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Editorial

Applications of (Big) Data Analysis in A/E/C

Ming-Hung Hsu 1, Ying-Wu Yang 2 and Zheng-Yun Zhuang 3,*

1 Department of Electrical Engineering, National Penghu University of Science and Technology,
Penghu 880011, Taiwan; hsu@gms.npu.edu.tw

2 College of Landscape and Architecture, Zhejiang A&F University, Hangzhou 311300, China;
yangyw06@163.com

3 Department of Civil Engineering, National Kaohsiung University of Science and Technology (NKUST),
Kaohsiung 807415, Taiwan

* Correspondence: wayne@nkust.edu.tw; Tel.: +886-7-3814526

This editorial paper provides an overview of the Buildings Special Issue (SI), dedicated
to the topic “Applications of (Big) Data Analysis in A/E/C” (where A/E/C stands for
architecture, engineering, and construction) and the academic papers it includes. For more
details about this SI, please refer to https://www.mdpi.com/journal/buildings/special_
issues/GV29ERG645 (accessed on 4 May 2023).

Some of this paper’s contents are presented in tabular format for clear organization.
Table 1 lists the title and keywords of each article published in the SI. This paper also
offers a series of digests based mainly on their abstracts to maintain each study’s original
contributions, as claimed by the author(s) at publication. Stemming from these reviews, the
paper summarises each study’s application domains within A/E/C, outlines the phase or
role each study plays in the theoretical flow of (big) data analysis, and then concludes with
some key observations. This allows for identifying ‘hot zones’ of research, in which follow-
up research and extended studies should be performed, and ‘cold zones’, awaiting the
utilisation and novel application of data and theories/models. Note that in the subsequent
text, if not otherwise specified, the discussion of the papers follows the order in which they
were published.

Zhuang and Kuo [1] propose and apply a systematic data analysis methodology to
analyse experimental data from high-performance concrete (HPC) samples with different
admixtures for use as offshore fan foundation grouting materials. Compared to other
relevant research, including experimental studies, physics and chemistry of materials
studies, and cementitious material portfolio determination studies, this data-driven analysis
deeply explores the experimental variables associated with the test data. The authors
employ several methods, including correlation analysis, cosine similarity analysis, simple
linear regression (SLR) modelling, heat maps, and heat-based tabularised visualisations,
to offer a comprehensive and in-depth perspective. The proposed methodology in [1]
is easily implementable. The authors validated the results using a pairwise comparison
approach (PCA).

The contributions of this work include insights for coherent groups of variables, tech-
niques for double and triple checking, the establishment of a ‘knowledge base’ consisting
of 504 SLR predictive models with their effectiveness (significance) and prediction accuracy
(data-model fitness) used in practical applications, an alternative visualisation of the results,
three data transforms that can be omitted in future analyses, and three valuable theory-
linking perspectives (e.g., for the relationships between destructive and non-destructive
tests with respect to the variable categories). The implication that some variables are
interchangeable will make future experiments less labour-intensive and time-consuming
for pre-project HPC material testing.

Buildings 2023, 13, 1442. https://doi.org/10.3390/buildings13061442 https://www.mdpi.com/journal/buildings
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Table 1. Title and keywords for each paper published in this SI.

Ref.# Title Keywords 1

[1] Unravelling the Relations between and Predictive
Powers of Different Testing Variables in High

Performance Concrete Experiments: The
Data-Driven Analytical Methods

high performance concrete (HPC); data-driven analysis;
experimental parameters; pre-project material testing;

pairwise comparison analysis; correlation analysis;
cosine similarity; predictive regression modelling;

heat map; variable transform

[2] An Intelligent Detection Logic for Fan-Blade
Damage to Wind Turbines Based on

Mounted-Accelerometer Data

energy generation; green energy; wind turbines;
fan-blade damage; mechanical condition; accelerometer;

monitoring system; fault diagnosis; vibration data;
maintenance by prediction; big data analytics

[3] Reliability Analysis of RC Slab-Column Joints under
Punching Shear Load Using a Machine

Learning-Based Surrogate Model

reliability analysis; RC slab-column structure;
machine learning; Monte Carlo simulation;

SHapley Additive exPlanation

[4] Real-Time Monitoring for Monolithic Movement of a
Heritage Curtilage Using Wireless Sensor Networks

wireless sensor network;
historic building;

real-time monitoring

[5] Polyethylene (PE)Waste Minimization Study of
Cement Mortar with Adding PE Content under

Different W/B Ratios

recycling of waste materials; cement mortar;
water-to-binder ratio (W/B ratio); waste PE;

durability

[6] Real-Time Monitoring for Effects of Vibration and
Temperature of Construction Site on Steel Assembly

Bracing of Foundation Pit

steel assembly bracing; foundation pit;
environmental temperature; vibration analysis;

real-time monitoring

[7] Automated Semantic Segmentation of Indoor Point
Clouds from Close-Range Images with

Three-Dimensional Deep Learning

building information model; 3D point cloud;
semantic segmentation; deep learning

[8] Determinants of Data Quality Dimensions for
Assessing Highway Infrastructure Data Using

Semiotic Framework

highway data quality assessment; data quality dimensions;
semiotic framework; decision-making

[9] Applying Deep Learning and Single Shot Detection
in Construction Site Image Recognition

construction image; artificial intelligence;
deep learning; object detection;

single shot multi-box detector (SSD)
1 Keywords may be reordered for simplicity of presentation.

Hsu and Zhuang [2] assist industry by establishing a real-time condition-monitoring
and fault-detection system with rules for recognising a wind turbine’s abnormal opera-
tion, mainly caused by different types of fan-blade damage. This system can ensure ideal
wind turbine operation by monitoring the health status of the blades, detecting sudden
anomalies, and performing maintenance almost in real time. This enables ‘maintenance by
prediction’ actions for unplanned maintenance as a supplement to the ‘predictive main-
tenance’ tasks for regular planned maintenance, which is especially significant for wind
farms operating in harsh marine or shore environments that are subject to frequent natural
disasters (e.g., earthquakes and typhoons). Turbines might fail to endure these because the
manufacturers have built them according to the standards developed for areas less prone to
natural disasters.

The system’s rules are established utilising concepts and methods from data analyt-
ics, digital signal processing (DSP), and statistics to analyse data from the accelerometer
mounted on the platform of the wind turbine’s structure, measuring the vibration signals in
three dimensions. The patterns for cases involving fan blade damage are found to establish
the rules. By detecting and reporting anomalies effectively, repairs and maintenance can be
carried out on faulty wind turbines.

Shen, Shen, and Liang [3] found that reinforced concrete (RC) slab-column structures
are prone to punching shear failure, despite their architectural flexibility and easy con-
struction. Punching shear failure is a typical brittle failure, making it challenging to assess

2



Buildings 2023, 13, 1442

slab-column structure functionality and failure probability. Therefore, predicting punching
shear resistance and the corresponding reliability analysis are critical issues in designing
RC slab-column structures. The authors used a database containing 610 experimental
data for machine learning (ML) modelling to enhance the computational efficiency of the
reliability analysis of RC slab-column joints. According to the nonlinear mapping between
seven selected input variables and the punching shear resistance of slab-column joints, the
study established four ML models, namely the artificial neural network (ANN), decision
tree (DT), random forest (RF), and extreme gradient boosting (XGBoost) models.

Based on three performance measures, the authors selected XGBoost as the best predic-
tion model; its root mean square error (RMSE), mean absolute error (MAE), and coefficient
of determination (R2) were 32.43, 19.51, and 0.99, respectively. Such advantages are reflected
in a comparison with five empirical models introduced. The study visualised the prediction
process of XGBoost using SHapley Additive exPlanation (SHAP); the importance sorting
and feature dependency plots of the input variables explain the prediction process globally.
Furthermore, the paper adopts Monte Carlo simulation with an ML-based surrogate model
(ML-MCS) to calibrate the reliability of slab-column joints in a real engineering example.
The authors obtained 1,000,000 samples through random sampling and calculated the
reliability index (β) of this practical building using Monte Carlo simulation. As a result,
they achieved the targeted reliability index under the design provisions. They also con-
ducted a sensitivity analysis of stochastic variables and deeply examined the impact on
structural reliability.

Shen, Yang, Yang, Yang, Zhu, and Wang [4] argue that since monolithic movement is a
promising technology for relocating historical buildings, corresponding real-time monitor-
ing is of great interest due to the buildings’ age and poor structural integrity. However, as
related research and practical applications remain limited, the paper proposes a wireless
sensor network (WSN)-based strategy as a non-invasive approach to monitoring heritage
curtilage during monolithic movement. The collected data show that the inclination of
the curtilage is almost negligible. With the aid of finite element simulation, the study
found that the crack displacement curves changed from −0.02 to 0.07 mm depending on
the direction of movement; however, this value is not enough to cause structural cracks.
The deformation of the steel underpinning beam, used to reinforce masonry walls and
wooden pillars, is related to the stiffness in different directions. In addition, the strain
variations of the steel chassis, which bears the vertical loads from the wooden pillars and
masonry walls, are less than 0.04%. This indicates that they are kept within the durable
range during monolithic movement. The authors thus prove that the WSN-based ap-
proach can potentially be used for the real-time monitoring of the monolithic movement of
historic buildings.

Lin, Hung, Wang, and Wen [5] researched the durability of cement mortar prepared
using different W/B ratios and percentages of waste PE content. The study was based on
the logic that waste can be effectively used in concrete, and the characteristics of concrete
can be maintained or enhanced, so the economy of waste management can be significantly
increased, thus reducing pollution. They mixed the cement mortar with 0%, 1%, 2%,
3%, and 4% of waste PE and 20% of ground-granulated blast-furnace slag (GGBFS) in
W/B ratios of 0.4, 0.5, and 0.6. The results show that slump and flow decrease with
increasing waste PE content and increase with increasing W/B ratio; therefore, the setting
time becomes shorter as the waste PE content rises. Regarding hardened (mechanical)
properties, the specimen strength slightly decreased with increasing waste PE content. Still,
the specimens performed better at a later age due to the pozzolanic reaction of slag, which
can be verified using a scanning electron microscope.

Yang, Zeng, Liu, Yang, and Li [6] propose a real-time monitoring system—including
vibration acceleration sensors, temperature sensors, and static and dynamic strain sensors—
to monitor the safety status of a steel (assembly) bracing system in a practical project. It
uses 5G wireless networking technology to transmit monitoring data to a cloud server for
early warning of abnormal changes and development trends. The authors used real-time

3
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monitoring data obtained from a construction site as the inputs for the finite element
model. They compared the corresponding results of a numerical simulation with the results
from real-time monitoring. The paper concluded that (1) environmental temperature
causes significant stress, which can be higher than the initial prestress of the steel bracing
system; (2) the stress caused by vertical vibration, mainly from construction vehicles, is
not remarkable, but the vertical frequency-weighted acceleration of support vibration
is relatively large, which can affect on-site engineering technicians’ sense of safety; and
(3) the combination of environmental temperature and vertical vibration does not affect the
safety of the steel bracing system.

Hsieh and Ruan [7] point out that generating a 3D model from 3D point clouds involves
classification, outline extraction, and boundary regularisation for semantic segmentation.
In addition, the number of 3D point clouds generated using close-range images is smaller,
and they tend to be unevenly distributed. This is not conducive to automated modelling
processing. However, the creation of building information models requires acquiring
real building conditions. Thus, the authors propose an efficient solution for the semantic
segmentation of indoor point clouds from close-range images. They further propose a
3D deep learning framework that achieves better results. The study used a dynamic
graph convolutional neural network (DGCNN) 3D deep learning method to learn point
cloud semantic features. Moreover, the authors developed more efficient operations to
build a module for extracting point cloud features to resolve the problem of inadequate
beam and column classifications. They first applied DGCNN to learn and classify the
indoor point cloud into five categories: columns, beams, walls, floors, and ceilings. Then,
they utilised the proposed semantic segmentation and modelling method to obtain the
geometric parameters of each object to be integrated into building information modelling
(BIM) software.

According to the experimental results, the overall accuracy rates of the three exper-
imental sections of Area_1 in the Stanford 3D semantic dataset test results were 86.9%,
97.4%, and 92.5%. The segmentation accuracy of corridor 2F in a building was 94.2%. In
comparing the length with the actual on-site measurement, they found the root mean square
error to be ±0.03 m. Thus, the method is capable of automatic semantic segmentation from
3D point clouds with indoor close-range images.

Krishna, Ruikar, and Jha [8] identified the critical data quality dimensions affecting
highway projects’ decision-making process to address the data quality issues posed by the
rapid accumulation of highway infrastructure data and its widespread reuse in decision-
making. The authors propose addressing these issues by examining data quality, using
various approaches to enhance data quality, and making decisions based on data quality
information. Firstly, they conducted a state-of-the-art review of data quality frameworks
applied in multiple fields to identify suitable frameworks for highway infrastructure data.
Next, they identified data quality dimensions of the semiotic framework from the literature
and conducted interviews with highway infrastructure stakeholders to finalize the data
quality dimension. Then, they used a questionnaire survey to identify the critical data
quality dimensions for decision-making. They also identified the importance of each
critical dimension at each decision-making level in the highway infrastructure project.
This ‘semiotic data quality framework’ provides a theoretical foundation for developing
data quality dimensions to assess subjective data quality. However, further research is
required to find effective ways to evaluate current satisfaction with data quality at various
decision-making levels.

Lung and Wang [9] observed that although most construction site workers take photos
of construction activities, the site manager relies mainly on manual labour to assess con-
struction progress, quality control, and field management to facilitate job site coordination
and productivity management. Moreover, it often takes a great deal of time to process the
many photos taken, so in most cases, the image data are processed passively and used
only for reference. However, using computerised tools, these photos could serve as aids
for project management, including construction history records, quality, and schedule
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management. Thus, the authors propose an image recognition system for construction
activities by incorporating image recognition through deep learning, using the powerful
image extraction ability of a convolutional neural network (CNN) to automatically extract
contours, edge lines, and local features via filters and feed feature data to the network for
training in a fully connected way. The system is effective in image recognition, which helps
identify subtle differences. The authors adjusted the parameters and structure of the neural
network for use with a CNN. They selected objects like construction workers, machines,
and materials for a case study. A CNN can be used to extract individual features for train-
ing, which improves recognizability and helps project managers make decisions regarding
construction safety, job site configuration, progress control, and quality management, thus
enhancing the efficiency of construction management.

Table 2 below summarises the application domains of the papers reviewed above.
Table 3 then summarises the phases of (big) data analytics touched on by the SI papers.

Table 2. Application domains of the SI papers.

Application Domain SI Papers Count (Multiple Answers)

Structures and Structural Eng. [2–4,6] 4
Materials or Geotechnical Eng. [1,5] 2

Construction Design, Measure, Information
Systems and BIM [3,6–8] 4

Transport/Energy Planning and Related
Building Management [1,2,4,8,9] 5

Table 3. Phases of big data analytics touched on by the SI papers.

Phase Involved or Resolved SI Papers Count (Multiple Answers)

Data Collection and Curation [4–6,8,9] 5
Data Pre-processing [1,2,4,6,7] 5

Data Analysis [1,3–6,8] 6
Prediction [1–3,7,9] 5

Forecasting N/A 0
Decision-making and Support [2,3,5,8,9] 5

Tables 2 and 3 show that the SI papers involve highly diversified application domains
and phases. However, several observations can be made:

1. Big data theories and techniques have been applied less to the materials or geotech-
nical (earth) engineering domains than to the other three domains, thus pointing to
opportunities for future research;

2. More and more studies (including 6/9 reviewed here, as shown in Table 2) involve
two interdisciplinary application domains;

3. As seen in Table 3, an increasing number of studies applying the theories or methods
of big data analysis involve two or even three phases within the methodological flow
of big data. This trend is noteworthy;

4. Rarely do studies address the forecasting function (0/9 in this review). This also
indicates an opportunity for its first-time application in A/E/C studies;

5. By contrast, many papers contribute to the data collection and curation phase (5/9).
Still, for the application of (big) data analysis in A/E/C, it is possible that many
datasets still need to be collected and/or curated (e.g., using proper IoT or sensor
devices). However, much room remains for subsequent analytical or knowledge
exploration studies following this initial phase.

As a concluding remark, we would like to highlight the two areas for future studies in
the above list. Researchers may consider focusing on the current research ‘hot spot’ and
conducting research based on the existing solid ground; alternatively, they may wish to
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propose new ways to apply the theories or methods to new cases (to fill in vacant areas, i.e.,
the ‘cold spot’). Either way, researchers may find the papers in this SI helpful.
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Unravelling the Relations between and Predictive Powers of
Different Testing Variables in High Performance Concrete
Experiments: The Data-Driven Analytical Methods

Zheng-Yun Zhuang and Wen-Ten Kuo *

Department of Civil Engineering, National Kaohsiung University of Science and Technology,
Kaohsiung 807, Taiwan
* Correspondence: wtkuo@nkust.edu.tw; Tel.: +886-7-3814526 (ext. 15201)

Abstract: This study proposes and applies a systematic data analysis methodology to analyse
experimental data for high-performance concrete (HPC) samples with different admixtures for
offshore fan foundation grouting materials uses. In contrast with other relevant research, including
experimental studies, the materials physics and chemistry studies, or cementitious material portfolio
determination studies, this data-driven analysis provides a deep exploration of the experimental
variables associated with the test data. To offer complete and in-depth perspectives, several methods
are employed for the data analyses, including correlation analysis, cosine similarity analysis, simple
linear regression (SLR) modelling, and heat map and heat-based tabularised visualisations; the
outcome is a proposed methodology that is easily implementable. The results from these methods are
validated using a pairwise comparison approach (PCA) to avoid unnecessary interference between
data variables. There are several potential contributions from this work, including insights for
cohered groups of variables, techniques for double check and ‘third check’, an established ‘knowledge
base’ consisting of 504 SLR predictive models with their effectiveness (significance) and prediction
accuracy (data-model fitness) used in practical applications, an alternative visualisations of the results,
three data transforms which can be omitted in a future analysis, and three valuable theory-linking
perspectives (e.g., for the relationships between destructive and non-destructive tests with respect to
the variable categories). The implication that some variables are interchangeable will make future
experiments less labour intensive and time consuming for pre-project HPC material testing.

Keywords: high performance concrete (HPC); experimental parameters; data-driven analysis;
pre-project material testing; pairwise comparison analysis; correlation analysis; cosine similarity;
predictive regression modelling; heat map; variable transform

1. Introduction

There are many types of experiments for testing a concrete material sample. As
an example, in a study [1] involving the selection of high-performance concrete (HPC)
admixtures for offshore wind farm construction, potential experiments are classified into
the following three categories:

(Cat1) fresh mechanical properties,
(Cat2) hardened mechanical properties,
(Cat3) the durability measures.

In the study, slump flow and the time required to flow through a V-shaped funnel
were included in (Cat 1). Compressive strength (CS), ultrasound pulse velocity (USPV),
and electrical resistivity on surface (ERoS) were included in (Cat 2), while anti-sulphate
capability (ASC) and rapid chloride permeability (RCP) were included in (Cat 3). These
categories allowed the researchers to determine the superior admixtures that included
cement, fly ash, silica fume, super plasticiser, and water for grouting before building (non-
floating) wind turbines with foundations constructed in the sea. One analysis, mentioned

Buildings 2022, 12, 1545. https://doi.org/10.3390/buildings12101545 https://www.mdpi.com/journal/buildings
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only in the paper’s Appendix, was of particular interest because it concluded that the
relationship between CS and RCP could be identified (and established) as follows:

RCP = 7966.72 + (−97.76)CS. (1)

This equation was formulated and validated through an extensive series of exploratory
data analyses in that study; further details are provided in Appendix A of this study.
Figure 1 provides visualisations of the final ‘effective process’ that resulted in Equation (1)
using K-means (i.e., a non-supervised machine learning approach) and simple linear
regression (SLR) modelling.

 
(a) (b) 

Figure 1. Relationship between CS and RCP: (a) a rough trend was observed between CS and RCP;
(b) visualising the result of clustering in the previous study. (Data source: Re-plot and New Plot).

However, a practical benefit of the above process has not been described in the lit-
erature: such an outcome might reduce the effort to perform sample tests because with
Equation (1), one of the two experimental results (e.g., RCP) can be anticipated (e.g., by CS),
thereby reducing time and effort. Nevertheless, the practical benefits of this encouraging
result are still limited because it was only validated for one pair of variables. Therefore, this
study seeks to answer the question: Among numerous pairs of parameters tested for the HPC
samples, does any other pair exist in which one parameter can be used to predict another?

In this study, a full set of data related to the experiments is sourced, and a data-
driven analysis is performed following a pairwise comparison approach (PCA). To a large
extent, this study identifies all pairs of concrete sample parameters in the available datasets
sourced from an HPC laboratory, providing in-depth and cross-categorical views of the
relationships between each variable pair and offering scientifically grounded insights about
the experimental values that can be used to anticipate others.

A systematic data analysis methodology is designed and proposed utilising numerous
methods, including correlation coefficient, cosine similarity, SLR modelling, and dimen-
sional alternation (domain transform) of the variables (before estimating the parameters of
the SLR model to ensure the linearity of each established model), in addition to other sup-
plemental methods (e.g., the heatmap visualisation technique, and viewing the results from
different perspectives). Using this methodology, the analysis reveals essential information
about all Cat2 and Cat3 variables, the relationship between each pair of test variables, the
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variable’s ability to predict other variables, and the accuracy with which the variables can
predict one another. The set of information obtained from the analysis (i.e., the ‘knowledge
base’) can be used to benefit researchers and practitioners.

Since every pair of variables fitted with a model with sufficient predictive power (in
terms of data-model fitness and model significance or effectiveness) can be summarised
from the knowledge base, the results of some tests can be anticipated by using the results
of other tests (if the law allows not testing every item). This could be a significant benefit to
material testers whose time is valuable, and could also indirectly help reduce the cost and
complexity of construction projects.

In this paper, other discussions are presented for the insights gained, particularly for
the identified pairs of variables for which the results are positive (i.e., effective information).
Implications are thus drawn from several aspects of the analysis, such as selecting a proper
dimensional alternation method to convert the independent variable data for the established
SLR model, performing both ‘double check’ and ‘third check’ by using the cosine similarity
index and the relevant statistical descriptors of SLR models for the main results in the total
correlation matrix, confirming theories in the existing literature or standards (between
the test variables), and revealing the truth between the different destructive and non-
destructive tests. Extensive discussions are also given for the utilisation of the developed
knowledge base and future applications of the proposed methodological framework, as
well as the time-saving effects on making material tests in each case (if the schedule for the
construction project is tight). These also associate the results with theories and practices.

Section 2 reviews the literature related to the subject (i.e., the primary research ques-
tion) and the methodologies to conduct this study, as well as the main data analysis
methods applied. Section 3 presents the results, and Section 4 discusses the primary posi-
tive outcomes in terms of the application of methods, the practical insights gained, and the
theoretical aspects of the study. Finally, Section 5 concludes this paper.

2. Literature Review and Methods

2.1. Background of the Problem
2.1.1. Renewable Energy (RE) Planning and Wind Farm Construction

For both developing and developed economies, stable and adequate supplies of energy
are mandatory. However, as world’s fossil fuel-based energy resources are limited, renew-
able energy (RE) has emerged as a viable solution to replace conventional electric power
generation [2,3]. In addition, utilising RE is also an ‘environmentally sound’ solution for a
country to meet its sustainable development goals (SDGs) [4], this is also addressed by ESG
(environmental, social, governance) targets that are established for business institutions [5].

Despite disagreements over the definitions of ‘RE’, ‘green energy’, ‘sustainable energy’,
and ‘clean energy’, a classification of RE that is commonly accepted refers to the type
of RE resource, including solar, wind, hydropower, geothermal, biomass, marine, and
others [6–8]. This is due to the fact that the technological aspects to exploit these types of
RE resource are usually totally different, thereby leading to salient ‘watersheds’ that can be
told between them.

A stream of research adopting this view of classification is related to the ‘portfolios’,
either in terms of selecting the optimal investment portfolio (by a company’s decision mak-
ers) [9] or determining a country’s optimal RE portfolio (by energy planners or operators
within its long-term energy policy [10]. In research related to portfolios, uncertain or risky
issues are also addressed [11,12]. However, in contrast to these operational management
topics, more studies focus on the technologies to exploit various aspects of RE.

As an example, the technologies to exploit wind resources usually involve aspects of
EE (electrical engineering), fluid dynamics/mechanics, and construction engineering (CE).
Moreover, the first step in building a wind farm is typically to construct the foundations
before erecting the wind turbines. For onshore or inland turbines, it is possible for the local
weather conditions to be directly utilised as engineering parameters (e.g., steel structures,
concrete materials, etc.). However, for offshore turbines, regardless of their working mode
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(i.e., fixed or floating, depending on the water depth), underwater foundations are always
required, which necessitates the well-proportioned HPC material used for grouting [13].

Constructing new wind farms is necessary for a country with unique conditions
to exploit its wind resources. For offshore wind farms, in the Taiwan Strait, numerous
projects have taken advantage of the very shallow waters of the ‘Taiwan Bank’ [14] and
the high wind availability [15]; similar projects have been developed on the edges of the
Mediterranean Sea [16,17]. For on-shore or in-land wind farms, projects have been initiated
near the Sahara Desert, e.g., budget has been allocated for the construction of wind farms
in Algeria [18].

The motivation of this study is to explore and better understand the parameters (or
the parametric performance) of the HPC materials (the numerical values for which can be
obtained experimentally) used for grouting the structural bases of offshore wind turbines.
This may benefit the selection process before the real admixture of the HPC is determined
and applied as grouting, and it may also generate a novel knowledge set to be used for
anticipating the potential outcomes of experiments.

2.1.2. The Special Weather/Sea Conditions in Taiwan and the Effects for Wind Turbines

As discussed in several studies, the soil of Taiwan is rich in sulphates and crystalline
salts due to its geological features which result from frequent crustal deformation [19,20].
Osmosis of sulphate that occurs in concrete has caused serious problems for inland struc-
tures; the gypsum reaction is one such reaction, which can inflate the concrete and peel the
surface off from the structure [1]. Therefore, anti-sulphate capability is typically a critical
durability parameter in this context.

In addition, the high temperature and high humidity of Taiwan may accelerate these
effects and decrease the life of structures. Moreover, the frequent earthquakes in the Circum-
Pacific Belt and the typhoons that originated in the West Pacific region may also cause
unexpected damage to structures. The damage is ‘unexpected’ because such events usually
are inherently random, as is the scale of the event, e.g., the 921 Taiwan Earthquake of 1999,
the Typhoon Morakot, etc. [21,22]. These types of natural disasters should be considered to
be different from the damage caused by other types of unexpected events, such as fires [23].

These same conditions also apply to the Taiwan Strait, within which the Taiwan Bank
is a very large but shallow continental shelf as a potential site for constructing offshore
wind farms. Despite a high availability wind field above the sea all year, the land under
water is susceptible to acid attacks (such as sulphates, chlorides, etc.), experiences the
same extreme climate conditions discussed above (high temperature and high humidity),
suffers from frequent natural disasters (earthquakes and typhoons) [24], and is scoured by
the changing ocean currents throughout the year [25]. Therefore, quality HPC material is
always required for wind turbines for its good workability during grouting, its beneficial
mechanical properties during construction, and its long-term durability.

Thus, the parameters of an HPC sample (i.e., the experimental values from individual
tests for all HPC samples which become ‘variables’ during data analysis) should be further
studied and clearly understood. In addition, a suitable method is needed to determine the
optimal HPC materials for construction based on the parametric data of the samples being
tested during the experiments.

The parameters included in this study are organised and shown in Figure 2. It
should be noted that, unlike in previous studies, electrical resistivity on surface (ERoS) is
considered to be a durability property (parameter) of HPC samples in this research. This is
believed to be a more reasonable consideration based on recent studies [26–28].
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Figure 2. HPC Sample Parameters (Organised).

In Figure 2, the two fresh-property parameters are excluded from this study. These
two tests are usually related to the workability of an HPC material during the engineering
process, and their data formats are usually incompatible because the ‘data sampling periods’
of these two experiments are different than those in the other two categories. In contrast,
the other eight variables have a quite large overlap in terms of their data sampling periods,
so their data formats are compatible for the analysis (see Section 3.1).

In this study, the barrier between the hardened mechanical properties and durability
properties is also removed intentionally. By doing so, not only can the pairs of parameters
within a certain category be explored, but so can the pairs of parameters across two cate-
gories, so that relations between them and the intensities of the relations can be identified
and evaluated. As will be shown later in Section 2.3, these relations include correlations,
similarities, and predictive associations in terms of the ability to use one parameter to
anticipate another (and how ‘safely’ it can be used).

2.2. About the Parameters

This section provides a review and discussion of the eight testing parameters of
HPC analysed in this study (see Figure 2), regardless of the barrier between the hardened
mechanical and durability parametric categories (see Section 2.1.2).

2.2.1. Compressive Strength (CS)

The CS of a concrete material (sample) is defined as its ability to withstand stress
without failure. In concrete design and quality control, CS is the most generally specified
property. The standard test method(s) for CS is (are) defined by ASTM C39 [29].

2.2.2. Tensile Strength (TS)

In this study, the splitting tensile strength (TS) of cylindrical specimens is accepted as
the main tensile TS measurement for a concrete (and HPC) material (sample). Its test(s) can
be performed in accordance with ASTM C496 [30].

2.2.3. Flexural Strength (FS)

The primary property for a concrete material (sample) to demonstrate is CS, but its
tensile behaviours are also important. When reinforced concrete (RC) is subjected to tensile
force, cracks and expansion will occur, depending largely on the TS of the concrete material.
Direct tension tests of concrete are seldom performed, mainly because the device that holds
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the specimen may introduce secondary stresses that introduce error in the measurement.
Another test for estimating the TS of a concrete material (sample) is the ASTM C78 (third
point) flexural loading test, the result of which is referred to as flexural strength (FS) in this
study [31].

2.2.4. Hardness (by Rebound Hammer) (HbRH)

The rebound hammer method utilises non-destructive testing techniques to measure
the concrete strength. This test can be performed in accordance with ASTM C805 [32].

2.2.5. Ultrasound Pulse Velocity (USPV)

USPV is another common non-destructive index. The structural compactness in the
specimen can be estimated according to the ultrasonic transferring rate (i.e., the speed of
ultrasound waves going through the sample). The more complete the hydration reaction
inside the concrete, the smaller the pores will be; thus, the detected USPV increases. ASTM
C597 details the method(s) to test USPV [33].

2.2.6. Anti-Sulphate Capability (ASC)

Sulphate penetrates the surface of the concrete by infiltration, and a chemical reaction
is produced when it combines with calcium hydroxide in the cement; when this occurs,
the concrete expands, which further peels off the surface or destroys it. The experiment
to measure the anti-sulphate capability of the HPC material samples can be carried out
according to ASTM C1012; this method evaluates the resistance of the HPC to sulphate
attack by measuring the rate of weight loss in an immersed specimen [34].

2.2.7. Rapid Chloride (Im-)Permeability (RCP)

Another indicator of the durability of concrete is its ability to resist chloride ion
penetration. This can be performed by testing the concrete material samples using a rapid
chloride ion rapid test (RCPT) with an applied electrical voltage. This test method can be
performed in accordance with ASTM C1202 [35].

2.2.8. Electrical Resistivity on Surface (ERoS)

To evaluate concrete compactness and the durability of cement composites in an HPC
sample, the ERoS can be measured. The higher the electrical resistance, the more compact
the substrate, which increases durability. This study considers ERoS to be a durability
variable (see Section 2.1.2), which can be tested using ASTM C876 [36].

2.3. The Methods: A Brief Review
2.3.1. Correlation Analysis

This study uses the Pearson correlation coefficient (P-Co-Co) method as the basis
of the analysis to identify the correlation between each pair of experimental parameters
(variables). The computation of a P-Co-Co is typically defined as the following:
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n
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where X and Y are variables between which the P-Co-Co is to be calculated; n is the data
size (length) of each variable; and i is the identifier for a specific data entry.

There are two primary reasons for using the P-Co-Co method:

(1) All of the variables are continuous, so the two variables when searching for cor-
relations must also be continuous; therefore, the P-Co-Co meets the analytical purpose.

(2) Developed more than 100 years ago, P-Co-Co is the most common (and standard)
method to compute and examine the correlation between two continuous variables.
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2.3.2. Cosine Similarity Analysis

The cosine similarity (Cos-Sim) analysis diverges from the traditional thinking in
statistics, treating experimental parameters as ‘vectors’, rather than ‘variables’; in so doing
the similarity between two series of parametric values from the tests can be justified by the
Cos-Sim index in the dimensional space. The standard computational process for this index
can be written as:

CosSim(X, Y) =

n
∑
i

XiYi√
n
∑
i

X2
i

√
n
∑
i

Y2
i

(3)

where X and Y are variables being treated as vectors between which the index is to be
calculated (so Xi or Yi is the i-th element of vector X or vector Y); the other symbols are as
defined previously.

The reasons to apply Cos-Sim in this context are as follows:

(1) Cos-Sim has been proven to be an effective supplemental measure to P-Co-Co in real
applications [37,38];

(2) Cos-Sim also fits the data variables, i.e., the variables considered in this study are all
continuous and positive, so the vectors are all meaningful in the multi-dimensional
data space.

2.3.3. Simple Linear Regression

In this study, the predictive power and the relevant statistical descriptions between a
pair of variables are justified by building several SLR models. Every SLR model chooses
a data transform (method) to convert the independent variable (i.e., the RHS variable)
prior to parameter estimation, so the model remains linear. A typical SLR model is defined
as follows:

Yi = α + βXi + εi (4)

where α and β are the intercept and the regression coefficient associated with the only
independent variable X in the model, respectively, which are to be estimated; given the
i-th data tuple in the dataset, (Xi, Yi), εi is the residual of this data tuple with respect to
Y = α + βX; other symbols are as defined previously.

The SLR model Y = α + βX can then be plotted as the best line fit (i.e., the ‘AB-line’)
that includes all data points (Xi, Yi), ∀i ∈ {1, 2, . . . , n} in the data space. This model also
satisfies the requirement to identify the causal relationship and predictive power between
two variables ‘pair-wisely’, i.e., the PCA used in the overall analysis (which also applies to
the correlation analysis and the cosine similarity analysis).

In our analysis, every time two variables are paired, one variable becomes the depen-
dent variable Y and the other one becomes the independent variable X. This then yields
a total number of C8

2 × 2! = 56 ‘base models’ of (X, Y), and in each case, the two paired
variables are interchangeable (to appear on the RHS or LHS of the model, i.e., 2!).

2.3.4. Data Variable Transforms

As discussed above, each of the 56 ‘basic models’ justifies the predictive relation and
power between a certain pair of variables and the relevant statistical descriptions for the
SLR model. However, the models are established based on the assumption that no variable
is transformed, i.e., both variables on the RHS and LHS in the model use their data values
in the source domain.

In this study, we transform the values of the independent variable on the RHS of
each of the 56 models in nine ways in prior and build nine models by re-estimating the
parameters of the SLR model that fit the independent variable in the transform domain. For
comparison purpose, the models also include the initial case of ‘no transform’ (i.e., the base
model), and are written as:
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(1) RHS Variable Transform: X′ = X1 (no transform; the basic model)
(2) RHS Variable Transform: X′ = X2 (square)
(3) RHS Variable Transform: X′ = X3 (3 power)
(4) RHS Variable Transform: X′ = eX (e power X)
(5) RHS Variable Transform: X′ = 2X (2 power X)
(6) RHS Variable Transform: X′ =

√
X (square root of X)

(7) RHS Variable Transform: X′ = 3
√

X (triple root of X)
(8) RHS Variable Transform: X′ = log(X) (log of X, base 10)
(9) RHS Variable Transform: X′ = lg(X) (log of X, base 2)

With all these transforms performed prior to establishing the model, the model can be
simplified as Equation (5) uniformly, and the linearity for all other SLR models derived
from a basic model also holds:

Y = α + βX′ (5)

For a model with (X, Y) as the RHS and LHS variables, the 56 cases already included
their counterpart, i.e., (Y, X) as the RHS and LHS variables, respectively (see Section 2.3.3),
meaning that all cases would be considered. As such, since there are nine models derived
from each ‘basic model’ totally, there would actually be 56 × 9 = 504 SLR models in this
work using the same set of data.

2.3.5. Indicators Used to Justify the SLR Modelling Results

Other than P-Co-Co and Cos-Sim which are in themselves ‘indicators’ for paired data
variables, in this study, the following measures are used to tell the quality of an established
SLR model. These include:

(1) The estimated value of parameter α, α∗: this is the intercept of the predictive SLR
model that fits the data, which is one of the two parameters defining the model in
Equation (5);

(2) The estimated value of β, β∗: this is the slope of the predictive SLR model, which is
another parameter that defines the model in Equation (5);

(3) The p value of the entire SLR model: this value indicates whether the model is
significant or not; the significance of an SLR model usually dictates whether the model
is reliable and the extent to which it can be trusted;

(4) The p value for α∗: this p value indicates whether the estimated parameter α∗ in the
SLR model is significant or not;

(5) The p value for β∗: this p value indicates whether the estimated parameter β∗ in the
SLR model is significant or not;

(6) The R-square value, R2: this value usually connotes the data-model fitness, i.e., how
well does the obtained SLR model fit the given data of (Xi, Yi), wherein the parameters
in this case are typically estimated using the OLS (ordinal least square) method; and

(7) The R-square value,
(

R2)∗: this is another R-square value that is adjusted based on
R2 and the sample size; we primarily observe the traditional R2 value in this study,
since the two values are usually very similar.

To visualise the summarised and tabularised computational results, they are also
plotted as heat maps to provide a clear view. A heat map is a visualisation tool that is
frequently used in the field of data-driven decision-making (DDDM) since Toussaint Loua
provided its first application in 1873.

3. Results

3.1. Original Datasets

The experimental datasets for the eight hardened mechanical or durability parameters,
i.e., the eight variables of the HPC samples to be analysed, are summarised in Table 1. The
datasets are presented following the order provided in Section 2.2.
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Table 1. Source data from experimental tests: (a) for CS and TS; (b) for FS and HbRH; (c) for USPV
and ASC; (d) for RCP and ERoS.

(a)

Parameter of HPC Sample CS of Sample at Days (MPa) TS of Sample at Days (MPa)

W/B Ratio % of FA and SF 1 7 28 56 91 1 7 28 56 91

0.28 FA 0% SF 0% 42 65.3 73.92 82.54 95.43 7.32 12.74 16.15 17.24 22.05
FA 0% SF 10% 31.7 56.3 68.53 70.16 88.04 5.39 9.82 12.86 15.16 21.04
FA 10% SF 0% 28.2 60 68.1 75.33 84.9 4.28 10.29 13.13 15.33 19.57
FA 10% SF 10% 27.1 46.4 54.88 67.37 72.19 4.41 8.8 10.69 14.89 18.81
FA 20% SF 0% 27.9 42.5 53.88 60.42 70.66 4.17 7.17 8.8 12.29 14.95
FA 20% SF 10% 25.8 40.5 52.37 65.95 76.74 3.71 6.94 8.2 12.31 17.89

0.30 FA 0% SF 0% 35.7 50.6 60.5 70.3 86.59 5.12 10.31 14.17 16.2 20.46
FA 0% SF 10% 23.9 48 57.07 61.28 77 4.88 8.75 11.7 15.16 20.01
FA 10% SF 0% 17.7 49.2 59.67 68.03 73.01 3.08 9.5 12.14 15.27 18.83
FA 10% SF 10% 16.1 38.7 47.71 58.25 60.35 3.31 7.21 8.77 14.87 18.24
FA 20% SF 0% 17 35.6 46.02 53.74 57.53 2.53 6.29 7.81 12.99 15.41
FA 20% SF 10% 14.6 34.5 45.17 55.17 67.92 2.23 5.9 7.22 13.61 17.75

(b)

Parameter of HPC Sample FS of Sample at Days (MPa) HbRH of Sample at Days (MPa)

W/B Ratio % of FA and SF 1 7 28 56 91 1 7 28 56 91

0.28 FA 0% SF 0% 6.29 11.66 13.49 13.74 14.21 37.61 36.58 33.09 31.26 27.92
FA 0% SF 10% 3.79 9.79 10.5 12.18 12.48 45.41 42.57 43.68 40.36 33.37
FA 10% SF 0% 6.54 10.62 10.77 12.31 13.39 53.47 50.51 44.97 43.24 37.17
FA 10% SF 10% 4.8 8.79 9.95 10.84 11.71 58.47 55.56 50.42 52.23 45.45
FA 20% SF 0% 5.64 8.37 10.05 10.56 10.82 63.48 65.68 59.89 60.78 57.55
FA 20% SF 10% 3 7.56 8.93 9.35 10.18 37.61 36.58 33.09 31.26 27.92

0.30 FA 0% SF 0% 6.15 10.61 12.41 12.81 13.39 29.78 29.01 25.95 19.5 23.94
FA 0% SF 10% 3.38 8.82 10.02 11.83 12.41 44.37 38.81 40.92 36.83 30.73
FA 10% SF 0% 6.24 9.77 10.19 11.99 13.26 52.45 49.86 44.24 43.01 34.15
FA 10% SF 10% 4.45 8.52 9.4 10.46 10.95 58 54.49 48.24 48.84 41.53
FA 20% SF 0% 5.34 7.7 9.37 10.18 10.63 63.35 67.26 58.07 59.07 54.52
FA 20% SF 10% 2.89 7.47 8.33 9.16 10.01 29.78 29.01 25.95 19.5 23.94

(c)

Parameter of HPC Sample USPV of Sample at Days (m/s) Weight Loss at Days for ASC (%)

W/B Ratio % of FA and SF 1 7 28 56 91 28 56 91

0.28 FA 0% SF 0% 4263.7 4794.7 4923.3 5278 5653 5.07 3.35 0.57
FA 0% SF 10% 3620.3 4135.3 4415.7 4781 4981.3 4.92 3.08 0.51
FA 10% SF 0% 3816 4336.3 4545.7 4739.3 4859.7 4.81 2.47 0.27
FA 10% SF 10% 3300.7 4380.3 4685 4773 4908.7 2.23 1.32 0.21
FA 20% SF 0% 3389.3 3930.3 4313.7 5454.3 5823 2.21 1.28 0.18
FA 20% SF 10% 3648.7 4167.3 4634.7 4910.7 5748.3 1.25 0.79 0.05

0.30 FA 0% SF 0% 4104 4598 4698 5236 5877.7 6.18 4.18 2.4
FA 0% SF 10% 3442 3949 4359 5078.3 5287 5.76 4.15 2.03
FA 10% SF 0% 3777.3 4384 4578.3 4815.3 5386.7 5.21 3.22 1.04

FA 10% SF 10% 3308.7 4407.3 4612.7 4819.7 5338 3.31 2.3 0.71
FA 20% SF 0% 3128 3786.3 4231.3 5342.3 6048 3.81 1.87 0.61
FA 20% SF 10% 3423.3 3905.3 4593.7 5111.3 5993 2.41 1.94 0.3
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Table 1. Cont.

(d)

Parameter of HPC Sample Charge Passed for RCP (Coulombs) ERoS Tested at Days (kΩ-cm)

W/B Ratio % of FA and SF 28 56 91 1 7 28 56 91

0.28 FA 0% SF 0% 1539.7 1334 1278.36 21.43 25 37.89 77.11 93.11
FA 0% SF 10% 2022 1622.1 1031.66 15.96 24.22 40.22 78.78 93.33
FA 10% SF 0% 1893.7 1525.6 1277.91 14.03 25.44 40.67 77.78 93.44
FA 10% SF 10% 1569.9 1286.3 1090.04 15.27 26.33 43 74.67 97.45
FA 20% SF 0% 1274.3 1093.2 793.1 16.48 20.44 42.33 82 96.78
FA 20% SF 10% 1378.3 990.4 476.593 22.02 28.89 47.33 76.33 93.33

0.30 FA 0% SF 0% 2051.9 1790.5 1650.65 25.67 46.92 72.44 82.78 98.53
FA 0% SF 10% 2541.3 1934.9 1626.58 12.63 44.67 74.55 83.67 94.45
FA 10% SF 0% 2315.2 1922.7 1709.15 11.96 46.22 71 82 90.67
FA 10% SF 10% 2170.6 1658.2 1596.96 10.1 47.11 79.89 85.45 97.67
FA 20% SF 0% 1528.6 1291.3 1019.57 16.6 41 77.22 79.22 98.78
FA 20% SF 10% 1897.7 1366.8 864.455 27.76 58.72 81.45 94.89 98.33

3.2. Correlation Analysis

Table 2 shows the P-Co-Cos between each pair of variables in a correlation matrix,
while no variable is transformed. Figure 3 visualises the results using a heat map.

Table 2. Correlation coefficients between each pair of variables (no transform).

CS TS FS USPV HbRH ERoS ASC RCP

CS 1 0.875333 0.824243 0.43716 −0.39808 0.29562 −0.2662 −0.31178
TS 0.875333 1 0.784765 0.622967 −0.40234 0.562644 −0.37139 −0.32165
FS 0.824243 0.784765 1 0.310713 −0.30525 0.205377 0.036492 −0.00205

USPV 0.43716 0.622967 0.310713 1 −0.23428 0.645174 −0.56893 −0.58283
HbRH −0.39808 −0.40234 −0.30525 −0.23428 1 −0.23448 −0.04958 −0.05542
ERoS 0.29562 0.562644 0.205377 0.645174 −0.23448 1 −0.54312 −0.33091
ASC −0.2662 −0.37139 0.036492 −0.56893 −0.04958 −0.54312 1 0.817532
RCP −0.31178 −0.32165 −0.00205 −0.58283 −0.05542 −0.33091 0.817532 1

Figure 3. Visualisation of the correlation matrix (no transform).

16



Buildings 2022, 12, 1545

To ensure an objective basis using the adopted measures (see Section 2.3) and taking
the data variables pair-wisely, every data variable should have an equal length and be
tested on the same set of testing days for the same set of HPC samples. Fortunately, the
collected datasets have followed these conditions. Inside the red boxes shown in Table 1,
experimental data are provided for all data variables on day 28, day 56, and day 91,
over all HPC samples. The result is eight variables with an equal data length of n = 36,
correspondingly; these form the basis of subsequent data analyses.

Each sub table in Table 3 shows a correlation matrix produced when variable X in
each pair (of variables) is transformed using one of the methods discussed in Section 2.3.4.
In these sub tables, the cells are shown in different colours to visualise the results directly
(which is analogous to using a separate heat map: dark green for 1, gradient green (lighter
and lighter) for (less) positive values, white for 0, gradient red (heavier and heavier) for
(more) negative values, full red for −1). In addition, note that the diagonal elements are
white boxes with ‘—’ entries to indicate they do not contain any meaningful information.

Table 3. Correlation coefficients between each pair of variables, with different RHS variable trans-
forms: (a) X′ = X2; (b) X′ = X3; (c) X′ = eX ; (d) X′ = 2X ; (e) X′ =

√
X; (f) X′ = 3

√
X; (g) X′ = log(X);

(h) X′ = lg(X); (h) RHS Var. Transform: X′ = lg(X).

(a) CS TS FS USPV HbRH ERoS ASC RCP

CS — 0.858867 0.816058 0.427017 −0.40513 0.30664 −0.27887 −0.30783
TS 0.880561 — 0.776248 0.605032 −0.42425 0.573121 −0.40888 −0.32631
FS 0.824674 0.77404 — 0.308186 −0.33502 0.203073 0.032173 −0.00081

USPV 0.423489 0.606038 0.292183 — −0.22041 0.638643 −0.56441 −0.5831
HbRH −0.42554 −0.42297 −0.33213 −0.18482 — −0.20776 −0.07007 −0.10351
ERoS 0.331792 0.607924 0.221374 0.691903 −0.24499 — −0.58517 −0.3763
ASC −0.19251 −0.27938 0.063966 −0.502 −0.09105 −0.48745 — 0.748105
RCP −0.31659 −0.32915 −0.05971 −0.55487 −0.05955 −0.29833 0.817113 —

(b) CS TS FS USPV HbRH ERoS ASC RCP

CS — 0.835226 0.79966 0.414718 −0.40593 0.313178 −0.28814 −0.30018
TS 0.871874 — 0.754935 0.575965 −0.43141 0.566401 −0.43047 −0.32086
FS 0.822683 0.761367 — 0.30597 −0.36006 0.199425 0.027196 −0.00102

USPV 0.409015 0.588051 0.273135 — −0.2067 0.630624 −0.55874 −0.5819
HbRH −0.43656 −0.43129 −0.34513 −0.13617 — −0.1822 −0.09105 −0.15006
ERoS 0.358293 0.639143 0.229501 0.725676 −0.25038 — −0.61744 −0.41401
ASC −0.15917 −0.22425 0.069324 −0.44791 −0.11265 −0.43577 — 0.686281
RCP −0.31363 −0.32865 −0.106 −0.52188 −0.04927 −0.26239 0.790176 —

(c) CS TS FS USPV HbRH ERoS ASC RCP

CS — 0.321631 0.336406 0.219982 −0.17004 0.133833 −0.17608 −0.08968
TS 0.592665 — 0.459743 0.280597 −0.25998 0.254154 −0.2681 −0.1505
FS 0.737376 0.6098 — 0.304023 −0.40063 0.144114 −0.04536 −0.04884

USPV 0.358691 0.526558 0.211007 — −0.16596 0.597529 −0.53474 −0.56972
HbRH −0.1884 −0.23478 −0.14302 0.057846 — −0.09112 −0.11434 −0.20829
ERoS 0.084827 0.292588 0.036046 0.62018 −0.03992 — −0.31469 −0.26921
ASC −0.14749 −0.17135 0.0691 −0.3713 −0.14213 −0.32648 — 0.589916
RCP −0.31593 −0.33037 −0.08779 −0.53969 −0.04701 −0.27681 0.800249 —
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Table 3. Cont.

(d) CS TS FS USPV HbRH ERoS ASC RCP

CS — 0.323844 0.337948 0.220534 −0.17107 0.135049 −0.17721 −0.09065
TS 0.6749 — 0.52721 0.330775 −0.3096 0.331323 −0.3241 −0.18401
FS 0.778735 0.667112 — 0.304588 −0.41544 0.163534 −0.01711 −0.0279

USPV 0.384434 0.557977 0.24204 — −0.1861 0.615276 −0.54784 −0.57721
HbRH −0.23342 −0.27959 −0.17728 0.037031 — −0.11131 −0.11806 −0.23117
ERoS 0.10796 0.333232 0.039413 0.64 −0.04944 — −0.36326 −0.30311
ASC −0.1655 −0.21562 0.066715 −0.4307 −0.12331 −0.40243 — 0.665464
RCP −0.31737 −0.33044 −0.06312 −0.55599 −0.05269 −0.29562 0.813711 —

(e) CS TS FS USPV HbRH ERoS ASC RCP

CS — 0.880394 0.824872 0.441192 −0.392094 0.288458 −0.258755 −0.312252
TS 0.865763 — 0.782128 0.625573 −0.384953 0.549375 −0.346861 −0.314787
FS 0.822981 0.789199 — 0.312032 −0.288658 0.205933 0.038388 −0.003242

USPV 0.443633 0.630941 0.319695 — −0.241226 0.647813 −0.570721 −0.582105
HbRH −0.377150 −0.386542 −0.286130 −0.256779 — −0.246965 −0.040729 −0.032930
ERoS 0.274790 0.535778 0.194523 0.618160 −0.227516 — −0.520020 −0.306866
ASC −0.317586 −0.422217 0.014438 −0.593223 −0.015192 −0.559757 — 0.840345
RCP −0.305280 −0.313657 0.029273 −0.590432 −0.044729 −0.342215 0.801181 —

(f) CS TS FS USPV HbRH ERoS ASC RCP

CS — 0.881580 0.824551 0.442364 −0.389739 0.285838 −0.256134 −0.312183
TS 0.861465 — 0.780105 0.625348 −0.378213 0.543715 −0.337961 −0.311825
FS 0.822392 0.790519 — 0.312473 −0.282887 0.206023 0.038979 −0.003723

USPV 0.445731 0.633517 0.322639 — −0.243537 0.648594 −0.571243 −0.581773
HbRH −0.369097 −0.380444 −0.278953 −0.263651 — −0.250834 −0.038112 −0.025904
ERoS 0.267583 0.526391 0.190537 0.608824 −0.224994 — −0.512241 −0.298850
ASC −0.333218 −0.434350 0.008473 −0.595380 −0.001036 −0.558613 — 0.841635
RCP −0.302340 −0.310183 0.039716 −0.591281 −0.039640 −0.344671 0.792474 —

(g) CS TS FS USPV HbRH ERoS ASC RCP

CS — 0.883184 0.823110 0.444438 −0.384503 0.280268 −0.250707 −0.311714
TS 0.851240 — 0.774336 0.623212 −0.363411 0.530608 −0.319290 −0.304959
FS 0.820950 0.792906 — 0.313347 −0.271000 0.206050 0.040100 −0.004813

USPV 0.449834 0.638541 0.328445 — −0.248149 0.650004 −0.572171 −0.580974
HbRH −0.351451 −0.367043 −0.263505 −0.276192 — −0.257982 −0.033478 −0.012764
ERoS 0.252926 0.507179 0.182086 0.589881 −0.219712 — −0.496794 −0.283008
ASC −0.352850 −0.440057 0.004440 −0.582619 0.031369 −0.536518 — 0.825594
RCP −0.295152 −0.301861 0.060098 −0.589648 −0.027139 −0.347025 0.769558 —

(h) CS TS FS USPV HbRH ERoS ASC RCP

CS — 0.883184 0.823110 0.444438 −0.384503 0.280268 −0.250707 −0.311714
TS 0.851240 — 0.774336 0.623212 −0.363411 0.530608 −0.319290 −0.304959
FS 0.820950 0.792906 — 0.313347 −0.271000 0.206050 0.040100 −0.004813

USPV 0.449834 0.638541 0.328445 — −0.248149 0.650004 −0.572171 −0.580974
HbRH −0.351451 −0.367043 −0.263505 −0.276192 — −0.257982 −0.033478 −0.012764
ERoS 0.252926 0.507179 0.182086 0.589881 −0.219712 — −0.496794 −0.283008
ASC −0.352850 −0.440057 0.004440 −0.582619 0.031369 −0.536518 — 0.825594
RCP −0.295152 −0.301861 0.060098 −0.589648 −0.027139 −0.347025 0.769558 —
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3.3. Cosine Similarity Analysis

Table 4 shows the Cos-Sim between each pair of variables in a matrix, with no variable
transformations. Figure 4 visualises the same results using a heat map.

Table 4. The Cos-Sim indices between each pair of variables (no transformation).

CS TS FS USPV HbRH ERoS ASC RCP

CS 1 0.991704 0.994792 0.986874 0.923028 0.970084 0.766091 0.929148
TS 0.991704 1 0.985801 0.978604 0.899398 0.974761 0.726442 0.906988
FS 0.994792 0.985801 1 0.990266 0.938099 0.971088 0.802627 0.951239

USPV 0.986874 0.978604 0.990266 1 0.947857 0.983320 0.771200 0.940099
HbRH 0.923028 0.899398 0.938099 0.947857 1 0.918275 0.765450 0.916059
ERoS 0.970084 0.974761 0.971088 0.983320 0.918275 1 0.712888 0.913845
ASC 0.766091 0.726442 0.802627 0.771200 0.765450 0.712888 1 0.909864
RCP 0.929148 0.906988 0.951239 0.940099 0.916059 0.913845 0.909864 1

Figure 4. The correlation matrix visualised (no transform).

Some studies have successfully treated variables as vectors and used the Cos-Sim
between two vectors (see Section 2.3) to confirm the correlation between two variables (but
not vice versa), and have observed that a higher P-Co-Co (between −1 and 1) most often
indicates a higher Cos-Sim (between 0 and 1). Since in Figure 4 most variable-pairs with
higher Cos-Sim indices are observed to have higher P-Co-Cos in Figure 3 (relative to other
pairs), the findings from the previous studies are confirmed in terms of P-Co-Co.

Since this outcome can provide justification for performing subsequent analyses,
results were not obtained in this study for the other eight transforms. Relevant tables and
figures are omitted, as those outcomes are expected to be analogous.

3.4. Regression Analysis

This section summarises the results for estimating and establishing the 504 SLR models
(see Section 2.3.4). The details are summarised in the web page at the following URL: http://
www.DDDM.nkust.edu.tw/download/HPCStudy2_TheUltimateDataExperiments.html
(accessed on 3 April 2022) (and in Appendix B), while some initial entries in Table A1
are listed in Table 5 for clarification. A guideline for reading these tables is provided below.
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Table 5. Results from estimating and developing the models (some initial entries).

M# Y X P-Co-Co α∗ β∗ p(α∗) p(β∗) p(M) R2 (R2)
∗

1 TS CS 0.875333 −3.667713 0.278209 0.0466 0.0000 0.0000 0.766208 0.759331
2 TS CS 0.858867 5.766322 0.001985 0.0000 0.0000 0.0000 0.737652 0.729936
3 TS CS 0.835226 8.989167 0.000018 0.0000 0.0000 0.0000 0.697602 0.688708
4 TS CS 0.321631 14.568831 0.000000 0.0000 0.0558 0.0558 0.103447 0.077077
5 TS CS 0.323844 14.565644 0.000000 0.0000 0.0540 0.0540 0.104875 0.078548
6 TS CS 0.880394 −22.324474 4.575331 0.0000 0.0000 0.0000 0.775094 0.768479
7 TS CS 0.881580 −40.931240 13.814583 0.0000 0.0000 0.0000 0.777183 0.770630
8 TS CS 0.883184 −62.850941 42.785409 0.0000 0.0000 0.0000 0.780015 0.773545
9 TS CS 0.883184 −62.850941 12.879692 0.0000 0.0000 0.0000 0.780015 0.773545

10 FS CS 0.824243 4.243931 0.104528 0.0000 0.0000 0.0000 0.679376 0.669946
11 FS CS 0.816058 7.757808 0.000752 0.0000 0.0000 0.0000 0.665950 0.656125
12 FS CS 0.799660 8.962874 0.000007 0.0000 0.0000 0.0000 0.639457 0.628852
13 FS CS 0.336406 11.087036 0.000000 0.0000 0.0448 0.0448 0.113169 0.087086
14 FS CS 0.337948 11.085907 0.000000 0.0000 0.0438 0.0438 0.114209 0.088156
15 FS CS 0.824872 −2.696166 1.710449 0.1088 0.0000 0.0000 0.680414 0.671015
16 FS CS 0.824551 −9.616035 5.155510 0.0004 0.0000 0.0000 0.679884 0.670469
17 FS CS 0.823110 −17.693156 15.910370 0.0000 0.0000 0.0000 0.677510 0.668025
18 FS CS 0.823110 −17.693156 4.789498 0.0000 0.0000 0.0000 0.677510 0.668025
19 USPV CS 0.437160 3.857498 0.017583 0.0000 0.0077 0.0077 0.191108 0.167318
20 USPV CS 0.427017 4.456269 0.000125 0.0000 0.0094 0.0094 0.182344 0.158295
21 USPV CS 0.414718 4.659517 0.000001 0.0000 0.0119 0.0119 0.171991 0.147638
22 USPV CS 0.219982 5.005173 0.000000 0.0000 0.1973 0.1973 0.048392 0.020403
23 USPV CS 0.220534 5.004976 0.000000 0.0000 0.1962 0.1962 0.048635 0.020654
24 USPV CS 0.441192 2.670380 0.290147 0.0027 0.0071 0.0071 0.194651 0.170964
25 USPV CS 0.442364 1.485802 0.877204 0.2362 0.0069 0.0069 0.195686 0.172030
26 USPV CS 0.444438 0.079830 2.724581 0.9630 0.0066 0.0066 0.197525 0.173923
27 USPV CS 0.444438 0.079830 0.820181 0.9630 0.0066 0.0066 0.197525 0.173923
28 HBRH CS −0.398077 65.693972 −0.390663 0.0000 0.0162 0.0162 0.158465 0.133714
29 HBRH CS −0.405125 52.917551 −0.002891 0.0000 0.0142 0.0142 0.164126 0.139542
30 HBRH CS −0.405925 48.479311 −0.000027 0.0000 0.0140 0.0140 0.164775 0.140210
31 HBRH CS −0.170036 40.133608 0.000000 0.0000 0.3215 0.3215 0.028912 0.000351
32 HBRH CS −0.171068 40.138531 0.000000 0.0000 0.3185 0.3185 0.029264 0.000713
33 HBRH CS −0.392094 90.813888 −6.291765 0.0001 0.0180 0.0180 0.153738 0.128848
34 HBRH CS −0.389739 115.838473 −18.857628 0.0007 0.0188 0.0188 0.151897 0.126953
35 HBRH CS −0.384503 144.146418 −57.514972 0.0020 0.0206 0.0206 0.147843 0.122779
36 HBRH CS −0.384503 144.146418 −17.313732 0.0020 0.0206 0.0206 0.147843 0.122779

In Table A1, ‘X’ determines the eight ‘main phases’ defined by the eight variables
used as the independent variable. In the table, the different background colours denote
these phases as blocks. In each main phase fixing the independent variable, there are
seven subphases defined by other variables used as the dependent variable ‘Y’. Since each
subphase involves nine transforms (refer to the transform descriptions in Section 2.3.4),
each block in Table A1 contains 7 × 9 = 63 SLR models, giving 63 × 8 = 504 models in total.

For each model, M# represents the unique model number assigned, with the P-Co-Co
between the independent and dependent variables (X and Y) given. This is followed by
the estimated model parameters: α∗ (the estimated value of parameter α) and β∗ (The
estimated value of β); the p values for α∗, β∗ the entire SLR model, p(α∗) and p(β∗); and
the R square values, R2 and (R2)

∗.
As an example, the model with M# = 10 in Table 5 is the model established in the

main phase ‘X = CS’ and in the subphase ‘Y = FS’ to identify the relationship between CS
and FS of the HPC samples. Since it is the first model of the ‘X = CS, Y = FS’ subphase,
transform method (1): X′ = X1 is used, which means no transform is performed for the
data of variable X in this model (see Section 2.3.4). From the table, the estimated parameters
for this model are: α∗ = 4.243931 (meaning the regression line intercepts with the Y axis
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at Y = 4.243931) and β∗ = 0.104528 (this is the regression line’s slope, meaning one unit of
increase in CS leads to an increase of 0.104528 in FS). Therefore, the established model can
be written as:

FS = 4.243931 + 0.104528 × CS (6)

For the same model, p(α∗) = p(β∗) = p(M) = 0. Despite the fact that in this table the p
values are truncated to 4 digits past the decimal so that ‘p = 0′ may represent a very small
value of p, it could still be inferred that both parameters estimated by the model are very
significant, and the model itself is quite significant (i.e., it is very reliable and can be trusted
to a large extent).

Moreover, for this model, R2 = 0.679376 and (R2)
∗ = 0.669946, meaning that the

data-model fitness is acceptable, since over 2/3 of the variability is explained by the
established model. However, this is only slightly above the acceptability threshold of 0.6 to
claim data-model fitness which was established due to this study’s scientific foundation
(i.e., natural science than social science investigation, so using 0.6 than 0.4 or even 0.2 is
more reasonable).

The full forms of all 504 models are provided in Table A2, which can also be accessed
on the web page. For example, Equation (6) for the model with M# = 10 above is the same
full form as displayed in Table A2.

3.5. Additional Information

Additional information about the SLR models is retrieved from Table A1 and rendered
in terms of the transform method used to convert the data value of the independent
variable, X. For the analytical targets, only the p and R2 values for all models are considered
to conserve space. The reason for considering these values is that the p value of any
regression model represents its significance, and R2 indicates the data-model fitness (or the
model’s explanation power for the variations in the data), both of which are essential for
qualifying SLR models.

The results for the p values of the entire model are listed in Table 6. Each sub table
contains all pairs of variables (X, Y); X and Y are the RHS (independent) and LHS (depen-
dent) variables in Equation (5), respectively. In the sub tables, the rows are identified by
X and the columns are identified by Y. The significant results, indicating the SLR model
is reliable and the model’s predictive power can be trusted, are shown in red font. The
significance of the p values is determined using the threshold: p < 0.10, which is typically
the most relaxed condition that is acceptable by statisticians. In addition, ‘p = 0′ may mean
a very small value of p.

Table 6. SLR models’ p values for each pair of variables, by different RHS variable transform methods:
(a) X′ = X2; (b) X′ = X3; (c) X′ = eX ; (d) X′ = 2X ; (e) X′ =

√
X; (f) X′ = 3

√
X; (g) X′ = log(X);

(h) X′ = lg(X).

(a) CS TS FS USPV HbRH ERoS ASC RCP

CS 0.000000 0.000000 0.000000 0.009394 0.014243 0.068910 0.099559 0.067789
TS 0.000000 0.000000 0.000000 0.000093 0.009916 0.000259 0.013286 0.052104
FS 0.000000 0.000000 0.000000 0.067451 0.045792 0.234888 0.852231 0.996245

USPV 0.010063 0.000090 0.083775 0.000000 0.196446 0.000028 0.000336 0.000190
HbRH 0.009670 0.010165 0.047811 0.280548 0.000000 0.224030 0.684669 0.548015
ERoS 0.048053 0.000084 0.194446 0.000003 0.149833 0.000000 0.000178 0.023698
ASC 0.260660 0.098907 0.710912 0.001811 0.597407 0.002567 0.000000 0.000000
RCP 0.059945 0.049972 0.729410 0.000445 0.730079 0.077182 0.000000 0.000000
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Table 6. Cont.

(b) CS TS FS USPV HbRH ERoS ASC RCP

CS 0.000000 0.000000 0.000000 0.011907 0.014034 0.062907 0.088345 0.075272
TS 0.000000 0.000000 0.000000 0.000237 0.008612 0.000317 0.008775 0.056392
FS 0.000000 0.000000 0.000000 0.069549 0.031002 0.243582 0.874895 0.995302

USPV 0.013253 0.000162 0.107008 0.000000 0.226450 0.000037 0.000397 0.000197
HbRH 0.007769 0.008633 0.039253 0.428430 0.000000 0.287537 0.597416 0.382366
ERoS 0.031897 0.000027 0.178153 0.000001 0.140798 0.000000 0.000060 0.012067
ASC 0.353814 0.188561 0.687871 0.006154 0.513013 0.007894 0.000000 0.000004
RCP 0.062508 0.050343 0.538354 0.001097 0.775369 0.122102 0.000000 0.000000

(c) CS TS FS USPV HbRH ERoS ASC RCP

CS 0.000000 0.055766 0.044846 0.197340 0.321462 0.436468 0.304312 0.602958
TS 0.000140 0.000000 0.004788 0.097387 0.125694 0.134707 0.113898 0.380960
FS 0.000000 0.000079 0.000000 0.071435 0.015465 0.401719 0.792810 0.777263

USPV 0.031694 0.000970 0.216709 0.000000 0.333375 0.000119 0.000780 0.000287
HbRH 0.271163 0.168105 0.405339 0.737545 0.000000 0.597118 0.506679 0.222821
ERoS 0.622799 0.083328 0.834675 0.000055 0.817184 0.000000 0.061580 0.112349
ASC 0.390676 0.317673 0.688828 0.025775 0.408285 0.051972 0.000000 0.000153
RCP 0.060509 0.049079 0.610654 0.000681 0.785420 0.102184 0.000000 0.000000

(d) CS TS FS USPV HbRH ERoS ASC RCP

CS 0.000000 0.054008 0.043813 0.196189 0.318493 0.432274 0.301173 0.599052
TS 0.000006 0.000000 0.000954 0.048784 0.066138 0.048389 0.053810 0.282676
FS 0.000000 0.000009 0.000000 0.070884 0.011745 0.340585 0.921102 0.871662

USPV 0.020615 0.000406 0.154958 0.000000 0.277152 0.000065 0.000543 0.000228
HbRH 0.170646 0.098650 0.300968 0.830220 0.000000 0.518074 0.492845 0.174923
ERoS 0.530833 0.047033 0.819475 0.000026 0.774611 0.000000 0.029431 0.072328
ASC 0.334737 0.206599 0.699058 0.008735 0.473680 0.014964 0.000000 0.000009
RCP 0.059279 0.049027 0.714567 0.000430 0.760238 0.080032 0.000000 0.000000

(e) CS TS FS USPV HbRH ERoS ASC RCP

CS 0.000000 0.000000 0.000000 0.007071 0.018024 0.087981 0.127552 0.063732
TS 0.000000 0.000000 0.000000 0.000045 0.020430 0.000520 0.038214 0.061495
FS 0.000000 0.000000 0.000000 0.063928 0.087751 0.228218 0.824097 0.985030

USPV 0.006726 0.000037 0.057342 0.000000 0.156394 0.000019 0.000278 0.000196
HbRH 0.023359 0.019873 0.090691 0.130591 0.000000 0.146475 0.813553 0.848792
ERoS 0.104815 0.000758 0.255601 0.000059 0.182040 0.000000 0.001151 0.068695
ASC 0.059099 0.010315 0.933397 0.000137 0.929925 0.000386 0.000000 0.000000
RCP 0.070213 0.062484 0.865421 0.000150 0.795613 0.041055 0.000000 0.000000

(f) CS TS FS USPV HbRH ERoS ASC RCP

CS 0.000000 0.000000 0.000000 0.006903 0.018790 0.091034 0.131594 0.063793
TS 0.000000 0.000000 0.000000 0.000045 0.022941 0.000610 0.043804 0.064114
FS 0.000000 0.000000 0.000000 0.063534 0.094571 0.228012 0.821431 0.982807

USPV 0.006440 0.000034 0.054960 0.000000 0.152343 0.000019 0.000274 0.000198
HbRH 0.026739 0.022083 0.099447 0.120253 0.000000 0.140053 0.825341 0.880793
ERoS 0.114620 0.000975 0.265660 0.000081 0.187065 0.000000 0.001404 0.076639
ASC 0.047043 0.008122 0.960882 0.000128 0.995214 0.000399 0.000000 0.000000
RCP 0.073097 0.065603 0.818108 0.000146 0.818453 0.039532 0.000000 0.000000

(g) CS TS FS USPV HbRH ERoS ASC RCP

CS 0.000000 0.000000 0.000000 0.006615 0.020590 0.097797 0.140259 0.064214
TS 0.000000 0.000000 0.000000 0.000049 0.029361 0.000871 0.057676 0.070523
FS 0.000000 0.000000 0.000000 0.062757 0.109889 0.227950 0.816382 0.977773

USPV 0.005912 0.000028 0.050493 0.000000 0.144487 0.000018 0.000266 0.000203
HbRH 0.035566 0.027663 0.120466 0.102983 0.000000 0.128735 0.846305 0.941104
ERoS 0.136667 0.001594 0.287837 0.000153 0.197902 0.000000 0.002056 0.094423
ASC 0.034789 0.007237 0.979497 0.000193 0.855884 0.000743 0.000000 0.000000
RCP 0.080536 0.073575 0.727705 0.000154 0.875153 0.038117 0.000000 0.000000
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Table 6. Cont.

(h) CS TS FS USPV HbRH ERoS ASC RCP

CS 0.000000 0.000000 0.000000 0.006615 0.020590 0.097797 0.140259 0.064214
TS 0.000000 0.000000 0.000000 0.000049 0.029361 0.000871 0.057676 0.070523
FS 0.000000 0.000000 0.000000 0.062757 0.109889 0.227950 0.816382 0.977773

USPV 0.005912 0.000028 0.050493 0.000000 0.144487 0.000018 0.000266 0.000203
HbRH 0.035566 0.027663 0.120466 0.102983 0.000000 0.128735 0.846305 0.941104
ERoS 0.136667 0.001594 0.287837 0.000153 0.197902 0.000000 0.002056 0.094423
ASC 0.034789 0.007237 0.979497 0.000193 0.855884 0.000743 0.000000 0.000000
RCP 0.080536 0.073575 0.727705 0.000154 0.875153 0.038117 0.000000 0.000000

The results for the R2 values of the entire model are listed in Table 7, where each sub
table contains the R2 values for the SLR models of all pairs of variables (X, Y) when a
transform is applied for X. Similar to Table 6, the rows are identified by X and the columns
are identified by Y in Table 7. However, unlike the correlation values which may range from
−1 to 1 in Table 3, the R-squared values only range from 0 to 1. Therefore, the numbers in
Table 7 are dyed according to the following convention: dark green for 1, gradient green
(lighter and lighter) for (less) positive values, and white for 0.

Table 7. SLR models’ R2 values for each pair of variables, by different RHS variable transform
methods: (a) X′ = X2; (b) X′ = X3; (c) X′ = eX ; (d) X′ = 2X ; (e) X′ =

√
X; (f) X′ = 3

√
X; (g)

X′ = log(X); (h) X′ = lg(X).

(a) CS TS FS USPV HbRH ERoS ASC RCP

CS — 0.737652 0.665950 0.182344 0.164126 0.094028 0.077766 0.094757
TS 0.775388 — 0.602560 0.366064 0.179988 0.328468 0.167184 0.106476
FS 0.680087 0.599138 — 0.094979 0.112237 0.041239 0.001035 0.000001

USPV 0.179343 0.367283 0.085371 — 0.048581 0.407865 0.318559 0.340004
HbRH 0.181081 0.178905 0.110312 0.034157 — 0.043164 0.004910 0.010714
ERoS 0.110086 0.369571 0.049006 0.478730 0.060021 — 0.342428 0.141604
ASC 0.037059 0.078054 0.004092 0.252008 0.008291 0.237607 — 0.559661
RCP 0.100227 0.108339 0.003565 0.307878 0.003547 0.088998 0.667674 —

(b) CS TS FS USPV HbRH ERoS ASC RCP

CS — 0.697602 0.639457 0.171991 0.164775 0.098080 0.083026 0.090109
TS 0.760163 — 0.569927 0.331735 0.186118 0.320810 0.185304 0.102950
FS 0.676807 0.579680 — 0.093618 0.129642 0.039770 0.000740 0.000001

USPV 0.167293 0.345803 0.074603 — 0.042725 0.397687 0.312188 0.338609
HbRH 0.190586 0.186015 0.119115 0.018542 — 0.033196 0.008290 0.022518
ERoS 0.128374 0.408504 0.052671 0.526606 0.062689 — 0.381227 0.171407
ASC 0.025334 0.050289 0.004806 0.200628 0.012691 0.189895 — 0.470982
RCP 0.098363 0.108009 0.011236 0.272363 0.002428 0.068849 0.624378 —

(c) CS TS FS USPV HbRH ERoS ASC RCP

CS — 0.103447 0.113169 0.048392 0.028912 0.017911 0.031003 0.008043
TS 0.351252 — 0.211364 0.078735 0.067590 0.064594 0.071876 0.022650
FS 0.543724 0.371856 — 0.09243 0.160501 0.020769 0.002057 0.002386

USPV 0.128659 0.277263 0.044524 — 0.027542 0.357041 0.285944 0.324581
HbRH 0.035494 0.055122 0.020455 0.003346 — 0.008304 0.013074 0.043385
ERoS 0.007196 0.085607 0.001299 0.384623 0.001594 — 0.099029 0.072474
ASC 0.021752 0.029362 0.004775 0.137867 0.020202 0.106588 — 0.348001
RCP 0.09981 0.109144 0.007707 0.291261 0.002210 0.076623 0.640398 —
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Table 7. Cont.

(d) CS TS FS USPV HbRH ERoS ASC RCP

CS — 0.104875 0.114209 0.048635 0.029264 0.018238 0.031402 0.008217
TS 0.455491 — 0.277951 0.109412 0.095853 0.109775 0.105039 0.033861
FS 0.606428 0.445038 — 0.092774 0.17259 0.026743 0.000293 0.000779

USPV 0.14779 0.311338 0.058583 — 0.034634 0.378565 0.300128 0.333176
HbRH 0.054487 0.078168 0.031428 0.001371 — 0.01239 0.013939 0.053442
ERoS 0.011655 0.111044 0.001553 0.409599 0.002444 — 0.131961 0.091879
ASC 0.02739 0.046491 0.004451 0.185503 0.015206 0.161951 — 0.442842
RCP 0.100725 0.109191 0.003984 0.309129 0.002776 0.087393 0.662126 —

(e) CS TS FS USPV HbRH ERoS ASC RCP

CS — 0.775094 0.680414 0.194651 0.153738 0.083208 0.066954 0.097501
TS 0.749546 — 0.611724 0.391341 0.148188 0.301813 0.120312 0.099091
FS 0.677298 0.622835 — 0.097364 0.083323 0.042409 0.001474 1.05 × 10−5

USPV 0.19681 0.398086 0.102205 — 0.05819 0.419662 0.325723 0.338846
HbRH 0.142242 0.149415 0.08187 0.065935 — 0.060992 0.001659 0.001084
ERoS 0.075509 0.287058 0.037839 0.382121 0.051764 — 0.270421 0.094167
ASC 0.100861 0.178268 0.000208 0.351914 0.000231 0.313327 — 0.70618
RCP 0.093196 0.09838 0.000857 0.34861 0.002001 0.117111 0.64189 —

(f) CS TS FS USPV HbRH ERoS ASC RCP

CS — 0.777183 0.679884 0.195686 0.151897 0.081703 0.065604 0.097458
TS 0.742121 — 0.608564 0.39106 0.143045 0.295626 0.114218 0.097235
FS 0.676328 0.624921 — 0.097639 0.080025 0.042445 0.001519 1.39 × 10−5

USPV 0.198676 0.401344 0.104096 — 0.05931 0.420674 0.326318 0.33846
HbRH 0.136233 0.144737 0.077815 0.069512 — 0.062918 0.001453 0.000671
ERoS 0.071601 0.277087 0.036304 0.370667 0.050622 — 0.262391 0.089311
ASC 0.111034 0.18866 7.18 × 10−5 0.354477 1.07 × 10−6 0.312048 — 0.70835
RCP 0.091409 0.096214 0.001577 0.349613 0.001571 0.118798 0.628015 —

(g) CS TS FS USPV HbRH ERoS ASC RCP

CS — 0.780015 0.67751 0.197525 0.147843 0.07855 0.062854 0.097166
TS 0.724609 — 0.599596 0.388393 0.132067 0.281544 0.101946 0.093
FS 0.673959 0.6287 — 0.098187 0.073441 0.042456 0.001608 2.32 × 10−5

USPV 0.20235 0.407734 0.107876 — 0.061578 0.422505 0.327379 0.337531
HbRH 0.123518 0.13472 0.069435 0.076282 — 0.066555 0.001121 0.000163
ERoS 0.063972 0.25723 0.033155 0.347959 0.048274 — 0.246804 0.080094
ASC 0.124503 0.19365 1.97 × 10−5 0.339445 0.000984 0.287851 — 0.681605
RCP 0.087115 0.09112 0.003612 0.347684 0.000737 0.120426 0.592219 —

(h) CS TS FS USPV HbRH ERoS ASC RCP

CS — 0.780015 0.67751 0.197525 0.147843 0.07855 0.062854 0.097166
TS 0.724609 — 0.599596 0.388393 0.132067 0.281544 0.101946 0.093
FS 0.673959 0.6287 — 0.098187 0.073441 0.042456 0.001608 2.32 × 10−5

USPV 0.20235 0.407734 0.107876 — 0.061578 0.422505 0.327379 0.337531
HbRH 0.123518 0.13472 0.069435 0.076282 — 0.066555 0.001121 0.000163
ERoS 0.063972 0.25723 0.033155 0.347959 0.048274 — 0.246804 0.080094
ASC 0.124503 0.19365 1.97 × 10−5 0.339445 0.000984 0.287851 — 0.681605
RCP 0.087115 0.09112 0.003612 0.347684 0.000737 0.120426 0.592219 —

To conserve space, the results of importance are shown with different shades of
background colours in the table. In this manner, the SLR models with better data-model
fitness can be easily identified. To evaluate the fitness, many scientific studies use the
threshold: >0.4 (i.e., it has resolved more variations in the data, so using this model for
prediction is therefore more accurate). The results for other observations, such as the
p values of the estimated parameters α∗ and β∗, as well as the adjusted R2 value for the
model, are summarised in Tables A3–A5, respectively, in Appendix C. These may also be
accessed on the ‘web page’.
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4. Insights and Discussions

By analysing the results, many interesting insights can be gained. For the purpose
of this study, only the most critical insights are discussed in this section; other advanced
information may be obtained from the detailed results in the appendices.

4.1. For Method Applications
4.1.1. Insights for Data Pre-Processing Results

During data curation and pre-processing (see Section 3.1), the fresh properties of
HPC are excluded because of data incompatibility, and only the hardened mechanical and
durability property data at day 28, day 56 and day 91 are utilised for analysis due to data
commonalities (i.e., they provide equal-sized data variables and have overlaps in testing
time), despite the fact that the frequency of data recording for the experiment is typically
predefined [39]. This experience will be useful for locating commensurable HPC testing
data during any future analysis.

4.1.2. Insights for Correlation Analysis Results

In the correlation analysis (see Section 3.2), the main results in Table 2 and Figure 3
reveal that:

1. There are two strongly correlated groups of variables: {CS, TS, FS} form a salient
group, while {ASC, RCP} form another. All of the correlations identified are either
very strong (r > 0.8) or near very strong (0.6 < r < 0.8 but r~0.8).

2. Each group in 1. exists with respect to the same variable category, i.e., CS, TS and FS
are hardened mechanical properties, and ASC (in terms of the weight loss percentage)
and RCP (in terms of the coulombs measured) are both durability properties.

3. TS is a variable of interest because it forms a medium correlation group with USPV
and ERoS. It has a strong (0.6 < 0.622967 < 0.8) positive correlation with USPV and a
medium (0.4 < 0.562644 < 0.6) correlation with ERoS. Since USPV also has a strong
positive correlation with ERoS (0.645174), {TS, USPV, ERoS} is another correlated
group that overlaps both parametric categories of an HPC sample.

4. The observation of negative correlations is of interest, but there are no strong or very
strong negative correlations (<−0.6) identified among all variables.

5. USPV has similar medium negative correlations with both ASC (−0.56893) and RCP
(−0.58283); this can be explained by the fact that ASC and RCP are strongly correlated
(0.817532).

6. ERoS and ASC have a medium negative correlation (−0.54312), and TS and HbRH
have a medium (but near-weak) negative correlation (−0.40234). Since a negative
correlation does not actually mean a ‘poor relation’ but rather a relation in the opposite
‘direction’, the observations of the above medium-negative P-Co-Cos are meaningful.

Beyond the correlations, additional information is provided. Table 3 includes eight sub
tables with correlations produced when variable X (of the variable pair (X, Y)) is converted
using the eight transformation methods described in Section 2.3.4. These sub tables confirm
the main results in Figure 3 and Table 2 (when no data variable is transformed), and also
help identify the optimal transforms to be used for each variable (this is further discussed
in Section 4.1.4). In this regard, such information is valuable.

4.1.3. Insights from the Results of the Cosine-Similarity Analysis

By treating the data variables as vectors, the results obtained from the cosine-similarity
analysis essentially confirm the correlations identified between pairs of variables. With few
exceptions, a higher Cos-Sim index (between 0 and 1) in Table 4 indicates it has also had a
relatively high P-Co-Co in Table 2 (between −1 and 1); this result can also be observed by
comparing Figures 3 and 4. As such, the main results of the correlation analysis are further
confirmed (and ‘double checked’, in addition to the confirmations provided in Section 4.1.2
by the P-Co-Cos recalculated after different variable transforms).
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Another insight of this research relates to methodology and theory. This study offers
new support for the claim that a cosine-similarity analysis can be used as a supplement to
the traditional correlation analysis.

4.1.4. Insights from the Established SLR Models

In this study, after successfully estimating the model parameters used in the datasets,
504 SLR models are established. The major insights gained from these analyses are sum-
marised as follows.

The Established ‘Knowledge Base’ Is Novel and Benefits Future HPC Sample Testing

The information relating to the established models (see Tables A1 and A2) is valuable
because it can be used to create a true ‘knowledge base’ for practical applications. Given
this knowledge base, if one experimental variable for the HPC sample can be used to
predict another variable based on the known mathematical relationship and a guarantee of
prediction accuracy, it is logical that the number of testing items that are truly necessary
may be reduced. This is particularly true today as stakeholders in the construction and civil
engineering industries have reduced the time and resources needed to complete a project,
so the time available to test the HPC samples is limited. This should be considered as the
primary and original contribution of this study.

A Method Is Provided to Explore the Insights into the Variables That Can Practically Be
Used to Predict Another Variable and to Determine How Accurate the Prediction Will Be

Table A1 lists nine SLR models (where eight other models are derived from the first
‘base model’) as a group. It is critical for data analysis in such a design to utilise all
opportunities to identify the optimal model that offers both better predictive power and
better data-model fitness simultaneously.

Examining SLR models in which variable X is CS, for example (M# = {1, 2, 3, . . . , 27}
in Table 5), the first nine models are established for predicting TS (Y) from CS (X). If p(M)
< 0.5 is the threshold to confirm a model’s significance, the M# = 4 (X′ = eX) and M# = 5
(X′ = 2X) models are not qualified to be effective (p(M) = 0.0558 and p(M) = 0.0540). In
addition, the models are far from data-model fitness, because R2 = 0.103447 for M# = 4 and
R2 = 0.104875 for M# = 5 (which are far below the levels of data-model fitness for seven
other models), meaning that these two models may not provide good prediction accuracy.
Based on these two results, it is evident that the two SLR models with the 2 ‘power X’
transforms are inadequate. A negative implication of this finding could be that the true
relation between CS and TS does not exist on this basis, but a positive implication could be
that there have been seven models that can be recommended (M# = {1, 2, 3, 6, 7, 8, 9}) in
practice or for future research.

Investigating two subsequent (X, Y) combinations, for M# = {10, 11, . . . , 18}, the
models are established for predicting FS (Y) from CS (X). The resulting situation is similar
to using CS to predict TS: the two ‘power X’ SLR models (M# = {13, 14}) are inadequate,
and “no true relation between CS and FS exists on this basis”. However, the claim can also
be made that “another 7 models (M# = {10, 11, 12, 15, 16, 17, 18}) can be effective in practice
or for future research”.

The M# = {19, 20, . . . , 27} are also established for predicting USPV (Y) from CS (X).
However, no model is qualified to build a predictive relation between these two variables.
Two SLR models (M# = {22, 23}) are ineffective (p > 0.1), and every model’s R2 value is poor
(R2 < 0.2) meaning they provide insufficient data-model fitness. Thus, we conclude that
that the value of USPV from the value of CS in the experiments performed to test HPC
samples cannot be anticipated, and that further research is recommended to find a method
to predict USPV using CS.

This analysis is not continued throughout the entire Table A1. The above process can
be repeated for all other models in Table A1 to gain other insights regarding the variables
that can be used to predict other variables and the accuracy of the prediction process. In
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addition to these empirical insights that are expected, the experimental design to enable
such explorations is the second contribution of this work.

Another Perspective to View the Model Information Is Offered to Differentiate and
Recommend the Appropriate Transforms to Be Used for a Variable

An alternative method to evaluate the information relating to the established SLR
models can provide additional insights. In Section 3.5 and Appendix C, the significance
of the entire model (p(M)), the significance of the estimated α∗ value (i.e., p(α∗)), the
significance of the estimated β∗ value (i.e., p(β∗)), the R square value (i.e., R2), and the
adjusted R square value (i.e., (R2)

∗) of the SLR models are systematically presented as
separate tables (Tables 6, 7, A1 and A2) according to the transform applied on the RHS
variable in the SLR model. This provides another perspective for the model information
which can be used in addition to the previous analytical viewpoint that presents a group of
models derived from a base model at the same time (e.g., Tables 5, A1 and A2). Therefore,
offering two complementary perspectives is another contribution of this research. The
following discussion highlights the positive outcomes of this new data-viewing perspective.

Based on the results in Tables 6 and 7 (for the p(M) values and the R2 values, respec-
tively), the following insights are gained:

7. In most of the RHS variable transformation cases (refer to the corresponding sub
tables in Table 6), the SLR model’s p(M) value agrees with that of the ‘no transform’
case (shown in the ‘significant’ cells with red borders). This not only confirms that
the ‘no transform’ SLR model is effective in its predictive power, but also identifies an
alternative set of effective transformed SLR models.

8. In most of the RHS variable transformation cases (refer to the corresponding sub
tables in Table 7), the SLR model’s R2 value agrees with that of the ‘no transform’ case
(see the colour intensity of a cell). This not only confirms that the ‘no transform’ SLR
model is able to provide accurate predictions, but also identifies an alternative set of
qualified ‘having transform’ SLR models.

9. For most of the RHS variable transforms, the SLR model’s R2 value in Table 7 also
concurs with the correlation identified in Figure 3 in terms of the equal P-Co-Co value
for (X, Y) or (Y, X), and also for the counterpart model with Y and X exchanged as
the RHS and LHS variables of the SLR model. In addition, the SLR model’s R2 may
also concur with the Cos-Sim index calculated for (X, Y) (and (Y, X)). In other words,
if a high correlation is identified between two variables, a high data-model fitness
typically exists, and vice versa. Furthermore, in such cases with high correlation and
high data-model fitness, the Cos-Sim values are generally also high. These insights are
critical because the relationships between these three values (P-Co-Co, Cos-Sim and
R2) that were previously unidentified have now been clarified for this application.

10. The ‘lowest-performing RHS variable transforms’ can also be identified from the
results, supporting the claim that the true relationship between the two variables in
an SLR model (i.e., Y and the X being converted using a worse transform) is far from
‘a variable is transformed like that’. This claim further implies that some variable
transformation methods can be ignored in the future.

Regarding the ‘worse variable transforms’, they can be identified by interpreting
Table 6 in detail (in addition to Tables A1 and A2, as required) to determine if, for a pair
of (X, Y), a ‘no transform’ model shows good results (e.g., p(M) < 0.05 and/or R2 > 0.6),
and which model(s) with a variable transform shows poor results (e.g., p(M) > 0.1 and/or
R2 < 0.2)?

Examining the highly-correlated variable group of {CS, TS, FS} (see Section 4.1.2),
the SLR models established between all pairs of these variables using every other trans-
form (for X) offers a preferred data-model fitness for providing accurate predictions (i.e.,
R2 ≥ 0.6) (shown in the dark cells in the upper left of Table 7a,b,e–h); however, this is not
the case using the two ‘power X methods’ (i.e., X′ = eX and X′ = 2X) (shown in the light
cells in the upper left part of Table 7c,d).
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Further evaluating Table 7 reveals that for all pairs of variables, using these two
‘power X’ methods may depress the R2 value in general and make it difficult to uncover the
relevant information (e.g., to determine which model provides better data-model fitness).
It is therefore recommended to neglect both ‘power X’ methods in future studies for all
pairs of test variables.

4.1.5. Other Insights from the Research

In addition to the above insights, several other interesting findings are obtained from
the data analysis in this study.

For example, the p(M) values in Table 6g,h are identical, as are the R2 values in
Table 7g,h; interestingly, the associated P-Co-Co values in Table 3g,h are also identical. By
further inspecting Table 5 and A1, these can be explained by the fact that the SLR models
will be identical if the transformation method is X′ = log(X) or X′ = lg(X). That means
that the base (here, 10 or 2) does not change if a logarithm is used for the RHS variable
transform. Therefore, it is recommended for future studies that, for each pair of variables,
keeping either SLR model is sufficient.

4.2. Theory-Linking

In this section, from three theoretical perspectives, the importance of several theory-
reflexive finding and insights are discussed.

Through the numerical analysis, the relationship between FS and CS identified in this
study (in its mathematical form) is found to concur with their relationship as defined in
ACI 318-19 [40–42] and in [43] (except for the coefficients). Therefore, this result is reflexive
to the existing theories; in turn, this outcome further validates the results obtained in
this study.

Next to this, the measures, data variables, and tests established for the durability
of concrete are critical, as durability is an important category of parameters for HPC,
particularly when it is to be used in humid areas or marine environments which are prone
to acid attacks [44–46]. However, due to the time required to obtain results, true tests for
durability are difficult to perform, so other indirect tools such as ASC, RCP, and ERoS should
be applied. For this, a conventional theory is that, if a correlation between a hardened
mechanical (i.e., strength) property and another durability property can be identified (or if
their causal relationship can be established), durability can thus be anticipated by strength
properties. In this research, other than very strong or strong relationships identified for
the HPC parameters in the same variable category, some significant relationships (from
strong to median intensities) between variables across the two categories (see Sections 3
and 4.1) are also found. In other words, these positive outcomes have confirmed the core
theoretical logic.

Following these, another theoretical perspective relates to destructive and non-destructive
tests (NDTs) [23,47]. Referring to Table 8, which is a simplified version of Table 2 with
colour levels added (full red for 1, gradient red (lighter and lighter) for (less) positive
values, gradient blue (heavier and heavier) for (more) negative values, dark blue for −1),
the upper left cells containing the hardened mechanical properties show that, other than
the very strong or near very strong correlations identified among the three destructive
‘strength’ measures, {CS, TS, FS}, USPV and HbRH are NDTs. Two interesting and important
observations about these NDTs can be made.

The first observation is that USPV is an NDT that is more correlated with all destructive
tests than HbRH, as evidenced by the magnitude of the P-Co-Cos, |0.43176| > |−0.39808|,
|0.62297| > |−0.40234|, and |0.31071| > |−0.30525|. Thus, USPV has a medium correlation
with TS, a medium correlation with CS, and a weak correlation with FS, while HbRH
has a weak negative correlation with TS, a weak negative correlation with CS, and a
weak negative correlation with FS. Therefore, the test results for USPV may be more
associated with the results obtained from the destructive tests than that of HbRH. This
supports the recommendation to keep only one NDT (i.e., USPV, because it provides links
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to destructive tests more effectively), which is similar to the previous finding supporting
the recommendation to keep only one destructive test (i.e., either CS, or TS, or FS, because
they are interchangeable; see Section 4.1).

Table 8. Simplified and visualised information for Table 2.

CS TS FS USPV HbRH ERoS ASC RCP

CS — 0.875333 0.824243 0.43716 −0.39808
TS 0.875333 — 0.784765 0.622967 −0.40234
FS 0.824243 0.784765 — 0.310713 −0.30525

USPV 0.43716 0.622967 0.310713 — −0.23428
HbRH −0.39808 −0.40234 −0.30525 −0.23428 —
ERoS — −0.54312 −0.33091
ASC −0.54312 — 0.817532
RCP −0.33091 0.817532 —

The second observation is that there is no significant correlation between the two
NDTs for hardened mechanical properties, despite the fact that the test results for USPV
may have a weak negative correlation with those of HbRH (−0.23428). This means that,
for two similar HPC samples (with the same admixture) tested on the same day, these two
NDTs would typically produce diversified results. An evidence-based argument can be
presented that the mechanisms behind these two NDTs should be intrinsically different.

Similar observations to the destructive tests and NDTs can also be made by examining
the lower right cells with respect to the durability properties. Other theory-reflexive insights
of interest based on these results could be gained through future studies.

5. Conclusions

This study proposes and applies a systematic data analytic methodology to analyse
the experimental data obtained from tests of HPC samples with different admixtures.
In contrast with other relevant studies aimed primarily at performing experiments (and
providing rationale for the experiments based on materials, physics, or chemistry) or
identifying the optimal HPC admixture(s) for grouting concrete materials to be used in the
sea (e.g., for the base construction of offshore wind turbines), the purpose of this study is to
perform a thorough investigation of the experimental variables related to the testing data.

To achieve this purpose, a methodological framework is proposed. In order to generate
comprehensive and in-depth views of the data, numerous methods are utilised, including
P-Co-Co, Cos-Sim, SLR, and heatmap or heat-based tabularised visualisation. This approach
is significantly different from those of other experimental-based research or admixture-
selection studies. Highlights of the research activities, results, and insights gained are
presented below.

1. All variables in the dataset testing the 12 HPC samples of different admixtures were
previewed. The dataset was sourced intentionally to cover as many tests for HPC
as possible. Among the Cat2 and Cat3 properties, the overlapping (and compatible)
data for the eight variables (i.e., the data gathered at 28, 56, and 91 days for CS,
TS, FS, USPV, HbRH, ERoS, ASC, and RCP) are identified and specified to support
subsequent analyses.

2. Rather than providing a descriptive analysis for the testing data, the investigation
began with a correlation analysis, in which the concept of PCA was applied. Within
the same variable category, variable groups were identified in which the correlation
between each pair of variables was very strong {CS, TS, FS} and {ASC, RCP}. Another
medium-correlation variable group was {TS, USPV, ERoS}, in which the included
variables overlap the two variable categories. In addition to the positive correlations,
some relatively strong negative correlations were also identified between some pairs
of variables. The result for P-Co-Cos in the main correlation matrix with no variable
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transformation was confirmed by another eight correlation matrices with variable X
in Equation (2) being converted using transforms (2)–(9) described in Section 2.3.4.

3. The correlation matrix was validated using the cosine similarity analysis. With few
exceptions, a higher Cos-Sim index (between 0 and 1) meant it also had a relatively
high P-Co-Co.

4. This analysis generated 504 SLR models, establishing a novel ‘knowledge base’
which can benefit future HPC sample-testing. By grouping these models using the
C8

2 × 2! = 56 ‘base models’, each group consisted of nine models (associated with the
nine types of RHS variable transform, including ‘no transform’) (see Table 5). When
they are grouped using the 9 types of RHS variable transform, each stratification has
56 models. These two perspectives enabled different types of subsequent analyse.

5. With the established knowledge base, an investigation was performed to determine if
a variable can be used to predict another (or not) and, if so, how accurate the prediction
will be. For example, by inspecting each SLR model’s significance value, p(M), it was
shown that CS test data can safely be used to predict TS and FS for an HPC sample,
but it may not be used to anticipate USPV (see Section 4.1.4). By inspecting the SLR
models’ R2 values, CS was found to predict TS and FS accurately. These results were
cross-validated with the very strong correlations observed among {CS, TS, TS} from
the correlation analysis. Insights such as these implied that in future construction
projects, valuable time and effort can be saved with respect to HPC testing.

6. By utilising a second perspective to view the model information (see #4 above),
the appropriate RHS variable transforms in this analytical context were identified.
It was also found that the two ‘power X’ transforms (i.e., X′ = eX and X′ = 2X)
are both inadequate and should be omitted, and one of the ‘logarithm’ transforms
(i.e., X′ = log(X) or X′ = lg(X)) is redundant. Thus, at least three out of the nine
transforms can be excluded in future analyses.

7. Some of the insights gained from the results were linked to theories, including the
following: (1) The results confirmed relationships found in the existing literature or
standards between the test variables; (2) The results verified that the core theoretical
logic of this research is effective; (3) The results of some NDTs were more related to
the destructive tests (while some NDTs were less related), and different NDTs led to
different results; unlike the destructive tests (particularly strength tests), these NDTs
are not interchangeable.

The methods used in this study are common, and utilising them for this study was
proven to be effective. Therefore, it should also be valid to utilise the methodological
framework proposed in this research for similar purposes, e.g., data analysis for other
concrete samples with different admixtures. From this perspective, a future story upon
taking the proposed framework is perhaps clear from scratch. When a construction project
is launched, one first sees if the HPC material(s) is to be used.

As can be expected, if so (using HPC) and if the planned admixtures of the HPC
samples to be tested are analogous to the ones being tested in this study, efforts related
to testing the materials can be reduced considerably by either policy. The first policy is
to use the direct testing results for the samples in the established knowledge base (if ‘no
testing’ is allowed legally). The second is to determine the testing item to be ‘predicted’ (as
desired), look up the knowledge base to know what any other testing item can predict it
(and also the information about whether the prediction will be effective and/or accurate),
and decide whether to really but safely save the money, and time in most of the cases, for
making tests by anticipating the results for the testing item (if some regulated testing items
are mandatory).

However, if so (using HPC) and the planned HPC samples to be tested are different
(e.g., due to a diversified purpose of use), or if not so (using the non-HPC material),
theoretically, the first step is to make similar tests for these samples, followed by using the
proposed framework to conduct the thorough data experiments (in order to identify the
relationship and the mutual predictive power between each pair of sample parameters).
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Then as can be imagined, another knowledge base for the samples included by this purpose
of use can be established. Although the outcomes and the unanticipated insights gained
may vary in different cases or contexts, after this one-time job, what follows is a similar
policy-making problem (see the former paragraph). Anyhow, all this may support efforts
to save the time required for pre-project experiments, especially when the project is urgent,
which is a crucial but inevitable fact in the current A/E/C industry.

It should be noted that the applications of this framework are not limited to cases in
which the source datasets for each measure are tested using conventional methods (i.e., a
parameter of HPC samples may have more than one testing method). For example, the
framework could be applied when a part of the data is obtained using NMR (nuclear mag-
netic resonance) [48,49]. In many countries, NMR equipment is legal and commercialised,
and the data for some variables can be obtained [50,51]. Other than this, except for HPC,
the question of ‘can similar data analysis using this framework be carried out for other
construction materials?’ is also worth of exploration.

Future research directions are shown in Figure 5, wherein the aim of this study which
is clearly differentiated from other relevant studies.

Figure 5. The role of this research for HPC studies.

In the figure, the experimental-oriented studies are focused on the performance of the
HPC, the inclusion of parameters for developing experiments, and statistics and variability
in the data. A critical element that future research directions rely upon is the testing data
sets produced by this research. Following this step, there are clear boundaries among the
three research directions. The materials, physics and chemistry studies research direction
involves a significant amount of opportunity for future studies. However, the knowledge
base constructed for the HPC testing parameters as an outcome of the data analytics
studies may benefit advance data studies in the future as well as subsequent selection
decision modelling studies and current cementitious material portfolio determination
studies. The selection decision modelling studies aim to rank the HPC samples with
different admixtures and select the optimal candidate using the scientific decision models;
therefore, the knowledge base may provide a precise numerical foundation for these models
(and added value from the expert knowledge of the researchers).
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Acronyms (Alphabetic Order)

ACI American Concrete Institute
A/E/C Architect/Engineering/Construction
ASC Anti-Sulphate Capability
ASTM American Society for Testing and Materials
Cat1 (Property) Category 1 (Fresh Mechanical)
Cat2 (Property) Category 1 (Hardened Mechanical)
Cat3 (Property) Category 3 (Durability)
CE Construction Engineering
Cos-Sim Cosine Similarity
CS Compressive Strength
DDDM Data-Driven Decision-Making
EE Electrical Engineering
ERoS Electricity Resistivity on Surface
ESG Environmental, Social, Governance
FS Flexural Strength
HbRH Hardness by Rebound Hammer
HPC High Performance Concrete
LHS Left-Hand Side
NDT Non-Destructive Test
NMR Nuclear Magnetic Resonance
OLS Ordinal Least Square
PCA Pairwise Comparison Approach
P-Co-Co Pearson Correlation Coefficient
RC Reinforced Concrete
RCP Rapid Chloride Permeability
RCPT Rapid Chloride Permeability Test
RE Renewable Energy
RHS Right-Hand Side
SDG Sustainable Development Goals
SLR Simple Linear Regression
TS Tensile Strength
USPV Ultrasound Pulse Velocity

Appendix A

In that previous study, the data analytical process to obtain Equation (1) progressed
as follows:

1. Each pair of (CS, ACP) data (i.e., ACP stands for accumulated charge passed for RCP)
was treated as a data point (entry), considering the three testing time points (in terms
of #days = 28, 56 and 91) and the 12 mixture portfolios of the concrete sample all
together. This yields a data table of two variables, containing the 36 data points.
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2. A rough trend was observed by plotting the data points (see Figure 1a; the data are
sourced and replotted from the Appendix of (Kuo and Zhuang, 2021)). However,
establishing a simple linear regression (SLR) model to fit them, the model did not
provide a satisfactory explanation for the relationship between CS and RCP, i.e.,
the p value of the F statistic was acceptable but relatively week (p = 0.06415), and
the regression coefficient of the SLR model was merely R2 = 0.09721, which is poor.
Therefore, more solid clues about the relationship must be sought for.

3. The approach of ‘dimensional alternation of the variables’ was performed. The square
root, square and log of the predictor variable (CS) was used as new variables, so
several SLR models taking one of these predicting variables and keeping the variable
being predicted (accumulated charge passed, or ACP) were reconstructed. In this
process, outlier removals were also considered. However, as the case using the original
data of variable CS, these trials did not give any more model that is satisfactory.

4. The second approach of ‘finding a condensed set of data points and estimating a new
SLR model that fits these data points’ was then used. It used the K-means to cluster
the data points (see Figure 1b), so the cluster centres form a condensed dataset. This
process, in itself, removed the outliers to a certain extent, while keeping only the
representative information of the data. Eventually, an effective SLR model: “ACP =
7966.72 + (−97.76)CS” was established.

5. The model in (4) was effective because the R2 (regression for data-model fitness)
of the model was as high as R2 = 0.8386. The p value of the model also showed a
qualified but weak result, which was p = 0.07071. However, since this was a model
with one dependent variable and only one independent variable, a further scrutiny
revealed that the correlation coefficient between these two data variables was as low
as r = −0.9293, which could be justified as near totally negatively correlated.

From the above experiment, the last SLR model in step (5) can serve as an accurate (or,
accurately calibrated) predictor when one knows a concrete sample’s CS value and would
like to postulate the value of ACP that connotes the RCP of the sample. As CS is usually
treated as a ‘hardened mechanical property’ but RCPT is usually a ‘durability property’
for the high-performance concrete (HPC) materials, and as this process has revealed a
relationship between two experimental variables from two parametric categories, such a
predictive model should be worthy of note.

Appendix B

The information in Table A1 is associated the 504 established SLR models. Table A2
lists these models in detail.

Table A1. Results from Estimating and Establishing the 504 SLR Models.

M# Y X P-Co-Co α∗ β∗ p(α∗) p(β∗) p(M) R2 (R2)
∗

1 TS CS 0.875333 −3.667713 0.278209 0.0466 0.0000 0.0000 0.766208 0.759331
2 TS CS 0.858867 5.766322 0.001985 0.0000 0.0000 0.0000 0.737652 0.729936
3 TS CS 0.835226 8.989167 0.000018 0.0000 0.0000 0.0000 0.697602 0.688708
4 TS CS 0.321631 14.568831 0.000000 0.0000 0.0558 0.0558 0.103447 0.077077
5 TS CS 0.323844 14.565644 0.000000 0.0000 0.0540 0.0540 0.104875 0.078548
6 TS CS 0.880394 −22.324474 4.575331 0.0000 0.0000 0.0000 0.775094 0.768479
7 TS CS 0.881580 −40.931240 13.814583 0.0000 0.0000 0.0000 0.777183 0.770630
8 TS CS 0.883184 −62.850941 42.785409 0.0000 0.0000 0.0000 0.780015 0.773545
9 TS CS 0.883184 −62.850941 12.879692 0.0000 0.0000 0.0000 0.780015 0.773545
10 FS CS 0.824243 4.243931 0.104528 0.0000 0.0000 0.0000 0.679376 0.669946
11 FS CS 0.816058 7.757808 0.000752 0.0000 0.0000 0.0000 0.665950 0.656125
12 FS CS 0.799660 8.962874 0.000007 0.0000 0.0000 0.0000 0.639457 0.628852
13 FS CS 0.336406 11.087036 0.000000 0.0000 0.0448 0.0448 0.113169 0.087086
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Table A1. Cont.

M# Y X P-Co-Co α∗ β∗ p(α∗) p(β∗) p(M) R2 (R2)
∗

14 FS CS 0.337948 11.085907 0.000000 0.0000 0.0438 0.0438 0.114209 0.088156
15 FS CS 0.824872 −2.696166 1.710449 0.1088 0.0000 0.0000 0.680414 0.671015
16 FS CS 0.824551 −9.616035 5.155510 0.0004 0.0000 0.0000 0.679884 0.670469
17 FS CS 0.823110 −17.693156 15.910370 0.0000 0.0000 0.0000 0.677510 0.668025
18 FS CS 0.823110 −17.693156 4.789498 0.0000 0.0000 0.0000 0.677510 0.668025
19 USPV CS 0.437160 3.857498 0.017583 0.0000 0.0077 0.0077 0.191108 0.167318
20 USPV CS 0.427017 4.456269 0.000125 0.0000 0.0094 0.0094 0.182344 0.158295
21 USPV CS 0.414718 4.659517 0.000001 0.0000 0.0119 0.0119 0.171991 0.147638
22 USPV CS 0.219982 5.005173 0.000000 0.0000 0.1973 0.1973 0.048392 0.020403
23 USPV CS 0.220534 5.004976 0.000000 0.0000 0.1962 0.1962 0.048635 0.020654
24 USPV CS 0.441192 2.670380 0.290147 0.0027 0.0071 0.0071 0.194651 0.170964
25 USPV CS 0.442364 1.485802 0.877204 0.2362 0.0069 0.0069 0.195686 0.172030
26 USPV CS 0.444438 0.079830 2.724581 0.9630 0.0066 0.0066 0.197525 0.173923
27 USPV CS 0.444438 0.079830 0.820181 0.9630 0.0066 0.0066 0.197525 0.173923
28 HBRH CS −0.398077 65.693972 −0.390663 0.0000 0.0162 0.0162 0.158465 0.133714
29 HBRH CS −0.405125 52.917551 −0.002891 0.0000 0.0142 0.0142 0.164126 0.139542
30 HBRH CS −0.405925 48.479311 −0.000027 0.0000 0.0140 0.0140 0.164775 0.140210
31 HBRH CS −0.170036 40.133608 0.000000 0.0000 0.3215 0.3215 0.028912 0.000351
32 HBRH CS −0.171068 40.138531 0.000000 0.0000 0.3185 0.3185 0.029264 0.000713
33 HBRH CS −0.392094 90.813888 −6.291765 0.0001 0.0180 0.0180 0.153738 0.128848
34 HBRH CS −0.389739 115.838473 −18.857628 0.0007 0.0188 0.0188 0.151897 0.126953
35 HBRH CS −0.384503 144.146418 −57.514972 0.0020 0.0206 0.0206 0.147843 0.122779
36 HBRH CS −0.384503 144.146418 −17.313732 0.0020 0.0206 0.0206 0.147843 0.122779
37 ERoS CS 0.295620 48.638331 0.451482 0.0068 0.0800 0.0800 0.087391 0.060550
38 ERoS CS 0.306640 63.112123 0.003405 0.0000 0.0689 0.0689 0.094028 0.067382
39 ERoS CS 0.313178 68.142433 0.000033 0.0000 0.0629 0.0629 0.098080 0.071553
40 ERoS CS 0.133833 78.154441 0.000000 0.0000 0.4365 0.4365 0.017911 −0.010974
41 ERoS CS 0.135049 78.147143 0.000000 0.0000 0.4323 0.4323 0.018238 −0.010637
42 ERoS CS 0.288458 20.158438 7.203358 0.5500 0.0880 0.0880 0.083208 0.056243
43 ERoS CS 0.285838 −8.222433 21.523030 0.8703 0.0910 0.0910 0.081703 0.054695
44 ERoS CS 0.280268 −39.800918 65.241658 0.5712 0.0978 0.0978 0.078550 0.051449
45 ERoS CS 0.280268 −39.800918 19.639696 0.5712 0.0978 0.0978 0.078550 0.051449
46 ASC CS −0.266200 4.951321 −0.038650 0.0043 0.1166 0.1166 0.070862 0.043535
47 ASC CS −0.278865 3.725393 −0.000294 0.0001 0.0996 0.0996 0.077766 0.050641
48 ASC CS −0.288142 3.301028 −0.000003 0.0000 0.0883 0.0883 0.083026 0.056056
49 ASC CS −0.176077 2.440935 0.000000 0.0000 0.3043 0.3043 0.031003 0.002503
50 ASC CS −0.177206 2.441708 0.000000 0.0000 0.3012 0.3012 0.031402 0.002914
51 ASC CS −0.258755 7.370267 −0.614301 0.0276 0.1276 0.1276 0.066954 0.039512
52 ASC CS −0.256134 9.782740 −1.833536 0.0491 0.1316 0.1316 0.065604 0.038122
53 ASC CS −0.250707 12.455418 −5.548271 0.0706 0.1403 0.1403 0.062854 0.035291
54 ASC CS −0.250707 12.455418 −1.670196 0.0706 0.1403 0.1403 0.062854 0.035291
55 RCP CS −0.311780 2.267223 −0.011399 0.0000 0.0642 0.0642 0.097207 0.070654
56 RCP CS −0.307826 1.882996 −0.000082 0.0000 0.0678 0.0678 0.094757 0.068132
57 RCP CS −0.300182 1.750786 −0.000001 0.0000 0.0753 0.0753 0.090109 0.063348
58 RCP CS −0.089682 1.518182 0.000000 0.0000 0.6030 0.6030 0.008043 −0.021132
59 RCP CS −0.090646 1.518310 0.000000 0.0000 0.5991 0.5991 0.008217 −0.020953
60 RCP CS −0.312252 3.025176 −0.186665 0.0005 0.0637 0.0637 0.097501 0.070957
61 RCP CS −0.312183 3.780745 −0.562728 0.0031 0.0638 0.0638 0.097458 0.070913
62 RCP CS −0.311714 4.663141 −1.737056 0.0078 0.0642 0.0642 0.097166 0.070612
63 RCP CS −0.311714 4.663141 −0.522906 0.0078 0.0642 0.0642 0.097166 0.070612
64 CS TS 0.875333 25.601048 2.754069 0.0000 0.0000 0.0000 0.766208 0.759331
65 CS TS 0.880561 44.236410 0.094689 0.0000 0.0000 0.0000 0.775388 0.768782
66 CS TS 0.871874 50.906382 0.003981 0.0000 0.0000 0.0000 0.760163 0.753109
67 CS TS 0.592665 64.102514 0.000000 0.0000 0.0001 0.0001 0.351252 0.332171
68 CS TS 0.674900 62.934793 0.000010 0.0000 0.0000 0.0000 0.455491 0.439476
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Table A1. Cont.

M# Y X P-Co-Co α∗ β∗ p(α∗) p(β∗) p(M) R2 (R2)
∗

69 CS TS 0.865763 −10.632674 20.195417 0.1761 0.0000 0.0000 0.749546 0.742180
70 CS TS 0.861465 −46.679370 46.417521 0.0003 0.0000 0.0000 0.742121 0.734537
71 CS TS 0.851240 −29.233152 82.840374 0.0069 0.0000 0.0000 0.724609 0.716509
72 CS TS 0.851240 −29.233152 24.937437 0.0069 0.0000 0.0000 0.724609 0.716509
73 FS TS 0.784765 6.546860 0.313125 0.0000 0.0000 0.0000 0.615856 0.604557
74 FS TS 0.776248 8.707568 0.010586 0.0000 0.0000 0.0000 0.602560 0.590871
75 FS TS 0.754935 9.483795 0.000437 0.0000 0.0000 0.0000 0.569927 0.557278
76 FS TS 0.459743 10.957931 0.000000 0.0000 0.0048 0.0048 0.211364 0.188168
77 FS TS 0.527210 10.840734 0.000001 0.0000 0.0010 0.0010 0.277951 0.256714
78 FS TS 0.782128 2.360285 2.313706 0.0604 0.0000 0.0000 0.611724 0.600305
79 FS TS 0.780105 −1.800375 5.330575 0.3222 0.0000 0.0000 0.608564 0.597051
80 FS TS 0.774336 0.153470 9.556441 0.9219 0.0000 0.0000 0.599596 0.587820
81 FS TS 0.774336 0.153470 2.876775 0.9219 0.0000 0.0000 0.599596 0.587820
82 USPV TS 0.622967 3.858270 0.078833 0.0000 0.0000 0.0000 0.388088 0.370090
83 USPV TS 0.605032 4.413516 0.002617 0.0000 0.0001 0.0001 0.366064 0.347419
84 USPV TS 0.575965 4.614242 0.000106 0.0000 0.0002 0.0002 0.331735 0.312080
85 USPV TS 0.280597 4.981383 0.000000 0.0000 0.0974 0.0974 0.078735 0.051639
86 USPV TS 0.330775 4.956893 0.000000 0.0000 0.0488 0.0488 0.109412 0.083218
87 USPV TS 0.625573 2.787452 0.586914 0.0000 0.0000 0.0000 0.391341 0.373440
88 USPV TS 0.625348 1.724675 1.355218 0.0204 0.0000 0.0000 0.391060 0.373150
89 USPV TS 0.623212 2.210177 2.439321 0.0009 0.0000 0.0000 0.388393 0.370405
90 USPV TS 0.623212 2.210177 0.734309 0.0009 0.0000 0.0000 0.388393 0.370405
91 HBRH TS −0.402338 58.151339 −1.242304 0.0000 0.0150 0.0150 0.161876 0.137225
92 HBRH TS −0.424250 50.224970 −0.044771 0.0000 0.0099 0.0099 0.179988 0.155870
93 HBRH TS −0.431414 47.267905 −0.001933 0.0000 0.0086 0.0086 0.186118 0.162180
94 HBRH TS −0.259981 40.738938 0.000000 0.0000 0.1257 0.1257 0.067590 0.040166
95 HBRH TS −0.309601 41.307878 −0.000004 0.0000 0.0661 0.0661 0.095853 0.069260
96 HBRH TS −0.384953 73.363122 −8.812436 0.0000 0.0204 0.0204 0.148188 0.123135
97 HBRH TS −0.378213 88.470940 −19.999337 0.0001 0.0229 0.0229 0.143045 0.117840
98 HBRH TS −0.363411 79.818313 −34.707485 0.0001 0.0294 0.0294 0.132067 0.106540
99 HBRH TS −0.363411 79.818313 −10.447994 0.0001 0.0294 0.0294 0.132067 0.106540
100 ERoS TS 0.562644 38.619765 2.703589 0.0007 0.0004 0.0004 0.316568 0.296467
101 ERoS TS 0.573121 56.641239 0.094122 0.0000 0.0003 0.0003 0.328468 0.308717
102 ERoS TS 0.566401 63.300021 0.003950 0.0000 0.0003 0.0003 0.320810 0.300834
103 ERoS TS 0.254154 77.132815 0.000000 0.0000 0.1347 0.1347 0.064594 0.037082
104 ERoS TS 0.331323 76.049148 0.000007 0.0000 0.0484 0.0484 0.109775 0.083592
105 ERoS TS 0.549375 4.016119 19.571676 0.8391 0.0005 0.0005 0.301813 0.281278
106 ERoS TS 0.543715 −30.329979 44.742613 0.3022 0.0006 0.0006 0.295626 0.274909
107 ERoS TS 0.530608 −12.372872 78.862286 0.6246 0.0009 0.0009 0.281544 0.260413
108 ERoS TS 0.530608 −12.372872 23.739914 0.6246 0.0009 0.0009 0.281544 0.260413
109 ASC TS −0.371395 4.895963 −0.169661 0.0001 0.0257 0.0257 0.137934 0.112579
110 ASC TS −0.408882 3.876248 −0.006384 0.0000 0.0133 0.0133 0.167184 0.142690
111 ASC TS −0.430470 3.492236 −0.000285 0.0000 0.0088 0.0088 0.185304 0.161342
112 ASC TS −0.268098 2.533072 0.000000 0.0000 0.1139 0.1139 0.071876 0.044579
113 ASC TS −0.324097 2.623368 −0.000001 0.0000 0.0538 0.0538 0.105039 0.078716
114 ASC TS −0.346861 6.863957 −1.174774 0.0024 0.0382 0.0382 0.120312 0.094439
115 ASC TS −0.337961 8.824142 −2.643973 0.0072 0.0438 0.0438 0.114218 0.088166
116 ASC TS −0.319290 7.591518 −4.511500 0.0074 0.0577 0.0577 0.101946 0.075533
117 ASC TS −0.319290 7.591518 −1.358097 0.0074 0.0577 0.0577 0.101946 0.075533
118 RCP TS −0.321650 2.058247 −0.037000 0.0000 0.0558 0.0558 0.103459 0.077090
119 RCP TS −0.326306 1.810395 −0.001283 0.0000 0.0521 0.0521 0.106476 0.080196
120 RCP TS −0.320857 1.718591 −0.000054 0.0000 0.0564 0.0564 0.102950 0.076566
121 RCP TS −0.150499 1.531887 0.000000 0.0000 0.3810 0.3810 0.022650 −0.006096
122 RCP TS −0.184014 1.545030 0.000000 0.0000 0.2827 0.2827 0.033861 0.005445

35



Buildings 2022, 12, 1545

Table A1. Cont.

M# Y X P-Co-Co α∗ β∗ p(α∗) p(β∗) p(M) R2 (R2)
∗

123 RCP TS −0.314787 2.534156 −0.268461 0.0000 0.0615 0.0615 0.099091 0.072593
124 RCP TS −0.311825 3.006627 −0.614281 0.0005 0.0641 0.0641 0.097235 0.070683
125 RCP TS −0.304959 2.762761 −1.085035 0.0002 0.0705 0.0705 0.093000 0.066324
126 RCP TS −0.304959 2.762761 −0.326628 0.0002 0.0705 0.0705 0.093000 0.066324
127 CS FS 0.824243 −6.326697 6.499481 0.4688 0.0000 0.0000 0.679376 0.669946
128 CS FS 0.824674 29.978536 0.285562 0.0000 0.0000 0.0000 0.680087 0.670677
129 CS FS 0.822683 42.091645 0.016421 0.0000 0.0000 0.0000 0.676807 0.667302
130 CS FS 0.737376 60.470131 0.000028 0.0000 0.0000 0.0000 0.543724 0.530304
131 CS FS 0.778735 57.730585 0.002138 0.0000 0.0000 0.0000 0.606428 0.594853
132 CS FS 0.822981 −78.861881 43.526353 0.0001 0.0000 0.0000 0.677298 0.667806
133 CS FS 0.822392 −151.371735 97.564705 0.0000 0.0000 0.0000 0.676328 0.666809
134 CS FS 0.820950 −107.999762 166.924543 0.0000 0.0000 0.0000 0.673959 0.664369
135 CS FS 0.820950 −107.999762 50.249294 0.0000 0.0000 0.0000 0.673959 0.664369
136 TS FS 0.784765 −7.199919 1.966805 0.0222 0.0000 0.0000 0.615856 0.604557
137 TS FS 0.774040 3.942253 0.085188 0.0173 0.0000 0.0000 0.599138 0.587348
138 TS FS 0.761367 7.656856 0.004830 0.0000 0.0000 0.0000 0.579680 0.567318
139 TS FS 0.609800 13.245188 0.000007 0.0000 0.0001 0.0001 0.371856 0.353381
140 TS FS 0.667112 12.444315 0.000582 0.0000 0.0000 0.0000 0.445038 0.428716
141 TS FS 0.789199 −29.465695 13.266225 0.0000 0.0000 0.0000 0.622835 0.611742
142 TS FS 0.790519 −51.724286 29.807449 0.0000 0.0000 0.0000 0.624921 0.613889
143 TS FS 0.792906 −38.728089 51.241706 0.0000 0.0000 0.0000 0.628700 0.617779
144 TS FS 0.792906 −38.728089 15.425291 0.0000 0.0000 0.0000 0.628700 0.617779
145 USPV FS 0.310713 3.922078 0.098543 0.0000 0.0651 0.0651 0.096542 0.069970
146 USPV FS 0.308186 4.477288 0.004292 0.0000 0.0675 0.0675 0.094979 0.068361
147 USPV FS 0.305970 4.661097 0.000246 0.0000 0.0695 0.0695 0.093618 0.066959
148 USPV FS 0.304023 4.926546 0.000000 0.0000 0.0714 0.0714 0.092430 0.065737
149 USPV FS 0.304588 4.888412 0.000034 0.0000 0.0709 0.0709 0.092774 0.066091
150 USPV FS 0.312032 2.809590 0.663750 0.0208 0.0639 0.0639 0.097364 0.070816
151 USPV FS 0.312473 1.696791 1.490970 0.3353 0.0635 0.0635 0.097639 0.071099
152 USPV FS 0.313347 2.347447 2.562552 0.1011 0.0628 0.0628 0.098187 0.071663
153 USPV FS 0.313347 2.347447 0.771405 0.1011 0.0628 0.0628 0.098187 0.071663
154 HBRH FS −0.305249 66.188588 −2.362177 0.0000 0.0702 0.0702 0.093177 0.066505
155 HBRH FS −0.335018 54.273515 −0.113847 0.0000 0.0458 0.0458 0.112237 0.086126
156 HBRH FS −0.360059 50.190731 −0.007053 0.0000 0.0310 0.0310 0.129642 0.104044
157 HBRH FS −0.400625 42.901148 −0.000015 0.0000 0.0155 0.0155 0.160501 0.135809
158 HBRH FS −0.415439 44.279189 −0.001119 0.0000 0.0117 0.0117 0.172590 0.148254
159 HBRH FS −0.288658 89.759913 −14.982391 0.0034 0.0878 0.0878 0.083323 0.056362
160 HBRH FS −0.282887 113.273551 −32.935350 0.0122 0.0946 0.0946 0.080025 0.052967
161 HBRH FS −0.271000 96.258836 −54.076411 0.0085 0.1099 0.1099 0.073441 0.046189
162 HBRH FS −0.271000 96.258836 −16.278622 0.0085 0.1099 0.1099 0.073441 0.046189
163 ERoS FS 0.205377 50.933952 2.473320 0.0321 0.2295 0.2295 0.042180 0.014008
164 ERoS FS 0.203073 64.911772 0.107393 0.0000 0.2349 0.2349 0.041239 0.013040
165 ERoS FS 0.199425 69.609113 0.006079 0.0000 0.2436 0.2436 0.039770 0.011528
166 ERoS FS 0.144114 76.831094 0.000008 0.0000 0.4017 0.4017 0.020769 −0.008032
167 ERoS FS 0.163534 75.822904 0.000686 0.0000 0.3406 0.3406 0.026743 −0.001882
168 ERoS FS 0.205933 23.096644 16.633940 0.6135 0.2282 0.2282 0.042409 0.014244
169 ERoS FS 0.206023 −4.709195 37.327985 0.9451 0.2280 0.2280 0.042445 0.014282
170 ERoS FS 0.206050 11.758881 63.985459 0.8305 0.2279 0.2279 0.042456 0.014293
171 ERoS FS 0.206050 11.758881 19.261543 0.8305 0.2279 0.2279 0.042456 0.014293
172 ASC FS 0.036492 1.922044 0.041780 0.3912 0.8327 0.8327 0.001332 −0.028041
173 ASC FS 0.032173 2.183163 0.001618 0.0631 0.8522 0.8522 0.001035 −0.028346
174 ASC FS 0.027196 2.272707 0.000079 0.0070 0.8749 0.8749 0.000740 −0.028650
175 ASC FS −0.045355 2.440934 0.000000 0.0000 0.7928 0.7928 0.002057 −0.027294
176 ASC FS −0.017110 2.416220 −0.000007 0.0000 0.9211 0.9211 0.000293 −0.029110
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177 ASC FS 0.038388 1.405803 0.294780 0.7512 0.8241 0.8241 0.001474 −0.027895
178 ASC FS 0.038979 0.890954 0.671410 0.8933 0.8214 0.8214 0.001519 −0.027848
179 ASC FS 0.040100 1.152764 1.183835 0.8288 0.8164 0.8164 0.001608 −0.027756
180 ASC FS 0.040100 1.152764 0.356370 0.8288 0.8164 0.8164 0.001608 −0.027756
181 RCP FS −0.002053 1.518122 −0.000592 0.0101 0.9905 0.9905 0.000004 −0.029407
182 RCP FS −0.000813 1.512816 −0.000010 0.0000 0.9962 0.9962 0.000001 −0.029411
183 RCP FS −0.001017 1.512601 −0.000001 0.0000 0.9953 0.9953 0.000001 −0.029411
184 RCP FS −0.048844 1.525620 0.000000 0.0000 0.7773 0.7773 0.002386 −0.026956
185 RCP FS −0.027904 1.522730 −0.000003 0.0000 0.8717 0.8717 0.000779 −0.028610
186 RCP FS −0.003242 1.532411 −0.006268 0.1759 0.9850 0.9850 0.000011 −0.029401
187 RCP FS −0.003723 1.547533 −0.016148 0.3581 0.9828 0.9828 0.000014 −0.029397
188 RCP FS −0.004813 1.548869 −0.035782 0.2535 0.9778 0.9778 0.000023 −0.029388
189 RCP FS −0.004813 1.548869 −0.010772 0.2535 0.9778 0.9778 0.000023 −0.029388
190 CS USPV 0.437160 11.699855 10.869184 0.5495 0.0077 0.0077 0.191108 0.167318
191 CS USPV 0.423489 40.273723 1.021887 0.0002 0.0101 0.0101 0.179343 0.155206
192 CS USPV 0.409015 49.795528 0.126614 0.0000 0.0133 0.0133 0.167293 0.142802
193 CS USPV 0.358691 58.320079 0.046366 0.0000 0.0317 0.0317 0.128659 0.103032
194 CS USPV 0.384434 53.582094 0.368616 0.0000 0.0206 0.0206 0.147790 0.122725
195 CS USPV 0.443633 −45.426919 49.906242 0.2492 0.0067 0.0067 0.196810 0.173187
196 CS USPV 0.445731 −102.544737 98.687379 0.0870 0.0064 0.0064 0.198676 0.175108
197 CS USPV 0.449834 −25.625450 131.505274 0.4194 0.0059 0.0059 0.202350 0.178890
198 CS USPV 0.449834 −25.625450 39.587032 0.4194 0.0059 0.0059 0.202350 0.178890
199 TS USPV 0.622967 −9.951659 4.922893 0.0715 0.0000 0.0000 0.388088 0.370090
200 TS USPV 0.606038 2.940218 0.464793 0.2864 0.0001 0.0001 0.367283 0.348673
201 TS USPV 0.588051 7.236153 0.057857 0.0004 0.0002 0.0002 0.345803 0.326562
202 TS USPV 0.526558 11.054730 0.021633 0.0000 0.0010 0.0010 0.277263 0.256006
203 TS USPV 0.557977 8.911075 0.170046 0.0000 0.0004 0.0004 0.311338 0.291083
204 TS USPV 0.630941 −35.725535 22.558924 0.0020 0.0000 0.0000 0.398086 0.380383
205 TS USPV 0.633517 −61.495192 44.580580 0.0005 0.0000 0.0000 0.401344 0.383737
206 TS USPV 0.638541 −26.695574 59.330542 0.0038 0.0000 0.0000 0.407734 0.390315
207 TS USPV 0.638541 −26.695574 17.860273 0.0038 0.0000 0.0000 0.407734 0.390315
208 FS USPV 0.310713 6.252685 0.979698 0.0215 0.0651 0.0651 0.096542 0.069970
209 FS USPV 0.292183 8.896879 0.089411 0.0000 0.0838 0.0838 0.085371 0.058470
210 FS USPV 0.273135 9.776372 0.010723 0.0000 0.1070 0.1070 0.074603 0.047385
211 FS USPV 0.211007 10.578733 0.003459 0.0000 0.2167 0.2167 0.044524 0.016422
212 FS USPV 0.242040 10.158619 0.029432 0.0000 0.1550 0.1550 0.058583 0.030895
213 FS USPV 0.319695 0.963590 4.560833 0.8540 0.0573 0.0573 0.102205 0.075799
214 FS USPV 0.322639 −4.325082 9.059050 0.5830 0.0550 0.0550 0.104096 0.077746
215 FS USPV 0.328445 2.662270 12.176713 0.5309 0.0505 0.0505 0.107876 0.081637
216 FS USPV 0.328445 2.662270 3.665556 0.5309 0.0505 0.0505 0.107876 0.081637
217 HBRH USPV −0.234281 68.508814 −5.716477 0.0021 0.1690 0.1690 0.054887 0.027090
218 HBRH USPV −0.220410 53.086186 −0.521949 0.0000 0.1964 0.1964 0.048581 0.020598
219 HBRH USPV −0.206701 47.978201 −0.062795 0.0000 0.2265 0.2265 0.042725 0.014570
220 HBRH USPV −0.165958 43.416246 −0.021053 0.0000 0.3334 0.3334 0.027542 −0.001060
221 HBRH USPV −0.186103 45.834858 −0.175122 0.0000 0.2772 0.2772 0.034634 0.006241
222 HBRH USPV −0.241226 99.412808 −26.631142 0.0213 0.1564 0.1564 0.058190 0.030489
223 HBRH USPV −0.243537 130.327235 −52.916167 0.0426 0.1523 0.1523 0.059310 0.031643
224 HBRH USPV −0.248149 89.558454 −71.193135 0.0112 0.1445 0.1445 0.061578 0.033977
225 HBRH USPV −0.248149 89.558454 −21.431269 0.0112 0.1445 0.1445 0.061578 0.033977
226 ERoS USPV 0.645174 −44.489856 24.498482 0.0854 0.0000 0.0000 0.416249 0.399080
227 ERoS USPV 0.638643 18.633250 2.353559 0.1490 0.0000 0.0000 0.407865 0.390450
228 ERoS USPV 0.630624 39.712583 0.298140 0.0001 0.0000 0.0000 0.397687 0.379972
229 ERoS USPV 0.597529 58.274020 0.117962 0.0000 0.0001 0.0001 0.357041 0.338131
230 ERoS USPV 0.615276 47.489651 0.901006 0.0000 0.0001 0.0001 0.378565 0.360287
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231 ERoS USPV 0.647813 −170.590922 111.297801 0.0018 0.0000 0.0000 0.419662 0.402593
232 ERoS USPV 0.648594 −296.650864 219.314541 0.0004 0.0000 0.0000 0.420674 0.403635
233 ERoS USPV 0.650004 −124.288756 290.210321 0.0044 0.0000 0.0000 0.422505 0.405520
234 ERoS USPV 0.650004 −124.288756 87.362012 0.0044 0.0000 0.0000 0.422505 0.405520
235 ASC USPV −0.568934 12.705658 −2.053830 0.0000 0.0003 0.0003 0.323686 0.303795
236 ASC USPV −0.564411 7.424747 −0.197743 0.0000 0.0003 0.0003 0.318559 0.298517
237 ASC USPV −0.558738 5.661972 −0.025113 0.0000 0.0004 0.0004 0.312188 0.291958
238 ASC USPV −0.534737 4.115692 −0.010036 0.0000 0.0008 0.0008 0.285944 0.264942
239 ASC USPV −0.547840 5.019864 −0.076269 0.0000 0.0005 0.0005 0.300128 0.279544
240 ASC USPV −0.570721 23.257569 −9.321819 0.0001 0.0003 0.0003 0.325723 0.305891
241 ASC USPV −0.571243 33.806622 −18.363466 0.0001 0.0003 0.0003 0.326318 0.306504
242 ASC USPV −0.572171 19.365242 −24.286354 0.0001 0.0003 0.0003 0.327379 0.307596
243 ASC USPV −0.572171 19.365242 −7.310921 0.0001 0.0003 0.0003 0.327379 0.307596
244 RCP USPV −0.582828 4.172769 −0.529796 0.0000 0.0002 0.0002 0.339688 0.320267
245 RCP USPV −0.583099 2.821553 −0.051442 0.0000 0.0002 0.0002 0.340004 0.320593
246 RCP USPV −0.581901 2.369856 −0.006586 0.0000 0.0002 0.0002 0.338609 0.319156
247 RCP USPV −0.569720 1.974772 −0.002692 0.0000 0.0003 0.0003 0.324581 0.304715
248 RCP USPV −0.577214 2.209524 −0.020235 0.0000 0.0002 0.0002 0.333176 0.313564
249 RCP USPV −0.582105 6.871176 −2.394108 0.0000 0.0002 0.0002 0.338846 0.319400
250 RCP USPV −0.581773 9.568523 −4.709275 0.0000 0.0002 0.0002 0.338460 0.319003
251 RCP USPV −0.580974 5.852026 −6.209543 0.0000 0.0002 0.0002 0.337531 0.318047
252 RCP USPV −0.580974 5.852026 −1.869259 0.0000 0.0002 0.0002 0.337531 0.318047
253 CS HBRH −0.398077 82.439445 −0.405632 0.0000 0.0162 0.0162 0.158465 0.133714
254 CS HBRH −0.425536 75.405760 −0.005286 0.0000 0.0097 0.0097 0.181081 0.156995
255 CS HBRH −0.436562 72.862987 −0.000082 0.0000 0.0078 0.0078 0.190586 0.166780
256 CS HBRH −0.188399 66.902783 0.000000 0.0000 0.2712 0.2712 0.035494 0.007126
257 CS HBRH −0.233424 67.170846 0.000000 0.0000 0.1706 0.1706 0.054487 0.026678
258 CS HBRH −0.377150 96.047260 −4.770542 0.0000 0.0234 0.0234 0.142242 0.117014
259 CS HBRH −0.369097 109.563955 −12.804268 0.0000 0.0267 0.0267 0.136233 0.110828
260 CS HBRH −0.351451 115.311600 −31.034230 0.0000 0.0356 0.0356 0.123518 0.097739
261 CS HBRH −0.351451 115.311600 −9.342234 0.0000 0.0356 0.0356 0.123518 0.097739
262 TS HBRH −0.402338 19.962206 −0.130303 0.0000 0.0150 0.0150 0.161876 0.137225
263 TS HBRH −0.422972 17.654315 −0.001670 0.0000 0.0102 0.0102 0.178905 0.154755
264 TS HBRH −0.431294 16.838405 −0.000026 0.0000 0.0086 0.0086 0.186015 0.162074
265 TS HBRH −0.234780 15.016574 0.000000 0.0000 0.1681 0.1681 0.055122 0.027331
266 TS HBRH −0.279586 15.109310 0.000000 0.0000 0.0986 0.0986 0.078168 0.051056
267 TS HBRH −0.386542 24.467753 −1.553990 0.0000 0.0199 0.0199 0.149415 0.124398
268 TS HBRH −0.380444 28.951092 −4.194722 0.0000 0.0221 0.0221 0.144737 0.119583
269 TS HBRH −0.367043 31.046247 −10.301284 0.0001 0.0277 0.0277 0.134720 0.109271
270 TS HBRH −0.367043 31.046247 −3.100995 0.0001 0.0277 0.0277 0.134720 0.109271
271 FS HBRH −0.305249 12.743570 −0.039445 0.0000 0.0702 0.0702 0.093177 0.066505
272 FS HBRH −0.332132 12.075405 −0.000523 0.0000 0.0478 0.0478 0.110312 0.084144
273 FS HBRH −0.345131 11.832096 −0.000008 0.0000 0.0393 0.0393 0.119115 0.093207
274 FS HBRH −0.143020 11.232133 0.000000 0.0000 0.4053 0.4053 0.020455 −0.008356
275 FS HBRH −0.177279 11.257978 0.000000 0.0000 0.3010 0.3010 0.031428 0.002941
276 FS HBRH −0.286130 14.036116 −0.458979 0.0000 0.0907 0.0907 0.081870 0.054866
277 FS HBRH −0.278953 15.320721 −1.227221 0.0000 0.0994 0.0994 0.077815 0.050692
278 FS HBRH −0.263505 15.834248 −2.950814 0.0000 0.1205 0.1205 0.069435 0.042065
279 FS HBRH −0.263505 15.834248 −0.888283 0.0000 0.1205 0.1205 0.069435 0.042065
280 USPV HBRH −0.234281 5.405271 −0.009602 0.0000 0.1690 0.1690 0.054887 0.027090
281 USPV HBRH −0.184816 5.182285 −0.000092 0.0000 0.2805 0.2805 0.034157 0.005750
282 USPV HBRH −0.136169 5.105547 −0.000001 0.0000 0.4284 0.4284 0.018542 −0.010324
283 USPV HBRH 0.057846 5.015714 0.000000 0.0000 0.7375 0.7375 0.003346 −0.025967
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284 USPV HBRH 0.037031 5.017615 0.000000 0.0000 0.8302 0.8302 0.001371 −0.028000
285 USPV HBRH −0.256779 5.837827 −0.130634 0.0000 0.1306 0.1306 0.065935 0.038463
286 USPV HBRH −0.263651 6.266212 −0.367864 0.0000 0.1203 0.1203 0.069512 0.042145
287 USPV HBRH −0.276192 6.572387 −0.980913 0.0000 0.1030 0.1030 0.076282 0.049114
288 USPV HBRH −0.276192 6.572387 −0.295284 0.0000 0.1030 0.1030 0.076282 0.049114
289 ERoS HBRH −0.234481 93.091502 −0.364904 0.0000 0.1687 0.1687 0.054981 0.027187
290 ERoS HBRH −0.207759 85.361839 −0.003941 0.0000 0.2240 0.2240 0.043164 0.015022
291 ERoS HBRH −0.182198 82.755136 −0.000052 0.0000 0.2875 0.2875 0.033196 0.004761
292 ERoS HBRH −0.091124 79.017465 0.000000 0.0000 0.5971 0.5971 0.008304 −0.020864
293 ERoS HBRH −0.111312 79.206401 0.000000 0.0000 0.5181 0.5181 0.012390 −0.016657
294 ERoS HBRH −0.246965 108.321812 −4.770826 0.0000 0.1465 0.1465 0.060992 0.033374
295 ERoS HBRH −0.250834 123.476061 −13.289413 0.0002 0.1401 0.1401 0.062918 0.035356
296 ERoS HBRH −0.257982 133.518156 −34.791338 0.0006 0.1287 0.1287 0.066555 0.039100
297 ERoS HBRH −0.257982 133.518156 −10.473236 0.0006 0.1287 0.1287 0.066555 0.039100
298 ASC HBRH −0.049579 2.680781 −0.007335 0.0155 0.7740 0.7740 0.002458 −0.026881
299 ASC HBRH −0.070073 2.606651 −0.000126 0.0001 0.6847 0.6847 0.004910 −0.024357
300 ASC HBRH −0.091050 2.587695 −0.000002 0.0000 0.5974 0.5974 0.008290 −0.020878
301 ASC HBRH −0.114341 2.442201 0.000000 0.0000 0.5067 0.5067 0.013074 −0.015953
302 ASC HBRH −0.118064 2.453005 0.000000 0.0000 0.4928 0.4928 0.013939 −0.015063
303 ASC HBRH −0.040729 2.855343 −0.074799 0.1595 0.8136 0.8136 0.001659 −0.027704
304 ASC HBRH −0.038112 3.037543 −0.191964 0.3075 0.8253 0.8253 0.001453 −0.027917
305 ASC HBRH −0.033478 3.066784 −0.429225 0.3848 0.8463 0.8463 0.001121 −0.028258
306 ASC HBRH −0.033478 3.066784 −0.129210 0.3848 0.8463 0.8463 0.001121 −0.028258
307 RCP HBRH −0.055419 1.593665 −0.002065 0.0000 0.7482 0.7482 0.003071 −0.026250
308 RCP HBRH −0.103506 1.592503 −0.000047 0.0000 0.5480 0.5480 0.010714 −0.018383
309 RCP HBRH −0.150060 1.594011 −0.000001 0.0000 0.3824 0.3824 0.022518 −0.006231
310 RCP HBRH −0.208290 1.535961 0.000000 0.0000 0.2228 0.2228 0.043385 0.015249
311 RCP HBRH −0.231175 1.543119 0.000000 0.0000 0.1749 0.1749 0.053442 0.025602
312 RCP HBRH −0.032930 1.606473 −0.015229 0.0029 0.8488 0.8488 0.001084 −0.028295
313 RCP HBRH −0.025904 1.622523 −0.032854 0.0350 0.8808 0.8808 0.000671 −0.028721
314 RCP HBRH −0.012764 1.576586 −0.041207 0.0813 0.9411 0.9411 0.000163 −0.029244
315 RCP HBRH −0.012764 1.576586 −0.012404 0.0813 0.9411 0.9411 0.000163 −0.029244
316 CS ERoS 0.295620 51.089202 0.193566 0.0000 0.0800 0.0800 0.087391 0.060550
317 CS ERoS 0.331792 56.118078 0.001563 0.0000 0.0481 0.0481 0.110086 0.083912
318 CS ERoS 0.358293 57.830500 0.000015 0.0000 0.0319 0.0319 0.128374 0.102738
319 CS ERoS 0.084827 65.905974 0.000000 0.0000 0.6228 0.6228 0.007196 −0.022005
320 CS ERoS 0.107960 65.737481 0.000000 0.0000 0.5308 0.5308 0.011655 −0.017414
321 CS ERoS 0.274790 40.634083 2.919209 0.0131 0.1048 0.1048 0.075509 0.048318
322 CS ERoS 0.267583 30.025712 8.532478 0.1907 0.1146 0.1146 0.071601 0.044295
323 CS ERoS 0.252926 19.986077 24.635373 0.5160 0.1367 0.1367 0.063972 0.036441
324 CS ERoS 0.252926 19.986077 7.415986 0.5160 0.1367 0.1367 0.063972 0.036441
325 TS ERoS 0.562644 5.576983 0.117092 0.0252 0.0004 0.0004 0.316568 0.296467
326 TS ERoS 0.607924 8.848829 0.000910 0.0000 0.0001 0.0001 0.369571 0.351029
327 TS ERoS 0.639143 9.976274 0.000009 0.0000 0.0000 0.0000 0.408504 0.391107
328 TS ERoS 0.292588 14.347418 0.000000 0.0000 0.0833 0.0833 0.085607 0.058714
329 TS ERoS 0.333232 14.227276 0.000000 0.0000 0.0470 0.0470 0.111044 0.084898
330 TS ERoS 0.535778 −1.126909 1.809041 0.7964 0.0008 0.0008 0.287058 0.266089
331 TS ERoS 0.526391 −7.901861 5.334861 0.2188 0.0010 0.0010 0.277087 0.255825
332 TS ERoS 0.507179 −14.739001 15.700921 0.0964 0.0016 0.0016 0.257230 0.235384
333 TS ERoS 0.507179 −14.739001 4.726448 0.0964 0.0016 0.0016 0.257230 0.235384
334 FS ERoS 0.205377 9.833960 0.017054 0.0000 0.2295 0.2295 0.042180 0.014008
335 FS ERoS 0.221374 10.312553 0.000132 0.0000 0.1944 0.1944 0.049006 0.021036
336 FS ERoS 0.229501 10.486081 0.000001 0.0000 0.1782 0.1782 0.052671 0.024808
337 FS ERoS 0.036046 11.152775 0.000000 0.0000 0.8347 0.8347 0.001299 −0.028074
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338 FS ERoS 0.039413 11.147949 0.000000 0.0000 0.8195 0.8195 0.001553 −0.027813
339 FS ERoS 0.194523 8.869969 0.262068 0.0001 0.2556 0.2556 0.037839 0.009541
340 FS ERoS 0.190537 7.898445 0.770501 0.0103 0.2657 0.2657 0.036304 0.007960
341 FS ERoS 0.182086 6.945734 2.249155 0.0857 0.2878 0.2878 0.033155 0.004719
342 FS ERoS 0.182086 6.945734 0.677063 0.0857 0.2878 0.2878 0.033155 0.004719
343 USPV ERoS 0.645174 3.688208 0.016991 0.0000 0.0000 0.0000 0.416249 0.399080
344 USPV ERoS 0.691903 4.169383 0.000131 0.0000 0.0000 0.0000 0.478730 0.463398
345 USPV ERoS 0.725676 4.333436 0.000001 0.0000 0.0000 0.0000 0.526606 0.512683
346 USPV ERoS 0.620180 4.907974 0.000000 0.0000 0.0001 0.0001 0.384623 0.366523
347 USPV ERoS 0.640000 4.889594 0.000000 0.0000 0.0000 0.0000 0.409599 0.392235
348 USPV ERoS 0.618160 2.701183 0.264124 0.0000 0.0001 0.0001 0.382121 0.363949
349 USPV ERoS 0.608824 1.703869 0.780821 0.0285 0.0001 0.0001 0.370667 0.352157
350 USPV ERoS 0.589881 0.679038 2.310856 0.5109 0.0002 0.0002 0.347959 0.328781
351 USPV ERoS 0.589881 0.679038 0.695637 0.5109 0.0002 0.0002 0.347959 0.328781
352 HBRH ERoS −0.234481 51.632405 −0.150674 0.0000 0.1687 0.1687 0.054981 0.027187
353 HBRH ERoS −0.244991 47.170465 −0.001133 0.0000 0.1498 0.1498 0.060021 0.032374
354 HBRH ERoS −0.250378 45.600695 −0.000010 0.0000 0.1408 0.1408 0.062689 0.035121
355 HBRH ERoS −0.039922 39.974847 0.000000 0.0000 0.8172 0.8172 0.001594 −0.027771
356 HBRH ERoS −0.049440 40.045698 0.000000 0.0000 0.7746 0.7746 0.002444 −0.026896
357 HBRH ERoS −0.227516 60.646771 −2.371986 0.0004 0.1820 0.1820 0.051764 0.023874
358 HBRH ERoS −0.224994 69.724786 −7.040810 0.0036 0.1871 0.1871 0.050622 0.022699
359 HBRH ERoS −0.219712 79.274806 −21.001758 0.0127 0.1979 0.1979 0.048274 0.020282
360 HBRH ERoS −0.219712 79.274806 −6.322159 0.0127 0.1979 0.1979 0.048274 0.020282
361 ASC ERoS −0.543122 6.445815 −0.051634 0.0000 0.0006 0.0006 0.294982 0.274246
362 ASC ERoS −0.585174 4.995638 −0.000400 0.0000 0.0002 0.0002 0.342428 0.323088
363 ASC ERoS −0.617435 4.507457 −0.000004 0.0000 0.0001 0.0001 0.381227 0.363027
364 ASC ERoS −0.314689 2.599928 0.000000 0.0000 0.0616 0.0616 0.099029 0.072530
365 ASC ERoS −0.363265 2.662620 0.000000 0.0000 0.0294 0.0294 0.131961 0.106431
366 ASC ERoS −0.520020 9.440434 −0.802103 0.0000 0.0012 0.0012 0.270421 0.248963
367 ASC ERoS −0.512241 12.470584 −2.371573 0.0001 0.0014 0.0014 0.262391 0.240697
368 ASC ERoS −0.496794 15.596328 −7.025658 0.0004 0.0021 0.0021 0.246804 0.224651
369 ASC ERoS −0.496794 15.596328 −2.114934 0.0004 0.0021 0.0021 0.246804 0.224651
370 RCP ERoS −0.330914 2.133923 −0.007922 0.0000 0.0487 0.0487 0.109504 0.083313
371 RCP ERoS −0.376303 1.933609 −0.000065 0.0000 0.0237 0.0237 0.141604 0.116357
372 RCP ERoS −0.414013 1.869216 −0.000001 0.0000 0.0121 0.0121 0.171407 0.147036
373 RCP ERoS −0.269210 1.556967 0.000000 0.0000 0.1123 0.1123 0.072474 0.045194
374 RCP ERoS −0.303115 1.569021 0.000000 0.0000 0.0723 0.0723 0.091879 0.065169
375 RCP ERoS −0.306866 2.559308 −0.119186 0.0001 0.0687 0.0687 0.094167 0.067525
376 RCP ERoS −0.298850 2.992587 −0.348403 0.0008 0.0766 0.0766 0.089311 0.062527
377 RCP ERoS −0.283008 3.406065 −1.007805 0.0040 0.0944 0.0944 0.080094 0.053038
378 RCP ERoS −0.283008 3.406065 −0.303379 0.0040 0.0944 0.0944 0.080094 0.053038
379 CS ASC −0.266200 70.677622 −1.833423 0.0000 0.1166 0.1166 0.070862 0.043535
380 CS ASC −0.192506 68.271436 −0.225307 0.0000 0.2607 0.2607 0.037059 0.008737
381 CS ASC −0.159165 67.549397 −0.032803 0.0000 0.3538 0.3538 0.025334 −0.003333
382 CS ASC −0.147486 67.191905 −0.017965 0.0000 0.3907 0.3907 0.021752 −0.007020
383 CS ASC −0.165498 67.710319 −0.124547 0.0000 0.3347 0.3347 0.027390 −0.001217
384 CS ASC −0.317586 75.050290 −6.179200 0.0000 0.0591 0.0591 0.100861 0.074416
385 CS ASC −0.333218 79.074048 −10.387030 0.0000 0.0470 0.0470 0.111034 0.084888
386 CS ASC −0.352850 67.936551 −8.663600 0.0000 0.0348 0.0348 0.124503 0.098753
387 CS ASC −0.352850 67.936551 −2.608003 0.0000 0.0348 0.0348 0.124503 0.098753
388 TS ASC −0.371395 16.719103 −0.812997 0.0000 0.0257 0.0257 0.137934 0.112579
389 TS ASC −0.279381 15.687327 −0.103926 0.0000 0.0989 0.0989 0.078054 0.050938
390 TS ASC −0.224252 15.337423 −0.014689 0.0000 0.1886 0.1886 0.050289 0.022356
391 TS ASC −0.171353 15.107116 −0.006634 0.0000 0.3177 0.3177 0.029362 0.000814
392 TS ASC −0.215619 15.361860 −0.051573 0.0000 0.2066 0.2066 0.046491 0.018447
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393 TS ASC −0.422217 18.475277 −2.610992 0.0000 0.0103 0.0103 0.178268 0.154099
394 TS ASC −0.434350 20.070081 −4.303288 0.0000 0.0081 0.0081 0.188660 0.164797
395 TS ASC −0.440057 15.426529 −3.434117 0.0000 0.0072 0.0072 0.193650 0.169934
396 TS ASC −0.440057 15.426529 −1.033772 0.0000 0.0072 0.0072 0.193650 0.169934
397 FS ASC 0.036492 11.097746 0.031874 0.0000 0.8327 0.8327 0.001332 −0.028041
398 FS ASC 0.063966 11.090721 0.009494 0.0000 0.7109 0.7109 0.004092 −0.025200
399 FS ASC 0.069324 11.104756 0.001812 0.0000 0.6879 0.6879 0.004806 −0.024465
400 FS ASC 0.069100 11.120763 0.001067 0.0000 0.6888 0.6888 0.004775 −0.024497
401 FS ASC 0.066715 11.101677 0.006367 0.0000 0.6991 0.6991 0.004451 −0.024830
402 FS ASC 0.014438 11.123430 0.035624 0.0000 0.9334 0.9334 0.000208 −0.029197
403 FS ASC 0.008473 11.132687 0.033496 0.0000 0.9609 0.9609 0.000072 −0.029338
404 FS ASC 0.004440 11.171274 0.013825 0.0000 0.9795 0.9795 0.000020 −0.029391
405 FS ASC 0.004440 11.171274 0.004162 0.0000 0.9795 0.9795 0.000020 −0.029391
406 USPV ASC −0.568934 5.399677 −0.157601 0.0000 0.0003 0.0003 0.323686 0.303795
407 USPV ASC −0.502004 5.230189 −0.023631 0.0000 0.0018 0.0018 0.252008 0.230008
408 USPV ASC −0.447915 5.164850 −0.003713 0.0000 0.0062 0.0062 0.200628 0.177117
409 USPV ASC −0.371304 5.113722 −0.001819 0.0000 0.0258 0.0258 0.137867 0.112510
410 USPV ASC −0.430700 5.171037 −0.013036 0.0000 0.0087 0.0087 0.185503 0.161547
411 USPV ASC −0.593223 5.680741 −0.464229 0.0000 0.0001 0.0001 0.351914 0.332853
412 USPV ASC −0.595380 5.941333 −0.746448 0.0000 0.0001 0.0001 0.354477 0.335491
413 USPV ASC −0.582619 5.132017 −0.575354 0.0000 0.0002 0.0002 0.339445 0.320016
414 USPV ASC −0.582619 5.132017 −0.173199 0.0000 0.0002 0.0002 0.339445 0.320016
415 HBRH ASC −0.049579 40.594427 −0.335109 0.0000 0.7740 0.7740 0.002458 −0.026881
416 HBRH ASC −0.091052 40.710013 −0.104582 0.0000 0.5974 0.5974 0.008291 −0.020877
417 HBRH ASC −0.112654 40.663258 −0.022785 0.0000 0.5130 0.5130 0.012691 −0.016348
418 HBRH ASC −0.142134 40.639521 −0.016991 0.0000 0.4083 0.4083 0.020202 −0.008616
419 HBRH ASC −0.123312 40.826770 −0.091071 0.0000 0.4737 0.4737 0.015206 −0.013759
420 HBRH ASC −0.015192 40.204772 −0.290080 0.0000 0.9299 0.9299 0.000231 −0.029174
421 HBRH ASC −0.001036 39.832882 −0.031701 0.0000 0.9952 0.9952 0.000001 −0.029411
422 HBRH ASC 0.031369 39.650913 0.755863 0.0000 0.8559 0.8559 0.000984 −0.028399
423 HBRH ASC 0.031369 39.650913 0.227537 0.0000 0.8559 0.8559 0.000984 −0.028399
424 ERoS ASC −0.543122 92.218082 −5.712918 0.0000 0.0006 0.0006 0.294982 0.274246
425 ERoS ASC −0.487450 86.202996 −0.871296 0.0000 0.0026 0.0026 0.237607 0.215184
426 ERoS ASC −0.435769 83.803982 −0.137159 0.0000 0.0079 0.0079 0.189895 0.166068
427 ERoS ASC −0.326479 81.593360 −0.060736 0.0000 0.0520 0.0520 0.106588 0.080311
428 ERoS ASC −0.402432 83.816290 −0.462527 0.0000 0.0150 0.0150 0.161951 0.137303
429 ERoS ASC −0.559757 102.130604 −16.633197 0.0000 0.0004 0.0004 0.313327 0.293131
430 ERoS ASC −0.558613 111.281384 −26.593706 0.0000 0.0004 0.0004 0.312048 0.291814
431 ERoS ASC −0.536518 82.376110 −20.118595 0.0000 0.0007 0.0007 0.287851 0.266906
432 ERoS ASC −0.536518 82.376110 −6.056301 0.0000 0.0007 0.0007 0.287851 0.266906
433 RCP ASC 0.817532 1.019731 0.205859 0.0000 0.0000 0.0000 0.668359 0.658605
434 RCP ASC 0.748105 1.231091 0.032011 0.0000 0.0000 0.0000 0.559661 0.546710
435 RCP ASC 0.686281 1.314202 0.005171 0.0000 0.0000 0.0000 0.470982 0.455422
436 RCP ASC 0.589916 1.380754 0.002627 0.0000 0.0002 0.0002 0.348001 0.328825
437 RCP ASC 0.665464 1.303851 0.018309 0.0000 0.0000 0.0000 0.442842 0.426455
438 RCP ASC 0.840345 0.664786 0.597778 0.0000 0.0000 0.0000 0.706180 0.697538
439 RCP ASC 0.841635 0.331701 0.959175 0.0202 0.0000 0.0000 0.708350 0.699772
440 RCP ASC 0.825594 1.371320 0.741115 0.0000 0.0000 0.0000 0.681605 0.672241
441 RCP ASC 0.825594 1.371320 0.223098 0.0000 0.0000 0.0000 0.681605 0.672241
442 CS RCP −0.311780 79.187609 −8.527803 0.0000 0.0642 0.0642 0.097207 0.070654
443 CS RCP −0.316587 73.215514 −2.791395 0.0000 0.0599 0.0599 0.100227 0.073764
444 CS RCP −0.313630 70.953828 −1.074032 0.0000 0.0625 0.0625 0.098363 0.071845
445 CS RCP −0.315927 74.539445 −1.649554 0.0000 0.0605 0.0605 0.099810 0.073334
446 CS RCP −0.317372 78.505386 −4.086523 0.0000 0.0593 0.0593 0.100725 0.074276
447 CS RCP −0.305280 90.302318 −19.752229 0.0000 0.0702 0.0702 0.093196 0.066525
448 CS RCP −0.302340 101.206498 −30.737982 0.0000 0.0731 0.0731 0.091409 0.064686
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449 CS RCP −0.295152 70.232348 −24.866765 0.0000 0.0805 0.0805 0.087115 0.060265
450 CS RCP −0.295152 70.232348 −7.485642 0.0000 0.0805 0.0805 0.087115 0.060265
451 TS RCP −0.321650 19.003440 −2.796214 0.0000 0.0558 0.0558 0.103459 0.077090
452 TS RCP −0.329149 17.062865 −0.922398 0.0000 0.0500 0.0500 0.108339 0.082114
453 TS RCP −0.328647 16.327649 −0.357708 0.0000 0.0503 0.0503 0.108009 0.081774
454 TS RCP −0.330369 17.516156 −0.548248 0.0000 0.0491 0.0491 0.109144 0.082942
455 TS RCP −0.330440 18.816681 −1.352311 0.0000 0.0490 0.0490 0.109191 0.082990
456 TS RCP −0.313657 22.615719 −6.450167 0.0000 0.0625 0.0625 0.098380 0.071862
457 TS RCP −0.310183 26.159902 −10.022973 0.0001 0.0656 0.0656 0.096214 0.069632
458 TS RCP −0.301861 16.055905 −8.083126 0.0000 0.0736 0.0736 0.091120 0.064389
459 TS RCP −0.301861 16.055905 −2.433263 0.0000 0.0736 0.0736 0.091120 0.064389
460 FS RCP −0.002053 11.184655 −0.007123 0.0000 0.9905 0.9905 0.000004 −0.029407
461 FS RCP −0.059707 11.339342 −0.066763 0.0000 0.7294 0.7294 0.003565 −0.025742
462 FS RCP −0.106002 11.373457 −0.046035 0.0000 0.5384 0.5384 0.011236 −0.017845
463 FS RCP −0.087791 11.464327 −0.058131 0.0000 0.6107 0.6107 0.007707 −0.021478
464 FS RCP −0.063122 11.481795 −0.103072 0.0000 0.7146 0.7146 0.003984 −0.025310
465 FS RCP 0.029273 10.881983 0.240196 0.0000 0.8654 0.8654 0.000857 −0.028530
466 FS RCP 0.039716 10.592340 0.512068 0.0002 0.8181 0.8181 0.001577 −0.027788
467 FS RCP 0.060098 11.072289 0.642116 0.0000 0.7277 0.7277 0.003612 −0.025694
468 FS RCP 0.060098 11.072289 0.193296 0.0000 0.7277 0.7277 0.003612 −0.025694
469 USPV RCP −0.582828 5.992315 −0.641168 0.0000 0.0002 0.0002 0.339688 0.320267
470 USPV RCP −0.554868 5.510830 −0.196771 0.0000 0.0004 0.0004 0.307878 0.287522
471 USPV RCP −0.521885 5.334800 −0.071882 0.0000 0.0011 0.0011 0.272363 0.250962
472 USPV RCP −0.539686 5.589440 −0.113335 0.0000 0.0007 0.0007 0.291261 0.270415
473 USPV RCP −0.555993 5.883336 −0.287937 0.0000 0.0004 0.0004 0.309129 0.288809
474 USPV RCP −0.590432 6.890460 −1.536494 0.0000 0.0002 0.0002 0.348610 0.329451
475 USPV RCP −0.591281 7.769025 −2.417779 0.0000 0.0001 0.0001 0.349613 0.330484
476 USPV RCP −0.589648 5.339331 −1.998062 0.0000 0.0002 0.0002 0.347684 0.328499
477 USPV RCP −0.589648 5.339331 −0.601477 0.0000 0.0002 0.0002 0.347684 0.328499
478 HBRH RCP −0.055419 42.042378 −1.487582 0.0000 0.7482 0.7482 0.003071 −0.026250
479 HBRH RCP −0.059554 41.070969 −0.515318 0.0000 0.7301 0.7301 0.003547 −0.025761
480 HBRH RCP −0.049270 40.511711 −0.165583 0.0000 0.7754 0.7754 0.002428 −0.026913
481 HBRH RCP −0.047011 40.997438 −0.240888 0.0000 0.7854 0.7854 0.002210 −0.027137
482 HBRH RCP −0.052685 41.782675 −0.665751 0.0000 0.7602 0.7602 0.002776 −0.026554
483 HBRH RCP −0.044729 43.245445 −2.840126 0.0027 0.7956 0.7956 0.002001 −0.027352
484 HBRH RCP −0.039640 44.285542 −3.955010 0.0298 0.8185 0.8185 0.001571 −0.027794
485 HBRH RCP −0.027139 40.148932 −2.243900 0.0000 0.8752 0.8752 0.000737 −0.028654
486 HBRH RCP −0.027139 40.148932 −0.675481 0.0000 0.8752 0.8752 0.000737 −0.028654
487 ERoS RCP −0.330914 99.464458 −13.823229 0.0000 0.0487 0.0487 0.109504 0.083313
488 ERoS RCP −0.298326 88.526158 −4.017212 0.0000 0.0772 0.0772 0.088998 0.062204
489 ERoS RCP −0.262390 84.519693 −1.372315 0.0000 0.1221 0.1221 0.068849 0.041462
490 ERoS RCP −0.276809 89.598988 −2.207320 0.0000 0.1022 0.1022 0.076623 0.049465
491 ERoS RCP −0.295622 95.936765 −5.813376 0.0000 0.0800 0.0800 0.087393 0.060551
492 ERoS RCP −0.342215 119.666621 −33.816057 0.0000 0.0411 0.0411 0.117111 0.091144
493 ERoS RCP −0.344671 139.348934 −53.516849 0.0000 0.0395 0.0395 0.118798 0.092881
494 ERoS RCP −0.347025 85.635639 −44.651839 0.0000 0.0381 0.0381 0.120426 0.094556
495 ERoS RCP −0.347025 85.635639 −13.441543 0.0000 0.0381 0.0381 0.120426 0.094556
496 ASC RCP 0.817532 −2.518481 3.246674 0.0003 0.0000 0.0000 0.668359 0.658605
497 ASC RCP 0.817113 −0.203489 1.046058 0.5736 0.0000 0.0000 0.667674 0.657900
498 ASC RCP 0.790176 0.685673 0.392889 0.0247 0.0000 0.0000 0.624378 0.613330
499 ASC RCP 0.800249 −0.642195 0.606666 0.1436 0.0000 0.0000 0.640398 0.629821
500 ASC RCP 0.813711 −2.155522 1.521251 0.0008 0.0000 0.0000 0.662126 0.652188
501 ASC RCP 0.801181 −6.757952 7.526514 0.0000 0.0000 0.0000 0.641890 0.631358
502 ASC RCP 0.792474 −10.896336 11.697965 0.0000 0.0000 0.0000 0.628015 0.617075
503 ASC RCP 0.769558 0.899398 9.413692 0.0034 0.0000 0.0000 0.592219 0.580226
504 ASC RCP 0.769558 0.899398 2.833804 0.0034 0.0000 0.0000 0.592219 0.580226
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Table A2. All SLR Models in Detail.

M# SLR Model M# SLR Model

1 TS = −3.66771333146045 + 0.278209291384233 × CS 253 CS = 82.4394445799055 + −0.405631800581188 × HbRH
2 TS = 5.76632220397327 + 0.0019846216045102 × CS ˆ2 254 CS = 75.4057601873381 + −0.00528600953754371 × HbRH ˆ2
3 TS = 8.98916688640433 + 1.80409811683411e-05 × CS ˆ3 255 CS = 72.8629873306788 + −8.21782427238269e-05 × HbRH ˆ3
4 TS = 14.5688311121099 + 2.68866314762229e-41 × eˆ CS 256 CS = 66.9027834245253 + −5.14345524118181e-26 × eˆ HbRH
5 TS = 14.5656439363982 + 1.41265796681029e-28 × 2ˆ CS 257 CS = 67.1708457607848 + −7.48294418841369e-18 × 2ˆ HbRH
6 TS = −22.3244737238133 + 4.57533122714702 × CS ˆ(1/2) 258 CS = 96.0472599467819 + −4.77054201210767 × HbRH ˆ(1/2)
7 TS = −40.9312402935274 + 13.814582720438 × CS ˆ(1/3) 259 CS = 109.56395500385 + −12.8042675489701 × HbRH ˆ(1/3)
8 TS = −62.8509407538376 + 42.7854090996044 × log(CS) 260 CS = 115.311599942547 + −31.0342296205957 × log(HbRH)
9 TS = −62.8509407538376 + 12.8796915157356 × lg(CS) 261 CS = 115.311599942547 + −9.34223400812292 × lg(HbRH)
10 FS = 4.24393079882703 + 0.104527758280078 × CS 262 TS = 19.9622058974958 + −0.1303029585153 × HbRH
11 FS = 7.75780828627991 + 0.000752403905718667 × CS ˆ2 263 TS = 17.6543146320032 + −0.00166994242748144 × HbRH ˆ2
12 FS = 8.96287429220537 + 6.89191529938516e-06 × CS ˆ3 264 TS = 16.83840458393 + −2.58037721938791e-05 × HbRH ˆ3
13 FS = 11.0870361916049 + 1.12206961389585e-41 × eˆ CS 265 TS = 15.0165743978521 + −2.03721394407596e-26 × eˆ HbRH
14 FS = 11.0859072057969 + 5.88205048357479e-29 × 2ˆ CS 266 TS = 15.1093101981532 + −2.84866062385744e-18 × 2ˆ HbRH
15 FS = −2.69616622448087 + 1.71044934171127 × CS ˆ(1/2) 267 TS = 24.4677526180197 + −1.55399032698069 × HbRH ˆ(1/2)
16 FS = −9.61603490429178 + 5.15551033198057 × CS ˆ(1/3) 268 TS = 28.9510915589449 + −4.19472168720189 × HbRH ˆ(1/3)
17 FS = −17.6931562993013 + 15.9103695111459 × log(CS) 269 TS = 31.0462473657117 + −10.3012836038027 × log(HbRH)
18 FS = −17.6931562993013 + 4.7894984649526 × lg(CS) 270 TS = 31.0462473657117 + −3.10099535858616 × lg(HbRH)
19 USPV = 3.8574983286046 + 0.0175825945943531 × CS 271 FS = 12.7435704060995 + −0.039445290747868 × HbRH
20 USPV = 4.45626900695745 + 0.000124865325500488 × CS ˆ2 272 FS = 12.0754048065075 + −0.000523213761785206 × HbRH ˆ2
21 USPV = 4.6595172220698 + 1.13358339686721e-06 × CS ˆ3 273 FS = 11.832096250984 + −8.23893341545536e-06 × HbRH ˆ3
22 USPV = 5.00517282814257 + 2.32706905364138e-42 × eˆ CS 274 FS = 11.2321332373504 + −4.95164302968338e-27 × eˆ HbRH
23 USPV = 5.00497635203039 + 1.21736498704813e-29 × 2ˆ CS 275 FS = 11.2579775085298 + −7.20711857382233e-19 × 2ˆ HbRH
24 USPV = 2.67038043865855 + 0.290146899587109 × CS ˆ(1/2) 276 FS = 14.0361157995126 + −0.458978534407627 × HbRH ˆ(1/2)
25 USPV = 1.4858023636118 + 0.877204473839206 × CS ˆ(1/3) 277 FS = 15.3207207454225 + −1.22722061378818 × HbRH ˆ(1/3)
26 USPV = 0.0798296243915567 + 2.72458142347606 × log(CS) 278 FS = 15.8342481716803 + −2.9508137441398 × log(HbRH)
27 USPV = 0.0798296243915644 + 0.820180734095162 × lg(CS) 279 FS = 15.8342481716803 + −0.888283448603619 × lg(HbRH)
28 HbRH = 65.6939723416543 + −0.39066291994853 × CS 280 USPV = 5.40527092455439 + −0.00960161616381508 × HbRH
29 HbRH = 52.9175508566686 + −0.00289053323693466 × CS ˆ2 281 USPV = 5.18228451266245 + −9.23365939017983e-05 × HbRH ˆ2
30 HbRH = 48.4793106810452 + −2.70731778165387e-05 × CS ˆ3 282 USPV = 5.105547006142 + −1.03094075674674e-06 × HbRH ˆ3
31 HbRH = 40.1336082855694 + −4.38891161917149e-41 × eˆ CS 283 USPV = 5.01571398268165 + 6.35172119916297e-28 × eˆ HbRH
32 HbRH = 40.1385314994 + −2.30412190648458e-28 × 2ˆ CS 284 USPV = 5.01761451645092 + 4.7746220119381e-20 × 2ˆ HbRH
33 HbRH = 90.8138878413038 + −6.29176473409599 × CS ˆ(1/2) 285 USPV = 5.83782737563726 + −0.130633680633248 × HbRH ˆ(1/2)
34 HbRH = 115.838473020169 + −18.8576275257236 × CS ˆ(1/3) 286 USPV = 6.26621225603992 + −0.367863560422559 × HbRH ˆ(1/3)
35 HbRH = 144.146417510672 + −57.5149717946972 × log(CS) 287 USPV = 6.57238703587405 + −0.980912750035412 × log(HbRH)
36 HbRH = 144.146417510672 + −17.3137317099717 × lg(CS) 288 USPV = 6.57238703587405 + −0.295284160889903 × lg(HbRH)
37 ERoS = 48.638330809566 + 0.451481569206116 × CS 289 ERoS = 93.0915021332562 + −0.364903933321156 × HbRH
38 ERoS = 63.1121233323246 + 0.00340477469183933 × CS ˆ2 290 ERoS = 85.3618387083167 + −0.00394146430058687 × HbRH ˆ2
39 ERoS = 68.1424331649685 + 3.25053196642623e-05 × CS ˆ3 291 ERoS = 82.755136193978 + −5.23793613335234e-05 × HbRH ˆ3
40 ERoS = 78.1544409313211 + 5.37587881956385e-41 × eˆ CS 292 ERoS = 79.0174650656451 + −3.79940100453875e-26 × eˆ HbRH
41 ERoS = 78.1471425518886 + 2.83074450890616e-28 × 2ˆ CS 293 ERoS = 79.2064011656095 + −5.44974424110028e-18 × 2ˆ HbRH
42 ERoS = 20.1584377318609 + 7.2033577129187 × CS ˆ(1/2) 294 ERoS = 108.32181180241 + −4.77082649816592 × HbRH ˆ(1/2)
43 ERoS = −8.22243286374305 + 21.5230297614624 × CS ˆ(1/3) 295 ERoS = 123.47606121203 + −13.2894132486659 × HbRH ˆ(1/3)
44 ERoS = −39.8009179828865 + 65.241657789968 × log(CS) 296 ERoS = 133.518155940357 + −34.7913378742457 × log(HbRH)
45 ERoS = −39.800917982886 + 19.6396959616249 × lg(CS) 297 ERoS = 133.518155940357 + −10.4732362894283 × lg(HbRH)
46 ASC = 4.95132054829306 + −0.0386503401063175 × CS 298 ASC = 2.68078131101273 + −0.00733510672804191 × HbRH
47 ASC = 3.72539269504536 + −0.000294369718030655 × CS ˆ2 299 ASC = 2.60665094129842 + −0.000126382796341767 × HbRH ˆ2
48 ASC = 3.30102796537324 + −2.84321291493011e-06 × CS ˆ3 300 ASC = 2.58769478660714 + −2.48849929099358e-06 × HbRH ˆ3
49 ASC = 2.44093528214272 + −6.72399110323773e-42 × eˆ CS 301 ASC = 2.44220142607004 + −4.53236511525499e-27 × eˆ HbRH
50 ASC = 2.44170772986293 + −3.53122466148145e-29 × 2ˆ CS 302 ASC = 2.45300492295719 + −5.49529605773755e-19 × 2ˆ HbRH
51 ASC = 7.37026715497592 + −0.614301465019437 × CS ˆ(1/2) 303 ASC = 2.85534341592287 + −0.0747993160120245 × HbRH ˆ(1/2)
52 ASC = 9.78274044602861 + −1.83353621086711 × CS ˆ(1/3) 304 ASC = 3.03754257943617 + −0.191963698502796 × HbRH ˆ(1/3)
53 ASC = 12.4554180798691 + −5.54827132735972 × log(CS) 305 ASC = 3.06678420213484 + −0.429225020225469 × log(HbRH)
54 ASC = 12.4554180798691 + −1.67019609361768 × lg(CS) 306 ASC = 3.06678420213485 + −0.129209605977347 × lg(HbRH)
55 RCP = 2.2672230225556 + −0.0113988195146484 × CS 307 RCP = 1.59366458546644 + −0.00206458751119777 × HbRH
56 RCP = 1.88299647072557 + −8.18219613510574e-05 × CS ˆ2 308 RCP = 1.59250269958169 + −4.7007782059367e-05 × HbRH ˆ2
57 RCP = 1.75078592624905 + −7.4585338236417e-07 × CS ˆ3 309 RCP = 1.5940113480029 + −1.03273072317156e-06 × HbRH ˆ3
58 RCP = 1.51818175249647 + −8.62375516317953e-43 × eˆ CS 310 RCP = 1.53596131120061 + −2.07901551267993e-27 × eˆ HbRH
59 RCP = 1.51830999498204 + −4.54842382692243e-30 × 2ˆ CS 311 RCP = 1.54311874344824 + −2.70943115773082e-19 × 2ˆ HbRH
60 RCP = 3.0251758982295 + −0.186665056505132 × CS ˆ(1/2) 312 RCP = 1.60647332079248 + −0.0152285890543703 × HbRH ˆ(1/2)
61 RCP = 3.78074488916298 + −0.562728438143532 × CS ˆ(1/3) 313 RCP = 1.62252334316423 + −0.0328544818159167 × HbRH ˆ(1/3)
62 RCP = 4.663140971559 + −1.73705575957867 × log(CS) 314 RCP = 1.5765860616204 + −0.0412065467018546 × log(HbRH)
63 RCP = 4.66314097155899 + −0.522905887774061 × lg(CS) 315 RCP = 1.5765860616204 + −0.0124044065749873 × lg(HbRH)
64 CS = 25.6010477687945 + 2.75406936542173 × TS 316 CS = 51.089202219025 + 0.193565839661132 × ERoS
65 CS = 44.236410022525 + 0.0946888189494539 × TS ˆ2 317 CS = 56.1180779980333 + 0.00156343014265882 × ERoS ˆ2
66 CS = 50.9063816671094 + 0.00398118874295442 × TS ˆ3 318 CS = 57.8305000886192 + 1.5170484861907e-05 × ERoS ˆ3
67 CS = 64.102513981059 + 1.08352527227825e-08 × eˆ TS 319 CS = 65.905973876004 + 5.56007324663602e-43 × eˆ ERoS
68 CS = 62.93479281879 + 9.97078792156074e-06 × 2ˆ TS 320 CS = 65.7374812451052 + 9.51622799059243e-30 × 2ˆ ERoS
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Table A2. Cont.

M# SLR Model M# SLR Model

69 CS = −10.6326736740597 + 20.195416541604 × TS ˆ(1/2) 321 CS = 40.6340826309488 + 2.9192088069464 × ERoS ˆ(1/2)
70 CS = −46.6793703465627 + 46.4175211250117 × TS ˆ(1/3) 322 CS = 30.0257116537128 + 8.53247838099428 × ERoS ˆ(1/3)
71 CS = −29.2331517456234 + 82.8403738530719 × log(TS) 323 CS = 19.9860767860859 + 24.6353731468881 × log(ERoS)
72 CS = −29.2331517456234 + 24.9374373817928 × lg(TS) 324 CS = 19.9860767860861 + 7.41598627158826 × lg(ERoS)
73 FS = 6.54685987581198 + 0.313124883867076 × TS 325 TS = 5.57698297874872 + 0.117091719673417 × ERoS
74 FS = 8.70756838739812 + 0.0105856072945152 × TS ˆ2 326 TS = 8.84882889224645 + 0.000910458534534851 × ERoS ˆ2
75 FS = 9.48379504325131 + 0.000437165189201065 × TS ˆ3 327 TS = 9.97627368064185 + 8.60117098114261e-06 × ERoS ˆ3
76 FS = 10.9579310971029 + 1.06591164804576e-09 × eˆ TS 328 TS = 14.3474181010307 + 6.0953908828585e-43 × eˆ ERoS
77 FS = 10.8407343563029 + 9.87757373295459e-07 × 2ˆ TS 329 TS = 14.2272764535642 + 9.33570995950449e-30 × 2ˆ ERoS
78 FS = 2.36028455472909 + 2.31370552755273 × TS ˆ(1/2) 330 TS = −1.1269089945942 + 1.80904069963451 × ERoS ˆ(1/2)
79 FS = −1.80037496774033 + 5.33057504676748 × TS ˆ(1/3) 331 TS = −7.90186096886077 + 5.33486061240443 × ERoS ˆ(1/3)
80 FS = 0.153469672168541 + 9.55644054219172 × log(TS) 332 TS = −14.7390012786689 + 15.7009205255199 × log(ERoS)
81 FS = 0.153469672168538 + 2.87677525497907 × lg(TS) 333 TS = −14.7390012786689 + 4.72644803771776 × lg(ERoS)
82 USPV = 3.8582700632675 + 0.0788332945887362 × TS 334 FS = 9.83395980893246 + 0.0170538323228349 × ERoS
83 USPV = 4.41351597695613 + 0.00261674011715778 × TS ˆ2 335 FS = 10.3125531496547 + 0.000132286637799236 × ERoS ˆ2
84 USPV = 4.61424167992712 + 0.000105778685478559 × TS ˆ3 336 FS = 10.486081411843 + 1.23231731631889e-06 × ERoS ˆ3
85 USPV = 4.98138269039791 + 2.06326729117493e-10 × eˆ TS 337 FS = 11.1527750704836 + 2.99625338895325e-44 × eˆ ERoS
86 USPV = 4.95689326088985 + 1.965467135128e-07 × 2ˆ TS 338 FS = 11.1479488279815 + 4.40573016768686e-31 × 2ˆ ERoS
87 USPV = 2.78745215424647 + 0.586914035384849 × TS ˆ(1/2) 339 FS = 8.86996914221672 + 0.262067593014333 × ERoS ˆ(1/2)
88 USPV = 1.72467454463204 + 1.35521823819063 × TS ˆ(1/3) 340 FS = 7.89844511181229 + 0.770500724179212 × ERoS ˆ(1/3)
89 USPV = 2.21017728190999 + 2.43932132966721 × log(TS) 341 FS = 6.94573366509112 + 2.24915473694021 × log(ERoS)
90 USPV = 2.21017728191 + 0.734308889292778 × lg(TS) 342 FS = 6.94573366509116 + 0.677063040708727 × lg(ERoS)
91 HbRH = 58.1513390501432 + −1.24230352426858 × TS 343 USPV = 3.68820846972565 + 0.0169908027073602 × ERoS
92 HbRH = 50.2249700104166 + −0.044770875619361 × TS ˆ2 344 USPV = 4.16938309261067 + 0.000131129610994454 × ERoS ˆ2
93 HbRH = 47.2679048675656 + −0.00193325336213942 × TS ˆ3 345 USPV = 4.33343560349138 + 1.23579707391254e-06 × ERoS ˆ3
94 HbRH = 40.7389382402033 + −4.66451848397386e-09 × eˆ TS 346 USPV = 4.90797369481416 + 1.63496289148364e-43 × eˆ ERoS
95 HbRH = 41.3078778310346 + −4.48876900783616e-06 × 2ˆ TS 347 USPV = 4.88959412661251 + 2.26894827628225e-30 × 2ˆ ERoS
96 HbRH = 73.3631224275738 + −8.81243566756599 × TS ˆ(1/2) 348 USPV = 2.70118294373709 + 0.2641244615984 × ERoS ˆ(1/2)
97 HbRH = 88.4709404052577 + −19.9993370745879 × TS ˆ(1/3) 349 USPV = 1.70386942486284 + 0.780820994806742 × ERoS ˆ(1/3)
98 HbRH = 79.8183132517281 + −34.7074847278588 × log(TS) 350 USPV = 0.67903797185686 + 2.31085638391061 × log(ERoS)
99 HbRH = 79.8183132517281 + −10.447993977135 × lg(TS) 351 USPV = 0.679037971856871 + 0.695637087228694 × lg(ERoS)
100 ERoS = 38.619764851316 + 2.70358942299871 × TS 352 HbRH = 51.6324046062446 + −0.150673692373029 × ERoS
101 ERoS = 56.6412391630876 + 0.0941220459496348 × TS ˆ2 353 HbRH = 47.1704653947156 + −0.00113291769977207 × ERoS ˆ2
102 ERoS = 63.3000205646993 + 0.00394992641131165 × TS ˆ3 354 HbRH = 45.600695422352 + −1.04038244458094e-05 × ERoS ˆ3
103 ERoS = 77.1328153398415 + 7.09631280316041e-09 × eˆ TS 355 HbRH = 39.9748474387209 + −2.56797542626781e-43 × eˆ ERoS
104 ERoS = 76.0491484044899 + 7.47562545588949e-06 × 2ˆ TS 356 HbRH = 40.0456981734223 + −4.27679705661863e-30 × 2ˆ ERoS
105 ERoS = 4.01611935228142 + 19.5716763093765 × TS ˆ(1/2) 357 HbRH = 60.6467709227773 + −2.37198566049296 × ERoS ˆ(1/2)
106 ERoS = −30.329978647475 + 44.7426132701713 × TS ˆ(1/3) 358 HbRH = 69.7247860734917 + −7.04081020027556 × ERoS ˆ(1/3)
107 ERoS = −12.3728718803923 + 78.8622864433468 × log(TS) 359 HbRH = 79.2748060130706 + −21.0017577568586 × log(ERoS)
108 ERoS = −12.3728718803923 + 23.7399137460923 × lg(TS) 360 HbRH = 79.2748060130704 + −6.32215904648311 × lg(ERoS)
109 ASC = 4.89596300636296 + −0.16966119937039 × TS 361 ASC = 6.4458151840564 + −0.0516341811061645 × ERoS
110 ASC = 3.87624826801362 + −0.00638384276646585 × TS ˆ2 362 ASC = 4.99563817395329 + −0.000400352711259067 × ERoS ˆ2
111 ASC = 3.49223640961992 + −0.000285395470139084 × TS ˆ3 363 ASC = 4.50745712993463 + −3.79575450452663e-06 × ERoS ˆ3
112 ASC = 2.53307238173374 + −7.11652324318657e-10 × eˆ TS 364 ASC = 2.59992789799722 + −2.99484600134824e-43 × eˆ ERoS
113 ASC = 2.62336847692134 + −6.95199732594167e-07 × 2ˆ TS 365 ASC = 2.66261962836728 + −4.64911698183225e-30 × 2ˆ ERoS
114 ASC = 6.86395722224124 + −1.17477367334536 × TS ˆ(1/2) 366 ASC = 9.44043438324327 + −0.802103266576792 × ERoS ˆ(1/2)
115 ASC = 8.82414184541521 + −2.64397265299706 × TS ˆ(1/3) 367 ASC = 12.47058422184 + −2.37157285658742 × ERoS ˆ(1/3)
116 ASC = 7.59151813198557 + −4.51149961240018 × log(TS) 368 ASC = 15.5963281401096 + −7.02565846862435 × log(ERoS)
117 ASC = 7.59151813198557 + −1.35809670875888 × lg(TS) 369 ASC = 15.5963281401096 + −2.1149339383466 × lg(ERoS)
118 RCP = 2.0582468256364 + −0.0369995440023129 × TS 370 RCP = 2.13392259412586 + −0.00792174587898038 × ERoS
119 RCP = 1.8103952102763 + −0.00128284918583967 × TS ˆ2 371 RCP = 1.93360893463405 + −6.48277942505363e-05 × ERoS ˆ2
120 RCP = 1.71859132373958 + −5.35652053686268e-05 × TS ˆ3 372 RCP = 1.86921630500704 + −6.40894224684878e-07 × ERoS ˆ3
121 RCP = 1.53188741984192 + −1.00594344665696e-10 × eˆ TS 373 RCP = 1.55696749364964 + −6.45133418255133e-44 × eˆ ERoS
122 RCP = 1.54503002030309 + −9.93922733664546e-08 × 2ˆ TS 374 RCP = 1.56902059329398 + −9.76832901653834e-31 × 2ˆ ERoS
123 RCP = 2.53415581702009 + −0.268461007718213 × TS ˆ(1/2) 375 RCP = 2.55930807240737 + −0.11918592439322 × ERoS ˆ(1/2)
124 RCP = 3.0066266949075 + −0.614281461688656 × TS ˆ(1/3) 376 RCP = 2.99258729570875 + −0.348402784873324 × ERoS ˆ(1/3)
125 RCP = 2.76276107851835 + −1.08503484360649 × log(TS) 377 RCP = 3.40606522122726 + −1.00780487661076 × log(ERoS)
126 RCP = 2.76276107851835 + −0.326628034266129 × lg(TS) 378 RCP = 3.40606522122725 + −0.303379497636274 × lg(ERoS)
127 CS = −6.32669651116645 + 6.49948062049916 × FS 379 CS = 70.6776219375967 + −1.83342313666841 × ASC
128 CS = 29.9785358256873 + 0.28556239381448 × FS ˆ2 380 CS = 68.2714363423197 + −0.225306775541211 × ASC ˆ2
129 CS = 42.0916447762494 + 0.0164212042293632 × FS ˆ3 381 CS = 67.549396985626 + −0.0328026961997557 × ASC ˆ3
130 CS = 60.4701313902147 + 2.77820273664116e-05 × eˆ FS 382 CS = 67.1919053071617 + −0.0179652802360796 × eˆ ASC
131 CS = 57.7305850492271 + 0.00213782451902893 × 2ˆ FS 383 CS = 67.7103192435025 + −0.12454655051729 × 2ˆ ASC
132 CS = −78.8618812949019 + 43.5263527058322 × FS ˆ(1/2) 384 CS = 75.0502895075756 + −6.17920002596685 × ASC ˆ(1/2)
133 CS = −151.371735363849 + 97.5647049792941 × FS ˆ(1/3) 385 CS = 79.0740475713104 + −10.3870301811374 × ASC ˆ(1/3)
134 CS = −107.999762435771 + 166.924543040243 × log(FS) 386 CS = 67.936550509068 + −8.66359978801819 × log(ASC)
135 CS = −107.999762435771 + 50.2492944676166 × lg(FS) 387 CS = 67.936550509068 + −2.60800340662158 × lg(ASC)
136 TS = −7.19991865837233 + 1.96680522970567 × FS 388 TS = 16.7191027509542 + −0.812996500399415 × ASC
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137 TS = 3.94225264358756 + 0.085188466515247 × FS ˆ2 389 TS = 15.6873265109676 + −0.10392640936173 × ASC ˆ2
138 TS = 7.656856290228 + 0.0048301982685163 × FS ˆ3 390 TS = 15.3374234564199 + −0.014689150374878 × ASC ˆ3
139 TS = 13.2451876094529 + 7.3023151163122e-06 × eˆ FS 391 TS = 15.1071164105457 + −0.00663398866735903 × eˆ ASC
140 TS = 12.4443150069096 + 0.000582075431634922 × 2ˆ FS 392 TS = 15.3618601830077 + −0.0515731674779195 × 2ˆ ASC
141 TS = −29.4656951691208 + 13.2662252636793 × FS ˆ(1/2) 393 TS = 18.4752766762153 + −2.61099160196387 × ASC ˆ(1/2)
142 TS = −51.7242857085425 + 29.8074489486029 × FS ˆ(1/3) 394 TS = 20.0700807482682 + −4.30328784764094 × ASC ˆ(1/3)
143 TS = −38.7280892344743 + 51.2417059142874 × log(FS) 395 TS = 15.4265286526908 + −3.43411719112025 × log(ASC)
144 TS = −38.7280892344744 + 15.425290509193 × lg(FS) 396 TS = 15.4265286526908 + −1.03377228315253 × lg(ASC)
145 USPV = 3.9220780594136 + 0.0985428823674005 × FS 397 FS = 11.0977464494996 + 0.031873579279226 × ASC
146 USPV = 4.47728767296606 + 0.00429215529920093 × FS ˆ2 398 FS = 11.0907213145279 + 0.00949415382452752 × ASC ˆ2
147 USPV = 4.66109666398569 + 0.000245637379412544 × FS ˆ3 399 FS = 11.1047564029815 + 0.00181183855164129 × ASC ˆ3
148 USPV = 4.92654609777185 + 4.60706117880123e-07 × eˆ FS 400 FS = 11.1207633178236 + 0.00106742689440128 × eˆ ASC
149 USPV = 4.88841164928704 + 3.36308959813418e-05 × 2ˆ FS 401 FS = 11.1016774194187 + 0.00636702684383551 × 2ˆ ASC
150 USPV = 2.8095900623364 + 0.663750016435372 × FS ˆ(1/2) 402 FS = 11.1234296660006 + 0.0356237890342107 × ASC ˆ(1/2)
151 USPV = 1.69679136870262 + 1.49096966175817 × FS ˆ(1/3) 403 FS = 11.1326874840045 + 0.0334964933392047 × ASC ˆ(1/3)
152 USPV = 2.34744679463731 + 2.56255150271304 × log(FS) 404 FS = 11.1712737674145 + 0.0138252031036824 × log(ASC)
153 USPV = 2.3474467946373 + 0.771404867750439 × lg(FS) 405 FS = 11.1712737674145 + 0.00416180083035513 × lg(ASC)
154 HbRH = 66.1885884598235 + −2.36217666323683 × FS 406 USPV = 5.39967741586927 + −0.157601360131323 × ASC
155 HbRH = 54.2735150191536 + −0.113846998920061 × FS ˆ2 407 USPV = 5.23018907761182 + −0.0236309154497613 × ASC ˆ2
156 HbRH = 50.1907307977067 + −0.00705311601461987 × FS ˆ3 408 USPV = 5.16485024635992 + −0.00371278492484695 × ASC ˆ3
157 HbRH = 42.9011476603809 + −1.48131754198992e-05 × eˆ FS 409 USPV = 5.11372151021348 + −0.00181910156412128 × eˆ ASC
158 HbRH = 44.2791893797267 + −0.00111924473609312 × 2ˆ FS 410 USPV = 5.17103704429333 + −0.0130363801376633 × 2ˆ ASC
159 HbRH = 89.7599134019201 + −14.9823912521973 × FS ˆ(1/2) 411 USPV = 5.6807412003617 + −0.464228977845544 × ASC ˆ(1/2)
160 HbRH = 113.273550501112 + −32.9353495751625 × FS ˆ(1/3) 412 USPV = 5.94133254828393 + −0.746448185862817 × ASC ˆ(1/3)
161 HbRH = 96.2588355860703 + −54.0764110249104 × log(FS) 413 USPV = 5.13201708600292 + −0.575354478791353 × log(ASC)
162 HbRH = 96.2588355860704 + −16.2786217763525 × lg(FS) 414 USPV = 5.13201708600292 + −0.173198956255813 × lg(ASC)
163 ERoS = 50.9339523136868 + 2.47332003357847 × FS 415 HbRH = 40.5944269259985 + −0.335108945766807 × ASC
164 ERoS = 64.9117719074914 + 0.107393071702334 × FS ˆ2 416 HbRH = 40.7100131929842 + −0.104581925495593 × ASC ˆ2
165 ERoS = 69.6091128616802 + 0.00607935520541711 × FS ˆ3 417 HbRH = 40.6632578629035 + −0.0227846026661095 × ASC ˆ3
166 ERoS = 76.8310941676581 + 8.292501066042e-06 × eˆ FS 418 HbRH = 40.6395211240528 + −0.0169908872975303 × eˆ ASC
167 ERoS = 75.8229039136237 + 0.000685638485789691 × 2ˆ FS 419 HbRH = 40.8267699220799 + −0.0910711458036205 × 2ˆ ASC
168 ERoS = 23.0966441893402 + 16.6339398116732 × FS ˆ(1/2) 420 HbRH = 40.2047715378215 + −0.290079711211349 × ASC ˆ(1/2)
169 ERoS = −4.70919525255609 + 37.3279849854577 × FS ˆ(1/3) 421 HbRH = 39.8328823193541 + −0.0317014234712671 × ASC ˆ(1/3)
170 ERoS = 11.7588814417093 + 63.9854593331807 × log(FS) 422 HbRH = 39.6509127800971 + 0.755863068849545 × log(ASC)
171 ERoS = 11.7588814417082 + 19.2615425456256 × lg(FS) 423 HbRH = 39.6509127800971 + 0.227537456338342 × lg(ASC)
172 ASC = 1.92204377986897 + 0.0417800027959956 × FS 424 ERoS = 92.2180819190403 + −5.71291801262153 × ASC
173 ASC = 2.18316320247149 + 0.00161753154319612 × FS ˆ2 425 ERoS = 86.2029960263802 + −0.871295867930876 × ASC ˆ2
174 ASC = 2.27270746633942 + 7.88163424212467e-05 × FS ˆ3 426 ERoS = 83.8039817684898 + −0.137158721334941 × ASC ˆ3
175 ASC = 2.44093390317411 + −2.48113202997887e-07 × eˆ FS 427 ERoS = 81.593359750612 + −0.0607357705453962 × eˆ ASC
176 ASC = 2.41621956362761 + −6.81999208250955e-06 × 2ˆ FS 428 ERoS = 83.8162898301957 + −0.462526675987894 × 2ˆ ASC
177 ASC = 1.40580253441745 + 0.294779993824526 × FS ˆ(1/2) 429 ERoS = 102.130604184649 + −16.6331971432884 × ASC ˆ(1/2)
178 ASC = 0.89095417108623 + 0.671410326192849 × FS ˆ(1/3) 430 ERoS = 111.281383625304 + −26.593705666928 × ASC ˆ(1/3)
179 ASC = 1.15276439502583 + 1.18383492977662 × log(FS) 431 ERoS = 82.3761104513835 + −20.1185948235959 × log(ASC)
180 ASC = 1.15276439502588 + 0.356369823777509 × lg(FS) 432 ERoS = 82.3761104513835 + −6.05630051251246 × lg(ASC)
181 RCP = 1.51812154765212 + −0.000591998745777089 × FS 433 RCP = 1.01973122036864 + 0.205859469380567 × ASC
182 RCP = 1.51281584514026 + −1.02938718884825e-05 × FS ˆ2 434 RCP = 1.23109107218656 + 0.0320113741552666 × ASC ˆ2
183 RCP = 1.51260094503923 + −7.42379796240544e-07 × FS ˆ3 435 RCP = 1.31420187113397 + 0.00517100383009007 × ASC ˆ3
184 RCP = 1.5256197518961 + −6.72812668995411e-08 × eˆ FS 436 RCP = 1.38075364835372 + 0.00262715741339878 × eˆ ASC
185 RCP = 1.52273012331417 + −2.80067024547618e-06 × 2ˆ FS 437 RCP = 1.30385075127291 + 0.0183094250349436 × 2ˆ ASC
186 RCP = 1.53241072190053 + −0.0062681280895472 × FS ˆ(1/2) 438 RCP = 0.664785578422722 + 0.597777968220892 × ASC ˆ(1/2)
187 RCP = 1.54753285970626 + −0.0161478263626681 × FS ˆ(1/3) 439 RCP = 0.331701338198878 + 0.95917456833655 × ASC ˆ(1/3)
188 RCP = 1.5488693295213 + −0.0357822221626458 × log(FS) 440 RCP = 1.37132011432189 + 0.741115441374556 × log(ASC)
189 RCP = 1.5488693295213 + −0.0107715221824692 × lg(FS) 441 RCP = 1.37132011432189 + 0.223097978103492 × lg(ASC)
190 CS = 11.6998550741678 + 10.8691835328367 × USPV 442 CS = 79.1876086152576 + −8.52780310166127 × RCP
191 CS = 40.2737226314715 + 1.02188686322694 × USPV ˆ2 443 CS = 73.2155143001305 + −2.79139452268105 × RCP ˆ2
192 CS = 49.7955275674617 + 0.126614263542547 × USPV ˆ3 444 CS = 70.9538278880991 + −1.07403228395841 × RCP ˆ3
193 CS = 58.3200794662332 + 0.0463658521197105 × eˆ USPV 445 CS = 74.5394446838858 + −1.64955391286155 × eˆ RCP
194 CS = 53.5820935995622 + 0.368615720449898 × 2ˆ USPV 446 CS = 78.5053861753618 + −4.08652317822277 × 2ˆ RCP
195 CS = −45.4269190022254 + 49.9062423711336 × USPV ˆ(1/2) 447 CS = 90.3023182739201 + −19.7522294845498 × RCP ˆ(1/2)
196 CS = −102.544736756829 + 98.6873794949362 × USPV ˆ(1/3) 448 CS = 101.206498442361 + −30.737981999028 × RCP ˆ(1/3)
197 CS = −25.625449801709 + 131.505274123587 × log(USPV) 449 CS = 70.2323475564202 + −24.8667652877232 × log(RCP)
198 CS = −25.6254498017091 + 39.587032099214 × lg(USPV) 450 CS = 70.2323475564202 + −7.48564224674054 × lg(RCP)
199 TS = −9.95165895269854 + 4.92289295131928 × USPV 451 TS = 19.0034404993042 + −2.79621405588897 × RCP
200 TS = 2.94021780561976 + 0.464792876737356 × USPV ˆ2 452 TS = 17.0628654215869 + −0.922398139081904 × RCP ˆ2
201 TS = 7.23615323870508 + 0.0578570626959677 × USPV ˆ3 453 TS = 16.3276494077446 + −0.357708176247271 × RCP ˆ3
202 TS = 11.054729627453 + 0.0216332650123754 × eˆ USPV 454 TS = 17.5161562873897 + −0.548248026177606 × eˆ RCP
203 TS = 8.91107549629212 + 0.170046021754159 × 2ˆ USPV 455 TS = 18.8166813396968 + −1.35231061799441 × 2ˆ RCP
204 TS = −35.7255348185222 + 22.5589242403911 × USPV ˆ(1/2) 456 TS = 22.6157194894507 + −6.45016652543744 × RCP ˆ(1/2)
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205 TS = −61.4951920610503 + 44.5805803174326 × USPV ˆ(1/3) 457 TS = 26.1599023833134 + −10.0229727575101 × RCP ˆ(1/3)
206 TS = −26.695573877673 + 59.3305417374464 × log(USPV) 458 TS = 16.0559054395538 + −8.08312589858581 × log(RCP)
207 TS = −26.695573877673 + 17.8602727219652 × lg(USPV) 459 TS = 16.0559054395538 + −2.4332633542027 × lg(RCP)
208 FS = 6.25268451510252 + 0.979697960884986 × USPV 460 FS = 11.1846550558515 + −0.00712280503711107 × RCP
209 FS = 8.8968791736595 + 0.0894113658440846 × USPV ˆ2 461 FS = 11.3393422008688 + −0.0667625121783373 × RCP ˆ2
210 FS = 9.77637198554798 + 0.0107225118544231 × USPV ˆ3 462 FS = 11.3734572783345 + −0.0460353492860872 × RCP ˆ3
211 FS = 10.5787331781917 + 0.00345900541644401 × eˆ USPV 463 FS = 11.4643267491817 + −0.0581305838184308 × eˆ RCP
212 FS = 10.1586186111251 + 0.0294317301093728 × 2ˆ USPV 464 FS = 11.4817948094672 + −0.103072169435291 × 2ˆ RCP
213 FS = 0.963589896916147 + 4.56083275104788 × USPV ˆ(1/2) 465 FS = 10.8819830772816 + 0.240195832103802 × RCP ˆ(1/2)
214 FS = −4.32508243714884 + 9.05905049595972 × USPV ˆ(1/3) 466 FS = 10.5923404701954 + 0.512067600446326 × RCP ˆ(1/3)
215 FS = 2.6622701356421 + 12.1767129685834 × log(USPV) 467 FS = 11.0722894827807 + 0.642115587523053 × log(RCP)
216 FS = 2.66227013564208 + 3.66555585213421 × lg(USPV) 468 FS = 11.0722894827807 + 0.19329605252784 × lg(RCP)
217 HbRH = 68.5088143827834 + −5.71647747514457 × USPV 469 USPV = 5.99231505990734 + −0.641168070098011 × RCP
218 HbRH = 53.0861857332109 + −0.52194876820546 × USPV ˆ2 470 USPV = 5.51082951115173 + −0.196770639884694 × RCP ˆ2
219 HbRH = 47.9782012695454 + −0.0627945081108502 × USPV ˆ3 471 USPV = 5.33480011717637 + −0.0718816141889639 × RCP ˆ3
220 HbRH = 43.4162462402041 + −0.0210529000617608 × eˆ USPV 472 USPV = 5.58943973451332 + −0.113334749562755 × eˆ RCP
221 HbRH = 45.8348577834842 + −0.175122004454279 × 2ˆ USPV 473 USPV = 5.88333633268943 + −0.287937416420146 × 2ˆ RCP
222 HbRH = 99.4128084239354 + −26.6311418511156 × USPV ˆ(1/2) 474 USPV = 6.89045968374231 + −1.53649400550554 × RCP ˆ(1/2)
223 HbRH = 130.327235060512 + −52.9161669690371 × USPV ˆ(1/3) 475 USPV = 7.76902470819704 + −2.417778749196 × RCP ˆ(1/3)
224 HbRH = 89.5584537535433 + −71.1931349289109 × log(USPV) 476 USPV = 5.33933071656506 + −1.99806201577142 × log(RCP)
225 HbRH = 89.5584537535434 + −21.4312690989553 × lg(USPV) 477 USPV = 5.33933071656506 + −0.601476599944037 × lg(RCP)
226 ERoS = −44.4898561732773 + 24.4984815259042 × USPV 478 HbRH = 42.0423782293484 + −1.48758153721214 × RCP
227 ERoS = 18.6332502605124 + 2.35355883446629 × USPV ˆ2 479 HbRH = 41.0709689631091 + −0.515318025294051 × RCP ˆ2
228 ERoS = 39.7125834810522 + 0.298139553955767 × USPV ˆ3 480 HbRH = 40.5117106435288 + −0.165583213312471 × RCP ˆ3
229 ERoS = 58.2740201323325 + 0.117962114287251 × eˆ USPV 481 HbRH = 40.9974382176738 + −0.24088810276325 × eˆ RCP
230 ERoS = 47.4896511762263 + 0.901006174693199 × 2ˆ USPV 482 HbRH = 41.7826752623931 + −0.665750517805537 × 2ˆ RCP
231 ERoS = −170.590922018834 + 111.297801182333 × USPV ˆ(1/2) 483 HbRH = 43.2454450048409 + −2.8401263707606 × RCP ˆ(1/2)
232 ERoS = −296.650864119786 + 219.314541365346 × USPV ˆ(1/3) 484 HbRH = 44.2855416269705 + −3.95501004850947 × RCP ˆ(1/3)
233 ERoS = −124.288756274984 + 290.210321300233 × log(USPV) 485 HbRH = 40.1489323608852 + −2.24390039617392 × log(RCP)
234 ERoS = −124.288756274984 + 87.3620117626516 × lg(USPV) 486 HbRH = 40.1489323608852 + −0.675481326530641 × lg(RCP)
235 ASC = 12.7056584538935 + −2.05383018831603 × USPV 487 ERoS = 99.4644577413937 + −13.8232290332395 × RCP
236 ASC = 7.42474725865513 + −0.197743106683585 × USPV ˆ2 488 ERoS = 88.526157863181 + −4.01721193944016 × RCP ˆ2
237 ASC = 5.66197246714162 + −0.0251128822731464 × USPV ˆ3 489 ERoS = 84.5196933817461 + −1.37231471647666 × RCP ˆ3
238 ASC = 4.11569164408351 + −0.01003606279162 × eˆ USPV 490 ERoS = 89.5989881995607 + −2.20731976041961 × eˆ RCP
239 ASC = 5.01986392805905 + −0.0762694909654092 × 2ˆ USPV 491 ERoS = 95.9367653724852 + −5.81337610312006 × 2ˆ RCP
240 ASC = 23.2575691266695 + −9.32181911366594 × USPV ˆ(1/2) 492 ERoS = 119.666620550924 + −33.8160568760288 × RCP ˆ(1/2)
241 ASC = 33.8066223340896 + −18.3634660495521 × USPV ˆ(1/3) 493 ERoS = 139.34893446531 + −53.5168485493523 × RCP ˆ(1/3)
242 ASC = 19.3652424955155 + −24.2863538785987 × log(USPV) 494 ERoS = 85.6356391257711 + −44.6518386412545 × log(RCP)
243 ASC = 19.3652424955155 + −7.31092100276846 × lg(USPV) 495 ERoS = 85.6356391257711 + −13.4415427925656 × lg(RCP)
244 RCP = 4.17276937555526 + −0.529795858393688 × USPV 496 ASC = −2.51848109170778 + 3.24667448853144 × RCP
245 RCP = 2.8215531818394 + −0.0514416129538915 × USPV ˆ2 497 ASC = −0.203489407868408 + 1.04605755869761 × RCP ˆ2
246 RCP = 2.36985609246673 + −0.00658572528011425 × USPV ˆ3 498 ASC = 0.685672739591328 + 0.392888626101718 × RCP ˆ3
247 RCP = 1.97477200398597 + −0.00269246761070794 × eˆ USPV 499 ASC = −0.642194562790037 + 0.606665572012053 × eˆ RCP
248 RCP = 2.2095241687276 + −0.0202348720060608 × 2ˆ USPV 500 ASC = −2.15552198342141 + 1.52125131772239 × 2ˆ RCP
249 RCP = 6.87117560609697 + −2.39410754458009 × USPV ˆ(1/2) 501 ASC = −6.75795197625392 + 7.52651357171335 × RCP ˆ(1/2)
250 RCP = 9.56852307231565 + −4.70927504528767 × USPV ˆ(1/3) 502 ASC = −10.8963360640752 + 11.6979653703423 × RCP ˆ(1/3)
251 RCP = 5.85202639937843 + −6.20954309949019 × log(USPV) 503 ASC = 0.899397697886484 + 9.41369194818746 × log(RCP)
252 RCP = 5.85202639937842 + −1.86925873231483 × lg(USPV) 504 ASC = 0.899397697886484 + 2.83380364634493 × lg(RCP)

Appendix C

This appendix supplements Section 3.5 by viewing the p(α∗) (i.e., significance of the
estimated α∗ value), p(β∗) (i.e., significance of the estimated β∗ value) and (R2)

∗ (i.e.,
the adjusted R square value) of the SLR models in Table 5 from another perspective.
Tables 4, A3 and A5 re-sort the results by the transform method applied on the RHS inde-
pendent variable in each SLR model. For each specific transform, the results for all pairs of
variables are aggregated and summarised for clearer inspections.

The results are provided directly without any further marks for inspections. In addi-
tion, the order of the sub tables, from (a) to (h), follows the same order in Tables 3, 6 and 7
for the different transformation method.
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Table A3. SLR Models’ p(α∗ ) Values for Each Pair of Variables, by Transform Method.

(a) CS TS FS USPV HbRH ERoS ASC RCP

CS 0.000000 0.000001 0.000000 0.000000 0.000000 0.000000 0.000092 0.000000
TS 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000001 0.000000
FS 0.000000 0.017322 0.000000 0.000000 0.000000 0.000003 0.063099 0.000007

USPV 0.000217 0.286449 0.000000 0.000000 0.000011 0.149037 0.000002 0.000000
HbRH 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000147 0.000000
ERoS 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
ASC 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
RCP 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.573584 0.000000

(b) CS TS FS USPV HbRH ERoS ASC RCP

CS 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000003 0.000000
TS 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
FS 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.006972 0.000000

USPV 0.000000 0.000433 0.000000 0.000000 0.000000 0.000050 0.000000 0.000000
HbRH 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000005 0.000000
ERoS 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
ASC 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
RCP 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.024659 0.000000

(c) CS TS FS USPV HbRH ERoS ASC RCP

CS 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
TS 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
FS 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

USPV 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
HbRH 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
ERoS 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
ASC 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
RCP 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.143616 0.000000

(d) CS TS FS USPV HbRH ERoS ASC RCP

CS 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
TS 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
FS 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000001 0.000000

USPV 0.000000 0.000003 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
HbRH 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
ERoS 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
ASC 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
RCP 0.000000 0.000000 0.000000 0.000000 0.000001 0.000000 0.000769 0.000000

(e) CS TS FS USPV HbRH ERoS ASC RCP

CS 0.000000 0.000000 0.108751 0.002671 0.000100 0.550016 0.027612 0.000549
TS 0.176117 0.000000 0.060424 0.000002 0.000008 0.839067 0.002417 0.000036
FS 0.000060 0.000018 0.000000 0.020769 0.003388 0.613544 0.751245 0.175856

USPV 0.249243 0.001985 0.853972 0.000000 0.021310 0.001780 0.000073 0.000006
HbRH 0.000000 0.000001 0.000000 0.000000 0.000000 0.000006 0.159489 0.002875
ERoS 0.013146 0.796416 0.000097 0.000007 0.000396 0.000000 0.000040 0.000064
ASC 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
RCP 0.000000 0.000004 0.000000 0.000000 0.002721 0.000001 0.000002 0.000000
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Table A3. Cont.

(f) CS TS FS USPV HbRH ERoS ASC RCP

CS 0.000000 0.000000 0.000403 0.236202 0.000655 0.870334 0.049127 0.003082
TS 0.000265 0.000000 0.322155 0.020386 0.000131 0.302175 0.007208 0.000522
FS 0.000001 0.000001 0.000000 0.335280 0.012176 0.945119 0.893291 0.358140

USPV 0.086979 0.000500 0.582955 0.000000 0.042606 0.000400 0.000113 0.000020
HbRH 0.000001 0.000025 0.000000 0.000000 0.000000 0.000221 0.307528 0.034954
ERoS 0.190682 0.218798 0.010250 0.028473 0.003633 0.000000 0.000142 0.000813
ASC 0.000000 0.000000 0.000000 0.000000 0.000001 0.000000 0.000000 0.020166
RCP 0.000006 0.000118 0.000183 0.000000 0.029770 0.000024 0.000001 0.000000

(g) CS TS FS USPV HbRH ERoS ASC RCP

CS 0.000000 0.000000 0.000010 0.963047 0.001980 0.571159 0.070590 0.007804
TS 0.006873 0.000000 0.921876 0.000922 0.000073 0.624640 0.007369 0.000243
FS 0.000010 0.000004 0.000000 0.101100 0.008491 0.830472 0.828827 0.253466

USPV 0.419449 0.003784 0.530899 0.000000 0.011174 0.004408 0.000051 0.000003
HbRH 0.000012 0.000109 0.000005 0.000000 0.000000 0.000624 0.384850 0.081312
ERoS 0.515965 0.096413 0.085698 0.510925 0.012697 0.000000 0.000392 0.004012
ASC 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
RCP 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.003399 0.000000

(h) CS TS FS USPV HbRH ERoS ASC RCP

CS 0.000000 0.000000 0.000010 0.963047 0.001980 0.571159 0.070590 0.007804
TS 0.006873 0.000000 0.921876 0.000922 0.000073 0.624640 0.007369 0.000243
FS 0.000010 0.000004 0.000000 0.101100 0.008491 0.830472 0.828827 0.253466

USPV 0.419449 0.003784 0.530899 0.000000 0.011174 0.004408 0.000051 0.000003
HbRH 0.000012 0.000109 0.000005 0.000000 0.000000 0.000624 0.384850 0.081312
ERoS 0.515965 0.096413 0.085698 0.510925 0.012697 0.000000 0.000392 0.004012
ASC 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
RCP 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.003399 0.000000

Table A4. SLR Models’ p(β∗ ) Values for Each Pair of Variables, by Transform Method.

(a) CS TS FS USPV HbRH ERoS ASC RCP

CS 0.000000 0.000000 0.000000 0.009394 0.014243 0.068910 0.099559 0.067789
TS 0.000000 0.000000 0.000000 0.000093 0.009916 0.000259 0.013286 0.052104
FS 0.000000 0.000000 0.000000 0.067451 0.045792 0.234888 0.852231 0.996245

USPV 0.010063 0.000090 0.083775 0.000000 0.196446 0.000028 0.000336 0.000190
HbRH 0.009670 0.010165 0.047811 0.280548 0.000000 0.224030 0.684669 0.548015
ERoS 0.048053 0.000084 0.194446 0.000003 0.149833 0.000000 0.000178 0.023698
ASC 0.260660 0.098907 0.710912 0.001811 0.597407 0.002567 0.000000 0.000000
RCP 0.059945 0.049972 0.729410 0.000445 0.730079 0.077182 0.000000 0.000000

(b) CS TS FS USPV HbRH ERoS ASC RCP

CS 0.000000 0.000000 0.000000 0.011907 0.014034 0.062907 0.088345 0.075272
TS 0.000000 0.000000 0.000000 0.000237 0.008612 0.000317 0.008775 0.056392
FS 0.000000 0.000000 0.000000 0.069549 0.031002 0.243582 0.874895 0.995302

USPV 0.013253 0.000162 0.107008 0.000000 0.226450 0.000037 0.000397 0.000197
HbRH 0.007769 0.008633 0.039253 0.428430 0.000000 0.287537 0.597416 0.382366
ERoS 0.031897 0.000027 0.178153 0.000001 0.140798 0.000000 0.000060 0.012067
ASC 0.353814 0.188561 0.687871 0.006154 0.513013 0.007894 0.000000 0.000004
RCP 0.062508 0.050343 0.538354 0.001097 0.775369 0.122102 0.000000 0.000000
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Table A4. Cont.

(c) CS TS FS USPV HbRH ERoS ASC RCP

CS 0.000000 0.055766 0.044846 0.197340 0.321462 0.436468 0.304312 0.602958
TS 0.000140 0.000000 0.004788 0.097387 0.125694 0.134707 0.113898 0.380960
FS 0.000000 0.000079 0.000000 0.071435 0.015465 0.401719 0.792810 0.777263

USPV 0.031694 0.000970 0.216709 0.000000 0.333375 0.000119 0.000780 0.000287
HbRH 0.271163 0.168105 0.405339 0.737545 0.000000 0.597118 0.506679 0.222821
ERoS 0.622799 0.083328 0.834675 0.000055 0.817184 0.000000 0.061580 0.112349
ASC 0.390676 0.317673 0.688828 0.025775 0.408285 0.051972 0.000000 0.000153
RCP 0.060509 0.049079 0.610654 0.000681 0.785420 0.102184 0.000000 0.000000

(d) CS TS FS USPV HbRH ERoS ASC RCP

CS 0.000000 0.054008 0.043813 0.196189 0.318493 0.432274 0.301173 0.599052
TS 0.000006 0.000000 0.000954 0.048784 0.066138 0.048389 0.053810 0.282676
FS 0.000000 0.000009 0.000000 0.070884 0.011745 0.340585 0.921102 0.871662

USPV 0.020615 0.000406 0.154958 0.000000 0.277152 0.000065 0.000543 0.000228
HbRH 0.170646 0.098650 0.300968 0.830220 0.000000 0.518074 0.492845 0.174923
ERoS 0.530833 0.047033 0.819475 0.000026 0.774611 0.000000 0.029431 0.072328
ASC 0.334737 0.206599 0.699058 0.008735 0.473680 0.014964 0.000000 0.000009
RCP 0.059279 0.049027 0.714567 0.000430 0.760238 0.080032 0.000000 0.000000

(e) CS TS FS USPV HbRH ERoS ASC RCP

CS 0.000000 0.000000 0.000000 0.007071 0.018024 0.087981 0.127552 0.063732
TS 0.000000 0.000000 0.000000 0.000045 0.020430 0.000520 0.038214 0.061495
FS 0.000000 0.000000 0.000000 0.063928 0.087751 0.228218 0.824097 0.985030

USPV 0.006726 0.000037 0.057342 0.000000 0.156394 0.000019 0.000278 0.000196
HbRH 0.023359 0.019873 0.090691 0.130591 0.000000 0.146475 0.813553 0.848792
ERoS 0.104815 0.000758 0.255601 0.000059 0.182040 0.000000 0.001151 0.068695
ASC 0.059099 0.010315 0.933397 0.000137 0.929925 0.000386 0.000000 0.000000
RCP 0.070213 0.062484 0.865421 0.000150 0.795613 0.041055 0.000000 0.000000

(f) CS TS FS USPV HbRH ERoS ASC RCP

CS 0.000000 0.000000 0.000000 0.006903 0.018790 0.091034 0.131594 0.063793
TS 0.000000 0.000000 0.000000 0.000045 0.022941 0.000610 0.043804 0.064114
FS 0.000000 0.000000 0.000000 0.063534 0.094571 0.228012 0.821431 0.982807

USPV 0.006440 0.000034 0.054960 0.000000 0.152343 0.000019 0.000274 0.000198
HbRH 0.026739 0.022083 0.099447 0.120253 0.000000 0.140053 0.825341 0.880793
ERoS 0.114620 0.000975 0.265660 0.000081 0.187065 0.000000 0.001404 0.076639
ASC 0.047043 0.008122 0.960882 0.000128 0.995214 0.000399 0.000000 0.000000
RCP 0.073097 0.065603 0.818108 0.000146 0.818453 0.039532 0.000000 0.000000

(g) CS TS FS USPV HbRH ERoS ASC RCP

CS 0.000000 0.000000 0.000000 0.006615 0.020590 0.097797 0.140259 0.064214
TS 0.000000 0.000000 0.000000 0.000049 0.029361 0.000871 0.057676 0.070523
FS 0.000000 0.000000 0.000000 0.062757 0.109889 0.227950 0.816382 0.977773

USPV 0.005912 0.000028 0.050493 0.000000 0.144487 0.000018 0.000266 0.000203
HbRH 0.035566 0.027663 0.120466 0.102983 0.000000 0.128735 0.846305 0.941104
ERoS 0.136667 0.001594 0.287837 0.000153 0.197902 0.000000 0.002056 0.094423
ASC 0.034789 0.007237 0.979497 0.000193 0.855884 0.000743 0.000000 0.000000
RCP 0.080536 0.073575 0.727705 0.000154 0.875153 0.038117 0.000000 0.000000

(h) CS TS FS USPV HbRH ERoS ASC RCP

CS 0.000000 0.000000 0.000000 0.006615 0.020590 0.097797 0.140259 0.064214
TS 0.000000 0.000000 0.000000 0.000049 0.029361 0.000871 0.057676 0.070523
FS 0.000000 0.000000 0.000000 0.062757 0.109889 0.227950 0.816382 0.977773

USPV 0.005912 0.000028 0.050493 0.000000 0.144487 0.000018 0.000266 0.000203
HbRH 0.035566 0.027663 0.120466 0.102983 0.000000 0.128735 0.846305 0.941104
ERoS 0.136667 0.001594 0.287837 0.000153 0.197902 0.000000 0.002056 0.094423
ASC 0.034789 0.007237 0.979497 0.000193 0.855884 0.000743 0.000000 0.000000
RCP 0.080536 0.073575 0.727705 0.000154 0.875153 0.038117 0.000000 0.000000
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Table A5. SLR Models’ (R2)
∗ Values for Each Pair of Variables, by Transform Method.

(a) CS TS FS USPV HbRH ERoS ASC RCP

CS 0.000000 0.729936 0.656125 0.158295 0.139542 0.067382 0.050641 0.068132
TS 0.768782 0.000000 0.590871 0.347419 0.155870 0.308717 0.142690 0.080196
FS 0.670677 0.587348 0.000000 0.068361 0.086126 0.013040 −0.028346 −0.029411

USPV 0.155206 0.348673 0.058470 0.000000 0.020598 0.390450 0.298517 0.320593
HbRH 0.156995 0.154755 0.084144 0.005750 0.000000 0.015022 −0.024357 −0.018383
ERoS 0.083912 0.351029 0.021036 0.463398 0.032374 0.000000 0.323088 0.116357
ASC 0.008737 0.050938 −0.025200 0.230008 −0.020877 0.215184 0.000000 0.546710
RCP 0.073764 0.082114 −0.025742 0.287522 −0.025761 0.062204 0.657900 0.000000

(b) CS TS FS USPV HbRH ERoS ASC RCP

CS 0.000000 0.688708 0.628852 0.147638 0.140210 0.071553 0.056056 0.063348
TS 0.753109 0.000000 0.557278 0.312080 0.162180 0.300834 0.161342 0.076566
FS 0.667302 0.567318 0.000000 0.066959 0.104044 0.011528 −0.028650 −0.029411

USPV 0.142802 0.326562 0.047385 0.000000 0.014570 0.379972 0.291958 0.319156
HbRH 0.166780 0.162074 0.093207 −0.010324 0.000000 0.004761 −0.020878 −0.006231
ERoS 0.102738 0.391107 0.024808 0.512683 0.035121 0.000000 0.363027 0.147036
ASC −0.003333 0.022356 −0.024465 0.177117 −0.016348 0.166068 0.000000 0.455422
RCP 0.071845 0.081774 −0.017845 0.250962 −0.026913 0.041462 0.613330 0.000000

(c) CS TS FS USPV HbRH ERoS ASC RCP

CS 0.000000 0.077077 0.087086 0.020403 0.000351 −0.010974 0.002503 −0.021132
TS 0.332171 0.000000 0.188168 0.051639 0.040166 0.037082 0.044579 −0.006096
FS 0.530304 0.353381 0.000000 0.065737 0.135809 −0.008032 −0.027294 −0.026956

USPV 0.103032 0.256006 0.016422 0.000000 −0.001060 0.338131 0.264942 0.304715
HbRH 0.007126 0.027331 −0.008356 −0.025967 0.000000 −0.020864 −0.015953 0.015249
ERoS −0.022005 0.058714 −0.028074 0.366523 −0.027771 0.000000 0.072530 0.045194
ASC −0.007020 0.000814 −0.024497 0.112510 −0.008616 0.080311 0.000000 0.328825
RCP 0.073334 0.082942 −0.021478 0.270415 −0.027137 0.049465 0.629821 0.000000

(d) CS TS FS USPV HbRH ERoS ASC RCP

CS 0.000000 0.078548 0.088156 0.020654 0.000713 −0.010637 0.002914 −0.020953
TS 0.439476 0.000000 0.256714 0.083218 0.069260 0.083592 0.078716 0.005445
FS 0.594853 0.428716 0.000000 0.066091 0.148254 −0.001882 −0.029110 −0.028610

USPV 0.122725 0.291083 0.030895 0.000000 0.006241 0.360287 0.279544 0.313564
HbRH 0.026678 0.051056 0.002941 −0.028000 0.000000 −0.016657 −0.015063 0.025602
ERoS −0.017414 0.084898 −0.027813 0.392235 −0.026896 0.000000 0.106431 0.065169
ASC −0.001217 0.018447 −0.024830 0.161547 −0.013759 0.137303 0.000000 0.426455
RCP 0.074276 0.082990 −0.025310 0.288809 −0.026554 0.060551 0.652188 0.000000

(e) CS TS FS USPV HbRH ERoS ASC RCP

CS 0.000000 0.768479 0.671015 0.170964 0.128848 0.056243 0.039512 0.070957
TS 0.742180 0.000000 0.600305 0.373440 0.123135 0.281278 0.094439 0.072593
FS 0.667806 0.611742 0.000000 0.070816 0.056362 0.014244 −0.027895 −0.029401

USPV 0.173187 0.380383 0.075799 0.000000 0.030489 0.402593 0.305891 0.319400
HbRH 0.117014 0.124398 0.054866 0.038463 0.000000 0.033374 −0.027704 −0.028295
ERoS 0.048318 0.266089 0.009541 0.363949 0.023874 0.000000 0.248963 0.067525
ASC 0.074416 0.154099 −0.029197 0.332853 −0.029174 0.293131 0.000000 0.697538
RCP 0.066525 0.071862 −0.028530 0.329451 −0.027352 0.091144 0.631358 0.000000

(f) CS TS FS USPV HbRH ERoS ASC RCP

CS 0.000000 0.770630 0.670469 0.172030 0.126953 0.054695 0.038122 0.070913
TS 0.734537 0.000000 0.597051 0.373150 0.117840 0.274909 0.088166 0.070683
FS 0.666809 0.613889 0.000000 0.071099 0.052967 0.014282 −0.027848 −0.029397

USPV 0.175108 0.383737 0.077746 0.000000 0.031643 0.403635 0.306504 0.319003
HbRH 0.110828 0.119583 0.050692 0.042145 0.000000 0.035356 −0.027917 −0.028721
ERoS 0.044295 0.255825 0.007960 0.352157 0.022699 0.000000 0.240697 0.062527
ASC 0.084888 0.164797 −0.029338 0.335491 −0.029411 0.291814 0.000000 0.699772
RCP 0.064686 0.069632 −0.027788 0.330484 −0.027794 0.092881 0.617075 0.000000
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Table A5. Cont.

(g) CS TS FS USPV HbRH ERoS ASC RCP

CS 0.000000 0.773545 0.668025 0.173923 0.122779 0.051449 0.035291 0.070612
TS 0.716509 0.000000 0.587820 0.370405 0.106540 0.260413 0.075533 0.066324
FS 0.664369 0.617779 0.000000 0.071663 0.046189 0.014293 −0.027756 −0.029388

USPV 0.178890 0.390315 0.081637 0.000000 0.033977 0.405520 0.307596 0.318047
HbRH 0.097739 0.109271 0.042065 0.049114 0.000000 0.039100 −0.028258 −0.029244
ERoS 0.036441 0.235384 0.004719 0.328781 0.020282 0.000000 0.224651 0.053038
ASC 0.098753 0.169934 −0.029391 0.320016 −0.028399 0.266906 0.000000 0.672241
RCP 0.060265 0.064389 −0.025694 0.328499 −0.028654 0.094556 0.580226 0.000000

(h) CS TS FS USPV HbRH ERoS ASC RCP

CS 0.000000 0.773545 0.668025 0.173923 0.122779 0.051449 0.035291 0.070612
TS 0.716509 0.000000 0.587820 0.370405 0.106540 0.260413 0.075533 0.066324
FS 0.664369 0.617779 0.000000 0.071663 0.046189 0.014293 −0.027756 −0.029388

USPV 0.178890 0.390315 0.081637 0.000000 0.033977 0.405520 0.307596 0.318047
HbRH 0.097739 0.109271 0.042065 0.049114 0.000000 0.039100 −0.028258 −0.029244
ERoS 0.036441 0.235384 0.004719 0.328781 0.020282 0.000000 0.224651 0.053038
ASC 0.098753 0.169934 −0.029391 0.320016 −0.028399 0.266906 0.000000 0.672241
RCP 0.060265 0.064389 −0.025694 0.328499 −0.028654 0.094556 0.580226 0.000000
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Abstract: Many wind turbines operate in harsh marine or shore environments. This study assists
industry by establishing a real-time condition-monitoring and fault-detection system, with rules
for recognizing a wind turbine’s abnormal operation mainly caused by different types of fan-blade
damage. This system can ensure ideal wind turbine operation by monitoring the health status of
the blades, detecting sudden anomalies, and performing maintenance almost in real time. This is
especially significant for wind farms in areas subject to frequent natural disasters (e.g., earthquakes
and typhoons). Turbines might fail to endure these because the manufacturers have built them
according to the standards developed for areas less prone to natural disasters. The system’s rules are
established by utilising concepts and methods from data analytics, digital signal processing (DSP)
and statistics to analyse data from the accelerometer, which measures the vibration signals in three
dimensions on the platform of the wind turbine’s base. The patterns for those cases involving fan-
blade damage are found to establish the rules. With the anomalies detected and reported effectively,
repairs and maintenance can be carried out on the faulty wind turbines. This enables ‘maintenance
by prediction’ actions for unplanned maintenance as a supplement to the ‘predictive maintenance’
tasks for regular planned maintenance.

Keywords: energy generation; green energy; wind turbines; fan-blade damage; mechanical condition
monitoring system; fault diagnosis; maintenance by prediction; accelerometer; vibration data; big-
data analytics

1. Introduction

1.1. Research Background

Improving the operating efficiency of wind turbines and reducing maintenance costs
are goals common to all wind farm operators. However, similar to the erosional effects
caused by seawater and weather conditions on the base constructs of offshore or onshore
wind turbines, machines and equipment are also prone to failure, leading to a loss of
efficiency in power generation operations. However, an integrated perspective to examine
these issues is seldom discussed [1–3].

The industry developing wind turbines has adopted a conservative attitude, i.e., it lacks
integration with related upstream and downstream industries. In some countries, for exam-
ple, blade manufacturers concentrate only on the R&D (research and development) of the
blade shape and materials, while the generator manufacturers care only about the design
and manufacture of the generator bodies. The power-converter manufacturers alone bear
the final responsibility for power generation efficiency. However, converter manufacturers
do not usually have the expertise to integrate blades and generators. Moreover, the interna-
tional market currently lacks protocols or standard operating procedures (SOPs) for these
integrative matters. This is critical for turbine maintenance.
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Although avoiding the replacement of faulty major parts is the most efficient way to
reduce operating costs, an alternative logic for turbine maintenance entails detecting faults
efficiently and replacing the necessary part promptly, in addition to scheduled preventive
maintenance (e.g., predictive maintenance). Within the entire power generation system
utilising wind as a resource, the blade is an important component. To ensure the normal
operation of a wind turbine, the key factors are the durability, safety and reliability of
the wind turbine blades, and these have become a concern for wind farm operators and
manufacturers. However, to the authors’ knowledge, most fan blade health diagnoses
today still rely on subjective human efforts to identify whether the blades are damaged or
not, i.e., acoustic or vision-based inspections performed by professionals, and currently
there is no rapid and objective method for blade diagnosis [1–3].

Benbouzid et al. [4] reviewed the current progress in condition monitoring of wind
turbines, from traditional condition monitoring and signal-processing tools to machine
learning-based condition monitoring and predictive maintenance using big-data mining.
Their systematic review of signal-based and data-driven modelling approaches using
intelligence and machine learning approaches examined recent developments in the field
and their use in diagnosis, prognosis, health assessment, and predictive maintenance of
wind turbines and farms [4]. Natilli et al. [5] developed a multi-scale method for wind
turbine gearbox fault detection and tested it in real-world test cases. The novelty of this
work is that the detection method was developed using industrial datasets provided by
standard SCADA (supervisory control and data acquisition) and TCM (turbine condition
monitoring) systems [5].

Papi [6] proposed using an uncertainty-quantification method to model the effect
of blade damage on the performance of multi-megawatt wind turbines. The proposed
method aims to overcome some of the problems associated with evaluating individual
test cases. In fact, treating blade damage as a random phenomenon avoids biases due to
specific test cases of combinations of blade damage factors and allows for more general
conclusions [6]. This point is critical for this study. Santolamazza et al. [7] presented
an approach based on machine learning techniques using data from SCADA systems.
Since these systems are usually already implemented on most wind turbines, they provide
a lot of data without the need for additional sensors. In particular, they used artificial
neural networks (ANNs) to develop models to describe the behaviour of some of the main
components of wind turbines, such as gearboxes and generators, and predict operational
anomalies. The proposed method was tested on real wind turbines in Italy to verify its
effectiveness and applicability and proved to be able to provide important assistance in the
maintenance of wind farms [7].

Knowing the status of the blades at any time should be critical to the normal operation
of turbines at the lowest cost, because wind has become one of the most popular sources
of green power generation (solar being another popular energy source), and more and
more wind farms are operating or being constructed worldwide. The offshore equipment is
usually expensive and produces electricity almost constantly; however, it may fail, incurring
significant operational losses if it cannot be repaired quickly during the downtime [1–3].

The repair and subsequent maintenance tasks involve considerable effort and costs,
thus exacerbating the problem. Moreover, in some places, such as Penghu (or the Pescadores
Islands) and Taiwan, most wind turbines are maintained by non-native manufacturers, who
regard internal equipment maintenance as a business secret (and do not disclose it easily).
However, a discussion about this critical problem is beyond the scope of this paper. In any
case, there is a need to detect and diagnose problems related to offshore wind turbines
quickly, in order to launch the subsequent unplanned yet necessary repairs [1–3].

1.2. This Study: An Overview

In this study, a complete functioning mechanical condition monitoring system (CMS)
is established with an initial stable performance, which measures parameters such as the
vibrations and noises of a turbine during operation. The recorded data are stored and
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reported remotely (from the remote-side CMS). They are organised as datasets (on the
server-side CMS), and the characteristics and patterns of/in the signal are then analysed
using the established rules and classified as having different levels of fan-blade damage
severity. This process automatically detects the health status of a turbine by inspecting its
vibration states, rather than through human efforts.

Thus, if effective rules can be established to program the CMS (which embeds these
rules) to detect the different severity levels of turbine fan-blade damage based on a real-time
database that is regularly imported and updated by the (remote) CMS, the performance of
the server-side CMS relies heavily on the effectiveness of the rules. Once an anomaly is de-
tected, the CMS serves to guide the subsequent fan maintenance and repair actions. In this
study, we call this ‘maintenance by prediction’, in contrast to ‘predictive maintenance’,
which is a type of ‘preventive maintenance’ [1–3].

The CMS can thus warn of blade damage almost in real time, allowing wind farm
operators to launch and arrange repair operations for maintenance by prediction at the
earliest moment. This reduces the turbine’s downtime. As such, this is different from
predictive maintenance, which aims to avoid wasting time and money by preventing
serious damage by performing regular maintenance in advance. Maintenance by prediction
operates by giving sudden fan-blade status warnings (in the event of damage) for launching
the actions as soon as possible.

An example may help to illustrate the difference. During predictive maintenance,
the engineers are recommended to replace some parts of the turbine, but they may be
replaced improperly, ultimately resulting in a machine shutdown. By contrast, the proposed
maintenance by prediction mechanism works to detect, warn of, and support addressing
an incident in almost real time.

Theoretically, the mechanism proposed by this study to detect wind turbine blade
damage in wind turbines aims to support unplanned maintenance and repairs, which are
carried out for the faulty wind turbine(s) using rule-based predictions (i.e., the maintenance
by prediction actions). If the CMS is programmed with this detection mechanism, most
of the equipment manager’s efforts can be focused on the machine’s normal operations,
e.g., acquiring or preparing the parts required for equipment repairs, i.e., preventive main-
tenance. In operational practice, such a CMS can improve the safety (effective operation)
rate (or operating efficiency) of the power system, reduce maintenance costs and increase
the reliability of the wind turbine [1–3,8–12].

Section 2 focuses on the design of the CMS for wind turbines, describing how our
research led us to the fault-diagnosis functions for fan blades from the traditional functions
used for power generators, while reviewing the relevant literature. Section 3 presents the
results from the data analysis upon taking real sampling data and introduces the methods
used ‘by example’ (on the fly). Although the methods being applied are individually
common in data processing, statistics, and digital signal processing (DSP), hybridising
them for the purpose of the application described in this study is novel. The rules are
established in Section 4 based on the analytical results, followed by a discussion of key
findings. Section 5 concludes this study.

2. Condition Monitoring System (CMS) and Methods

This section describes the development of the CMS, which involves remote-side and
server-side subsystems. Because the remote-side CMS is mounted on the structure of a
wind turbine on the base platform, we start from an overview of the wind turbines.

2.1. Wind Turbines

A wind turbine is mainly composed of control systems, transmission mechanisms, gen-
erators, converters, blades, towers, power cables, converters and transformers. The internal
transmission mechanisms include gearboxes, hubs and steering systems. The performance
of wind turbines varies from one model to another.
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As discussed previously, the installation site’s climate conditions and the natural
disasters which may occur affect wind turbines’ operation, resulting in various causes
of sudden failure, which is to be resolved by maintenance by prediction. In addition to
these external factors, some wind turbines may have inherent (internal) drawbacks, such as
inconsistent design specifications, low manufacturing quality and inappropriate design
specifications for the sites on which they operate. All of these factors could cause them to
operate in an unstable manner and accelerate the possible damage to their components,
including the blades.

The reasons for fan-blade damage are manifold, but each can be categorised as either
internal or external. Internal damage may be caused by kinetic or mechanical reasons.
For example, machine wear due to operation over a long period will result in the deforma-
tion of parts due to stress. Also, during fan operation on normal days, the tower column
will produce different deformations and displacements due to different operating condi-
tions, tower conditions, and conditions of the base. External damage, by contrast, can result
from the sudden occurrence of natural disasters, e.g., large typhoons and earthquakes.
These are more harmful to the blades, and the consequences are usually unexpected. While
the events causing damage are all occasional, they meet the condition that the tool provided
by this study can address. See these further in Section 4.3.

2.2. CMS Hardware

The central component of the remote-side CMS hardware uses Adlink’s USB-2405,
with which each channel can be connected to an accelerometer or a microphone. The USB-
2405 is a 24-bit USB interface for dynamic signal data acquisition. The USB-2405 has a
USB-interface power supply and BNC connector; there are four analogue input channels,
and each channel provides up to 128 kS/s of simultaneous sampling. The USB-2405 also
features selectable AC or DC coupled inputs and a built-in high-precision 2 mA excitation
current measurement integrated electronic piezoelectric (IEPE) sensor. Each channel can be
connected to an accelerometer or microphone for measuring vibrations or noises. In the
measurement system, each channel was connected to a PCB 601A01 accelerometers with a
sensitivity of 100 mV/g and a frequency band range of 0.27 to 10,000 Hz.

Relatedly, the CMS can be divided into vibration and noise detection subsystems,
and each subsystem has its effective fault detection and diagnostic methods. The integration
of technologies inspecting the wind turbine near the accelerometer or microphone enables
the operation status monitoring functions and the preliminary remote-side fault-diagnosis
functions. However, it is difficult to derive effective rules that can be used for such fault
diagnosis on the remote side. This is discussed in the next subsection.

2.3. Fault-Diagnosis Functions for Wind Turbines

This subsection illustrates the fault-diagnosis process and the analysis functions of the
CMS for a wind turbine. When the machine experiences abnormal vibration, the diagnostic
analysis can be performed according to the following guidelines [13–19]:

(A) Understand the machine’s construction. For an abnormally functioning machine,
it is necessary to understand its primary structure, component transmission methods and
even an overview of the system to determine the possible failure modes and the appropriate
measurement method and position.

(B) Observe abnormalities. When an exception occurs in a machine, it is necessary
to understand the machine’s operational conditions at that moment and to observe the
abnormal phenomenon that is causing the device to operate abnormally.

(C) Abnormal phenomenon measurement. It is necessary to select appropriate sensors
and instrumentation equipment, measure the vibration signal of the unusual machine
phenomenon, and process the measured signal through spectrum analysis.

(D) Abnormal signal analysis. The abnormal signals measured should be analysed to
determine the most severe locations and conditions and the components that are causing
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the problems. The reasons for these problems should be investigated. If necessary, further
measurements should be made to confirm the causes of the issues.

(E) Verification of the results. After confirming the cause (or causes) of the abnormality,
and after repairing or replacing the machine’s faulty components, it is necessary to observe
or measure again to determine whether the abnormality still exists and whether there are
any signs of improvement. If the situation has not improved, the above steps must be
repeated until the problem is resolved.

The following list summarises the judging criteria for abnormal situations that have
traditionally been applied for fault diagnosis on the remote side (or ‘device side’, ‘client
side’, or ‘site side’) CMS for the power generator component(s). Usually, a subset of these
criteria is sufficient to program the diagnostic function. Appendix A [1–3,17,18] presents
detailed descriptions.

• Vibrations generated by the generator caused by an uneven magnetic force acting on
the rotor or the stator.

• Vibrations generated by the generator or vibrations caused by an abnormal rotor or
rotor coils.

• Vibrations generated by the generator or vibrations caused by an abnormal stator or
stator coils [1–3,20].

• Unbalanced weight of the shaft of the driveshaft [1–3].
• Bent shaft of the driveshaft.
• Improper installation of the shaft of the driveshaft [1–3].
• Misalignment of the driveshaft with the coupling connecting the machine during

installation, causing the machine’s severe vibration [1–3,13–15].
• Shaft diameter too small during bearing installation, resulting in the bearing’s move-

ment relative to the inner ring of the bearing [1–3].
• Poor shoulder angle during bearing installation, resulting in the centre of the inner

and outer rings no longer being on the same straight line [1–3].
• Ball bearing causing temperature rise and vibration during mounting of the bearing

due to insufficient lubrication or improper lubrication viscosity [1–3,13–15].
• Gearbox [1–3,13–15,20,21].
• Bearing damage [22,23].

While the faults listed above are mainly mechanical problems that can be judged using
vibration signals (with the means of judging these detailed in Appendix A), the acoustic
interface is another main interface used to understand whether a wind turbine is faulty,
specifically through noise measurements. Appendix B provides further details about this
process [1–3,17,18]. Theoretically, then, the measurement results from either interface, or
both, can be considered [1–3,13–19,21] on the remote side.

However, the following statements are critical for explaining the reasons this research
is conducted recording only the vibration data (and not the noise data) on the ‘remote side’
of the CMS and utilising the collected datasets on the ‘server side’.

1. Using the datasets recorded from an interface is sufficient. According to the above
review summary, vibration and noise are the two interfaces that can be used to
understand a wind turbine’s physical deterioration. However, it has been proven that
most of the noises generated by a turbine are caused by vibrations.

2. The criteria referenced above do not support judging the faulty conditions of the
blades as addressed by this study. The experimental results from our extensive
laboratory tests performed prior to this study showed that the criteria f above or
judging the faulty conditions of power generators were ineffective for those of blades
(i.e., they usually resulted in more incorrect judgments than correct ones) on the
remote side. We referred to the usual criteria for power generators, and thus they
might not be suitable for other components of turbines (even though a turbine always
includes at least one generator) (see Section 2.4).
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From the above discussion, as using the vibration datasets is sufficient (and using these
is better than using the noise datasets due to the causal relationship), and as the traditional
criteria for diagnosing a power generator do not apply in diagnosing the component of
turbine blades on the remote side, we decided to seek clues to establish the judgement rules
from the vibration datasets received and gathered on the server side.

2.4. Developing Wind Turbines: A Briefing

To demonstrate the role of wind turbine blades in designing and maintaining a wind
turbine, as a supplemental review, Figure 1 shows the life cycle of wind turbine develop-
ment.

Figure 1. The life cycle of wind turbine development.

After a wind turbine is set up, if it becomes inoperable, most wind turbine manu-
facturers will assert that it was because the turbine was not properly maintained. Then,
to argue with the manufacturer, the engineers in a green energy operator company would
like to design a simulation program based on a given turbine manufacturer’s model and
run it to determine if the design was flawed. However, it is questionable whether or not
the operator can successfully request the design drawings and related data for subsequent
operations, maintenance, monitoring and analysis from the manufacturer in practice, let
alone build up a simulated turbine. Wind turbine manufacturers believe that wind turbine
design drawings and related technologies are trade secrets, so technology transfers are
impossible for them; a chance of negotiation exists only if the business deal involves a
large-scale wind farm. In reality, however, most cases do not contain this possibility, even
in a large-scale wind farm construction project (to the authors’ knowledge).

Therefore, based on the operation and maintenance phase in Figure 1, we must rely
on the condition monitoring approach using a CMS (both remote side and server side) and
perform the repair or replacement tasks (i.e., the unplanned maintenance outside of the
regular, periodic maintenance tasks) when this system detects a sudden faulty status of the
turbine while it is operating.

Blade design is the most commonly addressed topic in the design phase for wind
turbines because it is usually used to distinguish the brand and type of the turbine directly
(visually) and because the technologies for the design of all other components (generator,
tower, convertor and controller) were mature long before wind turbines appeared. Thus, this
study focuses on the detection of blades’ sudden faulty status. Before this, it is necessary to
seek clues for establishing the effective rules for the detection process based on the vibration
data transmitted to the server side in near real time from the remote side.
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An effective CMS providing accurate predictive detections and posing precise warn-
ings for subsequent maintenance by prediction actions cannot proceed without these rules.
Strictly speaking, the methods to establish these rules also fall within the scope of the failure
and cause-of-failure analyses phase in Figure 1, in addition to the traditional tasks usually
defined based upon the testing failures. The next section presents the results obtained from
the data analysis, which forms the basis for establishing the rules.

3. Results

In this section, we summarise the process for establishing effective rules and present
the key results obtained from the data analysis (omitting the results from the extensive trial
analysis). The process follows the methods introduced in Sections 4.3 and 4.4, while the
flows and methods for the experimental conditions, data collection, data preprocessing and
data curation processes are detailed in Sections 4.1 and 4.2.

3.1. Source Datasets and Visualisation

After the collected datasets were preprocessed and curated, the first phase involved
visualising the source time-domain datasets, so that observations could be made in order
to perform some initial comparisons. For this purpose, the datasets of the vibration data
updated on the server-side CMS were sampled and rendered for 3.0-blade (full blades),
2.5-blade, and 2.0-blade wind turbine settings. In Appendix C, a full coverage for these is
shown in Figure A1, A2 and A3, respectively. For space reasons, only several subfigures
are preserved here in Figures 2–4 as example cases, which are plotted for the data being
recorded along the X, Y and Z axes subject to the ‘no wind imposed’ setting.

Figure 2. Acceleration signals recorded for the full (normal) 3.0-blade turbine.
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Figure 3. Acceleration signals recorded for the 2.5-blade (partially broken) turbine.

Figure 4. Cont.
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Figure 4. Acceleration signals recorded for the 2.0-blade (one blade missing) turbine.

3.2. Using the Local Regression Method (LRM) and the Smooth-Line Approach

Next, based on the first 1024 data entries in each dataset (data sequence), we found
the smooth line to represent the trend of the data points using the local regression method
(LRM). In Appendix D, we plotted it as a bold blue line in Figures A4–A6 for different
wind-speeds subject to the wind turbine settings of 3.0-blade (full blades), 2.5-blade and
2.0-blade configurations, respectively. For space reason, only several subfigures used for
subsequent discussions are preserved here in Figures 5–7.

Figure 5. Cont.
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Figure 5. Magnitude and trend of acceleration for the full (normal) 3.0-blade turbine. (a) Based on
datasets recorded along the X axis with no wind imposed. (b) Based on datasets recorded along the Y
axis with no wind imposed. (c) Based on datasets recorded along the Z axis with no wind imposed.

Figure 6. Cont.
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Figure 6. Magnitude and trend of acceleration for the 2.5-blade (partially broken) turbine. (a) Based on
datasets recorded along the X axis with no wind imposed. (b) Based on datasets recorded along the Y
axis with no wind imposed. (c) Based on datasets recorded along the Z axis with no wind imposed.

Figure 7. Cont.

65



Buildings 2022, 12, 1588

Figure 7. Magnitude and trend of acceleration for the 2.0-blade (one blade missing) turbine. (a) Based
on datasets recorded along the X axis with no wind imposed. (b) Based on datasets recorded along the
Y axis with no wind imposed. (c) Based on datasets recorded along the Z axis with no wind imposed.

In these visualisations, we used a small grey circle, instead of points, to denote each
original data point, so that the intensity of the data points could be observed in terms of
their overlaps. Through the presentation of these points, we might easily find that the
cycle of a waveform roughly concurs with the interval between the ‘peaks’ or the interval
between the ‘valleys’ of the original acceleration data. As seen in most of these figures
(except for the acceleration signals recorded along the X-axis and the Y-axis for the 2.5-blade
turbine with no wind, i.e., Figure 6a,b), a waveform containing several repeated waves
with a highly static time cycle appeared.

However, despite some 2.5-blade cases being distinguished easily, the 3.0-blade cases
and the 2.0-blade cases are not dissimilar visually. Therefore, no rule can be established to
differentiate these three cases through the eyes till now, let alone this vision-based process
lacks a mathematical foundation. Here, only the observed static time cycle is worthwhile,
i.e., in each subfigure, each pair of two nearby peaks, or each pair of two nearby valleys,
was almost equally spaced, so the interval for nearby peaks or that for nearby valleys was
consistent as well.

However, from these graphs we also saw that (1) the number of data points outside the
waveform, (2) the degree to which they were outside the waveform, (3) the concentration of
these data points and (4) the proportion of data outliers were all different (i.e., they varied
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from case to case). For example, in general, on the same axis, there were more acceleration
data outliers in Figure A5 for the 2.5-blade setting than in Figure A4 for the 3.0-blade setting
and in Figure A6 for the 2.0-blade setting.

Take the settings with 0.6 m/s wind-speed arbitrarily as an example. In Figure A5a
(upper-right subfigure), there are 14 outliers (out of the first 1024 data entries), according to
the normal outlier equations below:

{
Outliers(VD) = U(VD)\{vd ∈ VD|vd = [Q1 − 1.5 × IQR, Q3 + 1.5 × IQR]}

IQR = Q3 − Q1

At the same time, in the upper-right subfigure in Figure A4a (no blade broken),
imposing the same wind-speed, there is no (0) outlier. And surprisingly, in the upper-right
subfigure in Figure A6a (a full blade broken) with the same wind-speed being imposed,
there is no (0) outlier either.

In addition, in Appendix D in general, on the X axis and the Y axis, apart from the
acceleration magnitude ranges, it seems that accelerations with the 2.0-blade setting (e.g.,
Figure 7a,b) were more concentrated than those with the 3.0-blade setting (e.g., Figure 5a,b).
Combined with the previous observations, these provided further clues for obtaining the
effective information for constructing the judgement rules in the next subsection.

3.3. Further Transformation: Resampling and Resmoothing

In this part of the analysis, we found that the initial 1024 data points in each data
sample (i.e., the ‘data digest’) were sufficient to establish the final rules to identify the
different (faulty) situations of turbine blade malfunction after further data transformations
using resampling and resmoothing. After conducting experiments, we also found that re-
sampling eight consecutive data points as a representative one (i.e., eight original sampling
time units as a ‘clock’) was appropriate. Therefore, three processes were run as follows.

First, each shortened dataset was resampled using the new clock. We let the original
dataset be a(t), where t = tj, j = 0, 1, ..., 1023 was the original sampling time sequence,
and then defined the resampled dataset as a(t), where t was the redefined clock sequence
and ti = {t8i, t8i+1, t8i+2, · · · , t8i+7}, i = 0, 1, ..., 128. For each clock, the information from
the original data was preserved as follows:

m(ti) =
7

∑
j=0

a(t8i+j)

8
,

v(ti) =
1
8

7

∑
j=0

(a(t8i+j)− m(ti))
2,

where m(ti) and v(ti) are, respectively, the mean of the original data sequence on the
redefined clock sequence t.

Next, the curve-like piecewise line was approached using LRM, and it was in fact a
predictor that also produced the ‘theoretical value’ of the acceleration degree at any speci-
fied time point t, i.e., P(t). Therefore, when the data was re-considered using a ‘clock’, this
clock was also applied to the predictor function. We named this new predictor a function
called P(t), where t was the redefined clock sequence and ti = {t8i, t8i+1, t8i+2, · · · , t8i+7}.
Therefore, P(t) could be simply redefined as:

P(t) = P(m(ti))

However, in the above equation, the function P(·) was identical to P(·) because both
used local regression as the smoother function.

Third, the computational results are rendered in Figures A7–A9 for the 3.0-blade,
2.5-blade and 2.0 blade settings, respectively. Once again, for these settings, only the
no-wind-imposed cases on the 3 axes are presented in Figures 8–10 for simplicity. These
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simplified plots were qualified to clarify the features among the different faulty blade cases
and establish the rules to distinguish them automatically.

Figure 8. Means and peak/valley variances of resampled data for the 3.0-blade turbine. (a) Based on
datasets recorded along the X axis with no wind imposed. (b) Based on datasets recorded along the Y
axis with no wind imposed. (c) Based on datasets recorded along the Z axis with no wind imposed.
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Figure 9. Means and peak/valley variances of resampled data for the 2.5-blade turbine. (a) Based on
datasets recorded along the X axis with no wind imposed. (b) Based on datasets recorded along the Y
axis with no wind imposed. (c) Based on datasets recorded along the Z axis with no wind imposed.
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Figure 10. Means and peak/valley variances of resampled data for the 2.0-blade turbine. (a) Based on
datasets recorded along the X axis with no wind imposed. (b) Based on datasets recorded along the Y
axis with no wind imposed. (c) Based on datasets recorded along the Z axis with no wind imposed.

As can be seen, these plots provided clear ways to compare and establish the rules to
identify the two malfunctioning blade cases against that with full blades working normally.

4. Establishment of Rules and Discussion

Based on these results, the rules to judge whether a blade on the wind turbine was
half-broken (i.e., the 2.5-blade case), normal with full-blades running (i.e., the 3.0-blade
case), or completely missing a blade (i.e., the 2.0-blade case), could be established.
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4.1. First Rule to Judge the 2.5-Blade Case

First, certain features of the 2.5-blade cases emerged as salient. From the graphs in
Figure A8, e.g., Figure 9b, it was easily observed that many of the 2.5-blade cases had
distorted or abnormal waveshapes after the data points (t, a) were smoothly interpolated
using LRM, compared to the 3.0 or 2.0 cases in Figures 8b and 10b. An extreme case of this
could be seen in the plot for the 2.5-blade, Y axis, no-wind case, while other trivial cases
were the 2.5-blade, X axis, no wind; 2.5-blade, X axis, wind-speed = 12 m/s; 2.5-blade, X
axis, wind-speed = 18 m/s; 2.5-blade, Y axis, wind-speed = 12 m/s and 2.5-blade, Y axis,
wind-speed = 18 m/s cases, as seen in Figure A8. As seen in the figures, almost all of
these cases appeared based on the data series recorded on the X and Y axes, despite the
level of the peaks/valleys also being slightly jittered based on the data recorded on the Z
axis subject to certain wind-speeds, e.g., ‘2.5-blade, Z axis, no wind’ and ‘2.5-blade, Z axis,
wind-speed = 18 m/s’.

However, despite its simplicity, a rule based on the visualisation process was difficult
to implement because it was established through human-based pattern recognition. For
example, to what extent could the so-called ‘distortion’ and ‘abnormality’ be justified for a
wave-like plot? Therefore, a numerical rule needed to be established so that an algorithm
could be implemented based on the results for automatic detection in the future. This relied
on the true mean and variance values of the acceleration source data that corresponded to
a peak or valley in a resampled and smoothed waveform, which were displayed as bold
vertical red line segments in the plot. Each such line ranged from (mean − variance) to
(mean + variance) of a source data slice associated with some peak or valley.

As can be observed, in general, the red line segments were longer in the figures plotted
based on the X-axis and Y-axis vibration data subject to the 2.5-blade setting, no matter
how great the wind-speed imposed on the turbine, compared to those plotted based on
the X-axis and Y-axis vibration data subject to either the 2.0-blade setting or the 3.0-blade
setting. Moreover, no such situation was found for the figures plotted based on the Z-axis
vibration data subject to the same 2.5-blade setting.

As such, this feature (Rule 1), i.e., occurrences of the long red line segments around
the peaks and valleys of the LRM-smoothed and resampled waveform that appear for
the X-axis and Y-axis vibration data under different wind-speed settings, can be used to
identify whether half (0.5) a blade on the wind turbine, or a part of a blade, is broken (i.e.,
the 2.5-blade case).

4.2. Second Rule to Judge the 2.0-Blade Case

Next, since the 2.5-blade case could be excluded using the above rule, the remaining
problem involved how to distinguish the 2.0-blade (one blade totally missing) case from the
3.0-blade case. A clue to the reasoning was that a turbine having full blades (the 3.0-blade
setting) should be heavier than the same turbine with a blade totally missing (the 2.0-blade
setting) in the case of no wind (static without other conditions changing). That is, unlike
the vibration data recorded along the X axis or Y axis, the Z axis data corresponded to the
vertical power (i.e., the weight factor of the turbine) of the turbine interacting with the
foundation structure and the land. Therefore, lower accelerations should be detected along
the Z axis for a turbine with a full blade missing than for a normal (full-bladed) turbine,
and this effect could be clearly compared and displayed when no wind was imposed.

This was reflected in the experimental results. Comparing the acceleration data
recorded along the Z axis for the situation with no wind (0 m/s) (see Figures 8c and 10c),
the interval of the predicted acceleration values for the 3.0-blade normal case was [–1.4,–2.0]
(m/s) (bounded by the peaks and valleys of the waveform). In contrast, the interval of
those predictions for the 2.0-blade case was [–1.2,–1.8] (m/s), a lower window.

Therefore, the results supported our theoretical suppositions. These became the second
rule to distinguish a turbine with a blade totally missing (i.e., the 2.0-blade case) from a
normal turbine (Rule 2): if the case is not ‘a part of a blade is broken’ (which can be detected
based on the first rule), the predictive waveform identified from the Z axis data can be
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used to see whether or not a blade is missing for any possible reason by checking to see if
waveform fluctuation of the resampled data, in terms of the interval delimited by the peaks
and valleys of the smoothed function (i.e.,

{
maxP(t), minP(t)

}
), is narrower than usual.

4.3. Discussion

In short, the means and variances of the time-domain data recorded along the X axis or
the Y axis around the peaks and valleys of the locally regressed and resampled waveform
can be used to determine whether the wind turbine already has a partially broken blade (i.e.,
the 2.5-blade case). The bold vertical red line segments are measured based on these means
and variances, and the extraordinary appearance of these line segments may indicate the
faulty 2.5-blade case or perhaps harm to a blade.

Following this rule and excluding the 2.5-blade case, the fluctuation range of the
predictive waveform obtained based on the data interval recorded along the Z axis when
there is no wind can be used as a measure to distinguish the 2.0-blade case from the normal
3.0-blade case. When this interval rises further upward than usual, the case in which a
blade is totally missing (the 2.0-blade case) can be detected.

Combing these two rules, all three of the cases—the normal case and the two faulty
cases of wind turbine fan-blade damage—can be explained systematically. As these rules
are simple (with limited computational complexity), they can be used to detect these
malfunctions almost in real time and to transmit the necessary warning messages to
those in charge just in time, given that the vibration datasets for the wind turbines are
synchronised routinely (within a short period of time) on the server side of the CMS. This
greatly benefits the unplanned maintenance efforts of wind farm operations.

The Circum-Pacific Belt area is prone to super typhoons and strong typhoons, whose
wind-speeds may easily reach 150 km/h or above, and thus a situation in which a wind
turbine blade breaks apart or falls off completely should not be news to anyone in the
green energy industry. Although the proposed set of rules does not fit the case in which a
turbine totally collapses (as it is unclear whether the accelerometer and remote-side CMS
would still work in this case), in most cases it can serve as a computerised remedy to detect
whether a blade is broken or falling off, if the wireless transmission works.

Since another common cause of turbine damage in the studied area involves earth-
quakes, which are usually as unpredictable as typhoons, the maintenance by prediction
mechanism is suggested as a supplement to regular predictive maintenance, even during
periods of predictable weather conditions (i.e., to best control that which is controllable). In
short, from the above discussions for the Circum-Pacific Belt area and articulating back to
the outset of this study (see Section 1.1), it should be clear that the proposed mechanism,
even just putting a puzzle piece for detecting the damages on the fan component of a
turbine (with respect to the whole integrative perspective of turbine maintenance), can
improve the operating efficiency of turbines. This reduces the maintenance costs and
benefits the unplanned maintenance of wind farm operations.

Note that in terms of digital signal processing (DSP), we established the set of detection
rules based on the converted (original) time-domain data, rather than the data in any other
domain, e.g., frequency-domain data. Doing so not only maintains simplicity for future
implementation and makes the entire process faithful to the original data but also avoids
possible ambiguity. For example, if the upper and lower limits of the predictive waveform
window determined by the peaks and valleys are logged, it becomes harder to examine
whether there has been an upward shift in the interval from the 3.0-blade setting to the
2.0-blade setting (i.e., for the second rule) just because the window in the logged domain
would become narrower.

4.4. Extensive Materials

This subsection provides extensive descriptions for how the rules are justified using
tabularised quantitative information.
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Table 1 digests how the first rule was established in Section 4.1, based on the resampled,
resmoothed, and mean–var. transformed data on the X axis (see Section 3.3 and Figures
A7a, A8a and A9a), with the setting that wind-speed (WS) = 6 m/s. Table 2 is numerically
presented on the Y axis (see Section 3.3 and Figures A7b, A8b and A9b), because rule 1 says
that using the information either on the X-axis or on the Y-axis is okay.

Table 1. Resampled, resmoothed mean–var. transformed data on the X axis (WS = 6 m/s). (a)
Min/var. peak/valley Stats for the 3.0-blade turbine. (b) Min/var. peak/valley stats for the 2.5-blade
turbine. (c) Min/var. peak/valley stats for the 2.0-blade turbine.

(a)

ID Mean Var. Peak Valley Peak Top Peak Bot.
Valley

Top
Valley

Bot.
Peak

Range
Valley
Range

4 −0.23097 0.016014 0 1 - - −0.21496 −0.24699 - 0.032028
19 0.914043 0.003893 1 0 0.917935 0.91015 - - 0.007785 -
32 −0.28885 0.008199 0 1 - - −0.28065 −0.29705 - 0.016398
45 0.66058 0.011351 1 0 0.671931 0.64923 - - 0.022701 -
59 −0.45689 0.00657 0 1 - - −0.45032 −0.46346 - 0.013139
72 0.83469 0.005848 1 0 0.840538 0.828842 - - 0.011696 -
85 −0.37567 0.010922 0 1 - - −0.36475 −0.3866 - 0.021845
99 0.661981 0.006781 1 0 0.668762 0.6552 - - 0.013562 -
112 −0.51664 0.018861 0 1 - - −0.49778 −0.5355 - 0.037722

(b)

ID Mean Var. Peak Valley Peak Top Peak Bot.
Valley

Top
Valley

Bot.
Peak

Range
Valley
Range

11 −0.00738 0.112158 0 1 - - 0.104774 −0.11954 - 0.224315
24 0.879034 0.05588 1 0 0.934914 0.823154 - - 0.11176 -
38 0.365574 0.043997 0 1 - - 0.409572 0.321577 - 0.087994
52 0.878567 0.015044 1 0 0.893612 0.863523 - - 0.030089 -
64 −0.05406 0.017749 0 1 - - −0.03631 −0.07181 - 0.035497
77 0.927113 0.884839 1 0 1.811952 0.042274 - - 1.769678 -
90 0.233009 0.022373 0 1 - - 0.255381 0.210636 - 0.044746
104 0.990595 0.006383 1 0 0.996978 0.984212 - - 0.012765 -
117 0.004286 0.00893 0 1 - - 0.013216 −0.00464 - 0.017861

(c)

ID Mean Var. Peak Valley Peak Top Peak Bot.
Valley

Top
Valley

Bot.
Peak

Range
Valley
Range

15 0.846359 0.002904 1 0 0.849264 0.843455 - - 0.005808 -
28 −0.23564 0.005518 0 1 - - −0.23012 −0.24116 - 0.011036
41 0.851494 0.001186 1 0 0.85268 0.850308 - - 0.002373 -
55 −0.23797 0.008646 0 1 - - −0.22933 −0.24662 - 0.017291
68 0.837491 0.00561 1 0 0.8431 0.831881 - - 0.011219 -
81 −0.27158 0.003622 0 1 - - −0.26796 −0.2752 - 0.007243
95 0.774475 0.002352 1 0 0.776827 0.772123 - - 0.004705 -
108 −0.30332 0.008789 0 1 - - −0.29453 −0.31211 - 0.017578
122 0.760005 0.004668 1 0 0.764673 0.755336 - - 0.009337 -
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Table 2. Resampled, resmoothed mean–var. transformed data on the Y axis (WS = 6 m/s). (a) Min/var.
peak/valley stats for the 3.0-blade turbine. (b) Min/var. peak/valley stats for the 2.5-blade turbine. (c)
Min/var. peak/valley stats for the 2.0-blade turbine.

(a)

ID Mean Var. Peak Valley Peak Top Peak Bot.
Valley

Top
Valley

Bot.
Peak

Range
Valley
Range

7 0.553172 0.008447 0 1 0 0 0.561619 0.544724 0 0.016895
20 1.113486 0.009612 1 0 1.123098 1.103874 0 0 0.019224 0
34 0.597753 0.010292 0 1 0 0 0.608045 0.58746 0 0.020585
48 0.91686 0.008372 1 0 0.925231 0.908488 0 0 0.016743 0
61 0.746513 0.019163 0 1 0 0 0.765676 0.72735 0 0.038326
75 1.28571 0.002974 1 0 1.288683 1.282736 0 0 0.005947 0
88 0.474803 0.007407 0 1 0 0 0.48221 0.467396 0 0.014814
101 1.31762 0.01647 1 0 1.33409 1.30115 0 0 0.032939 0
115 0.595876 0.002217 0 1 0 0 0.598092 0.593659 0 0.004433

(b)

ID Mean Var. Peak Valley Peak Top Peak Bot.
Valley

Top
Valley

Bot.
Peak

Range
Valley
Range

12 1.145866 0.154981 0 1 0 0 1.300847 0.990884 0 0.309963
25 1.584168 0.018942 1 0 1.60311 1.565226 0 0 0.037884 0
38 1.204525 0.18757 0 1 0 0 1.392095 1.016955 0 0.37514
52 1.810359 0.021382 1 0 1.831741 1.788976 0 0 0.042765 0
65 1.112547 0.109336 0 1 0 0 1.221883 1.003211 0 0.218672
78 2.019655 0.094675 1 0 2.11433 1.92498 0 0 0.18935 0
92 1.097061 0.010047 0 1 0 0 1.107108 1.087014 0 0.020093
105 1.745129 0.010731 1 0 1.75586 1.734399 0 0 0.021461 0
118 1.113955 0.005631 0 1 0 0 1.119586 1.108324 0 0.011263

(c)

ID Mean Var. Peak Valley Peak Top Peak Bot.
Valley

Top
Valley

Bot.
Peak

Range
Valley
Range

7 0.532054 0.010882 0 1 0 0 0.542937 0.521172 0 0.021765
20 1.098469 0.00871 1 0 1.107179 1.089759 0 0 0.01742 0
34 0.570066 0.011347 0 1 0 0 0.581412 0.558719 0 0.022693
48 0.934223 0.007859 1 0 0.942082 0.926363 0 0 0.015719 0
61 0.798602 0.016174 0 1 0 0 0.814776 0.782429 0 0.032347
75 1.308704 0.004071 1 0 1.312775 1.304633 0 0 0.008142 0
88 0.445239 0.002191 0 1 0 0 0.447429 0.443048 0 0.004381
101 1.283832 0.013534 1 0 1.297366 1.270298 0 0 0.027068 0
115 0.610893 0.001298 0 1 0 0 0.612191 0.609594 0 0.002597

In these tables, ID is the number of the data entry in the resmoothed and resampled
dataset in 3.3, based on the retrieval of the initial 1024 signals of each data sequence in
3.2. For example, in Table 2b, the ‘Mean’ and ‘Var.’ for ‘ID’ = 12 means the data entries
with clocks [(12 − 1) × 8, (12) × 8 − 1] in the source accelerometer data sequence (which is
0-started) have a mean value of 1.145866 and a variance of 0.154981. ‘Peak’ = 0 and ‘Valley’
= 1 means that a valley appears here (as can be seen, in this table, entries that are neither
a peak nor a valley in the figure are not shown here), and this valley is having a value
delimited by [‘Valley Top’, ’Valley Bot.’] = [0.990884, 1.300847], while the ‘Valley Range’ of
it is 0.309963. For this identified extreme, ‘Peak Top’, ‘Peak Bot.’ and ‘Peak Range’ do not
receive any value because they are not peaks (see also in the corresponding subfigure in
Figure A8b).

Rule 1 is obvious from these tables. Along the X or Y axis, either the peak range or the
valley range of the 2.5-blade turbine is far greater than the peak range or the valley range of
a 3.0-blade turbine or a 2.0-blade turbine. This is more salient when a total summary for all
cases and the average is given in Table 3 (e.g., when wind-speed = 6 m/s, on Y axis, 0.072865
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(2.5-blade) >> 0.018713 (3.0-blade) > 0.017087 (2.0-blade); 0.187026 (2.5-blade) >> 0.01901
(3.0-blade) > 0.016757 (2.0-blade)). That is, for a 2.5-blade turbine, the variance at the peak
or valley along the X or Y axis is at least triple or more than the 3.0-blade or 2.0-blade cases.

Table 3. Summary for peak/valley information for all cases.

Turbine
Case

Accel. Axis WindSpeed #Peaks/Valleys
Avg. All

Peaks
Avg. Peaks’
Variances

Avg. All
Valleys

Avg. Valley
Variances

3.0 X 00 9 0.419068 0.019037 0.010037 0.020074
3.0 X 06 9 0.767823 0.013936 0.012113 0.024227
3.0 X 12 9 0.862113 0.016336 0.010408 0.020817
3.0 X 18 9 0.948771 0.014 0.010141 0.020282
3.0 Y 00 9 1.027233 0.018741 0.005394 0.010787
3.0 Y 06 9 1.158419 0.018713 0.009505 0.01901
3.0 Y 12 8 1.212972 0.013009 0.014553 0.029105
3.0 Y 18 9 1.364735 0.025744 0.015587 0.031175
3.0 Z 00 9 2.041538 0.013117 0.006551 0.013102
3.0 Z 06 9 3.094599 0.026482 0.018394 0.036788
3.0 Z 12 9 3.197712 0.029044 0.012246 0.024493
3.0 Z 18 9 3.446215 0.050402 0.021442 0.042884
2.5 X 00 8 0.532799 0.010725 0.004935 0.00987
2.5 X 06 9 0.918827 0.481073 0.041041 0.082083
2.5 X 12 8 0.852311 0.113416 0.036543 0.073086
2.5 X 18 9 0.873083 0.231489 0.032187 0.064373
2.5 Y 00 12 1.429386 0.010936 0.006929 0.013859
2.5 Y 06 9 1.789828 0.072865 0.093513 0.187026
2.5 Y 12 9 1.696677 0.032836 0.043012 0.086024
2.5 Y 18 8 1.819861 0.125277 0.040118 0.080236
2.5 Z 00 9 2.242601 0.005715 0.004855 0.00971
2.5 Z 06 9 3.405228 0.036168 0.017841 0.035681
2.5 Z 12 9 3.288273 0.068447 0.048333 0.096666
2.5 Z 18 9 3.69345 0.042324 0.032733 0.065466
2.0 X 00 9 0.46955 0.014728 0.007318 0.014636
2.0 X 06 9 0.813965 0.006688 0.006644 0.013287
2.0 X 12 9 0.769434 0.025687 0.00883 0.017661
2.0 X 18 9 0.904054 0.012814 0.00654 0.01308
2.0 Y 00 9 1.082138 0.015552 0.005682 0.011363
2.0 Y 06 9 1.156307 0.017087 0.008378 0.016757
2.0 Y 12 8 1.213207 0.014997 0.013445 0.026891
2.0 Y 18 9 3.088382 0.023286 0.013972 0.027944
2.0 Z 00 9 1.876956 0.013995 0.007343 0.014686
2.0 Z 06 9 2.940388 0.020016 0.011664 0.023329
2.0 Z 12 9 3.114471 0.014417 0.003698 0.007396
2.0 Z 18 9 3.088382 0.023286 0.013972 0.027944

Finally, Rule 2 should also be obvious from these tables. See in Table 3. For the 3.0-blade
settings, on the Z axis, from the average of all valley values to the average of all peak values
(i.e., the fluctuation), the numbers are 2.034987, 3.076206, 3.185465 and 3.424772, respectively,
imposing the four wind-speeds. However, for the 2.0-blade settings, on the same axis, these
numbers are 1.869613, 2.928724, 3.110773 and 3.074410, respectively. All of these numbers
are below those of the 3.0-blade settings (while other settings are identical) by 7% (8.8%, 5%,
2.4% and 11.4%) in average. This quantified rule can be applied, and the reason for this is
related to electromechanical conversion: more electricity is produced by the wind turbine
when no blade is missing.

5. Conclusions

Green energy has become a major power source over the past two decades. Wind
does not pollute and is currently one of the most promising clean and inexhaustible energy
sources for power generation [24]. Recent advances in wind energy production have helped
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to solve practical problems [25] and improve quality of life [26]. Due to the torsional and
flexural coupling of the pre-bent blades, the dynamic characteristics of blades made from
orthotropic composite materials with conical pre-torsion are much more complex than those
of isotropic blades. On the other hand, this means that—compared to other components
of a wind turbine whose designs have had time to mature—the relevant technologies and
designs for the fan blades are relatively new.

Condition monitoring and fault diagnosis of wind turbines have gained more and more
practical value for reducing maintenance costs and improving wind farms’ operational
efficiency [27], because more and more wind farms are being constructed and operated
globally. Thus, the market has become competitive, and wind farm operators usually need
to reduce their operating and maintenance costs in order to make their operations more
profitable, and to maintain the sustainable competitive advantage (SCA) of the company,
the maintenance strategies must be effective as operations continue. Due to these drivers,
the condition monitoring and early fault diagnosis of wind turbines have become required
industrial practices because they help improve the reliability and productivity of wind
farms [28].

Due to the high maintenance costs (and efforts) incurred, the failure of wind turbine
blades during the operation and maintenance phases has become a major problem for
the wind power industry. Therefore, the utilisation of quality real-time data [29] and the
development of methods to monitor the turbine blades’ integrity is critical [30] because
of the novelty of the blades’ designs (which also determine the feature(s) of some turbine
types of certain turbine brands).

In order to detect blade damage, after a review, we found that vibrations and noises
are the two interfaces through which to determine mechanical faults, and the signals these
carry can be analysed to determine the cause of the event. However, after long laboratory
trials, we also found that taking these signals and using the existing justification criteria
from research on power generators is infeasible and ineffective for diagnosing fan-blade
faults using CMS with the wind turbine on the remote side. The rules (criteria) for detecting
faulty situations therefore had to be reconsidered, and the idea of detecting faults using
remote-side CMS with limited computation power had to be abandoned.

This led to the idea to establish effective new rules for the server-side CMS to detect
faulty situations based on the vibration data transmitted and updated from the remote-side
CMS, because using the datasets recorded from an interface were sufficient and using the
interface recording vibrations would be better. This resulted in the creation of a new plug-in
for the failure and cause-of-failure analysis module on the server-side CMS, which detects
sudden faulty events and types of fan-blade damage in almost real time (see Figure 1).
It can then send an alert message via SMS or email to the engineers on duty, so that they
can make repairs immediately.

In this sense, it may help to establish a maintenance by prediction mechanism for
unplanned maintenance when any fan blade is out of order, which supplements the common
planned tasks carried out for the preventive maintenance of the fan blades. Despite the
suggested mechanism playing a supplementary role to regular preventive maintenance being
the main possible contribution, it should be particularly noted that this point is also exactly
the boundary of this study, i.e., no work related to traditional preventive maintenance is
presented. Another boundary of the study should be that the mechanism suggested by
this study is for turbines having blades made of isotropic materials (because of current
experimental limitations), so there is still room for exploring whether or not it still holds (or is
there any other more effective mechanism) for those turbines having orthotropic blades.

All of this relies on the effective rules established to identify the 3.0-blade (full blade or
normal), 2.5-blade (half or part of the blade broken) and 2.0-blade (one blade totally missing)
cases while the turbines are operating. Fortunately, with the help of a contemporary data-
driven approach and the adoption of suitable data processing/analysis methods in both
DSP and statistics, we found that watching a continuous (but short, in terms of sampling
time) sequence of the vibration dataset was sufficient to establish these rules. Fortunately,
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despite the considerable time and effort put into the data experiments to determine the
rules, these rules are not difficult to implement on any given CMS, because:

(1) No real domain transformation is required, and only data conversions happen:
the rules work with the data in the source domain, with just a few conversions (rather than
transformations) of the data required for the computation;

(2) The rules are data-pattern-based, rather than learning-based: fixed judgements
are made on the observable patterns or characteristics in the converted data, so no other
processes, such as training, verifying, or parametric tuning efforts, are needed; and

(3) The rules are simple: only two rules are included (and required) to make the
judgements, and they are simple, so they can be designed as additional functions of the
CMS without utilising significant run-time computational resources.

The real use of these rules on the server-side CMS is expected in the future, and their
true value will be shown when the unplanned maintenance by prediction tasks is someday
carried out for the turbine blades. We sincerely hope that in the future, these rules can
benefit not only the company operating the wind farms but also the entire wind turbine
industry. They have the potential to change the ways people approach CMS design for
wind turbines, as the effectiveness of data-driven server-side fault diagnostics has been
made evident in this study. Finally, while the proposed mechanism works for shoreside
wind turbines, a similar logic can be generalised to other wind turbines (e.g., offshore or
inland) as well.
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Appendix A

(C1) The vibration generated by the generator is caused by an uneven magnetic force
acting on the rotor or the stator. In the case of vibration caused by the impulse torque,
the induction motor essentially generates a pulsed torque and causes vibration, and impulse
torque is thus generated. It is the result of rotating the magnetic field to actuate the poles of
the stator. Since each stator pole is actuated twice when the AC power source completes a
cycle, the resulting vibration frequency is twice that of the AC power source. That is if the
frequency of the AC power used is 60 Hz, the vibration frequency of the impulse torque
is 120 Hz. This type of vibration due to pulsed torque is often not significant unless the
motor needs to operate in a relatively low vibration environment or because the pulsed
torque vibration frequency matches the tower’s natural frequency or blade body frame.
When an abnormal phenomenon occurs, however, it must be dealt with. The magnitude of
the vibration caused by the impulse torque depends on the evenness of the rotor winding.
The more uniform the rotor winding, the lower the vibration value of the impulse torque.
Therefore, for more demanding applications, good uniformity of windings should be
required during a motor’s manufacturing. Moreover, when the rotor winding rod is loose,
or the stator winding is open, it will generate 2×, 3×, or even a higher multiple of the
vibration frequency at the pulse torque frequency, i.e., 120 Hz and 180 Hz will be generated
in the frequency spectrum analysis.
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(C2) Vibrations generated by the generator or vibrations caused by an abnormal rotor
or rotor coils. The causes of faults within the generator related to the rotor coil can consist
of issues such as a rotor winding bar break, a rotor winding open or short circuit, rotor
deflection, rotor eccentricity, and so on. The vibrations caused by the causes mentioned
above of the fault will all be unstable. In other words, if the amplitude is measured with
a vibrating instrument, the pointer or digit on the instrument will oscillate continuously.
It will be a single-frequency vibration due to the causes of malfunction; the amplitude will
be modulated. This modulation phenomenon is based on the reasons mentioned above of
failure, which causes the imbalance of the magnetic forces between the upper and lower
magnetic poles and between the rotor coil and the permanent magnet. Suppose a two-pole
induction rotor is winding breaks when the generator’s stator winding is actuated by AC
power to generate a magnetic field. In that case, the broken part of it will be precisely
aligned with the magnetic pole in a specific direction. At this moment, the current will
reach a maximum value. That is, the magnetic force of the magnetic pole will be at its
maximum; the magnetic pole of the other pole of the stator will act on the rotor with
the maximum magnetic force. However, due to the induced magnetic poles, the rotor
corresponding to one pole will be intact. The rotor corresponding to the other bar will be
fractured, so the two poles’ magnetic force will not be equal, resulting in an unbalanced
force being generated between the rotor and the stator. Meanwhile, the broken wire rod
gradually moves away from the magnetic field, which no longer precisely aligns with
the magnetic pole in either direction. Then, the magnetic force difference between the
two pole-operated rotors will be reduced, and the vibration force will be reduced. As a
result of this cyclic operation, the vibration amplitude generated by the rotor will form
a periodic vibration, and the vibration frequency will be the rotational frequency of the
magnetic field, not the rotational frequency of the rotor.

(C3) Vibrations generated by the generator or vibrations caused by an abnormal
stator or stator coils. If the motor problem occurs in the winding of the stator of the
generator, the frequency of the vibration generated by the generator will be the frequency
of the magnetic field, but its amplitude will not be. In other words, there is a modulation
phenomenon. However, abnormal vibrations appearing on a stator or stator coils often
have pulsating amplitudes. This pulsation is not the result of amplitude modulation, but
rather the result of a slap phenomenon caused by two very similar vibration waveforms.
The stator-related faults are usually caused by stator windings or short circuits, gaps of
different sizes, and phase imbalances. If the vibration problem associated with the stator
produces a pulsation amplitude, it needs two vibration amplitudes near each other in
their frequency spectrum. One of the vibrations of the two near-frequency frequencies
may be the vibration of the rotation shaft frequency caused by an imbalance of the
shaft or poor centring of the post, while the motor factor will cause the pulse of the other
frequency. Since the frequency of the shaft factor is very close to the electrical equipment’s
frequency, the two’s vibration amplitude will be alternately added or subtracted at the
rate of the difference between the two frequencies. It causes the motor to produce a
significant slap phenomenon. As a result, amplitude ripples are formed. Suppose you
want to determine the pulsation amplitude. In that case, regulated by the amplitude of a
single frequency or by the result of adding two very similar vibration frequencies, you
can use the internal key amplification function of the frequency analyser. First, amplify
the frequency coordinate axis. Then, analyse the frequency spectrum near the shaft
rotation frequency. If the frequency-axis amplification analysis shows that there are two
closely related vibration frequencies stacked together, the cause of the pulsation in the
amplitude can be determined to be caused by a slap phenomenon. If the frequency is
amplified, there is still only a single frequency. A significant up-and-down variation in
the spectrum analyser’s amplitude causes the pulsation amplitude, which is the result of
the modulation.
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(C4) Unbalanced weight of the shaft of the driveshaft. When the shaft quality is
not uniform due to the centrifugal force after the rotation, the wind turbine drive mech-
anism generates vibration. This unbalanced phenomenon is caused by factors such as
non-uniformity in the structure of the shaft during the manufacturing process or shape
asymmetry during the processing. Because of the unbalanced vibrations, radial vibrations
occur. Therefore, the amount of vibration in each direction is measured. The amplitude
ratio in the horizontal, vertical, and axial directions is 5:4:1, and the amplitude is propor-
tional to the unbalanced mass. The vibration frequency based on the imbalance is one
time the rotating frequency of the rotating shaft. Therefore, for the frequency spectrum
analysis, the primary vibration frequency and speed are the same for determining the
unbalanced force’s vibration. However, in addition to the imbalance, many vibration
frequencies are the same as the vibration speed. Therefore, pure spectrum analysis often
cannot determine the vibration of this one-time rotational speed, which is purely due to
the imbalance phenomenon. If supplemented by phase analysis, however, the imbalance
phenomenon is apparent. When the phase analysis is applied, the radial phase on the
bearing seats at both ends of the shaft can be measured. The vibration value and phase
can be measured at a position separated by 90◦, and the results of corresponding mea-
surements of the two bearing blocks can be compared. If the stage measured by the 90◦
position is different by about 90◦ and the vibration amount calculated by the two bearing
housings is a ratio, it can be determined that this vibration frequency is generated by the
unbalanced force.

(C5) The shaft of the driveshaft is bent. Due to a lack of precision in its manufacturing
or external force being applied during transportation and installation, the transmission
shaft may cause the shaft to bend. This bending may occur at the midpoint of the distance
between the two bearings or at one of the paths. This will cause the shaft to have higher
vibration in the axial direction. If the beam’s bending occurs at the centre of the distance
between the two bearing seats, the axial vibrations derived from it will arise in both the
free end and the bearing’s load end. If the shaft’s bending occurs at the load end of the
post passing through the path, the load end’s bearing will measure higher axial vibration
than the free end. The spectrum analyser’s pulse is generated by the beam bending
phenomenon to find that the primary vibration frequency is double the rotation speed.
Sometimes, it is accompanied by a slight dual rotation frequency. If we want to perform
further analysis, we need to supplement the above analysis with a phase analysis to confirm
its results. In general, when the shaft bending position is at the centre of the two bearings,
the corresponding axial phases measured by both approaches are 180◦ out of step with each
other, and the shaft is twisted so that it is measured at different positions on the bearing
housing. The phases are different. When the shaft bending position is at the bearing or the
bearing’s outer end, the stage measured by the direction at the load end is different from
the degrees measured in other paths, but the step is measured at the free end is the same at
each position.

(C6) Improper installation of the shaft of the driveshaft. Poor installation of the shaft
can be attributed to material-processing factors and installation techniques. When the
rotary shaft is processed, the journal’s roundness may be unsatisfactory due to a lack of
precision, and ellipses or triangles may be generated, resulting in a subpar installation.
The vibration caused by such a lack of roundness mainly occurs in the radial direction,
horizontal or vertical. For an elliptical journal, measuring its phase angle will produce
a phase difference of 180◦ between the horizontal and vertical directions. Still, below
the vertical direction, the phase of the measured phase and the other directions will be
180◦ out of phase. If the frequency spectrum analyses the vibration frequency, it will be
found that the main vibration frequency at the elliptical ellipse is twice the rotational
frequency. The primary vibration frequency when the journal is triangular will be triple
the rotational frequency. When the shaft is installed, if the shaft’s centreline cannot be
installed parallel to the centreline of the two bearing seats, it will result in poor centring.
When the post has a poor centring, it will produce a higher vibration in the axial direction.
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When the axial vibration is more generous than 1/2 of the radial (horizontal or vertical)
vibration, various problems may result. If a spectrum analysis is performed, it can be
found that the vibration frequency of the shaft centre is poor. In addition to indicating
1.0 times the speed, there will be 2.0 times or 3.0 times the rotation frequency, and the
phases of the two bearings’ corresponding points will be 180◦ out of phase. For the
bearing measurement horizontal and vertical phases, the phase angles will also have a
difference of 180◦.

(C7) When the transmission shaft is misaligned with the coupling connecting the
machine during installation, it will cause the machine to vibrate violently. Generally, there
are two types of misalignment: misaligned misalignment and low centripetal misalignment.
Decentralization and angling do not occur at the same time. When a machine has a poor
centring, it will produce high axial vibration values, and the frequency spectrum shown in
the analysis of the vibration frequency will, in addition to being double the speed, have
twice or three times the speed frequency. If the form of the poor centring is poor, the phase
angle of the corresponding point of the bearing on both sides of the coupling is measured
at the phase angle, and the horizontal phase is 180◦ out of phase. If the bad machine core
part’s pattern is a purely eccentric type, the vertical phase of the corresponding point will
also differ by 180◦. When the axial vibration is more than half the horizontal vibration, it is
necessary to pay attention to whether the image’s adverse effect is bad or the coupling is
damaged. When the coupling is damaged, loosening occurs in the coupling portion due to
the excessive clearance, and in the frequency spectrum analysis, there will be an abnormal
vibration at a multiple of the rotational speed frequency that is the same as the number of
coupling claws. If the cause of the diagnosis’s vibration is caused by poor coring, the axis
centring correction must be done appropriately. If the coupling is damaged, the coupling
needs to be replaced.

(C8) When the bearing is installed, the shaft diameter may be too small, resulting in the
bearing’s relative movement and the inner ring of the bearing. The bearing seat’s diameter
may be too little, causing the path to slip during operation. When this phenomenon occurs,
the horizontal and vertical directions will produce more severe vibrations. For spectrum
analysis, harmonic vibration frequencies with an integer multiple speeds will be generated
in the low-frequency range. This harmonic frequency is based on the mains frequency
or the pulsed torque frequency. The resulting harmonic vibration of the magnetic field
frequency is caused by the air gap.

(C9) When the bearing is installed, the shoulder’s angle may not be good, resulting in
the centre of the inner and outer rings no longer being on the same straight line. Rotating
causes the motor-transmission mechanism to generate a large axial force due to this twist-
ing. A significantly higher level of noise will accompany the amount of vibration during
operation. When spectrum analysis is performed, it will show that the vibration amplitude
of the spindle-rotation speed is increased. If a phase analysis is performed, the axial phase
will be 90◦ apart every 90◦.

(C10) When the bearing is mounted, the ball bearing can cause temperature rise
and vibration due to insufficient lubrication or improper lubrication viscosity. In the
diagnostic analysis, if the fan temperature is found to be above 30 ◦C above the ambient
temperature, it suggests that there is poor lubrication. Sleeve bearings, on the other
hand, tend to wear with the shaft and cause loosening. This loosening phenomenon will
cause the wind turbine to produce eccentricity and poor centring, and different vibration
patterns. Frequency spectrum analysis of the vibration frequency will be accompanied by
a harmonic frequency of twice or a high multiple of its radial and axis, in addition to a
doubling of the number of revolutions. There will also be no relation to the phase. As for
gasification bearings, abnormal vibration may occur due to the intrusion of foreign matter.
Since a magnetic field’s action forms the rotation of a gasification bearing, if foreign matter
invades, the rotation speed of the wind turbine will be unstable, and it may even stop
due to failure. In the spectrum analysis, it can be found that its central frequency will
be intricate and cluttered, such that it is almost impossible to stabilise. Moreover, if the
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average signal function is applied, noise cannot be eliminated. This phenomenon is caused
by the intrusion of foreign material into the gasification bearing, which results in varying
rotation speed.

(C11) Gearbox. The wind turbine drives the rotating shaft by rotating the blades
through the winds provided by nature. The initial low speed accelerates the rotating shaft
via the speed-change gearbox, and the output is driven by the high-speed rotating shaft to
drive the generator. Gearboxes play an essential role in wind power transmission systems,
usually using a third-order parallel shaft gear drive. They also have a transmission
mechanism designed as a hybrid of a third-order planetary gear and a helical gear. A wind
turbine generator gearbox is affected by wind power generation and is subjected to extreme
loads. It is also deployed in harsh environments. Its frequent faults and breakdowns
are time-consuming to repair, resulting in a heavy operational burden. In general, wind
turbine gearbox failures, the causes of which are complex, will not damage a single
part, but rather a chain effect of damage across multiple parts. For example, when the
gearbox’s oil fails, its bearings will be damaged by wear and tear, which will gradually
affect the gear, causing it to crack, eventually leading to gearbox failure. The gearbox
structure and components are large and complex, easily causing the deformation of the
gearbox housing and the main driveshaft. When starting up, it is easy to cause wear on
the gearbox bearings and cause the post’s eccentricity to run in an unbalanced manner,
causing excessive vibration and noise.

The vibration frequency caused by gearbox meshing during transmission is much
higher than the vibration frequency generated by an unbalanced shaft and poor centring
of the gear. When the gearbox fault causes vibration or noise, the analysis of its frequency
occurs at the spindle speed and is based on the shaft’s number of teeth. Besides, when the
two corresponding motion gears mesh, the contact point collision is rigid and rapid, and
it efficiently induces the gear vibration’s harmonic frequency. Measuring the vibration
signal of the gearbox requires two sets of probe sensors. One set of probes is mounted
on the bearing to measure the gear transmission shaft’s vibration signal and the bearing,
and the other set of probes is fixed on the gear section near the gear mesh. The meshing
frequency is the number of teeth multiplied by the number of revolutions. Usually,
the gears’ meshing frequency is not much larger than the frequency of one frequency, and
a large amount of vibration often occurs at twice the frequency. When the gear is engaged,
the clearance between the two teeth is too large, or the rotating shaft is too loose in the
bearing, there will be a loosening phenomenon during the transmission. Under these
circumstances, the vibration frequency will be 0.5 times the meshing frequency. Analysing
the spectrum of the complicated gearbox and studying the damage and cracking of gears,
inverse Fourier analysis can be used to invert the Fourier function of the frequency domain
into the time domain to calculate the defect position. The weight of a wind turbine’s
gearbox can be as much as 15 tons. If the structure is deformed during installation, the
base vibration will cause the gearbox to cause abnormal wear, gear eccentricity, and
shaft bending. The cause of vibration due to gear deterioration is typically improper
lubrication or insufficient lubrication or even the oil’s infiltration of metal impurities,
all of which will allow the gearbox is operating temperature to increase, causing tooth
surface wear or the intrusion of foreign matter or dust particles in gear. Relatedly, the
excessive, long-term intrusion of salt into the gearbox will cause pitting on the tooth
surface and even cracking of the teeth.
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(C12) Bearing damage. The bearings mounted on a wind turbine drive mechanism
consist of ball bearings, sleeve bearings, and gasification bearings. These bearings are
often inaccessible due to handling, installation, or miscellaneous infiltration. They operate
at high temperatures or high loads for a long time and have insufficient lubrication or
wear. The resulting flaws can cause other defects to appear on the inner and outer ring
raceways or rolling elements and retainers in ball bearings. According to the relative speed
calculation, when any kind of bearing assembly is damaged, there is a specific rate. This
particular frequency is the frequency at which the ball rolls over the inner and outer rings.
This relative rolling frequency often occurs when the bearing is subjected to a local load.
Therefore, in a frequency spectrum analysis, the passing frequency of the low frequency is
often filtered out, and the frequency band of the high frequency generated by the crucible is
used. Then the absolute value and envelope processing are applied. In other words, when
there is a ball-rolling frequency through the frequency spectrum, it means that the bearing
has a high-frequency vibration due to impact, and the specific frequency generated when
the ball bearing components are damaged.

Appendix B

Noise measurement of wind turbines. The noise generated by wind turbines is itself
a kind of sound, so it has all the characteristics of a sound. The vibration of an object
causes a sound. Energy is then transmitted through a given elastic medium in the form
of sound waves. Therefore, all the factors that cause the vibration of a rotating machine
body or cause the pressure field of a transmission medium to change are all mechanical
equipment noise sources. When a wind generator is in regular operation, the blades
generate periodic noise due to the pulsating force of the outlet’s uneven flow. On the
other hand, due to the uneven distribution of the pressure on the blades themselves, the
surrounding gas and components’ disturbance during rotation also constitutes rotational
noise. The turbulent pressure distribution on the blades causes turbulence noise due to
the turbulent flow, airflow, and vortex shedding generated when the gas flows through
the blade. The low-frequency sound is generated by the wind turbine results from
this. Large-scale wind turbines have a small number of diaphragms. Under regular
operation, there are not many turns, so low-frequency sounds occur. If one measures
the fundamental frequency f (Hz) of the noise of the wind turbine, then the following
relationship exists between the speed of the wind fan R (rpm) and the wind turbine blade
Z (pieces): f = RZ

60 (Hz).

Appendix C

The sampled datasets of the vibration data updated on the server-side CMS were
rendered for 3.0-blade (full blades), 2.5-blade and 2.0-blade wind turbine settings.

Figure A1. Cont.
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Figure A1. Cont.
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Figure A1. Cont.
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Figure A1. Acceleration signals recorded for the full (normal) 3.0-blade turbine. (a) Data recorded
along the X axis with different wind-speeds imposed. (b) Data recorded along the Y axis with
different wind-speeds imposed. (c) Data recorded along the Z axis with different wind-speeds
imposed.

Figure A2. Cont.
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Figure A2. Cont.
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Figure A2. Acceleration signals recorded for the 2.5-blade (partially broken) turbine. (a) Data recorded
along the X axis with different wind-speeds imposed. (b) Data recorded along the Y axis with different
wind-speeds imposed. (c) Data recorded along the Z axis with different wind-speeds imposed.
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Figure A3. Cont.
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Figure A3. Cont.
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Figure A3. Acceleration signals recorded for the 2.0-blade (one blade missing) turbine. (a) Data
recorded along the X axis with different wind-speeds imposed. (b) Data recorded along the Y
axis with different wind-speeds imposed. (c) Data recorded along the Z axis with different wind-
speeds imposed.

Appendix D

We plotted each result (obtained from LRM) as a series of piecewise linear line seg-
ments using the ‘connect the dots’ method as a bold blue line in Figures A4–A6 for different
wind-speeds subject to the wind turbine settings of 3.0-blade (full blades), 2.5-blade and
2.0-blade configurations, respectively. In each figure, the plots were divided into three
groups, i.e., the X-axis, Y-axis and Z-axis groups, and each group includes subfigures
plotted for the no-wind (0 m/s), 6 m/s, 12 m/s and 18 m/s wind-speed settings.

Figure A4. Cont.
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Figure A4. Cont.
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Figure A4. Magnitude and trend of acceleration for the full (normal) 3.0-blade turbine. (a) Based
on datasets recorded along the X axis with different wind-speeds imposed. (b) Based on datasets
recorded along the Y axis with different wind-speeds imposed. (c) Based on datasets recorded along
the Z axis with different wind-speeds imposed.

Figure A5. Cont.
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Figure A5. Cont.
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Figure A5. Magnitude and trend of acceleration for the 2.5-blade (partially broken) turbine. (a) Based
on datasets recorded along the X axis with different wind-speeds imposed. (b) Based on datasets
recorded along the Y axis with different wind-speeds imposed. (c) Based on datasets recorded along
the Z axis with different wind-speeds imposed.

Figure A6. Cont.
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Figure A6. Cont.
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Figure A6. Magnitude and trend of acceleration for the 2.0-blade (one blade missing) turbine.
(a) Based on datasets recorded along the X axis with different wind-speeds imposed. (b) Based
on datasets recorded along the Y axis with different wind-speeds imposed. (c) Based on datasets
recorded along the Z axis with different wind-speeds imposed.

Appendix E

The computational results after resampling and resmoothing for all wind-speed cases
on all axes are rendered in Figures A7–A9 for the 3.0-blade, 2.5-blade and 2.0 blade settings,
respectively.
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Figure A7. Cont.
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Figure A7. Means and peak/valley variances of resampled data for the 3.0-blade turbine. (a) Based
on datasets recorded along the X axis with different wind-speeds imposed. (b) Based on datasets
recorded along the Y axis with different wind-speeds imposed. (c) Based on datasets recorded along
the Z axis with different wind-speeds imposed.
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Figure A8. Cont.
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Figure A8. Means and peak/valley variances of resampled data for the 2.5-blade turbine. (a) Based
on datasets recorded along the X axis with different wind-speeds imposed. (b) Based on datasets
recorded along the Y axis with different wind-speeds imposed. (c) Based on datasets recorded along
the Z axis with different wind-speeds imposed.
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Figure A9. Cont.
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Figure A9. Means and peak/valley variances of resampled data for the 2.0-blade turbine. (a) Based
on datasets recorded along the X axis with different wind-speeds imposed. (b) Based on datasets
recorded along the Y axis with different wind-speeds imposed. (c) Based on datasets recorded along
the Z axis with different wind-speeds imposed.
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Abstract: Reinforced concrete slab-column structures, despite their advantages such as architectural
flexibility and easy construction, are susceptible to punching shear failure. In addition, punching
shear failure is a typical brittle failure, which introduces difficulties in assessing the functionality and
failure probability of slab-column structures. Therefore, the prediction of punching shear resistance
and corresponding reliability analysis are critical issues in the design of reinforced RC slab-column
structures. In order to enhance the computational efficiency of the reliability analysis of reinforced
concrete (RC) slab-column joints, a database containing 610 experimental data is used for machine
learning (ML) modelling. According to the nonlinear mapping between the selected seven input
variables and the punching shear resistance of slab-column joints, four ML models, such as artificial
neural network (ANN), decision tree (DT), random forest (RF), and extreme gradient boosting
(XGBoost) are established. With the assistance of three performance measures, such as root mean
squared error (RMSE), mean absolute error (MAE), and coefficient of determination (R2), XGBoost is
selected as the best prediction model; its RMSE, MAE, and R2 are 32.43, 19.51, and 0.99, respectively.
Such advantages are also reflected in the comparison with the five empirical models introduced
in this paper. The prediction process of XGBoost is visualized by SHapley Additive exPlanation
(SHAP); the importance sorting and feature dependency plots of the input variables explain the
prediction process globally. Furthermore, this paper adopts Monte Carlo simulation with a machine
learning-based surrogate model (ML-MCS) to calibrate the reliability of slab-column joints in a real
engineering example. A total of 1,000,000 samples were obtained through random sampling, and
the reliability index β of this practical building was calculated by Monte Carlo simulation. Results
demonstrate that the target reliability index requirements under design provisions can be achieved.
The sensitivity analysis of stochastic variables was then conducted, and the impact of that analysis on
structural reliability was deeply examined.

Keywords: reliability analysis; RC slab-column structure; machine learning; Monte Carlo simulation;
shapley additive explanation

1. Introduction

Reinforced concrete (RC) slab-column structures comprised of slabs and columns are
susceptible to punching shear, because the beams are not arranged for the considerations
of structural layout under slabs [1]. Under excessive punching shear loads, the interior
slab-column joint is usually destroyed first, the rest of the joints are destroyed in succession,
and the progressive collapse of overall structure takes place [2]. Accidents (Figure 1), such
as the collapse of a 16-storey apartment building [3] in Boston, US and Skyline Plaza [4] in
Virginia, US, have caused severe damage, which arouse the researchers’ attention regarding
the reliability analysis of RC slab-column joints.
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Figure 1. Collapse of slab-column structures: (a) a 16-storey apartment building, Boston [3];
(b) Skyline Plaza, Virginia [4].

To assess the performance of slab-column structures, especially the slab-column joints,
a number of experimental studies have been conducted on the punching shear resistance.
With the experimental results, some empirical models [5–15] have been proposed based on a
variety of mechanical theories. Kinnunen and Nylander [5] analyzed the experimental data
of circle slab-circle columns, and created the sector model. Based on this, Broms [6,7] proposed
a modified model considering the impact of size effect, which obtained the solution of
the ultimate angle of the slabs. Tian et al. [8] proposed a prediction model considering
the impact of reinforcement strength (ρfy). According to the eccentric shear stress model
proposed by Stasio et al. [9], an improved model with stronger applicability was proposed
by Moe [10], which became the theory basis of both GB 50010-2010 [11] and ACI 318-19 [12].
After analyzing the critical cracks of slab-column joints and considering the impact of
aggregate size, the critical shear crack theory (CSCT) was proposed by Muttoni [13]. Based
on the modified compression field theory (MCFT), Wu et al. [14] developed a prediction
model; its prediction performance was validated by many experimental data. According
to the regression analysis of the experimental data, a prediction model was proposed by
Chetchotisak et al. [15].

However, the aforementioned mechanical or empirical models possess the problem
of prediction precision [16,17]. As a typical data-driven model with advantages such as
superior prediction performance and high computational efficiency, machine learning (ML)
is applied to many engineering fields successfully [18–25]. In the resistance prediction
of slab-column joints, Nguyen et al. [16] established a prediction model using extreme
gradient boosting (XGBoost), the performance of which was validated by empirical models
and other two ML models. Mangalathu et al. [17] also constructed XGBoost models, and
used SHapley Additive exPlanation (SHAP) to illustrate the prediction process of XGBoost.
Shen et al. [23] established an ML model to predict the punching shear resistance of fiber-
reinforced polymer (FRP) -reinforced concrete slabs, the performance of which was better
than that of the compared empirical models. Truong et al. [24] studied the punching shear
strength of FRP-RC slab column connections with the assistance of ML models.

The objective of reliability analysis is to evaluate the safety of structures by considering
how their performances are affected by the uncertainties, which are introduced by random
material properties or stochastic loads [26]. There are two types of methods for reliability
analysis, namely the gradient-based method and the simulation-based method [27]. The
first method contains the first-order reliability method (FORM), and the second-order
reliability method (SORM) aims to find the most likely failure point through the limit state
function estimation. Such a method has a high computational efficiency, but it introduces
approximations that are sometimes unacceptable from a precision point of view [28]. As the
main simulation-based method, the Monte Carlo sampling method is conventional, clear,
and easy to use, but such a method requires numerous samples [29,30]. Nassim et al. [31]
studied the reliability of two cases by using the response surface method (RSM) as well as
Monte Carlo simulation (MCS). Olmati et al. [32] proposed a simplified analysis framework
and used MCS to analyze the reliability of an office building. Chetchotisak et al. [15]

106



Buildings 2022, 12, 1750

studied the structural reliability within two kinds of concrete (normal-strength concrete
and high-strength concrete) by using MCS. Ricker et al. [33] utilized three reliability analysis
techniques, such as the mean-value first-order second moment method (MVFOSM), the
first-order second moment method (FOSM), and MCS, to assess the safety levels of the
punching shear resistance of flat slabs without shear reinforcement. However, the relatively
low prediction accuracy of the aforementioned mechanical or empirical models led to
unsatisfying results of the reliability analysis. To obtain more accurate reliability analysis
results, the finite element method (FEM) is popularly applied as the surrogate model of
structural response under stochastic material properties or loading conditions [34]. The
complexity and nonlinearity existing in structures, as well as the randomness produced by
influential factors of a structure itself, prove that FEM becomes a fine choice. However, the
mechanical property-based analysis restricts the computational efficiency of FEM, which is
inapplicable to practical projects [35]. Furthermore, as the most commonly used parallel
analysis method in a stochastic context, MCS has a problem of inadequate computational
efficiency, because the number of samples needed for analysis is considerably large [36].
The ML model is a prospective solution for the contradiction between computational
efficiency and accuracy, and has been applied in the reliability analyses of RC structures in
the latest studies [37].

To the best knowledge of the authors, there is no available example combining relia-
bility analysis of RC slab-column joints and ML; thus, this paper establishes an ML-MCS
model for reliability analysis to meet the requirements of practical projects. The candidate
ML models selected in this paper are artificial neural network (ANN), decision tree (DT),
random forest (RF), and XGBoost. The final prediction model is screened from these four
ML models, and the performance comparison between them is implemented through three
performance measures: root mean squared error (RMSE), mean absolute error (MAE), and
coefficient of determination (R2). To display the advantages of the ML models, two design
provisions (GB 50010-2010 [11] and ACI 318-19 [12]), as well as three prediction models
proposed by Tian et al. [8], Wu et al. [14], and Chetchotisak et al. [15], are used for prediction
performance comparison with ML models. Furthermore, SHAP is introduced for model
explanation and analysis of influential factors; the prediction process can be visualized
to facilitate the understanding [22]. Based on the established ML model, a slab-column
structure in an actual engineering application is used for reliability analysis through MCS.
Moreover, the safety assessment of the structure is discussed through sensitivity analysis.

2. Punching Shear Resistance Database of RC Slab-Column Joints

The high-fidelity data is the basis of the construction of ML models, so that the
compilation of the experimental database is required. The punching shear resistance
database containing 610 experimental data is shown in Appendix A, and the statistic
information of input variables is listed in Table 1. Some relevant studies [8,14,38] report that
there are seven main influential factors affecting slab-column joints: cross-section shape of
column (s), cross-section area of column (A), slab’s effective depth (d), compressive strength
of concrete (f’c), yield strength of reinforcement (fy), reinforcement ratio (ρ), and span-
depth ratio (λ). Their distributions are described in four measures: minimum, maximum,
standard deviation, and average. The cross-section of each column has three shapes: square
(s = 1), circle (s = 2), and rectangle (s = 3). The prediction target of the ML models is the
punching shear resistance (V) of slab-column joints.
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Table 1. Statistic information of input variables.

Parameter Minimum Maximum
Standard
Deviation

Average Type

s 1.00 3.00 0.58 1.40 Input
A (cm2) 20.43 6375.87 596.68 489.31 Input
d (mm) 29.97 668.50 58.52 113.74 Input

f’c (Mpa) 9.40 130.10 18.56 35.39 Input
fy (Mpa) 234.70 749.00 115.83 456.60 Input

ρ (%) 0.25 7.31 0.70 1.26 Input
λ 0.61 32.51 4.83 6.59 Input

V (kN) 24.00 4915.00 406.56 403.25 Output

The histograms displayed in Figure 2 show the relative frequency distributions of the
input variables and the output, and the red lines represent the cumulative distribution
functions (CDF) of the parameters. To further understand the correlations between the
input variables, they are quantified as a Pearson correlation coefficient matrixand shown
in Figure 3, where coefficients represent the degree of linear correlation between input
variables [39]. The coefficients close to −1 or 1 represent the obvious negative or positive
linear correlation, and the degree of linear correlation between A and d is highest.

 

Figure 2. Distributions of the parameters in the database: (a) s; (b) A; (c) d; (d) f’c; (e) fy; (f) ρ; (g) λ;
(h) V.
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Figure 3. Correlation coefficient matrix of input variables.

3. Machine Learning Model for Punching Shear Resistance Prediction

The flow of establishment of an ML model is shown in Figure 4, which can be gen-
eralized as the following steps [40]: (1) Divide the compiled database as a training set
(containing 500 data) and test set (containing 110 data) based on the ratio of 80% and 20%;
(2) obtain the optimal hyperparameters by model training; (3) examine the generalization
ability of the candidate model by the test set; (4) output the final prediction model. The
four ML models selected in this paper are all established following this procedure, and the
related introductions for models are displayed in Section 3.1.

Figure 4. Flowchart of ML modelling.

3.1. Overview of Machine Learning Models

As the basic ML algorithms, ANN and DT have been widely studied and thus become
the beginning of two types of artificial intelligence algorithms: deep learning and ensemble
learning [41]. Among ensemble learning algorithms, RF and XGBoost are two representa-
tive algorithms constructed by different ensemble tactics such as bagging and boosting [40].
Due to the four typical ML models possessing different fitting techniques, the comparison
of them enhances the credibility of the final prediction model.

Extreme Gradient Boosting

Extreme gradient boosting (XGBoost) inherits the combination strategy of gradient
boosting decision tree (GBDT) and becomes the advanced implementation of the latter [42].
The employ of two regularization coefficients and the optimization of the second-order
Taylor approximation guarantees not only the generalization ability, but also the prediction
accuracy. The complexity of each base learner can be defined as:

Ω( ft) = γT +
1
2

λ′∥∥w′∥∥2 (1)
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where γ and λ’ are the L1 and L2 regularization coefficients; T is the number of base
learners; w’ is the score of the node. Based on the fitting of the residuum of the prediction
result, the prediction error of XGBoost can be further decreased. The fitting objective of
each base learner can be formulated as:

L(ϕ) = ∑
i

l
(

y(i)pred, y(i)
)
+ ∑

k
Ω( fk) (2)

where l is the loss function; ypred is the prediction value of the sample; y is the true value of
the sample. Based on these, a prediction value generated by XGBoost can be expressed as
the linear addition of the prediction values of all the base learners:

ypred =
K

∑
k=1

fk (3)

where K is the number of base learners.

3.2. Prediction Results of Machine Learning Models

The optimal hyperparameters of each ML model are obtained through the grid search
method and through 10-fold cross-validation [43], which are listed in Table 2. To compare
the prediction performances of different ML models, three performance measures, root
mean squared error (RMSE), mean absolute error (MAE), and coefficient of determination
(R2), are adopted and expressed as:

RMSE =

√
1
m

m

∑
i=1

(
y(i)pred − y(i)

)2
(4)

MAE =
1
m

m

∑
i=1

∣∣∣y(i)pred − y(i)
∣∣∣ (5)

R2 = 1 −

m
∑

i=1

(
y(i)pred − y(i)

)2

m
∑

i=1

(
y(i) − 1

m

m
∑

i=1
y(i)

)2 (6)

where m is the number of samples.

Table 2. Optimal hyperparameters of ML models.

ML Model Optimal Hyper-Parameter

ANN Learning rate = 0.1, neurons number of hidden layer = 17, maximum iteration = 2000
DT Maximum depth = 8
RF Number of weak learner = 100, maximum depth = 14

XGBoost Number of weak learners = 100, learning rate = 0.5, maximum depth = 3, γ = 0.9, λ’ = 1.4

After the determination of the optimal hyper-parameters, four ML models are all
established. To examine the prediction performance of ML models, five empirical models
containing two design provisions [11,12], two mechanical models [8,14], and a regression
analysis-based model [15] are introduced and listed in Table 3. Their prediction results
are shown in Figure 5, where gray-green and blue-pink represent the prediction results of
empirical models and ML models in the training set and the test set, respectively. XGBoost
has the highest prediction accuracy, which indicates that XGBoost has been well-trained
and possesses the best generalization ability. Such a conclusion is also in line with that of
some studies [17,44]. RF and DT also have good prediction performance; their prediction
tactics are suitable for the regression analysis of the punching shear resistance of RC slab-
column joints [45]. However, the prediction performance of ANN must be improved; its
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characteristic of a nonconvex function suggests that the obtained optimal solution is often
local rather than global [18]. Utilizing the good fitting ability of the regression analysis
method, the prediction model proposed by Chetchotisak et al. [15] has the best prediction
result, but its credibility is low due to its lack of theoretical derivation. The prediction
values of mechanical models proposed by Tian et al. [8] and Wu et al. [14] have a large
deviation with true punching shear resistance, where coefficients reflected the relationships
between influential factors and where punching shear resistance must be further modified.
Furthermore, the prediction results of design provisions such as GB 50010-2010 [11] and
ACI 318-19 [12] skew conservative; the prediction accuracy must be improved.

Table 3. Empirical models used for prediction performance comparison.

Empirical Model Punching Shear Resistance Calculation Equation

GB 50010-2010 [11] V1 = 0.7βh ftηb0,0.5dd; η = min

{
η1 = 0.4 + 1.2

βs

η2 = 0.5 + αsd
4b0,0.5d

ACI 318-19 [12] V2 = min
[

1
3 , 1

6

(
1 + 2

βs

)
, 1

12

(
2 + αsd

b0,0.5d

)]
λs

√
f ′cb0,0.5dd; λs =

√
2

1+0.004d ≤ 1

Tian et al. [8] V3 = 0.65ξAc
(
ρ fy

√
f ′c

) 1
2 ; ξ =

√
d
c ; Ac = 4(c + d)d

Wu et al. [14] V4 = 0.00040(ρ)
1
5 b0,2ddL

√
f ′c/

(
0.31 + 24ω

ad+16

)
; ω = 0.0005 0.9d

sin θ ; ad = 20; θ = 45◦

Chetchotisak et al. [15] V5 = 92.43( f ′c)
1.21

(
1

100ρ

)1.47(
b0,0.5d

)0.42d1.35k4.66; k =
√
(nρ)2 + 2(nρ)− (nρ);

n = Es/Ec = 2 × 105/4700
√

f ′c
βh is the sectional depth influence coefficient; ft is the design value of the tensile strength of concrete; b0,0.5d is the
critical section perimeter at a distance of 0.5d away from the column; βs is the ratio of the long side to the short
side of the column; αs is the influential coefficient of the column type (40 for interior columns); c is the column size;
b0,2d is the critical section perimeter at a distance of 2d away from the column; L is the perimeter of the column.

Figure 5. Scatter plots of the prediction results of the empirical models and the ML models: (a) GB
50010-2010; (b) ACI 318-19; (c) Tian et al.; (d) Wu et al.; (e) Chetchotisak et al.; (f) ANN; (g) DT;
(h) RF; (i) XGBoost.
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3.3. Interpretation of the ML Prediction Model

According to the performance comparison of the ML models in Section 3.2, XGBoost
can be regarded as the final prediction model with the best prediction performance. The
feature importance sorting produced by the built-in method of XGBoost [46], as shown in
Figure 6, d has the greatest influence on punching shear resistance. However, this method
can only provide the importance of influential factors; the effect tendency is unknown yet.
Therefore, SHAP is introduced in this paper and utilized for model interpretation.

Figure 6. Importance sorting using XGBoost feature importance.

3.3.1. Overview of Shapley Additive Explanation

SHapley Additive exPlanation (SHAP) is useful for illustrating the prediction process
of any ML model; it originates from the game theory and was proposed by Lundberg
et al. [47,48]. For each prediction value, it can be formulated as the linear addition of the
baseline value ybase and the SHAP value of each feature f (x):

y(i)pred = ybase +
n

∑
j=1

f
(
xij

)
(7)

where n is the number of features. The quantified contribution of the feature is calculated
through:

f
(
xij

)
= ∑

S⊆N\{j}

|S|!(M − |S| − 1)!
M!

[ fx(S ∪ {j})− fx(S)] (8)

where N is the M-dimensional set containing all of the features; S is the |S|-dimensional
subset extracted from N; fx(S∪{j}) is the prediction calculated through set S and feature j;
fx(S) is the prediction calculated through set S.

3.3.2. Model Interpretation Using Shapley Additive Explanation

The importance sorting provided by SHAP is shown in Figure 7, which is calculated
by sum of the SHAP values of each sample. The feature importance sorting provided by
SHAP is similar to that provided by XGBoost, but they conflict on the impact of s. Figure 7b
shows the impact of each feature on punching shear resistance as positive or negative, and
a feature can be regarded as the positive influential factor if the color of dot transforms
from blue to red with the increase of the SHAP value. It can be seen that d, ρ, A, f’c, fy, and
s have positive impacts on resistance, and λ has a negative impact on resistance, which is
consistent with some experimental studies [49–52]. Based on the importance sorting shown
in Figure 7, the global impact of each influential factor is revealed, i.e., SHAP explains the
global prediction process of XGBoost.
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Figure 7. Global interpretation of punching shear resistance: (a) feature importance sorting; (b) SHAP
value summary plot.

Figure 8 provides further insight for the impact of influential factors in the form of
dependency plots, where the secondary axis represents the input variable interacting most
frequently with the variable displayed in the x-axis. According to the variation range of
the SHAP values, d and s have the greatest and least impacts, respectively, on punching
shear resistance, which is consistent with the findings expressed by Figure 7a. Furthermore,
the interaction between input variables is too complicated, such that the simple linear
relationship cannot be used to represent it.

 

Figure 8. Feature dependencies of influential factors: (a) s; (b) A; (c) d; (d) f’c; (e) fy; (f) ρ; (g) λ.

4. Reliability Analysis: RC Slab-Column Joint of an Office Building

The prototype building used for reliability analysis is a 7-story, 5-span RC slab-column
shear wall office building [53], and it was designed using GB 50010-2010 [11] and GB
50011-2010 [54]. The building itself contains 3 m storey height and is supported by a
7.5 m × 7.5 m column grid, and the interior joint shown in Figure 9 is selected as the study
object. The selected joint consists of a slab with an effective depth of 209 mm and a square
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column with side length of 530 mm, which is subjected to the specified dead load of
7.0 kN/m2 and live load of 2.0 kN/m2. According to the requirement of GB 50068-2018 [55],
the dead load and live load used for limit state design must be adjusted by multiplying the
partial safety factors for the load, such as 1.3 and 1.5. Therefore, the limit state function Z
of structure can be defined as:

Z = R − 1.3SG − 1.5SQ (9)

where R is the punching shear resistance; SG is the dead load; SQ is the live load. Further-
more, the measured compressive strength of C50 concrete in the slab is 39.31 Mpa, and the
measured yield strength of HRB400 reinforcement is 421 Mpa. The reinforcement ratio of
the joint is 0.81%, and the main influential factors are listed in Table 4.

Figure 9. Prototype building [53]: (a) elevation; (b) plan.

Table 4. Main influential factors of the selected interior joint.

s A/cm2 d/mm f’c/Mpa fy/Mpa ρ/% λ

1 2809 209 39.31 421 0.81 16.67

The statistic information and suitable probability density functions of the stochastic
variables used for reliability analysis are listed in Table 5 [33,56], where COV is the coeffi-
cient of variance. According to the study conducted by Chojaczyk et al. [27], the COV of
failure probability Pf calculated by MCS is accepted when its value is around 0.1; then the
Pf around 10−4 (the normal failure probability of an existing structure) can be calculated
through the simulation based on N samples [57]:

COV
(

Pf

)
=

1
Pf

√√√√(
1 − Pf

)
Pf

N
(10)

where N signifying 1,000,000 can be determined according to the aforementioned conditions.
Another method used in the study conducted by Hadianfard et al. [58] stipulates that the
number of samples needed for MCS can be determined through:

N >
− ln(1 − C)

Pf
(11)

where C is the confidence level, with values of 0.95 in this paper. Equation (11) suggests that
the number of samples should not be less than 30,000, so that the value range calculated
by Equations (10) and (11) is determined between 30,000 and 1,000,000. In this range, the
variation of COV of failure probability Pf within 10 simulations is shown in Figure 10.
The COV of failure probability decreases with the increase of the sample size from 30,000
to 1,000,000, which means that the result of the reliability analysis increasingly stabilizes.
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Based on this knowledge, 1,000,000 samples are produced randomly and conduced for
reliability analysis by XGBoost and MCS.

Figure 10. Effect of sample size on COV of failure probability.

Table 5. Stochastic variables used for Monte Carlo simulation.

Parameter Average
Standard
Deviation

COV Distribution

d: slab’s effective depth (mm) 209 6.27 0.03 Gaussian
f’c: compressive strength of concrete (Mpa) 39.31 4.32 0.11 Gaussian

fy: yield strength of reinforcement (Mpa) 421 33.68 0.08 Gaussian
SG: dead load (kN) 393.75 27.56 0.07 Gaussian
SQ: live load (kN) 112.5 32.4 0.288 Gumbel

4.1. Results of Structural Reliability Analysis

The efficient implementation of Monte Carlo simulation (MCS) is restricted by the
sample size and the computational efficiency of the surrogate model [59], but this can be
solved by XGBoost. The average computation time for 1,000,000 samples and the reliability
analysis of the slab-column joint is 30 s. This is done by a laptop with four-core CPU and
8 GB memory, which demonstrates the efficiency of ML-MCS. Based on the regression
prediction of punching shear resistance, the distribution and CDF of structural resistance are
shown in Figure 11. The average and standard deviations of the distribution of structural
resistance are 955.96 kN and 52.42 kN, respectively. MCS can estimate the failure probability
of a structure effectively by calculating the probability of Z < 0 in Equation (9), and the
related reliability analysis can also be realized. Table 6 displays the result of reliability
analysis, where Pf is the failure probability of the structure; β is the reliability index; αR and
αS are the sensitivity coefficients of resistance and load; r* and s* are the coordinates of the
design point. The reliability index β indicates that the reliability and safety of the selected
interior joint are good and meet the requirement of GB 50068-2018 [55].

Table 6. Results of reliability analysis.

Pf β αR αS r* s*

0.00546 3.443 −0.655 0.755 837.625 837.625
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Figure 11. Distribution of structural resistance.

4.2. Sensitivity Analysis

The relationship between structural reliability and stochastic variables can be exam-
ined through sensitivity analysis [60]. The reliability index of the structure in the other two
stochastic contexts (the stochastic structural resistance and stochastic loading condition) is
shown in Figure 12. The reduction of the randomness of structural resistance or loading
conditions can improve the reliability index, and the safety and stability of the structure
also can be enhanced.

Figure 12. The reliability index in different stochastic contexts.

To study the impact of stochastic variables such as d, f’c, fy, and SQ, their multiples
are changed and their relationship with the reliability index is shown in Figure 13. The
reliability index can be improved effectively with the increase of f’c and fy or the decrease
of SQ. However, there exists a complex relationship between slab depth d and reliability
index; the reliability index is reduced when the multiple of d is between 1.15 and 1.35.
The distribution of structural resistance with 1.3d is shown in Figure 14, which can be
used to understand the reason for the reduction of the reliability index. The discontinuous
distribution of structural resistance is existed, and the transition of failure modes from
flexure to punching shear may exist, both through experimental and theoretical observa-
tions [22,61–63]. Therefore, the standard deviation of structural resistance is large, and the
reliability index calculated by that is small.
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Figure 13. Impact of stochastic variables with different multiples on reliability index.

Figure 14. Distribution of structural resistance with 1.3d.

5. Conclusions

Structural reliability reflects the safety and stability of the entire practical structure
subjected to permanent action and variable action [36], the calculation of which, through
MCS, is restricted by the computational efficiency of the surrogate model. This work
presents a framework for integrating the machine learning-based surrogate model into a
Monte Carlo simulation to perform the reliability analysis with a satisfying accuracy and
efficiency. An ML model is established and screened from four candidate ML models: as
ANN, DT, RF, and XGBoost; the prediction performances of these are examined through
three performance measures such as RMSE, MAE, and R2. Furthermore, the advantages of
ML models are embodied by comparison with five empirical models. The final prediction
model is used as the surrogate model of MCS, and an RC slab-column joint in an actual
structure is introduced as the object of reliability analysis. The following conclusions can
be drawn from this paper:

The punching shear resistance of RC slab-column joints is influenced mainly by seven
influential factors: s, A, d, f’c, fy, ρ, and λ [38]. The capture of the mapping relationship
between them can guarantee the construction of the ML model. With the help of the grid
search method and 10-fold cross validation, four ML models with optimal hyperparameters
are established. After comparison, XGBoost has the best prediction performance reflected
in RMSE, MAE, and R2, and is selected as the final prediction model and used for reliability
analysis.

To facilitate the understanding of the prediction process of ML, SHAP is utilized to
quantify the contribution of input variables to punching shear resistance, and to visualize
the prediction process. According to the importance sorting of input variables, d and s have
the greatest and least impacts, respectively, on punching shear resistance. Furthermore,
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feature dependency plots display the specific impact of each input variable by marginalizing
the impacts of other variables. The analysis of the influential factors provides not only the
understanding of prediction process, but also the suitable optimization sorting in structural
design.

The actual structure adopted for the case study is an RC slab-column shear wall
office building. The punching shear resistance of 1,000,000 samples produced by random
sampling is calculated through XGBoost. The reliability analysis of the interior joint selected
from the prototype building is conducted through MCS, and the final reliability index β
meets the requirement of the design provisions of GB 50068-2018 [55]. Moreover, the
sensitivity analysis reveals the impact of the stochastic context and the values of stochastic
variables on structural reliability. Based on these, the computational efficiency of the
reliability analysis of the slab-column joints can be enhanced on the premise of high
computational accuracy. In future reliability analysis, some advanced sampling methods,
such as Latin hypercube sampling and importance sampling, can be used to reduce the
number of simulations appropriately. Furthermore, a program with some input windows
of influential factors can be designed as a practical tool for reliability analysis.
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Abstract: Since monolithic movement is considered a promising technology to relocate historical
buildings, corresponding real-time monitoring is of great interest due to the buildings’ age and
poor structural integrity. However, the related paperwork and practical applications are still limited.
This paper describes a wireless sensor network (WSN)-based strategy as a non-invasive approach to
monitor heritage curtilage during monolithic movement. The collected data show that the inclination
of the curtilage is almost negligible. With the aid of finite element simulation, it was found that the
crack displacement curves changed from −0.02 to 0.07 mm, which is affected by moving direction
while the value is not enough to cause structural cracks. The deformation of the steel underpinning
beam, which is used to reinforce masonry walls and wooden pillars, is obviously related to the
stiffness in different directions. Additionally, the strain variations of the steel chassis, which bear
the vertical loads from wooden pillars and masonry walls, are less than 0.04%. This indicates that
they are kept within the elastic range during monolithic movement. This work has proved that the
WSN-based approach has the potential to be applied as an effective route in real-time monitoring of
the monolithic movement of an historic building.

Keywords: wireless sensor network; historic building; real-time monitoring

1. Introduction

Building monolithic movement, a kind of procedure to relocate the position or direc-
tion of an existing building whilst maintaining its integrity and availability, has attracted
much interest due to its resource-saving, environmentally friendly and low-cost advan-
tages [1]. Since 1998, a series of related protection statutes and regulations with an emphasis
on the protection of preserved historical buildings have been published in mainland China,
aiming at materializing historical influences and differences [2]. The corresponding mono-
lithic movement technology is also considered as a new resolution to conserve historical
buildings whilst adapting them to new conditions and uses [3].

Compared with traditional demolition and reconstruction, the monolithic movement
of historical buildings has the particular advantage of maintaining the original humanistic
value and the overall structural integrity. The embryonic form of modern movement-
engineering technology can be traced back to 1983, when a school building with a masonry
structure (weighing 8000 kN) was moved a distance of 15 m in the city of Warrington,
England [4]. With the advancement in technology, the monolithic movement techniques of
historical buildings are being developed and implemented worldwide [5]. For example,
Kossakowski et al. [6] described the case of the relocation of the Rogatka Grochowska
building, which was carried out in Warsaw. The related work and projects in China came
late to developed countries. Shan et al. [7] implemented a complex monolithic movement
of the Ci-yuan temple with a brick-wooden structure, which was built in the Tang Dynasty
and was located in Anyang City in China. Moreover, the documented application projects,
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including Jinlun Guild Hall (Qing Dynasty), Shanghai Concert Hall (1930), and Centen-
nial Minli high school of Shanghai (1920), were also realized through historic building
moving [8,9]. The existing cases signify that three general routes, including moving with
rolling bars, moving with a slide layer, and moving by trailer transportation, have been per-
formed successfully as monolithic movement applications of historical buildings in China.
To date, due to the buildings’ intrinsic rarity and structural aging, only limited paperwork
has been disclosed, and few practical applications of the monolithic movement technology
of an overall heritage curtilage courtyard have been carried out; however, this technology
is slowly becoming more widespread and pervasive in modern civil infrastructure.

During the monolithic movement procedure, it is well known that prioritizing the
protection of the historical building, with its intrinsic cracks and cavities, against destructive
loads is essential. A program of non-invasive monitoring needs to be undertaken to
inform about the ongoing structural status [10–12]. As the moving of historical building
means there are some risk factors, the traditional inspection methods for structural cracks,
deterioration, and damage tend to be inconvenient and dangerous. With the progress of
wireless communication and sensor miniaturization, the wireless sensor network (WSN)
system—with a series of smart sensors in a self-organizing and multi-hop manner for
monitoring structural deformation—has been developed in recent years [13,14]. Compared
with a customary wired network, the WSN boasts easy deployment, a dramatically lower
cost of installation and maintenance, and it provides a flexible and manageable approach to
monitoring remotely in real time [15,16]. Dong et al. [17] compared the WSN system with
the wired sensing system for the performance of a 2-story, 2-bay concrete frame building,
and they found that the WSN achieved the same quality of data as that of the wired
system. Furthermore, the existing research has proved that the WSN-based approaches
could identify the existence and location of damage for long- and short-term monitoring to
achieve structural health and safety assessments of historic buildings whilst maintaining
their structural integrity and functionalities [18,19]. For example, Wu et al. [20] introduced a
dedicated WSN into Torre Aquila, built in the 13th century and located in the city of Trento,
Italy, to evaluate its static and dynamic state by utilizing accelerometers and deformation
sensors. They also found that the collected data are in agreement with the prediction from
the three-dimensional finite element (FE) results. Samuels et al. [21] developed a WSN
for monitoring the tilt in the walls of the St. Paul Lutheran church, an historic masonry
church with a timber-framed roof, under rehabilitation. Potenza et al. [22] undertook the
deployment, test, and management of a WSN for the structural monitoring of the Basilica S.
Maria di Collemaggio with masonry structure, which is designed for seismic and dynamic
response analyses via acceleration, crack opening, and wall inclination measurements.
Mesquita et al. [23] adopted temperature, relative humidity, and displacement sensors to
perform a one-year monitoring of the Foz Côa Church (in Portugal), a damaged historic
structure from the 16th century based on the WSN system. Barsocchi et al. [24] presented
an application of the WSN technology on the Matilde Tower in Livorno (Italy), an historic
masonry tower built in the Livorno harbor, to monitor the structural health over the long
term and detect potential damages in real time. However, given the uniqueness and the
preservation of each historical building, real-time monitoring applications based on the
WSN system for the case of its monolithic movement are still very challenging, and few
related works have yet been documented.

Therefore, this paper aims to explore the real-time monitoring ability of the WSN in
a monolithic movement project for a heritage curtilage with a masonry–timber structure.
Considering the age and the poor structural integrity of the heritage curtilage, four kinds
of smart sensors were adopted with the aid of practical engineering experiences and FE
simulation to real-time monitor the structural deformation and deterioration. Then, the
acquisition system receives the processed data and transmits them to a cloud platform
via wireless remote communication (3G/4G/GPRS). Finally, all the data can be accessed
directly at the preferred time with wireless communication in locations where internet
access is available. This paper not only develops a comprehensive scheme for monolithic
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movement monitoring of a heritage curtilage, but also provides an in-depth understanding
of the structural deformation and deterioration during monolithic movement.

2. Methods

2.1. Case Study

The south-facing curtilage (Figure 1a) was a traditional courtyard with two-story
masonry–timber structure, which was located in Shengzhou City, Zhejiang Province, China,
with cover an area of 685.23 m2, ridge height of 7.45 m, and gross weight of 3.65 × 106 kN.
According to the architectural style, it was identified as being built in the late Qing Dynasty
or the Republic of China. The combination of beam-lifted and Chuan-Dou frame was
adopted as the load-bearing structure, and there were stone foundations and capstones
under the wooden columns. The primary and secondary entrances and exits of the inner
courtyard were both located in the south, the surrounding exterior walls were built with a
rowlock cavity wall, and the wall foundation was stacked with rock blocks. In coordination
with the emergency project of flood prevention improvements of Chengtan River within
Cangyan village, the curtilage movement was planned to be conducted over a one-week
period and included as follows: monolithic moving 15 m in the western direction over four
days, and then 40 m in the southern direction to the new location in three days, shown
in Figure 1b.

(a) (b)

Figure 1. (a) The aerial view of the curtilage and its new location; (b) the schematic diagram of the
monolithic moving procedure.

The monolithic movement of the heritage curtilage was achieved based on lifting jack
technology, and the speed was set as 0.8–1.6 mm/s [3] under a horizontal pushing load
provided by the push-in jack (SCLRG-100-500-T) with a rated pushing load of 1000 kN and
a pushing distance of 500 mm, as shown in Figure 2a. Due to the complicated structural
form and the weak structural integrity, the bottom of the masonry wall and wooden
pillar were reinforced by a two-clip steel beam with block stone fillers between them to
form underpinning beams. In addition, 9 longitudinal and 16 transverse H-shaped steel
beams were assembled in Figure S1 (Supplementary Materials) as the integral, and the
underpinning chassis was built in a grid pattern with appropriate diagonal crossing beams
to enhance the horizontal stiffness The protective supporting platform was also adopted
for the superstructure of the curtilage. Thereby, the vertical loads were transferred from
wooden pillars and masonry walls to the steel structural chassis, and the top major structure
was separated from the original foundation to form a mobile body, which was displayed
in Figure 2b. The monolithic movement was achieved by the sliding movement between
upper and bottom rail beams using the floating jack as the special sliding support, which
could reduce the horizontal resistance and regulate vertical deformation. The upper and
bottom rail beams were connected to the steel chassis and were placed on the foundation,
respectively, shown in Figure 2b.
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(a) (b)

Figure 2. The photos of (a) the push-in moving process and (b) the mobile body.

2.2. Monolithic Movement Monitoring Scheme Based on the WSN System

The proposed WSN formed a data collection network of sensors, which were driven
by the power supply to serve a specific target-oriented application. The real-time moni-
toring for the monolithic movement of the heritage curtilage consisted of the parameters
of measurements such as cracks, strain, and deformation, thereby obtaining the structural
response. Figure 3 presents the four kinds of sensor nodes used in this paper: (1) inclinome-
ter (XKKJQJ-77, ±15◦, 0.01◦), showing the inclinations of the timber column and masonry
wall; (2) displacement transducer (XKKJZX-2109, 0–20 mm, 0.1%F.S/0.5%F.S), monitoring
the crack behaviors of the masonry walls and the masonry–timber connections; (3) series
inclinometer (XKKJWY-5675, ±30◦, 0.015◦), to reveal the deformation of the steel beam
at the bottom of the masonry wall; (4) strain gauge (XKKJZX-212, 3000 με, ≤0.5%F.S.),
attached to the steel chassis to obtain their strain variations. It is noted that the first item in
the above brackets is the sensor type, the second is the measuring range, and the third is
the precision.

  
(a) (b) 

  
(c) (d) 

Figure 3. Four kinds of sensor nodes used: (a) inclinometer, (b) displacement transducer, (c) series
inclinometer, and (d) strain gauge.
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Figure 4 demonstrates the WSN system schematic to collect and observe the moni-
toring data in real-time and remotely. Taking displacement transducers as an example for
simplicity in Figure 4a, the sensor nodes were deployed on the primary locations. The
corresponding acquisition devices received processed data from the sensor nodes and trans-
mitted these data to a cloud platform within the monitoring server (Figure 4b) via wireless
remote communication (3G/4G/GPRS). Then, all the data could be accessed directly at
preferred times with a personal computer (Figure 4c), mobile phone, or other wireless
communication in locations where internet access is available.

 

Figure 4. The WSN system schematic: (a) sensors (pointed with yellow arrows) and the corresponding
acquisition devices (pointed with green arrows); (b) monitoring server; (c) wireless communication.

2.3. Numerical Method

In order to understand the structural behaviors and obtain the rational distributions
of the displacement transducers, three-dimensional FE models of the exterior walls were
built in Abaqus software, consisting of masonry assembly, window frame made of rock,
steel reinforcing beams, and block stone fillers (shown in Figure 5). Due to the same
geometric structure of the east and west walls, only the west wall was simulated in this
paper; half of the north wall was built considering its symmetric geometric structure. Based
on computational efficiency, the masonry assembly was regarded as an isotropic composite
material, and it followed a nonlinear elastic–plastic constitutive relation [25], which is
described by the embedded Concrete Smeared Cracking (CSC) model in Abaqus. The
used CSC model, detailed by Lotfi and Shing [26,27], adopted a J2-plasticity model with
nonlinear isotropic strain hardening and softening to demonstrate the mechanical behaviors
of uncracked materials, and a nonlinear orthotropic model to describe the behaviors of
cracked materials. The top structure of the studied FEA model was fully fixed, and an
incremental displacement loading was applied at the bottom to simulate the deformation
during monolithic moving. The basic mechanical parameters of the exterior walls are listed
in Table S1.

 

Figure 5. FE models of exterior walls: (a) west side, (b) north side, and (c) south side.
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3. Results and Discussion

3.1. Inclination

The near-zero data of the angular variations, collected from all inclinometer sensors,
can be found in this case, which indicate that the inclination of the timber column and
masonry wall was negligibly small during the complete monolithic movement process.
Figure 6 takes the W01 and W02 inclinometers as the typical examples, which are installed
on the west wall at 1.5 m above the first-floor ground. Each anchorage point could pro-
vide two datasets along east–west (E–W) and south–north (S–N) directions, respectively.
Whether moving to the west or north, the inclination angle changed from approximately
−0.0025 to 0.0025 degree in both the E–W and S–N directions. It can be deduced that the
monolithic movement of the heritage curtilage is expected to realize the aspect of almost
negligible inclination.

  
(a) (b) 

  
(c) (d) 

Figure 6. The obtained inclination angle: (a) W01 and (b) W02 during westward movement; (c) W01
and (d) W02 during northward movement.

3.2. Crack Behaviors

As already highlighted, a numerical simulation based on the CSC model in Figure 7
is performed to predict the crack locations on the exterior walls, in which the smeared
crack is studied instead of an individual crack. Figure 7a–c displays the equivalent plastic
strain (PEEQ) distributions of the exterior walls to reveal the crack locations most easily;
thereby obtaining the corners of the window and door that tend to crack under a relative
deformation between the upper and lower parts of the walls. Accordingly, just four
displacement transducers, denoted as E01, S01, W01, and N01 in Figure 7d, were attached
to the exterior walls on the east, south, west, and north sides, respectively. Moreover,
masonry-timber connections were also taken into consideration due to the masonry-timber
structure of the curtilage. As illustrated in Figure 8d, the displacement transducers at the
primary entrance (A01) and on the interior wall (A02) were taken as typical examples in
this case.

Figure 8 shows the crack displacement variations along with the moving procedure.
For the exterior walls, the crack displacements of the S01 and N01 sensors are slightly
higher than that of the E01 and W01 sensors when moving west in Figure 8a, which means
that the south and north walls are easier to crack under the horizontal west-pushing loads.
When moving north, the east and west walls become easier to crack, as deduced from
Figure 8b. As for the masonry-timber connections, the crack displacement variations of
the A01 and A02 sensors are also plotted, which shows that the changing range of the
A01 curve is larger than A02 when moving west; when moving north, the A02 curve
changes more obviously. Moreover, the FE results based on the CSC model also show that
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when the displacement variations within the areas of the displacement transducers are
below 0.17 mm, there is no plastic deformation that can be observed. It is worth noting
that all of the crack displacement curves are changed in the range of −0.02 to 0.07 mm
in Figure 8, which indicated that the crack displacement variations are very small and
insufficient to give rise to structural cracks during the monolithic movement.

  
(a) (b) 

 

 
(c) 

 
(d) 

Figure 7. PEEQ distributions of the exterior walls: (a) west (b) north and (c) south sides; (d) layout of
the displacement transducers.

 
(a) (b) 

Figure 8. Crack displacements obtained from the displacement transducers: (a) westward;
(b) northward.
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3.3. Deformation of the Steel Underpinning Beams

In order to transfer the vertical loads to the steel chassis, the reinforced underpinnings
are constructed at the bottom of the masonry walls with two-clip steel beams. As shown in
Figure 8a, three serious inclinometers are stuck on the outside surfaces of the steel beams
at the bottom of the east, north, and west walls in this case, assigned as D01, D02, and
D03, respectively. Here, D01 and D02 are selected as representative sensors for simplicity,
and the ranges of their measured lengths are 12 m along the east–west direction and
30 m along the south–north direction, respectively. The used series inclinometer with
ten measuring points could output displacement data along the Y and Z directions, and
their local coordinates were plotted in Figure 9a. Figure 9b presents the displacements
of D01 along the Y1 directions. Whether moving westward or northward during these
7 days, the displacement curves almost followed the same trend with the range from
−0.5 to 1.2 mm, which indicates that there is almost no deformation along the Y1 direction
under the external horizontal loads provided by the push-in jacks (Figure S1). This is
because the moving speed is very low and the stiffness of the underpinning beams in the
Y1 direction is high enough to resist the deformation. When it comes to the deformation
along Z1 direction in Figure 9c, the variation trends of the displacement curves are also
similar; meanwhile, the displacement in the Z1 direction decreased from 6.0 to 1.5 mm
with the increased distance from the north end to the south end of the series inclinometer
when moving west in the first to the fourth days. The displacement variations mainly
originate from the difference of the external pushing loads. Additionally, it is obvious
that the amplitude of deformation is larger than that during the movement north in the
fifth to seventh days and the D01 data, which is caused by the direction of the pushing
loads and the lower stiffness of the underpinning beam in the Z1 direction than that in
the Y1 direction. Similarly, the displacement curves obtained via the D02 sensor are quite
stable (small gaps of 1.2 to 2.0 mm and 0.3 to 1.2 mm for the westward and northward
movements) in Figure 9d, which proves the homogeneous deformation in Y2 direction of
the underpinning beam during the whole monolithic movement. Additionally, the stable
displacement curves in Z2 direction distracted from the D02 sensor with a small variation
of −0.1 to 0.9 mm can be found when moving west in Figure 9e. The larger deformation
with the displacement varying from −5 to −2 mm is revealed when moving north due to
a combination of the significantly lower stiffness in the Z2 direction than the Y2 direction
and the external pushing-load direction.

3.4. Strain of the Steel Chassis

The strain variations in the steel chassis, which bears the vertical loads of the whole
mobile body, are collected by the strain gauges and automatically accessed by the computer
in this case. Taking one strain gauge on each side of the chassis for the typical examples,
their locations are presented in Figure S1, and the corresponding strain variations are
shown in Figure 9, where SE, SW, SN, and SS denote the strain gauge attached on the east,
west, north, and south steel chassis beams. During both the westward and northward
movements, a good correlation in the strain variations can be found for the SE and SW
curves, and also for the SN and SS curves, which indicates the synchronous moving process
of the opposite steel beams and further provides a guarantee for maintaining the integrity
and availability of the curtilage. The strains of the north and south beams are higher
than those of the east and west beams in Figure 10a, which are induced by the horizontal
pushing force provided by the push-in jack during the first westward monolithic movement
stage. Moreover, the strains of the east and west beams are nearly zero, which proves that
there is little or no deformation of them. Similarly, the higher strain of the north and south
beams and the near-zero strain of the east and west beams are shown in Figure 10b during
the northward stage. Furthermore, it is interesting to notice that, despite the reasonable
amplitude of these curves, the strains for all the studied chassis beams are less than 0.04%,
which is far less than the yield strain of the steel material, helping to confirm that steel
chassis are keeping in the elastic range during moving to the new location.
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(a) 

 
(b) (c) 

  
(d) (e) 

Figure 9. (a) The distribution of the serious inclinometers; the displacements measured by: D01 along
the (b)Y1 and (c) Z1 directions and D02 along the (d) Y2 and (e) Z2 directions.

  
(a) (b) 

Figure 10. Strain variations during the (a) westward and (b) northward movement.
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4. Conclusions

The study undertaken herein involves the case study of a WSN-based approach
enabling real-time monitoring for the monolithic movement of a heritage curtilage. In
consideration of the lifting jack technology to implement the monolithic movement, the
deformation of the steel underpinning beams and the steel chassis are monitored simulta-
neously in addition to the inclination and the crack behaviors during translocation.

The following conclusions are drawn:

1. The inclinometer results show that the inclination of the timber pillars and the exterior
masonry walls is almost negligible, confirming that the used lifting-jack technology
has great potential in the monolithic movement of the historic building;

2. FE simulation and engineering experience are combined to reveal that the corners of
the window and the door as well as the masonry-timber connections tend to crack
more easily, thereby determining the distributions of the displacement transducers.
The corresponding displacement curves reveal that the crack behaviors are affected
by the moving direction. The value range is also changed from −0.02 to 0.07 mm,
which is not enough to initiate structural cracks;

3. The strain gauges are attached to the steel underpinning beams to monitor their
deformations. It is obvious that the deformation of the steel underpinning beam is
related to the moving direction and its stiffness in different directions;

4. The strain variations of the steel chassis, obtained from series inclinometers, are less
than 0.04%, which provides evidence of keeping the elastic range during monolithic
movement.

In brief, this work provides useful insights into developing non-invasive, real-time,
and remote monitoring strategies for historic buildings.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/buildings12111785/s1, Figure S1: The plane view of the steel
chassis with 9 longitudinal and 16 transverse H-shaped steel beams, floating jacks, pushing loads,
and typical strain gauge locations; Table S1: The input parameters of the exterior walls.
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Abstract: Wastes can be effectively used in concrete and the characteristics of concrete can be
maintained or enhanced, the economy of waste management can be greatly increased, and the
pollution of the earth can be reduced. This study aimed to research the durability of cement mortar
prepared using different W/B ratios and different percentages of waste PE content. The cement
mortar was mixed with 0%, 1%, 2%, 3%, and 4% waste PE and 20% ground-granulated blast-furnace
slag (GGBFS) in W/B ratios of 0.4, 0.5, and 0.6. The results sw that the slump and flow decrease
as the waste PE content is increased and increase with increasing W/B ratio, and the setting time
is shortened as the waste PE content is increased. In terms of hardened properties, the specimen
strength is slightly decreased as the waste PE content is increased, but the hardened properties are
better at a later age due to the pozzolanic reaction of slag, which can be verified by microscopic SEM.

Keywords: recycling of waste materials; water-to-binder ratio (W/B ratio); waste PE; cement
mortar; durability

1. Introduction

Cement manufacturing can be identified as a major source of CO2 emissions, from
production to emissions, making it the largest source of industrial emissions [1]. The
cement industry is the second-largest source of CO2 emissions, accounting for 27% of CO2
emissions from the industrial sector and 8% of global CO2 emissions [2,3]. It is estimated
that by 2050, cement production will increase by approximately 12–22% compared to 2014.
Therefore, one way to reduce CO2 emissions is to replace cement with materials that use
waste materials or industrial by-products to reduce CO2 emissions [4].

Blast-furnace slag is an industrial by-product of iron extraction. Depending on the
cooling method, blast-furnace slag can be divided into air-cooled blast-furnace slag and
ground-granulated blast-furnace slag (GGBFS), which is then dried and ground into a
powder of comparable fineness to replace cement as a cementitious material [5]. While the
chemical composition of GGBFS is very similar to that of Portland cement, its composition
consists of varying proportions of lime and alumina. The cementitious properties of GGBFS
are controlled by the type of ore, the type of flux used, and the contaminants in the charged
coke. Magnesium, silicon, calcium, aluminum, and oxygen account for 95% of the total
GGBFS content [6]. Therefore, proper use of ground-granulated blast-furnace slag (GGBFS)
to replace cement can not only reduce cement use but also reduce slag emissions, and
the properties of ground-granulated blast-furnace slag can also be used to improve its
engineering properties.

In the 1950s, plastic or synthetic organic polymers were mass-produced and used.
Although the rapid growth in the production of plastic man-made materials still does not
surpass that of steel and cement materials widely used in civil construction, the impact
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of plastic waste on the environment and how to eliminate it is still an important issue
that cannot be ignored [7]. The largest market for plastics is packaging, where the use of
single-use containers has grown so rapidly that the proportion of solid waste generated
from the use of these containers has increased from less than 1% in 1960 for middle- and
high-income countries to more than 10% in 2005 [8].

The vast majority of monomers used to make plastics, such as ethylene and propylene,
are derived from fossil hydrocarbons. None of the common plastics are biodegradable [9].
The only way to permanently eliminate plastic waste is through destructive heat treatment,
such as combustion or pyrolysis, which often causes secondary pollution of the environment
due to the subsequent emission of CO2. If such waste is buried in a landfill, it will only
accumulate in the natural environment and will not decompose [9,10]. Therefore, the
near-permanent contamination of the natural environment by plastic waste is a growing
problem [11].

Disposable or single-use paper containers are often coated with a plastic film, such
as polyethylene (PE), on the inner surface to meet waterproof or oil-proof requirements.
Therefore, most single-use paper containers are regarded as plastic waste and not waste
paper. Recycling is an effective way to reuse or regenerate waste into useful products,
materials, or components, especially with regard to recycling waste made from composite
materials such as lunch boxes and beverage cups [12–14]. With the continuous increase in
plastic waste, the inclusion of recycled plastic waste in building materials, such as bricks
and concrete, has been studied by researchers [15,16]. In addition, after recycled plastic
waste is combined with wood and other plant fibers, it can also be used in plastic–wood
building materials [17].

The cement in concrete consumes 2% of global energy in the production process, and
every ton of cement produced will emit 0.85 tons of carbon dioxide [18,19]. Therefore,
many researchers continue to investigate sustainable, environmentally friendly, and cost-
effective alternatives. Recycled plastic waste can be transformed into a suitable shape or
size and added to the concrete as an aggregate [20], which can reduce structural weight,
increase design flexibility, reduce total construction costs, reduce the structural gravity
load, and improve seismic performance. Due to its advantages, such as structural reaction
under action and enhanced structural thermal insulation, it is one of the alternatives to
decontaminate waste [16,21].

Plastic waste is incorporated into mortars and cements as aggregates, and most studies
have focused on the microplastic and neoplastic range [11,22,23]. Taiwan has the second-
highest density of convenience stores in the world [24], and most disposable food packaging
contains plastic waste composed of polyethylene (PE) components [14], a high-quality
material with good chemical stability, resistance to impact, and low temperature resistance.
According to the Environmental Protection Agency, in Taipei City alone, food delivery
packaging increased by 85% in May 2021 [24], perhaps due to the impact of the COVID-19
outbreak. Usually, recycled food packaging is composed of different polymers and complex
materials, which makes the separation of each material difficult [24]. It is necessary to
separate the PE components in the packaging container through processes such as buoyancy
sorting before recycling for reuse. The focus of this study is to investigate the durability of
recycled polyethylene (PE) plastic waste added to cement mortar and the benefits of PE
waste reuse under different W/B ratios.

PE polymers are one of many fibers, whether they are polymers or metals, and they are
widely used in concrete engineering because of their advantages [25–28]. The compressive
strength and toughness of concrete can be improved by adding steel fibers due to the
high modulus of elasticity and stiffness [25]. Although adding steel fibers to concrete
can improve the properties of concrete, the fiber content must be high. This increases the
structural gravity load of concrete and has a balling effect during mixing, thus reducing
workability [29,30]. There have been many studies on the use of PE as a substitute for
some natural aggregates in cementitious materials. Basha et al. found that the amount of
recycled plastic aggregate leads to a decrease in compressive strength, flexural strength,
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elastic modulus, and adhesive strength but is useful for concrete thermal insulation [23]. By
incorporating high-density polyethylene (HDPE) and low-density polyethylene (LDPE) into
concrete, Rumsys et al. found that the compressive strength of concrete is decreased [31].
Yoo and Kim found that replacing steel fibers with PE fibers results in a decrease in
compressive strength due to uneven dispersion of high aspect ratio PE fibers [32].

Single-use paper containers or tableware coated with polyethylene (PE) plastic films
for waterproofing and oil stain prevention have become indispensable in people’s lives
because of their low cost and convenience. After use, it is sent to a professional waste paper
container treatment plant for recycling, and its plastic film can be reused. However, due
to inaccurate recycling classification or high cost, it is mixed with waste paper and sent to
general nonprofessional waste paper factories for processing. The separated plastic film
will be identified as garbage and sent to incinerators for incineration, which increases the
processing cost of waste paper factories, secondary air pollution, and energy consumption.
In addition, in other studies related to the acquisition of plastic wastes to concrete, such as
polyethylene terephthalate (PET), some researchers pointed out that the accumulation of
this waste did not contribute to the improvement of concrete compressive strength [33–39].
However, the issue of the behavior of cement mortars containing PE wastes is new, and
research in this context is limited. Research in this context should continue to highlight the
important hardening and durability properties of concrete containing PE plastic wastes
coating disposable containers. Therefore, this study used different W/B ratios and different
contents of waste PE to make cement mortar, with the GGBFS content being fixed at 20%,
to discuss the durability and the benefits of energy savings and carbon reduction. The
preliminary study of cement mortar specimens was used to investigate the feasibility of
waste reuse and to suggest the appropriate PE addition ratio for the reference of concrete
mixture proportioning design, so as to achieve waste minimization by recycling PE film on
the surface of disposable containers.

2. Experiment Plan

2.1. Experimental Materials

Cement: Portland Type I cement produced by Taiwan Cement Corporation was
used; the properties of this cement conformed to ASTM C150, the specific gravity was
3.15, and the fineness was 3450 cm2/g. Waste PE: The waste PE was provided by the
manufacturer, with a specific gravity of 0.92 and a water content of 8.2%. It had the
appearance of spherical large granules. After it was decomposed by pulverization, it
appeared as flocculent plastic fibers, as shown in Figure 1a, with a specific gravity of 0.92.
Figure 1 shows the Fourier-transform infrared spectroscopy (FTIR) spectrum for waste PE.
GGBFS: GGBFS was provided by CHC Resources, conforming to CNS12549, with a specific
gravity of 2.9 and a fineness of 4000 cm2/g. The fine aggregate was derived from the river
sand of the Ligang River, and the specific gravity was tested according to ASTM C127. The
specific gravity was 2.65, and the water absorption was 1.48%. The chemical compositions
of the test materials are shown in Table 1.

Table 1. Physical properties and chemical composition of test materials.

Materials
Chemical Contents (%)

SiO2 Al2O3 Fe2O3 CaO MgO SO3 K2O Na2O TiO2 P2O5 f-CaO C3S C2S C3A C4AF L.O.I

Cement 19.6 4.4 3.1 62.5 4.9 2.2 - - 0.5 0.11 0.7 56 14 7 9 2.5

PE 42.5 36 1.1 11.2 2.9 - 0.4 0.7 5.2 - - - - - 42

GGBFS 33.5 14.7 0.4 41.2 6.4 0.6 0.3 0.2 0.5 0.01 - - - - - 0.6

2.2. Test Variables and Mix Proportions

The tested fresh properties included the slump and flow. Cement mortar specimens
were prepared and cured in saturated limewater. Their hardened properties, durability,
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and microscopic properties were discussed at the ages of 3, 7, 28, 56, and 91 days. The ratio
of unit weight and the test methods and specifications are shown in Tables 2 and 3.

 
(a) material appearance (b) FTIR analyze 

Figure 1. Material appearance and Fourier-transform infrared spectroscopy (FTIR) analysis
of polyethylene.

Table 2. Mixture proportions of cement mortar (unit: kg/m3).

W/B GGBFS (%) GGBFS Cement PE (%) PE Sand Water

0.4

20

172 749

0 0

2302

375
1 13.8
2 27.7
3 41.5
4 55.4

0.5 151 658

0 0

411
1 13.8
2 27.7
3 41.5
4 55.4

0.6 135 586

0 0

439
1 13.8
2 27.7
3 41.5
4 55.4

Table 3. Test method and regulations.

No. Test Items Test Regulations

1 Slump ASTM C143
2 Flow ASTM C230
3 Setting time ASTM C403
4 Compressive strength ASTM C109
5 Flexural strength ASTM C348
6 Tensile strength ASTM C190
7 Water absorption rate ASTM C1585
8 Ultrasonic velocity ASTM C597
9 Resistivity ASTM C876
10 Resistance to sulfate attack ASTM C1012

For micro and component analysis, a scanning electron microscope (SEM) is used
to generate secondary electrons by striking the specimen with an electron beam, and the
cathode ray tube is used to observe the surface microstructure of the specimen. An energy-
dispersive spectrometer (EDS) can be used for qualitative and quantitative analysis of the
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composition of the experimental specimen by scanning a high-energy focused electron
beam on the surface of the specimen.

3. Results and Discussion

3.1. Slump

As shown in Table 4 and Figure 2, with a fixed GGBFS of 20%, 1% of waste PE, and
W/B ratio of 0.4, 0.5, and 0.6, corresponding slumps of cement mortar were 1.5, 2.6, and
3.8 cm, respectively. The slump of cement mortar reveals an upward trend. Furthermore,
the slump was 1.9~1.2 cm with a W/B ratio of 0.4 and 1~4% addition of waste PE fiber
material, and it can be observed that the slump tends to decrease with the increase in
the addition of waste PE fiber material. The slump is observed to increase with the W/B
ratio. As the waste PE absorbs water, it absorbs the free water in the mortar; when the
content of waste PE in the mortar increases, the slump decreases accordingly. Therefore, the
slump increases as the W/B ratio increases and the waste PE content decreases, as shown
in Table 4.

Table 4. Slump and slump ratio of cement mortar with different W/B ratios and waste PE (unit: cm).

RM (%) AM (%) W/B

GGBFS PE
0.4 0.5 0.6

Slump SR * Slump SR * Slump SR *

20

0 1.9 1.00 2.8 1.00 4.1 1.00
1 1.5 0.79 2.6 0.93 3.8 0.92
2 1.3 0.68 2.5 0.89 3.7 0.90
3 1.3 0.68 2.3 0.82 3.5 0.85
4 1.2 0.63 2.1 0.75 3.4 0.83

* SR: Slump ratio of PE material added specimen to the control specimen without PE material added.

Figure 2. Slump of cement mortar with different W/B ratios and waste PE.

Regarding W/B = 0.4, the slump ratio of the specimen with 1% PE fiber material added
to the control specimen without PE fiber material added was 0.79, as shown in Table 4.
Still, the decreasing trend of the slump was slowed down with the increase in PE material
added, and the maximum slump ratio was 0.63, which occurred in the specimen with
4% PE material added. Similarly, at W/B = 0.5 and 0.6 series, the slump also showed a
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decreasing trend with the increase in PE addition. Therefore, the effect of PE addition on
the deterioration of fresh mix properties could be improved significantly by W/B. With 2%
PE addition, the slump of W/B = 0.5 increased significantly from 1.3 cm to 2.5 cm compared
with that of W/B = 0.4, which was 1.92 times. The results showed that the PE fiber material
addition has little effect on the fresh mix properties. Therefore, the fresh mix property test
results show that the cement mortar can be added with PE fiber material to achieve the
impact of waste minimization.

3.2. Flow

As shown in Table 5 and Figure 3, with a W/B ratio of 0.4 and a fixed GGBFS content of
20%, the flow is 15.6~14.2 cm; with a W/B ratio of 0.5, the flow is 19.9~18.7 cm; with a W/B
ratio of 0.6 and a GGBFS content of 20%, the flow value is 21.7~20.9 cm. The flow value is
greatly increased with the W/B ratio, the mortar flow increases as the water consumption
increases, and the overall workability of the mortar is enhanced.

Table 5. Flow and flow ratio of cement mortar with different W/B ratios and waste PE (unit: cm).

RM (%) AM (%) W/B

GGBFS PE
0.4 0.5 0.6

Flow FR * Flow FR * Flow FR *

20

0 15.6 1.00 19.9 1.00 21.7 1.00
1 15.2 0.97 19.7 0.99 21.3 0.98
2 14.7 0.94 19.4 0.97 21.2 0.98
3 14.4 0.92 18.9 0.95 21.0 0.97
4 14.2 0.91 18.7 0.94 20.9 0.96

* FR: Flow ratio of PE fiber material added specimen to the control specimen without PE fiber material added.

Figure 3. Flow of cement mortar with different W/B ratios and waste PE.

With a W/B ratio of 0.5 and 0%, 1%, 2%, 3%, and 4% for the waste PE, the cement
mortar shows flow values of 19.9, 19.7, 19.4, 18.9, and 18.7 cm, respectively. When the
content is increased from 1% to 4%, the flow is reduced by 1~6%, meaning the flow is
decreased as the content of waste PE is increased.
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3.3. Setting Time

As shown in Table 6 and Figure 4, with a fixed furnace slag content of 20%, a W/B
ratio of 0.4, and 1% waste PE, the initial setting time and final setting time of the cement
mortar are 315 min and 382 min, respectively; when the W/B ratio is 0.5, the initial setting
time is 387 min and the final setting time is 505 min; when the W/B ratio is 0.6, the initial
setting time is 468 min and the final setting time is 625 min. This indicates that the setting
time increases with the W/B ratio. As the total water consumption is increased with the
W/B ratio, the hydration heat reaction slows down and the setting time increases.

Table 6. Setting time of cement mortar with different W/B ratios and waste PE.

W/B
RM (%) AM (%) Initial Setting Final Setting

GGBFS PE min min

0.4 20

0 324 394

1 315 382
334

2 302 365

3 284
268 347

4 268 334

0.5 20

0 401 518

1 387
356

505
474

2 375 496
3 367 488
4 356 474

0.6 20

0 479 633
1 468 625
2 460 617

3 447
439

609
598

4 439 589

Figure 4. Setting time of cement mortar with different W/B ratios and waste PE.

When the W/B ratio is 0.5, the content of waste PE is 0%, 1%, 2%, 3%, and 4%, the
slag content is 20%, the initial setting time is 401~356 min, and the final setting time
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is 518~474 min, meaning that the setting time is shortened with increasing content of
waste PE.

3.4. Compressive Strength

As shown in Table 7 and Figure 5, at the age of 28 days, when the W/B ratio is 0.4,
the content of GGBFS is 20%, the content of waste PE is 0%~4%, and the compressive
strength is 54.1~48.9 MPa; when the W/B ratio is increased to 0.5, the compressive strength
is 48.5~44.9 MPa (reduced by 8.2~10.4%); when the W/B ratio is increased from 0.5 to
0.6, the compressive strength is 37.2~34.7 MPa; the compressive strength is reduced by
11.9~16.6% when the W/B ratio is increased from 0.4 to 0.5 and reduced by 30.1~31.2%
when the W/B ratio is increased from 0.5 to 0.6, indicating that the compressive strength is
decreased with increasing W/B.

Table 7. Compressive strength of cement mortar with different W/B ratios and waste PE (unit: MPa).

W/B GGBFS (%) PE (%) 3 Days 7 Days 28 Days 56 Days 91 Days

0.4 20

0 26.5 36.3 54.1 59.8 65.3
1 25.1 35.6 52.4 59.0 64.4
2 24.3 34.2 51.0 58.1 61.9
3 23.6 33.7 50.4 57.3 62.5
4 22.5 32.4 48.9 55.6 60.0

0.5 20

0 24.7 33.3 48.5 53.5 59.1
1 23.0 33.1 47.8 52.5 57.9
2 21.6 30.0 46.8 50.0 55.5
3 21.0 29.4 45.9 51.1 56.9
4 20.3 28.6 44.9 49.3 53.8

0.6 20

0 20.0 27.1 37.2 45.7 50.4
1 19.0 25.4 35.3 44.0 50.2
2 18.4 24.7 35.1 42.6 48.2
3 17.6 24.2 34.6 42.0 47.6
4 17.0 23.5 34.7 40.3 46.6

Figure 5. Compressive strength of cement mortar with different W/B ratios and waste PE.
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When the W/B ratio is 0.5 and the content of slag is 20% at the age of 3 days, the
strength of the control group is 24.7 MPa, and the compressive strength is 23.0~20.3 MPa
(reduced by 6.9~17.8%) for a waste PE content of 1~4%. At the age of 28 days, the strength
of the control group is 48.5 MPa and the compressive strength is 47.8~44.9 MPa (reduced by
1.4~7.5%) for a waste PE content of 1~4%. At the age of 91 days, the strength of the control
group is 59.1 MPa and the compressive strength is 57.4~53.8 MPa (reduced by 2.0~9.1%)
for a waste PE content of 1~4%, meaning that the compressive strength is decreased as
the waste PE fiber material content is increased. As the waste PE is fibrous, the balling
phenomenon is likely to occur in the specimen when the specimen is compacted. As this
leads to the formation of fiber agglomerates inside the specimen, the pores inside the
specimen are enlarged, and the waste PE is relatively soft, which cannot provide effective
compressive strength for the specimen. When the content increases, the compressive
strength decreases.

When the W/B ratio is 0.5 and the substitution amount of GGBFS is 20%, at the
age of 28 days, the strength is reduced by 1.4~3.5% for a waste PE content of 1~2%,
and the strength is reduced by 5.4~7.3% for a waste PE content of 3~4%. At the age of
56 days, when the waste PE content is 1~2% and 3~4%, the compressive strength is reduced
by 1.9~4.5% and 6.5~7.9%, respectively. When the waste PE content is 1~2% and the
strength reduction is controlled within 5%, the waste can be effectively eliminated, and the
economy of the waste is enhanced, with a reduction in waste generation and a reduction in
environmental pollution.

The compressive strength of the PE fiber material added at 2% showed a decreasing
trend at 28 days of age with W/B ratios of 0.4, 0.5, and 0.6 compared to the control specimen
without PE fiber material. The ratios were 0.94, 0.96, and 0.94, respectively. The decrease
in compressive strength of the PE material added at 2% could be controlled within 5%.
However, at 56 days of age, the compressive strength development in the three different
W/B series exceeded the compressive strength of the control specimens at 28 days of
age. Therefore, although the hardening properties of the compressive strength tended to
decrease with the addition of 2% PE material, the compressive strength at late ages was
58.1, 50.0, and 42.6 MPa with W/B ratios of 0.4, 0.5, and 0.6, respectively, by adding GGBFS,
and all of them exceeded the compressive strength of the control specimens. In addition,
with the addition of PE fiber material to 4% of the specimen, the compressive strength at
56 days of age was also the same. The test results showed that by adding PE material to
eliminate the waste, the compressive strength could be no lower than the test value of the
control specimen without PE material by adding GGBFS to extend the concrete curing age.

3.5. Flexural Strength

As shown in Figure 6, at the age of 28 days, for a GGBFS content of 20%, W/B
ratios of 0.4, 0.5, and 0.6, and a waste PE content of 0~4%, the flexural strengths are
20.2~17.4 MPa, 18.1~15.5 MPa, and 12.3~9.9 MPa, respectively, meaning that the flexural
strength is decreased with increasing W/B ratio.

At the age of 3 days, when the W/B ratio is 0.5 and the GGBFS content is 20%, the
flexural strength is 7.7~5.3 MPa, indicating that the flexural strength decreases as the
content increases (6.5~29.8%). At the age of 28 days, the flexural strength of the mortar
without waste PE is 18.1 MPa, and as the waste PE content is increased to 4%, the flexural
strength is 15.5 MPa (reduced by 14.1%). At the age of 91 days, the flexural strength of
the mortar without waste PE is 26.3 MPa; the flexural strength of the mortar with 4%
waste PE is 24.3 MPa, and when the waste PE content is increased from 1% to 4%, the
flexural strength is reduced by 3.1~7.6%, indicating that the flexural strength is decreased
with increasing waste PE content. At the age of 56 days, when the amount of substituted
GGBFS is 20% and the waste PE content is 1~2%, the strength is 2.2~5.2%, but the strength
is reduced by 9.5~10.3% when the waste PE content is 3~4%. At the age of 91 days, the
strength is reduced by 3~5.3% for a waste PE content of 1~2%, and the strength is reduced
by 6.5~7.6% for a waste PE content of 3~4%. This indicates that the strength reduction can
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be controlled to within 6% when the waste PE content is lower than 2%. This value is the
closest to that of the control group; hence, the waste can be effectively eliminated to reduce
environmental pollution.

Figure 6. Flexural strength of cement mortar with different W/B ratios and waste PE.

3.6. Tensile Strength

As shown in Figure 7, at the age of 28 days, with a W/B ratio of 0.4, a GGBFS content
of 20%, and a waste PE content of 0~4%, the tensile strength is 12.0~9.9 MPa; when the
W/B ratio is increased to 0.5, the tensile strength is 11.2~8.6 MPa (reduced by 6.7~13.1%);
when the W/B ratio is increased to 0.6, the tensile strength is 7.8~5.8 MPa, and the tensile
strength is reduced by 35~41.4% in comparison to a W/B ratio of 0.4, meaning that the
tensile strength is decreased with increasing W/B ratio.

Figure 7. Tensile strength of cement mortar with different W/B ratios and waste PE.
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At the age of 56 days, when the W/B ratio is 0.5, the GGBFS content is 20% and the
tensile strength is 14.2~12.4 MPa for a waste PE content of 0~4%, indicating that the tensile
strength is slightly decreased with the increased waste PE content; at the age of 91 days,
the tensile strength is 16~14.3 MPa. As the waste PE is soft and the tensile strength cannot
be effectively increased, the tensile strength is decreased with increasing waste PE content.
Meanwhile, the tensile strength, flexural strength, and compressive strength show the
same trend.

3.7. Ultrasonic Pulse Velocity

As shown in Figure 8, at the age of 28 days, with a W/B ratio of 0.4, GGBFS of 20%,
and different percentages of waste PE, the ultrasonic pulse velocity is 4720~4501 m/s; the
pulse velocity is 4386~4173 m/s for a W/B ratio of 0.5, which is reduced by 7.1~7.4% in
comparison to that at a W/B ratio of 0.4; when the W/B ratio is 0.6, the pulse velocity is
3825~3611 m/s, which is reduced by 12.8~13.5% in comparison to that at a W/B ratio of
0.5, meaning that the ultrasonic pulse velocity is decreased with increasing W/B ratio.

Figure 8. Ultrasonic velocity of cement mortar with different W/B ratios and waste PE.

At the age of 91 days, the control group shows a better ultrasonic pulse velocity of
4903 m/s; the ultrasonic pulse velocity is 4816 m/s for a waste PE content of 1%; and the
ultrasonic pulse velocity is decreased to 4607 m/s for a waste PE content of 4%, which
represents a 6.1% reduction in comparison to that for the control group. At the age of
56 days, when the substitution amount of GGBFS is 20% and the waste PE fiber material
content is 1~2%, the ultrasonic pulse velocity is higher than 4500 m/s, meaning that the
concrete quality is good.

When the waste PE content is increased, pores are formed as the specimen absorbs
free water so that the ultrasonic pulse velocity is decreased. When the substitution amount
of GGBFS is increased, the pulse velocity slowly increases at an earlier age; however, under
the effect of pozzolanic reaction, the specimen pores are filled up at a later age, leading to
a better density for the specimen, and the pulse velocity grows slowly at the later stage.
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The internal porosity of the specimen is increased with increasing W/B ratio, resulting in a
decrease in the pulse velocity. Furthermore, the ultrasonic pulse velocity is decreased as
the content of waste PE fiber material is increased.

3.8. Water Absorption Rate

As shown in Figure 9, at the age of 28 days, with W/B ratios of 0.4, 0.5, and 0.6, a
GGBFS content of 20%, and a waste PE content of 1~4%, the water absorption rates are
5.2~6.1%, 8.7~10.5%, and 13.1~14.2%, respectively. The water absorption rate is increased
with an increasing W/B ratio.

15

Figure 9. Water absorption rate of cement mortar with different W/B ratios and waste PE.

At the age of 28 days, with a W/B ratio of 0.5, a GGBFS content of 20%, and different
percentages of waste PE added to the cement mortar, the water absorption rates are 8.7%,
9.0%, 9.4%, 9.9%, and 10.5%, respectively. The water absorption rate is increased with the
waste PE content because the addition of waste PE induces the balling phenomenon, which
increases the internal porosity of the specimen, and the water absorption rate is increased
with PE fiber material content.

Pores are formed inside the specimen as the W/B ratio and waste PE content are
increased so that the internal porosity of the specimen is increased. The hydration of
GGBFS occurs slowly at an earlier age, so the specimen has a higher water absorption rate
than the control group; however, under the effect of pozzolanic reaction, the specimen
pores are filled up, and the specimen has a better density.

3.9. Resistivity

As shown in Table 8 and Figure 10, at the age of 28 days, for a W/B ratio of 0.4 and
waste PE content of 1%, the resistivity is 26.6 kΩ-cm; for a W/B ratio of 0.5, the resistivity is
25.4 kΩ-cm (reduced by 4.5%); for a W/B ratio of 0.6, the resistivity is 20.9 kΩ-cm, which is
reduced by 21.4% in comparison to that for a W/B ratio of 0.4, meaning that the resistivity
is obviously decreased as the W/B ratio is increased for a waste PE content of 1%.
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For a W/B ratio of 0.5 and a waste PE content of varying percentages, at the age of
3 days, the resistivity is 10~8.1 kΩ-cm, and the resistivity is reduced by 5~20% as the waste
PE content is increased. At the age of 28 days, the resistivity of the specimen without
waste PE is 26.3 kΩ-cm, and as the waste PE content is increased to 4%, the resistivity is
23.3 kΩ-cm (reduced by 11.4%), meaning that the resistivity is decreased with increasing
waste PE content. At the age of 91 days, the resistivity of the control group is 38.9 kΩ-cm;
the resistivity of the specimen with a waste PE content of 4% is 33.8 kΩ-cm, and when the
PE material content is increased from 0 to 4%, the resistivity is reduced by 13.1%, meaning
the specimen structure has a better density at the later age.

Table 8. Resistivity of cement mortar with different W/B ratios and waste PE (unit: kΩ-cm).

W/B GGBFS (%) PE (%)
3

Days
7

Days
28

Days
56

Days
91

Days

0.4 20

0 11.7 15.8 26.6 35.6 39.0
1 11.0 15.4 26.8 34.8 38.8
2 10.4 14.4 25.2 34.0 37.3
3 9.6 14.0 24.6 33.8 36.4
4 8.9 13.2 24.0 33.3 35.7

0.5 20

0 10.0 14.7 26.3 35.5 38.9
1 9.5 14.2 25.4 34.5 37.3
2 9.1 13.7 24.9 34.0 36.2
3 8.6 13.4 24.0 33.6 36.3
4 8.0 12.2 23.3 32.6 33.8

0.6 20

0 8.4 13.2 21.6 32.8 35.4
1 8.0 12.1 20.9 33.2 35.2
2 7.7 12.1 20.9 32.6 34.9
3 7.2 11.5 20.0 31.8 33.8
4 6.9 11.6 19.4 30.9 32.2

Figure 10. Resistivity of cement mortar with different W/B ratios and waste PE.
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When the waste PE content is increased, fiber agglomerates are formed; hence, the
resistivity is decreased; at the age of 28 days, the resistivity of various mix proportions is
higher than 20 kΩ-cm, showing durability.

3.10. Resistance to Sulfate Attack

As shown in Figure 11, at the age of 28 days, with W/B ratios of 0.4, 0.5, and 0.6,
GGBFS content of 20%, and waste PE content of 1~4%, the weight loss rates are −3.3~3.4%,
−6.6~7.1%, and −9.2~10.2%, respectively. When the W/B ratio is increased, the resistance
to sulfate attack is degraded, and the weight loss is increased. When the W/B ratio is low,
the internal porosity of the specimen is reduced, the specimen is denser, and the resistance
to sulfate attack is better.

At the age of 28 days, when the W/B ratio is 0.5, the weight loss rates for cement
mortar specimens with a waste PE content of 0%, 1%, 2%, 3%, and 4% are −6.6%, −6.7%,
−6.9%, −7.1%, and −7.1%, respectively, after five cycles, meaning that when the waste
PE content is increased, the weight loss rate is increased, and the resistance to sulfate
attack is degraded. This phenomenon was observed because the internal porosity of the
material increases with the waste PE content, and the sulfate solution more easily erodes
the specimen. When the W/B ratio and the waste PE content are increased, the internal
porosity of the specimen and the weight loss rate are increased.

Figure 11. Resistance to sulfate attack of cement mortar with different W/B ratios and waste PE.

3.11. Microscopic Analysis

As shown in Figure 12, at the age of 7 days, for a W/B ratio of 0.5 and waste PE
contents of 1%, 2%, 3%, and 4%, the number of fibers inside the cement mortar specimen
is significantly increased. According to the EDS analysis, the main elements were O, Ca,
C, and Si. The waste PE is found to increase the specimen porosity, verifying that the
compressive strength is decreased with increasing waste PE content.
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(a) PE 1% 

  
(b) PE 2% 

 
 

(c) PE 3% 

  
(d) PE 4% 

Figure 12. SEM of cement mortar with different waste PE (×1000) (day 7, W/B ratio of 0.5).
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4. Conclusions

1. The slump and flow properties of a specimen decrease as the waste PE content is
increased so that the overall workability is degraded; the slump is increased with
increasing W/B ratio.

2. The setting time is shortened as the waste PE content is increased. When the W/B
ratio is increased, the water consumption is increased so that the overall setting time
is increased.

3. The compressive strength, flexural strength, and tensile strength decrease as the waste
PE content is increased. For a waste PE content of 2%, the waste can be eliminated
most effectively; meanwhile, the strength is decreased with increasing W/B ratio and
increased with increasing age.

4. The ultrasonic pulse velocity is reduced by 6.9%~8.7% as the age and the waste
PE content are increased. Since the waste PE fiber material absorbs the free water
in cement mortar, it causes voids after cement mortar hardening and reduces the
density of the specimen. Therefore, in the ultrasonic test, the ultrasonic wave speed
showed a decreasing trend with the addition of PE material from 1% to 4%, and the
decrease increased from 6.9% to 8.7%. With the addition of 20% GGBFS, which has
the property of delaying the reaction of the Portland, the ultrasonic wave speed can
exceed 4500 m/s at the age of 28 days only if the W/B ratio is 0.4. With the increase in
the W/B ratio, the test results show that at the age of 56 days and 91 days, the amount
of waste PE material added within 2%, although the density of the cement mortar
specimen will be reduced, it can still meet the ultrasonic wave speed of 4500 m/s. The
density requirement of wave speed is over 4500 m/s. The addition of 2% of waste PE
material can be used as a reference for concrete mixture proportioning design, which
is helpful to remove the waste PE material.

5. As the W/B ratio and waste PE content are increased, pores are formed inside the
specimen, and the water absorption rate is increased. The specimen has a better
density due to hydration at a later age, so the water absorption rate is decreased.
Regardless of whether the cement mortar specimen has added waste PE fiber material
or not, its water absorption rate will show a decreasing trend with the development of
age, and because of the addition of 20% GGBFS, at a late age, it delays the hydration
reaction of the Brahmin, so that the specimen shows a better dense condition internally
at a late age. At the same age, for the series with a W/B ratio of 0.4, the effect of the
addition of waste PE fiber material on the water absorption was minimal, and the
same was true for W/B ratios of 0.5 and 0.6. The correlation between water absorption
and the reaction time of hydration, i.e., the development of age, indicates that the
addition of waste PE material is feasible as long as the hydration reaction is developed
until the cement mortar meets the requirement of density.

6. The resistivity is decreased as the waste PE content and W/B ratio are increased. The
resistivity shows the same trend as that for the ultrasonic pulse velocity. At the age
of 28 days, the durability resistance test values of all specimens exceeded 20 kΩ-cm,
indicating that although the addition of 20% GGBFS delayed the hydration effect, the
resistance values met the requirement of compactness. Compared with the age of
28 days, the difference in resistance values between the PE materials added to the
specimens at the same W/B was more minor. Still, at the late age of 91 days, the
difference in resistance values between the PE materials added to the specimens at
the same W/B was more significant. With the addition of PE materials, the resistance
values decreased, indicating that the waste PE materials could not produce hydration.
After a complete hydration reaction, the voids were formed. In addition, microscopic
analysis by an electron microscope revealed that the PE fibers in the specimen made
tangled masses, which was also the reason for the increase in voids.

7. The resistance to sulfate attack is degraded for increasing W/B ratio and waste PE
content; however, with the pozzolanic reaction, as the specimen pores are filled with
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hydrates, the specimen has a better density, and the decrease in weight loss rate is not
obvious at a later stage.

8. Under the condition of a W/B ratio of 0.4, the addition of 2% waste PE and 20%
GGBFS in the mix proportion leads to better hardening properties and durability to
achieve the goal of waste reuse. In addition, it suggests the appropriate PE addition
ratio for the reference of concrete mixture proportioning design, so as to achieve waste
minimization by recycling PE film on the surface of disposable containers.
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Abstract: In this paper, a real-time monitoring system—including vibration acceleration sensors,
temperature sensors, and static and dynamic strain sensors—is used to monitor the safety status of a
steel assembly bracing in a practical project. It uses 5G wireless networking technology to transmit
monitoring data to a cloud server for early warning of abnormal changes and development trends.
Real-time monitoring data obtained in a construction site are used as the inputs of the finite element
model and the corresponding results of numerical simulation are compared with the results from the
real-time monitoring. It can be concluded that: (1) the stress caused by environmental temperature is
very significant which can be higher than the initial prestress of the steel assembly bracing; (2) the
stress caused by the vertical vibration mainly from construction vehicles is not remarkable, however,
the vertical frequency-weighted acceleration of support vibration is relatively large which can affect
the sense of safety of engineering technicians on site; (3) the combination of the environmental
temperature and vertical vibration does not affect the safety of the steel assembly bracing.

Keywords: steel assembly bracing; foundation pit; environmental temperature; vibration analysis;
real-time monitoring

1. Introduction

Reasonable setting of internal bracing is an important guarantee for the construction
safety of deep and large foundation pits. Due to the temporary nature of foundation
pit engineering, it is necessary to consider three factors including safety, economy and
construction period in the design of a bracing system. A reinforced concrete structure
is a traditional and mature support form for a bracing system. However, it has a long
construction period of structure-forming and can easily cause excessive environmental
noise and produce more construction waste after the bracing system has been removed.
In recent years, engineering research companies in Southeast China have developed steel
assembly bracing as a new type of bracing system. Compared with traditional bracing
technology, its on-site construction period is short, and there are no noise and construction
waste problems. Hence, steel assembly bracing is more environmentally friendly and has a
wide application market in engineering.

As far as general engineering experience is concerned, even if the reinforced concrete
structure is used as the internal support of a foundation pit, the influence of temperature
on the internal force of the support must be considered when the length exceeds 40 m.
Furthermore, the steel assembly bracing is more sensitive to temperature than the concrete
bracing. Affected by higher thermal conductivity and lower specific heat capacity, the tem-
perature of steel coated with dark antirust coating is usually higher than that of concrete in
the same environment. The surface temperature of a steel structure bridge which is similar
to steel assembly bracing in structural form is 15~20 ◦C higher than the environmental
temperature, and the stress of each component is also different under solar radiation [1,2].
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The steel inner brace of a supporting system will produce large additional axial force and
axial deformation under the influence of environmental temperature [3,4]. In engineering
cases, the method of covering the supporting system with the surface layer is sometimes
used for thermal insulation treatment. Other studies related to steel truss structures show
that the dynamic characteristics of steel structures will also change under the influence
of environmental temperature, and even cause structural damage in severe cases [5–7].
Therefore, the effect of temperature on the steel assembly bracing is significant and cannot
be ignored.

Steel assembly bracing has been designed as one or multiple supports which consist of
H-shaped steel parts [8,9], among which high-strength bolts are usually adopted to connect
the steel. The compression bar analysis method of steel structure is used to design the
bracing. Steel assembly bracing consisting of steel pipes or section steels has been used
to support the vertical retaining wall structure around the foundation pit with a certain
prestress applied in the axial direction of members to reduce the inward deformation. The
study reported that the steel assembly bracing with appropriate prestress can significantly
reduce the horizontal displacement of the retaining structure of the foundation pit [10].
When the environmental temperature changes greatly, sometimes engineers even use steel
diagonal assembly bracing for internal support [11]. In fact, the axial force of each horizontal
support transfers with the deformation of the retaining wall structure and becomes more
complicated if the impact of environmental temperature is also considered [12,13]. With
the increase of support length, the influence of temperature will become more and more
significant. Sometimes it is even necessary to reinforce the soil near the support to ensure
that there is no separation between the soil and the retaining structure when the support
shrinks [14].

Calculation of steel bracing of the foundation pit is usually based on the elastic
foundation beam model to consider the effect of temperature, or based on the Winkler
model to establish the empirical model of the effect of temperature on the bracing system
of the foundation pit. Due to its complexity, inappropriate simplified models sometimes
underestimate the temperature effect on steel bracing, which eventually leads to bracing
failure [15]. For steel assembly bracing, owing to the influence of lateral deformation along
the depth direction of the foundation pit, the influence of temperature on the second layer
bracing is sometimes greater than the first layer [16]. In the low-temperature area of North
China, the reduction of axial force caused by the temperature drop of steel bracing will also
cause the additional deformation of the foundation pit retaining to the pit [17]. Meanwhile,
earthwork trucks can cause obvious vibration of steel bracing when they pass through
concrete trestles near the end of steel bracing in which vehicle load, speed and distance are
very important influencing factors [18].

To the authors’ knowledge, at present, the research on steel assembly bracing is not
enough and a safety real-time monitoring system has not been reported to be used to study
steel assembly bracing. In the practical project studied in the paper, another problem also
deserves attention: on-site technicians reflected that the vibration of the steel assembly
bracing was sometimes obvious and thus complained about the insecurity. Therefore, the
safety of steel assembly bracing under multiple working conditions is studied by the safety
real-time monitoring system combined with numerical simulation in the paper.

2. Monitoring and Numerical Method

2.1. Technical Information of Foundation Pit Support

The size of the foundation pit of Huidong No.14 plot in Hangzhou City is 144 m ×
215 m × 15 m, which is shown in Figure 1.
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Figure 1. Steel assembly bracing of foundation pit and truck driving route.

Around the foundation pit, the reinforced concrete diaphragm walls and the triaxial
cement-soil mixing piles form the lateral enclosure, steel assembly bracing are used in the
horizontal direction, and some reinforced concrete purlins are used as trestle bridges on
the earthwork transportation path. Figure 1 shows the driving route of earthwork trucks
at the foundation pit construction site and the plane layout of the steel assembly bracing.
The transportation channel for the earthwork truck is closest to the steel assembly bracing
T01. As can be seen from Figure 2, there are upper and lower steel assembly internal
bracings along the height direction of the foundation pit, and both ends are supported
on the reinforced concrete trestle bridge for earthwork truck transportation. In addition,
vertical steel lattice columns are set at a certain distance in the foundation pit to provide
vertical support along the length direction of the steel assembly bracing.

Figure 2. Side view of steel assembly bracing of foundation pit.
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In the process of excavating and transporting soil, the steel assembly internal bracing,
which is also used as pedestrian passageway, has obvious vibration when earthwork
vehicles drive through the pit. This phenomenon makes engineering technicians pay
attention to the safety of the foundation pit. Because the project has been under construction,
and the site project progress and working conditions are changeable, it is difficult for
the traditional once-a-day monitoring technology to obtain axial force, temperature and
support vibration data at the same time and realize safety early warning in case of an
emergency. In this study, a real-time monitoring network is established by virtue of the
wireless sensor monitoring technology in the construction site to support safety monitoring
through real-time monitoring data.

2.2. Monitoring Points Locations

Steel tube internal bracing is a common form of the foundation pit, which has been
widely used in a narrow and regular foundation pit. In order to monitor the safety of
soil, buildings and structures, an underground pipe network and facilities around the
foundation pit during excavation and construction of a deep and large foundation pit
or special foundation pit, the designers must determine the safety monitoring points
and monitoring contents of the steel pipe support in the design documents according to
national standards, design documents and engineering experience [19]. In this study, the
monitoring experience of reinforced concrete support and steel tube support is used for
reference, to set up the monitoring contents and layout of various measuring points for
steel assembly bracing.

According to the site investigation, the vertical vibration of T01 reflected by engineers
and construction workers can be obviously felt, especially when several earthwork trucks
pass through the trestle bridge one after another. In order to master the relationship
between the bracing vibration and running vehicle, and study its influence on the safety of
the bracing system, the resistive dynamic strain gauges (precision ±0.1 με, range ±3000 με,
type XKKJ-DTA100) and vibration acceleration sensors (sensitivity 0.3 V*s/m, range of
scale 20 m/s2, range of frequency 0.25~80 Hz, type BY-S07) have been arranged on the
first track (initial pre-axial force P01 = 3200 kN, compressive stress 18.22 MPa) and the
second track (initial pre-axial force P01 = 8000 kN, compressive stress 22.78 MPa) of T01
which is the closest to the trestle passage and has obvious vibration sense to monitor the
dynamic response. Vibrating wire static strain gauges (strain: precision ±7 με, range
±1500 με, type T-900, temperature: precision ±0.2 ◦C (0~50 ◦C), range −40~60 ◦C, type
CG-01) have been arranged on the surface of an H-beam because they are widely used
in monitoring for foundation pit support and can be utilized to measure the steel surface
temperature and surface strain of an H-beam at the same time [20]. In addition, in order
to analyze the correlation between vehicle and the response of structural dynamics, video
surveillance is used to monitor earthwork truck transportation. A 5G network is used
for wireless networking and remotely transmits data to the cloud database. Figure 3
shows the locations and numbers of various types of sensors on the T01 steel assembly
internal bracing.

As can be seen in Figure 3, the vibration acceleration sensors are fixed on the beam
for the reinforced concrete trestle, while all kinds of measuring points are installed on the
upper flange of the H-beam for the steel assembly bracing. Ten dynamic strain measuring
points (DSS-01~DSS-10) are arranged on the first steel assembly bracing, and six dynamic
strain measuring points (DSS-11~DSS16) are arranged on the second steel assembly bracing.
Two static strain measuring points (SSTS-01, SSTS-02) are arranged to master the static
strain and steel temperature of steel assembly bracing. At the same time, acceleration
sensors, numbered with 3AS-01 and 3AS-02, are arranged on the trestle bridge and steel
assembly bracing, respectively. It is noted that the sampling interval of static strain and
temperature data is 5 min; the sampling frequency of dynamic strain is 50 Hz; and the
sampling frequency of vibration acceleration is 200 Hz.

154



Buildings 2023, 13, 450

Figure 3. Layout of monitoring points in steel assembly bracing.

According to the monitoring and analysis of real-time data for more than one month,
the responses of vibration acceleration of the reinforced concrete trestle bridge and the steel
assembly bracing are significantly larger when the earthwork truck passes through the
trestle bridge, and the amplitude of vertical vibration acceleration on the first steel assembly
bracing is larger than that of the concrete trestle bridge. In addition, the steel assembly
bracing is obviously affected by environmental temperature. In order to analyze the
influence of vehicle vibration and temperature on the safety of steel assembly bracing, the
finite element method is adopted to analyze the structural responses under the combined
action of vibration and temperature.

2.3. Numerical Method

In this section, a three-dimensional finite element method is adopted to analyze the
steel assembly bracing via ABAQUS software. The calculation results can be used as a
reference to compare with the results from the real-time monitoring [21]. The finite element
analysis involves modal analysis, steady-state thermal analysis and dynamic analysis.
The vertical natural frequency and mode of the steel assembly bracing are obtained by
modal analysis; the steady-state thermal analysis is used to analyze the temperature effect
on the assembly bracing; the dynamic analysis is used to analyze the vibration effect of
transport vehicles. Finally, the most unfavorable combination of temperature and vibration
is considered to analyze the steel assembly bracing.

It should be emphasized that the highest temperature and the maximum vibration
response of the vehicle driving during the monitoring period are simultaneously considered
in the numerical simulation which cannot occur at the same time in practice. Therefore, the
numerical simulation results in the paper will be conservative.

2.3.1. Numerical Simulation of Soil Layer

In order to consider the influence of the surrounding soil layer on foundation pit
structure, the length and width of the soil layer are taken as four times that of the foundation
pit size, and the thickness of the soil layer is taken as twice that of the foundation pit depth.
The total size of the ABAQUS finite element model is set as 576 m × 860 m × 30 m [22].
An eight-node C3D8R volumetric element is adopted for the soil layer and the number
of elements is about 334,000. Considering that there is a concrete trestle bridge, concrete
crown beam and diaphragm wall around the steel assembly bracing to be considered, a
linear elastic model is adopted to simplify the calculation of soil layer parameters, which
are shown in Table 1. In the process of calculation and analysis, the soil layer adopts C3D8R
element type with hourglass control. At the same time, in order to improve the calculation
accuracy, the soil elements inside and around the foundation pit are encrypted, and the
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size of the elements far away from the foundation pit is gradually increased to improve
the calculation speed. The bottom boundary of soil is constrained by three-dimensional
displacement, the side of soil is constrained by normal displacement, and the upper surface
is free. Because the mechanical properties of soil are usually little affected by environmental
temperature, the temperature of the soil is set at a normal temperature of 25 ◦C.

Table 1. Physical and mechanical parameters of soil layer.

Name of Soil
Layer

Thickness of
Soil Layer h (m)

Unit Weight γ
(N/m3)

Elastic Modulus
E (MPa)

Poisson’s
Ratio υ

Miscellaneous fill 6.0 18500 7.4 0.40

Sandy silt 10.6 19400 9.9 0.35

Silt with sand 3.5 19700 11.3 0.34

Sandy silt 2.4 19400 9.9 0.35

Muddy clay 5.0 19200 3.6 0.41

Silty clay 2.5 19800 7.7 0.35

2.3.2. Numerical Simulation of Supporting Structure

The supporting structure around the foundation pit is a concrete diaphragm wall with
concrete C35 and a thickness of 1000 mm, which extends into the soil layer at the bottom
of the foundation pit to twice the depth of the foundation pit by underwater pouring
technology. A concrete crown beam is set at the top of the concrete diaphragm wall and
a concrete structure is adopted for the purlin of the foundation pit with concrete C30. A
steel crown beam and a steel waist beam are arranged along the vertical height of the steel
assembly bracing. Both the crown beam and waist beam adopt the section steel with the
same specification, i.e., H400 × 400 × 13 × 21 (Q355b), and the upright column also adopts
section steel H400 × 400 × 13 × 21 (Q355b).

Based on the above situation, the S4R element, that is, a four-node curved thin shell
element with hourglass control, is used for the diaphragm wall and the surrounding
concrete purlin plate where the global element size is 1.0 m and the number of the elements
is about 28,000. The B31 element, i.e., a two-node spatial linear beam element, is adopted
in the model for the steel assembly bracing, steel purlin beam, section steel column and
concrete crown beam in which the global element size is 1.0 m and the number of the
elements is about 52,000. The thermal expansion coefficient of steel is α = 1.2 × 10−5, the
damping coefficient of steel is ζS = 0.02, and that of reinforced concrete is ζC = 0.02. The
material parameters of each component of the foundation pit supporting structure are
shown in Table 2, and the finite element model is shown in Figure 4. The outer soil and
diaphragm wall have face-to-face contact, and the normal contact is set as hard contact
which means that the normal pressure can be transmitted between the two contact surfaces
only when they are not separated [22,23]. The penalty function is adopted in the tangential
direction, and the friction coefficient is taken as 0.2.

Table 2. Physical and mechanical parameters of steel assembly bracing.

Material of Supporting Structure Elastic Modulus E (MPa) Poisson’s Ratio μ Density ρ (kg/m3)

Diaphragm wall 31,000 0.2 2400

Surrounding purlin 31,000 0.2 2400

Steel assembly bracing 210,000 0.3 7850

Section steel column 210,000 0.3 7850

156



Buildings 2023, 13, 450

Figure 4. Numerical model of foundation pit braced by section steel assembly.

With the help of engineering experience, it can be concluded that the stiffness of
reinforced concrete diaphragm walls, cement mixing pile and reinforced concrete brace
around the wall is much larger than the vertical stiffness of steel assembly bracing, and
the low-order natural frequency of the foundation pit support system should occur in the
steel assembly bracing, which has been also proved by numerical results. The low-order
vertical natural frequencies of the steel assembly bracing system are mainly concentrated
in (6.16 Hz~7.02 Hz), and the first four natural frequencies and the corresponding vertical
vibration modes are shown in Figures 5–8 as follows.

 

Figure 5. Vertical first-order vibration mode (6.16 Hz).

 

Figure 6. Vertical second-order vibration mode (6.31 Hz).
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Figure 7. Vertical third-order vibration mode (6.59 Hz).

 

Figure 8. Vertical fourth-order vibration mode (7.02 Hz).

It can be found that the low-order natural frequencies of the steel assembly bracing are
mainly concentrated on the T01 steel support shown in Figure 1, and it is easier to cause T01
vibration when the earthwork truck drives over the concrete trestle bridge. The numerical
analysis results preliminarily prove the problems reflected by construction workers.

2.3.3. Acting Load

It has been proved that the internal force changes of steel bracing under the action of
temperature cannot be ignored. Considering the abnormal vibration of T01 complained
of by workers in this project, it is necessary to consider the combined action problem
of temperature and vibration of the steel assembly bracing in both field monitoring and
calculation analysis. When the site-monitoring system was established, the construction
stage was in the binding steel bars and pouring concrete on the right foundation pit bottom
plate near T01, while the left side was in the stage of outward soil transportation. Therefore,
the working conditions of the construction site were complicated. As far as temperature
changes are concerned, from August to November 2022, the 100 consecutive days of
monitoring showed that the strain and temperature monitoring data of the steel assembly
bracing changed little at night, while the steel surface temperature of the first steel assembly
bracing of T01 ranged from 10.9 ◦C to 51.6 ◦C during the day, and the compressive strain of
the brace decreased or increased with the temperature obviously. During the 100 days of
real-time online monitoring, even in October when the temperature drops, for example,
the lowest temperature of steel was 26.0 ◦C at 4 am on October 3, the highest temperature
of steel was 51.6 ◦C at 14 pm, and the temperature difference between high and low was
25.6 ◦C. On that day, the axial static compressive strain SSTS-01 increased by 156.3 με with
the temperature, and the similar high temperature environment frequently occurred within
three months. The temperature changes of the steels from 12 August to 22 November is
shown in Figure 9.
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Figure 9. Temperature–strain diagram of steel assembly bracing during monitoring period (12 August
to 22 November 2022).

As for the vertical vibration problem of steel bracing, since the site is in the construction
stage, the vibration sources of structure include: (1) the vibration caused by earthwork
truck running; (2) the vibration caused by pouring concrete in the foundation pit bottom
plate; (3) the vibration caused by tower crane running and hoisting construction materials,
and vibration caused by various construction machines and tools. Frankly speaking, it
is extremely difficult to accurately analyze the steel assembly bracing under the action
of each vibration source. The multi-day vibration monitoring data show that the vertical
vibration of the reinforced concrete trestle bridge and steel assembly bracing increases
obviously when the earthwork truck passes through the trestle bridge, which further shows
that the earthwork truck passing through the trestle bridge is the main reason for the
significant vibration of T01. Video monitoring of the speed of earthwork trucks on the
trestle is about 10 km/h. The truck is fully loaded and the roof soil layer is neatly covered,
and the average total mass weighed is 20,000 kg. In order to obtain the moving load
of the truck running on the trestle, a vertical vibration sensor is installed on one of the
trucks to collect the vertical vibration monitoring data of the vehicle. The vibration action
during the driving process of the vehicle is shown in Figures 10 and 11 below. The vertical
vibration responses of trestle ground vibration acceleration monitoring point 3AS-01 and
steel support vibration acceleration monitoring point 3AS-02 at the same time are shown in
Figures 12 and 13. It can be seen from the vibration time history and frequency spectrum
curves in Figures 10 and 12 that the first-order frequency (Figure 10) of the vehicle action
when the truck passes through the concrete trestle is basically consistent with the first-order
dominant frequency of the vertical trestle response. The trestle vibration contains forced
vibration components, and the frequency components are complex. The first frequency
of the vibration response in Figure 13 is 6.661 Hz, which is close to the vertical natural
frequency of the bracing in Figure 7 of numerical analysis. The vertical vibration of the
bracing is mainly caused by resonance.

During numerical analysis, the vibration effect of earthwork truck as the unique
vibration source is considered and the static and dynamic strain of steel assembly bracing
at the highest temperature difference are only considered. With regard to the vibration
calculation input, the amplitude modulation input model of Figure 10 is calculated based
on the maximum value Atbt.max of the vibration response of the concrete trestle bridge
(purlin) in Figure 14, such that Atbt.max of Figure 12 is equal to Atbt.max of Figure 14. The
time history curve of vehicle vibration acceleration after amplitude modulation in Figure 10
was taken as the calculation input.
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Figure 10. Vibration action of earthwork truck.
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Figure 11. Test system of vehicle vibration.
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Figure 12. Vibration response of concrete trestle bridge.

Figure 13. Vibration response of steel assembly bracing.

In order to simulate the influence of the vertical vibration of vehicles, eight concen-
trated forces are set in this model to represent the mass distribution of vehicles on the trestle
bridge. The numerical values are calculated according to the vehicle weight and the vehicle
mass distribution percentage. The first half of the earthwork vehicle accounts for 36% of
the total mass of the vehicle, and the second half accounts for 64% of the total mass of the
vehicle, and then the mass is evenly distributed to the concentrated force in the area located.
During numerical analysis, the total mass of the vehicle is taken as 20,000 kg, and the front
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and rear wheels of the vehicle are distributed in proportion, in which the concentrated
forces exerted by the front wheels RP-1 to RP-4 are all 1800 kg, and the concentrated forces
exerted by the rear wheels RP-5 to RP-8 are all 3200 kg, as shown in Figure 15. The time
history curve of vehicle vibration acceleration after amplitude modulation is assigned as
the amplitude curve which is multiplied by the above mass of the vehicle to obtain the
dynamic load-time history curve. Finally, the dynamic load action can be analyzed. It
is assumed that the most unfavorable working condition is considered, that is a linear
combination of the maximum temperature difference of steel assembly bracing and the
maximum vibration response amplitude of the trestle which occur at the same time.

Figure 14. Maximum vibration response of trestle bridge during monitoring period.

Steel Assembled Bracing
T 01 Trestle Bradge

36%

64%

Front and Back 
Wheels of Truck 

 
Figure 15. Mass distribution of front and rear wheels of earthwork trucks.

3. Results and Discussion

3.1. Strain of the Steel Assembly Bracing

According to the change of steel assembly bracing with temperature for more than
100 days in Figure 9, the surface temperature changes of section steel collected in typical
weather environments of low temperature, medium temperature and high temperature are
selected and input into the finite element model, and the temperature influence analysis of
static strain at the SSTS-01 measuring point of T01 steel assembly bracing is carried out.
SSTS-01 steel surface temperature, monitoring strain, and model in-situ calculated strain
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are shown in Figure 16, and monitoring strain and calculated strain information are listed
in Table 3.
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Figure 16. Influence of typical ambient temperature change on steel brace strain.

Table 3. Strain of steel brace at different ambient temperatures.

Temperature Condition
Steel Temperature

(◦C)
Temperature

Difference (◦C)
Calculated
Strain (με)

Measured
Strain (με)

Calculated Strain
–Measured Strain (με)

Low temperature
environment 10~18.9 8.9 87.40 53.55 33.85

Moderate temperature
environment 11.7~32.7 21.0 187.94 131.69 56.25

High temperature
environment 26.5~50.6 24.1 258.44 146.44 115.88

According to the data listed in Figure 16 and Table 3, it can be concluded that the
calculated strain is larger than the actual monitored strain, and such a difference at high
temperature is larger. In addition, the temperature of steel in the steel assembly bracing is
affected by environmental temperature and sunlight radiation, and the surface temperature
of each member varies with the degree of sunlight exposure. The temperature of steel
used in calculation and simulation comes from SSTS-01, which is located on the upper
surface of the first support of the steel assembly bracing. During the monitoring period,
it receives more sunlight radiation, which belongs to the support area most affected by
temperature and is the most unfavorable position affected by temperature. When the
input steel temperature measuring point is located in the position that can accept the full
radiation of the sun, the calculation and analysis results of temperature action according to
the high temperature environment are too large, but it is beneficial to the structural safety
from the engineering point of view.

Then, the finite element dynamic analysis is carried out under the vibration action of
the earthwork truck after amplitude modulation. The total time of model calculation is 6 s,
the step size is 0.005 s, and the sampling frequency of the field vibration sensor is 200 Hz.
It is assumed that the temperature of steel is approximately in a stable state of 50.6 ◦C
during the period when the earthwork truck passes through the trestle bridge. As shown in
Figures 17–20 below, the monitoring data of the dynamic strain of typical position number
DSS-06 (the same position as static strain SSTS-01), DSS-10, DSS12 and DSS-14 of T01 are
compared with the calculation results at the same point of the model (the monitoring data
of dynamic strain of other positions are in Supplementary Materials).

The following conclusions can be drawn from the data analysis of Figures 17–20:
(1) Dynamic strain responses monitored, except for DSS-10, are less than the calculated
results, including the dynamic strains of other measuring points not listed in this paper;
(2) The maximum monitoring value of DSS-10 is 0.76 με, which is slightly larger than the
calculated result of 0.46 με. Considering the influence of a tower crane near the measured
support point, the larger monitoring value may be acceptable; (3) The maximum dynamic
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strain of measuring points is 1.4 με, which accounts for about 1% of the static strain of
146.44 με of steel assembly bracing under a high temperature of 50.6 ◦C. The sum of the
stress caused by temperature rise and the maximum stress caused by vibration is 30.46 MPa,
which is larger than that of the first (initial pre-axial force P01 = 3200 kN, compressive
stress 18.22 MPa) and the second (initial pre-axial force P01 = 8000 kN, compressive stress
22.78 MPa) bracing initial prestress of T01 and less than the yield strength of steel.
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Figure 17. Comparison of dynamic strain between measurement and simulation results of DSS-06.
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Figure 18. Comparison of dynamic strain between measurement and simulation results of DSS-10.
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Figure 19. Comparison of dynamic strain between measurement and simulation results of DSS-12.
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Figure 20. Comparison of dynamic strain between measurement and simulation results of DSS-14.
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3.2. Acceleration of the Steel Assembly Bracing

Figure 21 shows the vertical calculated acceleration response and monitored accel-
eration response of measuring point 3AS-02 on steel assembly bracing. The acceleration
response is less than the calculated results. It should be noted that the vertical vibration of
T01 steel assembly bracing causes complaints from on-site construction technicians, which
can be clearly felt during the construction. In order to understand the influence of the
vibration of steel assembly bracing on the walking comfort of technicians, according to
ISO 2631-1:1997, the vertical frequency-weighted vibration acceleration is calculated as
aw = 79.30 dB for Figure 21. Obviously, the vertical frequency weighted acceleration aw is
really large and it is reasonable for technicians to complain about the insecurity of bracing
vibration [24].
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Figure 21. Comparison of vertical acceleration between measurement and simulation results of 3AS-02.

4. Conclusions

As a new type of bracing system for the construction of deep, large foundation
pits, steel assembly bracing has been gradually applied in the civil engineering field.
In this paper, the effects of vibration and temperature of the construction site on steel
assembly bracing of the foundation pit is studied by virtue of the safety real-time monitoring
system and FEM technology based on an engineering case. The following conclusions can
be drawn:

(1) The influence of environmental temperature on steel assembly bracing is significant
and cannot be ignored. The axial compressive stress of bracing caused by environmental
temperature even exceeds the prestress. Under the most unfavorable conditions, the stress
caused is less than the yield strength of material Q355b, and hence the steel assembly
bracing is in a safe state.

(2) The steel assembly bracing is made up of hundreds of H-beams of different spec-
ifications connected by high-strength bolts, and the bolt joints are easy to loosen due to
construction vibration. Therefore, the working state of key joints of the steel assembly
bracing should be checked regularly during construction. Meanwhile, the steel assembly
bracing is under axial compression, and the out-of-plane vertical deformation has great
influence on its stability. Accordingly, it is necessary to regularly monitor the out-of-plane
deformation of brace.

(3) The vertical frequency-weighted vibration acceleration aw is an important indicator
to reflect the comfort related with vibration. In this engineering case, this value of the
steel assembly bracing aw = 79.30 dB, which is large. The reality is that on-site techni-
cians complained about the insecurity of bracing vibration which is consistent with our
theoretical analysis.

(4) The safety real-time monitoring system can be used as an effective way to analyze
the steel assembly bracing under complex working conditions. The results of the paper
can provide guidance for the systematic design and further application of steel assembly
bracing in engineering.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/buildings13020450/s1, Figures S1–S11 about Dynamic strain
comparison between simulation and monitoring of DSS-01 to DSS-16.
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Abstract: The creation of building information models requires acquiring real building conditions.
The generation of a three-dimensional (3D) model from 3D point clouds involves classification,
outline extraction, and boundary regularization for semantic segmentation. The number of 3D
point clouds generated using close-range images is smaller and tends to be unevenly distributed,
which is not conducive to automated modeling processing. In this paper, we propose an efficient
solution for the semantic segmentation of indoor point clouds from close-range images. A 3D deep
learning framework that achieves better results is further proposed. A dynamic graph convolutional
neural network (DGCNN) 3D deep learning method is used in this study. This method was selected
to learn point cloud semantic features. Moreover, more efficient operations can be designed to
build a module for extracting point cloud features such that the problem of inadequate beam and
column classification can be resolved. First, DGCNN is applied to learn and classify the indoor point
cloud into five categories: columns, beams, walls, floors, and ceilings. Then, the proposed semantic
segmentation and modeling method is utilized to obtain the geometric parameters of each object
to be integrated into building information modeling software. The experimental results show that
the overall accuracy rates of the three experimental sections of Area_1 in the Stanford 3D semantic
dataset test results are 86.9%, 97.4%, and 92.5%. The segmentation accuracy of corridor 2F in a civil
engineering building is 94.2%. In comparing the length with the actual on-site measurement, the root
mean square error is found to be ±0.03 m. The proposed method is demonstrated to be capable of
automatic semantic segmentation from 3D point clouds with indoor close-range images.

Keywords: building information model; 3D point cloud; semantic segmentation; deep learning

1. Introduction

With the rapid development of laser scanners and digital images in recent years, spatial
three-dimensional (3D) point cloud data have been widely used in many fields. Point clouds
are convenient for spatial measurements and can show object shapes. However, point
clouds only have 3D coordinates and color information; moreover, they do not contain
attribute information. Extraction of accuracy objects from a 3D point cloud is a challenge [1].
Therefore, this issue is currently a hot research topic [2–4]. The main purpose of this study
is to expand the application of point clouds through 3D point cloud classification and
segmentation technology. The 3D information of point clouds can be widely applied to
different fields for the visual display and management of engineering information.

With the recent development of laser technology and digital photogrammetry, the
real appearance of an object can be restored through a 3D point cloud model. Point
clouds are easy to visualize; they are simply point clusters without attribute information.
Consequently, designers find them difficult to use in drawings. If the point cloud can be
segmented, errors in drawings can be reduced [5]. Moreover, point cloud attributes can
enable semi-automatic or fully automatic modeling.
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The early development of artificial intelligence in the field of computer vision was
intended for the classification, detection, and semantic segmentation of two-dimensional
(2D) images. The advances in deep learning have indirectly promoted the development
of the field of combining deep neural networks with 3D information [1]. With 3D point
clouds, supervised learning or unsupervised methods can be used for feature learning
so that the neural network can recognize geometric shapes. Because point clouds do not
contain attribute information, the attributes of an object can be obtained from a segmented
point cloud. Then, the rules of 3D modeling can be formulated, enabling the use of point
clouds in automatic modeling.

In recent years, the development of deep learning networks has been effective in the
semantic segmentation processing of 3D point clouds [4,6–8]. Using the segmentation
results, the point cloud can be assigned to a corresponding object label. Accordingly, this
study uses a deep learning network to segment 3D point clouds, improving the efficiency
and accuracy of artificial segmentation.

This research aims to segment the 3D point cloud of an indoor space using a deep
learning network, develop a set of point cloud feature extraction procedures, and complete
the automatic modeling of parametric components [9–12]. The dynamic graph convolu-
tional neural network (DGCNN) proposed by Wang et al. (2018) was used to perform
indoor point cloud segmentation [13]. After segmentation, feature extraction technology
is applied to derive the endpoints of components. Finally, the endpoint coordinates are
imported into the automatic modeling rules to generate parametric components. To ensure
the correctness of model reconstruction, the difference between a model and an object
(i.e., between a 3D model and a real 3D housing condition, respectively) is evaluated.

This paper presents a framework for automated building component recognition based
on close-range images. The proposed approach consists of three main steps: (1) grouping
3D point clouds into five categories using a deep learning classification model; (2) extracting
outlines from the five categories of building structure point clouds; and (3) identifying
boundary regulation and parametric components. The reason for choosing “columns,
beams, walls, ceilings, and floors” as the segmentation target is that these five types of data
represent the basic structure and layout of the house that cannot be easily changed, and
the simple geometry is also conducive to feature extraction and automatic modeling. The
proposed method automatically reconstructs the complete geometry of columns, beams,
walls, ceilings, and floors from 3D point clouds using close-range images. Moreover, the
material properties of components are included, thus allowing the generation of building
information models (BIMs). The proposed approach is then field-validated using an actual
building on campus.

2. Related Work

With the development of laser scanner technology and digital photogrammetry in
recent years, 3D point cloud models are typically employed to represent the surfaces of
objects. Point clouds have spatial coordinates that provide measurement information. In
addition, a colored point cloud can be used as a basis for browsing the housing environment
and querying the relative positions of components.

The generation of 3D graphs from 3D point clouds of indoor spaces is a current
research focus. The early method for this purpose was to construct a point cloud into 3D
elements using artificial methods [2,14,15]. For example, based on the geometric shape and
edge features of the point cloud distribution, the centerline of the object, the boundary of
the structure, and other details are used to build a model. However, after 3D reconstruction,
the point cloud becomes non-attribute data. If the 3D point cloud can be effectively
segmented and provided with attribute data, the results can aid in the development of
automatic modeling. Accordingly, 3D point cloud segmentation has become an important
research topic [3,14,16,17]. There are some review-type articles that organize and analyze
the progress of relevant research [1,14,15,18].
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2.1. Three-Dimensional Point Cloud Classification

A point cloud does not contain geometric information. In contrast, a segmented point
cloud contains attribute data to which the rules of 3D modeling can be applied. Hence,
point clouds can benefit from automatic modeling.

The current research on 3D data combined with deep learning can be broadly classified
into categories, such as RGB-D (red–green–blue depth), volumetric approach, multiview
convolutional neural network (CNN), and unordered point set processing [1]. The first
three data items are regularly structured data with clear connection information; they yield
acceptable results in both object detection and segmentation. However, with automated
processing, the direct processing of an out-of-sequence point cloud to achieve point-to-point
classification, part segmentation, or semantic segmentation can be implemented. Moreover,
the use of a voxel grid or other conversion methods to reduce the risk of potential loss of
3D point cloud data during the conversion process is not necessary.

In recent years, the classification and segmentation technology of point clouds for 3D
processing has been investigated [6,19–23]. In 2017, Qi et al. proposed the PointNet method
for 3D point cloud processing based on deep learning. The overall semantic segmentation
accuracy of the indoor scene point cloud in the mixed test of the S3DIS dataset can reach
78.5% [24].

By ignoring related details on geometry among the points, some local features are lost.
After discovering this problem, Qi et al. proposed an improved method. In the improved
version, i.e., PointNet++, a 2D CNN processing mechanism is added to the original archi-
tecture of the method. The overall semantic segmentation accuracy of PointNet++ in the
S3DIS dataset hybrid test is 81.0% [25].

To improve segmentation accuracy, Wang et al. proposed the DGCNN method in
2019 [13]. In addition to obtaining local features, the feature information of the overall
scene can be extracted through repeated stacking. The overall accuracy of the point cloud
semantic segmentation in indoor scenes reached 84.1%.

Presently, the development of deep learning in the field of computer vision has shifted
from a mature 2D platform to 3D space. Since Qi et al. proposed PointNet, breakthroughs
have been made in object classification and semantic segmentation applied to 3D point
clouds by learning their features [24].

With the introduction of DGCNN, more accurate semantic segmentation of indoor
scenes can be achieved. In this study, after referring to relevant research on 3D point
clouds [14], the DGCNN with improved performance and a simple operational process is
selected for testing.

2.2. Semantic Segmentation and Modeling

A 3D point cloud can be provided with attribute data after semantic segmentation
using a deep neural network; for example, certain points can represent columns. For 3D
modeling, a 3D point cloud with attributes can be used to extract the feature information of
a corresponding target using a feature extraction algorithm [26–29].

The study focuses on columns, beams, walls, ceilings, and floors in interior space.
These objects have clear corners, edges, and other characteristic information in the expres-
sion of geometric shapes.

In general, the procedure for generating a building footprint involves three steps using
point cloud data: (1) segmentation; (2) extraction of building outlines; and (3) regularization
or generalization of boundaries. The first step classifies the points of the building from a
point cloud dataset. The second step involves the extraction of building boundaries and
the generation of a preliminary polygon. Finally, the third step involves the adjustment of
the generated boundary and the retrieval of simple and regular polygons [27,30].

According to Awrangjeb (2016), the methods for extracting building outlines can be
divided into two types: direct and indirect [30]. Direct methods extract building outlines
based on the points. However, these methods are sensitive to the selection of parameters
(such as neighborhood radius) and are easily affected by noise in point cloud data.
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The indirect method uses image processing technology to extract edge features
from 2D images and then matches them to point cloud data to extract 3D edge features.
Wang et al. (2013) pointed out that this method includes detecting 2D edge information
from a 2D image corresponding to the point cloud [31]. The image depth is generated
from the point cloud, and then it is matched with the original 3D point cloud data. Finally,
multiple groups of edge points are merged and used as detected 3D point cloud edges.

When edge features are extracted using the indirect method, spatial information
can easily be lost during dimension conversion; thus, 3D edge feature information may
be missed. In addition, the actual semantic segmentation results may be less than the
number of point clouds before processing due to the parameter setting of deep learning
in the point cloud sampling process. Accordingly, this study adopts the direct method for
feature extraction.

The direct method extracts edge information directly from a 3D point cloud. For
example, Borges (2010) first divided the point cloud and then detected the intersection of
the segmentation surface and depth discontinuity edge [32]. In addition, Sampath and Shan
(2007) proposed the use of a convex hull algorithm to establish the plane point information
of a roof [33]. Then, the same algorithm is used to obtain the edge lines and finally perform
boundary regularization.

3. Methodology

The main processing step in this study is to automatically generate the parametric
components of BIM from the close-range images. A series of processes in this study can be
referred to in Figure 1.

Figure 1. The overall process of the proposed method in this study.

3.1. Three-Dimensional Point Cloud Classification
3.1.1. Sample Data

A 3D point cloud can be applied to surveying and mapping, unmanned driving,
robotics, reverse engineering, and other fields. This is because it has visualization char-
acteristics, and each point contains coordinate information. In addition to the complete
and accurate preservation of the actual size of a target object, 3D point clouds present the
characteristics of irregular surface changes and image space information. To understand
the current geometric environment, the construction plans can be immediately viewed,
improved, and modified. Accurate measurements of indoor spaces can also be obtained.

Several methods for obtaining 3D indoor point clouds are available, including laser
scanning and close-range photogrammetry. The point cloud properties obtained using these
methods vary. After a point cloud is obtained, determining how to classify it is typically
required to obtain useful information. Therefore, point cloud segmentation technology is
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necessary for many applications. Consider BIMs in civil engineering as an example. To
facilitate the subsequent surface reconstruction and boundary extraction, the segmentation
of the different surfaces of building components is necessary.

In the 3D point clouds of existing buildings, multiple attribute categories are typically
present. For example, these categories are found in the 3D point clouds of columns, beams,
walls, and panels of structures, pipelines, lamps, desks, and firefighting appliances for
non-structural objects. However, existing point cloud segmentation algorithms are mainly
intended for specific shapes. For spatial regions with complex environments, manually
preprocessing the point cloud first before using segmentation algorithms may be necessary.

Accordingly, this study attempts to use the DGCNN with a deep neural network to ap-
ply semantic segmentation to 3D point clouds and maintain the neighborhood relationship
among point clouds through edge convolution. Consequently, the semantic segmentation
of 3D point clouds of columns, beams, walls, ceilings, and floors can be achieved.

1. S3DIS Dataset

The deep learning process typically relies on numerous samples for training and
requires relevant benchmark data to evaluate the prediction results of deep neural networks.
The S3DIS dataset (more completely described as the Stanford large-scale 3D indoor space
dataset) is used in this study. The dataset is built by capturing RGB-D images with a
Matterport camera to create a grid and then generating an indoor point cloud through grid
sampling. This dataset has approximately 700 million point clouds, and ground truth has
also been established [11]. We use five types of samples from the S3DIS dataset, such as
columns, beams, walls, floors, and ceilings, to increase the number of training samples to
obtain better overall accuracy and to verify our training results.

2. Close-range Images

The main point cloud acquisition methods can be classified into two categories: laser
scanning and close-range photogrammetry methods. Close-range photogrammetry has the
advantage of capturing images from multiple perspectives using a general, non-measuring
digital camera or mobile phone. It can also produce point clouds through SFM technol-
ogy, significantly reducing the production time of 3D point clouds and improving the
convenience of point cloud acquisition.

Because close-range photogrammetry is characterized by low cost, high mobility, and
high precision, it can obtain an indoor 3D point cloud in a more economical, convenient,
and reliable manner.

In view of the foregoing, this study adopts close-range photogrammetry to capture
indoor images and SFM technology to produce 3D point clouds. SFM technology can
produce high-precision 3D point clouds quickly and massively. It is a common technology
for generating 3D point clouds from close-range photogrammetry images [34,35]. The
precision of the 3D point cloud is within ±6 cm for the control point and ±3 cm for the
check point. Consequently, 3D point clouds with sufficient precision and quantity can be
generated as deep learning samples.

3.1.2. Sample Training

In this study, the DGCNN is employed to classify 3D point clouds for training using
supervised learning. Therefore, to evaluate the correctness of the training results, ground
truth samples are required. The ground truth samples in this experiment include those of
columns, beams, walls, floors, and ceilings. In the S3DIS dataset, indoor 3D point cloud
data are established to complete the ground truth samples for each category. Hence, the
ground truth data of close-range images are generated by artificially segmenting the 3D
point cloud to train the discriminative parameters of the deep learning model. By manually
segmenting the point clouds with this accuracy, we can ensure the accuracy of the ground
truth data.
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3.2. Semantic Segmentation and Modeling

Each point can be assigned a corresponding attribute value using the trained model to
segment the 3D point cloud. For example, the semantic segmentation result of a certain
point in space is “column” or “beam.” However, only the segmented point cloud can
achieve the purpose of automatically creating 3D model components.

To achieve automatic modeling, the segmentation result must be preprocessed. The
features in the 3D point cloud must be extracted, and the extraction rules must be estab-
lished to convert the point cloud with attributes into model components. This section
describes the feature extraction and automatic modeling rules. After automatic processing,
the point cloud results can be automatically converted into parametric components.

Sampath and Shan (2007) reported that in their study of the normalized edge results
of roof edge extraction, the object model had distinct endpoint features [33]. If the endpoint
coordinates can be effectively extracted, they can be used in formulating the size of the
parameterized element. Endpoint coordinates can also be based on the defined 3D coor-
dinates where the components are to be placed. To extract endpoint coordinates from the
segmented point cloud, data preprocessing must be performed. Without preprocessing,
false edges and connection problems can occur because point clouds typically contain noise,
errors, and edge irregularities.

In addition, previous related research shows that columns and beams are not consis-
tently considered when classifying 3D point clouds; nevertheless, in such cases, classifi-
cation is extremely inadequate. After the analysis, the column and beam characteristics
are as follows: (1) The point clouds are few, small in size, and difficult to classify. (2) The
columns and beams overlap with other structural components of the building. To resolve
this problem, this study focuses on the characteristics of columns and beams. The following
processing is proposed. (1) First, each category is extracted from the results of DGCNN
classification. (2) The point cloud is classified because the columns and beams overlap with
other categories; thus, the components are simplified. (3) Outlier points are removed. The
characteristics of a category are used to remove incorrect points, avoiding the lines and
results of the model. (4) Feature extraction is performed on the point cloud of the confirmed
category to extract the outlines of the model. (5) The appearance of the previous model is
integrated, and the correct model components are built.

3.2.1. Category Extraction

The 3D point cloud processed by the DGCNN is divided into five categories, which
can be extracted separately; colors are assigned to indicate different categories.

This study considers five types of data: “columns,” “beams,” “walls,” “floors,” and
“ceilings.” These categories can be distinguished by RGB colors: columns are pink, beams
are yellow, walls are light blue, floors are dark blue, and ceilings are green.

The semantic segmentation results have RGB band values; therefore, they are used as
classification indicator references. The results are shown in Figure 2.

Figure 2. (a) Classification results for each category (from left to right: column, beam, wall, floor,
ceiling). (b) Combination of all classification results.

3.2.2. Labeled Category

In the classified data, “column” and “beam” are repeatedly found in the same space
with other categories. These data must first be divided and processed into a single point
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cloud component, which is beneficial for subsequent feature extraction and component
construction. This study adopts the minimum distance segmentation method in Euclidean
space for division. After analyzing the actual building, the minimum segmentation distance
for the columns and beams was determined to be 60 cm. After checking the minimum
distance, effectively preserving the point clouds of beams and columns was found to
be possible.

3.2.3. Removal of Outliers

The overall accuracy rates of segmenting beams and columns are low. This may cause
the subsequent automatic modeling of components to be inconsistent with the current
situation. To solve this problem, this study refers to the method of Torr and Zisseee [36].
The use of building structure characteristics to filter out erroneous point clouds is proposed,
and boundary errors are avoided. Three factors are considered: (1) point-to-plane distance;
(2) plane normal vector; and (3) maximum angular distance, which uses the range interval
and the directionality of the point cloud to remove the erroneous point cloud. The method
first identifies the farthest point. Then, this point is used as the center to find the point
cloud within a certain radius. This point is evaluated using the maximum and minimum
values of the plane coordinates of the point cloud within the radius. Error points are
filtered out.

In the category of beams and columns that are difficult to classify, a method for
direction evaluation is added to filter out erroneous points and thus improve the accuracy
of beam and column models. After this preliminary filtering of error points, the outline of
the component becomes visible. However, if the coordinates of the maximum endpoint
value of the point cloud are used directly as a component range, the appearance of the
model may differ from the real situation.

Therefore, in extracting the boundaries of elements such as columns and beams in
this study, the vertical axis (Z axis) is used as the normal vector for the column, and the
horizontal axes (X and Y) are used as normal vectors for the beam element. Then, the
erroneous points of the 3D point cloud with the maximum angle are removed. This method
considers the allowable value of the angle between the point cloud and the normal vector.
The point cloud within the allowable range is retained; otherwise, it is eliminated.

3.2.4. Feature Extraction

The endpoint of the component must be extracted from the cross-section of the point
cloud. If the cross-sectional information of a certain plane is directly obtained, it can readily
result in insufficient information (Figure 3a). To resolve this, the method used in this
research projects the segmented point cloud data to the minimum value of the reference
direction according to the three axes (XYZ). The planarized point cloud has dense point
clouds (Figure 3b).

Figure 3. (a) 3D point clouds are projected onto a certain section; point clouds are few. (b) Planarized
point cloud from proposed method has dense point clouds.
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An endpoint feature extraction process can then be performed. The planarization
results in the three dimensions of XYZ are considered separately during the extraction
operation. The coordinate values of components in three dimensions are extracted to
achieve feature extraction.

3.2.5. Three-Dimensional Modeling

After completing the point cloud feature extraction, the attribute information can be
used for the automatic modeling rules [17,18,37]. In the BIM operating platform, this study
uses the Revit software produced by Autodesk for overall modeling display, component
information viewing, conflict analysis, and other functional purposes. Design using Dy-
namo (a visual plug-in program for Revit) in the automatic modeling stage is implemented.
Automatic modeling processes five parts: column, beam, wall, floor, and ceiling. Because
the research objects are mainly preset components in the parameter library of Revit, several
preset family types are directly selected as the modeling types in this study.

4. Experiments and Analyses

4.1. Test Area: Civil Engineering Building

The preliminary planning of the experimental area considered different indoor spaces
as research targets; control points were set indoors; and coordinates were obtained for scale
constraints and precision analysis. The number of training samples was increased using
data amplification methods.

Four experimental areas, 2F, 4F, 6F, and the basement of the civil engineering building
of our school, were selected as 3D reconstruction targets (Figure 4). The common charac-
teristics of the four areas are as follows: they have distinct “columns,” “beams,” “walls,”
“ceilings,” and “floors,” and a square layout.

Figure 4. Three-dimensional point cloud results of test area. Four experimental areas, the corridor of
2F, 4F, 6F, and the basement of the civil engineering building.
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4.2. Three-Dimensional Point Cloud Classification

In this study, the DGCNN is used to train and segment the S3DIS dataset and the civil
engineering hall of our school. This section presents the evaluation of the results of using
the S3DIS dataset.

4.2.1. S3DIS Dataset

The S3DIS dataset has six areas: Area1, Area2, Area3, Area4, Area5, and Area6. In this
study, Area2, Area3, Area4, Area5, and Area6 are used as training samples and Area1 is
used as the test area. The data in Area1 include 13 categories of objects, such as tables and
chairs. To explore the internal structure of the building, this study only retains the point
cloud sample data of columns, beams, walls, floors, and ceilings for training and testing.

The parameter setting before training affects the subsequent semantic segmentation
results; therefore, the parameters of the DGCNN model can be adjusted before training.
After training, the training parameters set by S3DIS were as follows: batch size = 3, decay
rate = 0.5, decay step = 300,000, learning rate = 0.001, momentum = 0.9, num point = 4096,
and epoch = 40.

Each iteration of the training process lasted approximately 33 min, and the training
accuracy started to flatten upon reaching 0.96. In the 40th iteration, the training loss rate
was 0.019 and the training accuracy rate was 0.993; overfitting was not observed.

Based on the training results, this study selects the 40th iteration model for the segmen-
tation test of the Area1 indoor area. Three small areas in Area1 were randomly selected for
comparative analysis: Conference_Room2, Office_2, and Office_6; the overall segmentation
accuracy rates are 86.90%, 97.49%, and 92.47%, respectively. Overall accuracy is calculated
as the sum of correctly classified pixels divided by the total number of pixels. Tables 1–3
are the confusion matrices.

Table 1. Conference_Room2 confusion matrix. The overall accuracy is 86.9%.

Conference_Room2
Predicted Class

Beam Ceiling Column Floor Wall %

True Class

beam 8214 287 3806 66.7

ceiling 99 61,073 24 56 99.7

column 276 7 3704 4084 45.9

floor 17 425 47,700 1204 96.7

wall 2627 9476 152 28,801 70.2

% 95.6 95.4 27.2 99.7 75.9 86.9

Table 2. Office_2 confusion matrix. The overall accuracy is 97.5%.

Office2
Predicted Class

Beam Ceiling Column Floor Wall %

True Class

beam 5509 10 28 99.3

ceiling 44 21,155 3 8 99.7

column 22 1179 3 97.9

floor 9 15,211 130 99.1

wall 61 356 1177 3 28,820 94.7

% 98.1 98.2 49.8 100.0 99.4 97.5

177



Buildings 2023, 13, 468

Table 3. Office_6 confusion matrix. The overall accuracy is 92.5%.

Office6
Predicted Class

Beam Ceiling Column Floor Wall %

True Class

beam 4125 2693 130 59.4

ceiling 19 16,823 2 47 99.6

column 1176 5 99.6

floor 14,390 353 97.6

wall 23 97 1235 22 20,300 93.6

% 99.0 85.8 48.7 99.8 97.4 92.5

After analyzing the five structures, the segmentation results of the ceiling, floor, and
wall were all found to be excellent; however, the classification results of the beam and
column were inadequate.

Some wall point clouds were misclassified as columns, and beams were misjudged as
walls and ceilings. The ground truth and segmented results are summarized in Table 4.

Table 4. Categories of ground truth and segmented results for S3DIS dataset.

Ground Truth Segmented Results

Conference _Room2

Office_2

Office_6

4.2.2. Civil Engineering Building

The experimental area of the civil engineering building in our school has four sections:
corridors 2F, 4F, and 6F, and the basement.

The information obtained from corridors 4F and 6F as well as the basement is used as
a training sample, and that from corridor 2F is used as a test sample.

In this study, the data augmentation method is used to increase the number of samples
effectively. The training samples were sequentially divided at 10◦ intervals, and samples
from 10◦ to 90◦ were also added. After adding the samples, the parameters obtained
through training were as follows: batch size = 5, decay rate = 0.5, decay step = 300,000,
learning rate = 0.001, momentum = 0.9, number of points = 4096, epoch = 40, and
dropout = 0.4–0.7. In the training results, determining whether overfitting occurs was
necessary. The tests for loss and accuracy of calculations using the sampling model was per-
formed. No overfitting occurred during the S3DIS sample training, but overfitting started in
round 34 after adding the close-range image sample data. It is assumed that the overfitting
problem occurred because the training sample number of close-range images was small.

In the analysis, the lowest loss and highest accuracy rates occurred in the 33rd iteration;
these were 0.182% and 94.2%, respectively. Subsequently, at the 34th iteration, the loss rate
started to increase and the accuracy rate started to decrease. Accordingly, 0.7 was selected
as the dropout point. The 33rd iteration yielded the best segmentation result after adding
the samples.

The classification test results for the point cloud of corridor 2F are listed in Table 5.
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Table 5. Confusion matrix for corridor 2F. The overall accuracy is 94.2%.

Corridor 2F
Predicted Class

Beam Ceiling Column Floor Wall %

True Class

beam 4642 51 538 818 76.7

ceiling 93 23,378 43 71 99.1

column 8 2 5972 398 93.6

floor 80 41,111 1345 96.6

wall 585 1528 2300 52,205 92.2

% 87.1 93.7 66.9 100 95.2 94.2

In the confusion matrix in Table 4, the production accuracy rates were 99.1%, 93.6%,
96.6%, and 92.2% for the ceiling, column, floor, and wall, respectively. The beam achieved
an accuracy rate of 76.7%. With regard to user accuracy, the beam, ceiling, floor, and wall
reached accuracy rates of 87.1%, 93.7%, 100%, and 95.2%, respectively. The column attained
an accuracy rate of 66.9%. The ground truth data of the point cloud and the visualization
of the segmentation results are summarized in Table 6.

Table 6. Categories of ground truth and segmented results for corridor 2F of civil engineering building.

Ground Truth Segmented Result

Corridor 2F of Civil Engineering Building

Two types of sample data are used in this study: the S3DIS indoor dataset and the self-
constructed point cloud sample of the civil engineering building. In the training process,
owing to the sufficient training samples in S3DIS, the trend graphs of test and training
accuracy rates were parallel; overfitting did not occur. In the 40th iteration of training,
the overall segmentation accuracy rates of Area1_ConferenceRoom2, Area1_Office 2, and
Area1_Office 6 reached 86.90%, 97.49%, and 92.47%, respectively.

However, in the training results of the civil engineering gymnasium, owing to the
small number of original samples, sample training was performed in the form of data
augmentation. The test sample was segmented using the training results of the 33rd
iteration; the overall accuracy was 94.2%. After the analysis, the accuracy of beams and
columns remained low.

4.2.3. Discussion of Classification Results

In the S3DIS dataset, the segmentation results of the ceiling, floor, and wall were all
found to be excellent; however, the classification results of the beam and column were
inadequate. Some wall point clouds were misclassified as columns, and beams were
misjudged as walls and ceilings. The overabundance of these two types of components
was due to the small size and number of point cloud samples; hence, this type of error
was expected.

In the civil engineering building dataset, the segmentation accuracy of columns and
beams is lower than that of walls, floors, and ceilings because of two possible reasons.

1. Number of point clouds

In a single indoor space, the areas of walls, floors, and ceilings are larger than those of
columns and beams. The original sample training results of the hall in the civil engineering
building indicate that the segmentation results of columns and beams are lower than those
of the walls, floors, and ceilings. Segmentation can be improved by increasing the number
of training samples.
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2. Geometric distribution of point cloud

The point cloud data of walls, floors, and ceilings has a flat and wide distribution. In
contrast, the point cloud geometry of columns and beams has a 90◦ corner.

4.3. Semantic Segmentation and Modeling

After completing segmentation, the result of each test area was imported into the fea-
ture extraction operation. Moreover, parametric modeling was performed using automatic
modeling rules.

4.3.1. S3DIS Modeling

In the test sample of S3DIS, three sections of Area_1 were selected for the analysis
of segmentation results: Conference_Room2, Office_2, and Office_6. Feature extraction
and parametric modeling of the three areas were performed sequentially. The modeling
results are shown in Figure 5 to verify the feasibility of the automatic modeling rule design.
To facilitate the visualization of internal modeling, the ceiling is removed, as shown in
Figure 5.

Figure 5. Automatic modeling results of (a) Conference_Room2, (b) Office_2, and (c) Office_6
without ceiling.

4.3.2. 2F Corridor of Civil Engineering Building

After the segmentation of the point cloud in corridor 2F, feature extraction and auto-
matic modeling were performed sequentially. The modeling results are shown in Figure 6.
The ceiling is also removed to visualize the interior.

Figure 6. Automated modeling results of corridor 2F (without ceiling) in civil engineering building.

4.4. Evaluation of 3D Model

As presented in this section, the modeling results of corridor 2F in the civil engineering
building of our school were selected for testing. This is because corridor 2F is more
convenient to measure on site than the other areas. There were two columns, four walls,
two beams, one floor, and a ceiling in the area. This study analyzes the top view and
sectional view, as shown in Figure 7.

To verify whether the modeling result is consistent with the actual length of the
selected area, a total station was used for measuring the points, as shown in Figure 8. The
comparison results are listed in Table 7. The root mean square error (RMSE) of the line
length given by BIM compared with the actual length is ±0.03 m.
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Figure 7. (a) Top view and (b) sectional view of corridor 2F.

Figure 8. Line position map for comparing 3D model and in situ field. The letters A–Q indicate the
location of the points, and the length of the line segment connecting the two points is measured and
compared in this study.

Table 7. Three-dimensional model and actual line length difference (unit: m).

Line Model Length Actual Length Difference Line Model Length Actual Length Difference

AB 0.094 0.09 0.004 BD 0.259 0.232 −0.027

BC 1.715 1.721 −0.006 EF 0.286 0.269 0.017

DE 1.715 1.721 −0.006 HJ 0.347 0.321 0.026

FG 0.337 0.322 0.015 IK 0.347 0.324 0.023

HI 2.032 2.05 −0.018 GI 4.671 4.643 0.028

JK 2.032 2.052 −0.02 NM 0.360 0.304 0.056

LM 1.778 1.784 −0.006 KO 4.631 4.716 −0.085

NO 0.334 0.325 0.009 FP 0.749 0.781 −0.032

AL 10.598 10.609 0.011 FQ 3.455 3.430 0.025

The feature extraction process developed in this study derives the features of endpoints
from the point cloud segmentation results. Then, the parametric elements of columns,
beams, walls, floors, and ceilings were automatically modeled based on the attribute in-
formation. The experimental results indicate that Area1_ConferenceRoom2, Area1_Office
2, Area1_Office 6 of S3DIS, and corridor 2F in the civil engineering building can be used
to create the 3D model data of indoor components automatically. Each component has
attribute information, such as material, length, volume, and quantity. The overall pro-
cess not only reduces the time cost of manual model construction but also serves as
follow-up application management. It is a rapid BIM method for reconstructing existing
indoor spaces.

In comparing the actual length (obtained by inspection) of corridor 2F with the indoor
measurement yielded by automatic modeling, the RMSE is found to be ±0.03 m; hence, the
accuracy is acceptable.
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5. Conclusions and Future Work

In this study, a DGCNN was used to learn indoor 3D point cloud features. Five
items, i.e., columns, beams, walls, floors, and ceilings, were considered the research objects.
Training and learning were conducted using two different sources of point cloud data:
S3DIS and photogrammetry. Area_1 data in the S3DIS dataset and those of corridor 2F in
the civil engineering building were used as test samples for segmentation.

The endpoint feature extraction program developed in this study was applied to
process the segmented results. Other details, such as endpoint coordinates, quantity, and
length of the research object, are derived. Finally, feature information is imported into an
automatic modeling program for parametric element modeling.

This study uses a DGCNN to learn the features of indoor point clouds and segment
the point clouds of columns, beams, walls, floors, and ceilings automatically. The overall
accuracies using the S3DIS indoor dataset and civil engineering building information were
86.9% and 94.2%, respectively.

An endpoint feature extraction method that overcomes the errors caused by irregular
line segments is proposed in this paper. In addition, for columns and beams with low
semantic segmentation accuracy, a range processing method is devised to reduce semantic
segmentation errors.

The method can be employed to calculate the number of components, boundary length
and size, and relative information from the extracted endpoint. In comparing the inspected
size of corridor 2F in the civil engineering building with the measurement yielded by
automatic modeling, the RMSE is found to be approximately ±0.03 m. Because the point
clouds are constrained by control points, the model is similar to the building.

The results of this study demonstrate that indoor 3D point clouds produced by close-
range images can be segmented using a trained 3D deep learning network. The automatic
feature point extraction method proposed in this study is employed to derive the feature
point information of components. Using this information, the point cloud can be imported
into an automatic modeling system to generate BIM parametric components and create
indoor drawings.

There are a lot of objects in the room, and this study only sets out to study and
discuss five categories of structural objects. In the future, we intend to increase the
number of samples, increase the types of objects, reduce the noise, and explore ways to
improve accuracy.
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Abstract: The rapid accumulation of highway infrastructure data and their widespread reuse in
decision-making poses data quality issues. To address the data quality issue, it is necessary to
comprehend data quality, followed by approaches for enhancing data quality and decision-making
based on data quality information. This research aimed to identify the critical data quality dimensions
that affect the decision-making process of highway projects. Firstly, a state-of-the-art review of data
quality frameworks applied in various fields was conducted to identify suitable frameworks for
highway infrastructure data. Data quality dimensions of the semiotic framework were identified
from the literature, and an interview was conducted with the highway infrastructure stakeholders to
finalise the data quality dimension. Then, a questionnaire survey identified the critical data quality
dimensions for decision-making. Along with the critical dimensions, their level of importance was
also identified at each highway infrastructure project’s decision-making levels. The semiotic data
quality framework provided a theoretical foundation for developing data quality dimensions to
assess subjective data quality. Further research is required to find effective ways to assess current
data quality satisfaction at the decision-making levels.

Keywords: highway data quality assessment; data quality dimensions; semiotic framework; decision-
making

1. Introduction

Highway agencies devote significant resources to collecting, storing, and maintaining
many forms of data, ranging from preliminary survey data to pavement condition data,
throughout the life cycle of a highway project. For instance, the National Highway Au-
thority of India launched Data Lake, a project monitoring tool to track and monitor the
progress of projects and to act as the central repository of documents across the project life
cycle [1]. According to the FMI’s (2019) report titled “Big Data Equals Big Questions for
the Engineering and Construction Industry,” some of the most significant infrastructure
projects require an average of 130 million emails, 55 million documents, and 12 million
workflows. At the same time, 95.5% of all data collected in the engineering and construction
industry is unutilised because many firms cannot manage and process vast amounts of
data for decision-making [2]. According to a 2018 industry report titled “Construction
Disconnected” by FMI, 48% of all reworks in infrastructure projects in the United States
are caused by poor data and miscommunication, resulting in an annual cost of over USD
31.3 billion. Globally, an average of 52% of rework was caused by poor data and commu-
nication, amounting to USD 280 billion. The primary cause of poor data and information
was that 34.4 percent of reworks were caused by incorrect project data, meaning it was
out-of-date or otherwise flawed data, while 28.8 percent of reworks were caused by diffi-
culty gaining access to necessary project data [3]. Despite the significant investment, data
utilisation to users’ needs for extracting information, knowledge, and support decisions
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has become debatable [4]. Data collection is becoming an increasingly significant asset for
today’s highway arena within highway management and operation. Several systems and
technologies have created significant infrastructure data in recent years [5].

Data have been widely used to manage system operations and provide information
on highway conditions. However, public and private users discovered that utilising and
operating the data is becoming increasingly complex. Data are collected with varying
degrees of precision and resolution, and data formats are often incompatible [6].

Technological advancements in data collection result in the real-time monitoring
of data and a massive volume of data, Such as data collected in the structural health
monitoring of a bridge [7] and data collected during the degradation process of con-
crete material [8]. In addition, the issue intensifies as the volume of data continues to
increase [9–15]. Ghasemaghaei and Calic [16] discussed the role of data quality and di-
agnosticity in the firm’s decision-making, considering the effect of big data processing.
However, there is substantial evidence that data quality issues are pervasive in practice
and that relying on poor or uncertain data results in less effective decision-making. It
also increases the cost of correcting the data in the decision-making process of highway
projects [17,18].

Data quality has been extensively studied in various disciplines for several decades [19]. It
has become a professional field, emphasising organisational strategy and effective decision-
making [20,21]. In addition, data quality is considered a multi-dimensional concept in
the literature [22–24]. In the last two decades, scholars and practitioners have proposed
several classifications of data quality dimensions, many of which have overlapping and
occasionally contradictory meanings concerning respective disciplines (e.g., [14,24–26]).
Despite the different classifications, few investigations have attempted to integrate these
perspectives of data quality dimensions to assess the quality of highway data for effec-
tive decision-making. For instance, Coleman [27] gave an insightful examination of the
various current classifications of data quality dimensions and identified sixteen mutually
incompatible dimensions.

Although numerous studies have found the significance of data quality for decision-
making based on various frameworks and methodologies, not much focus has been given
to assessing data quality at different decision-making levels of highway projects [5,28,29].
Samitsch et al. [30] provided a guide for companies seeking to improve organisational per-
formance by improving data quality, with a combination of 16 dimensions. Addressing this
issue necessitates a method for comprehending data quality, followed by methods for en-
hancing data quality and decision-making based on data quality information. This research
proposes a semiotic-based framework for comprehending highway infrastructure data
quality, consisting of four levels: syntactic (form), empiric (connection), semantic (meaning),
and pragmatic (use) [29]. The semiotic-based framework assesses and understands data
quality based on the semiotic theory’s application. Semiotic theory concerns using signs
and symbols to convey data, information, and meaning [31]. A review of data quality
frameworks applied in various fields was also carried out. Such as the semiotics frame-
work, AIMQ methodology, data quality assessment (DQA), the observe-orient-decide-act
methodology (OODA DQ), and the Canadian Institute for health information methodology
(CIHI) framework are used in the healthcare industry for data quality assessment [32–36],
while the total data quality management (TDQM) framework, comprehensive methodology
for data quality management (CDQ), data quality practical approach (DQPA), task-based
data quality method (TBDQ), and data quality assignment framework (DQAF) are used
in the IT industry to deliver high-quality information products (IP) to information con-
sumers [9,37–41]. A DQMos model and DQMes methodology are used for evaluating data
quality in software engineering experiments data [42]. A questionnaire survey identified
the critical data quality dimensions of the proposed semiotic framework levels from the
National Highway stakeholders for decision-making. The survey helps the National high-
way stakeholders understand the parameters or dimensions of data quality to assess the
quality of data stored in the data lake. The study investigated identifying the framework for
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analysing data quality and determining the appropriate framework for assessing highway
infrastructure data. Currently, there are no specialised studies of data quality dimensions
for evaluating highway infrastructure data.

A literature review was conducted first for the study, followed by identifying data
quality frameworks. The second step identified data quality dimensions within the four lev-
els of the semiotic data quality framework. In the third step, an interview and questionnaire
were conducted in two stages. Initially, an interview survey was undertaken to develop a
list of data quality characteristics that reflect the opinions of data consumers regarding data
quality. For the second stage, a questionnaire was developed from the identified dimensions
through an interview study. The questionnaire survey was conducted to gather information
on the importance of each of these dimensions to data consumers at the individual level of
decision-making, followed by a ranking of the dimensions within the categories of semiotic
frameworks to comprehend stakeholders’ priorities for each characteristic data quality.

The paper is structured as follows: The next section focuses on the literature review
of frameworks and data quality dimensions and identifies the most effective framework
for evaluating highway infrastructure data. The subsequent section addresses the research
methodology, the findings, and an analysis of the findings. Finally, conclusions and future
work scope are presented.

2. Objectives

The study’s main objective was to investigate highway infrastructure data quality
dimensions and the framework for assessing data quality. According to the 2018 FMI report,
the cost of reworks caused by poor data quality and accessibility of data in the United
States was USD 31.3 billion, while in Australia and New Zealand, it was USD 8.4 billion,
and in the United Kingdom, it was USD 10.2 billion [3]. The literature shows that poor
data quality negatively impacts the time and cost to make a decision and decision-making
performance in the highway infrastructure project lifecycle. Hence, assessing data quality
is critical for organisations and creates importance for identifying the dimensions to define
data quality. The objective of the study was divided into three key research objectives
as follows:

• To establish the data quality dimensions necessary for determining the data quality of
highway infrastructure data to facilitate effective decision-making.

• To determine the importance of data quality dimensions at each level of decision-making.
• To determine the priority of dimensions within the semiotic framework categories.

3. Literature Review

3.1. Data and Data Quality

Before going to the concept of data quality dimensions, let us review the first-order
questions that arise from the history of the data quality domain. What is data, and what
is data quality? Liebenau and Backhouse [43] defined data as “linguistic, mathematical
or other symbolic representation that is universally accepted to represent people, things,
events, and ideas.” Data represent objects or processes in the actual world in their most
basic form. Thus, while addressing data quality, we may argue that poor data quality
results from an inaccurate depiction of the real world [44]. Abedjan et al. [45] addressed
the tools used for detecting data errors. The study of data quality assessment began in
the 1950s, particularly regarding the quality of products and services. Several researchers
published several definitions, though no universally accepted definition of data quality
exists. Wang and Strong [46] defined data quality as information usable by data consumers,
and Crosby [47] defined it as “conformance to requirements.” The General Administration
of Quality Supervision, 2008, defined data quality as “the degree to which a set of inherent
characteristics fulfil the requirements” [15]. At the same time, Fu and Easton [48] explained
that data quality is commonly referred to as a collection of “characteristics” of data, such
as precision, exhaustiveness, consistency, and timeliness. Most of these characteristics
dictate the various dimensions along which data quality may be represented. A low degree
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of data quality can significantly influence the overall effectiveness of the associated data
applications [49].

3.2. Data Quality Assessment Framework

Researchers define various frameworks and approaches for data quality assessment.
For example, Madnick and Zhu [50], English [51], and Redman [52] explored strategies for
increasing data quality, Batini et al. [53] provided a thorough and comparative description
of data quality techniques for assessing and improving data quality, Gao et al. [54] proposed
a fussing attributes approach for improving uncertain data quality, and Madnick et al. [55]
reviewed current practices and research in the field. The research literature describes
or defines data quality from simple lists of data quality dimensions to comprehensive
frameworks (for example, [24,25,29,56]).

Hassenstein and Vanella [57] presented a data quality encyclopedia for the data life
cycle. It describes the data quality dimensions, the data quality evaluation procedure, and
the data quality context and practices in various fields. At the same time, Gabr et al. [58]
comprehensively defined each traditional and big data quality dimension, metrics, and
handling approach with specific definitions. They examined the metrics and methodologies
used to monitor and manage each dimension and how they are monitored and managed.
The study also examined the most-used data quality dimensions of traditional and large
data sets.

Svetlana [59] presented the findings of an expert survey on data quality concerns to
demonstrate that it is not required to employ all the numerous dimensions of data quality
provided by researchers. However, the essential data quality criteria may be blended for
a particular application. The study equips data users and producers with the knowledge
necessary to effectively address application-specific data quality issues. In addition to the
Svetlana findings, Eliza et al. [60] provided a methodology that allows users to manage data
quality and make decisions based on data quality. It eliminates the requirement to fully
integrate insufficient data by considering the operational context of the user to enhance a
specific element of data quality.

Different approaches from the literature review were summarised to review the well-
known and established frameworks for assessing and improving data quality for different
data types. Table 1 lists fourteen data quality frameworks identified from the literature.

Table 1. Frameworks identified from the literature review.

S. No. Framework Dimensions References

1 TDQM: Total Data
Quality Management

Accuracy, objectivity, believability, reputation, access, security,
relevance, value-added, timeliness, completeness, amount of
data, interpretability, ease of understanding, concise
representation, and consistent representation.

[38]

2 TIQM: Total Information
Quality Management

Definition conformance, completeness, validity, accuracy,
precision, non-duplication, the equivalence of redundant or
distributed data, accessibility, timeliness, contextual clarity,
derivation integrity, usability, usability, and rightness.

[51]

3 COLDQ: Cost-effect of Low
Data Quality

Data model: Clarity of definition, comprehensiveness, flexibility,
robustness, essentialness, attribute granularity, the precision of
domains, homogeneity, naturalness, identifiability, obtainability,
relevance, simplicity, and semantic and structural consistency.
Data values: Accuracy, completeness, consistency, currency, null
values, and timeliness. Information Policy: Accessibility,
metadata, privacy, redundancy, security, and unit cost.
Presentation: Appropriateness, correct interpretation, flexibility,
format precision, portability, consistent representation,
representation of null value, and use of storage.

[61]
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Table 1. Cont.

S. No. Framework Dimensions References

4 AIMQ: A Methodology for
Information Quality Assessment

Accessibility, appropriate amount, believability, completeness,
concise representation, consistent representation, ease of
operation, free-of-error, interpretability, objectivity, relevancy,
reputation, security, timeliness, and understandability.

[34]

5 DQA: Data Quality Assessment

Accessibility, appropriate data, objectivity, believability,
reputation, security, relevancy, value-added, timeliness,
completeness, interpretability, ease of manipulation,
understandability, concise representation, consistent
representation, and free-of-error.

[35]

6 HIQM: Hybrid Information
Quality Management Accuracy, completeness, consistency, and timeliness. [62]

7 CDQ: Comprehensive Methodology
for Data Quality Management

Accuracy, completeness, and currency, Unstructured: Currency,
relevance, and reliability. [63]

8 DQPA: A Data Quality
Assessment Framework

Accuracy, completeness, consistency, timeliness, uniqueness,
and volatility. [39]

9 SPDQM: Square-Aligned Portal
Data Quality Model

Accuracy, traceability, correctness, expiration, completeness,
consistency, accessibility, compliance, confidentiality, efficiency,
precision, and understandability. Availability, accessibility,
verifiability, confidentiality, portability, and recoverability.
Validity, value-added, relevancy, specialisation, usefulness,
efficiency, effectiveness, traceability, compliance, precision,
concise representation, consistent representation, attractiveness,
and readability.

[64]

10
HDQM: A Data Quality
Methodology for
Heterogeneous Data

Accuracy and currency. [65]

11 DQAF: Data Quality
Assessment Framework Completeness, timeliness, validity, consistency, and integrity. [40]

12 TBDQ: Task-Based Data
Quality Method Accuracy, completeness, consistency, and timeliness. [41]

13
OODADQ: The
Observe-Orient-Decide-Act
Methodology

Speed and volume. [36]

14 Semiotic Approach Data
Quality-SESP model

Accuracy, consistency representation, unbiased, accessibility,
up-to-date, traceability, security, believability, interpretability,
ease of manipulation, understandability, completeness,
appropriate amount of information, relevancy, concise
representation, value-added, and reputation.

[32]

According to the analysis of the frameworks listed in Table 1, the data quality dimen-
sions considered by each framework vary considerably. Some data quality dimensions
are recognised by only one framework, whereas specific dimensions appear frequently.
For example, the HDQM and OODADQ frameworks considered only two dimensions for
assessment, while the frameworks DQA and HIQM considered more than four dimensions.
The dimensions varied according to the field of applications and perspective of the applica-
tion, such as the health care industry, information technology, and business management.
For example, let us consider how the accuracy dimension has been used in the HDQM and
HIQM frameworks. In the HDQM framework in the IT industry, dimension accuracy is
defined as the proximity between a value “v” and another value “v.” of the domain D in the
user interface development. This is regarded as the correct representation of the real-world
phenomenon value “v” seeks to represent. At the same time, the HIQM framework in
the business management sector defines accuracy as the value difference between two
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databases containing the same value as the correct representation of the real-world value.
To understand the most critical dimensions applied in the various fields, the frequency of
usage by different data quality dimensions was considered and is shown in Figure 1. Only
dimensions used more than once are considered in the figure. The study of Figure 1 helps
finalise the dimensions from the literature review perspective to be identified in the data
quality in the semiotic framework for assessing highway infrastructure data. The semiotic
approach data quality framework is the most applicable of the 14 frameworks mentioned
above for evaluating highway infrastructure data. The reason for the selection is explained
in the semiotic framework section.

 
Figure 1. Number of frameworks that used specific data quality dimensions.

3.3. Semiotic Framework

Semiotics is the study of signs and symbols used to convey meaning to various users.
Data quality researchers have also adopted the semiotic perspective of data; for instance,
Price and Shanks [29] identified three data quality levels: syntactic, semantic, and pragmatic.
Semiotic theory concerns using symbols to convert knowledge and define levels in the
framework for analysing structure, physical form, meaning, and data usage. A thorough
examination of the various levels of semiotics would reveal that the pragmatic level is
associated with knowledge, the semantic level with information, and only the syntactic
level with data. In other words, the dimensions operating at the pragmatic, semantic, and
syntactic levels pertain to the quality of knowledge, information, and data.

According to Falkenberg et al. [66], data are meaningful symbolic creations consisting
of a limited arrangement of signs and symbols. Thus, the semiotic framework was used
in this study to define data quality dimensions. The semiotic framework consists of four
levels: empiric, syntactic, pragmatic, and semantic. Each level of the semiotic framework
facilitates data quality evaluation from several perspectives, including structure, data,
information, and knowledge for assessing highway infrastructure data for decision-making
at various levels of the highway decision-making hierarchy, for instance, while selecting a
treatment technique for damaged pavement in a highway construction project.

Each decision-making level bases its decisions on the raw data, information, and
knowledge available at that level. The strategic level is the top level of an organisation and
is responsible for strategic planning. This involves making long-term, big-picture decisions
and establishing policies that impact the organisation. For the decision of treatment
technique, the system performance (policymaking) policies are established, requiring
knowledge to make policies. Similarly, at the network level, the fund distribution (planning)
decisions are made, i.e., allocating funds according to project requirements. At the program
level, the decision of pavement evaluation and prioritisation is considered for each project.
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At the project selection level, the project is selected according to the prioritisation made at
the program level, and treatment selection is made at the project level.

Kahn et al. [67] addressed the relationships between semiotic levels, the data-information-
knowledge (DIK) hierarchy, and associated data-quality issues, as shown in Figure 2. The
relationship between semiotic levels and structure, data, information, and knowledge
facilitate the identification of unique data quality issues that may necessitate the application
of specialised skills to resolve. Knoke and Yang [68] claimed that information originates
with data and is transferred to knowledge in the DIK hierarchy. Depending on how
data’s meaning, structure, and operation are communicated at different semiotic levels
of the DIK hierarchy, such transference could increase or decrease data’s meaningfulness,
transferability, and applicability.

 

Figure 2. Semiotic levels and the data-information-knowledge hierarchy, adapted from [32].
2018, Huang.

The empiric level focuses on the quality aspect of data access and the means of
communication. It considers how much and in what way raw data are available for
stakeholders for decision-making. In highway projects, decision-makers at each project
phase, such as preconstruction, construction, and post-construction phases, consider data
availability essential for effective decision-making. At the empirical level, accessibility,
security, and timeliness (currentness) are considered to evaluate the data communication
and access perspective of the raw data stored in the data lake [68]. For example, the
dimension accessibility of highway data could be the availability of real-time traffic data
on a particular highway. If the data are easily accessible through an open data portal such
as a data lake, API, or mobile app, they would have a high level of accessibility. On the
other hand, if the data are only available through a difficult-to-navigate website or requires
complex technical skills, they would have a low level of accessibility.

On the other hand, the syntactic level concentrates on the forms and structure of
data, or, more accurately, their physical form instead of their content. After assessing the
accessibility criteria of raw data, the second crucial limitation for decision-makers is the kind
and format of accessible data. To quantify the structure of raw data stored in a data lake,
the syntactic level considers accuracy, concise presentation, ease of operation, consistency,
integrity, and completeness as data quality dimensions [49]. For instance, the accuracy
dimension in highway infrastructure data could be the precision of the measurements taken
for the width of a particular road lane. Inaccurate measurements could lead to too narrow
lanes, potentially causing safety issues or impeding traffic flow.

The semantic level of data quality is concerned with the meaning of data for informa-
tion generation rather than the data [69]. The decision-makers at the program and project
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selection decision-making levels require information regarding project performance for de-
cisions such as budget allocation and project prioritisation. The dimensions at the semantic
level are credibility, interpretability, and understandability for assessing the interpretation
of data that provides meaning. For example, dimension interpretability refers to the ease
with which stakeholders can understand and use data. In the context of highway data,
interpretability could be the use of visualisations or dashboards that make it easier for
stakeholders to understand complex data sets. This could include interactive maps or
charts that allow users to explore different aspects of highway infrastructure data, such as
traffic volume or accident rates.

The pragmatic level is concerned with the relationship between data, information, and
behaviour in a specific context of decision-making [69]. The generation of knowledge from
the available data and information for making the policies and planning at the strategic
and network levels of decision-making of highway infrastructure projects requires data
utilisation quality. Dimensions of data quality associated with the pragmatic level include
appropriateness, value-addition, reputation, relevancy, and usefulness [68]. Contextual
features of pragmatic concerns are related to dimensions of relevance and utility of data
and information for making decisions. As a dimension, reputation focuses on the user’s
expectations of data utility. The value-addition dimension aims to comprehend the user
intent. These facets concern the data’s compatibility with the challenging job. Related
data quality dimensions are concerned with the intended application, i.e., how data would
be utilised in connection to the current issue [70], for instance, value addition as a data
quality dimension that refers to the extent to which data are valuable and add value to the
organisation or individual stakeholders using it. In the context of highway data, it could
use data analytics and machine learning algorithms to identify patterns and trends in data
that are not immediately apparent. This could help highway agencies to identify areas of
the highway system that require additional investment or maintenance and to prioritise
their efforts accordingly.

Consequently, each semiotic level handles certain data quality and communication
concerns. Understanding the overall data utilisation of highway infrastructure data stored
in the data lake for making decisions at each decision-making level depends on the quality
dimensions of the semiotic levels [32]. Within each semiotic level, it is crucial to identify
the data quality requirements of decision-makers at their respective decision-making levels.
For instance, strategic-level decision-makers focus on the utility of data and information for
making effective policies throughout the organisation. Similarly, the other decision-making
levels also required their specific data quality according to the requirement of decision-
makers. Table 2 shows the data quality dimensions and the perspectives of dimensions
along with the semiotic framework categories.

Applying a semiotic framework can be considered one of the philosophical approaches
to studying data and its quality. In a semiotic framework, a top-down approach involves
starting with high-level concepts or theories and breaking them into their constituent parts
to understand how they work. In terms of the decision-making hierarchy, NHAI also
follows a top-down approach. The higher officials make the authority’s decisions at the
top of the organisational structure and then communicate to the lower-level employees
for implementation. Overall, by using a semiotic framework for data quality assessment,
NHAI can ensure that its decision-making processes are informed by high-quality data
that are relevant, accurate, and consistent. This can help to improve the efficiency and
effectiveness of NHAI’s operations and ensure that its highway and road networks are
developed and maintained to the highest standard. However, the semiotic perspective has
not become popular among researchers and practitioners to date [71]. The present study
uses semiotic categories to describe the highway infrastructure data quality, specifically
to identify the data quality dimensions to assess the data quality for effective decision-
making [29]. Presently, no research has been reported to comprehend the link between
data quality dimensions and highway infrastructure data about the semiotic levels that
represent them.

192



Buildings 2023, 13, 944

Table 2. Data quality (DQ) dimensions and perspectives as per the semiotic framework levels.

Semiotic Levels DQ Dimensions DQ Dimensions Perspective

Empiric = It addresses issues that
arise when data are utilised
repeatedly. This level focuses on
developing means of
communication and data handling.

Accessibility Accessibility implies that data must be accessible, obtainable, or
retrievable when necessary for data to be accessible.

Timeliness Timeliness is concerned with the age of data and whether data are
current. It is achieved if the recorded value is not out of date.

Security As a dimension, security involves securing data and limiting access
to it.

Syntactic = It focuses on the
structures and formats of data. It
deals with the physical form of
data rather than their content.

Accuracy
The accuracy dimension is concerned with the conformity of the
recorded value with the actual value. It implies that data are accurate,
flawless, trustworthy, and error-free.

Completeness
Completeness concerns capturing all values for a specific variable and
preventing data loss. It implies that the data must have adequate
breadth, depth, and scope for the given task.

Conciseness Conciseness is a well-organised, concise, and condensed representation
of data.

Consistency Consistency is achieved when data are represented in the same format,
are compatible with previous data, and are represented consistently.

Ease of operation
Ease of operation implies that data are manipulatable, integrated,
customised, and utilised for multiple purposes. It is similar
to flexibility.

Integrity

Integrity measures correctness and consists of semantic and physical
integrity. Semantic integrity measures consistency and completeness
concerning the rule of the description language. Physical integrity
measures the correctness of implementation details.

Structure Format or structure implies that data are in the correct format
and structure.

Semantic = At the semantic level,
dimensions are connected with
information rather than data.
Information is selected data to
which meaning has been assigned
in a particular context. It is
concerned with meaning.

Ambiguity Ambiguity arises due to improper representation and is when data can
be interpreted in more than one way.

Believability Believability is concerned with whether data can be believed or
regarded as credible.

Interpretability Interpretability means that data should be interpreted; that is, it should
be defined clearly and represented appropriately.

Definition Meaningfulness or definition is concerned with the interpretation of
data. The failure of this dimension results in meaningless data.

Reliability Reliability in terms of concepts drawn from the field of quality control.

Understandability Understandability concerns whether data are clear, readable,
unambiguous, and easily comprehendible.

Validity Data are valid when verified as genuine and satisfying appropriate
standards related to other dimensions.

Pragmatic = It focuses on how
individuals use information. It
concerns the relationship between
data, information, and behaviour
in each context.

Appropriateness Appropriateness as a data quality dimension means that data must be
appropriate to the task at hand.

Relevant
Relevancy is concerned with the applicability of data to the task at
hand. It is a crucial dimension if the data do not address the customer’s
needs and when the customer finds the data inadequate.

Value Value is added as a dimension that addresses the benefits and
advantages of using data.

4. Methodology

In order to meet the research objectives, this study was carried out in three steps. The
first step was to identify the data quality dimensions of highway infrastructure using the
semiotic framework. Most appropriate dimensions that were applicable to the highway
infrastructure project were identified. In the second step, the questionnaire was prepared to
the selected data quality dimensions finalised in step one. The responses were collected for
the questionnaire from the highway infrastructure stakeholders. Finally, the responses were
analysed in the third step to identify the critical dimensions and to rank them according to
their mean value. These steps are described in detail in the following sub-sections.
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Step 1: Identification of data quality dimensions of highway infrastructure data using the
semiotic framework.

The semiotic framework consists of 43 data quality dimensions, as defined by Tejay. G. et al. [72].
These data quality dimensions are defined in the context of information system security.
For the study of highway infrastructure projects’ data quality, the dimensions were reduced
to 20 out of 43 data quality dimensions, according to the relevant literature sources. A
few dimensions have synonyms dimensions, and those were combined and considered a
single dimension. The dimension accessibility, portability, and locatability have a similar
meaning in the context of data quality; thus, we considered accessibility the primary
dimension for assessing data quality. The established data quality dimensions were used
to determine the data quality of highway infrastructure data. The 20 dimensions were
personally reviewed with the three highway stakeholders; one chief general manager from
the headquarters office responsible for network-level decision-making, one regional officer
from the regional office responsible for the program and project selection level decision-
making, and one project director from the project-implementing unit responsible for project-
level decision-making were selected to verify the exhaustiveness/comprehensiveness of
the selected data quality dimensions. Among the professionals, the chief general manager
had more than ten years of experience, the project director had eight years of experience,
and the regional officer had six years of experience in highway construction projects. The
responses were not uniform, and the experience of the stakeholders was considered a
limitation. Hence, all 20 dimensions were considered for the questionnaire survey for a
comprehensive understanding of highway data quality for the effective use of data for
effective decision-making.

Step 2: Data Collection

The questionnaire was designed based on the 20 data quality dimensions identified
in Step 1. The survey targeted the National Highway of India decision-makers who
utilised these data in decision-making. A pilot study was undertaken with 40 responses
to test the language and understanding of the questionnaire. The responses are from the
site engineers, deputy engineers, and managers from the project implementing units and
regional offices. According to the suggestions from the pilot study, some significant changes
were made to the questionnaire to make it more understandable for the stakeholders. The
questionnaire was then shared via google forms with the 220 stakeholders. The stakeholders
included the members, chief general manager, managers, regional officers, deputy general
managers, and project directors. A total of 105 experts participated in the survey, which
is a 48% response rate. The stakeholders with significant experience deal with the critical
decisions from the National Highway Authority of India (NHAI), representing the strategic,
network, program, project selection, and project levels, respectively. The questionnaire
consists of three parts. Part 1 deals with the basic contact details, role, responsibility, and
decision-making level in the decision-making hierarchy. The second part evaluates each
attribute’s importance at each decision-making level for the available data. The third part
deals with ranking the dimensions, which states the priority of dimensions required in
decision-making within the category of the semiotic framework.

A five-point Likert scale of 1 to 5 was used to record the decision-makers’ level of
importance of the data quality attribute. Here, ‘1’ refers to “no importance,” ‘2’ refers to
“low importance,” ‘3’ refers to “somehow important,” ‘4’ refers to “important,” and ‘5’
refers to “high importance” [73].

Step 3: Data Analysis

The data were analysed by using the software package SPSS 25. The analysis was
carried out in two parts. The first part analysed the data’s reliability using Cronbach’s alpha
test. It was found to be 0.875 at a 5% significance level greater than 0.5. Hence, it confirmed
the reliability of the data. The dimensions were ranked according to their mean value to
measure the consensus in the experts’ opinions. However, when the mean values of two or
more dimensions were identical, the dimensions with the lowest standard deviation were
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placed higher [74]. The ranking of the dimensions based on the data collected through the
questionnaire survey is shown in Table 3.

Table 3. Ranking of data quality dimensions.

S. No. Data Quality Dimensions Mean Std. Deviation Rank

1 Accuracy 4.52 0.64 1
2 Accessibility 4.40 0.70 2
3 Completeness 4.36 0.76 3
4 Consistency 4.28 0.67 4
5 Timeliness 4.27 0.68 5
6 Structure 3.90 0.90 6
7 Ambiguity 3.90 0.98 7
8 Integrity 3.83 0.85 8
9 Value 3.72 0.88 9

10 Validity 3.63 1.04 10
11 Reliability 3.58 1.12 11
12 Appropriateness 3.58 1.12 12
13 Relevant 3.58 0.85 13
14 Definition 3.50 0.81 14
15 Interpretability 3.38 0.96 15
16 Understandability 3.38 1.10 16
17 Believability 3.36 1.01 17
18 Ease of Operation 3.35 0.99 18
19 Security 3.35 0.90 19
20 Conciseness 3.29 0.83 20

4.1. Identification of Critical Data Quality Dimensions of Highway Infrastructure Data

The descriptive statistical analysis did not yield a whole number for the mean value of
the responses. Therefore, for the purpose of interpretation, the impact of each dimension
on data quality can be considered to lie between the midpoints of two adjacent scales [75].
The importance of the dimensions about the mean value (μ) greater than or equal to 4.5 was
deemed to have a very high impact on the important data quality dimension. Similarly, the
range of mean values 4.5 > μ≥ 3.5 was treated as having high importance; 3.5 > μ≥ 2.5 was
treated as having moderate importance; 2.5 > μ≥ 1.5 was treated as having low importance;
and mean values less than 1.5 were treated as having very low importance on data quality.
In the study, the key data quality dimensions for assessing highway infrastructure data for
effective decision-making dimensions were deemed to be those that were both very high
and of high importance.

4.2. Importance of Data Quality Dimensions at Respective Decision-Making Levels

Based on the questionnaire results, consideration was also given to the importance of
dimensions. The data quality requirement may not be the same at all levels of decision-
making. For instance, the project level focuses on the primary data collection and format.
Hence, the dimensions critical at the project level are not critical at the remaining decision-
making levels. Hence, the importance of dimensions at all decision-making levels was
considered. The significance of data quality dimensions is determined at the strategic,
network, program, project selection, and project levels of highway projects. Based on the
ratings for the importance of dimensions at the decision-making level, decision-makers
believe that all data quality attributes defined under the semiotic model are considered
critical in data usage for information generation at all decision-making levels, with a
rating of 4 out of 5. The context of data quality differs at each level of decision-making;
consequently, data quality dimensions were determined, and the ranking of data quality
dimensions was also calculated at each level of the semiotic framework, i.e., at the syntactic,
pragmatic, empirical, and semantic levels.
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4.3. Ranking of Data Quality Dimensions within the Semiotic Framework

Along with the level of importance, the decision-makers also prioritise data quality
dimensions in each category of the semiotic framework. The priority of data quality require-
ments has changed from stakeholder to stakeholder at each decision-making level. The
semiotic framework comprised the syntactic, empiric, semiotic, and pragmatic categories,
which deal with the structure, meaning, information, and knowledge of data character-
istics [32]. The prioritisation of dimensions was also taken in the questionnaire survey.
The responses to dimensions given by the respondents were converted into a rank using
Henry Garrett’s ranking technique [76]. This technique provides the change of orders
of problems into numerical scores. The prime advantage of this technique over simple
frequency distribution is that the dimensions are arranged based on their priority from the
point of view of decision-makers. Garrett’s formula for converting the ranks into the per
cent position is shown below as Equation (1):

Percent position = 100 × (Rij − 0.5)/Nj (1)

where Rij = rank given for ith dimension by jth decision-maker
Nj = number of dimensions ranked by the jth individual.
The per cent position of each rank was converted into sources referring to the table

given by Garrett and Woodworth [77]. For each factor, the scores of individual stakeholders
were added together and divided by the total number of respondents for whom scores
were added. These mean scores for all the dimensions were arranged in descending order;
the dimensions were accordingly ranked.

5. Results and Discussion

This study identified and evaluated the key data quality dimensions for assessing the
data quality of highway infrastructure for decision-making effectiveness. For this purpose,
the study considered the critical dimensions throughout the highway infrastructure project,
as well as the criticality of dimensions at each level of decision-making, as the data quality
requirement varies at each level of decision-making. Using the ranking of dimensions
shown in Table 3, the overall critical dimensions and preference of the dimensions for the
overall project data were determined. Table 4 illustrates the significance of dimensions at
each level of decision-making. From the analysis of Table 4, it is clear that the requirements
for decision-makers are no longer the same but vary according to the respective hierarchical
levels of decision-making.

The data quality dimensions listed in Table 3 are relevant to ensure the overall quality
of data for highway infrastructure projects. Effective decision-making relies on the availabil-
ity of high-quality data, and addressing each of these dimensions can help to ensure that
the data used in decision-making are accurate, complete, consistent, and timely. Based on
the mean scores in Table 3 and the analysis of Figure 3, the top five data quality dimensions
are accuracy, accessibility, completeness, consistency, and timeliness. Ensuring that data
are accurate involves verifying that they are correct and error-free. Accessibility involves
making the data available and easily retrievable to authorised stakeholders. Completeness
ensures that all required data elements are present and accounted for. Consistency involves
verifying that the data are consistent with other data elements within the project. Timeliness
ensures that the data are available when needed and up to date. Other dimensions listed in
Table 3, such as relevance, interpretability, and believability, are also crucial for effective
decision-making. Relevant data are essential to the decision-making process because they
ensure that the data are related to the project’s objectives. Interpretability ensures that data
are presented in a way that is easy to understand. At the same time, believability involves
ensuring that the data can be trusted and are not biased.
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Table 4. Decision-maker’s level of importance of dimensions.

S. No. Data Quality Attributes Strategic Level Network Level Program Level
Project Selection

Level
Project Level

1 Accuracy 4.6 4.4 4.7 4.8 4.4
2 Consistency 4.8 4.6 4.1 4.3 4.2
3 Completeness 4.8 4.4 4.2 4.6 4.3
4 Structure 4.8 4.3 3.6 4.2 3.7
5 Integrity 4.8 4.0 3.6 4.1 3.7
6 Conciseness 3.0 3.4 3.4 3.3 3.2
7 Ease of Operation 3.6 3.3 3.3 3.2 3.4
8 Accessibility 4.2 4.6 4.7 4.4 4.3
9 Timeliness 4.4 4.6 4.4 3.9 4.2
10 Security 3.8 3.4 3.4 3.2 3.3
11 Definition 4.2 3.8 3.6 3.8 3.3
12 Ambiguity 4.8 4.4 4.2 4.1 3.5
13 Believability 3.6 3.0 3.2 4.0 3.4
14 Interpretability 3.4 3.4 3.2 3.7 3.4
15 Reliability 4.2 3.4 3.5 2.9 3.7
16 Understandability 2.8 3.3 3.4 3.4 3.4
17 Validity 3.0 4.0 3.6 3.0 3.7
18 Relevant 4.2 3.8 3.6 3.7 3.4
19 Value 4.2 3.8 3.9 4.0 3.6
20 Appropriateness 3.8 3.4 3.6 3.9 3.6
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Figure 3. Semiotic levels and the data-information-knowledge hierarchy.

At the same time, the stakeholders consider conciseness, ease of operation, and se-
curity as the lowest priorities with low mean values. This might be due to the dimension
conciseness that implies the compact representation of data, which would create a problem
of understanding for all stakeholders for data usage in decision-making. The dimension
ease-of-operation implies that data are manipulated and easily customised, which stake-
holders feel could cause problems in decision-making if the data are easily manipulated.
The dimension security implies keeping data secure and restricting access to the data, and
the stakeholders feel the restricting of data would cause issues with the decision-making.

Figure 3 shows the box-and-whiskers plot of the data quality dimensions for assessing
overall highway project data quality. It shows that the range of most of the dimensions
is between 3 and 5, i.e., the responses from the decision-makers range from somehow
important to high importance. Based on the data, it seems that accuracy, completeness, and
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accessibility are considered to be the most critical dimensions of data quality by more than
half of the decision-makers, as they have the highest median value of 5. The dimensions
consistency, structure, integrity, timeliness, ambiguity, relevant, and value also have a
relatively high median value of 4, indicating that they are still considered essential by many
decision-makers. On the other hand, dimensions such as conciseness, ease of operations,
security, definition, believability, understandability, validity, and appropriateness have a
median value of 3, indicating that they are considered less critical by decision-makers. It is
important to note that these findings are based on decision-makers’ responses and reflect
the objective of data quality measures. Nonetheless, they provide valuable insights into
the perceived importance of different dimensions of data quality in the context of highway
project data.

5.1. Critical Dimensions at Each Level of Decision-Making Hierarchy

The importance of data quality dimensions at each decision-making level, such as
strategic, network, program, project selection, and project decision levels of highway
infrastructure projects, was also identified, along with key data quality dimensions for
assessing the over-project data. Table 4 shows the description of assessment measures and
a survey result on the level of importance for semiotic framework data quality attributes
obtained from highway decision-makers, respectively. Based on the level of importance,
decision-makers think that all data quality dimensions described within the semiotic
framework are crucial for generating information at all levels of the decision-making
hierarchy for highway infrastructure. However, the results indicate that the conciseness,
ease of operational ability, and data understandability dimensions do not significantly
influence decision-making processes at all levels of highway infrastructure decision-making,
i.e., strategic, network, program, project selection, and project. This may be due to the
absence of a system that facilitates the understanding of collected data at these levels. The
collected data could be in various formats, including text, images, or numbers, and they
could be used as input for decision-making. For data to be used as input, they must be
clearly understood according to the judgment of the highway engineers. This may result
from the insignificant use of project data at these levels or the continuation of decision-
making processes due to limited project scope in the early stages of a project. Therefore, the
dimensions with a rating of 4 out of 5 are regarded as crucial for generating information at
all levels of the decision-making hierarchy.

5.1.1. Strategic Level

At the strategic level, decision-makers are higher-level authorities, such as the chair-
man and division heads of NHAI. They deal with policies, guidelines, and the distribution
of funds. At the strategic level of the decision hierarchy, the accuracy, consistency, complete-
ness, structure, and integrity dimensions from the syntactic category; the accessibility and
timeliness dimensions from the empiric category; the definition, reliability, and ambiguity
dimensions from the semantic category; and the relevance and value dimensions from the
pragmatic category are crucial decision-making dimensions.

5.1.2. Network Level

At the network level, decision-makers, such as chief general managers, are responsi-
ble for determining priorities, developing programs, and determining project objectives.
According to the analysis, the critical dimensions at the network level of the decision hier-
archy are accuracy, consistency, completeness, structure, and integrity from the syntactic
category; accessibility and timeliness from the empirical category; ambiguity from the
semantic category; and validity from the pragmatic category. In addition, the network level
is subdivided into two decision-making levels, including the program level and project
selection level.
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5.1.3. Program Level

At the program level of decision-making, the critical dimensions are accuracy, con-
sistency, and completeness from the syntactic category; accessibility and timeliness from
the empiric category; and ambiguity from the semantic category. No dimensions from the
pragmatic category are crucial for program-level decision-making. Program-level decision-
making deals with the programming of the projects. For making decisions at the program
level, the decision-makers focus on the form and structure of data, establishing means of
communication and data handling and information on the data. The pragmatic category
dimensions deal with the knowledge generated from the data, which is not much focused
on decision-making at the program level.

5.1.4. Project Selection Level

The project selection level addresses project selection, safety improvement, and traffic
control studies at the regional office level. From the syntactic category, the critical dimen-
sions are accuracy, consistency, completeness, structure, and integrity. From the empiric
category, the critical dimension is only accessibility. From the semantic category, the critical
dimensions are ambiguity and believability. From the pragmatic category, the dimension
value is only critical in analysing the questionnaire data.

5.1.5. Project Level

Project-level decisions involve the project director, designers, maintenance engineers,
schedulers, and many other engineers responsible for project implementation at the project-
implementing unit. For effective decision-making, dimensions such as accuracy, consistency,
and completeness from the syntactic level; and accessibility and timeliness from the empiric
level are considered critical out of all 20 data quality dimensions. At the project level, its
primary concern is data generation, the physical form of data generation, and storage for
information generation. Therefore, the dimensions in the semantic and pragmatic categories
that deal with information and knowledge generation are not of as high importance as the
syntactic and empirics level at the project level.

5.2. Ranking of Dimensions within the Semiotic Framework Categories

Garrett’s ranking technique was used to analyse various dimensions for ranking the
dimensions within the semiotic framework levels. The decision-makers were asked to
rank the dimensions within the framework to understand their preferences for data quality
dimensions within the semiotic framework. The semiotic framework comprised syntactic,
empiric, semiotic, and pragmatic categories, which deal with the structure, meaning,
information, and knowledge of data characteristics [32]. Before ranking the dimensions
within the semiotic framework levels, the percentage position for the ranks and their
corresponding Garrett value were calculated using Equation (1), as shown in Table 5. The
total score was calculated for factors by multiplying the number of stakeholders ranking
that dimension (Garrett and Woodworth [76]).

Table 5. Percentage position and Garrett value for rank 1 to 7.

Ranks Percentage Position Garret Score

1 7.14 79
2 21.43 66
3 35.71 57
4 50.00 50
5 64.29 43
6 78.57 34
7 92.86 22
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5.2.1. Syntactics Category

The syntactic category focused on data structures and formats, i.e., the physical form
of data rather than its content. In order to understand the data quality requirements in
terms of the syntactic category of the data being used by decision-makers, the Garrett
ranking technique was used, and the dimensions were ranked as shown in Table 6. Based
on the Garrett mean values, stakeholders ranked dimensions as accuracy, consistency,
completeness, structure, integrity, conciseness, and ease of operation. This is because
the syntactic category is primarily concerned with the physical form rather than the data
content; the decision-makers prioritised accuracy over the ease of operation dimension [35].
It is shown that the priority of data quality requirements changed from stakeholder to
stakeholder. Hence, we considered most of the responder’s ranking as the topmost ranked
and followed for other dimensions, as shown in Table 6.

Table 6. Ranking of dimensions within the syntactic category of the semiotic framework.

S. No. Factors
Rank Total Number of

Stakeholders
Total
Score

Total
Mean

Rank
1 2 3 4 5 6 7

1 Accuracy 52 16 6 6 11 9 5 105 6695 63.76 1
2 Consistency 12 40 18 19 3 6 7 105 6051 57.63 2
3 Completeness 12 25 42 6 5 5 10 105 5897 56.16 3
4 Structure 6 5 15 45 24 6 4 105 5233 49.84 4
5 Integrity 8 6 9 16 49 10 7 105 4942 47.07 5
6 Conciseness 8 7 5 6 8 44 27 105 4113 39.17 6
7 Ease of Operation 7 6 10 7 5 25 45 105 3924 37.37 7

5.2.2. Empiric Category

The empiric category dealt with the issues that arise when data are utilised repeatedly.
This category focused on developing means of communication and data handling. Based
on the percentage position and Garrett’s mean value, the dimensions were ranked as acces-
sibility, timeliness, and security within the empiric category. The dimension accessibility of
data was given the highest priority over the security of the data dimension. Table 7 shows
the percentage position and Garret score for the ranks as per Equation (1), while Table 8
shows the ranking of the dimensions based on the Garrett mean value. Accessibility refers
to how easily users can access data. This includes factors such as the availability of the data,
the ease of retrieving them, and the format in which they are presented. Timeliness refers
to how up-to-date and relevant the data are. This includes factors such as the frequency of
updates and how quickly they are made available. Security refers to data protection from
unauthorised access, modification, or disclosure. This includes factors such as the level
of encryption used, the strength of access controls, and the measures in place to prevent
data breaches. By ranking these dimensions based on their importance, organisations can
prioritise their efforts to improve information quality. However, it is essential to note that
the relative importance of each dimension may vary depending on the specific context and
the users’ needs.

Table 7. Percentage position and Garrett value for rank 1 to 3.

Ranks Percentage Position Garret Score

1 16.67 69.00
2 50.00 50.00
3 83.33 31.00

5.2.3. Semantic Category

The semantic category deals with the dimensions connected with information rather
than data. Information is selected data to which meaning has been assigned in a particular
context. It is concerned with meaning. Within the semantic category, the dimensions were
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ranked as ambiguity, definition, believability, interpretability, reliability, understandability,
and data validity, as shown in Table 9. The dimension ambiguity was prioritised over
other data dimensions within the category. This might be because the data should be
clear for understanding if any ambiguity in data can lead to significant challenges in
decision-making for highway projects, potentially resulting in poor design, construction,
and long-term consequences for the environment and public safety. The Garrett mean
values that were calculated using Equation (1) and the percentage position values are
shown in Table 5.

Table 8. Ranking of dimensions within the empiric category of the semiotic framework.

S. No. Factors
Rank

Total Number of
Stakeholders

Total
Score

Total
Mean

Rank

1 2 3

1 Accessibility 46 33 26 105 5630 53.62 1
2 Timeliness 38 47 20 105 5592 53.26 2
3 Security 21 25 59 105 4528 43.12 3

Table 9. Ranking of dimensions within the semantic category of the semiotic framework.

S. No. Factors
Rank Total Number of

Stakeholders
Total
Score

Total
Mean

Rank
1 2 3 4 5 6 7

1 Ambiguity 51 16 7 6 10 9 6 105 6652 63.35 1
2 Definition 12 25 41 7 5 5 10 105 5890 56.10 2
3 Believability 7 6 10 7 6 24 45 105 3933 37.46 3
4 Interpretability 8 7 9 16 48 10 7 105 4965 47.29 4
5 Reliability 12 39 17 19 5 6 7 105 6014 57.28 5
6 Understandability 8 7 5 6 8 45 26 105 4125 39.29 6
7 Validity 7 5 16 44 23 6 4 105 5276 50.25 7

5.2.4. Pragmatic Category

The pragmatic category focused on how individuals use information. It concerns
the relationship between data, information, and behaviour in each context. For ranking
the dimensions within the pragmatic category, the percentage position of the ranks was
calculated using Equation (1), as shown in Table 7. The dimension value of data was given
the highest priority over the other dimensions, such as relevant and appropriateness. In
the context of highway stakeholders, the dimension value is crucial because it determines
the extent to which the data can inform decision-making about highway infrastructure
projects, budgeting, and maintenance. Although the dimension appropriateness is critical,
it was ranked third in this context because it is a prerequisite for both relevance and value.
As per the Garrett ranking technique, the dimensions were ranked as value, relevant, and
appropriateness, respectively, as shown in Table 10.

Table 10. Ranking of dimensions within the pragmatic category of semiotic framework.

S. No. Factors
Rank

Total Number of
Stakeholders

Total
Score

Total
Mean

Rank

1 2 3

1 Relevant 33 49 23 105 5440 51.81 2
2 Value 44 30 31 105 5497 52.35 1
3 Appropriateness28 26 51 105 4813 45.84 3

The dimensions were ranked to understand the decision-makers’ data quality require-
ments for decision-making at the individual decision-making levels [30]. As the level of
decision-making in the organisation changes, the priority of data quality also changes. At
the strategic level, decision-makers focus on policymaking, which could be implemented
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throughout the organisation. Hence, the data quality requirements at the strategic level
differ at the network and project levels. It is important to note that this study utilised
semiotic-based quality dimensions to assess data quality at different decision-making levels
from the data users’ perspective. This proactive assessment of the highway management
decision-making hierarchy allows data collectors to determine the level of data quality
requirements of highway infrastructure managers and potential decision-makers in a more
integrated manner. It allows highway agencies’ data management teams to identify the
causes behind minimal data usage to improve the quality of generating information and
supporting decisions.

6. Conclusions

This research was conducted in a multidisciplinary framework that included three
primary fields: data quality, big data, and highway infrastructure project data. Even though
data quality has been a well-studied topic for the past two decades, the precise terminology
for data quality aspects is still lacking. Digitalisation and data management in construction,
particularly highway infrastructure, is a developing topic in India, with a scant prior study
focusing on data quality. Using data quality dimensions as part of data governance projects
is undoubtedly crucial, as it ensures that data users and stakeholders may derive the most
significant benefit from data usage. The research discussed in this paper aims to investigate
a framework in which data quality dimensions could be more important within the context
of highway infrastructure projects in the construction sector. The semiotic framework was
adopted from the literature review of various data quality frameworks for this study to
establish data quality dimensions for highway infrastructure data. The systematic literature
review, semiotic framework, and Garrett ranking were chosen as research methods because
of the increasing novelty of vast quantities of data quality and highway infrastructure data,
as well as the impracticality of implementing other research methods due to geographical,
legal, ethical, and organisational constraints.

Accuracy, accessibility, and consistency are well-discussed data quality dimensions
that are supported by the results. Based on this research, the data quality dimensions of
completeness and timeliness were added to the three previously mentioned data qual-
ity dimensions to produce a list of the five most appropriate data quality dimensions
for highway infrastructure data in the construction industry. Considering the results of
the semiotic framework of the hierarchical data quality dimensions for the overall high-
way project data, the contextual category of data quality dimensions was considered to
be the most crucial for evaluating data quality. This is easily explained by the breadth
of the three domains involved (i.e., data quality, big data, and highway infrastructure
data), where thousands of unique data applications used in the highway infrastructure
database are possible. Thus, each application’s probability of selecting different data quality
dimensions increases.

The current research study provides a ranking of the most critical data quality dimen-
sions in the specific context of highway infrastructure projects, as shown in Table 3. This is
one of the first studies within this field to use the semiotic framework to achieve this. This
research study also considered the level of importance at each decision-making level of
the hierarchy, as shown in Table 4. Considering the very contextual nature of data quality,
different contexts would be expected to produce a different list of the most critical data
quality dimensions. Thus, the study also provided the ranking of the dimensions within
the semiotic framework categories using the Garrett raking technique to understand the
priorities of the stakeholders.

The comparatively little amount of literature, and more significantly, publications with
the perspective of highway infrastructure data, is one of the most significant limitations
of this study. Planned are additional research methods that could be applied to the same
corpus of literature, with the primary objective of reducing the amount of author bias
introduction when evaluating the significance of the other data quality frameworks.
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This study serves as a foundation for further research by the authors in highway
infrastructure to assess overall data usage in terms of significant data quality using data
quality dimensions as features for assessing the current data quality satisfaction levels
at decision-making levels from the data users’ perspective. There is a need for agencies
and data management teams to assess the root cause of the minimal usage of data to
improve the quality of generating information and supporting decisions, and they are
also required to show the interdependency of various decisions in the final output of
a project and address the potential data users’ requirements. In ongoing research, the
semiotic framework provides a theoretical foundation for developing an instrument, i.e.,
data quality dimensions, to access the subjective quality of highway project data. The
development of quantitative indices for each data quality dimension to quantify the quality
would eventually help to develop the decision-making competency of decision-makers.
This would help the organisation in the effective execution of projects without delaying
the projects and avoid losses due to wrong decisions. By using data quality dimensions as
features for machine learning algorithms, further work will distinguish quality data from
non-quality data from very large streams of highway datasets. Finally, the ten main data
quality dimensions identified serve as a foundation for determining which machine learning
algorithms might identify data usage more effectively. Following this, a computationally
efficient method for optimum data usage will be designed to use data effectively.

Practical Engineering and Real-World Applications of Semiotic Framework

The semiotic framework for assessing data quality is a theoretical framework that
analyses data in terms of its essential components: syntactics, pragmatics, empirics, and
semantics. This strategy has several real-world and practical engineering applications, such
as data integration, business intelligence, data mining, data governance, and data visualisa-
tion. In the construction sector context, the semiotic framework of data quality assessment
is used in evaluating building designs. Architects and engineers may use this framework
to evaluate the accuracy and completeness of their building designs by analysing the signs
and symbols used to represent the different design aspects. This may help them uncover
design inconsistencies or errors and make the necessary adjustments before construction
begins. In engineering applications of the construction industry, the semiotic framework of
data quality may be used in several ways, including quality assurance, risk assessment,
and compliance. Throughout the project lifecycle of a construction project, a substantial
quantity of data must be gathered and evaluated for quality assurance purposes. The semi-
otic framework may be used to verify that the obtained data are correct and trustworthy,
therefore guaranteeing that the project is on track and satisfies all objectives. The semiotic
framework may be used to evaluate the risk associated with specific construction activities.
Engineers can make informed decisions and reduce the likelihood of accidents or errors
by evaluating the data quality used to evaluate risk. The construction industry is highly
regulated, and businesses must adhere to various standards and regulations. The semiotic
framework can ensure the accuracy and dependability of the data used to demonstrate
compliance, thereby reducing the risk of fines.

In conclusion, the semiotic data quality framework has numerous practical engineering
applications in the construction industry. Specific to highways, data quality dimensions are
indispensable for planning and design, asset management, safety and emergency response,
performance measurement, and policy and decision-making. By ensuring the quality of
their data, transportation agencies can make more informed decisions, allocate resources
more efficiently, and provide more effective transportation systems. Using this framework,
architects, engineers, and other construction professionals can guarantee that the data they
use is error-free, resulting in improved project outcomes and reduced risk.
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Abstract: A construction site features an open field and complexity and relies mainly on manual
labor for construction progress, quality, and field management to facilitate job site coordination
and productive results. It has a tremendous impact on the effectiveness and efficiency of job site
supervision. However, most job site workers take photos of the construction activities. These photos
serve as aids for project management, including construction history records, quality, and schedule
management. It often takes a great deal of time to process the many photos taken. Most of the time,
the image data are processed passively and used only for reference, which could be better. For this,
a construction activity image recognition system is proposed by incorporating image recognition
through deep learning, using the powerful image extraction ability of a convolution neural network
(CNN) for automatic extraction of contours, edge lines, and local features via filters, and feeding
feature data to the network for training in a fully connected way. The system is effective in image
recognition, which is in favor of telling minute differences. The parameters and structure of the
neural network are adjusted for using a CNN. Objects like construction workers, machines, and
materials are selected for a case study. A CNN is used to extract individual features for training,
which improves recognizability and helps project managers make decisions regarding construction
safety, job site configuration, progress control, and quality management, thus improving the efficiency
of construction management.

Keywords: construction image; artificial intelligence; deep learning; object detection; single shot
multibox detector (SSD)

1. Introduction

Construction work is tedious and subject to delays, and its quality may be compro-
mised by many factors, such as construction equipment, workers, and materials. Therefore,
it is necessary to improve construction quality and progress in today’s increasingly com-
petitive market by considering good job site management and meeting construction costs.
At a job site currently, a job site manager oversees everything construction-related, includ-
ing workers, machines, and materials [1–5]. The manager has to take care of virtually
everything at the job site [6]. The improvement of management methods using innovative
technology helps to not only accelerate the development of the construction industry but
also improve a company’s competitiveness in the market.

Most general contractors deploy imaging devices, such as photo and video cameras, to
document the progress of construction activities throughout the entire process. The image
data are collected, in general, by filming with a mobile camera operated by a worker or
a video camera set up at a fixed location. Most image data collected are used passively
for reference or even just shelved. The others are used to prepare quality documents
or demonstrate construction status and progress. Suppose artificial intelligence (AI) is
introduced to recognize objects in the images and help job site management identify and
tag things in the images. In that case, these image data may serve as an essential basis
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for decision-making within construction activities, including construction planning and
design, job site safety, automated equipment management [7–10], and quality monitoring
and maintenance. For example, suppose a specific machine is tagged in video footage of
construction activities [11]. In that case, the project team may exploit the captured data for
project decisions of route management, machine setup, and site safety [12–15].

When recognizing and classifying objects in many images, a deep learning model
may be introduced to accelerate the extraction of high-value digital information crucial for
construction management. The mainstream in developing the deep neural network is the
convolution neural network (CNN) which extracts critical feature information by including
one or more convolution layers and pooling layers through a combination of algorithms and
multi-layer computation of convolution neurons as the images are converted into data [16].
The feature information is fed to the neural network for training in a fully connected manner
until identical or similar features in the same class of images are identified and documented.
The relative locations and features digitally arranged during the recognition of new images
are systematically computed and processed to identify the similarities between images for
successful image judgment [17,18].

AI is having revolutionary impacts on construction engineering [19]. Thanks to
the powerful capability of AI in data processing, analysis, and searching for massive
digitization, a model to recognize construction objects at a job site can be built to rapidly
and accurately identify workers [20–22], machines [23,24], and materials [25] in job site
footage while tagging their relative locations in the images to provide more site-related
information for project management, which is a rising topic in the industry in the pursuit
of breakthroughs and innovation.

2. Literature Review

A construction project has unique complexity. The completion of a project involves
an engineering lifecycle consisting of many links, from design and construction to final
acceptance. In an era in which the development of technical information evolves at the
speed of light, the innovative technologies and management systems used in construction
management help not only maintain control over safety and health as the construction
work progresses but also facilitate the successful completion of construction projects by
reducing uncertainties while focusing on the goal of sustainable development [26].

Artificial intelligence, or AI, is an engineering study focusing on researching and devel-
oping intelligent entities. AI includes the use of programs and big data to make computers
and machines mimic human thinking and simulate the “intelligent” behaviors of a human
being; when AI is the object of study, machine learning (ML) is a model to improve the
performance of specific algorithms while learning from experiences, i.e., learning from data
collected [27]. However, data learning is based on massive data processed using a multi-
layer neural network. A self-learning method is found after linear or nonlinear conversion
via multiple processing layers, which automatically extracts features representative of data
characteristics in place of the long time taken for traditional feature engineering. Deep
learning is a technology that evolved from machine learning [28].

The applications of deep learning in computer vision in recent years are in the fol-
lowing classes [29], as shown in Figure 1: (1) classification: putting an image in one of the
established classes by its nature and type; (2) semantic segmentation: identifying pixel
blocks by event type instead of classifying into “instances”; (3) classification + localization:
tagging a message to a single object with its location and size (w, h); (4) object detection:
tagging multiple objects with their locations and sizes; and (5) instance segmentation:
tagging “instances”; the objects of the same class are identified by individual locations and
sizes, particularly when they are overlapping.
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Figure 1. Applications in computer vision.

Most recent object detection studies are focused on the use of a CNN for typical model
applications in which a matching object is identified before determining in which area a
matching thing exists and tagging the location of highest probability with a box, as shown
in Figure 2. Two fully connected layers are connected behind the CNN, one for classification
and the other for tagging the matching area. There are three algorithms to organize an area:
sliding window, region proposal, and grid-based.

Figure 2. Locating algorithm model.

1. Sliding window: a simple but time-consuming method based on the method of
exhaustion. It works by establishing windows of various sizes for image scanning
and extracting the feature information of every image window. Next, the data is fed
to a classifier for object recognition to determine if the probability of the window
matching the object to be detected is accurate. This method is the simplest but most
time-consuming [30], as presented in Figure 3.

Figure 3. Sliding window algorithm.
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2. Region proposal: information in the image, such as texture, edges, and color, are used
to predetermine the regions of interest (ROI) containing the object and determine the
probability of these regions for matching. The high recall is maintained by filtering
thousands of regions per second. Similar algorithms are R-CNN, Fast R-CNN, and
Faster R-CNN [31–34], as shown in Figure 4.

Figure 4. Region proposals algorithms.

3. Grid-based regression: a picture is divided into grids, and regions of various sizes are
selected with the grids as centers. Regression determines the probability that every
bounding box contains the target. This approach is suitable for real-time detection.
Similar algorithms are you only look once (YOLO) and single shot multibox detector
(SSD) [35], as shown in Figure 5.

Figure 5. Region Proposal algorithms.

You only look once (YOLO) predicts multiple bounding boxes and types of CNNs,
realizing end-to-end target detection and identification. This algorithm avoids the weak-
ness that object detection must be trained separately and accelerates the computation
dramatically [36], as indicated in Figure 6.
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Figure 6. Structure of a YOLO model.

The single shot multibox detector (SSD) is based on a feed-forward CNN that generates
bounding box sets and scores of different types on the boxes, followed by non-maximum
value suppression to complete the final detection process. This explains the incorporation
of both the regression concept in YOLO and the anchor mechanism in Faster-CNN in single
shot multibox detector (SSD), as regression is performed on the multi-dimensional region
features of every location in the entire picture, which retains YOLO’s characteristics of
being fast while ensuring the window prediction is as accurate as Faster-RCNN [37], as
shown in Figure 7.

Figure 7. Default boxes in the single shot multibox detector model.

Liu et al. (2016) tested the speed and accuracy of different object detection methods.
The test results are shown in Table 1:

Table 1. Object detection algorithm speed and accuracy comparison.

Method FPS Boxes mAP

Faster R-CNN 7 6000 73.2
Faster YOLO 155 98 52.7

SSD300 29 8732 74.3

A fast YOLO has faster processing speed but poor mAP. Although Faster R-CNN has
a higher accuracy rate (73.2% mAP), it is not significantly more accurate at determining the
number of images. In contrast, a single shot multibox detector (SSD) not only has a high
accuracy rate but also a fast image detection speed [36].

Single shot multibox detector (SSD) object recognition has been used in many engi-
neering applications. For example, Yudin and Slavioglo [38] used the single shot multi-box
detector (SSD) to test how well the model identifies a traffic light, producing good results.
Wang et al. [39] proposed an improved single shot multibox detector (SSD) capable of
detecting a ship in a noisy background. The results were compared with those from Faster
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R-CNN, and it was found that the enhanced single shot multibox detector (SSD) improved
detection accuracy.

Much research on image recognition using deep learning has accumulated in recent
years. Many people use deep learning technology in artificial intelligence to let computers
handle more complex image recognition problems. Table 2 shows the development of
deep learning in the construction industry in the past five years of applied research on
image recognition.

Table 2. Research on the application of deep learning in construction image recognition.

Author (Year) Abstract

Dorafshan, S., Thomas, R. J., and Maguire, M. (2018) [40]

Compares the performance of deep convolutional neural networks and
edge detection algorithms for image-based crack detection in concrete,
finding that the neural network approach outperforms traditional edge

detection methods.

Spencer Jr, B. F., Hoskere, V. and Narazaki, Y. (2019) [41]

Recent advances in computer vision-based civil infrastructure
inspection and monitoring techniques, including object detection,

semantic segmentation, and deep learning methods, highlight their
benefits and challenges.

Dung, C. V. (2019) [42]
Proposes an autonomous system for concrete crack detection using a

deep, fully convolutional neural network, achieving high accuracy and
efficiency compared to traditional manual inspection methods.

FANG, Weili, et al. (2020) [43] A review and discussion of future directions of computer vision for
behavior-based safety in construction.

Li, Y., Lu, Y. and Chen, J. (2021) [25]
A deep learning approach based on the YOLOv3 detector is proposed
for real-time rebar counting on construction sites, which can effectively

improve construction efficiency and safety.

Chou, J. S. and Liu, C. H. (2021) [24] An automated system for recognizing trucks in real-time in river
dredging areas using computer vision and deep learning.

Li, X., Chi, H., Lu, W., Xue, F., Zeng, J., and Li, C. Z.
(2021) [44]

An intelligent work packaging system that preserves construction
workers’ personal image information using federated transfer learning.

DEL SAVIO, Alexandre Almeida, et al. (2021) [45]
Artificial intelligence (AI) and computer vision are used to identify

objects and equipment on a construction site and how they can
improve safety and efficiency.

LIN, Chih-Lung, et al. (2022) [22] Presents a gait-based pedestrian automatic detection and recognition
system using a deep learning neural network.

Greeshma, A. S. and Edayadiyil, J. B. (2022) [10] An automated system that uses machine learning and image processing
to monitor construction project progress.

Del Savio, A., Luna, A., Cárdenas-Salas, D., Vergara, M.,
and Urday, G. (2022) [11]

A manually classified dataset of construction site images containing
1046 images of eight object classes that can be used to develop

computer vision techniques in the engineering and construction fields.

Yeşilmen, S. and Tatar, B. (2022) [16]
The efficiency of using convolutional neural networks (CNN) for image
classification in monitoring construction-related activities, with a case

study on aggregate mining for concrete production.

Source: This study collated.

Past studies used deep learning algorithms to recognize three postures of construction
workers, including standing, bending over, and squatting [20–22]. They provide engineer-
ing professionals with comprehensive deep learning solutions for detecting construction
vehicles [23,24]. Only single objects, such as people, materials, or engineering vehicles,
were seen in the above studies; therefore, the shapes and boundary types recognized were
relatively pure. This study uses image automation to simultaneously identify workers,
machinery, and materials in the current construction situation, assist the construction site
manager in making safety judgments on the location of construction equipment, safety
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protection measures, and material stacking, and monitor the construction status and main-
tenance of the construction site to reduce environmental hazards and control progress.

With the continuous evolution of technology, combining big data and artificial in-
telligence machine learning/deep learning can maximize the value of data. Therefore,
this research collects the construction site image data set, imports the object detection
system, uses it as artificial intelligence and machine learning training data, and builds AI
to automatically identify the personnel, materials, and equipment on the construction site.
In the future, continuous learning, modification, and technical improvement can reduce or
avoid labor accidents on the construction site, thereby improving construction efficiency
and schedule management.

3. Methodology

3.1. Study Setup

The CNN in single shot multibox detector (SSD) method of deep learning required
massive training images for learning. Firstly, image files of a construction site were collected
and converted to matrices by regulating the size of images before data pre-processing,
such as optimization. Next, features were extracted using CNN and fed into the fully
connected neural network to predict and identify classes. Finally, the trained model was
verified by feeding it the test data. The model’s learning rate setting would affect the weight
adjustment, so this study set the learning rate = 0.00002, epoch = 100, step per epoch = 320,
and optimizer type = sgd. The model structure of this proposed method is presented in
Figure 8.

Figure 8. Structure of job site image object detection model.

3.2. Collection of Job Site Images for a Construction Project

The multi-class classification in the image classification was selected for the study.
Data sets were classified as rebar, worker, and machine. The deep learning model required
massive amounts of information for training to improve its recognition accuracy, and the
size of the data set was a critical factor for the experiment’s success. Data came from three
sources, as follows:

1. Legal and free job site pictures obtained from Google under “Creative Commons”;
2. Free databases provided by computer vision institutes, such as ImageNet and Labelme

of MIT; and
3. Photos of construction job sites taken for the study.

Four hundred sixty-one job site images were collected from the above sources (Figure 9).
Feasible data were extracted from the images in the preliminary classification. The job site
images collected were manually tagged for workers, machines, and rebar using the image
tool provided in “LabelImg.” In addition, movements were selected and tagged for classes.
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Figure 9. Collection of construction site image files.

Two types of files were generated after tagging with LabelImg; one was the image files
themselves, and the other was the XML files with image locations tagged. In Figure 10, for
example, workers, rebars, and machines are tagged and given specific names in the image.
Figure 11 provides an example of the contents of the XML file, including dimensions such
as image coordinates. The single shot multibox detector (SSD) deep learning model was
established and tested as all images were tagged.

Figure 10. LabelImg tagging of a job site photo.

3.3. Method of Object Detection (SSD)

Wei Liu [36] devised the single shot multibox detector (SSD), a one-stage method in
which a neural network (VGG-16) is used to extract feature maps for classification and
regression before the target objects are tested. It incorporates the regression concept in
YOLO and identifies the location of the target class in regression. Similar to the anchor
mechanism in Faster-RCNN, prior boxes are established and features are extracted from the
backbone network. Feature maps of various dimensions are used for prediction, with large
feature maps to detect small targets and small maps to detect large targets. Convolution
kernel is applied on the feature maps to predict the classes and coordinate offsets of a series
of default bounding boxes.
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VGG-16 serves as the backbone model for the single shot multibox detector (SSD)
structure. The fully connected layer of VGG, fc6, is modified and converted into a 3 × 3
convolution layer, Conv6, and fc7 into a 1 × 1 convolution layer, Conv7, while the pooling
layer, pool5, is changed from originally 2 × 2 with stride = 2 to 3 × 3 with stride = 1. 4;
convolution layers are added; the test module layer of the 1st feature map is Conv4_3,
followed by Conv8_2, Conv9_2, Conv10_2, and Conv11_2 [36,39]. Their sizes are shown in
Figure 12.

Figure 11. Contents of the XML file of a tagged job site image.

Figure 12. Single shot multibox detector model structure.

The size and length–width ratio require consideration for testing the box on a feature
map. Every grid on the feature map is scanned to generate corresponding testing boxes
(Figure 13). During the training, the ground truth in the picture is checked to match the
testing box. The best-fit box is filtered based on intersection over union (IOU). The exact
positive and negative sample ratio is close to 1:3. The loss function depends on the weights
of location error and confidence error. Data enhancement is carried out via horizontal
flipping, random cutting, color twisting, and random sampling of block regions. Top-k
prediction boxes with high confidence levels are reserved during the prediction before the
object detection algorithm of non-maximum suppression (NMS) is used to filter prediction
terms with significant overlapping. The prediction term left at the end is the result [36].
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Figure 13. Single shot multibox detector target feature detection process.

4. Study Contents and Outcomes

4.1. Establishment and Testing of Single Shot MultiBox Detector Model

The main feature extraction program used to establish a single shot multibox detector
(SSD) model was vgg.py. Features were extracted using 9 module computati9on feature
layers in the sizes of 38 × 38, 19 × 19, 10 × 10, 5 × 5, 3 × 3, and 1 × 1 (Figure 13). At the
first convolution computation feature layer, the image fed was 300 × 300 in size. Randomly
generated 3 × 3 filters were used at the convolution layer to extract 64 features, and the
activation function of ReLu was adopted to eliminate negative values. Batch normalization
was introduced next to improve the stability of data distribution. After two rounds of
convolution feature extraction, the pooling layer shrank the image down to 150 × 150 in
size for the convolution computation of the second set. The filters extracted 128 features at
the second set convolution computation feature layer. The same applied to the rest of the
computation. Ultimately, the pooling layer reduced the images to 1 × 1 in size.

The detect_image feature in the ssd.py program was used for predicting and testing
the results. The height and width of the picture were determined after the photo was
fed. However, the picture was converted into RGB format to improve detection for the
pre-training weight of the image and convenience of color setup in the box. The letter-
box_image feature was used to identify the resized image without distortion. The image
was normalized based on the batch_size attribute before being fed into the model for
regression and type prediction.

Data sets needed to be imported into classes_path while the image training program
train.py parameters were established to identify the image classes of rebar, worker, and
machine. The pre-training weight, weight_path, was established, and the shape was
selected to be 300 × 300. The prior box size was defined as anchors_size = [30, 60, 111, 162,
213, 264, 315]. The image training consisted of 2 stages, “freeze” and “unfreeze.” The feature
extraction network experienced no change during the freezing stage but minor network
tuning. Thus, 50 generations were established. The number of data samples captured for
one training run was 16. The backbone and feature extraction network experienced changes
during the unfreezing stage. Ample memory was used, and, therefore, 100 generations
were established. The number of training samples was 8.

The single shot multibox detector (SSD) program selected the pattern to be detected
during the establishment test on the training outcome prediction program predict.py. The
parameter setting patterns during the detection were single pictures, pre-recorded footage,
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or images captured directly from the camera. For this study, images were used for the
prediction model.

4.2. Model Training Data Analysis

In machine learning and deep learning, a loss function is frequently used to evaluate
the error between predictions and valid values. The smaller the value, the closer the
prediction to the actual value and the more accurate the model. Loss functions commonly
used are mean square error (MSE) and cross-entropy; the former is usually used for
regression and the latter for classification.

Data outcomes were evaluated based on the performance of the two accuracy in-
dicators, F1 measure and overall accuracy, on the model. Both indicators above were
determined using the four factors of the confusion matrix, and they were true positive (TP),
true negative (TN), false positive (FP), and false negative (FN). The F1 measure was the
harmonized average between accuracy and recall. It was used as an indicator of model
performance and expressed as:

F1 Measure =
(2 × Precision × Recall)
(Precision + Recall)

(1)

The overall accuracy was defined as the ratio of correct prediction of positive and
negative samples in the models over all samples and expressed in Equation (2):

Overall Accuracy =
(TP + TN)

(TP + FP + FN + TN)
(2)

The single shot multibox detector (SSD) was deployed to identify the classes of rebar,
worker, and machine in all images collected in the data set. A total of 461 images were
collected, including 400 photos of job site activities as machine learning samples, with 80%
images for training. In addition, 40 images, accounting for 10% of the data set, served as the
test samples during the training; another 40 were used as verification samples, accounting
for 10%. In the end, 61 photos the model had not seen were brought in for recognition, and
a 1 × 1 confusion matrix was generated, as shown in Table 3.

Table 3. Confusion matrix generated by single shot multibox detector model.

TP 30 FN 18

FP 3 TN 10

A calculation was performed for the two accuracy evaluation indicators based on the
four factors generated in the confusion matrix. It was found that the F1 measure was 64%,
and the oval accuracy was 66%. The details are provided in Table 4.

Table 4. The two accuracy evaluation indicators of the single shot multibox detector model.

Indicators Value

F1 Measure 64%
Overall Accuracy 66%

The process mentioned above reveals that an SSD-based job site activity image recog-
nition system is built by combining the job site image data collected and deep learning in
AI. This system can identify and tag essential objects in a job site image, such as workers,
machines, and construction materials. With more job site activity information gained
from image recognition, the proposed system may help project managers develop project
decisions regarding construction safety, job site configuration, progress control, and quality
management, thus improving industrial competitiveness.
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4.3. Single Shot MultiBox Detector Deep Learning Model Training Outcomes

Three hundred twenty job site activity images, accounting for 80% of the data set,
were selected as the training sample for the SS-based job site activity image recognition
system proposed herein. In addition, 40 images, or 10% of the data set, were chosen as the
test samples during the training. In the end, 61 images the model had not seen were used
for recognition; thus, 461 images were collected and used. The visualization outcomes after
recognition are presented in Table 5.

Table 5. Outcomes of single shot multibox detector image recognition model test.

Originals1 Outcomes1

Image Data Form 1

Originals 2 Outcomes 2

Image Data Form 2
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Automated generation of EXCEL forms for the recognized results included object
names, confidence level, pixel coordinates, and time record. The timestamp was based
on the computer time when the form was generated, which could be used as the basis for
specific management items (Table 5):

1. Monitoring the operation status of construction site personnel and equipment: real-
time monitoring of the operation status of construction site personnel and equipment,
including entry and exit times, the number of construction personnel, and the number
of equipment appearing at that time, thereby effectively improving construction safety
and efficiency.

2. Ensuring the supply of construction site materials: effectively monitoring the entry
and exit of construction site materials and inventory status, ensuring the timely use of
materials, and ensuring the adequate and timely supply of materials on site.

3. Improving the efficiency of construction site management: automatically recording
the entry and exit time, location, and other information of construction site personnel
and equipment, reducing the cost and risk of manual management, and improving
the efficiency and accuracy of site management.

4. Optimizing construction site scheduling: using image recognition technology to record
construction logs and monitor the progress of various works at the construction site,
adjusting the schedule promptly, improving construction efficiency, and reducing
construction delays.

Construction activities at a job site vary widely. The machines subject to image
recognition are excavators, loaders, dump trucks, cranes, and concrete mixer trucks, and
the recognition accuracy is 69%, on average. The workers are wearing work clothing and
reflective vests without a uniform standard, and they are at various locations within the job
site performing various tasks, resulting in difficulties in recognition due to the bright side,
dark side, and body position, and the recognition accuracy is 53%. The accuracy is 28%
for the rebar. The reason for the low recognition accuracy could be that they are similar
materials divided into two different classes; also, there are more than civil work activities
at the job site; for example, there are plumbing and electrical tasks at a job site, and their
materials, such as pipes and cables, may affect the recognition results, as shown in Table 6.

Table 6. Model performance indices.

mAP
Recall

(Threshold = 0.5)
Precision

(Threshold = 0.5)
F1-Score

(Threshold = 0.5)

Rebar 0.29 0.09 1.00 0.17
Worker 0.53 0.37 0.86 0.52

Machine 0.69 0.62 0.95 0.75

This study uses automatic identification of construction site workers, material lo-
cations, and construction environment conditions of equipment. The resulting photos
can identify more than two items simultaneously, providing site supervisors with active
warnings of potential occupational safety hazards and increasing construction efficiency
through image automation.

5. Conclusions and Suggestions

A construction job site covers the building footprint, work area, or material storage.
With the simultaneous recognition of objects, such as workers, machines, and materials
using a single shot multibox detector (SSD) in this case, it was found that the recognition
performed better for large machines, including excavators, cranes, dump trucks, and
concrete mixer trucks, with recognition accuracy close to 70%. Recognition accuracy was
53% for workers, and rebar was the least accurately identified of the three.

This study used the single shot multibox detector model with the VGG-16 neural
network as its backbone network and VGG-16 is a 16-layer convolutional neural network,
including 13 convolutional layers and 3 fully connected layers. A total of 320 construction
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site construction images (80%) were trained, and the results could mark personnel, machin-
ery, and materials simultaneously. The complexity of each on-site construction image was
different; therefore, the time required for each image recognition was also different, but the
average single image recognition time was 6 s. The object detection process encountered
the following problems:

1. Regarding detection personnel: For construction personnel, posture changes, con-
struction site brightness changes, and object occlusion these problems would lead to
false detections.

2. Regarding detection materials: densely packed rebar would produce different degrees
of joint and section difficulties; in addition, in the single target detection algorithm,
the stacking between the background and the foreground was different, which may
have led to a decrease in the sensitivity of the model to the sample. It resulted in
false detections.

3. Detection of equipment: Construction equipment detection items included excavators,
shovel loaders, dump trucks, cranes, concrete mixer trucks, etc. There were more
data sets than construction personnel and materials, and their identification perfor-
mance was better. But to enhance the training of another project may have led to
further overfitting.

Based on the above, this study proposes future research directions regarding technol-
ogy application, database construction, and algorithm optimization to enhance the accuracy
and applicability of detection items:

1. The evolutionary many-objective optimization algorithm with new techniques, such as
domain decomposition and multi-objective optimization decomposition can improve
the efficiency and accuracy of construction site management and enhance image
recognition in construction engineering [46].

2. Optimizing truck scheduling through algorithms can improve the efficiency and
accuracy of material transportation and scheduling at construction sites, leading to
intelligent and automated material transportation and ultimately enhancing construc-
tion efficiency and quality [47].

3. Multi-objective optimization algorithms can significantly enhance the efficiency and
accuracy of construction sites management tasks, such as material transportation,
equipment scheduling, and personnel management. Integrating image recognition
applications with these algorithms enables the intelligent and automated monitoring
and control of construction sites, improving construction efficiency and quality [48].

4. Image recognition technology can monitor the construction site in real time, detect
potential risk factors, and determine the direction of improvement. At the same
time, efficient dock scheduling algorithms can optimize construction materials and
equipment logistics, reduce waiting time, and improving overall productivity [49].

5. The direction is to combine image recognition technology to monitor the safety of
construction sites in real time, detecting potential safety hazards early, and using
NSGA-II and MOPSO algorithms for ambulance routing to improve rescue efficiency
and emergency response capabilities [50].

6. Applying the augmented self-adaptive parameter control method to a broader range
of construction scenarios can improve construction efficiency and safety. Further
research will explore combining the technique with other optimization algorithms to
enhance its effectiveness and reduce construction costs [51].

7. To enhance the simultaneous detection of personnel, equipment, and materials, up-
coming methods will include feature pyramid, complete intersection over union
(Ciou) loss, focal loss, and bag of freebies target detection optimization [52].

Construction engineering is characterized by complexity; therefore, image recognition
technology at construction sites enhances the safety and efficiency of construction site
management. This technology enables more detailed identification and improvement of

220



Buildings 2023, 13, 1074

production efficiency and quality in the construction industry, thereby providing more
significant development opportunities for the future of construction engineering.
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