novel Models for Traffic Sign Detection Based on YOLOv5s” by Wei Bai,
Jingyi Zhao, Chenxu Dai, Haiyang Zhang, Li Zhao, Zhanlin Ji, and Ivan Ganchev [11], the
problem of object detection and image recognition for unmanned driving technology was
studied, particularly, the detection and recognition of traffic signs which are affected by
diverse factors such as light, the presence of small objects, and complicated backgrounds. It
is well known that traditional traffic sign detection technology does not produce satisfactory
results when facing the above problems. To solve this problem, the authors proposed two
novel traffic sign detection models called YOLOv5-DH and YOLOv5-TDHSA. Experiments
conducted on two public datasets showed that both proposed models perform better than
the original YOLOv5s model and three other state-of-the-art models.

In “Barrier Options and Greeks: Modeling with Neural Networks”, the authors, Nneka
Umeorah, Phillip Mashele, Onyecherelam Agbaeze, and Jules Clement Mba [12], proposed
a non-parametric technique of option valuation and hedging. Using the fully connected
feed-forward neural network, they replicated the extended Black–Scholes pricing model
for the exotic barrier options and their corresponding Greeks. Their methodology involved
benchmarking experiments resulting in an optimal neural network hyperparameter that
effectively prices the barrier options and facilitates their option Greeks extraction. They
compared the results from the optimal NN model to those produced by other machine
learning models, such as the random forest and the polynomial regression; the output high-
lighted the proposed methodology’s accuracy and efficiency for the pricing problem. The
results showed that the artificial neural network could effectively and accurately learn the
extended Black–Scholes model from a given simulated dataset. This concept can similarly
be applied to the valuation of complex financial derivatives without analytical solutions.

In “Developing a Deep Learning-Based Defect Detection System for Ski Goggles
Lenses” by Dinh-Thuan Dang, and Jing-Wein Wang [13], the authors presented a study that
developed a deep learning-based defect detection system for ski goggles lenses. In the study,
the first step was to design an image acquisition model that combines cameras and light
sources; this step aimed to capture clear and high-resolution images on the entire surface
of the lenses. Next, defect categories were identified, including scratches, watermarks,
spotlight, stains, dust-line, and dust-spot. Then, they were labeled to create the ski goggles
lens defect dataset. Finally, the defects were detected automatically by fine-tuning the
mobile-friendly object detection model, the MobileNetV3 backbone used in a feature
pyramid network (FPN), and the Faster-RCNN detector. The experiments demonstrate the
effectiveness of defect detection at faster inference speeds. The defect detection accuracy
achieved a mean average precision (mAP) of 55%. The work automatically integrated all
steps, from capturing images to defect detection.

In “A Unified Learning Approach for Malicious Domain Name Detection” by Atif
Ali Wagan, Qianmu Li, Zubair Zaland, Shah Marjan, Dadan Khan Bozdar, Aamir Hussain,
Aamir Mehmood Mirza, and Mehmood Baryalai [14]. The authors presented a novel
unified learning approach that uses both numerical and textual features of the domain
name to classify whether a domain name pair is malicious or not. They conducted exper-
iments on a benchmark domain names dataset consisting of 90,000 domain names. The
experimental results show that the proposed approach performs significantly better than
the six comparative methods in terms of accuracy, precision, recall, and F1-Score.

The diversity of fields of publications covers a wide range of interesting topics for
researchers, scholars, and students interested in vanguard scientific contributions and
practical applications to solve real-life problems.
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Abstract: This paper presents an approach to design convolutional neural network architectures,
using the particle swarm optimization algorithm. The adjustment of the hyper-parameters and
finding the optimal network architecture of convolutional neural networks represents an important
challenge. Network performance and achieving efficient learning models for a particular problem
depends on setting hyper-parameter values and this implies exploring a huge and complex search
space. The use of heuristic-based searches supports these types of problems; therefore, the main
contribution of this research work is to apply the PSO algorithm to find the optimal parameters of
the convolutional neural networks which include the number of convolutional layers, the filter size
used in the convolutional process, the number of convolutional filters, and the batch size. This work
describes two optimization approaches; the first, the parameters obtained by PSO are kept under the
same conditions in each convolutional layer, and the objective function evaluated by PSO is given
by the classification rate; in the second, the PSO generates different parameters per layer, and the
objective function is composed of the recognition rate in conjunction with the Akaike information
criterion, the latter helps to find the best network performance but with the minimum parameters.
The optimized architectures are implemented in three study cases of sign language databases, in
which are included the Mexican Sign Language alphabet, the American Sign Language MNIST,
and the American Sign Language alphabet. According to the results, the proposed methodologies
achieved favorable results with a recognition rate higher than 99%, showing competitive results
compared to other state-of-the-art approaches.

Keywords: PSO; sign language recognition; optimization of convolutional neural networks

1. Introduction

Deep neural networks have demonstrated their capacity to solve classification prob-
lems using a hierarchical model, millions of parameters, and learning with big databases.
Convolutional neural networks (CNN) are a special class of deep neural networks that
consist of several convolutions, pooling, and fully connected layers; this has proven to
be a robust method for image or video processing, classification, and pattern recognition.
In recent years CNN has attracted attention for achieving superior results in various ap-
plications in the computer vision domain, such as medicine, aerospace, natural language
processing and robotics [1,2].

CNN are widely used in the field of industry, however, when designing CNN architec-
tures, we face some challenges which include the high computational costs for information
processing and finding the optimal CNN parameters (architecture) for each problem [3].
CNN architectures are made up of numerous parameters and, depending on their configu-
ration, can generate a variety of classification results when applied to solve the same tasks;
the setting of the hyper-parameter values is usually based on a random search, performing
several tests or adjusting manually and this represents a complex search process. To solve
this challenge, various researchers have proposed the implementation of evolutionary
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computation approaches to automatically design the optimal CNN architectures and to in-
crease its performance [4,5]. In Sun et al. [6,7], an evolutionary approach is implemented to
automatically obtain CNN architectures, achieving good results against the state-of-the-art
architectures. In Ma et al. [8], the authors present an analysis of different methodologies
based on evolutionary computing techniques to optimize CNN architectures, these were
tested on benchmark data sets and achieved competitive results. Baldominos et al. [9] im-
plement an approach to automatically design CNN architectures, using genetic algorithms
(GA) in conjunction with grammatical evolution.

In the state of the art, we can find a variety of meta-heuristics that are applied to
optimize CNN hyper-parameters, including the FGSA [10–12], harmonic search (HS) [13],
differential evolution (DE) [14], microcanonical optimization algorithm [15], Whale opti-
mization algorithm [16] and tree growth algorithm framework [17] to mention a few.

In other research works, the PSO algorithm is used to optimize CNN architectures,
obtaining favorable results in the solution of different applications. In Sun et al. [18],
Singh et al. [19] and Wang et al. [20], PSO is applied to automatically design CNN ar-
chitectures; these approaches are tested on known benchmark datasets, and the results
obtained are competitive against the state-of-the-art architectures. Besides this, PSO has
been implemented in other fields of machine learning, including the optimization of differ-
ent types of artificial neural network architectures, given favorable solutions for a plethora
of problems [21,22]. In [23], PSO optimizes models of modular neural networks and is
applied to obtain the blood pressure trend. In [24], a hybrid ANN-PSO method is applied
to model the electricity price forecasting for the Indian energy exchange. As well as in [25],
the PSO variants are applied to generate optimal modular neural network architectures
obtaining competitive results for human recognition. In [26], the PSO algorithm is used
to optimize deep neural network architectures and is tested in image classification tasks.
In [27] a new paradigm of hybrid classification based on PSO is presented, which is applied
for the prediction of medical diagnoses and prognoses. Furthermore, in [28] the artificial
bee colony (ABC) [29] and PSO are used to optimize multilayer perceptron neural networks
(MLP); the approach is applied to estimate the heating load and cooling load of energy
efficient buildings; and the authors report that PSO outperforms ABC, improving the
MLP performance. In the listed works, we can note the advantages that PSO offers in the
optimization process, increasing performance in different tasks.

In research related to CNN approaches applied to the recognition of sign language, we
find the work presented in [30] where a CNN model with stochastic pooling is implemented
in the recognition of the Chinese sign language spelling, achieving a rate of 89.32 ± 1.07%
recognition. In [31] a CNN method for Arabic sign language (ArSL) recognition was
applied, where the authors report a value of 90.02% precision. In [32] a 3D-CNN approach
is applied to sign language recognition for extensive vocabulary, images are captured
through a Kinect, the authors report effectiveness of 88.7%.

The contribution of this research work focuses on implementing a hybrid methodol-
ogy, where the PSO algorithm is applied to find the optimal design of parameters for CNN
architectures. This work presents two optimization approaches; in both, the parameters
considered are the number of convolution layers, the filter size used in each convolutional
layer, the convolution filters number and, the batch size. In the first approach, the consis-
tency of the parameters between each layer is maintained in the same conditions and the
objective function is given by the recognition rate. In the second approach, the aim is to
find more random searches in the architectures that the PSO produces; in this case, the
values for each convolution layer are completely different, and the objective function is
given by the highest recognition rate, and the lowest Akaike information criterion (AIC);
the latter helps to obtain more robust performance of the network with the minimum
parameters as the AIC allows penalizing the number of parameters used in each training.
The optimized architectures are tested with three sign language databases, including the
Mexican Sign Language (MSL) alphabet, the American Sign Language (ASL) alphabet [33],
and the American Sign Language MNIST (ASL MNIST) [34]. This research aims to impulse
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the investigation in the soft computing area for the development of tools to help the deaf
community for a more inclusive society [35].

The structure of this work is organized as follows. Section 2 presents the general
theory about convolutional neural networks. Section 3 introduces PSO theory, including
definitions, functionality, and the main equations. Section 4 details the methodology for
developing the two PSO-CNN optimization approaches. Section 5 describes an analysis
of the experimental results achieved after the optimized architectures are implemented
for the three databases. Additionally, Section 5 presents a statistical test to compare the
two optimization proposals, and we also show a comparative analysis against other CNN
approaches focused on sign language recognition. Finally, Section 6 gives important
conclusions and future works.

2. Convolutional Neural Networks

Biologically inspired computational models are capable of far outperforming previous
forms of common artificial intelligence of machine learning. One of the most impressive
forms of ANN (artificial neural network) architecture is that of CNN, which is mainly
implemented to solve difficult image-based pattern recognition tasks.

CNNs are a specialized type of ANN with supervised learning, which process their
layers by emulating the visual cortex of the human eye. This procedure allows the recogni-
tion of characteristic patterns in the input data, which makes it possible to identify objects
through a set of hidden layers, which have a hierarchy and are specialized. The first layers
are capable of detecting curves and lines and to the extent that you work with deeper
layers, it is possible to achieve the recognition of more complex shapes, such as a silhouette
or peoples’ faces.

These types of networks are designed to operate specifically with image processing.
The design of its architecture emulates the behavior of the visual cortex of the brain
when processing and recognizing images [36]. Its main function is to locate and learn
the information characteristic patterns, such as curves, lines, color tones, etc., through
the application of convolution layers, which facilitate the process of identification and
classification of objects [37,38].

The basic CNN architecture is presented in Figure 1, which consists of five layers: the
input, convolution, non-linearity (ReLu), pooling, and classification layer [39,40], these are
described in the following subsections.

Figure 1. The minimal architecture of a CNN.

CNNs are widely implemented in applications that need the use of artificial vision
techniques. Although the results that have been obtained are very promising, the reality is
that they incur high computational costs; therefore it is essential to implement techniques
that allow your performance to be increased. For this reason, an optimization of the CNN
parameters is presented to improve the recognition percentage and reduce computational
cost. In Figure 2, we can appreciate some parameters that can be optimized in each CNN
layer [41].
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Figure 2. Layers and the parameters per layer of a CNN.

2.1. Input Layer

It is the first layer of a CNN, here the images or videos are entered that are going
to be processed by the neural network to extract their characteristics. All information is
stored in two-dimensional matrices. To increase the effectiveness of the algorithms and
reduce the computational cost, it is recommended to carry out a previous preprocessing of
the images to be trained, such as segmentation, normalization of pixel values, extraction
of characteristics of the objects or the background to keep the most relevant information,
working them in grayscale, etc.

2.2. Convolution Layer

One of the most distinctive processes of this type of network is convolutions. It
consists of taking a group of pixels from the input image and making a dot product with a
kernel to produce numerous images that are the feature maps; these maps are distinct and
depend on the type and size of the convolution filter implemented in the image.

Among the important characteristics that it gives to the kernel, is to detect lines, edges,
focus, blur, curves, colors, among others. This is achieved by performing the convolution
between the image and the kernel, multiplying the filter values pixel by pixel with those of
the image, by traveling the filter from left to right; this representation can be appreciated in
Figure 3 [42], where * stands the convolution operation.

Figure 3. Feature maps generated by the convolution process.

2.3. Non-Linearity Layer

The activation function in the convolutional layer has the same proposal that the
activation used in any neural network, commonly a non-linearity function is used to
normalize the images. There exist different activation functions; one of the most used in
this type of models is the rectified linear unit (ReLU) function which brings back a value of
zero if it receives a value less than zero as input, nevertheless for any value greater than
zero the same parameter comes back [41,42].
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2.4. Pooling Layer

The pooling task is used to reduce the dimensionality of the network, in other words,
allows the reduction of the number of parameters, which shortens training time and
combats over-fitting [41]. Among the most used types of grouping, we can mention the
following: (1) mean, select the arithmetic mean of the values, (2) max pooling, select the
pixel with the largest value in the feature map and (3) sum, take the sum of all the elements
present in the feature map.

The pooling operation is usually done using a 2 × 2 filter, assuming that we have a
4 × 4 future map (obtained after the convolution layer), and this operation is carried out;
first, the future map is divided into 4 segments with the size of the filer (2 × 2), second, in
each segment an pixel value is selected according to pooling type (mean, max, sum). An
example is illustrated in Figure 4.

Figure 4. Examples of pooling using the mean, max and sum operation.

2.5. Classifier Layer

This layer appears in the CNN architecture after total convolutional and pooling
layers; this is a fully connected layer that interprets the feature representations obtained
by the previous layers and performs the high-level reasoning function. It has a similar
principle to the conventional multilayer perceptron neural system, and in this layer, the
CNN recognizes and classifies the images that are part of the output. In a multiclass
classification problem, this fully connected layer has the same number of outputs as the
classes defined in the study case to be solved. The Softmax function has become one of the
most popular options for the classification task, due to its effectiveness [42].

3. Particle Swarm Optimization

It is a stochastic algorithm established on the intelligence of the swarm and inspired
by the way birds forage for food; each bird is represented using particles which “move” in
a multidimensional search space and “adjust” based on the experience of neighbors and
your own.

The possible solution to the problem is depicted by the particle, which can be con-
sidered as “an individual element in a flock” [43]. PSO uses local and global information
to find the best solution using a fitness function and the speeds at which the particles
are moving.
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PSO is very prone to premature convergence and falls into local optimum, so since its
introduction in 1995 by Kennedy and Eberhart [44], various optimization variants have
been proposed [45–48].

Algorithm 1. The PSO algorithm

Initialize the parameter of the problem (a random population).
while (completion criteria are not met)
begin

For each particle i do
begin

Update the position pi using (1).
Update the velocity xi using (2).
Evaluate the fitness value of the particle
If is necessary using (3)(4)
Update pbesti(t) and gbesti(t).
end

end

Algorithm 1 describes the process carried out by the PSO. This algorithm is defined by
the equations that allow updating of the velocity with Equation (2) and the position with
Equation (1).

pi(t + 1) = pi(t) + xi(t + 1), (1)

In Equation (1), pi(t) is the position of particle i in a time t, within the search space.
By adding a velocity xi(t) it is possible to change the position of the particle [45].

xi(t + 1) = xi(t)ω + c1r1[yi − pi(t)] + c2r2[ŷ − pi(t)], (2)

In Equation (2), x represents the velocity and i the particle. The parameters c1 and
c2 define the cognitive and social factors, respectively. The random values in the interval
[0,1] are depicted by r1 and r2, ω is an inertia weight and the best position of the particle
(pbesti ) is determined by yi and the best global position (gbest ) by ŷ.

The swarm is assumed to consist of n particles, so an objective function f is imple-
mented to perform the computation of particle fitness with a maximization task. The
personal and global best values are updated using Equations (3) and (4), respectively, at a
time t [48].

Thus, i ∈ 1 . . . n

pbesti(t + 1) =
{

pbesti(t) i f f (pbesti(t)) ≤ f (p(t + 1))
pi(t + 1) i f f (pbesti(t)) > f (pi(t + 1))

(3)

gbest(t + 1) = max{ f (y), f (gbest(t))}
where, y ∈ pbest0(t), pbest1(t), . . . , pbestn(t)

(4)

According to Equations (1) and (2), the movements of the particle in the search space
are illustrated in Figure 5.

The red and yellow circles represent the movement that a particle makes when the
parameters c1 and c2 are updated. When c1 > c2, the particle moves in the direction of the
yellow circle. When this condition is met, it means that the swarm performs the exploration
process, so they “fly” in the search space to find the area that allows it to find the global
optimum.

This movement allows the particles to perform long displacements, thus covering the
whole search space. In the case of c2 > c1 then, the particle motion will be towards the red
circle. It is here that the exploitation process takes place; it consists of the swarm “flying”
in the best area of the search space, making small motions, which allow an intensive
search [49].
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Figure 5. Representation of the movement of the particle.

4. Convolutional Neural Network Architecture Optimized by PSO

This Section presents two optimization approaches where the PSO algorithm is applied
to optimize the parameters of CNN architectures, these approaches are denoted as PSO-
CNN-I and PSO-CNN-II. The first objective is to select the most relevant parameters that
have influence to obtain good performance of CNN and then implement the PSO algorithm
to find these optimal parameters.

The parameters to be optimized were selected after evaluating the performance of
a CNN with an experimental study, where the parameters were changed manually. As
mentioned above, different CNN parameter values produce a variety of results for the
same task; for this reason, the aim is to find the optimal architectures. The parameters
listed below were chosen to be optimized in this work.

• The number of convolutional layers;
• The filter size or filter dimension used in each convolutional;
• The number of filters to extract the future maps (the convolution filter number);
• The batch size number: this value represents the number of images that are entered

into CNN in each training block.

The general methodology of the proposal is presented in Figure 6, as the “training
and optimization” block is the most important part of the whole process, where the CNN
is initialized to integrate the parameter optimization by applying the PSO algorithm. In
this process, the PSO is initialized according to the parameter given for the execution (the
parameters are explained below) and this generates the particles. Each particle is a possible
solution and its position has the parameter to be optimized, so each solution represents a
complete CNN training.
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Figure 6. General CNN optimization process using the PSO algorithm. The letters A, B, and C stand the illustrated sign
language in image form.

The training process is an iterative cycle that ends when all the particles generated by
the PSO are evaluated for each generation. The computational cost is higher and, it depends
on the database size, the size of particles, the number of iterations of the PSO and, the
number of particles in each iteration. That is to say, if the PSO is executed with 10 particles
and 10 iterations, the CNN training process is executed 100 times. The steps to optimize
the CNN by the PSO algorithm are illustrated in Figure 7 and explained as follows.

1. Input database to train the CNN. This step consists of selecting the database to be
processed and classified for the CNN (ASL alphabet, ASL MINIST and MSL alphabet).
Is important to mention that all the elements of each database need to keep a similar
structure or characteristics. In other words, images with the same scale and color
gamma (grayscale, RGB, CMYK); additionally, with the same dimensions of pixels
and a similar format of file (JPGE, PNG, TIFF, BMP, etc.).

2. Generate the particle population for the PSO algorithm. The PSO parameters are set
to include the number of iterations, the number of particles, inertial weight, cognitive
constant (W1), and social constant (W2); the parameters used in the experimentation
are presented in Table 8. This step involves the design of the particles; the structures
of these are presented in Tables 1 and 3 according to the two optimization architecture
proposals in this paper.

3. Initialize the CNN architecture, with the parameter obtained by the PSO (convolution
layers number, the filter size, number of convolution filters, and the batch size) the
CNN is initialized and in conjunction with the additional parameter specified in Table
8, the CNN is ready to train the input database.

4. CNN training and validation. The CNN reads and processes the input databases
taking the images for training, validation, and testing; this step produces a recognition
rate and the AIC value. These values return to the PSO as part of the objective function.

5. Evaluate the objective function. The PSO algorithm evaluates the objective function
to determine the best value. As in this research, we are considering two approaches,
in the first, the objective function is only the recognition rate (Equation (5)) and in
the second, the objective function consists of the recognition rate and the AIC value
(Equation (6)).
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6. Update PSO parameters. At each iteration, each particle updates its velocity and
position depending on its own best-known position (Pbest) in the search-space and
the best-known position in the whole swarm (Gbest).

7. The process is repeated, evaluating all the particles until the stop criteria are found
(in this case, it is the number of iterations).

8. Finally, the optimal solution is selected. In this process, the particle represented by
Gbest is the optimal one for the CNN model.

Figure 7. Flowchart of CNN optimization process using PSO.

4.1. PSO-CNN Optimization Process (PSO-CNN-I)

This first approach, which we are going to identify as PSO-CNN-I, consists of imple-
menting a particle with four positions, one position for each parameter to be optimized
(Figure 8). Table 1 presents the detail of the particle composition where the position x1
corresponds to the number of layers with a search space from 1 to n, that is to say, that
method can produce architectures with a minimum of one layer and maximum n, for
the purposes of this work, we are using n = 3. The x2 position represents the number of
convolution filters used to extract the characteristics, with a search space of 32 to 18 filters.
Position x3 is the filter size; the search space is from 1 to 4 where this values represents a
position, the value reached is mapped with the values of Table 2 to obtain the filter size
(i.e., if the particle generates a value of 1 this represents a filter size of [3 × 3], to get a value
of 2 the filter size will be [5 × 5] and so on, respectively, for each value. The last position
represents the batch size (x4), this is initialized considering the search space ranges from 32
to 256. In this optimization process, the consistency of the parameters between the layers is
maintained in the same conditions, that is, if after the PSO execution it generates a particle
with 3 convolutional layers (x1), 50 filters (x2), a filter dimension of 3 × 3 (x3) and batch
size of 50 (x4). The same values of filter numbers (x2) and filter size (x3) will apply to the
three convolution layers of the CNN.
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Figure 8. Structure of the particle used in the PSO-CNN-I approach.

Table 1. Search spaces used to define the particle in the PSO-CNN-I approach.

Particle Coordinate Hyper-Parameter Search Space

x1
Number of convolutional
layers [1, 3]

x2 Filter number [32, 128]
x3 Filter size [1, 4]
x4 Batch size in the training [32, 256]

Table 2. Convolutional filter dimensions for the x3 position.

x3 Value Search Space

1 [3, 3]
2 [5, 5]
3 [7, 7]
4 [9, 9]

In this process, the objective function defined by Equation (5) is given by the recogni-
tion rate (precision) that the CNN returns after it is trained with the parameters generated
by the PSO.

Objective f unction = Recognition Rate, (5)

4.2. PSO-CNN Optimization Process (PSO-CNN-II)

In this second proposal, identifying as PSO-CNN-II, the particle structure consists of
eight positions whose structure is presented in Figure 9, where each position represents
the parameter to be optimized. The difference from the previous approach (PSO-CNN-I in
Section 4.1) is finding more random searches in the architectures that the PSO produces;
because in this case, the values for each convolution layer are completely different. Table 3
presents the detail of the particle composition, the description of each position, and the
search space used. As we can see in Table 3, the positions x3, x5 and x7 represent an index
with an integer value between 1 to 4, and depending on the value taken by the PSO, a
mapping is made with values presented in Table 2.

Figure 9. Structure of the particle used in the PSO-CNN-II approach.

Table 3. Search spaces used to define the particle in the PSO-CNN-II approach.

Particle Coordinate Hyper-Parameter Search Space

x1 Convolutional layer number [1, 3]
x2 Filter number (layer 1) [32, 128]
x3 Filter size (layer 1) [1, 4]
x4 Filter number (layer 2) [32, 128]
x5 Filter size (layer 2) [1, 4]
x6 Filter number (layer 3) [32, 128]
x7 Filter size (layer 3) [1, 4]
x8 Batch size in the training [32, 256]
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According to the values to optimize in this new approach, the x1 position is used to
control the number of convolution layers and the activation of the positions x2 to x7. If PSO
generates a particle with a value of one for x1, only the position x2 and x3 will be activated
to generate the number of filters of the convolutional layer 1 and the filter size to use in this
layer. In other words, if PSO produces a particle with a value of three in the x1 position,
the positions from x2 to x7 will be activated to generate the number of filters to use in the
convolutional layer 1 (x2), the filter size of layer 1 (x3), the number of filters of layer 2 (x4),
the filter size for layer 2 (x5), the number of filters of layer 3 (x6), and the filter size for layer
3 (x7), respectively; these values are completely different from each other, therefore this
methodology helps to produce more heterogeneous CNN architectures.

Another difference between this proposal and the previous one (PSO-CNN-I) is that
the objective function changes, for this we are using the recognition rate together with
the Akaike information criteria (AIC). The AIC penalizes the architectures according to
the number of parameters used; that is to say, the model is penalized when it needs more
parameters. The objective function is considered the highest recognition rate and the lowest
AIC. The AIC is defined in Equation (6).

AIC = 2k − 2ln(L), (6)

According to our problem, in Equation (6) k is the number of parameters of the model
(number of layers and filter number) and L is the maximum value of the recognition that
the CNN can reach; in this case, the value is 100. Figure 10 illustrates an example of a
particle generated by PSO.

Figure 10. Example of a particle generated by PSO.

Based on the structure of Figure 10, we have a three-layer convolutional architecture,
where the first layer consists of 100 convolution filters with a filter size of 3 × 3. The second
layer has 85 convolution filters with a filter size of 5 × 5 and the third convolution layer
has 50 convolutional filters with a filter size of 7 × 7. Finally, the batch size is 32. The CNN
is training with these values, and the recognition rate is calculated, additionally the AIC is
obtained based on the parameters of the positions x1, x2, x4 and x6 which represents the
number of convolution layers and the number of filters for each convolutional layer. After
applying Equation (6), this architecture produces the AIC defined in Equation (7).

AIC = 2(3 + 100 + 85 + 50)− 2ln (100),
AIC = 466.7897,

(7)

Assuming that there are two architectures with the same recognition rate but with
different AICs (Table 4), the model will take the architecture with the lowest AIC, as this
would help penalize the parameters that are needed to train the network and thus produce
optimized and simpler architectures.

Table 4. Objective function values based on the recognition rate and the AIC value.

Architecture Number Recognition Rate (%) AIC Value

1 98.50 466.78
2 98.50 350.85

5. Experiments and Results

This section describes the three databases implemented in the case studies (ASL
alphabet, ASL MNIST, and MSL alphabet), the static parameters used to set the PSO
algorithm and the CNN process, the experimental results obtained in the two optimization
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approaches that were performed (PSO-CNN-I and PSO-CNN-II), as well as the comparison
analysis against other approaches.

5.1. Sign Language Databases Used in the Study Cases

The characteristics of the sign databases are described below.

5.1.1. American Sign Language (ASL Alphabet)

The ASL alphabet consists of 87,000 images in color format, with a dimension of
200 × 200 pixels. This database contains 29 classes, these are labeled in a range of 0 to 28,
with a one-to-one assignment for each letter of the American alphabet A–Z (0 to 25 for the
alphabet; that is, 0 = A and 25 = Z) the other three classes correspond to the space symbols,
delete, and null (26 to 28; i.e., 26 = space, 27 = delete and, 28 = null). Table 5 presents the
general description of the ASL alphabet database and Figure 11 illustrates a sample of
the images.

Table 5. ASL Alphabet database description.

Name ASL Alphabet Detail

Total images 87,000
Images for training 82,650

Images for test 4350
Images size 32 × 32

Database format JPGE

Figure 11. A sample of the ASL alphabet database.

5.1.2. American Sign Language (ASL MNIST)

ASL MNIST consists of a collection of 34,627 grayscale images with a dimension of
28 × 28 pixels. This database has 24 labeled classes in a range from 0 to 25 with assignment
for each letter of the alphabet A–Z (the class 9 = J and 25 = Z, were excluded due to gestural
movements). Table 6 presents a description of this database and Figure 12 illustrates a
sample of the sign images.

18
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Table 6. ASL MNIST database description.

Name ASL MNIST Detail

Total images 34,627
Images for training 24,239

Images for test 10,388
Images size 28 × 28

Database format CSV

Figure 12. A sample of the ASL MNIST database.

5.1.3. Mexican Sign Language (MSL Alphabet)

The MSL alphabet database was obtained from a group of 18 people, including deaf
students and sign language translation teachers. Students are part of an inclusive group in
a high school in Mexico. This database consists of 21 classes with the alphabet of the MSL
without movement as illustrated in Figure 13. Ten images were captured for each letter,
achieving a total of 3780 grayscale images with a dimension of 32 by 32. Table 7 displays a
general overview of the MSL alphabet database.

Figure 13. Sample of the MSL alphabet database.
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Table 7. MSL alphabet database description.

Name MSL Alphabet Detail

Total images 3780
Images for training 2646

Images for test 1134
Images size 32 × 32

Database format JPG

5.2. Parameters Used in the Experimentation

In the CNN parameter settings, some static parameters were used, including the
learning function, the activation function in the classifying layer, the non-linearity activation
function, and the epoch number. The fixed parameters considered in the PSO configuration
are the number of particles, the iterations number, the inertial weight, and the social and
cognitive constants. The static parameters used for PSO and CNN are presented in Table 8.
The dynamic parameters optimized by PSO are the number of convolutional layers, the
size of the filters used in each convolutional layer, the number of convolutional filters, and
the batch size (Tables 1 and 3).

Table 8. Static parameters for CNN and PSO.

Parameters of CNN

Learning function Adam
Activation function (classifying layer) Softmax
Non-linearity activation function ReLU
Epochs 5

Parameters of PSO

Particles 10
Iterations 10
Inertial weight (W) 0.85
Social constant (W2) 2
Cognitive constant (W1) 2

5.3. Optimization Results Obtained by the PSO-CNN-I Approach

This section presents the simulation results produced after the CNN architecture is
optimized considering the approach described in Section 4.1. The experimentation consists
of 30 executions carried out on the three databases; the aim is to obtain the optimal CNN
architecture, that is, minimum parameters necessary to maximize the recognition rate.

The first experiment was applied in the ASL alphabet (Table 5), using a distribution of
80% of the total images for training and 20% for testing. Table 9 shows the values achieved
after 30 executions, where the higher recognition rate was a value of 99.87% and the mean
was 99.58%. Based on the results, we can see that the optimal architecture achieved by the
PSO was as follows: three convolutional layers, 128 filters per layer with a filter size of
7 × 7, and the batch size with a value of 256.

In another test, the PSO-CNN-I approach was applied to the ASL MNIST database;
Table 10 presents the results achieved by the CNN where the best recognition rate was a
value of 98.82% and the mean of 99.53%. According to this analysis, the optimal architecture
for this study case is two convolutional layers, with 117 convolutional filters in both layers
with a filter size of 7 × 7 and the batch size with a value of 129.
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Table 9. Results achieved by the PSO-CNN-I in ASL alphabet database.

No.
No.

Layers
No.

Filters
Filter
Size

Batch
Size

Recognition
Rate (%)

1 3 99 [7 × 7] 107 98.85
2 3 104 [9 × 9] 256 99.66
3 3 128 [9 × 9] 256 99.70
4 3 128 [7 × 7] 256 99.79
5 3 128 [9 × 9] 256 99.72
6 3 128 [7 × 7] 256 99.62
7 2 32 [7 × 7] 256 98.18
8 3 109 [7 × 7] 256 99.73
9 3 128 [7 × 7] 197 99.75

10 3 128 [7 × 7] 256 99.81
11 3 66 [7 × 7] 181 99.31
12 3 118 [7 × 7] 256 99.87
13 3 128 [9 × 9] 256 99.67
14 3 128 [7 × 7] 256 99.85
15 3 128 [9 × 9] 256 99.61
16 3 128 [9 × 9] 256 99.63
17 3 90 [9 × 9] 256 99.66
18 3 128 [7 × 7] 256 99.82
19 3 128 [7 × 7] 256 99.79
20 3 128 [7 × 7] 256 99.76
21 3 128 [9 × 9] 256 99.68
22 3 128 [9 × 9] 256 99.67
23 3 128 [7 × 7] 256 99.75
24 3 123 [7 × 7] 32 98.38
25 3 128 [9 × 9] 256 99.64
26 3 128 [7 × 7] 256 99.82
27 3 128 [9 × 9] 215 99.56
28 3 128 [7 × 7] 256 99.87
29 3 100 [9 × 9] 256 99.64
30 3 128 [7 × 7] 256 99.84

Mean 99.58

Table 10. Results achieved by the PSO-CNN-I in ASL MNIST database.

No.
No.

Layers
No.

Filters
Filter
Size

Batch
Size

Recognition
Rate (%)

1 3 128 [9 × 9] 137 99.27
2 2 128 [9 × 9] 218 99.54
3 2 128 [7 × 7] 205 99.52
4 3 128 [7 × 7] 136 99.33
5 2 128 [9 × 9] 232 99.59
6 3 96 [9 × 9] 107 98.82
7 2 118 [7 × 7] 189 99.36
8 2 128 [9 × 9] 256 99.59
9 2 112 [9 × 9] 256 99.49

10 2 128 [9 × 9] 256 99.60
11 2 128 [7 × 7] 256 99.59
12 2 128 [7 × 7] 256 99.61
13 2 128 [9 × 9] 220 99.67
14 2 128 [9 × 9] 256 99.57
15 2 128 [9 × 9] 256 99.51
16 2 128 [7 × 7] 237 99.55
17 2 128 [7 × 7] 256 99.61
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Table 10. Cont.

No.
No.

Layers
No.

Filters
Filter
Size

Batch
Size

Recognition
Rate (%)

18 2 128 [9 × 9] 256 99.58
19 2 128 [9 × 9] 256 99.53
20 2 128 [9 × 9] 256 99.65
21 2 128 [7 × 7] 148 99.42
22 2 128 [9 × 9] 256 99.51
23 2 128 [9 × 9] 215 99.53
24 2 128 [9 × 9] 255 99.56
25 2 128 [9 × 9] 256 99.65
26 2 128 [7 × 7] 256 99.57
27 2 128 [9 × 9] 256 99.53
28 2 117 [7 × 7] 129 99.98
29 3 128 [5 × 5] 242 99.87
30 2 128 [7 × 7] 256 99.55

Mean 99.53

Table 11 presents the experimental results obtained when the approach is applied in
the MSL alphabet database. As we can see in Table 11, the best accuracy reached by the
CNN was 99.37% with a mean of 99.10%. In this case, the optimal architecture is as follows:
one convolutional layer with 122 convolutional filters, filter size of 3 × 3, and batch size
of 128.

Table 11. Results achieved by the PSO-CNN-I in MSL alphabet database.

No.
No.

Layers
No.

Filters
Filter
Size

Batch
Size

Recognition
Rate (%)

1 2 101 [7 × 7] 93 98.95
2 1 128 [3 × 3] 56 98.95
3 1 110 [3 × 3] 52 98.82
4 1 128 [3 × 3] 121 99.20
5 1 128 [3 × 3] 128 99.32
6 1 128 [3 × 3] 128 99.07
7 1 128 [3 × 3] 110 99.24
8 1 101 [5 × 5] 114 98.82
9 1 128 [3 × 3] 128 99.24

10 1 74 [3 × 3] 88 98.95
11 1 128 [3 × 3] 128 99.32
12 1 128 [3 × 3] 32 98.48
13 1 128 [3 × 3] 93 99.28
14 1 128 [3 × 3] 97 99.11
15 1 128 [3 × 3] 32 98.74
16 1 128 [3 × 3] 72 99.32
17 1 128 [3 × 3] 93 99.37
18 1 63 [3 × 3] 47 98.44
19 1 128 [3 × 3] 128 99.20
20 1 126 [3 × 3] 128 99.28
21 1 128 [3 × 3] 128 99.32
22 1 128 [3 × 3] 83 99.20
23 1 128 [3 × 3] 63 99.20
24 1 122 [3 × 3] 128 99.37
25 1 128 [3 × 3] 128 99.32
26 1 114 [3 × 3] 84 99.32
27 1 128 [3 × 3] 32 98.74
28 1 128 [3 × 3] 89 99.28
29 1 43 [3 × 3] 53 97.81
30 1 128 [3 × 3] 72 98.99

Mean 99.10
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5.4. Optimization Results Obtained by the PSO-CNN-II Approach

The results presented in this section consist of 30 executions of the PSO-CNN-II
approach applied in the ASL alphabet, ASL MNIST, and MSL alphabet databases; the
objective is to maximize the recognition rate and minimize the value of AIC.

The experimental results obtained from the ASL alphabet database after applying the
PSO-CNN-II optimization approach (Section 4.2) are presented in Table 12. In this test, the
database was distributed so that 70% of the data were kept for the training phase and 30%
of the data for testing. Table 12 shows the best recognition rate with a value of 99.23% and
a mean of 98.69%. The best architecture found by the PSO for the CNN had the following
structure: three convolutional layers where the first layer had 84 convolutional filters and
3 × 3 size filters; the second layer with 128 convolutional filters with the size of 9 × 9
and the third layer with 128 convolutional filters and 7 × 7 size filters. In this approach,
the objective function is composed of the recognition rate and the AIC value; that is, the
best recognition rate is evaluated first and then the AIC value, if it was the case that CNN
achieved two or more architectures with the same recognition rate, the process takes the
architecture with the minimum AIC, with the goal of achieving an optimal architecture
with the fewest parameters and the highest recognition rate.

Table 12. Results achieved by the PSO-CNN-II in ASL alphabet database.

No.
No.

Layers

Layer 1 Layer 2 Layer 3
Batch
Size

AIC
Value

(%)
Recogn.

Rate
No.

Filters
Filter
Size

No.
Filters

Filter
Size

No.
Filters

Filter
Size

1 3 128 [3 × 3] 128 [7 × 7] 128 [5 × 5] 256 764.78 98.99
2 3 128 [5 × 5] 121 [5 × 5] 128 [5 × 5] 213 750.78 98.73
3 3 84 [3 × 3] 128 [7 × 7] 128 [5 × 5] 84 676.78 99.23
4 2 45 [5 × 5] 128 [7 × 7] 0 0 0 340.78 98.15
5 3 32 [3 × 3] 128 [7 × 7] 128 [3 × 3] 256 572.78 98.86
6 3 128 [3 × 3] 128 [7 × 7] 128 [5 × 5] 256 764.78 98.96
7 3 84 [5 × 5] 128 [5 × 5] 128 [3 × 3] 256 676.78 98.85
8 3 128 [3 × 3] 128 [7 × 7] 128 [5 × 5] 256 764.78 99.02
9 3 32 [5 × 5] 128 [5 × 5] 128 [3 × 3] 256 572.78 98.9

10 3 124 [3 × 3] 128 [7 × 7] 128 [3 × 3] 256 756.78 98.64
11 3 32 [3 × 3] 128 [7 × 7] 128 [7 × 7] 256 572.78 98.93
12 3 32 [3 × 3] 128 [7 × 7] 128 [3 × 3] 256 572.78 98.53
13 3 128 [3 × 3] 128 [7 × 7] 128 [5 × 5] 256 764.78 99.01
14 3 73 [7 × 7] 128 [7 × 7] 108 [3 × 3] 256 614.78 97.91
15 3 128 [3 × 3] 128 [7 × 7] 128 [5 × 5] 256 764.78 99.06
16 2 128 [3 × 3] 128 [7 × 7] 0 0 0 506.78 98.23
17 2 88 [7 × 7] 128 [7 × 7] 0 0 0 426.78 97.4
18 3 32 [5 × 5] 128 [7 × 7] 128 [5 × 5] 256 572.78 99.06
19 2 128 [5 × 5] 119 [7 × 7] 0 0 0 488.78 98.1
20 3 116 [3 × 3] 128 [5 × 5] 128 [7 × 7] 252 740.78 98.96
21 3 49 [5 × 5] 128 [7 × 7] 128 [7 × 7] 256 606.78 98.93
22 2 128 [3 × 3] 128 [7 × 7] 0 0 0 506.78 98.19
23 3 32 [5 × 5] 128 [7 × 7] 128 [5 × 5] 256 572.78 98.96
24 2 32 [5 × 5] 128 [7 × 7] 0 0 0 314.78 98.04
25 2 128 [5 × 5] 81 [5 × 5] 0 0 0 412.78 98.92
26 3 32 [5 × 5] 128 [7 × 7] 128 [3 × 3] 256 572.78 98.58
27 3 32 [3 × 3] 128 [7 × 7] 128 [5 × 5] 256 572.78 98.88
28 3 128 [3 × 3] 128 [7 × 7] 128 [5 × 5] 256 764.78 99.02
29 3 128 [3 × 3] 128 [7 × 7] 128 [3 × 3] 256 764.78 99.08
30 3 128 [3 × 3] 128 [7 × 7] 128 [3 × 3] 256 764.78 98.71

Mean 98.69

In Table 13, we present the results where the PSO-CNN-II was implemented in the
ASL MNIST database. In this test, the best recognition rate was 99.80%, an AIC value
of 506.79 and, a mean of 99.48%. The optimal parameters found by the PSO were the

23



Axioms 2021, 10, 139

following: two-layer CNN architecture, the first layer had 128 filters of convolution and a
filter size of 5 × 5; the second layer had 128 convolutional filters with a filter size of 9 × 9,
and the batch size was 128.

Table 13. Results achieved by the PSO-CNN-II in ASL MNIST database.

No.
No.

Layers

Layer 1 Layer 2 Layer 3
Batch
Size

AIC
Value

(%)
Recogn.

Rate
No.

Filters
Filter
Size

No.
Filters

Filter
Size

No.
Filters

Filter
Size

1 2 128 [5 × 5] 128 [9 × 9] 0 0 128 506.79 99.80
2 2 74 [9 × 9] 114 [9 × 9] 0 0 174 370.79 99.42
3 3 32 [5 × 5] 128 [9 × 9] 128 [5 × 5] 122 572.79 99.53
4 2 125 [5 × 5] 125 [9 × 9] 0 0 147 503.79 99.58
5 2 90 [5 × 5] 128 [9 × 9] 0 0 256 500.79 99.68
6 3 32 [3 × 3] 128 [9 × 9] 128 [9 × 9] 148 572.79 99.51
7 2 121 [7 × 7] 95 [9 × 9] 0 0 100 426.79 99.26
8 3 32 [7 × 7] 128 [9 × 9] 125 [9 × 9] 256 569.79 99.6
9 2 32 [9 × 9] 126 [9 × 9] 0 0 106 310.79 99.4

10 3 115 [7 × 7] 102 [9 × 9] 128 [7 × 7] 215 686.79 99.42
11 2 32 [9 × 9] 128 [9 × 9] 0 0 256 314.79 99.44
12 2 77 [7 × 7] 100 [9 × 9] 0 0 183 348.79 99.59
13 2 87 [7 × 7] 128 [9 × 9] 0 0 256 424.79 99.7
14 2 32 [9 × 9] 128 [9 × 9] 0 0 256 314.79 99.53
15 3 32 [5 × 5] 103 [9 × 9] 125 [9 × 9] 256 516.79 99.53
16 2 70 [9 × 9] 126 [9 × 9] 0 0 256 386.79 99.63
17 2 64 [7 × 7] 128 [9 × 9] 0 0 256 378.79 99.7
18 3 32 [7 × 7] 77 [9 × 9] 128 [9 × 9] 256 470.79 99.36
19 2 128 [7 × 7] 128 [9 × 9] 0 0 256 506.79 99.74
20 3 32 [3 × 3] 128 [9 × 9] 128 [5 × 5] 32 572.79 98.95
21 3 32 [7 × 7] 128 [9 × 9] 123 [7 × 7] 162 577.79 99.33
22 2 51 [9 × 9] 128 [9 × 9] 0 0 194 352.79 99.47
23 2 50 [7 × 7] 128 [9 × 9] 0 0 256 350.79 99.63
24 2 128 [7 × 7] 128 [9 × 9] 0 0 162 506.79 99.67
25 2 100 [5 × 5] 76 [5 × 5] 0 0 76 346.79 98.23
26 2 52 [9 × 9] 128 [7 × 7] 0 0 256 354.79 99.54
27 2 128 [5 × 5] 128 [9 × 9] 0 0 142 506.79 99.53
28 3 83 [3 × 3] 125 [9 × 9] 0 0 136 410.79 99.38
29 3 128 [5 × 5] 128 [9 × 9] 128 [9 × 9] 256 764.79 99.57
30 2 74 [7 × 7] 120 [9 × 9] 0 0 256 382.79 99.72

Mean 99.48

In another experiment, the optimization approach was applied to the MSL alphabet
database after 30 simulations. The results obtained are presented in Table 14, where the
best recognition rate was 99.45% with an AIC of 248.79. The general mean for this study
case was a value of 98.91%. In this optimization, one-layer CNN architecture was achieved,
with 128 convolutional filters, 3 × 3 filter sizes, and 154 batch sizes.

5.5. Statistical Test between PSO-CNN-I and PSO-CNN-II Optimization Process

Table 15 presents a summary of the results obtained after the two approaches were
applied to the three databases. We can see that good results were achieved in all the cases;
we can analyze that for the ASL alphabet and the ASL MNIST, the PSO-CNN-I optimization
approach was better with mean values of 99.58% and 99.53%, respectively. For the MSL
alphabet database, the PSO-CNN-II optimization method achieved a better recognition rate
with a mean value of 98.91%. Although, if the results were analyzed with respect to the
AIC value, for the ASL MNIST and the MSL alphabet, the PSO-CNN-I reached the lowest
values with AIC of 462.79 and 236.80, respectively, and for ASL alphabet, the PSO-CNN-II
achieved a better AIC value. A low AIC value means that the CNN architecture required
fewer parameters, so it is important to determine what is most relevant to any problem,
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the CNN accuracy, or to configure the CNN architectures with minimal parameters that
can be implemented in real-time systems.

Table 14. Results achieved by the PSO-CNN-II in MSL alphabet.

No.
No.

Layers

Layer 1 Layer 2 Layer 3
BATCH

SIZE
AIC

Value

(%)
Recogn.

Rate
No.

Filters
Filter
Size

No.
Filters

Filter
Size

No.
Filters

Filter
Size

1 1 128 [3 × 3] 0 0 0 0 32 248.79 98.74
2 1 128 [3 × 3] 0 0 0 0 163 248.79 99.28
3 1 116 [3 × 3] 0 0 0 0 105 224.79 98.99
4 1 81 [3 × 3] 0 0 0 0 32 154.79 98.44
5 1 128 [3 × 3] 0 0 0 0 149 248.79 98.90
6 1 128 [3 × 3] 0 0 0 0 221 248.79 98.57
7 1 128 [3 × 3] 0 0 0 0 57 248.79 99.24
8 1 67 [3 × 3] 0 0 0 0 246 126.73 97.77
9 1 118 [3 × 3] 0 0 0 0 113 228.79 99.16

10 1 128 [3 × 3] 0 0 0 0 154 248.79 99.45
11 1 103 [3 × 3] 0 0 0 0 92 198.79 99.03
12 1 65 [3 × 3] 0 0 0 0 32 122.79 98.32
13 1 128 [3 × 3] 0 0 0 0 94 248.79 99.07
14 1 128 [3 × 3] 0 0 0 0 90 248.79 99.11
15 1 112 [3 × 3] 0 0 0 0 97 216.79 99.24
16 1 128 [3 × 3] 0 0 0 0 32 248.79 98.74
17 1 128 [3 × 3] 0 0 0 0 46 248.79 98.65
18 1 128 [3 × 3] 0 0 0 0 199 248.79 98.32
19 1 128 [3 × 3] 0 0 0 0 244 248.79 99.03
20 1 120 [3 × 3] 0 0 0 0 32 232.79 99.07
21 1 128 [3 × 3] 0 0 0 0 105 248.79 99.16
22 1 128 [3 × 3] 0 0 0 0 77 248.79 99.03
23 1 108 [3 × 3] 0 0 0 0 84 208.79 99.07
24 1 54 [3 × 3] 0 0 0 0 32 100.79 98.44
25 1 102 [3 × 3] 0 0 0 0 102 196.79 99.03
26 1 128 [3 × 3] 0 0 0 0 114 248.79 99.20
27 1 119 [3 × 3] 0 0 0 0 256 230.79 98.61
28 1 98 [3 × 3] 0 0 0 0 122 188.79 99.20
29 1 128 [3 × 3] 0 0 0 0 83 248.79 99.07
30 1 128 [3 × 3] 0 0 0 0 135 248.79 99.37

Mean 98.91

Table 15. Summary of the results obtained in the PSO-CNN-I and PSO-CNN-II approaches.

Database
PSO-CNN-I PSO-CNN-II

Best Mean AIC Best Mean AIC

ASL
alphabet 99.87% 99.58% 764.79 99.23% 98.69% 676.78

ASL
MNIST 99.98% 99.53% 462.79 99.80% 99.48% 506.79

MSL
alphabet 99.37% 99.05% 236.80 99.45% 98.91% 248.79

To confirm if significant evidence exists between the architectures and to identify
which is better, the Wilcoxon signed-rank test was applied [50]; this is a non-parametric test
that is recommended to be applied when the numerical data are not normally distributed,
as is the case with the experimental results of metaheuristic algorithms. The Wilcoxon
test was performed to compare the PSO-CNN-I and PSO-CNN-II optimization processes,
considering the results presented in Tables 9–14. The general description of the values used
to execute the Wilcoxon test is presented in Table 16 and described below:
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• A confidence level of 95% (α = 0.05).
• The null hypothesis is given that (H0): the PSO-CNN-I architecture (μ1) is equal to

PSO-CNN-II architecture (μ2), expressed as H0 : μ1 = μ2.
• The alternative hypothesis is (H1): affirm that PSO-CNN-I architecture (μ1) is greater

than that PSO-CNN-II architecture (μ2), expressed as H1 : μ1 > μ2(Affirmation).
• The objective is to reject the hypothesis null (H0) and support the alternative hypothe-

sis (H1).

Table 16. General description of the Wilcoxon test.

Description Hypothesis

Null hypothesis PSO-CNN-I architecture (μ1) =
PSO-CNN-II architecture (μ2) H0 : μ1 = μ2

Alternative hypothesis PSO-CNN-I architecture (μ1) >
PSO-CNN-II architecture (μ2), H1 : μ1 > μ2(Affirmation)

The first Wilcoxon test was applied for the ASL alphabet results (Tables 9 and 12).
Table 17 shows the R+, R−, and the p-value (the p-values have been computed by using
SPSS), where R+ represents the sum of ranks for the problems in which the first algorithm
outperformed the second, and R− the sum of ranks for the opposite. The results obtained
indicate an R+ of 455, an R− of 10 and the p-value of <0.001. Because the p-value is less
than the alpha value of α = 0.05, then we support the alternative hypothesis with a 95%
level of evidence, and we can affirm that the PSO-CNN-I architecture is better than the
PSO-CNN-II.

Table 17. Wilcoxon test results for the ASL alphabet.

Comparison
PSO-CNN-I (μ1)—PSO-CNN-II (μ2)

R+ R− p-Value

ASL alphabet 455 10 <0.001

Table 18 presents the results after the Wilcoxon test was applied for the ASL MNIST
results (Tables 10 and 13). This test obtains the values R+ = 245.5, R− = 189.5, and the
p-value = 0.545. Since the p-value is greater than the alpha value of α = 0.05, the null
hypothesis is accepted with a 95% level of evidence; therefore, we can affirm that evidence
does not exist to determine that the PSO-CNN-I architecture is better than the PSO-CNN-II.

Table 18. Wilcoxon test results for the ASL MNIST.

Comparison
PSO-CNN-I (μ1)—PSO-CNN-II (μ2)

R+ R− p-Value

ASL MNIST 245.5 189.5 0.545

Finally, Table 19 presents the Wilcoxon test for the results of the MSL alphabet
(Tables 11 and 14). The results obtained indicate the values R+ = 291, R− = 115, and
the p-value = 0.045. We can see that the p-value is less than the alpha value of α = 0.05;
therefore, we support the alternative hypothesis with a level of evidence of 95%, and we
can affirm that the PSO-CNN-I architecture is better than the PSO-CNN-II.

Table 19. Z-test results for the ASL MNIST.

Comparison
PSO-CNN-I (μ1)—PSO-CNN-II (μ2)

R+ R− p-Value

MSL alphabet 291 115 0.045
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5.6. State-of-the-Art Analysis Comparison

To obtain more evidence about the performance of the optimization approaches
presented in this paper, we make a comparative analysis (Table 20) against the state-of-
art research, where CNN models are implemented in Alphabet Sign Language database
recognition. The results presented in Table 20 represent the best recognition rate values
reported by the authors, the detail of which is explained as follows: Zhao et al. [51] reports
an accuracy of 89.32%, the CNN architecture has two convolutional layers, two pooling
layers, the batch size is 150, and 80 iterations. The authors generated their own ASL
database, this was captured in five people covering 24 letters of the alphabet, and each
person’s letters had about 528 photos.

Table 20. State-of-the-Art Comparison.

Reference Recognition Rate (%) Dataset

Y. Zhao and L.Wang [40] 89.32 ASL own
D.Rathi [41] 95.03 ASL MNIST

L.Y.Bin y Y.Huann [42] 95.00 ASL own
R. Dionisio [39] 97.64 ASL MNIST

PSO-CNN-I 99.98 ASL MNIST
PSO-CNN-II 99.80 ASL MNIST

Rathi [52] presents an optimization of the transfer learning model (based on CNN)
and it was applied to the ASL MNIST database, using 27,455 images of 24 letters of the
ASL alphabet. The data split was as follows, 80% of the data was for training, 10% for
testing, and 10% of data for validation purposes with a training batch size of 100. The best
recognition rate evidenced by the author was a value of 95.03%.

In Bin et al. [53], an architecture of four convolutional layers and two pooling layers
was presented. The database was generated by the researchers themselves, taking charac-
teristics of the ASL MINIST and consisting of 4800 images; the best accuracy reported by
the authors was 95.00%.

Dionisio et al. [54], reported a recognition rate of 97.64% for the ASL MNIST with a
six-layer convolutional architecture, three pooling layers, a filter size of 3 × 3, and a batch
size of 128. The database was divided using 10% of data for phase testing, 10% for phase
validation, and 80% for training.

Finally, we present the recognition rate achieved by our two approaches PSO-CNN-I
and PSO-CNN-II with the best values of recognition rates of 99.98% and 99.80%, respec-
tively. In the PSO-CNN-II, the best architecture obtained for the ASL MINIST was of two
layers with 117 filters per layer with a size filter of 7 × 7 and batch size of 129. For the
PSO-CNN-I, it was of two layers with 117 filters per layer with a size filter of 7 × 7 and
batch size of 129.

As one can observe in Table 20, the highest performance was obtained by the proposed
model (PSO-CNN-I) with a value of 99.98%, achieving an advantage over the rest of
the approaches.

6. Conclusions and Future Work

In summary, in this paper, we present two approaches to optimize CNN architectures
by implementing the PSO algorithm, these being applied to sign language recognition. The
main contribution was to find some CNN hyper-parameters; in the proposals the number
of convolutional layers, the size of the filter used in each convolutional layer, the number of
convolutional filters, and the batch size were included. According to the experimentation
and the results obtained in the two PSO-CNN optimization methodologies, we can conclude
that the recognition rate increased in all case studies carried out, providing a robust
performance with the minimum parameters. Overall, the recognition rates achieved by
the three databases were as follows: for the ASL MNIST database, the best value was
99.98% and an average of 99.53% with the PSO-CNN-I approach. For the ASL alphabet
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database, the best accuracy was 99.87% and an average of 99.58% with PSO-CNN-I, and for
the MSL alphabet, the best value was 99.45% and an average of 98.91% after applying the
PSO-CNN-II approach. After a comparative analysis against other state-of-the-art works
focused on sign language recognition (ASL and MSL), we can confirm that the optimization
approaches of this work present competitive results.

This research focused on optimizing the number of convolutional layers, the filter size
used in each convolutional layer, the number of convolutional filters, and the batch size.
The results provide evidence of the importance of applying optimization algorithms to
find the optimal parameters of convolutional neural network architectures.

As future work, the PSO algorithm could be applied to optimize other CNN hyper-
parameters, implement another version of the PSO algorithm or explore different evolu-
tionary computational techniques, to produce more robust CNN architectures that will
be implemented in different sign language datasets used in other countries. In the experi-
mental test, the images were introduced as static images, but we are considering working
with input images in real-time or capturing them through video. On the other hand, our
idea is to be able to implement the use of this proposal in the development of assisted
communication tools and to contribute to human−computer iteration applications that
can be of support to the deaf community.
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Abstract: Breast segmentation plays a vital role in the automatic analysis of mammograms. Accurate
segmentation of the breast region increments the probability of a correct diagnostic and minimizes
computational cost. Traditionally, model-based approaches dominated the landscape for breast
segmentation, but recent studies seem to benefit from using robust deep learning models for this
task. In this work, we present an extensive evaluation of deep learning architectures for semantic
segmentation of mammograms, including segmentation metrics, memory requirements, and average
inference time. We used several combinations of two-stage segmentation architectures composed
of a feature extraction net (VGG16 and ResNet50) and a segmentation net (FCN-8, U-Net, and
PSPNet). The training examples were taken from the mini Mammographic Image Analysis Society
(MIAS) database. Experimental results using the mini-MIAS database show that the best net scored
a Dice similarity coefficient of 99.37% for breast boundary segmentation and 95.45% for pectoral
muscle segmentation.

Keywords: breast segmentation; mammogram; deep learning; semantic segmentation

MSC: 68T20

1. Introduction

Computer-aided detection (CADe) systems are valuable tools to assist medical experts
in detecting and diagnosing diseases. The aim of CADe for breast analysis is twofold: it
reduces the chances of cancer being undetected in the earlier stages, and it can lower the
number of unnecessary medical interventions (such as biopsies), mitigating the levels of
anxiety and stress in the patients [1,2].

For mammogram CADe, accurate segmentation of the breast is a crucial step [3–5], as it
can accelerate diagnosis and lower the number of false positives and false negatives [1,6,7].
Automatic mammogram segmentation identifies the different tissues in the breast and gives
them a label such as pectoral muscle, fatty tissue, fibroglandular tissue, or nipple [6–8].

In breast segmentation, the most challenging task is to identify the pectoral muscle
accurately. As a result, the brightness, position, and size of the pectoral muscle vary widely.
The pectoral muscle may occupy most of the image or do not appear in it. Most of the time,
the pectoral muscle appears in the upper part of the mammogram with a white triangular
shape since the curvature and length of the lower edge fluctuates [7]. The pectoral muscle’s
brightness can appear similar to fibroglandular tissue in dense breasts or other structures
such as parenchymal texture, artifacts, and labels in digitized mammograms [6,9].

CADe approaches for image segmentation began with traditional computer vision
techniques such as edge detection and mathematical modeling. These systems evolved
and started including machine learning approaches which, at present, constitute the core
of a CADe system, becoming the primary option for medical image segmentation [10].
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Although deep learning has shown excellent performance for medical image segmentation,
the use of deep learning for mammogram segmentation is scarce [4,11].

This paper contributes with an extensive evaluation of mammogram segmentation
using deep learning architectures. We combined several architectures to explore their per-
formance under different scenarios. We obtained accuracy metrics, memory consumption,
and inference time to compare the performance of the architectures. We present multicrite-
ria evaluation results that can help obtain answers beyond simple accuracy metrics since
other important characteristics can also be considered in selecting the best architecture for
a given application. Additionally, we provide a comprehensive introduction to the topic
of semantic segmentation using deep learning approaches and how different deep neural
networks can be combined to achieve better results.

The paper is organized as follows: in Section 2, we summarized the different state-
of-the-art approaches for breast segmentation. In Section 3 the theoretical background of
deep neural network used in this work and key concepts about digitized mammograms
are provided. In Section 4 we provide information about the designed experiments and
how to reproduce our findings. In Section 5, we present our results using the mini-MIAS
database and a comparative against other methods. Finally, in Section 6 we discuss our
results and provide our opinion about future work.

2. Related Work

Traditional methods for breast segmentation combine geometric models and iterative
calculation of a threshold to distinguish between different breast tissues.
Mustra and Grgic [5] used polar representation to identify the round part of the breast.
They found the breast line using a combination of morphological thresholding and con-
trast limited adaptive histogram equalization. To extract the pectoral muscle, they used a
mixture of thresholding and cubic polynomial fitting.

Liu et al. [8] developed a method for pectoral muscle segmentation based on statistical
features using the Anderson–Darling test to identify the pectoral muscle’s boundary pixels.
They eliminated the regions outside the pectoral muscle’s probable area by assuming the
position of the pectoral muscle (upper-left corner of the mammogram) and found the final
boundary of the muscle by using an iterative process that searches for edge continuity
and orientation.

More recently, Taghanaki et al. [2] used a mixture of geometric rules and intensity
thresholding to identify the breast region and the pectoral muscle. Vikhe and Thool [7]
developed an intensity-based algorithm to segment the pectoral region. They estimated the
pectoral region through a binary mask of the breast obtained by a thresholding technique
followed by an intensity filter. Then, with a thresholding technique for rows separated by
a pixel interval, several estimated pectoral muscle outline points were found.

Rampun et al. [3] developed a mammogram model to estimate the pectoral region’s
position and the breast’s orientation. First, they found the breast region using Otsu’s
thresholding, then removed the noise using an anisotropic diffusion filtering; after that,
the initial breast boundary was found using the image’s median and standard deviation.
The Chan–Vese model was used to obtain a more precise boundary. Finally, using an
extended breast and Canny edge detection model, the pectoral muscle was found.

The use of deep learning in medical imaging has incremented since 2015 and is now
an essential topic for research. In the medical field, deep learning has been used to detect,
classify, enhance, and segmentation [12]. Despite this trend, the number of works published
for mammograms with deep learning is low.

In this regard, Dalmış et al. [13] segmented breast MRI’s using several sets of U-nets.
In the first experiment, they trained two U-nets, the first one for the breast area’s segmenta-
tion and the second one to segment the fibroglandular tissue. In the second experiment,
a single U-net with three classes to identify the background, the fatty tissue, and the fibrog-
landular tissue was trained. They used the SØrensen–Dice similarity coefficient to evaluate
the experiments, obtaining 0.811 for the first experiment and 0.85 for the second.
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Dubrovina et al. [4], used a convolutional neural network (CNN) for pixel-wise
classification of mammograms. In their work, they classify mammograms patches into five
classes: pectoral muscle, fibroglandular tissue, nipple, breast tissue, and background.

In a recent work, de Oliveira et al. [11] used several semantic segmentation nets for
mammogram segmentation. They used three different net architectures (FCNs, U-net,
and SegNet) for the segmentation of the pectoral muscle, breast region, and background.

Rampun et al. [14] used a convolutional neural network for pectoral segmentation in
mediolateral oblique mammograms. The network used by Rampun et al. was a modified
holistically nested edge detection network. In a more recent work, Ahmed et al. [15]
used two different architectures, Mask-RCNN and the DeepLab V3, for the semantic
segmentation of cancerous regions in mammograms.

3. Theoretical Background

This section provides the mathematical foundation of the convolutional neural net-
works that we used to perform semantic segmentation of the breast; we explain key
concepts about mammograms to facilitate the understanding of the methods, evaluation,
and results. All the tested architectures of DNN are also explained.

3.1. Supervised Learning Foundations

The general problem in machine learning can be summarized as the following: given a
collection of input values Xi and a set of adjustable weights W, calculate an approximation
function F(Xi, W) that estimates output values Yi, see (1). The output Yi can be seen as the
recognized class label of the given pattern Xi, as scores, or as probabilities associated with
each class [16].

Yi = F(Xi, W) (1)

The loss function is calculated by Equation (2), where D measures the discrepancy
between the desired valued Ŷi and the output given by our approximation function F.

L = D(Yi, Ŷi) (2)

The average loss function, Lt(W) is the average of the errors L over a set of labeled
examples called the training set {Xi, Yi}. A simple learning problem consists in finding
the value W that minimizes Lt(W). Commonly, the system’s performance is estimated by
using a disjoint set of samples called the test set, Zi [16].

A method to minimize the loss function, is by estimating the impact of small variations
in the parameters W on the loss value. This is measured by the gradient of the loss function
L with respect W. Generally, W is a real-valued vector, in which L(W) is continues and
differentiable [16]. The most simple minimization procedure is by using gradient descent,
where W is adjusted in each step by:

Wt = Wt−1 − η
∂L(W)

∂W
(3)

where η is called the learning rate, which indicates how much the algorithm would change
by the calculated error.

Another popular minimization procedure is the stochastic gradient descent. This
algorithm consists in updating the W using a noisy or approximated version of the average
gradient. This can be represented as randomly selecting a subset of the input data Xi and
calculate an approximate gradient for each batch. Since over a set of iterations the addition
of the loss functions would be calculated randomly for most of the data, the average of the
different trials would be very similar to the real gradient. The stochastic gradient descent
is represented as:

Wt = Wt1 − η ∑
∂Lx(W)

∂W
(4)
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The main difference, is that in this case, L(W) is calculated over a subset of Xi called
x. In the most simple case, W is updated using only a single example. With this procedure,
the calculated gradient fluctuates around an average trajectory that usually converges
faster than the original gradient descent [16].

Feedforward networks use backpropagation to efficiently calculate gradients of differ-
entiable layers. The basic feedforward networks is built as a group of cascade elements
(neurons) each one implementing a function Yn = F(Yn−1, Wn), where Yn is the output of
the module, Wn is the vector of tunable parameters, and Yn−1 is the input of the module.
The input Y0 to the first module is the input pattern X, and the subsequent layers that
calculate Yi are called hidden layers. If the partial derivative of Fi with respect to Yn is
known, then the partial derivatives of Fi with respect to Wn and Yn−1 can be calculated
using rule chain as:

∂Fi

∂Wn
=

∂F
∂W

(Wn, Yn−1)
∂Fi

∂Yn
(5)

∂Fi

∂Yn−1
=

∂F
∂Y

(Wn, Yn−1)
∂Fi

∂Yn
(6)

where (∂F/∂W)(Wn, Yn−1) is the Jacobian of F with respect to W evaluated at the point
(Wn, Yn−1), and (∂F/∂Y)(Wn, Yn−1) is the Jacobian of F with respect to X. The full gradient
is obtained by getting the average of the gradients over all the training patterns.

3.2. Convolutional Neural Networks

Multilayer networks can learn complex, high-dimensional, nonlinear mappings from
a large set of training examples. This ability makes them a clear candidate for image
recognition tasks. A typical pipeline of an image recognition system uses a feature extractor
method to obtain the most relevant characteristics of the image and then use them as
feature vectors to train the network. Most of these feature extractors are hand-crafted,
which makes appealing the possibility of creating features extractors that learn the most
relevant features. Using traditional neural networks (also called fully connected networks)
for feature extraction and classification has some evident limitations.

The first one is the size of the network. Traditional images are multi-channel matri-
ces with millions of pixels. To represent this information on a fully connected network,
the number of weights for each fully connected layer would be in the millions even if the
image is resized to a certain degree. The increment in the number of trainable parameters
increases the memory requirements to represent the weights of the network.

Additionally, there is no built-in invariance of translation or local distortion of the
inputs in these types of networks. In theory, a fully connected network could learn to gen-
erate outputs that are invariants to distortion or some degree of translation. The downside
is that it would result that several learning units have to learn similar weight patterns that
are positioned at different locations in the input. Covering the space of all the possible
variations would need many training instances; hence it would demand considerable
memory requirements.

Another deficiency of fully connected networks is that the topology of the input vector
is ignored. Images have a solid two-dimensional local structure where pixels have a high
correlation with their neighbors. These local correlations in images are the main reason for
using hand-crafted feature extractors before a classification stage.

Convolutional neural networks (CNN) address the issues of fully connected networks
and achieve shift, scale, and distortion invariance by using three elements: local receptive
fields, shared weights, and spatial subsampling. Local receptive field neurons are used
to extract elementary visual features such as edges, endpoints, corners, and textures.
Subsequent layers combine these low-order features to detect higher-order features. On a
CNN, learning units in a layer are organized in planes in which all units share the same
set of weights, this allows the network to be invariant to shifts or distortions of the input.

34



Axioms 2021, 10, 180

The set of outputs of the learning units is called a feature map [16]. The shared weights are
adjusted during the learning phase to detect a set of relevant features.

A convolutional layer comprises several feature maps, this allows multiple features
to be extracted at each location. The operation of the feature maps is equivalent to a
convolution, followed by an additive bias and a squashing function, giving its name of
convolutional network [17]. A convolutional layer can be represented as:

Conv(Yn, K) = ∑
i

∑
j

∑
k

K{i,j,k}Yn{i,j,k} (7)

where K is the kernel that acts on the input map Yn using a window of size k. The kernel of
this convolutional layer is the set of connection weights used by the units in the feature
map. In Figure 1, an arbitrary input map is feed into a convolutional filter with size 3 × 3.
To obtain the output, each element in their respective position K{i,j} would be multiplied
with their pairs in the input map at position Yn{i,n} and then they would be summed
up. In this specific example, the operation is as follows: (1 × 1) + (2 ×−1) + (1 ×−1) +
(1 × 0) + (3 × 1) + (2 ×−1) + (1 × 0) + (1 × 0) + (4 ×−1) = −5. The convolutional filter
would move over the input map given a step size. The output map would be the encoded
features from the input map given the convolutional filter.

The shape, size, and composition of the kernel helps the network to learn specific
features that the network detects as important. Convolutional layers are robust to shift and
distortions of the inputs since the feature maps only shifts by the same amount as the shift
in the input image.

Figure 1. Example of a convolutional operation.

After a feature is detected, its exact position becomes irrelevant, and only the approxi-
mate position relative to other features is important. Knowing its precise position can be
harmful to achieving robustness to slight variations of the input. In order to reduce preci-
sion, spatial resolution reduction of the feature maps is used in convolutional networks.

Pooling layers can perform a subsampling using a wide array of mathematical opera-
tions over a feature map. These operations can be as simple as the maximum value over
a given window (max pooling), the average value (average pooling), or more complex,
such as taking the average of the whole feature map (global average pooling). Similar to
the convolutional layers, the mathematical operation of pooling layers acts upon a fixed
window of size p. In Figure 2, two different pooling layers of size p = 2 are applied over
an given feature map of size 4 × 4. Given p = 2, the feature map is downsized to 2 × 2.
The colors indicate the area of effect of the pooling layer. As an example, on the orange
layer, the output of the max-pooling is 23 given that the maximum value is 23, on the
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contrary, for the average pooling (rounded to the next integer value) the output is 15 given
that (23 + 23 + 0 + 12)/4 = 15. Selecting over different pooling layers would affect the
learning capacity of the network.

Figure 2. Example of max pooling and average pooling.

Using a combination of convolutional and pooling layers over a progressing reduction
of spatial reduction compensated by an increasing number of feature maps helps achieve
invariance to the geometric transformation of the input.

At the end of the convolutional and pooling layers, a fully connected network is used.
Since all the weights in the system are learned using backpropagation, and at the end there
is a fully connected network, in essence, a CNN is learning to extract its own features and
classify them.

CNNs are an example of deep neural networks (DNNs), which are neural networks
with many layers between the input layer and the output layer (hidden layers), hence
the name.

3.3. Fully Convolutional Networks

Fully convolutional networks (FCN) are a particular type of CNNs, where all the layers
compute a nonlinear filter (a convolutional filter). This allows FCNs to naturally operate
on any input size and produce an output of the corresponding spatial dimensions [18].

Commonly, detection CNNs take fixed-sized inputs and produce nonspatial outputs.
Fully connected layers can also be viewed as convolutions with kernels that cover the
entire input. This can transform traditional CNN into FCNs that take input of any size and
make spatial output maps.

These outputs maps are typically reduced due to the subsampling provided by the
pooling layers, reducing the resolution of the FCNs by a factor equal to the pixel stride of
the receptive fields of the output units; this is to prevent the coarse outputs from being
connected with upsampling layers that act as convolutional layers with a fractional input
stride of 1/s. These fractional stride convolutions are typically called transpose convolutions.

A network with these characteristics can perform classification at a pixel level or
semantic segmentation. In semantic segmentation, every pixel of the image is associated
with a class. This association helps to understand what is happening in the image and where
it is happening [18].
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3.4. Deep Learning Architectures for Semantic Segmentation

Many deep neural networks (DNNs) have been proposed for semantic segmentation,
most of these approaches are based on a derivation of the following: convolutional neural
networks, fully convolutional networks [18], U-Net [19] variations, convolutional residual
networks, recurrent neural networks [10], densely connected convolutional networks [20],
and DeepLab variations [21–23].

In this work, we used several DNNs to test their performance in mammogram seg-
mentation. Similar to Siam et al. [24], we combined pairs of feature extraction networks
and segmentation networks for semantic segmentation. For the feature extraction sec-
tion, we used the VGG16 and the ResNet50; for the segmentation part, we used FCN8,
U-Net, and PSPNnet. These composite structures summarize the spectrum of DNNs for
semantic segmentation.

In the following lines, we describe the base networks used in this work in detail, followed
by the description of the specific encoder–decoder pairs used for the breast segmentation.

3.4.1. VGG16

Simonyan and Zisserman [25] proposed VGG16, which is a well-known architecture
that won the 2014 ImageNet Challenge. The VGG16 has 16 weight layers (convolutional
and fully connected layers), with a total of 134 million trainable parameters, see Figure 3.

Figure 3. Architecture of the VGG-16.

The input layer has a fixed size of 224 × 224, followed by five convolutional sections.
Each convolutional section have 3 × 3 filters with a stride of 1, followed by a 2 × 2 max-
pooling filter with stride 2. The activation function used in each block are rectified linear
units (ReLU) layers, defined as:

ReLU(Yn) = max(0, Yn−1). (8)

The end layers are three fully connected layers: the first two with 4096 channels,
and the third one is a softmax layer with the number of channels adjusted to the number of
classes. Table 1 describes each layer in detail.
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Table 1. Layer description of the VGG16.

Type Filters Size, Stride

Conv_1 64 × 2 3 × 3, 1
Pool_1 – 2
Conv_2 128 × 2 3 × 3, 1
Pool_2 – 2
Conv_3 256 × 3 3 × 3, 1
Pool_3 – 2
Conv_4 512 × 3 3 × 3, 1
Pool_4 – 2
Conv_5 512 × 3 3 × 3, 1
Pool_5 – 2

FConv 4096 7 × 7
FConv 4096 1 × 1

Softmax – –

3.4.2. ResNet50

A big obstacle for earlier networks with depth above thirty layers was accuracy
saturation, followed by a fast accuracy degradation. ResNet was proposed by He et al. [26],
winning the ILSVRC classification task in 2015. ResNet addresses the degradation problem
with residual blocks, see Figure 4, which are shortcut connections between layers using
identity mapping, and adding their outputs of the stack layers.

Figure 4. ResNets address the accuracy saturation and accuracy degradation issue with residual
blocks. (a) Traditional DNN stacking where each layer feeds into the next layer. (b) In residual blocks
the output of a layers is added to a layer deeper in the block.

ResNets have five sections: the first section is a convolutional layer followed by a
max-pooling layer; the other four sections are residual blocks that repeat different times.
ResNet50 is the fifty layer variant of ResNet, see Figure 5, their four residual blocks are
called bottlenecks. Each bottleneck block has three convolutional layers, the first and the
third one have 1 × 1 kernels, and the second layers have a 3 × 3 kernel. A description of
the layers in ResNet50 can be found in Table 2.
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Figure 5. Architecture of the ResNet50.

Table 2. Layer description of ResNet50.

Type Filters Size, Stride

Conv_1 64 7 × 7, 2
Pool_1 – 3 × 3, 2

64 1 × 1, 1
Conv_2 × 3 64 3 × 3, 1

256 1 × 1, 1
128 1 × 1, 1

Conv_3 × 4 128 3 × 3, 1
512 1 × 1, 1
256 1 × 1, 1

Conv_4 × 6 256 3 × 3, 1
1024 1 × 1, 1
512 1 × 1, 1

Conv_5 × 3 512 3 × 3, 1
2048 1 × 1, 1

GAP – 1 × 1
Softmax – –

3.4.3. FCN-8

Fully convolutional networks were one of the first networks designed for semantic
segmentation [18]. Their main advantage was their capacity to take an input of arbitrary
size, generating a correspondingly sized output.

The fully convolutional versions of classification networks (such as Alexnet, VGG16,
GoogLeNet) add skip connections at the end of convolutional blocks, and they add a
convolutional filter in the output and fuse it with an upsampled region at the end of the
network. The upsampling layers are transposed convolutional layers.

In FCNs, fully convolutional layers replace the fully connected layers at the end of the
classifiers: instead of having p neurons interconnected, the layer will have p convolutional
layers. At the end of the network, a softmax layer classifies every pixel into a class.

The FCN8 has two skip connections and three upsampling layers. The first upsampling
layer feeds directly from the fully convolutional layers and has a stride of 32. The second
and third upsampling layers are fed from the skip connections and have 16 and 8 strides,
respectively. The two skip connections come from upper pooling layers, and each one
passes through a convolutional layer. An example of an FCN-8 for an arbitrary network is
shown in Figure 6.
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Figure 6. Architecture of the FCN-8 of a generic DNN.

3.4.4. U-Net

The U-Net architecture has two parts: a contracting path to capture context and an
expanding path for localization [19]. The contracting path consists of several blocks of
two 3 × 3 convolutional layers, followed by a ReLU layer and a 2 × 2 max pooling with
stride 2. At each downsampling, the number of feature channels is doubled. The expansive
paths have several 2 × 2 transpose convolution layers for upsampling, a concatenation
with the corresponding feature map in the contracting path, and two 3 × 3 convolutional
layers followed by a ReLU layer. The final layer is a 1 × 1 convolutional layer followed by
a softmax layer.

The architecture of the classic U-Net can be seen in Figure 7.

Figure 7. Architecture of the U-Net.

3.4.5. PSPNet

The pyramid scene parsing network (PSPNet) was proposed by Zhao et al. [27] to
incorporate suitable global features for semantic segmentation and scene parsing tasks.
To obtain global information, PSPNet relies on a pyramid pooling module. This module
uses a hierarchical prior, which contains information at different pyramid scales and
varying among different sub-regions.

In Figure 8, we can see the pyramid pooling module inside PSPNet. Once the image
features are extracted, the multiple pooling layers at several sizes extract global information,
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and then a 1 × 1 convolutional layer is used to flatten the information, followed by an
upsampling layer to obtain the original size of the feature map. The final step is to
concatenate each feature obtained by the pyramid pooling module, and a convolutional
layer generates the final prediction.

Figure 8. Pyramid pooling module.

3.4.6. VGG16+FCN8

The VGG16+FCN8 is the fully convolutional version of the VGG16. It uses the
same architecture as VGG16, but it replaces the two fully connected layers with fully
convolutional layers and uses skip connections. This net has three streams before the
final upsampling (transposed convolution layer): the output of the fully convolutional
layers, a skip connection from pool_4, and a skip connection from pool_3. Every stream
passes through a convolutional layer before adding them to the output. The architecture of
VGG16+FCN8 can be seen in Figure 9 and is described in Table 3.

Figure 9. Architecture of the VGG16+FCN8.
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Table 3. Layer description of the VGG16+FCN8.

Type Filters Conected to

VGG16 – –
Conv_6 × 2 4096 Conv_5

Conv_7 2 Conv_6
TransConv_1 1 Conv_7

Conv_8 1 Pool_4
Add_1 – –

TransConv_2 1 Add_1
Conv_9 1 Pool_4
Add_2 – –

TransConv_3 1 Add_2
Softmax – TransConv_3

3.4.7. VGG16+U-Net

The VGG16+U-Net has the same shape as the U-Net, with a contracting path and an
expanding path. The contracting path is integrated by four convolutional blocks of the
VGG16 (the last block was removed), with an added single convolutional layer before the
expanding path. The expanding path has three upsampling blocks connected with the
convolutional blocks. The concatenations between the two paths are performed between
Conv_1-Upsampling_3, Conv_2-Upsampling_2, and Conv_3-Upsampling_1. The architec-
ture of the VGG16+U-Net can be seen in Figure 10 and is described in Table 4.

Figure 10. Architecture of the VGG16+U-Net.

Table 4. Layer description of the VGG16+U-Net.

Type Filters Conected to

VGG16 – –
Conv_5 512 Conv_4

Upsampling_1 512 Conv_5
Concat_1 768 Conv_3
Conv_6 256 Concat_1

Upsampling_2 256 Conv_6
Concat_2 384 Conv_2
Conv_7 128 Concat_2

Upsampling_3 128 Conv_7
Concat_3 192 Upsampling_3
Conv_8 64 Concat_3
Conv_9 2 Conv_8
Softmax – Conv_9
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3.4.8. ResNet+PSPNet

The architecture of the ResNet+PSPNet is simple: it eliminates the fully connected
layers of the ResNet50 and adds a pyramid pooling module with two convolutional layers
before the final upsampling layers. The last upsampling layer has the same dimension
as the first residual block (conv2_x), while the upsampling layers in the pyramid pooling
module are half the dimensions of conv5_x. The architecture of ResNet+PSPNet can be
seen in Figure 11 and is described in Table 5.

Figure 11. Architecture of the ResNet50+PSPNet.

Table 5. Layer description of the ResNet50+PSPNet.

Type Filters Conected to

ResNet50 – –
AVGPool_1 2048 Conv5_x

Conv_6 512 AVGPool_1
Upsampling_1 512 Conv_6

AVGPool_2 2048 Conv5_x
Conv_7 512 AVGPool_2

Upsampling_2 512 Conv_7
AVGPool_3 2048 Conv5_x

Conv_8 512 AVGPool_3
Upsampling_3 512 Conv_8

AVGPool_4 2048 Conv5_x
Conv_9 512 AVGPool_4

Upsampling_4 512 Conv_9
Concat_1 4096 Conv_6

Conv_7
Conv_8
Conv_9

Conv_10 512 Concat_1
Conv_11 2 Conv_10
Softmax – Conv_11

3.4.9. ResNet+U-Net

Since VGG16+Unet uses three upsampling blocks in the expanding path, the same
number was used for ResNet+U-Net, and only three of the four residual blocks of the origi-
nal Resnet50 were used for the contracting path. The concatenations between the two paths
are carried out between conv2_x-up_3, conv3_x-up_2, and conv4_x-up_1. The architecture
of the ResNet50+U-Net can be seen in Figure 12 and is described in Table 6.
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Figure 12. Architecture of the ResNet50+U-Net.

Table 6. Layer description of the ResNet50+U-Net.

Type Filters Conected to

ResNet50 – –
Conv_5 512 Conv4_x

Upsampling_1 512 Conv_5
Concat_1 1024 Conv4_x
Conv_6 256 Concat_1

Upsampling_2 256 Conv_6
Concat_2 512 Conv3_x
Conv_7 128 Concat_2

Upsampling_3 128 Conv_7
Concat_3 192 Conv2_x
Conv_8 64 Concat_3
Conv_9 2 Conv_8
Softmax – Conv_9

3.5. Digitized Mammograms

Mammograms have two standard views: craniocaudal (CC) and mediolateral oblique
(MLO). In the CC view, the radiologist has a higher appreciation of the anterior, central,
and middle area of the breast [28]. The MLO view complements the CC view; it is taken
with an oblique angle, providing a lateral image of the pectoral muscle and the breast.
Most of the current research in the automatic segmentation of mammograms focuses on
the MLO view. In this view, there are different components, such as the breast region
(sometimes divided in fibroglandular tissue and fat), the pectoral muscle, and the nipple.

The breast region is generally more extensive than the pectoral muscle, with a round
appearance and most of its pixels near the center or in the mammogram’s lower region.
The breast’s gray level intensity depends on its density (the proportion of glandular tissue
and fat); the higher the breast’s density, the brighter it appears.

The pectoral muscle is in the upper region of the mammogram. In most cases, the pec-
toral muscle appears a bright right triangle, with its origin depending on the mammogram’s
orientation. The size, brightness, and curvature of the muscle vary on a case-by-case basis [7].

When the mammogram comes from digitized films, it may contain medical labels,
noise, and other bright elements that are not part of the breast’s anatomy, e.g., adhesive
tape or abnormal spots [3,4,7]. Elements with such characteristics are cataloged as artifacts.
Figure 13 shows a typical digitized mammogram and its components.
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Figure 13. Typical components of a digitized mammogram: (a) breast region, (b) pectoral muscle,
(c) medical label, (d) digitization artifact, (e) salt noise, and (f) background.

4. Method

As detailed in Section 2, although deep learning is the dominant technique for segmen-
tation in medical imaging, the number of works that study the performance of architectures
for breast segmentation is limited; therefore, the main motivation for this work is to com-
pare the performance of several DNNs in breast segmentation and shed some light on
selecting the appropriate network for breast segmentation given the specific purpose.

Modern nets have a better overall performance for multi-label segmentation, but this
does not necessarily reflect higher performance on classes with lower pixel-count or classes
that resemble geometric shapes (such as the pectoral muscle and breast).

To address all these questions, we performed experiments with four different DNNs:
VGG16+FCN8, VGG16+U-Net, ResNet+PSPNet, and ResNet+UNet. The experiments are
designed to study the segmentation quality in “One” vs. “All scenario” and “multi-class
scenario”, then measure how well the smaller class (the pectoral muscle) is identified.

The selected dataset was the mini-MIAS database [29]. The database has a total of
322 images of digitized mammograms, with a resolution of 200 microns and a size of
1024 × 1024 pixels. To train the networks, we used the labels provided by Oliver et al. [30].
The images are labeled in three classes: breast region, pectoral muscle, and background.

Since the pectoral muscle is much smaller than the breast region (and sometimes does
not appear), and the amount of artifacts varies widely between the images, a set of four
different training batches was developed.

For the first two experiments, the “One” vs. “All approach” was used. In the first
experiment, the pectoral muscle was segmented, and all the other pixels were seen as
the background. For the second experiment, the breast region was segmented, with the
other classes set as background. In the third experiment, the breast area was identified as
the union of the pectoral muscle and the breast region, segmented from the background.
The three classes (breast region, pectoral muscle, and background) were segmented indi-
vidually for the final experiments.

All the experiments used identical hyper-parameters. Each net was trained for
100 epochs using the Adam optimizer with an initial learning rate of 10−4 and an ex-
ponential decay adjusted to achieve a 10−7 in the last epoch.

Since the amount of training examples is small (only 322 image), dividing the set into
training, validation, and testing sets could be prone to overfitting, or it will not assess the
performance of the models correctly. A common way to solve this issue is to use K-fold
cross-validation in which a set is divided randomly into K batches of N/K examples and
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trained with K − 1 batches and leave one for testing. The process is repeated K times,
always leaving a different fold as testing set. This means that each training example is
used K − 1 times as part of the training set, and 1 time as part of the test set. Accuracy
metrics are calculated for each individual test set, and the average is reported. Since K-fold
cross validation averages the performance of the model over all the data, there is a higher
confidence in the evaluation of the model.

We used 5-fold cross-validation to evaluate each architecture’s performance; this
means 20% of the dataset (64 images) is selected randomly as a test set and the other
80% (258 images) for training. Thus, the model is trained five times, in which each time,
the training set and test set are different. Additionally, we used data augmentation in the
training process that consisted of a random crop, rotation, translation, padding, and shear.
All the networks were trained on a Titan X GPU with 12 GB of RAM.

5. Results

To measure the performance of each architecture, we used two similarity metrics.
The first metric is the Jaccard index, also known as the Intersection over Union [31], which
is defined as the cardinality of the intersection of two sets divided by the cardinality of
the union of the same sets, see Equation (9). The second metric is the SØrensen–Dice
(shortened to Dice) coefficient, which is equal to twice the cardinality of the intersection of
both sets divided by the number of elements of both sets, see Equation (10).

J(M, N) =
|M ∩ N|
|M ∪ N| (9)

D(M, N) =
2|M ∩ N|
|M|+ |N| (10)

The experiments were labeled as A (pectoral muscle vs. all), B (breast region vs.
all), C (breast area vs. background), and D (three class segmentation). Tables 7 and 8
indicate the mean value of the 5-fold cross-validation for both segmentation metrics.
The columns are labeled PM for pectoral muscle, BC for background, BR for breast region
interest, and BR+PM refers to the breast area, including the breast region of interest and
the pectoral muscle.

Table 7. Segmentation metrics for experiments A and B. Best results in bold.

A B

Net PM BC BR BC

VGG+FCN8 J: 0.8985
D: 0.9465

J: 0.9888
D: 0.9943

J: 0.9681
D: 0.9838

J: 0.9563
D: 0.9777

VGG+U-Net J: 0.8644
D: 0.9272

J: 0.9852
D: 0.9925

J: 0.9641
D: 0.9817

J: 0.9503
D: 0.9745

ResNet+PSPNet J: 0.9130
D: 0.9545

J: 0.9903
D: 0.9951

J: 0.9627
D: 0.9810

J: 0.9488
D: 0.9737

ResNet+U-Net J: 0.8954
D: 0.9448

J: 0.9885
D: 0.9942

J: 0.9705
D: 0.9850

J: 0.9595
D: 0.9793
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Table 8. Segmentation metrics for experiments C and D. Best results in bold.

C D

Net BR+PM BC BR PM BC

VGG+FCN8 J: 0.9863
D: 0.9931

J: 0.9715
D: 0.9855

J: 0.9674
D: 0.9834

J: 0.8934
D: 0.9437

J: 0.9701
D: 0.9848

VGG+U-Net J: 0.9856
D: 0.9927

J: 0.9697
D: 0.9846

J: 0.9630
D: 0.9811

J: 0.8483
D: 0.9179

J: 0.9656
D: 0.9825

ResNet+PSPNet J: 0.9798
D: 0.9898

J: 0.9575
D: 0.9782

J: 0.9617
D: 0.9805

J: 0.9024
D: 0.9487

J: 0.9551
D: 0.9770

ResNet+U-Net J: 0.9876
D: 0.9937

J: 0.9741
D: 0.9869

J: 0.9704
D: 0.9850

J: 0.8995
D: 0.9471

J: 0.9734
D: 0.9865

In experiment A, ResNet+PSPNet had the highest Dice coefficient for pectoral muscle
segmentation, followed by VGG+FCN8, Resnet+U-Net, and VGG+U-Net. For experiment
B, ResNet+U-Net had the highest Dice coefficient, followed by VGG+FCN8, VGG+U-
Net, and Resnet+PSPNet. In both experiments, the VGG+FCN8 had the second-best
performance differing 0.2% from the best reported in the experiment in A, and 0.12% from
the best DNN in experiment B.

As the results for experiment B indicate, all the nets have very similar performance
( 0.98 Dice) for breast region segmentation. The main difference in the performance of the
architecture comes when segmenting the pectoral muscle of dense mammograms.

With the density parameter in the mini-MIAS database, we obtained the performance
for each density class in experiment A. The three density classes in the mini-MIAS database
are F (fatty), G (fatty-glandular), and D (dense-glandular), and the results for each class
can be seen in Figure 14.

(a) VGG+FCN8 (b) VGG+U-Net

(c) ResNet+PSPNet (d) ResNet+U-Net

Figure 14. Jaccard index for each architecture by density class.

Class D had the lowest Jaccard metric in every net, while G class had the highest
Jaccard index. The best net all-around was ResNet+PSPNet, which has very similar results
for every class and achieves the highest value for each class. The most significant difference
between classes is observed in VGG+U-Net in which the difference between class D and
class G is almost 0.06.
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Dense mammograms have the highest amount of error for all the nets, but it is higher
for the two U-Net based nets. Figure 15 shows the outline of the pectoral muscle on
three dense breasts. As can be seen, both VGG+FCN8 (in pink) and ResNet+PSPNet (in
blue) have an outline very similar to the ground truth. Although ResNet+PSPNet (in
green) seems to overshoot the pectoral line in Figure 15b,c, the shape of the pectoral line is
more natural than the line attained by VGG+FCN8. In the case of Resnet+U-Net, it tends
to under-segment the pectoral muscle with an unnatural shape in the lower part of the
pectoral region. Finally, VGG+U-Net (in purple) does not perform well for very dense
mammograms and generates the most unnatural pectoral line of all the architectures.

(a) mdb053 (b) mdb061 (c) mdb179

Figure 15. Pectoral muscle segmentation for the different DNNs: ground truth (red),
ResNet50+PSPNet (blue), ResNet50+U-Net (green), VGG+FCN8 (pink), and VGG+U-Net (purple).

The Jaccard index and Dice coefficient are higher in experiments C than those on
B, near 0.99 Dice in all the architectures, but with similar ranking in between networks.
In experiment D, the breast region segmentation is almost identical to experiment B,
with lower performance for the muscle segmentation than in experiment A and better
background segmentation.

The reduction in the Jaccard and Dice metrics for the pectoral muscle class in experi-
ment D is more evident in dense mammograms, as Figure 16 shows.
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(a) mdb053 (b) mdb061 (c) mdb179

Figure 16. Pectoral muscle segmentation for the dense class using the different DNNs:
ground truth (red), ResNet50+PSPNet (blue), ResNet50+U-Net (green), VGG+FCN8 (pink), and
VGG+U-Net (purple).

From all of the experiments, there are interesting observations to be made. As the
results show, U-Net based architectures do not perform well in classes with low pixel-count
and have a lower performance with shallower nets. U-Net’s performance was maximized
in bigger classes and deeper nets, as indicated by experiments B and C where it achieved
the highest results of all the tested architectures. Although, ResNet+PSPNet is a more
modern architecture, VGG+FCN8 outperformed it in the breast class in every experiment.
On the other hand, the best performance for the low pixel-count class (pectoral muscle)
was obtained by ResNet+PSPNet, as indicated in experiments A and D.

We compared the results of the best architectures with different state-of-the-art segmen-
tation approaches, and they are summarized in Table 9. For the breast area segmentation
(BR+PM), the best DNN performs better than any other method in the state-of-the-art,
which is not surprising since the breast area has a high pixel count and can be easily
segmented by a DNN.

For the breast area (BR), the results are also higher than the other two methods
compared. In the pectoral muscle, the best DNN was 2.6% below the best method, achieving
0.9545 compared to the 0.98 of the best result in the state-of-the-art.
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Table 9. Comparison of the best net with other proposals. Best results in bold.

Method BR+PM PM BR

Best DNN J: 0.9876
D: 0.9937

J: 0.9130
D: 0.9545

J: 0.9705
D: 0.9850

Nagi et al. [1] J: 0.9236
D: 0.9598

J: 0.6170
D: 0.7361

J: ——–
D: ——–

Mustra and Grgic [5] J: 0.9525
D: 0.9751

J: ——–
D: ——–

J: ——–
D: ——–

Olsen [32] J: 0.9436
D: 0.9704

J: ——–
D: ——–

J: ——–
D: ——–

Shen et al. [33] J: ——–
D: ——–

J: 0.9125
D: 0.9496

J: ——–
D: ——–

Oliver et al. [30] J: ——–
D: 0.9600

J : ——–
D: 0.8300

J: ——–
D: 0.9700

Taghanaki et al. [2] J: ——–
D: ——–

J: 0.9700
D: 0.9800

J: ——–
D: ——–

Rampun et al. [3] J: 0.9760
D: 0.9880

J: 0.9210
D: 0.9580

J: 0.9510
D: 0.9730

Rampun et al. [14] J: ——–
D: ——–

J: 0.9460
D: 0.9750

J: ——–
D: ——–

Multiple Objective Evaluation

The performance of the implemented architectures does not provide a definitive
answer on which network performs the best under the tested conditions. A way to balance
these results is to test other important features on deep architectures, such as temporal
and spatial requirements. The aforementioned can be achieved by trying to maximize
the accuracy metrics and minimize the inference time and memory requirements for each
network. This approach is an example of a multiobjective optimization problem (MOP)
since we are trying to find a compromise between the computational resources and the
segmentation metrics of each network.

Multiobjective optimization relies on concepts such as Pareto optimal set and Pareto
front [34]. A vector of decision variables �x∗ ∈ F is a Pareto optimal if there is no other
�x ∈ F such that fi(�x) ≤ fi(�x∗) for all i = 1, . . . , k and f j(�x) ≤ fj(�x∗) for at least one j.
In this definition, the feasible region is represented by F . In MOP, it is common to have
a set of solutions called the Pareto optimal set [34]. The vectors �x∗ of this set are called
nondominated solutions. A vector of solution �u is said to dominate �v, �u � �v, if and only if
ui ≤ vi ∧ ∃i ∈ {i, . . . n} : ui ≤ vi. Using this nomenclature, the Pareto optimal set, P∗, can
be defined as:

P∗ := {x ∈ F|¬∃x′ ∈ F , �f (x′) � �f (x)}. (11)

The representation of the nondominated vectors included in the Pareto optimal set is
called the Pareto front, which can be represented as:

PF∗ := {�u = �f = ( f1(x), . . . , fk(x))|x ∈ P∗}. (12)

For calculating the trade-off between different experiments and the temporal and
spatial requirements, we use a similar approach as in [35]. The idea is to rank each network
in a Pareto front, taking into account the performance in each parameter. We calculated
the inference time in seconds and the memory in megabytes for a standard inference on
an image; the results can be seen in Table 10. At first glance, VGG16+U-Net requires less
time to do an inference and less memory than the others networks, while VGG16+FCN8
took the most time for an inference (0.1445 s), and ResNet+U-Net needed the most memory
(1057 MB).
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Table 10. Temporal and spatial requirements of each architecture.

Network Time (s) Memory (MB)

VGG16+FCN8 0.1445 826
VGG16+U-Net 0.0699 613

ResNet+PSPNet 0.0717 727
ResNet+U-Net 0.0797 1057

To rank the solutions, we base on the distance between the solutions. Since in some
experiments, the distance between metrics is minimal, we established a difference of at
least 1% between each parameter was enough to indicate that one network dominated over
another and they had a lower rank. The results can be seen in Table 11.

Table 11. Ranking for every network at a given metric. The experiment is indicated in parenthesis.

Network Time Memory PM(A) BR(B) PM+BR(C) PM(D)

VGG16+FCN8 III III II I I I
VGG16+U-Net I I III II I II

ResNet+PSPNet I II I II II I
ResNet+U-Net II IV II I I I

The ranking in Table 11 corroborates the previous findings: the best-performing net-
works taking only into consideration the accuracy metrics are VGG+FCN8 and ResNet+U-
Net; however, if we consider the results of inference time and memory needed for each
network, the best performing architecture is Resnet+PSPNet followed by VGG+U-Net.
The results of the ranking systems are important on limited since the expert can decide to
use a network that does not yield the best results but overall has good performance metrics
and a lower computational power to implement.

6. Discussion and Future Work

This paper proposes an extensive analysis of mammogram semantic segmentation
using DNNs. Four different encoder–decoder pairs were trained and evaluated in four
different experimental setups.

Our results show that all the architectures perform well (near 0.99 in Dice) for breast
border segmentation, with higher results than state-of-the-art approaches. For breast region
segmentation, all the architectures had a Dice metric superior to 0.98.

The highest variation was attained in the experiments that included the isolation of
the pectoral muscle. The two architectures that use the U-Net segmentation approach have
the smallest Dice value, surpassed by a very shallow net such as VGG16+FCN8. This issue
is transcendental since U-Net is the go-to architecture for semantic segmentation for many
medical imaging articles. Our research work reveals that other architectures may obtain
higher performance for classes with low pixel-count in medical images.

The highest variation was due to breast density for the pectoral muscle segmentation
since the lowest Dice coefficient was obtained in dense mammograms in all four architec-
tures; however, ResNet+PSPNet had very similar results for the three classes proving to
be the best architecture for low pixel-count classes in mammograms. The main drawback
was its performance on the breast region class, where it had the worst Dice metric of all
the architectures.

Our results indicate that the trained DNNs have good performance for mammogram
segmentation. The best combination for mammogram segmentation seems to be a union of
the output of the breast line given by ResNet+U-Net and the pectoral segmentation given
by ResNet+PSPNet.

The multiobjective evaluation of memory and time requirements showed the impor-
tance of balancing the best performance against these two parameters. This evaluation
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indicates that ResNet+PSPNet has a good balance between accuracy metrics and computa-
tional requirements. The second-best overall network was VGG16+UNet, but their lower
performance in dense mammograms does not make this network appealing in those cases.

In future work, the influence of different and more depth feature extraction architec-
tures can be explored. A balance between the segmentation of low pixel-count and high
pixel-count classes might be achieved by a pyramid module embedded on a U-shaped seg-
mentation net; this could balance between the good performance and capacity of training
with small databases of the U-Net, and the accuracy of detecting low pixel-count classes
of PSPNet.
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Abstract: Precipitation nowcasting is one of the main tasks of weather forecasting that aims to predict
rainfall events accurately, even in low-rainfall regions. It has been observed that few studies have
been devoted to predicting future radar echo images in a reasonable time using the deep learning
approach. In this paper, we propose a novel approach, RainPredRNN, which is the combination of the
UNet segmentation model and the PredRNN_v2 deep learning model for precipitation nowcasting
with weather radar echo images. By leveraging the abilities of the contracting-expansive path of the
UNet model, the number of calculated operations of the RainPredRNN model is significantly reduced.
This result consequently offers the benefit of reducing the processing time of the overall model while
maintaining reasonable errors in the predicted images. In order to validate the proposed model, we
performed experiments on real reflectivity fields collected from the Phadin weather radar station,
located at Dien Bien province in Vietnam. Some credible quality metrics, such as the mean absolute
error (MAE), the structural similarity index measure (SSIM), and the critical success index (CSI), were
used for analyzing the performance of the model. It has been certified that the proposed model has
produced improved performance, about 0.43, 0.95, and 0.94 of MAE, SSIM, and CSI, respectively,
with only 30% of training time compared to the other methods.

Keywords: radar image prediction; rain radar; deep learning; precipitation nowcasting; UNet;
PredRNN_v2

MSC: 62M45

1. Introduction

Precipitation nowcasting from high-resolution radar data is essential in many branches
such as water management, agriculture, aviation, emergency planning, and so on. It aims
to make detailed and plausible predictions of future radar images based on past radar
images with information about the amount, timing, and location of rainfall. This problem is
significant to nowcasting the rainfall events in the next few hours with tropical depression
in a given direction, entering from one area to another [1]. In such a case with heavy
rainfall in the past few days, which is expected to continue to increase in the coming days,
the prediction would help localities to ensure the safety of dams and essential dikes, to
avoid unexpected flood discharges, causing flooding and inundation for the downstream
area. According to the report on the assessment of disaster events in the 21st century
implemented by the Centre for Research on the Epidemiology of Disasters [2], floods cause
more negative impacts on people than any other natural catastrophe. Additionally, rain has
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a detrimental impact on travel demand and travel time, as well as on road traffic accidents,
in metropolitan areas worldwide [3–5].

In recent years, deep learning has been applied to many areas [6–8]. Various variants
of convolutional neural network (CNN) and recurrent neural network (RNN) architectures
have been modified and applied in a variety of domains to produce suitable versions
and solve specific problems [9–12]. Several studies on applications of deep learning for
time-series data problems are briefly reviewed as follows.

Khiali et al. [13] presented a new approach that is a combination of graph-based
techniques in order to design a new clustering framework for satellite time-series im-
ages. Spatiotemporal features are firstly extracted, which are then represented in their
movements in the graph. Based on their similar characteristics, spatiotemporal clusters
are produced. Since transmission lines often undergo various faults and errors, which
caused terrible economic damage, Fahim et al. [14] proposed a robust self-attention CNN
(SAT-CNN) that uses time-series image extracted features for detection and classification
of faults. By adding the discrete wavelet transform (DWT) preprocessing method, the
proposed model shows the superiority of the performance compared to others. Since in
the traditional approaches of exploiting time-series, there may be human intervention in
extracting features, Li et al. [15] introduced a novel approach that uses various computer
vision algorithms in order to automatically extract features from time-series imagery after
the images are transformed into recurrence plots. The method showed significant perfor-
mance in two datasets: the largest forecasting competition dataset (M4) and the tourism
forecasting competition dataset.

Precipitation nowcasting has attracted many researchers’ attention [16–18]. In recent
years, computer vision with deep learning has shown dramatic promise. Agrawal et al. [19]
applied one of the most popular models, UNet, in order to forecast precipitation and
produced favorably comparable results. In 2021, Fernández and Mehrkanoon [20] used
deep learning for weather nowcasting by presenting a novel UNet-based architecture
model, Broad-UNet. To learn more complex abstract features of input images, this model
alters convolution layers and pooling layers by asymmetric parallel convolutions and
atrous spatial pyramid pooling (ASPP), respectively. Thus, the Broad-UNet model exhibits
great performance compared to others. In order to support meteorologists nowcasting
short-term weather with a large volume of satellite and radar images, Ionescu et al. [21]
introduced the family of the CNN architecture, DeePS. By using five satellite products to
collect satellite image data, the model was analyzed and compared with other CNN-based
models and was found to reach a 3.84% MAE score for an entire dataset.

By applying deep learning methods in supporting meteorologists to predict future
disastrous weather, Zhang et al. [22] proposed a high-performance model for predicting
changes in weather radar echo shape, which is based on the combination of the conventional
CNN and the long short-term memory (LSTM) network. In practice, their model produces
significant results in various evaluation methods, such as the critical success index (CSI)
and the Heidke skill score, compared to ConvLSTM and TrajGRU models. Trebing et al. [23]
noticed that numerical weather prediction methods lack the ability for short-term forecasts
using the latest available information. They introduced the application of deep learning
in a novel comparable performance neural network, small attention UNet (SmaAt-UNet),
which uses only 25% of the trainable network parameters. Additionally, Le et al. [24]
firstly applied the LSTM neural network to perform flood forecasting on Da River in
Vietnam. The suggested model was evaluated by the Nash–Sutcliffe efficiency (NSE) score
in different prediction cases and produced considerably high performances (around 90%
NSE). In 2021, Le et al. [25] also compared different deep learning models for forecasting
river streamflow. Various state-of-the-art models were reviewed and evaluated, such as
StackedLSTM and BiLSTM.

Although the above-mentioned articles have contributed considerably to the fields of
forecasting and nowcasting by applying various state-of-the-art deep learning algorithms,
few can manage and apply spatiotemporal and temporal features in both long- and short-
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term time-series imagery. However, in precipitation nowcasting, not enough studies are
available that have applied time-series imagery to predict future scenes [26,27]. Recently,
Wang et al. [28] released a deep learning model that has proven powerful in processing
time-series image datasets. Despite the original model, PredRNN_v2 working well in
most cases, we noticed that this model took a tremendous amount of time for training
and testing (in terms of radar dataset), in particular if we want to retrain the model with
a larger dataset later down the road. This describes the motivation for this paper, that is, to
design a new deep learning method to improve the overall process and work well with
multistep prediction.

Therefore, in this paper, we aim to introduce a novel deep learning approach in precip-
itation nowcasting with valuable collected radar datasets to overcome the above limitations.
The proposed model is a combination of the power of UNet [29] and PredRNN_v2 [28]
with the purpose of reducing training and testing time while preserving the complex spatial
features of radar data. Our model benefits from the robustness of PredRNN_v2 in manag-
ing both spatiotemporal and temporal information of time-series images. Additionally, the
contracting and expanding paths of UNet have a vital role in reducing the size of inputs,
while it still captures the high-level features of original images.

In the implementation, we set up our case study to allow our model to have the ability
to predict images following one hour (6 timesteps with a 10 min gap) so that the model still
produces comparable performances. By such a design, the computation time of the training
and testing phases of the proposed model is reduced remarkably, approximately 30%
smaller than that of the original PredRNN_v2. In addition, our model produces impressive
performances compared to others by evaluating it with various quality assessments.

The organization of the rest of the paper is as follows. The data preparation and the
background underlying the proposed model are described in Section 2. In Section 3, by
leveraging the advantages of the encoder–decoder architecture, we introduce the most
suitable model for solving the above-mentioned problems. In Section 4, we present the
environment setup and the implementation served for the evaluation and the comparison
of the suggested model with others, as well as discuss the comparison results. Finally,
conclusions and future development directions are described in Section 5.

2. Data and Background

2.1. Background
2.1.1. Convolutional LSTM (ConvLSTM)

Since traditional standard LSTMs, which are special RNN architectures [30], have
a significant drawback in simultaneously modeling the spatiotemporal information of
inputs, the hidden states, and the output memory cells, the ConvLSTM [31] with various
improvements can tackle the problem of the former version (FC-LSTM). First, in order
to encode the spatial structure information, all the inputs X1, . . . , Xt, the output cells
C1, . . . , Ct, and the hidden states H1, . . . , Ht are 3D tensors (RP×M×N), in which M and N
are rows and columns representing, respectively, the spatial dimensions. Second, since ‘∗’
and ‘�’ denote the convolution operator and the Hadamard product, all the gates it, ft, ot
are also 3D tensors, which are responsible for transferring the information in different
conditions. The equations of ConvLSTM are described as follows:

gt = tanh
(
Wxg ∗ Xt +Whg ∗ Ht−1 + bg

)
it = σ(Wxi ∗ Xt +Whi ∗ Ht−1 +Wci � Ct−1 + bi)

ft = σ
(
Wx f ∗ Xt +Wh f ∗ Ht−1 +Wc f � Ct−1 + b f

)
Ct = ft � Ct−1 + it � gt
ot = σ(Wxo ∗ Xt +Who ∗ Ht−1 +Wco � Ct + bo)
Ht = ot � tanh(Ct)

(1)

Since the last two dimensions of the standard FC-LSTM are equal to 1, FC-LSTMs can
be considered as the particular case of ConvLSTM. Although the ConvLSTM has a crucial
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role in paving the way for processing time-series image datasets for many real-life problems,
some points can be further improved in this architecture. First, the memory states Ct are
merely dependent on the hierarchical representation of the features of other layers due to
the states being updated horizontally of the corresponding layers. This means the operator
in the first layer of the current timestamp t will not know what features are memorized
in the previous top layer of the timestamp t − 1. Second, since the hidden states Ht are
the output of the operation on the two gates ot and Ct, which means Ht will contain both
long-term and short-term information, the performance of the model will be considerably
limited by these spatiotemporal variations.

2.1.2. Spatiotemporal LSTM with Spatiotemporal Memory Flow (ST-LSTM)

By combining the novel spatiotemporal long short-term memory (ST-LSTM) as the
basic building block with the architecture of the spatiotemporal memory flow design, Wang
et al. [32] introduced the predictive recurrent neural network (PredRNN), which overcomes
the limitations of the former version ConvLSTM. The equations of ST-LSTM are presented
as follows:

gt = tanh
(
Wxg ∗ Xt +Whg ∗ Hl

t−1 + bg

)
it = σ

(
Wxi ∗ Xt +Whi ∗ Hl

t−1 + bi

)
ft = σ

(
Wx f ∗ Xt +Wh f ∗ Hl

t−1 + b f

)
C l

t = ft � C l
t−1 + it � gt

g′t = tanh
(
W′

xg ∗ Xt +Wmg ∗Ml−1
t + b′g

)
i′t = σ

(
W′

xi ∗ Xt +Wmi ∗Ml−1
t + b′i

)
f ′t = σ

(
W′

x f ∗ Xt +Wm f ∗Ml−1
t + b′f

)
Ml

t = f ′t �Ml−1
t + i′t � g′t

ot = σ
(
Wxo ∗ Xt +Who ∗ Hl

t−1 +Wco � C l
t +Wmo ∗Ml

t + bo

)
Hl

t = ot � tanh
(
W1×1 ∗

[
C l

t ,Ml
t

])

(2)

Two significant improvements are introduced by the PredRNN model: the spatiotem-
poral memory cell Ml

t and how the novel cells are updated in the zigzag direction.
Two memory cells contain the temporal and spatiotemporal information: the conven-
tional cell C l

t is propagated horizontally from the previous corresponding layer at t − 1
timestamp to the current time step, and the novel cell Ml

t is delivered vertically from the
lower layer l − 1 in the meantime. In the first improvement, by presenting gate structures
for Ml

t, the final hidden output Hl
t benefits from containing information of both gates

C l
t and Ml

t. Secondly, the spatiotemporal memory cell is delivered in the zigzag style
(i.e., information is conveyed upward first and then forward overtime between layers),
which means that from the first layer where l = 1, M0

t = ML
t−1 (L stack ST-LSTM layers).

The mechanism makes the long-term and short-term dynamics resulting in the hidden
output by twisting the pairs of memory states (horizontally and vertically).

2.1.3. Spatiotemporal LSTM with Memory Decoupling

In practice, by using t-SNE [33] for visualizing memory data at every timestamp,
the authors in [32] noticed that the memory states are not distinguished between each
other automatically and decoupled spontaneously. Based on the PredRNN, the authors
established a new loss function, which is the combination of the standard mean square
error loss and the new decoupling loss:

L = LMSE + Ldecouple (3)
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in which LMSE is the conventional loss function for the former version PredRNN, and
Ldecouple is the novel memory decoupling regularization loss function, which is described
as follows:

ΔC l
t = Wdecouple ∗ (it � gt)

ΔMl
t = Wdecouple ∗ (i′t � g′t)

Ldecouple = ∑
t
∑

l
∑

c

|ΔC l
t , ΔMl

t c|
||ΔC l

t ||c · ||ΔMl
t ||c

(4)

where Wdecouple is the parameter of a convolution layer added after the memory cells C l
t and

Ml
t at each timestep. By this means, two memory states are separated to train on different

aspects of spatiotemporal and temporal information. Further, the new convolution layer
is removed in the predicting phase, making the size of the entire model unchanged. That
makes a novel version of the PredRNN, PredRNN_v2 [28].

2.2. Study Area

In this study, we utilized a radar echo dataset, which was retrieved from the Phadin
weather radar station, located in Dien Bien province, Vietnam. The Phadin station, lo-
cated at 21.58◦ N and 103.52◦ S, is under the direct management of the Northwest Aero-
Meteorological Observatory and has the primary task of providing short-term forecast
information on meteorology and climate for the provinces in this region. Officially launched
and operating since March 2019, this is a doppler weather radar station and operates in
dual-polarization mode. This means that it is capable of transmitting and receiving pulses
of radio waves in both vertical and horizontal directions (Figure 1).

Figure 1. Geographical area of the region of study.

As a result, it can provide super-high-resolution weather observations and cover
a large area with an effective scanning radius of up to 300 km. For the issue of precipitation
nowcasting based on weather radar, the collected data here is understood as the composite
reflectivity images of radio pulses, in which, these images are grayscale images, and
each image represents a transmission and reception of a weather radar signal. With an
area coverage of 300 km × 300 km (equivalent to the effective range of radar), these
reflectivity images have a spatial resolution of 150 × 150 pixels and a corresponding
temporal resolution of 10 min. A total of 2429 weather radar composite reflectivity images
were collected during rainfall events that took place between June and July 2020 (in the
rainy season of Vietnam). Several weather radar images are illustrated in Figure 2.
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Figure 2. Samples of radar reflectivity images were recorded in the period between 6:10 a.m. and
7:20 a.m. on 23 June 2020. The pixels with high value (white) denote raining areas. In contrast, the
low-value pixels are not raining areas.

2.3. Data Preparation

In neural networks, the dataset split ratio depends mainly on the data characteristics,
the total number of collected samples, and the actual model being trained. The single
hold-out method [34] is one of the simplest data resampling strategies that will be applied
to our training strategies. In order to train our model effectively and to produce excellent
model performance, we randomly divide our gathered dataset into separated three parts:
training, validation, and testing set with a ratio of 80:10:10, respectively. This means that in
2429 images of the dataset, the training, validation, and testing set will contain precisely
1947, 242, and 242 images, respectively, to the above ratio. In particular:

• Training set: The weights and biases of the model will be trained and updated on the
samples of the set until reaching convergence.

• Validation set: An unbiased evaluation will be calculated to see how fit the model is
on the training set. This set helps to improve the model performance by fine-tuning
the model,

• Testing set: This set informs us about the final accuracy of the model after completing
the training phase.

The details of how the dataset was divided are presented in Table 1, as follows:

Table 1. Quantity and size of each dataset.

Dataset Quantity Size

Training Set 1947 150 × 150
Validation Set 242 150 × 150

Testing Set 242 150 × 150

In order to make the images as inputs for our model, we stack all images into one
array and take the continuous sliding window of the stack sequentially until the index
reaches the end. For each consecutive part, we define a number of frames of the head as
input and the remainder as output in which a number of timesteps exist in the past. For
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example, we slide the consecutive image in the array with 10 frames wider per window:
5 for the input and 5 for the output.

2.4. Evaluation Criteria

In the context of computer vision, the mean absolute error (MAE) [35], which is
referred to as L1 loss function in some particular problems, is interpreted as a measure of
the difference between every pixel of the predicted image and the ground truth (true value)
of that image. Mathematically, the MAE score takes total absolute errors in the entire testing
dataset that will be divided by the number of observations. The MAE measure is described
in Formula (5) below, where ŷi and yi are the ith predicted images and the ith ground truth
in the testing set, respectively, and the subtraction operation is an element-wise operation:

MAE =
1
n

n

∑
i=1

|ŷi − yi| (5)

Another measure that also has a significant impact on assessing the performance of
the model is the structural similarity index measure (SSIM) [36]. The SSIM index calculates
the image quality degradation after some processing phase, especially propagating through
the deep learning model. Formula (6) below explains the SSIM measure mathematically:

SSIM(y, ŷ) =

(
2μyμŷ + c1

)(
2σyŷ + c2

)
(

μ2
y + μ2

ŷ + c1

)(
σ2

y + σ2
ŷ + c2

) (6)

In Formula (6), μ and σ are respectively the average and variance of the label y and
the prediction ŷ, and σyŷ is the covariance of two images (y and ŷ). Furthermore, c1 and c2
are two variables responsible for stabilizing the division and are presented as follows:

c1 = (k1L)2

c2 = (k2L)2 (7)

where k1 = 0.01 and k2 = 0.03 are set by default, and L = 2#bits per pixel − 1 is the dynamic
range of the pixel value of the image.

Third, we also use the critical success index (CSI) [37], which is considered as the threat
score to evaluate how well our model performs compared to former models. Suppose that
we use the four quantities of the confusion matrix [38], which is described in Table 2.

Table 2. Confusion matrix.

Ground Truth

Rain No Rain

Predicted
Rain TP FP

No Rain FN TN

In Table 2, true positive (TP) is the number of ground-truth-positive pixels (Rain) that
were correctly predicted. False positive (FP) corresponds to the number of ground-truth-
negative pixels (No Rain) that were predicted incorrectly. False negative (FN) is the number
of ground-truth-positive pixels that were not predicted. True negative (TN) corresponds to
the number of ground-truth-negative pixels that were correctly predicted as negative. The
CSI score is shown as follows in Equation (8):

CSI =
TP

TP + FP + FN
(8)
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In the current paper, since our modification focuses on reducing the processing time
of the deep learning models, the training and testing time is also evaluated as a crucial
factor for assessing the performance of models. The last criterion that we include in the
evaluation phase is the multiply-accumulate operations (MACs), i.e., a MAC has one
multiply operation and one add operation. We clearly detail the model implementation
and evaluation results in Section 4.

3. Proposed RainPredRNN

In this article, by utilizing the strength of the PredRNN_v2 model, we propose the
new modified model, RainPredRNN, which can be fitted into the problems of processing
time-series radar images for predicting images in the following time step. Our model uses
the contracting-expansive path of the UNet model as the encoder and decoder paths before
and after forwarding input to the ST-LSTM layers, which will reduce the huge number of
operations required to be calculated.

3.1. Benefit of the Encoder–Decoder Path

Since the robustness of the UNet model has been verified in various domains over
the years from its first publication [29], we borrow the UNet-based architecture in order to
make our modifications. Thus, the proposed model will benefit from the abilities of the
contracting-expansive path and concatenation technique.

Encoder path: Two 3 × 3 convolution layers are repeatedly included to capture the
context of original images, and each layer is followed by a rectified linear unit (ReLU) for
making the model nonlinear and batch normalization (regularization). In order to reduce
the spatial dimensions, a pooling layer, which is a max-pooling layer, is applied right
after these convolution layers. After each of the above operations, the original inputs are
cut in half the spatial dimensions and double the number of feature channels to produce
high-level feature maps.

Decoder path: First, the model must upsample the feature map produced by the
encoder path to return to its original shape gradually. Secondly, after each upsampling
operator, the number of feature channels will be cut in half by a 2 × 2 transpose convolution
layer. In addition, a concatenation technique will be used from the corresponding feature
map in the encoder path in order to avoid vanishing the gradients when training. Third,
two 3 × 3 convolution layers with ReLU and batch normalization operations are applied.
At the final layer, a 1 × 1 convolution layer is used to map every pixel to the desired number
of classes.

3.2. Unified RainPredRNN

In order to take advantage of the UNet model, we will borrow the key characteristics
of its architecture: contracting-expansive path and concatenation technique. Firstly, every
original image is propagated through the encoder path with one max-pooling layer coming
between four 3 × 3 convolution layers. By doing this, the high-level valuable contexts
of the inputs will be captured and stored in the feature maps before processing by the
spatiotemporal LSTM layers (ST-LSTM). Since various image resizing algorithms cause the
loss of image information considerably and transform images improperly, the encoder path
keeps as much context as possible and still reduces the spatial dimension of original images.

Since ST-LSTM is designed with many gates and a huge number of floating-point
operations, the larger the inputs come in, the more calculations are operated. After the
encoding path, the original inputs are halved by the width and height and have more spatial
information. Thus, the computation time of ST-LSTM will be reduced significantly in both
the forward and backward propagation strategies. The visualization of our modification is
shown in Figure 3 as follows:
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Figure 3. Unified RainPredRNN model. The boxes with the text “ST-LSTM” denote the conventional
spatiotemporal LSTM, the gray boxes represent images in different processing levels of the model,
and the brown boxes are the copy of cropped feature maps. While the encoding path has a role in
reducing the spatial dimension of inputs for lightweight computation of the stacked ST-LSTM, the
decoding path processes the output of the stacked ST-LSTM to recover back to the original size of
the output.

The expansive path was added right after ST-LSTM layers, the outputs of the layers
were taken as the inputs. At this time, the skip-connection technique was applied to take the
cropped of the corresponding feature map in the encoding path to obtain more information
and avoid the gradient vanishing problem. By using one upsampling layer, we obtained
the original spatial dimension of the original images. We noticed that our modification
remarkably reduced training and testing time, while the model still produced the same
evaluated scores as the former version. We detail our experimental results in Section 4.

3.3. Implementation

In this subsection, to be able to predict six next frames (1 h in advance), all models are
set up in a proper manner. In practice, after conducting various experiments, we empirically
chose the best-fit hyperparameters for our model and resources.

To clarify our implementation in detail, we describe our hyperparameters, which
were practically most suitable with our dataset. Our modification model RainPredRNN
comprises the critical characteristics of the UNet architecture presented in Section 3.1, in
which the kernel size of convolution layers is set to 3 × 3, and both stride and padding were
equal to 1. With this choice, our model captures the objects (rain) of our dataset because the
pixels move slowly.

In the main body of the model, we put two consecutive ST-LSTM layers together,
which were set up with 64 hidden states each and a 3 × 3 filter of the inside convolution
layers. Because the size of our input image is quite small, the number of stacked ST-LSTM
layers with the hidden states was kept at a moderate size. In addition, the total input length
was fixed to 12 frames, with the first six consecutive images for input and the last six ones
for ground truth. Thus, to compare the performance of all models, we trained each one
in 100 epochs, in which the batch size was set equal to 4, and the learning rate was set
equal to 0.001 during the training phase. All the models were evaluated with the above-
mentioned criteria. The results are shown in the following section, where, in particular, the
three baseline models (PredRNN, PredRNN_v2, and RainPredRNN) are implemented and
compared. Finally, all hyperparameters were chosen based on the knowledge about the
dataset and by different scenarios practically.

For implementing conveniently, we used the state-of-the-art machine learning PyTorch
library written in the Python programming language. These software libraries are free
open-source software for communities who want to develop and build machine learning
models in research and production. In addition, to visualize the model’s results, we also
imported and implemented the Matplotlib library. All algorithms and models used in the
paper are listed in the Appendix A.
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4. Results and Discussion

To conveniently implement and debug our source code properly, we prepared a single
powerful workstation running on the Windows 10 64-bit operating system. The machine
was equipped with one 12 Gb GPU card, GeForce RTX 2080 Ti. In order to run the proposed
deep learning model RainPredRNN on the GPU, we also installed the compatible version
10.1 of the CUDA driver, which can be integrated with the NVIDIA card.

In Figure 4, we observed that the models all converged to the same point as training
and validation progressed, approximately 2.5e − 4 and 4e − 4 of the loss value, respectively.
The detail of evaluation scores is listed in Table 3, in which MAE, CSI, and SSIM are
estimated in the test set. From the table, it can be seen that the SSIM measure of all models
is not significantly different (around 0.94), which means that the quality of the images is
not degraded after propagating.

Figure 4. Training and validation loss of models.

Table 3. Evaluation scores of our modification model with others.

Model MAE CSI SSIM Training Time (hour) MACs(G)

PredRNN 0.4535 0.9455 0.9397 15.1 101.469
PredRNN_v2 0.4157 0.9420 0.9430 15.53 103.885
RainPredRNN 0.4301 0.9590 0.9412 4.46 54.705

It is considered that the model RainPredRNN takes only below 30% of the training
time of PredRNN and PredRNN_V2. We can benefit from this point. It will have significant
meaning in the future if new training data arrive, and we want to produce a new version.
The MAC value of RainPredRNN is one second compared to the others, at about 54 billion,
so we can conclude that our modification remarkably reduced the number of operations
that need to be processed when training and testing. In addition, our model still has great
performance compared to former models. From the result, the models certainly produce
the predicted image with high quality and resolution.

Figure 5 shows the input and the ground truth that we used to test our model with
the former versions. A prediction example of three models is depicted in Figures 6 and 7.
The quality of our model tends to have a higher resolution and be more precise than that of
the models PredRNN and PredRNN_v2.

From these results, we can infer that the family of the PredRNN model is suitable for
the problem of precipitation nowcasting, and our proposed model can help reduce training
and testing significantly and also produces high-quality future images in a short time.
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Figure 5. Consecutive image input and ground truth for comparison: (a) input; (b) ground truth.

Figure 6. Predicted image of compared models: (a) six next predicted frames of model PredRNN;
(b) next six predicted frames of PredRNN_v2.

Figure 7. Six consecutive frames output of RainPredRNN model.
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5. Conclusions

In this paper, we proposed a new deep learning model, RainPredRNN, for precipita-
tion nowcasting with weather radar echo images. This model is a combination of UNet and
PredRNN_v2 with the purpose of reducing training and testing time while preserving the
complex spatial features of radar data. RainPredRNN manages both spatiotemporal and
temporal information of time-series images. Additionally, the contracting and expanding
paths of UNet have a vital role in reducing the size of inputs, while it still captures the
high-level features of original images. The experiments on real data from the Phadin
weather radar station, located in Dien Bien province, Vietnam, have clearly affirmed that
RainPredRNN reduces training and testing significantly and also produces high-quality
future images in a short time. The proposed approach has produced comparable results in
which the training time is equal to less than 30% training time and 50% MAC value of the
former versions.

However, some limitations of the proposed model remain, such as the validation
measures are not outstanding compared to the former measures. We retained the core
ST-LSTM layer as a building block, so the layer needs to be modified down the road. In the
future, we hope that we will also make further improvements to the accuracy of the model
for precipitation nowcasting.
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Appendix A

List of all algorithms and models used in the paper:

1. Adam is the learning algorithm that is used in the training phase to seek the con-
vergence point of the model. The parameters of the model are modified until the
model converges.

2. Convolutional LSTM is the general version of LSTM that is designed to tackle the
problem of processing image inputs. By replacing the multiply operator with the
convolution operator of spatial structure information, the model successfully encodes
the spatial structure information of input.

3. PredRNN combines the spatiotemporal LSTM (ST-LSTM) as the building block with
the memory flow technique. The ST-LSTM introduces improvements to the memory
cells, which contain the information of the flow (the memory flow technique) in both
horizontal and vertical directions.

4. PredRNN_v2 introduces the new component of the final loss function. This improve-
ment trains the model more effectively and successfully, but the overall size of the
model remains.

5. RainPredRNN is the proposed model, which is a combination of the strength of the
PredRNN_v2 model and the UNet model. The model borrows the contracting and
expansive path of the UNet model for processing input to reduce the computational
operators of the overall model. From that, the proposed model produces satisfactory
results in a short time.
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Abstract: Persistent homology is a powerful tool in topological data analysis (TDA) to compute, study,
and encode efficiently multi-scale topological features and is being increasingly used in digital image
classification. The topological features represent a number of connected components, cycles, and voids
that describe the shape of data. Persistent homology extracts the birth and death of these topological
features through a filtration process. The lifespan of these features can be represented using persistent
diagrams (topological signatures). Cubical homology is a more efficient method for extracting
topological features from a 2D image and uses a collection of cubes to compute the homology, which
fits the digital image structure of grids. In this research, we propose a cubical homology-based
algorithm for extracting topological features from 2D images to generate their topological signatures.
Additionally, we propose a novel score measure, which measures the significance of each of the sub-
simplices in terms of persistence. In addition, gray-level co-occurrence matrix (GLCM) and contrast
limited adapting histogram equalization (CLAHE) are used as supplementary methods for extracting
features. Supervised machine learning models are trained on selected image datasets to study the
efficacy of the extracted topological features. Among the eight tested models with six published
image datasets of varying pixel sizes, classes, and distributions, our experiments demonstrate that
cubical homology-based machine learning with the deep residual network (ResNet 1D) and Light
Gradient Boosting Machine (lightGBM) shows promise with the extracted topological features.

Keywords: cubical complex; cubical homology; image classification; deep learning; persistent homology

1. Introduction

The origin of topological data analysis (TDA) and persistent homology can be traced
back to H. Edelsbrunner, D. Letscher, and A. Zomorodian [1]. More recently, TDA has
emerged as a growing field in applied algebraic topology to infer relevant features for
complex data [2]. One of the fundamental methods in computational topology is persis-
tent homology [3,4], which is a powerful tool to compute, study, and encode efficiently
multi-scale topological features of nested families of simplicial complexes and topological
spaces [5]. Simplices are building blocks used to study the shape of data and a simplicial
complex is its higher-level counterpart. The process of shape construction is commonly re-
ferred to as filtration [6]. There are many forms of filtrations and a good survey is presented
in [7]. Persistent homology extracts the birth and death of topological features throughout a
filtration built from a dataset [8]. In other words, persistent homology is a concise summary
representation of topological features in data and is represented in a persistent diagram or
barcode. This is important since it tracks changes and makes it possible to analyze data at
multiple scales since the data structure associated with topological features is a multi-set,
which makes learning harder. Persistent diagrams are then mapped into metric spaces
with additional structures useful for machine learning tasks [9]. The application of TDA in
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machine learning (also known as TDA pipeline) in several fields is well documented [2].
The TDA pipeline consists of using data (e.g., images, signals) as input and then filtra-
tion operations are applied to obtain persistence diagrams. Subsequently, ML classifiers
such as support vector machines, tree classifiers, and neural networks are applied to the
persistent diagrams.

The TDA pipeline is an emerging research area to discover descriptors useful for image
and graph classification learning and in science—for example, quantifying differences be-
tween force networks [10] and analyzing polyatomic structures [11]. In [12], microvascular
patterns in endoscopy images can be categorized as regular and irregular. Furthermore,
there are three types of regular surface of the microvasculature: oval, tubular, and villous. In
this paper, topological features were derived with persistence diagrams and the q-th norm
of the p-th diagram is computed as

Nq =

[
∑

A∈Dgmp( f )
pers(A)q

] 1
q

,

where Dgmp( f ) denotes the p-th diagram of f and pers(A) is the persistence of a point A
in Dgmp( f ). Since Nq is a norm of p-th Betti number with restriction (or threshold) s, it
will obtain the p-th Betti number of Ms, where M is the rectangle covered by pixels. Then,
M is mapped to R by a signed distance function. A naive Bayesian learning method that
combines the results of several Adaboost classifiers is then used to classify the images. The
authors in [13] introduce a multi-scale kernel for persistence diagrams that is based on scale
space theory [14]. The focus is on the stability of persistent homology since any occurrence
of small changes in the input affects both the 1-Wasserstein distance and persistent diagrams.
Experiments on two benchmark datasets for 3D shape classification/retrieval and texture
recognition are discussed.

Vector summaries of persistence diagrams is a technique that transforms a persistence
diagram into vectors and summarizes a function by its minimum through a pooling
technique. The authors in [15] present a novel pooling within the bag-of-words approach
that shows a significant improvement in shape classification and recognition problems with
the Non-Rigid 3D Human Models SHREC 2014 dataset.

The topological and geometric structures underlying data are often represented as
point clouds. In [16], the RGB intensity values of each pixel of an image are mapped to the
point cloud P ∈ R

5 and then a feature vector is derived. Computing and arranging the
persistence of point cloud data by descending order makes it possible to understand the per-
sistence of features. The extracted topological features and the traditional image processing
features are used in both vector-based supervised classification and deep network-based
classification experiments on the CIFAR-10 image dataset. More recently, multi-class classi-
fication of point cloud datasets was discussed in [17]. In [8], a random forest classifier was
used to classify the well-known MNIST image dataset using the voxel structure to obtain
topological features.

In [18], persistent diagrams were used with neural network classifiers in graph clas-
sification problems. In TDA, Betti numbers represent counts of the number of homology
groups, such as points, cycles, and so on. In [19], the similarity of the brain networks
of twins is measured using Betti numbers. In [20,21], persistent barcodes were used to
visualize brain activation patterns in resting-state functional magnetic resonance imaging
(rs-fMRI) video frames. The authors used a geometric Betti number that counts the total
number of connected cycles forming a vortex (nested, usually non-concentric, connected
cycles) derived from the triangulation of brain activation regions.

The success of deep learning [22] in computer vision problems has led to its use in
deep networks that can handle barcodes [23]. Hofer et al. used a persistence diagram as a
topological signature and computed a parametrized projection from the persistence dia-
gram, and then leveraged it during the training of the network. The output of this process
is stable when using the 1-Wasserstein distance. Classification of 2D object shapes and
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social network graphs was successfully demonstrated by the authors. In [24], the authors
apply topological data analysis to the classification of time series data. A 1D convolutional
neural network is used, where the input data are a Betti sequence. Since machine learning
models rely on accurate feature representations, multi-scale representations of features are
becoming increasingly important in applications involving computer vision and image
analysis. Persistence homology is able to bridge the gap between geometry and topology,
and persistent homology-based machine learning models have been used in various areas,
including image classification and analysis [25].

However, it has been shown that the implementations of persistent homology (of
simplicial complexes) are inefficient for computer vision since it requires excessive com-
putational resources [26] due to the formulations based on triangulations. To mitigate
the problem of complexity, cubical homology was introduced, which allows the direct
application of its structure [27,28]. Simply, cubical homology uses a collection of cubes to
compute the homology, which fits the digital image structure of grids. Since there is neither
skeletonization nor triangulation in the computation of cubical homology, it has advantages
in the fast segmentation of images for extracting features. This feature of cubical homology
is the motivation for this work in exploring the extraction of topological features from 2D
images using this method.

The focus in this work is twofold: (i) on the extraction of topological features from
2D images with varying pixel sizes, classes, and distributions using cubical homology;
(ii) to study the effect of extracted 1D topological features in a supervised learning context
using well-known machine learning models trained on selected image datasets. The work
presented in this paper is based on the thesis by Choe [29]. Figure 1 illustrates our proposed
approach. Steps 2.1 and 2.2 form the core of this paper, namely the generation of 1D
topological signatures using a novel score that is proposed by this study. This score allows
us to filter out low persistence features (or noise). Our contribution is as follows: (i) we
propose a cubical homology-based algorithm for extracting topological features from 2D
images to generate their topological signatures; (ii) we propose a score, which is used as
a measure of the significance of the subcomplex calculated from the persistence diagram.
Additionally, we use gray-level co-occurrence matrix (GLCM) and contrast limited adapting
histogram equalization (CLAHE) for obtaining additional image features, in an effort to
improve the classification performance, and (iii) we discuss the results of our supervised
learning experiments of eight well-known machine learning models trained on six different
published image datasets using the extracted topological features.

Figure 1. Classification pipeline.

The paper is organized as follows. Section 2 gives basic definitions for simplicial,
cubical, and persistent homology used in this work. Section 3.2 illustrates the feature
engineering process, including the extraction of topological and other subsidiary features.
Section 3.1 introduces the benchmark image datasets used in this work. Section 4 gives
the results and analysis of using eight machine learning models trained on each dataset.
Finally, Section 5 gives the conclusions of this study.
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2. Basic Definitions

We recall some basic definitions of the concepts used in this work. A simplicial complex
is a space or an object that is built from a union of points, edges, triangles, tetrahedra, and
higher-dimensional polytopes. Homology theory is in the domain of algebraic topology
related to the connectivity in multi-dimensional shapes [26].

2.1. Simplicial Homology

Graphs are mathematical structures used to study pairwise relationships between
objects and entities.

Definition 1. A graph is a pair of sets, G = (V, E), where V is the set of vertices (or nodes) and
E is a set of edges.

Let S be a subset of a group G. Then, the subgroup generated by S, denoted 〈S〉, is the
subgroup of all elements of G that can be expressed as the finite operation of elements in S
and their inverses. For example, the set of all integers, Z, can be expressed by the operation
of elements {1} so Z is the subgroup generated by {1}.

Definition 2. A rank of a group G is the size of the smallest subset that generates G.

For instance, since Z is the subgroup generated by {1}, rank(Z)=1.

Definition 3. A simplex complex on a set V is a family of arbitrary cardinality subsets of V
closed under the subset operation, which means that, if a set S is in the family, all subsets of S are
also in the family. An element of the family is called a simplex or face.

Definition 4. Moreover, p − simplex can be defined to the convex hull of p + 1 affinely indepen-
dent points x0, x1, · · · , xp ∈ IRd.

For example, in a graph, 0-simplex is a point, 1-simplex is an edge, 2-simplex is a
triangle, 3-simplex is a tetrahedron, and so on (see Figure 2).

0-simplex (vertices) 1-simplex (edges) 2-simplex (triangles) 3-simplex (tets)

Figure 2. Examples of p-simplex for p = 0, 1, 2, 3 in tetrahedron. A 0-simplex is a point, a 1-simplex is
an edge with a convex hull of two points, a 2-simplex is a triangle with a convex hull of three distinct
points, and a 3-simplex is a tetrahedron with a convex hull of four points [30].

Chain, Boundary, and Cycle

To extend simplicial homology to persistent homology, the notion of chain, boundary,
and cycle is necessary [31].

Definition 5. A p-chain is a subset of p-simplices in a simplicial complex K. Assume that K is a
triangle. Then, a 1-chain is a subset of 1-simplices—in other words, a subset of the three edges.

Definition 6. A boundary, generally denoted ∂, of a p-simplex is the set of (p − 1)-simplices’ faces.

For example, a triangle is a 2-simplex, so the boundary of a triangle is a set of 1-simplices
which are the edges. Therefore, the boundary of the triangle is the three edges.
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Definition 7. A cycle can be defined using the definitions of chain and boundary. A p-cycle c is a
p-chain with an empty boundary. More simply, it is a path where the starting point and destination
point are the same.

2.2. Cubical Homology

Cubical homology [27] is efficient since it allows the direct use of the cubical structure
of the image, whereas simplicial theory requires increasing the complexity of data. While
the simplicial homology is built with the triangle and its higher-dimensional structure,
such as a tetrahedron, cubical homology consists of cubes. In cubical homology, each cube
has a unit size and the n-cube represents its dimension. For example, 0-cubes are points,
1-cubes are lines with unit length, 2-cubes are unit squares, and so on [27,32,33].

Definition 8. Here, 0-cubes can be defined as an interval,

[m] = [m, m], m ∈ Z, (1)

which generate subsets I ∈ R, such that

I = [m, m + 1], m ∈ Z. (2)
Therefore, I is called a 1-cube, or elementary interval.

Definition 9. An n-cube can be expressed as a product of elementary intervals as

Q = I1 × I2 × · · · × In ⊆ R
n, (3)

where Q indicates that n-cube Ii(i = 1, 2, · · · , n) is an elementary interval.

A d-dimensional image is a map I : I ⊆ Z
d → R.

Definition 10. A pixel can be defined as an element v ∈ I, where d = 2. If d > 2, v is called
a voxel.

Definition 11. Let I(v) be the intensity or grayscale value. Moreover, in the case of binary images,
we consider a map B : I ⊆ Z

d → {0, 1}.

A voxel is represented by a d-cube and, with all of its faces added, we have

I′(σ) := min
σ face of τ

I(τ). (4)

Let K be the cubical complex built from the image I, and let

Ki := {σ ∈ K|I ′(σ) ≤ i}, (5)

be the i-th sublevel set of K. Then, the set {Ki}i∈Im(I) defines a filtration of the cubical
complexes. Thus, the pipeline to filtration from an image with a cubical complex is
as follows:

Image → Cubical complex → Sublevel sets → Filtration

Moreover, chain, boundary, and cycle in cubical homology can be defined in the same
manner as in Section 2.1.

2.3. Persistent Homology

In topology, there are subcomplices of complex K and cubes are created (birth) and
destroyed (death) by filtration. Assume that Ki (0 ≤ i ≤, i ∈ Z) is a subcomplex of filtered
complex K such that

∅ ⊆ K0 ⊆ K1 ⊆ · · · ⊆ Kn = K,
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and Z i
k, Bi

k are its corresponding cycle group and boundary group.

Definition 12. The kth homology group [1] can be defined as

Hk = Zk/Bk. (6)

Definition 13. The p-persistent kth homology group of Ki [1] can be defined as

Hi,p
k = Z i

k/Bi+p
k ∩ Z i

k. (7)

Definition 14. A persistence is a lifetime of these attributes based on the filtration method used [1].

One can plot the birth and death times of the topological features as a barcode, also
known as a persistence barcode, shown in Figure 3. This diagram graphically represents
the topological signature of the data. Illustration of persistence is useful when detecting a
change in terms of topology and geometry, which plays a crucial role in supervised machine
learning [34].

115 119115 94 119 119 11994 94 114115 94115 94115 117 139 100 11499 99 114117 117 177(a) (b)

(c)

(d) 100 115 130 145

Figure 3. An example of persistent homology for grayscale image. (a) A given image, (b) a matrix of
gray level of given image, (c) the filtered cubical complex of the image, (d) the persistence barcode
according to (c).

3. Materials and Methods

3.1. Image Datasets

In this section, we give a brief description of the six published image datasets used
in this work. Datasets used for benchmarking were collected from various sources that
include Mendeley Data (https://data.mendeley.com/ accessed on 7 January 2022), Tensorflow
dataset (https://www.tensorflow.org/datasets accessed on 7 January 2022), and Kaggle
competition (https://www.kaggle.com/competitions accessed on 7 January 2022). The
concrete crack images dataset [35] contains a total of 40,000 images, where each image
consists of 227 × 227 pixels. These images were collected from the METU campus building
and consist of two classes: 20,000 images where there are no cracks in the concrete (positive)
and 20,000 images of concrete that is cracked (negative). A crack on an outer wall occurs
with the passage of time or due to natural aging. It is important to detect these cracks in
terms of evaluating and predicting the structural deterioration and reliability of buildings.
Samples of the two types of images are shown in Figure 4.

The APTOS blindness detection dataset [36] is a set of retina images taken by fundus
photography for detecting and preventing diabetic retinopathy from causing blindness
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(https://www.kaggle.com/c/aptos2019-blindness-detection/overview accessed on 7 Jan-
uary 2022). This dataset has 3662 images and consists of 1805 images diagnosed as non-
diabetic (labeled as 0) retinopathy and 1857 images diagnosed as diabetic retinopathy, as
shown in Figure 5. Figure 6 shows the distribution of examples in the four classes using a
severity range from 1 to 4 with the following interpretation: 1: Mild, 2: Moderate, 3: Severe,
4: Proliferative DR.

(a) Negative crack image (b) Positive crack image

Figure 4. Sample images of the concrete crack dataset.

(a) Non-diabetic retinopathy (b) Diabetic retinopathy

Figure 5. Sample images of APTOS dataset. (a) is a picture of Non-diabetic retionpathy which is
ordinary case and (b) is a picture of diabetic retinopathy which cas cause blindness.

Figure 6. Data distribution for APTOS 2019 blindness detection dataset. This dataset can be classified
as non-diabetic and diabetic. Around 50% of images are categorized as non-diabetic retinopathy
(label 0) and diabetic retinopathy is subdivided according to the severity range from 1 to 4.
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The pest classi f ication in mango f arms dataset [37] is a collection of 46,500 images of
mango leaves affected by 15 different types of pests and one normal (unaffected) mango
leaf, as shown in Figure 7. Some of these pests can be detected visually. Figure 8 shows the
data distribution of examples in the 15 classes of pests and one normal class.

(a) normal (b) apoderus javanicus (c) aulacaspis tubercularis (d) ceroplastes rubens

(e) cisaberoptus kenyae (f) dappula tertia (g) dialeuropora decempuncta (h) erosomyia sp

(i) icerya seychellarum (j) ischnaspis longirostris (k) mictis longicornis (l) neomelicharia sparsa

(m) orthaga euadrusalis (n) procontarinia matteiana (o) procontarinia rubus (p) valanga nigricornis

Figure 7. Sample images of pest classification in mango farms.
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Figure 8. Data distribution for pest classification in mango farms dataset. Labels are assigned in
alphabetical order.

The Indian f ruits dataset [38] contains 23,848 images that cover five popular fruits in
India: apple, orange, mango, pomegranate, and tomato. This dataset includes variations
of each fruit, resulting in 40 classes. This dataset was already separated into training and
testing sets by the original publishers of the dataset, as shown in Figure 9. Note that this
dataset has an imbalanced class distribution.

Figure 9. Data distribution for the Indian fruits dataset. These data are already split by the original
publishers of the dataset by the ratio of 9 to 1. Labels are assigned in alphabetical order.
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The colorectal histology dataset [39] contains 5000 histological images of different
tissue types of colorectal cancer. It consists of 8 classes of tissue types with 625 images for
each class, as shown in Figure 10.

Figure 10. Example of colorectal cancer histology. (a) Tumor epithelium, (b) simple stroma, (c) com-
plex stroma, (d) immune cell conglomerates, (e) debris and mucus, (f) mucosal glands, (g) adipose
tissue, (h) background.

The Fashion MNIST dataset [40] is a collection of 60,000 training images of fashion
products, as shown in Figure 11. It consists of 28 × 28 grayscale images of products from
10 classes. Since the dataset contains an equal number of images for each class, there are
6000 test images in each class, resulting in a balanced dataset.
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Figure 11. Example of the Fashion MNIST dataset.

Table 1 gives the dataset characteristics in terms of the various image datasets used
in this work. Moreover, we provide the preprocessing time per image. For example, the
feature extraction time for the concrete dataset was 5 h 12 min.

Table 1. Dataset details with preprocessing times.

Dataset Size Num of Classes Pixel Dimension Balanced Time in Sec/Image

Concrete 1 40,000 2 227 × 227 Yes 0.4713
Mangopest 2 46,000 16 from 500 × 333 to 1280 × 853 No 0.5394

Indian fruits 3 23,848 40 100 × 100 No 0.4422
Fashion MNIST 4 60,000 10 28 × 28 Yes 0.4297

APTOS 5 3662 5 227 × 227 No 0.5393
Colorectal histology 6 5000 8 150 × 150 Yes 0.3218

1 Çağlar Fırat Özgenel, 23 July 2019, https://data.mendeley.com/datasets/5y9wdsg2zt/2; 2 Kusrini Kusrini et al.,
accessed on 27 February 2020, https://data.mendeley.com/datasets/94jf97jzc8/1; 3 prabira Kumar sethy, accessed
on 12 June 2020, https://data.mendeley.com/datasets/bg3js4z2xt/1; 4 Han Xiao et al., accessed on 28 August
2017, https://github.com/zalandoresearch/fashion-mnist; 5 Asia Pacific Tele-Ophthalmology Society, accessed
on 27 June 2019, https://www.kaggle.com/c/aptos2019-blindness-detection/overview; 6 Kather, Jakob Nikolas
et al., 26 May 2016, https://zenodo.org/record/53169#.XGZemKwzbmG.

3.2. Methods—Feature Engineering

In this section, we describe the feature engineering process. The main purpose of this
process is to obtain a 1-dimensional array from each image in the dataset. Each point from
the persistence diagram plays a significant role in the extraction of the topological features.
Moreover, the gray-level co-occurrence matrix (GLCM) supports these topological features
as additional signatures. Because every image dataset is not identical in size and some
images have very high resolution, resizing every image to 200 × 200 and converting them
to grayscale guarantees a relatively constant duration of extraction (approximately 4 s)
regardless of its original size.
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Algorithm 1 gives the method for extracting topological features from a dataset. In this
algorithm, β0 and β1 are Betti numbers derived from Equation (6), where the dimension
of ith homology is called the ith Betti number of K. β0 gives the number of connected
components and β1 gives the number of holes. Betti numbers represent the count of the
number of topological features.

Algorithm 1 Extraction of Topological Features.

Input: N ← number of dataset
for i = 1, 2, · · · , N do

img ← load ith image from dataset
img ← resize img to (200, 200) and convert to grayscale
PD0 ← set of points of β0 in persistence diagram of img with cubical complex
PD1 ← set of points of β1 in persistence diagram of img with cubical complex
PD0 ← sort PD0 in descending order of persistence
PD1 ← sort PD1 in descending order of persistence
di ← project each point in PD0 to [0, 1]
di ← di + project each point in PD1 to [1, 2]
f img ← adapt CLAHE filter to img
f PD0 ← set of points of β0 in persistence diagram of f img with cubical complex
f PD1 ← set of points of β1 in persistence diagram of f img with cubical complex
f PD0 ← sort f PD0 in descending order of persistence
f PD1 ← sort f PD1 in descending order of persistence
di ← di + project each point in f PD0 to [0, 1]
di ← di + project each point in f PD1 to [1, 2]
di ← di + convert img to GLCM with distances (1, 2, 3), directions (0◦, 45◦, 90◦, 135◦),

and properties (energy, homogeneity)
Output: D(d1, d2, · · · , dN)

3.3. Projection of Persistence Diagrams

The construction of a persistence diagram is possible once the filtration (using cubical
complex) is completed. The dth persistence diagram, Dd, contains all of the d-dimensional
topological information. These are a series of points with a pair of (birth, death), where
birth indicates the time at which the topological features were created and the death gives
the time at which these features are destroyed. From here, persistence is defined using the
definition of birth and death as

pers(birth, death) := death − birth, where (birth, death) ∈ Dd. (8)

Low-persistence features are treated as having low importance, or ‘noise’, whereas
high-persistence features are regarded as true features [1]. However, using persistence as
a result of a projection of a topological feature to a 1-dimensional value is not helpful,
because it is impossible to distinguish the features which have the same persistence but
different values for birth. Therefore, we propose a measure (score) to compensate for this
limitation of persistence, shown in Equation (9).

scored(birth, death) :=

⎧⎪⎪⎨
⎪⎪⎩

0 if persistence < threshold

d +

(
esin ( death

255 · π
2 ) − 1

e − 1

)3

−
(

esin ( birth
255 · π

2 ) − 1
e − 1

)3

if persistence ≥ threshold
(9)

Since the sinusoidal term is increasing and has the value [0, 1] when the input is [0, π
2 ],

the scored has a value range from d to d + 1. Hence, it is easy to distinguish the dimension
and persistence of each feature. Moreover, a higher exponent emphasizes a feature that has
longer persistence and, significantly, ignores a feature that has shorter persistence. This
in is keeping with ideas underlying homology groups, where longer the persistence, the
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higher the significance of the homology. Conversely, the homology group that has short
persistence is considered noise, which degrades the quality of the digital image and, as such,
is less significant as a topological feature [10]. By ignoring such noise, using a threshold
(as a parameter) allows us to separate useful features from noise. The optimal threshold
(value = 10) was determined experimentally by comparing the performance of machine
learning models. In summary, the score takes into account not only the persistence, but also
other aspects such as the dimension, birth, and death of topological features.

3.4. Contrast Limited Adapting Histogram Equalization (CLAHE)

When pixel values are concentrated in a narrow range, it is hard to perceive features
visually. Histogram equalization makes the distribution of pixel values in the image
balanced, thereby enhancing the image. However, this method often results in degrading
the content of the image and also amplifying the noise. Therefore, it produces undesirable
results. Contrast limited adapting histogram equalization (CLAHE) is a well-known
method for compensating for the weakness of histogram equalization by dividing an
image into small-sized blocks and performing histogram equalization for each block [41].
After completing histogram equalization in all blocks, bilinear interpolation makes the
boundary of the tiles (blocks) smooth. In this paper, we used the following hyperparameters:
clipLimit=7 and tileGridSize=((8, 8)). An illustration of the CLAHE method on the
APTOS data is given in Figure 12.

(a) (b)

(c) (d)

Figure 12. Comparison of the original image and the CLAHE-filtered image. (a) Original image,
(b) persistence diagram of the original image (a), (c) CLAHE-filtered image, (d) persistence diagram
of the filtered image (c).

The texture of an image can be described by its statistical properties and this in-
formation is useful to classify images [42]. For extracting texture features, we used the
well-known gray-level co-occurrence matrix (GLCM) [43]. GLCM extracts texture infor-
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mation regarding the structural arrangement of surfaces by using a displacement vector
defined by its radius and orientation. We used three distances (1, 2, 3) and four directions
(0◦, 45◦, 90◦, 135◦) to obtain the GLCM features. From each of the co-occurrence matrices,
two global statistics were extracted, energy and homogeneity, resulting in 3 × 4 × 2 = 24
texture features for each image.

Table 2 gives a list of extracted features from the APTOS dataset during the filtration
process. In total, 144 features were extracted for each dimension ( f dim0 and f dim1) from
the CLAHE-filtered image in descending order of persistence. Similarly, 100 (dim0 and
dim1) topological features for each dimension were extracted. Note that dim0 represents
β0 and dim1 represents β1 Betti numbers, respectively. A total of 24 GLCM features were
extracted from the original gray-level image.

In this paper, feature engineering and learning algorithms were implemented with the
following Python libraries: Gudhi [44,45] for calculating persistent homology, PyTorch [46]
for modeling and execution of ResNet 1D, and scikit-learn [47] for implementation of other
machine learning algorithms. Moreover, libraries such as NumPy [48] and pandas [49] were
used for computing matrices and analyzing the data structure. All tests were conducted
using a desktop workstation with Intel i7-9700K at 3.6 GHz, 8 CPU cores, 16 GB RAM, and
Gigabyte GeForce RTX 2080 GPU. The following algorithms were used.

Deep Residual Network, suggested by [50], is an ensemble of VGG-19 [51], plain
network, and residual network as a solution to the network depth-accuracy degradation
problem. This is done by a residual learning framework, which is a feedforward network
with a shortcut. Multi-scale 1D ResNet is used in this work, where multi-scale refers to
flexible convolutional kernels rather than flexible strides [52]. The authors use different sizes
of kernels so that the network can learn features from original signals with different views
with multiple scales. The structure of the model is described in Figure 13. The 1D ResNet
model consists of a number of subblocks of the basic CNN blocks. A basic CNN block
computes batch normalization after convolution as follows: y = W ⊗ x + b, s = BN(y), and
h = ReLU(s), where ⊗ denotes the convolution operator and BN is a batch normalization
operator. Moreover, stacking two basic CNN blocks forms a subblock of the basic CNN
blocks as follows: h1 = Basic(x), h2 = Basic(h1), y = h2 + x, and ĥ = ReLU(y), where
the Basic operator denotes the basic block described above. Using the above method, it
is possible to construct multiple sub-blocks of the CNN with different kernel sizes. For
training the network, we used an early stopping option if there was no improvement in
the validation loss after 20 epochs. Using the early stopping option and a learning rate of
0.01, the network was trained over 100 epochs, since the average training time was around
50 epochs.

For the other machine learning models, the random f orest algorithm with 200 trees,
gini as a criterion, and unlimited depth was used. For the K − nearest neighbors (kNN), the
following parameters were used: k = 5 and Minkowski as the distance metric. While the
random forest algorithm is an ensemble method based on the concept of bagging, GBM [53]
uses the concept of boosting, iteratively training the model by adding new weak models
consecutively with the negative gradient from the loss function. Both extreme gradient
boosting (XGBoost) [54,55] and lightGBM [56] are advanced models of the gradient boost-
ing machines. LightGBM combines two techniques: Gradient-based One-Side Sampling
and Exclusive Feature Bundling [57]. Since our dataset is tabular, XGBoost, which is a
more efficient implementation of GBM, was used. For the XGBoost implementation, the
following training parameters were used: 1000 n_estimators for creating weak learners,
learning rate = 0.3 (Eta), and max_depth = 6. For the LightGBM implementation, the follow-
ing training parameters were used: 1000 n_estimators for creating weak learners, learning
rate = 0.1 (Eta), and num_leaves = 31.
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For all the datasets (except the Indian fruits dataset), 80% of the dataset was used for
training and 20% was used for testing. The Indian fruits dataset was already separated into
90% for training and 10% for testing. This ratio was used in our experiments.
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Figure 13. Structure of the multi-scale 1D ResNet.

4. Results and Discussion

Table 3 gives the accuracy, weighted F1 score, and run time information for each of
the datasets. The accuracy score reported with the benchmark datasets is given in the last
column. The best result is indicated in blue. Overall, ResNet 1D outperforms other ML
models, while different types of gradient boosting machines show fairly good accuracy
and weighted F1 scores. In terms of binary classification image datasets, as in the concrete
dataset, most of the algorithms achieve 0.99 accuracy and F1 score. However, for the
multi-class image datasets, the SVM and kNN perform poorly, mainly due to the inherent
difficulty of finding the best parameters. All machine learning models perform significantly
worse than the benchmark results with the Fashion MNIST and APTOS datasets with the
extracted topological features. This is because it is hard to obtain good trainable topological
signatures from images that have low resolution, even though Fashion MNIST was resized
(please see Table 1).

In the case of the APTOS dataset, imbalanced training data were the main cause of the
poor results. For example, Label 0 indicates the absence of diabetic retinopathy and has the
highest number of images (See Figure 6). However, the presence of diabetic retinopathy
can be found in four classes, of which Label 2 (severity level 2.0) has the largest number of
cases. As a result, more than half of the examples were classified as Label 2 (see Figure 14c).
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Figure 14. Confusion matrices of implementation with ResNet 1D. (a) Concrete, (b) Fashion MNIST,
(c) APTOS, (d) Colorectal Histology.

Imbalanced data such as Mangopest and Indian fruits were classified well because
there were sufficient training examples. In summary, the best classification performance
using cubical homology with the ResNet 1D classifier was obtained for 2 out of 6 datasets
using our proposed feature extraction method and score measure. However, these topo-
logical signatures were not helpful in the classification of the Fashion MNIST and APTOS
images. For the Indian fruits dataset, the model classifies with an accuracy of 1.00, which is
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comparable since there is just 0.001 improvement. Similarly, with the concrete dataset, the
result is comparable, with only a slight difference (≤0.005) with the benchmark result.

In Table 4, we give an illustration of the performance of classifiers using features
derived from cubical homology (TDA), GLCM, and combined TDA-GLCM for two datasets.
It is clear from the results that the combined feature set using topological features and
GLCM features results in better classifier accuracy.

Confusion matrices for experiments with the 1D ResNet model are given in
Figures 14–16. It is noteworthy that, for these datasets, the application of cubical homology
has led to meaningful results in 4 out of 6 datasets.
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Figure 15. Confusion matrix for the Indian fruits dataset with ResNet 1D implementation.
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Figure 16. Confusion matrix for the Mangopest dataset with ResNet 1D implementation.

Table 4. Comparison of performance of GLCM+TDA, TDA feature-only, and GLCM-only imple-
mented by 1D ResNet model on two datasets.

Colorectal Histology Dataset APTOS Dataset

GLCM+TDA 0.892 0.7326
TDA 0.7697 0.6739

GLCM 0.694 0.7252

5. Conclusions

The focus of this paper was on feature extraction from 2D image datasets using a
specific topological method (cubical homology) and a novel score measure. These features
were then used as input to well-known classification algorithms to study the efficacy of the
proposed feature extraction process. We proposed a novel scoring method to transform
the 2D input images into a one-dimensional array to vectorize the topological features.
In this study, six published datasets were used as benchmarks. ResNet 1D, LightGBM,
XGBoost, and five well-known machine learning models were trained on these datasets.
Our experiments demonstrated that, in three out of six datasets, our proposed topological
feature method is comparable to (or better than) the benchmark results in terms of accuracy.
However, with two datasets, the performance of our proposed topological feature method
is poor, due to either low resolution or an imbalanced dataset. We also demonstrate that
topological features combined with GLCM features result in better classification accuracy
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in two of the datasets. This study reveals that the application of cubical homology to image
classification shows promise. Since the conversion of input images to 2D data is very
time-consuming, future work will involve (i) seeking more efficient ways to reduce the
time for pre-processing and (ii) experimentation with more varied datasets. The problem
of poor accuracy with imbalanced datasets needs further exploration.
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Abstract: Labor exports are currently considered among the most important foreign economic sectors,
implying that they contribute to a country’s economic development and serve as a strategic solution
for employment creation. Therefore, with the support of data collected between 1992 and 2020, this
paper proposes that labor exports contribute significantly to Vietnam’s socio-economic development.
This study also aims to employ the Backpropagation Neural Network (BPNN), k-Nearest Neighbor
(kNN), and Random Forest Regression (RFR) models to analyze labor migration forecasting in Taiwan,
Korea, and Japan. The study results indicate that the BPNN model was able to achieve the highest
accuracy regarding the actual labor exports. In terms of these accuracy metrics, this study will aid the
Vietnamese government in establishing new legislation for Vietnamese migrant workers in order to
improve the nation’s economic development.

Keywords: labor exports; Northeast Asian Countries; backpropagation neural network (BPNN);
k-Nearest Neighbor (kNN); random forest regression (RFR); decision making

1. Introduction

Human resources play a pivotal role in the prosperity of a country, and global devel-
opment in general [1,2]. Globalization has resulted in people having more opportunities
to work in many different countries [3,4]. With the rapid development of the economy in
developed countries, labor resources are needed to meet requirements of the economy’s
growth rate [5,6]. In addition, some developed countries face the dilemma of an aging
population structure [7,8]. Therefore, there is an urgent need for foreign human resources
to make up for the shortage of domestic human resources [9]. In terms of solving these dif-
ficulties, many policies have been implemented with the aim of attracting human resources
from overseas. Therefore, many countries have developed labor export development plans
to create jobs, thus increasing income for each individual and contributing to the growth of
the economy in terms of Gross Domestic Product (GDP) [10,11].

Currently, many countries in the Asia-Pacific region participate in labor exports, with
the Philippines, Indonesia, Thailand, and China being direct competitors to Vietnam in the
international labor market, as they share similarities [12]. The experiences of these countries
in managing, operating, and developing labor export activities can serve as valuable
lessons for Vietnam. It is estimated that around 20 million Southeast Asians work outside
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of their home countries, with approximately half of those being in the Middle East [13].
Additionally, inheriting the results and experiences gained through the era of international
labor cooperation with socialist nations from 1980 to 1990, the Party and the State of Vietnam
changed its level of awareness and promoted labor export activities [14]. On 9 November
1991, the government issued Decree No. 370/HDBT, which clearly stated: “Putting migrant
workers to working abroad for a definite time is a method to generate jobs, produce more
incomes for workers and boost foreign currency revenue for the country, resulting in the
strengthening of economic, cultural, scientific and technical collaboration relations between
Vietnam and other countries that use labor on the principle of equality, mutual benefit,
respect for each other’s laws and national traditions” [15]. In 2018, 500,000 Vietnamese
contract labor migrants worked abroad, according to the latest statistics [16]. Taiwan,
Korea, and Japan are still three important labor export markets for Vietnam, accounting
for more than 70% of the total number of laborers working abroad in 2008 and 2009,
and are three markets that continue to have a high demand for Vietnamese workers [17].
Additionally, several studies on labor exports in East and Southeast Asia have reported
workers migrating from Vietnam to Singapore, South Korea, Taiwan, and Japan [18,19].

When it comes to Backpropagation Neural Network (BPNN), k-Nearest Neighbor
(kNN), and Random Forest Regression (RFR) models, many studies have been conducted
by applying these models for prediction [20–26]. Chen, Lai [27] used BPNN and ANN
algorithms to forecast that the majority of international visitors to Taiwan would be from
the main markets of Hong Kong, Japan, and Macau from January 1971 to August 2009.
Likewise, Vihikan, Putra [28] employed BPNN to predict in the arrival of international
tourists in Bali to assist the government in constructing the nation’s tourism strategies.
Wang, Wu [29] showed that the monthly inward tourism flow to China between 2000 and
2013 could be forecasted by deploying an Enhanced Backpropagation Neural Network. In
addition, Lin, Malyscheff [30] used ANN models to predict engineering students’ future
retention, consistently achieving an overall prediction accuracy of around 70% or higher.
Moreover, the research used RFR and Support Vector Regression (SVR) models to estimate
global foreign tourist arrivals, achieving prediction accuracies of 99.4 percent using SVR
and 84.7 percent using RFR [31]. Additionally, the research used the kNN technique to
investigate the unique nature of campground management, testing several forecasting
approaches in order to determine which was best suited to the unique behavior of camping
tourists and the unique nature of campsites [32].

This paper presents a forecast of Vietnamese labor migration using the kNN, RFR,
and BPNN models. The data collected in this study include 29 observations from 1992 to
2020. With the support of the collected data, the paper analyzes the role of labor exports
in Vietnam’s socio-economic development and compares this export labor with that of
other Asian countries. After that, the three algorithms are compared on the basis of the
results of their statistical accuracy indicators. More importantly, this research highlights
the possible future contexts of labor migration between Vietnam and East Asia, including
Korea, Republic of China (Taiwan), and Japan. Some assume that the migration corridor
extending between Vietnam and other East Asian nations has progressed to the point where
labor migration is only one element in a more varied movement pattern. Nevertheless,
there will continue to be significant demand for Vietnamese workers to work in Japan,
Korea, and Taiwan for the foreseeable future. More importantly, this research could assist
the government of Vietnam in enacting new regulations for Vietnamese migrant workers
in order to boost the socio-economic situation. Consequently, the Vietnamese government
could determine a different approach for our country’s labor export activities in the context
of integration.

The following is a description of the paper’s structure. The first section of the paper is
an introduction. The BPNN, kNN, and RFR models’ approach is introduced in Section 2.
The study results and discussions are described in Sections 3 and 4. Finally, the conclusions
are presented in Section 5.

94



Axioms 2022, 11, 151

2. Materials and Methods

The process of the following experimental stages in this study is summarized in
Figure 1. Firstly, the database is preprocessed and tested by statistical methods, and it is
also divided into training and testing sets. Secondly, the BPNN, RFR, and kNN models are
used to learn the training samples and obtain the optimal network parameters. Finally, the
three models’ performances are compared using metrics from the accuracy measurement
indicators as Mean Square Error (MSE), Root-Mean-Square Error (RMSE), Mean Absolute
Error (MAE), Correlation Coefficient (R), and Correlation of Determination (R2) in the
possible result stage. At the same time, seeking the most suitable prediction model for the
study if the RMSE, MAE, and MSE gain the lowest values, and R and R2 approach the
highest values; on the other hand, the experiments are adjusted by component parameters
of models or training data size to look for the optimal accuracy measurement indicators.

Figure 1. The process of the experimental stages in this study.

2.1. Database

This paper uses a database containing Vietnam labor immigration to Korea, Japan,
and Taiwan from 1992 to 2020 obtained by the Department of Overseas Labor (DOLAB).
The Python 3.9 software is deployed for data analysis. The data in Figure 2 show that the
number of Vietnamese workers migrating to Northeast Asian Countries has witnessed
a fluctuation from 1992 to 2020. The total of Vietnamese laborers who immigrated to
Northeast Asian Countries was 1,373,712 people for 29 years, in which Japan, Taiwan,
and Korea occupied about 811,138,367,967, and 194,607 people, respectively. At the same
time, more than 100,000 employees per yearly migrated to the region during the period
of 2015–2019. However, the total number of Vietnamese workers in 2020 going to work in
Japan, South Korea, and Taiwan is 76,355 persons, implying a decrease in the number of
55% compared with that in 2019 and a decline in total labor exports of nearly 56% compared
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with the data in 2018. Moreover, the highest total number of Vietnamese workers working
in Taiwan, Japan, and South Korea was 68,737 employees in 2018, then 82,703 employees in
2019, and 18,141 in 2008.

Figure 2. The heatmap of annual labor exports to Japan, Taiwan, and Korea.

The expected statistical results as the Mean, Min, and Max values, St Dev, Skew,
and Kurt are also pointed out in Table 1 to quantitatively analyze the yearly labor export
characteristics to interpret their significance further. The mean is the crucial popular
measure of central trend, and the indicator may be used with continuous data. The
Minimum and Maximum values indicate the margin of the time series. The Standard
Deviation is used to measure the degree of data dispersion. Finally, Skewness and Kurtosis
are deployed to estimate whether the distribution of the sample is normal or not. The
statistics result in Table 1 indicate as below: The Mean and Standard Deviation of the labor
exports to North-East Asian countries were 25,422 persons and 28,962 persons in Japan,
18,786 persons and 12,689 persons in Taiwan, 4132 persons and 6711 persons in Korea,
respectively. The skewness for a normal distribution is zero, and any symmetric data should
have a skewness near zero. Negative values for the skewness indicate skewed left data, and
positive values for the skewness indicate skewed right data [33,34]. Skewness coefficients
were low for the data sets. This approach is appropriate for modeling because a high
skewness coefficient has a considerable negative effect on ANN performance [35]. Hence,
the values of Kurt and Skew of the data fluctuating from −8.87 to 2.64 could be accepted
for prediction through these models. The labor exports to the region using Augmented
Dickey-Fuller (ADF) test also point out that the database is separated two parts such as
the data of labor exports to Korea (p-value = 0.02, test statistic = −3.16) has a unit root,
this data is stationary, and the data of labor exports to Japan (p-value = 0.62, test statistic
= −1.32) and Taiwan (p-value = 0.99, Test Statistic = 2.22) do not have a unit root, these
data are non-stationary. Furthermore, the time series data are stationary; they can be easily
modeled with higher accuracy than their non-stationary counterparts [36].

Table 1. Descriptive statistics and formal hypothesis test of labor exports to Northeast Asian Countries
from 1992 to 2020.

Item Japan Taiwan Korea

Mean 25,422 18,786 4132
SD 28,962 12,689 6711

Min 5 15 216
Max 82,703 68,737 18,141
Kurt −0.87 2.64 1.05
Skew 0.53 1.89 0.91

Results of Augmented
Dickey-Fuller Test:

Test Statistic −1.32 2.22 −3.16
p-value 0.62 0.99 0.02

Critical Value (1%) −3.70 −3.83 −3.69
Critical Value (5%) −2.98 −3.03 −2.97
Critical Value (10%) −2.63 −2.65 −2.62
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The input data patterns of the three nations were randomly selected with two sections.
The first section was used for the training phase, and it contained roughly 70% of the total
data. The remaining 30% of the labor export data was contained in the second component,
which was used for the test phase.

2.2. Backpropagation Neural Network (BPNN)

BNPP can learn and store various data, akin to the human brain. Therefore, a single
hidden layer is represented in Figure 3. Furthermore, BPNN has three layers: an input layer,
at least one hidden layer, and an output layer. Weights connect adjacent layers, always
scattered among 0 and 1. Although several heuristic techniques have been deployed by
many researchers [37,38], there is no systematic theory for verifying the number of input
nodes and hidden layer nodes. Experiments or trial and error based on the test data’s least
mean square error are the most fitted methods for determining the appropriate indicators
of input and hidden nodes. The following Equations (1) and (2) indicate the relationships
of McCulloch–Pitts (M–P) neurons in hidden layer and the output layer [39].

bn = f

(
d

∑
i=1

vinxi + γn

)
(1)

yj = f

(
m

∑
n=1

wnjbn + pj

)
(2)

where bn is the result of nth hidden neuron, xi is the ith valuable input out of d inputs, yj is
the jth output value, m is the total number of hidden neurons, f is the activation function
of the rectified linear unit (ReLU), vin and wnj are the weight terms, γn and pj are the bias
terms.

 
Figure 3. Backpropagation neural network structure.

Figure 3 demonstrates the BPNN structure below, showing 29 input nodes from x1 to
xd (which d is also the 29th year) for the input layer; the 29 neurons for the output layer are
also the values of the labor exports. At the same time, one hidden layer contains neurons
from b1 to bm (m is the 200th node). Each neuron of the hidden layer and the output layer
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have in charge of Weight and Bias, such as vin, γn and wnj, pj to correspond for neuron bn
and neuron yj, respectively. Each hidden layer neuron takes the output from input layer
neurons and converts these values with a weighted linear sum into the output layer. The
output layer obtains the values from the hidden layer. Furthermore, the activation function
for the hidden layer is ReLU function. Adam’s method is stochastic optimizations to the
solver of weight optimization. The training method for the models is regression.

2.3. K-Nearest Neighbor (kNN)

In machine learning, kNN is one of the most fundamental supervised learning algo-
rithms. The kNN model can be used for regression as well as classification. Moreover,
because the observed data has a numeric label to forecast, kNN is employed as a predic-
tive method with a multi-input multi-output (MIMO) strategy for forecasting [32]. kNN
begins by initialing the number of k. Hence, the distance between the training and testing
instances is calculated. Then, the prediction is made by calculating the test data’s average k
nearest distance neighbor. Subsequently, the Euclidean Distance is deployed as witnessed
in Equation (3).

d(x, y) =

√√√√ k

∑
i=1

(x − y)2 (3)

where d symbolizes the distance among data points, x represents the testing data, y is the
training data.

2.4. Random Forest Regression (RFR)

Random forest is a regression method for classifying or forecasting the numerical
value of a variable that incorporates the outputs of various decision tree algorithms [40–42].
When an (x) input vector containing the values of the various evidentiary features analyzed
for a certain training area is received by a random forest. RFR creates a total of K regression
trees and then averages the output. The random forest regression forecaster as shown in
Equation (4) when K grows the {T(x)}K

1 tree [43].

f̂
K
r f (x) =

1
K

K

∑
k=1

T(x) (4)

To avoid different trees correlations, RFR promotes tree variety by allowing them to
grow from diverse training data subsets obtained through a method known as bagging [43].
Bagging is a method for generating training data that randomly resample the original
dataset with replacement data. Therefore, certain data may be used many times during
training, whereas others may never be used. Hence, better stability is gained, as it becomes
more resistant when faced with minor deviations in input data while also increasing forecast
accuracy [40].

2.5. Performance Metrics

Estimating results are based on calculating and comparing the actual values to the
forecasted values. These metrics of the accuracy measurement parameters include the
Mean Square Error (MSE), Root-Mean-Square Error (RMSE), Mean Absolute Error (MAE),
Correlation Coefficient (R), and Correlation of Determination (R2). Furthermore, the error
metrics are defined as follows [44–46]:

MSE =
∑n

t=1(xt − x′t)
2

n
(5)

MAE =
∑n

t=1|xt − x′t|
n

(6)
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RMSE =

√
∑n

t=1(xt − x′t)
2

n
(7)

R2 = 1 − ∑n
t=1(xt − x′t )

2

∑n
t=1

(
xt − 1

n ∑n
t=1 xt

)2 (8)

R =
∑n

t=1(xt − x)
(

x′t − x′
)

√
∑n

t=1 (xt − x)2
√

∑n
t=1

(
x′t − x′

)2
(9)

where xt, x′t are the observed and estimated values in the period time t, and n is the number
of the observed values in the testing data. x, x′ are mean of the observed and estimated
value. The R2 and R should be approaching 1 to indicate strong model performance, and
the MSE, MAE, and RMSE should be as close to zero as possible.

3. Results Analysis

Three models were established to predict labor exports in three countries (Taiwan,
Japan, and Korea). For comparing the models based on the estimating performance of labor
exports, simulating experiments have pointed out the optimum models with the main
indicators in Table 2.

Table 2. The optimum component for three models.

kNN RFR BPNN

Item Configuration Item Configuration Item Configuration

leaf_size 40 n_estimators 30 Number of inputs 29

metric euclidean max_depth None Number of hidden
layers 1

n_jobs 2 max_features 1 Hidden layer sizes 200
n_neighbors 3 min_samples_leaf 1 Number of outputs 29

p 2 min_samples_split 2 activation ReLU
bootstrap False optimize adam

Line graphs in Figure 4 illustrate the RFR (red lines), kNN (grey lines), and BPNN
(green lines) algorithms using testing data that were compared with the actual line graphs
(blue lines). As far as the predicted models of labor immigration in the three nations are
concerned, the BPNN lines are the nearest ones compared with the real data in Taiwan,
Korea, and Japan. As a result, the grey lines show that kNN algorithms achieve the second-
most accurate level in Taiwan and Japan, whereas kNN only achieves the lowest level in
Korea in a selection of random years from 1994 to 2016. Therefore, the accuracy parameters
for the labor immigration forecast are calculated (as shown in Table 3) to assess the three
forecasting models’ accuracy levels. The outperform of the simulation in Table 3 indicates
the estimation accuracy using kNN, RFR, and BPNN algorithms has a significant reliability.

Additionally, when deploying kNN, RFR, and BPNN models in three nations with
the accuracy parameters (MAPE, MAE, RMSE, R-squared, and NSE), the BPNN algo-
rithm has the greatest accuracy indicators in Taiwan, Japan, and Korea, whereas the RFR
method has the lowest. Furthermore, BPNN is the best machine learning algorithm in
Taiwan, Japan, and Korea with BPNNTaiwan BPNNJapan, and BPNN Korea achieved higher
estimation accuracy (with MAPEJapan = 0.006, MAPETaiwan= 0.006, and MAPE Korea= 0.07)
than RFR (with MAPEJapan = 0.145, MAPETaiwan = 0.137, and MAPEKorea = 0.051) and
kNN (with MAPEJapan = 0.073, MAPETaiwan = 0.066, and MAPE Korea = 0.051). Simi-
larly, based on MAE, RMSE, and NSE indicators, the BPNN algorithm in Taiwan, Japan,
and Korea acquired greater accuracy parameters. In terms of forecast models for Tai-
wan, Japan, and Korea, the parameters of BPNN achieve a similar level of accuracy;
however, BPNN Korea earns the highest one compared with others (with MAEKorea = 57,
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and RMSEKorea = 67), RFR Korea gained the second-highest one (with MAEKorea = 488,
and RMSEKorea = 1002), and kNN Korea is the lowest one (with MAEKorea = 638, and
RMSEKorea = 1570). In addition, the scatter plots and three models in Figure 5 calculate the
simulation results. As indicated, the dispersion of points around the diagonal of the BPNN
model earns the highest accuracy parameters in three countries; the kNN machine learning
algorithm is the second-lowest, and the RFR algorithm achieves the lowest accurate level.

Figure 4. Vietnam labor immigration prediction for (a) Japan, (b) Korea, and (c) Taiwan. (a) labor
immigration prediction for Japan; (b) labor immigration prediction for Korea; (c) labor immigration
prediction for Taiwan.

Table 3. Accuracy parameters for labor immigration prediction.

Parameters Japan Taiwan Korea

kNN RFR BPNN kNN RFR BPNN kNN RFR BPNN

MAPE 0.073 0.145 0.006 0.066 0.137 0.006 0.051 0.051 0.007
MAE 1657 2976 191 1023 2492 71 638 488 57
RMSE 1919 3858 225 1890 4917 102 1570 1002 67

R-squared 0.991 0.982 0.999 0.993 0.803 0.999 0.814 0.937 0.999
NSE 0.991 0.964 0.999 0.978 0.853 0.999 0.887 0.954 0.999
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(a)

(b)

(c)

Figure 5. The best performance parameters for prediction: (a) labor exports to Japan, (b) labor exports
to Korea, (c) labor exports to Taiwan (unit: people).
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The Taylor diagrams examine the performance of estimated and real values using the
standard deviation and correlation used in evaluating the models. Moreover, the Taylor
chart shows the standard deviation and correlation between the actual and anticipated
datasets for the models and general consistency between observed and estimated values
when the correlation value approaches 1, as shown in Figure 6. This study can be considered
for the kNN, RFR, and BPNN algorithms in Japan, which have SD (testing phase) = 20,649,
20,463, and 19,847, respectively, and are near to the actual data (with SD = 28,962), resulting
in the three models achieving the same accurate level in predicting; meanwhile, the BPNN
model’s standard deviations in Japan, and Korea implied that the predicted values of
BPNN model are nearest with the real values (with SDJapan = 11,089, and SDKorea =
3637). Hence, the smaller the standard deviation value, the stronger the relationship. The
Taylor plot indicates that kNN, RFR, and BPNN algorithms are the most accurate and
optimal forecasting.

 
Figure 6. Taylor diagram representing the best performance of BPNN, RFR, kNN models of (a) labor
exports to Japan, (b) labor exports to Taiwan, (c) labor exports to Korea.

4. Discussions

Regarding labor exports of Asian countries, Indonesia was the second-largest sending
country of labor migrants in Asia after the Philippines, with a long history of immigration
and emigration. The Philippines, for example, sent about one million employees abroad
in 2005, Indonesia about 400,000, and Bangladesh and Sri Lanka each more than 200,000;
Meanwhile, Vietnam only deployed 70,000 to 80,000 people in the same year. According to
the most recent published estimates, there are around 500,000 Vietnamese contract workers
globally [47]. According to the International Organization for Migration, Indonesian labor
migrants significantly raised from 517,619 to 696,746 between 1996 and 2007, with the top
five destinations being Saudi Arabia, Malaysia, Taiwan, Singapore, and Hong Kong [48].
Furthermore, although Japan’s openness approves highly qualified migrants through
open policies, highly skilled migrants in the targeted nations are still relatively small. In
2010, 198,000 highly skilled migrants in Japan accounted for barely 9% of the 2.1 million
migrants [49]. This export labor also compared with other Asian countries pointed out that
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with amount more than 100,000 employees per yearly were migrated to Japan, Taiwan, and
Korea, Vietnam has third ranking of Asia during the period of 2015–2019.

Furthermore, foreign worker exports help improve employees’ lives, but they also
substantially impact the country’s economy. The number of remittances from overseas to
Vietnam remitted to the country is expected to be between three and four billion dollars
per year. Hence, this is encouraging news for the Vietnamese economy [50].

Human resource immigration has played a crucial role in Vietnam’s socio-economic
development. Firstly, it can improve income and transform workers’ perceptions. Many
workers, for instance, have returned to Vietnam to establish small and medium-sized
businesses, contributing to the eradication of large-scale enterprises and using practical
experiences gained from many areas of the world in Vietnam. Secondly, labor migration
can help to alleviate poverty and advance Vietnam’s socio-economic growth. Then, labor
migration provides a substantial source of foreign currency while lowering investment
costs to alleviate the issue of domestic employment. Finally, labor exports are also a
mechanism for transferring an innovative technology from other nations, assisting in
training a quality workforce, and strengthening international cooperation links between
Vietnam and other countries in the Northeast Asian Countries. Therefore, forecasting labor
exports is significantly important for Vietnam’s labor exporting. The forecast results will
assist labor export policymakers in assessing and considering foreign countries’ potential
and labor demand. Simultaneously, governments can develop vocational training programs
and acquire human resources that fit those countries’ needs.

This paper used kNN, BPNN, and RFR models to analyze and estimate Vietnamese
human resources working for the Northeast Asian Countries. The different influential
factors and parameters have been described in the simulations. The following key findings
are as three models of BPNN, RFR, and kNN indicating forecast results were fairy accuracy
for three countries Taiwan, Korea, and Japan. Regarding the error index, the BPNN model
predicting Vietnamese labor immigration to Northeast Asian Countries obtained the best R2,
MAPE, RMSE, and MAE value. At the same time, the RFR and kNN models showed better
forecasting performances. The points indicate that BPNN was the highlight compared with
two RFR and kNN algorithms. In addition, the forecasting errors in the case of the models
increased if the testing data increased.

The model was demonstrated excellently by a training accuracy of 89.98% and valida-
tion accuracy of 84.05%. In terms of estimating tourism demand in Japan, Chen, Lai [27]
used a novel forecasting model based on empirical mode decomposition (EMD) and a
BPNN, which revealed that the MAPE, RMSE of the proposed EMD-BPNN algorithm are,
respectively, 0.958%, 1443, implying that these output values are higher than this study
parameter. Moreover, Mishra et al. (2021) [31] study results witnessed that for predicting
international tourists with tiny datasets, the random forest regression works well (with
an R-square of 0.847), pointing out higher values than this study outputs in terms of
R-square indicators.

In addition, the method using three models was the most classical one; however,
the models were deployed for the time series data give performance comparable to deep
learning models (as Long short-term memory (LSTM) models), but faster training speed and
less resource-intensive (as the computer’s memory). For instance, Wang et al. (2020) [29]
deployed BPNN and LSTM models to forecast the monthly inbound tourism to mainland
China (2000–2013), the monthly tourist arrival Turkey from different countries (2000–2011),
and the monthly inbound tourism to The United States of America (June 2006–May 2018).
The research result showed that R of BPNN model with 0.999 to approximate the R of LMST
model with 0.998.

Although this study used annual data to anticipate labor force migration, the results
showed that three models in three specific countries produced reliable results. As a result,
it can predict labor migration in other countries around the globe.
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5. Conclusions

Labor exports have been among of the most important tasks in Vietnam’s socio-economic
development over the past three decades. Labor exports will help increase income and im-
prove skills for workers. In addition, labor exports also contribute to reducing unemployment
in the country. Hence, the study aimed to examine the adjustment in the Vietnamese la-
bor migration to Northeast Asian Countries. Based on annual data from 1992 to 2020, this
study focused on the role of labor exports on Vietnam’s socio-economic factors and com-
pared them with the movement of human resources to other Asian countries. Afterward,
the study implemented three machine learning models for estimation. At the same time,
the result indicated that three models earned high accurate results for predicting labor mi-
gration, in which the BPNN model showed a more accurate level than other algorithms.
Hence, the BPNN model can be effectively applied for labor migration prediction. In the
context of integration, forecasting human resource export variation may find a separate direc-
tion for Northeast Asian Countries’ human resource activities. Although the MAPE, MAE,
and RMSE parameters of three models also attained the high level of accuracy which were
compared with the other studies’ parameters values, the BPNN model earned the highest
accuracy of the actual labor exports with MAPEJapan,_BPNN = 0.06, MAEJapan,_BPNN = 191,
RMSEJapan_ BPNN = 225, MAPEKorea,_BPNN = 0.006, MAEKorea_ BPNN = 71, RMSEKorea,_BPNN
= 102, MAPETaiwan_ BPNN = 0.007, MAETaiwan_BPNN = 57, RMSETaiwan_BPNN = 67, respec-
tively. In addition, this study proved that machine learning models play a key role in the
decision-making progress for conducting an effect of labor exports. Using Augmented Dickey-
Fuller (ADF) test indicates that stationary data will attain more forecast results’ accurate
parameters compared with non-stationary data. The study results support stakeholders in
establishing projects related to constructing and training high-quality human resources migra-
tion, increasing the laborers’ surplus value. Moreover, human resource migration problems
help governments enforce suitable policies to appeal to labor from overseas. Another possible
future work is to deeply analyze the GDP contribution of human resource immigration for
Vietnam’s economy.
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Abstract: Emotion distribution learning (EDL) handles emotion fuzziness by means of the emotion
distribution, which is an emotion vector that quantitatively represents a set of emotion categories
with their intensity of a given instance. Despite successful applications of EDL in many practical
emotion analysis tasks, existing EDL methods have seldom considered the linguistic prior knowledge
of affective words specific to the text mining task. To address the problem, this paper proposes a text
emotion distribution learning model based on a lexicon-enhanced multi-task convolutional neural
network (LMT-CNN) to jointly solve the tasks of text emotion distribution prediction and emotion
label classification. The LMT-CNN model designs an end-to-end multi-module deep neural network
to utilize both semantic information and linguistic knowledge. Specifically, the architecture of the
LMT-CNN model consists of a semantic information module, an emotion knowledge module based
on affective words, and a multi-task prediction module to predict emotion distributions and labels.
Extensive comparative experiments on nine commonly used emotional text datasets showed that the
proposed LMT-CNN model is superior to the compared EDL methods for both emotion distribution
prediction and emotion recognition tasks.

Keywords: emotion distribution learning; text-based emotion analysis; affective words;
multi-task CNN

1. Introduction

Emotion analysis aims to recognize and analyze the emotions behind massive human
behavior data such as text, pictures, movies, and music [1–3]. With the rapid development of
Internet-based social media, text-based emotion classification shows promising application
prospects in many emerging artificial intelligence fields such as public opinion analysis,
commodity recommendation, and business decision making [4]. In recent years, the text-
oriented emotion classification model has become a research hotspot in the field of natural
language processing and machine learning [5].

Many traditional emotion classification models adopt the multi-label learning paradigm
and assume that an example is associated with some emotion labels. On this technical line,
many scholars have proposed various effective works to solve the problem of emotion
recognition. Multi-label learning can deal with multi-emotion recognition tasks, but it can-
not quantitatively model a variety of emotions with different expression intensities [6]. To
solve this problem, Zhou et al. proposed emotion distribution learning (EDL) [7] motived
by label distribution learning (LDL) [6]. Different from the traditional emotion classification
model, EDL associates an emotion distribution vector with each example (e.g., facial image
or text sentence). The emotion distribution vector records the expression degree of a given
example of each emotion label, and its dimension is the number of all emotions. In recent
years, many EDL research works have been published in top conferences and journals
in the field of machine learning. For example, Yang et al. proposed a circular-structured
representation for visual emotion distribution learning by exploiting the intrinsic rela-
tionship between emotions based on psychological models [8]. Xu and Wang proposed a
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method for learning emotion distribution based on an attention mechanism in 2021, using
an emotional graph-based network to explore the correlation between various regions in
the image and emotion distribution [9]. Fei et al. proposed a latent emotional memory
network that can learn latent emotional distributions without external knowledge, and
the model has been used well for classification tasks [10]. Zhao et al. proposed a small
sample text EDL model of the meta-learning method [11]; Jia et al. proposed a facial EDL
method using local low-rank label correlation [12]; Pang et al. proposed a basic model of
an acceleration algorithm to predict the emotion distribution of unlabeled files [13]. These
EDL methods can effectively record the intensity of examples of different emotion labels
and show better performance than the traditional emotion classification model. However,
most of the existing EDL methods do not introduce the unique affective word information
containing prior emotion knowledge into the prediction model.

Affective words are words with different emotional tendencies [14], which have
generally been manually labeled based on emotional linguistic knowledge. Different
affective words are usually used to describe different emotional characteristics, and different
combinations of affective words can also express different emotional tendencies. At present,
some scholars have used affective word information in the field of emotion analysis.
Teng et al. showed that affective words have a significant effect in predicting emotion in
2016 [14]. Zhang et al. proposed lexicon-based emotion distribution label enhancement
(LLE) in 2018 [15]. Tong et al. annotated affective words manually and used them for
emotion analysis [16]. These studies show that affective words can significantly improve
the performance of the emotion analysis model. However, so far, there is no EDL method
to use affective word information for emotion distribution prediction.

To address this problem, we propose a text emotion distribution learning model based
on a lexicon-enhanced multi-task convolutional neural network (LMT-CNN). The overall
architecture of the LMT-CNN model has three major modules: semantic information,
emotion knowledge, and multi-task prediction. The semantic information module uses
the sliding window convolution neural network to extract the semantic information of
the text from the word embedding space of the input text. Based on the affective words
extracted from the text, the emotion knowledge module uses the lexicon to introduce the
corresponding emotional prior knowledge to synthesize an emotion knowledge vector.
The input of the multi-task prediction module is constructed from the outputs of the first
two modules. Then, the final emotion distribution is predicted through a full connection
layer. The two prediction tasks of the emotion distribution output layer are emotion
distribution prediction based on Kullback–Leibler (KL) loss [17] and emotion classification
based on cross-entropy loss. The emotion with the highest score in the emotion distribution
output layer is used as the dominant emotion output for emotion classification. The existing
EDL research work shows that the multi-task convolution neural network model combined
with KL loss and cross-entropy loss can achieve better performance by simultaneously
training emotion distribution prediction and emotion classification tasks in an end-to-end
manner [15].

Different from the existing EDL work based on neural networks, the proposed LMT-
CNN method considers the linguistic prior knowledge of affective words unique to the
text mining task and combines it with text-based semantic information to construct an end-
to-end deep neural network. We evaluated the LMT-CNN method on the English emotion
distribution dataset Semeval [18], Chinese emotion distribution dataset Ren-CECps [19],
four English single-label emotion datasets (Fairy Tales [20], TEC [21], CBET, ISEAR [22],
and Affect in Tweets [23]), and Chinese single-label emotion datasets NLP&CC 2013 and
NLP&CC 2014 [24], comparing LMT-CNN methods with multiple baseline methods. Com-
pared with the baseline methods, our LMT-CNN method achieved the best performance in
almost all measurements.

The rest of the paper is organized as follows. First, Section 2 briefly reviews some
related works. Then, Section 3 describes the proposed lexicon-enhanced multi-task con-
volutional neural network for emotion distribution learning. Section 4 describes in detail
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the datasets used for the experiments, experimental setup, and experimental results and
analysis. Section 5 mainly discusses the limitations of our proposed method. Finally,
Section 6 concludes the entire paper and provides an outlook on future work.

2. Related Work

Emotions are ubiquitous in our daily life and play an important role in our lives,
influencing our decisions and judgments. For a long time, people have expected a variety
of ways to recognize the diverse emotions that humans generate. Many researchers have
proposed a variety of algorithms aiming at making machines that have emotional intelli-
gence through artificial intelligence algorithms, meaning machines that have the ability to
recognize, interpret, and process emotions. For this reason, machines should first learn to
recognize human emotions from their external and implicit emotional cues.

Emotion models are the basis of emotion recognition systems, which define the ex-
pression of emotions. To measure emotions quantitatively, psychologists considered that
emotions exist in multiple states and therefore proposed various emotion models to distin-
guish different emotional states. Two of the most prominent emotion representation models
are the categorical emotional state (CES) and the dimensional emotional space (DES) [25].
CES classifies emotions into different basic categories and considers each type of basic
emotion independent. Among the popular CES models are binary emotions [26], Ekman’s
six emotions [27], and Plutchik’s eight emotions [28]. Binary emotions contain positive,
negative, and sometimes neutral emotions. In this case, “emotion” is often referred to as
“sentiment”. In the Paul Ekman model, emotions are independent and can be distinguished
into six basic categories depending on how they are perceived by the experiencer. These
basic emotions are joy, sadness, anger, disgust, surprise, and fear. Plutchik’s eight emotions
consist of amusement, anger, awe, contentment, disgust, excitement, fear, and sadness. The
DES model assumes that emotions do not exist independently of each other and that there
are interactions between emotions. Therefore, some scholars consider locating emotions in
a multidimensional space, such as valence–arousal–dominance (VAD) [29]. In our work,
Ekman’s six emotions were used as the target emotion label set.

Early work in emotion recognition focused on combining machine learning methods
to learn emotional features to recognize the emotions embedded in text, speech, or images.
Examples include the methods of Naive Bayes, maximum entropy, and support vector
machines [30]. Later, Vrysis et al. proposed a method for emotion recognition combined
with lexicon-based and rule-based algorithms [31]. The lexicon-based approach relies on the
semantic direction of the text with the polarity of the words and phrases appearing in it [32].
Rule-based algorithms design extraction rules based on syntactic dependencies [33], which
need to be used within the controllable range of the rules and may lead to incorrect emotion
judgments if they are beyond the range of the rules. We believe that the performance of this
approach largely depends on the quality of the lexicon and the number and quality of the
rules formulated. It is more suitable when the data are lacking, and there is a performance
bottleneck when dealing with large-scale data, combined with the fact that now the path
of the method based on deep learning language models is more attractive in the field of
emotion classification [34].

Deep learning changes in feature engineering and feature learning both make prob-
lem solving easier. Traditionally, the efficiency of machine learning algorithms is highly
dependent on how well the input data are represented. For this reason, feature engineer-
ing has been the most critical step in the machine learning workflow. In contrast, deep
learning algorithms can automate feature extraction, which allows researchers to extract
features with minimal domain knowledge and manpower. Another transformative aspect
of deep learning is that models can learn all representation layers together at the same
time. Through common feature learning, once the model modifies an internal feature, all
other features that depend on that feature will automatically adapt accordingly without
human intervention.
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With the wide application of deep learning in the field of emotion recognition, various
effective methods have been proposed by many scholars around the world. For example,
Franzoni et al. proposed a semantic model for emotion recognition (SEMO), which can
quickly extract the basic emotions hidden in short, emotion-rich sentences [35]. Dashtipour
et al. proposed a novel context-aware multimodal framework for multimodal emotion
analysis, which simultaneously uses text, speech, and visual cues to determine emotion [36].
Rahman et al. proposed a multimodal adaptation gate (MAG) as an attachment to BERT
and XLNet which achieves human-level multimodal emotion analysis performance [37]. In
recent years, emotion recognition methods have also been applied to social services [38]
and opinion detection [39]. For example, Kydros et al. analyzed tweets from Twitter during
the time of the coronavirus outbreak that helped government agencies develop effective
strategies by understanding people’s emotions [38]. Zou et al. designed an emotion analysis
method that combines emojis and other emoticons with short texts to capture the deep
value of public opinion and help companies optimize their services [40].

The traditional text emotion analysis model mainly classifies the polar emotion of
the text, that is, to judge the positive and negative polarity of emotion. However, the
polar emotion classification model cannot capture the fine-grained emotions contained
in the text and can only be used in simple emotion analysis scenarios. Different from the
traditional polar emotion analysis task, the goal of fine-grained emotion analysis is to
identify fine-grained emotions in the text [41], such as anger, disgust, sadness, surprise,
fear, and joy. The classical fine-grained emotion analysis model is generally modeled by
single-label learning or multi-label learning. It is assumed that the example is associated
with one or more emotion labels [6].

The classical multi-label learning model can handle many emotion recognition tasks,
but its modeling ability is still insufficient to quantitatively answer the expression degree of
each emotion label in the text [7]. In practical application, it is very common for a sentence
to express multiple emotions at the same time. For example, the sentences in the commonly
used Semeval text emotion dataset mark the expression degree of six fine-grained basic
emotions [19]. As shown in Figure 1, fear is the main emotion of Figure 1a sentence,
and the degree of expression is 53.2%. The expression of secondary emotion sadness is
39%. The fine-grained basic emotion labeling of Figure 1b sentence is similar to that of
Figure 1a sentence.

Figure 1. Expression degree of two example sentences in the Semeval dataset of six basic emotions.
(a) Emotion distribution of sentences with main emotion label is fear; (b) Emotion distribution of
sentences with main emotion label is sadness.

Aiming to quantitatively deal with the situation that a sentence expresses different
degrees of fine-grained emotions at the same time, Zhou et al. proposed emotion distribu-
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tion learning (EDL) for the task of text emotion analysis [7]. EDL believes that the emotion
of each sentence is a mixture of basic emotions with different expression intensities, and
the goal of modeling is to transform the sentence si maps to an emotional distribution

Di =
{

d
aj
si

}N

j=1
, where A = {a1, a2, . . . , aN} represents a finite set of emotion labels in a

sentence, N is the number of emotion label classes, and d
aj
si is each element of emotional

distribution that denotes sentence si expression degree of class j emotion label, d
aj
si ∈ [0, 1]

and Σjd
aj
si = 1. The EDL method assigns a distribution to each instance, and the strength

of the probability distribution of each label indirectly indicates the relative importance of
the corresponding label. To output emotion labels based on the emotion distribution, it is
natural to consider one or more of the top-ranked emotions as the correct emotion label.
Since the emotion classification datasets selected for the experiments in this paper are all
multi-class datasets (each sample has only one emotion label in several possible classes), we
assume that there is only one correct emotion label in a sample for simplicity of processing.

Emotion distribution learning can effectively deal with the problem that a sentence
expresses multiple emotions with different intensities at the same time. It is more suitable
for emotion analysis tasks with emotion fuzziness than the traditional emotion analysis
model. In recent years, many scholars have put forward many effective works in the field
of EDL [7,13,14,42–44]. For example, Zhou et al. proposed an EDL method based on the
Plutchik’s wheel of emotions in 2016 [7]; Zheng et al. proposed an EDL method using
local correlation of samples in 2018 [42]; Batbaatar et al. proposed a semantic emotion
neural network in 2019 [43]; Qin et al. proposed a constrained optimization method for
cross-domain EDL in 2021 [44]. However, most of the existing EDL work only focuses on
the semantic information or emotional wheel information, ignoring the prior knowledge of
affective words in the text.

Affective words are words that express emotional tendencies in the text. Generally,
they have been labeled with artificial emotion. The extraction and discrimination of affec-
tive words is the basic work of word-level emotion analysis and the basis of text emotion
analysis. Relevant work has shown that emotion prior knowledge is very effective for
emotion recognition tasks [14]. Scholars have proposed a variety of emotion recognition
methods based on the lexicon. The general process of these methods is to extract affective
words from the text based on the lexicon and then use the emotion labels of affective words
to predict the emotion of the text. For example, Wang proposed a multi-constraint emotion
classification model based on a lexicon in 2015 [45]; Zhang et al. proposed lexicon-based
emotion distribution label enhancement (LLE) in 2018 [15]; Abdi et al. proposed a multi-
feature fusion evaluation model based on deep learning for text emotion classification in
2019 [46]; Ke et al. proposed a new language expression model in 2020, which introduces
part-of-speech tagging and affective word language knowledge into the training model [47].
These studies showed that using affective words in emotion recognition tasks can signif-
icantly improve the performance of the emotion analysis model, but most existing EDL
methods do not consider the affective word information of a text. Compared with the
existing EDL method, the LMT-CNN model proposed in this paper considers the prior
knowledge of affective word linguistics specific to text mining tasks. According to the
emotional category and number of affective words in the text, the emotional knowledge
vector is generated, and the semantics information and emotional word knowledge are
combined. KL loss and cross-entropy loss are combined to simultaneously learn emotion
distribution prediction and emotion classification tasks in an end-to-end manner.

3. Text Emotion Distribution Learning Based on Lexicon-Enhanced Multi-Task
Convolutional Neural Network

In order to improve the performance of the text emotion distribution learning model
based on a deep network, this paper proposes a lexicon-enhanced multi-task convolutional
neural network (LMT-CNN). The network structure of the LMT-CNN model includes

111



Axioms 2022, 11, 181

three modules: semantic information module, emotion knowledge module, and multi-task
prediction module. The specific network structure is shown in Figure 2.

 

Sentence

A ec ve words

Emo on distribu on

Emotion knowledge module

…
…

Classi ca on 
Loss

Distribu on
Learning
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Figure 2. Overall framework of the LMT-CNN model (emotion labels 1: anger, 2: disgust, 3: sadness,
4: surprise, 5: fear, 6: joy).

3.1. Semantic Information Module

The semantic information module is a convolution neural network (CNN) built on
word embedding for extracting semantic information from text. The CNN model was
originally created in the domain of image recognition and classification, and its recent appli-
cation in NLP has proven to be successful with excellent results [15]. Another competitive
approach for semantic extraction is the long short-term memory (LSTM) network, which
has been shown to have a good ability to learn sequential data [36]. LSTM controls the
transmission state by gating the states, stores information that needs to be remembered for
a long time, and forgets unimportant information. To the best of our knowledge, there is no
evidence to prove which approach is definitely better for emotion recognition. However,
because of the many contents introduced, LSTM leads to more parameters and makes
the training more time-consuming. Since our aim was to verify the influence of prior
knowledge of affective words on the model, we did not want to involve unnecessarily
complex computations. Hence, we followed the previous successful EDL work by Zhang
et al. [15] and used CNN to extract semantic information.

The semantic information module is composed of the input layer, convolution layer,
and max-pooling layer. The specific workflow is as follows: Firstly, each sentence of the
text dataset is used as the input of the module. Then, each word is transformed into a
word embedding based on the pretrained word embedding model. Finally, the word
embedding matrix representing the original sentence is processed by the convolution layer
and max-pool layer to output a semantic information vector.

We use S = {(s1, D1), (s2, D2), . . . , (sn, Dn)}, which represents the training text dataset,
where n is the number of sentences in the dataset, si (i ∈ {1, 2, . . . , n}) is the i-th sentence,
Di =

{
da1

si , da2
si , . . . , daN

si

}
represents for sentence si corresponding emotion distribution,

A = {a1, a2, . . . , aN} is a finite set of emotion labels, and N is the number of emotion
labels. Next, we specifically describe the functions of the input layer, convolution layer,
and max-pooling layer of this module.

Input Layer: The length of the input sentence is M, and xi ∈ Rk is the k-dimensional
word2vec word embedding representation of the i-th word in the sentence. In this way, the
input sentence is represented as a M × k word embedding matrix x as

x = x1 ⊕ x2 ⊕ . . . ⊕ xM, (1)
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where ⊕ is the concatenation operator. Note that, if the sentence length is less than M, the
end of the word embedding matrix is filled with 0.

Convolution layer: A set of filters w ∈ R
h×k with a sliding window size of h are

adopted to generate new features. The width of the filter is the same as the width of
the word embedding matrix, and thus the filter can only move in the height direction to
conduct the convolution on several adjacent words. For example, set xp:p+q denotes the
concatenation of word xp, xp+1, . . . , xp+q, and a new feature vp is generated from the word
window xp:p+h−1 as

vp = f
(

w·xp:p+h−1 + b
)

, (2)

where f (·) is a nonlinear active function, and b ∈ R is a bias term. The filter is used for each
possible word window in the sentence x1:h, x2:h+1, . . . , xM−h+1:M to produce the feature
mapping v by

v = [v1, v2, . . . , vM−h+1]. (3)

Max-pooling layer: We use the standard max-pooling operation to obtain the generated
feature map and take the maximum value of v as the characteristic of this particular filter:

vsemantic = max(v), (4)

this operation can capture the feature with the highest value as the most important feature
for each feature map.

Through the above operations, a semantic feature can be extracted by each filter. The
module uses several filters of different sizes to extract multiple semantic features from a
given sentence.

3.2. Emotion Knowledge Module

The emotion knowledge module uses the lexicon to extract affective words from
the sentence text and then synthesizes an emotion knowledge vector based on the prior
emotion labels corresponding to affective words.

Given sentence si, we extract all affective words in si from the lexicon and obtain all
the emotion labels corresponding to each emotion word. For each emotion, we set the
number of emotion labels of corresponding affective words as mij and the total number of
all emotion labels as Ci. Then, we set the emotion knowledge vector to ri = [ri1, ri2, . . . , riN ],
where

rij =

{ mij
Ci

, i f Ci �= 0
1
N , else

, j = 1, 2, . . . , N . (5)

Taking the input sentence in Figure 2 as an example, we extract three emotional
words—congress, war, and committee—by looking up the lexicon. Among them, the
affective word congress has two emotion labels (anger and joy), war has two emotion labels
(disgust and sadness), and committee has one emotion label (anger). The total number
of emotion labels of all affective words in the sentence is 5, the number of categories of
emotional labels is 6, and the corresponding emotion knowledge vector is

[
2
5 , 1

5 , 1
5 , 0, 0, 1

5

]
.

In addition, when a sentence does not contain any affective words, the emotion knowl-
edge weight of the sentence is the same on the six emotion labels, and its corresponding
emotion knowledge vector is

[
1
6 , 1

6 , 1
6 , 1

6 , 1
6 , 1

6

]
.

3.3. Multi-Task Prediction Module

The multi-task prediction module supports two tasks: emotion distribution prediction
and emotion classification, including the semantic synthesis layer and emotion distribution
output layer.
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Semantic synthesis layer: We splice the output vsemantic of the semantic information
module and the output ri of the emotion knowledge module to generate the semantic
synthesis vector v̂ by

v̂ = vsemantic ⊕ α·ri. (6)

where ⊕ is the vector splicing operation, and the parameter α is used to control the ratio
of adding emotional word information. When α = 0, it means that the semantic synthesis
layer only contains semantic information and does not consider the prior knowledge of
affective words; when α = 1, it means that all affective word information is considered in
the semantic synthesis layer, and the semantic information is combined with all affective
words prior to knowledge splicing. We believe that the importance of semantic information
in the LMT-CNN model should be greater than affective word knowledge, that is, the value
of parameters α should not be too large. This is because, in general, manually labeled
emotion labels have high reliability, while the prior information of general affective words
has more noise. This study analyzed the value of the parameter α in the experimental part
where it is further discussed.

Emotion distribution output layer: Semantic synthesis vector v̂ after a full connection
layer transformation and the output result of the emotion distribution layer are obtained.
The dimension of the emotion distribution layer is the number of categories of emotion labels.

The LMT-CNN model uses an end-to-end manner to train the emotion distribution
prediction and emotion classification tasks simultaneously. For the distribution prediction
task, we use KL loss [13] to measure the distance between the real distribution and the
predicted one. The KL loss is defined as

Eedl(s, D) = − 1
N ∑d

i=1 ∑N
j=1 dj

si ln p(i)j , (7)

where p(i)j =
e(i)j

∑N
t=1 e(i)t

, dj
si represents the sum of each emotion label loss in sentence si.

The optimization objective of the emotion classification task is cross-entropy loss
Ecls(s, y), and its formula is

Ecls(s, y) = − 1
N ∑d

i=1 ∑N
j=1 1(yi = j)lnp(i)j , (8)

where 1(yi = j) = 1 means when yi is correctly divided into j classes; otherwise, 1(yi = j) = 0.
The total loss of the emotion distribution output layer is a weighted combination of

KL loss and cross-entropy loss as

E = (1 − λ)Ecls(s, y) + λEedl(s, D), (9)

where λ is a weight parameter to control the importance of two kinds of losses. According
to the experimental results of the existing related work, we set λ = 0.7 [15].

Finally, we use the stochastic gradient descent (SGD) algorithm [48] to optimize
the LMT-CNN model. When the prediction task is emotion classification, we take the
emotion with the highest expression degree in the emotion distribution output from the
full connection layer as the real emotion of the sentence.

Recent research work shows that the emotion distribution model based on a multi-task
convolutional neural network (MT-CNN) [15] can achieve good results by simultaneously
training emotion distribution prediction and emotion classification tasks in an end-to-end
manner. However, the MT-CNN model does not consider the linguistic prior knowledge of
affective words, which is very important in the task of text analysis. In the experimental
part, the performance of LMT-CNN and MT-CNN models is compared and analyzed.

The source code of the LMT-CNN model is released at our website [49].
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4. Experiments

To investigate the performance of the LMT-CNN model proposed in this paper, we
conducted three groups of experiments on two emotion distribution datasets and five single-
label emotion datasets. First, to verify the effectiveness of adding affective word information
to the LMT-CNN model, we changed the value of α and recorded the performance of
LMT-CNN. Second, to test the performance of the emotion distribution prediction of the
LMT-CNN model, we used 8 different emotion distribution learning methods compared
with the LMT-CNN method. Third, to examine the performance of the LMT-CNN model
on emotion classification tasks, we used the deep-learning-based TextCNN, MT-CNN, and
LMT-CNN emotion distribution learning models for comparative experiments.

4.1. Dataset

There were 9 commonly used text emotional datasets adopted in the experiments,
namely Semeval [18], Ren-CECps [19], Fair Tales [20], TEC [21], CBET, ISEAR [22], Affect
in Tweets [23], NLP&CC 2013, and NLP&CC 2014 [24]. Among them, Semeval and Ren-
CECps are emotion distribution datasets, and the other 7 datasets are traditional single-label
datasets. We list the details of all experimental datasets in Table 1.

Table 1. Experimental datasets (the sentence number of each emotion in the SemEval and Ren-CECps
datasets is the sentence number whose dominant emotion is the corresponding emotion).

Dataset Anger Disgust Sadness Surprise Fear Joy All

SemEval 91 42 192 435 262 228 1250
Ren-CECps 1117 2293 5841 536 - 4137 13,924
Fairy Tales 216 - 264 114 166 444 1204

TEC 1555 761 3830 3849 2816 8240 21,051
CBET 8540 8540 8540 8540 8540 8540 51,240
ISEAR 1087 1081 1083 - 1090 1090 5431

Affect in Tweets 844 - 747 - 1105 793 3489
NLP&CC 2013 1146 2075 1562 482 186 2140 7581
NLP&CC 2014 1899 3130 2478 820 299 2805 11,431

SemEval is an English text dataset containing multiple emotions, including 1250 news
headlines labeled with 6 emotion labels (anger, disgust, sadness, surprise, fear, and joy).
Each headline has a percentile score for each emotion. The multiple emotions associated
with each sample can be regarded as an emotion distribution vector, and the length of the
vector is 1 through normalization.

Ren-CECps is a Chinese text emotion distribution dataset. The sentence corpus comes
from Chinese blogs. Each sentence is labeled with 8 emotion labels, and each sentence has a
score for each emotion. In order to be consistent with the types of emotions in other datasets,
we selected 13,924 sentences of 5 emotions (anger, disgust, sadness, surprise, and joy) for
experiments. The emotion distribution label retains the scores of the corresponding five
emotions, and the multiple emotion labels corresponding to each sentence can be regarded
as an emotion distribution vector, and the length of the vector is 1 by normalization.

Fairy Tales contains 1204 sentences from 185 children’s stories, each sentence labeled
with one of five emotions (anger, sadness, surprise, fear, and joy). TEC contains 21,051 emo-
tional tweets, each marked with one of six emotions (anger, disgust, sadness, surprise, fear,
and joy). CBET is marked with 76,860 tweets of 9 emotions, and 8540 tweets are collected
for each emotion. We retained a total of 51,240 tweets of 6 emotions. ISEAR contains
7666 English sentences. Each English sentence describes the situation and experience of
different people when they experience seven main emotions. We retained five emotions, a
total of 5431 sentences. Affect in Tweets is created from tweets. There are four emotions
contained in dataset: anger, fear, joy, and sadness. The dataset contains 3489 English
comments from tweets.

115



Axioms 2022, 11, 181

NLP&CC 2013 is a Chinese Weibo corpus containing 7 emotion labels released by
the Natural Language Processing and Chinese Computing Conference in 2013, contain-
ing 10,552 emotional sentences and 29,633 non-emotional sentences. In this experiment,
7581 emotional sentences marked with six emotions of anger, disgust, sadness, surprise,
fear, and joy were retained. Table 1 respectively lists the detailed information of the dataset.
NLP&CC 2014 Chinese microblog emotion analysis dataset is from Sina Weibo, and all
tweets in the dataset are divided into two categories with or without emotion; those without
emotion are labeled as none, and those with emotion are divided into 7 emotion categories.
In this paper, six categories of emotions were selected: happiness, anger, sadness, fear,
disgust, and surprise; a total of 11,431 Chinese tweets were selected.

The English lexicon used in the experiment was formed by the merger of Emosentic-
net [50] and NRC [51]. The Emosenticnet lexicon contains 13,189 English affective words,
and each affective word is labeled with 6 emotion labels. Each affective word in Emosentic-
net and NRC lexicons is marked with one or more emotion labels. When the two lexicons
were merged, we retained the 6 emotion labels (anger, disgust, sadness, surprise, fear, and
joy) and deleted the affective words that were not labeled with these 6 emotions. For an
affective word shared by the two dictionaries, the emotion label is the union of the emotion
label of the affective word in the two lexicons. In the end, we obtained an English affective
lexicon consisting of 15,603 affective words and 6 emotion labels. The Chinese affective lex-
icon uses the emotion vocabulary text database of the Dalian University of Technology [52],
which has 27,466 affective words and 11 emotion labels. We kept 5 emotion labels (anger,
disgust, sadness, surprise, and joy) corresponding to the Chinese dataset and deleted
the affective words that were not labeled with these 5 emotions. Finally, 15,179 Chinese
affective words were retained, and each word was labeled with 1 label.

4.2. Experimental Setup

The experimental process adopted the standard stratified 10-fold cross-validation.
We partitioned the dataset before feeding the data into the network. All samples were
divided into ten categories evenly under the constraint of keeping the category proportions
essentially the same. Each time, one of the samples was selected as the test set, and the
remaining data were merged as the training dataset. In total, 90% of the training set was
used for neural network training, and the remaining 10% was used as the validation set.
Each fold cross-validation was a separate emotion prediction task, repeated ten times, and
the average evaluation indicators of the ten cross-validations were used to evaluate the final
performance of the model. The data division of all models participating in the comparison
experiment remained the same.

Since the output of the LDL model is a distribution vector, a single indicator can reflect
only one aspect of the algorithm on a particular data, and it is difficult for us to determine
which indicator is the best. Geng et al. proposed that when comparing different LDL
algorithms in the same dataset, multiple indicators can be used to evaluate and compare
the algorithms [6]. Following four principles, six indicators were finally selected to evaluate
the LDL algorithms. Based on this suggestion, Zhou et al. chose six indicators to measure
the average similarity or distance between the actual and predicted emotion distributions
in the EDL model, respectively [7]. Similarly, we used six evaluation indicators for our
emotion distribution prediction task evaluation, namely Euclidean, Sørensen, Squaredχ2,
KL Divergence, Cosine, and Intersection [7]. The calculation formulas of the 6 evaluation
indicators are as follows:

Euclidean(P, Q) =
√

∑N
i=1(Pi − Qi)

2 (10)

Sorensen(P, Q) =
∑N

i=1|Pi − Qi|
∑N

i=1|Pi + Qi|
(11)

Squaredχ2(P, Q) = ∑N
i=1

(Pi − Qi)
2

Pi + Qi
(12)
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K − L(P,Q) = ∑N
i=1 Piln

Pi
Qi

(13)

Cosine(P, Q) =
∑N

i=1(Pi × Qi)√
∑N

i=1 Pi
2 ×

√
∑C

i=1 Qi
2

(14)

Intersection(P, Q) = ∑N
i=1 min(Pi, Qi) (15)

where P is the true emotion distribution of the text, Q is the predicted emotion distribution,
and N is the number of emotion types contained in the sentence. These 6 indicators are
used to measure the similarity between the predicted emotion distribution Q and the real
emotion distribution P.

The emotion classification task uses 4 commonly used classification task evaluation
indicators, namely Precision, Recall, F1-score and Accuracy. The specific calculation formulas
of the 4 evaluation indicators are as follows:

Precision =
|TP|

|TP + FP| (16)

Recall =
|TP|

|TP + FN| (17)

F1 − score =
2 × precision × recall

precision + recall
(18)

Accuracy =
|TP + TN|

|A| (19)

where TP represents the number of positive samples with correct predictions, FP represents
the number of negative samples with incorrect predictions, FN represents the number of
positive samples with incorrect predictions, TN represents the number of negative samples
with correct predictions, and A represents the total number of all samples. Precision
represents the proportion of all samples predicted to be positive that are actually positive.
Recall indicates the proportion of all positive examples in the sample that are correctly
predicted. The F1-score is the weighted average (or harmonic mean) of Precision and Recall.
Therefore, this score takes both false positives and false negatives into account to strike a
balance between Precision and Recall. Accuracy is the most intuitive measure of performance
and reflects the proportion of samples correctly classified by the prediction model.

For all the datasets we used, we set the filter windows of CNN to 3, 4, 5 in our
experiments, each with 100 feature maps; the dropout rate was 0.5, the learning rate was
set to 0.05, and the mini-batch size was 50 [53]. We used the word embedding method
to convert each instance into a word embedding matrix. We counted the average length
of Chinese dataset samples as 100 and the average length of English dataset samples as
15, and thus we set the word vector matrix shape as 100 × 300 and 15 × 300, respectively.
We used publicly available word2vec vectors. The English word vector is trained from
100 billion words in Google News [54], and the Chinese word vector is trained from Sogou
News [55]. The dimension of all these word vectors is 300. In particular, the parameters of
the LMT-CNN model were set as shown in Table 2.

For the computational complexity of the LMT-CNN model, we chose Params and
FLOPs to measure the complexity. Params refers to the total number of parameters to be
trained in the model training and is only related to the defined network structure. FLOPs is
the number of floating-point operations, which can be regarded as the calculation amount
of the model [56]. We regard the multi-add combination as a floating-point operation.
FLOPs are related to different layer operation structures, and the maximum length of
the input sentences influences the size of the computation. We calculated the parameter
quantities of the convolutional layer and the fully connected layer that use different height
convolution kernels; we also calculated the calculation amount of convolutional layer and

117



Axioms 2022, 11, 181

fully connected layer at different sentence maximum length M. The results are shown in
Table 3.

Table 2. LMT-CNN model parameter settings.

Parameter Set Value

Word vector dimension 300
Sliding window (3, 4, 5)

Optimizer SGD
Learning rate 0.05

Dropout 0.5
Batch size 50

Word embedding matrix dimension in Chinese text 100 × 300
Word embedding matrix dimension in English text 15 × 300

Table 3. The computational complexity of the LMT-CNN model.

Layers Params
MFLOPs

M = 15 M = 100

Conv2d (kh = 3) 90,100 234.260 1765.960
Conv2d (kh = 4) 120,100 312.260 2353.960
Conv2d (kh = 5) 150,100 390.260 2941.960
Fully connected 1842 0.004 0.004

Total 362,142 936.784 7061.884

4.3. The Influence of the Weight Coefficient α of Affective Words on the Performance of
LMT-CNN Model

The affective word weight coefficient α is an important parameter of the LMT-CNN
model, which is used to control the weight of affective word information and semantic
information. To verify the effectiveness of adding affective word information to the LMT-
CNN model, we changed the value of α from 0 to 1.5 (every 0.1) and recorded the scores
of the Euclidean, KL Divergence, Cosine, and Accuracy indicators of the LMT-CNN model
on the Semeval and Ren-CECps datasets. The detailed experimental results are shown in
Figures 3 and 4.

  
(a) (b) 

Figure 3. The influence of the weight coefficient α on the performances of the LMT-CNN model on
the Semeval dataset (↑ means that the larger the indicator is, the better, and ↓ means that the smaller
the indicator is, the better). (a) Euclidean and KL Divergence; (b) Cosine and Accuracy.
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(a) (b) 

Figure 4. The Influence of the weight coefficient α on the performances of the LMT-CNN model on
the Ren-CECps dataset (↑ means that the larger the indicator is, the better, and ↓ means that the
smaller the indicator is, the better). (a) Euclidean and KL Divergence; (b) Cosine and Accuracy.

As can be seen from the experimental results of the English dataset in Figure 3,
although the scores of the four evaluation indicators vary greatly with the change in
weight α, the optimal value is reached when α = 0.2. When α increases from 0 to 0.2,
the two indicators in Figure 3a gradually decrease, and the two indicators in Figure 3b
gradually increase, which shows that it is beneficial to increase the linguistic knowledge of
affective words. When α = 0.2, the four indicators in Figure 3 reach the best value, and the
performance of the LMT-CNN model is the best, which shows that emotion knowledge
and semantic information reach a balance. When α > 0.2, the indicators in Figure 3a,b show
an unstable upward and downward trend, respectively, and the performance of the model
begins to decrease as a whole, which shows that when the weight of affective words is too
large, the noise of affective word information affects the performance of the model.

For the Chinese dataset Ren-CECps, it can be seen from the experimental results in
Figure 4 that the changing trend of the four evaluation indicators with the increase in
weight is similar to that of the English dataset. The Euclidean and KL Divergence indicators
in Figure 4a rise first and then fall; Cosine and Accuracy indicators in Figure 4b fall first and
then rise. The four evaluation indicators are in α = 0.2, indicating that the affective word
information and semantic information reach a balance.

The above experimental results show that affective words contain effective emotional
information. Adding affective word information to the EDL model can help improve the
performance of emotion distribution prediction. However, since affective words have more
noise, affective word information weight α should not be too large. Considering the balance
of text semantic information and affective word information, in the following experiments
of this paper, we set α = 0.2 for the dataset for the LMT-CNN model.

4.4. Contrast Experiment of Multiple Text Emotion Distribution Prediction Methods

To verify the performance of the emotion distribution prediction of the LMT-CNN
model, we selected 8 different EDL methods as baseline methods and conducted a compre-
hensive comparative experiment on the Semeval and Ren-CECps datasets. The compared
EDL methods included AA-KNN, AA-BP, SA-LDSVR, SA-IIS, SA-BFGS, SA-CPNN [6],
TextCNN [53], and MT-CNN [15]. The detailed model configurations are described
as follows.

Specifically, AA-KNN and AA-BP are extended versions of the classical KNN algo-
rithm and BP (backpropagation) neural network to solve LDL tasks [6]. In the AA-KNN
model, we set the number of neighbor samples as 4, used Euclidean distance to calculate
the distance from the sample point to be classified to each other sample, and predicted
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the category of the sample to be tested through the nearest 4 neighboring samples. In the
AA-BP model, we created a three-layer network; the number of neurons in the first layer
was 24, and the transfer function was “tansig”. The number of neurons in the second layer
was 60, and the transfer function was “tansig”. The number of neurons in the output layer
was 6, and the transfer function was “purelin”. We set the learning rate to 0.05 and the
momentum factor to the default value of 0.9.

Additionally, SA-LDSVR, SA-IIS, SA-BFGS, and SA-CPNN are algorithms specifically
designed for LDL tasks [6]. In the SA-LDSVR model, we chose radial basis function
(RBF) as the core function, the penalty parameter was 1.0, and the other parameters
were the default values. The SA-IIS method establishes the maximum entropy model
and uses the IIS algorithm to estimate the parameters. SA-BFGS follows the idea of an
effective quasi-Newton method BFGS to further improve IIS-LLD. SA-CPNN has a network
structure similar to Modha’s neural network, where the only difference is its training
manner is supervised.

Both TextCNN and MT-CNN are deep-neural-network-based models. TextCNN is
a convolutional neural network model for text emotion classification [53]. The height of
convolutional kernel size was divided into three groups (3, 4, 5), and the width was 300,
which was equal to the dimension of the word vectors. There were 32 channels in each
group. Batch size and learning rate were set to 16 and 0.001. MT-CNN is a multi-task
convolutional neural network model that simultaneously predicts the distribution of text
emotion and the dominant emotion of the text [15]. The height of convolutional kernel
size was divided into three groups (3, 4, 5), and the width was 300, which was equal to the
dimension of the word vectors. We combined the cross-entropy loss with the KL loss by
setting the weight (λ). Therefore, considering the balance between distribution prediction
and classification performance in the experiment, λ = 0.7 [15] was set for this model, which
means that the weight of the cross-entropy loss was 0.3, and the weight of the KL loss
was 0.7.

The detailed experimental results of all emotion distribution learning methods partici-
pating in the comparison of the datasets are shown in Tables 4 and 5. In the table, ↑ means
that the larger the indicator is, the better, and ↓ means that the smaller the indicator is, the
better. The optimal results of each indicator are marked in bold.

Table 4. Experimental results comparing the performance of 9 emotion distribution learning methods
for emotion distribution prediction and emotion classification on the SemEval dataset (↑ indicates
that the larger the indicator is, the better; ↓ indicates that the smaller the indicator is, the better.). The
best performances of each indicator are marked in bold.

EDL Method
Emotion Distribution Prediction Emotion Classification

Euc (↓) Sør (↓) Squ (↓) KL (↓) Cos (↑) Int (↑) Pre (%) Rec (%) F1 (%) Acc (%)

AA-KNN 0.5249 0.4883 0.5649 0.8729 0.6064 0.5117 26.14 19.52 15.33 36.80
AA-BP 0.4677 0.4483 0.4775 0.7858 0.6915 0.5517 38.83 32.13 33.32 43.20

SA-LDSVR 0.4489 0.4360 0.4262 0.5982 0.7367 0.5640 23.77 25.87 21.16 37.60
SA-IIS 0.4804 0.4719 0.4922 0.6871 0.6954 0.5281 26.50 24.08 21.99 39.20

SA-BFGS 0.5573 0.4839 0.5245 1.4149 0.6285 0.5161 32.22 31.55 31.41 40.00
SA-CPNN 0.6688 0.6003 0.7849 2.3375 0.4780 0.3997 21.94 19.25 19.53 23.20
TextCNN 0.7100 0.6068 0.9746 2.0047 0.5353 0.3932 37.29 32.01 33.16 42.65
MT-CNN 0.3344 0.3200 0.3636 0.4118 0.8239 0.6800 44.81 42.05 41.27 54.96

LMT-CNN 0.3324 0.3177 0.3586 0.4057 0.8261 0.6823 45.20 42.00 41.68 55.76
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Table 5. Experimental results comparing the performance of 9 emotion distribution learning methods
for emotion distribution prediction and emotion classification on the Ren-CECps dataset (↑ indicates
that the larger the indicator is, the better; ↓ indicates that the smaller the indicator is, the better). The
best performances of each indicator are marked in bold.

EDL Method
Emotion Distribution Prediction Emotion Classification

Euc (↓) Sør (↓) Squ (↓) KL (↓) Cos (↑) Int (↑) Pre (%) Rec (%) F1 (%) Acc (%)

AA-KNN 0.7918 0.7826 1.1809 0.7575 0.3546 0.2115 12.53 12.43 11.44 16.47
AA-BP 0.7042 0.7465 0.9998 1.3841 0.5049 0.2535 8.37 12.42 5.76 24.83

SA-LDSVR 0.7050 0.7579 1.0166 1.3969 0.5006 0.2421 8.79 12.55 7.39 24.00
SA-IIS 0.7073 0.7546 1.0132 1.4031 0.4967 0.2454 12.16 12.65 8.97 22.80

SA-BFGS 0.7079 0.7495 1.0069 1.4081 0.4966 0.2504 12.01 .12.93 9.91 23.08
SA-CPNN 0.7450 0.8015 1.1136 1.6538 0.4159 0.1984 9.88 12.41 4.96 19.14
TextCNN 0.5033 0.3945 0.6410 1.0831 0.7043 0.6055 54.65 47.32 48.86 62.57
MT-CNN 0.4990 0.3883 0.6293 1.0629 0.7076 0.6117 56.07 47.54 49.71 63.72

LMT-CNN 0.4682 0.3657 0.5865 1.0309 0.7330 0.6343 58.72 50.27 52.22 66.95

In the emotion classification task on Semeval dataset, except that MT-CNN Recall is
higher than LMT-CNN, LMT-CNN model is 0.39%, 0.41%, and 0.80% higher than MT-CNN
model in Precision, F1-score, and Accuracy. On Ren-CECps dataset, LMT-CNN is 2.65%,
3.73%, 2.51%, and 3.23% higher than MT-CNN in Precision, Recall, F1-score, and Accuracy.
The experiment results show that the emotion knowledge vector extracted from the emotion
lexicon can effectively increase the dominant emotion information of sentences and help to
improve the emotion classification performance of the LMT-CNN model.

4.5. Comparison of Emotion Classification Performance on Single-Label Datasets

To examine the performance of the LMT-CNN model on the emotion classification task,
we conducted comparative experiments using deep-learning-based TextCNN, MT-CNN,
and LMT-CNN emotion distribution learning models on seven single-label datasets. Note
that the LLE label enhancement method [12] was used to transform the single-label dataset
into the emotion distribution dataset.

When the classification task is multi-category, the performance of the classification
model can be evaluated by comparing the scores of the classification indicators for each
individual category. If using the arithmetic mean of all categories on different indicators as
a criterion for evaluating the model, in the case of data imbalance, the categories with fewer
data will affect the scores of the indicators more. For example, the Precision indicator may
score relatively high on categories with small sample sizes. This improves the average of
Precision indicators on the overall data to some extent, while in reality, not so many samples
are correctly classified. Therefore, we compared the performance of the three CNN-based
EDL models on each emotion label. The detailed comparative experimental results for each
individual emotion category are shown in Table 6, where the last column shows the macro
averaged score of the corresponding indicators. The optimal results of each indicator are
marked in bold.

As can be seen from Table 6, LMT-CNN achieves the overall best results on all seven
datasets. Taking the macro averaged F1-score as an example, on the Fairy Tales, TEC, CBET,
ISEAR, and Affect in Tweets datasets, the macro averaged F1 value of the LMT-CNN model
is 0.40%, 1.32%, 0.91%, 2.17%, and 3.36% higher than that of the MT-CNN model and 0.64%,
2.37%, 1.88%, 3.54%, and 4.78% higher than that of TextCNN. Comparing the performance
of LMT-CNN and the baseline model on each emotion, we can see that our model gives
better results on almost all emotions. Moreover, the classification of Anger, Sadness and
Fear emotions is more challenging, and the performance in all models is relatively low.
For example, in the experimental results of Chinese datasets NLP&CC 2013 and NLP&CC
2014, the scores of Recall and F1-score on the three emotion labels Anger, Sadness, and Fear
were relatively low, while the classification on the two labels Joy and Surprise achieved
better results.
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Compared to the two baseline methods, LMT-CNN shows different degrees of per-
formance score improvement on different datasets. Overall, on all seven datasets, the
LMT-CNN method almost always scored higher than the baseline method being compared
for the classification indicators in each class. This shows that the classification performance
is improved more effectively by combining the emotion knowledge module with semantic
connotations for the same input text features. Adding the consideration of prior knowledge
of affective words clearly helps in emotion recognition, and our particular method learns
more information in the sentence while considering the information of affective words.

In addition, consistent with the experimental results of Zhang et al. [15], the MT-
CNN model scored higher than the TextCNN model on each evaluation indicator in the
experiments on the seven datasets. This result shows that the performance of the multi-task
neural network is significantly better than that of the traditional single-task networks in the
emotion classification task. MT-CNN and LMT-CNN use the combination of cross-entropy
loss and KL loss to train multi-task neural networks. In the training process, emotion
distribution prediction and emotion classification tasks improve each other and can achieve
better performance than single-task CNN.

Table 6. Comparative performance of three CNN-based EDL models for emotion classification. The
best performances of each indicator on each dataset are marked in bold.

Dataset Model Indicator
Emotion

Averaged
Anger Disgust Sadness Surprise Fear Joy

Fairy Tales

TextCNN
Pre (%) 82.05% 71.24% 66.05% - 66.15% 76.06% 72.31%
Rec (%) 65.53% 76.46% 71.20% - 65.58% 73.55% 70.46%
F1 (%) 63.14% 68.35% 68.87% - 72.87% 76.39% 69.92%

MT-CNN
Pre (%) 82.13% 71.51% 66.17% - 66.85% 76.56% 72.64%
Rec (%) 65.83% 76.67% 71.23% - 66.10% 73.48% 70.66%
F1 (%) 63.75% 68.35% 69.42% - 73.17% 76.09% 70.16%

LMT-CNN
Pre (%) 82.31% 71.67% 66.67% - 67.14% 76.92% 72.94%
Rec (%) 66.96% 77.29% 71.50% - 66.32% 73.77% 71.17%
F1 (%) 64.48% 68.89% 69.80% - 73.23% 76.42% 70.56%

TEC

TextCNN
Pre (%) 52.38% 48.74% 49.13% 57.12% 65.70% 55.66% 54.79%
Rec (%) 31.67% 30.74% 76.57% 43.57% 48.49% 52.91% 47.33%
F1 (%) 38.36% 54.05% 72.25% 46.04% 30.93% 57.33% 49.83%

MT-CNN
Pre (%) 55.59% 49.44% 51.57% 58.51% 67.56% 55.56% 56.37%
Rec (%) 30.60% 30.97% 78.56% 44.87% 48.60% 53.85% 47.91%
F1 (%) 38.47% 53.05% 72.98% 45.17% 35.77% 59.86% 50.88%

LMT-CNN
Pre (%) 56.36% 50.38% 52.74% 58.77% 68.33% 55.78% 57.06%
Rec (%) 35.30% 30.81% 78.90% 45.73% 50.31% 58.79% 49.97%
F1 (%) 38.99% 55.00% 73.08% 48.45% 37.65% 60.04% 52.20%

CBET

TextCNN
Pre (%) 57.82% 54.78% 53.19% 57.67% 63.87% 66.80% 59.02%
Rec (%) 50.63% 61.57% 61.90% 52.21% 63.53% 72.48% 60.39%
F1 (%) 54.56% 59.09% 68.50% 50.03% 62.68% 70.89% 60.96%

MT-CNN
Pre (%) 59.01% 57.70% 53.43% 59.77% 73.19% 69.39% 62.08%
Rec (%) 51.73% 64.23% 67.22% 53.63% 64.35% 72.45% 62.27%
F1 (%) 54.66% 60.10% 69.29% 50.88% 65.60% 71.06% 61.93%

LMT-CNN
Pre (%) 62.09% 60.40% 54.78% 62.80% 75.19% 67.81% 63.85%
Rec (%) 53.09% 65.51% 68.32% 54.58% 65.44% 72.90% 63.31%
F1 (%) 55.92% 60.42% 70.74% 51.46% 66.60% 71.91% 62.84%
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Table 6. Cont.

Dataset Model Indicator
Emotion

Averaged
Anger Disgust Sadness Surprise Fear Joy

ISEAR

TextCNN
Pre (%) 61.36% 63.50% 76.64% - 70.67% 79.30% 70.29%
Rec (%) 70.84% 64.24% 74.21% - 71.66% 64.59% 69.11%
F1 (%) 62.14% 65.22% 76.39% - 72.09% 73.97% 69.96%

MT-CNN
Pre (%) 61.31% 64.68% 80.27% - 72.16% 81.13% 71.91%
Rec (%) 71.62% 64.46% 77.37% - 73.66% 69.36% 71.29%
F1 (%) 65.68% 67.63% 77.00% - 74.25% 72.09% 71.33%

LMT-CNN
Pre (%) 62.28% 66.00% 82.07% - 72.50% 82.15% 73.00%
Rec (%) 72.38% 65.10% 79.34% - 74.40% 71.64% 72.57%
F1 (%) 66.54% 70.64% 80.68% - 74.95% 74.69% 73.50%

Affect in Tweets

TextCNN
Pre (%) 60.60% 55.26% - - 34.69% 28.57% 44.78%
Rec (%) 43.59% 39.60% - - 53.12% 21.11% 39.36%
F1 (%) 41.02% 49.12% - - 40.98% 29.05% 40.04%

MT-CNN
Pre (%) 60.83% 55.57% - - 33.57% 32.67% 45.66%
Rec (%) 49.33% 40.18% - - 53.42% 24.29% 41.80%
F1 (%) 43.97% 49.38% - - 43.04% 29.05% 41.36%

LMT-CNN
Pre (%) 62.71% 56.18% - - 35.39% 36.51% 47.70%
Rec (%) 50.70% 41.21% - - 53.61% 25.26% 42.70%
F1 (%) 45.22% 50.07% - - 44.25% 30.00% 42.39%

NLP&CC 2013

TextCNN
Pre (%) 44.86% 49.12% 52.37% 58.72% 50.00% 73.03% 54.68%
Rec (%) 32.97% 42.08% 30.59% 52.59% 38.38% 67.00% 43.93%
F1 (%) 34.84% 55.38% 36.32% 47.15% 33.76% 71.83% 46.55%

MT-CNN
Pre (%) 46.55% 49.77% 57.06% 63.27% 53.11% 78.07% 57.97%
Rec (%) 34.01% 48.26% 32.86% 53.92% 39.26% 69.86% 46.36%
F1 (%) 37.94% 53.98% 36.65% 51.38% 37.82% 73.45% 48.54%

LMT-CNN
Pre (%) 51.55% 51.18% 60.00% 66.97% 54.03% 78.91% 60.44%
Rec (%) 36.56% 50.90% 32.68% 58.13% 38.68% 69.80% 47.79%
F1 (%) 38.45% 56.38% 38.82% 52.82% 38.78% 73.55% 49.80%

NLP&CC 2014

TextCNN
Pre (%) 40.60% 45.03% 62.20% 59.63% 51.11% 70.04% 54.77%
Rec (%) 36.36% 60.14% 25.18% 58.42% 24.39% 78.13% 47.10%
F1 (%) 38.37% 51.50% 35.85% 59.02% 33.02% 73.86% 48.60%

MT-CNN
Pre (%) 40.22% 49.63% 70.59% 62.87% 52.78% 72.43% 58.09%
Rec (%) 36.65% 63.83% 26.36% 60.31% 25.27% 77.81% 48.37%
F1 (%) 38.36% 55.84% 38.39% 61.56% 34.18% 75.02% 50.56%

LMT-CNN
Pre (%) 43.54% 50.57% 72.92% 63.10% 53.54% 75.91% 61.60%
Rec (%) 39.56% 64.45% 26.47% 66.28% 28.57% 79.32% 50.78%
F1 (%) 41.46% 56.67% 38.84% 64.65% 37.26% 77.58% 52.74%

5. Limitation

In the extensive comparative experiments, the proposed LMT-CNN method shows
superior performance on both emotion distribution prediction tasks and emotion classi-
fication tasks to the baseline methods. However, our method has some limitations in the
following aspects that can be improved in follow-up work.

• The used prior linguistic knowledge is static. Affective words, as a priori knowledge
in linguistics, need to build the affective lexicon in advance to associate affective words
with emotion labels. However, once the lexicon is established, the affective words
have static emotion properties and cannot be updated in real time according to the
changes in external emotion semantics. We suppose that dynamic updating of the
lexicon is a possible solution.

• The LMT-CNN model does not consider cross-language performance differences. The
prior knowledge of affective words is not always present in all languages, especially in
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some minor languages. In the future, this deficiency can be addressed through transfer
learning, where the rich linguistic knowledge in English is used to boost that of other
minor languages.

• Not all state-of-the-art EDL algorithms were directly compared in our experiments.
In recent years, many effective EDL models have been proposed, and the algorithms
implemented on different datasets are not directly comparable. Re-implementing all
state-of-the-art EDL algorithms on their datasets is too time-consuming to illustrate the
validity of prior linguistic knowledge. We re-implemented some representative EDL
algorithms and performed experimental comparisons on several popular emotional
datasets. Although a direct comparison with other algorithms is not possible on
different data, classes, and applications, empirical results show that our proposed
LMT-CNN method achieves optimal results on all the evaluation metrics.

6. Conclusions

This paper proposes text emotion distribution learning based on the lexicon-enhanced
multi-task convolutional neural network (LMT-CNN) model. The LMT-CNN model con-
sists of a semantic information module, emotion knowledge module, and multi-task pre-
diction module. Different from the existing EDL model, LMT-CNN comprehensively
considers the linguistic prior knowledge of affective words and text semantic information.
A number of comparative experimental results show that the performance of the LMT-
CNN model is better than the existing EDL methods in emotion distribution prediction
and emotion classification.

In future work, we will consider making more effective use of prior knowledge and
try some different emotion modeling methods to predict the emotion distribution.
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Abstract: Segregation affects millions of urban dwellers. The main expression of this reality is the
creation of ghettos which are city parts characterized by a combination of features: low income, poor
cultural level. . . Segregation models have been usually defined over regular lattices. However, in
recent years, the focus has shifted from these unrealistic frameworks to other environments defined
via geographic information systems (GIS) or networks. Nevertheless, each one of them has its
drawbacks: GIS demands high-resolution data, that are not always available, and networks tend to
have limited real-world applications. Our work tries to fill the gap between them. First, we use some
basic GIS information to define the network, and then, run an extended Schelling model on it. As a
result, we obtain the location of ghettos. After that, we analyze which parts of the city are segregated,
via spatial analysis and machine learning and compare our results. For the case study of Washington
D.C., we obtain an 80% accuracy.

Keywords: ghettos; GIS; networks; Washington D.C.; machine learning; segregation

MSC: 91D10

1. Introduction

A ghetto is a part of a city in which members of a minority group live, especially as
a result of political, social, legal, environmental, or economic pressure [1]. Regrettably,
millions of people live in ghettos, bringing out the magnitude of the matter. Although their
common feature is the impoverishment of the zone, different kinds of ghettos can be found
across the world.

Ghettos constitute the main expression of segregation. Segregation can be understood
as the practice of separating groups of people with differing characteristics, often connoting
a condition of inequality [2]. Even though segregation can have its origin in economic,
cultural, or religious motives, we focus on the racial one. Racial segregation restricts people
of a different race to areas whose facilities have lower standards than the rest of the city, i.e.,
ghettos. An actual example of these is some black neighborhoods in the city of Washington
D.C., our case study.

The understanding and measuring of segregation can be complex. On one hand,
models of segregation have been studied from the sociophysics field [3–13]. Whereas these
contributions provide deep insights into different aspects of segregation, they take place in
simple square lattices. On the other hand, GIS allows us to define more realistic frameworks.
However, the measure of segregation itself has drawn substantial attention during the last
thirty years [14–21], but a consistent and generally agreeable definition of segregation has
not been formulated yet. The ultimate trend in the field consists in the use of microdata
to minimize the modifiable areal unit problem (MAUP) [22]. Nevertheless, this approach
requires the use of data on the personal level which is not always available.
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In this article, we propose a method to bridge the gap between Sociophysics models
and the measure of segregation by GIS techniques. Our procedure relies on capturing the
ghettos’ location with a segregation model and basic data from the city in situations where
detailed data can be not completely reliable. This is a novel approach to the segregation
field, as we can see in Section 2.3. We start by using basic GIS information from our
region of interest to define a network and then, run on this framework an extended
Schelling model [3]. Our enhanced version takes into account the economic contribution
to segregation, including terms for the housing market and the financial gap between the
population. The final result is the location of ghettos on the network, which can be mapped
into their corresponding city areas. Finally, these predicted ostracized regions are compared
to the ones characterized as ghettos by spatial analysis (SA) and machine learning (ML)
algorithms. For the real case study of Washington D.C., the obtained accuracy is 80 ± 7%.

The paper is organized as follows. In Section 2 the segregation literature previously
cited is reviewed. Section 3 explains how to define the network and discusses the system
dynamics. In Section 4 we describe our findings, accentuating the connection between the
simple network model and the real segregation phenomena. Discussion of our results is
found in Section 5. Finally, our conclusions and proposals for further work are explored in
Section 6. A guideline is illustrated in Figure 1.

3. Methods and Model2. Literature Review

2.1 Sociophysics
2.2 Segregation (GIS)
2.3 Related Works

3.1 Network
3.2  Dissatisfaction Index 
2.3 System dynamics

4.2 Model 
4.3 SA & ML Results 
4.4 Comparison

4. Results 5. Discussion 6. Conclusions1. Introduction

4.1 Segregation in WDC 

Figure 1. Scheme of the paper organization. WDC, SA, and ML are the abbreviations of Washington
D.C, Spatial Analysis, and Machine Learning, respectively.

2. Literature Review

As our work involves the study of segregation from the Sociophsyics and Geographic
fields we try to cover their evolution in Sections 2.1 and 2.2, respectively. Papers related to
our work are discussed in Section 2.3.

2.1. The Schelling Model and Other Related Models from Sociophysics

One of the first approaches to the segregation field was put forward by T. C.
Schelling [3]. His work considered two different social groups (red and blues) distributed
over a square lattice with some vacancies. As people tend to seek out neighbors who are
similar to themselves, large clusters of the same type of agents are typically created. Each
agent has an state and an action. An agent is in a state of happiness when the fraction
of different neighbors in her/his neighborhood, fd, does not exceed the tolerance value
T. However, if fd > T, the agent is unhappy. Regarding actions, an unhappy agent can
relocate in a vacancy if happiness can be attained in the new location. Otherwise, the agent
is characterized as happy and no action is performed. Several extensions of this model have
been developed and can be classified into two broad categories: more physically oriented
or socioeconomically centered.

The Schelling model is related to the Blume-Emery-Griffiths model (BEG), which
was originally used to study He3-He4 mixtures [4]. This framework can be linked to the
Schelling model by associating the type of agents with the spin values considered in their
work: red and blue agents with s = ±1, respectively, while vacancies imply a null spin. For
certain parameter values, the Hamiltonian of the system is reduced when similar agents
group together and clusters of different colors are separated by vacancies [5]. In addition
to this, the number of vacancies is controlled by a crystal field which plays the role of a
chemical potential. The incorporation of an external magnetic field favors one spin type
over the other one, giving rise to dissimilar entry fluxes for each agent type.
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A physical analog of the model comparing segregation between clusters with two
liquids was characterized in [6], an approach from the statistics physics to the segregation
phenomena was carried out in [7], a relation with a 1-spin model where agents can enter
or leave the city (open city) was established in [8]. From the social and economic fields, a
housing market and different tolerance values for black and white people were introduced
in the simulation [9]. Another interesting contribution was able to predict the relocation of
higher-status households in suburban zones by using a cellular-automata [10].

In recent years focus has shifted to complex agent-based models which include ethical
issues: the influence of altruistic agents which greatly affects the final state of the system
improving the overall happiness [11]. The influence of altruist and fair agents is evaluated
in [12], the behavior of agents with adaptive tolerance to their neighborhood in [13] and
open city simulations, in which agents can leave or enter the city, were used to model
gentrification processes in [5].

Nevertheless, these models consider the classical rectangular lattice whose applications
to urban realities are limited in most cases. The GIS technology solved this issue by mapping
real cities and measuring segregation in them.

2.2. Segregation (GIS)

Despite being a reality in urban environments, the measurement of segregation is a
complex problem that emerges as a special spatial arrangement across multiple dimensions
of culture, religion, economy, race, and others [14]. The clustering of these groups in parts
of the city gives rise to the creation of ghettos. Five dimensions of segregation: evenness,
exposure-isolation, concentration, centralization and clustering were proposed in [15]. It
seems that these variables overlap, simplifying the measure of segregation to one index in
most cases. One of the most used estimators is the dissimilarity index [16], which compares
how evenly one population sub-group is spread out geographically compared to another
population sub-group. However, this index does not take advantage of all the spatial
information [14]. Therefore, segregation estimators taking advantage of the clustered
nature of the phenomena were developed. Although several local indicators of spatial
association (LISA) statistics were proposed [17], the local Moran´s indices [18] remain one
of the most used.

Nevertheless, all the measures previously cited rely on data obtained from groups
of individuals. Hence, these measures are exposed to the modifiable areal unit problem
(MAUP) [22,23]. This issue is created by the modification of the boundaries in geographical
units which are often demarcated artificially, i.e., they are not natural divisions. Therefore
new measures relying on personal patterns which characterize people from the same neigh-
borhood were proposed [19]. Nowadays, segregation is usually considered a multiscale
phenomenon, and microdata is used when available [20,21,24].

Although an approach based on the minimization of the MAUP requires an individual
level analysis, it also makes us dependent on the microdata level which is not always avail-
able or can be affected by variations such as the one provoked by the COVID-19 pandemic.

2.3. Related Works

Works particularly related to our contribution are those using the Schelling model
on networks. The major role played by mild tolerance preferences in the segregation
phenomena was compared for lattice and networks in [25]. This work also explained
that polarization mechanisms occur not only in regular spatial networks but also in more
general social networks. The performance of some segregation indices is particularized for
several network types in [26]. Besides, the dynamics of the model are also characterized,
thus finding that the system evolves toward steady states in which a maximum level of
segregation is reached. In contrast to the previous works, where similar results are found
despite the inherent differences between networks, the importance of cliques is underlined
in [27]. Cliques are complete subgraphs inside another graph. They can be understood as
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clusters that reinforce segregation effects. Hence, suggestions against real city situations
that can generate structures similar to cliques are put forward.

None of the previous network models have a direct connection with an urban structure,
in contrast to the GIS-related works. In [28], several examples of the interaction between
GIS and agent-based models are presented. One of them is specially related to this work,
given that is a segregation model in which each census tract represents an agent in the
Schelling model. A segregation model loosely coupled with GIS information is proposed
in [29]. In this contribution, several agents can occupy the same polygon. In addition to
this, the significance of barriers in segregation is evaluated. Basically, borders, such as
rivers and highways, tend to amplify this urban reality. This finding is in good agreement
with the significance of cliques in networks previously discussed [27].

The models we have briefly explained in this section assume a perspective of monetary
equality for the agents, i.e., no economic gap between the groups. In addition to this, no
housing price is associated with city areas. Therefore, they lead to a portrayal focused on
clusterization where no identification of the economically handicapped group is possible.
To put it in other words, ghettos can not be located by adopting these frameworks.

3. Methods and Model

3.1. Network

In this subsection, we explain the process of building our network. We consider a
small zone in the north of Washington D.C. for pedagogical purposes. First, we need access
to this census tract data. Their boundaries divide the region into different polygons, as can
be seen in Figure 2a. It is worth noting that information on the different regions, associated
with geographical, economic, or racial aspects could be linked to each node.
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Figure 2. (a) Our region is divided in different polygons by census tracts. Each polygon is numbered
to facilitate its identification. (b) Each node corresponds to a polygon with the same identification
number as the figure on the left. Edges link overlapping polygons from the previous illustration.
Node sizes are related to their degree.

Our network is defined by the nodes that represent each polygon from the map, and
edges are established between neighbor polygons, as it is shown in Figure 2b. As a means
to obtain these relations, QGIS software is applied [30]. Then, this data is mapped into a
network by using the networkx package [31].

3.2. Dissatisfaction Index

Once our network is established we focus our attention on the agents. As in the
Schelling model, we consider two kinds of agents defined by its color: red and blue. Each
agent occupies a node, while some nodes may remain empty.

The fraction of different neighbors for the agent in the node i can be written as
fd(i) = Nd/(Ns + Nd), where Ns and Nd are, respectively, the number of similar (s) and
dissimilar (d) agents in the neighborhood, i.e., the linked nodes. In contrast to lattice
models, where the numbers of neighbors remain fixed, the number of neighbors can vary
from one node to another in our network.
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The state of the agent in the node i is measured via the dissatisfaction index, Idis(i) as:

Idis(i) = fd(i)− T + D(i)± H. (1)

Here, the first two terms are related to social preferences. T is the tolerance, the
maximum fraction of different agents that an agent can withstand while remaining happy.
This value acts as a threshold. These two terms arise from the Schelling model: if fd(i) ≤ T,
the fraction of different neighbors would be under or be equal to the tolerance value, hence
the agent would be happy, being Idis(i) ≤ 0. With only these two terms, our model is
equivalent to the Schelling one. Nonetheless, we have extended our work considering
economic contributions. Mean housing price in the node is denoted as D(i) [5]. Lower D(i)
values imply cheaper living places, thus producing a higher level of happiness. Finally,
we have portrayed the economic inequality between groups as H, understood as half the
economic gap between them. This term favors red agents, −H, while blue agents are
monetarily handicapped, +H. As can be inferred from the previous explanation, lower
values of Idis yield a higher level of happiness. To put in in another words, an agent is
happy when Idis ≤ 0 and unhappy if Idis > 0.

We study an open city framework where agents may abandon the city if they are
unhappy, and enter otherwise. Therefore, a large value of H increases the number of red
agents in the network while reducing the blue population. In other words, the interplay
between D(i)± H can generate zones depleted of blue population, which has the bias of
the economic gap, +H. This term may produce positive values of Idis(i), pointing out the
unhappiness of the agent, who can be relocated to a better location if it is available or leave
the city. The interpretation is straightforward, the segregated group has no economical
access to some city zones, while the red group, which is happier due to the financial
advantage, −H, resides in them.

As a means to understand the final state reached, we examine the contribution of each
term from Equation (1). The first two terms on the right-hand side give rise to the clustering
effect: agents of the same kind minimize these terms by grouping them. If there are no
dissimilar agents in the neighborhood, fd(i) = 0, thus the only effective term is −T. An
alternative reading of the economic terms is unalike housing prices for red and blue agents:
on one hand, living places for the red group can be considered to be priced as D(i)− H,
while for the economically handicapped blue agents become D(i) + H. In other words,
prices for blue agents are increased by a factor of 2H taking as reference the red group.
Consequently, the blue group may only settle in the most affordable living places.

It should be noted that the economic terms can balance the contribution from the neigh-
borhood preferences, as Equation (1) points out. For example, agents who are surrounded
by neighbors of the same kind may be happy even if the contribution of the housing price
and the financial gap create some discomfort, resembling ghettos’ reality.

3.3. System Dynamics

We start from a random initial configuration with equal proportions of red and blue
agents and a small percentage of vacancies, 5%. Nonetheless, the final number of vacancies
in the network is controlled by the interplay between D(i) + H, so this initial percentage
does not vary from our final results. As we consider an open city model, agents can enter
or leave the city depending on their dissatisfaction level. It must be noted that Idis are
calculated by means of Equation (1).

At each iteration, we choose an internal or external exchange with equal probabilities.
On one hand, if the change is internal, two nodes i and j are randomly selected. However,
i must be occupied with an agent, while the node j is a vacancy. If the exchange verifies
Idis(j) ≤ Idis(i) the agent is relocated into the node j, and now the node i becomes a vacancy.
Otherwise, the relocation is rejected. On the other hand, if the exchange is external, a
random node is selected. If the node i is a vacancy, the node is occupied by an agent coming
from outside, if the satisfaction condition is fulfilled, i.e., Idis(i) ≤ 0. The color of this agent
is randomly selected (50/50 chance). If the node i has an agent, the agent leaves the system
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if Idis(i) > 0. This iteration is repeated until the system reaches an equilibrium state where
all changes are discarded.

In contrast to the Schelling model, happy agents can relocate inside the city if the new
place implies a higher level of happiness that the current one. It is also worth mentioning
that all the unhappy agents have abandoned the city at the end of the simulation.

4. Results

4.1. Segregation in Washington D.C.

Aiming to study a real case of segregation, we focus our attention on Washington
D.C. (USA). This city is located on the eastern shore of the Potomac River, bordering the
states of Maryland and Virginia, as we can see in Figure 3a. The establishment of black
ghettos in this city has a historic origin. During the 1960s the city became majority Black
and this population was concentrated in the south of Anacostia River, which is depicted
in Figure 3b. Wards 7 and 8 suffered from disinvestment, and public housing was located
in these zones [32]. Consequently, we expect a large concentration of ghettos in this area,
which has been segregated for more than 50 years. Although there is no official classification
of ghettos, deprived communities such as Anacostia or Deanwood can be currently found
in this zone [33].

Potomac River
Anacostia River

(a) (b)

Figure 3. (a) Orthoimage of Washington D.C. (b) Division of Washington D.C. by wards. River names
are represented in blue.

4.2. Model

Now, we apply the method from Section 3.1 to Washington D.C. (USA) considering its
division by census tracts. Census tracts are small, relatively permanent statistical subdivi-
sions of a county or statistically equivalent entities with a population size between 1200 and
8000 people [34]. Data for each tract can be accessed via the tidycensus R package [35]. After
the process, we obtain a network with 179 nodes and 535 edges. Additional information on
each census tract may be introduced into each node.

We choose the parameters values for Equation (1): T, D(i) and H(i). T is a measure of
tolerance. In a classic Schelling model, where each agent has 8 neighbors, a tolerance of
T = 0.25 implies that the agent is happy if only two or fewer individuals are different. As
it can be seen in Figure 5b, there are tracts where the white population represents a really
high or a very low part of the population. Therefore, we choose T = 0.25, a low value
of tolerance that may explain these extreme racial concentrations. Even though no direct
measure of the housing market can be obtained from the database, we can infer it from
the median house income Figure 5a. This variable seems to decrease from the top to the
bottom. Thus, it would be possible to define a vertical gradient for D(i). Extreme cases
are 0, assigned to the census tract with the highest latitude, and −1, for the lowest one. The
rest of the values lie in the range [−1, 0] and are proportional to each centroid latitude. This
housing market distribution underlines that the most expensive living places are in the
north while the most affordable regions are in the south. Then, the information is mapped
into the network assigning a D(i) value for each node, as can be seen in Figure 4a. Finally,
H(i) = 0.25 implies a large financial gap as it can be deduced from the scale of Figure 5a.
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(a) (b)

Figure 4. (a) Network representation of the housing price D(i) for each node. Darker tones are related
to greater values and vice versa. All values are in the range [−1, 0]. (b) Snapshot of the system’s final
state for one run. Red and blue agents are represented by their respective colors.

As it is illustrated in Figure 4b, blue nodes that represent ghettos tend to coincide
with the most affordable areas of the city, depicted as clearer nodes in Figure 4a. The social
interpretation is straightforward, segregation also occurs in the economic aspect and people
from ghettos do not have the monetary resources to relocate to another place inside the city.

4.3. Spatial Analysis and Machine Learning Results

Although segregation is a multiscale phenomenon, we have selected data from the
American Community Survey [35] for two of its main expressions: racial and economic. A
measure of the economic level is the median house income, which is depicted in Figure 5a.
As can be seen in the figure, the upper part exhibits brighter colors, associated with higher
incomes, than the lower ones. Thus, economically handicapped people will be located near
the bottom as a consequence of their financial situation, given that the housing market
is less expensive in these zones. To study the racial distribution, we calculate the white
people’s fraction, defined from now on as WPF, from the quotient nw/(nw + nb) where
n denotes the population in the census tract corresponding to white (w) and black (b)
races. This coefficient is illustrated in Figure 5b and follows a similar color scheme to the
median house income map from Figure 5a. Brighter tones are in the upper part of the town,
especially concentrated in the west, where the fraction of white people is close to one. In
contrast, places for people with financial issues are occupied by a high percentage of black
people. These locations can be found in the southeast part of the city and correspond to
wards 7 and 8, previously depicted in Figure 3b.
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Figure 5. (a) Median house income distribution for Washington D.C. (b) White people’s fraction for
our region of interest. (c) Zone types found by the EM clusterization algorithm. The insets in (a)
and (b) represent the local Moran’s I. The inset from (c) illustrates the local Moran’s bivariate index
choosing as variables the median house income and the white people’s fraction. In these insets, NS
means Not Significant, while H and L denote High and Low values, respectively. Spatial Analysis
software Geoda was used for the insets [36].
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Economical segregation is estimated by the local Moran’s I in each census tract, as can
be seen in the inset of Figure 5a. This index is understood as how the value of a variable in
a tract relates to the same value in its surroundings [18]. Thus, the red color in the inset
highlights the clustering of rich zones, mainly located in the northwest zone, whereas blue
regions in the southeast indicate the grouping of tracts with a handicapped economy. The
same analysis for the WPF is graphed in the inset of Figure 5b. Results from both insets
Figure 5a,b exhibit similar patterns. Hence, to test the spatial correlation between economy
and race, we use the bivariate local moran’s I [37], which is depicted in the inset of Figure 5c.
This image exhibits a similar pattern to the other insets pointing out the strong correlation
between both variables.

In order to identify which census tracts are ghettos, we use the Expectation-Maximization
(EM) clusterization algorithm [38]. The EM method is a generalization of the maximum
likelihood estimation to the incomplete data case. In particular, the EM algorithm tries to
obtain the parameters that maximize the logarithmic probability of the observed data. This
method is implemented in Weka, a free ML software [39]. We call this method from the R
environment [40] by using Rweka [41], an interface that allows us to run it. Data supplied
to this algorithm are the median house income, the WPF, and the latitude of the centroids
for each census tract. These data are normalized from 0 to 1.

The EM method finds four clusters that we have defined as zone types, as can be
observed in Figure 5c. The zone types labeled as white and ghettos describe regions with
opposite situations: high WPF with abundant financial resources and ghettos populated
by black people with economical issues. Between them, the mixed zone describes a region
where the WPF and the median house income have increased a little taking as reference
ghetto zones. The transition zone is similar to the white zone but the high WPF and income
have declined, thus, it can be considered a transition layer from white to mixed or ghetto
areas. Once some tracts are identified as ghettos, we study which kind of segregation is
mainly responsible for these areas. Expressed in another way, we try to know if a simple
classification for these zone types exists. As a mean, we make use of the J48 algorithm from
Rweka [41], which is the code name assigned to the ID3 tree classifier [42]. This algorithm
begins with the original dataset as the root node. On each iteration of the algorithm, it
selects the attribute with the largest information gain value, thus creating a new node. Their
result is 176 instances correctly classified out of 179. The only variable that the classifier
retains is the WPF, standing out its importance. Ghettos are identified as tracts where the
value of this variable is under 0.098.

4.4. Comparison

As can be seen in the previous sections, we have obtained the ghettos’ location in
two ways: a network model and ML methods. First, we compare these results from a
qualitative point of view, as it is depicted in Figure 6. Nodes from the network are identified
with census tracts, thus allowing us to map our results into the real city. Classification
procedures from the EM algorithm found four types of zones. These sectors are labeled as
ghettos and non-ghetto census tracts. It must be noted the resemblance between the model
and the ML method, given that both of them locate ghettos in the south region of the city.

We have also evaluated the accuracy of the model, taking the outcome of the ML
method as correct. The accuracy is defined as the quotient R/NT where R is the number of
census tracts correctly identified and NT is the number of total census tracts, being cate-
gorized into the binary classification previously explained. We have simulated 1000 runs
finding a mean accuracy of 80% with a standard deviation of 7%.
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Figure 6. Mapping from the network model snapshot (Figure 4b) to the real city. In order to compare
these results with the ones from ML, illustrated in Figure 5c, the inset exhibit the same zone types.

As a means to evaluate the obtained results from this novel approach, it is also inter-
esting to compare our contribution with related works from Section 2. In [43], Washington
D.C. is studied at various levels: 27 zip codes, 188 census tracts, and 433 block groups.
Although the main aim of this paper was to study the effects of the modifiable areal unit
problem (MAUP), and the data correspond to twenty years ago, we can observe that the
proportion of the non-white population is high in the southern part of the city, showing
good agreement with our results. In [24] they applied the Schelling model at the resolution
of individual buildings and families to study the ethnic segregation of an area of Tel Aviv.
The paper demonstrated good qualitative agreement between the Schelling model and real
urban segregation for a period of 40 years. Economic terms were not considered for this
study, highlighting the importance of the ethnic group as a basis for segregation. Recently,
considering the multiple scales at which segregation occurs, a multilevel index of dissimi-
larity was defined in [20]. This index was applied to study the residential segregation of
various ethnic groups in England and Wales. The results were consistent with a process
whereby minority groups had spread out into more mixed neighborhoods. However, the
defined index is a general measure of segregation, a general value that can hide spatial
heterogeneity. In [21] two indices are used: the local spatial dissimilarity and the exposure
index. The region of interest was a neighborhood in Naples (Italy). This contribution
highlighted the major role played by some policy decisions to reinforce segregation, as it
happened in Washington D.C. Another interesting contribution comes from the transporta-
tion geography field [19]. The method they put forward decomposed the social interaction
potential into interactions within and between social groups. Therefore, they related this
potential to segregation by a different race. Data were analyzed at the census tracts level,
while a matrix disaggregation technique allow them to obtain the transport fluxes by race.
The study allows the identification of hotspots of segregation and integration for the case
study of Detroit. In our work, the segregation hotspots are located via spatial analysis.

5. Discussion

In order to understand the segregation in Washington D.C., we begin the discussion
with spatial analysis. Moran’s indexes from the insets in Figure 5a,b pinpoint a clustering of
white and rich people in the northwest, while the southeast is strongly segregated, showing
opposite characteristics. Besides, the bivariate index suggests a strong spatial correlation
between the median house income and the white people’s fraction, as it is depicted in the
inset of Figure 5c.

Another issue inherent to SA is the MAUP. Basically, as census tracts or other divisions
of the regions can change their boundaries through time, data would have an inherent
error. For the Washington D.C. case, the problem was analyzed by [43]. The evaluation
of the non-white fraction to the level of entire D.C, tracts, block groups, and ZIP codes
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gives values of 0.692, 0.724, 0.718, and 0.561, in the previous order. All the estimations
are near except the one for the zip code. Therefore, the ZIP code has a large error, being
the other measures similar. Thus as we choose the census tracts divisions and the error of
our Schelling extended model is larger, the MAUP does not seem an issue in our case. In
addition to this, census tract divisions of wards 7 and 8 have a river as a boundary with the
rest of the city, as can be observed in Figure 3b. Hence, this natural boundary which is used
for the census tracts has not been modified, thus reducing the MAUP even further.

Once the spatial analysis was carried out, we studied the data related to the median
house income, WPF, and latitude from the ML perspective. The EM clusterer found four
zone types, as it is shown in Figure 5c. These results were in good agreement with our SA,
and they were taken as the correct classification of the census tracts. In addition to this, a
tree classifier ID3 found that the main variable in the previous classification was the WPF,
meaning that race plays a key role in the zone type. This suggests that the main motive of
segregation is racial, even nowadays. However, this racial segregation is strongly linked
with economic inequalities, as the SA analysis demonstrated.

Finally, the model results are compared with those from EM clustering reduced to
the binary classification of ghettos and non-ghettos, as it is depicted in Figure 6. Good
agreement is found between our model and the ML predictions, obtaining an accuracy of
80 ± 7%. One possible explanation is that the interplay between D ± H limits the zones
where blue clusters can be found to the south of the city. Therefore, it portrays the real
situation where ghettos are on the southern shore of the Anacostia river.

6. Conclusions

The extended Schelling model in networks provides a new framework for the study
and understanding of ghettos’ establishment and their location. Starting with some basic
data information from the GIS system, such as the neighborhood relationships between
census tracts and a vertical gradient in the house pricing, our network, and its properties
are defined. Then, an extended Schelling model, including the economic terms model, runs
on it, allowing us to identify which census tracts can be classified as ghettos. It must be
noted that this approximation is useful when microdata or reliable data are not available
for the zone. As an example, we must mention that due to the impact of the COVID-19
pandemic, the Census Bureau changed the 2020 American Community Survey release into
a series of experimental estimates, instead of the standard one [34].

The strong segregation is a consequence of the policies adopted during the 1960s,
when the black population was concentrated in the south of Anacostia River (see Figure 3b),
as was discussed in Section 4.1. Then, the disinvestment in the zone caused the population
to fall into the poverty trap. This term alludes to self-reinforcing mechanisms that cause
poverty to persist unless there is outside intervention [44]. In fact, as we discussed in
Section 3.2, we can consider different prices for the same spot depending on group mem-
bership. This fact resembles redlining practices which can be summarized as an increase
in the interest rate or even credit denial of a loan due to cultural or racial bias [45]. This
procedure gave rise to an even further concentration of the deprived black population in
the ghetto zones. In addition to this, the river acts as a boundary between this part and the
rest of the city which leads to an increase in the zone isolation [29]. To sum up, the actual
setting is strongly influenced by these past practices and the economic gap could act as a de
facto redlining procedure, not allowing the relocation of economically handicapped people
into better locations.

Nevertheless, the model has some limitations: other cities with more complicated
structures can create a complex housing market difficult to define. For instance, cities in
Europe tend to be radially structured, i.e., they have expanded from the center towards the
outskirts where ghettos are mainly located.

A way to enhance this work is to include three parameters in the dissatisfaction index.
One is linked to both segregation terms, and the others are associated with the housing
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market and half the financial gap. In this case, we could maximize the final accuracy of the
model by using an optimization procedure over the parameters previously included.
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Abstract: The prediction of new cases of infection is crucial for authorities to get ready for early
handling of the virus spread. Methodology Analysis and forecasting of epidemic patterns in new
SARS-CoV-2 positive patients are presented in this research using a hybrid deep learning algorithm.
The hybrid deep learning method is employed for improving the parameters of long short-term
memory (LSTM). To evaluate the effectiveness of the proposed methodology, a dataset was collected
based on the recorded cases in the Russian Federation and Chelyabinsk region between 22 January
2020 and 23 August 2022. In addition, five regression models were included in the conducted
experiments to show the effectiveness and superiority of the proposed approach. The achieved
results show that the proposed approach could reduce the mean square error (RMSE), relative root
mean square error (RRMSE), mean absolute error (MAE), coefficient of determination (R Square),
coefficient of correlation (R), and mean bias error (MBE) when compared with the five base models.
The achieved results confirm the effectiveness, superiority, and significance of the proposed approach
in predicting the infection cases of SARS-CoV-2.

Keywords: hybrid deep learning; time series; LSTM; Stacked LSTM; CNN-LSTMs; BDLSTM; CNN;
GRU; modeling; SARS-CoV-2

MSC: 35-00; 35-01; 35-02; 35-03; 35-04; 35-06; 35-11

1. Introduction

The outbreak of the coronavirus infection known as SARS-CoV-2 was reported in
Wuhan city, China, in December 2019 SARS-CoV-2, and it spread to more than 200 countries
in less than a year [1]. The world health organization (WHO) called it COVID-19, which
stands for “Coronavirus Disease 2019,” which is the second version of the previously
known severe acute respiratory syndrome SARS (SARS-COV) and identified in short as
SARS-CoV-2 [2]. There have been regular restrictions to avoid the infection spreading in
all countries, including Russia. In almost all of the countries currently being impacted
by the SARS-CoV-2 pandemic, the rate at which patients are becoming infected with and
succumbing to the disease is alarmingly high [3]. The treatment of patients who required
intensive care was one of the most influential factors in determining the death and case
rates associated with (SARS-CoV-2). A significant challenge for healthcare systems all
over the world is posed by the administration of SARS-CoV-2 treatment to patients who
require acute or critical respiratory care [4]. Artificial intelligence and machine learning,
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two non-clinical computer-aided rapid fixes, are needed to battle (SARS-CoV-2) and halt
its global expansion [5]. Intelligent healthcare is increasingly relying on AI, in particular
machine learning algorithms [6]. More and more, these technologies are referred to be the
brains of intelligent healthcare services [7]. Deep learning, a kind of machine learning in
artificial intelligence, comprises networks that can learn from unstructured or unlabeled
data without supervision [8]. SARS-CoV-2 is just one of the numerous applications that have
heavily incorporated deep learning [9]. These solutions are also required in order to prevent
the disease from becoming more widespread. Techniques for making predictions regarding
the future are based on the evaluation of the past [10]. People are under the impression
that nothing will be the same as it was before as a result of the widespread coronavirus
pandemic, which has numerous global implications. The three most significant things
being explored at the moment are figuring out the causes, implementing preventative
measures, and attempting to develop an effective cure [11]. In Russia, there are more
than 20 million confirmed cases and 386 thousand death cases as on September 2022 [12].
Continued research is being conducted on related diseases, as well as public health policies
and containment mechanisms. Quarantine procedures vary from nation to nation, but
their overall goal is the same: to slow or stop the spread of infectious diseases in order to
keep hospitals operational and able to meet the rising demand for medical care [13]. If
the number of patients diagnosed with SARS-CoV-2 continues to rise, it is possible that
healthcare facilities will be unable to meet the needs of their patients and provide the
services they require. This is the worst-case scenario that can be anticipated. It is crucial
that the nations’ health capabilities be used properly and that the demand for the supplies
needed for medical infrastructure is predictable when infection rates are also taken into
consideration [14]. This is because it is important that both the health capacities of the
countries and the infection rates be taken into account. In this regard, it is recommended
that public health strategies be developed and implemented [15]. As a consequence, deep
learning (DL) models are considered precise tools that may aid in the development of
prediction models [16]. The recurrent neural network (RNN) and the long short-term
memory (LSTM) are the ones that are being explored in the (SARS-CoV-2) forecasting
process because they utilize temporal data, despite the fact that several neural networks
(NNs) have been reported in the past [17]. Deep learning networks, such as RNN and LSTM,
were utilized in this investigation. These networks were selected because, by analyzing
time series data, they were able to provide an accurate forecast of what would occur in
the future [18]. An SIR model is a type of epidemiological model that estimates the total
number of people in a closed community that could potentially become infected with an
infectious illness over a period of time. This category of models gets its name from the fact
that they use coupled equations to relate the number of susceptible people to one another
S(t), the number of people infected I(t), and the number of people who are recovered R(t),
so the initial letters of the three terms that make up the SIR model were shortened to form
the acronym (susceptible, infected, and recovered) [19]. The simulation of the SARS-CoV-2
in the Isfahan province of Iran from 14 February 2020 to 11 April 2020 was the subject
of one of the first articles published. The authors of this study made a prognosis of the
remaining infectious cases using three different scenarios. These scenarios ranged from one
another in terms of the extent of social distancing required. In spite of the fact that it was
able to estimate infectious cases in shorter time intervals, the developed SIR model was not
successful in predicting the actual spread and pattern of the epidemic over a longer period
of time. Surprisingly, the majority of the published SIR models that were constructed in
order to predict SARS-CoV-2 for different communities all suffer from the same conformity.
The SIR models are predicated on assumptions that do not appear to be correct in the
circumstances surrounding the SARS-CoV-2 epidemic. Therefore, in order to foresee
the pandemic, more complex modeling methodologies and extensive knowledge of the
biological and epidemiological features of the disease are required [20]. In addition to more
conventional methods, these two models demonstrated a significant amount of success in
the forecasting of temporal data. In the first place, recurrent neural networks (RNNs) have
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been put to use for the processing of time series and sequential data [18]. These networks
are also useful for modeling sequence data. RNNs are a type of artificial neural network
that is derived from feed-forward networks and exhibit behavior that is analogous to that
of the human brain [21]. To put it another way, RNNs have the ability to predict outcomes
based on sequence data, whereas other algorithms do not. After that, LSTMs, which have
complex gated memory units designed to handle the vanishing-gradient problems that
limit the efficiency of simple RNNs, have been used [22]. The average predicted errors for
SARS-CoV-2 infection cases using machine learning models are substantially equal to those
using statistical models. Machine learning algorithms can be used to forecast long-term
time series [23]. They compared (TS-system) and (DLM-system) LSTM-BI-LSTM-GRU
faults. Ensembling models provided fewer mistakes than (DLM-system) models at the
level of four countries, and hence the ensembling model outperformed (DLM-system) deep
learning models [24].

In this research, we aim to forecast SARS-CoV-2 cases (infection—death) in Russia and
Chelyabinsk; the period extends (80–20) Using Hybrid deep learning models, which are
based on different assumptions about data estimation.

2. Related Work

Researchers have been focusing on x-ray image diagnosis of SARS-CoV-2 and, on the
other hand, using time series models and artificial intelligence for the prediction of daily
infection, recovery, and death cases for SARS-CoV-2. X-ray images for SARS-CoV-2 were
diagnosed using neural networks. In [25], they created a system using five models and
deep learning algorithms: Xception, VGG19, ResNet50, DenseNet121, and Inception for
binary classification of X-ray images for SARS-CoV-2. In order to aid medical efforts and
lessen the strain on medical professionals while dealing with SARS-CoV-2, they provided
deep learning models and algorithms that have been developed and evaluated. Based on
machine learning and deep learning approaches, a survey of recent works for misleading
information detection (MLID) in the health sectors is presented [26]. Other research focused
on a database called COVIDGR-1.0 has all severity levels, from normal with positive RT-
PCR to mild, moderate, and severe. With an accuracy of 97.72%, 0.95%, 86.90%, 3.20%,
61.80%, and 5.49% in severe, moderate, and mild SARS-CoV-2 severity levels, the technique
produced excellent and steady results [27]. The use of user-generated data is envisioned as
a low-cost method to increase the accuracy of epidemic tolls in marginalized populations.
Utilizing the potential of user-posted data on the web is what they suggested [28]. In
addition to social media channels, bogus news about the SARS-CoV-2 epidemic may be
automatically classified and located using deep neural networks. In this investigation, the
CNN model performs better than the other deep neural networks, with the greatest accuracy
of 94.2% [29]. A brand-new interactive visualization system illustrates and contrasts
the SARS-CoV-2 pandemic’s pace of spread over time in various nations. The method
used by the system, called knee detection, splits the exponential spread into many linear
components. It may be used to analyze and forecast upcoming pandemics [30]. In [31],
they provided a technique for extracting implicit responses from huge Twitter collections.
Tweets were cleaned up and turned into a vector format that could be used by various
machine-learning methods. For both informational and non-informational classes, the Deep
Neural Network (DNN) classifier had the maximum accuracy (95.2%) and F1 score (73.6%).
Other research has developed a brand-new relation-driven collaborative learning strategy
for segmenting SARS-CoV-2 CT lung infections. Extensive research demonstrates that using
shared information from non-SARS-CoV-2 lesions may enhance current performance by
up to 3.0% in the dice similarity coefficient [32]. A domain-specific Bi-directional Encoder
Representations from Transformer (BERT) language model called COVID-Twitter BERT
(CT-BERT) has been introduced in recent sentiment analysis research on SARS-CoV-2.
CT-BERT does not always perform better at comprehending sentiments than BERT. In
comparison to a broad language model, a domain-specific language model would perform
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better. An auxiliary technique using BERT was developed to address performance concerns
with the single-sentence categorization of SARS-CoV-2-related tweets [33].

In our work, we built a hybrid deep learning algorithm as part of our research, as well
as an application that makes use of this algorithm, with the goal of forecasting the number
of daily SARS-CoV-2 infections and death in the Russian Federation and the Chelyabinsk
region. Therefore, in our work, we will be using hybrid deep learning models for modeling
and forecasting SARS-CoV-2 infection and daily death cases in Russia and Chelyabinsk.
Chelyabinsk is located in the Ural Federal District in central Russia [34]. The most important
contribution made by this study is the development of DL prediction models that, when
applied to historical and recent data, are capable of producing the most accurate forecasts of
confirmed positive (SARS-CoV-2) cases and cases in which (SARS-CoV-2) was determined
to be the cause of death in Russia and Chelyabinsk [35].

3. Data and Materials

When preparing data, deep learning faces some issues with long sequences in the
database [36]. For the first problem, training is time-consuming and demands a lot of
memory. Second problem, back-propagating extended sequences, results in an incorrectly
trained model. Prepare and preprocess data before importing it into neural networks.
Normalization and standardization problems are two aspects of data preparation. We
used data normalization, a scaling procedure, to set the mean and standard deviation to
0 and 1, respectively [37]. We used daily data on SARS-CoV-2 infection and death cases
in the Russian Federation and Chelyabinsk region. The dataset was obtained from the
official website of the World Health Organization between the dates of 22 January 2020 and
23 August 2022. The dataset is then further prepared in such a way that the first eighty
percent of the datasets are used for training purposes while the remaining twenty percent
of the datasets are used for testing purposes (the last 20% of this dataset approximates
the last 6 months (last 190 days)). The training dataset was used to train and improve the
models, and 20% of the training data was utilized to analyze if the models were overfitting
or underfitting the data. The performance of the model is evaluated with the help of the
test set. Ref [38] provides both the method and the daily SARS-CoV-2 infection and death
case data. Both of these can be accessed from our source.

Figure 1 showed a visual depiction of SARS-CoV-2 infection cases (left panel) and death
cases (right panel) in Russia and Chelyabinsk repeatedly (Figure 1A,C). Figure 1A shows
that the maximum month for total infection cases in Russia is February 2021. Figure 1C
shows the same situation for infection cases in Chelyabinsk that same month (February 2021
and 2022). It had close to 100 thousand infection cases in 2022 when the mutant omicron
appeared. We also note an upward trend in the development of death cases in Russia and
Chelyabinsk (Figure 1B,D), with the emergence of volatility in death cases during the period.
Figure 1B shows that the maximum month for total death cases in Russia is February 2022;
Figure 1D shows that the maximum total number of death cases in November, December,
and February in Chelyabinsk exceeded 800 death cases in November 2021. Then we find a
decrease in the death cases after this month as a result of precautionary measures taken by
both regions. One of the clear patterns in the visual is a similar trend in cases and death in
both Russia and Chelyabinsk, which shows the unification of anti-SARS-CoV-2 policies.
Using a heatmap enables us to extract some features from the SARS-CoV-2 data.

Figure 2 presents the heatmap for total monthly infection and death cases. Figure 2A
shows that the maximum month for total infection cases in Russia is February 2021, and the
same month in 2022 had close to 5 million infection cases in 2022 when the mutant omicron
appeared. Figure 2B shows that the maximum month for total death cases in Russia is
February 2022, and the same situation occurred in February 2021 when the mutant delta
appeared. Figure 2C shows the same situation for infection cases in Chelyabinsk that same
month (February 2021 and 2022). It had close to 100 thousand infection cases in 2022 when
the mutant omicron appeared. Figure 2D shows that the maximum total number of death
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cases in November, December, and February in Chelyabinsk exceeded 800 death cases in
November 2021.

  
(A) (B) 

  
(C) (D) 

Figure 1. Daily infections and death cases SARS-CoV-2 in Russian Federation and Chelyabinsk.
(A): Daily SARS-CoV-2 infection cases in Russian Federation. (B): Daily SARS-CoV-2 death cases in
Russian Federation. (C): Daily SARS-CoV-2 infection cases in Chelyabinsk. (D): Daily SARS-CoV-2
death cases in Chelyabinsk.

 
(A) (B) 

Figure 2. Cont.
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(C) (D) 

Figure 2. SARS-CoV-2 infection and death heatmap in Russian Federation and Chelyabinsk. for total
monthly infection and death cases.

4. Proposed Framework Algorithm and Methodology

The mechanism that underlies our proposed approach for modeling and forecasting
SARS-CoV-2 is depicted in Figure 3. The subsequent stages are carried out.

Figure 3. Proposed framework schematic schema.
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4.1. Proposed Framework Algorithm

First step → Input time series data for daily infection and death cases into our algo-
rithm. Then input parameters for the deep learning model (number of neural networks,
number of epochs, Loss Function, and optimizer) start running the algorithm.

Second step → preprocessing step, training takes time and memory. Second, back-
propagating extended sequences create a poorly trained model. Before importing data into
neural networks, prep it. Normalization and standardization are data prep steps. Using
data normalization, we set the mean and standard deviation to 0 and 1, respectively.

Third step → Separate the dataset into training, validation, and testing. SARS-CoV-2
infection and death cases. From 22 January 2020 to 23 August 2022, WHO website data
was collected. We test our model using 20% of this dataset (the last 190 days). The dataset
is divided such that 80% is used for training and 20% for testing. We utilized the training
dataset to train and improve the models and 20% to test overfitting and underfitting. Test
set is used to evaluate model performance.

Fourth step → Modeling In this stage, we execute our algorithm for LSTM, LSTMs
(stacked LSTM), BDLSTM (Bidirectional LSTM), ConvLSTMs, and other forecasting models.

Fourth step → Performance and Models Evaluation
Fifth step → Forecasting using best models

4.2. Methodology

(A) LSTM Model (long short-term memory model)

One of the first and most successful techniques for addressing vanishing gradients
came in the form of long short-term memory (LSTM) due to [39].

The (long-term memory) part comes after simple recurrent neural networks have long-
term memory in the form of weights. Weights change slowly during training, encoding
general knowledge about the data. Moreover, the other part (short-term memory) is due to
ephemeral activations, which go from each node to successive nodes. The LSTM model
introduces an intermediate type of storage via the memory cell. A memory cell is a complex
unit built from simpler nodes in a specific communication pattern with a new inclusion
of multiplex nodes. A generalized LSTM unit consists of three gates (input, output, and a
forget). The LSTM transition equations are given as follows [40].

Input gate: this gate makes the decision of whether or not the new information will
be added to LSTM memory. This gate consists of two layers: (1) the sigmoid layer and (2)
tanh layer. The first layer defines the values to be updated, and tanh layer creates a vector
of new candidate values that will be added to LSTM memory. The output of these layers is
calculated by:

it = σ
(

Wixt + Uiht−1 + bi
)

(1)

ut = tan h(Wuxt + Uuht−1 + bu) (2)

where it: values updates, ut: new candidate values, σ: sigmoid layer (or nonlinear function),
xt: represents a sequence of length t, b: is a constant bias, h: represents RNN memory at
time step t. W and U are weight matrices.

Forget gate: the sigmoid function of this gate is used to decide what information
to remove from LSTM memory. This decision is mainly made based on the value of h
and xt. The output of this gate is f , which is the value between 0 and 1, where 0 indicates
completely eliminating the acquired value, and 1 indicates that the entire value is preserved.
This output is calculated as:

ft = σ
(

W f xt + U f ht−1 + b f
)

(3)

where ft: values updates, σ: sigmoid layer (or nonlinear function), xt: represents a sequence
of length t, b: is a constant bias, h: represents RNN memory at time step t. W and U are
weight matrices.
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Input gate: this gate first uses a sigmoid layer to decide which part of LSTM memory
contributes to output. Next, it implements a nonlinear tanh function to set values between
−1, 1. Finally, the result is multiplied by output of the sigmoid layer. The following
equation represents the formulas for calculating output:

ot = σ(Woxt + Uoht−1 + bo) (4)

ht = ottanhtct−1 (5)

where ot: is an output gate, ht: is represented as a value between [1, −1].
Combining these two layers provides an update to LSTM where the current value is

forgotten using forget layer by doubling the old value ct−1 followed by adding candidate
value itut, The following equation represents its mathematical equation:

ct = itut + ftct−1 (6)

where ct: is a memory cell. ft are the results of forget gate, which is a value between 0 and
1 where 0 indicates completely rid-of value; 1 implies completely preserved value. The
hypothetical combination between these units is illustrated in Figure 4

 

Figure 4. Long-short-term memory layer.

(B) Stacked LSTM (Stacked long-short-term memory model)

Stacked LSTM model is an extension of LSTM model as it consists of multiple hidden
layers where each layer contains multiple memory cells. It was introduced by [41]. They
found that the depth of network was more important than the number of memory cells in a
given layer to model skill layer for modeling the skill.

A stacked LSTM architecture can be defined as an LSTM model comprised of multiple
LSTM layers. It provides a sequence output rather than a single value output to LSTM
layer below. Specifically, one output per input time step rather than one output time step
for all input time steps. This is illustrated in Figure 5.

Figure 5. A stacked LSTM architecture.
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(C) Bi LSTM model (Bidirectional long-short-term memory model)

Bi LSTM model put two independent RNNs together. This architecture allows network
to obtain back-and-forth information about the sequence at each time step [42].

Using Bi LSTM will run inputs in two ways, one from past to future and one from
future to past; where this approach differs from unidirectional is that in LSTM running
backward, you keep information from the future and using the two hidden states together
are able at any time to hold the information from the past and future. Calculating the
output y at time t is illustrated in Figure 6.

yt = σ
(
Wy[h→t , h←t ] + by

)
(7)

where σ is nonlinear function, Wy: are weight matrices that are used in deep learning
models, by: is a constant bias. ht: are hidden states.

Figure 6. Bidirectional long-short-term memory layer with both forward and backward LSTM layers.

Is illustrated in Figure 5:
Figure 6 shows us how Bi LSTM model works, as it shows information sent from past

and future time series (green color), from inputs xt, which are collected in hidden layers ht
and extract features through nonlinear function σ to predict moment yt.

(D) GRU model (Gated Recurrent Unit model)

Gated Recurrent Unit (GRU) is an advanced and more improved version of LSTM.
It is also a type of recurrent neural network. It uses less hyper parameters because of
reset gate and update gate in contrast to three gates of LSTM. Update gate and reset gate
are basically vectors and are used to decide which information should be passed to the
output [43]. The reset gate controls how much of the previous state we need to remember.
From there, update gate will allow us to control whether the new state is a copy of old state.
Two gate outputs are given by two fully connected layers with sigmoid activation function;
Figure 7 shows the inputs for both reset and update gates in GRU. Mathematically, output
is calculated as follows:

rt = σ(Wrxt + Urht−1 + br) (8)

zt = σ(Wzxt + Uzht−1 + bz) (9)

where rt: is reset gate, zt: is update gate, σ: sigmoid activation function, W and U are weight
parameters, ht−1: the hidden state of the previous time step, b: is a constant bias. Next,
we combine the reset gate with the regular refresh mechanism; it is given mathematically
according to following equation:

it = σ
(

Wixt + Uiht−1 + bi
)

(10)
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Figure 7. Gated Recurrent Unit (GRU) layer.

Which leads to the next candidate hidden state:

at = tan h
(

wxt + rtUiht−1 + bh
)

(11)

where: at: candidate hidden state, tan h: activation function, w and U are weight parametres,
rt: is reset gate, ht−1: the hidden state of the previous time step, b: is a constant bias. Finally,
we need to incorporate the effect of update gate. This determines how closely new hidden
state is with old state versus how similar it is to new candidate state. Update gate can be
used for this propose, simply by taking element-wise convex combinations of ht and ht−1.
This leads to final update equation for GRU:

ht = ztht−1 + (1 − zt)at (12)

where zt: update gate, rt: reset gate, at: activation function, ht: hidden state output gate.
The following Figure 7 illustrates this model:

(E) Conv and CNN-LSTM Model

The convolutional neural network consists of two convolutional layers; this allows for
spatial advantage extraction. Where one-dimensional convolution operation is performed
over the flow of data xs

t at each time step t., a one-dimensional convolution kernel filter
is used to acquire the local perceptual domain by a sliding filter [44]. The process of
convolution kernel filter can be expressed as follows:

Ys
t = σ(Ws ∗ xs

t + bs) (13)

where Ys
t : output of convolutional layer, Ws: weights of the filter, xs

t : input traffic flow at
time t, σ: activation functions.

CNN-LSTM Model is combination of Conv and LSTM; the input of CNN-LSTM is a
spatial-temporal traffic flow matrix xs

t , as follows [2]:

xs
t =

⎡
⎢⎢⎢⎣

xs
t−n

xs
t−(n−1)

...
xs

t

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

f 1
t−n f 1

t−(n−1) . . . f 1
t

f 2
t−n f 2

t−(n−1) · · · f 2
t

...
...

. . .
...

f m
t−n f m

t−(n−1) · · · f m
t

⎤
⎥⎥⎥⎥⎦ (14)

where xs
t = f 1

t . . . f m
t : denotes the traffic flow of the prediction region at time t, which

represents the historical traffic flow of the POI to be predicted and its neighbors. As shown
in Figure 8:
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Figure 8. CNN-LSTMs Model is combination of Conv and LSTM.

Figure 8 shows us how CNN-LSTM model works; this is performed by adding CNN
layer on the front end (left panel) followed by LSTM layers with a dense layer on output
(right panel). CNN model works to extract features, and LSTM model works to interpret
over time steps.

(F) Adam Optimization Algorithm

Stochastic gradient descent is extended by Adam optimization in order to update
network weights in a more efficient manner. The method of adaptive moment estimation is
used in stochastic optimization. This makes it possible for the rate of learning to adjust over
the course of time, which is a vital concept to grasp, given that Adam also demonstrates
this phenomenon. Adam is the result of combining the two variables (Momentum and
RMSprop) as shown in Algorithms 1, which presents a method in greater detail and also
Pseudo-code 1.

Adam proposed algorithm for stochastic optimization and for a slightly more efficient
order of computation. g2

t indicates the elementwise square gt � gt. Good default settings
for the tested machine learning problems are α = 0.001, β1 = 0.9, β2 = 0.999, and ε = 10−8.
All operations on vectors are element-wise. With βt

1 and βt
2 we denote β1 and β2 to the

power t [19].

Algorithms 1: Adam algorithm for stochastic optimization [19].

Require: a : Stepsize
Require: β1, β2 ∈ [0, 1) : Exponential decay rates for the moment estimates
Require: f (θ) : Stochastic objective function with parameters θ

Require:θ0 : Initial parameter vector m0 ←
0(Initialize 1st moment vector) v0 ←
0(Initialize 2nd moment vector) t ←
0(Initialize timestep)

while θ not converged do

t + t1
gt ← ∇θ ft(θt−1) (Get gradients w.r.t. stochastic objective at timestep t)
mt ← β1·mt−1 + (1 − β1)·gt (Update biased first moment estimate)
vt ← β2·vt−1 + (1 − β2)·g2

t (Update biased second raw moment estimate)
m̂t ← mt/

(
1 − βt

1
)

(Compute bias-corrected first moment estimate)
v̂t ← vt/

(
1 − βt

2
)

Compute bias-corrected second raw moment estimate)
θt ← θt−1 − a·m̂t/(

√
v̂t + ε (Update parameters)

end while

return θt (Resulting parameters
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Adaptive Moment Estimation (Adam)

Pseudo-code: Adam algorithm for stochastic optimization

Note:
We have two separate beta coefficients → one for each optimization part. We implement bias
correction for each gradient
On iteration t:
Compute dW, db for current mini-batch
# #Momentum
v_dW = beta1 * v_dW + (1 − beta1) dW
v_db = beta1 * v_db + (1 − beta1) db
v_dW_corrected = v_dw/(1 − beta1 ** t)
v_db_corrected = v_db/(1 − beta1 ** t)
# #RMSprop
s_dW = beta * v_dW + (1 − beta2) (dW ** 2)
s_db = beta * v_db + (1 − beta2) (db ** 2)
s_dW_corrected = s_dw/(1 − beta2 ** t)
s_db_corrected = s_db/(1 − beta2 ** t)
# #Combine
W = W − alpha * (v_dW_corrected/(sqrt(s_dW_corrected) + epsilon))
b = b − alpha * (v_db_corrected/(sqrt(s_db_corrected) + epsilon))
Coefficients

alpha: the learning rate. 0.001.
beta1: momentum weight. Default to 0.9.
beta2: RMSprop weight. Default to 0.999.
epsilon: Divide by Zero failsave. Default to 10 ** −8.

(G) Performance indicators

To compare the prediction performance of the three models used:
Calculating root mean square error (RMSE) between the estimated data and actual data:

RMSE =

√
∑n

t =1(ŷt − yt)
2

n
(15)

where ŷt: the forecast value, yt: the actual value, n: number of fitted observed.
Calculating relative root mean square error (RRMSE):

RRMSE =

√√√√ 1
n ∑n

t =1(ŷt − yt)
2

∑n
t=1(ŷt)

2 (16)

Calculating mean absolute error (MAE):

MAE =
1
n

n

∑
t=1

|yt − ŷt| (17)

Calculating mean bias error (MBE):

MBE =
∑n

t=1(yt − ŷt)

n
(18)

Calculating Coefficient of correlation (R):

R =
Cov(yt, ŷt)√
V(yt) V(ŷt)

(19)
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Calculating Coefficient of determination (R Square):

R2 = 1 − ∑n
t=1(ŷt − yt)

2

∑n
t=1(yt − yt)

2 (20)

The model that has the least values of (RMSE—RRMSE—MAE—MBE) and greater
values of (R–R-Square) is the best model.

5. Results

To prove the effectiveness and superiority of the proposed approach, several exper-
iments were conducted to predict SARS-CoV-2. Firstly, a set of baseline experiments
were conducted using six base models, including LSTM, BDLSTM, GRU, LSTMs, and
CONVLSTMs. The results of these models were compared to the achieved results using
the Bi-LSTM, LSTM, CNN, and CNN-LSTMs algorithm for daily infection and death for
SARS-CoV-2 in Russia and Chelyabinsk, respectively. Table 1 presents the results of the
testing for each of the base models along with the proposed approach based on the adopted
evaluation criteria.

Table 1. Comparison of six methods evaluation testing 20% SARS-CoV-2 daily infection and death
cases in Russian federation and Chelyabinsk.

Model RMSE RRMSE MAE R2 r MBE

(SARS-CoV-2)Infection Cases in Russia
LSTM 9126.42 0.40 3653.27 0.93 1.00 3023.27

Stacked
LSTM

35,612.77 1.56 12,646.76 −0.03 0.26 −10,796.24

BDLSTM 2611.48 0.11 1417.74 0.99 1.00 −59.11
GRU 13,105.75 0.57 4223.04 0.86 0.97 −3299.01
Conv 3397.80 0.33 1936.18 0.86 0.96 −1277.09
CNN-

LSTMs
2583.41 0.25 1717.80 0.92 0.98 −1315.08

(SARS-CoV-2)Death Cases in Russia
LSTM 24.46 0.12 20.19 0.99 1.00 13.85

Stacked
LSTM

32.29 0.15 27.62 0.98 1.00 22.80

BDLSTM 24.98 0.12 20.97 0.99 1.00 16.61
GRU 27.07 0.13 23.33 0.99 1.00 19.77
Conv 88.80 0.70 46.65 0.37 0.99 39.03
CNN-

LSTMs
58.11 0.46 37.69 0.73 0.99 16.52

(SARS-CoV-2)Infection Cases in Chelyabinsk region
LSTM 160.23 0.43 59.46 0.91 1.00 57.78

Stacked
LSTM

583.25 1.55 188.00 0.14 0.03 −177.87

BDLSTM 64.47 0.17 25.46 0.99 1.00 21.97
GRU 64.98 0.17 25.38 0.99 1.00 20.51
Conv 24.69 0.13 14.36 0.96 0.98 3.86
CNN-

LSTMs
122.46 0.65 86.77 −0.02 0 −19.01

SARS-CoV-2Death Cases in Chelyabinsk region
LSTM 1.84 0.35 1.44 0.88 0.94 0.22

Stacked
LSTM

1.91 0.37 1.46 0.87 0.94 0.15

BDLSTM 2.03 0.39 1.63 0.85 0.94 0.68
GRU 1.79 0.35 1.39 0.89 0.94 −0.03
Conv 2.83 0.90 2.19 −0.44 0.75 1.87
CNN-

LSTMs
1.60 0.51 1.29 0.54 0.78 0.63
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As presented in the table, the proposed approach could achieve the best values over
all the evaluation criteria, which confirms the superiority of the proposed approach. The
achieved RMSE on the test set using the proposed approach BDLSTM for infection cases
of SARS-CoV-2 in Russia is (2611.48). In addition, RRMSE, MAE, R2, r, and MBE of the
test set using the proposed approach BDLSTM is (0.11), (1417.74), (0.99), (1), and (−59.11).
These values prove the effectiveness of the proposed approach. The achieved RMSE on the
test set using the proposed approach LSTM for death cases of SARS-CoV-2 in Russia is
(24.46). In addition, RRMSE, MAE, R2, r, and MBE of the test set using the proposed ap-
proach LSTM is (0.12), (20.19), (0.99), (1), and (13.85). These values prove the effectiveness
of the proposed approach. The achieved RMSE on the test set using the proposed approach
Conv for infection cases of SARS-CoV-2 in the Chelyabinsk region is (24.69). In addition,
RRMSE, MAE, R2, r, and MBE of the test set using the proposed approach Conv are (0.13),
(14.36), (0.96), (0.98), and (3.86). These values prove the effectiveness of the proposed ap-
proach. The achieved RMSE on the test set using the proposed approach CNN-LSTMs for
death cases of SARS-CoV-2 in the Chelyabinsk region is (1.60). In addition, RRMSE, MAE,
R2, r, and MBE of the test set using the proposed approach CNN-LSTMs are (0.51), (1.29),
(0.54), (0.78), and (0.63). These values prove the effectiveness of the proposed approach.

Table 2 shows us the large difference between the maximum and minimum values of
all variables and thus affects the shape of the distribution. Thus, the estimators here (Mean,
Median, Mode, and SD) are useless because they are breakdown points. We notice from the
table that the largest difference is for the variable number of infections in Russia, from 0
to 202,211 cases, which leads to a kurtosis that gives a pointed top of the distribution as
its value is much greater than three and a greater value for standard error (more difficulty
in predicting), with the distribution skewed towards the right as the frequency of values
greater than the average is greater for this variable. as the injury variable in Russia took
700 days to move from the lowest value to the largest value. The same thing happened for
infection Chelyabinsk, with less difference between max and min values leading to less S.D.
As for death cases, we notice a negative kurtosis, which indicates less volatility for both
variables and, therefore, a smaller S.D than infection cases with a slight Skewness due to
the convergence of the values from the arithmetic mean, and therefore, the cases of death
are less developed than the cases of injury with the preventive measures that have been
taken in these areas.

Table 2. Descriptive statistics of SARS-CoV-2.

Mean S.E Median Mode S.D Kurtosis Skewness Mini Max

Infection in Russia 20,002.25 940.40 11,409 0 28,908.88 18.08 4.015 0 202,211
Death in Russia 397.79 10.94 354 0 336.374 −0.50 0.70 0 1222

Infection Chelyabinsk 383.25 25.07 180 0 750.20 21.87 4.58 0 5354
Death Chelyabinsk 8.76 0.31 6 0 9.35 −0.11 1.06 0 32

The table shows us that the best model for predicting SARS-CoV-2 infection cases
in Russia is (BDLSTM) because it has the least values of (RMSE—RRMSE—MAE—MBE)
and, therefore, the least difference between the real and estimated values using the model.
We also note that the model is able to explain the volatility in a variable through the
high value of the coefficient of determination (R Square = 99%); there is a perfect linear
correlation between the estimated and actual values. As before, we note that the best model
for SARS-CoV-2 death cases in Russia is (LSTM), and for SARS-CoV-2 infection cases in
the Chelyabinsk region is (CONV), and for SARS-CoV-2 death cases in the Chelyabinsk
region is (CNN-LSTMs). As these models achieve convergence between the actual and
estimated values of the training and test data, noting their ability to capture extreme values
(Maximum and Minimum value). This is illustrated by the following figures:

Figure 9 shows us the convergence of data on actual daily infection of SARS-CoV-2 in
Russia with estimated using the BDLSTM model (training–testing), so we notice a great
convergence between the actual and estimated data and the ability of the model to clarify
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volatility in infection of SARS-CoV-2 and capture structural points, and thus this model
can be used to predict in daily infection of SARS-CoV-2 in Russia.

Figure 9. Comparison of the forecasting SARS-CoV2 infection cases and the real infection cases
for BDLSTM.

Figure 10 shows us the convergence of data on actual daily death SARS-CoV-2 in
Russia with estimated using the LSTM model (training–testing), so we notice a great
convergence between the actual and estimated data and the ability of model to clarity
volatility in death SARS-CoV-2 and capture trends change and thus this model can be used
to predict in daily death SARS-CoV-2 in Russia.

Figure 10. Comparison of the forecasting SARS-CoV-2 death cases and the real infection cases
for LSTM.

Figure 11 shows us the convergence of data on actual daily infection SARS-CoV-2 in
the Chelyabinsk region estimated using the CNN model (training–testing), so we notice
a great convergence between the actual and estimated data and the ability of the model
to clarify volatility in SARS-CoV-2 infection and capture structural points, and thus this
model can be used to predict in daily SARS-CoV-2 infection in the Chelyabinsk region.

153



Axioms 2022, 11, 620

Figure 11. Comparison of the forecasting SARS-CoV-2 infection cases and the real infection cases
for CNN.

Figure 12 shows us the convergence of data on actual daily death SARS-CoV-2 in the
Chelyabinsk region with estimated using the CNN-LSTMs model (training–testing), so we
notice a great convergence between the actual and estimated data and the ability of the
model to clarify volatility in death SARS-CoV-2 and capture structural points, and thus this
model can be used to predict in daily death SARS-CoV-2 in the Chelyabinsk region. The
hyper-parameters for deep learning models are shown in Table 3.

Figure 12. Comparison of the forecasting SARS-CoV-2 death cases and the real infection cases
for CNN-LSTMs.

Table 3. Hyper-parameter setting for models.

Parameter Infection in Death Infection Death

Area Russia Russia Chelyabinsk Chelyabinsk
Model BDLSTM LSTM Conv ConvLSTMs

Activation function Relu Relu Relu Relu
Number of hidden units in LSTM layer 200 200 200 200

LSTM layer activation function Relu Relu Relu Relu
Timestep 2 2 2 10
Batch size 1 1 1 1
Optimizer Adam Adam Adam Adam

Learning rate 0.001 0.001 0.001 0.001
Loss function MSE MSE MSE MSE

Epochs 200 200 200 200
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6. Conclusions and Future Research

In this study, a hybrid deep learning model’s algorithm was used to improve the
performance of a standard LSTM network in the analysis and forecasting of SARS-CoV-2
infections and death cases in the Russian Federation and the Chelyabinsk region. This was
accomplished by using a combination of traditional LSTM networks and hybrid deep learn-
ing models. In order to demonstrate that the strategy being offered is effective, a dataset is
gathered for the purposes of analysis and prediction. The suggested method was evaluated
by applying it to datasets obtained from an official data source that was representative
of the Russian Federation and the Chelyabinsk region. The utilization of these six key
performance indicators allows for the performance of the suggested methodology to be
evaluated and analyzed. In addition, the performance of the suggested method is evaluated
and compared to that of the other five prediction models in order to demonstrate that the
proposed method is superior. The compiled data provided unmistakable evidence that
the strategy being recommended (Hybrid Deep-Learning models) are not only successful
but also significantly more advantageous and important. On the other hand, it serves
as a reference for the health sector in Russia, in particular, as well as the World Health
Organization (WHO), as well as, more generally, for the health sectors in other nations.
As for future research directions, it is planned to enable medium- and long-term forecast-
ing of time series in weakly structured situations, to develop mechanisms for correcting
long-term forecasts, to force a set of forecasting models to account for forecasting quality
in previous periods, and to consider the possibility of employing nonlinear forecasting
models for weakly structured data. All of these, along with the use of additional criteria
for the verification of the best models, can be used to expand and enhance the algorithm
discussed in this study and create a new package in Python for modeling and forecasting
not only SARS-CoV-2 data but any univariate-dimensional time series data.
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Abstract: We propose a generative adversarial network (GAN) that introduces an evaluator module
using pretrained networks. The proposed model, called a score-guided GAN (ScoreGAN), is trained
using an evaluation metric for GANs, i.e., the Inception score, as a rough guide for the training
of the generator. Using another pretrained network instead of the Inception network, ScoreGAN
circumvents overfitting of the Inception network such that the generated samples do not correspond
to adversarial examples of the Inception network. In addition, evaluation metrics are employed only
in an auxiliary role to prevent overfitting. When evaluated using the CIFAR-10 dataset, ScoreGAN
achieved an Inception score of 10.36 ± 0.15, which corresponds to state-of-the-art performance. To
generalize the effectiveness of ScoreGAN, the model was evaluated further using another dataset,
CIFAR-100. ScoreGAN outperformed other existing methods, achieving a Fréchet Inception distance
(FID) of 13.98.

Keywords: generative adversarial network; image generation; image synthesis; GAN; generative
model; Inception score; scoreGAN

MSC: 68T45

1. Introduction

A recent advancement in artificial intelligence is the implementation of deep learning
algorithms to generate synthetic samples [1–3]. These types of neural networks are able
to learn how to map inputs to outputs after being trained on large datasets. In the past
few years, researchers have used deep learning algorithms to create synthetic samples in
various domains such as music, images, and speech [4–6]. One important application of
synthetic sample generation is in the field of data augmentation [3,7]. Data augmentation is
a technique used in machine learning to increase the size of the training datasets. Synthetic
samples can be used to create new data points that are similar to existing data points, but
may have different labels or attributes. This can help improve the performance of machine
learning algorithms by providing them with more data to train on.

Due to their innovative training algorithm and superb performance in image gener-
ation tasks, generative adversarial networks (GANs) have been widely studied in recent
years [8–12]. GANs generally employ two artificial neural network (ANN) modules, called
a generator and a discriminator, which are trained with an adversarial process to detect
and deceive each other. Specifically, the discriminator aims at detecting synthetic samples
that are produced by the generator; meanwhile, the generator is trained by errors that are
obtained from the discriminator. By such a competitive learning process, the generator can
produce fine synthetic samples of which features are incredibly similar to those of actual
samples [13,14].

However, the performance evaluation of GAN models is a challenging task since the qual-
ity and diversity of generated samples should be assessed from the human perspective [15,16];
furthermore, unbiased evaluations are also difficult because each person can have different
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views on the quality and diversity of samples. Therefore, several studies have introduced
quantitative metrics to evaluate GAN models in a measurable manner [16,17].

The Inception score is one of the most representative metrics to evaluate GAN models
for image generation [16]. A conventional pretrained ANN model for image classification,
called the Inception network [18], is employed to assess both the quality and diversity
of the generated samples, by measuring entropies of inter- and intra-samples in terms
of estimated probabilities for each class. The Fréchet Inception distance (FID) is another
metric to measure GAN performance, in which the distance between feature distributions
of real samples and generated samples are calculated [17].

From the adoption of the evaluation metrics, the following questions then arise: Can
the evaluation metrics be used as targets for the training of GAN modelssince the metrics
reasonably represent the quality and diversity of samples? By backpropagating gradients
of the score or distance, is it possible to maximize or minimize them? Such an approach
seems feasible since the metrics are generally differentiable; therefore, the gradients can be
computed and backpropagated.

However, simply backpropagating the gradients and training with the metrics cor-
respond to learning adversarial examples in general [19,20]. Since the complexity of
ANN models is significantly high, we can easily make a sample be incorrectly predicted,
by adding minimal noises into the sample; this noisy sample is called the adversarial
example [20]. Therefore, in short, a fine quality and rich diversity of samples can have a
high Inception score, while the reverse is not always true.

Barratt and Sharma [21] studied this problem and found that directly maximizing the
score does not guarantee that the generator produces fine samples. They trained a GAN
model to maximize the Inception score; then, the trained model produced image samples
with a very high Inception score. While the Inception score of real samples in the CIFAR-10
dataset is around 10.0, the produced images achieved an Inception score of 900.15 [21].
However, the produced images were entirely different from the real images in the CIFAR-10
dataset; instead, they looked like noises.

In this paper, to address such a problem and utilize the evaluation metric as a training
method, we propose a score-guided GAN (ScoreGAN) that employs an evaluator ANN
module using pretrained networks with the evaluation metrics. While the aforementioned
problems exist in ordinary GANs, ScoreGAN solves the problems through two approaches
as follows.

First, ScoreGAN uses the evaluation metric as an auxiliary target, while the target
function of ordinary GANs is mainly used. Using the evaluation metric as the only target
causes overfitting of the network used for the metric, instead of learning meaningful
information from the network, as shown in related studies [21]. Thus, the evaluation metric
is employed as the auxiliary target in ScoreGAN.

Second, in order to backpropagate gradients and train the generator in ScoreGAN, we
employ a different pretrained model called MobileNet [22]. This prevents the generator
from overfitting on the Inception network. To the best of our knowledge, employing a
pretrained MobileNet with an additional score function for the training of the generator
has not been explored thus far. Additionally, this approach allows us to validate that the
generator has actually learned features, rather than simply memorizing details from the
Inception network. In this process, we can assess whether ScoreGAN is able to achieve a
high Inception score without using the Inception network, which can prove the effectiveness
of ScoreGAN.

The main contributions of this paper are as follows:

• The score-guided GAN (ScoreGAN) that uses the evaluation metric as an additional
target is proposed.

• The proposed ScoreGAN circumvents the overfitting problem by using MobileNet as
an evaluator.

• Evaluated by the Inception score and cross-validated through the FID, ScoreGAN
demonstrates state-of-the-art performance on the CIFAR-10 dataset and CIFAR-100
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dataset, where its Inception score in the CIFAR-10 is 10.36 ± 0.15, and the FID in the
CIFAR-100 is 13.98.

2. Background

Generative models aim to learn sample distributions and produce realistic samples.
For instance, generative models can be trained with an image dataset; then, a successfully
trained generative model produces realistic, but synthetic images for which the features
are extremely similar to the original images in the training set. The GAN is one the
representative generative models, which uses deep learning architectures and an algorithm
with game theory. In recent years, diffusion models have been employed as generative
models and demonstrated superior performances [2,23,24]. In Section 2.1, we discuss a
variant of the GAN called the controllable GAN, which is the baseline of the proposed
model. Additionally, two metrics to assess the produced images by the generative models
are presented in Sections 2.2 and 2.3.

2.1. Controllable Generative Adversarial Networks

The conventional GAN model consists of two ANN modules, i.e., the generator and
the discriminator. The two modules are trained by playing a game to deceive or detect each
other [15,25]. The game to train a GAN can be represented as follows:

θ̂D = arg min
θD

{
LD(1, D(X; θD)) + LD

(
0, D

(
G
(
Z; θ̂G

)
; θD

))}
, (1)

θ̂G = arg min
θG

{LD(1, D(G(Z; θG); θD))}, (2)

where G and D denote the generator and the discriminator, respectively, X is a training
sample, Z represents a noise vector, θ is a set of weights of an ANN model, and LD indicates
a loss function for the discriminator.

However, the ordinary GAN can hardly produce the desired samples since each feature
in a dataset is randomly mapped into each variable of the input noise vector. Therefore, it
is hard to discover which noise variable corresponds to which feature. To overcome this
problem, conditional variants of GAN that introduce conditional input variables have been
studied [26–28].

Controllable GAN (ControlGAN) [29] is one of the conditional variants of GANs
that uses an independent classifier and the data augmentation techniques to train the
classifier. While a conventional model, called auxiliary classifier GAN (ACGAN) [28], has
an overfitting issue on the classification loss and a trade-off for using the data augmentation
technique [29], ControlGAN breaks the trade-off through introducing the independent
classifier, as well as the data augmentation technique. The training of ControlGAN is
performed as follows:

θ̂D = arg min
θD

{
LD(1, D(X; θD)) + LD

(
0, D

(
G
(
Z,L; θ̂G

)
; θD

))}
, (3)

θ̂G = arg min
θG

{
LD(1, D(G(Z; θG); θD)) + γt · LC

(
L, C

(
G(Z,L; θG); θ̂C

))}
, (4)

θ̂C = arg min
θC

{LC(L, C(X; θC))}, (5)

where C represents the independent classifier, L denotes the input labels, and γt is a learn-
ing parameter that modulates the training of the generator in terms of the classification loss.

2.2. The Inception Score

To assess the quality and diversity of the generated samples by GANs, the Inception
score [16] is one of the most conventional evaluation metrics, which has been extensively
employed in many studies [8,14,16,21,26,27,29]. For the quantitative evaluation of GANs,

161



Axioms 2022, 11, 701

the Inception score introduces the Inception network, which was initially used for image
classification [18]. The Inception network is pretrained to solve the image classification
task over the ImageNet dataset [30], which contains more than one million images of 1000
different classes; then, the network learns the general features of various objects.

Through the pretrained Inception network, the quality and diversity of the generated
samples can be obtained from two aspects [16,21]: First, the high quality of an image can be
guaranteed if the image is firmly classified into a specific class. Second, a high entropy in
the marginal probability of the generated samples indicates a rich diversity of the samples
since such a condition signifies that the generated samples are different from each other.

Therefore, the entropies of the intra- and inter-samples are calculated over the gener-
ated samples; then, these two entropies compose the Inception score as follows:

IS
(
G
(
·; θ̂G

))
= exp

(
1
N ∑ KL

(
Pr
(
Y|X̂

)
||Pr(Y)

))
, (6)

where X̂ denotes a generated sample, KL indicates the Kullback–Leibler (KL) divergence,
namely the relative entropy, and N is the number of samples in a batch. Since a high KL
divergence signifies a significant difference between the two probabilities, thus a higher
Inception score indicates greater qualities and a wider variety of samples. Generally, ten
sets, each of which contains 5000 generated samples, are used to calculate the Inception
score [16,21].

2.3. The Fréchet Inception Distance

The FID is another metric to evaluate the generated samples in which the Inception
network is employed as well [17]. Instead of the predicted probabilities, the FID introduces
the feature distribution of the generated samples that can be represented as the outputs of
the penultimate layer of the Inception network.

With the assumption that the feature distribution follows a multivariate normal distri-
bution, the distance between the feature distributions of the real samples and generated
samples is calculated as follows:

FID
(
X, X̂

)
=
∥∥μX − μX̂

∥∥2
2 + Tr

(
ΣX + ΣX̂ − 2 ·

√
ΣX ΣX̂

)
, (7)

where X and X̂ are the data matrices of the real samples and generated samples, respectively,
and Σ denotes the covariance matrix of a data matrix. In contrast to the Inception score,
a lower FID indicates the similarity between the feature distributions since the FID measures
a distance.

3. Methods

In this paper, we propose ScoreGAN, which uses an additional target, derived from
the evaluation metrics in Section 2.2. The proposed ScoreGAN uses the Inception score
as a target of the generator. However, directly targeting the Inception score leads to an
overfitting issue; thus, in ScoreGAN, a pretrained MobileNet is used for the training.
Then, the trained model is evaluated with the conventional Inception score and FID using
the Inception network. This method is elaborated in Section 3.1. The training details of
ScoreGAN are described in Section 3.2.

3.1. Score-Guided Generative Adversarial Network

The main idea of ScoreGAN is straightforward: For its training, the generator in
ScoreGAN utilizes an additional loss that can be obtained from the evaluation metric for
GANs. Since it has been verified that the evaluation metric strongly reflects the quality
and diversity of the generated samples [8,16], it is expected that the performance of GAN
models can be enhanced by optimizing the metrics.
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Therefore, the architecture of ScoreGAN corresponds to ControlGAN with an addi-
tional evaluator; the evaluator is used to calculate the score, then gradients are backprop-
agated to train the generator. The other neural network structures are the same as those
of ControlGAN.

However, due to the high complexity of GANs, it is not guaranteed that such an
approach can work properly, as described in the previous section. Directly optimizing the
Inception score can cause overfitting over the network that is used to compute the metric;
then, the overfitted GANs produce noises instead of realistic samples even if the score of
the generated noise is high [21].

In this paper, we circumvent this problem through two different approaches, i.e., em-
ploying the metric as an auxiliary cost instead of the main target of the generator and adopt-
ing another pretrained network as an evaluator module as a replacement of the Incep-
tion network.

3.1.1. The Auxiliary Costs Using the Evaluation Metrics

ScoreGAN mainly uses the ordinary GAN cost in which the adversarial training pro-
cess is performed while the evaluation metric is utilized as an auxiliary cost. Therefore,
the training of the generator in ScoreGAN is conducted by adding the cost of the evaluation
metric to (4). Such a method using an auxiliary cost has been introduced in ACGAN [28];
then, the method has been widely studied in many recent works [27], including Control-
GAN [29]. As a result of the recent works, it has been demonstrated that the auxiliary
costs serve as a “rough guide” for a generator to be trained with additional information.
The proposed technique using the evaluation metrics in this paper corresponds to a variant
of such a method, where the metrics are used as rough guides to generate high-quality and
a rich variety of samples. In short, the generator in ScoreGAN aims at maximizing a score
in addition to the original cost, which can be represented as follows:

θ̂G = arg min
θG

{
LG − δ · IS

(
X̂
)}

, (8)

where LG denotes the regular cost for a generator, such as the optimization target in (4),
δ is a parameter for the score, and IS is the score that can be obtained from the evaluator.
Since (6) is differentiable with respect to G, θG can be optimized by the gradients in such
a manner.

3.1.2. The Evaluator Module with MobileNet

To obtain the IS in (8), originally, the Inception network [18] is required as the evaluator
in ScoreGAN since the metrics are calculated through the network. However, as described
in the previous sections, directly optimizing the score leads to overfitting the network,
thereby making the generator produce noises instead of fine samples. Furthermore, if the
Inception network is used for the training, it is challenging to validate whether the generator
actually learns features rather than memorizes the network, since the generator trained
by the Inception network certainly achieves a high Inception score, regardless of the
actual learning.

Therefore, ScoreGAN introduces another network, called MobileNet [22], as the evalu-
ator module, in order to maximize the score. MobileNet [22,31,32] is a comparatively small
classifier for mobile devices, which is trained with the ImageNet dataset as well. Due to
its compact network size, enabling GANs to be trained, MobileNet is used in this study.
The score is calculated over the feature distribution of MobileNet; then, the generator aims
to maximize the score, as described in (8). For MobileNet, the pretrained model in the
Keras library is used in this study.

Furthermore, to prevent overfitting on MobileNet, ScoreGAN uses a regularized score,
which can be represented as follows:

RISmobile
(
X̂
)

:= min
{

ISmobile(X), ISmobile
(
X̂
)}

, (9)
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where RIS represents the regularized score and ISmobile denotes the score calculated by the
same manner as (6) through MobileNet instead of the Inception network. Since a perfect
GAN model can achieve a high score that is similar to the score of real data, thus, it is
expected that the maximum value of the score that a GAN model can attain is the score
of real data. Therefore, such an approach in (9) assists the GAN training by reducing the
overfitting of the target network.

The evaluation, however, is performed with the Inception network, as well as the
Inception score, instead of MobileNet and ISmobile, which can generalize the performance
of ScoreGAN. If ScoreGAN is trained to optimize MobileNet, the training ensures maxi-
mizing the score obtained with MobileNet, irrespective of the learning of actual features.
Therefore, to validate the performance, the model must be evaluated with the original
metric, the Inception score.

Furthermore, the model is further evaluated and cross-validated through the FID. Since
the score and the FID measure different aspects of the generated samples, the maximization
of the score does not guarantee obtaining a low FID. Instead, only if ScoreGAN produces
realistic samples that are highly similar to real data in terms of feature distributions,
the model can achieve a lower FID than the baseline. Therefore, by using the FID, we can
properly cross-validate the model even if the score is used for the target.

3.2. Network Structures and Regularization

Since ScoreGAN employs the ControlGAN structure as the baseline and integrates an
evaluator measuring the score with the baseline, ScoreGAN consists of four ANN modules,
namely the generator, discriminator, classifier, and evaluator. In short, ScoreGAN addition-
ally uses the evaluator, attached to the original ControlGAN framework. The structure of
ScoreGAN is illustrated in Figure 1.

Figure 1. The structure of ScoreGAN.The training of each module is represented with arrows. E:
evaluator; C: classifier; D: discriminator; G: generator.

As described in Figure 1 and (8), the generator is trained by targeting the three
other ANN modules to maximize the score and minimize the losses, simultaneously.
Meanwhile, the discriminator tries to distinguish between the real samples and generated
samples. The classifier is trained only with the real samples in which the data augmentation
is applied; then, the loss for the generator can be obtained with the trained classifier.
The evaluator is a pretrained network and fixed during the training of the generator; thereby,
the generator learns general features of various objects from the pretrained evaluator by
maximizing the score of the evaluator.
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Due to the vulnerable nature of the training of GANs, regularization methods for the
ANN modules in GANs are essential [33,34]. Accordingly, ScoreGAN also uses the regular-
ization methods that are widely employed in various GAN models for its training. Spectral
normalization [35] and the hinge loss [36] that are commonly used in state-of-the-art GAN
models are employed in ScoreGAN as well. The gradient penalty with a weight parameter
of 10 is used [33]. Furthermore, according to recent studies that show the regularized
discriminator requires intense training [8,35], multiple training iterations for the discrim-
inator are applied; the discriminator is trained over five times per one training iteration
of the generator. For the generator and the classifier, the conditional batch normalization
(cBN) [37] and layer normalization (LN) [38] techniques are used, respectively.

For the neural network structures in ScoreGAN, we followed a typical architecture
that is generally introduced in many other studies [27,39]. The detailed structures are
shown in Table 1. Two time-scale update rule (TTUR) [17] is employed with learning rates
of 4 × 10−4 and 2 × 10−4 for the discriminator and the generator, respectively. The learning
rates halve after 50,000 iterations; then, the models are further trained with the halved
learning rates for another 50,000 iterations. The Adam optimization method is used with
the parameters of β1 = 0 and β2 = 0.9, which is the same setting as the other recent
studies [29,35]. The maximum threshold for the training from the classifier was set to 0.1.
The parameter δ in (8) that modulates the training from the evaluator was set to 0.5.

Table 1. Architecture of neural network modules. The values in the brackets indicate the number of
convolutional filters or nodes of the layers. Each ResBlock is composed of two convolutional layers
with pre-activation functions.

Generator Discriminator Classifier

Z ∈ R
128 Z ∈ R

32×32×3 Z ∈ R
32×32×3

Dense (4 × 4 × 256) ResBlock Downsample (256)
ResBlock (32) × 3

ResBlock Downsample (32)

ResBlock Upsample (256) ResBlock Downsample (256)
ResBlock (64) × 3

ResBlock Downsample (64)

ResBlock Upsample (256) ResBlock (256)
ResBlock (128) × 3

ResBlock Downsample (128)

ResBlock Upsample (256) ResBlock (256) ResBlock (128) × 3

cBN; ReLU; Conv (3); Tanh ReLU; Global Pool; Dense (1) LN; ReLU; Global Pool; Dense (10)

4. Results

In this section, we discuss the performance of ScoreGAN with respect to the Inception
score, the FID, and the quality of the generated images. In the experiments, three images
datasets called CIFAR-10, CIFAR-100, and LSUN were used. Three subsections in this
section explain the performance results on each dataset. The characteristics of the datasets
are described in Table 2.

Table 2. Datasets used in the experiments.

Name Image Res. No. of Samples Descriptions

CIFAR-10 32 × 32 50,000
10 classes of small objects
5000 images per class

CIFAR-100 32 × 32 50,000
100 classes of small objects
500 images per class

LSUN
down-sampled
to 128 × 128 around 10 million

10 classes of indoor and outdoor scenes
around 120,000 to 3,000,000 per class
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4.1. Image Generation with CIFAR-10 Dataset

The proposed ScoreGAN was evaluated over the CIFAR-10 dataset, which is conven-
tionally employed as a standard dataset to assess the image generation performance of
GAN models in many studies [26,27,29,35,39–42]. The training set of the CIFAR-10 dataset
is composed of 50,000 images that are from 10 different classes. To train the models, we
used a minibatch size of 64, and the generator was trained over 100,000 iterations. The other
settings and the structure of ScoreGAN that was used to train the CIFAR-10 dataset are
described in the previous section. Since the proposed ScoreGAN introduces an additional
evaluator compared to ControlGAN, we used ControlGAN as the baseline; thereby, we can
properly assess the effect of the additional evaluator.

To evaluate the image generation performance of the models, the Inception score and
FID were employed. As described in the previous sections, since the Inception score is
the average of the relative entropy between each prediction and the marginal predictions,
a higher Inception score signifies better-quality and a rich diversity of the generated
samples; conversely, a lower FID indicates that the feature distributions of the generated
samples are similar to those of the real samples. Notice that, for ScoreGAN, the Inception
score and FID are measured after the training iterations (100,000). It is expected that we
can enhance the performance results if the models are repeatably measured during the
training, and then, we selected the best model among the iterations, as conducted in several
studies [8,39].

Table 3 shows the performance of GAN models in terms of the Inception score and
FID. While the neural network architectures of the GAN are the same as ControlGAN,
the proposed ScoreGAN demonstrates superior performance compared to ControlGAN,
which verifies the effectiveness of the additional evaluator in ScoreGAN. The Inception
score increased by 20.5%, from 8.60 to 10.36, which corresponds to state-of-the-art perfor-
mance among the existing models thus far. The FID also decreased by 21.1% in ScoreGAN
compared to ControlGAN in which the FID values of ScoreGAN and ControlGAN are 8.66
and 10.97, respectively. Random examples that are generated by ScoreGAN are shown
in Figure 2.

Figure 2. Random examples of the generated images by ScoreGAN with the CIFAR-10 dataset. Each
column represents each class in the CIFAR-10 dataset. All images have a 32 × 32 resolution.
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Table 3. Performance of GAN models over the CIFAR-10 dataset. IS indicates the Inception score;
FID indicates the Fréchet Inception distance. The best performances are highlighted in bold.

Methods IS FID

Real data 11.23 ± 0.20 -

ControlGAN [29] 8.61 ± 0.10 -
ControlGAN
(w/Table 1; baseline)

8.60 ± 0.09 10.97

Conditional
DCGAN [40]

6.58 -

AC-WGAN-GP [33] 8.42 ± 0.10 -
CAGAN [27] 8.61 ± 0.12 -
Splitting GAN [41] 8.87 ± 0.09 -
BigGAN [8] 9.22 14.73
MHingeGAN [39] 9.58 ± 0.09 7.50
ScoreGAN 10.36 ± 0.15 8.66

The results of this study appear to validate the effectiveness of both the additional
evaluator and auxiliary score present in ScoreGAN. It can be said that the generator in
ScoreGAN appears to properly learn general features through the pretrained evaluator
and is then enforced to produce a variety of samples by maximizing the score. This is
reflected not only in an increase in the Inception scores, but also in a decrease in the FID
scores. Since the FID measures the similarity between feature distributions, it is less related
to the objective of ScoreGAN. Therefore, this enhancement of the decreased FIDs could
be evidence that ScoreGAN does not overfit on the Inception scores, and the proposed
evaluator enhances the performance. Furthermore, since ScoreGAN does not use the
Inception network as the evaluator and the score, it is difficult to regard the generated
samples by ScoreGAN as adversarial examples of the Inception network, as shown in the
examples in Figure 2, where the images are far from noises.

The detailed Inception score and FID over iterations are shown in Figure 3. As shown
in the figures, the training of ControlGAN becomes slow after 30,000 iterations, while the
proposed ScoreGAN continues its training. For example, the Inception score of ControlGAN
at 35,000 iterations is 8.48, which is 98.6% of the final Inception score, while, at the same
time, the Inception score of ScoreGAN is 9.34, which corresponds to 90.2% of its final
score. The FID demonstrates similar results to those of the Inception score. In ControlGAN,
the FID decreases by 10.7% from 50,000 to 100,000 iterations; in contrast, it declines by
26.9% in ScoreGAN. Such a result implies that the generator in ScoreGAN can be further
trained by the proposed evaluator, although the training of the discriminator is saturated.

Figure 3. The performance of ScoreGAN in terms of the Inception score and Fréchet Inception distance
over iterations. (A) The Inception scores; (B) the Fréchet Inception distance (FID). The baseline is
ControlGAN with the same neural network architecture, identical to that of ScoreGAN.

167



Axioms 2022, 11, 701

4.2. Image Generation with CIFAR-100 Dataset

To generalize the effectiveness of ScoreGAN, the CIFAR-100 dataset was employed
for the evaluation of the GAN models. The CIFAR-100 dataset is similar to the CIFAR-
10 dataset, where each dataset contains 50,000 images of size 32 × 32 in the training set.
The difference between the CIFAR-100 dataset and the CIFAR-10 dataset is that the CIFAR-
100 dataset is composed of 100 different classes. Therefore, it is generally regarded that the
training of the CIFAR-100 dataset is more challenging than that of the CIFAR-10 dataset.
The architectures used in this experiment are shown in Appendix A.

Since existing methods in several recent studies have been evaluated over the CIFAR-
100 dataset [43], we compared the performance between ScoreGAN and the existing
methods. The performance in terms of the Inception score and FID is demonstrated in
Table 4. The results show that ScoreGAN outperforms the other existing models. While the
same neural network architectures are used in both methods, the performance of ScoreGAN
is significantly superior to that of the baseline. For instance, the FID significantly declines
from 18.42 to 13.98, which corresponds to a state-of-the-art result. Random examples of the
generated images with ScoreGAN trained with CIFAR-100 are shown in Figure 4.

Figure 4. Random examples of the generated images by ScoreGAN with the CIFAR-100 dataset. Each
column represents each class in the CIFAR-100 dataset. All images have a 32 × 32 resolution.
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Table 4. Performance of the GAN models over the CIFAR-100 dataset. IS indicates the Inception
score; FID indicates the Fréchet Inception distance. The best performances are highlighted in bold.

Methods IS FID

Real data 14.79 ± 0.18 -

ControlGAN
(baseline)

9.32 ± 0.11 18.42

MSGAN [43] - 19.74
SNGAN [42] 9.30 ± 0.08 15.6

MHingeGAN [39] 14.36 ± 0.09 17.30
ScoreGAN 13.11 ± 0.16 13.98

While the Inception score of ScoreGAN is slightly lower than that of MHingeGAN [39],
such a disparity results from a difference in the assessment of the scores, in which,
for MHingeGAN, the Inception score is continuously measured during the training itera-
tions; then, the best score is selected among the training iterations. In contrast, the Inception
score of ScoreGAN is computed only once after 100,000 iterations. Furthermore, in terms of
the FID, ScoreGAN demonstrates superior results, compared to MHingeGAN. Furthermore,
it is reported that the training of MHingeGAN over the CIFAR-100 dataset collapses before
100,000 iterations.

4.3. Image Generation with LSUN Dataset

For an additional experiment, ScoreGAN was applied to another dataset, called
LSUN [44]. LSUN is a large-scale image dataset with 10 million images in 10 different scene
categories, such as bedroom and kitchen. Furthermore, different from the CIFAR-10 and
CIFAR100 datasets, LSUN is composed of high-resolution images; therefore, we evaluated
ScoreGAN with LSUN to verify that the proposed framework can be performed with high-
resolution images. In this experiment, ScoreGAN produces 128× 128 resolution images.

The training process is the same as the previous experiments with the CIFAR datasets,
while different training parameters were used; a learning rate of 5× 10−5 was used for both
the generator and discriminator, and the weights of the discriminator were updated two
times for each update of the generator. Furthermore, the number of layers of the generator
and discriminator was increased due to the resolution of the produced images. Since the
resolution of the images is four times that of the CIFAR datasets, two additional residual
modules were employed, which correspond to four additional convolutional layers for
both the generator and discriminator.

Examples of the generated images by ScoreGAN are shown in Figure 5. The proposed
model produced fine images for each category in the LSUN dataset. These results confirm
that the proposed model can be applied to higher-resolution images than those in the
CIFAR datasets, which demonstrates the generality of the performance of the proposed
model. The result of the additional experiments signifies that the proposed model can be
trained with various image datasets that have many image categories, such as CIFAR-100,
as well as datasets with high-resolution images, such as LSUN.
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Figure 5. Random examples of the generated images by ScoreGAN with the LSUN dataset. The im-
ages are a 128 × 128 resolution. Each column represents each class in the LSUN dataset, i.e., bedroom,
bridge, church outdoor, classroom, conference room, dining room, kitchen, living room, restaurant,
and tower.

5. Conclusions

In this paper, the proposed ScoreGAN introduces an evaluator module that can be
integrated with conventional GAN models. While it is known that the regular use of
the Inception score to train a generator corresponds to making noise-like adversarial
examples of the Inception network, we circumvented this problem by using the score as an
auxiliary target and employing MobileNet instead of the Inception network. The proposed
ScoreGAN was evaluated over the CIFAR-10 dataset and CIFAR-100 dataset. As a result,
ScoreGAN demonstrated an Inception score of 10.36, which is the best score among the
existing models. Furthermore, evaluated over the CIFAR-100 dataset in terms of the FID,
ScoreGAN outperformed the other models, where the FID was 13.98.

Although the proposed evaluator is integrated with the ControlGAN architecture and
demonstrated fine performance, it needs to be further investigated whether the evaluator
module properly performs when it is additionally used for other GAN models. Since the
evaluator module can be employed along with various GANs, the performance can be
enhanced by adopting other GAN models. Furthermore, in this paper, only the Inception
score is introduced to train the generator while the other metric to assess GANs, i.e., the FID,
can be used as a score. Such a possibility to use the FID as a score should be further studied
as well for future work.
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Appendix A. Neural Network Architectures of ScoreGAN for the CIFAR-100 Dataset

Table A1. Architecture of the neural network modules for the training of the CIFAR-100 dataset.
The values in the brackets indicate the number of convolutional filters or nodes of the layers. Each
ResBlock is composed of two convolutional layers. The difference between the architecture for the
CIFAR-10 dataset is at the classifier, in which 256 filters are used in the last three ResBlocks.

Generator Discriminator Classifier

Z ∈ R
128 Z ∈ R

32×32×3 Z ∈ R
32×32×3

Dense (4 × 4 × 256) ResBlock Downsample (256) ResBlock (32) × 3
ResBlock Downsample (32)

ResBlock Upsample (256) ResBlock Downsample (256) ResBlock (64) × 3
ResBlock Downsample (64)

ResBlock Upsample (256) ResBlock (256) ResBlock (128) × 3
ResBlock Downsample (128)

ResBlock Upsample (256) ResBlock (256) ResBlock (256) × 3

cBN; ReLU; Conv (3); Tanh ReLU; Global Pool; Dense (1) LN; ReLU; Global Pool; Dense (100)
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Abstract: Waste detection is one of the main problems preventing the realization of automated
waste classification, which is a basic function for robotic arms. In addition to object identification
in general image analysis, a waste-sorting robotic arm not only needs to identify a target object but
also needs to accurately judge its placement angle so that it can determine an appropriate angle
for grasping. In order to solve the problem of low-accuracy image detection caused by irregular
placement angles, in this work, we propose an improved oriented waste detection method based
on YOLOv5. By optimizing the detection head of the YOLOv5 model, this method can generate
an oriented detection box for a waste object that is placed at any angle. Based on the proposed
scheme, we further improved three aspects of the performance of YOLOv5 in the detection of waste
objects: the angular loss function was derived based on dynamic smoothing to enhance the model’s
angular prediction ability, the backbone network was optimized with enhanced shallow features and
attention mechanisms, and the feature aggregation network was improved to enhance the effects
of feature multi-scale fusion. The experimental results showed that the detection performance of
the proposed method for waste targets was better than other deep learning methods. Its average
accuracy and recall were 93.9% and 94.8%, respectively, which were 11.6% and 7.6% higher than
those of the original network, respectively.

Keywords: waste classification; angle detection box; dynamic smoothing; YOLOv5

MSC: 68T20; 68T45; 68U10

1. Introduction

Waste disposal is an important problem worldwide that must be addressed. Classifying
waste and implementing differentiated treatments can help to improve resource recycling and
promote environmental protection. However, many countries and regions still rely on manual
waste classification. The main drawbacks of this are twofold. First, the health of operators can
be seriously threatened by the large number of bacteria carried by waste [1]. Second, manual
sorting is not only costly but also inefficient. Consequently, automated waste management
and classification approaches have received extensive attention [2].

Using a robotic arm is a common method for replacing the manual mode with auto-
mated waste sorting [3]. In order to enable the robot arm to correctly classify and grasp
the target object, each robot arm needs to have the functions of object recognition and
placement angle judgment.

Wu et al. [4] proposed a plastic waste classification method based on FV-DCNN. They
extracted classification features from original spectral images of plastic waste and con-
structed a deep CNN classification model. Their experiments showed that the model could
recognize and classify five categories of polymers. Chen et al. [5] proposed a lightweight
feature extraction network based on MobileNetv2 and used it to achieve image classifica-
tion of waste. Their experiments showed that the average accuracy of the classification
with their dataset was 94.6%. Liu et al. [6] proposed a lightweight neural network based
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on MobileNet that can reduce the cost of industrial processes. Kang et al. [7] proposed an
automated waste classification system based on the ResNet-34 algorithm. The experimental
results showed that the classification had high accuracy, and the classification speed of the
system was as quick as 0.95 s.

These models can recognize categories of waste intelligently based on convolutional
neural networks, but they do not generate location boxes for the waste targets. In addition,
when there are multiple categories of waste in an image, such models cannot achieve effec-
tive identification. Therefore, they cannot be applied directly to tasks such as automated
waste sorting.

Cui et al. [8] used the YOLOv3 algorithm to detect domestic waste, decoration waste
and large waste on the street. Xu et al. [9] proposed a five-category waste detection
model based on the YOLOv3 algorithm and achieved 90.5% average detection accuracy
with a self-made dataset. The dataset included paper waste, plastic products, glass prod-
ucts, metal products and fabrics. Chen et al. [10] proposed a deep learning detection
network for the classification of scattered waste regions and achieved good detection re-
sults. Majchrowska et al. [11] proposed deep learning-based waste detection method for
natural and urban environments. Meng et al. [12] proposed a MobileNet-SSD with FPN for
waste detection.

These methods can achieve image-based waste detection, but they do not provide the
grasping angle information for the target object. For a target object placed at any angle,
these methods only provide a horizontal identification box. Therefore, the robotic arm
cannot determine the optimal grasp mode for the shape and placement angle of a waste
object, which may easily lead to the object falling or to grabbing failure, especially in cases
involving a large aspect ratio, as a small angle deviation can lead to a large deviation in the
intersection over union (IoU).

In addition to object identification in general image analysis, a waste-sorting robotic
arm not only needs to identify a target object but also needs to accurately judge its placement
angle so that the robotic arm can determine the appropriate grasping angle. YOLOv5 has a
strong feature extraction structure and feature aggregation network, allowing it to achieve
higher detection recall and accuracy. It also provides a series of methods that can be used to
achieve data enhancement. YOLOv5 is a good choice for many common identification and
classification problems due to its fast detection speed, high detection accuracy and easy
deployment, making it popular in many practical engineering applications. Li et al. [13]
and Chen et al. [14] proposed improved algorithms for vegetable disease and plant disease
detection based on YOLOv5. Their experiments showed that the detection rates reached
93.1% and 70%, respectively, which were better than other methods. Ling et al. [15] and
Wang et al. [16] proposed gesture recognition and smoke detection models, respectively,
based on YOLOv5. Gao et al. [17] proposed a beehive detection model based on YOLOv5.
However, the original YOLOv5 does not provide the grasping angle information required
for a target object. For a target object placed at any angle, it only provides a horizontal
identification box, as shown in Figure 1a. Therefore, the robotic arm cannot determine
the optimal grasp mode for the shape and placement angle of a target object, which may
easily lead to the object falling or to grabbing failure, especially in cases involving a large
aspect ratio.
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(a) (b) 

Figure 1. Grabbing with horizontal and oriented detection box. (a) Horizontal detection box;
(b) oriented detection box.

In this work, we made two modifications to YOLOv5 to improve its suitability for
automated waste sorting application scenarios. First, we added an angular prediction
network in the detection head to provide grasping angle information for the waste object
and developed a dynamic smoothing label for angle loss to enhance the angular prediction
ability of the model. Second, we optimized the structure of the feature extraction and
aggregation by enhancing the multi-scale feature fusion.

The contributions of this work are threefold:
(1) An optimized waste detection approach was designed based on YOLOv5 that

provides higher detection accuracy for both general-sized waste and waste with a large
aspect ratio;

(2) An angular prediction method is proposed for YOLOv5 that enables the rotation
detection box to obtain the actual position of oriented waste;

(3) New optimization schemes are introduced for YOLOv5, including a loss function,
feature extraction and aggregation.

2. Detection Method for Oriented Waste

2.1. Detection Scheme

As shown in Figure 2, the framework of the proposed waste detection scheme consists
of five parts: the input layer, feature extraction backbone network, feature aggregation
network, detection head and dynamic smoothing module. In this study, the backbone
network mainly consisted of the focus module, the convolution module and an optimized
HDBottleneckCSP module based on BottleneckCSP. The focus module reduces the number
of computations and improves the speed in accordance with the slicing operation. The
BottleneckCSP module is a convolution structure that demonstrates good performance
in model learning. The backbone was used to extract the features from waste images
and generate feature maps with three different sizes. The feature aggregation network
converges and fuses multi-scale features generated from the backbone network to improve
the representation learning ability for rotating waste angle features. The detection head
generates the category, location and rotation angle for waste based on the multi-scale
feature maps. Finally, the dynamic smoothing module partially densifies the “one-hot label
encoding” of the angle labels for model training.
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V c x y l s θ=

Figure 2. Rotation angle waste detection scheme.

2.2. Improvement of Detection Model

The original YOLOv5 model has the following limitations: (i) It can only generate
a target detection box with a horizontal angle and not a rotation angle. (ii) The stack of
bottleneck modules in BottleneckCSP is serial, which causes the middle-layer features to be
lost. (iii) The feature aggregation network lacks end-to-end connection between the input
and output feature maps.

To solve these problems, we optimized three aspects of YOLOv5: (i) We added an
angular prediction network and loss function, as well as a dynamic angle smoothing
algorithm for angular classification, to improve the angular prediction ability. (ii) We
optimized the BottleneckCSP module of the backbone network to enhance the model’s
ability to extract the features of oriented waste. (iii) We optimized the feature aggregation
network to improve the effect of multi-scale feature fusion.

2.2.1. Improvement of the Detection Head Network

The original YOLOv5 detector lacks a network structure for angular prediction and
cannot provide the grasping angle information for waste objects. Therefore, the robotic arm
cannot set the optimal grasp mode according to the placement angle of the waste, which
easily leads to the object falling or to grabbing failure. Thus, we optimized the structure of
the detection head.

Angular prediction can be realized as regression or classification. The regression mode
produces a continuous prediction value for the angle but there is a periodic boundary
problem, which leads to a sudden increase in the value of the loss function at the boundary
of periodic changes, increasing the difficulty of learning [18]. For example, in the 180◦

long-side definition method, the defined label range is (−90◦, 90◦). When the true angle
of waste is 89◦ and the prediction is −90◦, the error learned by the model is 179◦, but the
actual error should be 1◦, which affects the learning of the model.

Therefore, we added convolution network branches in the detection head and defined
the angle label with 180 categories obtained by rotating the long side of the target box
clockwise around the center. The angle convolution network generates the angle predic-
tion using information extracted from the multi-scale features obtained by the feature
aggregation network.
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In the detection head, the angle convolution network and the original network share
the output of the feature aggregation network as the input feature graph. The output of the
angle prediction network and the original network are merged as follows:

V = (ĉ, x̂, ŷ, l̂, ŝ, θ̂) (1)

where ĉ is the predicted category of the waste, x̂ and ŷ are the predicted central coordinates
of the object box, l̂ and ŝ are the predicted lengths of the longer side and shorter side of the
object box and θ̂ is the predicted angle of oriented waste.

2.2.2. Angle Smoothing and Loss Function

The realization of angular prediction as classification can avoid the periodic boundary
problem caused by regression, but there are still some limitations. The loss function of
traditional category tasks is calculated as cross-entropy loss, and the form of the labels is
“one-hot label encoding”, as shown in Equations (2) and (3):

yic =

{
1, c = θ
0, c �= θ&c ∈ {0, 1, . . . , 179} (2)

L = − 1
N ∑

i

179

∑
c=0

yiclog(pic) (3)

where yic is the “one-hot label encoding” for the angle of sample i, θ is the angle of the
oriented waste and pic is the prediction of the detection model.

Equation (8) shows that, for different incorrect predictions of the angle, the same loss
value is obtained and the distance of the mistake cannot be quantified, which makes it
difficult for model training to determine the angle of the oriented waste.

To solve this problem, we propose a dynamic smoothing label algorithm based on the
circular smooth label (CSL) algorithm [18] to optimize the “one-hot label encoding” label
of the angle.

The circular smooth label algorithm is shown in Equation (4):

CSL(x) =
{

g(x), θ − r < x < θ + r & x ∈ {0, 1, . . . , 179}
0, others

(4)

where θ is the rotation angle value, r is the range of smoothness and g(x) is the smoothing
function. The angle label vector manifests as a “dense” distribution because g(x) is within
the range of smoothness.

The value of the smoothing function is shown in Equation (5):

0 < g(θ − ε) = g(θ + ε) ≤ 1, |ε| ≤ r (5)

where, when ε = 0, the function has a maximum value of 1, and when ε = r, it is 0.
The CSL algorithm partially densifies the “one-hot label encoding”. When the angular

prediction of the model is in the range of smoothness, different loss values for different
predicted degrees are obtained; thus, it can quantify the mistake in the angle category
prediction. However, the performance of CSL is sensitive to the range of smoothness. If the
range of smoothness is too small, the smoothing label will degenerate into “one-hot label
encoding” and lose its effect, and it will be difficult to learn the information from the angle.
If the range is too large, the deviation in the angle prediction will be large, which will lead
to it missing the object, especially for waste with a large aspect ratio.

Therefore, we propose a dynamic smoothing function for the angle label to adjust the
smoothing amplitude and range.

The dynamic smoothing function uses the dynamic Gaussian function to smooth the
angle labels. It can be seen from Figure 3 that the smoothing amplitude and the range
of the Gaussian function are controlled by the root mean square (RMS) value: the larger
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the RMS, the flatter the curve; the smaller the RMS, the steeper the curve and the smaller
the smoothing range. Therefore, the RMS of the Gaussian function is gradually shrunk to
achieve dynamic smoothing, as shown in Equation (6).

DSM(x) = exp
(
−d2(x, θ)

2 × b2

)
, x ∈ {0, 1, . . . , 179} (6)

We provide two efficient functions—linear annealing and cosine annealing—to adjust
the RMS, as follows:

b = c + e × cos(
0.5 × π × epoch

epochs
)

b = c − e × epoch
epochs

where θ is the value of the rotation angle for the waste, which corresponds to the peak
position of the function; x is the encoding range of the waste angle; b is the value of the RMS;
and d(x, θ) is the circular distance between the encoding position and the angle values. For
example, if θ is 179, d(x, θ) is 1 when x is 0; epoch and epochs represent the current number
of training rounds and the maximum number of rounds of the model, respectively, and c
and e are hyper-parameters.

Figure 3. Gaussian function curves with different RMS.

It can be seen from Equation (6) that the DSM densifies the angle label according to
the distance between the encoding position and the angle value dynamically. In the early
stage of model training, b obtained large values because of the small epoch. At this time,
the range of smoothing was large, and the model’s learning of angles was reflected in the
window area. When the smoothing range was more “loose”, the model came closer to the
neighborhood area of the optimal point; thus, it reduced the difficulty of angle learning and
improved the recall rate in image waste detection. The range of angle smoothing decreased
with the increase in the epoch value. The objective of the model was changed from the
optimal region to the learning of the optimal point so that the deviation in the angular
prediction would be smaller. The higher accuracy of the angle prediction improved the
recall rate for the oriented waste, especially in cases with a large aspect ratio.
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The angular loss of waste was calculated using the cross-entropy loss function based
on the dynamic smoothing algorithm:

loss(a) = −
s2

∑
i=0

Iobj
ij

179

∑
t=0

{ p̂i(t) log[pi(t)] + [1 − p̂i(t)] log[1 − pi(t)]} (7)

where p̂i(t) = DSM(t). pi(t) is the prediction of the angle and s2 is the quantification of
the subdomain of the picture, and the model provides the prediction of the target for each
subdomain. Iobj

ij is 0 or 1, which indicates whether there is a target. When the prediction is
close to the true value, the cross-entropy has a smaller value.

In addition, the GIoU loss function [19] was used to calculate the regression loss of the
detection boundary box. In Figure 4, A and B are the real box and the prediction box of the
detection target, respectively. C is the smallest rectangle surrounding A and B. The green
area is |C| − |A ∪ B|.

The specific calculation is shown in Equations (8)–(10). GIoU not only pays attention
to the overlap of the real box and the prediction box but also to the non-overlapping area,
which allows it to solve the problem of the gradient not being calculated caused by A and
B not intersecting.

Figure 4. Illustration of GIoU.

IoU(A, B) =
|A ∩ B|
|A ∪ B| (8)

GIoU(A, B) = IoU(A, B)− |C| − |A ∪ B|
|C| (9)

loss(r) = 1 − GIoU(A, B) (10)

In the equations, A and B are the real box and the prediction box of the detection
target, respectively. C is the smallest rectangle surrounding A and B. The confidence loss
function and category loss function are as shown by Equations (11) and (12):

loss(o) = −
s2

∑
i=0

B
∑

j=0
Iobj
ij [ĉi log(ci) + (1 − ĉi) log(1 − ci)]

−lnoobj
s2

∑
i=0

B
∑

j=0
Inoobj
ij [ĉi log(ci) + (1 − ĉi) log(1 − ci)]

(11)

loss(c) = −
s2

∑
i=0

Iobj
ij ∑

c∈class
{ p̂i(c) log[pi(c)] + [1 − p̂i(c)] log[1 − pi(c)]} (12)

where Iobj
ij and Inoobj

ij indicate whether the prediction box j of the grid i is the target box,
and λnoobj indicates the weight coefficients.

The overall loss function of the improved model is a weighted combination of the
above loss functions, as shown in Equation (13):

Loss = loss(r) + loss(o) + loss(c) + loss(a) (13)
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2.2.3. Improvement of Feature Extraction Backbone Network

The feature extraction backbone network was used to extract the features of the waste
in the image. Due to the addition of angular prediction in the detection of oriented waste,
there is a higher demand on the feature extraction to realize effective recognition, especially
in cases involving a large aspect ratio due to a narrow area.

BottleneckCSP is the main module in the backbone of YOLOv5. The BottleneckCSP
module is stacked using a bottleneck architecture. As shown in Figure 5a, the stacking of
the bottleneck modules is serial. With the deepening of the network, the feature abstraction
capability is gradually enhanced, but shallow features are generally lost [20]. Shallow
features have lower semantics and can be more detailed due to the fewer convolution
operations. Utilizing multi-level features in CNNs through skip connections has been
found to be effective for various vision tasks [21–23]. The bypassing paths are presumed
to be the key factor for easing the training of deep networks. Concatenating feature maps
learned by different layers can increase the variation in the input of subsequent layers
and improve efficiency [24,25]. In addition, attention mechanisms, which are methods
used to assign different weights to different features according to their importance, have
been found to be effective for the recognition of an image [26,27]. The coordinate attention
mechanism (CA) [28] is one such mechanism that shows good performance. Therefore, as
shown in Equation (14), we concentrated and merged the middle features of BottleneckCSP
and added the CA module to enhance the feature extraction capability. The attention
mechanism is optional in the module at different levels.

Zout = g
(

Zc
h×w×(c×t)

)
(14)

where ⎧⎪⎨
⎪⎩

Z1 = f1(x)
Zt = ft

(
Zt−1)

Zc =
[
Z1

h×w×(c×t), Z2
h×w×(c×t), . . . , Zt

h×w×(c×t)

]

 

(a) (b) 

Figure 5. Comparison of BottleneckCSP before and after improvement. (a) BottleneckCSP module.
(b) HDBottleneckCSP module.

Z is the feature map, x is the input of the BottleneckCSP module, f is the function
mapping of the bottleneck module, and g represents the CA attention operation.

Due to the “residual block” connection in the bottleneck architecture, excessive feature
merging between bottlenecks leads to feature redundancy, which is not suitable for model
training, and the increased number of parameters means that more resources are consumed.
Therefore, the characteristic layers were connected using “interlayer merging”, as shown in
Figure 5b. The optimized module was named HDBottleneckCSP.

The CA module structure in HDBottleneckCSP is shown in Figure 6. The input feature
maps are coded along the horizontal and vertical coordinates to obtain the global field
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and to encode position information, respectively, which helps the network to detect the
locations of targets more accurately.

Figure 6. CA attention module.

As shown in Equation (15), the CA module generates vertical and horizontal feature
maps for the input feature map and then transforms them through a 1 × 1 convolution.
The generated A ∈ R

C/r×(H+W) is the intermediate feature map for the spatial information
in the horizontal and numerical directions, r is the down sampling scale and F1 represents
the convolution operation.

A = δ
(

F1

([
Zh, Zw

]))
(15)

where A is divided into Ah ∈ R
C/r×H and Aw ∈ R

C/r×W in the spatial dimension. As
shown in Equations (16) and (17), it is transformed into the same number of channels as
the input feature map through the convolution operation, while gh and gw are used as the
attention weight and participate in the feature map operation. The output result of the CA
module is shown in Equation (18).

gh = δ
(

Fh

([
Ah
]))

(16)

gw = δ(Fw([Aw])) (17)

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j) (18)

The optimized feature extraction backbone network structure is shown in Figure 7. It
extracts features through the convolution module and the HDBottleneckCSP module and
generates feature maps with three sizes by downsampling (1/8, 1/16 and 1/32).

Figure 7. Backbone network structure for feature extraction.
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2.2.4. Improvement of Feature Aggregation Network

The YOLOv5 feature aggregation network consists of feature pyramid networks [29]
(FPNs) and path aggregation networks [30] (PANets). The structure of a PANet is shown
in Figure 8a. The PANet aggregates features along two paths: top-down and bottom-up.
However, the aggregated features are deep features with high semantics, and the shallow
features with high resolution are not fused. In order to make use of the input features more
effectively, we used P2P-PANet to replace the PANet based on BiFPN [31], as shown in
Figure 8b.

 
(a) (b) 

Figure 8. Network structures of PANet and P2P-PANet. (a) PANet network structure. (b) P2P-PANet
network structure.

Compared to PANet, P2P-PANet adds end-to-end connection for the input-feature and
output-feature maps, which establishes a “point-to-point” horizontal connection path from
the low level to the high level, and it can realize the fusion of high-resolution and complex
semantic features in an image without adding much cost. Through the extraction and
induction of semantic information for the high-resolution and low-resolution feature maps,
the angular feature information of rotating waste is further enhanced, and the detection
ability of the model is improved.

The method for oriented waste detection after all the optimizations was named
YOLOv5m-DSM and is shown in Figure 9. When a picture is input into the model,
YOLOv5m-DSM extracts features using the backbone and generates downsampling feature
maps with three different sizes for the detection of waste. The feature aggregation network
undertakes feature aggregation and fusion to enhance the model’s ability to learn features.
The detection head generates the prediction information for waste targets based on the
multi-scale features. In the model’s training stage, the label of the training set is smoothed
using the dynamic smoothing module, and the loss in the prediction, including class, angle
and position, is calculated using the loss calculation module for iterative learning.
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V c x y l s θ=

Figure 9. Method diagram for YOLOv5m-DSM.

3. Experimental Results and Analysis

3.1. Datasets

The dataset for the experiment contained eleven kinds of domestic waste, including a
cotton swab, a stick, paper, a plastic bottle, a tube, vegetables, peels, a shower gel bottle, a
coat hanger, clothes pegs and an eggshell. The vector of the label contained the category, the
center x coordinate of the target box, the center y coordinate of the target box, the long-side
value, the short-side value and the angle value. The angle was the angle between the long
side of the target frame and the horizontal axis in the clockwise direction, with a range of
(0◦, 180◦).

3.2. Evaluation Index

In order to evaluate the performance of YOLOv5m-DSM, it was compared and ana-
lyzed using the recall (R), mean average precision (mAP) and other indicators. The recall is
as follows:

R =
TP

TP + FN
× 100% (19)

TP represents a “true positive” sample, and FN represents a “false negative” sample.
The mean average precision formula is shown in Equation (20).

mAP =
1
m

m

∑
i=1

APi (20)

The mean average precision refers to the average precision (AP) for each category of
samples, which is calculated from the recall rate and precision (P) as follows:

R =
TP

TP + FN
× 100% (21)
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AP =
∫ 1

0
P(R)dR (22)

3.3. Experimental Results and Analysis

In order to better show the advantages of the method described in this paper, YOLOv5-
DSM was compared with mainstream horizontal box detection methods and rotating box
detection methods in the experiments.

Table 1 shows a comparison of the detection effects for YOLOv5m-DSM and horizontal
rectangular box detection methods, such as SSD-OBB, YOLOv3-OBB, YOLOv5s-OBB and
YOLOv5m-OBB, which are angle classification network structures commonly added in
detection heads based on their original models [32,33].

Table 1. Comparison between YOLOv5m-DSM and horizontal frame detection methods.

Method Recall/% mAP/%
AP of “Large Aspect Ratio Category”/%

Cotton Swab Stick Plastic Bottle Shower Gel Bottle Tube

SSD-OBB 82.1 74.9 42.6 41.9 76.2 71.6 67.8
YOLOv3-OBB 82.6 75.8 41.6 40.5 79.8 75.5 68.1
YOLOv5s-OBB 84.7 77.5 43.4 40.7 85.8 76.5 71.5
YOLOv5m-OBB 87.2 82.3 52.1 57.1 83.8 79.6 72.1

YOLOv5m-DSM (Cos) 94.5 93.3 70.1 80.7 100 100 99.9
YOLOv5m-DSM (Linear) 94.8 93.9 78.7 81.0 100 100 100

Table 1 shows that, compared with SSD-OBB, YOLOv3-OBB and YOLOv5s-OBB, the
recall rate and average precision of YOLOv5m were better. Compared with the original
network, YOLOv5m-DSM showed improvements of 7.6% and 11.6% in the recall rate and
the average precision, respectively. This proves that the modified waste detection algorithm
has obvious improvements. Furthermore, YOLOv5m-DSM showed a good detection effect
for oriented waste with a large aspect ratio, demonstrating an obvious improvement over
the original model. The good performance of DSM (Cos) and DSM (Linear) proves that the
dynamic smoothing label was effective and strong.

The detection effects of YOLOv5m, YOLOv5m-OBB and YOLOv5m-DSM are shown
in Figure 10. It can be seen from Figure 10a that the YOLOv5m network only generated a
horizontal detection box. It did not provide the grasping angle information for the waste
object. Therefore, the robotic arm could not set the optimal grasp mode according to the
inherent shape and placement angle of the target object, which could easily lead to the
object falling and to grabbing failure, especially in cases involving a large aspect ratio.
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(a) 

  
(b) 

  
(c) 

Figure 10. Comparison of detection effects of the methods. (a) Detection using YOLOv5m.
(b) Detection using YOLOv5m-OBB. (c) Detection using YOLOv5m-DSM.

Figure 10b shows that, when the angular classification network was added to the
detection head, YOLOv5m-OBB could generate a waste object detection box at any angle,
but the angle of the generated detection box was not accurate enough, especially in cases
involving a large aspect ratio. Due to the large aspect ratio, a slight deviation in the
prediction box resulted in a smaller IoU for the prediction box and the true box, which
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resulted in difficulties in the model training. Therefore, a large aspect ratio makes effective
learning difficult.

Figure 10c shows the detection results for YOLOv5m-DSM. It can be seen that YOLOv5m-
DSM could generate a waste object detection box at any angle and could detect objects involving
a large aspect ratio accurately. It can be seen that, with the optimization of the feature extraction
backbone network and feature aggregation network, and after the optimization of the loss
function through the dynamic smoothing algorithm, YOLOv5m-DSM had better precision and
performance in the detection of oriented waste.

Table 2 shows a comparison of the detection effects of YOLOv5m-DSM and the main-
stream rotating rectangular box detection methods.

Table 2. Comparison of YOLOv5m-DSM and rotating frame detection methods.

Method Recall/% mAP/% Params (M) GFLOPs FPS

RoI Trans 88.6 87.3 55.4 265.4 5.8
Gliding-Vertex 92.4 89.6 41.4 224.8 7.6

R3Det 91.4 90.1 48.0 250.5 7.0
S2A-Net 94.3 93.1 38.9 153.8 8.3

YOLOv5m-DSM (Cos) 94.5 93.3 23.7 76.5 15.5
YOLOv5m-DSM (Linear) 94.8 93.9 23.7 76.5 15.5

It can be seen that, when compared to RoI Trans [34], the average recall rate and
average precision of detection increased by 6.2% and 6.6%, respectively. Compared to
Gliding-Vertex [35], they increased by 2.4% and 4.3% respectively. Compared to R3Det [36],
they increased by 3.4% and 3.8%, respectively. The recall rate and average precision of the
YOLOv5m-DSM model were also better than those of S2A-Net [37], and our method had
fewer parameters and a detection rate twice as high. In addition, we extended the flops
counter tool to calculate the floating point operations (FLOPs) in the methods, and the
computation load of YOLOv5m-DSM was lower than the comparison algorithm, making
the model more suitable for deployment and application in embedded devices.

3.4. Network Model Ablation Experiment

The network model ablation comparison experiment was used to evaluate the opti-
mization effects of each improvement scheme. The experimental comparison results are
shown in Table 3. Optimization 1 involved using the dynamic smoothing algorithm to
densify the angle label conversion and calculate the loss function (1a is linear annealing and
1b is the cosine annealing angle). Optimization 2 involved the improvement of the feature
extraction backbone network based on the proposed HDBottleneckCSP module. Optimiza-
tion 3 involved an improvement of the feature aggregation network of the YOLOv5 based
P2P-PANet structure.

Table 3. Ablation experiment.

Method Angle op 1a op 1b op 2 op 3 Recall/% mAP/%

YOLOV5m × × × × × - -
YOLOV5m-OBB

√ × × × × 87.2 82.3
Optimization model 1

√ √ × × × 92.5 90.5
Optimization model 2

√ √ × √ × 93.6 91.7
Optimization model 3

√ √ × × √
93.4 91.5

YOLOv5m-DSM (Cos)
√ × √ √ √

94.5 93.3
YOLOv5m-DSM (Linear)

√ √ × √ √
94.8 93.9

It can be seen from Table 3 that, after adding the linear dynamic smoothing algorithm
and the corresponding loss function, the recall rate and mean average precision of optimiza-
tion model 1 increased by 5.3% and 8.2%, respectively. After adding the linear dynamic

186



Axioms 2023, 12, 18

smoothing algorithm and HDBottleneckCSP module, these values increased by 6.4% and
9.4% in optimization model 2, respectively. After adding the linear dynamic smoothing
algorithm and P2P-PANet module, they increased by 6.2% and 9.2% in optimization model
3, respectively. For the YOLOV5m-DSM (Linear) model, the detection recall rate and
average precision of the model increased by 7.6% and 11.6%, respectively, with the above
optimization methods.

In order to analyze the effects of replacing the original module structure with the HD-
BottleneckCSP structure and P2P-PANet network on the image waste detection algorithm
more clearly, as well as the reasons for these effects, the intermediate characteristic graphs
of YOLOv5 and YOLOv5m-DSM were extracted for comparison, as shown in Figure 10.

Figure 11a,b show an input image and label image, and Figure 11c–f and Figure 11g–j
show the 1/8, 1/16 and 1/32 down sampling feature maps of YOLOv5 and YOLOv5m-
DSM in the backbone network. It can be seen from Figure 11c,d,g,h that shallower feature
information was extracted from the model after using the HDBottleneckCSP network, and
the edge information and feature details of the waste were obtained more clearly. As can
be seen from Figure 11e,i, two network structures obtained high-level semantic features
through multi-layer convolution operations. Finally, from the comparison of Figure 11f,j,
we can see that the YOLOv5m-DSM network generated a clearer edge for the target object,
which led to an improvement in the recall and accuracy of the waste detection.

     
(a) (c) (d) (e) (f) 

     
(b) (g) (h) (i) (j) 

Figure 11. Intermediate characteristic diagrams of YOLOv5 and YOLOv5m-DSM. (a) Input image.
(b) Label image. (c–f) Down sampling feature maps of YOLOv5. (g–j) Down sampling feature maps
of YOLOv5m-DSM.

Table 4 shows a comparison of the detection effects of “interlayer merging” and “layer
by layer merging” on the characteristic layer of the HDBottleneckCSP network.

Table 4. Effect comparison of “interlayer merging” and “layer by layer merging”.

Model mAP/% Recall/% Parameters

Layer by layer merging 90.9 92.8 894,842
Interlayer merging 91.7 93.6 717,645

It can be seen from Table 4 that, compared with “layer by layer merging”, the “in-
terlayer merging” used for feature map aggregation had fewer training parameters and
a better detection effect. This was mainly because the “layer by layer merging” led to
excessive duplication of the use of feature maps, which can easily cause feature redundancy
and increase the difficulty of learning for the model. In addition, overly dense feature
map aggregation increases the number of channels in the feature map, thus increasing the
number of parameters and consuming more computing resources.
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Table 5 shows the effects of the proposed method with different backbones. It can be
seen that, compared with other backbones, such as VGG19, Resnet50, and CSPDarknet, the
backbone proposed in this paper achieved a better detection effect.

Table 5. Effect comparison with different backbones.

Backbone Recall/% mAP/%
AP of “Large Aspect Ratio Category”/%

Cotton Swab Stick Plastic Bottle Shower Gel Bottle Tube

VGG19 92.4 90.5 69.5 65.1 88.9 98.2 96.8
Resnet50 93.8 92.1 68.9 77.9 90.9 100 100

CSPDarknet 93.4 91.5 67.5 75.2 90.0 100 98.2
Ours 94.8 93.9 78.7 81.0 100 100 100

In order to analyze the effects of replacing the original module structure with the
HDBottleneckCSP and P2P-PANet network on image waste detection clearly, as well as the
reasons for these effects, Figure 11 shows maps of the feature aggregation network and the
detection results for YOLOv5 and YOLOv5m-DSM.

Figure 12a–h show the multi-scale feature maps and detection results for the network
obtained from the convergence of the original YOLOv5 and YOLOv5m-DSM features. It
can be seen from the graph analysis that the YOLOv5 model converged the feature map
but, in the generated multi-scale feature map, the contour of the detected object was not
clear enough, the feature differentiation from the background map was not obvious and a
situation occurred involving mixing with the background feature. The YOLOv5m-DSM
algorithm uses the P2P-PANet structure and the smoothing labels of the angle, which
makes the model’s learning of image features more obvious and the feature contour of the
detection object clearer and more differentiated from the background features, thus making
the final detection effect more accurate.

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 12. Feature aggregation network maps of YOLOv5 and YOLOv5m-DSM. (a–d) Multi-scale
feature maps and detection result of YOLOv5m. (e–h) Multi-scale feature maps and detection result
of YOLOv5m-DSM.

Table 6 shows a comparison of the effects of dynamic smoothing and the circular
smooth label with different hyper-parameters.

188



Axioms 2023, 12, 18

Table 6. Comparison of dynamic smoothing and the circular smooth label.

Method Recall/% mAP/%

CSL (r = 7) 92.8 91.0
CSL (r = 6) 93.2 91.8
CSL (r = 5) 93.2 91.3

DSM-Cos (c = 5, e = 4) 94.3 93.2
DSM-Cos (c = 4, e = 4) 94.1 93.1
DSM-Cos (c = 4, e = 3) 94.5 93.3

DSM-Linear (c = 8, e = 4) 94.2 93.5
DSM-Linear (c = 7, e = 4) 94.6 93.8
DSM-Linear (c = 7, e = 3) 94.8 93.9

It can be seen from the table that different detection effects were obtained by adjusting
the range of the circular smoothing algorithm. However, the performances of the two
kinds of dynamic smoothing were better than the best result with the circular smooth label.
This proves that the dynamic smoothing was strong. Dynamic smoothing controls angle
learning by shrinking the range of smoothness gradually. In the initial stage of model
training, a larger smoothing range was set to reduce the difficulty of model learning and
improve the recall rate for waste detection. With the iteration of the model learning, the
angle smoothing range was gradually reduced through the attenuation function to reduce
the angle deviation in target detection, thus improving the detection accuracy. Higher
accuracy for angle prediction can improve the recall rate for oriented waste, especially in
cases involving a large aspect ratio.

3.5. Detection Application Results

In order to demonstrate the waste detection performance of the improved method
proposed in this paper, the method was used for actual testing in different scenarios with
different levels of illumination, such as a waste station, garage, corridor, lawn, and so on.
The results are shown in Figure 13. It can be seen that the method detected the waste objects
effectively in a series of scenarios. It was proven that the method described in this paper is
able to carry out the detection of oriented waste effectively.

  

Figure 13. Cont.
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Figure 13. Waste detection with YOLOv5m-DSM in different scenarios.

4. Conclusions

This paper focused on waste detection for a robotic arm based on YOLOv5. In addition
to object identification in general image analysis, a waste-sorting robotic arm not only
needs to identify a target object but also needs to accurately judge its placement angle,
so that the robotic arm can set the appropriate grasping angle. In order to address this
need, we added an angular prediction network to the detection head to provide the
grasping angle information for the waste object and proposed a dynamic smoothing
algorithm for angle loss to enhance the model’s angular prediction ability. In addition,
we improved the method’s feature extraction and aggregation abilities by optimizing
the backbone and feature aggregation network of the model. The experimental results
showed that the performance of the improved method in oriented waste detection was
better than that of comparison methods; the average precision and recall rate were 93.9%
and 94.8%, respectively, which were 11.6% and 7.6% higher than those of the original
network, respectively.
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Abstract: Object detection and image recognition are some of the most significant and challenging
branches in the field of computer vision. The prosperous development of unmanned driving tech-
nology has made the detection and recognition of traffic signs crucial. Affected by diverse factors
such as light, the presence of small objects, and complicated backgrounds, the results of traditional
traffic sign detection technology are not satisfactory. To solve this problem, this paper proposes
two novel traffic sign detection models, called YOLOv5-DH and YOLOv5-TDHSA, based on the
YOLOv5s model with the following improvements (YOLOv5-DH uses only the second improvement):
(1) replacing the last layer of the ‘Conv + Batch Normalization + SiLU’ (CBS) structure in the YOLOv5s
backbone with a transformer self-attention module (T in the YOLOv5-TDHSA’s name), and also
adding a similar module to the last layer of its neck, so that the image information can be used
more comprehensively, (2) replacing the YOLOv5s coupled head with a decoupled head (DH in both
models’ names) so as to increase the detection accuracy and speed up the convergence, and (3) adding
a small-object detection layer (S in the YOLOv5-TDHSA’s name) and an adaptive anchor (A in the
YOLOv5-TDHSA’s name) to the YOLOv5s neck to improve the detection of small objects. Based
on experiments conducted on two public datasets, it is demonstrated that both proposed models
perform better than the original YOLOv5s model and three other state-of-the-art models (Faster
R-CNN, YOLOv4-Tiny, and YOLOv5n) in terms of the mean accuracy (mAP) and F1 score, achieving
mAP values of 77.9% and 83.4% and F1 score values of 0.767 and 0.811 on the TT100K dataset, and
mAP values of 68.1% and 69.8% and F1 score values of 0.71 and 0.72 on the CCTSDB2021 dataset,
respectively, for YOLOv5-DH and YOLOv5-TDHSA. This was achieved, however, at the expense of
both proposed models having a bigger size, greater number of parameters, and slower processing
speed than YOLOv5s, YOLOv4-Tiny and YOLOv5n, surpassing only Faster R-CNN in this regard.
The results also confirmed that the incorporation of the T and SA improvements into YOLOv5s leads
to further enhancement, represented by the YOLOv5-TDHSA model, which is superior to the other
proposed model, YOLOv5-DH, which avails of only one YOLOv5s improvement (i.e., DH).

Keywords: computer vision; object detection; traffic sign detection; you only look once (YOLO);
attention mechanism; feature fusion

MSC: 68W01; 68T01

1. Introduction

The detection and recognition of traffic signs play essential roles in the fields of assisted
driving and automatic driving. Traffic signs are not only the main sources for drivers to
obtain the necessary road information, but they also help adjust and maintain traffic
flows [1]. However, in real-life scenarios, the influence of complex weather conditions and
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the existence of various categories of objects presented on the road—with a large proportion
of these being small objects—have brought great challenges to the research on automatic
detection and recognition of traffic signs.

There were two traffic sign detection and recognition techniques in the early days—
one based on color features and the other based on shape features. Later, hybrid techniques
emerged, e.g., [2], which considered both the color and geometric information of traffic
signs during the feature extraction. The noise reduction and morphological processing
made it easier to process images based on shapes, using the geometric information of a
triangle, a circle, or a square commonly found in traffic signs, along with the RGB color
information, in order to identify the images containing traffic signs. Although such a
technique can detect the presence of traffic signs in images, it cannot distinguish between
different classes of traffic signs.

With the emergence of deep learning, some models based on it have been applied
for image classification and object detection, showing excellent performance, such as the
two-stage detectors, represented by, e.g., the region-based convolutional neural networks
(R-CNNs), and the single-stage detectors, represented by, e.g., You Only Look Once (YOLO)
versions. R-CNN [3] was the first model applying convolutional neural networks (CNNs)
for object detection. R-CNN generates candidate boxes first before detection to reduce
the information redundancy, thus improving the detection speed. However, it zooms and
crops images, resulting in a loss of original information. SPP-net [4] defined a spatial
pyramid pooling (SPP) layer in front of the fully connected layer, which allowed one to
input images of an arbitrary size and scale, thus not only breaking the constraint of fixed
sizes of input images but also reducing the computational redundancy. Fast R-CNN [5]
changed the original string structure of R-CNN into a parallel structure and absorbed the
advantages of SPP-net, which allowed it not only to accelerate the object detection but
also to improve the detection accuracy. However, if a large number of invalid candidate
regions is generated, it would lead to a waste of computing power, whereas a small number
of candidate regions would result in missed detection. Based on the above problems,
Ren et al. proposed the concept of region proposal networks (RPNs) [6], which generates
candidate regions through neural networks to solve the mismatch between the generated
candidate regions and the real objects. However, these two-stage models were not superior
in training and detection speed, so single-stage models, represented by the YOLO family,
came into existence [7]. By creating the feature map of the input image, the learning
category probability, and the boundary box coordinates of the entire image, YOLO sets
the object detection as a simple regression problem. The algorithm only runs once, which
of course reduces the accuracy, but allows achieving a higher processing speed than the
two-stage object detectors, thus making it suitable for real-time detection of objects. The
first version of YOLO, YOLOv1 [8], divides each given image into a grid system. Each
grid detects objects by predicting the number of bounding boxes of the objects in the grid.
However, if small objects in the image appear in clusters, the detection performance is
not as sufficient. The second version, YOLOv2 [9], preprocesses the batch normalization
based on the feature extraction network of DarkNet19 to improve the convergence of the
network. Later, YOLOv3 [10] added logic regression to predict the score of each bounding
box. It also introduced the method of Faster R-CNN giving priority to only one bounding
box. As a result, YOLOv3 can detect some small objects. However, YOLOv3 cannot fit
well with the ground truth. YOLOv4 [11] uses weighted real connections (WRCs), cross-
mini-batch normalization (CmBN), self-adaptive training (SAT), and other methods, which
allows it to not only keep suitable training and detection speed but also achieve better
detection accuracy. YOLOv5 passes each batch of training data through a data loader,
which performs three types of data enhancement—zooming, color space adjustment, and
mosaic enhancement. From the five models produced to date based on YOLOv5, this
paper proposes improvements to the YOLOv5s model, which uses two cross-stage partial
connections (CSP) structures (one for the backbone network and the other for the neck) and
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a weighted non-maximum suppression (NMS) [12] to improve the detection accuracy of
the occluded objects in images.

The two-stage object detectors, such as R-CNN, SPP-net, and Fast R-CNN mentioned
above, are not suitable for real-time detection of objects due to their relatively low de-
tection speed. As single-stage object detectors, the YOLO versions are obviously better
than the two-stage detectors in terms of the detection speed achieved. However, their
detection performance is not as efficient. To tackle this problem, this paper proposes two
novel YOLOv5s-based traffic sign detection models, called YOLOv5-DH and YOLOv5-
TDHSA, with the following improvements to YOLOv5s (YOLOv5-DH uses only the second
improvement below), which constitute the main contributions of the paper:

1. Replacing the last layer of the ‘Conv + Batch Normalization + SiLU’ (CBS) structure in
the YOLOv5s backbone with a transformer self-attention module (T in the YOLOv5-
TDHSA‘s name), and also adding a similar module to the last layer of its neck, so that
the image information can be used more comprehensively;

2. Replacing the YOLOv5s coupled head with a decoupled head (DH in the both models’
names) so as to increase the detection accuracy and speed up the convergence;

3. Adding a small-object detection layer (S in the YOLOv5-TDHSA‘s name) and an
adaptive anchor (A in the YOLOv5-TDHSA‘s name) to the YOLOv5s neck to improve
the detection of small objects.

Based on results obtained from experiments conducted on two public datasets (TT100K
and CCTSDB2021), the proposed YOLOv5-DH and YOLOv5-TDHSA models outperform
the original YOLOv5s model along with three other state-of-the-art models (Faster R-CNN,
YOLOv4-Tiny, YOLOv5n), as shown further in the paper.

The rest of the paper is organized as follows. Section 2 introduces the attention
mechanisms, feature fusion networks, and detection heads commonly used in object
detection models. Section 3 presents the main representatives of the two-stage and single-
stage object detection models. Section 4 explains the YOLOv5s improvements used by
the proposed models, including the transformer self-attention mechanism, the decoupled
head, the small-object detection layer, and the group of adaptive anchor boxes. Section 5
describes the conducted experiments, and presents and discusses the obtained results.
Finally, Section 6 concludes the paper.

2. Background

2.1. Attention Mechanisms

Attention is a data processing mechanism used in machine learning and extensively
applied in different types of tasks such as natural language processing (NLP), image
processing, and object detection [13]. The squeeze-and-exchange (SE) attention mecha-
nism aims to assign different weights to each feature map and focuses on more useful
features [14]. SE pools the input feature map globally, then uses a full connection layer
and an activation function to adjust the feature map, thus obtaining the weight of the
feature, which is multiplied with the input feature at the end. The disadvantage of SE is
that it only considers the channel information and ignores the spatial location information.
The convolutional block attention module (CBAM) solves this problem by first generating
different channel weights, and then compressing all feature maps into one feature map
to calculate the weight of the spatial features [15]. Currently, the self-attention [16] is one
of the most widely used attention mechanisms due to its strong feature extraction ability
and the support of parallel computing. The transformer self-attention mechanism, used
by the YOLOv5-TDHSA model proposed in this paper, can establish a global dependency
relationship and expand the receptive field of images, thus obtaining more features of
traffic signs.

2.2. Multi-Scale Feature Fusion

The feature pyramid network (FPN) [17] utilized in Faster R-CNN and Mask R-
CNN [18] is shown in Figure 1a. It uses the features of the five stages of the ResNet
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convolution groups C2–C6, among which C6 is obtained from a MaxPooling operation
by directly applying 1 × 1/2 on C5. The feature maps P2–P6 are obtained after the FPN
fusion, as follows: P6 is equal to C6, P5 is obtained through a 1 × 1 convolution followed
by a 3 × 3 convolution, and P2–P4 are obtained through a 1 × 1 convolution followed by a
fusion with the feature of the former 2 × Upsample and a 3 × 3 convolution.
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Figure 1. Different feature fusion structures.

The FPN in YOLOv3 is shown in Figure 1b. The features of C3, C4, and C5 are used.
The features from C5 to P5 first pass through five layers of convolution, and then through
one layer of 3 × 3 convolution. The features of P4 are obtained by connecting M5 (through
1 × 1 Conv + 2 × Upsample) and C4 through five layers of convolution, and one layer of
3 × 3 convolution. The features of P3 are obtained by connecting M4 (through 1 × 1
Conv + 2 × Upsample) and C3 through five layers of convolution, and one layer of
3 × 3 convolution.

The feature extraction network of YOLOv5 uses a ‘FPN + Path Aggregation Network
(PAN)’ [19] structure, as shown in Figure 1c. PAN adds a bottom-up pyramid behind the
FPN as a supplement. FPN conveys the strong semantic features from top to bottom, while
PAN conveys strong positioning features from bottom to top. The specific operation of
PAN includes first copying the last layer M2 of FPN as the lowest layer P2 of PAN, and then
fusing M3 with the downsampled P2 to obtain P3. P4 is obtained through a feature fusion of
M4 and downsampled P3. However, the feature extraction network does not work well for
the detection of small objects. The feature fusion utilized by the YOLOv5-TDHSA model,
proposed in this paper, is based on a small-object detection layer, making the detection of
small objects more accurate. This is described in more detail in Section 4.3.

2.3. Detector Head

Since the head of YOLOv1 only generates two detection boxes for each grid, it is
not suitable for both dense and small-object detection tasks. Its generalization ability is
weak when the size ratio of the same-type objects is uncommon. The head of YOLOv2
improves the network structure and also adds an anchor box. YOLOv2 removes the last
fully connected layer in YOLOv1, and uses convolution and anchor boxes to predict the
detection box. However, since the use of convolution to downsample the feature map
results in a loss of the fine-grained features, the model’s detection of small objects is poor.
Consequently, the passthrough layer structure has been introduced in the head of YOLOv2
to divide the feature map into four parts to preserve the fine-grained features. The head of
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YOLOv3 introduces a multi-scale detection logic and utilizes a multi-label classification
idea on the basis of YOLOv2. The loss function has been optimized as well. YOLOv4
adopts a multi-anchor strategy, different from YOLOv3. Any anchor box greater than the
intersection over union (IoU) [20] threshold is regarded as a positive sample, thus ensuring
that the positive samples ignored by YOLOv3 will be added to YOLOv4 to improve the
detection accuracy of the model. The output of YOLOv5 has three prediction branches.
The grid of each branch has three corresponding anchors. Instead of the IoU maximum
matching method, YOLOv5 calculates the width–height ratio of the bounding box to the
anchor of the current layer. If the ratio is greater than the parameter value set, this indicates
that the matching degree is poor, which is considered as a background. The coupled
detection head of YOLOv5s performs both the recognition and positioning tasks on a
feature map simultaneously. However, these tasks have different focuses, making the final
recognition accuracy low. The ‘decoupled head’ idea allows one to separate these two
tasks and achieve better performance. Therefore, the models proposed in this paper use a
decoupled head instead of the original YOLOv5s coupled head, which is described in more
detail in Section 4.2.

3. Related Work

Over the past 20 years, the object detection models were divided into two categories:
(1) traditional models (before 2012), such as V-J detection [21,22], HOG detection [23],
DPM [24], etc., and (2) deep learning (DL) models, beginning with AlexNet [25]. The
following subsections briefly present the DL object detection models, divided into two-
stage and one-stage models, whose development route is illustrated in Figure 2.
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Figure 2. The development route of the DL object detection models.

3.1. Two-Stage Object Detection Models

Krizhevsky et al. proposed AlexNet as a CNN framework when participating (and
winning the first place) in the ImageNet LSVRC 2012 competition. This model brought the
climax to the development of deep learning.

Later, R-CNN emerged for object detection. However, R-CNN unifies the size of all
candidate boxes, which causes a loss of the image content and affects the detection accuracy.
Based on R-CNN, SPP-net, Fast R-CNN, Faster R-CNN, Mask R-CNN, and other models
have been developed subsequently.

SPP-net was proposed in 2014. It inserts a spatial pyramid pooling layer between
the CNN layer and fully connected layer, which allows it to solve the R-CNN loss of the
image content caused by adjusting all candidate boxes to the same size. In order to find
the location of each area in the feature map, the location information is added after the
convolution layer. However, the time-consuming selective search (SS) [26] method is still
used to generate the candidate areas.

On the basis of R-CNN, Fast R-CNN adds an RoI (region of interest) pooling layer
and reduces the number of model parameters, thus greatly increasing the processing speed.
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The method of SPP-net is used for reference, CNN is used to process the input images, and
the serial structure of R-CNN is changed to a parallel structure, so that classification and
regression can be carried out simultaneously, and the detection is accelerated.

In order to solve the problem that Fast R-CNN uses the SS method to generate candi-
date areas, Faster R-CNN uses an RPN to directly generate candidate areas, which enables
the neural network to complete the detection task in an end-to-end fashion [27].

Based on Faster R-CNN, Mask R-CNN uses a fully constructive network (FCN). The
model operates in two steps: (1) generating the candidate regions through an RPN, and
(2) extracting the RoI features from candidate regions using RoIAlign (region of interest
alignment) to obtain the probability of object categories and the location information of
prediction boxes.

The two-stage object detection models are not suitable for real-time object detection
because they require multiple detection and classification processes, which lowers the
detection speed.

3.2. One-Stage Object Detection Models
3.2.1. YOLO

YOLO’s training and detection are carried out in a separate network. The object
detection is regarded as a process of solving a regression problem. As long as the input
image passes through inference, the location information of the object and the probability
of its category can be obtained [28]. Therefore, YOLO is particularly outstanding in terms
of detection speed. There are different versions of YOLO proposed to date. Based on its
fifth version, YOLOv5, five models have been produced, namely YOLOv5n, YOLOv5s,
YOLOv5m, YOLOv5l, and YOLOv5x. The YOLOv5-DH and YOLOv5-TDHSA models,
described in this paper, propose improvements to the YOLOv5s model, whose network
structure is shown in Figure 3. A focus network structure is used at the beginning of the
trunk to derive the value of every other pixel in an image. This is followed by four inde-
pendent feature layers, which are stacked. At that point, the width and height information
is concentrated on the channel, and the input channel is expanded four times.
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Figure 3. The structure of the YOLOv5s model.

YOLOv5s uses Mixup [29] and Mosaic for data enhancement, where Mosaic splices
four images to enrich the background of the detected object. The data of the four images
are processed at one time during a batch normalization computation.
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In the backbone part, the model extracts features from the input image. The extracted
features, through three feature layers, are used for the next network construction.

The main task of the neck part is to strengthen feature extraction and feature fusion,
so as to combine feature information of different scales. In the Path Aggregation Network
(PANet) structure, upsampling and downsampling operations are used to achieve feature
extraction. When the input size is 640 × 640 pixels, the maximum scale of output feature is
80 × 80 pixels, so the minimum size of the detection frame is 8 × 8 pixels. However, when
there are many smaller objects in the dataset, this will affect the detection accuracy. The
proposed improvements of YOLOv5s in this regard are described in Section 4.3.

In the head part, the three feature layers, which have been strengthened, are regarded
as a collection of feature points. This part is used to judge whether the feature points have
objects corresponding to them. The YOLOv5s detection head is a coupled head which
performs complete identification and location tasks on a feature map. However, recognition
and location are two different tasks. Therefore, this paper proposes a branch structure to
carry out recognition and location tasks separately. This improvement to the YOLOv5s
structure is described in more detail in Section 4.2.

There have been some improvements of YOLOv5 recently proposed for traffic sign
and traffic light recognition. For instance, Chen et al. [30] introduced a Global-CBAM
attention mechanism for embedding into YOLOv5′s backbone in order to enhance its
feature extraction ability, and achieved sufficient balance between the channel attention
and spatial attention for improving the target recognition. Due to this, the overall accuracy
of the model was improved, especially for small-sized target recognition, and the mean
accuracy (mAP) achieved was 6.68% higher than that before the improvement.

In order to solve the problem of using YOLOv5s for the recognition of small-sized traf-
fic signs, Liu et al. [31] proposed to replace the original DarkNet-53 backbone of YOLOv5s
with MobileNetV2 network for feature extraction, selecting Adam as the optimizer. The
result of this was the reduction in the number of parameters by 65.6% and the computation
amount by 59.1% on the basis of improving the mAP by 0.129.

Chen et al. [32] added additional multi-scale features to YOLOv5s to make it faster
and more accurate in capturing traffic lights when these occupy a small area in images. In
addition, a loop was established to update the parameters using a gradient of loss values.
This led to mAP improvement (from 0.965 to 0.988) and detection time reduction (from
3.2 ms inference/2.5 ms to 2.4 ms inference/1.0 ms NMS per image).

3.2.2. SSD

The Single Shot MultiBox Detector (SSD) [33] is a one-stage object detection model
proposed after YOLOv1. In order to improve YOLO’s imperfection for small-object detec-
tion, SSD uses feature maps of different sizes and prior boxes of different sizes to further
improve the regression rate and accuracy of the predicted box. The proportion of the prior
frame size to the image is calculated as follows:

Sk = Smin +
Smax − Smin

m − 1
(k − 1), (1)

where k ∈ [1, m], m denotes the number of characteristic graphs, and Smax and Smin denote
the maximum and minimum value of the ratio, respectively.

4. Proposed Improvements to YOLOv5s

This section describes the YOLOv5s improvements used by the models proposed in
this paper. The decoupled head (DH) improvement is used by both proposed models,
YOLOv5-DH and YOLOv5-TDHSA, whereas the other two improvements are used only
by YOLOv5-TDHSA.
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4.1. Transformer Self-Attention Mechanism

The transformer model was proposed by the Google team in June 2017 [34]. It has not
only become the preferred model in the NLP field, but also showed strong potential in the
field of image processing. The transformer abandons the sequential structure of Recurrent
Neural Networks (RNNs) and adopts a self-attention mechanism to enable the model to
parallelize training and make full use of the global information of training data.

The core mechanism of the transformer model is the self-attention depicted in Figure 4.
The regular attention mechanism first calculates the attention distribution on all input
information and then obtains the weighted average of the input information according to
this attention distribution. Self-attention maps the input features to three new spaces for
representation, namely Query (Q), Key (K), and Value (V). The correlation between Q and
K is calculated as well, after which a SoftMax function is used to normalize the data and
widen the gap between the data to enhance the attention. The weight coefficient and V
are weighted and summed to obtain the attention value. The self-attention mechanism
maps the features to three spatial representations, which allows one to avoid problems
encountered when features are mapped to only one space. For example, if Q1 and Q2 are
directly used to calculate the correlation, there will be no difference between the correlation
between Q1 and Q2 and the correlation between Q2 and Q1. In this case, the expression
ability of the attention mechanism will become weak. If K is introduced to calculate the
correlation between the original data, it can reflect the difference between Q1 and K2 on
one hand and Q2 and K1 on the other, which can also enhance the expression ability of the
attention mechanism. Since the input of the next step is the attention weight obtained, it is
not appropriate to use Q or K; thus, the third space, V, is introduced. Finally, the attention
value is obtained through weighted summation.
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Figure 4. The module structure of the transformer self-attention mechanism.

However, the transformer model would significantly increase the amount of compu-
tation, resulting in higher training costs. The feature dimension is the smallest when the
image features are transferred to the last layer of the network. At this moment, the influence
on training the model would be the smallest if the transformer is added. Therefore, the
proposed YOLOv5-TDHSA model uses the transformer only as a replacement of the CBS at
the last layer of the backbone of the original YOLOv5s model, and also adds the transformer
to the last layer of its neck.
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4.2. Decoupled Head

After performing analytical experiments indicating that the coupled detection head
may harm YOLO’s performance, the authors of [35] recommend replacing the original
YOLO’s head with a decoupled one. This idea is taken on board by the models proposed
in this paper to reduce the number of parameters and network depth, thus improving the
model training speed and reducing the feature losses.

During the object detection, it is necessary to output the category/class and position
information of the object. The decoupled head uses two different branches to output the
category and position information separately as the recognition and positioning tasks have
different focuses. The recognition focuses more on the existing class to which the extracted
features are closer. The positioning focuses more on the location coordinates of the ground
truth box so as to correct the parameters of the bounding box. YOLO’s head uses a feature
map to complete the two tasks of recognition and location in a convolution. Therefore, it
does not perform as well as the decoupled head D1 shown in Figure 5, which is used by the
models proposed in this paper. However, the decoupling process increases the number of
parameters, thus affecting the training speed of the model. Therefore, in order to reduce the
number of parameters, the feature first goes through a 1 × 1 convolution layer to reduce
the dimension and then through two parallel branches with two 3 × 3 convolution layers.
The first branch is used to predict the category. Since there are 45 categories in the TT100K
dataset used in this paper, the channel dimension becomes 45 after a convolution operation
and the processing of the Sigmoid activation function [36]. The second branch is mainly
used to determine whether the object box is a foreground or background. As a result,
the channel dimension becomes 1 after the convolution operation and Sigmoid activation
function. There is also a third branch used to predict the coordinate information (x, y, w,
h) of the object box. Therefore, after the convolution operation, the channel dimension
becomes 4. Finally, the three outputs are integrated into 20 × 20 × 50 feature information
through Concat for the next operation. The decoupled heads D2, D3, and D4, shown
in Figure 6, also follow the same steps to generate feature information of 40 × 40 × 50,
80 × 80 × 50, and 160 × 160 × 50, respectively. The proposed YOLOv5-DH model only uses
D1, D2, and D3 to replace the ‘Head’ part of the original YOLOv5s model (c.f., Figure 3).

Concat
CBL

CBL

CBL

Conv

Conv

Conv

Sigmoid

Sigmoid

CBL Conv BN Leaky 
Relu

Decoupled 
Head

1×1

3×3

3×3
20×20 20×20×45

20×20×1
20×20×4

20×20×50

D1

Figure 5. The structure of the decoupled head D1 used by the proposed models.
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Figure 6. The structure of the proposed YOLOv5-TDHSA model.

4.3. Small-Object Detection Layer and Adaptive Anchor

During the detection of traffic signs, the changing distance between the shooting
equipment and the object makes the size of traffic signs in the collected images different,
which has a certain impact on the detection accuracy [37]. YOLOv5s solves this problem
in the form of PANet. Taking an input image size of 640 × 640 pixels as an example, the
feature information of the feature map output through the original model is 80 × 80 × 255,
40 × 40 × 255, and 20 × 20 × 255, respectively. At this time, the grid sizes of the generated
detection box are 8 × 8 pixels, 16 × 16 pixels, and 32 × 32 pixels, respectively. However,
when there is a large number of objects with size smaller than 8 × 8 pixels in the dataset,
the detection performance for these small objects is not acceptable. Furthermore, the
feature pyramid pays more attention to the extraction and optimization of the underlying
features. With increasing the depth of the network, some features at the top level will be
lost, reducing the accuracy of the object detection.

To improve the detection of small objects, a branch structure is added to the PANet
of YOLOv5s to maintain the same size of the input image. However, the neck part adds a
160 × 160 × 128 feature information output. In other words, the feature map continues to
expand by performing the convolution and upsampling on the feature map after layer 17.
Meanwhile, the 160 × 160 pixels feature information obtained from layer 19 is fused with
the layer 2 feature in the backbone at the layer 20 to make up for the feature loss during
feature transmission. The addition of a small object detection layer in the network can ease
the difficulty of small object detection. At the same time, it combines the features of the
top level with those of the bottom level to supplement the features lost in the bottom level,
thus improving the detection accuracy.

The network structure after the addition of the small-object detection layer is shown
in Figure 6. A branch is added to connect layer 2 and layer 19 (the red solid line part). In
this case, the added fourth output size is 160 × 160 × 128. After the head decoupling, the
feature information size is 160 × 160 × 50. The minimum size of the generated detection
box is 4 × 4 pixels, which improves the detection of small objects.

The original YOLOv5s network model has only three detection layers. As a result,
there are three groups of anchor boxes corresponding to the feature maps at three different
resolutions. In each group of anchor boxes, there are three different anchors. A total of nine
anchors can be used to detect large, medium, and small objects. However, the YOLOv5-
TDHSA model, proposed in this paper, deepens the network and adds an output layer of
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feature information. It uses a group of 12 anchor boxes, added to the original YOLOv5s
model, to calculate the feature map at the new resolution. The ratio between an anchor and
the width and height of each ground truth box is calculated, and the K-Means and genetic
learning algorithms are used to obtain the best possible recall (BPR). When BPR is greater
than 0.98, it indicated that the four groups of anchor boxes generated can be suitable for
custom datasets.

The addition of the small-object detection layer and the group of adaptive anchor boxes
allows us to significantly improve the detection accuracy of the proposed YOLOv5-TDHSA
model, as demonstrated in the next section.

5. Experiments

5.1. Datasets

Two public datasets were used in the experiments conducted for the performance com-
parison of models. The first one was the Tsinghua-Tencent 100 K Chinese traffic sign detec-
tion benchmark [38], denoted as TT100K in [39]. It includes 100,000 high-definition images
with large variations in illuminance and weather conditions, among which 10,000 images
are annotated that contain 30,000 traffic sign instances (in total), each of which theoretically
belongs to one of the 221 Chinese traffic sign categories. The images are taken from the
Tencent Street View Map. Sample images are shown in Figure 7. However, there is a serious
imbalance in the distribution of categories in this dataset, and even some categories do not
have instances corresponding to them. Therefore, in the conducted experiments, similarly
to [39], only categories with more than 100 traffic sign instances were used, resulting in 45
categories spread over 9170 images.

Figure 7. Sample images of the TT100K dataset.

The other dataset used in the experiments was the CCTSDB2021 Chinese traffic sign
detection benchmark [40], which was built based on the CCTSDB2017 dataset [41,42] by
adding 5268 annotated images of real traffic scenes and replacing images containing easily
detected traffic signs with more difficult samples of a complex and changing detection en-
vironment. Three traffic sign classes are distinguished in CCTSDB2021, namely a warning,
a mandatory, and a prohibitory traffic sign class, as shown in Figure 8. There are a total of
17,856 images, including 16,356 images in the training set and 1500 images in the test set.
However, the weather environment attribute, which represents a great challenge for the
object detection models, is only present in the images of the test set and not of the training
set. Therefore, only these 1500 images, presenting greater difficulty to the detection of
traffic signs contained in them, were used in the experiments.
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Figure 8. Sample images of the CCTSDB2021 dataset, containing (A) warning traffic signs; (B) manda-
tory traffic signs; (C) prohibitory traffic signs.

In the experiments, as shown in Table 1, the 9170 TT100K images and 1500 CCTSDB021
images were separately divided (using the same ratio) into a training set (60% of the total
number of images), a validation set (20%), and a test set (20%). The corresponding number
of labels in each of these three sets is shown in Table 1.

Table 1. Splitting the datasets into training, validation, and test sets.

TT100K Dataset CCTSDB2021 Dataset

Training set 13,908 labels 1935 labels
Validation set 4636 labels 645 labels

Test set 4636 labels 645 labels

5.2. Experimental Environment

In the training process, the initial learning rate was set to 0.01, and a cosine annealing
strategy was used to reduce it. 300 epochs were performed with the batch size set to 32.
The experiments were conducted on a PC with a Windows 10 operating system, Intel (R)
Core (TM) i7-10,700 CPU@2.90 GHz, NVIDIA GeForce RTX3090, and 24GB video memory,
by using CUDA 11.1 for training acceleration, PyTorch 1.8.1 deep learning framework for
training, and an input image size of 640 × 640 pixels, as shown in Table 2.

Table 2. Experimental environment’s parameters.

Component Name/Value

Operating system Windows 10
CPU Intel (R) Core (TM) i7-10,700
GPU GeForce RTX3090

Video memory 24 GB
Training acceleration CUDA 11.1

Deep learning framework for training PyTorch 1.8.1
Input image size 640 × 640 pixels

Initial learning rate 0.01
Final learning rate 0.1
Training batch size 32

5.3. Evaluation Metrics

Evaluation metrics commonly used for the performance evaluation of object detection
models include precision, average precision (AP), mean average precision (mAP), recall, F1 score,
and processing speed measured in frames per second (fps).
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Precision refers to the proportion of the true positive (TP) samples in the prediction
results, as follows:

precision =
TP

TP + FP
(2)

where TP denotes the number of images containing detected objects with IoU > 0.5, that
is, the number of images containing positive samples that are correctly detected by the
model; FP (false positive) represents the number of images containing detected objects with
IoU ≤ 0.5.

Recall refers to the proportion of correct predictions in all positive samples, as follows:

recall =
TP

TP + FN
, (3)

where FN (false negative) represents the number of images wrongly detected as not con-
taining objects of interest.

The average precision (AP) is the area enclosed by the precision–recall curve and the X
axis, calculated as follows:

AP =
∫ 1

0
p(r)dr, (4)

where p(r) denotes the precision function of recall r.
F1 score is the harmonic average of precision and recall, with a maximum value of 1 and

a minimum value of 0, calculated as follows:

F1 = 2 · precision · recall
precision + recall

. (5)

The mean average precision (mAP) is the mean AP value over all classes of objects,
calculated as follows:

mAP =
∑ AP

Nclasses
, (6)

where Nclasses denotes the number of classes.

5.4. Results

Based on the two datasets, experiments were conducted for performance comparison
of the proposed YOLOv5-DH and YOLOv5-TDHSA models to four state-of-the-art models,
namely R-CNN, YOLOv4-Tiny, YOLOv5n, and YOLOv5s. The size and number of param-
eters of models are shown in Table 3 and the duration of a single experiment conducted
with each model is shown in Table 4. On the two datasets, TT100K and CCTSDB2021,
five separate experiments were performed with each of the models compared. In each
experiment, the same data were utilized for all models, generated by randomly splitting
the used dataset into a training set, a validation set, and a test set, as per Table 1. The results
obtained for each model were averaged over the five experiments in order to serve as the
final evaluation of the model performance.

Table 3. The size and number of parameters of compared models.

Model
Size
(MB)

Number of Parameters
(Million)

Faster R-CNN 360.0 28.469
YOLOv4-Tiny 22.4 6.057

YOLOv5n 3.6 1.767
YOLOv5s 13.7 7.068

YOLOv5-DH 22.8 11.070
YOLOv5-TDHSA 24.8 12.224
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Table 4. Single experiment duration of compared models.

Dataset Faster
R-CNN

YOLOv4-
Tiny

YOLOv5n YOLOv5s
YOLOv5-

DH
YOLOv5-
TDHSA

TT100K 47 h 37.5 h 30 h 32 h 33 h 35 h

CCTSDB
2021 8.5 h 4 h 0.8 h 1 h 2 h 2.5 h

Tables 5–10 show the mAP and F1 score results obtained in each experiment, conducted
on the TT100K dataset, for each of the models compared. Table 11 shows the averaged mAP
and F1 score results over the five experiments, along with the processing speed achieved,
measured in frames per second (fps). The obtained results, shown in Table 11, demonstrate
that on the TT100K dataset, both proposed models (YOLOv5-DH and YOLOv5-TDHSA)
outperform all four state-of-the-art models in terms of mAP and F1 score, at the expense
of having a bigger size, greater number of parameters, and slower processing speed
(surpassing only Faster R-CNN). From the two proposed models, YOLOv5-TDHSA is
superior to YOLOv5-DH in terms of both evaluation metrics (mAP and F1 score).

Table 5. Results of Faster R-CNN on TT100K dataset.

Experiment
1

Experiment
2

Experiment
3

Experiment
4

Experiment
5

mAP (%) 52.9 53.6 54.1 53.4 52.6

F1 score 0.576 0.581 0.586 0.579 0.575

Table 6. Results of YOLOv4-TINY on TT100K dataset.

Experiment
1

Experiment
2

Experiment
3

Experiment
4

Experiment
5

mAP (%) 57.7 62.8 63.1 64.6 63.2

F1 score 0.608 0.672 0.655 0.654 0.675

Table 7. Results of YOLOv5n on TT100K dataset.

Experiment
1

Experiment
2

Experiment
3

Experiment
4

Experiment
5

mAP (%) 66.0 66.2 65.1 66.3 66.6

F1 score 0.651 0.645 0.639 0.646 0.641

Table 8. Results of YOLOv5s on TT100K dataset.

Experiment
1

Experiment
2

Experiment
3

Experiment
4

Experiment
5

mAP (%) 74.5 75.6 75.2 75.3 75.1

F1 score 0.728 0.741 0.740 0.730 0.728

Table 9. Results of YOLOv5-DH on TT100K dataset.

Experiment
1

Experiment
2

Experiment
3

Experiment
4

Experiment
5

mAP (%) 77.2 78.3 77.6 78.5 78.1

F1 score 0.762 0.771 0.762 0.772 0.769
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Table 10. Results of YOLOv5-TDHSA on TT100K dataset.

Experiment
1

Experiment
2

Experiment
3

Experiment
4

Experiment
5

mAP (%) 83.3 83.5 82.6 83.3 84.2

F1 score 0.819 0.811 0.797 0.810 0.816

Table 11. Results of compared models on TT100K dataset.

Model F1Score mAP
(%)

Processing Speed
(fps)

Faster R-CNN 0.579 53.3 40
YOLOv4-Tiny 0.653 62.3 160

YOLOv5n 0.644 66.0 111
YOLOv5s 0.733 75.1 100

YOLOv5-DH 0.767 77.9 84
YOLOv5-TDHSA 0.811 83.4 77

Tables 12–17 show the mAP and F1 score results obtained in each experiment, conducted
on the CCTSDB2021 dataset, for each of the models compared. Table 18 shows the averaged
mAP and F1 score results over the five experiments, along with the processing speed
achieved. The obtained results, shown in Table 18, demonstrate that both proposed models
(YOLOv5-DH and YOLOv5-TDHSA) outperform all four state-of-the-art models in terms
of mAP and F1 score on this dataset as well, at the expense of having a bigger size, greater
number of parameters, and slower processing speed (surpassing only Faster R-CNN). From
the two proposed models, YOLOv5-TDHSA is again superior to YOLOv5-DH in terms of
both evaluation metrics (mAP and F1 score).

Table 12. Results of Faster R-CNN on CCTSDB2021 dataset.

Experiment
1

Experiment
2

Experiment
3

Experiment
4

Experiment
5

mAP (%) 61.9 48.7 45.7 46.0 61.1

F1 score 0.65 0.62 0.59 0.61 0.65

Table 13. Results of YOLOv4-TINY on CCTSDB2021 dataset.

Experiment
1

Experiment
2

Experiment
3

Experiment
4

Experiment
5

mAP (%) 62.6 64.2 53.7 62.3 64.7

F1 score 0.66 0.68 0.62 0.65 0.67

Table 14. Results of YOLOv5n on CCTSDB2021 dataset.

Experiment
1

Experiment
2

Experiment
3

Experiment
4

Experiment
5

mAP (%) 68.7 72.5 54.8 60.7 71.3

F1 score 0.72 0.72 0.60 0.63 0.74
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Table 15. Results of YOLOv5s on CCTSDB2021 dataset.

Experiment
1

Experiment
2

Experiment
3

Experiment
4

Experiment
5

mAP (%) 64.7 70.2 58.9 68.5 73.7

F1 score 0.70 0.72 0.63 0.69 0.76

Table 16. Results of YOLOv5-DH on CCTSDB2021 dataset.

Experiment
1

Experiment
2

Experiment
3

Experiment
4

Experiment
5

mAP (%) 71.9 67.6 62.2 65.2 73.8

F1 score 0.71 0.70 0.68 0.68 0.76

Table 17. Results of YOLOv5-TDHSA on CCTSDB2021 dataset.

Experiment
1

Experiment
2

Experiment
3

Experiment
4

Experiment
5

mAP (%) 69.1 73.4 62.1 69.7 74.7

F1 score 0.73 0.76 0.66 0.67 0.76

Table 18. Results of compared models on CCTSDB2021 dataset.

Model F1Score mAP
(%)

Processing Speed
(fps)

Faster R-CNN 0.62 52.7 28
YOLOv4-Tiny 0.66 61.5 162

YOLOv5n 0.68 65.6 83
YOLOv5s 0.70 67.2 77

YOLOv5-DH 0.71 68.1 70
YOLOv5-TDHSA 0.72 69.8 66

6. Discussion

The incorporation of the proposed improvements into YOLOv5s resulted in overall bet-
ter traffic sign detection. This was confirmed by a series of experiments conducted for evalu-
ating and comparing the performance of the proposed models (YOLOv5-DH and YOLOv5-
TDHSA) to that of YOLOv5s and three other state-of-the-art models, namely Faster R-CNN,
YOLOv4-Tiny, and YOLOv5n, based on two datasets—TT100K and CCTSDB2021. The
obtained results clearly demonstrate that both proposed models outperform all four models,
in terms of the mean average precision (mAP) and F1 score.

Although both proposed models are better than the two-stage detection Faster R-CNN
model, in terms of the model’s size, number of parameters, and processing speed, they
still have some shortcomings in this regard compared with the one-stage detection models
(YOLOv4-Tiny, YOLOv5n, YOLOv5s). Therefore, in the future, some lightweight modules
will be introduced into the proposed YOLOv5-TDHSA model (which is superior to the
other proposed model YOLOv5-DH) in order to reduce its size and number of parameters,
and increase its processing speed.

To check if the proposed models are significantly different statistically from the com-
pared state-of-the-art models, we applied the (non-parametric) Friedman test [43,44] with
the corresponding post-hoc Bonferroni–Dunn test [45,46], which are regularly used for the
comparison of classifiers (more than two) over multiple datasets.
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First, using the Friedman test, we measured the performances of the models, used
in the experiments described in the previous section, across both datasets. Basically, the
Friedman test shows whether the measured average ranks of models are significantly
different from the mean rank expected, by checking the null hypothesis (stating that all
models perform the same and the observed differences are merely random), based on the
following formula:

Tx2 =
12N

k(k + 1)

(
∑k

i=1 r2
i −

k(k + 1)2

4

)
, (7)

where k denotes the number of models, N denotes the number of datasets, and ri. represents
the average rank of the i-th model. In our case, k = 6 and N = 2.

Instead of Friedman’s Tx2 statistic, we used the better Iman and Davenport statistic [47],
which is distributed according to the F-distribution with (k − 1) and (k − 1)(N − 1) degrees
of freedom, as follows:

TF =
(N − 1)Tx2

N(k − 1)− Tx2
. (8)

Using (8), we calculated the following values: TF = 34 for F1 score and TF = ∞
for mAP. As both these values are greater than the critical values of 3.45 and 5.05 for six
models and two datasets, with confidence levels of α = 0.10 and α = 0.05, respectively, we
rejected the null hypothesis and concluded that there are significant differences between
the compared models.

Next, we proceeded with a post-hoc Bonferroni–Dunn test, in which the models were
compared only to a control model and not between themselves [44,48]. In our case, we used
the proposed YOLOv5-TDHSA model as a control model. The advantage of the Bonferroni–
Dunn test is that it is easier to visualize because it uses the same Critical Difference (CD)
for all comparisons, which can be calculated as follows [48]:

CD = qα

√
k(k + 1)

6N
, (9)

where qα denotes the critical value for α
k−1 . When k = 6, qα = 2.326 for α = 0.10, and

qα = 2.576 for α = 0.05 [48]. Then, the corresponding CD values, calculated according to
(9), are equal to 4.352 and 4.819, respectively. Figure 9 shows the CD diagrams based on
F1 score and mAP. As can be seen from Figure 9, the proposed YOLOv5-TDHSA model
is significantly superior to Faster R-CNN on both evaluation metrics for both confidence
levels, and achieves at least comparable performance to that of YOLOv4-Tiny on both
evaluation metrics for both confidence levels, and to that of YOLOv5n on F1 score for
both confidence levels. It is not surprising that the Bonferroni–Dunn test found YOLOv5-
DH and YOLOv5-TDHSA similar to YOLOv5s, as both proposed models are based on it.
Having incorporated only one YOLOv5s improvement into itself, naturally, YOLOv5-DH is
reported by the Bonferroni–Dunn test as more similar to YOLOv5s than YOLOv5-TDHSA.
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(a) (b)

(c) (d)

Figure 9. Critical difference (CD) comparison of YOLOv5-TDHSA (the control model) against other
compared models with the Bonferroni–Dunn test, based on (a) F1 score with confidence level α = 0.05,
CD = 4.819; (b) F1 score with confidence level α = 0.10, CD = 4.352; (c) mAP with confidence level
α = 0.05, CD = 4.819; (d) mAP with confidence level α = 0.10, CD = 4.352 (any two models not
connected by a thick black horizontal line are considered to have significant performance differences
between each other).

7. Conclusions

We have proposed two novel models for accurate traffic sign detection, called YOLOv5-
DH and YOLOv5-TDHSA, based on the YOLOv5s model with additional improvements.
Firstly, a transformer self-attention module with stronger expression abilities was used in
YOLOv5-TDHSA to replace the last layer of the ‘Conv + Batch Normalization + SiLU’ (CBS)
structure in the YOLOv5s backbone. A similar module was added to the last layer of the
YOLOv5-TDHSA’s neck, so that the image information can be used more comprehensively.
The features were mapped to the new three spaces for representation, thus improving
the representation ability of the feature extraction. The multi-head mechanism used aims
to realize the effect of multi-channel feature extraction. So, the transformer can increase
the diversity of similarity computation between inputs and improve the ability of feature
extraction. Secondly, a decoupled detection head was used in both proposed models to re-
place the YOLOv5s coupled head, which is responsible for the recognition and positioning
on a feature map. As these two tasks have different focuses, resulting in a misalignment
problem, the decoupled head uses two parallel branches—one responsible for the cate-
gory recognition and the other responsible for positioning—which allows to improve the
detection accuracy. However, as the decoupled head is not as fast as the coupled head,
and due to the increase in the number of model parameters, the dimension was reduced
through a 1 × 1 convolution before the decoupling to achieve balance between the speed
and accuracy. Thirdly, for YOLOv5-TDHSA, a small-object detection layer was added to
the YOLOv5s backbone and connected to the neck. At the same time, upsampling was
used on the feature map of the neck to further expand the feature map. Supplemented by a
group of adaptive anchor boxes, this new branch structure can not only ease the difficulty
of small-object detection performed by YOLOv5-TDHSA, but can also compensate the
feature losses caused by feature transmission with the increasing network depth.

Experiments conducted on two public datasets demonstrated that both proposed
models outperform the original YOLOv5s model and three other state-of-the-art models
(Faster R-CNN, YOLOv4-Tiny, YOLOv5n) in terms of the mean accuracy (mAP) and F1
score, achieving mAP values of 77.9% and 83.4% and F1 score values of 0.767 and 0.811 on
the TT100K dataset, and mAP values of 68.1% and 69.8% and F1 score values of 0.71 and
0.72 on the CCTSDB2021 dataset, respectively, for YOLOv5-DH and YOLOv5-TDHSA. The
results also confirm that the incorporation of the T and SA improvements into YOLOv5s
leads to further enhancement, and a better performing model (YOLOv5-TDHSA), which
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is superior to the other proposed model (YOLOv5-DH) that avails of only one YOLOv5s
improvement (i.e., DH).
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Abstract: This paper proposes a non-parametric technique of option valuation and hedging. Here,
we replicate the extended Black–Scholes pricing model for the exotic barrier options and their
corresponding Greeks using the fully connected feed-forward neural network. Our methodology
involves some benchmarking experiments, which result in an optimal neural network hyperparameter
that effectively prices the barrier options and facilitates their option Greeks extraction. We compare
the results from the optimal NN model to those produced by other machine learning models, such
as the random forest and the polynomial regression; the output highlights the accuracy and the
efficiency of our proposed methodology in this option pricing problem. The results equally show that
the artificial neural network can effectively and accurately learn the extended Black–Scholes model
from a given simulated dataset, and this concept can similarly be applied in the valuation of complex
financial derivatives without analytical solutions.

Keywords: barrier options; Black–Scholes model; polynomial regression; random forest regression;
machine learning; artificial neural network; option Greeks; data analysis
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1. Introduction

The concept, techniques and applications of artificial intelligence (AI) and machine
learning (ML) in solving real-life problems have become increasingly practical over the
past years. The general aim of machine learning lies in attempting to ‘learn’ data and
make some predictions from a variety of techniques. In the financial industry, they offer a
more flexible and robust predictive capacity compared to the classical mathematical and
econometric models. They equally provide significant advantages to the financial decision
makers and market participants regarding the recent trends in financial modeling and
data forecasting. The core applications of AI in finance are risk management, algorithmic
trading, and process automation [1]. Hedge funds and broker dealers utilize AI and ML
to optimize their execution. Financial institutions use the technologies to estimate their
credit quality and evaluate their market insurance contracts. Both private and public
sectors use these technologies to detect fraud, assess data quality, and perform surveil-
lance. ML techniques are generally classified into supervised and non-supervised systems.
A branch of ML (supervised) techniques that have been fully recognized is deep learning,
as it provides and equips machines with practical algorithms needed to comprehend the
fundamental principles, and pattern detection in a significant portion of data. The neural
networks, the cornerstones of these deep learning techniques, evolved and developed in
the 1960s. In the fields of quantitative finance, the neural networks are applied in the
optimization of portfolios, financial model calibrations [2], high-dimensional futures [3],
market prediction [4], and exotic options pricing with local stochastic volatility [5].
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For the methodology employed in this paper, artificial neural networks (ANNs) are
systems of learning techniques which focus on a cluster of artificial neurons forming a
fully connected network. One aspect of the ANN is the ability to generally ‘learn’ to
perform a specific task when fed with a given dataset. They attempt to replicate or mimic
a mechanism which is observable in nature, and they gain their inspiration from the
structure, techniques and functions of the brain. For instance, the brain is similar to a huge
network with fully interconnected nodes (neurons, for example, the cells) through links, also
referred to as synapses, biologically. The non-linearity feature is introduced to the network
within these neurons as the non-linear activation functions are applied. The non-linearity
aspect of the neural network tends to approximate any integrated function reasonably
well. One significant benefit of the ANN method is that they are referred to as ‘universal
approximators’. This feature implies that they can fit any continuous function, together with
functions having non-linearity features, even without the assumption of any mathematical
relationship which connects the input and the output variables. Essentially, the ANNs
are also fully capable of approximating the solutions to partial differential equations
(PDE) [6], and they easily permit parallel processing, which facilitates evaluation processes
on graphics processing units (GPUs) [7]. The presence of this universal approximator
function is often a result of their typical architecture, training and prediction process.

Meanwhile, due to the practical significance of the use of financial derivatives, these
instruments have sharply risen in more recent years. This has led to the development of so-
phisticated economic models, which tend to capture the dynamics of the markets, and there
has also been an increase in proposing faster, more accurate and more robust models for the
valuation process. The pricing of these financial contracts has significantly helped manage
and hedge risk exposure in finance and businesses, improve market efficiencies and provide
arbitrage opportunities for sophisticated market participants. The conventional pricing
techniques of option valuation are theoretical, resulting in the formulation of analytical
closed forms for some of these option types. In contrast, others rely heavily on numerical
approximation techniques, such as Monte Carlo simulations, finite difference methods,
finite volume methods, binomial tree methods, etc. These theoretical formulas are mainly
based on assumptions about the behavior of the underlying prices of securities, constant
risk-free interest rates, constant volatility, etc., and they have been duly criticized over the
years. However, modifications have been made to the Black–Scholes model, thereby giving
rise to such models as the mixed diffusion/pure jump models, displaced diffusion models,
stochastic volatility models, constant elasticity of variance diffusion models, etc. On the
other hand, neural networks (NNs) have proved to be emerging computing techniques that
offer a modern avenue to explore the dynamics of financial applications, such as derivative
pricing [8].

Recent years have seen a huge application of AI and ML, as they have been utilized
greatly in diverse financial fields. They have contributed significantly to financial insti-
tutions, the financial market, and financial supervision. Li in [9] summarized the AI and
ML development and analyzed their impact on financial stability and the micro-macro
economy. In finance, AI has been utilized greatly in predicting future stock prices, and the
concept lies in building AI models which utilize ML techniques, such as reinforcement
learning or neural networks [10]. A similar stock price prediction was conducted by Yu
and Yan [11]; they used the phase-space reconstruction method for time series analysis in
combination with a deep NN long- and short-term memory networks model. Regarding
applying neural networks to option pricing, one of the earliest research can be found in
Malliaris and Salchenberger [12]. They compared the performance of the ANN in pricing
the American-style OEX options (that is, options defined on Standard and Poor’s (S&P)
100) and the results from the Black–Scholes model [13] with the actual option prices listed
in the Wall Street Journal . Their results showed that in-the-money call options were valued
significantly better when the Black–Scholes model was used, whereas the ANN techniques
favored the out-of-the-money call option prices.
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In pricing and hedging financial derivatives, researchers have incorporated the classi-
cal Black–Scholes model [13] into ML to ensure robust and more accurate pricing techniques.
Klibanov et al. [14] used the method of quasi-reversibility and ML to predict option prices
in corporations with the Black–Scholes model. Fang and George [15] proposed valuation
techniques for improving the accuracy rate of Asian options by using the NN in connection
with Levy approximation. Hutchinson et al. in [16] further priced the American call options
defined on S&P 500 futures by comparing three ANN techniques with the Black–Scholes
pricing model. Their results proved the supremacy of all three ANNs to the classical Black–
Scholes model. Other comparative research studies on the ANN versus the Black–Scholes
model are also applicable in pricing the following: European-style call options (with divi-
dends) on the Financial Times Stock Exchange (FTSE) 100 index [17], American-style call
options on Nikkei 225 futures [8], Apple’s European call options [18], S&P 500 index call
options with an addition of neuro-fuzzy networks [19], and in the pricing call options
written on the Deutscher Aktienindex (DAX) German stock index [20]. Similar works on
pricing and hedging options using the ML techniques can be found in [21–25].

Other numerical techniques, such as the PDE-based and the DeepBSDE-based (BSDE—
-backward stochastic differential equations) methods, have also been employed in valuing
the barrier options. For instance, Le et al. in [26] solved the corresponding option pricing
PDE using the continuous Fourier sine transform and extended the concept of pricing
the rebate barrier options. Umeorah and Mashele [27] employed the Crank–Nicolson
finite difference method in solving the extended Black–Scholes PDE, describing the rebate
barrier options and pricing the contracts. The DeepBSDE concept initially proposed by
Han et al. in [28] converted high-dimensional PDE into BSDE, intending to reduce the
dimensionality constraint, and they redesigned the solution of the PDE problem as a deep-
learning problem. Further implementation of the BSDE-based using the numerical method
with deep-learning techniques in the valuation of the barrier options is found in [29,30].

Generally, the concept of ANN can be classified into three phases: the neurons, the lay-
ers and the whole architecture. The neuron, which is the fundamental core processing unit,
consists of three basic operations: summation of the weighted inputs, the addition of a bias
to the input sum, and the computation of the output value via an activation function. This
activation function is used after the weighted linear combination and implemented at the
end of each neuron to ensure the non-linearity effect. The layers consist of an input layer, a
(some) hidden layer(s) and an output layer. Several neurons define each layer, and stacking
up various layers constitutes the entire ANN architecture. As the data transmission signals
pass from the input layer to the output layer through the middle layers, the ANN serves as
a mapping function among the input–output pairs [2]. After training the ANN in options
pricing, computing the in-sample and out-of-sample options based on ANN becomes
straightforward and fast [31]. Itkin [31] highlighted this example by pricing and calibrating
the European call options using the Black–Scholes model.

This research is an intersection of machine learning, statistics and mathematical finance,
as it employs recent financial technology in predicting option prices. To the best of our
knowledge, this ML approach to pricing the rebate and zero-rebate barrier options has
received less attention. Therefore, we aim to fill the niche by introducing this option pricing
concept to exotic options. In the experimental section of this work, we simulate the barrier
options dataset using the analytical form of the extended Black–Scholes pricing model. This
is a major limitation of this research, and the choice was due to the non-availability of the
real data. (A similar synthetic dataset was equally used by [32], in which they constructed
the barrier option data based on the LIFFE standard European option price data by the
implementation of the Rubenstein and Reiner analytic model. These datasets were used in
the pricing of the up-and-out barrier call options via the use of a neural net model.) We
further show and explain how the fully connected feed-forward neural networks can be
applied in the fast and robust pricing of derivatives. We tuned different hyperparameters
and used the optimal in the modeling and training of the NN. The performance of the
optimal NN results is compared by benchmarking the results against other ML models,
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such as the random forest regression model and the polynomial regression model. Finally,
we show how the barrier options and their Greeks can be trained and valued accurately
under the extended Black–Scholes model. The major contributions of this research are
classified as follows:

• We propose a non-parametric technique of barrier option valuation and hedging using
the concept of a fully connected feed-forward NN.

• Using different evaluation metrics, we measure the performance of the NN algorithm
and propose the optimal NN architecture, which prices the barrier options effectively
in connection to some specified data-splitting techniques.

• We prove the accuracy and performance of the optimal NN model when compared to
those produced by other ML models, such as the random forest and the polynomial
regression, and extract the barrier option prices and their corresponding Greeks with
high accuracy using the optimal hyperparameter.

The format of this paper is presented as follows: In Section 1, we provide a brief
introduction to the topic and outline some of the related studies on the applications of ANN
in finance. Section 2 introduces the concept of the Black–Scholes pricing model, together
with the extended Black–Scholes pricing models for barrier options and their closed-form
Greeks. Section 3 focuses on the machine learning models, such as the ANN, as well
as its applications in finance, random forest regression and the polynomial regression
models. In Section 4, we discuss the relevant results obtained in the course of the numerical
experiments, and Section 5 concludes our research study with some recommendations.

2. Extended Black–Scholes Model for Barrier Options

The classical Black–Scholes model developed by Fischer Black and Myron Scholes is
an arbitrage-free mathematical pricing model used to estimate the dynamics of financial
derivative instruments. The model was initially designed to capture the price estimate of the
European-style options defined under the risk-neutral measure. As a mathematical model,
certain assumptions, such as the log-normality of underlying prices, constant volatility, fric-
tionless market, continuous trading without dividends applied to stocks, etc., are made for
the Black–Scholes model to hold [13]. Though the Black–Scholes model has been criticized
over the years due to some underlying assumptions, which are not applicable in the real-
world scenario, certain recent works are associated with the model [33–36]. Additionally,
Eskiizmirliler et al. [37] numerically solved the Black–Scholes equation for the European
call options using feed-forward neural networks. In their approach, they constructed a
function dependent on a neural network solution, which satisfied the given boundary
conditions of the Black–Scholes equation. Chen et al. [38] proposed a Laguerre neural
network to solve the generalized Black–Scholes PDE numerically. They experimented with
this technique on the European options and generalized option pricing models.

On the other hand, the valuation of exotic derivatives, such as the barrier options,
has been extensively studied by many authors, mainly by imploring a series of numerical
approximation techniques. Barrier options are typically priced using the Monte-Carlo
simulations since their payoffs depend on whether the underlying price has/has not
crossed the specified barrier level. The closed-form solutions can equally be obtained
analytically using the extended Black–Scholes models [39], which shall be implemented as
a benchmark of the exact price in this work. The structure of the model is described below.

2.1. Model Structure

Generally, the Black–Scholes option pricing formula models the dynamics of an
underlying asset price S as a continuous time diffusion process given below:

dS(t) = S(rdt + σdB(t)) , (1)

where r is the risk-free interest rate, σ, the volatility and B(t) is the standard Brownian
motion at the current time t. Suppose V(S, t) is the value of a given non-dividend paying
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European call option. Then, under the pricing framework of Black and Scholes, V(S, t)
satisfies the following PDE:

∂V(S, t)
∂t

+ rS
∂V(S, t)

∂S
+

σ2S2

2
∂2V(S, t)

∂S2 − rV(S, t) = 0 , (2)

subject to the following boundary and terminal conditions:

V(0, t) = 0 , ∀ t ∈ [0, T] (3)

V(S, t) = S − Ke−r(T−t) for S → ∞ , (4)

V(S, T) = max{S(T)− K, 0} , (5)

where K is the strike price and T is the time to expiration.
Since the barrier options are the focus of this study, the domain of the PDE in

Equation (2) reduces to D = {(S, t) : B ≤ S ≤ ∞; t ∈ [0, T]} with the introduction
of a predetermined level known as barrier B, and that feature distinguishes them from
the vanilla European options. The boundary and terminal conditions above remain the
same, with the exception of Equation (3), which reduces to V(B, t) = 0 for zero-rebate
and V(B, t) = R for the rebate barrier option. (In this paper, we shall consider the rebate
paid at knock-out. The other type is the rebate paid at expiry, and in that case, Equa-
tion (3) becomes V(B, t) = Re−r(T−t) , ∀ t ∈ [0, T].) The barrier options are either activated
(knock-in options) or extinguished (knock-out options) once the underlying price attains
the barrier level. The direction of the knock-in or the knock-out also determines the type
of barrier options being considered, as this option is generally classified into up-and-in,
up-and-out, down-and-in, and down-and-out barrier options. This paper will consider the
down-and-out (DO) barrier options, both with and without rebates. For this option style,
the barrier level is normally positioned below the underlying, and when the underlying
moves in such a way that the barrier is triggered, the option becomes void and nullified
(zero rebate). However, when the barrier is triggered, and the option knocks out with a
specified payment compensation made to the option buyer by the seller, then we have
the rebate barrier options. Under the risk-neutral pricing measure Q, the price of the
down-and-out (DO) barrier options is given as

V(S, t) = E
Q
[

e−r(T−t)(ST − K)+I{ min
0≤t≤T

St > B}
]

, (6)

and the solution to the above is given in the following theorem.

Theorem 1. Extended Black–Scholes for a DO call option (note that Equations (7) and (8) occurs
when the strike price K ≥ B. For K < B, we substitute K = B into d1 and d3.) is given by [39]

V(S, t) = SN(d1)− Ke−rτ N(d2)−
[

S
(

B
S

)2η

N(d3)− Ke−rτ

(
B
S

)2η−2
N(d4)

]
(7)

for d1 =
log

(
S
K

)
+
(

r + σ2

2

)
τ

σ
√

τ
, d3 =

log
(

B2

SK

)
+
(

r + σ2

2

)
τ

σ
√

τ
, d5 =

log
(

B
S

)
+
(

r + σ2

2

)
τ

σ
√

τ
,

where τ = T − t, d2,4 = d1,3 − σ
√

τ, η = (2r + σ2)(2σ2)−1 and N(x) =
∫ x
−∞

1√
2π

e
−y2

2 dy
is the cumulative standard normal distribution function. In the presence of a rebate R, the option
value becomes

VR(S, t) = V(S, t) + R

[(
B
S

)2η−1
N(d5) +

(
S
B

)
N(d5 − 2ησ

√
τ)

]
(8)
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2.2. Option Greeks

These refer to the sensitivities of option prices with respect to different pricing pa-
rameters. The knowledge and the application of option Greeks can equip investors with
risk-minimization strategies, which will be applicable to their portfolios. Such knowledge
is as vital as hedging the portfolio risk using any other risk management tools. For options
that have an analytical form based on the Black–Scholes model or other closed-form models,
the Greeks or the sensitivities are normally estimated from these formulas. In the absence
of analytical option values, numerical techniques are employed to extract the Greeks. These
Greeks are adopted from [40], and we only consider the delta (ΔDO), gamma (ΓDO) and the
vega (νDO).

2.2.1. Delta

This measures the sensitivity of options values to changes in the underlying prices.
The delta for the DO call options behaves like the delta of the European call options when
the option is deep in-the-money, and it becomes very complicated as the underlying price
approaches the barrier level:

∂V(S, t)
∂S

= N(d1)−
(

B
S

)2η−2
{
− B2

S2 N(d3) +
2η − 2

S

(
B2

S
N(d4)− Ke−rτ N(d3)

)}
,

where d1, d3 and d4 are given in Theorem 1.

2.2.2. Gamma

This measures the sensitivity of delta to a change in the underlying price, or the second
partial derivative of the option value with respect to the underlying price:

∂2V(S, t)
∂S2 = =

φ(d1)

σS
√

τ
−
(

B
S

)2η−2{ (2η − 2)(8η − 7)
S

(
B2

S
N(d4)− Ke−rτ N(d3)

)

+
B2

S2

(
2N(d3) +

φ(d3)

σ
√

τ

)
+ 2(2η − 2)

(
B2

S2 N(d3)

)}
,

where d1, d3 and d4 are given in Theorem 1; also, φ(x) = 1√
2π

e
−x2

2 is the probability density
function of the standard normal distribution.

2.2.3. Vega

This measures the sensitivity of options values to changes to volatility. It is calculated
as

∂V(S, t)
∂σ

= S
√

τφ(d1)−
(

B
S

)2η−2
{
√

τKe−rτφ(d4)−
4r
σ3

(
B2

S
N(d4)− Ke−rτ N(d3)

)
ln

B
S

}
.

where d1, d3 and d4 are given in Theorem 1; also, φ(x) = 1√
2π

e
−x2

2 is the probability density
function of the standard normal distribution.

3. Machine Learning Models

Machine learning models, such as the ANN, polynomial regression model and random
forest regression models, form the methodology in this research. Here, we briefly describe
each of them and their financial application as they relate to the rebate barrier options
problem. The numerical experiments are performed on an 11th Gen Intel(R) Core(TM)
i7-1165G7 @ 2.80GHz processor, 16 GB RAM, 64-bit Windows 10 operating system and
x64-based processor.

218



Axioms 2023, 12, 384

3.1. Artificial Neural Networks

This subsection utilizes the concept of ANN in the approximation of functions which
describe the financial model in perspective. It will highlight the whole network environ-
ment and the multi-layer perceptron (MLP) idea. In connection with the application of
ANN to option pricing, the concept lies first in the generation of the financial data (barrier
option pricing data) and then employing the ANN to predict the option prices according to
the trained model.

3.1.1. Network Environment

The research computations and the data processing are implemented using Python

(version 3.9.7), which is an open-source programming tool. The ANN employed in the
data analysis and construction of the model, as well as the training and validation, is
implemented with Keras ( https://keras.io/about/, accessed on 6 April 2023), which is a
deep learning application programming interface, running concurrently with the machine
learning platform Tensorflow (version 2.2.0).

3.1.2. Multi-Layer Perceptron

An MLP is a feed-forward ANN category comprising a minimum of three layers:
the input layer, the hidden layer and the output layer. The MLP with as little as one
hidden layer tends to approximate a large category of non-linear and linear functions with
arbitrary accuracy and precision. Except for input nodes, every other node consists of
neurons triggered by non-linear activation functions. During the training phase, an MLP
employs the supervised learning techniques, also known as backpropagation, and in this
section, we use the backpropagation network method, which is by far the most widespread
neural network type.

Mathematically, consider an MLP network’s configuration with first and second
hidden layers h(1)k and h(2)k , respectively, and input units xk, where k denotes the number of
the units. The non-linear activation function is written as f (.), and we denote f (1)(.), f (2)(.)
and f (3)(.) differently since the network layers can have various activation functions, such
as the sigmoid (Sigmoid is defined by f (z) = 1/(1 + exp (−z)), where z is the input to
the neuron), hyperbolic tangent (Tanh is defined by f (z) = 2sigmoid(z)− 1, where z is
the input to the neuron), rectified linear unit (ReLU) (ReLU is defined by f (z) = max[0, z],
where z is the input to the neuron), etc. The weights of the network are denoted by wjk,
the activation output value yj, and the bias bj, where j denotes the number of units in each
layer. Thus, we have the following representation:

h(1)j = f (1)
(

∑
k

w(1)
jk xk + b(1)j

)

h(2)j = f (2)
(

∑
k

w(2)
jk h(1)k + b(2)j

)

yj = f (3)
(

∑
k

w(3)
jk h(2)k + b(3)j

)
.

3.1.3. The Hyperparameter Search Space and Algorithm

This section further explains the hyperparameter optimization techniques, which aim
to search for the optimal algorithm needed for our optimization problem. It is essential
to note that the parameters of the NN are internal configuration variables that the models
can learn. Examples are the weights and the bias. In contrast, the hyperparameters
are external and cannot be learned from the data but are used to control the learning
process and the structure of the NN. These parameters are set before the training process,
and some examples include the activation function, batch size, epoch, learning rates,
etc. The choice of hyperparameters hugely affects the accuracy of the network. As a
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result, different optimal methods, such as manual search, Bayesian optimization, random
search and grid search, have been developed. We will employ the Keras tuner framework
( https://keras.io/keras_tuner/, accessed on 6 April 2023), which encompasses some
algorithms, such as the random search, hyperband and Bayesian optimization. For these
three search algorithms, we choose the validation loss as the objective with the maximum
search configuration of six trials. The following variables define the search space of our
NN architecture:

(1) Width and depth: The depth refers to the number of hidden layers, and the width is
the number of units in each hidden layer. Thus, the depth ranges from [1, 4] with a
step of 1, and the width ranges from [32, 512] with a step of 32.

(2) Activation function: These are non-linear activation functions in the NN, and we only
consider Sigmoid, ReLU and Tanh .

(3) Optimizer: This modifies the model parameters and is mostly used for weight adjust-
ments to minimize the loss function. We only consider Adam, SGD, Adagrad and
RMSprop.

(4) Learning and dropout rates: Learning rates control the speed at which the NN learns,
and we set it at [0.01, 0.001, 0.0001]. The dropout is a regularization technique
employed to improve the ability of NN to withstand overfitting. We set it at [0.1, 0.5]
with a step size of 0.1.

The activation functions are used in each layer, except the output layer. The network is
trained with 45 epochs, 256 batch sizes and an early stopping callback on the validation loss
with patience = 3. Since the option pricing model is a regression problem, our primary
objective is to keep the mean squared error (MSE) of the predicted prices to a minimum.
The essence of training a neural network entails minimizing the errors obtained during the
regression analysis, and this is done by selecting a set of weights in both the hidden and
the output nodes. Thus, to evaluate the performance of our ANN, we consider the MSE as
the loss function used by the network and the mean absolute error (MAE) as the network
metrics, which are given, respectively, as follows:

MSE =
1
N

N

∑
i=1

(Vi(S, t)− V̂i(S, t))2

MAE =
1
N

N

∑
i=1

|Vi(S, t)− V̂i(S, t)| ,

where N is the number of observations, Vi(S, t) is the exact option values and V̂i(S, t) is the
predicted option values. Finally, we alternate the activation functions, optimizers, batch
normalization and dropout rates to investigate the effect of the network training on the
option valuation and avoid overfitting the models.

3.1.4. Data Splitting Techniques for the ANN

Data splitting is a fundamental aspect of data science, especially for developing data-
based models. The dataset is divided into training and testing sets, and an additional
set known as the validation can also be created. The training set is used mainly for
training, and the model is expected to learn from this dataset while optimizing any of
its parameters. The testing set contains the data which are used to fit and measure the
model’s performance. The validation set is mainly used for model evaluation. If the
difference between the training set error and the validation set error is large, there is a case
of over-fitting, as the model has high variance. This paper considers supervised learning in
which the model is trained to predict the outputs of an unspecified target function. This
function is denoted by a finite training set F consisting of inputs and corresponding desired
outputs: F = {[−→a1 ,−→x1 ], [

−→a2 ,−→x2 ], · · · [−→an ,−→xn ]}, where n is the number of 2-tuples of input/
output samples.
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Train–Test Split

This paper considers the train–test split as 80:20 and a further 80:20 on the new train
data to account for a validation dataset. Thus, 80% of the whole dataset will account for the
training set and 20% for the test dataset. Additionally, 80% of the training set will be used
as the actual training dataset and the remaining 20% for validation. After training, the final
model should correctly predict the outputs and generalize the unseen data. Failure to
accomplish this leads to over-training, and these two crucial conflicting demands between
accuracy and complexity are known as the bias–variance trade-off [41,42]. A common
approach to balance this trade-off is to use the cross-validation technique.

K-Fold Cross Validation

The k-fold cv is a strategy for partitioning data with the intent of constructing a more
generalized model and estimating the model performance on unseen data. Denote the
validation (testing) set as Fte and the training set as Ftr. The algorithm (Algorithm 1) is
shown below.

Algorithm 1 Pseudocode for the k-fold cross validation
Input the dataset F , number of folds k and the error function (MSE)

1: Data split :
• Randomly split F into k independent subsets Fi,F2, · · · ,Fk of same size.
• For i = 1, 2, · · · , k: Fte ← Fi and Ftr ← F \ {Fi}.

2: Fitting and Training:
• Fit and train model on Ftr and evaluate model performance using Fte periodically:

Rte(i)=Error (Fte).
• Terminate model training when the Rte(i) stop criterion is satisfied.

3: Evaluation:
• Evaluate the model performance using Rte =

1
k ∑k

i=1 Rte(i).

3.1.5. Architecture of ANN

This research considers a fully connected MLP NN in the option valuation for this
research, which will consist of eight input nodes (in connection to the extended Black–
Scholes for the rebate option parameters). There will be one output node (option value); the
hidden layers and nodes will be tuned. There are two main models classified under the data-
splitting techniques: Model A (train–test split) and Model B (5-fold cross-validation split).
Each model is further subdivided into 3 according to the hyperparameter search algorithm.
Thus, Models A1, A2, and A3 represent the models from the data train–test split for
the hyperband algorithm, random search algorithm and Bayesian optimization algorithm,
respectively. Additionally, Models B1, B2, and B3 represent the models from the k-fold cross-
validation data split for the hyperband algorithm, random search algorithm and Bayesian
optimization algorithm, respectively. Finally, Tables 1 and 2 present the post-tuning search
details and the optimal model hyperparameters for the NN architecture, respectively.

Table 1. Trainable parameter search details.

Search
Details

Model A1 Model A2 Model A3 Model B1 Model B2 Model B3

Best MAE
score 0.07081 0.02794 0.01602 0.10141 0.03391 0.02911

Trainable
parame-

ters
254,305 218,145 113,345 138,945 80,961 4609

Total
search

time (secs)
620 714 642 642 491 754
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Table 1 compares the search time taken by each of the algorithms in tuning the hyper-
parameters. We observed that the hyperband algorithm is highly efficient regarding the
search time for the train–test split and the k-fold cross-validation models. The hyperband
algorithm search time is generally less when compared to the random search and the
Bayesian optimization algorithm. Furthermore, the Bayesian optimization provided the
lowest MAE score and required fewer trainable parameters than the hyperband and the
random search algorithm. This characteristic is equally observable for both models A and
B. From the tuning, we can see that the Bayesian optimization effectively optimizes the
hyperparameter when producing the lowest MAE, though it had the disadvantage of a
higher search time. In contrast to the Bayesian optimization, the hyperband algorithm
is optimal in terms of search time, despite having a higher MAE score. From the results
section, the final comparison of optimality will be made in terms of the deviation from the
actual values when all the models are used in the pricing process.

Table 2. Architecture of the ANN.

Hyperparameters Model A1 Model A2 Model A3 Model B1 Model B2 Model B3

Activation Fn Sigmoid Tanh Tanh ReLU Tanh ReLU
Optimizer Adam Rmsprop Adam Adagrad Rmsprop Adam

Learning rate 0.001 0.0001 0.0001 0.1 0.0001 0.0001
Hidden layers 4 3 4 4 2 3

Layer 1
(dropout) 512(0.2) 288(0.2) 32(0.1) 384(0.3) 480(0.2) 512(0.1)

Layer 2
(dropout) 192(0.2) 480(0.3) 32(0.1) 352(0.2) 160(0.3) 32(0.1)

Layer 3
(dropout) 224(0.4) 160(0.5) 512(0.2) 448(0.4) Nil 352(0.1)

Layer 4
(dropout) 480(0.5) Nil 224(0.2) 192(0.4) Nil Nil

3.2. Random Forest Regression

Random forest combines tree predictors in such a way that each tree in the ensemble
is contingent on the values of a randomly sampled vector selected from the training set.
This sampled vector is independent and has similar distribution with all the trees in the
forest [43]. The random forest regressor uses averaging to improve its predictive ability
and accuracy.

Let f (x; βn) be the collection of tree predictors where n = 1, 2, · · · , N denotes the
number of trees. Here, x is the observed input vector from the random vector X, and βn are
the independent and identically distributed random vectors. The random forest prediction
is given by

f̄ (x) =
1
N

f (x; βn) ,

where f̄ (x) is the unweighted average over the tree collection f (x). As the number of trees
increases, the tree structure converges. This convergence explains why the random forest
does not overfit, but instead, a limiting value of the generalization (or prediction) error is
produced [43,44]. Thus, we have that as n → ∞, the law of large numbers ensures that

EX,Y[Y − f̄ (X)]2 → EX,Y[Y −Eβ[ f̄ (X; β)]]2

Here, Y is the outcome. The training data are assumed to be drawn independently
from the joint distribution of (X, Y). In this research, we use the 80:20 train–test split
techniques to divide the whole dataset into a training set and a testing set. Using the
RandomForestRegressor() from the scikit-learn ML library, we initialize the regression
model, fit the model, and predict the target values.
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3.3. Polynomial Regression

Polynomial regression is a specific type of linear regression model which can predict
the relationship between the independent variable to the dependent variable as an nth
degree polynomial. In this research, we first create the polynomial features object using
the PolynomialFeatures() from the scikit-learn ML library and indicate the preferred
polynomial degree. We next use the 80:20 train–test split techniques to divide this new
polynomial feature into training and testing datasets, respectively. Next, we construct the
polynomial regression model, fit the model and predict the responses.

4. Results and Discussion

4.1. Data Structure and Description

For the ANN model input parameters, we generated 100000 sample data points and
then used Equation (8) to obtain the exact price for the rebate barrier call options. These
random observations will train, test and validate an ANN model to mimic the extended
Black–Scholes equation. We consider the train–test split and the cross-validation split on the
dataset and then measure these impacts on the loss function minimization and the option
values. The generated samples consist of eight variables, that is (S, K, B, R, T, σ, r, VR),
which are sampled uniformly, except the option price VR, and following the specifications
and logical ranges of each of the input variables (See Table 3). During the training process,
we fed the ANN the training samples with the following inputs (S, K, B, R, T, σ, r), where VR
is the expected output. In this phase, the ANN ‘learns’ the extended Black–Scholes model
from the generated dataset, and the testing phase follows suit, from which the required
results are predicted. Meanwhile, under the Black–Scholes framework, we assume that
the stock prices follow a geometric Brownian motion, and we used GBM(x = 150, r = 0.04,
σ = 0.5, T = 1, N = 100,000) for the random simulation. Table 3 below shows the extended
Black–Scholes parameters used to generate the data points, whereas Table 4 gives the
sample data generated. The range for the rebate, strike and barrier is from the uniform
random distribution, and they are multiplied by the simulated stock price to obtain the
final range.

Table 3. Extended Black–Scholes range of parameters—rebate barrier.

Strike Barrier Rebate Time Volatility Rate

[0.4, 1] [0.4, 1] [0.01, 0.05] [0.5, 1.5] [0.1, 0.5] [0.01, 0.05]

Table 4. Sample training data for rebate barrier option pricing model.

Stock Barrier Strike Rebate Rate Volatility Time Call Option

98.25745 51.92557 46.33445 0.01835 0.04355 0.22836 1.42274 54.61598
149.79728 96.91339 105.83799 0.04255 0.02863 0.27321 0.85166 47.22227
55.90715 38.39396 35.25565 0.01241 0.01989 0.34164 0.95034 20.32389
63.29343 41.03505 31.03422 0.04143 0.03072 0.21341 0.95572 32.80836

126.83153 116.65153 124.11145 0.02695 0.01888 0.45170 0.74936 9.60775
97.18410 75.27999 92.85564 0.01626 0.02186 0.39194 1.04861 15.67665

112.31872 112.30254 53.26221 0.01876 0.03539 0.43021 1.05975 0.04930

Statistics and Exploratory Data Analysis

In this section, we aim to summarize the core characteristics of our option dataset by
analyzing and visualizing them. The descriptive statistics which summarize the distribution
shape, dispersion and central tendency of the dataset are presented in Table 5. The following
outputs were obtained: the number of observations or elements, mean, standard deviation,
minimum, maximum and quartiles (25%, 50%, 75%) of the dataset. We observed that the
distribution of the simulated stock is left skewed since the mean is lesser than the median,
whereas the distributions of the option values, strike price and barrier levels are right
skewed.
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Table 5. Descriptive statistics for the rebate barrier.

Count Mean Std Min 25% 50% 75% Max

Stock 100,000.0 100.914912 25.412662 49.601351 89.084095 100.055323 110.997594 171.710128
Strike 100,000.0 70.644521 25.269816 20.236066 51.255058 68.083559 86.709133 170.197316
Rebate 100,000.0 0.029946 0.011529 0.010000 0.019957 0.029952 0.039881 0.049999
Barrier 100,000.0 70.574580 25.264409 20.380974 51.162052 67.929254 86.572706 169.477720
Time 100,000.0 1.000314 0.288309 0.500003 0.751330 0.999858 1.250020 1.499976

Sigma 100,000.0 0.299688 0.115622 0.100001 0.199680 0.299840 0.400159 0.499991
Rate 100,000.0 0.030006 0.011557 0.010001 0.019994 0.029978 0.040008 0.050000

OptionV 100,000.0 27.183098 17.482423 0.025235 13.547223 24.047318 38.324748 103.946198

In Figure 1, we consider the visualization using the seaborn library in connection
with the pairplot function to plot a symmetric combination of two main figures, that is,
the scatter plot and the kernel density estimate (KDE). The KDE plot is a non-parametric
technique mainly used to visualize the nature of the probability density function of a
continuous variable. In our case, we limit these KDE plots to the diagonals. We focus
on the relationship between the stock, strike, rebate and the barrier with the extended
Black–Scholes price (OptionV) for the rebate barrier options. From the data distribution
for the feature columns, we notice that the sigma, time and rate columns could be ignored.
This is because the density distribution shows that these features are basically uniform,
and the absence of any variation makes it very unlikely to improve the model performance.
Suppose we consider this problem as a classification problem; then, no split on these
columns will increase the entropy of the model.

On the contrary, however, if this was a generative model, then there would be no prior
to updating given a uniform posterior distribution. Additionally, the model will learn a
variate of these parameters since, by definition of the exact option price (referred to as
OptionV) function, these are the parameters which can take on constant values. Another
method to consider would be to take these parameters ‘sine’ functions as inputs to the
model instead of the actual values. We observed from our analysis that this concept works,
but there is not a significant improvement in model performance, which can be investigated
in further research.

4.2. Neural Network Training

The first category (train dataset) is employed to fit the ANN model by estimating the
weights and the corresponding biases. The model at this stage tends to observe and ‘learn’
from the dataset to optimize the parameters. In contrast, the other (test dataset) is not used
for training but for evaluating the model. This dataset category explains how effective
and efficient the overall ANN model is and the prediction probability of the model. Next
and prior to the model training, we perform data standardization techniques to improve
the performance of the proposed NN algorithm. The StandardScalar function of the
Sklearn python library was used to standardize the distribution of values by ensuring
that the distribution has a unit variance and a zero mean. During the compilation stage,
we plot the loss (MSE) and the evaluation metrics (accuracy) values for both the train and
validation datasets. We equally observe that the error difference between the training and
the validation dataset is not large, and as such, there is no case of over- or under-fitting of
the ANN models. Once the ‘learning’ phase of the model is finished, the prediction phase
will set in. The performance of the ANN model is measured and analyzed in terms of the
MSE and the MAE. Table 6 gives the evaluation metrics for both the out-sample prediction
(testing dataset) and the in-sample prediction (training dataset).
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Figure 1. Visualization plot.

Table 6. Model evaluation for testing and training data (shows no over- or underfitting).

Models Test Train
Loss (MSE) Metrics (MAE) Loss (MSE) Metrics (MAE)

Model A1 0.0214 0.0574 0.0249 0.0557
Model A2 0.0349 0.0987 0.0299 0.0929
Model A3 0.0446 0.1058 0.0423 0.1027
Model B1 0.0229 0.0601 0.0202 0.0584
Model B2 0.0425 0.0883 0.0394 0.0872
Model B3 0.0457 0.0782 0.0411 0.0762

Table 6 shows the model evaluation comparison for the train/test loss and accuracy.
It is observed that the test loss is greater than the training loss, and the test accuracy is
greater than the training accuracy for all the models. The differences in error sizes are not
significant, and thus the chances of having an overfitting model are limited. Figures 2–5
show the training and validation (test) of the loss and MAE values for all the models when
the models are fitted and trained on epoch = 45, batch size = 256, and verbose = 1. We
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visualize these graphs to ascertain whether there was any case of overfitting, underfitting
or a perfect fitting of the model. In underfitting, the NN model fails to model the training
data and learn the problem perfectly and sufficiently, leading to slightly poor performance
on the training dataset and the holdout sample. Overfitting occurs mainly in complex
models with diverse parameters, which happens when the model aims to capture all data
points present in a specified dataset. In all the cases, we observe that the models show
a good fit, as the training and validation loss are decreased to a stability point with an
infinitesimal gap between the final loss values. However, the loss values for Model B3
followed by Model B2 are highly optimal in providing the best fit for the algorithm.

(a) (b) (c)

Figure 2. Train/test MAE values for Models A1, A2 and A3; (a) MAE—Model A1; (b) MAE—
Model A2; (c) MAE—Model A3.

(a) (b) (c)

Figure 3. Train/Test MAE values for Models B1, B2 and B3; (a) MAE—Model B1; (b) MAE—Model B2;
(c) MAE—Model B3.

(a) (b) (c)

Figure 4. Train/Test LOSS values for Models A1, A2 and A3; (a) LOSS—Model A1; (b) LOSS—
Model A2; (c) MAE—Model A3.

(a) (b) (c)

Figure 5. Train/Test LOSS values for Models B1, B2 and B3; (a) LOSS—Model B1; (b) LOSS—
Model B2; (c) LOSS—Model B3.
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Next, we display the plots obtained after compiling and fitting the models. The pre-
diction is performed on the unseen data or the test data using the trained models. Figures 6
and 7 give the plot of the predicted values against the actual values, the density plot of the
error values and the box plot of the error values for all six models.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6. Option values visualization for Models A1, A2, A3; (a) Model A1: Regression plot;
(b) Model A1: Histogram plot; (c) Model A1: Box plot; (d) Model A2: Regression plot; (e) Model A2:
Histogram plot; (f) Model A2: Box plot; (g) Model A3: Regression plot; (h) Model A3: Histogram plot;
(i) Model A3: Box plot.

The box plot enables visualization of the skewness and how dispersed the solution
is. Model A2 behaved poorly, as this can be observed with the wide range of dispersion
of the solution points, and the model did not fit properly. For a perfect fit, the data points
are expected to concentrate along the 45 deg red line, where the predicted values are equal
to the actual values. This explanation is applicable to Models A2 and A3, as there was no
perfect alignment in the regression plots. We could retrain the neural network to improve
this performance since each training can have different initial weights and biases. Further
improvements can be made by increasing the number of hidden units or layers or using
a larger training dataset. For the purpose of this research, we already performed the
hyperparameter tuning, which solves most of the above suggestions. To this end, we focus
on Model B, another training algorithm.

Models B3 and B1 provide a good fit when their performance is compared to the other
models, though there are still some deviations around the regression line. The deviation
of these solution data points is also fewer than in the other models. It is quite interesting
to note that the solution data points of Models B1 and B3 are skewed to the left, as can be
seen in the box plots. This could be a reason for their high performance compared to other
models, such as A1, A2, and A3, which are positively skewed. However, this behavior
would be worth investigating in our future work.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7. Option values visualization for Models B1, B2, B3; (a) Model B1: Regression plot; (b) Model
B1: Histogram plot; (c) Model B1: Box plot; (d) Model B2: Regression plot; (e) Model B2: His-
togram plot; (f) Model B2: Box plot; (g) Model B3: Regression plot; (h) Model B3: Histogram plot;
(i) Model B3: Box plot.

Table 7 shows the error values in terms of the MSE, MAE, mean squared logarithmic
error (MSLE), mean absolute percentage error (MAPE) and the R2 (coefficient of determina-
tion) regression score. It also shows the models’ comparison in terms of their computation
speed, and it must be noted that the computation is measured in seconds. Mathematically,
the MSLE and MAPE are given as

MSLE =
1
N

N

∑
i=1

[loge(1 + Vi(S, t))− loge(1 + V̂i(S, t))]2 ,

MAPE =
100%

N

N

∑
i=1

∣∣∣∣Vi(S, t)− V̂i(S, t)
Vi(S, t)

∣∣∣∣ ,

where N is the number of observations, Vi(S, t) is the exact option values and V̂i(S, t)
is the predicted option values. For the MAPE, all the values lower than the threshold
of 20% are considered ‘good’ in terms of their forecasting capacity [45]. Thus, all the
models have good forecasting scores, with Model A1 possessing a highly accurate forecast
ability. Similarly, the values for the MSLE measure the percentile difference between the
log-transformed predicted and actual values. The lower, the better, and we can observe
that all the models gave relatively low MSLE values, with Models A1 and B1 giving the
lowest MSLE values.Please check that intended meaning is retained.

From Table 7, the R2 measures the capacity of the model to predict an outcome in the
linear regression format. Models B1 and B3 gave the highest positive values compared to
the other models, and these high R2-values indicate that these models are a good fit for our
options data. It is also noted that for well-performing models, the greater the R2, the smaller
the MSE values. Model B3 gave the smallest MSE, with the highest R2, compared to the
least performed model A2, which had the largest MSE and the smallest R2 score. The MAE
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measures the average distance between the predicted and the actual data, and the lower
values of the MAE indicate higher accuracy.

Table 7. Error values and computation time for various NN models.

Models Error Values Comp Time (secs)
R2-Score MAE MSLE MSE MAPE

Model A1 0.989839 1.128247 0.006056 3.143079 0.076672 93.22
Model A2 0.969974 2.080077 0.013861 9.175201 0.129603 76.93
Model A3 0.977491 1.991815 0.019283 6.840152 0.143385 60.21
Model B1 0.994019 0.990397 0.006361 1.821165 0.080418 51.48
Model B2 0.987908 1.328247 0.015289 3.681967 0.125486 51.85
Model B3 0.994371 0.932689 0.014919 1.714182 0.125429 31.17

Finally, we display the speed of the NN algorithm models in terms of their com-
putation times, as shown in Table 7. The computation time taken by the computer to
execute the algorithm encompasses the data splitting stage, standardization of set variables,
ANN model compilation and training, fitting, evaluation and the prediction of the results.
As noted in Models A1 and A2, the use of Sigmoid and Tanh activation functions accounted
for higher computation time, and this is due to the presence of exponential functions, which
need to be computed. Model A1 was the least performed in terms of the computation time,
and Model B3 was the best, accounting for a 66.56% decrease in time. We observe that the
computation time is reduced when the k-fold cross-validation split is implemented prior
to the ANN model training, as compared to the traditional train–test split. This feature is
evident as a further 41.62% decrease was observed when the average computation time for
Model B was used against Model A.

The overall comparison of the tuned models is presented in Figure 8. Here, we rank
the performance of each MLP model with regards to ST:TP, algorithm computation time,
and finally, the errors spanning from the R2 score, MAE and the MSE. The ST:TP ratio
denotes the search time per one trainable parameter. The ranking is ascending, with 1 being
the maximum preference and 6 being the least preference. From the results and regardless
of the number of search times per one trainable parameter, we observe that Model B3 is
optimal, followed by Model B1, and the lowest performing is Model A2. Hence, we can
conclude that models which consist of the k-fold data split performed significantly well in
the valuation of the rebate barrier options using the extended Black–Scholes framework.

Figure 8. Ranking of models for optimality.
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4.3. Analysis of Result Performance

One avenue to show the accuracy of our proposed model is to test the architecture
on a non-simulated dataset for the rebate barrier options. At present, we are not able to
obtain such real market data due to non-accessibility, and this is one of the limitations of the
research. However, we compare the NN results with other machine learning models, such
as the polynomial regression and the random forest regression on the same dataset. Both
techniques are capable of capturing non-linear relationships that exist amongst variables.

Polynomial regression provides flexibility when modeling the non-linearity. Im-
proved accuracy can be obtained when the higher-order polynomial terms are incorporated,
and this feature makes it easier to capture the non-complex patterns in the dataset. It is
also very fast when compared to both our proposed NN methodology and the random
forest regression (Table 8). In this work, we only present the results obtained using the
2nd-, 3rd- and 4th-degree polynomial regressions. We observed that in terms of accuracy,
polynomials of higher degrees gave rise to more accurate results and a significant reduction
in their error components.

However, one of the issues facing the polynomial regression is model complexity;
when the polynomial degree is high, the chances of model overfitting will be significantly
high. Thus, we are faced with the trade-off between accuracy and over-fitting of the model.
Regression random forest, on the other hand, combines multiple random decision trees,
with each tree trained on a subset of data. We build random forest regression models using
10, 30, 50, and 70 decision trees, then we fit the model to the barrier options dataset, predict
the target values, and then compute the error components. Finally, we compare these two
models to the optimal model obtained with the NN results (Model B3), and we have the
following table.

Table 8. Error values and computation time for Model B3, polynomial regression and random
forest regression.

Models Error values Time (secs)
R2-Score MAE MSLE MSE MAPE

Random Forest Regr.
Decision trees (10) 0.990380 1.182121 0.016714 2.938727 0.145200 6.02
Decision trees (30 0.992352 1.056031 0.013461 2.293958 0.118368 15.56
Decision trees (50) 0.992449 1.037465 0.015827 2.299464 0.117032 26.34
Decision trees (70) 0.992825 1.022187 0.014146 2.211590 0.127853 36.02
Polynomial Regr.
Polynomial order (2) 0.967764 2.156955 N/A 9.843225 0.327491 1.05
Polynomial order (3) 0.987900 1.269433 N/A 3.666175 0.206076 2.25
Polynomial order (4) 1 0.996147 0.689323 N/A 1.177380 0.114092 3.75
Neural Network
Model B3 0.994371 0.932689 0.014919 1.714182 0.125429 31.17

1 We consider polynomials of order ≥ 4 to be higher-order, and this is because of the increase in their complexity.
The accuracy of the 4th-order polynomial regression is actually higher than our proposed model, but the former
has the issue of overfitting the data, which comes with a higher degree of polynomial regression. Additionally,
the N/A in the MSLE cells is due to some negative values in the prediction set, which makes the logarithm of the
values N/A.

Increasing the number of decision trees leads to more accurate results, and Oshiro et al.
(2012) explained that the range of trees should be between 64 and 128. This feature will
make it feasible to obtain a good balance between the computer’s processing time, memory
usage and the AUC (area under curve) [46]; we observed this feature in our research.
The model was tested on 80, 100, 120, 140, 160, 180, and 200 decision trees, and we obtained
the following coefficient of determination R2 regression score (computation time): 0.9924
(34 secs), 0.9928 (52 secs), 0.9929 (62 secs), 0.9925 (75 secs), 0.9929 (83 secs), 0.9929 (89 secs)
and 0.9926 (102 secs), respectively. We obtained the optimal decision tree to be between 110
and 120 with an R2 score of 0.9929, and any other value below 110 will give rise to a less
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accurate result. Any value above 120 will not lead to any significant performance gain but
will only lead to more computational cost.

Table 8 compares the performance of our optimal NN model to the random forest and
the polynomial regressions. The performance is measured based on the error values and
the computational time. The NN model performed better than the random forest regression
regardless of the number of decision trees used, and this was obvious from the results
presented in Table 8 above. On the other hand, polynomial regression of the 2nd and 3rd
orders underperformed when compared to the NN model, but maximum accuracy was
obtained when higher order (≥ 4) was used. This higher order posed a lot of complexity
issues, which our optimal NN model does not face. Hence, more theoretical understanding
is needed to further explain the phenomenon, and this current research does not account
for it.

4.4. Option Prices and Corresponding Greeks

To compute the zero-rebate DO option prices and their corresponding Greeks, we
simulate another set of data (1,000,000) in accordance with the extended Black–Scholes
model, and the Table 9 below gives a subset of the full dataset after cleansing.

Table 9. Data subset of option values and Greeks.

S B K R r σ T V(t, S) ΔDO ΓDO νDO

190.14286 80.0 100.0 0.0 0.05 0.25 1.0 95.04795 0.99811 0.00013 1.14425
83.61440 80.0 100.0 0.0 0.05 0.25 1.0 2.08913 0.48534 −0.00174 7.12088
108.12702 80.0 100.0 0.0 0.05 0.25 1.0 17.72886 0.74465 0.01029 30.44055
146.39879 80.0 100.0 0.0 0.05 0.25 1.0 51.77793 0.96780 0.00194 10.39359
121.23493 80.0 100.0 0.0 0.05 0.25 1.0 28.42419 0.86428 0.00678 24.95840

For the NN application, we used the hyperparameters of Model B3 to construct
the NN architecture and train and predict the option values and their corresponding
Greeks. The risks associated with the barrier options are complicated to manage and hedge
due to their path-dependent exotic nature, which is more pronounced as the underlying
approaches to the barrier level. For the Greeks considered here, we focus on predicting
the delta, gamma and vega using the optimal NN model, and the following results were
obtained.

Figure 9 shows the plot of the predicted and actual values of the DO option prices,
together with the delta, gamma and vega values. For the option value, the DO call behaves
like the European call when the option is far deep in-the-money, and this is because the
impact of the barrier is not felt at that phase. The option value decreases and tends to zero
as the underlying price approaches the barrier since the probability of the option being
knocked out is very high. The in-the-money feature is equally reflected in the delta and
gamma as they remain unchanged when the barrier is far away from the underlying. Here,
the delta is one, and the gamma is zero.

Gammas for this option style are typically large when the underlying price is in the
neighborhood of the strike price or even near the barrier, and it is the lowest for out-of-
money options or knocked-out options. From Figure 9c, gamma tends to switch from
positive to negative without switching from long to short options. The values of gammas
are usually bigger than the gamma for the standard call option. These extra features pose a
great challenge to risk managers during the rebalancing of portfolios. Lastly, vega measures
the sensitivity of the option value with respect to the underlying volatility. It measures the
change in option value based on a 1% change in implied volatility. Vega declines as the
options approach the knock-out phase; it falls when the option is out-of-money and deep
in-the-money, and it is maximum when the underlying is around the strike price. Overall,
Figure 9a–d display how accurately Model B3 predicts the option values and their Greeks,
as little or no discrepancies are observed in each dual plot.
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(a) (b)

(c) (d)

Figure 9. Option values and Greeks; (a) DO option value; (b) DO delta; (c) DO gamma; (d) DO vega.

5. Conclusions and Recommendations

This research suggested a more efficient and effective means of pricing the barrier
call options, both with and without a rebate, by implementing the ANN techniques on
the closed-form solution of these option styles. Barrier options belong to exotic financial
options whose analytical solutions are based on the extended Black–Scholes pricing models.
Analytical solutions are known to possess assumptions which are not often valid in the
real world, and these limitations make them ideally imperfect in the effective valuation of
financial derivatives. Hence, through the findings of this research, we were able to show
that neural networks can be employed efficiently in the computation and the prediction
of unbiased prices for both the rebate and non-rebate barrier options. This study showed
that it is possible to utilize an efficient approximation method via the concept of ANN
in estimating exotic option prices, which are more complex and often require expensive
computational time. This research has provided an in-depth concept into the practicability
of the deep learning technique in derivative pricing. This was made viable through some
statistical and exploratory data analysis and analysis of the model training provided.

From the research, we conducted some benchmarking experiments on the NN hy-
perparameter tuning using the Keras interface and used different evaluation metrics to
measure the performance of the NN algorithm. We finally estimated the optimal NN archi-
tecture, which prices the barrier options effectively in connection to some data-splitting
techniques. We compared six models in terms of their data split and their hyperparame-
ter search algorithm. The optimal NN model was constructed using the cross-validation
data-split and the Bayesian optimization search algorithm, and this combination was more
efficient than the other models proposed in this research. Next, we compared the results
from the optimal NN model to those produced by other ML models, such as the random
forest and the polynomial regression; the output highlights the accuracy and the efficiency
of our proposed methodology in this option pricing problem.

Finally, hedging and risk management of barrier options are complicated due to their
exotic nature, especially as the underlying is near the barrier. Our research extracted the
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barrier option prices and their corresponding Greeks with high accuracy using the optimal
hyperparameter. The predicted and accurate results showed little or no difference, which
explains our proposed model’s effectiveness. For future research direction, more theoretical
underpinning seems to be lacking in connection to the evaluation/error analysis for all the
proposed models used in this research. Another limitation of this work is the use of a fully
simulated dataset; it will suffice to implement these techniques on a real dataset to estimate
the effectiveness. The third limitation of this research lies in the convergence analysis
of the proposed NN scheme, and future research will address this issue. In addition,
more research can be conducted to value these exotic barrier options from the partial
differential perspective, that is, solving the corresponding PDE from this model using the
ANN techniques and extending the pricing methodology to other exotic options, such as
the Asian or the Bermudian options.
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Abstract: Ski goggles help protect the eyes and enhance eyesight. The most important part of ski
goggles is their lenses. The quality of the lenses has leaped with technological advances, but there are
still defects on their surface during manufacturing. This study develops a deep learning-based defect
detection system for ski goggles lenses. The first step is to design the image acquisition model that
combines cameras and light sources. This step aims to capture clear and high-resolution images on
the entire surface of the lenses. Next, defect categories are identified, including scratches, watermarks,
spotlight, stains, dust-line, and dust-spot. They are labeled to create the ski goggles lenses defect
dataset. Finally, the defects are automatically detected by fine-tuning the mobile-friendly object
detection model. The mentioned defect detection model is the MobileNetV3 backbone used in a
feature pyramid network (FPN) along with the Faster-RCNN detector. The fine-tuning includes:
replacing the default ResNet50 backbone with a combination of MobileNetV3 and FPN; adjusting
the hyper-parameter of the region proposal network (RPN) to suit the tiny defects; and reducing
the number of the output channel in FPN to increase computational performance. Our experiments
demonstrate the effectiveness of defect detection; additionally, the inference speed is fast. The
defect detection accuracy achieves a mean average precision (mAP) of 55%. The work automatically
integrates all steps, from capturing images to defect detection. Furthermore, the lens defect dataset is
publicly available to the research community on GitHub. The repository address can be found in the
Data Availability Statement section.

Keywords: ski goggles lenses; surface defect; automatic optical inspection; Faster-RCNN; fine-tune;
MobileNetV3; FPN; RPN

MSC: 68T07, 68T20, 68T45

1. Introduction

Winter sports such as skiing, snowboarding, and snowshoeing offer great enjoyment,
and ski goggles are the necessary equipment to perform better in these activities. There
are many advantages that can help protect the eyes from harmful ultraviolet rays, provide
both facial and ocular safety protection, and offer color and contrast enhancement. Figure 1
shows some samples of ski goggles.

 

Figure 1. Some lens samples of ski goggles in different sizes, curvatures, and colors.
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The most critical component of ski goggles is the lenses, which offer an unrivaled
visual experience. In the manufacturing process of ski goggles, there are unavoidable
defects [1,2] on the surface of the lenses. Therefore, lens manufacturers should implement
a visual defect inspection system [3,4] to enhance product quality.

There are some challenging issues in the defect inspection for the lenses of ski goggles.
Firstly, the lens surfaces are curved and vary in size, making it difficult to design an
image acquisition system that captures their entire surface. As depicted in Figure 2, the
usual lens samples exhibit distinct curvatures and sizes. Secondly, the lenses are coated
with various tints, presenting a challenge in customizing the light source due to multiple
reflections. Thirdly, some surface defects are extremely small, which are inconspicuous
and subtle. Thus, the detection of such minor defects is particularly difficult and requires
higher precision.

 
Figure 2. Some standard sizes of ski goggles lenses. The width ranges from 92 to 205 mm, and the
height ranges from 60 to 126 mm.

Artificial intelligence (AI) technology can help organizations gain an edge over their
competitors [5]. AI has proven especially beneficial for improving product quality and
lowering costs. For manufacturers, AI promises benefits at every level of the value chain.
The AI-based system can detect defects faster and more accurately than the human eye. A
typical industrial visual inspection system based on deep learning incorporates several
fundamental components to facilitate accurate and efficient product quality assessment.
These components, critical to the system’s operation, include:

• Image Acquisition Devices: High-resolution cameras [6,7], often fitted with special-
ized lenses, capture images of inspected items. These devices may employ various
imaging technologies, such as monochrome, color, or infrared, contingent on the
application’s demands.

• Lighting: Customized illumination sources [8], including LED lights [9] or lasers, are
employed to enhance the contrast and visibility of features under inspection. The
choice and configuration of lighting are instrumental in achieving optimal image
quality for precise defect detection.

• Deep Learning Algorithms: Deep learning-based defect detection typically requires
training object detection models or alternative specialized architectures on the exten-
sively labeled datasets of defect images. Object detection methodologies have been
extensively applied in the detection of defects on the surfaces of industrial products,
such as steel, plastic, wood, and silk [10–12]. The task of object detection in computer
vision encompasses two primary functions: localization [13] and classification [14].
In traditional computer vision, classifiers [15] such as SVM, KNN, and K-means clus-
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tering have played a vital role in categorizing classes. Meanwhile, object localization
mainly employs fast template-matching-based algorithms [16].

In recent years, significant progress has been made in neural networks, machine learn-
ing, and deep learning. Classifiers such as ResNet [17], VGG [18], EfficientNet [19], and Vi-
sion Transformer [20] have achieved state-of-the-art results for classification tasks. Concur-
rently, object localization has been applied to anchor-based and anchor-free methods [21].
The anchor-based approach, known as the two-stage object detector, includes the Faster
R-CNN [22] family. The anchor-free technique, referred to as the one-stage object detectors,
comprises models such as YOLO [23] and FCOS [24].

The remarkable success in this field stems from the seamless integration of localization
and classification tasks in deep learning. To gain a deeper insight, it is crucial to understand
the Faster R-CNN architecture’s automatic pipeline. The Faster R-CNN model systemat-
ically combines customizable neural sub-network blocks, including the backbone block,
region proposal network [25], and ROI-head block.

Figure 3 illustrates the fundamental components of an optical initialization system,
which include a light source, camera, and hardware to execute image processing algorithms.

 
Figure 3. Some main components in the optical inspection system.

In light of the aforementioned challenges and emerging trends, this paper aims to
develop an automatic defect detection system for ski goggles lenses, utilizing deep learning
techniques. To accomplish this objective, the following steps are undertaken:

(1) Design of an image acquisition model that integrates cameras and light sources to
effectively capture the entire surface of ski goggles lenses.

(2) Identification of lens defect categories and construction of a comprehensive ski goggles
lens defect dataset.

(3) Fine-tuning of the integrated object detection model that combines Faster R-CNN,
FPN, and MobileNetV3 by implementing the following modifications: replacement
of the default ResNet50 backbone with a combination of MobileNetV3 and feature
pyramid network (FPN) to optimize computational efficiency and performance; ad-
justment of the region proposal network (RPN) hyperparameters to accommodate the
detection of minuscule defects; and a reduction of the output channel count in the
FPN to enhance computational performance without sacrificing accuracy.

By executing these steps, the paper presents a novel deep learning-based approach for
detecting defects on ski goggles lenses, demonstrating potential applicability to various
manufacturing quality control scenarios.

The structure of the paper is organized as follows. Section 1 provides an introduction
to the study. Section 2 introduces the image acquisition technique, data labeling for
defects, and the defect detection method. Sections 3 and 4 present the research results
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and subsequent discussions, respectively. Finally, Section 5 offers concluding remarks and
summarizes the paper’s findings.

2. Materials and Methods

The deep learning-based defect detection system for ski goggles lenses presented in
this study is depicted in Figure 4. The system comprises two modules: the image acquisition
module and the defect detection module. The former is responsible for capturing images
of ski goggles lenses, extracting regions of interest, and labeling data. The latter trains the
customized model using input data and detects defects during inference.

 
Figure 4. The flowchart of the proposed method. There are two modules for processing images.
The first one is the image acquisition to capture the raw image, extract regions of interest, and data
labeling. The second module is defect detection, which involves training data and inferencing defects.
This module combines Faster R-CNN, MobileNetV3, and FPN to create the customized end-to-end
model. It is compatible with data of the ski goggles lenses.

Image Acquisition Module: This module is responsible for obtaining high-quality
images of ski goggles lenses. An optimized image acquisition setup, which combines
cameras and light sources, is employed to ensure the entire surface of the lenses is captured
with minimal glare and distortion. The regions of interest are extracted from the captured
images, and the data are meticulously labeled to identify and categorize defects present in
the lenses.

Defect Detection Module: A customized object detection model, based on the Faster
R-CNN architecture, is designed and integrated into this module. The model involves
replacing the backbone of Faster R-CNN with MobileNetV3 and integrating FPN for
efficient feature extraction and multi-scale representation. The customized model is trained
using the labeled input data and subsequently employed for detecting defects during the
inference phase.
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2.1. Image Acquisition Module

This module aims to collect accurate and high-quality images from the surface of the
ski goggles lenses. It also prepares the well-formatted data for the next module.

2.1.1. Capture Image

The first part of the module is image capture, which consists of cameras, light sources,
and ski goggles lens samples. To design the image capture system for the ski goggles,
lenses need to overcome some challenges mentioned in Section 1. The surface of the lens is
broad, and one camera cannot cover the whole of the lens surface. Therefore, we designed
the image acquisition system using five cameras. Each camera will focus on each region
marked on the lens, as in Figure 5.

 

Figure 5. The ski goggles’ lens sample. It is wide and curved; thus, we mark its surface to be easily
controlled by cameras.

Furthermore, the surface is also curved, so we designed the custom light source as in
Figure 6. The curvature of the light source is similar to the curvature of the lens, which
helps to reflect uniform rays over the lens surface. The custom light source has five pieces
of flat LED lights connected by an angle of 125 degrees. Figure 7 describes the detailed
design diagram of the image acquisition system. The ray of each flat LED piece transits
through the lens to the cameras opposite, respectively. Figure 8 depicts the actual pieces of
equipment when deployed.

 

Figure 6. The most that a custom light source meets the curvature of the ski goggles lens. Five dot
matrix LED modules are connected by an angle of 125◦.
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Figure 7. Design diagram of the image acquisition system. Five cameras are placed at the top. The
custom light source (yellow) is placed at the bottom. The ski goggles’ lens sample (red) is positioned
in the middle and held on two sides.

 

Figure 8. The actual model of image acquisition. The bottom is a custom light source that shines
through the ski goggles lens surface to the cameras. The computer controls the five cameras
through the acquisition card. The developed program will access the card’s interface to capture
images simultaneously.
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The parameters of a camera, such as resolution, sensor, pixel size, and frame rate, are
significantly influential in designing the distance from the camera lens to the inspected
object. Table 1 lists the parameters of the image acquisition system.

Table 1. The equipment description of the image acquisition system.

Equipment Producer Specification

Camera Basler Model acA4112-30uc, sensor Sony IMX352, resolution
12 mp, pixel size 3.45 × 3.45 μm, frame rate 30 fps.

Acquisition Card Basler USB 3.0 Interface Card PCIe, Fresco FL1100, 4HC, x4, 4Ports.
Data transfer with rates of up to 380 MB/s per port.

Vision Lens Tokina Model TC3520-12MP, image format 4/3 inch, mount C, focal
length 35 mm, aperture range F2.0-22.

Light Source Custom The custom-designed light source comprises five-dot matrix
LED modules that are connected by an angle of 125◦.

Computer Asus
Windows 10 Pro; hardware based on: mainboard Asus

Z590-A, CPU Intel I7-11700K, RAM 16G, VGA gigabyte RTX
3080Ti 12 GB.

For ease of visualization, Figure 9 shows the input and output of the system. Inputs are
lens samples. The system captures its surface and outputs images of the lens surface. We
also developed a Python program to simultaneously control five cameras and automatically
crop the areas of interest (ROI).

 
Figure 9. Input and Output of image acquisition. Input is some lens samples of ski goggles, and
output is raw images from five cameras.

2.1.2. Regions of Interest

The system uses five cameras to capture the whole of the lens surface, and each camera
only focuses on a portion of the lens. There are, however, limitations in the experiment,
such as that the cameras can capture the overlapping or out-boundary parts. Therefore,
we need to generate the ROIs from each raw image so that when stitched together, they
become the image of the whole lens. The first line of Figure 10 shows five natural photos
taken from the cameras, each containing redundant portions such as overlaps or areas
outside of the lens. The five below images are the results of creating ROIs, respectively. We
developed a program to capture images and generate ROIs seamlessly. The program was
inherited from the Pypylon package of Basler and PyTorch framework.
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Figure 10. Crop regions of interest from raw images. Five cameras capture five images in the first
row. To facilitate data labeling, extracting parts of good images is necessary. The bottom row is five
regions of interest.

2.1.3. Data Labeling

Based on our practical experience with the imaging system and discussing with the ski
goggles manufacturer, we conclude that there are the following common types of defects
on the surface of ski goggles lenses: scratch, watermark, spotlight, stain, dust-line, and
dust-spot. Figure 11 illustrates the detailed defect types.

 
Figure 11. Some defect samples on the surface of ski goggles lenses. Column (a): scratch defects,
(b): watermark, (c): spotlight, (d): stain, (e): dust-line, (f): dust-spot.

Because detect detection is based on supervised deep learning methods, the image
data need to be labeled for the training phase. We used the LabelMe tool [26] to mark the
defect regions with bounding boxes. Figure 12 illustrates the defect-labeling interface using
the label tool.

From the 37 ski goggles lens pieces provided by the manufacturer, the image acqui-
sition system captured and created a total of 654 images of 1330 × 800 pixels in size. We
carry out defect labeling for the defect detection task. As outlined in Table 2, the count of
labeled defects constitutes the initial dataset.

It is crucial to acknowledge that the distribution of defects in the dataset is imbalanced,
with dust-line being the most prevalent (7292 instances) and watermark being the least
prevalent (120 instances). This imbalance may result in a biased model. Consequently,
the flip technique is employed to generate supplementary synthetic data. The quantity of
underrepresented defect categories, including spotlight, stain, and watermark, is expected
to increase. As depicted in Figure 13, the synthetic image is generated from a small
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batch of defects and backgrounds. A total of 200 synthetic images are generated and
subsequently labeled. Table 3 presents the statistics regarding the categories of defects in
the synthetic dataset.

 
Figure 12. The GUI of LabelMe: the image annotation tool used to label defects on the surface of ski
goggles lenses.

Table 2. The defect detection dataset of ski goggles lenses: defect type and its respective quantity.

Type Defects Type Defects Type Defects

scratch 1972 spotlight 229 dust-line 7292
watermark 120 stain 281 dust-spot 1898

Total 11,792
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Figure 13. Synthetic image generated from the flip technique.

Table 3. The statistics of the number of defects in the synthetic dataset.

Type Defects Type Defects Type Defects

scratch 0 spotlight 1093 dust-line 0
watermark 973 stain 1328 dust-spot 0

Total 3394

Imbalanced and underrepresented data are a common challenge in collecting real-world
data, which may impact detection results. To address this issue, a synthetic dataset is gen-
erated and subsequently merged with the initial dataset, forming a combined dataset as
detailed in Table 4.

Table 4. The statistics of the defect categories from the combined dataset, which merges the initial
and synthetic datasets.

Type Defects Type Defects Type Defects

scratch 1972 spotlight 1322 dust-line 7292
watermark 1093 stain 1609 dust-spot 1898

Total 3394

For a comprehensive and in-depth analysis of the dataset, Table 5 enumerates the
number of images corresponding to each defect category.

Table 5. The number of images containing each defect category is extracted from the JSON file
containing the labels.

Defect
Type

Scratch Watermark Spotlight Stain Dust-Line Dust-Spot

Images 447 199 352 316 546 612
Instances 1972 1093 1322 1609 7292 1898

The next section will describe the defect detection model, which is trained and utilized
for inference using the aforementioned dataset.
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2.2. Defect Detection Module

Finding a suitable object detection model for each data type is difficult. Faster R-CNN
architecture is the two-state object detector which has proven to have high accuracy
and be end-to-end trainable. Our work is to fine-tune this architecture by integrating
the MobileNetV3 [27] backbone and feature pyramid network for extracting multi-scale
features [28]. MobileNetv3 model is a lightweight neural network suitable for devices with
a limited computational resource budget. Furthermore, we also reduce the number of
channels to reduce latency in inference.

The following sections will cover the overview method of supervised machine learning
theory, and the overview of the integrated Faster-RCNN architecture is shown in Figure 4.
The backbone, RPN, and ROI-Head are the three main sub-networks in the defect detection
module. First, the backbone block combines MobilenetV3 and FPN to extract multi-scale
feature maps. Second, the RPN will create and propose the candidate defect regions. Finally,
the ROI-Head block will locate the position of defects and classify them. Related theories,
such as the bounding box regression, binary classification, multiclass classification, and
assigning the boxes to the level of feature maps, are also discussed in detail.

2.2.1. Object Detection Problem Setting Based on Supervised Learning Approach

There are various machine-learning paradigms, such as supervised, unsupervised,
and reinforcement learning. Because of the tasks related to detecting and classifying defects,
we apply the supervised learning approach. This direction is related to the input data,
labels, generative networks, loss functions, and measure metrics. This section describes the
basic theory of supervised learning.

Description: When given an image, determine whether or not there are instances of
objects from predefined classes and, if present, return the bounding box of each instance.

Input: A collection of N annotated images Xtrain and a label set Ytrain.

Xtrain = {x1, x2, . . . , xN} (1)

Ytrain = {y1, y2, . . . , yN} (2)

where yi is annotation in image xi, and each yi has Mi objects belong to C classes.

yi =
{
(bi

1,ci
1), (b

i
2,ci

2), . . . , (bi
Mk

,ci
Mk

)
}

(3)

where bi
j and ci

j denote the bounding box of jth object in xi and the class, respectively.
Algorithm: Optimize the loss function L of classification Lcls and bounding-box

regression Lbox−reg:
L = Lcls + Lbox−reg (4)

Formally, Lbox is based on the sum of squared errors (SSE) loss function, and Lcls is
based on the cross-entropy loss function. The loss function is optimized by training the
neural network after a specific amount of epochs.

Prediction: For xi
test, the prediction result is yi

pred,

yi
pred =

{
(bi

pred1
,ci

pred1
,pi

pred1
), (bi

pred2
,ci

pred2
,pi

pred2
), . . .

}
(5)

where bi
predj

, ci
predj

, pi
predj

are results of the bounding box, object class, and reliability.
For filtering the object detection results, we use a predefined threshold that compares
the reliability.
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Evaluation metric: The primary metric used to evaluate the object detection algorithms’
performance is the mean average precision (mAP). This metric considers the prediction of
correct category labels and accuracy location. There are two main performance evaluation
criteria: precision (P) and recall (Recall). The statistic of true positives (TP), false positives
(FP), true negatives (TN), and false negatives (FN) are needed to measure the P and
Recall values of the network model in the testing phase. The intersection-over-union (IoU)
is a critical concept to determine whether the test results are correct or not. TP, FP, TN, and
FN values depend on the IoU threshold. The formula of IoU is defined in Equation (6).

IoU(bpred, blb) =
Area(bpred ∩ blb)

Area(bpred ∪ blb)
(6)

The P and Recall of each category of one image can be calculated as follows:

PCij =
TPCij

TPCij + FPCij

(7)

RecallCij =
TPCij

TPCij + FNCij

(8)

where PCij and RecallCij represent Precision and Recall of category Cij in the jth image, respectively.
The average precision (AP) of the category Ci can be calculated:

APCi =
1
m

m

∑
j=1

PCij (9)

The dataset has multiple categories, the mAP of the entire category can be calculated
as follows:

mAP =
1
n

n

∑
i=1

APCij (10)

There are also many other criteria, but in this work’s scope, the performance evaluation
is measured mainly by the mAP metric.

2.2.2. Backbone: Feature Extractor Based on MobileNetV3 and Feature Pyramid Networks

MobileNetV3: It is important to emphasize the integration of the MobileNetV3 model
into the faster R-CNN architecture by its suitability for optic inspection systems [29]. Most
hardware of the inspection systems are low resource use cases, therefore, mobile-friendly
models should be applied to reduce latency. MobileNetV3 backbone plays the role of a
feature extractor in object detectors. MobileNetV1 [30] proposed depth-wise separable
convolution to reduce the number of parameters to improve computation efficiency, and
MobileNetV2 [31] introduced the inverted residual block to expand to a higher-dimensional
feature space internally to make more efficient layer structures. MobileNetV3 inherited
advances of V1 and V2; it deployed the Squeeze-and-Excitation [32] in the inverted residual
bottleneck and flexibly used the h-swish nonlinearity to significantly improve the accuracy
of neural networks.

The inverted residual is the main building block of the MobileNetV3 network. The
block follows a narrow–wide–narrow approach by input–output channels. As an example
in Figure 14, the input channel is 24, the space expansion channel is 72, and the output
channel is 40. The inverted residual block uses a combination of the expand convolution,
the depth-wise convolution, the squeeze-excitation block, and the projection convolution,
as in Figure 14.
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Figure 14. This is an instant of the inverted-residual block in MobileNetV3 architecture. First is
a convolutional expand layer that widens channels from 24 to 72. Second is the convolutional
depth-wise layer for better efficiency than traditional convolution. Its input and output channels are
equal to 72, and the striking attribute of convolution halves the resolution. Next is the squeeze and
excitation module to improve the power of features in the network. The final convolutional projection
layer presents features in the lower dimension space, from 72 to 40.

FPN [33]: The object detection field has many more innovative algorithms, but current
image data have become much more challenging, for instance, small object detection issues
with only a few pixels. It is hard to extract the information about small objects in feature
maps. FPN proposes a method to improve small object detection performance. It is an
essential component that exploits the features of small objects on different levels of feature
maps. FPN is an extended idea of pyramidal feature hierarchy that its architecture is a
combination between top–down pathway, bottom–up pathway, and lateral connections.

As in Figure 15, the backbone architecture combines the MobilenetV3 and FPN. It
is to extract multi-scale feature maps from the input image. The input is fed to Mo-
bilenetV3, which has 15 inverted residual blocks. The output is the multi-scale feature
maps {C1, C2, C3, C4, C5}, which are the input for FPN. FPN convolute and upsample Ci to
output the better quality multi-scale feature maps {P1, P2, P3, P4, P5}.

 

Figure 15. Backbone: the feature pyramid network and MobileNetV3 backbone together. The input
is the image of size H, W. Firstly, The MobileNetV3 extracts the image to many multi-scale feature
maps {C1, C2, C3, C4, C5}. Secondly, the multi-scale output of MobileNetV3 is the input for FPN. The
final result is the feature maps at multiple levels {P1, P2, P3, P4, P5}.
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The output channels of FPN present the multi-scale feature maps {P1, P2, P3, P4, P5}.
This hyper-parameter is vital to guarantee the quality of feature maps. Its default value
is 256 for the large benchmark dataset. With the customized dataset, we will fine-tune
the number of the output channels to obtain better performance. The results are shown
in Section 3.2.

The output feature maps from FPN are {P1, P2, P3, P4, P5}, which are also the input to
the feature pyramid network and the ROI-Head. In the next section, we will describe these
two blocks in detail.

2.2.3. RPN: Region Proposal Network

Detecting the position of objects is one of the two main tasks in object detection. The
theoretical basis for initializing the temporary object position remains more challenging. In
classical computer vision, selective search [34], multiscale combinatorial grouping [35], and
CPMC [36] apply a strategy based on grouping super-pixels. EdgeBoxes [37] and objectness
in Windows [38] use the window scoring technique. In deep learning-based computer
vision, Shaoqing et al. [22] propose region proposal networks to create the box anchors to
filter the potential positions. Anchor boxes are defined by two parameters: the wide range
of scales and the aspect ratios.

RPN initialized a set of anchor boxes on each image or feature map by two hyper-parameters:
scales and aspect ratio. They have a large impact on the final accuracy. Hence, we try to
exploit them for optimal results. Figure 16 illustrates the creation of anchors on an image.
The left image is an original, consisting of the red defect labels. The right imageinitializes
a set of anchor boxes with scales

{
322, 642, 1282, 2562, 5122} and a range of aspect ratios

{1 : 2, 1 : 1, 2 : 1}. Anchors are white, black, yellow, green, and blue rectangular boxes in
the right image.

 

Figure 16. Illustrate how to create the box anchors in the region proposal network. Left is the image
containing some red ground-truth boxes. RPN generates the reference boxes called “anchors” to map
to ground-truth boxes. The multi-scale anchors are generated on the right image at various positions.
They are the rectangular boxes marked with white, black, yellow, green, and blue colors.

The number of anchors generated is copious. RPN now tries to find anchors similar
to the ground boxes (labels). The metric that determines whether an anchor is similar to
the ground boxes is the IoU calculation. The pre-defined IoU thresholds are set to label
the anchors as foreground, background, or ignored. If IoU is larger than the first threshold
(typically 0.7), the anchor is assigned to one of the ground-truth boxes and labeled as
foreground (‘1’). If IoU is smaller than the second threshold (typically 0.3), the anchor is
either labeled as a background (‘0’) or otherwise ignored (‘−1’).
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In practice, the majority of anchors are background (the label is “0”), and so it is
difficult to learn the foreground anchors due to the label imbalance. To solve the imbalance
issue, the target number of foreground boxes N and the target number of background M
are pre-defined.

At this time, we have the labeled anchor set and a target set, as shown in Figure 17. The
RPN should learn to find rules to recognize the exact locations and shapes of ground-truth
boxes. This issue is known as bounding-box regression, which will be presented in the
next section.

 
Figure 17. Box regression transforms the proposal anchor set to ground-truth label set.

The role of RPN is to propose the potential regions that contain the defects. To
achieve this task, training the RPN is to regress the anchor boxes to the defect regions and
classify anchors as the labels “1” or “0”. Because of the large number of anchors, we only
choose some of the quality anchors called proposals for the next sub-network. The loss
function of RPN includes the L1 [20] loss function for bounding-box regression and binary
cross-entropy loss function for classifying the anchor as ground-truth or background.

LRPN = Lbox−reg−RPN + Lbinary−cls (11)

The following section details the bounding box regression and its loss function.

2.2.4. Bounding Box Regression

Bounding box regression will find some rules to scale-invariant transform a bounding
box (anchor) to another bounding box (ground-truth/defect). The best idea is to consider
the relationship between the center coordinates, where their width–height dimensions
are significant. This section describes the formula between the ground-truth box and
anchor. Figure 18 illustrates the parameters involved in transforming an anchor (the blue
dotted-line rectangle) into a ground-truth box (the green rectangle) during the training
phase, with the parameters are calculated using Equation (12).

δx = (bx−ax)/aw, δy = (by−ay)/ah
δw = log(bw/aw), δh = log(bh/ah)

(12)

where “a” and “b” denote anchor box and ground-truth box, respectively. Each one is
represented by a 4-tuple in the form of (x, y, w, h), where (x, y) is the center coordinate and
(w, h) is the width and height dimension. The regressor f aims to predict the transformation
δ from the anchor a to the target ground-truth box b, represented as follows:
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Figure 18. Illustration of transformation δ from the anchor a to the ground-truth box b. The formula
is in Equation (12).

The image feature, denoted as x, is used as the input for the regressor f . Consiquently,
the output is a prediction represented by δ̂ = f (x). The training process will minimize the
bounding-box loss function:

L(δ̂, δ) = ∑
p∈{x,y,w,h}

Lsmooth
1 (δ̂p − δp), (13)

where the function Lsmooth
1 (.) is the robust L1 loss defined in Equation (14).

Lsmooth
1 (t) =

{
0.5t2i f

∣∣t| < 1
|t| − 0.5 otherwise

(14)

To calculate the final prediction box coordinates, the regressed anchor is inferred based
on the inverse transformation of Equation (15) as follows:

apred
x = δ̂xaw + ax, apred

y = δ̂yah + ay

apred
w = awexp(δ̂w), apred

h = ahexp(δ̂h)
(15)

The final summary is as follows: the bounding-box regressor f is a neural network
with the input T, which are the image or feature maps, and the label is δ. A prediction
is δ̂ = f (T). The training process will optimize the loss function Lsmooth

1 (δ − δ̂). With the
formulas δ, Lsmooth

1 and δ̂ in Equations (12) and (14), and formula δ̂ = f (T), respectively.

2.2.5. ROI-Head

ROI-Head converts the selected proposals on each feature map into a small fixed
window (usually 7 × 7 pixels), and next is fed to the linear neural network to regress the
bounding boxes and classify defects.

The inputs of ROI-Head are: The feature maps {P2, P3, P4, P5} from the backbone
block; the proposal boxes from the RPN block; and the label of defects. The ratio of
foreground and background boxes will be customized to accelerate the training. The
proposals with higher IoU than the threshold are counted as foreground and the others as
background. This step will choose the best k proposals based on the IoU metric.

Before entering the ROI process, the top-k proposals are assigned to each level Pi of
the appropriate feature maps based on the formula in Equation (16).

LPi = f loor(k0 + log2(

√
w ∗ h

canonical_box_size
)) (16)
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where k0 is the reference value, which is generally set to 4; w and h are the the width and
height of the ROI area, respectively; and canonical_box_size is the canonical box size in pix-
els, set to 224, corresponding to the size of the pre-training image of the ImageNet dataset.

The ROIAlignV2 [37] process crops the rectangular regions on the feature maps speci-
fied by the proposal boxes. The linear neural network feeds the results of ROI to regress
the proposals to ground boxes and classify the defect type.

When training the ROI-Head network, the loss function sums up the cost of classifica-
tion Lde f ect−cls and bounding-box regression Lbox−reg−ROI , as in Equation (17).

Ldetector = Lde f ect−cls + Lbox−reg−ROI (17)

where Lde f ect−cls is the defect classification loss function that computes the cross-entropy
loss; and Lbox−reg−ROI is the smooth L1 loss as in Equation (13).

2.2.6. End-to-End Learning

The RPN block needs the cost to classify anchors as background or foreground (binary
cross-entropy) and find proposals for the candidate locations of defects (bounding-box
regression). Meanwhile, the ROI-Head network also incurs a cost to classify the defect
type (cross-entropy) and locate the defects’ position (bounding-box regression). Therefore,
the network can be trained in an end-to-end manner using the multi-task loss function
as follows:

L = LRPN + Ldetector (18)

where LRPN and Ldetector are based on the formulae in Equations (7) and (13), respectively.

3. Results

3.1. Experimental Setting

Defects are labeled and converted to COCO format to be compatible with object
detection models. All images are resized to 1333 px for long edge and 800 px for short
edge. We split the dataset into the training and test sets by a ratio of 80:20. In the first step,
we train and test on some of the standard defect detection architectures such as two-stage
object detectors (Faster-RCNN) and one-stage object detectors (Retina, FCOS). All models
are implemented using PyTorch Vision’s default configuration [39]. Table 6 displays the
experimental outcomes obtained from training Faster R-CNN-based models with ResNet50,
MobileNetV3-large, and MobileNetV3-small backbones, as well as the RetinaNet model,
and the FCOS model, using the initial dataset. In the second step, for increment accuracy,
we fine-tune the hyper-parameter in RPN, while for computational efficiency, we reduce the
output channel of FPN in the backbone. The final result is presented in the following section.

Table 6. Comparison of defect detection between each architecture trained on the ski goggles defect
dataset without any hyper-parameters adaptation.

Architecture BACKBONE
IoU Metric SPEED (S/IT)

AP AP50 AP75 TRAIN TEST

Faster-RCNN
RESNET50 56.3 78.5 63.3 0.528 0.126

MOBILE-LARGE 41.3 72.8 38.1 0.127 0.059
MOBILE-SMALL 10.0 25.1 08.4 0.086 0.045

FCOS RESNET50 59.6 78.6 64.0 0.352 0.126
RetinaNet RESNET50 10.2 25.2 05.9 0.331 0.140
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The models are trained with 2 GPUs with a batch size of 8 for 26 epochs using
SGD optimizer. The learning rate is initialized to 0.02 and learning ratio step at 16 and
22. Computer configuration is a CPU AMD Ryzen5 3600X, 64G RAM, 2 GPUs Gigabyte
2060 6G.

The method evaluates detection results based on the standard COCO-style average
precision measured at IoU thresholds ranging from 0.5 to 0.75.

3.2. Defect Detection Results

To have a defect detection result baseline for the defect dataset on the surface of
ski goggles lenses, we train and test different architectures and backbones. Parame-
ters of Faster-RCNN-ResNet50, Faster-RCNN-Mobile-large, Faster-RCNN-Mobile-small,
FCOS-Resnet50, and Retina-Resnet50 models are 41.1 M, 18.9 M, 15.8 M, 31.85 M, and
32.05 M, respectively. Table 6 shows the linear result of the larger architecture (more param-
eter) having better accuracy, but slower computational efficiency (speed, s/it). The balance
between accuracy and computational efficiency is an issue in automatic optical inspection
as hardware characteristics are compact. We recognize that the Faster-RCNN-Mobile-large
model has gained a balanced result in terms of accuracy and computational efficiency. From
this, we decide to fine-tune the Faster R-CNN with backbone Mobile-large to achieve a
better result.

Faster R-CNN has proven to be a state-of-the-art object detector with high accuracy
and flexible modular ability. Therefore, it can be integrated into some sub-network to
improve performance. We implement the Faster R-CNN-based detector that uses an
FPN-style backbone that extracts features from different convolutions of the MobileNetV3
model. The advance of MobileNetV3 block helps to improve speed; alternatively, FPN
presents the invariant of feature maps, leading to an improvement in the small defect
detection. However, Faster R-CNN has a drawback due to the complicated computation
in creating anchor boxes. Its hyper-parameters in RPN are often sensitive to the final
detection performance. The above disputation leads to fine-tuning Faster R-CNN to archive
high performance.

First, we fine-tune the output channel of FPN to improve the network’s speed. All
feature maps extracted from the MobileNetV3 network have their output projected down
to the number of channels by the FPN block. The default number of the output channel is
256. This parameter is finetuned within the value set {256, 128, 96, 64} to obtain the best
possible performance.

Second, we fine-tune the anchor scale factor in RPN to improve the accuracy. The anchor
scales affect the handling of the bounding boxes of different sizes. Its invalid value setting
causes the imbalance between negative and positive samples in training. The default value
of anchor scales in the Faster R-CNN model is

{
322, 642, 1282, 2562, 5122}. We augment

two values:
{

162, 322, 642, 1282, 2562} and
{

82, 162, 322, 642, 1282} in the RPN block.
Table 7 shows the aggregate results of fine-tuning the output channel number in FPN

and the anchor scales in RPN. When the output channel of FPN decreases, the training and
testing speed improves, while accuracy slightly decreases. Observing the efficiency of
anchor scales, configuration

{
162, 322, 642, 1282, 2562} achieved better results than the

other two configurations,
{

322, 642, 1282, 2562, 5122} and
{

82, 162, 322, 642, 1282}, with
the same channel as FPN. With the channel reduction in FPN from 256 to 128, and the re-
placement of the anchor scale

{
322, 642, 1282, 2562, 5122} by

{
162, 322, 642, 1282, 2562},

the accuracy is 55.0 mAP, which is close to the best accuracy, while the APs metric achieved
the best accuracy with 47.0. From this result, we choose the optimistic parameter set with
the output channel equal to 128 and the anchor scales equal to

{
162, 322, 642, 1282, 2562}

for balance in computational efficiency and accuracy.
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As mentioned in Section 2.1.3, the combined dataset (CoDS) arises from the fusion of
initial (InDS) and synthetic datasets. Comparing these datasets is crucial to illustrate the
efficacy in addressing a few data and imbalances. Table 8 depicts the evaluation outcomes
for both datasets when training the Faster R-CNN model with optimal parameters.

Table 7. Defect detection results from fine-tuning the output channel of FPN and the anchor scale in
RPN.

FPN RPN IOU METRIC SPEED (S/IT)

Out Channel Anchor Scales MAP APS TRAIN TEST

256 {82, 162, 322, 642, 1282} 55.3 46.4 0.4864 0.1161
256 {162, 322, 642, 1282, 2562} 49.2 42.8 0.4867 0.1179
128 {82, 162, 322, 642, 1282} 53.6 45.4 0.3040 0.1133
128 {162, 322, 642, 1282, 2562} 55.0 47.0 0.3080 0.1074
96 {82, 162, 322, 642, 1282} 46.7 39.6 0.2857 0.1094
96 {162, 322, 642, 1282, 2562} 51.8 42.7 0.2860 0.1046
64 {82,162, 322, 642, 1282} 47.6 38.3 0.2517 0.0993
64 {162,322, 642, 1282, 2562} 51.4 46.0 0.2520 0.0968

Table 8. The comparative assessment of the initial dataset and the combined dataset using
COCO metrics.

Model COCO Metric
DATASET

INITIAL DS (INDS) COMBINED DS (CODS)

Faster R-CNN with the
MobileV3 Backbone

The output channel number of
FPN is 64

The anchor scales of RPN
{162,322,642,1282,2562}

AP 51.4 55.1
AP50 71.5 75.8
AP75 40.7 47.4
APS 46.0 48.2
APm 47.3 50.3
APl 59.1 63.4
AR1 31.3 32.6
AR10 50.9 53.8
AR100 55.6 59.4
ARS 45.2 49.7
ARm 61.6 54.6
ARl 60.4 64.9

Figure 19 shows some results on the test set of the lens defect dataset. The red
rectangular boxes mark defects; the above label is the defect category.
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(d) 
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        (f) 

 
(g) 

 
            (h) 

Figure 19. Selected examples of defect detection results. Defects are marked by the red rectangular
boxes and the label above is the defect category. (a–c) display a variety of defect types, including
dust-spot and dust-line. (d) showcases the spotlight defect type, while (e) highlights the stain defect
type. (f–h) and h feature the scratch defect type.

4. Discussion

The data presented in Tables 6 and 7 have been computed using the detection eval-
uation metrics employed in the COCO detection challenge. A comparative analysis of
object detection models, such as Faster R-CNN, FCOS, and RetinaNet, was conducted
based on the data provided in Table 6. The Faster R-CNN model serves as a baseline for
comparison due to its widespread use in object detection tasks. In terms of precision, FCOS
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outperforms Faster R-CNN with a 44.31% improvement in AP, a 7.97% enhancement in
AP50, and a 67.98% increase in AP75. However, FCOS exhibits slower training and testing
speeds, with a 177.17% reduction in training and a 113.56% decrement in testing relative to
Faster R-CNN. Conversely, RetinaNet shows a significantly lower precision performance,
with a 75.30% reduction in AP, a 65.35% decrease in AP50, and an 84.51% decline in AP75,
while also demonstrating slower training and testing speeds (160.63% and 137.29% slower,
respectively), in comparison to Faster R-CNN.

In the context of an optical inspection system, it is crucial to prioritize solutions that
demand minimal hardware resources while maintaining satisfactory performance levels.
A comprehensive analysis of various object detection models, including Faster R-CNN,
FCOS, and RetinaNet, reveals that Faster R-CNN emerges as the most suitable candidate for
deployment. Despite FCOS exhibiting superior overall precision, it significantly necessitates
more hardware resources owing to its slower training and testing speeds, with a 177.17%
reduction in training and a 113.56% decrement in testing compared to Faster R-CNN. In
contrast, Faster R-CNN strikes an optimal balance between performance and resource
efficiency, featuring notable precision performance and faster training and testing speeds in
comparison to FCOS and RetinaNet. Consequently, Faster R-CNN is the preferable choice
for deployment when considering hardware resource constraints.

Additionally, in Table 6, we dive into the performance analysis of some backbones
of the Faster R-CNN model. Comparing speeds between ResNet50, MobileNet-Large,
and MobileNet-Small as Faster R-CNN backbones showcases the trade-offs between per-
formance and resource efficiency. Although the ResNet50 backbone outperforms the
MobileNet-Large backbone in terms of AP, AP50, and AP75, it is notably slower in both
training and testing phases, with training taking 315.75% longer and testing experienc-
ing a 113.56% increase in duration. In contrast, MobileNet-Small provides the quickest
training and testing speeds among the backbones, at 32.28% and 23.73% faster speeds than
MobileNet-Large. However, this speed advantage comes at the cost of significantly reduced
performance metrics. MobileNet-Large balances performance and speed, maintaining
competitive performance metrics while achieving relatively faster training and testing
speeds than ResNet50.

The optimal model for this context combines the strengths of Faster R-CNN, FPN,
and MobileNetV3. The next step in optimizing this model is to fine-tune two parameters:
the output channel number in FPN and the anchor scales in RPN. As shown in Table 7, the
best-performing use-case has an FPN output channel of 256 and RPN anchor scales of {82,
162, 322, 642, 1282}, with a mAP score that is 12.28% higher than the second-best use-case.
Furthermore, the best-performing use-case has an APS score of 46.4, which is 8.62% higher
than the second-best use-case. In cases where speed is prioritized, the fastest use-case is
the one with an FPN output channel of 64 and RPN anchor scales of {162, 322, 642, 1282, 2562}.
Compared to the best-performing use-case, this use-case is 48.78% faster in training and
16.28% faster in testing.

Table 8 compares two InDS and CoDS datasets utilizing various COCO metrics.
Dataset CoDS exhibits superior performance in the majority of metrics when compared to
dataset InDS. Notably, CoDS surpasses InDS in average precision (AP) with a 7.2% increase,
as well as in size-based subcategories (APs, APm, and APl), with enhancements ranging
from 4.8% to 7.3%. Regarding average recall (AR), dataset CoDS exceeds InDS in most
categories, except for the medium object size category (ARm), where InDS outperforms
CoDS by 11.4%. In summary, the combined dataset demonstrates improved performance
relative to the initial dataset.

Imbalanced datasets and scarce data are common challenges when training deep
learning models with real-world data collection. CoDS performs better than InDS, thereby
illustrating that generating additional synthetic data is an effective approach to addressing
these challenges.

Despite the valuable contributions of this study, certain limitations should be ac-
knowledged: the number of labels in the defect dataset is relatively small, which may
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impact the generalizability of the findings; the approach to addressing unbalanced and
rare datasets is not extensively explored; the study does not employ newer defect detection
methods within deep learning to analyze the dataset; and a limited range of metrics is
considered for a detailed evaluation of defects, suggesting that additional performance
measures could provide further insight. Future research may address these limitations by
expanding the dataset, exploring more comprehensive solutions for unbalanced and rare
data, incorporating cutting-edge defect detection techniques, and utilizing a wider array of
evaluation metrics.

5. Conclusions

This paper solved the defect detection problem on the surface of ski goggles lenses
based on the deep learning approach. The work has achieved the design of the image
capture system that has five cameras cover the entire curved surface of the lenses, which
enables it to capture images automatically from all angles at the same time. This work
also presents the development of a surface defect detection dataset for ski goggles lenses,
contributing to the diversification of surface data sources in the deep learning-based
defect detection field. The defect detection result achieved excellent performance by
fine-tuning the reasonable hyper-parameters of the Faster-RCNN modular architecture
by replacing the ResNet backbone with MobileNetV3 and FPN to better extract feature
maps, by reducing the number of the output channel of FPN to increase the computational
performance, and by adjusting the anchor scale factor hyper-parameter in RPN, leading
to better accuracy. This work is helpful for automatic optical inspection systems because
of its limited hardware resource. The experimental results have reinforced the hypothesis
for correctly choosing the Faster-RCNN defect detection architecture and fine-tuning the
hyper-parameters. In the future, we will improve the dataset and make it publicly available
to the research community.
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Abstract: The DNS firewall plays an important role in network security. It is based on a list of
known malicious domain names, and, based on these lists, the firewall blocks communication with
these domain names. However, DNS firewalls can only block known malicious domain names,
excluding communication with unknown malicious domain names. Prior research has found that
machine learning techniques are effective for detecting unknown malicious domain names. However,
those methods have limited capabilities to learn from both textual and numerical data. To solve this
issue, we present a novel unified learning approach that uses both numerical and textual features
of the domain name to classify whether a domain name pair is malicious or not. The experiments
were conducted on a benchmark domain names dataset consisting of 90,000 domain names. The
experimental results show that the proposed approach performs significantly better than the six
comparative methods in terms of accuracy, precision, recall, and F1-Score.

Keywords: DNS; firewall; malicious; domain; name

1. Introduction

Preserving the integrity of network security is an important consideration for all
organizations. As nearly every aspect of business becomes increasingly digital, enterprise
network security software can help organizations mitigate the effects of cyber-attacks,
particularly by protecting against them, thereby safeguarding their operations and ensuring
their competitiveness in a rapidly changing marketplace.

Intrusion detection systems (IDS) and intrusion prevention systems (IPS) have long
been part of the network security toolkit to detect, monitor, and block malware and mali-
cious traffic. IDS are designed to detect intrusions into the network and issue warnings
when they detect a potential cyber-attack. However, the system itself cannot protect against
attacks, and that responsibility is left to human analysts. Meanwhile, IPS work proactively
to prevent successful attacks and respond according to predefined rules when an intrusion
is detected. One of the most important IPS are firewalls [1]. One such firewall for IP is
the DNS firewall. The majority of DNS firewalls are built on regularly updated lists of
known malicious domain names. However, this method can only block known malicious
communications, leaving a large number of malicious communications that cannot be
blocked because they are unknown.

To predict new malicious domains over DNS communications in a timely manner
with better DNS data features is important [2]. To resolve this challenge, Marques et al. [2]
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proposed a machine learning-based DNS firewall built with new domain names and
34 features. However, they utilized traditional classification models for their proposed
approach which have limited capabilities to learn from both numerical and textual features
of the domain name at the same time.

To resolve this issue, we propose a unified deep learning model which can learn from
both numerical and textual features. This model makes use of both numerical and textual
information in the domain name. These pairs are entered into the model and correlating
features between the pairs are extracted. Finally, the model uses the correlating features to
determine if these pairs represent a malicious domain or not.

Our work makes the following three major contributions:

(1) We consider the domain name textual and numerical features unified representation
learning issue in the context of malicious domain name detection tasks.

(2) A new deep learning model is proposed for malicious domain name detection.
(3) Experimental results for the detection of the malicious domain name demonstrate

the high performance of the proposed method in comparison with state-of-the-art
methods on the malicious domain name dataset.

The remainder of this article is organized as follows: Section 2 describes previous
research on malicious domain name detection. The details of our unified learning approach
are described in Section 3. In Section 4, the experimental setup is described, followed by
experimental results in Section 5. Finally, Section 6 concludes this article.

2. Related Work

A number of approaches for malicious domain name detection have been proposed
in the literature. In general, these approaches can be broadly classified into non-machine
learning-based and machine learning-based approaches.

2.1. Non-Machine Learning Approaches

The non-machine learning-based approaches use some kind of data obtained from
known malicious domain names for making malicious domain name signatures and using
those signatures to filter unknown malicious domain names.

Zhang et al. [3] proposed a blocklisting system, the purpose of which is to create
blocklists based on the relevance ranking scheme used by the link analysis community. The
system creates blocklists for individuals who choose to submit data to a central log-sharing
platform. The system evaluates the relevance of the submitter to the attacker based on the
attacker’s history and the submitter’s recent log generation patterns. The blocklist system
also incorporates extensive log prefiltering and severity metrics to understand the extent to
which attacker alert patterns are consistent with common malware propagation behaviors.
Prakash et al. [4] proposed PhishNet, which is based upon two components. The first
component uses five heuristics to find new phishing URLs. The second component is made
of an approximate matching algorithm that partitions the URL into several components,
then these multiple components of the URL are matched with entries in the blocklist indi-
vidually. Malicious URLs are often short-lived and are updated frequently to avoid being
on the blocklist. If these malicious URLs are updated by the same adversary using domain
name string manipulation, we can assume that unknown malicious URLs exist in the neigh-
borhood of known malicious URLs. Based on this assumption, Akiyama et al. [5] proposed
an effective blocklist URL generation method that uses search engines to discover unknown
malicious URLs in the neighborhood of known malicious URLs. Fukushima et al. [6] pro-
posed a blocklisting scheme in which they analyzed malicious URLs’ metadata, such as
domain, registrar, IP address, IP address block, and autonomous system. Furthermore,
they evaluated registrars and IP address blocks associated with malicious URLs. From
that evaluation, they made a blocklist with low-reputation IP address blocks and registrars
often used in malicious URLs. Sun et al. [7] proposed an automatic blocklist generator
(AutoBLG) that discovers new malicious URLs automatically by starting from an existing
URL blocklist. The idea of their approach is to extend the space of web page searches, while
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decreasing the number of URLs to be analyzed, by applying some prefilters to expedite the
process of creating a blocklist.

Unlike the above works, which use signatures for blocking malicious domain name,
we propose a machine learning-based approach that learns from malicious and benign
domain name data and classifies whether a given domain name is malicious or not.

2.2. Machine Learning Approaches

Machine learning-based approaches make a predictive model for detecting unknown
malicious domain names by training on data of malicious and benign domain names.

Saxe and Berlin. [8] used character-level embedding with a convolutional neural net-
work to retrieve associated features from file paths, registry keys, and URLs. The retrieved
features are then fed into three fully connected layers to classify file paths, registry keys, and
URLs as malicious or normal. Yang et al. [9] proposed a convolutional gated recurrent unit
neural network for detecting malicious URLs using characters as text classification features.
Their model, instead of using a pooling layer in a convolutional neural network, uses a
gated recurrent unit for feature acquisition in the time dimension. Luo et al. [10] proposed
an approach for identifying malicious HTTP GET requests using a novel architecture of
convolutional neural network for classification; they used natural language processing-
based analysis and Auto-Encoder for URL representation and extraction. Mondal et al. [11]
proposed an ensemble learning approach to predict the class probabilities of benign or
malicious URLs using multiple classifiers. After obtaining probabilities from multiple
classifiers, a threshold filter is applied to the probabilities to finally determine whether
the URL is malicious or not. Marques et al. [2] empirically investigated the impact of
three feature selection methods applied to six classification models on the performance of
malicious domain name detection. They conducted experiments on the malicious domains
dataset, and found that the decision trees with recursive feature elimination were more
suitable for the malicious domain detection task, compared with other baseline methods.

Unlike the above works, we simultaneously consider both numerical and textual
feature unified learning for malicious domain name detection.

3. Methodology

3.1. Overview

In order to utilize both numerical features and textual features for detecting malicious
domain names, we propose a combined deep learning-based model (hybrid feed forward
network (FFN)-long short-term memory (LSTM) [12] model that preserves the advantages
of both numerical and textual features. The network structure of the hybrid FFN-LSTM
model is shown in Figure 1. The original dataset was split into numerical and textual
features that were fed into the model as separate inputs. Individual learners were then
built based on numerical and textual features, and the outputs of the individual learners
were spliced together in parallel to form the input to a unified learner consisting of a fully
connected neural network.

3.2. Numerical Learner

Following Marques et al. [2], we performed the same two pre-processing steps—the
label encoder [13] and min-max normalization [14]—as them. The label encoder [13]
transforms categorical features by simply mapping each category with an integer value
ranging from 0 to n. After the label encoding [13], min-max normalization [14] was applied
to scale the different features so that each feature has equal weight for the numerical feature
learner. This sets the value of the data points from 0 to 1.

Pre-processed numerical features are sent to the FFN for learning numerical features.
The FFN is composed of three types of network layers: an input layer, a hidden layer, and
an output layer. Additionally, each of these layers contains n number of neurons. The first
layer with n neurons is the input layer, and the input feature vectors are received in this
layer. The hidden layer consists of a few layers. In the last output layer, the FFN outputs
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the results. We constructed the FFN with a depth of 5 layers. We denote these layers as
δ =

{
L1

n,L2
n,L3

n,L4
n,L5

n
}

.

Figure 1. Our proposed malicious domain name detection model.

The FFN output layer output is forwarded to the dropout [15] layer to prevent overfit-
ting. Owing to over-fitting, the classification ability of the FFN is limited. Dropout [15] can
effectively solve this problem. Dropout [15], is a mechanism to improve the performance of
the FFN by randomly setting the weights of the FFN to 0.

3.3. Text Learner

To construct an accurate malicious domain name detection model, the feature vector
representation of textual features is important. Although high-level representations such as
numerical features can be useful, they cannot reveal deep hidden semantics in the textual
features of the domain name. LSTM [12] is a deep learning architecture, which provides a
powerful representation of the textual features. It can learn semantic features automatically.
Before LSTM [12] could process textual features, we needed to pre-process textual features
with tokenization and represent them as an embedding matrix.

In the tokenization phase, the sequence of words is broken into multiple tokens based
on the white space separator character. In this process, each word is called a token.

The embedding layer takes a token index as input and transforms it into a low-
dimensional representation. Given a textual features sample tokens 𝓃 which is essentially a se-
ries of words

[
f1, . . . , f|𝓃|

]
, our goal is to obtain its matrix representation 𝓃 → N ∈ R

|𝓃|×dm ,
where N is a matrix consisting of a set of words fi → Fi , i = 1, . . . , |𝓃| in the given domain
name sample. Every word fi can now be represented as an embedding vector, i.e., Fi ∈ R

dm ,
where dm is the dimensional vector of words that appear in the textual features of the do-
main name. In our experiments, we randomly initialize the embedding matrix of malicious
domain names textual features, and during the training process it is learned. Thus, domain
name textual features matrix representation N having |𝓃| words sequence can be expressed
as follows:

N =
[
Fi, . . . ,F|𝓃|

]
(1)

All domain name textual features are truncated or padded to be the same length |𝓃|
for parallelization.

Lower dimensional embedding vectors are sent to an LSTM [12] network which can
be regarded as a sequence of LSTM [12] units for feature learning. Let F1, . . . ,F|𝓃| be
the entered words sequence (e.g., domain name textual features tokens), with having a
corresponding labels sequence (e.g., the next domain name textual feature tokens). At
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every step t, the LSTM [12] unit takes the Ft input, along with the previous hidden and cell
state, and computes the next hidden state and cell state using a set of model parameters.
The output is predicted using the output state (e.g., the next domain name textual feature
token based upon previous ones) at each step t.

Similar to the numerical learned features, the textual learned features using LSTM [12]
are fed to the dropout [15] layer to prevent overfitting.

3.4. Unified Learning

The highlight of our method is that we utilize textual and numerical features and
automatically determine the optimal ratio of each feature at the fusion stage. We feed
the outputs of numerical learner Qi and text learner Ti into a new unified vector U that
represents both textual and numerical features in a given sample, which can be formulated
as follows:

U = Qi ⊕ Ti (2)

The new unified vector is then fed into the fully connected layer, resulting in a vector
output γ as follows:

γ = σ(Wγ·U+ bγ) (3)

where · represent the dot product, the vector γ weight matrix is represented as Wγ, the
bias value of the vector γ is represented as bγ, and the activation function ReLU [16] is
represented as σ(·). Finally, the γ vector is sent to an output layer.

Each numerical and textual feature is properly represented into a feature vector by
previous layers. Using these feature vectors as input, a unified binary classifier is used in
the output layer to predict whether these features represent a malicious domain or not. In
this study, a sigmoid classifier was used, which computes a probability score for a given
domain name sample as follows:

P̂i = sigmoid(γ) (4)

3.5. Training

During the process of training, our model tries to learn the following parameters: the
five dense layers of FNN, the word embedding matrices of textual features, the LSTM [12]
layer, and the weights and bias of the fully connected output layer. After these parameters
are learned, the malicious domain name can be detected. These model parameters are
learned by minimizing the following binary cross-entropy loss function:

BCE = − 1
N

N

∑
i=0

Gi· log
(
P̂i
)
+ (1 −Gi)· log

(
1 − P̂i

)
(5)

where all samples in the dataset are denoted as N, and the output layer probability score is
denoted as P̂i, defined by Equation (4), Gi = {0, 1} indicates whether the i-th sample is a
malicious domain or not. As it has previously been shown that Adam [17] is less memory
intensive and more computationally efficient than other optimization methods, we decided
to minimize the objective function using the Adam [17] optimizer. In order to efficiently
calculate parameter updates during the learning process, we use backpropagation [18], a
simple implementation of the chain rule of partial derivatives.

4. Experiment Setup

4.1. Dataset

We use a public dataset in this study that has been collected and processed by
Marques et al. [19]. The dataset contains approximately 90,000 malicious and non-malicious
domain name samples of equal size. Each sample contains 34 features, such as IP, geoloca-
tion, open ports, domain name entropy, etc.
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4.2. Performance Evaluation

There are four possible outcomes of our model prediction: true positive (TP) indicates
that a malicious domain name is predicted as a malicious domain name, true negative
(TN) indicates that a non-malicious domain name is predicted as a non-malicious domain
name, false negative (FN) indicates that a malicious domain name is predicted as a non-
malicious domain name, and false positive (FP) indicates that a non-malicious domain
name is predicted as a malicious domain name. Based on these outcomes, the performance
evaluation metrics accuracy, recall, precision, and F1-Score can be calculated as given below.

Accuracy is perhaps the most intuitive way of measuring the performance of any
binary classification model. The accuracy metric can be interpreted as the percentage of
samples correctly classified by the model. Based on the notation introduced earlier, the
accuracy is defined in Equation 6 as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

As an alternative measure of classifier performance, precision can be interpreted as
the accuracy of positive predictions. Precision is defined by the following equation:

Precision =
TP

TP + FP
(7)

Precision is often used in conjunction with a metric called recall, as precision measure-
ment tends to look very high for models that predict few positives. Recall indicates the
proportion of positive instances that are correctly detected by the classifier, as defined by
the following equation:

Recall =
TP

TP + FN
(8)

The F1-Score is the harmonic mean of precision and recall, as defined by Equation (9).
A large F1-Score can only be obtained if both recall and precision are high.

F1 − Score =
2 × Precision × Recall

Precision + Recall
(9)

5. Results

RQ.1 What is the effectiveness of our approach against the state-of-the-art base-
line methods?

Our goal is to provide a method that can automatically classify malicious and non-
malicious domain names. However, one challenge to the usefulness of this approach is
to determine how much its performance is improved over the baseline approaches. By
answering this research question, it would become clear how far ahead our method is in
detecting malicious domain names compared to state-of-the-art methods. To compare the
performance of our method, we chose six baseline methods, which are listed below.

Linear discriminant analysis (LDA) [20–23]: The purpose of the discriminant analysis
is to find the linear function of the data that best separates the two data points. Each data
point is classified into one of its two groups. When considering the data, the between-group
variance is maximized, and the within-group variance is minimized. In LDA [20–23], it
is assumed that the data can be represented linearly. However, this often does not reflect
realistic relationships between the data, and discriminant analysis is limited in its ability
to best classify data points. In simple terms, LDA [20–23] attempts to find a separable
subspace of data points whose dimensionality is lower than that of the original data sample.
This is achieved by finding a hyperplane that maximizes the mean and minimizes the
variance between the two classes.

Support vector machine (SVM) [24]: The SVM [24] method works by finding the
hyperplane that divides feature space between two regions. In this way, on one side of the
plane are all data points belonging to class one, and all points that belong to class two are
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on the opposite part of the plane. The aim is to maximize the margins so that the optimal
linearly separable hyperplane can be determined among multiple alternatives. Margin
optimization means maximizing the distance between the closest data points (also called
support vectors) on either side of the hyperplane. This results in a hyperplane that is as
far away as possible from the closest data points (support vectors). In other words, the
support vectors can be viewed as a hyperplane parallel to the main hyperplane, helping to
create the most efficient hyperplane.

K-nearest neighbor (KNN) [25–27]: To classify a point in the feature space,
KNN [25–27] examines the k nearest neighbors of the point and makes predictions based
on majority voting from those nearest neighbors. The input variable k is used to determine
the number of nearest neighbors to use. This k number is usually an odd number, to avoid
situations where new data points are equally distributed in two classes. KNN [25–27], as its
name implies, calculates the distance between different points in the feature space. In some
situations, it may be useful to weigh the “votes” of adjacent points according to distance,
so that nearby points contribute more to the classification than distant points.

Logistic regression (LR) [28]: LR [28] uses optimization methods such as gradient
ascent or the more efficient stochastic gradient ascent to find the optimal parameters of
a nonlinear function, called a sigmoid, which is very suitable for binary problems. The
advantage of using stochastic gradient ascent as an optimization algorithm is that it can
learn from new data by several batches and iterations.

Naive Bayes (NB) [29]: The NB [29] is a classifier that is based upon Bayes’ theorem of
statistical probability. It assumes every single predictor is equally important and indepen-
dent of one another. That is, given a class variable, it assumes that the absence or presence
of a particular feature is independent of the absence or presence of other features. Rather
than a simple classification, the NB [29] will report probabilities of an instance belonging
to an individual class. The class with the highest posterior probability in our case is the
prediction of whether the domain name is malicious or not.

Decision tree (DT) [30]: DTs [30] are essentially a set of questions designed to arrive at
a classification decision. As its name suggests, a DT [30] is a tree-like structure, which is
composed of several parts, such as root nodes, internal nodes, leaf nodes, and branches.
The root node represents the top-level decision node. In other words, it is where the
classification tree begins to be traversed. A leaf node is a node that is not split into
more nodes; it is where a class is assigned by majority vote. DTs [30] are constructed via
an algorithmic approach that makes a classification decision for a given data point by
recursively partitioning the available data. In other words, the algorithm partitions the
data recursively into subsets with rules that maximize information gain.

Figures 2–5 show the results of our approach in comparison with other baseline
approaches in terms of precision, recall, F1-Score, and accuracy. In terms of precision, our
approach obtains 0.989%.

The average precision value improvement by our approach over all baseline ap-
proaches is 0.051%, 0.049%, 0.019%, 0.04%, 0.034%, and 0.016% compared with
LDA [2], [20–23], SVM [2,24], KNN [2,25–27], LR [2,28], NB [2,29], and DT [2,30], respec-
tively. In terms of recall, our approach obtains 0.988%. The average recall value improve-
ment by our approach over all baseline approaches is 0.119%, 0.093%, 0.045%, 0.11%,
0.134%, and 0.036% compared with LDA [2,31], SVM [2,24], KNN [2,25–27], LR [2,28],
NB [2,29], and DT [2,30], respectively. In terms of F1-Score, our approach obtains 0.988%.
The average F1-Score value improvement by our approach over all baseline approaches is
0.093%, 0.079%, 0.035%, 0.083%, 0.097%, and 0.029% compared with LDA [2,31], SVM [2,24],
KNN [2,25–27], LR [2,28], NB [2,29], and DT [2,30], respectively. In terms of accuracy, our
approach obtains 0.988%. The average accuracy value improvement by our approach over
all baseline approaches is 0.081%, 0.069%, 0.031%, 0.072%, 0.08%, and 0.026% compared
with LDA [2,31], SVM [2,24], KNN [2,25–27], LR [2,28], NB [2,29], and DT [2,30], respec-
tively. All of these results indicate that the unified learning approach is more effective
compared with the baseline approaches.
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Figure 2. Comparison with baseline approaches on the precision metric.

Figure 3. Comparison with baseline approaches on the recall metric.
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Figure 4. Comparison with baseline approaches on the F1-Score metric.

Figure 5. Comparison with baseline approaches on the accuracy metric.

RQ.2 How effective is our unified learning approach in comparison with individual
features learning?

Numerical or textual features each provide separate useful information to distinguish
whether the domain name is malicious or not. To investigate the numerical or textual
features’ impact on performance individually, we remove the numerical or textual fea-
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tures from the input and its respective modules in the model, and perform comparative
experiments while keeping other conditions unchanged.

We evaluate performance through the accuracy, recall, precision, and F1-Score, and
Figure 6 shows the experiment results. From Figure 6 it can be observed that, after removing
the numerical or textual features, the performance on all the metrics decreased. In terms
of accuracy, the decrease is 0.159% and 0.194% using numerical and textual features,
respectively. In terms of precision, the decrease is 0.023% and 0.248% using numerical and
textual features, respectively. In terms of recall, the decrease is 0.307% and 0.067% using
numerical and textual features, respectively. In terms of F1-Score, the decrease is 0.19% and
0.169% using numerical and textual features, respectively. We notice that, after removing
numerical or textual features, although the performance has declined, this decline does not
reach 0%. The reason for this might be that numerical or textual features only account for a
small fraction of the total features used to accurately detect malicious domain name. All of
these results indicate that the unified learning approach is able to fully exploit its ability to
capture local numerical and textual features and extract deep relationships between them.
This shows that it is useful to feed numerical features along with textual features to the
model for the accurate detection of malicious domain names.

Figure 6. Individual and unified features comparison.

6. Conclusions

In this article, we proposed a novel approach that utilizes numerical and textual
features of a domain name for malicious domain name detection. These domain name
pairs are fed into a deep learning model that captures the semantic relationship between
numerical and textual features. Then, these association features are used to classify whether
a domain name pair is a malicious domain or not. We investigated the performance of our
approach using a public malicious domain name dataset. We evaluated our approach’s
performance against the state-of-the-art machine learning-based approaches for malicious
domain detection, and found our approach performs better for malicious domain name
detection. We made a comparative study by removing either numerical or textual features,
and performed experiments without changing other conditions. We found that it is more
effective to feed both numerical and textual features to the deep learning model. This
indicates that our proposed numerical and textual features pair representation is effective.
In the future, we will investigate how our approach performs on industrial projects.
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