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1. Introduction

Geoscience, as an interdisciplinary field, is dedicated to revealing the operational
mechanisms and evolutionary patterns of the Earth system. Geoscience is very important
to enhancing our understanding of the Earth, including its life, resources, and environment.
In recent years, the rapid development of high-performance computing and artificial intelli-
gence technologies has presented unparalleled opportunities and challenges to geoscience
research. This book aims to explore the significance of high-performance computing and
artificial intelligence research in advancing our understanding of geosciences.

High-performance computing provides powerful computational capabilities for geo-
science research. The Earth’s system encompasses vast amounts of data and intricate inter-
relationships, including atmospheric dynamics, seismic activities, and ocean circulation,
among others. Traditional data processing and modeling methods often struggle to meet
the demands of these complex systems. However, the development of high-performance
computing technologies has enabled scientists to leverage tools such as parallel computing
and supercomputers to process large-scale datasets and conduct more precise simulations
and predictions. Through high-performance computing, scientists can enhance their under-
standing of the dynamical processes within the Earth system, resulting in the improved
accuracy and timeliness of weather forecasting, climate simulations, earthquake early
warning systems, and more.

Artificial intelligence technology has introduced novel ideas and methodologies into
geoscience research. The investigation of geosciences often necessitates the extraction of
valuable information from extensive datasets to show the inherent patterns within the
Earth system. Machine learning and deep learning algorithms in artificial intelligence
are able to process intricate data and discern patterns. They autonomously learn and
extract features from massive datasets, aiding scientists in uncovering hidden patterns
and trends embedded within the data. For instance, in climate change research, artificial
intelligence can analyze climate models and observational data to offer more precise
predictions and evaluations. Moreover, artificial intelligence has practical applications in
geological exploration and resource surveys, thereby enhancing the efficiency and accuracy
of resource exploration.

2. Contributions

The editors acknowledge all contributions, and we are delighted to introduce a collec-
tion of eleven selected high-quality research papers in this book.

Qi and colleagues [1] conducted high-performance computing in flood behavior mod-
eling, using the two-dimensional Saint-Venant equations as examples. The equations were
discretized using finite difference methods with the explicit leapfrog scheme, considering
initial and boundary conditions. They employed MPI, OpenMP, Pthread, and OpenCL
to achieve large-scale heterogeneous parallelism and optimized algorithm performance
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through computation/communication overlap, workgroup optimization, and local memory
optimization. Ultimately, their work yielded a well-performing, large-scale, non-uniform
parallel solution for the two-dimensional Saint-Venant equations.

Wang and colleagues [2] studied the ZTEM (Z-axis Tipper Electromagnetic Method)
electromagnetic field detection method. They performed parallel computations on the
inversion algorithm for the two-dimensional ZTEM using MPI. Compared to the serial
algorithm, the parallel algorithm achieved acceleration ratios ranging from 1.74 to 3.19
when the number of processes ranged from three to six.

Hao and colleagues [3] conducted a series of parallel optimizations on the LASG/IAP
Climate System Ocean Model (LICOM 2.1 version), a high-resolution ocean model indepen-
dently developed by the Institute of Atmospheric Physics, Chinese Academy of Sciences.
The optimizations addressed load imbalance, communication optimization, and loop opti-
mization. Additionally, they employed hybrid parallelization using MPI and OpenMP, as
well as asynchronous parallel I/O. The optimized version of LICOM 2.1 achieved more than
two-fold acceleration compared to the original version. In large-scale parallel simulations,
the optimized version of LICOM scaled up to 245,760 processor cores and resolved the wall
time issue during the time integration process.

Yang and coworkers [4] developed site-level gross primary productivity (GPP) using
the GeoMAN model, which incorporates spatio-temporal features and incorporates external
environmental factors, to predict GPP on the Tibetan Plateau. They evaluated the behavior
of four models—random forest (RF), support vector machine (SVM), Deep Belief Network
(DBN), and GeoMAN—to predict GPP for nine flux observation sites on the Tibetan Plateau.
The GeoMAN model outperformed the other models. These findings are valuable for our
understanding of the capability of deep learning models in predicting GPP while aligning
with the fundamental knowledge of related fields.

Wang and coworkers [5] proposed a time series prediction model for landslide dis-
placements using mean-based low-rank autoregressive tensor completion (MLATC). They
first analyzed the reasons for missing landslide displacement data and designed the cor-
responding missing dataset. Then, based on the characteristics and internal correlation
of landslide displacement monitoring data, they introduced the establishment process
of the mean-based low-rank tensor completion prediction model. Finally, they used the
proposed method to complete and predict the random missing and non-random missing
landslide displacement data. The results of the model were consistent with the original
monitoring data and showed good performance in completing and predicting landslide
displacement, providing valuable insights for processing missing data and predicting
landslide displacement.

Cao and coworkers [6] proposed a new method called Dual Encoder Transform
(DualET) for the short-term prediction of photovoltaic (PV) power. The DualET model
contained wavelet transform and sequence decomposition blocks for the extraction of
information features from image and sequence data, respectively, to improve the correlation
of spatial and temporal features. In addition, they proposed a cross-domain attention
module to learn the correlation between temporal features and cloud information, and then
modified the attention module using alternate forms and Fourier transforms to improve its
performance. The model was evaluated on real-world datasets consisting of PV plant data
and satellite images, and it outperformed other models in the prediction of short-term PV
power generation.

Xu and coworkers [7] used the sliding window method and gray relational analysis
to extract features from multi-source real-time monitoring data of landslides in Lishan
County, Hunan Province, China. They applied the K-means algorithm with particle swarm
optimization for clustering and the Apriori algorithm to mine strong correlation rules
between the high-speed deformation process of the landslide and rainfall features. This
approach enabled them to identify short-term deformation patterns and precursors of
disasters. They indicated that the probability of high-speed deformation of this landslide
exceeded 80% when the rainfall occurred within 24 h and the accumulated rainfall in
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7 days was greater than 130.60 mm. By using data mining technology to extract short-term
deformation patterns of landslides, the accuracy and reliability of early warning systems
can be improved.

Du and coworkers [8] analyzed the potential of unsupervised machine learning meth-
ods for submarine landslide prediction and compared the performance of three different
unsupervised machine learning models (K-means, spectral clustering, and hierarchical
clustering) in modeling landslide susceptibility. They selected nine sets of geological factors
as input parameters, which were extracted through field investigations. To estimate the
susceptibility of submarine landslides, all input factors were grouped into three to four
clusters based on data characteristics and environmental variables. The performance of the
models was evaluated using internal indicators (the Calinski–Harabasz index, silhouette
index, and Davies–Bouldin index) and external indicators (existing landslide distribution,
hydrodynamic distribution, and liquefaction distribution) to verify model fit and accuracy.
The results showed that all three models (K-means, spectral clustering, and hierarchical
clustering) performed well in accurately predicting submarine landslides. Spectral clus-
tering was found to be particularly effective in capturing the environmental geological
parameters.

Yang and coworkers [9] proposed an automatic landslide identification method. Their
approach combined deep learning with landslide extraction from remote sensing images,
using a semantic segmentation model to automate the landslide recognition process. They
evaluated the model’s performance using metrics from the semantic segmentation task and
tested three popular semantic segmentation models (U-Net, DeepLabv3+, and PSPNet) with
different backbone networks. The best recognition accuracy of PSPNet was 91.18% mIoU
with the classification network ResNet50 as the backbone network, which proved the deep
learning method is feasible and effective for use in landslide recognition.

Huang and coworkers [10] proposed a named entity recognition (GNNER) method for
geological news based on a bi-directional encoder representation of a converter (BERT) pre-
trained language model. The approach addressed drawbacks of traditional word vectors,
including the fact that they do not effectively represent the contextual semantics and single
extraction effects occur. This approach can also aid the construction of knowledge graphs
of geological news. The method involves embedding words in geological news text using
a BERT pre-training model, with the resulting word vectors being dynamically obtained
and used as input for the model. Next, the word vectors are fed into a bidirectional long-
and short-term memory model for further training to obtain contextual features. Finally,
the model uses conditional random field sequence decoding to extract six entity types.
Through the experiments on the constructed Chinese geological news dataset, the model
achieved an average F1 score of 0.839 and was able to recognize news entities in geological
news better.

Zhang and coworkers [11] proposed an efficient deep-learning-based mineral identi-
fication method, which effectively addressed the limitations of traditional identification
methods that heavily rely on the identification capabilities of the identifier and external
instruments. The accuracy of existing identification methods is often affected by vari-
ous factors, including Mohs hardness, color, picture scale, and especially light intensity.
Deep-learning-based mineral recognition provides a new solution to this problem, not only
saving labor costs but also reducing recognition errors. The authors, using a luminance
equalization algorithm, reduced the impact of light intensity on recognition accuracy. First,
they proposed a new algorithm combining histogram equalization (HE) and Laplace’s
algorithm, used the algorithm to process the luminance of the recognized samples, and
finally used the YOLOv5 model to recognize the samples and implemented a deep learning
mineral recognition method based on luminance equalization.

3. Concluding Remarks

We believe that this book will provide inspiration for researchers who are studying
high-performance computing or AI methods for geosciences. In the future, the research
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proposed in this book could be further optimized to improve its effectiveness and allow it
to be applied in other similar applications.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Qi, Y.; Li, Q.; Zhao, Z.; Zhang, J.; Gao, L.; Yuan, W.; Lu, Z.; Nie, N.; Shang, X.; Tao, S. Heterogeneous Parallel Implementation of
Large-Scale Numerical Simulation of Saint-Venant Equations. Appl. Sci. 2022, 12, 5671. [CrossRef]

2. Wang, M.; Tan, H.; Wang, Y.; Lin, C.; Peng, M. Parallel Computation for Inversion Algorithm of 2D ZTEM. Appl. Sci. 2022, 12, 12664.
[CrossRef]

3. Hao, H.; Jiang, J.; Wang, T.; Liu, H.; Lin, P.; Zhang, Z.; Niu, B. Deep Parallel Optimizations on an LASG/IAP Climate System
Ocean Model and Its Large-Scale Parallelization. Appl. Sci. 2023, 13, 2690. [CrossRef]

4. Yang, Q.; Nie, N.; Wang, Y.; Wu, X.; Liu, W.; Ren, X.; Wang, Z.; Wan, M.; Cao, R. Spatial–Temporal Correlation Considering
Environmental Factor Fusion for Estimating Gross Primary Productivity in Tibetan Grasslands. Appl. Sci. 2023, 13, 6290.
[CrossRef]

5. Wang, C.; Zhao, Y. Time Series Prediction Model of Landslide Displacement Using Mean-Based Low-Rank Autoregressive Tensor
Completion. Appl. Sci. 2023, 13, 5214. [CrossRef]

6. Cao, H.; Yang, J.; Zhao, X.; Yao, T.; Wang, J.; He, H.; Wang, Y. Dual-Encoder Transformer for Short-Term Photovoltaic Power
Prediction Using Satellite Remote-Sensing Data. Appl. Sci. 2023, 13, 1908. [CrossRef]

7. Xu, J.; Bai, D.; He, H.; Luo, J.; Lu, G. Disaster Precursor Identification and Early Warning of the Lishanyuan Landslide Based on
Association Rule Mining. Appl. Sci. 2022, 12, 12836. [CrossRef]

8. Du, X.; Sun, Y.; Song, Y.; Xiu, Z.; Su, Z. Submarine Landslide Susceptibility and Spatial Distribution Using Different Unsupervised
Machine Learning Models. Appl. Sci. 2022, 12, 10544. [CrossRef]

9. Yang, S.; Wang, Y.; Wang, P.; Mu, J.; Jiao, S.; Zhao, X.; Wang, Z.; Wang, K.; Zhu, Y. Automatic Identification of Landslides Based on
Deep Learning. Appl. Sci. 2022, 12, 8153. [CrossRef]

10. Huang, C.; Wang, Y.; Yu, Y.; Hao, Y.; Liu, Y.; Zhao, X. Chinese Named Entity Recognition of Geological News Based on BERT
Model. Appl. Sci. 2022, 12, 7708. [CrossRef]

11. Zhang, J.; Gao, Q.; Luo, H.; Long, T. Mineral Identification Based on Deep Learning Using Image Luminance Equalization. Appl.
Sci. 2022, 12, 7055. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

4



Citation: Qi, Y.; Li, Q.; Zhao, Z.;

Zhang, J.; Gao, L.; Yuan, W.; Lu, Z.;

Nie, N.; Shang, X.; Tao, S.

Heterogeneous Parallel

Implementation of Large-Scale

Numerical Simulation of

Saint-Venant Equations. Appl. Sci.

2022, 12, 5671. https://doi.org/

10.3390/app12115671

Academic Editors: Daniel Dias and

Yuzhu Wang

Received: 25 April 2022

Accepted: 31 May 2022

Published: 2 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Heterogeneous Parallel Implementation of Large-Scale
Numerical Simulation of Saint-Venant Equations
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Abstract: Large-scale floods are one of the major events that impact the national economy and
people’s livelihood every year during the flood season. Predicting the factors of flood evolution is
a worldwide problem. We use the two-dimensional Saint-Venant equations as an example and for
high-performance computing in modelling the flood behavior. Discretization of the two-dimensional
Saint-Venant equations with initial and boundary conditions with the finite difference method in
the explicit leapfrog scheme is carried out. Afterwards, we employed a large-scale heterogeneous
parallel solution on the “SunRising-1” supercomputer system using MPI, OpenMP, Pthread, and
OpenCL runtime libraries. On this basis, we applied communication/calculation overlapping and
the local memory acceleration to optimize the performance. Finally, various performance tests of the
parallel scheme are carried out from different perspectives. We have found this method is efficient
and recommend this approach be used in solving systems of partial differential equations similar to
the Saint-Venant equations.

Keywords: Saint-Venant equations; finite difference method; parallel computing; heterogeneous computing

1. Introduction

Reservoir dams have played a huge role in flood control, water supply, power gen-
eration, etc. [1], and are one of the important components of the hydraulic engineering
system. But if a dam is damaged due to various factors, the consequences are generally
catastrophic. Excessive flooding is one of the natural causes of dam failure. Floods are the
most frequent natural disasters, affecting large numbers of people and agricultural lands,
as well as causing casualties and damage to infrastructure. Increased runoff rates due to
urbanization, prolonged rainfall, and insufficient river capacity are some of the main causes
of flooding. After entering the flood season in 2020, there have been multiple rounds of
heavy rainfall in southern China, resulting in severe floods in many places. As of 9 July
2020, flood disasters had affected 30.2 million people in 27 provinces (district and cities),
with direct economic losses of 61.79 billion yuan. In 2021, Henan, Shanxi, and other places
were also hit by heavy rainstorms. Therefore, understanding the behavior of water flow
in a channel is critical for early flood disaster management and saving lives. The research
direction of this paper is to study the behavior of flood through numerical simulation of
surface water flow, and to perform heterogeneous parallel processing and visualization of
the simulation process.

Mathematical models are scientific or engineering models constructed using math-
ematical logic methods and mathematical language to solve various practical problems.
In hydraulic science, mathematical models are often used to simulate fluids of different
phenomena, and numerical methods are used to control the fluid models. What we use in
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our research is the flood wave propagation dynamics equation, which was first proposed
by Saint-Venant [2], so it is also called the Saint-Venant (SV) equations. It consists of a
continuity equation reflecting the law of conservation of mass and an equation of motion
reflecting the law of conservation of momentum, and is widely used to predict surface flow
parameters such as velocity, depth, or height. Nowadays, they are used to model flows
in a wide variety of physical phenomena, such as overland flow, flooding, dam breaks,
tsunami [3]. SV equation was originally only used to describe one-dimensional surface wa-
ter flow, for two-dimensional, SV equation is derived from the Navier-Stokes equation [4],
and two-dimensional SV equation is often referred to as the shallow water equation(SWE).
Since SV equations are mathematically quasi-linear hyperbolic partial differential equations
(PDE), it is difficult to obtain the analytical solution of SV equations by analytical method.
Therefore, different numerical methods have been proposed to simulate surface water flow.

Long before the advent of computers, some people solved the SV equations through
numerical simulation. Reinaldo and Rene [5] long ago used the explicit MacCormack
time-splitting scheme to establish a mathematical model for solving two-dimensional SV
equations. Two industrial applications at the time are also presented, demonstrating the
validity of the model. Later, Fiedler and Ramirez [6] also used this method to simulate
a discontinuous two-dimensional hydrodynamic surface flow equation (a variant of the
two-dimensional SV equations) with spatially variable properties. The method was devel-
oped to model spatially variable infiltration and microtopography, and can also be used
to model irrigation, tidal flat and wetland cycles, and flooding. With the development of
computers and the improvement of computing performance, more and more people put the
simulation process on the computer. For example, Kamboh [7] et al. also established a math-
ematical model with initial conditions and boundary conditions using two-dimensional
Saint-Venant PDE in order to predict and simulate flood behavior. Next, the corresponding
models are discretized and implemented on MATLAB using the common explicit finite
difference method. The finally generated graph structure can visually see the changes of
each parameter over time. Asier [8] also used the two-dimensional Saint-Venant equation
to simulate precipitation or runoff events, but the method used was the finite volume
method. He developed and compared the following three programming methods: se-
quential, multi-threaded and many-core architectures. The multi-threaded code is written
using OpenMP and the many-core architecture is written using CUDA. He concluded
that the performance of the GPU parallel version using CUDA is strongly affected by
the size of the problem. It is also proposed that combining MPI and GPU methods can
improve computational efficiency and data capacity, but this is not implemented in the
paper. In the field of heterogeneous computing, Ding [9] et al. transplanted, parallelized,
and accelerated the solver of the one-dimensional S-V equation based on MPI and athread
library. The athread library is an accelerated thread library designed for the master-slave
acceleration programming model of the SW26010 processor. They use MPI to realize the
parallelization between the master cores, and use athread to accelerate the slave cores. After
that, optimization methods such as SIMD (Single Instruction Multiple Data) vectorization
and communication/calculation overlapping were carried out. In addition to the above
work, adaptive mesh refinement (AMR) is also an important part of the algorithm perfor-
mance. AMR is generally efficient and effective in treating problems with multiple spatial
and temporal scales. AMR improves the quality of solution on a mesh by refining cells only
in places where a high grid resolution is desired, thereby increasing the memory efficiency
and computation speed [10]. Xin Zhao [11] proposed a 3D volume-of-fluid method based
on the adaptive mesh refinement technique. He introduced projection methods on adaptive
grids to solve the incompressible Navier–Stokes equations. In order to simulate ocean
wave propagation, Michael [12] et al. proposed a method for numerical simulation of
dynamically adaptive problems on adaptive triangular grids with recursive structure. They
used a grid generation process based on recursive bisection of triangles along marked
edges to achieve 2D dynamically adaptive discretization. Kevin and Frank [13] used a
multilayer lattice Boltzmann model (LBM) to solve the 3D wind-driven shallow water flow
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problems, and studied the performance of the parallel LBM for the multilayer shallow water
equations on the CPU-based high performance computing environment using OpenMP.
It is concluded that explicit loop control with cache optimization in LBM provides better
performance than the implicit loop control on execution time, speedup, and efficiency as the
number of processors increases. There are many more applications of the two-dimensional
Saint-Venant equation, such as [14–17].

There are already some frameworks for solving PED using GPUs or accelerated de-
vices. For example, Bhadke [18] et al. used CUDA to develop a 3D-CFD computing
framework for the conduction process. They discretized the model into a three-dimensional
grid and solved it using an alternating-direction implicit method. In summary, although
many different studies have modeled the SV equation (e.g., [19,20]), and there are discus-
sions on parallelization and performance optimization, there are few studies on large-scale
Saint-Venant systems. Therefore, this research aims to build a two-dimensional simple
finite difference model and use MPI, OpenMP, Pthread, and OpenCL for heterogeneous
large-scale processing. In this work, we first introduce the governing equation and cal-
culation method of SV equations. Then we introduce the basic implementation of our
heterogeneous massively parallel computing. Finally, the parallel strategy is optimized and
the performance is tested.

2. Governing Equations and Numerical Method

The governing equations used in our research are as follows:

∂z
∂t

+
∂(zu)

∂x
+
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∂y

= 0 (1)
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Equation (1) is derived from the conservation of mass, and Equations (2) and (3) are
derived from the conservation of momentum in the x and y directions, respectively. Among
them, z refers to the elevation (depth or height) of the water flow in the open channel,
u and v are the water velocity in the x and y directions respectively, t is the time, g is the
acceleration of gravity. S0 and Sf refer to the water surface gradient and frictional resistance.
In order to use this system of equations more conveniently in the computer, we need to
use the product rule of differentiation to further simplify the system of equations. We then
discretize the equations using an explicit finite difference scheme, where the time and space
derivatives are respectively discretized by the following expressions:
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This format is the central difference format, in which the central difference in time is
also called the leapfrog format, and its advantage is that it can enhance the stability of the
calculation. In this way, the discretized equations become the following form:
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Then, after simply shifting the term and removing the denominator, the three variables
z, u, and v can be solved iteratively. As shown in Figure 1, each time an iteration value is
calculated, the results of the previous two iterations are used, which is also a feature of the
leapfrog format. Because of this, the stability of the calculation process is strengthened.

Figure 1. The value used by the iterative process.

It is also because of the solution value range shown in Figure 1 that the boundary
of the grid will be exceeded when calculating the edge value. At this time, we need
to introduce boundary conditions and add a circle of ghost cells around the standard
grid. Balzano [21] gives a general review of existing wetting and drying (WD) methods.
He gave expressions for boundary conditions at moving boundaries, which can be solved
on fixed grids, adaptive grids and moving grids based on natural coordinates. Moreover,
a number of solutions or models for dealing with boundary problems based on this method
are introduced. Finally, a discussion on implicit finite-difference models is carried out.
Heniche [22] et al. also gave specific boundary conditions based on the WD model. They
proposed two kinds of boundary conditions: solid boundary and open boundary. Specific
conditions must be imposed when dealing with solid boundaries, while open boundaries
are used to specify flow regimes. The basic idea of the boundary conditions we use is
to bounce incoming particles toward the boundary back into the fluid [23]. In order to
achieve this boundary condition, it is only necessary to make the boundary value equal to
the edge value.

After that, showing the initial conditions, we consider using a rectangular area with
no bottom stress and wind stress. The water surface at each location is stationary and has a
height of 10 and the flow is zero, i.e., z = 10 m, u = 0 m/s, v = 0 m/s. Then a flood wave
with a maximum height of 1 m is generated at the entrance of the water to simulate the
flow behavior of fluid in a single channel, through the formula:

z = e−
(a−a0)

2+(b−b0)
2

k2

In this formula, a0 and b0 are the location of the highest flood wave in the x and y
directions respectively, where a0 = 25, b0 = 1 is taken to locate the center of the entrance. k is
the initial height of the water wave, where k = 10 m. As for a and b, they are the coordinates
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of each grid node on the coordinate axis. This will get the highest value when a = a0, b = b0.
The initial state of a small-scale simulation process is shown in Figure 2.

Figure 2. Schematic of a small-scale initial state.

3. Heterogeneous Implementation

First of all, our heterogeneous implementation works together through the CPU and
accelerator. The CPU also participates in the calculation process while being responsible
for communication, while the accelerator is only responsible for calculation. After that,
we used MPI, OpenMP, Pthread, and OpenCL runtime libraries. Among them, MPI is a
parallel program interface based on multiple processes with good performance, which is
used in this paper for point-to-point communication between nodes. Both OpenMP and
Pthread are thread-parallel interfaces. OpenMP is a portable API that is very convenient
to use because it does not bind the program to a pre-set thread. But because of this, we
cannot use OpenMP to manage specific threads individually. So, we introduced Pthread.
The Pthread API handles most of the behavior required by threads. These behaviors
include creating and terminating threads, waiting for threads to complete, and managing
interactions between threads. Combining the advantages and disadvantages between the
two, we use OpenMP when performing simple thread parallelism, and use Pthread when
more complex thread operations are required. OpenCL is the first open, free standard for
general-purpose parallel programming for heterogeneous systems. It is widely used in
parallel processors such as multi-core CPUs, GPUs [24–26], accelerators, etc. We are here to
process the accelerator and take care of some of the computing tasks, through OpenCL.

A heterogeneous parallel framework can be used across multiple platforms, but dif-
ferent clusters are equipped with different equipment, and the program will be changed
accordingly. This experiment is performed on the domestic advanced computing system
“SunRising-1”. The specific experimental environment is shown in Table 1.

Table 1. SunRising-1 experimental environment.

Hard/Software
Environment

Name Details/Version

Hard environment
(single node) CPU 32-core domestic × 86 processor × 1

RAM 16 GB DDR4 × 8

Acceleration device
Domestic GPGPU accelerator × 4,

16 GB HBM2 VRAM,
bandwidth 1 TB/s

Network InfiniBand HDR network,
Fat-tree topology, 200 Gbps
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Table 1. Cont.

Hard/Software
Environment

Name Details/Version

Software environment MPI Openmpi 4.0.4
gcc/g++ 4.8.5
OpenMP 3.1
Pthread NPTL 2.17

OpenCL

Platform: AMD Accelerated Parallel
Processing

Driver version: 2982.0
OpenCL Standard: OpenCL 2.0

Figure 3 shows the schematic of our heterogeneous parallel framework. We first
initialize MPI and use MPI_Type_contiguous() to create an MPI datatype by replicating
an existing datatype (for example, MPI_INT, MPI_DOUBLE, etc.). These replications are
created into contiguous locations, resulting in a contiguous datatype created. The created
datatype is then committed using MPI_Type_commit(), before it can be used for commu-
nication. After entering the process parallelism, routinely initialize OpenCL, including
obtaining the platform, device, creating context, etc. The next step is to implement the
initial value conditions described in Section 2, and we call this process “initialization”.
The cluster used in our experiment is equipped with 32 CPU cores and four accelerators for
a single node, so for the initialization process, we enable four threads to simultaneously
call OpenCL to start the kernel function. This process does not involve complicated op-
erations, so OpenMP is used. Thread parallelism ends after the kernel function finishes
running. After that the calculation process starts. In this process, both the CPU and the
accelerator participate in the calculation, so we divided two thread groups, one of which
contains four threads to perform operations similar to the previous process to start the
kernel function, and the other is to enable the remaining 28 threads participate in the
computation. The grouping and waiting of threads are involved here, so Pthread are used.
After an iterative calculation is over, because of the existence of ghost cells, communi-
cation is required next. Because of the large scale of computation, a node may need to
exchange data bidirectionally with four adjacent nodes (maybe 2 or 3 times for nodes at the
edge). We use four MPI_Sendrecv() functions to implement this communication operation.
MPI_Sendrecv() combines sending a message to a destination and receiving a message from
another process into one call. Figure 4 shows how MPI_Sendrecv() in the four directions
exchanges data. For the intermediate nodes, each node must send data to the surrounding
adjacent nodes, and also receive data from the surrounding adjacent nodes, which can be
easily implemented by calling MPI_Sendrecv().

Figure 3. Schematic of the heterogeneous parallel framework.
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Figure 4. Schematic of data exchange.

When dealing with nodes at edges, we introduce MPI_PROC_NULL, a constant that
represents a dummy MPI process rank. This allows all MPI processes to issue the same
calls regardless of their position.

After the communication ends, a complete iteration is over, and after that, the iterative
loop continues until the set time is reached. Then we output the result and perform post-
processing to generate a picture, such as the visualization of the output of the z value
shown in Figure 5 (Only the parts with numerical changes are displayed). In this way, you
can intuitively see the change of the water level in the river channel with time.

Figure 5. Simulation of water surface elevation at different time steps.

4. Performance Optimization and Testing

In this section, we will optimize the current parallel strategy and test its performance.

4.1. Overlap Computation and Communication

Scaling MPI applications on large high performance computing systems requires
efficient communication patterns. Whenever possible, the application needs to overlap
communication and computation to hide the communication latency. For the current
parallel model, we consider implementing an efficient ghost cell exchange mechanism
using non-blocking, peer-to-peer communication (mainly the MPI_Isend() and MPI_Irecv()
functions), and domain decomposition of the grid.
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First, we must confirm how to decompose the domain, that is, to confirm which part
of the value to be calculated does not involve MPI communication. The grid we use is
composed of real values inside and a dummy value of an outer circle of ghost cells, where
real values are computed and dummy values are communicated. It can be seen from
Figure 1 that the value of the ghost cell is only used when calculating the value of the
outermost circle of the actual value. Therefore, as shown in Figure 6, we can come up with a
solution for the domain decomposition. We call the outermost circle of the actual value the
“halo cell”, and the part of the actual value that removes the halo is called the “inner filed”.

Figure 6. Schematic of domain decomposition.

The general iterative scheme is summarized as follows:

1. Copy data of the ghost cells to send buffers;
2. Ghost cell exchange with Isend/Irecv calls;
3. Compute (part 1): Update the inner field of the domain;
4. Call MPI_Waitall();
5. Copy data from receive buffers to the ghost cells;
6. Compute (part 2): Update the halo cells;
7. Repeat.

After completing the calculation and communication overlap, we performed a com-
parison test with the previous version, as shown in Table 2. The calculation amount of a
single node is 200 iterations, and the grid size in each node is 2564 × 4100.

Table 2. Comparison test before and after overlap.

Version Calculating Time (s) Sync Time (s) Total Time (s)

Before 240.61 6 246.61
After 189 5 194

In this test, we performed a total of 200 iterations, and the time obtained after the
average of five times was tested. The total time simply refers to the time to execute
200 iterations, excluding the previous initialization and subsequent output time. The sync
time is the time to wait with MPI_Barrier() before the end of each iteration. It can be seen
that by overlapping communication and calculation, the communication process is hidden
in the calculation process, which can greatly reduce the time consumption, and even when
the calculation amount is large enough, the communication time can be completely ignored.

Afterwards, we conducted extended tests on this overlapped version. We tested
the parallel performance of the program by continuously increasing the number of pro-
cesses while keeping the amount of computation allocated by each process basically the
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same. The test results are shown in the Figure 7. This test uses four nodes (processes)
as the benchmark, and these four nodes are arranged in a 2 × 2 manner. The number
of iterations and grid size are the same as before. It can be seen that the overlapping of
communication computing can not only shorten the computing time but also maintain a
good parallel efficiency.

Figure 7. Extended test performance graph for overlapped version.

4.2. Work Group Optimization

First of all, a few definitions are briefly described. Each OpenCL device has one or more
compute units, and each compute unit is composed of one or more processing elements.
The basic unit of executing a kernel in OpenCL is called a work-item, and a collection of
several work-items is called a work-group. A work-group executes on a single compute unit.
The work-items in a given work-group execute concurrently on the processing elements of
a single compute unit. There are two ways to specify the number of work-groups. In the
explicit model a programmer defines the total number of work-items to execute in parallel
and also how the work-items are divided among work-groups. In the implicit model,
a programmer specifies only the total number of work-items to execute in parallel, and
the division into work-groups is managed by the OpenCL implementation. We used the
implicit model before, and the optimization method is to use the explicit model. In order to
choose an appropriate work-group size, we conducted tests and the results are shown in
the Figure 8. Finally, the default maximum work-group size is different for different devices.
For example, the device limit we use is 256, which is the same as most devices. At this point,
in the kernel code, add __attribute__((amdgpu_flat_work_group_size(<min>,<max>)))
after the kernel function so that the kernel can be launched on when the working group is
greater than 256. It can be seen from the test results that the best results can be achieved
when the work-group size is 256.
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Figure 8. Tests for different workgroup sizes.

4.3. Using Local Memory

Using Local Memory is related to OpenCL’s memory model. The Local Memory is
the memory belonging to a certain computing unit. The host cannot see or operate on this
part of the memory. This area allows all processing elements inside the computing unit
to read and write, and these processing elements can share it. This also means that this
is a memory area associated with a workgroup and can only be accessed by work items
in that workgroup. Local Memory is the smallest unit that can be shared in the OpenCL
memory structure, so making full use of Local Memory is a deep and very effective
optimization method.

After fully understanding the OpenCL memory structure and the importance of using
Local Memory, we start from the storage and calculation methods of the current parallel
scheme, and continue to use the topology in the previous section to design the Local
Memory usage scheme of this program. When this program uses the OpenCL device
for calculation, it transfers the custom structure array of three iterations to the Global
Memory. The first two iterations store the data that has been calculated before, and the
third iteration is to store the data that will be calculated. Here, resmat (result matrix) is
used to represent the array of the three iterations, resmat[0–2] represents the three iterations
respectively, resmat[0] represents the first iteration, and so on to obtain the representation of
the other two iterations. By analyzing the calculation formula after the simple deformation
of Equations (4)–(6), the frequency of use of resmat[1] has reached 64 times, resmat[0]
has 5 times, and resmat[2] also has 5 times. This means that to complete an iterative
calculation, the Global Memory needs to be accessed at least 74 times in a single device,
and frequent reading and writing of the Global Memory is bound to affect the performance
of the program. Therefore, the optimization idea for this program is to store the data in
resmat[1], which has the highest frequency of accessing the Global Memory, into the Local
Memory of each work group according to the topology.

There is also a prerequisite for Local Memory optimization, that is, the size of Local
Memory is limited, and the increase in read rate is achieved by sacrificing capacity. In order
to ensure that the envisaged solution can be executed, we obtain the device information
through the clGetDeviceInfo function, and by setting the cl_device_info parameter to
CL_DEVICE_LOCAL_MEM_SIZE, the size of the Local Memory area can be obtained.
In the experimental environment used by this program, the size of the Local Memory is
65,536 bytes (B), which is 64 kilobytes (KB). It can be seen that this capacity is very limited,
so it is necessary to control the size of the data passed into the Local Memory.

After there are hardware limitations, go back to the Local Memory usage scheme
of this program. In order to use a piece of continuous data to facilitate writing to Local
Memory and the limitation of Local Memory space, only resmat[1] is considered here, and
resmat[0] and resmat[2] are no longer considered. Since the topology in the previous section
is used, and grid nodes and work items are in one-to-one correspondence, a work group
only undertakes the computing task of a row of 256 grid nodes. When calculating this part
of the task, in addition to the data of the corresponding position in resmat[1], the data of
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the four adjacent positions of each grid node will be used, which can be seen in Figure 1.
Therefore, processing similar to ghost cell is required, that is, the grid data of 3 × 258 scale
is transferred to Local Memory. Each grid node consists of three double-type variables z, u,
and v. Each double-type occupies 8 bytes in the system environment. Therefore, the space
occupied by grid data of 3 × 258 scale is 18,576 B, which satisfies the limitations of OpenCL
devices.

After the scheme is designed, it is the specific implementation. First, a new parameter
with the __local qualifier must be added to the definition of the kernel function. This
parameter is usually a pointer to a memory space, and then clSetKernelArg is used in the
main function to set the parameter. At the same time, the specified size must be the size
allocated by the __local parameter, and the parameter value must be NULL, because the
host cannot access the Local Memory, so the data in the Global Memory can only be copied
to the Local Memory in the kernel function. A set of index functions provided by OpenCL
is used to determine the position of a work item in its own work group and the position
in the global, so that the data in this position in the Global Memory can be copied to the
corresponding position in the Local Memory. Finally, after the above processing methods,
the original resmat[1] accesses the Global Memory 64 times into a single Global Memory
access and 64 local memory accesses. The test results of the final program are shown in
Figure 9.

Figure 9. Extended test performance graph for overlapped version.

It can be seen that the running time is greatly reduced after using Local Memory,
especially in the case of 2 × 2 nodes, the running time is optimized to 1/2 of the original.
At the same time, the rate of decline in parallel efficiency has slightly increased. This is
because the calculation time has been optimized, and there will be no major changes as
the number of computing nodes increases. However, the original synchronization time,
thread opening, and other times remain basically unchanged compared with those before
optimization, and will also change with the increase of computing nodes. As the number
of computing nodes increases, the proportion of computing time in the total time becomes
lower, which affects the parallel efficiency, so the increase in the speed of parallel efficiency
decline is within reasonable expectations.

After that, we further tested the optimization scheme. In the current scheme, the local
memory usage size is 18,576 B, and a large part of the space is still unused compared to
the limit of 65,536 B. In this solution, the size of the working group determines the amount
of Local Memory usage. Therefore, we combined two optimization methods for testing.
We started with 128 work items and increased in units of 128 to test the performance of
the program under different work group sizes and using different sizes of Local Memory.
The results are shown in Table 3.
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Table 3. Comparison of test results for different workgroup sizes.

Workgroup Size Use Local Memory Size (B) Test Results (s)

128 9360 84.36
256 18,576 83.85
384 27,792 84.27
512 37,008 84.64
640 46,224 84.16
768 55,440 84.30
896 64,656 84.30

1024 73,872 Error

As can be seen from the table, in the case of 1024 work items, an error is reported
because the size of the Local Memory used exceeds the limit of 65,536 B. In addition, the rest
of the results are not very different. In OpenCL, logically all threads are parallel, but in
reality, not all threads can execute at the same time from a hardware perspective, but
multiple thread groups are scheduled through the hardware’s own scheduling algorithm.
The thread group is the smallest execution unit that is scheduled in the acceleration device
defined by each hardware manufacturer. For example, on the NVIDIA CUDA platform, this
thread group is called warp and consists of 32 threads, and on the AMD platform and in
this lab environment, they are called wavefronts and consist of 64 threads. How many such
thread groups can be executed at the same time is determined by the number or size of the
Local Memory, cache, registers, and SIMD (Single Instruction, Multiple Data) instruction
set of the computing unit. Therefore, under large-scale computing tasks, the total number
of tasks executed at the same time is roughly the same. Therefore, it can be concluded that
the size of the work group has little effect on the final result when the computing scale is
large and the computing tasks are close to saturation.

Finally, we also conduct further tests on the NVIDIA platform to verify the conclusions,
and the test results are shown in Table 4. This test was carried out on a single-node
NVIDIA GeForce RTX 3090 platform. Due to the memory limitation of the platform,
the grid node size of this test was 32 × 1536, and 100,000 iterations were calculated and
the time was counted. It can be seen that the size of the workgroup does not affect the
final result on the NVIDIA platform. Here, the NVIDIA 3090 graphics card has been
tested to find that its Local Memory limit is 49,152 B, and when the workgroup size is 640
and the Local Memory size is 46,224 B, the reason for still reporting an error is that the
CL_INVALID_WORK_GROUP_SIZE error in OpenCL is triggered, that is the maximum
workgroup size of the OpenCL device is exceeded.

Table 4. Comparison test results of different workgroup sizes under the NVIDIA platform.

Workgroup Size Use Local Memory Size (B) Test Results (s)

128 9360 37.11
256 18,576 37.37
384 27,792 37.75
512 37,008 36.33
640 46,224 Error

4.4. Heterogeneous Parallel Performance Testing

First, let us take a look at the performance of heterogeneous parallelism without any
optimization. In the charts in this section, the bar charts represent time and the line charts
represent parallel efficiency. Only weak scaling tests are performed here, as shown in
Figure 10. Because the performance of the weak extension test is not good and the parallel
efficiency declines too fast, this paper does not perform multiple tests and strong extension
tests on this version. After analysis, it is found that a small calculation scale is used here, as
mentioned above, such problems are greatly affected by the problem size. Then we scaled
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up and performed the optimizations mentioned in the previous section. Figures 11 and 12
are the results of the weak and strong scaling test after optimization.

Figure 10. Unoptimized heterogeneous parallel weak scaling test.

Figure 11. Optimized heterogeneous parallel weak scaling test.

Figure 12. Optimized heterogeneous parallel strong scaling test.
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These tests were performed on the same scale as the previous overlap optimization.
It can be seen that this version of the weak scaling test can still have good parallel efficiency
when the calculation time is greatly reduced. The performance of the strong scaling test
is not good, because the calculation time is optimized and decreases with the number of
nodes, while the synchronization time increases with the increase of computing nodes. This
leads to a lower proportion of computing time in the total time, which affects the parallel
efficiency. So, the increase in the rate of parallel efficiency decline is reasonably expected.

After that, the total scale is expanded to obtain better parallel efficiency. This time, the
scale under 2 × 2 nodes is 10,244 × 16,388, and the scale under 16 × 16 nodes is 1284 × 2052.
The test results are shown in Figure 13, it can be seen that the parallel efficiency is improved
after the total scale is enlarged. In order to further obtain better parallel efficiency, the
calculation scale can continue to be scaled up, but it does not make practical sense to do so.

Figure 13. Optimized heterogeneous parallel strong scaling test. In the first section, we mentioned
that Bhadke et al. also proposed a computing framework for solving PDE using GPU. However,
according to our calculation method of parallel efficiency, the parallel efficiency calculated according
to the speedup results provided by them is not ideal. For example, the speedup ratio calculated
based on the grid size of 1000 (10 × 10 × 10) in their article, the speedup ratio also increases with the
increase of the grid size, but the parallel efficiency is only below 30%.

4.5. Computational Time Comparison Tests

In this section, we conduct various performance comparison tests for CPU and accel-
erator respectively.

4.5.1. CPU Single-Core and Multi-Core Comparison

The first is to test the acceleration performance of the CPU using Pthread compared
to the single-core serial mode. In our program, Pthread is used to launch 28 threads to
be responsible for some calculations, and its acceleration performance is shown in the
Figure 14. The horizontal axis is the calculation scale. We first fix the length to expand
the width, and then fix the width to expand the length. It can be seen that no matter what
the expansion is, the speedup is stable at around 3. Therefore, using Pthread can not only
achieve more complex thread operations, but also obtain stable acceleration effects.

18



Appl. Sci. 2022, 12, 5671

Figure 14. Single-core CPU vs multi-core CPU comparison chart.

4.5.2. CPU and Accelerators Comparison

We then compared CPU and accelerators that perform computations simultaneously.
Because the cluster used in our experiment is equipped with 32 CPU cores and 4 accelera-
tors for a single node, we did two sets of tests, one is to compare a single 28-thread CPU
with a single accelerator under the same scale, and the other is to compare four accelera-
tors with a single 28-thread CPU under the same scale. Figures 15 and 16 are the result
graphs of the above two tests. It can be seen that the acceleration effect of the accelera-
tor is very obvious, which is why a good parallel solution must use GPU or accelerator.
Heterogeneous computing can make full use of the performance of CPUs and acceleration
devices, reflecting that heterogeneous computing will be the future development direction
of parallel computing.

Figure 15. Single CPU vs. single accelerator comparison chart.
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Figure 16. Single CPU vs. 4 accelerators comparison chart.

5. Conclusions

In this work, two-dimensional Saint-Venant equations were implemented by using the
leapfrog-style finite difference method for the purpose of studying flood behavior. Large-
scale heterogeneous parallel solution is implemented using MPI, OpenMP, Pthread, and
OpenCL runtime libraries. The heterogeneous strategy is optimized by overlapping com-
munication calculation, setting up work groups, etc., and performance tests from various
perspectives are also carried out. Finally, a large-scale heterogeneous parallel solution for
2D SV equations with good performance is obtained. In the future, we hope that our work
can become a large-scale heterogeneous parallel solution framework capable of solving
SV equations -like PDE. For example, the heat conduction equation as an important PDE
should also be able to use our computational framework. It describes how the temperature
in a region changes with time, and like the Saint-Venant equation, it is difficult to obtain
analytical solutions, and numerical methods are usually used to obtain numerical solu-
tions. There are also some other problems that may also be able to use our computational
framework, such as phase transitions, elasticity, electrical potential, etc. The purpose of
our current research is to propose a massively heterogeneous parallel framework based on
Saint-Venant’s equations in domestic advanced computing systems. Therefore, a simple
model is used to facilitate heterogeneous parallel implementation. In the future work, we
will consider more complex and more types of models to simulate various actual situations
(such as floods, tsunamis, dam failures, etc.).
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Abstract: ZTEM refers to the Z-axis tipper electromagnetic method. The ZTEM method is an airborne
magnetotelluric sounding method based on the difference in rocks’ resistivity using the native
electromagnetic field. The method is effective in exploring large-scale structures when the ground is
fluctuant. The paper introduces the inversion algorithm of 2D ZTEM named the conjugate gradient
method. This method, which avoids solving the Jacobi matrix, is very effective but not effective
enough when the model is divided into a big grid. This study can perform further computation
using parallel computation and then receive the processed data. We compare the results of the serial
algorithm with the result of the parallel algorithm, which proves that the parallel algorithm is correct.
When the number of processes is between three and six, the speedup ratio is between 1.74 and 3.19. It
improves the effectiveness of the parallel algorithm of 2D ZTEM.

Keywords: ZTEM; 2D forward modeling; inversion; parallel algorithm; tipper

1. Introduction

The ZTEM (Z-axis tipper electromagnetic method) method is a native electromagnetic
field exploration method. The ZTEM method is developed based on the MT. The abbre-
viation of magnetotelluric is MT. We can collect magnetic data in a helicopter using the
ZTEM method. The method has special advantages in mineral deposit exploration and
environmental exploration [1–3]. We need to spend a great deal of time collecting MT data
on the ground when the MT method is applied to explore the area. If we can collect data in
a helicopter, we can save more time and money. It is very difficult to collect data on the
electric field, but tipper data are available from a helicopter. The tipper is the ratio of the
vertical magnetic field and horizontal magnetic field.

With the development of this instrument, MT data processing technology has matured.
The ZTEM method became possible. Domestic and foreign researchers have conducted
research on the ZTEM inversion. Xu Zhibo performed research on 2D ZTEM inversion [4],
Li ziqiang performed research on 3D ZTEM [5], Gu performed research on a parallel
algorithm of 3D MT inversion [6], Holtham conducted research on 3D ZTEM inversion [7],
and Sasaki conducted research on 3D ZTEM [8]. The research on the parallel algorithm
of 2D ZTEM inversion is limited, so it is essential to perform research on the parallel
algorithm of 2D ZTEM inversion. Two-dimensional conjugate gradient inversion is an
effective method. The model is divided into m columns and n rows. When the number
is large, more computation time is required. The model is divided into 400 × 400 in this
paper, and the run time is 9804 s. We need to develop a parallel algorithm to solve the
problem. First, we introduce the parallel algorithm.

The rest of this paper is organized as follows. Section 2 introduces 2D modeling
and inversion. Section 3 introduces the MPI technology and how to realize the parallel
algorithm. Section 4 shows the results and analysis of the parallel algorithm. Section 5
summarizes this paper and proposes an outlook for future work.
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2. 2D ZTEM Forward Modeling and Inversion

2.1. ZTEM Forward Modeling

According to the convention of the 2D ZTEM problem, the earth is regarded as a Half
space conductor (z ≥ 0) and the insulated air layer is above the earth. The electromagnetic
field source is above the ground (z = −j). The ZTEM vertical field is collected in different
positions using the MT method, and the horizontal field is the same as in the MT method.

(1) Math-physical model

The Maxwell equation differential form is expressed as:

∇×E= iωμ0H (1)

∇×H = σE (2)

Usually, a Descartes rectangular coordinate system is used. The origin of the coordinate
is on the ground, the z-axis is straight down, and the y-axis is horizontal. E is the electric
field, H is the magnetic field, μ0 is the magnetic conductivity, σ is the conductivity, and ω is
the angular frequency. There are two polarization models in Maxwell equations.

We set the height of the helicopter as h, and the positive z-axis is down to the earth in
the coordinate system. The tipper T is as follows:

Hz = TzxHx + TzyHy (3)

Because the Hz is only in the TE mode, Equation (3) is simplified as:

Hz = TzyHy (4)

(2) The finite differential method is used to solve the 2D ZTEM forward model problem

We use the finite differential method to determine the 2D ZTEM forward modeling
problem. The main work of the forward problem is to solve the partial differential equation.
We set the boundary condition of the equation, and we can obtain the result of the problem.

Kv = s (5)

K is the coefficient matrix. v is the magnetic field. s is the right vector of the equation.
We solve the equation and obtain the magnetic field. Finally, we can obtain the tipper.

2.2. 2D Inversion Modeling

The forward model is as follows:

d = F(m) + e (6)

d is the data vector, m is the model vector, e is the error vector, and F is the forward
function [9–11].

The data vector d =
[
d1, d2, · · · , dN]T , di is the tipper in an observation point. The

model vector is m =
[
m1, m2, · · · , mM]T . The number of the grid is M, and mj is the

resistivity of the unit.
The objective function is as follows:

ψ(m) = (d − F(m))TV−1(d − F(m)) + λmT LT Lm (7)

λ is the regularization parameter; V is the variance of error vector e; the matrix L is
the Laplace operator. The first item is the data-fitting difference, and the second item is the
model-smoothing item [12–14].

Because a great deal of time is spent computing the Jacobi matrix, in order to save run
time, the non-linear conjugate gradient inversion algorithm avoids computing the Jacobi
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matrix. It computes the product of the Jacobi matrix (or the Jacobi transpose matrix) and
a vector x. We need to perform two pseudo-forwards and then obtain ATV−1e and Ap.
Figure 1 shows the flow chart of inversion.

ψ

α α

Figure 1. The flow chart of inversion.

This requires a great deal of time to compute the conjugate of the object function
g = −2ATV−1e + 2λLT Lm and f = Ap. When we obtain the value of ATV−1e and Ap [15],
we can obtain the step length α and update the model m = m + αp.

3. Parallel Algorithm

3.1. MPI Technology

We can realize data casting, sending, receiving, and synchronizing. The MPI supports
several data types [16], including complex. The MPI program is one program, but every
process can perform different computations. Every process has an ID, and we can allocate
tasks to every process by ID.

The variable’s name is the same, but the values of the variables in different processes
can be different. If the processes want to share the data, they need to communicate with
each other.
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3.2. Parallel Algorithm of ZTEM Inversion

The algorithm needs to perform the calculation many times. A calculation has three
parts, namely, solving the equation forward (obtaining the value of T), the first pseudo-
forward solution to the equation of inversion (obtaining the value of Aty), and the second
pseudo-forward solution to the equation of inversion (obtaining the value of Ap). We
analyzed the algorithms of forward and inversion and found that solving the equation is
the main work and costs a large proportion of the running time. As with six frequencies,
when the frequency is different, we can obtain the k, and k is also different. K is in the
equation kv = s. In order to obtain the new m, we need to solve the equation 18 times in
an iteration process. When there are three processes in the algorithm, every process needs
to solve the equation six times. The process needs to solve the equation 18 times in the
serial algorithm. The process in the parallel program needs to do less work than the serial
program, so the parallel program needs less time to execute the inversion algorithm than
the serial program. Therefore, the parallel efficiency is higher [17].

The six frequencies are freq(1) . . . freq(6) 400, 200, 100, 50, 20, and 10 Hz. When the
frequency is higher than other frequencies, solving the equation needs less time. Two kinds
of processes exist in the algorithm. One is the main process and the other is the subprocess.
The 0 process is the main process. It owns the global data, distributes the work, sends
the data, receives the data, and writes the result files. The subprocesses receive data from
the 0 process, perform the work, and send the result to the 0 process. When there are
three processes in the parallel program, the 0 process is the main process and the first and
second processes are the subprocesses. The 0 process also needs to perform the work in the
algorithm. We will introduce the main procedure.

(1) MPI_INIT(), In the MPI environment. The main process reads the file, obtains the
frequencies, models the information, and observes the data. MPI_Bcast() is the main
process, which broadcasts the data to the other processes. The beginning resistivity of
the object model is set as the background resistivity.

(2) In Table 1, the allocated frequencies and process ID information are shown. Every
process needs to solve the equation of the relevant frequencies separately. We obtain
the apparent Tipper of the observed point after solving the forward equation. We
obtain the ATV−1e (the symbol is named aty_mpi in the program). In MPI_recv(), the
main process obtains the moderestm_all and aty_all of other processes. Aty_all has
six vectors of different frequencyies. Aty is the sum of six vectors. Mode_restm_all
has six modrestm_mpi, and the sequence is 1, 2, 3, 4, 5, and 6. Then, we obtain the
modrestm to continue computing.

Table 1. The allocated frequencies.

Process ID The Frequency

0 freq(1), freq(2)
1 freq(3), freq(4)
2 freq(5), freq(6)

In MPI_Bcast(), the main process broadcasts the data, including m and Aty, to the
other processes.

(3) After computing the value of object function ψ, the main process can obtain the rms. If
rms is less than 1.5, we proceed to step 4; otherwise, we compute the second pseudo-
forward equation. Every process needs to perform computing separately. Process can
obtain the Ap_mpi. MPI_recv(), and the main process receives Ap_mpi from the other
processes. The process puts it together and obtains the value of Ap_all. Ap_all has six
Ap_mpi, of which the order is 1, 2, 3, 4, 5, and 6. We obtain the Ap. In MPI_Bcast(),
the main process broadcasts Ap to the subprocesses, and we obtain the value of step
length α. We can obtain the new model m = m + αp, go to step 2.
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(4) The main process writes the m data in the result file. In MPI_FINALIZE(), we finish
the parallel environment. The flow chart of the parallel computing of 2D inversion is
shown in Figure 2.

α α

 
Figure 2. The flow chart of parallel computing for 2D magnetotelluric.
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3.3. Computing Environment

The program is developed in the environment as shown in Table 2.

Table 2. Development environment.

OS: Win10 Develop language: fortran

CPU: intel core i7 2.9 GHz
support 8 processes Compiler: visual studio 2019

Memory: 16 GB Parallel environment: oneAPI HPC

4. Results

4.1. Two Low Resistivity Targets Model

The depth of the object rock is 350 m from the ground, and both of the objects are
300 m × 350 m. The width is 300 m, and the height is 350 m. The background resistivity is
100 Ω·m. The object rock’s resistivity is 10 Ω·m. The distance between the two objects is
900 m. Hz data are collected in the air above the horizon. The height is 100 m. Hy data are
collected on the ground. The size of the model’s grid is 400 × 400, and the observed points
are from point 1 to point 70 on the ground. The six frequencies range from 400 Hz to 10 Hz.
We obtain the forward result including the tipper’s real part and imaginary part from the
parallel program.

In Figure 3, the horizontal axis is in the point position, and we choose points 12, 14, 16
. . . 68, and 70 to draw the figure. When the frequency is 50 Hz, we set the result of the real
part’s computation to o and set the result of the real part’s parallel computation to +; the
result is the same. We set the result of the imaginary part’s computation to ∇, and set the
result of the imaginary part’s parallel computation to *; the results are the same.

Figure 3. Forward result figure.

We set 5% of the forward data as the random error. We add the random error to the
forward data and obtain the synthetic data. We take the synthetic data as the collected
data and perform inversion computation. When the rms is less than 1.5, we stop the
inversion and obtain the inversion result. The color bar value indicates the resistivity.
The background resistivity is 100 Ω·m. The object rocks’ resistivity is 10 Ω·m. We can
determine that the program’s result shows two object rocks‘ positions correctly, and the
value of resistivity is approximately 10 Ω·m in the figure.

Figure 4 shows the inversion figure of parallel computation.
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Figure 4. Inversion figure.

4.2. Proving the Validity of the Program

We analyze the serial program and find that the program calculates the equation of
different frequencies separately, so the parallel algorithm distributes the work to every
process and receives a result from every process. The parallel calculation result is the same
as the result of the serial algorithm. The study compares the forward result of the two
algorithms in Figure 3, and the data are the same. Figure 4 is the inversion result. We can
observe that the experiment results show the object rocks’ positions, sizes, and resistivity
values correctly, so it proves the validity of the algorithm.

4.3. Parallel Efficiency

In order to evaluate the efficiency of the parallel program for different nodes, we
calculate parallel speedup and parallel efficiency. Parallel speedup is the time of serial
program/the time of parallel for N processes; parallel efficiency is the parallel speedup/the
number of processes N. Table 3 shows the statistics of the time for the algorithm of 2D
ZTEM forward modeling and inversion.

Table 3. The statistics of the time for the algorithm.

The Mode of
Program

The Amount
of Processes

The Amount of
the Frequency
Distributed for

Process

The
Running
Time of

Program (s)

Parallel
Speedup

Parallel
Efficiency

Serial
program 1 6 9804 empty empty

Parallel 3 2, 2, 2 5632 1.74 58%
program 6 1, 1, 1, 1, 1, 1 3069 3.19 53.2%

We can observe that the efficiency of the three processes is higher than the efficiency
of the six processes in Table 2. The speedup changes and the efficiency decreases when
the number of processes in the experiment is six. This is because the higher the number
of processes, the more time exchanging data the processes need. Every process needs
to perform computation. The computation of higher frequencies needs less time and
the computation of lower frequencies needs more time. The process that performs high-
frequency computation needs to wait for the process that performs the low-frequency
computation. When the number of processes is six, the efficiency is lower than when the
number is three. We will perform further study on the parallel algorithm.

5. Conclusions and Future Work

The computation of 2D ZTEM requires a great deal of time, so determining how to
save the running time is key to this problem. We found that the parallel method can
solve the problem. This study designed the parallel algorithm for 2D ZTEM forward and
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inversion in windows os. The experiment proved that the algorithm is correct and efficient.
We will perform further study for 3D ZTEM forward and inversion based on the study.

Future work will mainly include two aspects: (1) We will optimize the algorithm
with openMP and MPI mixed programming by performing an experiment, recording the
running time, and calculating the efficiency of the mixed programming. Furthermore,
(2) We will design the parallel algorithm for 3D ZTEM inversion.
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Abstract: This paper proposes a series of parallel optimizations on a high-resolution ocean model,
the LASG/IAP Climate System Ocean Model (LICOM), which was independently developed by the
Institute of Atmospheric Physics of the Chinese Academy of Sciences. The version of LICOM that we
used was LICOM 2.1. In order to improve the parallel performance of LICOM, a series of parallel
optimization methods were applied. We optimized the parallelization scheme to tackle the problem
of load imbalance. Some communication optimizations were implemented, including data packing,
the application of the least communication algorithm, and the replacement of communications
with calculations. Furthermore, for the calculation procedures, we implemented some mature
optimizations and expanded functions in a loop. Additionally, a hybrid of MPI and OpenMP, as well
as an asynchronous parallel IO, was used. In this work, the optimized version of LICOM 2.1 was able
to achieve a speedup of more than two times compared with the original code. The parallelization
scheme optimization and the communication optimization produced considerable improvement
in performance in the large-scale parallelization. Meanwhile, the newly optimized LICOM could
scale up to 245,760 processor cores. However, for the original version, there was no speedup when
scaled up to over 10,000 processor cores. Additionally, the problem of jumpy wall time during the
time integration process was also tackled with this optimization. Finally, we conducted a practical
simulation from 1993 to 2007 by using the optimized version of LICOM 2.1. The results showed that
the mesoscale vortex was well simulated by the model.

Keywords: LICOM; meteorological model; parallel optimization

1. Introduction

At present, changes in the global climate and ecological environment have become
some of the most important scientific problems. The ocean, as a vital part of the global
climate system, has become a heated topic of research for scientists. Ocean models have
considerably developed and improved since 1969, when they were developed [1]. Now,
there are various kinds of global ocean models. HYCOM [2], NEMO [3], MOM [4], and
LICOM [5] are some global ocean models that are used for research and production.
Among them, MOM, HYCOM, and NEMO represent ocean models that were developed
in Europe and the USA. LICOM was developed by scientists from IAP-CAS [6]. LICOM
is widely used in the area of climate simulation and prediction, as well as the area of the
numerical simulation and prediction of air–sea coupling. Different editions of LICOM
were used for the ocean components of three coupled air–sea models in the Sixth Coupled
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Model Intercomparison Project (CMIP6) [7,8], which included the Flexible Global Ocean–
Atmosphere–Land System model version 3 [9] with a finite-volume atmospheric model
(FGOALS-f3) [10], the Flexible Global Ocean–Atmosphere–Land System model version 3
with a grid-point atmospheric model (CAS FGOALS-g3) [11], and the Chinese Academy of
Sciences Earth System Model (CAS-ESM) [12]. LICOM is an important tool for investigating
and forecasting ocean circulation and its mechanisms. Meanwhile, as a vital part of
climate system models (CSMs) and Earth system model (ESMs) [13], LICOM’s performance
may considerably affect climate change simulations [14,15]. As the resolution increased,
the enormous computing, communication, and input/output (IO) became significant
scientific and engineering challenges for scientists [16]. It will take either more time or
more computing resources to run models. Widely used in many areas, including material
science [17], electrochemistry [18], and meteorology, high-performance computing has
become a very powerful tool in scientific research [19]. Due to the time constraints of
meteorological simulation software, parallel optimization in high-performance computing
is considerably important for models. Most meteorological systems suffer from the issues
of low simulation speed and the inability to utilize large-scale machines. Some work
on optimizing meteorological simulating systems has been done by researchers to tackle
these issues. Optimizations were conducted on NEMO [20]. The overall performance
was improved by 31%. The Princeton ocean model (POM) [21] was transplanted into
Sunway TaihuLight [22], a very powerful supercomputer. The new edition, swPOM, was
2.8 times faster than it was on conventional supercomputers. It could be scaled up to over
250,000 cores [23]. Meanwhile, in addition to oceanic models, researchers have performed
optimizations on some atmospheric models, such as IAP-AGCM [24]. The optimized
code scaled up to 196,608 CPU cores, attaining a speed of 11.1 simulation years per day
(SYPD) at a high resolution of 25 km [25]. In this study, in order to improve the simulation
speed of LICOM, we implemented a series of optimizations and achieved a considerable
speedup in comparison with the original version. The fully optimized edition of LICOM
was twice as fast as the original edition. The performance experiments were conducted
on the ”Era”, ”Tianhe II”, and ”Tianhe III” supercomputers. Additionally, although we
performed optimizations on GPUs with OpenACC [26], CUDA [27], and HIP [28], the CPU
version is still widely used. For instance, many machines, such as ”Tianhe III”, are still
pure CPU machines. Moreover, since the CPU version of LICOM is used as the ocean
component of various coupled Earth system models, it is necessary to deeply optimize the
CPU version.

The rest of this paper is organized as follows. The following section introduces LICOM
and its control flow, along with the parallel and communication algorithm. In Section 3, the
detailed optimizations that we implemented on LICOM are illustrated. Section 4 describes
the experimental setups and the performance of the optimized model. Finally, Section 5
draws conclusions concerning our optimization work on LICOM.

2. The LICOM Model

LICOM is used to solve the Navier–Stokes equations. An ocean circulation model
can simulate ocean temperature, salinity, velocity, and sea surface height under certain
initial and boundary conditions. Meanwhile, the results of simulations can be used as
the lower boundary conditions of atmospheric models and sea ice models. In addition,
they can provide boundary conditions for regional ocean models. In addition, the results
are capable of providing information on marine environment variables with an equably
distributed space and continuous time in order to cover the shortages in the currently
uneven observation data. This is beneficial for understanding the physical mechanisms of
oceanographic processes. According to the original N-S equations, LICOM uses a finite-
difference discrete model equation to ensure the conservation of energy and volume that
are transferred during a discrete process. Since there are considerable differences in the
vertical direction during the processes of marine stratification and mixing, a method with
different layers is used to solve the problem. LICOM uses sea surface fluctuation with a free
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surface, including a surface gravity wave with a high speed and a Rossby wave with a low
speed. In order to reduce the calculations, the model splits the surface wave mode and uses
smaller time steps for integration, while it uses larger time steps for models that describe the
vertical structure. During the process of integration, the interactions between the two time
steps are kept. This method is called “the decomposition and interaction of models” [29].
The calculation of the barotropic model integral is considerably reduced through this
decomposition. There are some procedures that cannot be captured by LICOM or by other
ocean models, such as the procedure of turbulence. It is necessary to create processes of
parameterization to describe these model-invisible procedures to realize their impacts. A
low-resolution ocean model contains mesoscale vortex parameterization. However, a high-
resolution ocean model (less than 10 km) can recognize mesoscale vortexes. Thus, there is
no need for parameterization. Currently, LICOM has reached resolution levels of 10 km
and even higher. It is capable of recognizing mesoscale vortexes and nicely simulating
vortexes and their impacts. High-resolution ocean models use a corrected barotropic and
baroclinic decomposition algorithm. Meanwhile, an improved double-adjustable and sticky
disjunction diffusion scheme can be employed in the horizontal direction in the momentum
equation and thermohaline equation. Therefore, mesoscale vortexes can be better simulated.
The main control flow of LICOM is shown in Figure 1. The major processes in the integral
loop include barotropic, baroclinic, and thermohaline processes, among others, and the
Euler forward or leapfrog scheme is used.

LICOM Initialization

Forcing Fields,  Preparation of 
Momentum,Thermohaline initial,etc.

Barotropic & Baroclinic process

Thermohaline process, including 
advective, short wave penetration, 

vertical & vortex mixing, etc.

Timing, Data storage, Restarting 
fields

Finalization

LICO
M

Control Procedure

Process & 
time

Grid, terrian, 
inits & forcing

READYT

READYC

BAROTR

BCLINC

TRACER

Figure 1. The control flow of LICOM.
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LICOM has a variety of choices of output format, including binary files and netcdf. A
binary file can be converted into a netcdf file. Thus, the results can be easily handled and
investigated by using various types of professional software.

LICOM ’s Parallel Scheme

The ocean is discretized into two-dimensional grid points with staggered latitude and
longitude coordinates in the horizontal direction. The latitudinal direction is divided into
imt_global grid points, and the longitudinal direction is divided into jmt_global grid points.
The vertical direction is divided into km layers with the ocean depth as the coordinate.
Thus, the ocean is decomposed into a three-dimensional structure. On this basis, the ocean
grid points are organized into grid blocks. Each grid block contains BLCKX×BLCKY×km
grid points. There is barotropic-mode communication between grid blocks, and there are
mutual pressure and vertical velocity calculations between layers. As shown in Figure 2, the
ocean area is decomposed into �imt_global/BLCKX�×�jmt_global/BLCKY� grid blocks.
In order to achieve a higher efficiency with the difference method, LICOM uses MPI to
parallelize and speed up the calculation. NBLOCKS_CLINIC grid blocks are allocated to
each process and sequentially calculated inside one grid block.

Figure 2. Ocean grid.

There is an independent array for each grid block. The size of the array decreases
as the degree of parallelism increases. Since differential computation requires boundary
values of adjacent grid blocks, frequent boundary communication is necessary. The array
for each grid block is updated according to the array boundaries from two-dimensional
logically adjacent processes. Therefore, the array of each grid block stores the boundary
data of the adjacent grid block, in addition to its own data. The boundary data from other
grid blocks are called the ghost boundary, while its own boundary data are called the real
boundary. LICOM employs an adjustable ghost boundary strategy. The size of the ghost
boundary depends on a specific issue. The blue squares in Figure 2 show the situation
when the ghost equals 2. Setting the ghost to 2 instead of 1 will effectively eliminate
the communication–calculation ratio, since communication is only needed for every two
calculation steps.

Figure 3 illustrates the calculation procedure of a grid point in one iteration step. First,
the two stripes of the ghost boundaries of each of the grid blocks are updated. The real
boundary in grid blocks 1, c, and d is transferred to b and a of grid block 2. Meanwhile,
the real boundary in grid blocks 2, c, and d is transferred to b and a of grid block 1. Then,
the real boundaries are updated. In grid block 1, the grid points are updated from left to
right until b. Meanwhile, in grid block 2, the grid points are updated from right to left
until b. Finally, both grid blocks 1 and 2 update to c.
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Figure 3. Ocean grid boundary communication.

3. Optimization of Parallelization

This section illustrates the series of optimizations that were implemented to speed
up the running of LICOM. The original LICOM was parallelized by using only MPI. We
utilized a hybrid of MPI and OpenMP in an optimized version of LICOM. Algorithm 1
shows an example of the implementation of OpenMP. However, due to the architecture of
the supercomputers, the hybrid of MPI and OpenMP did not achieve good performance
because the utilization of the MPI and OpenMP hybrid had no advantages at small scales.
Thus, this optimization of the hybrid of MPI and OpenMP is only discussed, but is not
included in the description of the performance tests in the following section. In the test on
Tianhe III with a large number of PEs, we used the hybrid of MPI and OpenMP in order to
utilize more PEs.

Algorithm 1: OpenMP implementation

OMP PARALLEL DO PRIVATE (J,I) for J←JSM to JEM do

for I←2 to IMM do

Calculate WKA(I,J,5) and WKA(I,J,6) ;
end

end

3.1. Optimization A: Improving the Parallelization Scheme

We optimized the parallelization scheme of LICOM, as shown in Figure 4. N grid
points were to be allocated to np processors. If N was divisible by np, the best decompo-
sition was to allocate n, which equalled N divided by np, to each processor. However, in
most cases, N was not divisible by np. Thus, in the original scheme, n + 1 grid points were
allocated to each processor from processor No. 0. Here, we set n to �N/np	. For the last
processor, N − (n + 1) ∗ (np − 1) grid points were allocated. In the optimized scheme, n
grid points were allocated to each processor, while the rest of the N − n ∗ np grid points
were evenly allocated to some processors. In this way, the scalability of the model was
considerably improved.

We redesigned the software structure of LICOM to improve the modernization of
the software. Thus, LICOM was more convenient to use. For example, we replaced an
alterable array with a fixed array, used structured data, and extracted important parameters.
Therefore, there is no need to recompile or alter the code for different experiments or
processor distributions.

3.2. Optimization B: Communication Optimization

In order to reduce the time consumed, we optimized the communication procedure.
The method of data packing was employed to improve the communication time. In addition,
the algorithms were improved by replacing communication with calculation.

(I) For a high-latitude area, a one-dimensional horizontal smoothing algorithm needs
to conduct smoothing more than once. Since the times of smoothing on different latitudes
are not the same, the original algorithm conducts smoothing once on each latitude, while
the new algorithm involves just one smoothing and two-dimensional communication at
all latitudes. Algorithms 2 and 3 show the representative code alterations. Algorithm 2
provides the original code, and Algorithm 3 describes the optimized version.
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Figure 4. Optimization of the parallelization scheme.

Algorithm 2: Communication Optimization (I-A)

for J←JST to JMT do

for JJ←1 to NN(j) do

for K←1 to KK do

for I←1 to IMT do

Calculate XS(I);
end

for I←2 to IMM do

Calculate X(I,J,K);
end

end

Boundary Exchange 1D;
end

end

(II) Based on previous test results when using Intel Vtune, the hotspots of LICOM are
the communication functions. Therefore, the optimization of communications is of great
importance. During the process of integration, the least communication algorithm was
employed. Some communications were replaced by adding boundary calculations. It was
beneficial to eliminate communication by adding some calculations. Because of the large
number of PEs used, the total calculation job was divided by the number of PEs, while the
cost of communication was multiplied by the number of PEs. Algorithms 4 and 5 show the
representative code alterations. The original code in Algorithm 4 was optimized into the
code in Algorithm 5 to eliminate the cost of communication.
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Algorithm 3: Communication Optimization (I-B)

for NCY←1 to MAX_NN do

for j←jst to jmt do

if NN(j)≥NCY then

for K←1 to KK do

for I←1 to IMT do

Calculate XS(I);
end

for I←2 to IMM do

Calculate X(I,J,K);
end

end

end

Boundary Exchange 2D;
end

end

Algorithm 4: Communication Optimization (II-A)

for J←JSM to JEM do

for I←2 to IMM do

Calculate UB(I,J), VB(I,J), and H0(I,J) ;
end

end

Exchange boundary ub, vb, and h0 ;
for J←JSM to JEM do

for I←2 to IMM do

Calculate WKA(I,J,1), WKA(I,J,2), and WORK(I,J) ;
end

end

Algorithm 5: Communication Optimization (II-B)

for J←JST to JET do

for I←1 to IMT do

Calculate UB(I,J), VB(I,J), and H0(I,J) ;
end

end

for J←JST to JET do

for I←1 to IMT do

Calculate WKA(I,J,1), WKA(I,J,2), and WORK(I,J) ;
end

end

(III) The grid matching information was obtained via communication in the original
code in Listing 1. In contrast, in the optimized algorithm, it was obtained by conducting
a calculation in Listing 2. Therefore, point-to-point communication was reduced by a
considerable amount.
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Listing 1. Communication Optimization (III-A)

i f ( mytid == 0) then
i _ s t a r t (1 ) = i _ g l o b a l ( 1 )
j _ s t a r t (1 ) = j _ g l o b a l ( 1 )
do n=1 , nproc −1

c a l l mpi_recv ( j _ s t a r t ( n + 1 ) , 1 , mpi_integer , n , tag_1d ,&
mpi_comm_ocn , s ta tus , i e r r )

c a l l mpi_recv ( i _ s t a r t ( n + 1 ) , 1 , mpi_integer , n , tag_2d ,&
mpi_comm_ocn , s ta tus , i e r r )

end do
else

j _ s t a r t ( 1 ) = j _ g l o b a l ( 1 )
i _ s t a r t ( 1 ) = i _ g l o b a l ( 1 )
c a l l mpi_send ( j _ s t a r t ( 1 ) , 1 , mpi_integer , 0 , tag_1d ,&

mpi_comm_ocn , i e r r )
c a l l mpi_send ( i _ s t a r t ( 1 ) , 1 , mpi_integer , 0 , tag_2d ,&

mpi_comm_ocn , i e r r )
end i f

Listing 2. Communication Optimization (III-B)

do i =1 , nproc
i i x =mod( i −1 , nx_proc )
i i y =( i −1− i i x )/ nx_proc
i _ s t a r t ( i )= i i x * ( imt−num_overlap )+1
j _ s t a r t ( i )=3
i f ( i i y /=0) then

do j =1 , i i y
j _ s t a r t ( i )= j _ s t a r t ( i )+ jmt −num_overlap

end do
endif

end do

3.3. Optimization C: Calculation Optimization

We carried out a series of mature optimizing methods, including vectorization, mem-
ory access optimization, instruction optimization, cache optimization, and runtime op-
timization. Thus, we could fully discover the potential performance of stencil calcu-
lation on the CPU cluster, such as by expanding the functions in a loop, as shown in
Algorithms 6 and 7. The original DENS function in Algorithm 6 was expanded in the
optimized version in Algorithm 7 in order to utilize vectorization.
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Algorithm 6: Function Expansion A

for K←1 to KMM1 do

for J←JST to JET do

for I←2 to IMM do

Calculate TUP, SUP, and RHOUP ;
Calling DENS() function during calculation of RHOUP ;

end

end

end

Algorithm 7: Function Expansion B

for K←1 to KMM1 do

for J←JST to JET do

for I←2 to IMM do

Calculate TUP, SUP, and RHOUP ;
Instead of calling the DENS() function, the calculation procedure is
written out in detail ;

end

end

end

3.4. Optimization D: Parallel IO

We also designed an asynchronous parallel IO method. As shown in Figure 5, an
independent node was employed to conduct the IO procedures. A separate communication
group was created for the IO work. When the computing nodes needed to carry out IO
procedures after calculation procedures, the communication group of the computing nodes
collected the data and sent it to the IO node. After receiving all of the data, the IO node
began IO procedures. Meanwhile, the nodes from the computing group could continue
with their calculation procedures instead of waiting for the completion of the IO procedures.
Therefore, the elapsed time for IO was hidden by overlapping the calculations and IO.

Figure 5. Asynchronous parallel IO.
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4. Parallel Performance and Application in Actual Scenarios

Overall, we ran three sets of tests. The setup of the tests is shown in Table 1.

Table 1. Setup of Tests.

No. Description Machine

1 Performance test with three versions of code Era and Tianhe II
2 Scalability test Tianhe III
3 Real scenario test Era

For the first test, we used three versions of the code for comparison. The code versions
were (a) the original LICOM, (b) semi-optimized LICOM, in which optimization methods
B(I), B(III), and C were employed, and (c) fully optimized LICOM. The hardware environ-
ments were the “Era” supercomputer and the “Tianhe II” supercomputer. For the second
test, the fully optimized code was run on the “Tianhe III” supercomputer. For the third
test, the fully optimized code was run on the “Era” supercomputer for a long term in a real
scenario. For all of the tests on the three different hardware platforms, the same test case
with a global resolution of 10 km × 10 km was used. The simulation started from 1993. The
detailed configurations are listed in Table 2. These parameters controlled the run of LICOM
and described the real scenario in our test. An elapsed time of one model day was used as
an indicator for comparison. We ran each particular test at least five times to calculate the
average value. The simulation year per day, as a widely used indicator of running speed,
was calculated from the elapsed time of one model day.

Table 2. Configurations of the test cases.

Module LICOM2.1

Horizontal resolution 0.1◦ (lat) × 0.1◦(lon)
Vertical levels 55 levels
Grid point 3600 × 1683
Advection scheme Shape-preserving [30]
Vertical mixing Canuto [31]
Mesoscale eddy Gent and McWilliams [32]
Horizontal viscosity 3 × 103 m2s−1

Forcing formula and dataset Large and Yeager [33]; COREs

4.1. Performance on Era

The CPU on the computing nodes of Era was an Intel(R) CPU E5-2680V3:2.5GHz.
The operating system was Linux CentOS release 6.4 (Final). The compilers were Intel
composer_xe_2013_sp1.0.080 and Intelmpi 4.1.3.049. Based on the above environment,
we conducted tests using up to 4800 processor cores. Since LICOM is so complicated,
the elapsed time of LICOM when simulating one model day is used as an indicator of
performance. Figure 6 shows the elapsed time and running speed of the three editions
of LICOM, while Figure 7 shows the speedups. The simulation year per day (SYPD) is
usually used to measure the computational performance of models. The speedups for the
three editions of code were calculated separately. The elapsed times for each edition of
code on 1200 PEs were chosen as references. For instance, the speedup of the original code
on 4800 PEs over 1200 PEs was the elapsed time of the original code on 1200 PEs divided by
the elapsed time of the original code on 4800 PEs. The speedup of the fully optimized code
on 4800 PEs over 1200 PEs was the elapsed time of the fully optimized code on 1200 PEs
divided by the elapsed time of the fully optimized code on 4800 PEs. The reason for why
the elapsed times of 1200 PEs were chosen as references was that, with a resolution of
10 km × 10 km, LICOM needed a very large memory space. Thus, we needed more PEs so
that after decomposition, the limited memory space on each PE could meet the demands
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of LICOM. As shown in Figures 6 and 7, the semi-optimized LICOM was much faster
than the original LICOM, but it still suffered from the problem of scalability. However,
the fully optimized LICOM with the optimization of the decomposition scheme showed
considerably good scalability when 4800 processor cores were used. The computing speed
reached 9 model years per day. Additionally, the elapsed times of both the original and semi-
optimized code on 3600 PEs were longer than those on 2400 PEs. This was a non-intuitive
phenomenon. However, for the fully optimized code, there was no similar non-intuitive
phenomenon. We can infer that the problem that caused the non-intuitive phenomenon was
tackled by the optimizations in the fully optimized code. Therefore, the possible reasons
that caused this non-intuitive phenomenon could have been the communication overhead
and load imbalance.
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Figure 6. Elapsed time and speed of LICOM on Era.

4.2. Performance on Tianhe II

Based on the test results on Era, we decided to conduct tests on a larger scale. The hard-
ware environment was Tianhe II. The processor was an Intel Ivy Bridge-E
Xeon E5-2692V2:2.2GHz. The operating system edition was Red Hat Enterprise Linux
Server release 6.5 (Santiago). The compilers were Intel composer_xe_2013_sp1.2.144 and
MPICH 3.1.3. In the above hardware environment, we conducted tests on the same three
code editions. As shown in Figures 8 and 9, the fully optimized LICOM achieves a
good speedup when 9600 and 19,200 processor cores were used. The computing speed
reached 12.6 model years per day, which was twice the speed of the original LICOM.
However, as shown in Figure 9, a non-intuitive phenomenon occurred. The speedup
for the semi-optimized code on 9600 PEs was smaller than that on 4800 PEs. Similarly
to the phenomenon on Era, this may have been due to the communication overhead
and load imbalance. In contrast, the fully optimized code achieved good speedups
on 9600 and 19,200 PEs. This showed that our optimization worked well in improving the
scalability of the code.
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Figure 7. Speedup of LICOM on Era.
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Figure 8. Elapsed time and speed of LICOM on Tianhe II.

42



Appl. Sci. 2023, 13, 2690

1200 2400 4800 9600 19,200

PEs

1

2

3

4

5

6

7

8

S
pe

ed
up

Speedup on Tianhe II

speedup-original
speedup-semi-opt
speedup-opt

Figure 9. Speedup of LICOM on Tianhe II.

4.3. Performance on Tianhe III

We tested the fully optimized LICOM on the prototype system of the Tianhe III
supercomputer. We reached up to 245,760 PEs, which was the summation of the CPU
cores and the Matrix-2000 cores. Figure 10 shows the performance of LICOM on various
numbers of PEs. The speedup in Figure 11 is the running time on each PE count divided by
the running time on 1920 PEs. The reason for why 1920 PEs were chosen as the reference
was that the elapsed time on 960 PEs was too long, which may lead to an abnormal
speedup diagram. The speedup diagram in Figure 11 shows that there is still potential for
optimization, since the speedup fell when more than 61,400 cores were used.

For the speedups on the three supercomputers, we can see that on Era and Tianhe
II, there were still good speedups when 4800 and 19,200 PEs were used. The reason for
why we did not test on more PEs was that we did not get access due to the policy for the
supercomputer. However, on Tianhe III, the speedup was lower when more PEs were
used. This might have been due to the communication overhead. Additionally, on a similar
number of PEs, Era achieved the best speedup. For instance, on 4800 PEs (7680 on Tianhe
III), the speedup for the fully optimized code on the three platforms was about 4.6, 3.9, and
3, respectively. A possible reason might be that Era had the CPU with the best performance.

4.4. Experiment on the Application of LICOM in a Real Scenario

Moreover, we conducted a set of application tests. LICOM was used with
10 km × 10 km as the resolution. CORE-II was employed as a forcing field. The sim-
ulation period was from 1993 to 2007. The output included temperature, salinity, sea
surface height, and the 3D current field. Figure 12 shows the abnormal sea surface height
value (difference from the average value) on 31 December 2007. As can be seen, an eddy
was apparent. Additionally, there was a special difference. The middle image in Figure 12
shows the average number of eddies on every grid point. West and east boundary eddies
often occurred in the southern ocean. There were at least 50 eddies that occurred in some
areas. Therewasis a considerable difference between the structures of the eddies of anti-
cyclones and cyclones, as shown in the bottom image in Figure 12. An anticyclone eddy
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had a sunken center with a temperature increment of 2◦, while a cyclone eddy had a raised
center with a temperature decline of 2◦.
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Figure 12. Output of the LICOM application.

In addition, we compared the results produced by the original code and the fully
optimized code to see whether there were any differences. Figure 13 shows the results of
the sea surface temperature and the differences between the two editions.
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Figure 13. Correctness of simulations.

5. Conclusions

High-resolution general ocean circulation models are also called “eddy-resolving”
ocean circulation models, and they are usually models with resolutions higher than 10 km.
This kind of model is capable of simulating the characteristics of mesoscale eddies and
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their climate effects. Moreover, an “eddy-resolving” ocean model can describe submarine
topography, the land–sea distribution, and the spatial and temporal structure of an ocean’s
west boundary circulation well. Therefore, the development of global “eddy-resolving”
ocean circulation models has been drawing people’s attention in the field of physical
oceanography and climate research.

In this work, we applied several parallel optimization methods on LICOM, including
improvements in the parallelization scheme, communication optimization, the floating-
point performance, the asynchronous IO, hybrid programming of MPI and OpenMP, and
the redesign of the software structure. The performance of the distributed cluster was fully
utilized. The computing speed of the optimized version of LICOM reached 12.6 model years
per day when 19,200 processor cores were used, which was twice that of the original LICOM.
The optimized LICOM could scale up to 245,760 processor cores. However, for the old
version, there would not be much of a speedup when more than 19,200 processor cores were
used. This is a vital improvement thanks to the optimization in this work. As mentioned
in Section 1, swPOM can be scaled up to 250,000 cores. Although it is not appropriate to
simply compare the scalability of different systems on different machines, the results of
our work are around the same level as that of other researchers’ work. We found that the
optimization of communications and the tackling of load imbalance have considerable
benefits in improving the performance of LICOM according to our test results.

In addition, we conducted simulations of a real scenario from 1993 to 2007 by using
the optimized LICOM. The results showed that mesoscale vortexes were well simulated by
the model. In conclusion, our optimization work considerably improved the performance
of LICOM in terms of computing speed and scalability.
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The following abbreviations are used in this manuscript:

IO Input and Output
LICOM LASG/IAP Climate System Ocean Model
LASG State Key Laboratory of Numerical Modeling for Atmospheric Sciences

Geophysical Fluid Dynamics
IAP Institute of Atmospheric Physics
HYCOM Hybrid Coordinate Ocean Model
NEMO Nucleus for the European Modeling of the Ocean
MOM Modular Ocean Model
CMIP6 The Sixth Coupled Model Intercomparison Project
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FGOALS-f3 Flexible Global Ocean–Atmosphere–Land System model version 3 with
a finite-volume atmospheric model

FGOALS-g3 Flexible Global Ocean–Atmosphere–Land System model version 3 with
a grid-point atmospheric model

CAS-ESM Chinese Academy of Sciences Earth System Model
CSM Climate System Model
ESM Earth System Model
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
HIP Heterogeneous Compute Interface for Portability
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Abstract: Gross primary productivity (GPP) is an important indicator in research on carbon cycling
in terrestrial ecosystems. High-accuracy GPP prediction is crucial for ecosystem health and climate
change assessments. We developed a site-level GPP prediction method based on the GeoMAN model,
which was able to extract spatiotemporal features and fuse external environmental factors to predict
GPP on the Tibetan Plateau. We evaluated four models’ behavior—Random Forest (RF), Support
Vector Machine (SVM), Deep Belief Network (DBN), and GeoMAN—in predicting GPP at nine flux
observation sites on the Tibetan Plateau. The GeoMAN model achieved the best results (R2 = 0.870,
RMSE = 0.788 g Cm−2 d−1, MAE = 0.440 g Cm−2 d−1). Distance and vegetation type of the flux sites
influenced GPP prediction, with the latter being more significant. The different grassland vegetation
types exhibited different sensitivity to environmental factors (Ta, PAR, EVI, NDVI, and LSWI) for GPP
prediction. Among them, the site located in the alpine swamp meadow was insensitive to changes
in environmental factors; the GPP prediction accuracy of the site located in the alpine meadow
steppe decreased significantly with the changes in environmental factors; and the GPP prediction
accuracy of the site located in the alpine Kobresia meadow also varied with environmental factor
changes, but to a lesser extent than the former. This study provides a good reference that deep
learning model is able to achieve good accuracy in GPP simulation when considers spatial, temporal,
and environmental factors, and the judgement made by deep learning model conforms to basic
knowledge in the relevant field.

Keywords: deep learning; GeoMAN model; gross primary productivity; attention mechanism;
interdisciplinary

1. Introduction

Gross primary productivity (GPP) is the cumulative sum of organisms produced
by plants absorbing CO2 during photosynthesis [1,2]. It drives the seasonal and annual
variations in atmospheric CO2 concentration, which reflect the production capacity of
terrestrial ecosystems under natural conditions [2,3], and is an important indicator for
assessing ecosystem health and climate change [4]. Therefore, accurate prediction of GPP is
crucial for ecosystem function evaluation and carbon balance research [2].

The common methods for quantifying and predicting GPP are based on processing
observational data and process-based model simulation [2,5]. Observational data include
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data obtained using the eddy covariance (EC) technique, in which GPP values are obtained
by calculating net ecosystem exchange (NEE) from vertical turbulent transport in the
atmosphere under meteorological conditions [5,6], and satellite data, which are commonly
used for GPP estimation due to their stability and sustainability, such as the MODIS GPP
standard product, the VPM model, and the EC-LUE model [2,7–9]. However, satellite
GPP products cannot fully guarantee the reliability of data [10], which affects the accuracy
of the prediction data and introduces uncertainties to related research. Process-based
models mainly investigate and simulate ecological processes occurring in plants and have
extensive theoretical foundations in related fields. However, process-based models have
complex structures and often simulate ideal ecological processes that deviate from actual
conditions [2,11], which affects model accuracy. In addition, plant organisms involve
complex and nonlinear biological and chemical mechanisms [2,12,13], which pose a great
challenge for process-based models to simulate these mechanisms.

Currently, artificial intelligence (AI) algorithms have been widely applied in various
fields because they can fit complex nonlinear mapping relationships between predictive
and driving factors without requiring as many complicated prior assumptions as traditional
models do [14]. Commonly applied machine learning models include Random Forest (RF),
Support Vector Machine (SVM), and neural networks such as Long-Short Term Memory
(LSTM). Tramontana et al. [15], Ichii et al. [16], Wang et al. [17], and other researchers used
AI methods for tree species classification and carbon flux prediction, demonstrating the
potential of AI in ecology. In recent years, Zhang et al. [18], Yuan et al. [19], Yu et al. [20],
Sarkar et al. [4], and others used RF, Convolutional Neural Network (CNN), and Deep
Belief Network (DBN) to predict GPP and achieved good results.

In this work, we constructed a model with spatial–temporal correlation while consider-
ing environmental factor fusion based on the GeoMAN model, a network with a multi-level
attention mechanism developed by Liang et al. [21]. We trained and parameterized the
algorithm with observational data on GPP from various sites and environmental driving
data to extract nonlinear mapping relationships between GPP and multiple environmental
factors. We designed a series of case studies to assess the performance of this deep learning
model, which was based on the attention mechanism, by examining the impacts of distance,
vegetation, and environmental factors on the prediction results across various flux sites.
Compared with the previous applications of AI models in cross-disciplinary fields, our
method not only fully utilizes the high precision of AI in prediction but also considers the
prior knowledge within the relevant field to ensure that the results are both more accurate
and consistent with domain knowledge.

2. Materials and Methods

2.1. Study Area

The flux sites used in this study were distributed in the Tibetan Plateau region, which
is located in the alpine climate zone and has the climatic characteristics of long sunshine
hours, intense sunlight, low temperatures, and scant rainfall. The regional average elevation
exceeds 4000 m, the annual average temperature ranges from −5.75 to 2.57 ◦C, and the
annual average amount of precipitation is 200–600 mm. Alpine grassland covers more than
60% of the surface area of this region [14,22], and it is a distinctive grassland ecosystem
within all alpine areas in the world [23,24].

According to the Atlas of Grassland Resources in China (1:1,000,000) [25], alpine grass-
lands are subdivided into four sub-categories: alpine Kobresia meadow (KO), alpine shrub
meadow (SH), alpine swamp meadow (SW), and alpine meadow steppe (AS) (Figure 1).
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Figure 1. Geographical spread of alpine grasslands across China [14,23]. Black triangles represent the
nine flux sites.

2.2. Data
2.2.1. Flux and Meteorological Data

The flux and meteorological data used in this study were collected from the China
Terrestrial Ecosystem Flux Observation and Research Network (ChinaFLUX) [14,23,26],
the Coordinated Observations and Integrated Research over Arid and Semi-arid China
(COIRAS) [27], and the Heihe Watershed Allied Telemetry Experimental Research (HiWA-
TER) [28], which were observed by nine flux stations distributed in the Tibetan Plateau
region. The data spans from 2003 to 2014. These flux sites exemplify the broadest grassland
ecosystem types, encompassing an extensive range of spatial, ecological, and weather-
related circumstances [23].

Carbon flux data were processed using various methods, including triple coordinate
rotation, Webb–Pearman–Leuning (WPL) correction, and outlier removal. The temporal
resolution of the MODIS data was eight days, while that of temperature and photosyn-
thetically active radiation was half an hour. The eddy covariance system was used to
concurrently record these meteorological data, and any missing values were supplemented
using the technique proposed by Schwalm et al. [29]. The data were then averaged and
summed over eight days [14,23]. Finally, a total of 1421 site observation data points with a
temporal resolution of eight days were obtained. The primary attributes of the nine flux
sites in northern China’s grasslands were shown in Table 1.

Table 1. Primary attributes of the nine flux sites in northern China’s grasslands [14,23].

Site Grassland Type Latitude Longitude Elevation (m) Operation Period

AR
Alpine Kobresia Meadows

38.04◦ N 100.46◦ E 3033 2014
GL 34.35◦ N 100.56◦ E 3980 2007, 2010–2011, and 2013

HBKO 37.61◦ N 101.31◦ E 3148 2003–2004

HBSH Alpine Shrub Meadows 37.67◦ N 101.33◦ E 3293 2003–2012

DXSW Alpine Swamp Meadows 30.47◦ N 91.06◦ E 4286 2009–2010
HBSW 37.61◦ N 101.33◦ E 3160 2004–2008 and 2010–2012

DXST
Alpine Meadow Steppes

30.5◦ N 91.06◦ E 4333 2004–2005, 2007, and
2009–2010

NMC 30.77◦ N 90.96◦ E 4730 2009
ZF 28.36◦ N 86.95◦ E 4293 2009
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2.2.2. Remote Sensing Data

In this research, the remote sensing data utilized comprised the following MODIS
products: normalized difference vegetation index (NDVI), enhanced vegetation index (EVI)
(MOD13A2) [14,30], and surface reflectance (MOD09A1) [14,31]. The spatial resolution of
the NDVI and EVI products was 1000 m and the temporal resolution was 16 days, while
the spatial resolution of the surface reflectance was 500 m and the temporal resolution was
8 days. In order to acquire data with consistent spatial and temporal resolution, the quality
control and data completion approaches proposed by Ma et al. [32] and Xiao et al. [33] were
applied. The surface reflectance data were used to calculate the land surface water index
(LSWI) [34].

2.3. Model
2.3.1. Deep Learning Model

In this study, we constructed our model based on the GeoMAN algorithm developed
by Liang et al. in 2018, which was originally applied to predict air quality [21]. The
GeoMAN algorithm can extract the spatial correlation of input variables and consider the
influence of neighboring sites on the target site’s GPP, which can help estimate the GPP of
grasslands more accurately. The GeoMAN algorithm consists of an encoder and a decoder.
The encoder contains a mechanism to consider the features within a site, a mechanism
to consider the spatial features between sites, and an LSTM model to extract the local
features of the site to be predicted and the spatial features of relevant surrounding sites.
The decoder includes a temporal attention mechanism and an LSTM model, which decode
the feature vector output by the encoder to predict grassland GPP.

There are complex correlations between environmental variables and GPP at each flux
site. The inter-site feature attention mechanism of the GeoMAN algorithm dynamically
captures the association between environmental variables and GPP within the site targeted
for prediction. The inter-site feature attention mechanism for the target flux site is estimated
as follows:

ek,t= vT
0 tan h (W0 [ht−1; st−1 ] + U0[I0

k .] + b0 (1)

In Equation (1), [ht−1; st−1] denotes the concatenation operation in Tensorflow between
ht−1 and st−1, as they are the hidden state and the cell state of the LSTM network at time
t − 1, respectively, which contain the information of the previous t − 1 time steps, thereby
forming the long-term and short-term memory of the LSTM network. I0

k means the k-th
time series at the flux site to be predicted. v0, W0, U0, and b0 are the learnable parameters:
during the learning and training process of the model, they are continuously updated
according to the loss function via backpropagation. The environmental factors selected for
predicting GPP in this study include temperature (Ta), photosynthetically active radiation
(PAR), enhanced vegetation index (EVI), normalized difference vegetation index (NDVI),
and land surface water index (LSWI). The formula for calculating the weighting values
of each factor based on the Geoman model’s inter-site feature attention mechanism is
as follows:

αk,t=
exp(ek,t)

∑T
j=1 exp

(
ej,t

) (2)

In Equation (2), αk,t is the weighting value of the k-th feature (one each for Ta, PAR,
EVI, NDVI, and LSWI) at time t. The sum of the weighting values of all features is 1.
The calculated weighting values are multiplied by the corresponding feature values to
distinguish the importance of different features according to the GeoMAN model.

As shown in Figure 2, the LSTM unit is an important computational unit in the
GeoMAN model. Figure 3 shows the schematic diagram of the LSTM unit. The input at
time t is xt, and ct−1 and ht−1 are the cell state and the hidden state at time t − 1, respectively.
They go through three main stages inside the LSTM unit: first, the forgetting stage, which
selectively forgets the input from the previous time step; second, the selective memory
stage, which selectively remembers the input from the current time step, emphasizing
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important parts while remembering less important parts; and third, the output stage, which
outputs the new hidden state ht and the cell state ct and inputs them to the next time step.

 

Figure 2. The structure of GeoMAN adapted from Liang et al. [21].

 

Figure 3. The structure of LSTM.

55



Appl. Sci. 2023, 13, 6290

After the input data are assigned different weights by the inter-station feature attention
mechanism and updated by the LSTM unit, it is essential to select pertinent time periods for
GPP forecasting. It further enhances the precision of the prediction outcomes. Therefore, the
GeoMAN model introduces a temporal attention mechanism. The formula for calculating
the attention weight of each hidden state at a historical time step is as follows [35]:

ut,τ= vT
d tan h (Wd

[
h′

τ−1; s′τ−1 ] + W′
dht+bd (3)

γt,τ=
exp(ut,τ)

∑T
j=1 exp

(
uj,τ

) (4)

In Equation (3), h′
τ−1 and s′τ−1 are the hidden state and the cell state of the LSTM at

time step τ − 1. τ is the output prediction time step. vd, Wd, Ud, and bd are the learnable
parameters. The output vector of the time attention mechanism at this time step is as
follows [35]:

cτ=
T

∑
t=1

γt,τht (5)

2.3.2. Model Training and Evaluation

The values of each element of the flux site data used in this study have large differences.
To ensure that model learning and training are not affected by this issue, each element of
the data is standardized and normalized using the following formula:

x′=
x − μ

σ
(6)

In Equation (6), μ and σ are the mean and standard deviation of the corresponding
element, respectively. The processed element data have a mean of 0 and a variance of 1,
which prevents the model from being biased toward elements with large value ranges and
ensures the accuracy of the model. After data pre-processing, the learning and training
steps start. Since the observation data from the nine flux sites are not large in scale (a total
of 1421 records), ten-fold cross-validation was applied to make full use of the data and to
ensure the model’s prediction performance on the whole data set. That is, for each fold,
10% of the data were taken as the test set, and the remaining 90% were used for learning
and training. Then, the data used for learning and training were divided into training
and validation sets at a ratio of 9:1, and the data order was randomly shuffled to avoid
over-fitting. The model uses Mean Squared Error (MSE) as the loss function and the Adam
optimizer to update model parameters. This process was repeated ten times to complete
the predictions on all the data and evaluate the results.

This study used three common statistical indicators to evaluate model prediction
accuracy: mean squared error, mean absolute error, and R-squared. The relevant formulas
are as follows:

R2= (
∑n

i=1 (yi − y)
(
y′i − y′

)√
∑n

i=1(yi − y)2
√

∑n
i=1

(
y′i − y′

)2
)2 (7)

RMSE=

√
1
n∑n

i=1

(
y′i − yi

)2 (8)

MAE=
1
n∑n

i=1

∣∣y′i − yi
∣∣ (9)

where y′i and yi are the predicted and observed values of GPP, respectively; y′ and y are the
mean values of y′i and yi, respectively; and n is the number of observation samples.
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3. Case Analysis

In this section, we introduced the basic idea of our experimental design. We tested
the performance of different models on the aggregate data to prove that deep learning
models have highly accurate prediction capabilities. Moreover, considering that the model
predictions must conform to basic ecological knowledge, we were required to conduct
multiple experiments by controlling the spatial distance of flux sites, vegetation types, and
environmental factors.

3.1. Prediction Accuracy with All Factors
3.1.1. Comparison of Model Performance with the Use of All Data

In this analysis, we used the data from all flux sites to train the Random Forest (RF),
Support Vector Machine (SVM), Deep Belief Network (DBN), and GeoMAN models. Ac-
cording to the ten-fold cross-validation results of all the models, the relationship between
predicted GPP and observed GPP is shown in Figure 4 and Table 2. It is obvious that
there are different training effects between the four models. The Random Forest model
has the lowest prediction accuracy, with a prediction RMSE of 0.954 g Cm−2 d−1, MAE
of 0.553 g Cm−2 d−1, and R2 of 0.810; the Deep Belief Network model achieves a certain
improvement in prediction accuracy compared to the Random Forest model, with a predic-
tion RMSE of 0.912 g Cm−2 d−1, MAE of 0.559 g Cm−2 d−1, and R2 of 0.827; the Support
Vector Machine model has similar prediction accuracy to the Deep Belief Network model,
with a prediction RMSE of 0.910 g Cm−2 d−1, MAE of 0.571 g Cm−2 d−1, and R2 of 0.827;
and the GeoMAN model has the highest prediction accuracy with a prediction RMSE of
0.788 g Cm−2 d−1, MAE of 0.440 g Cm−2 d−1, and R2 of 0.870, which indicates that the
GeoMAN model could fit the GPP values of the nine flux sites in the Tibetan Plateau better
than the other three models.

Figure 4. Performance of RF, SVR, DBN, and GeoMAN models in predicting GPP.
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Table 2. Results of the four models with the use of all data.

Model RF SVR DBN GeoMAN

RMSE 0.954 0.910 0.912 0.788
MAE 0.553 0.571 0.559 0.440

R2 0.810 0.827 0.827 0.870

3.1.2. Performance of Single Flux Site

As shown in Figure 1, the distribution map of the nine flux sites indicates that different
sites have different vegetation and climate conditions. Therefore, it is necessary to test the
GPP prediction accuracy of the GeoMAN model at different flux sites.

1. Test site GPP against remaining sites

We took the target flux site as the test data and the remaining sites as the training data,
for a total of nine sites being tested. As shown in Figure 5, there is a large difference in
performance among the different flux sites. The possible reasons for this difference are
(1) some sites have different vegetation types from the target site, and (2) some sites have
different climate conditions from the target site due to their long distance.

Figure 5. Predicted GPP vs. labeled GPP at a single site.

2. Test site GPP against the other sites at distance of 500 km and 100 km
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The distances between each flux site were calculated using the Haversine formula
based on their latitude and longitude. The calculation results are shown in Table 3.

Table 3. Distances between the flux sites (km).

AR DXST DXSW GL HBKO HBSH HBSW NMC ZF

AR / 1202.5 1204.9 410.4 88.7 86.8 90.1 1187.5 1651.6

DXST 1202.5 / 3.3 988.5 1230.1 1235.6 1231.6 31.5 463.7

DXSW 1204.9 3.3 / 990.1 1232.4 1237.8 1233.8 34.7 462.0

GL 410.4 988.5 990.1 / 368.7 375.6 369.1 983.3 1452.1

HBKO 88.7 1230.1 1232.4 368.7 / 6.9 1.8 1217.1 1685.3

HBSH 86.8 1235.6 1237.8 375.6 6.9 / 6.7 1222.44 1690.5

HBSW 90.1 1231.6 1233.8 369.1 1.8 6.7 / 1218.6 1686.8

NMC 1187.5 31.5 34.7 983.3 1217.1 1222.4 1218.6 / 471.4

ZF 1651.6 463.7 462.0 1452.1 1685.3 1690.5 1686.8 471.4 /

Based on the results in Table 3, each target flux site was predicted using the flux sites
within 500 km and 100 km as the training data. There are no flux sites within 100 km of the
GL and ZF sites, so they were not included in the prediction results for sites within 100 km.
The prediction results are shown in Figures 6 and 7. According to the results, the accuracy
of the AR site increases as the range of selected sites decreases, while the DXST, NMC, and
ZF sites show a decreasing trend in accuracy as the range of selected sites decreases. The
overall accuracy of the DXSW site is lower than when using all sites for prediction, but it
shows a rebound trend as the range decreases. According to Table 1, the AR site with an
increasing trend has alpine Kobresia meadow as its vegetation type, while the DXST, NMC,
and ZF sites with a decreasing trend have alpine meadow steppe as their vegetation type.
It can be speculated that the prediction effect of each site is related to the vegetation type of
the other selected sites.

3. Selecting training data according to vegetation type

As shown in Table 1, the training data for each site to be predicted comes from
the other flux sites with the same vegetation type. The final predictions are shown in
Figure 8. It is obvious that selecting the training data based on vegetation type has higher
overall prediction accuracy compared to selecting the training data based on distance (no
corresponding prediction results are available for the HBSH site because it has a different
vegetation type compared to the other flux sites). Next, we combined the results of the
previous three experiments to examine the effect of selecting training data under different
conditions on prediction accuracy, and the combined results are shown in Table 4.

As shown in Table 4, using vegetation type as the training data in the screening mech-
anism is better than using site distance as the training data from an overall perspective.
However, from a single-site perspective, the GL and HBKO sites show a decreasing trend
in accuracy. This is because for the AR and HBKO sites, which have significantly less data
than other sites and share the same vegetation type as the GL site, the training data are
insufficient, leading to a decrease in the prediction accuracy at the GL site. The HBKO site,
which has always maintained an R-squared value above 0.9 from an overall perspective,
does not have much room for accuracy improvement. At the same time, we compared the
prediction results of the training data without screening and with screening for vegetation
type. Although some sites have lower accuracy, the AR site shows a significant improve-
ment in accuracy; as a result, the overall prediction accuracy of the latter method is not
lower than that of the former method. This result shows that increasing the amount of
training data with the same vegetation type can achieve equally good results as increasing
the overall amount of training data.
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Figure 6. Predicted GPP vs. the labeled GPP at a single site (500 km).

Figure 7. Cont.
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Figure 7. Predicted GPP vs. labeled GPP at a single site (100 km).

Figure 8. Predicted GPP vs. labeled GPP at a single site based on vegetation type.
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Table 4. Results comparing all previous experiments.

Site AR DXST DXSW GL HBKO HBSH HBSW NMC ZF

R2 0.663 0.853 0.843 0.879 0.935 0.868 0.856 0.879 0.758
R2 (500 km) 0.827 0.778 0.678 0.889 0.933 0.928 0.898 0.706 0.601
R2 (100 km) 0.877 0.780 0.717 / 0.951 0.883 0.816 0.683 /

R2 (vt) 0.945 0.833 0.751 0.801 0.902 / 0.849 0.902 0.767

Numbers in red indicate that the prediction results for the corresponding site have increased in accuracy compared
to the previous results without setting a distance range; numbers in blue indicate that the results have decreased
in accuracy; and numbers in black indicate that the results have no significant changes.

3.2. Prediction Accuracy with Factor Ablation

In Section 3.1, the effects of vegetation type and distance between the flux sites on GPP
prediction accuracy were then investigated. The training data included temperature (Ta),
photosynthetically active radiation (PAR), enhanced vegetation index (EVI), normalized
difference vegetation index (NDVI), and land surface water index (LSWI). In this analysis,
a feature ablation experiment was conducted to explore the influence of each factor on GPP
prediction accuracy.

3.2.1. Test Site GPP without Ta

In this experiment, all Ta data were deleted from the training data, which were then
trained for each site flux. The final prediction results are shown in Figure 9. Compared
to the prediction results without any feature ablation of the training data, the prediction
accuracy of the AR site is significantly improved, while that of the DXST, DXSW, NMC, and
ZF sites is greatly reduced. The prediction accuracy of the GL, HBKO, HBSH, and HBSW
sites does not change noticeably.

Figure 9. Predicted GPP vs. labeled GPP at a single site (no Ta).
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3.2.2. Test Site GPP without PAR

In this experiment, all Par data were deleted from the training data, which were then
trained for each site flux. The final prediction results are shown in Figure 10. Compared
to the prediction results without any feature ablation of the training data, the prediction
accuracy trends of the sites are similar to those obtained after removing Ta. The prediction
accuracy of the AR site has significantly improved, but not as much as after the removal of
Ta. The prediction accuracy of the DXST, DXSW, NMC, and ZF sites is sharply reduced.
For the DXST site, the decrease is greater than that after removing Ta, whereas the DXSW,
NMC, and ZF sites show some recovery but still perform worse than without any feature
ablation. The prediction accuracy of the GL, HBKO, HBSH, and HBSW sites as a whole is
lower than that after removing Ta, though it does not change appreciably.

Figure 10. Predicted GPP vs. labeled GPP at a single site (no PAR).

3.2.3. Test Site GPP without EVI

In this experiment, all EVI data were deleted from the training data, which were then
trained for each site flux. The final prediction results are shown in Figure 11. Compared
to the prediction results without any feature ablation of the training data, the prediction
accuracy of the AR site is still significantly improved and higher than that after removing
Par but lower than that after removing Ta. The prediction accuracy of the DXST, DXSW,
NMC, and ZF sites is similar to that after the removal of Ta and Par, with a sharp decrease.
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The decrease is larger for the NMC and ZF sites than for the others. The prediction accuracy
of the GL site shows a continuous decline compared to that after the removal of Ta and Par.
The prediction accuracy of the HBKO, HBSH, and HBSW sites does not change noticeably.

Figure 11. Predicted GPP vs. labeled GPP at a single site (no EVI).

3.2.4. Test Site GPP without NDVI

In this experiment, all NDVI data were deleted from the training data, which were then
trained for each site flux. The final prediction results are shown in Figure 12. Compared
to the prediction results without any feature ablation of the training data, the prediction
accuracy of the AR site is significantly improved and higher than that after removing Ta,
Par, and EVI. The prediction accuracy of the DXST, DXSW, and ZF sites decreases, which
is consistent with the results of the previous ablation experiments. For the ZF site, the
prediction accuracy is only better than that after removing Ta and EVI. The NMC site has
an abnormal increase in accuracy. The prediction accuracy of the GL site is higher than that
after removing Ta, Par, and EVI. The prediction accuracy of the HBKO, HBSH, and HBSW
sites does not change noticeably.
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Figure 12. Predicted GPP vs. labeled GPP at a single site (no NDVI).

3.2.5. Test Site GPP without LSWI

In this experiment, all LSWI data were deleted from the training data, which were then
trained for each site flux. The final prediction results are shown in Figure 13. Compared
to the prediction results without any feature ablation of the training data, the prediction
accuracy of the AR site improves significantly and is only lower than that after removing
NDVI. The DXST, DXSW, NMC, and ZF sites have similar prediction accuracy as in the
previous ablation experiments, with a large decrease in accuracy, and the prediction accu-
racy of the ZF site is only higher than that after removing EVI. The GL site shows a slight
decrease in accuracy, while the HBKO, HBSH, and HBSW sites show no obvious changes
in prediction accuracy.

3.2.6. Summary of Factor Ablation Experiments

To observe the influence of different features on the prediction accuracy of each site
more intuitively, we summarized all the feature ablation experiment results, as shown
in Table 5.
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Figure 13. Predicted GPP vs. labeled GPP at a single site (no LSWI).

Table 5. Results of all factor ablation experiments.

Site AR DXST DXSW GL HBKO HBSH HBSW NMC ZF

R2 0.663 0.853 0.843 0.879 0.935 0.868 0.856 0.879 0.758
R2 (no-Ta) 0.899 0.226 0.196 0.777 0.952 0.901 0.879 0.271 0.505

R2

(no-PAR)
0.736 −0.262 0.556 0.718 0.913 0.880 0.905 0.685 0.568

R2

(no-EVI)
0.847 0.326 0.408 0.648 0.943 0.899 0.895 −0.385 0.080

R2 (no-
NDVI)

0.942 0.204 0.428 0.817 0.872 0.916 0.912 0.732 0.515

R2 (no-
LSWI)

0.874 −0.991 0.377 0.702 0.905 0.918 0.884 0.590 0.203

Numbers in red indicate that the prediction results for the corresponding site have increased in accuracy compared
to the previous results without setting a distance range; numbers in blue indicate that the results have decreased
in accuracy; and numbers in black indicate that the results have no significant changes.

Table 5 indicates that removing any feature from the AR site would result in a sig-
nificant improvement in accuracy, with the largest improvement obtained after removing
NDVI. The removal of any feature for the DXST, DXSW, and ZF sites would lead to a
degradation of accuracy, with the DXST site showing a large accuracy decline and the
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lowest accuracy after removing LSWI. The DXSW site also shows a decline in accuracy,
although it is smaller than that of the DXST site. The ZF site has a noticeable decline in
accuracy after removing EVI. The NMC site has an abnormal increase in accuracy after
removing NDVI and a decline after removing other features except NDVI. The GL site
is insensitive to the removal of Ta or NDVI and shows slight decreases in accuracy after
removing other features in addition to Ta and NDVI. The HBKO, HBSH, and HBSW sites
are insensitive to the removal of any feature and have no obvious changes in accuracy.

4. Conclusions

In this work, we used satellite remote sensing data and flux site observation data to
introduce the GeoMAN model based on an encoder–decoder framework with an attention
mechanism for site features, and we obtained good results. According to the experiments
on training data selection based on distance and vegetation type, we found that both
distance and vegetation type had an impact on GPP prediction results, with vegetation
type having a larger impact. Through the feature ablation experiments, we found that
different sites showed sensitivity to different factors, with the site located in the alpine
swamp meadow being insensitive to changes in environmental factors, while the site
located in the alpine meadow steppe showed a different trend since the GPP prediction
accuracy decreased sharply with the changes in environmental factors. The GPP prediction
accuracy of the site located in the alpine Kobresia meadow also varied with environmental
factor changes but was more stable than the other sites. The results of this work show
that deep learning models have high accuracy when simulating site-scale GPP and, to
some extent, reflect the correlation between a target site’s GPP and other sites’ distances,
vegetation types, and meteorological factors. Our work could be used in the prediction of
other factors, for example, AGB (Above Ground Biomass) and RE (Ecosystem Respiration).
However, this work has some limitations. Firstly, we do not consider some factors that
have an influence on productivity in Tibetan grasslands, such as soil development and
drought regimes. Secondly, the data we used in this work only cover a partial area of
the Tibetan Plateau region, and this introduces constraints to regional GPP assessment.
In our future work, we will add more factors to the training data, for example, soil pH,
soil fertility, and soil organic matter (SOM), since high soil pH and a lack of soil fertility
limit plant productivity [36], and SOM is able to enhance alpine grassland productivity by
improving the soil structure, aggregates, and cation-exchange capacity (CEC) under high
aridity conditions [37]. Moreover, ecological factors, such as growing and non-growing
seasons, will be considered, and larger regional-scale data will be used in future training
and learning processes. These improvements will help us perform more accurate and
larger-scale GPP simulations.
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Abstract: Landslide displacement prediction is a challenging research task that can help to reduce
the occurrence of landslide disasters. The frequent occurrence of extreme weather increases the
probability of landslides, and the subsequent increase in the superimposed economic development
level exacerbates disaster losses, emphasizing the importance of landslide prediction. The collection
of landslide monitoring data is the foundation of landslide displacement prediction, but the lack of
various data severely limits the effectiveness of the landslide monitoring system. To address the issue
of missing data during the landslide monitoring process, this paper proposes a time series prediction
model of landslide displacement using mean-based low-rank autoregressive tensor completion
(MLATC). Firstly, the reasons for the missing data of landslide displacement are analyzed, and
the corresponding dataset of missing data is designed. Then, according to the characteristics and
internal correlation of landslide displacement monitoring data, the establishment process of mean-
based low-rank tensor completion prediction model is introduced. Finally, the proposed method
is used to complete and predict the missing data for the random missing and non-random missing
landslide displacement. The results show that the data completion and prediction results of the model
are essentially consistent with the original displacement monitoring data of the landslide, and the
accuracy and precision are relatively high. It shows that the model has good landslide displacement
completion and prediction effects, which can provide a certain reference value for the missing data
processing and landslide displacement prediction.

Keywords: time series; missing data; tensor completion; autoregressive norm; displacement prediction

1. Introduction

Landslides are one of the many common natural disasters in the world [1,2]. A frequent
occurrence of extreme weather increases the likelihood of landslides. Rapid economic and
social development further aggravates the loss of landslide disasters [3,4]. Therefore,
accurate landslide displacement prediction is becoming increasingly important in order to
prevent and mitigate the damage caused by landslides [5]. In the process of automated real-
time monitoring of landslides, data acquisition and transmission are generally performed
using different types of sensors and other electronic devices [6]. Automated monitoring
equipment is always in the open-air environment, and most of them inevitably suffer from
tear, aging, power loss and other phenomena, all of which can lead to missing monitoring
data. In addition, most landslide disasters are located in a relatively harsh geological
environment, such as heavy rainfall, hail, dense fog, electromagnetic interference, etc., and
the installation and deployment of geological hazard monitoring equipment in open fields
will inevitably be affected by the abovementioned harsh environment. Randomness or
prolonged interruptions in the operation of the monitoring device can cause the monitoring
device to fail to properly send monitoring data to the server, which leads to the problem
of missing monitoring time series in the server. Time series forecasting is a valid basis for
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making accurate discriminations. To enhance the accuracy of landslide prediction, it is
necessary to construct a corresponding accurate data completion method.

For the problem of completing and predicting missing landslide data, most traditional
time series models have focused on models such as regression analysis and exponential
smoothing. The problem of incompleteness for missing time series data can be broadly
classified as either deletion or padding. Data deletion is used as anomalous data to remove
some objective abnormal monitoring data, which is primarily used for anomaly detection
and feature analysis, while filling is utilized to find the long-term time series change
pattern of monitoring data and to supplement the missing monitoring data. The main
methods include missing value filling algorithm based on nearest neighbor method, cyclic
neural network, random forest and matrix decomposition, but more data are required for
machine learning training [7,8]. Statistical filling is more effective for data series with less
dimensions that can establish a maximum model, provided that the relationship between
missing eigenvalues and existing eigenvalues can be established through observation.
The main methods of machine learning include missing value filling algorithm based on
the nearest neighbor method, cyclic neural network, and matrix decomposition. Matrix
decomposition can effectively explore the correlation between different time series for
different dimensions of long time series problems. The matrix decomposition method
is used to learn the overall characteristics of the time series matrix, which can be used
to approximate the matrix with time characteristics in low-rank, and then complete the
missing data [9].

Large-scale time series data are always accompanied by the missing problem. There-
fore, the tensor completion method has been introduced into this field to complement
the traditional data completion method based on probability and statistics [10–12]. The
data completion scheme based on simple quantitative statistics has a relatively simple and
efficient processing effect for small datasets and simple regression models, but it is not
feasible for massive data in the era of data explosion. Modern research not only has many
kinds of data variables and long time series, but also requires fast processing speed, high
universality and portability. Multiple variables and long time series can better describe the
complex causal relationship between each other [13,14]. Now, neural network technology
is often used to deal with the above situations and delete the missing data in order to
form a complex intelligent model, but it is not the best solution for missing data because
deletion may strengthen or weaken the connection degree of a causal relationship. Based
on this, scholars have explored the application of tensor decomposition technology to data
completion in multivariate long time series, trying to improve the resolution speed and
data missing problems.

Recent studies have found that low-rank matrices have certain advantages in the
analysis of multivariate long time series data [11,12], including the sequence tensor comple-
tion method [15]. The sequence tensor complement restores the potential tensor from the
sampling structure of the time series, allocates the position of the missing items as needed,
seamlessly integrates the future value of the time series into the framework of the missing
data and improves the data completion accuracy [15]. The low-rank matrix completion
method performs singular spectrum analysis and singular value decomposition on the time
series in order to complete the low-rank completion of the missing data of the time series,
although its calculation is large [16]. Therefore, by adding a time dimension to transform
the status time series into a high-dimensional tensor, the cost of computing complexity is
better solved. This is also in line with the law of human activities, both short and long term
activities, so there are studies using tensors (sensors × 1 day × 24 h) which indicate the
above activity mode [17,18]. The dependency between sensors is preserved, providing a
new feasible scheme for capturing local and global time patterns [16]. More scholars have
combined the autoregressive moving average model with the tensor model to propose the
low-rank matrix autoregressive tensor completion model and have achieved good results
in the completion and prediction of financial time series data [19].
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The mean-based low-rank autoregressive tensor completion mainly includes com-
pleting low-rank matrix decomposition/tensor completion and constructing time series
autoregressive models, as well as processing the missing data with the neighboring data
mean instead of zero before the operation. The low-rank matrix completion model uses the
underlying low-rank structure to recover incomplete matrices (assuming that the long-term
landslide data sequence is incomplete) [20]. Considering that the deformation displace-
ment of landslide has a great correlation with the previous deformation, the autoregressive
model is constructed to represent the deformation law of landslide displacement with
time. The autoregressive regularizer is introduced in the low-rank matrix decomposi-
tion to characterize the temporal dynamics in landslide displacement deformation, and
the learned autoregressive regularizer is implemented to predict the temporal factor ma-
trix, thus realizing the landslide displacement monitoring data completion and predictive
modeling [12].

The purpose of this study is to establish a new method for completing and predicting
landslide displacement data based on MLATC. In this paper, the causes of data loss of
landslide displacement are analyzed. Taking the Shuizhuyuan landslide in the Three Gorges
Reservoir area as an example, the data completion and prediction algorithm are designed
by using MLATC. Then, the landslide displacement data are divided into training set and
test set, and the random missing and non-random missing are selected for corresponding
data completion and prediction. The designed model can achieve an accurate completion
and prediction of landslide displacement. Finally, a comparative analysis with existing
models verifies the effectiveness of the model.

2. Theory and Method

2.1. Reasons and Analysis of Missing Data
2.1.1. Reasons of Missing Data

The reasons for the missing of landslide monitoring data are complex, which may be
caused by the process of data collection, transmission, storage and analysis. Time series
with missing data typically share the same characteristics, such as noisy, incomplete and
abnormally abrupt data in the time series. Missing data in the time series can have a
significant impact on future landslide data analysis, monitoring and early warning. The
data should thus be preprocessed in the process of data analysis, i.e., data cleaning, and the
processing of missing data is one of the key elements in data cleaning.

Data deficiencies in landslide monitoring time series are broadly characterized as
follows. (1) Long time span and large amount of data: Landslide monitoring requires the
data collection of the different factors affecting landslide displacement and deformation,
and the continuous extension of monitoring time leads to the increasing amount of data.
(2) Randomness: The data acquisition and transmission in the landslide monitoring system
are completed automatically by the field equipment, and the components and modules
used for acquisition and transmission are all electronic components. It is highly susceptible
to rainfall, hail, electromagnetic interference and other natural factors, and the above
natural phenomena have randomness. (3) Spatial correlation: The mechanism of landslide
disasters is complex. Corresponding monitoring devices will be deployed in different areas
of the landslide, and there will be some correlation between different sensors. Therefore,
missing data completion needs to consider the spatial correlation among the sensors in the
time series.

Due to the diverse properties of the landslide time series and the different types of
monitoring data, there are missing data in the time series for a variety of causes, which can
be roughly summarized as follows. (1) Data are not available: The landslide monitoring
process is affected by the harsh natural environment. Problems with the power supply of
the equipment and the transient failure of the sensors can lead to a certain period of time or
a certain moment of failure to complete the data acquisition, thus leading to the lack of data.
(2) Data transmission failure: The transmission of landslide monitoring data mainly relies
on a wireless communication network; when the wireless signal is interrupted, the data

73



Appl. Sci. 2023, 13, 5214

for a certain period of time or a certain moment cannot be transmitted to the background
monitoring center. (3) Human interference: When technicians perform data preprocessing
operations, the relevant data may be transmitted incorrectly for various reasons, which
may also lead to data loss.

2.1.2. Types of Missing Data

According to the existing studies, different patterns of missing data occur in different
time series. Considering the actual situation of landslide monitoring, the types of miss-
ing data in landslide monitoring time series can be usually classified into the following
two types.

(1) Random missing (RM): Randomization can occur at any time during the monitoring
process. Such data loss has no regularity or symptoms. The time of data loss is
random and occasional, as shown in Figure 1.

Figure 1. Random missing. The yellow dots represent missing data.

(2) Non-random missing (NM): In the monitoring process, regular or periodic phenomena
such as cloudy weather and signal interruptions may occur with the same probability
in a specific period of time, and such missing data has a certain regularity, as shown
in Figure 2.

Figure 2. Non-random missing. The curves in the green area represent missing data.

2.2. Construction of Low-Rank Tensor Completion Model
2.2.1. Tensor Composition

In the landslide monitoring system, the monitoring data of each on-site monitoring
sensor is collected through the intelligent terminal, and then the on-site monitoring data are
transmitted to the background data monitoring center. Considering that the collected mon-
itoring data include date, time, displacement and other information, it can be considered
that the acquired landslide displacement time series is high-dimensional. For the landslide
time series, this paper constructs a three-dimensional missing tensor T ∈ Rl1,l2,l3 , where l1
is the number of on-site sensors for landslide, l2 is days collected, and l3 is the frequency of
sampling every day. Therefore, the tensor represents the displacement monitoring value of
each sensor at the corresponding time. This paper aims to identify the missing data position
in tensor T and complete data completion and displacement prediction, respectively.
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2.2.2. Construction of Low-Rank Tensor Completion Model

The low-rank matrix completion (LRMC) model uses the low-rank structure at the
bottom to restore the incomplete matrix [21], defining the rank of the tensor X ∈ Rl1,l2,l3 as
rank(X ) and the objective function of low-rank tensor completion as:{

min
X

rank(X )

s.t.XΩ = TΩ
(1)

where X ∈ Rl1,l2,l3 is a tensor to be solved; T ∈ Rl1,l2,l3 is a missing tensor; Ω is the observed
landslide data in T. Then, the tensor kernel norm is replaced by the rank minimum [22],
and the concept of tensor kernel norm is defined:

‖ X ‖∗ =
3

∑
i=1

αi‖ X(i) ‖∗ (2)

where αi is the weighting factor and X(i) is the matrix expanded along the i-th mode for
tensor X . The three pattern expansion matrices of the data tensor X ∈ Rl1,l2,l3 are shown in
Formula (3): ⎧⎪⎪⎨⎪⎪⎩

X(1) ∈ Rl1×(l2×l3)

X(2) ∈ Rl2×(l1×l3)

X(1) ∈ Rl3×(l1×l2)

(3)

where X(1), X(2), X(3) are the module expansion matrix for the staggered sampling of three
types of expansion patterns, respectively.

The features of different orders between data are fused with each other through three
module expansion matrices, effectively ensuring the high-precision completion of data [23].
Below is the singular value decomposition of each pattern expansion matrix [20]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X(1) = Ul1×l1

(1)
∑

l1×l2l3
MT

l2l3×l2l3

X(2) = Vl2×l2

(2)
∑

l2×l1l3
LT

l1l3×l1l3

X(3) = Wl3×l3

(3)
∑

l3×l1l2
KT

l1l2×l1l2

(4)

where U, V and W are left singular matrices; M, L and K are right singular matrices; and Σ
is a diagonal matrix. It is defined as:

∑ (q) = diag
(

σ1
(q), σ2

(q), · · · , σnq
(q)

)
, q = 1, 2, 3 (5)

where nq is the total number of singular values of the q-th module expansion matrix. Based
on the definition of tensor kernel norm, the objective function is:⎧⎪⎨⎪⎩ min

X

3
∑

i=1
αi||X(i)||

s.t.XΩ = TΩ

(6)

where the matrix core norm is defined as [24]:

‖ X ‖∗ =
j

∑
k=1

σk(X) (7)
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where ‖·‖∗ is the kernel norm of X; j is the rank of matrix X; σk is the k-th singular value
of the matrix X in order of size. Because of the existence of interdependent matrix kernel
norm terms, the objective function of low-rank tensor completion is difficult to be solved
by ordinary methods. Alternating direction method of multipliers (ADMM) [23,25] is a
more widely used optimization method for constrained problems in machine learning. It is
an extension of the augmented Lagrange method. ADMM algorithm provides a framework
for solving constrained optimization problems with linear equations, which is convenient
for disassembling the original optimization problem into several relatively solvable sub-
optimization problems for iterative solutions. With continuous research, the low-rank
tensor completion method is further developed. The purpose of reducing the computational
complexity is to use QR decomposition instead of singular value decomposition. The
decomposed low-rank tensor completion reduces the time complexity of the low-rank
tensor completion algorithm. The nonlinear set CG algorithm based on Riemannian
manifold reduces the decomposition of large-scale singular values in low-rank tensor
completion. The tensor completion algorithm based on the Douglas–Rachford separation
technology further considers the existence of the noise of the source data [25], which greatly
enhances the robustness of the model. In addition, low-rank tensor completion also has a
series of characteristics such as fast convergence speed and high computational accuracy.

2.3. Construction of MLATC

The model first transforms time series matrix into a tensor, which is recorded as sign
Q(•), such as Q(Y), transforming matrix Y ∈ RM×N into a third-order tensor of size
M × N × J [12].

2.3.1. Zero-Valued Low-Rank Autoregressive Tensor Completion Core Model

min
X ,Z ,A

‖ X ‖∗ + λ ‖ Z ‖A,X

s.t.

{
X = Q(Z)

PΩ(Z) = PΩ(Y)

(8)

where Y is the input observation matrix, and the matrix size of Z and Y is the same. ‖ X ‖∗
represents the kernel norm of the tensor X , and the calculation method is
‖ X ‖∗ = ∑k ak‖ X(k) ‖∗; ‖ X ‖∗ = ∑

min{M,N}
i=1 σi. σi is the i-th largest singular value

of matrix X; A is the variable to be estimated; λ is a control objective function to balance
the weight parameters of the first and second items. ‖ Z ‖AH represents the autoregressive
norm of matrix Z, whose value is determined by Equation (9).

‖ Z ‖A,H = ∑
m,t

(
zm,t − ∑

i
am,tzm,t−hi

)2

(9)

PΩ(Z) represents the orthogonal projection of matrix Z in the field Ω, and the calculation
formula is:

[PΩ(Z)]m,n =

{
zm,n i f (m, n) ∈ Ω

0 i f (m, n) /∈ Ω
(10)

2.3.2. Mean-Based Low-Rank Autoregressive Tensor Completion

The time series matrix Y ∈ RM×(N=I×J) with partially missing data can be compressed
into a tensor Y ∈ RM×I×J , thus transforming the matrix completion problem into a tensor
completion problem. The traditional tensor completion method assigns the missing data
to zero. Considering the time accumulation and continuity of landslide displacement and
deformation, the average value of the data before and after the missing data are taken
instead of assigning the value to zero when completing the landslide displacement data.
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The specific difference is that the projection of matrix Z in the domain Ω is further required
to obtain a useful non-orthogonal projection:

[
PΩ

(
Z′)]

m,n
′
=

⎧⎨⎩
[PΩ(Z)]m,n i f (m, n) ∈ Ω
1
2t

n+t
∑

i=n−t
[PΩ(Z)]m,i i f (m, n) /∈ Ω (11)

where t is a hyperparameter representing the time sequence length of taking the mean
value, in this case, 10 is taken. The matrix Z′ conforming to such constraints is called a
close orthogonal matrix of Y in the field Ω (recorded as Z′⊥

∼YΩ). For ease of understanding,
Z′ is still noted as Z.

MLATC is a simple linear combination of LRMC and vector auto-regressive (VAR)
models. The first term of the objective function is the LRMC objective function, and
the second term is the VAR objective function. The Lagrange function in matrix form is
constructed according to the optimization problem:

L(X , Z, A) = ∑
k

ak‖ Xk(k) ‖∗ + λ‖ Z ‖A,H +
〈
Q−1(X )− Z,Q−1(τk)

〉
+

ρ

2
‖ Q−1(X )− Z ‖2

F (12)

Then, Question (12) is transformed into argminXk(k)Z,AL(X , Z, A, τk), where X and
Z are variables, and τk is the parameters to be learned. When solving the tensor Xk,
∂L(X ,Z,A)

∂X = 0 should hold. According to Formula (9), since
∂‖Z‖A,H

∂X = 0,
argminX L(X , Z, A) ⇔ argminX L(X , Z, A)− ‖ Z ‖A,H . Thus, X l+1

k can be resolved by
Formula (13):

X l+1
k = arg min

X
ak‖ X(k) ‖∗ +

ρ

2
‖ Q−1(X )− Zl ‖2

F +
〈
Q−1(X )− Zl ,Q−1

(
τl

k

)〉
(13)

In Equation (13), the number l of iterations of the algorithm is expressed, and the VAR
model is used to solve the matrix Z [12,21,26].

The MLATC achieves a more accurate completion of the original data than the zero-
filled algorithm, and then the prediction of landslide displacement data can be completed
on this basis.

3. Case Study

3.1. Experimental Dataset

The displacement monitoring data of the Shuizhuyuan landslide in the Three Gorges
Reservoir area is selected as the time series’ experimental dataset of this study. This time
series is collected from seven GNSS monitoring sensors at the Shuizhuyuan landslide. The
time interval is from 15 July 2017 to 1 December 2021, with a total of 1600 days. The data
monitoring cycle is to obtain one monitoring data at the site every day, so the tensor size of
the constructed dataset is 7 × 1600 × 1 (sensors × time points × day) tensor structure. The
monitoring data are shown in Figure 3.

3.2. Missing Data Processing for Time Series

In order to objectively describe the validity of the prediction model, two different
data missing processing methods, random and non-random, are used to carry out certain
data missing processes on the original time series dataset of landslides by combining the
characteristics and main types of missing landslide monitoring data.

Random missing (RM): Random missing indicates that the landslide monitoring
equipment has sporadic and random data loss in the operation process. The whole time
series is divided according to the proportion of random missing data, with 5%, 10%,
20% and 40% set, respectively, representing different scales and levels of data loss of
monitoring equipment.

Non-random missing (NM): Non-random missing means that the landslide monitoring
equipment has regular equipment failure or regular network interruption during operation.
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The data missing is also simulated according to 5%, 10%, 20% and 40% and compared with
random missing.

The original spatiotemporal landslide displacement dataset is artificially treated with
missing data, and the effectiveness of different models in completing and predicting the
missing data can be objectively evaluated by two different treatments, random as well as
non-random. For landslide disasters with relatively complex genetic mechanisms, there
must be certain trend characteristics and a correlation between different sensors on the
landslide. Therefore, better data recovery and prediction for missing datasets after non-
random missing processing is an important indicator of this model.

Shuizhuyuan landslide is currently in the mean-slow deformation, and the first
1300 days are selected as the training set of the time series, and the last 300 days are

selected as the test set. The MAPE =∑n
i=1

∣∣∣ x̂i−xi
xi

∣∣∣× 100%
n and RMSE =

√
1
n ∑n

i=1 (x̂i − xi)
2

are used to test the accuracy and precision of the algorithm model in terms of predic-
tion. Moreover, the MLATC model is compared with the high-accuracy low-rank tensor
completion (HALRTC) and temporal regularized matrix factorization (TRMF) methods.
The completion and prediction results with a smaller MAPE and RMSE are considered to
be better.

Figure 3. Landslide displacement monitoring data.

3.3. Data Completion and Analysis

The experimental results of four sensors numbered SZY-02, SZY-03, SZY-06 and SZY-
08 are used as examples to introduce the effect of landslide monitoring data completion.
After NM40% processing of the dataset of Shuizhuyuan landslide, the data completion
effect of the completed training set of SZY-08 is shown in Figure 4. In Figure 4, the blue
curve represents the measured data, the yellow dots represent the missing data, the red
curve represents the recovered data, X-axis 0–260, 260–520, 520–780, 780–1040, 1040–1300
represents data recorded for each day and Y-axis is the displacement data. Considering the
large amount of data for each sensor, only SZY-08 shows the complementary results for the
entire time series, and the other sensors are the complementary results for the first 260 days.
Figure 5 shows the complementary effect of the other sensors for the first 260 days.

As can be seen in Figures 4 and 5, in the absence of raw landslide displacement data
for many consecutive days, the data have been completely processed into missing data,
which is challenging for tensor completion. Missing data for several consecutive days has
lost the correlation and trend characteristic information between displacement data. The
prediction results show that the MLATC model still achieves a very good complementary
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effect, which is essentially consistent with the original displacement data and achieves a
good effective data recovery in some completely missing data days. This is very helpful to
analyze the deformation law and deformation trend of the landslide, and also to provide
data reference for understanding the relationship between different deformation areas of
the landslide.

Figure 4. Completion of displacement data of SZY-08 (NM40%). The blue curve represents the
measured data, the yellow dots represent the missing data and the red curve represents the recov-
ered data.

Table 1 shows the evaluation metrics for data completion in the non-random missing
case. The results in Table 1 show that the MLATC model has the best MAPE and RMSE
for four different scenarios of NM5%, NM10%, NM20% and NM40%, indicating that the
MLATC model has a greater improvement in data recovery performance compared to the
HALRTC and TRMF models.

Table 1. Evaluation metrics for data completion in the NM case (MAPE/RMSE).

Model TRMF HALRTC MLATC

NM 5% 11.8542/14.0631 1.3161/3.8315 0.9066/0.9196
NM 10% 10.2681/16.5992 1.1953/3.6270 0.7770/0.8958
NM 20% 11.7050/18.1097 11.7976/25.2256 0.7708/0.9616
NM 40% 13.8412/25.9528 15.0777/38.6958 0.7928/1.0070

From Table 1, it can be concluded that the MLATC model is better than the HALRTC
and TRMF models in terms of completion effect, indicating that the tensor autoregressive
kernel parametrization can effectively replace the rank function, which enables the low-
rank tensor completion model to obtain a more accurate completion effect. In addition,
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the MLATC model introduces an autoregressive norm on the basis of the HALRTC model,
which can make full use of the structural correlation and local trend feature information
between the high-dimensional multivariate time series data, as well as more clearly correlate
the multivariate time series data, which also proves that the addition of the autoregressive
norm can further improve the complementary performance and accuracy of the model in
the low-rank tensor complementary structure. Since the tensor structure well maintains the
structural information of the spatiotemporal data in the time dimension and exploits the
correlation between the daily displacements of different sensors in the time series, the tensor
completion results of the MLATC model are better than those of TRMF in the matrix form.
The experimental results with different missing ratios simultaneously verify this inference
and confirm that effective completion and rolling prediction of displacement monitoring
data can be achieved by using global time series datasets. After analyzing the reasons, the
TRMF model only analyzes and calculates the matrix structure and does not use the time
domain smoothness of multivariate time series and the potential correlation information
between the series in the time and space dimensions. MLATC and HALRTC both use the
tensor structure to complete the time series prediction through the method of quantitative
completion. In particular, the MLATC model introduces the autoregressive norm, which
not only preserves the structural information of the original time series through the tensor
structure, but also makes full use of the correlation and trend characteristic information
between the time series.

(a)

(b)

(c)

Figure 5. Completion of displacement data (NM40%). (a) Point SZY-02; (b) point SZY-03; (c) point
SZY-06. The blue curve represents the measured data, the yellow dots represent the missing data and
the red curve represents the recovered data.

Similarly, the experimental results of the four sensors numbered SZY-08, SZY-02, SZY-
03 and SZY-06 are shown in Figures 6 and 7 after RM 40% processing of the dataset of
the Shuizhuyuan landslide; the data completion performance are shown in Table 2. The
prediction model has a very good recovery effect on missing data and shows a better data
fit in terms of time series trend prediction.
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Figure 6. Completion of the displacement data of SZY-08 (RM40%). The blue curve represents
the measured data, the yellow dots represent the missing data and the red curve represents the
recovered data.

(a)

(b)

(c)

Figure 7. Completion of displacement data (RM40%). (a) Point SZY-02; (b) point SZY-03; (c) point
SZY-06. The blue curve represents the measured data, the yellow dots represent the missing data and
the red curve represents the recovered data.
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Table 2. Evaluation metrics for data completion in the RM case (MAPE/RMSE).

Model TRMF HALRTC MLATC

RM 5% 11.8535/14.0634 0.8087/2.7628 0.7676/0.9880
RM 10% 10.2782/16.5925 0.9729/3.0545 0.7263/1.0339
RM 20% 11.7037/18.1142 11.7976/25.2256 0.9494/1.7648
RM 40% 13.8347/25.9556 15.0777/38.6958 1.4817/1.8889

3.4. Data Prediction and Analysis

In the case of random missing, the time series of the Shuizhuyuan landslide is predicted
for 300 days after data missing processing is performed with a missing ratio of 40%. The
time series of four sensors numbered SZY-02, SZY-03, SZY-06 and SZY-08 are analyzed
separately, and the prediction results are shown in Figure 8. The analysis shows that the
prediction results are ultimately consistent with the original displacement data in the case
of the 40% missing data ratio. The MLATC model realizes well the deformation trend
feature fitting of displacement, and effectively predicts the displacement data.

(a)

(b)

(c)

(d)

Figure 8. Prediction of displacement data (RM40%). (a) Point SZY-02; (b) point SZY-03; (c) point
SZY-06; (d) point SZY-08. The blue curve represents the measured data and the red curve represents
the predicted data.

Similarly, after processing the dataset of the Shuizhuyuan landslide with 40% non-
random missing, the data completion effect is shown in Figure 9. The prediction results of
MLATC model are also ultimately close to the original displacement data. Although there
are some fluctuations in the prediction data, the overall effective fitting of displacement is
still achieved.
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(a)

(b)

(c)

(d)

Figure 9. Prediction of displacement data (NM40%). (a) Point SZY-02; (b) point SZY-03; (c) point
SZY-06; (d) point SZY-08. The blue curve represents the measured data and the red curve represents
the predicted data.

The prediction effect of MLATC model under random and non-random missing is
shown in Tables 3 and 4.

Table 3. Evaluation metrics for data prediction in the RM case (MAPE/RMSE).

Model TRMF HALRTC MLATC

RM5% 39.6023/102.415 15.2062/39.8024 1.1084/3.6774
RM10% 41.1064/106.681 14.8872/39.0352 1.0792/3.6587
RM20% 50.2660/127.588 14.8241/39.1718 1.1120/3.7032
RM40% 83.7915/213.040 13.8827/37.1245 1.1012/3.6665

Table 4. Evaluation metrics for data prediction in the NM case (MAPE/RMSE).

Model TRMF HALRTC MLATC

NM5% 39.4527/102.047 14.9328/38.9776 1.1079/3.6676
NM10% 42.7754/110.746 14.2427/37.2552 1.1037/3.6588
NM20% 49.9770/126.921 12.6523/33.3975 1.1099/3.6785
NM40% 83.7004/212.867 11.5458/30.6736 1.1694/3.8755

By analyzing the prediction results of each model, it can be proven that the prediction
accuracy of the time series model is effectively improved after converting the original time
series into a tensor structure in this method. The prediction accuracy of both HALRTC
model and MLATC model has improved significantly over the prediction accuracy of
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TRMF. This indicates that although the TRMF model captures the global consistency
of the time series, the model mainly acts on the latent layer matrix data, which may
cause the local trend feature information between different sensors to be ignored, thus
affecting the prediction accuracy. Due to the intervention of the autoregressive norm,
the prediction of HALRTC and MLATC models is significantly better than that of TRMF
model, and the MAPE and RMSE accuracy of the models are higher. This demonstrates
that the spatiotemporal monitoring data between displacement sensors in different areas of
the landslide are utilized under the framework of tensor complementary structure, and
the deformation law characteristics of short-term correlation and long-term deformation
consistency in the inherent deformation process of the landslide are fully considered.

4. Discussion

Affected by the complex environment in the field, there will be missing data in the
process of landslide monitoring, which will affect the accurate analysis of landslide displace-
ment. In landslide disaster monitoring, landslide displacement deformation is relatively
complex, and the displacement changes of each deformation area on the landslide are not
the same. From the analysis of landslide local deformation characteristics, there is a certain
correlation between the daily displacement deformation of different monitoring points. In
addition, landslide displacement is a continuous cumulative process, and the landslide dis-
placement occurring in the preceding period will have a certain influence on the landslide
displacement occurring subsequently. Therefore, in order to better realize landslide data
completion and prediction, a novel model based on MLATC method is proposed, and the
RM and NM cases are designed, respectively, so as to verify the validity and reliability of
the designed model. In addition, from the construction of the model, the initial time series
matrix is converted into a third-order tensor structure. Under the assumption that the time
series data satisfy approximate low-rankness, the time series completion and prediction
problem is transformed into low-rank tensor completion and prediction. The tensor-based
completion method fully considers the time series of landslide displacement data, which
not only preserves the correlation between different displacements, but also better fits the
landslide displacement deformation characteristics, making the displacement completion
more accurate.

To verify the effectiveness of the algorithm, a comparative analysis with the existing
RTMF and HALRTC models was performed. The MAPE and RMSE of the MLATC model
are 0.9066, 0.9196 and 0.7676, 0.9880 for the NM5% and RM5% data completion, respectively.
Similarly, the MAPE and RMSE for NM5% and RM5% data prediction are 1.1079, 3.6676
and 1.1084, 3.6774, respectively. The analysis results show that under the conditions of
5%, 10%, 20% and 40% missing data, the data completion and prediction effects of the
MLATC model are better than those of other models, which also confirms the significant
data completion and prediction effects of the MLATC model. In this study, the completion
and prediction model were constructed by considering the intrinsic correlation between
landslide displacement data and using the low-rankness of the completion tensor. Data
completion is an iterative calculation of the landslide displacement time series based on
the entire original data. In order to verify the effectiveness of the data completion model,
random and non-random data missing cases are designed, and time series prediction is
based on the predicted experimental data as the missing value, which also belongs to a
special case of missing data. By default, this part of the experimental data is not involved
in iterative calculations. Therefore, the data prediction for time series is the same as the
method used for data completion. The model is implemented in a rolling prediction method
with cyclic and iterative computation, which leads to a loss in the amount of data in the
prediction case. The MAPE and RMSE values of NM and RM also show that the prediction
effect of the MLATC model is lower than that of data completion, but both can achieve
satisfactory results, which are more in line with the actual needs of landslide monitoring.
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5. Conclusions

A novel method for landslide displacement data completion and prediction based
on MLATC model is proposed for missing landslide displacement data and time series
prediction. The tensor structure in the MLATC model well perpetuates the structural
information of landslide spatiotemporal data in the time dimension, makes full use of the
correlation of landslide displacement time series in different time scales, and solves the
problem of serious data loss caused by the destruction of the original matrix structure.
The data completion and prediction models are implemented in a tensor structure frame-
work, combining VAR models and autoregressive paradigms, and different proportions
of random and non-random missing cases are selected for experimental analysis. The
experimental results of the Shuizhuyuan landslide prove that the model can also achieve
the effective completion of missing data and displacement trend prediction of landslide
displacement time series without the need of complete original landslide displacement
data. The reliability and accuracy of the model data completion and prediction are verified,
further improving the feasibility of the model, which likewise helps to issue timely and
accurate early warning forecast signals to remind people who are in the danger area to
evacuate and avoid casualties and property damage. The method can be extended and
applied in data completion and in the prediction of such landslides.
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Abbreviations

Symbols Description

X ∈ Rn1×···×n1 d-order tensor
X(i) The matrix that expanded along the i-th mode for tensor X
‖ X ‖∗ The kernel norm of the tensor X
Q(•) Transform the time series matrix into a third-order tensor
PΩ(Z) The orthogonal projection of matrix Z in the field Ω
Abbreviations Full Name

MLATC Mean-based Low-rank Autoregressive Tensor Completion
LRMC Low-Rank Matrix Completion
HALRTC High-Accuracy Low-Rank Tensor Completion
TRMF Temporal Regularized Matrix Factorization
ADMM Alternating Direction Method of Multipliers
VAR Vector Auto-Regressive
RM Random Missing
NM Non-random Missing
MAPE Mean Absolute Percentage Error
RMSE Root-Mean-Squared Error
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Abstract: The penetration of photovoltaic (PV) energy has gained a significant increase in recent
years because of its sustainable and clean characteristics. However, the uncertainty of PV power
affected by variable weather poses challenges to an accurate short-term prediction, which is crucial
for reliable power system operation. Existing methods focus on coupling satellite images with
ground measurements to extract features using deep neural networks. However, a flexible predictive
framework capable of handling these two data structures is still not well developed. The spatial and
temporal features are merely concatenated and passed to the following layer of a neural network,
which is incapable of utilizing the correlation between them. Therefore, we propose a novel dual-
encoder transformer (DualET) for short-term PV power prediction. The dual encoders contain wavelet
transform and series decomposition blocks to extract informative features from image and sequence
data, respectively. Moreover, we propose a cross-domain attention module to learn the correlation
between the temporal features and cloud information and modify the attention modules with the
spare form and Fourier transform to improve their performance. The experiments on real-world
datasets, including PV station data and satellite images, show that our model achieves better results
than other models for short-term PV power prediction.

Keywords: transformer; photovoltaic power forecasting; satellite images; deep learning

1. Introduction

Facing the depletion of finite fossil fuels and the demands of carbon emission reduc-
tion, photovoltaic (PV) energy has raised widespread interest in recent years [1,2]. As a
sustainable and flexible distributed energy source, PV power has been a significant part
of the power grid with the rapid growth of its installed capacity worldwide [3]. However,
the high intermittency and uncertainty of PV power make accurate prediction difficult
and further pose technical challenges for reliable power system operation and control [4,5].
Meteorological factors, e.g., solar irradiance, temperature, wind speed and direction, cloud
changes, and air pressure, are the primary causes of this arbitrary fluctuation. Therefore,
effective PV prediction places critical demands on the model’s capacity to take into account
and handle various meteorological factors.

For PV power prediction, the prediction model and the forecast horizon mainly
depend on the data sources. Traditional methods such as ARIMA [6] and exponential
smoothing [7] hardly deal with multivariate data and thus usually take historical PV power
series as the sole input. However, they are still limited to modeling non-stationary changes.
To leverage the meteorological information, many previous studies mainly concentrate
on employing local measurements [8] or numerical weather prediction (NWP) data [9].
However, these methods are incapable of capturing the volatility of PV power affected
by cloud changes due to ignoring the data sources containing cloud conditions. More
specifically, the solar irradiance reaching the PV panels mainly depends on the amount and
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motion of clouds [10,11] recorded in consecutive cloud images. In light of this, ground-
based or satellite remote-sensing images are valuable data sources to support accurate
short-term PV power prediction.

Several approaches employ ground-based/sky images for the prediction of irradi-
ance [12,13] and PV power [14]. With sky images, the cloud motion vector (CMV) methods
that can calculate the speed and direction of clouds have been developed to improve the
irradiance prediction accuracy [15,16]. These methods have a considerably decreasing
value beyond a 30 min future horizon and are thus commonly used in ultra-short-term
PV power prediction [17]. Moreover, ground-based images are limited in observation
range and require equipment installation. In contrast, satellite images offer top-down
detection with greater spatial coverage, as well as advantages for prediction up to a few
hours ahead [18]. They are not only suitable for CMV methods [11,19–21] but also able
to provide other valuable information. Cai et al. [22] cluster the interval gray value of
satellite images to construct a relationship with PV power. Wang et al. [23] propose a
CNN-based fluctuation pattern prediction model with satellite images as input and apply
LSTMs to individually forecast different patterns of PV power. Besides these methods that
adopt only satellite images, researchers are increasingly interested in coupling satellite
data with ground measurements to improve forecasting performance [24]. Si et al. [25]
extracted cloud cover factor from satellite images by the modified CNN and then combined
it with meteorological information for irradiance prediction. Agoua et al. [26] presented a
spatiotemporal model with Lasso to integrate multi-source data for 6-h-ahead prediction.
Furthermore, they used the proposed model to assess the impact of each source on fore-
casting performance, which showed that satellite images improved the accuracy by 3%.
Yao et al. [27] proposed an encoder–decoder model, which includes U-Net and LSTM to
extract the spatial features from satellite short-wave radiation data and temporal features
from meteorological sequences, respectively. Then, the spatial and temporal features were
concatenated for intra-hour PV power prediction.

However, a flexible predictive framework capable of handling data sources with
different structures (i.e., image and sequence) is still not well discussed. Due to the
insufficient consideration of the characteristics of these two structures, the spatiotemporal
features extracted using the above methods are still not informative for PV power prediction
up to hours. Although various deep neural networks have been applied in PV power
prediction, the majority of existing methods consist of conventional deep learning models
such as CNNs, RNNs, and fully connected layers. At present, few studies have followed the
state-of-the-art transformer [28] architecture, which has achieved great success in natural
language processing [29] and computer vision [30]. Compared with convolutional or
recurrent neural networks, transformer-based models with the self-attention mechanism
are superior in capturing temporal dependencies. Simeunovic et al. [31] combined a graph
neural network with a transformer to propose a graph–convolutional transformer for
multi-site PV power prediction based on historical weather data. In addition, most existing
models based on hybrid neural networks merely concatenate the spatial and temporal
features before passing them as a whole input to the following layer. As a result, this rough
treatment is incapable of learning and utilizing the correlation between the features of
structured local measurements and unstructured satellite images well.

Motivated by the aforementioned issues, we renovate the transformer architecture
and propose a novel transformer-based PV power prediction model that can process the
locally measured sequences and satellite remote-sensing images. The main contributions
are summarized as follows:

1. We propose a novel dual-encoder transformer (DualET) for short-term PV power
prediction. Distinct from the standard transformer architecture, DualET contains
dual encoders, including a local seasonal information (LSI) encoder and a remote-
sensing information (RSI) encoder, and a single decoder. The dual encoders are
designed to handle sequence and image data, while the decoder is to model the joint
meteorological features from the encoders and outputs the short-term prediction.
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2. To extract informative features from the satellite images and local sequences, we
deploy the two-dimensional wavelet transform block and series decomposition block
in the encoding stage. The former in the RSI encoder is capable of the frequency
feature extraction of image signals to obtain cloud detailed information, while the
latter in the LSI encoder conducts series decomposition to improve the learning
capacity of temporal patterns.

3. We propose a cross-domain attention module to learn the correlation between the
temporal features in sequence data and the cloud information in image data. Fur-
thermore, we enhance the ability to capture dependencies by modifying the attention
modules with the sparse form and Fourier transform.

4. Real-world datasets are applied to evaluate the proposed model. The experiments
show that our model achieves state-of-the-art results compared with other models
including recent transformers.

2. Problem Definition

Two types of data sources are used in this study to predict the PV power, including
cloud images processed from the satellite remote sensing data and in situ data from real PV
stations. The in situ data contain historical records of several meteorological factors and PV
power. The detailed data description is provided in Section 4.1. We denote the historical
steps of input data as Lin and the prediction steps as Lout. The number of in situ data
attributes and remote-sensing data channels used is denoted as DLS and CRS, respectively.
In summary, this PV power forecasting problem can be formulated as

f (XRS; XLS) −→ ŷ (1)

where f (·) is the mapping function, i.e., the forecasting model; XRS ∈ R
Lin×H×W×CRS , XLS ∈

R
Lin×DLS are the input remote-sensing data and local sequences (in situ data), respectively;

ŷ ∈ R
Lout is the PV power prediction. The hidden dimension of the model is denoted as D.

3. Methodology

PV power generation substantially fluctuates with meteorological factors, such as
solar irradiance, temperature, wind speed/direction, and cloud changes. For an accurate
PV power prediction, we propose a novel dual-encoder transformer (DualET) to capture
context features from these factors. As shown in Figure 1, DualET has an encoder–decoder
architecture like most transformers but with dual encoders. One encoder, i.e., local seasonal
information encoder (LSI encoder), is to model temporal dynamics from in situ measure-
ments. The other, i.e., remote-sensing information encoder (RSI encoder), is to learn the
spatial and temporal features of clouds from satellite images. The output of the LSI encoder
and that of the RSI encoder contain fluctuations in the local measurements and clouds,
respectively. Both of them can be combined to provide comprehensive fluctuation informa-
tion for modeling the changes in the PV power series. Further, we design a joint feature
decoder to predict future short-term PV power. The details of DualET will be introduced in
the following subsections.
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Figure 1. Model architecture of DualET.

3.1. Decomposition Modules
3.1.1. Wavelet Transform Block

The object edges represent abrupt changes around smooth regions and are distributed
in the high-frequency signals of an image. For the motion and coverage of clouds, cloud
edges offer crucial information. Wavelet transform is a powerful analysis tool widely used
in image signal processing [32]. Compared with Fourier transform, it can capture frequency
properties without location information loss. Therefore, we build the wavelet transform
block (WTBlock) to extract frequency features and provide the RSI encoder with additional
cloud details. As shown in Figure 2, the image signals are passed through high-pass and
low-pass filters, sequentially from the horizontal and vertical directions. The high-pass
filter (HPF) is to extract high-frequency components such as edges, while the low-pass filter
(LPF) is to obtain low-frequency components for approximation. We summarize this 2D
discrete wavelet transform as

ILL, ILH, IHL, IHH = WTBlock(I), (2)

where image signal I is decomposed into four components: the approximation ILL (passing
through LPFs in both directions), and three details (ILH, IHL, IHH) in horizontal, vertical,
and diagonal orientations, respectively.
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Figure 2. Illustration of 2D wavelet transform. LPF denotes the low-pass filter and HPF denotes the
high-pass filter.

3.1.2. Series Decomposition Block

Real-world sequential signals (e.g., PV power sequence) are often entangled with
temporal patterns that are informative for forecasting. Time series decomposition is an
effective strategy to decouple knotted patterns from sequences. Among decomposition
methods, seasonal-trend decomposition [33] has been widely employed as a feature en-
gineering technique, which separates sequences into seasonal and trend parts. Inspired
by Autoformer [34], we apply this decomposition idea as a series decomposition block
(SDBlock) to enhance the pattern extraction ability of DualET. Given an input sequence X,
the procedure is

S, T = SDBlock(X), (3)

where T is the moving average result of X and is considered as the trend part; S is the
residual part (i.e., the detrend part), which is regarded as the seasonal part. To keep the
sequence length unchanged, a padding operation is performed on the input sequence.

3.2. Learning Modules
3.2.1. Residual Connection and Residual Block

The residual network architecture (i.e., residual connection) has become the foundation
of deep neural networks, which learn residual mapping to ease the optimization of deep
layers [35]. It can be formalized as y = F(x) + x, i.e., the input is added to the output of
stacked layers (F) as the result. For the RSI encoder, we employ residual blocks to learn
the representation of remote-sensing data. As shown in Figure 3, the residual block is
stacked using two convolutions, batch normalization [36], and activation (ReLU) layers.
The process is summarized as

XR = ResBlock(X). (4)

x

Figure 3. Illustration of residual block.
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3.2.2. Attention Mechanism

As one of the most representative identifiers of transformers, the attention mechanism
is proposed as a query–key–value (QKV) model to learn long-range dependencies without
recurrent structures. Given the matrices Q ∈ R

Lq×Dk , K ∈ R
Lk×Dk , and V ∈ R

Lk×Dv

as the projected queries, keys, and values, the single-head version of standard attention

mechanism can be formalized as A(Q, K, V) = Softmax(QK�√
Dk

)V, where Lq, Lk denote the

length of queries and keys/values; Dk, Dv denote the projected dimensions; 1√
Dk

is the scale
factor to avoid Softmax(·) yielding extremely small gradients. Furthermore, the multi-head
version is as follows:

Amulti-head(Q, K, V) = Concat(head1, · · · , headH)W
O,

where headi = A(QWQ
i , KWK

i , VWV
i ).

(5)

The queries, keys, and values with dimension D are mapped into H heads (i.e., subspaces)
by WQ

i , WK
i ∈ R

D×Dk , and VWV
i ∈ R

D×Dv . Then the outputs of these heads are con-
catenated and mapped back to D by WO ∈ R

HDv×D. In most cases, Dk = Dv = D/H.
The standard transformer has two types of multi-head attention: self-attention and cross-
attention. For self-attention, its projected queries, keys, and values are shared with the
same source, while the key–value pairs of cross-attention are typically from the output
of encoder.

In practice, the attention modules used in DualET are modified to improve the perfor-
mance of capturing dependencies. First, we design an additional cross-domain attention
module to discover the correlation between the features of images and sequences. Con-
cretely, the queries are the temporal features of the decoder, and the key–value pairs are
the cloud information from the RSI encoder. Furthermore, we perform the fast Fourier
transform (FFT) on the input and the inverse FFT on the output:

AFFT(Q, K, V) = F−1(A(F (Q),F (K),F (V))) (6)

where F ,F−1 denote the FFT and its inverse, which are also used in the self-attention
module of the LSI encoder. The FFT plays a key role in signal processing because it can
rapidly convert a signal from the time/space domain to the frequency domain (and vice
versa) and describe relationships between these domains [37]. It is defined by

Xk =
L−1

∑
m=0

e−2πik·(m/L)Xm, k = 0, . . . , L − 1 (7)

Based on FFT, the attention module can discover the frequency correlation between
queries and keys. In addition, we employ the ProbSparse attention mechanism [38] as the
self-attention and cross-attention modules of the decoder to improve their performances.

3.2.3. Embedding and Feed-Forward Layer

For sequence modeling, the order information of time steps is crucial. Furthermore, the
timestamp records of local sequences (meteorological and PV power series) are instructive
for PV power prediction but are hardly utilized in the standard transformer architecture.
To introduce this information, we employ timestamp-embedding layers (following Auto-
former [34]) for the local sequence inputs.

The feed-forward layer is a position-wise fully connected module, i.e., the learnable
parameters are shared with each step. It contains two linear layers (W1, b1, W2, b2) and a
ReLU activation function in between, formulated as

FeedFoward(X) = ReLU(XW1 + b1)W2 + b2. (8)
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3.3. Remote-Sensing Information Encoder

The RSI encoder is designed to learn spatial and temporal features from remote-sensing
data. As shown in the top diagram of Figure 1, it is mainly composed of a two-dimensional
convolution layer, a wavelet transform block, and a residual block. Given the historical Lin
steps of cloud images XRS ∈ R

Lin×H×W×CRS as the input of the RSI encoder, the procedure is

I1 = Conv2D(XRS),

ILL, ILH, IHL, IHH = WTBlock(I1),

I2 = Conv2D(ResBlock(I1)),

I3 = ConvFusion(Concat([I2, ILL, ILH + IHL + IHH])),

ZRS = Linear(Flatten(ReLU(I3))),

(9)

where ConvFusion is 1 × 1 2D convolution to integrate frequency components with image
features; ZRS ∈ R

Lin×D is the output of the RSI encoder.

3.4. Local Seasonal Information Encoder

For weather and PV power series, the seasonal part contains the main volatility feature,
which is the key to accurate prediction. Therefore, we introduce series decomposition blocks
to the LSI encoder to extract seasonal patterns from local measurement data. As shown
in the middle of Figure 1, the LSI encoder is staked with LLSI LSI encoder layers. Given
the input of the LSI encoder X0

LS ∈ R
Lin×D that is embedded from XLS ∈ R

Lin×DDS , the
procedure in l-th LSI encoder layer is

Sl
LS,1, _ = SDBlock(Attention(Xl−1

LS ) + Xl−1
LS ),

Sl
LS,2, _ = SDBlock(FeedFoward(Sl

LS,1) + Sl
LS,1),

Xl
LS = Sl

LS,2,

(10)

where “_” is the ignored trend part; Sl
LS,i, i ∈ {1, 2} denotes the seasonal part in the l-th

layer; ZLS = X
LLSI
LS denotes the output of the LSI encoder.

3.5. Joint-Feature Decoder

The joint-feature decoder is to model temporal dynamics based on the joint features
of local and remote-sensing data and then outputs short-term PV power. As shown in
the bottom diagram of Figure 1, the decoder is stacked with Lde decoder layers, and each
layer contains three attention modules (i.e., self-attention, cross-domain attention, and
cross-attention) to determine the correlations from different perspectives. The outputs
of two encoders are integrated as the input of cross-attention by ConvFusion: Zen =
ConvFusion(Concat([ZRS, ZLS])). The inputs of the decoder contain initialized seasonal
part X0

de and trend part T0
de. which are decomposed from the latter half of X0

LS and concate-
nated with scalar placeholders (zeros for the seasonal part and means for the trend part).
The details in the l-th decoder layer are

Zl
de,1 = Attention(Xl−1

de ),

Zl
de,2 = CrossDomianAttention(Xl−1

de , ZRS),

Zl
de,3 = Xl−1

de + ConvFusion(Concat([Zl
de,1, Zl

de,2])),

Sl
de,1, Tl

de,1 = SDBlock(Attention(Zl
de,3, Zen) + Zl

de,3),

Xl
de, Tl

de,2 = SDBlock(FeedFoward(Sl
de,1) + Sl

de,1),

Tl
de = Tl−1

de +W l
1 ∗ Tl

de,1 +W l
2 ∗ Tl

de,2,

(11)

where Zl
de,i, i ∈ {1, 2, 3} is the intermediate feature; Sl

de,1, Xl
de denote the seasonal parts in

l-th layer; Tl
de,1(i ∈ {1, 2}), Tl

de denote the trend parts in l-th layer; W l
i ∈ {1, 2}) denote
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the project functions for the trend parts. After Lde decoder layers, the final prediction ŷ is
from the sum of two parts: W ∗ X

Lde
de + T

Lde
de , where W is the projector for the seasonal part.

4. Experiment

In this section, we evaluate the proposed DualET on satellite images and actual PV
station data. We first introduce the datasets and data preprocessing. Then, we describe the
experimental setting in detail. Finally, we compare the prediction performance of DualET
and the baseline models and conduct several ablation experiments.

4.1. Datasets and Data Preprocessing

Two datasets were used in this study, namely, satellite remote-sensing data and PV
station data. The satellite data were the L1 grid data from Himawa-8, a geostationary
satellite launched in 2015 by the Japan Meteorological Agency to provide weather forecasts
and typhoon and storm reports for Japan, East Asia, and the Western Pacific. The detection
range of Himawa-8 is 60◦ N, 160◦ E, and 80◦ W, with a spatial resolution of 0.05◦, which
corresponds to about 5 km on the ground, and the temporal resolution is 10 min. The PV
station data contains local measurements from three real PV stations at different latitudes
and longitudes in Hebei, China. Each station records meteorological factors (including
global and diffuse irradiance, temperature, wind direction and speed, and air pressure)
and PV power records at 15 min intervals.

We set the temporal resolution as 30 min to harmonize the time intervals of these
two datasets. The satellite remote-sensing data were processed into 40 × 40 cloud images
centered on the latitude and longitude of the PV station. The satellite data were sampled
from July 2018 to June 2019 to align with that of PV station data. For each day, the data
with a time range from 7:00 to 19:00 (UTC +0800) were used. We divided these two datasets
into a training set, a validation set, and a test set in the ratio of 8:1:1 after arranging them to
ensure the test period covers multiple seasons. Before input to the model, the data were
normalized using standardization to eliminate the inconsistency of the magnitude of each
dimension.

4.2. Experimental Setting
4.2.1. Baseline Models

We primarily selected seven models as baselines for comparison, namely, a classic
statistical model ARIMA [39], an RNN-based model LSTM [40], and three state-of-the-art
models, i.e., Transformer [28] and its variants Informer [38] and Autoformer [34].

4.2.2. Hyperparameters and Platform

Our model DualET and transformer baselines, i.e., Transformer, Informer, and Aut-
oformer, were set to the same number of layers, including two encoder layers and one
decoder layer. The hidden dimension of model D was set to 512. The number of attention
heads was set to 8. The batch size was set to 32, and the training epochs were set to 10 (with
early stopping). The loss function was the mean-squared error (MSE) (Equation (12)), and
the optimizer was ADAM with an initial learning rate of 1 × 10−4. The input length of the
model was set to 24, i.e., 12 h, and the output prediction length was set to 12, i.e., 6 h. All
the models were implemented with PyTorch and conducted on a Ubuntu server with four
NVIDIA GeForce RTX 2080Ti 11GB GPUs.

MSE =
1
N

N

∑
t=1

(yt − ŷt)
2. (12)
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4.2.3. Evaluation Metrics

We evaluated the performance of the model with three widely used metrics, i.e., mean
absolute error (MAE), root-mean-squared error (RMSE), and symmetric mean absolute
percentage error (SMAPE).

MAE =
1
N

N

∑
t=1

|yt − ŷt|,

RMSE =

√√√√ 1
N

N

∑
t=1

(yt − ŷt)2,

SMAPE =
100%

N

N

∑
t=1

|yt − ŷt|
(|yt|+ |ŷt|)/2

.

(13)

4.3. Results

As shown in Table 1, we evaluated the prediction performance of the proposed DualET
on three different PV stations. For short-term (6-h) PV power prediction, DualET achieved
the best results on three error metrics: MAE, RMSE, and SMAPE. Compared with the results
of other models on all stations, DualET achieved a relative MAE and RMSE reduction
of 22.53% and 22.75%, respectively, which is a significant improvement. The average
reduction in MAE was even more than 53%, compared with the traditional ARIMA, and
27.72% compared with the popular LSTM. Among these baselines, the transformer-based
models, i.e., Transformer, Informer, and Autoformer, were better than ARIMA and LSTM
models. Moreover, our DualET still outperformed the competitive transformer-based
models and yielded a relative MAE reduction of 10.64%.

Table 1. Prediction performance of the proposed DualET.

Models Metrics Station0 Station1 Station2

ARIMA MAE 3.6934 3.7727 3.6343
RMSE 5.3633 6.3809 5.4976

SMAPE 0.8881 0.9019 0.9135

LSTM MAE 2.3500 2.2612 2.6287
RMSE 3.0866 2.9739 3.4570

SMAPE 0.7218 0.6888 0.7635

Transformer MAE 2.0780 2.0678 1.8413
RMSE 2.8468 2.7659 2.5875

SMAPE 0.7110 0.6482 0.6274

Informer MAE 1.8274 1.8393 1.8564
RMSE 2.5874 2.5773 2.5940

SMAPE 0.6549 0.6232 0.6498

Autoformer MAE 1.9989 2.0690 1.9771
RMSE 2.7379 2.7834 2.7700

SMAPE 0.6905 0.6764 0.6810

DualET MAE 1.6904 1.7576 1.7657
RMSE 2.2845 2.4205 2.5087

SMAPE 0.6335 0.5931 0.6258

The prediction results of different models are presented in Figures 4 and 5. It obviously
shows that the number of deviation points predicted by the statistical model ARIMA is
much larger than those predicted by other DNN-based models, which indicates that ARIMA
is unsuitable for short-term prediction up to several hours, especially for the nonstationary
PV power series. As shown in Figure 5, the LSTM model has a more scattered distribution of
points than the transformer-based models, which indicates the significance of transformer
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architecture for sequence modeling. It can also be seen that the proposed DualET presents
the fittest curves in Figure 4 and the narrowest band in Figure 5 compared with other
baselines, which shows the advantages of PV power prediction.

Figure 4. Prediction results of different models.

Figure 5. Scatter plots of different models.
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4.4. Ablation Studies

DualET contains dual encoders, including the LSI encoder to deal with local seasonal
information and the RSI encoder to process remote-sensing information, with a shared
decoder to combine joint features. In addition, there are different decomposition modules
and attention modules employed in DualET to enhance feature extraction. We conducted
additional experiments to evaluate the impact of the dual encoders and different functional
modules with MAE, RMSE, and SMAPE as evaluation metrics, and we present the results
of these experiments in this section.

4.4.1. Different Encoders

We evaluated the impact of different encoders by keeping only one of the encoders
from DualET. As shown in Table 2, the proposed model with only the LSI encoder is better
than that with only the RSI encoder. As previously mentioned, the LSI encoder is used to
learn historical seasonal information from local measurements, while the RSI encoder is to
learn cloud information from satellite images. Therefore, this indicates that the fluctuation
features of PV power are more contained in local measurements compared with cloud
images. Meanwhile, we can see that the model with dual encoders yields the best results
compared with that with only one, which shows that cloud images can provide valuable
information for performance improvement and further shows the effectiveness of our
dual-encoder design.

Table 2. Comparison of different encoders.

Models MAE RMSE SMAPE

Only LSI encoder 1.9948 2.6964 0.6784
Only RSI encoder 2.0275 2.7453 0.6937
DualET 1.6904 2.2845 0.6335

4.4.2. Decomposition Blocks in Dual Encoders

We evaluated the impact of decomposition blocks for dual encoders by removing the
series decomposition (SD) blocks or wavelet transform (WT) blocks. As shown in Table 3,
the dual encoders without decomposition blocks will give some performance degradation.
This shows that the WT and SD can enhance the learning capacity of dual encoders and
provide informative features for the decoder. In addition, the performance of the RSI
encoder without WT is worse than the LSI encoder without SD, which indicates that the
high- and low-frequency features of cloud images are essential for short-term PV power
prediction.

Table 3. Ablation studies of decomposition structures. SD and WT mean the series decomposition
block and wavelet transform block, respectively. W/o means “without”.

Models MAE RMSE SMAPE

LSI w/o SD 1.9378 2.5927 0.6935
RSI w/o WT 1.9916 2.6440 0.7094
DualET 1.6904 2.2845 0.6335

4.4.3. Different Attention Modules

In DualET, the decoder’s self- and cross-attention modules are formed with Prob-
Sparse, while the others are enhanced by fast Fourier transform (FFT). As shown in Table 4,
we evaluated the impact of different attention modules including the cross-domain at-
tention module. We can see that if all attention modules are the same type (ProbSparse
form or FFT), it results in performance degradation. Therefore, we employed the various
attention modules with suitable modifications for better correlation capture. Moreover, the
prediction error of the model without cross-domain attention significantly increases. This
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demonstrates the effectiveness of cross-domain attention to learn the correlation between
features in sequence data and image data.

Table 4. Different attention modules. W/o means “without”.

Models MAE RMSE SMAPE

W/o cross-domain attention 2.0192 2.7100 1.0466
All attention with FFT 1.8060 2.4965 0.6630
All attention with ProbSparse 1.7848 2.4507 0.6657
DualET 1.6904 2.2845 0.6335

5. Conclusions

To handle satellite images and ground measurements, in this paper, we proposed a
novel transformer-based model with dual encoders, named DualET, for short-term PV
power prediction. To obtain cloud detailed information from satellite images, a two-
dimensional wavelet transform block and a residual block were used in the remote-sensing
information encoder. For the local seasonal information encoder, we conducted self-
attention and series decomposition to learn the temporal patterns from local sequences.
For the decoder, we employed three types of attention modules and series decomposition
blocks to model the joint features of local and remote-sensing information and output
the prediction. Specifically, a cross-domain attention module was proposed to learn the
correlation between the temporal features and cloud information. Finally, the experiments
on real-world datasets, including PV station data and satellite images, were presented to
show the prediction performance of DualET. In addition, the ablation studies show the
effectiveness of our design. In the future, we will attempt to improve the model architecture
so that more data sources (e.g., NWP or other satellite remote sensing data) can be utilized
to predict a longer horizon.
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Abstract: It is the core prerequisite of landslide warning to mine short-term deformation patterns
and extract disaster precursors from real-time and multi-source monitoring data. This study used the
sliding window method and gray relation analysis to obtain features from multi-source, real-time
monitoring data of the Lishanyuan landslide in Hunan Province, China. Then, the k-means algorithm
with particle swarm optimization was used for clustering. Finally, the Apriori algorithm is used to
mine strong association rules between the high-speed deformation process and rainfall features of
this landslide to obtain short-term deformation patterns and precursors of the disaster. The data
mining results show that the landslide has a high-speed deformation probability of more than 80%
when rainfall occurs within 24 h and the cumulative rainfall is greater than 130.60 mm within 7 days.
It is of great significance to extract the short-term deformation pattern of landslides by data mining
technology to improve the accuracy and reliability of early warning.

Keywords: disaster precursor identification; early warning; association rule mining; particle swarm
optimization; k-means clustering; Apriori algorithm; gray relation analysis

1. Introduction

Mountains and hills make up more than 60% of the total area of Hunan province in
China, half of which have slopes greater than 25◦ [1]. This area has high rainfall, so landslide
disasters are frequent. According to statistics, 2449 various geological disasters occurred in
Hunan Province in 2020, causing economic losses of 262.49 million RMB, of which 2116
were landslide disasters, accounting for 86.4% [2]. Deploying multiple types of sensors
on landslides to gather information on deformation, rainfall, stress, and other physical
parameters, and providing timely warning, are low-cost and reliable prevention methods
that can effectively reduce casualties [3–5]. With the development of sensor technology
and Internet of Things technology, landslide monitoring is gradually developing towards
the direction of automation and intelligence [6–9]. It is of great significance to fully mine
extensive monitoring data and extract and identify warning precursors for studying the
mechanisms of landslide disasters and improving the accuracy of warning.

Early and accurate identification of landslide precursors is a prerequisite for early warn-
ing. The traditional precursors that can be used for early warning are mainly macroscopic
phenomena such as surface cracks, slope toe uplift and other macro phenomena [10–12].
With the development of monitoring technology, landslide precursors can be mined from
abundant monitoring data, of which the most widely used type of data is surface deforma-
tion. The accelerated deformation process of landslides is the most intuitive and reliable
precursor, so it is widely used in the study of landslide early warning. Xu et al. [5,13] pro-
posed to use the normalized tangent angle as an indicator for early warning of landslides.
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Jeng et al. [14] proposed to use displacement-velocity ratio as an indicator for landslide
warning. Valletta et al. [15] proposed a multicriteria approach to identify accelerated defor-
mation processes in landslides. Bai et al. [16] proposed a hybrid warning algorithm that
could identify the landslide acceleration process quickly, automatically, and accurately in
an online monitoring and warning system, and achieved the balance of warning immediacy,
accuracy, and computational resources through different strategies.

Although displacement, as a precursor of landslide disaster, can give early warning
quickly and accurately, it also has many shortcomings. First, the current sensors for
displacement monitoring are highly susceptible to environmental influences and often
generate false alarms during the warning process [16–18]. Second, displacement is the
result of a combination of multiple factors, both internal and external to the landslide.
The acceleration of displacement foreshadows the initiation of the landslide process, and
the warning window is very short [19–21]. Finally, the use of a single displacement
characteristic for early warning does not take into account the impact of external trigger
factors such as rainfall, earthquakes, and construction on the disaster, and is therefore
necessarily incomplete.

The development of data mining technology in recent years has provided new research
ideas for landslide precursor identification. Data mining technology can filter and analyze
useful information and important events from massive data to reveal the internal relation-
ships and hidden rules of data, which have been widely used in the commercial [22,23],
industrial [24,25], engineering [26,27], medical [28–30] and educational [31,32] fields with
remarkable effect. The application of data mining techniques in the field of landslides is
mainly focused on susceptibility assessment [33–35], aiming to analyze landslide instability
risk at the regional scale, while there are very few studies on application in specific landslide
monitoring. Ma et al. [36,37] first used modern data mining techniques integrating two-step
clustering, association rule mining, and decision trees to analyze data from the Majiagou
landslide and the Zhujiadian landslide in the Three Gorges reservoir area. These studies not
only identified landslide disaster factors but also realized the prediction of displacement
evolution, which was the earliest research to carry out data mining for single landslide
monitoring. Miao et al. [38] and Guo et al. [39] adopted the same data mining technology
to analyze the trigger factors of the Baishuihe landslide and the Shuping landslide in the
Three Gorges Reservoir area, and determined the warning threshold. All these studies have
fully and comprehensively considered the correlation between multi-source monitoring
data and provided causal relationships between different monitoring variables, which are
very helpful for the analysis of landslide damage mechanisms and instability patterns.
Most of these studies focused on reservoir landslides in the Three Gorges region of China,
with monitoring data collected over several years and on a monthly scale. Therefore, these
studies were more focused on the long-term deformation patterns of landslides. How-
ever, the daily-scale or even hourly-scale short-term deformation patterns of landslides
are equally important in landslide early warning studies. Such short-term deformation
patterns contain more reliable precursors of landslide disasters than deformation features,
which are important for early warning decisions. In addition, these studies all adopted
a two-step clustering algorithm, which is a kind of hierarchical clustering and divides
clusters through the process of splitting or clustering, so there is no need to determine the
number of clusters. However, for the clustering of daily or even hourly monitoring data,
we prefer to flexibly adjust the number of clusters. This kind of data is very complex, and
human subjective judgment is still needed. At this time, partition clustering represented by
k-means is more appropriate.

The purpose of this paper was to mine the short-term deformation patterns of land-
slides, identify the precursors of landslides, and obtain more reliable early warnings. In
this study, the Lishanyuan Landslide in Hunan Province was taken as the case study. First,
the sliding window method was used to extract features from the original monitoring data,
then the k-means algorithm optimized by particle swarm optimization (PSO) was used
to cluster the features and construct the item set, and the Apriori algorithm was finally
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used to mine the association rules between different features and determine the short-term
deformation pattern of landslides according to the given confidence levels to analyze the
precursors of landslide disasters and provide early warnings.

2. Methodology

2.1. Overview

The association mining method as shown in Figure 1 was used to mine the association
rules between the triggering factors and landslide displacement, which mainly includes
three parts: feature engineering, clustering and association rule mining.

 

Figure 1. Flowchart of association rule mining for the Lishanyuan landslide.

In the feature engineering part, for the original multi-source data obtained from
landslide monitoring, the sliding window method is used to scan the monitoring data time
series of each source. In the scanning process, the 3σ criterion is first used to eliminate
obvious outliers, and then the corresponding features are calculated according to the type
of monitoring data, and finally the feature time series data set is formed.

In the clustering part, for the feature time series obtained in the previous part, the
PSO-optimized k-means algorithm is first used for clustering, and then the time series are
transformed into item sets, and finally the time series of all features are processed in the
same way to build the transaction database.

In the association rule mining part, for the transaction database constructed in the
previous section, the Apriori algorithm is used to mine the frequent item sets and associa-
tion rules in the transaction database and analyze the disaster factors and destabilization
precursors of landslides accordingly.

2.2. PSO-Optimized k-Means Algorithm

The original value-based monitoring dataset must be changed into a category-based
transactional database since the Apriori algorithm for association rule mining is category-
based. The k-means algorithm is the most well-known clustering algorithm, whose core
objective is to classify the dataset into K clusters, with the elements in each cluster having a
high degree of similarity. The k-means algorithm is simple to implement and fast to cluster,
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but it is very sensitive to the choice of initial cluster centers. Different initial values may
lead to different clustering results, i.e., local optima rather than global optima. To solve
this problem, we used the PSO algorithm for global optimization. The PSO algorithm is an
evolutionary algorithm based on population intelligence that finds the optimal solution
by simulating the process of a flock of birds searching for food. The specific steps of the
k-means clustering algorithm optimized by PSO are as follows:

Step 1: Particle swarm initialization. Suppose there is a particle swarm composed of m
particles in a given D-dimensional search space, and each particle has only two attributes:
position and velocity, where position is the code of the solution to be solved and the velocity
is the iteration step size.

For the i − th particle, its coordinate position can be expressed as:

Xi =
(
xi1, xi2, · · · , xiD

)
(1)

The velocity of the i − th particle can be expressed as:

Vi =
(
υi1, υi2, · · · , υiD

)
(2)

When performing k-means clustering on the dataset D =
{

x1, x2, · · · , xn
}

, the
initial cluster centers C =

{
μ1, μ2, · · · , μk

}
need to be specified. In order to avoid

the problem of local optimal clustering caused by the sensitivity of C, we coded C as Xi in
Equation (1) for global optimization.

Step 2: Particle clustering and fitness calculation. Perform k-means clustering after
decoding each particle in the particle swarm. The specific steps are as follows:

Sub-step 2.1: For each element xi in the dataset D, the Euclidean distance

dij =

√
n
∑

i=1

(
xi − μj

)2 between xi and the center μj of each cluster is calculated and

the current element xi is assigned to the cluster Cj represented by the center with the
smallest distance.

Sub-step 2.2: For each cluster Cj obtained in Sub-step 2.1, the central μ
′
j = 1

|Cj| ∑
x∈Cj

x

of that cluster is recalculated and the C =
{

μ1, μ2, · · · , μk
}

is updated.
Sub-step 2.3: Repeat the sub-step 2.1 and 2.2 until the center μ

′
j and element xi of each

cluster Cj no longer change. Then, the final clustering result can be obtained.
Sub-step 2.4: To evaluate the clustering effect of the current position of each particle,

the following equation is used to calculate the fitness F(i) of each particle.

F(i) =
n

∑
i=1

k

∑
j=1

(
xi − μj

)2

(3)

where xi denotes the i − th element in the dataset, and μj is the center of the i − th cluster.
The fitness function represents the sum of the squares of the distances between each element
and the center of the cluster to which the element belongs, and the smaller the fitness,
the better the clustering effect. The individual optimal solution Pi and the group optimal
solution gbest can be obtained through fitness.

The optimal position searched by the i − th particle is denoted as:

Pi =
(

pi1, pi2, · · · , piD
)

(4)

The optimal position searched by the particle swarm is denoted as:

gbest =
(

g1, g2, · · · , gD
)

(5)
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Step 3: Position update. Update the position and velocity of each particle with the
following equation:

Vk+1
i = ωVk

i + c1r1

(
Pk

i − Xk
i

)
+ c2r2

(
gk

best − Xk
i

)
(6)

Xk+1
i = Xk

i + Vk+1
i (7)

where Vk
i denotes the velocity of the i − th particle at the k − th iteration. Xk

i denotes the
position of the i − th particle at the k − th iteration. Pk

i denotes the individual optimal
solution of the i − th particle up to the k − th iteration. gk

best denotes the population optimal
solution of the particle swarm as of the k − th iteration. c1 and c2 denote the acceleration
constants to adjust the step size. r1 and r2 denote the random numbers between 0 and 1,
respectively, to enhance the randomness of the search process.

Step 4: After the velocity and position of each particle are updated, the particles that
are out of the solution range are initialized randomly again. If the current fitness function
value is better than the historical optimal Pi, then update Pi. Similarly, if the population
fitness function value of the updated particle population is better than the historical optimal
gbest, then update gbest.

Step 5: Repeat Step 2 to 4, and constantly update and iterate for all particles until
the maximum number of solutions is reached or the aggregation degree σ2 of the group
optimal solution gbest is less than the given threshold.

σ2 =
1
n

n

∑
i=1

[
F(i)− F

]2 (8)

where F is the average fitness of the particle swarm, and σ2 represents the aggregation de-
gree of the particles in the particle swarm. The smaller its value, the higher the convergence
degree of the PSO algorithm. When σ2 is less than the given threshold, this means that the
particles are all clustered near the global solution. At this time, the particle with the best
fitness is the initial center of the global optimal clustering, and the clustering result can be
obtained using k-means for clustering.

2.3. Association Rule Mining and Apriori Algorithm

Association rule mining refers to the discovery of valuable correlation information
and knowledge rules from data sets. The Apriori algorithm is the most classic algorithm for
mining association rules. Suppose I =

{
i1, i2, · · · , im

}
is an item set, each element

im of which is called an item, and the item set of length k is called k − itemset. A subset of
item set I can form a transaction, and multiple transactions can form a transaction database
T =

{
t1, t2, · · · , tn

}
. Suppose X and Y are two item sets in the transaction database

whose intersection is empty, that is, X ⊂ T, Y ⊂ T and X ∩ Y = ∅. These two item sets
can be denoted by X ⇒ Y and if there is an association rule the former item X denotes
the condition of the association rule and the latter item Y denotes the conclusion of the
association rule. To better measure the performance of the mined association rules, three
indicators need to be used: support, confidence and lift. Their definitions are as follows:

Support is the probability that X and Y occur together in the transaction database T.
Support indicates the importance of association rule X ⇒ Y in the total data:

SX⇒Y =
|T(X ∪ Y)|

|T| (9)

Confidence is the probability that Y will occur if X is included. Confidence expresses
the validity of the association rule X ⇒ Y :

CX⇒Y =
|T(X ∪ Y)|
|T(X)| (10)
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Lift is the ratio of the confidence to the occurrence probability of the later term Y in
the transaction database T. Lift indicates the strength of the correlation, and the larger the
lift, the stronger the correlation:

LX⇒Y =
|T(X ∪ Y)|
|T(X)| /

|T(Y)|
|T| (11)

where |T(X ∪ Y)| represents the number of item sets X and Y appearing in the transaction
database T at the same time. |T| represents the number of transactions in the transaction
database T. |T(X)| and |T(Y)| represent the number of item sets X or Y appearing in the
transaction database T, respectively.

The minimum support min_supp and minimum confidence min_con f need to be
specified as thresholds in association rule mining. If the support of an item set is greater
than min_supp, then this item set is called frequent item set. If the support and confidence
of an association rule are greater than the min_supp and min_con f , then this rule is called
a strong association rule. The specific flow of the Apriori algorithm is shown in Figure 1
and described in detail as follows:

Step 1: Iterate through all the transactions in the transaction database T and count the
number of each item and calculate the support. The items with the support greater than
min_supp are deleted to generate the frequent 1-item set L1.

Step 2: Generate candidate 2-item set for L1 by joining and pruning operations,
calculate the support of each item in the candidate 2-item set and also filter according to
the min_supp to get the frequent 2-item set L2. Repeat this process until the candidate
k − itemset is empty, thus obtaining the frequent k − itemset.

Step 3: Calculate the confidence of each Lk separately, and output the association rules
with confidence greater than min_con f .

3. Study Area

3.1. Landslide Overview

The Lishanyuan landslide is located in Xinhua County, Hunan Province, China
(Figure 2). The longitudinal length of the landslide is 120 m, the horizontal width is
300 m, the average thickness is about 3 m, and the total volume is about 1.08 × 105 m3. The
landslide is a shallow landslide with a main slide direction of 210◦. The middle and back
edges of the slope are well covered with vegetation. There are several residential houses at
the left foot of the slope. The area on the right side of the slope is poorly covered with vege-
tation. There is a village-level road and a small stream at the front edge of the landslide, and
the foot of the slope has been washed by the river for a long time. Due to long-term river
scouring at the foot of the slope, the landslide initially showed accelerated deformation
characteristics in 1996. From then until 2012, it underwent a slow deformation trend. In
2013, the landslide accelerated again, with multiple cracks on the slope and subsidence of
the village-level road. In April 2018, affected by heavy rainfall, the landslide had a local
slip of about 600 m3, and the sliding soil fell to the walls and windows of residential houses
on the lower side of the slope, causing a direct loss of about 600,000 RMB. According to the
on-site investigation, the landslide is a small and shallow traction landslide, which is very
common and representative in Hunan Province, China.
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Figure 2. Geographical location and monitoring scheme of Lishanyuan landslide. (a) Site photograph
of the Lishanyuan landslide. (b) Geographical location of the Lishanyuan landslide. (c) Photographs
of monitoring stations DB02 and YL01. (d) Photograph of the DB01 monitoring station.

3.2. Deformation Characteristics

To protect the safety of the residents below the landslide, we completed the deploy-
ment and commissioning of monitoring equipment to establish a monitoring and early
warning system on 15 April 2021. The location and photos of the monitoring stations are
shown in Figure 2. Two GNSS monitoring stations, named DB01 and DB02, were deployed
on the main slide profile of the landslide, and the GNSS base stations are located on the
roadside of the lower side of the landslide. In addition, a rain gauge named YL01 was
deployed at DB02. The automated monitoring system received the first monitoring data at
17:00 on 15 April, and the default acquisition interval of the GNSS monitoring stations was
1 h. As the landslide appeared to accelerate significantly on 17 May, the GNSS monitoring
stations adjusted the collection interval to 30 min, and the collection interval of the rain
gauge was adjusted to 20 min. As of 15:00 p.m. on 1 July 2022, a total of 57,597 monitoring
data were collected by the monitoring system, including 30,396 GNSS monitoring data and
27,201 rainfall monitoring data. The monitoring data are shown in Figure 3.

From Figure 3, it can be seen that the deformation patterns of the two GNSS monitor-
ing stations are basically the same, but the deformation amplitude of DB02 is significantly
larger than that of DB01, which indicates that the deformation of the leading edge of this
landslide is larger than that of the trailing edge of the landslide, which is consistent with
the deformation characteristics of the traction landslide. The threshold design and warning
process of this landslide are described in Bai et al. [16] The deployed monitoring and warn-
ing system is able to accurately and quickly identify the accelerated deformation process of
the landslide and report timely warnings. To verify the reliability of the monitoring data,
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we inspected the landslide site on 19 May 2021. At this time, the landslide area had just
experienced a strong rainfall, and the monitoring data from two GNSS monitoring stations
showed that the landslide had been violently deformed. We found multiple cracks in the
landslide body during a site inspection (Figure 4), obvious slippage, soil accumulation at
the foot of the slope, and small mudslides in the local area. These macroscopic phenomena
are consistent with the monitoring and early warning results, proving the effectiveness and
reliability of the monitoring and early warning system.

 

Figure 3. Daily rainfall data and displacement data from two GNSS monitoring stations for the
Lishanyuan landslide.

 

Figure 4. On-site inspection photos on 19 May 2021. (a) Long cracks on the surface of the landslide.
(b) Loose deposit near the DB02 station. (c) Multiple cracks near DB01 station. (d) partial collapse
near DB02 station.

108



Appl. Sci. 2022, 12, 12836

The deformation process of Lishanyuan landslide shows obvious correlation with the
rainfall process. Taking the DB02 monitoring station with the most obvious deformation
as an example, the displacement of the two GNSS monitoring stations first showed a
fluctuation of 10 mm for about a week after the monitoring started, indicating that the
measurement accuracy of GNSS was of centimeter level. Affected by the rainfall event on
22 April 2021, the acceleration process began with the synchronization of the displacements
of the two GNSS monitoring stations starting at 4:00 a.m. on 23 April. After that, the
displacements of the two monitoring stations showed a step-like growth, and each severe
deformation process was accompanied by concentrated high-intensity rainfall. After mid-
October, the rainfall decreased, and the deformation began to slow down, showing creep
characteristics. After April of the following year, the landslides started a process of obvious
deformation and acceleration again.

3.3. Feature Engineering

From the deformation characteristics reflected by the Lishanyuan landslide monitoring
data, we found that the deformation process of the landslide showed an obvious correlation
with the rainfall process. To further mine the association rules of this correlation, we needed
to carry out further data mining on the monitoring data, for which feature engineering was
first needed. Feature engineering refers to extracting more representative features from raw
monitoring data to improve the effectiveness of mining tasks. For the monitoring data and
deformation characteristics of the Lishanyuan landslide, we constructed features for both
deformation and velocity. In terms of deformation, we focused more on the accelerated
deformation process, so the deformation velocity was the most important feature. The
deformation velocity (υDB01,υDB02) of two GNSS monitoring stations was chosen as the
main feature. In terms of rainfall, we paid attention not only to the short-term rainfall
features, but also to the long-term rainfall features. We chose the cumulative rainfall of
three hours q3h, six hours q6h, twelve hours q12h, 24 h q24h, three days q3d, and seven days
q7d as the characteristics reflecting rainfall.

According to Bai et al. [40] and Liu et al. [41], the strength of correlation between
features can be quantitatively determined by gray relation analysis. Therefore, we used
the gray relation analysis algorithm to calculate the gray relation degree between various
types of rainfall features and deformation velocity; the calculation results are shown in
Table 1. From Table 1, we can see that the gray relation degree of all rainfall features and
deformation velocity is greater than 0.9, which is much higher than the empirical threshold
of 0.6. So, all of these rainfall features can be adopted.

Table 1. Gray relation degree between rainfall characteristics and displacement characteristics.

q3h q6h q12h q24h q3d q7d

υDB01 0.970735 0.971045 0.971962 0.973857 0.978478 0.979868
υDB02 0.964633 0.964742 0.96582 0.968061 0.973537 0.975926

4. Results

4.1. Clustering Results

For the various types of feature sequences obtained from feature engineering, we
used the PSO-optimized k-means algorithm to cluster each feature. The number of cluster
centers for each type of feature was set to 3, thereby clustering the feature into low, medium,
and high clusters. The clustering results of all features are shown in Figure 5, and the
interval ranges and sample sizes of different clusters are shown in Table 2.
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Figure 5. Visualization of all feature clustering results. (a) The velocity of DB01. (b) The velocity of
DB02. (c) 3-h cumulative rainfall. (d) 6-h cumulative rainfall. (e) 12-h cumulative rainfall. (f) 24-h
cumulative rainfall. (g) 3-day cumulative rainfall. (h) 7-day cumulative rainfall.
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Table 2. Interval range and sample size of all feature clustering results.

Feature Name Cluster Name Lower Bound Upper Bound Count Mean Standard
Deviation

υDB01
DB01-Low-Velocity −3.64 4.70 4887 0.46 1.02

DB01-Medium-Velocity 4.78 15.54 253 9.09 2.83
DB01-High-Velocity 16.49 60.96 56 23.58 6.25

υDB02
DB02-Low-Velocity −3.84 4.77 4669 0.60 1.23

DB02-Medium-Velocity 4.79 55.37 507 13.39 8.55
DB02-High-Velocity 59.24 108.84 20 90.67 15.85

q3h
Rain-3 h-Low 0.00 3.60 4962 0.18 0.56

Rain-3 h-Medium 3.80 19.40 217 7.33 3.43
Rain-3 h-High 21.20 61.40 17 34.34 12.17

q6h
Rain-6 h-Low 0.00 5.00 4830 0.32 0.88

Rain-6 h-Medium 5.20 24.40 333 9.95 4.57
Rain-6 h-High 24.80 83.80 33 39.42 16.47

q12h
Rain-12 h-Low 0.00 7.20 4656 0.64 1.48

Rain-12 h-Medium 7.40 32.80 494 13.93 6.12
Rain-12 h-High 33.40 89.20 46 52.80 17.83

q24h
Rain-24 h-Low 0.00 10.40 4429 1.39 2.55

Rain-24 h-Medium 10.60 43.00 698 19.64 7.76
Rain-24 h-High 45.00 99.40 69 68.48 17.00

q3d
Rain-3 d-Low 0.00 17.20 3736 4.31 5.12

Rain-3 d-Medium 17.40 68.20 1284 30.46 11.61
Rain-3 d-High 68.60 202.20 176 106.48 28.89

q7d
Rain-7 d-Low 0.00 35.20 3554 15.46 10.88

Rain-7 d-Medium 35.40 122.20 1450 55.17 17.47
Rain-7 d-High 130.60 285.80 192 197.53 46.03

Combining Figure 5 and Table 2, it can be seen that the number of samples in different
clusters differs by an order of magnitude. The number of samples of low-rank clusters is
much higher than that of middle-rank and high-rank clusters, and the number of samples
of middle-rank clusters is also much higher than that of high-rank clusters. Combining
Figure 5 and Table 2, it can be seen that the number of samples in different clusters differs
by an order of magnitude. The number of samples of low-rank clusters is much higher than
that of middle-rank and high-rank clusters, and the number of samples of middle-rank
clusters is also much higher than that of high-rank clusters. Taking υDB01 as an example,
the speed of samples in the DB01-Low-Velocity cluster is between −3.64 and 4.70, which
has a total of 4887 samples. The speed of samples in the DB01-Medium-Velocity cluster
is between 4.78 and 15.54 with a total of 253 samples, which is an order of magnitude
less than the DB01-Low-Velocity cluster. The speed of samples in the DB01-High-Velocity
cluster is between 16.49 and 60.96, and the number of samples is only 56, which is an order
of magnitude less than the DB01-Medium-Velocity cluster. The clustering results of other
features have similar characteristics to υDB01, differing only in the range of intervals. The
boundaries between the different clusters are very clear, and the characterized velocities or
intensities of rainfall are largely consistent with the actual situation.

4.2. Association Rule Mining Results

After clustering, each cluster is named, and then the values in the features converted
into category names. The category names of different features at each moment form an item
set, thereby transforming the entire feature dataset into a transaction database. The Apriori
algorithm was used to carry out the association rule mining study on this transaction
database to mine strong association rules between rainfall features and the velocities of two
GNSS monitoring stations separately. We took the velocity of GNSS monitoring stations
as the latter term and the rainfall characteristics as the former term, and obtained the
corresponding strong association rules based on both different min_con f and min_supp.
For the velocity of the DB01 monitoring station, we set the min_supp as 0.3% and the
min_con f as 80%. For landslide warning, we focused more on the high-speed deformation
process, which is the DB01-High-Velocity cluster, so we filtered the eligible association
rules as shown in Table 3.
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Table 3. Association rules related to Lishanyuan landslide deformation.

Rule ID Mined Association Rules Confidence Support Lift

1 Rain-24 h-Low & Rain-3 d-High & Rain-7 d-High => DB01-High-Velocity 86.36% 0.37% 80.13

2 Rain-12 h-Low & Rain-24 h-Low & Rain-3 d-High & Rain-7 d-High =>
DB01-High-Velocity 86.36% 0.37% 80.13

3 Rain-24 h-Low & Rain-3 d-High & Rain-3 h-Low & Rain-7 d-High => DB01-High-Velocity 90.48% 0.37% 83.95
4 Rain-24 h-Low & Rain-3 d-High & Rain-6 h-Low & Rain-7 d-High => DB01-High-Velocity 86.36% 0.37% 80.13

5 Rain-12 h-Low & Rain-24 h-Low & Rain-3 d-High & Rain-3 h-Low & Rain-7 d-High =>
DB01-High-Velocity 90.48% 0.37% 83.95

6 Rain-12 h-Low & Rain-24 h-Low & Rain-3 d-High & Rain-6 h-Low & Rain-7 d-High =>
DB01-High-Velocity 86.36% 0.37% 80.13

7 Rain-24 h-Low & Rain-3 d-High & Rain-3 h-Low & Rain-6 h-Low & Rain-7 d-High =>
DB01-High-Velocity 90.48% 0.37% 83.95

8 Rain-12 h-Low & Rain-24 h-Low & Rain-3 d-High & Rain-3 h-Low & Rain-6 h-Low &
Rain-7 d-High =>DB01-High-Velocity 90.48% 0.37% 83.95

9 Rain-12 h-Low & Rain-24 h-High & Rain-7 d-High => DB02-High-Velocity 83.33% 0.10% 216.50

10 Rain-12 h-Low & Rain-24 h-High & Rain-3 d-High & Rain-7 d-High =>
DB02-High-Velocity 83.33% 0.10% 216.50

11 Rain-12 h-Low & Rain-24 h-High & Rain-3 h-Low & Rain-7 d-High =>
DB02-High-Velocity 83.33% 0.10% 216.50

12 Rain-12 h-Low & Rain-24 h-High & Rain-6 h-Low & Rain-7 d-High =>
DB02-High-Velocity 83.33% 0.10% 216.50

13 Rain-12 h-Low & Rain-24 h-High & Rain-3 d-High & Rain-3 h-Low & Rain-7 d-High =>
DB02-High-Velocity 83.33% 0.10% 216.50

14 Rain-12 h-Low & Rain-24 h-High & Rain-3 d-High & Rain-6 h-Low & Rain-7 d-High =>
DB02-High-Velocity 83.33% 0.10% 216.50

15 Rain-12 h-Low & Rain-24 h-High & Rain-3 h-Low & Rain-6 h-Low & Rain-7 d-High =>
DB02-High-Velocity 83.33% 0.10% 216.50

16 Rain-12 h-Low & Rain-24 h-High & Rain-3 d-High & Rain-3 h-Low & Rain-6 h-Low &
Rain-7 d-High => DB02-High-Velocity 83.33% 0.10% 216.50

For the velocity of DB02 monitoring station, we set the min_supp as 0.1% and the
min_con f as 80%. We also filtered the association rules with DB01-High-Velocity as the
latter term in the same way (see Table 3).

A lot of interesting information can be obtained from the association rules in Table 3.
First, the lift of all these association rules is much greater than 1, indicating that the presence
of rainfall former terms in these association rules has a significant positive effect on the
high-speed deformation of landslides. Second, if the rainfall characteristics are classified
into the current moment (3 h, 6 h), short-term (12 h, 24 h), and long-term (3 days, 7 days),
then the recent rainfall characteristics are not significant in the association rules. For
example, in Rules 3–8 and 11–16, these association rules with recent rainfall characteristics
can be considered as subordinate rules of the four main rules: Rule 1, Rule 2, Rule 9,
and Rule 10. Third, from the four main rules of Rule 1, Rule 2, Rule 9, and Rule 10,
the high-speed deformation of landslides requires not only the occurrence of short-term
rainfall characteristics, but also long-term rainfall characteristics, and the occurrence of
only one of them does not induce the high-speed deformation process of landslides. Fourth,
for the DB01 monitoring station, the long-term heavy rainfall characteristics are more
important for high-speed deformation of the landslide, because the three-day or seven-
day rainfall characteristics in Rule 1–8 are heavy rainfall, and the 12- and 24-h rainfall
characteristics can be low-intensity rainfall. Fifth, for the DB02 monitoring station, not
only the long-term heavy rainfall characteristics of 3–7 days but also the short-term heavy
rainfall characteristics of 24 h are required.

In conclusion, by analyzing the monitoring data of the Lishanyuan landslide, it can be
initially concluded that the landslide is caused by rainfall. Through association rule mining,
the disaster factors can be more accurately identified as the combination of short-term
rainfall and long-term heavy rainfall. When making early warning decisions, a rainfall
within 24 h and a heavy rainfall with a cumulative rainfall greater than 130.60 mm within
7 days can be used as a precursor to identify the high-speed deformation of the landslide.
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5. Discussion

To analyze the disaster factors of the Lishanyuan landslide and determine the precur-
sors of high-speed deformation of the landslide, we used a combination of PSO-optimized
k-means clustering algorithm and the Apriori algorithm to mine the association rules of
the monitoring data. The analysis results of the mined strong association rules show that
the high-speed deformation process of the Lishanyuan landslide is mainly affected by the
combination of short-term rainfall of about 1 day, and long-term heavy rainfall of about
3–7 days. A rainfall within 24 h and a heavy rainfall with a cumulative rainfall greater than
130.60 mm within 7 days can be used as a precursor to identify the high-speed deformation
of the landslide. Such a precursor can improve the ability of warning.

The association rule mining algorithm used in this study has the following main
advantage. First, we used the sliding window method to extract features in the feature
engineering part. This method improves the data utilization by considering continuous
data over a period of time comprehensively, compared to considering only the features at
the current moment, thus improving the reliability and representativeness of the obtained
features. Second, the original k-means clustering algorithm is optimized by using the PSO
algorithm, which effectively prevents the clustering results from falling into a local optimal.
Third, the k-means algorithm is simple to implement and only requires a given number of
clusters, which is easy to quantify. Other clustering methods that do not require specifying
the number of clusters often require specifying other hyperparameters that are difficult to
quantify. It is more convenient to directly specify the number of clusters for the control
of clustering results. Finally, this study is based on real-time monitoring data, whose
sampling intervals are hourly or even on the minute scale. Compared with ultra-long-term
monitoring data at the monthly scale, it is richer and pays more attention to short-term
deformation patterns of landslides, which is of great significance for early warning.

Additionally, it should be noted that our improvement of the association rule mining
method results in an increase in algorithm complexity. On the one hand, we use the PSO
algorithm to optimize the k-means clustering process, which is an evolutionary algorithm
that requires uninterrupted iterative computation of many potential solutions, which is
very complex and time-consuming. On the other hand, the Apriori algorithm for mining
association rules needs to scan the entire transaction database when processing frequent
candidate sets, which has high algorithm complexity, a huge amount of calculation, and is
very time-consuming. With the improvement of technology and the passage of monitoring
time, the number of monitored landslides and the volume of data will also increase sharply
in the future. It is an inevitable trend to explore simple and fast data mining algorithms.

In this study, the Apriori algorithm was used to mine association rules. Therefore,
the numerical dataset was converted into a category-type transaction database. This
method cannot further quantify association rules and is easily affected by clustering results.
Meanwhile, the Apriori algorithm does not consider the time series characteristics of item
sets in the mining process of association rules, which results in ignoring the influence of
sequence pattern in the mining process. Future research needs to explore a data mining
method that uses numerical datasets and considers sequential patterns in order to mine
more valuable information.

6. Conclusions

For the monitoring data of the Lishanyuan landslide, the sliding window method was
used to extract the features, and gray relation analysis was used to screen the features. Then
the PSO-optimized k-means algorithm was used to cluster. Finally, the Apriori algorithm
was used to mine the strong association rules between deformation speed and rainfall
characteristics to analyze the disaster factors of the Lishanyuan landslide and propose the
precursors that can be used for early warning. The following conclusions were obtained
from this study:

The sliding window method was adopted to achieve feature extraction of high-
frequency monitoring data, which can make full use of the data and be more representative.
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Using PSO-optimized k-means algorithm to cluster feature engineering can effectively
avoid the clustering results falling into local optimal. By clustering, the numerical dataset is
transformed into transaction database, and the strong association rules can be mined using
the Apriori algorithm. This research developed mining of association rules of monitoring
data at hourly or even minute scale. Compared with ultra-long-term monitoring data at
monthly scale, we should pay more attention to short-term deformation patterns, which
are more conducive to short-term real-time early warning.

The results of association rules mining show that the high-speed deformation process
of the Lishanyuan landslide is mainly affected by the combination of short-term rainfall
of about 1 day and long-term heavy rainfall of about 3–7 days. A rainfall within 24 h and
heavy rainfall with a cumulative rainfall greater than 130.60 mm within 7 days can be used
as a precursor to identify the high-speed deformation of the landslide.

The association rule mining algorithm used in this paper is highly complex, computa-
tionally intensive, and very time-consuming, and simpler and faster algorithms need to
be explored in the future to cope with monitoring and early warning of more and more
landslides. In addition, this mining process does not consider the time-series characteris-
tics of item sets, and future research should explore sequence pattern mining, which has
uncovered more and more valuable information.
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Abstract: A submarine landslide is a well-known geohazard that can cause significant damage
to offshore engineering facilities. Most standard predicting and mapping methods require expert
knowledge, supervision, and fieldwork. In this research, the main objective was to analyze the
potential of unsupervised machine learning methods and compare the performance of three different
unsupervised machine learning models (k-means, spectral clustering, and hierarchical clustering)
in modeling the susceptibility of the submarine landslide. Nine groups of geological factors were
selected as the input parameters, which were obtained through field surveys. To estimate submarine
landslide susceptibility, all input factors were separated into three or four groups based on data fea-
tures and environmental variables. Finally, the goodness-of-fit and accuracy of models were validated
with both internal metrics (Calinski–Harabasz index, silhouette index, and Davies–Bouldin index)
and external metrics (existing landslide distribution, hydrodynamic distribution, and liquefication
distribution). The findings of k-means, spectral clustering, and hierarchical clustering performed
commendably and accurately in forecasting the submarine landslide susceptibility. Spectral clustering
has the greatest congruence with environmental geology parameters. Therefore, the unsupervised
machine learning model can be used in submarine-landslide-predicting studies, and the spectral
clustering method performed best. Furthermore, machine learning can improve submarine landslide
mapping in the future with the development of models and the extension of geological data related
to submarine landslides.

Keywords: submarine landslide; machine learning; hazard susceptibility; spatial distribution

1. Introduction

A submarine landslide is a destructive phenomenon of marine geological disasters.
Large-scale submarine landslides can even cause long-distance migration of thousands of
cubic kilometers of sediment [1], damage various engineering facilities such as offshore oil
production platforms [2] and submarine optical cables [3], and even cause tsunamis [4]. This
can result in a number of incidents, such as communication failure and platform collapse,
which pose a significant risk to human life and property. Therefore, there is a pressing need
for submarine landslide stability before engaging in offshore engineering activities.

At present, the main research directions of submarine landslides include: using high-
precision geophysical detection to identify and classify landslide morphology [5,6], carrying
out stability calculations of submarine landslides by the numerical analysis method [7–9],
and simulating the landslide process through physical model tests such as a conventional
water tank or centrifuge [10,11]. Despite attempts through the above traditional studies, the
research on risk assessment and categorization is still insufficient due to the complicated
control circumstances of submarine landslides, the large number of trigger factors, and the
difficulty of monitoring.

Machine learning and deep learning techniques have been proven to be powerful
and promising tools in many geotechnical applications [12–16]. Chen et al. [12] designed
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landslide spatial models using maximum entropy, support vector machine, and artificial
neural network methods. Tse et al. [15] performed an unsupervised learning approach
to study the synchroneity of past events in the South China Sea. Qi and Tang [16] used
integrated metaheuristic and machine learning approaches for slope stability prediction.
Deep learning convolutional neural networks [17] and support vector machines [18] are
also used in landslide detection. Even though the mentioned methods performed well
for landslide modeling in a given area, there is no conclusive information about which
model is the best for other regions. In addition, the application of the recently developed
techniques and methods for a more accurate evaluation of the predictive capability of
landslide susceptibility models should be evaluated further.. At present, the main research
objects of landslides using machine learning are landslides on land, but few types of
research are on submarine landslides. The problem of zoning submarine landslide hazards
is still a difficult area for landslide research. On the other hand, machine learning excels
at resolving nonlinear problems without the need of explicit mathematical relationships.
Therefore, it is essential to investigate if machine learning algorithms can be utilized for
zoning undersea landslide hazards and to research how well various machine learning
methods perform.

The primary purpose of this study is to offer an integrated strategy for assessing
submarine landslide susceptibility that uses unsupervised machine learning models to
evaluate landslide risk and partition the affected region. Submarine landslides in the
Yellow River Estuary are selected for study and validation of the suggested method. Three
machine learning models based on k-means, spectral clustering, and hierarchical clustering
are developed and compared for performance evaluation.

2. Study Area Description

The Yellow River Estuary is located in the north of Shandong Peninsula, China
(118.73◦ E–119.65◦ E, 38.1◦ N–38.3◦ N) (Figure 1). In this sea region, the water depth
ranges from 0 to 18 m. When the water depth is less than 15 m, the predominant sediment
type is silt combined with a minor quantity of silty sand; when the water depth is greater
than 15 m, the predominant sediment type is silty clay. The wave height increases gradually
with the increase in water depth and reaches the maximum value near the water depth
of 10 m. As a consequence, wave forces on the seabed increase first, and then decrease
with the increase in water depth. The seabed gradient ranges from 1/2000 to 1/500. Wave-
induced liquefaction, which can cause seabed sediment to lose stability and slide, is the
main geological disaster in the sea area.

There are two main factors for the selection of the Yellow River Estuary as the study
area. First, the detailed geological data of the study area, such as water depth, sediment
types, waves, currents, and so on, have been collected by the First Institute of Oceanography,
MNR, and can be used in this study. It is of vital importance to obtain detailed geological
environment data, as the acquisition of data about submarine landslides is very difficult
and incomplete. Second, there are a great many submarine landslides and human activities
located in this sea area, which means this study has research significance and practical
engineering safety-guidance significance. There are a lot of micro-submarine landslides that
have been discovered since the 1990s in the study area. The results of the field geophysical
investigation [19] show that the form factor of the submerged delta landslide zone in the
Yellow River Estuary is mainly hydrodynamically triggered by submarine liquefaction.
Furthermore, the SINOPEC Shengli Oilfield is in this sea area, and as a consequence,
hundreds of submarine oil platforms and submarine cables are located in this area.
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Figure 1. Location map of the study area.

3. Data and Methods

3.1. Overall Workflow

The main objective of this paper is to use the data of various types of submarine-
landslide-hazard impact factors as the basis for regional classification of submarine land-
slide hazards after data preprocessing and machine learning modeling. The study in this
paper can provide an exploration of the hazard classification of global submarine landslides.
The workflow of this study is shown in Figure 2, and includes the following specific steps:

• Data collection.

Figure 2. The general concept of the research method.

The data of this study are obtained from long-term geophysical surveys and in situ
monitoring in the study area by the First Institution of Oceanography, MNR [20]. After
data collection, we should determine suitable geological factors as submarine-landslide-
influencing parameters. Suitable impact parameters should be able to cover both the
geological, hydrological, and human influential factors of landslides and be more readily
available as common parameters.

• Influencing parameter determination.
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After determining the factors influencing the submarine landslides, each data point
was interpolated separately so that the values of all influencing factors were included
at each study site in the study area. Subsequently, the data were classified into several
categories according to the characteristics of different influencing factors, and the category
distribution maps were drawn.

• Classification-level data extraction.

The coordinate values of the study-point locations are defined and the categories of
each factor are extracted from the impact-factor classification map obtained in the previous
step. The coordinate values of the study-point locations are defined and the categories of
each factor are extracted from the impact-factor classification map obtained in the previous
step. Thus, each study point corresponds to multiple classes of impact-factor parameters
that can be used in the next step of unsupervised machine learning model training.

• Establishing unsupervised machine learning models.

Establish 3 unsupervised machine learning models using k-means, spectral clustering,
and hierarchical clustering. The different parameters in the model are first modeled several
times, and subsequently, the model parameter with the best prediction is selected to build
the final established model.

• Accuracy comparison.

Compare the accuracy and rationality of different predicting results and choose the
best one. Both the mathematical test metrics and the measured geological conditions should
be used to test the models’ accuracy. The Calinski–Harabasz index, silhouette index, and
Davies–Bouldin index are used to calculate the mathematical accuracies. The liquefication
zonation is used to calculate the geological rationality.

• Influencing parameter analysis.

Study the importance of all the landslide-influencing parameters by excluding them
individually using the best model and test the accuracies with evaluating indicators.

3.2. Landslide-Influencing Parameters

It is very important to choose the suitable influencing factors for submarine landslide
assessment. There is no absolute standard parameter when classifying the hazards of
submarine landslides. This issue remains one of the difficult problems in the field of
research on submarine landslides. The reason is that there are too many influencing factors
and it is difficult to obtain the corresponding parameters. From the point of view of
geological analysis, geological factors, hydrodynamic factors, topographic factors, and
human activities should be taken into account. As much information as possible should be
collected to satisfy these four requirements.

In this study, we have selected carefully out of all the various choices available based
on the nature of submarine landslide occurrences concerning the characteristics of geology,
hydrology, geomorphology, and the impact of human engineering activities. Therefore,
9 factors were selected, namely, sediment type, slope, soil strength, water depth, wave
height, maximum current velocity of the bottom, liquefaction, erosion, and human en-
gineering activities (Figure 3). The research data of the 9 factors were obtained by the
First Institute of Oceanography, MNR, China through geophysical sounding, drilling, and
monitoring surveys in the Chengdao sea area of the Yellow River Estuary [18], and contain
detailed information on various geological features of the study area. Each factor was
divided into 3 or 4 classes based on the range of data, geological background, and experts’
experience in this study area. At last, 1107 points, of which longitudes vary from 118.75◦ N
to 118.95◦ N, latitudes change from 38.15◦ N to 38.28◦ N, and 0.05 degrees is the interval,
were selected as the research sites (Figure 1). All the data used in this study were collected
from projects of the First Institute of Oceanography, MNR.
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Figure 3. Location map of the study area. (a) Sediment type; (b) slope angle; (c) soil strength; (d) water
depth; (e) wave height; (f) current velocity; (g) liquefaction; (h) erosion; (i) human engineering
activities; (j) overlay map.
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Sediment type plays an important role in the study of submarine landslide suscepti-
bility, as different types of sediments have different physical and mechanical properties,
which can affect the difficulty of geological disasters. Studies have shown that sediment
type has a large influence on landslide stability [21]. In this study area, sediments are
divided into 4 classes: silty sand, silt, silty clay, and clay.

Slope angle is a significant factor in the development of submarine landslide suscep-
tibility and the angles were calculated by the change in water depth. Slope angles are
subdivided into 4 categories: <1/2000 radian, 1/2000–1/1000 radian, 1/1000–1/500 radian,
and >1/500 radian. The places with large sea-bottom slopes are mainly located at 6 m and
10 m water-depth contours.

Soil strength affects the stability and sliding difficulty of the submarine landslide. The
greater the soil strength, the harder the slide occurs. Soil strength is divided into 0–50 kPa,
50–80 kPa, 80–110 kPa, and >110 kPa. The classification of soil strength is mainly based on
data from boreholes in this study area.

Water depth, which was obtained by single-beam and multibeam bathymetric instru-
ments, can influence the strength of waves acting on the seabed. It can be classified into
4 classes: 0–5 m, 5–10 m, 10–15 m, and >15 m.

Wave height is a very important factor because it represents the energy that a wave
contains. It was collected by pressure wave and tide gauges. The wave height increases
first with the depth of water, but there is no obvious increase after reaching a 9 m depth.
The study area can be divided into 3 classes, which are 0.5–2.5 m, 2.5–4 m, and >4 m.

The maximum current velocity of the bottom determines the shear stress of the current
on the seabed, which may cause erosion. Current velocity increases as the water depth
increases and can be classified into 3 classes: 0–0.5 m/s, 0.5–1 m/s, and 1–1.5 m/s.

Liquefaction is the most serious geological hazard in the Yellow River Estuary. There
are hundreds of liquefaction zones in the study area, which were discovered by geo-
physical explorations. Liquefaction zones are mainly distributed between a 6 m to 12 m
water depth, where the strength of hydrodynamic action is the strongest. Liquefaction
is divided into 4 classes: not easy to liquefy (liquefaction depth < 0.5 m), slightly liq-
uefy (0.5 m < liquefaction depth < 2 m), moderate liquefy (2 m < liquefaction depth < 4 m),
and serious liquefy (liquefaction depth > 4 m). Seabed sediments are easy to slide after
liquefaction as their bearing capacity reduces greatly.

Erosion is divided into 4 classes, which are the stable zone (<0.02 m/s), slight zone
(0.02–0.05 m/s), moderate zone (0.05–0.1 m/s), and serious zone (0.1 m/s). The serious
zone and moderate zone are mainly distributed in a water depth of less than 12 m.

Human engineering activities are mainly offshore production platforms, submarine
pipelines, cables, and so on in this study area. They can be divided into 4 categories: core
zone, buffer zone, potential-impact zone, and no-impact zone. The actual scope of various
engineering structures is named the core zone. The buffer zone is the core area extending
500 m outwards. The potential-impact zone is where the buffer zone extends another
kilometer outward, and other areas are the no-impact zones.

3.3. Unsupervised Machine Learning Models

Unsupervised machine learning is a major part of machine learning. It can study the
intrinsic relationship of datasets without data labels when dealing with practical problems.
The main applications of unsupervised learning are: segmenting a dataset by some shared
attributes; detecting exceptions that are not suitable for any group; and simplifying datasets
by aggregating variables with similar properties. Among these, the objective of this study
is to explore the susceptibility of submarine landslides. As a consequence, an important
unsupervised machine learning class named clustering, which contains k-means, spectral,
and hierarchical clustering, was selected as the study method. Each clustering method was
built after parameter selection with internal validation measures: the Calinski–Harabasz
index [22], silhouette index [23], and Davies–Bouldin index [24]. The more precise the
clustering result, the higher the Calinski–Harabasz score and silhouette index. The lower
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the Davies–Bouldin index, the more accurate the clustering result. The clustering results’
performances were validated with external validation measures; for instance, liquefaction
distribution, hydrodynamic action, slope angle, etc.

3.3.1. k-Means

The k-means clustering algorithm is a typical unsupervised machine learning model
that is widely used for the clustering analysis [25] of non-labeled data. The advantage of
k-means is that it is easy to implement and visualize the result. The number of clusters is
the only parameter that needs to be specified beforehand. To build a k-means model:

(a) Predetermine the clustering number k.
(b) The k-clustering prime points are randomly selected as μ1, μ2, . . . , μk.
(c) All the points are assigned to the nearest centroid and clusters are formed. Calculate

the distances between every point to the centroid in each cluster.

dist(x, μ) =

√
n

∑
i=1

(xi − μi)
2

where x is the sample point; μ is the center of mass of the cluster; n is the number of
features in each sample point; and i is each feature of the constituent point x.

(d) Summarize the total distances of all clusters:

Cluster Sum o f Square(CSS) =
m
∑

j=0

n
∑

i=0
(xi − μi)

2

Total Cluster Sum o f Square =
k
∑

l=1
CSSl

where m is the number of samples in a cluster and j is the number of each sample.
(e) Calculate the minimum quadratic error from the data point to the center of each cluster,

and move the center to the point.
(f) Repeat the calculation from step (c) until the total cluster sum of squares does not

change or reach the maximum iteration times.

3.3.2. Spectral Clustering

Spectral clustering is another unsupervised machine learning model, which clusters
through the characteristic vector of the Laplacian matrix of sample data. Spectral clustering
maps data from a high-dimensional space to low-dimensional space, and then, uses other
clustering algorithms to cluster in a low-dimensional space. Compared with k-means,
spectral clustering uses a dimension reduction algorithm, which is more suitable for high-
dimensional data processing and more effective for sparse data processing. Spectral cluster-
ing outputs clusters A1, A2, . . . , An by inputting n sample points X = {x1, x2, . . . , xn} and
the number of clusters k. In this model, the kernel function parameter and cluster number
are the influential parameters. The specific steps are below:

(a) Calculate the similarity matrix W of n ∗ n, which includes the minimum proxim-
ity method, k-proximity method, and full-connection method. The full-connection
method used in this study is as described:

sij = s(xi, xj) =
n

∑
i=1,j=1

exp
−
∥∥xi − xj

∥∥2

2σ

where sij = the similarity matrix and σ = kernel function parameter, which controls
the neighborhood width of the sample point.

(b) Calculation matrix D:
di = ∑n

j=1 ωij
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where D is the n ∗ n diagonal matrix formed with di.
(c) Calculate the Laplacian matrix L = D − W.
(d) Calculate the characteristic value of D and sort it from small to large, then take the

first k characteristic values and calculate their feature vector u1, u2, . . . , un.
(e) Form the matrix U = {u1, u2, . . . , un}, U ∈ Rn+k.
(f) Let yi ∈ Rk be the vector of the line i of U, i = 1, 2, . . . , n.
(g) Cluster the datasets Y = {y1, y2, . . . , yn} into clusters C1, C2, . . . , Ck.
(h) Output clusters A1, A2, . . . , Ak, among which Ai = { j|yi ∈ Ci}.

3.3.3. Hierarchical Clustering

Hierarchical clustering is another unsupervised algorithm that is based on hierarchical
methods. When using hierarchical clustering, each object is regarded as a cluster, and then,
the clusters are merged step by step according to some rules so that the number of cluster
classes is reached. The advantages are: the similarity of distance and rule is easy to define
and is limited, and the hierarchical relationship of classes can be found and can be clustered
into other shapes. Meanwhile, the disadvantages are: the computational complexity is too
high, a singular value can also have a great influence, and the algorithm is likely to cluster
into chains. To build a hierarchical clustering model:

(a) Each object is regarded as a class, and the minimum distance between two objects is
calculated;

(b) The two classes with the smallest distance are combined into a new class;
(c) Recalculate the distance between the new class and all classes;
(d) Repeat (a) and (b) until all classes are finally merged into one class.

The effective parameters are cluster number, linkage, and affinity, of which linkage
contains Ward, average, and complete; and affinity contains Euclidean, Manhattan, and
cosine. Ward can only be combined with Euclidean when averaged, which provides the
best performance but a large computation, and can be combined with Manhattan and
cosine. We should study the parameters and validate the result before building the final
hierarchical clustering model.

3.4. Validation

Cluster results of k-means, spectral clustering, and hierarchical clustering validated
with different measures are shown in Figure 4. It can be seen from (1)~(6) and (10)~(12) that
all the three cluster methods performed best when the cluster number is 2, and decreased
when the cluster number increased. In the mathematics view, the data should be divided
into two classes as they performed best. However, we should consider our geological needs
as an important classification factor as well. This sea area can be divided into two classes,
with the seabed sediments mutating at about a 14 m water depth.

Nevertheless, we need a more accurate range of submarine landslide susceptibility
with acceptable mathematical accuracy. The cluster number of 3 is still insufficient to
classify the study region because the classification result may be easily inferred from the
hydrodynamic characteristics. As a result, the final cluster number is 4, which corresponds
to the classifications very high, high, low, and very low.

As seen from (7) to (9), the clustering result performed best when gamma was equal
to 0.01 with the Calinski–Harabasz index and gamma equal to about 1 using the silhouette
index and Davies–Bouldin index. Therefore, the kernel function parameter gamma is 1. It
is shown in (13)~(15) that the result performed best when the affinity method is Manhattan.
The specific parameters used in the three cluster models can be seen in Table 1.
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Figure 4. Cluster results of k-means, spectral clustering, and hierarchical clustering were validated
with the Calinski–Harabasz index, silhouette index, and Davies–Bouldin index. (1)~(3) Validate
cluster numbers of k-means. (4)~(6) Validate cluster numbers of spectral clustering. (7)~(9) Validate
kernel function parameter of spectral clustering. (10)~(12) Validate cluster numbers of hierarchical
clustering. (13)~(15) Validate affinity of hierarchical clustering. The red circle indicates the location
where the model achieved the best prediction.
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Table 1. Parameters used in different models.

Model Cluster Number Gamma Affinity Linkage

k-means 4 None None None
Spectral 4 1 None None

Hierarchical 4 None Manhattan Average
The parameters are not necessary for the model when it shows “None”.

All machine learning calculations in the article were carried out using the scikit-learn
machine learning package [26], an open-source python library, via a laptop with windows
10, 16G RAM, CPU R 5800H, and GPU 3060.

4. Results

This section outlines the clustering results of the submarine landslide susceptibility
using k-means, spectral, and hierarchical models after parameter validation and selection.
The study area was divided into four areas of different submarine landslide susceptibilities
without real geological labels. To define the final labels, all the geological parameters should
be considered. As mentioned in Section 3.2, the hydrodynamic force to the seabed increases
first with the deepening of water depth and then decreases. Moreover, the sediment type
changes from silt to clay, which is difficult to be influenced, when the water depth is deeper
than 15 m. Therefore, the submarine landslide susceptibility labeling principle of this area
is that: the least serious part is the clay region; the second least serious part is the shallow
water region; the most serious part is around the 10 m bathymetric contour; and the second
most serious part is beside or around it.

As shown in Figure 5, the study area was divided into four parts of submarine
landslide susceptibility using the k-means model. The very high-susceptibility part is
located at a water depth of 5–11 m, and the edge is a discrete distribution. The high-
susceptibility part is distributed at a water depth of 11–13 m. The low-susceptibility part is
situated at a water depth of less than 5 m. The very low-susceptibility part is located at a
water depth deeper than 13 m.

 

Figure 5. Distribution of submarine landslide susceptibility using k-means. The different colors
represent different submarine landslide susceptibilities.
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It can be seen from Figure 5 that the study area was divided into four parts of
submarine landslide susceptibility using the spectral clustering model. The very high-
susceptibility part is located at a water depth of 5–12 m. The high-susceptibility part is
distributed at a water depth of 12–15 m. The low-susceptibility part is situated at a water
depth of less than 5 m. The very low-susceptibility part is located at a water depth deeper
than 15 m. Compared with the results obtained by k-means, the distribution of submarine
landslide susceptibility using spectral clustering is more continuous than that using the
k-means algorithm. Furthermore, the very high-susceptibility part is wider and the very
low part is narrower in Figure 6 than in Figure 5.

 
Figure 6. Distribution of submarine landslide susceptibility using spectral clustering.

As shown in Figure 7, the study area was divided into four parts of submarine
landslide susceptibility using the hierarchical clustering model. The very high-susceptibility
part is located at a water depth of 5–8 m. The high-susceptibility part is distributed at a
water depth of 8–13 m. The low-susceptibility part is situated at a water depth of less than
5 m, and the very low-susceptibility part is located at a water depth deeper than 13 m. By
comparing the results of the three algorithms, we can find that the very high-susceptibility
part obtained by using the hierarchical clustering model is much less than other two of the
other methods.

Generally, the low- and very low-susceptibility parts of these three methods are very
close. The main differences are in the size and distribution of very high and high areas.
The three unsupervised machine learning methods obtained two main common parts: one
is a low-hazard region at shallow depths of 5 m; the other is a very low-hazard region at
depths of 13 m. The reason for this phenomenon is that the hydrodynamic conditions are
relatively weak in these two parts of the area, and the influence of various geological-impact
parameters on submarine landslides is also small; thus, the results obtained by different
algorithms are more consistent.
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Figure 7. Distribution of submarine landslide susceptibility using hierarchical clustering.

5. Discussion

5.1. Model Performance Comparison

To test the performance of cluster results, both internal validation measures and ex-
ternal validation measures were used. For internal validation measures, we validated
the accuracy of three different submarine landslide susceptibility models by using the
Calinski–Harabasz index, silhouette index, and Davies–Bouldin index. The three indexes
use different algorithms to examine the merits of the classification results from a math-
ematical perspective. As shown in Figure 8, the k-means model performed best under
the evaluation of the Calinski–Harabasz index, whereas the spectral clustering model
performed best when evaluating the silhouette index and Davies–Bouldin index. There-
fore, spectral clustering has the best performance compared to k-means and hierarchical
clustering in the internal validation measures.

In general, external causes of submarine landslides include earthquakes, gas hydration,
wave action, volcanic activity, tsunamis, etc. There are no severe geological phenomena such
as earthquakes, tsunamis, and volcanoes in the study area. The main external influence
factor is the liquefaction of seabed soil caused by waves. Therefore, for the external
validation measure, the three distributions of submarine landslide susceptibility were
compared with the distribution of liquefaction depth (Figure 9). As shown in Figure 9, the
area with the deepest liquefaction depth (ellipse A) is distributed at a water depth of 6–12 m.
The area of ellipse A agrees well with the submarine landslide susceptibility results using
k-means and spectral clustering, whereas the result obtained using hierarchical clustering
is quite different from ellipse A. The area with a deep liquefaction depth (ellipse B) is
distributed at a water depth of 12–15 m. It is in good agreement with the result obtained
using hierarchical clustering, and the areas obtained by k-means and hierarchical clustering
are different from the area of ellipse B. The area with a small, shallow liquefaction depth
(ellipse C) is distributed at a water depth of less than 5 m, which agrees well with all the
clustering results. The area with a very shallow liquefaction depth (ellipse D) is distributed
at a water depth deeper than 15 m. It is in good agreement with the result obtained using
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hierarchical clustering, and the areas obtained by k-means and hierarchical clustering
are larger than the area of ellipse D. As a result, the submarine landslide susceptibility
results using spectral clustering performed better than those obtained using k-means and
hierarchical clustering in the external validation.

 

Figure 8. Comparison of clustering results validated with different internal validation measures.
(a) Performance of different models under Calinski–Harabasz validation methods. (b) Performance
of different models under silhouette validation methods. (c) Performance of different models under
Davies–Bouldin validation methods. The higher the Calinski–Harabasz index and silhouette index
are, the more accurate the clustering result will be. The lower the Davies–Bouldin index is, the more
accurate the clustering result will be.

Figure 9. Distribution of liquefaction depth in the Yellow River Estuary. The area of ellipses
A, B, C, and D represents the very deep, deep, shallow, and very shallow parts of liquefaction
depth, respectively.

In conclusion, all three models used in this study are capable of producing correct
clustering results, with the spectral clustering model being the most precise when grouping
the undersea landslide susceptibility. Although the best algorithm can be obtained by
internal verification methods, the scores of different algorithms are not different enough to
represent the difference. To obtain the best results, it is still necessary to combine external
verification methods at the same time.
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5.2. Comparison of Model Results with Other Studies

In order to verify the accuracy of the model calculations in this paper, comparisons
with the results of other studies are still needed. Therefore, we selected the results of a
geophysical survey and the results of traditional GIS-based landslide analysis methods to
compare and analyze with the conclusions of this paper.

In the 1980s, a comprehensive, integrated geophysical survey was conducted in the
Yellow River Estuary waters [19]. The results of the survey showed that a large number
of microslides on the leading edge of the delta existed at a water depth between 4 and
12 m in the study area. It can be seen from Figure 5 that the classification of landslides
as hazard results using the spectral clustering algorithm shows that the areas with very
high hazards are concentrated at a water depth range of 5–12 m. The simulation results are
highly consistent with the actual survey results, indicating the accuracy and reliability of
the algorithm in this paper.

As for the conventional approach used to analyze submarine landslide hazards, the
GIS-based analyzing method was also used to study the stability of submarine landslides
in the Yellow River Estuary [27]. Results show that the most prone landslide areas in the
study area are located at a water depth between 8 and 13 m, and the more prone landslide
areas are located at a water depth between 5 and 15 m, with an average water depth of
10 m. The range of landslide-hazard areas derived from GIS results is consistent with the
overall distribution range and trend compared with those derived in this paper, and the
range of landslide hazards is slightly smaller. The model calculation results in this paper
are closer to the results of the actual geophysical survey compared with the GIS results.

Therefore, it is clear that the unsupervised machine learning method used in this
paper has high reliability and stability after being compared with the traditional methods of
submarine-landslide-hazard analysis and the actual geophysical survey results in the field.

Although just one research area was used for the study of submarine landslide hazards,
the general geological formation conditions and triggering mechanisms of submarine land-
slides in all study regions are comparable, despite the differences in causes and triggering
variables. As a result, this paper’s research technique and research hypothesis can serve as
a guide for the global study of submarine landslide hazards.

5.3. Importance of Landslide-Influencing Factors

To figure out the significance of influencing elements, each factor was eliminated and
the results were recalculated. New cluster results with different factors were compared
with the original clustering results using the Calinski–Harabasz index, silhouette index,
and Davies–Bouldin index. Nine clustering results correspond to the missing influence
factors and the evaluation scores were normalized. The higher the normalized ratio is, the
less important this factor is. The order of importance in this study does not represent the
absolute order of the corresponding impact factors, but only represents the relative order
in the study area.

Test results can be seen in Figure 10, where the CH represents the normalized ratio of
the Calinski–Harabasz index and the SI means the normalized ratio of the silhouette index.
The DAV is obtained by 2 minus the normalized ratio of the Davies–Bouldin index so that
the trend is the same as the other two indexes. As seen in Figure 10, the model without
liquefaction obtained the lowest score, which means liquefaction is the most important
factor that influences landslides in the study area. Models that exclude water depth, wave
height, and soil strength obtained higher scores than those that exclude liquefaction, which
means they are the second most important factors. These three elements may affect whether
liquefaction happens, but none of them can predict it on their own. Consequently, these
components are less significant than liquefaction, but more significant than other factors.
As for sediment type, erosion, and maximum current velocity of the bottom, they are
less important than the factors mentioned before. There is a great correlation between
sediment types and soil strength. However, the physical and mechanical properties of
the same sediment may be different because of the different depositional states and times.
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Therefore, soil strength has a greater impact on landslides. Erosion and maximum current
velocity of the bottom have certain influences on the stability and strength of sediments,
but are not decisive; therefore, the importance degree is relatively low. The least important
factors are slope angle and human engineering activities in this study area. Slope angle
has an important influence on the landslide according to previous studies [28,29], but the
difference in slope angle in this study area is not large enough, and thus, the influence
degree is low. As described in Section 3.2, the biggest slope angles are >1/500 radian, which
is about equal to 0.11◦. However, Hance [30] counted 399 cases of submarine landslide
slope angles and found that the most frequent value was 3~4◦ and the average value was
5.8◦. These data are far larger than the slope value in our study area, and the average value
is 50 times the maximum value in the region; thus, the slope angle is negligible and is
very unimportant in the landslide evaluation of the study area. As for human engineering
activities, some engineering activities, such as hydrate exploitation [31,32], can play an
important role in the formation of submarine landslides, but the engineering activities in
the study area are mainly offshore platforms and submarine pipelines, which are widely
distributed, and therefore, their importance is very low and can be ignored.

Figure 10. The normalized score of clustering results changed with different influence parameters.
The normalized results were obtained by dividing the new scores of eight parameters by the scores of
nine parameters.

In conclusion, various influencing variables have varying degrees of impact influence
on submarine landslide risk assessment, and the significance relies on the degree of correla-
tion between the landslide and its distribution in the study area. The order of importance
and degree of effect of variables acquired in this research only reflect one study area; the
techniques described in Section 5.2 must be employed to conduct particular analyses in
other study areas.

6. Conclusions

In this paper, a submarine landslide susceptibility assessment was carried out using
unsupervised machine learning models in the Yellow River Estuary, China. Nine influential
factors were selected to analyze the susceptibility of submarine landslides based on terrain
data and remote sensing images. We used different unsupervised machine learning models
to classify landslide risk and discussed the accuracy of the model and the importance of a
single factor. The main conclusions are as follows:

(1) Unsupervised machine learning models can be used to study and assess submarine
landslide susceptibility and provide high accuracy.
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(2) Results using the spectral clustering method have the highest accuracy among k-
means, spectral clustering, and hierarchical clustering after testing with both internal
validation measures and external validation measures.

(3) In this study area, the order of importance of submarine-landslide-influencing factors
is as follows: liquefaction, water depth, wave height, soil strength, sediment type,
erosion, maximum current velocity of the bottom, slope angle, and human engineering
activities. In different research areas, the importance of each impact factor is different,
which needs specific analysis.

Due to the complexity of the elements impacting the submarine-landslide-hazard
triggers and the difficulties of monitoring submarine landslide sites, it is challenging to
determine the precise location and hazard information of each landslide in the research
region. Currently, unsupervised machine learning can only be conducted using limited
data for semiquantitative description. For a more in-depth examination of submarine
landslide hazards, accurate training data is necessary. In the future, we must, therefore,
place a greater emphasis on the collection of field data for undersea landslide identification
and monitoring.
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Abstract: A landslide is a kind of geological disaster with high frequency, great destructiveness, and
wide distribution today. The occurrence of landslide disasters bring huge losses of life and property. In
disaster relief operations, timely and reliable intervention measures are very important to prevent the
recurrence of landslides or secondary disasters. However, traditional landslide identification methods
are mainly based on visual interpretation and on-site investigation, which are time-consuming and
inefficient. They cannot meet the time requirements in disaster relief operations. Therefore, to solve
this problem, developing an automatic identification method for landslides is very important. This
paper proposes such a method. We combined deep learning with landslide extraction from remote
sensing images, used a semantic segmentation model to complete the automatic identification process
of landslides and used the evaluation indicators in the semantic segmentation task (mean IoU [mIoU],
recall, and precision) to measure the performance of the model. We selected three classic semantic
segmentation models (U-Net, DeepLabv3+, PSPNet), tried to use different backbone networks for
them and finally arrived at the most suitable model for landslide recognition. According to the
experimental results, the best recognition accuracy of PSPNet is with the classification network
ResNet50 as the backbone network. The mIoU is 91.18%, which represents high accuracy; Through
this experiment, we demonstrated the feasibility and effectiveness of deep learning methods in
landslide identification.

Keywords: deep learning; semantic segmentation; PSPNet; landslide

1. Introduction

Landslides are common and frequent geological hazards around the world. The
occurrence of landslides affects the terrain and causes different degrees of damage [1]. Fur-
thermore, when residential areas or public buildings are close to a landslide site, the event
is often accompanied by emergencies. Landslides in specific areas need to be identified
within a short period to intervene and resolve the crisis [2,3]. With the rapid development
of remote sensing technology, these methods have been widely used [4,5]. Currently, the
landslide identification methods based on remote sensing images are mainly divided into
visual interpretation, pixel-based and object-oriented landslide identification methods.

Visual interpretation is the earliest landslide identification method applied to remote
sensing images. Visual interpretation is when the interpreter extracts the landslide shape
from the remote sensing image according to his or her professional knowledge and related
research materials. Data extracted by this method have high accuracy. However, the visual
interpretation also has the disadvantages of being time-consuming, having an overrelian
on manual discrimination and inefficient [6].
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Pixel-based landslide identification methods focus on pixel values and pixel value
changes in remote sensing images and classify them according to pixel changes or change
characteristics [7]. Although this method overcomes the shortcomings of visual interpreta-
tion, it is only judged by a single pixel value; moreover, it does not consider the correlation
between pixels, resulting in an indistinct recognition of landslide edge regions and poor
performance [8].

Object-oriented landslide identification methods utilize the attribute features of raw data
(such as texture, spectrum, etc.) to classify remote sensing images by one or more attributes [9].
However, this method uses one or more attribute features to set thresholds, and the process is
complicated and cannot process large-scale remote sensing images in time.

With the continuous increase in high-resolution remote sensing images, how to quickly
and efficiently identify targets from massive remote sensing images has become a key prob-
lem for scholars and experts to study. In recent years, with the rapid development of deep
learning, computer vision and image processing technology have been introduced into the
field of remote sensing as a new method for remote sensing image classification and target
detection [10]. Research has shown that deep learning methods do not require many of the
data provided in traditional landslide identification methods to help identify landslides;
they only need enough landslide images as samples and training, which greatly simplifies
the complex calculation process, makes up for the shortcomings of the above-mentioned
traditional landslide identification methods, and realizes automatic identification of land-
slides. At the same time, deep learning methods are higher accuracy than the traditional
landslide identification methods [11]. The main contributions of this article are as follows:

(1) We process the landslide data in the Bijie landslide dataset, create a landslide dataset,
and preprocess the dataset (data cleaning, data enhancement);

(2) On the landslide dataset, we use three models (U-Net, DeepLab v3+ and PSPNet) to
conduct experiments and test the performance changes in the models when different
classification networks are used as the backbone network;

(3) We use the above pretrained model to test the landslide test set and use mIoU,
precision, and recall to evaluate the model performance to obtain the optimal model
for landslide identification performance.

The remainder of this paper is structured as follows. Section 2 introduces related work.
Section 3 shows the data and methodology we used. Section 4 presents and analyzes the
experiment results. Section 5 presents our conclusions.

2. Related Work

Convolutional neural networks (CNN) [12] have achieved great success in the field
of image processing because of their nonlinear learning ability [13], driving the rapid
development of computer vision [14,15]. Based on CNN studies, various models have been
developed for image classification [16], object detection [17,18], semantic segmentation [19],
etc., where semantic segmentation performs pixel-level segmentation of the images. These
models have achieved satisfactory results in traditional vision tasks. Therefore, people have
begun to apply these deep learning models to landslide identification in remote sensing
images in the past few years.

Ye et al. (2019) proposed a constrained deep learning model, applied it to identifying
landslides in hyperspectral images, and compared the results with the support vector
machine–spectral information divergence–spectral angle matching method. They that the
extraction of high-level features by deep learning has great potential for improving the
accuracy of landslide identification [20]. Ghorbanzadeh et al. (2019) used CNNs for Hi-
malayan landslide identification and compared them with state-of-the-art machine learning
methods (artificial neural networks, support vector machines, and random forests); the
results show that deep learning is superior to machine learning in landslide identification
experiments [21]. Prakash et al. (2020) proposed an improved U-Net model that uses
ResNet34 blocks for feature extraction and enables landslide identification in Douglas
County, south of Portland, Oregon, USA [22]. Zhu et al. (2020) proposed a method based
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on U-Net architecture to fuse local and nonlocal features, upsampling by dilated convolu-
tion, and the corresponding spatial pyramid expanded receptive field and scale attention
mechanism to identify the landslide caused by the earthquake in Jiuzhaigou, China [23].
Ji et al. (2020) developed a CNN-based spatial channel attention mechanism to classify and
identify landslides in Bijie City, China, from available satellite imagery and DEM datasets;
this experiment concludes that the attention mechanism and DEM data can effectively
improve the accuracy of landslide identification [24]. Liu (2020) proposed to use ResU-Net
to identify earthquake landslides in Jiuzhaigou, Sichuan Province, China, and obtained an
F1 value of 93.3%, and an mIoU value of 87.5% [25]. Ju et al. (2020) identified old loess
landslides on Google Earth images using the two-stage algorithm Mask R-CNN; although
the accuracy rate did not reach a high level, it confirmed the feasibility of Mask R-CNN to
identify old landslides [26]. Dai et al. (2021) proposed an improved U-Net neural network
and completed the automatic identification of the deformation features of the landslide
time series [27]. Ullo et al. (2021) used the Mask R-CNN model with ResNet101 as the
backbone network and the transfer learning algorithm to complete landslide recognition
in digital images of hilly areas obtained by drones, and the results show that the method
is superior to the existing research in both algorithm performance and robustness [28].
Liu (2021) proposed to use an improved Mask R-CNN to identify earthquake landslides
in the Jiuzhaigou area of Sichuan Province, China, and obtained an F1 value of 94.5%
and an mIoU value of 89.6% [29]. Ghorbanzadeh (2022) combined the object-based image
analysis (OBIA) approach with the fully convolutional network (FCN) model to complete
the landslide detection in Sentinel-2 images and verified the method’s feasibility [30].

Therefore, deep learning methods have been applied to landslide identification. How-
ever, due to the diversity and complexity of landslides, these methods still have many
problems to be solved. For example, in order to improve the ability to identify landslides,
the model needs to learn a large number of data [31]; this is a key issue because there is very
little landslide data currently available. In addition, for this work, more data information
can help the model to better improve the landslide recognition accuracy [32]; however,
the acquisition, retrieval, and annotation of datasets is often a difficult point in landslide
identification tasks. Therefore, to address the issues mentioned above, we conducted
this study. Since there are few publicly available landslide datasets and their quality is
uneven, to have a good experimental basis, we selected the Bijie dataset published by
Ji et al. (2020) [24]. The Bijie dataset is the first large-scale, public remote sensing landslide
dataset and has a double check; more detailed dataset information will be introduced in
Section 3.1. At the same time, since the interpretation of landslide images has very high
professional requirements, in the re-labeling of samples, we strictly follow the samples
provided by the Bijie dataset to ensure the reliability of the data. In the final sample set, we
expand the sample set through the data augmentation method and finally obtain a data set
containing 2500 landslide images.

3. Materials and Methods

3.1. Data Source

Remote sensing datasets of landslide are difficult to obtain, we used the open source
Bijie landslide dataset [24]. The Bijie landslide dataset is the first open remote sensing
landslide dataset with careful triple inspection; the data set was proposed by scholars such
as Ji et al. (2020), and the classification research of landslides was carried out on it. Its study
area is located in Bijie City, Guizhou Province, China, with about 26,853 square km and
an altitude ranging from 457 m to 2900 m. The soil on the slopes caused by the perennial
rainfall is soft and prone to landslides, and it is one of the most prone areas in China.

The remote sensing images in the Bijie landslide dataset were captured by the TripleSat
satellite, and the RGB images have a resolution of 0.8 m. Seven hundred and seventy
landslide images and two thousand and three other types of images were intercepted from
the captured remote sensing images. The dataset consists of satellite optical images and
label files. In the process of making the dataset, two methods were adopted to interpret the
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landslide images to ensure the reliability of the database: One is the visual interpretation by
geologists through optical remote sensing images; the other is based on residents’ reports
and field surveys. Throughout the work, the shapes of landslide samples were drawn with
the help of ArcGIS.

3.2. U-Net

U-Net is a semantic segmentation network proposed by Olaf Ronneberger in the ISBI
Cell Segmentation Competition in 2015. It utilizes a U-shaped network structure to capture
contextual information and location information. It was initially used to solve medical
image segmentation problems, especially cell-level segmentation tasks, and was gradually
used to solve problems in other fields [33].

The network structure of U-Net, which is an encoder-decoder structure, is shown in
Figure 1.The encoder utilizes the idea of stacking convolutional layers, downsampling
the feature map through convolution and pooling, and performing four total pooling
operations. After each stacking convolution layer operation, the size of the feature map is
halved and, at the same time, the pooling result of each step is passed to the decoder; in
the decoder, the feature map is first upsampled or deconvolved and then concatted on the
channel with the previous feature map of the same size. Convolution and upsampling is
then performed, and after upsampling four times, an output result of the same size as the
original image is obtained.

 
 

 
 

 
 

   

 

  

 

  

 

  

 

  

 

  

   

 
 

 
 

 
 

 
 

 

 

  

 

  

Figure 1. U-Net architecture. The blue box represents the multichannel feature layer. The channel
number is shown at the top of the box. The white boxes represent the replicated feature maps. The
arrows represent operations on the feature layers.

3.3. DeepLab v3+

DeepLabv3+ was proposed by the Google team in 2018 and is the DeepLab series
model [34]. DeepLabv3+ is based on DeepLabv3 and improves it. It uses Deeplabv3 as
the encoder, introduces atrous convolution in the encoder for downsampling and uses the
spatial pyramid pooling module to extract multiscale information, which improves the
accuracy by fusing low-level and high-level features.

Its specific structure is shown in Figure 2. The encoder extracts image features through
a deep convolutional neural network (DCNN), and the extracted feature layers are input to
the decoder for 1 × 1 convolution. Meanwhile, the feature layers extracted by DCNN use
1 × 1, 3 × 3, 3 × 3, and 3 × 3 atrous convolutions for downsampling and pooling, where the
expansion rates of atrous convolution are 1, 6, 12 and 18, respectively. Then, the obtained
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new feature layer is concatted, its channel is changed to 1/5 of the original through 1 × 1
convolution, and the decoder is entered for upsampling. The unsampled feature layer
is concatted with the feature layer in the decoder, and then the 3 × 3 convolution and
upsampling are gone through to obtain the final prediction map.

 

 

 

 

 

 

 

 

 

Figure 2. DeepLabv3+ architecture. DCNN stands for deep convolutional neural network, and
Atrous Conv stands for atrous convolution. Cyan, orange, pink and green represent the extracted
feature layers. The dark blue boxes represent the operations taken on the feature layers.

3.4. PSPNet

PSPNet is a semantic segmentation model jointly proposed by the Chinese University
of Hong Kong and Shangtang Technology and it won the championship in the 2016 Ima-
geNet Challenge [35]. The original intention of PSPNet was to improve the FCN. The most
prominent feature of PSPNet is that it adds a PSP module between the encoder and the
decoder, which is also the main difference between it and the FCN.

The structure of PSPNet is shown in Figure 3; the input layer obtains the feature layer
of the input image through CNN, and the feature layer size is changed to 1/5 of the original
through. Then, the obtained feature map is input to the pyramid pooling module. First,
this module divides the input feature layer into 6 × 6, 3 × 3, 2 × 2 and 1 × 1 sized areas;
the ave-pooling operation is performed in the divided area to obtain four feature layers
of different sizes (corresponding to the green, blue, orange and red outputs in Figure 3,
respectively); then, 1 × 1 convolution operations are performed on these feature layers;
next, the number of channels of the feature layer is changed to one-fourth of the original;
and finally, the feature layer is up-sampled by bilinear interpolation. The upsampled
feature map and the feature layer obtained by CNN are concatenated, and finally, the final
output is obtained through the convolution operation.
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Figure 3. PSPNet architecture. First, a CNN is used to obtain the last convolutional feature map
given an input image. A pyramid parsing module is then applied to collect different subregion repre-
sentations, followed by upsampling and concatenation layers to form the final feature representation.
Finally, the representation is fed into convolutional layers to obtain the final per-pixel predictions.

3.5. Evaluation Metrics

In deep learning methods, recall rate and accuracy rate are indicators that can evaluate
the recognition effect of the model, and they are associated with the confusion matrix; As
Table 1 shows, T and F represent the prediction of true or false; P (positive) and N (negative)
represent the type of prediction; TP (true positive), TN (true negative), FP (false positive),
and FN (false negative) are used to classify pixels. Taking this article as an example, TP
means that the pixel is identified as a landslide pixel; the identification is correct. TN means
that the pixel is identified as a nonlandslide pixel; the identification is correct. FP indicates
that the pixel was identified as a landslide pixel and identified incorrectly. FN indicates
that the pixel was identified as a nonlandslide pixel and identified incorrectly.

Table 1. Confusion matrix of classification results.

Actual Values
Predicted Values

Positive Negative

Positive TP FN
Negative FP TN

Precision represents the proportion of the actual landslide pixels in the pixels predicted
by the model as landslides, as shown in Equation (1):

Precision =
TP

FP + TP
, (1)

Recall represents the proportion of landslide pixels predicted by the model in all actual
landslide pixels, as shown in Equation (2):

Recall =
TP

FN + TP
, (2)

In addition, mIoU is a widely used metric in semantic segmentation tasks and is used
as a standard measure to measure semantic segmentation models. Intersection over union
(IoU) represents the ratio between the intersection and union of the predicted results of
landslide pixels and the actual landslide pixels, and mIoU represents the average of all
categories of IoU. The IoU is shown by Equation (3):

mIoU =
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij + ∑k

j=0 pji − pii
, (3)
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In this formula, i represents the real pixel, j represents the predicted pixel, pij represents
that i will be predicted as j, pii represents that i will be predicted as i and pji represents that
j will be predicted as i.

4. Results and Discussion

4.1. Data Preprocessing

Data preprocessing includes relabeling samples and implementing data augmentation
strategies on samples. Due to different target tasks, we only selected 770 landslide samples
in the Bijie landslide dataset as the original data. In the labeling work, in order to obtain
reliable data, we relabeled according to the original labels provided in the Bijie dataset. At
the same time, we processed the data according to the research goals and finally obtained
510 landslide samples. Among these obtained data, 90% of the data was used for training
and validation of the model, and 10% of the data was used for testing the model.

The deep learning model learns the features of the image through the provided image
samples during the training process. Therefore, the more samples that are provided
to the model, the more the model can learn the features of such images and the better
its predictions. For the model, if an image is rotated, cropped and then passed into
the model, the model will consider it a new image, so we can enhance the sample by
expanding it. We implemented a data enhancement strategy for the existing training set
according to the characteristics of sample landslides with different directions, different
structures and different boundary shapes. We enhance the dataset’s quality through
augmentation techniques, we thereby improved the model’s training effect. However,
excessive rotation and flipping of images will cause overfitting of the model, thereby
reducing its generalization and causing causing the model to achieve high accuracy on
the training set but but not achieve very high accuracy on the test set. Considering these
problems in the process of data expansion, we rotate, scale and flip the sample set according
to a certain probability based on experience. These expanded data were all used in our
model training; after expansion, the training samples were changed from the original 510
to 2500. For more details on data preprocessing, see Table 2.

Table 2. Data augmentation.

Method Probability of Execution Specific Operations

random rotation 50% rotate 20°, +90°, −90°
left-right flipping 100% flip the image left and right
image cropping 100% original image 0.7× dimension

4.2. Training

The training effect of the deep learning model is closely related to the accuracy of the
data set, suitable parameters, and training methods. Therefore, in this study, we selected
three models, U-Net, DeepLab v3+, and PSPNet, and used two different classification
networks as the backbone network of each model; the backbone network selection of the
model is shown in Table 3. We record these models as U-Net (VGG), U-Net (ResNet50),
DeepLab v3+ (MobileNet), DeepLab v3+ (Xception), PSPNet (MobileNet), and PSPNet
(ResNet50).

In the experiment, we set and adjusted the training parameters uniformly for all the
models, as shown in Table 4. The input image size is fixed at 473 × 473. The classification
of pixel types is landslide and background. The model training adopts the method of
freezing training, which divides the training into two stages: freezing and unfreezing. In
the freezing stage, the backbone of the model is frozen, and the feature extraction network
does not change. At this time, 50 rounds of fine-tuning are performed on the network. The
video memory occupied in the freezing phase is small, so the batch_size and learning rate
are set larger. In the unfreezing stage, the backbone network of the model is unfrozen,
and the feature extraction network will change; at this time, the network is trained for
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100 rounds. Due to a large amount of video memory occupied, the batch_size is set to 0.5
times that of the frozen phase, and the learning rate is reduced.

Table 3. The backbone network selection of the models.

Model Backbone

U-Net VGG
U-Net ResNet50

DeepLab v3+ MobileNet
DeepLab v3+ Xception

PSPNet MobileNet
PSPNet ResNet50

Table 4. Parameters for our models.

Hyper-Parameter Parameter Values

input_shape [473, 473]
classes landslide, background

freeze_Train True
pretrained weights True

datasets used for pre-training VOC data set
Init_Epoch 0

downsample_factor 8
freeze_epoch 50

unfreeze_epoch 100
freeze_learning_rate 10−4

freeze_batch_size 8
unfreeze_batch_size 4

unfreeze_learning_rate 10−5

focal_loss True
dice_loss True

eager pattern False
aux_branch False

early_stopping True
num_workers 1

cls_weights np.array([1, 2], np.float32)

In addition, during model training, we use the pre-trained weights obtained in the
VOC dataset as the initial parameters of the model and set dice_loss to balance the number
of training categories. We set focal_loss to balance positive and negative samples and use
the NumPy form to give different loss weights to the background and landslides so that
the model focuses on landslide pixels. In order to improve the recognition effect, we set
the downsample_factor to 8, but it will also occupy much memory; therefore, in order to
reduce the occupation of video memory, we do not use aux_branch by default, do not use
multi-threading to read data and use the early stop strategy to save computing resources.

The hardware environment of this experiment: GPU: 4*NVIDIA Tesla K80, CPU: 32*In-
tel (R) Xeon (R) CPU E5-2620 v4 @ 2.10GHz, OS: CentOS 8.3. The software environment of
this experiment: CUDA 11.2, Python 3.6, PyTorch 1.10.1, Tensorflow 2.2.0.

4.3. Experimental Results and Analysis

Pretrained models obtained by the experiment were used to predict the test set. The
prediction results show that these models can effectively identify landslides. At the same
time, according to the experimental results, we conclude that the PSPNet model using
ResNet50 as the backbone network has the best recognition effect. We will discuss the
results first from the perspective of image recognition and then from the perspective of
index evaluation.
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A total of 51 remote sensing images of landslides were included in the test set; all of
the images were from the eastern part of the Qinghai–Tibet Plateau in Bijie City, Guizhou
Province, China. As shown in Figure 4, we show some landslide images in the test set, and
none of the images in the test set participated in the training, through which we evaluated
the performance of each model. We have selected some of these samples for analysis, as
shown in Figure 5. The figure includes four samples of landslide images that occurred
in different places, marked as Landslide I, Landslide II, Landslide III, and Landslide IV.
Among them, I, II, and III are new landslides with various characteristics and shapes of
landslides, and IV is an old landslide with inconspicuous characteristics of landslides.
In addition, the figure also includes the label file of the landslide, which was used for
comparison with the predicted map. We use the pretrained model to obtain the predicted
map; we will analyze the predicted maps of the four landslide samples separately.

Figure 4. Examples of landslide samples in the test set, all from Bijie, Guizhou, China.

Figure 5. Model prediction of landslide results. Horizontally, they are Landslide I, Landslide II,
Landslide III and Landslide IV. Vertically, they are the landslide image, label map (for comparison) ,
U-Net (VGG) recognition map, DeepLabv3+ (Xception) recognition map, DeepLab v3+ (MobileNet)
recognition map, U-Net (ResNet50), the recognition map of PSPNet (MobileNet) and the recognition
map of PSPNet (ResNet50).
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Landslide I: U-Net (VGG) has a high error rate in identifying landslide images; it
identifies the background associated with the landslide color as a landslide. However,
the majority of these environments are land and cultivated land. There are 15 additional
prediction maps for the same situation. DeepLab v3+ (Xception) is similar to U-Net
(VGG). DeepLab v3+ (MobileNet), U-Net (ResNet50), PSPNet (MobileNet), and PSPNet
(ResNet50) can more accurately identify landslides; in contrast, PSPNet (ResNet50) has
better performance in recognizing landslides.

Landslide II: U-Net (VGG) and DeepLab v3+ (MobileNet) cannot fully identify land-
slides, so the effect is poor. DeepLabv3+ (Xception) recognizes roads with similar colors as
landslides. U-Net (ResNet50) recognizes other objects with similar shapes to landslides
as landslides and cannot distinguish the landslide from other content in the background.
PSPNet (MobileNet) and PSPNet (ResNet50) perform better.

Landslide III: There is a chasm in identifying the landslide by U-Net (VGG); the
color of the chasm part is darker, so the background color is closer, which is caused by
the new vegetation growing on the landslide, the model cannot recognize this and thus
identifies errors. The situation of DeepLab v3+ (Xception) is just the opposite. Although
it can distinguish landslides from vegetation, it cannot distinguish the features between
landslides and roads. DeepLabv3+ (MobileNet), U-Net (ResNet50), PSPNet (MobileNet)
and PSPNet (ResNet50) can identify landslides more accurately; however, their sensitivities
to landslide boundaries vary.

Landslide IV: Landslide IV has been formed for a long time, the landslide has been cov-
ered with vegetation, and the entire landslide is green. Because its landslide characteristics
are not prominent, they are not easy to separate. This type of landslide is too complex for
the model to recognize. Fortunately, according to the recognition effect of these models on
Landslide IV, the model can distinguish the landslide from the features of the surrounding
vegetation. However, the segmentation effect of the boundary is not accurate enough.

We evaluated the model using the metrics in Section 3.5, and the evaluation results
are shown in Table 5. Observing the recall index and precision index values, we found
that the recall rate of all models is higher than the precision; this means that these models
can identify real landslide pixels but also identify many non-landslide pixels as landslide
pixels. It can also be seen from the analysis of Figure 6 that when identifying Landslide
I and Landslide II, U-Net (VGG), DeepLabv3+ (Xception) and U-Net (ResNet50) easily
confuse other objects with similar colors and shapes to landslides.

In Table 5, mIoU values are used to evaluate model performance comprehensively.
Among these pretrained models, PSPNet (ResNet50) produced the best landslide recog-
nition effect, with an mIoU value of 91.18%, and obtained the highest precision index
(93.76%); this means that the model has a good effect on the recognition of landslide pixels.
Followed by PSPNet (MobileNet) and U-Net (ResNet50), the mIoU values of which are
89.11% and 88.75%, respectively; PSPNet (MobileNet) obtained the highest recall index
(97.39%), which means that the model can identify most of the landslide pixels. U-Net
(VGG) has the worst landslide recognition effect, with a mIoU of 81.64% and a recall and
precision of 89.34% and 89.22%, respectively.

Table 5. The results of the suggested model. Numbers in bold represent the best model for identifying
landslides (with mIoU metric as the final criterion).

Model Backbone mIoU Recall Precision

U-Net VGG 81.64% 89.34% 89.22%
DeepLab v3+ Xception 86.15% 92.26% 92.20%
DeepLab v3+ MobileNet 87.06% 94.06% 91.64%

U-Net ResNet50 88.75% 96.15% 91.82%
PSPNet MobileNet 89.11% 97.39% 92.61%
PSPNet ResNet50 91.18% 96.9% 93.76%
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Below, we combine the chart to discuss the recognition effect of PSPNet on landslides
when MobileNet and ResNet50 are used as the backbone network, respectively. As shown
in Table 6, we used precision, recall and IoU to evaluate the model’s ability to recognize
landslide and background pixels, respectively, when using two different backbone net-
works. P is the abbreviation for precision, R is the abbreviation for recall and IoU represents
intersection over union. In identifying background pixels, when ResNet50 is used as the
backbone network, the IoU value is 97.76%, which is 14.79% higher than when MobileNet
is used as the backbone network; this can be seen intuitively from the landslide predic-
tion map. In Figure 6, the blue boxes mark the parts of PSPNet (ResNet50) and PSPNet
(MobileNet) that misidentify the background pixels as landslide pixels. Compared with
PSPNet (MobileNet), PSPNet (ResNet50) is less likely to mistakenly identify content in the
background (such as roads, green vegetation, bare land) as landslides. At the same time,
the precision and recall of ResNet50 are higher than MobileNet. In identifying landslide
pixels, when ResNet50 is used as the backbone network, the IoU value is 84.6%, which is
3.45% higher than when MobileNet is used as the backbone network. At the same time,
the precision is 5.35% higher than that of PSPNet (MobileNet), and the recall is lower than
1.9%. Therefore, its landslide recognition effect is better.

Figure 6. The comparison results of landslide identification of PSPNet using MobileNet and ResNet50
as the backbone network, respectively. Behaviors 1, 3 and 5 use MobileNet as the identification result
of the backbone network, and behaviors 2, 4 and 6 use ResNet50 as the identification result of the
backbone network. The blue box marks the background pixels that the model misidentified as part of
the landslide.
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Table 6. The performance of PSPNet under different backbone networks. The numbers in bold are
the highest IoU values obtained for landslide and background recognition, respectively.

Backbone Evaluate Landslide Background

MobileNet
P 82.79% 97.08%
R 97.37% 97.41%

IoU 81.15% 82.97%

ResNet50
P 88.14% 99.41%
R 95.47% 98.34%

IoU 84.6% 97.76%

4.4. Discussion

In previous research on landslide recognition based on deep learning, Ghorbanzadeh
used CNN to train and test landslides in the Himalayas and obtained an F1 value of
87.8% and an mIoU value of 78.26% [21]. Liu (2020) proposed to use ResU-Net to identify
earthquake landslides in Jiuzhaigou, Sichuan Province, China, and obtained an F1 value
of 93.3% and an mIoU value of 87.5% [25]. Ullo (2021) applied Mask R-CNN to landslide
recognition in digital images of target hilly areas acquired by drones; and when ResNet101
was used as the backbone network, the obtained F1 value was 97% [28]. Liu (2021) proposed
to use an improved Mask R-CNN to identify earthquake landslides in the Jiuzhaigou
area of Sichuan Province, China, and obtained an F1 value of 94.5% and an mIoU value
of 89.6% [29]. Ghorbanzadeh (2022) obtained an F1 of 84.03% and an mIoU value of
72.49% when using ResU-Net and OBIA for landslide detection in multitemporal Sentinel-
2 images [21]. Our proposed PSPNet, using the classification network ResNet50 as the
backbone network, achieves a 91.18% mIoU value on the Bijie landslide dataset; however,
due to the differences in datasets and evaluation metrics, we cannot compare it with other
models; however, according to the current experimental results, the method proposed in
this paper is effective for landslide recognition.

Although PSPNet (ResNet50) achieves good results in landslide identification, it still
has some shortcomings. For example, its segmentation of landslide boundaries still needs
further improvement. Landslide images are different from traditional remote sensing
images. In addition to the information of the images themselves, remote sensing images
also contain rich geological information. For example, a digital elevation model (DEM) can
reflect local terrain features at a specific resolution. Therefore, we should further combine
deep learning with remote sensing to maximize the role of remote sensing data. If the DEM
data and remote sensing images are fused, we can obtain the local terrain information
of the landslide from the DEM, which will help the model to improve the segmentation
accuracy of the landslide boundary.

At present, the automatic identification of landslides based on deep learning still
presents research challenges and problems to be solved. For example, the scarcity of open
source code for landslide identification research and the lack of high-resolution public
landslide remote sensing image datasets and validation areas have brought great difficulties
to such research. At the same time, the further improvement in landslide identification
accuracy remains to be explored. Given these problems, we need to continue research
on automatic landslide identification. In terms of datasets, we will try to integrate the
DEM data into remote sensing images so that the datasets contain more information about
landslides, thereby improving the accuracy of landslide identification. In terms of models,
we will further discuss the influence of model structure on landslide identification and then
improve the model to improve the effect of landslide identification.

5. Conclusions

In this study, we proposed a deep learning-based research method for the automatic
identification of landslides and obtained good results on the Bijie landslide dataset. First,
we reconstructed the dataset for semantic segmentation and preprocessed the landslide data
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based on the Bijie landslide dataset. We then used three models: U-Net, DeepLabv3+ and
PSPNet, each using two classification networks as the backbone network, and completed
training and validation on the Bijie landslide dataset on these models. Finally, we used
the experimentally obtained pretrained model for landslide recognition and used mIoU,
precision and recall to evaluate the model’s recognition effect on landslides. According
to the experimental results, we obtained the best recognition effect of the PSPNet model
with ResNet50 as the backbone network, with an mIoU of 91.18%. This experimental result
shows that it is feasible to detect the automatic identification of landslides by using the
deep learning method; simultaneously, our proposed PSPNet method with ResNet50 as the
backbone network can effectively identify landslides.

Based on the above experimental results, we believe that this research will be helpful
to landslide relief operations in real life. The automatic identification method can effectively
make up for the shortcomings methods, which are time-consuming, labor-intensive and
highly dependent on labor; save much time and human resources for emergency rescue
work; and reduce the loss of life and property. At the same time, it can help geologists
significantly improve their work efficiency and allow them to spend more time on work
that requires more geologists. Therefore, this research has significant practical potential.

In future work, we will contribute to the lack of high-resolution landslide remote
sensing image datasets and open source code for landslide identification research. We will
try to enrich the landslide data set by adding more factors so that it contains more landslide
information for the model to improve the recognition accuracy of landslides further. In
terms of models, we will try to explore, for example, the self-attention mechanism is
introduced into the model so that the model can learn the characteristics of landslides
in a more targeted way, thereby improving its accuracy. In addition, compared with
new landslides, the characteristics of old landslides are less obvious, and it is not easy to
realize automatic identification. Thus, we will also try to apply the training model of new
landslides to the extraction of old landslides through transfer learning, thereby improving
the accuracy of deep learning methods in the automatic identification of old landslides.
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Abstract: With the ongoing progress of geological survey work and the continuous accumulation of
geological data, extracting accurate information from massive geological data has become increasingly
difficult. To fully mine and utilize geological data, this study proposes a geological news named entity
recognition (GNNER) method based on the bidirectional encoder representations from transformers
(BERT) pre-trained language model. This solves the problems of traditional word vectors that are
difficult to represent context semantics and the single extraction effect and can also help construct
the knowledge graphs of geological news. First, the method uses the BERT pre-training model to
embed words in the geological news text, and the dynamically obtained word vector is used as the
model’s input. Second, the word vector is sent to a bidirectional long short-term memory model for
further training to obtain contextual features. Finally, the corresponding six entity types are extracted
using conditional random field sequence decoding. Through experiments on the constructed Chinese
geological news dataset, the average F1 score identified by the model is 0.839. The experimental
results show that the model can better identify news entities in geological news.

Keywords: BERT; named entity recognition; geological news; CRF

1. Introduction

With the rapid development of society, artificial intelligence has been applied in all
aspects of our lives [1]. In recent years, artificial intelligence has developed rapidly in
various fields. Taking natural language processing (NLP) as an example, it is applied
in many fields, such as information extraction, question answering systems, machine
translation, and text classification [2]. Named entity recognition (NER) is an important field
in NLP technology, and many studies on NLP are based on it. Currently, research on NER
is mainly concentrated in the fields of finance and medical care and has not yet been seen
in the field of geological news.

In early research on NER, rule-based and dictionary-based methods were mainly
used [3–5]. Later, with the development of machine learning, machine learning methods
were used to solve NER tasks. Common methods include hidden Markov models [6,7],
maximum entropy models [8,9] and conditional random field (CRF) models [10], among
others. In recent years, with the development of computer technology and deep learning,
the method of using deep learning models has become a trend for solving NLP problems.
In the field of geology, some scholars have used deep learning-based models for NER tasks
and have achieved good results. Zhang et al. [11] proposed a geological entity recognition
model based on a deep belief network, which achieved good entity recognition results
on a small-scale corpus, and each evaluation index (P, R, F1) reached 90% and above.
Liu et al. [12] proposed an improved lattice long- and short-term memory (LSTM) model
based on a bidirectional long short-term memory conditional random field (BiLSTM-CRF).
The proposed model is based on LSTM [13] and achieved good results for named entities
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in the coal mining field, with an F1 score of 94.04% and an improvement of 2.1% based on
the original BiLSTM-CRF.

There is a huge amount of geological news texts that contain a large amount of
information. Accurately identifying effective information from them can provide important
data support for related geological survey work. However, traditional manual extraction
methods have problems such as high time consumption and low accuracy. As the scale
of geological news text data increases, the extraction becomes more and more difficult.
Therefore, it is important to realize the automatic extraction of geological news information
entities, which is also the basic work of geological news knowledge graph construction.

Geological news text data are complex and contain many types of data. Related entities
include time, geographic location, organization, job title, event, etc. Geological news texts
are different from common news texts. Because they are news related to geology, the
names of related entities have obvious characteristics, such as a professional background
and application behavior—for example, an organization entity (China Natural Resources
Airborne Geophysical and Remote Sensing Center). In addition, the text also has polysemy
and entity nesting problems, such as China referring to either a geographical location or
a country. The China Geological Survey of the Ministry of Natural Resources contains
an organizational entity (Ministry of Natural Resources), a geographical location entity
(China), and an organizational entity (Geological Survey). At present, there is no public
dataset in the field of geological journalism. Therefore, it is challenging to construct a
corpus of geological journalism before carrying out the NER task.

To accurately extract entities from geological news, this study proposes a model that
combines a bidirectional encoder representations from transformers (BERT) pre-trained
model and a BiLSTM-CRF model for geological news named entity recognition (GNNER).
The model first uses the pre-trained word vector model BERT for semantic extraction.
Compared to the traditional word vector, the GNNER Word2vec, BERT [14] can better
represent semantic information in different contexts to solve the polysemy problem. After
obtaining the output of the BERT model, part-of-speech analysis and chunking analysis
features are added to help the model identify entity boundaries. Finally, the word vector
is sent to the BiLSTM model for further training. The results of the BiLSTM model are
modified using CRF, outputting the labeled sequence with the highest score. Based on the
geological news texts of the China Geological Survey and according to the characteristics of
geological news texts, time, name, geographic location, organization, and other information
are extracted. The experimental results show that the model could better identify the
entities in geological news.

The main contributions of this paper are summarized as follows:

(1) GNNER was based on the BERT model, integrating a variety of different models and
extracting various types of entities from the constructed geological news corpus.

(2) This research used crawler technology to obtain geological news texts from the China
Geological Survey Bureau, preprocessed the data, including long text segmentation,
data cleaning, and removal of uncommon punctuation marks, and used the “BIO”
named entity labeling method to label the texts to create a dataset of a certain scale in
the field of geological news.

(3) The BERT-BiLSTM-CRF model was used to conduct a comparative experiment with
the other five models on the geological news dataset, analyze the quality of the six
models, and discuss the effects of geological news entity type, number of labels, and
model hyperparameters on model evaluation.

The rest of the paper is structured as follows: Section 2 introduces the related model
design methods and the dataset construction process; Section 3 presents the experimental
results; and Section 4 discusses the experimental results and directions for future research.
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2. Materials and Methods

2.1. Word2vec

Before using the deep learning model to solve the NLP problem, we needed to convert
the language data type into a data type that the neural network could handle. Word
embedding technology was developed because of this requirement.

The Word2vec model was developed by Tomas Mikolov [15] et al. in 2013. It is an
efficient model for training word vectors. Unlike the traditional language model, Word2vec
assumes that there is a relationship between similar words in a sentence. It has two models:
the skip-gram and CBOW. The model structure of Word2vec is shown in Figure 1. The
skip-gram uses the current word to predict nearby words, whereas CBOW uses nearby
words to predict the current word.

Figure 1. CBOW model (left) and skip-gram model (right).

Although the Word2vec model has achieved good results in word embedding, it also
has some problems. For example, the word vectors trained using this method are fixed and
cannot change the meaning of words in different contexts.

2.2. BiLSTM-CRF

Proposed by Lample [16] et al. and based on the LSTM-CRF model, the BiLSTM-CRF
model is a deep learning model that integrates feature engineering and serialization. The
model structure is shown in Figure 2. It is mainly divided into a three-layer structure of a
word vector input layer, a BiLSTM layer, and a CRF layer. The experimental process can
be divided into three steps. First, the input of the model is a sequence of word vectors.
Second, the probability vector of the corresponding label of each word is output on the
BiLSTM layer. Finally, the result is corrected through the CRF, and the label sequence with
the highest probability is output. These three parts are explained in detail below.
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Figure 2. The structure of the BiLSTM-CRF model.

The first part is the word vector input layer, where the sentence is input. Assuming that
the sentence is X, X is composed of n words (X1, X2, . . . , Xn), denoted as
X = (X1, X2, . . . , Xn). Each word in the sentence is mapped into a word vector using
the word embedding method, corresponding to w0, w1, w2, w3, w4, etc. In the figure, the
matrix formed by these word vectors is used as the input of the next layer.

The second part is the BiLSTM layer, which has two hidden layers: a forward LSTM
layer and a backward LSTM layer. The input word vector goes through the two hidden
layers, and the results of these hidden layers are spliced together to determine the state of
the final hidden layer. Based on the state of the final hidden layer, a linear layer is connected
to perform a mapping operation to map the hidden layer matrix from n dimensions to K
dimensions, where n is the dimension of the matrix and K is the number of labels. Finally,
the BiLSTM layer will output the resulting matrix, which is denoted as P = (p0, p1, . . . , pn),
where pi is the vector composed of the emission scores of wi corresponding to each label,
e.g., p0 = [1.5, 0.9, 0.1, 0.08, 0.05]. The matrix P serves as the input matrix of the CRF layer.

The last part is the CRF layer, which adds constraints between the labels and reduces
the number of invalid predicted labels. Although the Softmax function outputs the label
with the maximum probability corresponding to the word, the output labels are inde-
pendent of each other. This means that the sequence is prone to unreasonable situations,
resulting in a decrease in the accuracy rate, such that the time and organization entity of the
“I” label may become adjacent. However, we know that according to the “BIO” labeling
method, the entity tag must begin with “B”. Thus, the “I” label of the time and organization
entity cannot be adjacent.

After the word vector passes through the BiLSTM and CRF layers, the score of the
final sequence consists of two parts: the emission score of the BiLSTM layer and the transfer
score of the CRF layer, as shown in Equation (1). The X on the left side of the equal sign
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represents the scoring sequence, and the first part on the right side of the equal sign Pi,yi
represents the emission score of the yi label in the ith word vector. The second part Ayi−1,yi

represents the emission score from yi−1 label to the yi label.

socre(X, y) =
n
∑

i=1
Pi,yi +

n+1
∑

i=1
Ayi−1,yi (1)

After calculating the score for each possible sequence, it is normalized using Softmax.
The result is shown in Equation (2), which Y(x) represents all possible labeled sequences.

p(y|X) = esocre(X,y)

∑ ỹ∈Y
(x)e

socre(X,ỹ) (2)

In the model training process, the log-likelihood function is used to optimize the
model. The result is shown in Equation (3).

log(p(y|X)) = log(
esocre(X,y)

∑ ỹ ∈ Y
(x)esocre(X,ỹ)

) = score(X, y)− log ∑
ỹ∈Y(x)

esocre(X,ỹ) (3)

Finally, the Viterbi algorithm [17] is used to decode the hidden state sequence to obtain
the optimal label sequence. The result is shown in Equation (4).

y∗ = argmaxỹ∈Y
(x)socre(X,ỹ) (4)

2.3. BERT

In Section 2.1, we discussed the need to convert the data type into a data type that the
neural network can handle when dealing with NLP problems; thus, word embedding tech-
nology is needed. However, traditional word embedding technology has some problems,
such as its inability to solve polysemy and dynamically optimize specific tasks. To solve
these problems, Jacob Devlin et al. proposed a new pre-training model called the BERT
model in 2018. BERT is a deep bidirectional language representation model pre-trained on
a corpus consisting of a large number of books and Wikipedia, and its main structure is the
encoder part of the Transformer model [18].

The input of the BERT model is a token sequence, which is inserted [CLS] at the
beginning of each sequence to classify sentences and [SEP] at the end of the sequence to
separate different sentences. Each token sequence consists of three parts: token embeddings,
segment embeddings, and position embeddings.

The Transformer model was developed by Google’s Vaswani et al. in 2017. This model
efficiently realizes the parallelization of non-serialized models, which can greatly improve
computational efficiency. Figure 3 shows a structural diagram of the Transformer model. As
the structure of the BERT model is mainly the encoder part, the composition and principles
of the encoder part are explained as follows.

(1) Input of Transformer

The Transformer model trains all words in the sequence at the same time. To identify
the position information of each word in the sequence, it is necessary to add a position
encoding (PositionEncoding) to each word vector (EmbeddingLookup (X)), as shown in
Equation (5).

X = EmbeddingLookup(X) + PositionalEncoding (5)

(2) Self-attention mechanism

Unlike the attention mechanism [19], the self-attention mechanism calculates the
relationship between the elements in the input or output sequence, which is an improved
method based on the attention mechanism. In the calculation process of the self-attention
mechanism, the matrix Query, Key, and Value need to be used. From the perspective
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of the information retrieval system, Query is the input information, Key is the content
information matching Query, and Value is the information itself. The calculation process is
then described in detail. Query, Key, and Value are denoted as Q, K, and V, respectively.

Figure 3. The structure of Transformer [18].

The input of the self-attention mechanism is the matrix X. Q, K, and V are obtained
by the linear transformation of X, as shown in Equations (6)–(8), where WQ, Wk, Wv are
the three auxiliary matrices. The word vector matrix X is multiplied by these auxiliary
matrices to obtain the corresponding Q, K, and V values for each item in the sequence. The
Q of the current item is multiplied by the K of each item in the sequence to determine the
relationship between the two. After scaling and normalizing the product using Softmax, it
is multiplied by V, and each V is added to obtain the feature representation of the current
item. In Equation (9), dk is the dimension of the Q and K vectors.

Q = Linear(X) = XWQ (6)
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K = Linear(X) = XWk (7)

V = Linear(X) = XWv (8)

Xattention = Sel f Atteention(Q, K, V) = so f tmax
(

QKT√
dk

)
V (9)

(3) Multi-head mechanism

In the self-attention mechanism, each item in the input sequence corresponds to a
set of feature expressions: Query, Key, and Value. Conversely, the so-called multi-head
mechanism establishes multiple sets of auxiliary matrices in the Transformer model and
multiplies them by the word vector input matrix X to obtain multiple sets of the Query,
Key, and Value values. Therefore, each item in the sequence has multiple sets of feature
expressions. Multiple sets of feature expressions are spliced together, and dimensionality
reduction is performed using a fully connected layer.

(4) Summation and normalization

A residual connection is also required to ensure a better feature extraction effect. The
residual connection adds the vector after the self-attention mechanism and the multi-head
mechanism to the original input vector, as shown in Equations (10) and (11). It is necessary
to normalize the hidden layer to speed up convergence.

Xattention = X + Xattention (10)

Xattention = LayerNorm(Xattention) (11)

After extensive training, the BERT model can be applied to various natural language
processing tasks. This paper uses the BERT model instead of Word2vec to obtain word
vectors that can better integrate context information and improve the accuracy of named
entity recognition.

In addition, this paper also uses two improved models based on BERT for experiments,
namely distilled BERT (DistilBERT) and robustly optimized BERT approach (RoBERTa).
DistilBERT is a distilled version of BERT proposed by Victor Sanh [20] et al., which is
smaller, faster and cheaper than the BERT model. RoBERTa is a robustly optimized BERT
pre-training approach proposed by Liu [21] et al. By improving BERT, these two models
enable BERT to achieve high performance on large datasets.

2.4. Model Design

In the NLP task, as the BERT model has achieved good results, more and more people
have begun to combine BERT with deep learning models for NER tasks. In this study, we
introduce the BERT model based on the BiLSTM-CRF model and design the BERT-BiLSTM-
CRF model, which is used to identify geological news entities. As shown in Figure 4, the
structure of the model is mainly divided into three layers from bottom to top: the BERT
layer, BiLSTM layer, and CRF layer. First, the input of the BERT model is the superposition
of each word vector, including the sentence vector and the position vector. The word vector
can obtain the text context features after the encoding layer of the Transformer. Therefore,
the word vector output after BERT training can also be remarkable and effectively integrate
the article features. Second, the BERT output result is used as the input of the BiLSTM
layer, and the context information can be better integrated using the two-layer LSTM neural
network before and after. Finally, the labeling sequence output by the BiLSTM layer goes
through the CRF layer, and the labeling sequence is corrected by the state transition matrix.
The optimal labeling sequence is finally output.
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Figure 4. The structure of the BERT-BiLSTM-CRF model. The Chinese characters in the figure show
the first to fifth characters of the territory of China expressed in Chinese.

2.5. Data Processing and Experimental Setup
2.5.1. Data Source and Pre-Processing

The original data of this paper are a total of 2200 geological news texts obtained from
the China Geological Survey through web crawlers with about one million words. As the
data have much noise, it was necessary to preprocess and clean the data to reduce the
effect on the experimental accuracy. First, special symbols, such as some non-Chinese, non-
English, and non-digital symbols, were removed from the text. Second, the text contains
elements that have nothing to do with geological news. This kind of content has obvious
signs before and after the text, so that it can be used mainly for filtering using a regular
expression. News texts that were too long needed to be segmented. In this study, news
texts were segmented according to the priority of punctuation. The preprocessed dataset
consists of Chinese and English characters, numbers, punctuation marks and spaces, and
the length of each sentence after segmentation does not exceed the max_len set in the
experimental parameters.

2.5.2. Text Corpus Annotation

Sequence labeling is the most important step in the construction of datasets. There
are many popular labeling methods, and the “BIO” labeling method is used in this paper.
In the “BIO” notation method, a paragraph is usually marked as “B-X,” “I-X,” and “O;”.
“B” means “begin,” which in Chinese refers to the Chinese character at the beginning of a
named entity; “I” means “Inside,” which refers to the middle and end parts of the named
entity; and “O” means “Other,” which refers to the non-named entity part.

The task of labeling named entities is cumbersome. To reduce the intensity of the
task, this study uses YEDDA [22] as an auxiliary tool for labeling corpora. After the text is
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marked, according to statistics, 21,323 entities were marked, including 6 entity types: name,
time, geographic location, job title, organization, and event. Through the statistics of the
number of various entities in the labeled corpus, the specific labeling situation is shown in
Table 1. In the labeling process, we labelled complex entities with multiple entities one by
one. For example, the entities “Ministry of Natural Resources China Geological Survey”,
“Ministry of Natural Resources”, “China” and “Geological Survey” were annotated as an
organization, geographic location, and organization, respectively.

Table 1. The number of various entities in the annotated corpus.

Tags Type Number

TIM Time 3492
ORG Organization 5630
POS Job title 1050
EVE Event 2032
LOC Geographic location 7702
PER Name 1417

2.5.3. Experimental Environment and Parameters

The BERT model requires strong computing power during the training process, so it
has certain requirements for computer hardware. Table 2 presents the relevant information
on the hardware and software used in this experiment.

Table 2. Experimental environment. CUDA is a parallel computing platform and programming
model invented by NVIDIA, headquartered in Santa Clara, California, USA. Python is a programming
language designed by Guido van Rossum in the Netherlands. Tensorflow is a symbolic math system
developed by Google’s artificial intelligence team, Google Brain. Pytorch is an open source Python
machine learning library launched by the Facebook Artificial Intelligence Research Institute. Numpy
is an extension tool for numerical computing developed by Jim Hugunin and other collaborators.

Category Configuration

Hardware
GPU: 4*NVIDIA Tesla K80

OS: CentOS 8.3
Video memory: 11 GB GDDR6

Software

CUDA: 11.4
Python: 3.6

Tensorflow: 1.14.0
Pytorch: 1.4.0

Numpy: 1.19.2

In the training process of the model, the setting of hyperparameters influences the
training effect. To exclude the effects of different hyperparameters on the experiment, fixed
hyperparameters were used to train different models. Table 3 shows several important
parameters used in the model training process. Among these parameters, an epoch is a
process of training the training set once, max_len is the length of the maximum sequence,
batch_size is the amount of data obtained in one training process, learning_rate is the
learning rate, and drop_rate is set to prevent overfitting of the neural network.

Table 3. Model parameters.

Hyper-Parameter Parameter Values

Epochs 8
max_len 128

batch_size 16
learning_rate 3 × 10−5

drop_rate 0.5
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3. Results

3.1. Experimental Evaluation Indicators

In the process of NER, evaluation indicators are needed to evaluate the quality of the
model. In this study, the three evaluation indicators used in all experiments are precision
rate (P), recall rate (R), and F1 score (F1).

3.2. Comparison of Different Models

We divided the labeled dataset into the training set, validation set, and test set accord-
ing to a ratio of 8:1:1, with 17,124, 2056, and 2143 entities, respectively. In the NER task of
the geological news dataset, we trained the dataset on six different models and tested it
on the test set. The experimental results show that the model has achieved good results
in GNNER. Table 4 presents relevant information on the precision rate, recall rate, and F1
scores of the six models for six categories of entities: name, time, geographic location, job
title, organization, and event.

Table 4. P, R, and F1 scores of six types of entities on six models. The numbers in bold font are the
three indicators (P, R, F1) with the highest corresponding scores in the experiment.

Model Eval TIM ORG POS EVE LOC PER Avg

BERT
P 0.863 0.820 0.691 0.820 0.802 0.887 0.819
R 0.827 0.844 0.827 0.796 0.835 0.806 0.829
F 0.845 0.832 0.753 0.808 0.818 0.844 0.824

DistilBERT
P 0.847 0.796 0.721 0.793 0.787 0.864 0.808
R 0.804 0.852 0.803 0.812 0.824 0.816 0.821
F 0.825 0.823 0.760 0.802 0.805 0.839 0.814

RoBERTa
P 0.865 0.828 0.725 0.815 0.808 0.876 0.823
R 0.823 0.841 0.814 0.821 0.827 0.829 0.834
F 0.843 0.834 0.767 0.818 0.817 0.852 0.828

BiLSTM-CRF
P 0.893 0.876 0.864 0.563 0.812 0.854 0.814
R 0.765 0.803 0.760 0.697 0.687 0.616 0.728
F 0.824 0.838 0.809 0.623 0.744 0.716 0.768

BERT-CRF
P 0.841 0.837 0.733 0.803 0.849 0.878 0.838
R 0.860 0.847 0.811 0.808 0.841 0.840 0.841
F 0.850 0.842 0.770 0.805 0.845 0.859 0.839

BERT-BiLSTM-CRF
P 0.844 0.844 0.739 0.853 0.843 0.827 0.839
R 0.835 0.846 0.863 0.838 0.838 0.811 0.838
F 0.839 0.845 0.796 0.846 0.840 0.819 0.838

By analyzing the above experimental results, we can draw the following conclusions:

(1) The six models adopted in the experiment have achieved good results in the geological
news text NER task.

(2) In the geological news text NER task, the F1 scores of the BERT, DistilBERT, RoBERTa,
BERT-CRF, and BERT-BiLSTM-CRF models are 0.824, 0.814, 0.828, 0.839, and 0.838,
respectively. Compared to BiLSTM-CRF, the F1 scores increase by 5.6%, 4.6%, 6%,
7.1%, and 7%. This shows that as the BERT pre-training model can understand the
contextual information of the text well and solve the polysemy problem, it has a good
effect on the named entity recognition task.

(3) The improved DistilBERT and RoBERTa models based on BERT achieve F1 scores of
0.814 and 0.828, respectively. Compared to the BERT model, the entity recognition
effect of the DistilBERT model is slightly worse, while the RoBERTa model is better.

(4) In the geological news text NER task, the P, R, and F1 scores of the BERT-CRF model
improve by 1.9%, 1.2%, and 1.5%, respectively, compared to the BERT model because
of a mutual constraint relationship between the tags (e.g., the tag of an entity can only
start with “B” but not “I”). It can be seen after adding the CRF layer that CRF can
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deal with the mutual constraint relationship between the tags and effectively solve
the problem of inconsistent sequence tags.

(5) The P, R, and F1 scores of BERT-CRF are 0.838, 0.841, and 0.839, respectively, which
are the best among all models. Compared to the BERT-BiLSTM-CRF model, which
introduced the BiLSTM layer, the two achieved comparable results in the NER task of
geological news texts. The reason for this is that the BERT model itself is effective in
feature extraction, and the BiLSTM layer is introduced based on the BERT-CRF model.
Overfitting occurs after this layer is trained, resulting in a decreased effect.

3.3. Effect of Entity Type and Quantity

Figure 5 shows the F1 scores of the six models in the six entity categories in the form of
a bar chart. Using the same model, there is a gap in the recognition effect for the different
entity categories. The recognition effect is better for the entities of time, organization, name,
and geographic location because the number of these entities in the corpus is large, their
contextual information is more abundant, and the text features are more obvious. The
recognition effect of job titles and events is poor. Two reasons account for this result: (1) the
number of these two types of entities is small, especially job titles, which leads to insufficient
contextual information for the neural network to learn; (2) the entities of the event class
are usually nested entities, and geographic location and organization entities often appear,
increasing the difficulty of identification.

 

Figure 5. F1 scores of six types of entities on six models.

3.4. Influence of Model Hyperparameters

The hyperparameters need to be set before the model is trained. The setting of
hyperparameters plays a role in the training effect of the model. For different models and
datasets, experiments are often required to find the most suitable hyperparameters. In the
experiment, we mainly discussed the effects of the learning rate and training times on the
model training effect. The F1 score of the model is used as the condition for parameter
evaluation. When the F1 score is the largest, this means that the parameter is the best
parameter. In deep learning, the learning rate is a common hyperparameter. This setting
not only determines whether the objective function can converge but also affects the
speed of convergence. When the setting is too small, the convergence speed may be too
slow; when the setting is too large, it may lead to non-convergence. Therefore, choosing
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an appropriate learning rate is critical during model training. Based on all models, the
experiment was performed by changing the learning rate of the model. Table 5 shows the
experimental results for different learning rates. The F1 scores of all models are the largest
when the learning rate is 3 × 10−5, which means that the entity recognition effect of the
model is the best under this parameter condition.

Table 5. P, R and F1 scores of the model under different learning rates. The numbers in bold font are
the three indicators (P, R, F1) with the highest corresponding scores in each set of experiments.

Model Learning_Rate P R F

BiLSTM-CRF

1 × 10−5 0.795 0.725 0.758
2 × 10−5 0.804 0.732 0.766
3 × 10−5 0.814 0.728 0.768

4 × 10−5 0.817 0.721 0.766
5 × 10−5 0.806 0.725 0.763

BERT

1 × 10−5 0.805 0.823 0.814
2 × 10−5 0.814 0.827 0.821
3 × 10−5 0.819 0.829 0.824

4 × 10−5 0.823 0.819 0.821
5 × 10−5 0.817 0.822 0.819

DistilBERT

1 × 10−5 0.798 0.812 0.805
2 × 10−5 0.803 0.814 0.808
3 × 10−5 0.808 0.821 0.814

4 × 10−5 0.812 0.811 0.811
5 × 10−5 0.805 0.818 0.811

RoBERTa

1 × 10−5 0.809 0.816 0.812
2 × 10−5 0.817 0.822 0.819
3 × 10−5 0.823 0.834 0.828

4 × 10−5 0.826 0.828 0.827
5 × 10−5 0.821 0.827 0.824

BERT-BiLSTM-CRF

1 × 10−5 0.821 0.823 0.822
2 × 10−5 0.832 0.833 0.832
3 × 10−5 0.839 0.838 0.838

4 × 10−5 0.834 0.838 0.836
5 × 10−5 0.834 0.825 0.829

BERT-CRF

1 × 10−5 0.823 0.819 0.821
2 × 10−5 0.829 0.832 0.831
3 × 10−5 0.838 0.841 0.839

4 × 10−5 0.836 0.838 0.837
5 × 10−5 0.832 0.824 0.828

Figure 6 is a line graph showing the effect of epoch times on the F1 score. As shown in
the figure, the abscissa is the epoch value, and the ordinate is the F1 score. The F1 scores of
the six models all increase with the increase in the number of training rounds. First, the
F1 score of the BiLSTM-CRF model in the first few rounds is much lower than that of the
BERT, DistilBERT, RoBERTa, BERT-CRF, and BERT-BiLSTM-CRF models. Second, as the
number of training increases, the F1 scores of the six models gradually increase. The F1
score of the BiLSTM-CRF model gradually becomes close to the F1 score of the other five
models that introduced BERT. At the 8th epoch, the F1 scores of the BERT-CRF model and
the BERT-BiLSTM-CRF model reach the maximum. Finally, the F1 scores of the six models
tend to be stable, but the F1 score of the BilSTM-CRF model lags behind those of the other
five models.
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Figure 6. Changes in F1 score with increasing epochs.

4. Conclusions

This study uses a deep learning-based model to perform named entity recognition on
geological news texts. As there is no public labeling training dataset for model comparison
in the field of geological news, we collected geological news texts from the China Geological
Survey. We annotated the data using automatic annotation and manual calibration with
the open source annotation tool YEDDA to build a corpus of geological news texts. In past
NER research in the geological field, Chen et al. [23] proposed the BERT- BiLSTM-CRF
model to perform entity recognition in Chinese mineral texts. In the experiment, eight
entity types were extracted, and their F1 scores all exceeded 95%. Xie et al. [24] obtained F1
scores of 94.65% and 95.67% on the MSRA and People’s Daily corpora, respectively, in the
BERT-BiLSTM-CRF model for named entities. Our experiment compares six models on the
constructed geological news dataset. The F1 score of the BERT-BiLSTM-CRF model is 0.838,
which achieves a high entity recognition effect, and the F1 score of the BiLSTM-CRF model
is 0.768, which is less efficient than the BERT-based models. Compared to the previous
study, we annotated 21,323 entities, trained based on the geological news dataset, extracted
six entity types, and the F1 score of the model reached 0.839. The experimental results show
that the proposed model can also achieve a good entity recognition effect in the field of
geological news.

Although this research has achieved good results in NER tasks in the field of geological
news, there are still some shortcomings and areas that can be further improved. First, the
geological news corpus constructed in this study is relatively small, resulting in too few
job titles and event entities, thus influencing the effect of entity recognition. Therefore,
the dataset should be expanded in future studies. Second, as the process is cumbersome,
it is inevitable that some labeling errors will occur. Moreover, the original model should
be improved to enhance its performance and improve the entities’ recognition effect.
The information extracted from the geological news text can be applied to constructing
geological news knowledge graphs.
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Abstract: Mineral identification is an important part of geological research. Traditional mineral iden-
tification methods heavily rely on the identification ability of the identifier and external instruments,
and therefore require expensive labor expenditures and equipment capabilities. Deep learning-based
mineral identification brings a new solution to the problem, which not only saves labor costs, but also
reduces identification errors. However, the accuracy of existing recognition efforts is often affected by
various factors such as Mohs hardness, color, picture scale, and especially light intensity. To reduce
the impact of light intensity on recognition accuracy, we propose an efficient deep learning-based
mineral recognition method using the luminance equalization algorithm. In this paper, we first
propose a new algorithm combining histogram equalization (HE) and the Laplace algorithm, and use
this algorithm to process the luminance of the identified samples, and finally use the YOLOv5 model
to identify the samples. The experimental results show that our method achieves 95.6% accuracy for
the identification of 50 common minerals, achieving a luminance equalization-based deep learning
mineral identification method.

Keywords: deep learning; image enhancement; mineral identification; convolutional neural networks

1. Introduction

Mineral identification occupies an important position in geological research. Tradi-
tional geological mineral identification methods mainly identify minerals by the naked eye
or observation instruments. Naked-eye identification heavily relies on the discriminatory
ability of the identifier. Observations through instruments, such as the identification of clay
minerals and hydrocarbons by using near-infrared spectroscopy [1], and mineral identi-
fication and mineral mapping by imaging spectroscopy [2], require special identification
instruments. Both methods are labor intensive and their accuracy is often influenced by
the experience and ability level of the identifier. In recent years, researchers have used
deep learning techniques to reduce these effects, for example, Porwal et al. [3] used arti-
ficial neural networks in mineral potential mapping, and Li et al. [4] used convolutional
neural networks based on geological big data for mineral prospect prediction. In mineral
identification, many works also use intelligent algorithms, and these methods can be clas-
sified into three categories according to the test method and the type of data obtained:
identification based on chemical composition analysis; identification based on spectral
analysis; and identification based on optical pictures. The main types of data involved in
identification methods based on chemical composition analysis [5] are energy scattering
spectroscopy (EDS) [6], electron probe (EPMA) [7], and laser-induced breakdown spec-
troscopy (LIBS) [8]. The identification method [9] based on spectral analysis is the most
reliable method for mineral identification, but it requires expensive testing instruments
and is therefore difficult to be widely promoted. The optical picture-based identification
method is the most common identification method, which can be performed by microscopic
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images [10–15] and ordinary photographs [16–18]. As shown in Table 1, we summarized
the different current mineral identification methods.

All of the above studies enable the identification of minerals, but usually only for
a small number of species of minerals, and also lack stable and excellent identification
accuracy. In addition, one difficulty in using photo-based mineral identification is that
mineral photos in the field are often affected by light intensity as well as shadows, resulting
in photos with different photometric details, which can easily lead to errors in identification.
For example, the same mineral may be pictured in two colors with strong and weak
light intensity, and color is one of the important features used for mineral identification.
Therefore, it is difficult to achieve high accuracy with a direct identification of photos taken
with cell phones or cameras. Studies using image enhancement techniques to eliminate
the effects of extraneous factors on photographs have emerged and demonstrated utility in
many other applications. For example, Zhi et al. [19] investigated a new method to improve
the change detection accuracy of synthetic aperture radar (SAR) remote sensing images
by combining image enhancement algorithms based on wavelet and spatial domains and
power law. In addition, regarding the effect of luminance, Xiao et al. [20] relied on Retinex
theory and used a two-step approach combining candidate regions and object locations
to achieve object recognition in low luminance situations. Xiong et al. [21] achieved the
identification of ripe litchi under different lighting conditions based on Retinex image
enhancement and improved the accuracy of image identification. In more detail, we
compare the accuracy of mineral identification approaches based on image type later on,
as shown in Section 4.3.

Table 1. Comparison of different mineral identification methods.

Methods Studies Characteristics

[1] Wide range of applications.Instrument Observation [2] Spectrometer with very high pixels.

[6] Fast data acquisition.
[7] High accuracy of chemical element identification.Chemical Composition Analysis
[8] Low sample loss.

Spectral Analysis [9] Reliable and has international datasets.

[10] High accuracy rate.
[11] Effectively differentiate between quartz and resin.
[12] Effective mineral grain identification.
[13] Good results for rock minerals.
[14] High accuracy of sulfide mineral identification.

Micro-optical Picture Analysis

[15] Good performance in petrographic thin sections.

[16] Combined with mineral hardness.
[17] High accuracy of malachite and blue copper mineral identification.Traditional Image Analysis
[18] Be able to distinguish the formation minerals of different granite types.

There are many models for object detection, such as EfficientDet [22] and YOLOv5.
YOLOv5 (as shown in Section 3) extends from YOLOv4 [23], which is one of the most effec-
tive object detection models available. Yolov5 has been used in many practical applications
such as face recognition [24] and aircraft target detection [25].

In this paper, we combine image enhancement techniques with YOLOv5 for mineral
detection to address the effects of illumination factors on image chromatic aberrations.
With this method, we achieved the accurate identification of mineral images without relying
on specialized instruments for obtaining identification data. In addition, our method
enables the more accurate identification of samples with poor lighting conditions (too
bright or too dark) than other efforts to identify minerals based on image data. Moreover,
our work expands the range of mineral species that can be identified to a greater extent
than other works. Our detailed contributions are shown below.

• We first propose a novel image enhancement algorithm, one which combines his-
togram equalization (HE) and the Laplace algorithm. In subsequent experiments,
the algorithm shows powerful results.
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• We achieved the an efficient identification of 50 minerals, which is a significant expan-
sion of the number of mineral species identified compared to the existing works.

• Experiments show that our method achieves 95.6% accuracy in mineral identification,
surpassing existing mineral identification methods.

The content of this paper is shown as follows. We introduce a novel image enhance-
ment approach in Section 2, combining histogram equalization (HE) and the Laplace
algorithm. In Section 3, we focus on the structure of the model we use and briefly describe
the training environment and process. In Section 4, we show the results of our experiments
and compare them with other methods, in addition to evaluating the model effectiveness
using objective evaluation metrics. In Section 5, we conclude the article and propose
future work.

2. The Proposed Method

2.1. Histogram Equalization

Histogram equalization [26] is an important method for the statistical analysis of the
image grayscale distribution and is useful for images where both the background and
foreground are too bright or too dark. This method enables more detail in overexposed or
underexposed [27] photographs. The traditional histogram equalization method uses the
cumulative distribution function of the probability of each gray level of the image as the
transformation function, and according to this transformation relationship, an image with
uniformly distributed gray probability density can be obtained. Its cumulative distribution
function can be expressed as:

sk = T(rk) =
k

∑
j=0

nj

n
=

k

∑
j=0

pr
(
rj
)

, 0 � rj � 1, k = 0, 1, · · · , L − 1 (1)

where rj is the normalized gray level before the transformation, T(rk) is the transformation
function, sk is the normalized gray level after the transformation, nj is the number of
pixels with the k-th gray level in the original image, n is the total number of pixels in the
image, and pr(rj) is the probability of taking the k-th gray level in the image before the
transformation. However, due to its unselective data processing, it may increase the contrast
of background noise and decrease the contrast of useful signals. In addition, the gray level
of the transformed image is reduced and some details may be lost. Some images, such as
histograms with peaks, are processed to show the unnatural over-enhancement of contrast.

2.2. Laplace Operator Image Enhancement

The Laplace operator [28] image enhancement is widely used in image processing
as a second-order differential algorithm commonly used in the field of digital image
processing. It causes the gray contrast to be enhanced, thus making the blurred image
sharper. The essence of image blurring is that the image is subject to averaging or integration
operations, so the image can be inverse operated. For example, differential operations can
highlight image details and make the image sharper. Since Laplace is a differential operator,
its application enhances the areas of sudden gray changes in the image and attenuates the
areas of slow gray changes. Therefore, the Laplace operator can be selected to sharpen the
original image to produce an image describing the abrupt grayscale changes, and then the
sharpened image is produced by superimposing the Laplace image with the original image.
The basic method of Laplace sharpening can be represented by the following equation.

L(x, y) =
{

f (x, y)−∇2 f (x, y), t � 0
f (x, y) +∇2 f (x, y), t > 0

(2)

where f (x, y) denotes the two-dimensional image, ∇2 f (x, y) denotes its Laplace operator,
and t is the neighborhood center comparison coefficient. This simple sharpening method
produces the effect of a Laplace sharpening process while preserving the background
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information. By superimposing the original image to the processing result of the Laplace
transform, we can preserve each gray value in the image so that the contrast at the gray
abrupt change is enhanced. The final outcome is to bring out small details in the image
while preserving the image background. However, this tends to produce a double response
to image edges, which will affect the experimental results.

2.3. A New Algorithm Based on HELaplace

In order to overcome the shortcomings of the aforementioned classical histogram
and Laplace algorithms, and considering the characteristics of using image fusion, this
paper proposes a new algorithm for image enhancement by HELaplace. In this paper, we
combine the idea of image fusion by first processing the images with histogram equalization
algorithm and Laplace operator, respectively, and then fusing the processed images into a
new image after weighting the average by a certain proportion. This approach demonstrates
a good enhancement effect within a certain percentage range.

We convert the input image G into YCrCb (a kind of color coding method) [29] space,
and then separate the YCrCb image channels and equalize the image histogram using the
CLAHE [30] algorithm, which can improve the details of the image while avoiding the
problem of the excessive contrast enhancement of the image. The processed channel and
the unprocessed channel are combined and then converted to RGB image A. The image
is then sharpened and enhanced using the 8-neighborhood Laplace operator with center
5 and image convolution, and the enhanced image is noted as B. The weighted average
image fusion algorithm can be expressed as:

F(i, j) = λA(i, j) + (1 − λ)B(i, j) (3)

where the input image A(i, j) represents the illumination function of the image after HE
algorithm processing, B(i, j) represents the illumination function of the image after Laplace
processing, and the output image F(i, j) represents the fused image. The size of the image
is 256 × 256 pixels, i and j are the coordinates of a pixel in the image, and i, j ∈ [256, 256],
A, B ∈ [0, 255].

The algorithm description of HELaplace is shown in Algorithm 1. We apply the
HELaplace algorithm to the same image and the result is shown in Figure 1. By comparison,
we can see that the image is better after the HELaplace algorithm.

Algorithm 1 HELaplace

Input: Original image G
Output: Synthetic image G0

1: YCrCb = COLOR_BGR2YCR_CB(G)
2: // Converting RGB images to YCrCb space
3: channels = split(YCrCb)
4: // Separate YCrCb image channels
5: YCrCb = merge(channels)
6: // Convert YCrCb image back to RGB image
7: G1 = COLOR_YCR_CB2BGR(YCrCb)
8: kernel = np.array
9: // np.array is the Laplace operator

10: G2 = filter2D(G1, cv2.CV_8UC3, kernel)
11: // Convolve G with kernel
12: G0 = a*G1+b*G2
13: // a,b are coefficients
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(a) (b) (c) (d)

Figure 1. (a) Original image; (b) image processed by HE; (c) image processed by Laplace; and (d)
image processed by HELaplace.

3. Architecture of the Neural Network

3.1. Description of Our Model

The main procedure of the experiment is shown in Figure 2. First, we collect data on a
variety of minerals. Then, we label all the data and split the dataset into a training set and a
test set. HELaplace processing is performed on the data from the test set and training set.
Then, the obtained training set is used to train in a convolutional neural network through
the YOLOv5 model. Finally, the classification to which each mineral picture in the test set
belongs is calculated and the accuracy rate is recorded.

Trained
Model

HELaplace B.  Labeling and Processing

Training Set

AccuracyTest Set

A.  Data Collection

C.  Model Training

D.  Model Testing

...

...

...

Data for Test
...

...
Data for Traning

Figure 2. The structure of our model.

Specifically, Figure 3 illustrates the specific structure of the YOLOv5 network. It
consists of four parts: input, backbone, neck, and prediction. The input side uses Mosaic
data enhancement [23] and adaptive anchor frame calculation. The backbone part uses
the focus structure and the cross-stage-partial-connections (CSP) structure. The neck part
uses a feature pyramid network (FPN) + pixel aggregation network (PAN)) structure.
The prediction part uses non-maximal suppression (NMS) to filter the targets, so it has
high accuracy. As a new type of deep neural network (DNN), unlike traditional algorithms
that require strict image pixel size, YOLOv5’s adaptive image scaling has no requirement
in terms of image size. We also modified the YOLOv5 code in the letterbox function of
datasets.py to add a minimum of black borders to the adaption of the original image,
reducing information redundancy and therefore greatly improving the processing speed.
The CSP structure of YOLOv5s is to divide the original input into two branches and
perform separate convolution operations to halve the number of channels. One branch
performs the Bottleneck * N operation, then concats two branches. This allows the input
and output of BottlenneckCSP to be the same size, which enables the model to learn more
features. The neck of YOLOv5 has the same FPN+PAN structure as in YOLOv4. However,
the convolution operation used in the neck of YOLOv4 is regular. In contrast, the CSP2
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structure inspired by the CSPNet [31] design is used in the neck structure of YOLOv5 to
enhance the network feature fusion and improve the identification accuracy.

Focus CBL CSP1_1 CBL CSP1_3 CBL SPP CSP2_1 CBL UPSAM
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UPSAM
PLING

CONCAT

CONCAT

CBL
CSP2_1

CSP2_1 CONV

CONV

CONCAT

CBL

CSP2_1 CONV

CBLCSP1_3

CBL CONV Leaky
RELUBN=

CSP1_X CONV=

CONV

CBL Res
unit

CONCA
T

Leaky
RELUBN CBL

CSP2_X CONV=

CONV

CBL

CONCA
T

Leaky
RELUBN CBL

CBL

Focus

slice

slice

slice

slice

CONCAT CBL=

76*76*255

19*19*255

38*38*255

Input

608*608*3

NeckBackbone Prediction

X

2*X

Figure 3. The main model of YOLOv5 network.

3.2. Model Training

In this paper, the deep learning integrated development environment is Pycharm. Test
environment: NVIDIA GTX 1060, 8G memory, Intel Core(TM) i7-8750H CPU, and Python
3.8 as the compiler language. The parameters we used for model training are shown in
Table 2. Parameters not listed in the table are used as default values.

Table 2. Parameters used for model training.

Parameters Configuration

Pre-training weight YOLOV5S.PT
Epochs 100

Sample size 183,380
Conf-thres 0.05
Iou-thres 0.45
Img-size 640

Batch-size 10

In our experiments, we use the GLOU function [32] as our loss function. Its smaller
value indicates more accurate results. The expression of its function is

Glouloss = − 1
∑p 1 ∑

p

(
1 − loup

)
(4)

where p denotes the predicted positive example index and loup is the intersection ratio of
the predicted positive example frame p to the corresponding true frame.

We recorded the changes in loss function GLOU values during the training process
and tested the accuracy of the model on the validation set after each iteration of the training
set was completed. The change in GLOU loss during the training process is shown in
Figure 4. It can be seen that the model converges effectively, and the GLOU loss has reached
a low level after 50 epochs. According to the figure, the model achieves the best accuracy
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on the validation set after the 90th iteration, and the accuracy decreases after continuing
the training, probably due to some overfitting.

(a) (b)

Figure 4. Change in (a) loss value and (b) precision value.

4. Test Result and Discussion

To test the accuracy of our method, we selected 13,911 images from a collection of
220,057 images for testing our neural network model. After inputting one of the images
into the neural network, the mineral category with the highest probability is given. We
evaluate the performance of our method in terms of accuracy, and also compare it with
other methods and give results.

4.1. Data

The training of mineral identification using YOLOv5 requires a large amount of data
during validation and testing. The more data available for training, the more generalizable
and robust the model will be, and the higher the accuracy will be. To obtain a large
amount of specialized image data for a wide range of minerals, we chose to use image data
from Mindat [33]. Mindat is a community-led global mineral and provenance database
website and the world’s largest database of mineral information. In this paper, one mineral
is selected as a training representative in the database according to the mineral category
criteria [33] in each mineral major category to obtain adequate category coverage. To further
extend the mineral coverage categories, we expanded 26 minerals from those covered by
work [16]. Therefore, the images of a total of 50 minerals were collected as experimental
samples. The names of relevant minerals and the number of samples are shown in Table 3.
Among them, the small numbers of samples of certain minerals are due to their rarity, which
makes it difficult to obtain a large number of samples. It is worth noting that all samples of
minerals in this paper are labeled according to the classification criteria of Mindat.

Since some of the images directly obtained from the website were taken under a
microscope or after processing, this may have some influence on the experimental results.
Therefore, we artificially removed the images that did not meet the requirements in the
dataset during the collection process. We uniformly mixed each of the obtained mineral
images in the ratio of 10:1:1 and separated them into a training set, a validation set, and a
test set. An example of the mineral images is shown in Figure 5.

173



Appl. Sci. 2022, 12, 7055

Table 3. Names of the minerals and the number of samples.

#No. Mineral
Number of

Samples
#No. Mineral

Number of
Samples

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Adularia
Aegirine

Agate
Albite

Almandine
Amber

Anglesite
Azurite

Beryl
Biotite

Boracite
Cassiterite

Chalcopyrite
Cinnabar
Copper

Demantoid
Diopside
Elbaite
Epidote
Fluorite
Galena

Goethite
Gold

Gypsum
Halite

738
909

3636
1882
2124
294

1981
8320
9836
1437
240

3321
3296
1618
5504
785

1649
5683
3915

28,147
6661
4063
4796
2439
821

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Hematite
Magnetite
Malachite
Marcasite

Moissanite
Niccolite
Nitratine

Opal
Orpiment
Ozocerite

Pyrite
Quartz

Rhodochrosite
Ruby

Sapphire
Schorl

Selenium
Sphalerite

Stibnite
Sulphur
Topaz

Torbernite
Turquoise

Whewellite
Wulfenite

6086
2615
7919
1748

10
245
10

3283
754
23

13,042
46,398
4510
872

1056
2200
106

6412
2548
1843
3926
1170
988
94

8104

Total 220,057

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 5. Examples of cropped images ((a–d) chalcopyrite; (e–h) copper; (i–l) elbaite; and (m–p)
demantoid). The original images are from Mindat.

174



Appl. Sci. 2022, 12, 7055

4.2. Test Result

We used the YOLOv5 neural network and HELaplace+YOLOv5 neural network to
test images with too little light and too much light, respectively, and the average accuracy
obtained is shown in Table 4. The test results show that the combination of the HELaplace
and YOLOv5 algorithms can greatly improve the identification accuracy. Figure 6 shows
the accuracy of mineral identification for all 50 categories. As we can see, except for
specific minerals, all of our minerals are identified with an accuracy of more than 80%.
Among them, four minerals possess relatively low accuracy due to the a small number
of training samples, which include Moissanite, Nitratine, Ozocerite and Selenium. Using
HELaplace in combination with YOLOv5, the accuracy of all mineral species was improved
compared to the results without using HELapace, especially the identification accuracy of
minerals (Azurite, Chalcopyrite, Galena, Topaz) which was improved by 10%. The main
reason is that the images taken in insufficiently or excessively bright light will have chro-
matic aberrations due to the light, many minerals have similar shapes and textures, and the
resulting chromatic aberrations make it difficult for the model to correctly identify them
based on the images. After applying HELaplace, the minerals (Adularia, Magnetite, and
Malachite) do not significantly improve the accuracy, which is due to the fact that these
minerals themselves are too dark and less influenced by light. It can be seen from Table 4
and Figure 6 that combining HELaplace with YOLOv5 can improve the identification
accuracy of most minerals.

Table 4. Comparison of the accuracy of different methods.

Method Accuracy

YOLOv5
HE + YOLOv5

Laplace + YOLOv5
HELaplace + YOLOv5

85.31%
87.14%
86.82%
95.63%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

YOLOv5 HELaplace+YOLOv5

Figure 6. Accuracy comparison of specific mineral species.

4.3. Comparison with Other Methods

Table 5 demonstrates the number and accuracy of identified minerals for existing
mineral detection methods. In contrast to the dual-energy CT chemometric calibration
method [34], our work does not require the use of instruments for the medical X-ray
tomography of minerals. Compared to the method using polarized light microscopy to
obtain images [10], which can only identify five minerals, our method can identify 50 species
with similar accuracy. Similarly, compared to the work of Julio et al. [11] which could only
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distinguish between resin and quartz, we were able to differentiate more minerals and
maintain a similar accuracy. Furthermore, in contrast, we do not need special instruments to
obtain the picture data under the polarized light microscope, we only need to take pictures
of the minerals to perform the identification. In contrast to the work of Zeng et al. [16] who
used Mohs hardness and images to identify minerals, our work does not require the use
of instruments to obtain Mohs hardness. It is worth noting that the aforementioned work
on identification using mineral images was experimentally measured using images taken
under normal lighting, and when experiments were conducted using images taken under
excessively dark or excessively bright conditions, the accuracy rate would be reduced to
varying degrees.

Table 5. Comparison of deep learning-based and image-based mineral identification works.

Studies Accuracy (%) Number of Identified Minerals Image Type

[10] 89 5 Microscopic
[11] 95 2 Microscopic
[12] 90 9 Microscopic
[13] 90.9 4 Microscopic
[14] 90 4 Microscopic
[15] 95.4 23 Microscopic
[34] \ 23 CT
[35] 94.2 5 Raman spectra
[16] 90.6 36 Photo and hardness
[17] 86 16 Photo
[18] 90 7 Photo

Our method 95.6 50 Photo

4.4. Objective Evaluation Indicators

Since it is difficult to obtain the normal illumination image corresponding to the image
under abnormal illumination, for the image quality after enhancement, natural image
quality evaluator (NIQE) [36] was used in this paper. NIQE is a non-reference image quality
index often used to measure the quality of the image, a smaller NIQE indicating a better the
quality of the measured picture. In addition, we used the lightness-order-error (LOE) [37]
to evaluate the contrast of the enhanced image with the original illuminated image. LOE
reflects the natural retention of the image, and a smaller value indicates that the image has
a better order of luminance and therefore looks more natural. Table 6 shows the objective
evaluation data of the corresponding methods in Figure 1. From the data in the table, we
can see that the LOE of our algorithm is lower than that of the Laplace algorithm, and it is
the lowest among all algorithms, indicating that we have the best result in maintaining the
naturalness of the image. Furthermore, the NIQE value of the algorithm in this paper is
the lowest among all algorithms, which indicates that the method in this paper does not
produce much detail, thus blurring and color distortion to the original image.

Table 6. Result of LOE and NIQE.

Index HE Laplace HELaplace

LOE 222.6444 156.2836 150.7435
NIQE 25.3780 41.7903 25.2050

5. Conclusions and Future Work

In this paper, we propose a deep learning mineral identification method based on
luminance equalization. Compared with traditional mineral identification methods, we
reduce the reliance on the researcher’s experience and instruments. Compared with tradi-
tional mineral identification algorithms, we reduce the influence of illumination intensity
on mineral identification and greatly improve the accuracy rate. In the deep learning recog-
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nition part, we used YOLOv5 to further improve the identification accuracy. During model
selection, we used the optimized YOLOv5 to further improve the identification accuracy.
In the future, more features will be introduced, such as combining the density and trans-
parency of minerals with photos to further improve the accuracy of mineral identification.
However, the identification method mentioned in this paper has some limitations: when
the input picture is a mineral other than fifty minerals, the closest one among fifty minerals
will be given. In the future, we will collect more mineral data to address this issue.
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